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Problem Description

In cooperation with SINTEF Fisheries and Aquaculture, our project
is within EXPOSED SFI. We are under the technical Area 2 - Moni-
toring and operational decision support. Our main task is to study the
combined use of data-driven machine learning (ML) and case-based
reasoning (CBR) for enhanced data analysis and active decision sup-
port in fish farming, especially for the production structures.

In the specialisation project Decision Support System for Exposed
Aquaculture Operations, there was proposed an architecture for a de-
cision support system for predictive maintenance of exposed aquacul-
ture structures. In this MSc thesis, the task is to study the method
of implementing a system based on this architecture.

To achieve this goal, a new data analysis must be done. This
analysis consists of pre-processing and exploratory analysis, as well as
modelling and machine learning. As the previously proposed archi-
tecture is based on some assumptions and sensors not available in this
MSc thesis, it is expected that revising the architecture is needed.

The architecture is based on principles from Structural Health
Monitoring, Case-Based Reasoning and Machine Learning. The de-
velopment of a prototype system consist of creating the different el-
ements that constitutes the system, as well as implementation and
evaluation.
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Abstract

It is a global challenge to produce enough healthy food to a growing
world population. By moving industrial fish farming to exposed lo-
cations, the farmers can possibly satisfy the dietary requirements of
the future by expanding the production. The environment at exposed
locations is rough, and conditions like harsh wind, large waves and
strong currents are present. On the positive side, there are better wa-
ter flow and distribution of waste. Exposed locations are also further
away from natural salmons, which might reduce negative environmen-
tal effects.

The production plants for fish farming are designed to be flexible
and adaptive to waves and sea currents. Monitoring of the health and
condition of these structures will be more important regarded reducing
cost of operations and maintenance. This data can be combined with
historical data and expert knowledge to support the operators decision
about acting upon a possible problematic situation.

Our goal in this MSc thesis is to study the method of implement-
ing a decision support system for predictive maintenance of exposed
aquaculture structures, based on a previously proposed architecture
from the specialisation project. The architecture is based on the fields
of Machine Learning, Structural Health Monitoring and Case-Based
Reasoning.

This thesis describes the work done in order to achieve our goals,
which includes the work of researching the relevant domains, con-
ducting a data analysis, creating models with the resulting data sets,
revising the previously proposed architecture and implementing a pro-
totypical decision support system. At last we conclude and discuss
the future work.

The work with this thesis shows that our prototype of a decision
support system is able to support an operator with advice about what
to do, if a situation similar to previously experienced situations occur.
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Sammendrag

Det er en global utfordring å produsere nok sunn mat til en verdenbe-
folkning i vekst. Ved å flytte industriell fiskeoppdrett til eksponerte
omr̊ader, kan oppdretterne ekspandere produksjonen slik at kravene
til fremtidens matmengder blir tilfredsstilt. Ved eksponerte omr̊ader
er miljøet tøft, og fohold som kraftig vind, store bølger og sterk strøm
kan forekomme. P̊a den positive siden er det bedre vanngjennom-
strømning og distribusjon av avfall. Eksponerte omr̊ader er i tillegg
lengre unna villaks, hvilket kan redusere sannsynligheten for negative
miljøp̊avirkninger.

Anleggene brukt til fiskeoppdrett er fleksible og adaptive til bølger
og havstrømmer. Overv̊aking av disse strukterens helse og tilstand
vil bli viktigere med tanke p̊a kostnadene ved operasjoner og vedlike-
hold. Kombinert med historisk data og ekspertkunnskap, kan denne
dataen støtte operatørenes beslutninger n̊ar problematiske situasjoner
oppst̊ar.

Målet med denne masteroppgaven er å studere metoden for imple-
mentasjon av et beslutningsstøttesystem for prediktivt vedlikehold av
eksponerte akvakulturelle strukturer, basert pÃě en tidligere foresl̊att
arkitektur fra forprosjektet. Arkitekturen er basert pÃě omr̊adene
Machine Learning, Structural Health Monitoring og Case-Based Rea-
soning.

Oppgaven beskriver arbeidet gjort for å n̊a prosjektets m̊al, dette
inkluderer forskning av relevante domener, gjennomføring av en data-
analyse, utforming av modeller med det resulterende datasettet, rev-
idering av den tidligere foresl̊atte arkitekturen og implmentasjon av
et prototypisk beslutningsstøttesystem. Til slutt konkluderer vi og
diskuterer fremtidig arbeid.

Arbeidet med denne oppgaven viser at v̊art prototypiske beslut-
ningsstøttesystem er kapabelt til Ãě r̊adgi operatøren, dersom en situ-
asjon lignende til en tidligere opplevd situasjon skulle oppst̊a.
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Chapter 1

Introduction

In this MSc thesis, we aim to study the combined use of data-driven
machine learning (ML) and case-based reasoning (CBR) for enhanced
data analysis and active decision support in fish farming. As the scope
of developing a decision support system (DSS) for the complete pro-
duction system is too wide, this project targets the floating ring of
the cage. The structure is flexible and the sensor basis is limited but
also rich, which make this domain more complex than others where
structural health monitoring (SHM) techniques are usually applied.
By combining ML, CBR and SHM, we have provided a modular sys-
tem that identifies symptoms of possible errors on the floating ring,
and further give an advice and an explanation to the operator based
on previous experience.

In the specialisation project ”Decision Support System for Ex-
posed Aquaculture Operations”, an architecture for a decision support
system for predictive maintenance of exposed aquaculture structures
was proposed. In this MSc thesis, we have done further research and
data analysis based on the available data from a real world produc-
tion plant, and implemented a prototype system based on a revised
edition of the previously proposed architecture.

The decision support system is based on principles from Struc-
tural Health Monitoring, Case-Based Reasoning and Machine Learn-
ing. Implementing the system consists of developing the four main
main components of the architecture: Data Acquisition, Data Inter-
pretation, Case-Based Reasoning and GUI. The implementation also

1



2 Chapter 1. Introduction

includes analysing and preparing the sensor data, definition and de-
velopment of symptoms recognised in the data and creation of a CBR
module. Testing to get an overview of the CBR system to be imple-
mented should be done by using an existing CBR tool like myCBR.

A thorough overview of the report is given in Section 1.3.

1.1 Goals

Our goal in this MSc thesis is to study the method of implement-
ing a decision support system for predictive maintenance of exposed
aquaculture structures, based on a previously proposed architecture
from the specialisation project. The architecture is based on the fields
of Machine Learning, Structural Health Monitoring and Case-Based
Reasoning. The purposes of this system are:

• Prediction of plant condition

• Automating the processes of

– Early notification
– Acting on event
– Predictive maintenance

To achieve this goal, a new data analysis must be done. This analysis
consists of pre-processing and exploratory analysis, as well as mod-
elling and machine learning. As the previously proposed architecture
is based on some assumptions and sensors not available in this MSc
thesis, it is expected that revising the architecture is needed.

1.2 Motivation

Our MSc thesis is done in cooperation with SINTEF Fisheries and
Aquaculture, several departments from the Norwegian University of
Science and Technology (NTNU), and external companies in a SFI
(Centre for Research-based Innovation) called EXPOSED. The re-
cently started SFI, that has a planned duration from 2015 to 2022,
targets developing knowledge and technology for robust, safe and ef-
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ficient fish farming at exposed locations.
The challenges are summarised on EXPOSED’s web page:

”Significant parts of the Norwegian coast are today un-
available for industrial fish farming because of its remote
locations and rough conditions like wind, wave and cur-
rent. Technical innovations like autonomous, offshore con-
structions and vessels are required for maintaining produc-
tion during all conditions and to enable more robust, safe
and controlled operations.”

It is a global challenge to produce enough healthy food to a grow-
ing world population, and fish farming will play an important role
in satisfying the dietary requirements of the future. The World Bank
Group estimates that 62 % of all seafood to consumers originates from
fish farming by 2030. Norway’s salmon farming is an important his-
tory of success in the global aquaculture production. From the early
beginning in the 1970s the Atlantic salmon industry has spread all over
the Norwegian fjords and coast, and in 2013 it produced 1.3 million
tons of fish with an export value of 39.8 billion NOK. The fish farming
industry is now an important employer and a socioeconomic mainstay
supporting district communities along the coast of Norway. Further
development is possible, and Norway has the possibility of producing 5
million tons of fish per year by 2050 if important challenges regarding
production and environment are solved. The Food and Agriculture
Organisation of the United Nations acknowledges that technology de-
velopment will play an important role in future growth of the industry.

Fish farming of salmon and trout started in sheltered coastal ar-
eas, but are now moving towards more exposed locations. This is
driven by the need of more space and better production environment,
and exposed farming locations can have good conditions for produc-
tion as well as important environmental influences are reduced. This
locations give more stable growing conditions and larger distribution
of waist material because of constant water flow. In addition, produc-
tion areas will be further away from wild salmon near the coast, which
can contribute to reducing the negative environmental consequences
caused by lice and escapes.

Fish farmers who gradually have started using more exposed lo-
cations report significant difficulties with maintaining a reliable pro-
duction, because of the challenges mentioned earlier. Some places
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have been abandoned because of the difficulties of doing the neces-
sary operations in an efficient way, which is one of the basic demands
for profitable and sustainable farming. The EXPOSED SFI will use
Norway’s strong position and knowledge within maritime sectors, like
aquaculture and offshore, to develop technical innovations within four
research areas:

• Area 1 - Autonomous systems and technologies for remote op-
erations

• Area 2 - Monitoring and operational decision support

• Area 3 - Structures for exposed locations

• Area 4 - Vessel design for exposed operations

In addition, two research areas focus on central assumptions for sus-
tainable production:

• Area 5 - Safety and risk management

• Area 6 - Fish behaviour and welfare

Figure 1.1: Research areas of the Exposed SFI [SINTEF, 2015].

In the context of the EXPOSED SFI, our project is within techni-
cal Area 2 - Monitoring and operational decision support. The motiva-
tion for our part of the project is to secure better fish welfare, reduced
risk for the operational personnel, reduced environmental impact, and
contribute to economic benefits by reducing operational costs and im-
proving the quality of the end product [SINTEF, 2016].

The motivation for using Machine Learning, Case-Based Reason-
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ing and Structural Health Monitoring stems from the challenges that
lies beneath the mentioned motivation, as well as our goals.

Contrary to offshore oil and gas installations, the production
plants for fish farming are designed to be flexible and adaptive to
waves and sea currents. Monitoring the health and condition of these
structures is of high complexity, and involves a combination of sensors
measuring both the environment (sea current profiles, wave data) and
structural behaviour (accelerations, deformations, strains). This data
combined with predefined symptoms that later can be identified by
data analysis and numerical models, can produce an estimate of the
total system state of the fish farm. We can then make use of a CBR
system that is using previous knowledge to make new decisions. The
next chapter introduces these techniques, and shows some aspects of
them.

1.3 Thesis Structure

In the next chapter we give a brief overview of the background for
this MSc thesis, and relevant parts of the main technologies we aim
to use in this project. Chapter 3 describes the related research, cover-
ing structural health monitoring, case-based reasoning and structures
in the fish farming production. In Chapter 4 we describe the method-
ological approach and the main tools we have used to solve the tasks
in the project. Chapter 5 covers the analysis of the data we have been
given, and highlights the challenges with the available data. The mod-
elling of the analysed data is described in Chapter 6, containing the
creation of symptoms and cases. Chapter 7 contains a description
of the architecture, before describing the implementation in Chapter
8. At last we evaluate our work in Chapter 9, before concluding and
discussing the future work in Chapter 10.
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Chapter 2

Background

This chapter presents the background for this MSc thesis and the
Exposed SFI, as well as introducing the fields of Machine Learning,
Case-Based Reasoning and Structural Health Monitoring. The first
section describes the specialisation project done the autumn 2015,
which is the predecessor to this thesis. The chapter also gives a brief
introduction to the fish farming industry.

2.1 Specialisation Project

The specialistion project conducted during the autumn 2015 made
the basis for the MSc thesis. The goal was to study the the fields
of Structural Health Monitoring, Case-Based Reasoning and relevant
civil engineering structures, and use the knowledge to to design an
architecture for a decision support system within the fish farming
domain. Further, we specyfied the guidelines for supplementing the
system in this MSc thesis, and we did an analysis of the data available
at that time.

The specialisation project was research based, and involved an-
swering some reasearch questions we defined. Those were essential to
answer for understanding the techniques we were going to use, and
to get enough knowledge to propose an architecture. The RQs were
based on previous knowledge and discussions with our supervisors,
and was:

7
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• How does Structural Health Monitoring methods and techniques
work, and how are they implemented?

• How is the usage of Case-Based Reasoning and Structural Health
Monitoring combined in other systems?

• What are the properties of a fish farming plant structure, and
which should we focus on?

The answers to these questions were found by studying several re-
search papers, as well as meeting experts from NTNU and SINTEF
FH. The relevant results are shown later in this report, together with
the proposed architecture.

2.2 The Aquaculture Industry

The Aquaculture industry has become a major worldwide industry
and has history dating back to 6000 BC [Wikipedia, 2016a]. The idea
to farm fish as we know it today originated in China around 2500
BC. An early technique used by the Chinese was to keep- and feed
carp caught in small lakes formed by river floods. Today, China is the
largest producer of seafood, while other parts of Asia, South America
and Europe follow. There is six main kinds of aquaculture, include
fish farming, shrimp farming, oyster farming, mariculture, algaculture
(such as seaweed farming), and the cultivation of ornamental fish.
Figure 2.1 shows a typical area with a lot of small fish farming plants
in China.

Figure 2.1: Fish farms near a seaside village on Hainan Island, China
[Britannica, 2016].
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Table 2.1: Aquaculture production (tons) by continents in 2010,
2012 and 2013.

2010 2012 2013
Asia 52 440 372 58 955 770 62 546 664
Americas 2 581 206 2 977 959 3 068 755
Europe 2 543 978 2 876 726 2 781 125
Africa 1 286 441 1 485 387 1 615 608
Oceania 185 648 181 458 177 695
World 59 037 646 66 477 300 70 189 848

In the food-producing industry, aquaculture is probably the fastest
growing sector in the world, and produces about 50% of all fish eaten
today [FAO, 2016]. The total world production for the fisheries was
158 million tonnes in 2012, where 66.5 million tonnes came from aqua-
culture1. Table 2.1 illustrates the aquaculture production in the years
2010, 2012 and 2013 for all the continents (without Russia) with high-
est production and the total world production.

2.3 Fish Farming

Fish farming involves feeding fish commercially in tanks onshore or
fish cages offshore along the coast. The different types of production
facilities has advantages and disadvantages, including in terms of:

• cooling

• placement

• water quality

• possibilities of escape

The main process of fish farming is the same for both onshore and
offshore, and consists mainly of breeding, feeding, taking care of fish
and selling fish.

There are many fish species suitable for aquaculture, but in Nor-
way mainly salmon is used for breeding. It takes approximately

1http://www.fao.org/3/a-i4899e.pdf
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three years from salmon are eggs until they are ready for slaughter
[Kvistad, 2016]. After hatching from the eggs, salmon develop into
larvae. After between 10 and 16 months, the salmon become smolts
and are ready to be deployed in the aquaculture facility. The salmon
are taken up for slaughter when they weigh between 4 and 6 kg , and
this takes about 14 to 22 months in the production plant. Figure 2.2
shows a wellboat retreiving salmon for slaughter on the Norwegian
Aquaculture Center production site.

Figure 2.2: Wellboat retrieves salmon for slaughter at the ACE
production plant [Wikipedia, 2016e].

A regular offshore production site consists of several production
units. In the different production units there are fish in various size
depending on which level the fish is in the breeding cycle. Under
the breeding cycle, there are four main operations which must be
performed, de-lousing, slaughtering, sorting and deployment.
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2.4 Machine Learning

Machine learning is the study of computer algorithms that improve
automatically through experience [Mitchell, 1997]. It is a subfield of
computer science that is built on concepts from probability and statis-
tics, information theory, philosophy, neurobiology and other fields.

”One useful perspective on machine learning is that it in-
volves searching a very large space of possible hypotheses
to determine one that best fits the observed data and any
prior knowledge held by the learner.”

Tom M. Mitchell

Depending on the type of feedback available, the learning tasks are
broadly divided into three main categories [Russel and Norvig, 2010]:

• Unsupervised learning is when an agent2 is not supplied with
any explicit feedback. In these tasks the agent has to learn
patterns or structures in the data on its own, and the most
common task is clustering.

• Reinforcement learning is when rewards or punishments are
given to the agent when it performs anything, as an indication
of its performance. This can be a reward of points if the agent
wins a game, or a punishment of no tips if a taxi agent does
something wrong.

• Supervised learning is when an agent is presented with some
examples, usually input-output pairs, and it learns a function
or general rule that map inputs to outputs. This is typically
when you have some training data and you want to classify new
examples.

As we are going to work with sensor data and numerical models, our
focus will be on supervised learning. As the training examples are de-
termined by the sensor data from the production plant, the first step
will be to analyse the data. Data analysis involves understanding and
preparing the data, which we describe in section 2.1.1.

2An agent is something that acts. Computer agents are expected to operate
autonomously, perceive their environment, persist over time, adapt to change, and
create and pursue goals [Russel and Norvig, 2010].
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Supervised learning is practically determining the nominal class3

or numerical value4 of unseen instances, based on the algorithm learned
by training on the previous known instances. When solving a prob-
lem using supervised learning, the following steps must be performed
[Wikipedia, 2016j].

• 1. Data analysis. Determine the type of training examples,
and gather a training set. These actions require data analy-
sis, and domain knowledge to be performed optimally. Further
should one determine how to represent the relevant features that
the algorithm should learn. These steps are further explained
in the next chapter.

• 2. Choose learning algorithm. The choice of the learning
algorithm is dependent on the complexity of the task, the feature
representation and the capabilities of the algorithm itself. If the
class is numerical and we predict a value, regression algorithms
are preferable. When dealing with a (bi- or multi-)nominal class
where the category is predicted, classification algorithms are
used [Rohrer, 2016].

• 3. Optimisation and evaluation When the algorithm is
ready to be run on the training set, one should test it with
different parameters and variants of the training set. The differ-
ent types of algorithms often have several adjustable parameters
that can greatly affect the performance. A separate validation
set or a subset of the training set is often used when adjusting
parameters. The latter method is called cross-validation and is
widely used. The results should at last be evaluated by using a
test set that is separate from the training set.

There are a lot of supervised learning algorithms to consider, depend-
ing on the above mentioned factors. Some often used ones are Support
Vector Machine, Linear Regression, NaÃŕve Bayes, Decision Trees, K-
Nearest Neighbour and Neural Networks. There is no single one that
outperform the others on every supervised learning problem, as each
has their strengths and weaknesses.

There are several issues to consider in supervised learning. Some

3text
4text
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notable are:

• The bias-variance dilemma is when a learning algorithm
is either biased or has high variance for a particular input x.
The algorithm has bias if it trains on several different, but
equally good training sets, and systematically classifies the out-
put wrong. High variance means that the algorithm gives a
different classification of an instance, based on which training
set it has been trained on.

• Overfitting is the issue of trying to fit the data too carefully.
This may happen if the model is too complex, and the conse-
quence is that the learner is too sensitive to noise in the data.

• Dimensionality of the input space is a problem where the
input feature vector have a high dimension, but the true func-
tion only depends on some particular features. The dimensions
that does not influence the true function may create errors and
confuse the learning algorithm, and cause a high variance.

Figure 2.3: Noisy (roughly linear) data is fitted to both linear and
polynomial functions. Although the polynomial function is a perfect
fit, the linear version can be expected to generalise better. In other
words, if the two functions were used to extrapolate the data be-
yond the fit data, the linear function would make better predictions
[Wikipedia, 2016i].
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Data Analysis

Data analysis is a term which means finding useful information in a
set of values. This is a process which contains tasks like selecting, pre-
processing, transforming and modelling data, and is a widely used and
very important tool in many domains. As machine learning focuses
on prediction based on known properties learned from the training
data, data analysis focuses on the discovery of unknown properties in
the data. One can look at data analysis as the process of obtaining
raw data, and converting it to information useful for decision-making.
This process is illustrated in Figure 2.4.

Data analysis is a broad term that is encompasses data min-
ing, business intelligence, predictive analytics, data visualisation etc.
[Wikipedia, 2015a]. Some important tasks on a data set, depending
on the user interest are:

• Filtering
• Finding Extrema
• Sorting
• Clustering
• Correlating

To do effective and sound analysis, the analysts must distinguish fact
from opinion, be aware of cognitive biases, and account for the innu-
meracy of the audience.

Figure 2.4: The data analysis process [Wikipedia, 2016c].
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In the context of machine learning, data analysis tasks are often
the first step when preparing the data sets for the learning algorithms.
The steps and requirements for making these sets are:

• Correct data specification
• Data collection from different sources
• Data processing, exploitation and organising
• Data cleaning if the data is incomplete, has duplicates or contain

errors
• Exploratory analysis, e.g by representing the average, median

og extremum
• Mathematical modeling to identify variables like correlation or

the mean square error of a regression

At last, we can build a data set for further analysis like visualisation,
or to use in machine learning algorithms.

2.5 Case-Based Reasoning

Case-Based Reasoning is a problem solving approach where the system
uses prior knowledge to solve new problems [Aamodt and Plaza, 1994].
Where many other machine learning approaches uses general knowl-
edge about a problem domain, CBR uses specific knowledge about
previous experienced situations to find solutions to new problems.
This specific information is called a case, and is stored in a case-base.
When a new problem is solved, CBR looks at which cases are similar
to the problem case and tries to reuse the previous solution. The so-
lution can then be adapted to the new problem, and then be retained
in the case-base as a new solution. This makes CBR a lazy learner,
which means that it learns incremental. The CBR approach is there-
fore well suited for learning to solve new problems.

CBR is regarded a subfield of machine learning, and works much
like the human reasoning process. Take for instance help desk sup-
port, where an employee receives incoming calls. A new problem is
solved by using the experience of the employee, or she has to get more
knowledge. When the problem is solved, the employee now knows how
to solve it. This process is very much the same in CBR, and the CBR
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cycle by Aamodt and Plaza shows the four generalised steps:

• Retrieve cases similar to the problem case.

• Reuse the solution stored with these cases, and adapt it if
needed to fit the new problem case.

• Revise the solution if necessary, after performing a real world
test, a simulation or asking a domain expert.

• Retain the case with the new solution in the case base.

A visualisation of the CBR cycle, and how the four steps and the
case-base are connected is shown in Figure 2.5.

As mentioned, CBR uses past experience stored as cases for solv-
ing new problems. These typically contains a problem description
and a solution description. The input to a CBR system is typically
a problem case, and a possible solution may exist in a similar case in
the case base. The output is typically the most similar case(s), which
contain a suggested solution.

To propose a solution to a problem case, the CBR system must be
able to calculate the similarity between the input case and the case(s)
to be retrieved. This can be done in different ways, and Richter et al.
mentions seven types of similarity measures [Richter and Weber, 2013]:

• Counting similarities
• Metric similarities
• Transformation similarities
• Structure-oriented similarities
• Information-oriented similarities
• Relevance-oriented similarities
• Dynamic-oriented similarities

This shows that similarity can be measured in many ways. In more
complex case structures, elements like weights on different features
and a local-global approach could be useful. The latter means that
objects are constructed by atomic parts that reflect the local measure,
while looking at the whole objects reflect the global view.
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Figure 2.5: The CBR cycle by Aamodt [Aamodt and Plaza, 1994].

2.6 Decision Support

A decision support system (DSS) is a computer-based information
system that supports humans in many types of decision making ac-
tivities [Wikipedia, 2015b]. Typical applications for these systems are
in planning, direct choices, management and operations, and they aim
to make people make better decisions in complex problems.

Many types of computer systems can be used as a decision sup-
port system. Rule-based expert systems, neural networks and many
other machine learning and knowledge based systems can be used in
a decision support system. The simplified architecture for DSSs is the
same, regardless of the inference engine and knowledge base, as shown
in Figure 2.6. As computer systems can assist humans with drawing
inferences when the knowledge base or the statistical data contains a
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lot of information, the developers have to build them as useful, accu-
rate and explanatory as possible. This is in most situations a difficult
task.

Decision support systems have many different applications in sev-
eral domains. In health care, DSSs have been used for diagnos-
tics, drug advisory, alerts and reminders, therapy planning and more
[Darlington, 2011]. In the business sector, where large amounts of
corporate data are stored for analysis, decision support plays a key
role in the tools that plan the strategic choices of the corporation
[Beal, ]. In the domain of structural health monitoring, systems have
been developed for damage detection in bridges and lamp posts. We
will describe SHM in section 2.4, as we aim to combine this technique
with decision support.

Figure 2.6: An illustration of a typical decision support system
architecture [Bonney, 2011].
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2.7 Structural Health Monitoring

Structural Health Monitoring is a process of dealing with the develop-
ment and implementation of systems and techniques, where damage
detection of structures is the essential part [AGH, 2008]. Different
sensors are monitoring the states and features of a structure, and sta-
tistical analysis define its health.

As SHM has developed over the last three decades, researchers
and engineers have boiled down the fundamentals of the field to a few
fundamental axioms. The general principles defined by Worden et al.
[Worden et al., 2007] are:

• Axiom I: All materials have flaws inherent or defects.
• Axiom II: The assessment of damage requires a comparison

between two system states.
• Axiom III: Identifying the existence and location of damage

can be done in an unsupervised learning mode, but identifying
the type of damage present and the damage severity can gener-
ally only be done in a supervised learning mode.

• Axiom IVa: Sensors cannot measure damage. Feature extrac-
tion through signal processing and statistical classiïňĄcation is
necessary to convert sensor data into damage information.

• Axiom IVb: Without intelligent feature extraction, the more
sensitive a measurement is to damage, the more sensitive it is
to changing operational and environmental condition.

• Axiom V: The length- and time-scales associated with damage
initiation and evolution dictate the required properties of the
SHM sensing system.

• Axiom VI: There is a trade-off between the sensitivity to dam-
age of an algorithm and its noise rejection capability.

• Axiom VII: The size of damage that can be detected from
changes in system dynamics is inversely proportional to the fre-
quency range of excitation.

Typical applications for SHM are large structures like bridges and
buildings, where sensors typically are accelerometers, strain gauges,
temperature sensors etc. [Dascotte et al., 2013]. SHM has also been
used offshore, both for vessels and platform structures [Ren et al., 2006b],
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and we aim to examine the use of this technique in the fish farming
domain.



Chapter 3

Related Research

The topics covered in our study of related research are based on the
technologies and methods presented in the previous chapter. The pur-
pose of the study is to acquire knowledge and information about the
systems similar to what we aim to create, and the structures used in
fish farming production.

Before conducting the research study in the specialisation project,
we defined some overall research questions mentioned in Section 2.1.
This chapter describes the results found by studying relevant litera-
ture and information gathered from meetings with domain experts.

3.1 SHM Methods & Techniques

The main inspection approach for large civil engineering structures
that must be routinely inspected is manual visual inspection. In a
study of the Nondestructive Evaluation Validation Center, the method
of visual inspection of bridges has been shown quite subjective, be-
cause of factors like traffic, visual abilities, light intensity, inspec-
tor work load, complexity, degree of maintenance, and accessibility
[Moore et al., 2000]. Visual inspection is also an expensive task, which
in 2009 had a cost of approximately 10 000 EUR per 100 meters
bridge [Wenzel, 2009]. SHM offers different methods and techniques
that have been developed with the purpose to ease this work, increase
safety and precision, and reduce the large costs. See Section 2.3 for

21
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more information.
We have chosen to look at three different methods from real world

implementations and research. These methods are based on either
using measurements of vibrations and material properties, or the use
of guided-waves. These two approaches can be seen as the main tech-
niques within the field.

Guided-Wave

Guided-waves can be defined as stress waves forced to follow a path
defined by the material boundary of a structure [Raghavan, 2007].
Guided-waves are generated by an actuator as a high frequency pulse
signal. By measuring these signals, one can locate structural discon-
tinuity, which typically indicate a damage in the structure, a struc-
tural feature or a boundary. When encountering these elements, the
guided-wave signal scatters in all directions as seen in Figure 3.1.

Figure 3.1: The first two steps in the Guided-Wave SHM technique
[Raghavan, 2007].

To be able to distinguish between damage, structural features and
boundaries, it is necessary to obtain prior information about the mea-
sured structure in its undamaged state. This is used as a reference in
future measurements. By using signal processing algorithms on the
sampled signal shown in Figure 3.1, relevant features are extracted as
shown in Figure 3.2. At last, pattern recognition techniques are used
to classify the damage and estimate its extent, in Figure 3.2 shown as
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a neural network classifier. In the guided-wave approach, a threshold
value decides whether the discovered damage actually is real or not.
The threshold value is usually application dependent.

In civil engineering structures, the guided-wave approach has not
been given as much attention as vibration and material property based
methods. A reason is that structures like bridges and buildings are in
general big and thick in size, in opposite to mechanical domains like
aerospace, automotive and petrochemistry. However, the approach
shows promising results when used on smaller scale civil engineering
structures.

Figure 3.2: The last two steps in Guided-Wave SHM , feature ex-
traction and pattern recognition [Raghavan, 2007].

Vibrational Characteristics

The researchers Caicedo and Dyke uses another approach with mea-
surements of vibrational characteristics to detect, identify and quan-
tify structural damage [Caicedo and Dyke, 2005]. They describe their
work within SHM for flexible bridge structures such as cable-stayed
bridges, and present evidence for successful damage detection in an
experimental bridge model.

Cable-stayed bridges are complex since they are flexible, and bring
challenges to SHM as the vibration frequencies are very low. An of-
ten used SHM method for flexible structures is based on changes in
the dynamic properties of the structures. The technique is based on
collecting and producing information from both the healthy and the
damaged structure, before damage is identified, located and quanti-
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fied by comparing the information from both data sets. The five main
steps of the technique are:

• Development of an identification model which defines the
elemental parameters, and further specifies where the sensors in
use are located. This is a simplified model of the total system.

• Placement of sensors determined by the identification model.
To measure the responses of structures, accelerometers are typ-
ically used.

• Acquisition of data means measuring a sufficient number of
modes of the structure. The sampling frequency depends on
the structure, as for instance structures with a low frequency of
vibration need long records of data.

• Modal identification is done by using the eigensystem realisa-
tion algorithm1 in combination with impulse hammer response
data, to identify the modal parameters of the structure.

• Parameter identification is estimating values for the param-
eters that form the elemental stiffness matrices of the structure.
Caicedo and Dyke use undamped natural frequencies and mode
shapes found by a least-squares solution to the eigenvalue prob-
lem2.

By comparing the identified parameters calculated in the last step for
both damaged and healthy modes, one can decide whether there is a
damage in the structure or not. The flow is illustrated in the overview
in Figure 3.3.

Implementation of the proposed methodology first requires the
development of an identification model. This is a construction of a
finite element mesh, and special care must be taken when having ele-
ments whose stiffness cannot be isolated from the affection of nearby
elements. Figure 3.4 shows a two floor structure and its corresponding
identification model. In this structure, the Young’s moduli parameter
must be identified for every element. This is not possible if assuming
that the floors are rigid and sensors are on each floor, as the numbered
elements in the Figure 3.4(a) affect the stiffness of the floors. The two

1The ERA uses the principle of minimum realisation to obtain a state space
representation of the system [Juang and Pappa, 1985], for more information see
[Caicedo and Dyke, 2005].

2See [Caicedo and Dyke, 2005] for mathematical calculations.
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Figure 3.3: Overview of the structural health monitoring technique
[Caicedo and Dyke, 2005].

degrees of freedom3 identification model shown in Figure 3.4(b) will
be a suitable model for the structure. The sensors should be placed
according to the identification model, and they should measure all the
active degrees of freedom of the model.

Figure 3.4: Two-floor structure (a) and corresponding identification
model (b) [Caicedo and Dyke, 2005].

3The degrees of freedom of a system is the number of parameters of the system
that may vary independently[Wikipedia, 2015c]
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To identify the modal parameters of the structure, the ERA is
used. To implement the ERA, the first step is to build the Hankel
matrix. The next step is to perform a singular value decomposition
of the Hankel matrix, before calculating two matrices, A and C, for
the discrete-time state representation of the system. The natural fre-
quencies correspond to the eigenvalues of A, and the mode shapes
corresponding to the response measurement are C multiplied by the
eigenvectors of A.

To estimate the parameters that form the elemental stiffness ma-
trices of the structure, a least squares solution to the the eigenvalue
problem is used. The natural frequencies and mode shapes are used
to obtain the solution. This methodology can be used to identify dif-
ferent parameters like Young’s moduli, moments of inertia, and other
parameters that affect the stiffness matrix. The formulas for calcu-
lating the stiffness can be obtained in [Caicedo and Dyke, 2005]. The
calculation must be done for identified parameters of the structure in
both damaged and healthy states. The results are then compared to
find damage in the structure.

An experimental test done by Caicedo and Dyke shows successful
implementation of the described SHM methodology. The test was per-
formed on a model of a cable-stayed bridge, designed and constructed
to reproduce the complex, three dimensional behaviour of this kind
of bridges. Two tests were performed on the healthy structure, and
two on the damaged structure. When damage was induced, the tests
shows variations of maximum 1.75 % in the identified natural fre-
quencies, as shown in Table 3.1. Further the mode shape of vibration
changed as much as 18.7 %, as shown in Figure 3.5.

Table 3.1: Identified natural frequencies [Caicedo and Dyke, 2005].
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Figure 3.5: Identified mode shape [Caicedo and Dyke, 2005].

Strain Sensors

In a damage study of composite structures performed by Kamath
et al., resistance strain gages and fiber Bragg grating sensors (FBG)
were used [Kamath et al., 2010]. The application was different types
of composite test boxes where bending loads were applied, and the
strains were measured near and away from the bending points.

A fiber Bragg grating is a type of distributed Bragg reflector4. It
is constructed in a short segment of optical fiber, that reflects partic-
ular wavelengths of lights and transmit all others [Wikipedia, 2015e].
The advantages of FBG sensors are that they are immune to electro-
magnetic interference, they can be multiplexed, and can easily be in-
tegrated in different structures. Further, they are well suited for load
monitoring, and the usage as strain sensors are well known within
SHM [Kamath et al., 2010, Ren et al., 2006a, Murawski et al., 2012].

The tests were done by comparing the measured strain on healthy
and damaged structures, when applying various load strength on the

4A DBR is a reflector used in waveguides, like optical fibers [Wikipedia, 2015d].
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structures. This was performed on four different composite testboxes
of different construction, and Figure 3.6 shows the comparison of the
strain gage and FBG data measured on a healthy case to the left
and a damaged case to the right. As the testboxes were different in
construction and damage, the results gave different graphs. All the
results can be found at [Kamath et al., 2010]. Although, the conclu-
sion of the study was that when the absolute strains were converted
to relative strains by taking the healthy strains as the baseline, the
use of FGB-based strain measurement systems makes a strong case.

Figure 3.6: Comparison of FBG and strain gage data for a testbox at
outer surface of top skin: (a) healthy case and (b) weakened structure
case [Kamath et al., 2010].

A way to implement a SHM system by using FBG sensors is to cal-
culate the modal macro-strain ratio (MMSR) [Serker and Wu, 2010].
This ratio represents the comparison of the MMS on a reference point,
like a healthy structural point, with other points. The basic concept
for using MMSR for damage detection, is that the calculated strain
ratio is constant between two different positions on the strain sen-
sor under the same amount of load. Mathematical formulas for the
MMSR calculation is found on [Serker and Wu, 2010]. The method-
ology is based on four main steps, which are:

• Installation of the FBG sensors and the reference sensors.
• Data acquisition and calculation of MMS.
• Create reference model and the new model from the data set.
• Compare the measured model with the reference model.

In Figure 3.7, all the four main steps are visualised.
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Figure 3.7: Flowchart by using the modal macro-strain ratio ap-
proach [Serker and Wu, 2010].

3.2 Combination of CBR & SHM

As mentioned earlier, CBR has the advantage of reusing past expe-
rience to solve new problems. This reflect the engineers like when
they use experience when interpreting measured data. Together with
the possibility to concentrate on known important aspect of certain
problems, and avoiding repetition of failures, this is the most impor-
tant advantages of CBR for SHM. Within the field of SHM, CBR
can be used in different ways. There are many examples of the usage
of Case-Based Reasoning in both periodic and permanent monitoring
[Freudenthaler, 2011, Delgado, 2005, Gundersen et al., 2013].

In a typical CBR system for SHM, measured parameters of a struc-
ture are in the case. These parameters are in general processed data,
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and depends on the sensors and SHM method used in the application.
Further, the input case is compared with other cases in the case base,
and the most similar are presented. The system may then assess the
structure given in the new case, or give any kind of advice.

Combined with SHM, CBR supports the very complex and time
consuming manual interpretation, and aims to help making better
decisions. The (semi-) automation of the assessing process also de-
creases cost and subjectivity. This section describes the use of CBR
as a decision support system in different applications.

Periodic Monitoring

In the context of using CBR in periodic monitoring, a new case typi-
cally consist of the parameters of a new measured structure. This kind
of monitoring are either based on the comparison of similar measure-
ments of similar structures, or the comparison of past measurements
of the structure which shall be analysed [Stumptner et al., 2009].

An example of periodic monitoring is the CBR decision support
system for semi-automated assessment of lamp posts, described by
B. Freudenthaler [Freudenthaler, 2011]. He describes a system where
cases consist of structural parameters of these posts in different con-
ditions. Expert consultation indicates that the number of attributes
describing the lamp posts should be set to 20, and the three main
types were:

• Geometric attributes covering the geometric properties like
height, radius etc.

• Numerical attributes like eigenfrequencies, vibration data
etc. in both stimulated and natural environments.

• Descriptive attributes describing the optical inspection.

The classification of the posts was the same as the civil engineers use,
ranging from A to F, where A means at least 12 year stable and F
means immediate replace.

The case base contained 799 cases, and each case represented a
single real world measurement of a certain lamp post. When a new
case should be classified, the most similar case are used as a reference
case to suggest the classification of the new case. It was also possi-
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ble to use the k most similar cases, and classify the new case as the
majority of the k nearest cases. It was possible to adjust the weights
of the attributes if the experts find some more important than oth-
ers. Regarding this, it is important that the subjectivity remains, so
a predefined or computer-optimised weighting may be advised. In the
finishing step of the classification, the user had the possibility to cor-
rect the suggested classification if the expert has further information.
Finally, the case could be stored in the case base for future reuse, or
be discarded.

The test of the system was done by using one, three, five, ten, 15,
20 nearest cases, as well as clustered centres for each class. Outlier
detection was performed on the case base as well. The results showed
in general that the more reference cases used for classification, the
more accurate the result became. But, the averaged correctness per
class was better if less reference cases were considered. In this case
the clustered centres were by far best, which may be because of few
cases in the case base for the classes E and F. The results are shown
in Table 3.2. It is essential to remember that even if k-nearest refer-
ence cases gave the overall best result, the most critical cases in the
classes E and F may not be classified correctly as these two classes
only contained only 1.13 % of the cases.

Table 3.2: Lamp post classification results [Freudenthaler, 2011].

K-ref. cases Clustered centres
Total 85.86-89.05% 78.22-86.76%

Per class 43.31-49.22% 58.72-72.14%

The conclusion of the test shows that the assessment of the lamp posts
by using CBR combined with SHM is successful. The time used was
reduced from 100 - 130 working hours when assessing manually, to a
few seconds of computation plus about one day of expert review.

Permanent Monitoring

When using CBR in permanent monitoring, the structures monitored
are often at high risk. Simple systems of this kind may be constructed
by alarms going of if reaching a predefined threshold value. Usually,
permanent monitoring compares past measurements with new ones
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of the current structure to be analysed, and not with other similar
structures. When monitoring for instance a bridge real-time, the case
base typically contains damaged or unhealthy states of the structure.
New measurements then acts as new cases, and is compared against
the case base [Delgado, 2005].

The DrillEdge real-time DSS for drilling oil wells uses CBR com-
bined with pattern matching to identify symptoms of problems during
the drilling operation. In this system a case is a concrete drilling sit-
uation that contains a collection of symptoms that previously lead to
a problem, as well as a recommendation for how to handle a similar
situation [Gundersen et al., 2013]. These cases are made from historic
drilling data and by the best practice of the operators for how to han-
dle the situations.

The system has to be able to learn from few examples, as there are
relatively few examples of serious incidents or accidents in the history.
The developers have chosen a two step approach containing:

• Pattern matching agents that identify the symptoms in the
data by forming abstractions over the sensor data.

• A CBR system that identify whether the set of identified
symptoms has caused problems in similar situations in the past.

The system contains many pattern matching agents, where each agent
has the task of identifying one type of symptom predefined by domain
experts. These agents are similar to expert systems that acquires
knowledge from a data set. The data is simple, and based on a rudi-
mentary model, instead of an advanced model. This means selecting
only the most obvious influencing parameters, and ignore unimpor-
tant effects.

The main reason for using CBR as the situation identifier is that
the system must provide explanatory support as well as an answer.
The system does not make a prediction explicit, but it displays all
the most similar cases, sorted by the prediction they imply. This
is shown in Figure 3.8, where the cases are displayed on the radar
GUI element. The most similar cases are closer to the centre, and
when you click on the case it opens. The case has two parts, the
description and the solution. The description is used by the com-
puter for comparison of cases, while the solution is an experience
transfer from one human to another. The role of the case is not
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only to classify the situation, but also to provide experience and best
practice. Figure 3.9 shows the DrillEdge CBR cycle. In this sys-
tem cases are represented in tree structures and stored as XML files.

Figure 3.8: The radar
in the DrillEdge GUI
[Gundersen et al., 2013].

The degree of similarity be-
tween two cases is found by com-
paring the root nodes in the case
trees. This similarity is calcu-
lated by the aggregation of re-
cursively combined section simi-
larities of the tree. Both domain
specific and standard similarity
measures are used.

If the current situation is not
covered by any cases in the case
base, a new case is created by the
drilling engineer. A new case is
then reviewed by a group of do-
main experts. Together with re-
vising the symptom recognition
agents and satisfying the real time demand of the similarity compari-
son, the work and time used to define new cases were the three main
challenges during the development of the system.

Figure 3.9: DrillEdge CBR cycle [Gundersen et al., 2013].
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3.3 Properties of Fish Farming Plant Struc-
tures

To be able to develop a system for decision support regarding the
health and maintenance of a fish farming plant, we have to understand
the structures to work with. As we collaborate closely with SINTEF
Fisheries and Aquaculture, we scheduled a meeting with David Kris-
tiansen5, head of Area 3 in the Exposed SFI, to get a lecture about
the area.

Properties of a Fish Farming Plant

The industry status of modern fish farming at the largest and best
sites, produces about 10 000 - 15 000 tonnes of Salomon per cycle. A
farm site contains 10 - 12 cages, where one cage has a radius of 50
meters and contains maximum 200 000 fishes.

The fish farm consists of three main components. These are:

• Feed barge
• Mooring system
• Cage structure

Figure 3.10: Typical float collar
[Aqualine, a].

The feed barge contains the
feed storage unit, the operation
room and a living quarter. Here
the operators control and mon-
itor the farm, and regulate the
feeding of the fish.

The mooring system holds
the cage structure in place,
and different areas need differ-
ent mooring system concepts.
A broadly used system is the
frame mooring, as we will de-
scribe later. Research tasks within these systems are looking at the
non-linear effects of mooring load, classifying damaged conditions,

5PhD., Research Manager - Aquaculture structures at SINTEF Fisheries and
Aquaculture.
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and the effects of interventions or mooring operations.
The normally used cage structure contains a plastic floating collar,

a net cage and a weight system. The plastic floating collar is designed
to withstand the forces from the mooring. It is typically made of two
flexible plastic pipes, mounted together by steel brackets as shown in
Figure 3.10. The pipes may be filled with Styrofoam, which make the
construction float even if the pipe gets damaged or punctured. The
mooring is attached in brackets, specially made to reduce the load on
the collar. Figure 3.11 shows a three-way bracket attachment used in
a frame based mooring system.

Figure 3.11: Typical mooring hub or ”rooster foot” [Aqualine, b].

The net is attached to the floating collar with steel brackets, which
secure that the load is evenly distributed. The net itself is a simple
structure, but it is very robust with high quality ropes that tolerate
harsh environments. A the bottom, the bottom ring is attached. This
ring keeps the net in the correct formation. Figure 3.12 shows a
visualisation of a complete cage from the leading Norwegian provider
Aqualine AS.

Figure 3.12: Visualisation of a complete cage [Aqualine, a].
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Risk Factors

There are many risk factors for both human beings and the fish farm-
ing structure. By the specifications of this project, we focus on the
structural risk factors only. The risks of structural damage by envi-
ronmental stress and operational work are present at both exposed
and sheltered plants, but the effects and outcome may be more severe
in exposed locations [M.G. Sandberg, 2012].

The environmental impact on the plant is mainly wear and growth
of unwanted sea life organisms. The latter has the consequence that
the structure needs cleaning by operators, which we mention later.
The structural wear is mainly a long-term process which make the
equipment and main parts weaker over time. As the locations get
more exposed, the sudden (and long-term) wear caused by more harsh
weather and sea currency need more attention. An other impact is
frost on the plastic collar, caused by low air-temperature and frosty
winds [Utne et al., 2015]. This makes the structure less flexible and
more vulnerable to damage, and must be removed.

Material damage may be caused by the plant itself, or by func-
tional or supportive operations. Damage to the net and attachment
points can be caused by materials rubbing and gnawing on each other,
and is often a long time process. Operations on the other hand are
direct interaction with the plant or single cages, and the most im-
portant are listed in Table 3.3. The ones that require vessels usually
have a larger scope, and are the most critical regarding material dam-
age. These are marked as bold in the table. Some real world material
damage reported in incident reports are:

• Boat stuck in delousing tarpaulin and got dragged under water.
• Bottom ring chain rubbed a hole in the net.
• ”Rooster foot” damaged by boat propeller.
• Snapped bottom ring chain.

Additionally to environmental and operational impact, the plant
may be affected by other human interactions. There are examples of
boats running over the plant, and damage the structure [Okstad, 2014].
Boats travelling nearby the production area poses a threat for both
the mooring system and the other structures, as they might collide
and some create large waves.
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Table 3.3: The most important operations.

Operation Frequency Duration Scope/Vessel Critical Factors
Retrieval of

dead fish Daily Hours Little, workboat Weather permitting,
manual labor by cage

Feeding Daily Hours Little
Weather permitting,

fish welfare,
appetite

Refill of
feed barge Weekly Hours Moderate, feeding boat

by fleet

Weather permitting,
vessels at facilities,

use of crane

Sampling Weekly Hours Little, workboat
Weather permitting,

access to fish,
manual labor on cage

Washing
of nets Weekly Hours Moderate, service vessel,

workboat

Weather permitting,
manual labor,

use of washing rigs,
damage on net,

vessels at facilities

Delousing with
use of wellboat Monthly Hours Large, wellboat/service

vessel /workboats

Weather permitting,
vessels at facilities,

use of crane,
fish welfare,
chemical use

Washing of
float collar Monthly Hours Moderate, service vessel/

workboats

Weather permitting,
vessels at facilities,

use of crane,
manual labor

Fish sorting Every six
months Hours Moderate, wellboat,

workboat

Weather permitting,
fish welfare,

manual labor
Deployment

of smolt from
wellboat

Annual Hours Moderate, wellboat Weather permitting,
vessels at facilities

Change of net Annual Hours/
Days Moderate, workboat

Weather permitting,
use of crane,

manual labor on cage,
vessels at facilities

Delivery of
fish for slaughter Annual Hours Moderate, wellboat, workboats

Weather permitting,
fish welfare,

manual labor on cage,
use of crane
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Chapter 4

Methodological Approach

This chapter describes the main tools and software we have used in
this MSc thesis, as well as the different methods used to achieve our
results.

4.1 Tools

myCBR1 is a tool for creating Case-Based Reasoning applications.
The tool is open source and Java-based, and it can easily be imple-
mented in your own code. The user can choose between using the
GUI, the API or both.

Weka2 is an application with a collection of machine learning al-
gorithms for data mining tasks. Weka is open source and Java-based.
All the different algorithms can be applied directly to a dataset from
the GUI or from your own Java code. Weka contains different tools
for pre-processing, classification, regression, clustering, visualisation
and more. The datasets can be loaded from files or a SQL database.

Eclipse3 is an open source IDE, which is run by the Eclipse Foun-
dation. Eclipse is famous for its Java IDE, C/C++, JavaScript and

1http://www.mycbr-project.net/index.html
2http://www.cs.waikato.ac.nz/ml/weka/
3https://eclipse.org

39
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PHP IDEs. The program is written in Java, and its primary usage is
Java applications.

MATLAB4 is an appication by MathWorks for math, graphics and
programming. MATLAB is widely used among engineers and scien-
tists, and has many applications. It is used for machine learning, sig-
nal processing, image processing, computer vision, communications,
computational finance, control design, robotics, and much more.

Microsoft Excel5 is a spreadsheet made by Microsoft. The pro-
gram has many features, including calculations, graphic tools, tables
and more. The program is extendable as the user can download data
analysis tools, programming tools and more.

FhSim6 is a software for simulating and visualising marine opera-
tions and systems, such as fishery, aquaculture and offshore. The ap-
plications of FhSim are training simulations, vessel design, machinery
design, surveillance and more. The simulation software is developed
by SINTEF Fishery and Aquaculture, and it is flexible and effective.
FhSim can be run on several operating systems and can be linked
with e.g. MATLAB and Java, and it is implemented in C++. It also
has the advantage that it can be run in parallel on both GPU and
CPU, with or without 3D visualisation.

4.2 Analysing & Modelling the Data

To achieve our goal of implementing a prototypical decision support
system, it is necessary to perform a data analysis and to model the
data. By doing this we are able to extract the patterns and infor-
mation that will be useful for the application. When conducting the
analysis, we follow a given method. The first step will be to acquire
the data before pre-processing it. The next step will be to perform an
exploratory analysis by visualisations and mathematical calculations,

4http://se.mathworks.com/products/matlab/index.html?stid = gnlocdrop
5https://products.office.com/nb-no/excel
6http://www.sintef.no/fiskeri-og-havbruk-as/programvare/fhsim—simulering-

av-marine-operasjoner-og-systemer/
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which is a crucial part of getting an overview of the data. This will
be the basis for creating the clean data sets that will be used when
modelling the data.

The modelling of the data consists of creating symptoms that can
be recognised in the data, as well as creating the cases. The symptoms
are models describing different conditions that the sensors are able to
register. Parts of creating these models require machine learning, and
we are using Weka as our primary data mining tool, together with
Excel and MATLAB. The last part of the analysis and modelling will
be to create the cases for the CBR system, which uses the symptoms
as attributes for similarity assessment.

4.3 Implementation

The implementation of our system is Java-based, and developed in
the Eclipse IDE. We are using GitHub for version control which eases
both development and cooperation. The implementation is described
further in Chapter 8 Implementation.

4.4 Evaluation

When the implementation of the system is done, it is important to
evaluate its performance. In our application the performance of the
artificial symptoms and cases will be the most important parts to
evaluate.

Evaluating the system with empirical data is difficult in this project,
as we do not have any data about previous incidents. We do not have
any textual reports either, which means that we have use optional
methods. When evaluating the symptoms and cases that we create,
the method will be discussion. At last we will evaluate the available
sensors, also by discussion. For one of the symptoms created by ma-
chine learning, we are testing and evaluating different machine learn-
ing algorithms as well. These tests and evaluation will be the basis
for choosing the machine learning method to use in that symptom.
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Chapter 5

Data Analysis

In this chapter we analyse the data we have been given, to better
understand the basis for the system we shall develop. We further use
the generated data sets to extract useful information that are used in
the implemented system. We first give a recap from the data analysis
performed in the specialisation project, before discussing the changes
and moving on to the current available data.

5.1 Specialisation Project

5.1.1 Previous Results

The previous data sets was provided by our co-supervisor Gunnar
Senneset at SINTEF FH, and was fragments of a wind and wave sen-
sor, as well as two Attitude and Heading Reference Systems (AHRS).
It consisted of approximately four consecutive days of measurements,
chosen randomly. The wind and wave sensor was measuring different
properties of the wind and wave, and outputs data once per hour. It
measured continuously, but the data has been aggregated heavily and
only some statistical values are used to represent the profiles. The
most important outputs was the wind direction and the wind speed.

The AHRS consisted of a gyroscope and an accelerometer. Both
measured in the X, Y and Z directions, and the sampling frequency

43
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was 10Hz. The measured values of the gyroscope are the change in ro-
tation around the three different axes in radians, while the accelerom-
eter values was the change in the three directions in g1. An overview
of the sensors is shown in figure 5.1, and we had data from AHRS 1
and 2 which was attached on the plastic collar and the separate wind
and wave sensor shown at the bottom of the illustration.

Figure 5.1: Overview of sensors at cage 3 on HosenÃÿyan production
plant.

As the wind and wave data was highly correlated, we show the
results from the wind speed in this recap. The correlation analysis
between the wind speed and the max impact on the cage in the xy-
plane indicates whether the two have an impact on each other. The
correlation coefficient was calculated to 0.911 which indicated a high
degree of linear dependency between the variables. Figure 5.2 shows
the linear regression model of the relationship between the variables.
The coefficient of determination r2, which indicates how well the data
fits the statistical model, is 0.83.

1The mean surface gravitational acceleration, 9.81 m/s2
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Figure 5.2: Linear regression model of the impact/wind speed data.

5.1.2 Challenges

During the work with the data analysis, we identified challenges with
the data. We also felt that the data we had at that moment was not
sufficient to develop a satisfying decision support system. This lead
to making assumptions about the future sensors and available data,
and how to represent cases. The main challenges were:

• Data from healthy and unhealthy structural states are
needed to identify the structure’s condition.

• States, situations or operations to use as cases are neces-
sary to create a case base, and to use previous experience about
similar incidents.

• Expert knowledge and incidents reports to support cre-
ation of cases, and provide threshold values, descriptions and
solutions.

• More sensors to provide more useful information about the
structural health of the cage.

The new data analysis will show whether it is possible to solve these
challenges or if we have to find different solutions. A big difference
from the specialisation project is that we no longer have access to
AHRS sensors, as our data is from a different production plant. The
new data and sensors are explained in the next section.
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5.2 Data Acquisition

The available data provided by our co-supervisor Gunnar Senneset at
SINTEF FH is fragments from a wind, wave and current sensor (ACE
buoy), and three load shackles. For the rest of this report, the term
environmental data refers to wave, wind and current data, weather
data refers to wind and wave data, and shackle or strain data refers
to the shackle data. We have approximately 47 consecutive days of
measurements, from mid February to end of Mars 2016.

The ACE buoy is measuring different properties of the wind, wave
and current, and outputs data once per hour. It measures continu-
ously, but only some statistical values are used to represent the pro-
files. The outputs are:

• resultTime - The date and time of the measurement.
• currentDirection - Current direction in different depth layers,

measured in degrees.
• currentSpeed - Current speed in different depth layers, mea-

sured in cm/s.
• hm0 - Significant wave height in meters, which is the average

height of the 1/3 highest measured waves within the last hour.
• hmax - Highest measured wave in meters, higher than a mini-

mum threshold.
• mdir - Wave direction in degrees.
• tp - Average wave period in seconds.
• WindDir - Wind direction in degrees.
• WindGust - Maximum wind gust last hour in m/s.
• WindSpeed - Average wind speed last hour in m/s.

The load shackles are measuring the tensile loads between the
cage and the mooring system. The shackles provides three unique
measurements, as they are mounted between the attachment points of
the rooster foot and the cage. The unit of the measurement is tonnes,
and the sampling frequency is 1Hz. In addition, the load shackles
stores information about the plant ID, sensor ID, unit, time stamp.
An overview of the sensors is shown in figure 5.3, and we currently
have data from load shackle 1, 2 and 3 attached on the plastic collar.
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The separate wind, wave and current sensor are shown at the bottom
of the illustration.

Figure 5.3: Overview of the sensors at cage 7 on Rataren production
plant.

Raw data files

The raw data file of the ACE buoy contains data sampled every hour
from from mid February to end of Mars 2016. A fragment is shown
in Figure 5.4. The low output frequency limits the accuracy, but the
measurement is representative as a statistical value for the weather
within the given hour.

The sampling frequency of the shackle data is higher than for the
Ace buoy, which make the detail level higher in this data set. This
causes that we have to aggregate the entries with respect to the task
to be done, which we come back to in the next chapters. The entries
from all the available shackles are originally in the same csv-file, and
a fragment is shown in Figure 5.5.
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Figure 5.4: Original data set from the wind, wave and current sensor
(ACE buoy).

Figure 5.5: Original data set from the load shackles, but because of
limited space for the illustration we have removed 19 currentDirection
and currentSpeed columns.

5.3 Data Preparation

The preparation of the raw data is an essential step for the further
analysis. If the preparation is done unsatisfactory according to our
requirements for accuracy, usefulness and fidelity, the analysis results
will turn out badly and so for the project.
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5.3.1 Weather

The weather data consists of measurements from the ACE buoy, and
gives information about the current at several depth layers, the wind
and wave. The file structure is described above. The work with this
data set is removing the unnecessary features, and aggregating the
current speed and direction as one total value instead of one value
per depth layer. These operations were done in Eclipse by running
Java-code as it saves us a lot of time compared to Excel or similar
tools. The reason for aggregating the current speed and direction
measurements from the different depth layers, is to create a simplified
attribute for this feature. The aggregated attribute gives the current
measurement a similar representation as the wind and wave, as the
latter do not have different heights or depths.

When aggregating the current measurements, we keep four of the
total 20 depths which is representative of the current. These are
the measurements at 5, 9, 13 and 17 meters. The final aggregated
attribute of the speed is the average of these four depth layers, and
the average direction is calculated by the Java code in Listing 5.1.

1 d i r ec t i onX = (Math . cos ( depth5 . get ( id ) )
2 + Math . cos ( depth9 . get ( id ) )
3 + Math . cos ( depth13 . get ( id ) )
4 + Math . cos ( depth17 . get ( id ) ) ) / 4 ;
5 d i r ec t i onY = (Math . s i n ( depth5 . get ( id ) )
6 + Math . s i n ( depth9 . get ( id ) )
7 + Math . s i n ( depth13 . get ( id ) )
8 + Math . s i n ( depth17 . get ( id ) ) ) / 4 ;
9

10 d i r e c t i o n = Math . atan2 ( d i rect ionY , d i r ec t i onX ) ;
11

12 i f ( d i r e c t i o n < 0) {
13 d i r e c t i o n += 360 ;
14 }

Listing 5.1: Calculation of average current direction in Java.

In the Java code above we calculates the average direction by first
calculating the average cosine as the X direction, and the average sine
as the Y direction. At last we calculate the arctangent to the two
average directions.
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5.3.2 Shackles

The shackle data contains information of the tensile load on each
shackle. For analysis and visualisation purposes we have split the
complete data set into six new sets, one per shackle. This gives us a
better opportunity to check the data for errors and to easier under-
stand it. We could further compare each of the shackles to each other
and the weather data. When done analysing, we create a new data
set containing all the shackle information as a whole.

We have mostly used a frame from 28.03 to 26.04 in this project,
as the measurements here was the most complete without a lot of
missing or corrupt values. We could predict the missing or corrupt
values, but as this window was nearly complete we have chosen to not
construct any fake data.

When visualising each of the measurements from the different
shackles, we noticed that some of the shackles have a lot of entries
with tensile value of -0.05, as well as some had extremely low varia-
tions. The latter is shown in Figure 5.6. We discussed these entries
in a meeting with Area 3 project leader David Kristiansen from SIN-
TEF FH, where we learned that the reason for the -0.05 entries most
probably was loose mooring. This is illustrated in Figure 5.7. The
consequence of loose moorings is that the shackles will register low
strains as -0.05, as the sensor is not calibrated for it. The total moor-
ing system may loosen over time, either by environmental influence
like strong current or sudden waves causing the anchor to slip, or by
natural extension of the mooring. We will explain the consequences
of a dynamic construction further in Section 6.1. The reason for the
measured values with low variation is most probably an error on the
sensor.

Figure 5.6: Segment of one of the data sets where a lot of the values
have low variation and too high measured values. The tensile load is
the last column.
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Figure 5.7: Illustration of one loose mooring.

The direct consequence for the shackles that contains a lot of entries
with low variations is that we have decided to not include them in
the further analysis and system implementation. This problem was
specific for one of the rooster foots. The main reason for leaving them
out is that we need data from all three shackles on a rooster foot to
be able to say something about the structural health.

The operations done when preparing the remaining shackle data
was done in order to remove possible noise and to represent the true
load like in signal processing. Hence to the Shannon-Nyquist sampling
theorem, we downsampled the measurements to 1/3 of the original
frequency before smoothing the data [Smith, 2016]. From these 20
remaining values per minute we calculated the average of the five
highest entries, making the new filtered attribute value per minute.
By doing this we have removed the -0.05 values, and reduced the noise
by averaging the highest values.

The advantage of keeping the values at a detail level of one entry
per minute is that we have the opportunity to extract information
about events within an hour. As the weather data is sampled every
hour, we also aggregated the shackle data to one entry per hour for
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comparing purposes. This aggregation was done by calculating the
average of the above mention values per hour.

5.4 Visualisation and Correlation

The data sets produced in the pre-processing step above, are ready
for visualisation and correlation analysis. As mentioned earlier, we
have chosen a time frame from 28.2 to 26.3, and all further analysis
are within this space.

Visualisations of the wave and wind data are shown in Figure 5.8
and 5.9, where the blue curve represents the wave and the orange
curve represent the wind. The first figure shows the wave and wind
speed, and the second shows the direction.

The next figures visualise the current and wave data, where Figure
5.10 shows the speed and Figure 5.11 shows the direction. In both
figures the blue curve shows the current and the orange shows the
wave.

Visualisations of the sensor data make it easier to interpret how the
relationship between the wind, wave and current works, and roughly
tell if some of them have an impact on each other. By studying the
visualisations we can see that the wind and wave data have similar-
ities along the curve, and most of the tops and bottoms follow each
other in different speeds and directions. The current and wave visu-
alisations on the other hand does not follow each other at the same
level. This makes it reasonable to believe that the wind vs. wave are
more related than the current vs. wave and the current vs. wind.
These assumptions should be further investigated by doing a correla-
tion analysis.
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Visualisations of the shackle data are shown in Figure 5.12, 5.13
and 5.14. The blue curve shows the strain per minute in the men-
tioned days, where the unit is tonnes. The first figure shows data
from shackle 85130, the second shows shackle 99871 and the third
shows shackle 99875.

The next figures visualise the wave and current data and shackle
data in the same plot. In the plots shown in Figure 5.15, 5.16, 5.17
and 5.18 the data is normalised as the two set are not in the same
scale. In all four figures the blue curve shows the environmental data
and the orange shows the shackle data.

By studying the visualisations of the shackle data plots, we can see
that the strain measurements varies in strength and that the last plot
differ from the others. The reason for having different measurements
on the three shackles are most probably that the mooring is tightened
differently on each of the shackles as discussed in Section 5.3.2. This
makes it difficult to rely on and make use of the measured value on
each of the shackles, as all the measurements vary from time to time.
A flexible structure like the cage and mooring system will also change
over time by both wear and maintenance.

The lowest measured value of the shackle data is -0.05. This
threshold means no registered strain. An exception is the shackle
99875, where we have measured values down to -1.12. This is because
all the values are registered with an opposite sign. We have chosen to
plot the original values in Figure 5.14 and to multiply the values with
-1 in Figure 5.18 for visual purposes and the further analysis.

The visualisation of the wave data and shackle data together shows
that there are few similar patterns in the two curves. It seems like
the current data curve and the shackle data curve follow each other
far better, as the tops and bottoms are at similar points on the x-axis
that indicates the time of the measurements. It is therefore reason-
able to believe that the current and the shackle data are more related,
and that the wave and wind data is less related to the shackle data.
These assumptions are the subject of the correlation analysis, and we
should investigate further why or why not the different data is related.
It is crucial to understand which environmental forces that has the
most impact on the cage to be able to create symptoms, cases and
especially for the usage of machine learning.
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To investigate the relationship between the different data, we cal-
culate the correlation coefficient. The correlation between the data
available are presented in Table 5.1. By looking at the visualisations
of the data, we can see a slight phase shift between the shackle data
and the environmental data. By displacing the data according to this
phase shift, the correlation increases. These correlation coefficients
are the ones showed in the table. As the correlation coefficient shows
that the highest correlated data is the shackles and the current, it is
a high degree of linear dependency between this data. We can by the
numbers in the table say that the wind and wave have small or no
direct impact on the sensors available at the moment.

We have previously shown in the specialisation project that the
wind speed has an impact on the maximum impact on the accelerom-
eters, but unfortunately we do not have these sensors available. This
is explained in Section 5.1. A reason for not registering the wind
in the shackle entries is the placement of the different sensors. The
shackles are connected to the cage near or under the water, and the
accelerometers are mounted at the top of the cage. It is therefore
reasonable to say that the wind has a lot more affection on sensors
above sea level, which are more exposed to this kind of impact. We
have also learned in meetings with SINTEF that the accelerometers
are much more sensitive to impact than the strain.

The table shows that the wind and wave are highly correlated and
the wave/wind and current are not. This means that when trying to
predicting the strain by machine learning, the data from the wind and
waves should not be a part of the training data.

As the correlation between the current and the shackles are high,
we should investigate why. As we can see in Figure 5.19 showing the
current and shackle data from two days, the data have tops and bot-
toms at the same time. This is consistent for all the data available.
By doing research on sea currents, we found that current is strongly
related to the tide. Tides are driven by the gravitational force of the
moon and sun [NOAA, 2015]. One can see the tide by the changing
water level. The tide creates currents as it creates movement in the
ocean. This current is called tidal currents and can be predicted as
they change in a very regular pattern. Other factors that create cur-
rents are the wind and thermohaline circulation. The wind creates
current that are near the surface, and the thermohaline circulation
creates both deep and shallow currents. As the production plant used
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in fish farming are massive and can be more than 25 meter deep, the
tidal current are the most interesting. The surface current is inter-
esting if we have more sensitive sensors, and the current created by
thermohaline circulation does not influence the cage as it moves much
slower.

Figure 5.19: Visualisation of the current and shackle data from two
days.

By analysing tide data from Rataren where the production plant
is located, we see that the tide is highly correlated to the current
data. Measured tide data from Kartverket is available online 2. The
correlation coefficient is 0.74, and Figure 5.20 shows a plot of the
current data and tide data. Rataren is a location exposed to currents,
which is shown in Figure 5.21.

Figure 5.20: Visulalisation of the current and tide data.

2http://www.kartverket.no/sehavniva/sehavniva-
lokasjonside/?cityid=221996city=Rataran
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Figure 5.21: Location of the Rataren, Tristeinen and Korsneset
production plants [ACE, 2016].

The visualisations and correlation analysis show that we should
focus on the current and shackle data when diagnosing the structural
health of the cage. As the different shackles on the same rooster foot
gives different strain values, we must focus on characteristics of the
curve and the statistics. The wind and wave data can still be used
to tell whether it is safe or not to do manual inspection, maintenance
and other work on the platform, as the workers can not be on the
platform in too rough conditions.

5.4.1 Challenges

When conducting the data analysis, we met some challenges with
the available data. Some of them are similar to the ones that are
mentioned in the start of this chapter, which we aimed to find solutions
for in this analysis. The important challenges are:

• Usage of FhSim to simulate data and use information about
a healthy and unhealthy state to identify the structural condi-
tion.

• Limited time to work with the available data as the sen-
sors was up and running first in February, and we could not start
working with the data before April. This limits the scope of
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the analysis, modelling and implementation drastically as these
tasks are dependent on the data.

• The amount of, and the information in the usable, avail-
able data does not provide enough information to create
real symptoms and cases. These should optimally be based on
real events and incidents. This implicates that the symptoms
and cases that we create will be artificial, and based on knowl-
edge gathered by meetings with experts and studies. The loss
of the AHRS sensors was also a big drawback as these provided
information that could be very useful.

• Evaluating the system with empirical data can be diffi-
cult due to lack of previous experience about similar incidents.
We do not have any textual incident reports either.

We hoped to use FhSim to simulate an unhealthy state of the cage,
and then compare the simulated strain with real shackle data. An
indication of a structural damage could then be too high deviation
between the simulated and measured strain. The principle is illus-
trated in Figure 5.22, where (a) represents a healthy heart rate, (b) an
unhealthy one, and (c) represents the anomalies found by subtraction.

Figure 5.22: Heart rates and anomalies found by subtraction: (a)
healthy heart rate, (b) unhealthy heart rate and (c) anomalies.
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The problem with FhSim is that we can not simulate a specific
sensor value, but rather the force in a given point on the cage. That
force can be directed in any given direction. As our shackles only mea-
sure the strain in its own direction, which we know nothing about, we
can not relate the two values. As we do not have any possibilities of
simulating a value that we can register by any of the available sensors,
we can not use the idea mentioned above.

FhSim is not implemented in our system, but we got some ideas
from analysing the output from the simulation of a broken mooring.
We manually removed one or more moorings, and analysed the re-
sults. This confirmed our assumption of that if one or more moorings
are broken, the force on the remaining mooring was notably higher.

We thought of using the measured difference in force as a reference
for the shackle data, but as mentioned we do not have any informa-
tion of the direction of the shackle. A small variation in the direction
would make a big difference in the simulated force and the measured
value.

As the symptoms and cases that we create will be artificial, we are
defining the threshold values, descriptions and solutions ourselves.
This information will be based on knowledge gathered in meetings
with experts and studies, as mentioned above. As the data was avail-
able to us for a limited time only, we had more time to do research
within the domain. This makes us more capable of creating reason-
able symptoms and cases.

As we do not have empirical data to use when evaluating the sys-
tem, we have use optional methods. When evaluating the symptoms,
cases and available sensors, the method will be discussion and ma-
chine learning. This is further described in Chapter 4 Methodological
Approach.



Chapter 6

Modelling

In this chapter we are modelling the data that has been pre-processed
and analysed in the previous chapter. The models we are creating
are individual symptoms that represent some kind of state that can
be recognised in the data. Further, we are forming the cases that are
used in the CBR-system.

6.1 Symptoms

A symptom is a predefined signal recognised in a given data set. As
mentioned, a symptom is a model of a state, and the signal is any
kind of pattern in the data that describes the state. To be able to
recognise these patterns, we need a data set with relevant attributes.
These data sets are the results from the data analysis described in the
previous chapter.

The symptoms we create uses sensor data as input, and the output
is a descriptive value of the state the symptom represents. Inside
each symptom there are performed calculations on the input before
deciding the output based on thresholds.

As the system should be developed modular and extendable, we
have defined some general mathematical calculations that can be used
in every symptom. The point is that when creating a new symptom,
we have a tool box of functions to assemble it. The following functions
have been chosen with basis in the conducted analysis above:

71
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• Calculation of maximum
• Calculation of minimum
• Calculation of average
• Calculation of slope

These functions can be calculated for every input, e.g. the current
speed or wind direction. We can also specify the time length for the
calculation, e.g. the max within the last two or ten hours.

A symptom may be signalised as present if the value calculated
from the functions above reaches a threshold. The symptoms must
generally be developed according to the domain and available data.
An example of an implemented symptom is shown in Listing 6.1. The
output of presented symptom is the status of all shackles on a rooster
foot, which uses the shackle data as input. We calculate the maxi-
mum value of each shackle within a given time length, and the status
is bad if one or more shackles have a maximum value less or like zero.
The status is good if else.

1 s h a c k l e S t a t u s ( shackle1data , shackle2data , shackle3data , timeLength ){
2 shackle1Max = 0 ;
3 shackle2Max = 0 ;
4 shackle3Max = 0 ;
5
6 shackle1Max = calculateMax ( shackle1data , timeLength ) ;
7 shackle2Max = calculateMax ( shackle2data , timeLength ) ;
8 shackle3Max = calculateMax ( shackle3data , timeLength ) ;
9

10 s h a c k l e S t a t u s = ” good ” ;
11
12 i f ( shackle1Max <= 0 | | shackle2Max <= 0 | | shackle3Max <= 0){
13 i f ( shackle1Max <= 0){
14 s h a c k l e S t a t u s = ”bad” ;
15 }
16 i f ( shackle2Max <= 0){
17 s h a c k l e S t a t u s = ”bad” ;
18 }
19 i f ( shackle3Max <= 0){
20 s h a c k l e S t a t u s = ”bad” ;
21 }
22 }
23 r e t u r n s h a c k l e S t a t u s ;
24 }

Listing 6.1: Example of the implementation of a symptom. Types
and notations are removed for better readability.

We have focused on creating relevant symptoms for our domain.
Based on the challenges and resulting data sets from the analysis, we
have created six artificial symptoms. All of them have been created
by discussing different states that could possibly occur. The thresh-
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old values in the symptoms are chosen by discussing the levels with
domain experts and analysing the minimum, maximum, median and
mean values for the different data. As mentioned above, the symptoms
are artificial which means that the threshold values do not necessary
represent any real incidents. In Chapter 9 Evaluation we discuss this
challenge further. In the first four symptoms we are using the func-
tions mentioned above as the decision basis for the state. The fifth
symptom does not use the functions, but instead we are using ma-
chine learning to classify the state. The sixth symptom is different
than the others, as it is only present when the operator gives a signal.
The following section shows the symptoms:

Symptoms with state based on functions:

• Shackle status
• Weather condition
• Deviant slope between the current and shackle data
• Current speed

Symptoms with state based on machine learning:

• Deviant data from past similar conditions

Other:

• Manual work

The next subsections describe each of the listed symptoms more spe-
cific, where we explain the mathematics and logic behind them.

6.1.1 Shackle Status

The shackle status symptom indicates whether there is a problem with
one or more of the shackles. The input is the shackle measurements,
and the output is a number which indicates how many shackles that
are out of order. Within this symptom the maximum measured value
of each of the shackles within a predefined time span are calculated.
The time span in this symptom is typically the last one or two hours.
An error is counted if the maximum value is less than zero. This
means that the measured value is -0.05, which may indicate that the
sensor is broken or that the mooring is loose or has snapped.
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6.1.2 Weather Condition

The weather condition symptom indicates whether if it is safe or pos-
sible for the operator to perform manual inspection, maintenance and
other work on the platform. The input is the wind speed and wave
height as these factors affect the upper parts the most. The output is
a textual description of how risky it is to stay on the platform, which
is determined by threshold values for the mentioned inputs. Currently
the weather condition is indicated as:

Extreme if

• wind speed is more than 12 m/s or
• wave height is higher than 1 m

Bad if

• wind speed is more than 7 m/s or
• wave height is higher than 0.5 m

Else good

This symptom uses the most recent measurements as the operator
must know the present conditions.

6.1.3 Deviant Slope Between Current & Shackle Data

This symptom indicates whether the deviation in slope between the
current data and shackle data is larger than a given threshold. The
input is current speed together with the data from all three shackles.
The time span for this symptom may vary between two and twelve
hours, depending on how far back we want to calculate the trend.
The slope of the input data is calculated, and the current slope is
compared to all three shackle slopes. The output is a textual de-
scription displaying ”low” or ”high”. The latter is indicated if one or
more of the calculated slopes deviates more than the given threshold.
This threshold is set to 30% deviation in our implementation. This
symptom indicates faulty sensors or mooring like the shackle status
symptom, but it is calculated using different calculation functions. It
is important to have redundant calculations to ensure that the most
crucial parts of the platform are reliable.
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6.1.4 Current Speed

The current speed symptom indicates whether the current rises to
risky levels. The input is the current speed, and the output is a textual
description of how dangerous the current level is at the moment. The
current speed is currently indicated as:

Low if

• current speed is lower than 8 cm3/s

Medium if

• current speed is lower than 20 cm3/s

Else High

High currents may be problematic in many situations, and monitoring
this data could be useful for the operator.

6.1.5 Deviant Data from Past Similar Conditions

The deviant sensor data symptom calculates the deviation between
the sensor data and past similar conditions. The latter is based on
machine learning, as we want to build a model to classify the shackle
data based on the current speed and the current direction.

The model will be trained on previous measurements from the
current and shackle data. When the model is built, its input will be
recent measurements of the current speed and current direction, and
the output will be a classification of the strain as either class 1, 2 or
3. The classes represent different strain strength, where class 1 rep-
resents low values, class 2 middle values and class 3 high values. The
measured strain from the shackle data is converted to classes as well.
At last, we compare the shackle data with the classifications from
the machine learning model. The result from the comparison is the
number of matching classes. We also count the number of instances
classified too low and too high, according to the measured class. De-
pending on these numbers, the following textual description is given:

Good if
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• the number is higher a threshold defined by the evaluation done
by a test set when the machine learning model is trained.

Under if

• the number is lower than the threshold for good accuracy, and
the majority of the instances are classified too low.

Over if

• the number is lower than the threshold for good accuracy, and
the majority of the instances are classified too high.

The input in this symptom is the current data and the shackle data
from only one shackle, and the output is the textual description given
by the comparison mentioned above.

We have used Näıve Bayes as our machine learning algorithm to
create the model. The tests and evaluation of different machine learn-
ing methods are given in Chapter 9 Evaluation.

6.1.6 Manual Work

The manual symptom indicates whether some personnel performs
manual work on the production plant. This symptom is signalised
by the operator, as he must push a button when someone conducts
manual work. The output is a binary signal indicating whether man-
ual work is performed at the moment or not.

6.1.7 Excluded Symptoms

During the data analysis process we discussed a lot of other symp-
toms. Some of them were interesting and desirable to create, but the
challenges mentioned in the Section 5.4.1. In some cases the instru-
mentation was too limited, and in other cases the data analysis proved
that our assumptions of a good symptom was invalid. Some of these
symptoms was:

• Vulnerable weather directions
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– Discarded due to the fact that the current is created by
cyclical tide. This is more important when assembling the
plant.

• Wind speed/wave height and wind/wave direction
– Discarded due to lack of accelerometers and low correlation

with load shackle data.

6.2 Cases

When generating the cases we are using experience and knowledge
gathered by studying the domain and discussions with domain ex-
perts. We have also used FhSim to verify some assumptions of what
would happen if one or more moorings are removed or loosened. This
means that we have to create artificial events and incidents as the
cases. We should optimally have real incident reports and empirical
data as the basis for the cases, but as these do not exist we have to use
other methods. The following subsections describe the case structure
and the five cases of possible and realistic situations, that uses the
symptoms created above as the input.

6.2.1 Case Structure

A CBR system uses input cases to represent the current state of the
system, and stored cases in the case base to represent the past. An
input case consists of input attributes, and the stored cases consist
of a case description and a case solution. In our system, the input
attributes is the output from each of the symptoms. The case descrip-
tion describes the past cases, both by the previously present symptoms
and a textual explanation of the details in the past event that the case
represents. The case solution is the experience gathered from when
the case was present in the past, used to solve the problem.

The point of the CBR system is to calculate the similarity between
the input case and the cases in the case base. The similarity is a mea-
sure of how close the input case is to the different cases in the case
base. The case with the highest score is the most similar one. The
similarity can be calculated in many different and complex ways, and
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similarity is often measured as a degree. Similarity is not the same
as equality, which has a binary outcome. An example of similarity is
that if a customer in a car shop wants a dark blue car, a light blue car
is e.g. 50% similar and a red car is 0% similar. On the other hand,
we can say that both the light blue and the red car is 0% equal. The
advantage with using similarity is that it allows a lot more generality,
and the cases does not necessary need to be equal before alarming the
operator.

In the cases described next we mention the symptoms that we
have chosen to be relevant for the case. All the symptoms are always
included for the comparison of the cases, but only the ones that are
mentioned have an impact on the similarity measure of the case com-
parison. As our system is simplified and prototypical, the others does
not influence the similarity measure at all.

6.2.2 Risk of Manual Work

The case ”Risk of Manual Work” is an artificial case describing a sit-
uation where the well-boat was interacting with the production plant
and an operator was in danger because of to rough wind and wave
conditions.

Relevant Symptoms

• Weather condition
• Manual work

Textual Description
The well-boat was interacting with the cage and requested human
assistance. The wind and wave conditions was at a dangerous level,
which made the operator to hurt him self when assisting the well-boat.

Similarity measure
The input case will be completely similar to this case if:

• Manual work indicates ”yes”
• Weather condition indicates ”bad” or ”extreme”
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Solution

• Wait for acceptable conditions before assisting.
• Wear safety line and clothing if assisting is unavoidable.

6.2.3 Slipping Anchor

The case ”Slipping Anchor” is an artificial case describing a situation
where the anchor has slipped, which made the cage drift.

Relevant Symptoms

• current speedslope between the current and shackle data
• Shackle status

Textual Description
The calculated slope of the current data and the shackle data showed
a deviation that indicates an error in the mooring system. The shackle
status indicated that the mooring is not broken, which may indicate
that the anchor has slipped. The last statement was confirmed by the
operator when he did a visual inspection.

Similarity measure
The input case will be completely similar to this case if:

• current speedslope indicates ”high”
• Shackle status indicates ”good”
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Solution

• Perform a visual inspection.
• Move anchor to correct position.

6.2.4 Loose Mooring Ropes

The case ”Loose Mooring Ropes” is an artificial case describing a sit-
uation where the mooring ropes are loose, which caused an uneven
distribution of the strain. The input is the state of the current speed-
data from all three shackles connected to one rooster foot.

Relevant Symptoms

• current speeddata from from past similar conditions (3 shackles)
• Shackle status

Textual Description
The machine learning algorithm classified the strain as class 3 on
all three shackles, while the measured strain was a lower class. The
shackle status indicated that the mooring is not broken, which may
indicate that the mooring ropes are loose. The last statement was
confirmed by the operator when he did a visual inspection. This case
implies that all three mooring ropes are loose.

Similarity measure
The input case will be completely similar to this case if:

• current speeddata indicates ”over” on all shackles
• Shackle status indicates ”good”
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Solution

• Perform a visual inspection.
• Tighten the loose mooring ropes.

6.2.5 Difficult to Manoeuvre

The case ”Difficult to Manoeuvre” is an artificial case describing a
situation where well-boat has difficulties with the manoeuvring when
docking to the cage, which resulted in a damage on the cage.

Relevant Symptoms

• Weather conditions
• Current speed
• Manual work

Textual Description
The well-boat had problems with manoeuvring when docking to the
cage because the environmental conditions was at a dangerous level.
This made the boat crash into the cage structure, and damaged it
severely.

Similarity measure
The input case will be completely similar to this case if:

• Weather condition indicates ”extreme”
• Current speed indicates ”high”
• Manual work indicates ”yes”
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Solution

• Wait for acceptable conditions before docking.

The limits for acceptable environmental conditions are set by us.

6.2.6 Broken Mooring

The case ”Broken Mooring” is an artificial case generated with infor-
mation from FhSim, which describe a situation where the mooring is
broken. This caused an uneven distribution of the strain. The input
is the state of the deviant data from all three shackles connected to
one rooster foot.

Relevant Symptoms

• Shackle status
• Deviant data from from past similar conditions(3 shackles)

Textual Description
The machine learning algorithm classified the strain as a higher class
than the measured strain on one of the shackles. Further, the machine
learning algorithm classified the strain as a lower class than the mea-
sured strain on the other two shackles. The shackle status indicated
that a mooring is broken, which was confirmed by the operator when
he did a visual inspection. This case implies that one mooring rope
is broken, while the to remaining are healthy.

Similarity measure
The input case will be completely similar to this case if:

• Shackle status indicates ”bad”
• Deviant data indicates ”over” on one shackle
• Deviant data indicates ”under” on two shackle
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Solution

• Perform a visual inspection.
• Repair the broken mooring.
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Chapter 7

Architecture

This chapter describes the conceptual architecture designed in the
specialisation project, as well as the changes made to the actual im-
plemented architecture that fits our data basis.

7.1 Conceptual Architecture

The conceptual architecture designed during the specialisation project
period was based on the knowledge gathered in our research study
and data analysis. The architecture is based on the principles of
structural health monitoring, combined with machine learning and
data analysis for data interpretation, and case-based reasoning as the
inference engine. When working with the data available in this MSc
thesis, we discovered that the assumptions made then was different to
what we had to work with. We also discovered that we could not use
FhSim the way we earlier thought.

Despite the fact that the basis of the architecture is somehow
changed as the data basis is new, we can still make use of the main
elements of the conceptual architecture. We proposed an architecture
that consisted of four independent components, that also adaptable
to a change of input data. The components were:

• Data Acquisition
• Data Interpretation
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• Case-Based Reasoning
• Graphical User Interface

By designing the architecture very flexible to changes, it can practi-
cally adapt to many types of problems and domains.

”The general aspects of the proposed system architecture
are to some degree independent of the mentioned assump-
tions. This means that even if the decision to be supported
or the available data are changed, the architectural shell re-
mains the same. This makes the system flexible and mod-
ular, and easier to handle if there are any changes.”

[Pedersen and Roppestad, 2015]

We are using the same four components as presented above in the im-
plemented architecture, but the tasks done in the different component
is different compared to what we proposed previously.

The biggest change is that we previously included FhSim as a sim-
ulator that uses the environmental data in numerical models to sim-
ulate the environmental affections on the cage structure and mooring
system. The output data was simulated cage monitoring data, which
is similar to the data collected from the real world sensors. This was
supposed to represent the healthy state of the monitored structures,
but we encountered some major problems:

• The simulation was extremely slow, as it took between 5 to 16
hours to simulate 500 second, depending on the step length of
the integration. The step length has an impact on the accuracy.

• The accuracy was too bad, as we could not recognise the real
shackle measurements in the simulated data. The model was
too advanced and required more sensors at the opposite side of
the cage, or an accelerometer to be calculated properly.

– As the real shackle data is monitored on a structure that
wears down over time and is very dynamic, it is difficult to
find statistical similarities in the simulated data based on
a ”perfect, undamaged condition” structure.

– FhSim outputs the force in a given point on the cage, which
is useful in many cases. But as we only know the strain
between the rooster foot and the cage, we can not tell in
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which direction the cage is moving.

We therefore decided to leave the simulation out in this component,
and base the symptoms on data analysis, machine learning and math-
ematical modelling.

7.2 Implemented Architecture

The implemented architecture consists of the four components men-
tioned above. The process view is illustrated in Figure 7.1 with the
arrows indicating the direction of the data flow.

Figure 7.1: Process view of the architecture with arrows indicating
the data flow direction.

The next sections describes the data flow and what happens in the
four components in detail.

7.2.1 Data Acquisition

The lowest level of the architecture is data acquisition, where data
is acquired from the sources. The sources are typically databases
containing sensor data, acquired either automatically in real time or
manually at later stages. This part of the architecture consists of a
data reader and a data preparator, as shown in Figure 7.2.
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Figure 7.2: Overview of the elements in the data acquisition level,
where the arrows indicating the data flow direction.

As the sensors are in a different project area than ours, we assume
that the sensor data are pushed to a database. The data reader is
responsible for collecting this data. There are mainly two different
kinds of sensor data, which are the cage monitoring data (shackles)
and the environmental data (wind, wave, current). The reader then
pushes all the data.

When receiving the data from the reader, the preparator generates
data sets ready for data analysis and pre-processing, and pushes these
to the next level of the architecture: Data Interpretation.

7.2.2 Data Interpretation

In the data interpretation level, software agents make use of the data
acquired from the acquisition level. An agent is the implemented
version of the symptoms mentioned in the previous chapters. Addi-
tionally, this level contains a pre-processor and an organiser, as shown
in Figure 7.3. It is in this component the data modelling is done.

In the pre-processing step operations on the input data sets are
done, which results in data that more than one agent can make use
of. This prevents redundant calculations in multiple agents and makes
the data easier to handle.
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The tasks of the agents are to recognise patterns, monitor thresh-
olds and trends and to signalise if a symptom occurs. An agent is
assigned to identify a single symptom only. The input to an agent
is typically a predefined and preprocessed set of values, of a specific
time period.

Figure 7.3: Overview of the elements in the data interpretation level,
where the arrows indicating the data flow direction.

The output from an agent is an indication of the state that it
is monitoring, often as a textual description. The agents are also
responsible for handling the difficult aspect of time. By assigning
this task to the agents, we ease the complexity of comparing dynamic
cases in the CBR system as this is a struggle in CBR. An example is
comparing the slope between two data sets for a given time period.

All the agents report their state to a data organiser, whose role is
to have an overview of the current situation that are interpreted by
the agents. The state of the agents could be binary or have a degree
of how present a symptom are. The data organiser then pushes the
gathered information to the next level of the architecture: Case-Based
Reasoning.
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7.2.3 CBR

The case-based reasoning engine receives the information generated in
the data interpretation level, and uses this to recognise broader pat-
terns focusing on the complete situation. The CBR engine compares
the current situation with past situations to find out if the statuses
given by the agents are similar to a past problematic situation, for
then to notify and advice the operator on what to do. The past sit-
uations represent events and incidents the outcome was unwanted,
which we now want to avoid. Figure 7.4 shows the crucial parts of
this architecture level, which are the case, retrieval of cases, pushing
similar cases to a graphical user interface, and retention of cases.

A case consists of a description of the situation and the solution
of the problem. When used as the input case, it does not have the so-
lution part. The case description therefore only contains information
about the symptoms that are present or not. The description is then
used by the CBR system to compare the input case with the cases
in the case base, where the latter contains a solution. This phase is
the retrieval step. The retrieved case(s) are determined by the degree
of similarity between the input case and the retrieved one(s). The
retrieved case(s) are then pushed to the graphical user interface for
visualisation and decision support.

The case can be retained in the case base if the current situation
does not fit any previous known ones. Retention of a case can also
be done if the operator or domain expert finds it useful to store the
experience about the current situation for later use. The new case
should be properly reviewed by experts to assure quality and make
sure that it fits to the CBR system.

Figure 7.4: Overview of the elements in the CBR level, where the
arrows indicating the data flow direction.
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7.2.4 Graphical User Interface

The graphical user interface is the last and highest level of the sys-
tem architecture. It is here that the results from the CBR level are
visualised for the operator, so that he or she can act upon the current
situation.

The GUI is tightly coupled with the CBR level of the architecture,
and works as the interaction module for the operator. The output
from the retrieval step are visualised in the GUI as the most similar
case(s), and the operator should be able to investigate these. The
operator should also be notified if the similarity between the current
case and a previous case are higher than a threshold, which indicates
that a problem could be close to occur. By being aware of that the
current situation are close to any previous problem situations, the op-
erator has the choice to act upon it or not. The cases provided to the
operator contain experience and solutions, which can support his or
hers decision.

Retaining the case should also be a possibility from the GUI. When
retaining a new case, it should be sent to a system for revision and
quality control before storing it in the case base.
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Chapter 8

Implementation

This chapter describes the work done with the implementation of the
decision support system. Through the project period we have met
some challenges that has limited the need for a complete system.
These challenges, our focus points of the implementation and a system
walkthrough will be the subjects of the next sections.

8.1 Overview

At the beginning of this project, our goal was to implement a proto-
typical decision support system. As we met the challenges mentioned
in Section 5.4.1 with the data basis, the need for an implemented
prototype became less important. We have instead focused more on
research within the domain, creating reasonable symptoms and cases,
and proposing a proper architecture. Especially the late arrival of the
data and the limited information about real incidents was big draw-
backs, which made big changes for the results of the project. Because
of these circumstances, we have abandoned some parts of the imple-
mentation, like making the data acquisition real-time, retaining new
cases and making a GUI customised for the operators.

After receiving the data, we conducted a data analysis before cre-
ating the symptoms and cases. These elements are the most important
for this kind of systems. The fact that our symptoms and cases are
artificial, further substantiate that a complete implementation is not
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the most important part of this project. The next sections describe
the implementation of the four parts of the architecture, where the
most important parts are the data interpretation and the CBR com-
ponents. The first is where the symptoms are implemented as agents,
and the latter is where the cases are compared. The last part of this
chapter is a system walkthrough that provide useful information for
understanding how the components are interacting, and the process
from first input to last output of the system.

8.2 Data Acquisition

In the data acquisition component we deal with the file reading. The
files that are used in the system is the resulting data sets from the
data analysis as described in Chapter 5 Data Analysis. Listing 8.1
shows the code for reading the shackle data.

1 ArrayList <double [] > r e a d S h a c k l e s ( S t r i n g c s v F i l e , i n t startTime ) throws
IOException {

2 double [ ] shackle1 , shackle2 , s h a c k l e 3 = new double [ 1 2 0 ] ;
3
4 S t r i n g l i n e = ” ” ;
5 S t r i n g c v s S p l i t B y = ” , ” ;
6 i n t l i n e C o u n t e r = 0 ;
7
8 BufferedReader br = new BufferedReader ( new F i l e R e a d e r ( c s v F i l e ) ) ;
9 w h i l e ( ( l i n e = br . readLine ( ) ) != n u l l ) {

10
11 i f ( l i n e C o u n t e r >= startTime ∗60 && l i n e C o u n t e r < ( startTime∗60+

s h a c k l e 1 . l e n g t h ) ){
12 S t r i n g [ ] data = l i n e . s p l i t ( c v s S p l i t B y ) ;
13
14 s h a c k l e 1 [ counter−startTime ∗60]= Double . parseDouble ( data [ 0 ] ) ;
15 s h a c k l e 2 [ counter−startTime ∗60]= Double . parseDouble ( data [ 1 ] ) ;
16 s h a c k l e 3 [ counter−startTime ∗60]= Double . parseDouble ( data [ 2 ] ) ;
17 }
18 l i n e C o u n t e r ++;
19 }
20 ArrayList <double [] > s h a c k l e s = new A r r a y L i s t ( ) ;
21 s h a c k l e s . add ( s h a c k l e 1 ) ;
22 s h a c k l e s . add ( s h a c k l e 2 ) ;
23 s h a c k l e s . add ( s h a c k l e 3 ) ;
24
25 r e t u r n s h a c k l e s ;
26 }

Listing 8.1: Code for reading the shackle data.

The method readShackle stores the shackle measurements from the
last two hours in three separate arrays, one per shackle. Every time
the method is called we jump one hour and store the data from the
new two hours. The method returns an arraylist containing the three
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arrays to the Data Interpretation component. The method is similar
for the environmental data.

8.3 Data Interpretation

The data interpretation component contains the implemented math-
ematical functions used within the symptoms, and the implemented
symptoms themselves. As Section 6.1 describes the thoughts and logic
behind all of the symptoms in depth, we only show the implementa-
tion of one of the symptoms in this chapter. The structure of the code
implementation are similar in many of the symptoms, and the only
difference is the mathematical function. The next section describe
the mathematical function, before describing the implementation of a
symptom.

8.3.1 Mathematical Functions

We have created a set of mathematical function that are used within
the symptoms. These functions calculate the maximum, minimum,
mean and slope for an arbitrary input. The different symptoms only
use the functions they need. As the calculation of the maximum,
minimum and mean is basic, we only show the implementation of the
function that calculates the slope.

The calculation of the slope is shown in Listing 8.2. It is based on
the following procedure:

1. Calculate the mean of the x values.
2. Calculate the mean of the y values.
3. Calculate the standard deviation sX of the x values.
4. Calculate the standard deviation sY of the y values.
5. Calculate the correlation r between X and Y.
6. Calculate the slope.

The comments in the listing are corresponding to the steps in the
procedure above.

The input is e.g. data from one of the shackles, which is rep-



96 Chapter 8. Implementation

resented by yData. The xData is the corresponding x-value1 as in
xy-pairs, which is a continuous number series with length equal to the
specified variable timeLength. The timeLength variable defines the
time span that the slope are calculated within.

1 double c a l c S l o p e ( double yData [ ] , i n t timeLength ) {
2 double avgX , r , sX , sY , s l o p e , rX , rY = 0 ;
3 i n t counter = 1 ;
4
5 // s t e p 1
6 double avgY = calcAvg ( yData , timeLength ) ;
7
8 // s t e p 2
9 f o r ( i n t i = 1 ; i <= timeLength ; i ++) {

10 avgX += i ;
11 }
12 avgX /= timeLength ;
13
14 // C a l c u l a t i o n s f o r sX , sY and r
15 f o r ( i n t i = yData . l e n g t h − 1 ; i >= yData . l e n g t h − timeLength ; i−−) {
16 sX += Math . pow ( ( counter − avgX ) , 2) ;
17 sY += Math . pow ( ( yData [ i ] − avgY ) , 2) ;
18 rX = counter − avgX ;
19 rY = yData [ yData . l e n g t h − counter ] − avgY ;
20 r += rX ∗ rY ;
21 counter++;
22 }
23
24 // s t e p 3 and 4
25 sX = Math . s q r t ( sX / ( timeLength − 1) ) ;
26 sY = Math . s q r t ( sY / ( timeLength − 1) ) ;
27
28 // s t e p 5
29 r = ( 1 . 0 / ( timeLength − 1) ) ∗ ( r / ( sX ∗ sY ) ) ;
30
31 // s t e p 6
32 s l o p e = r ∗ ( sY / sX ) ;
33 }
34
35 r e t u r n s l o p e ;
36 }

Listing 8.2: Code for calculating the slope.

8.3.2 Symptoms

The symptoms we have created are described earlier in the report, and
this subsection will give an insight of the implemented version of the
symptom ”Deviant Slope Between Current and Shackle Data”. The
method is similar in the other symptoms, just with other calculations
and thresholds for the output. The general method for implementing
a symptom is:

1x-min = x1 = 1. x-max = timeLength.
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1. Define which input(s) that is relevant for the symptom.
2. Identify the necessary calculations, and initialise variables.
3. Perform the calculations.
4. Decide the output state by comparing the calculated value(s)

with predefined thresholds.
5. Return the state.

Listing 8.3 shows the implementation of the symptom mentioned above.

1 p u b l i c S t r i n g s l o p e D e v i a t i o n ( double [ ] data , double [ ] shackle1 , double [ ]
shackle2 , double [ ] shackle3 , i n t timeLength ){

2 // s t e p 1 i s the input to the method
3 // s t e p 2
4 double dataSlope , s h a c k l e S l o p e 1 , s h a c k l e S l o p e 2 , s h a c k l e S l o p e 3 , d i f f 1 ,

d i f f 2 , d i f f 3 = 0 ;
5 double t h r e s h o l d = 3 0 ;
6
7 S t r i n g s l o p e D e v i a t i o n = ” low ” ;
8
9 // s t e p 3

10 dataSlope = c a l c S l o p e ( data , timeLength ) ;
11 s h a c k l e S l o p e 1 = c a l c S l o p e ( shackle1 , timeLength ) ;
12 s h a c k l e S l o p e 2 = c a l c S l o p e ( shackle2 , timeLength ) ;
13 s h a c k l e S l o p e 3 = c a l c S l o p e ( shackle3 , timeLength ) ;
14
15 d i f f 1 = Math . abs ( Math . abs ( dataSlope−s h a c k l e S l o p e 1 ) / dataSlope ∗100) ;
16 d i f f 2 = Math . abs ( Math . abs ( dataSlope−s h a c k l e S l o p e 2 ) / dataSlope ∗100) ;
17 d i f f 3 = Math . abs ( Math . abs ( dataSlope−s h a c k l e S l o p e 3 ) / dataSlope ∗100) ;
18
19 // s t e p 4
20 i f ( d i f f 1 > t h r e s h o l d ){
21 s l o p e D e v i a t i o n = ” high ” ;
22 }
23 i f ( d i f f 2 > t h r e s h o l d ){
24 s l o p e D e v i a t i o n = ” high ” ;
25 }
26 i f ( d i f f 3 > t h r e s h o l d ){
27 s l o p e D e v i a t i o n = ” high ” ;
28 }
29 // s t e p 5
30 r e t u r n s l o p e D e v i a t i o n ;
31 }

Listing 8.3: Code for the symptom ”Deviant Slope Between Current
and Shackle Data”.

The comments in the listing are corresponding to the steps in the
procedure above. The most important aspects from the listing is the
threshold defined to 30% in step 2 and the calculation of the slopes
and the difference between the data slope and all the shackle slopes in
step 3. Step 4 compares the calculated difference with the threshold.
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8.4 CBR

The CBR component is responsible for storing the cases in the case
base, and comparing new cases with the stored ones. We originally
wanted to implement myCBR as our CBR tool, but myCBR had too
limited options regarding the similarity measure. This led to that we
implemented our own CBR engine.

The first step of implementing the CBR component is to develop
a case base. As we have few cases, we are not limited by the pro-
cessing time when comparing input cases with the stored cases. We
therefore created a simple case base structure. The case base is ini-
tialised as a two-dimensional string array, where the first dimension
keeps track of the case ID and the second dimension describes the
attributes, the case description and the case solution. A case is de-
fined as Case[ID][attribute]. Listing 8.4 shows the initialising of the
case base, and one of the cases. The comments describe the names of
the attributes, and the rest of the fields as well. This representation
makes it easy to extract the attributes for comparison with other cases
and the description and solution when needed.

Index 0 to 7 in the second dimension are the symptom attributes,
and the information in these fields are different for all the cases. If a
symptom attribute is defined as unspecified (”u”), it means that the
similarity of these attributes will not contribute to the global similar-
ity. This will be described next.

1 p u b l i c c l a s s CaseBase {
2 S t r i n g [ ] [ ] Case = new S t r i n g [ 5 ] [ 1 0 ] ;
3 void f i l l C a s e B a s e ( ) {
4 Case [ 1 ] [ 0 ] = ”u” ; // currentSpeed
5 Case [ 1 ] [ 1 ] = ”u” ; // deviantData85130
6 Case [ 1 ] [ 2 ] = ”u” ; // deviantData99871
7 Case [ 1 ] [ 3 ] = ”u” ; // deviantData99875
8 Case [ 1 ] [ 4 ] = ”u” ; //manualWork
9 Case [ 1 ] [ 5 ] = ” good ” ; // s h a c k l e S t a t u s

10 Case [ 1 ] [ 6 ] = ” high ” ; // s l o p e D e v i a t i o n
11 Case [ 1 ] [ 7 ] = ”u” ; // weatherCondit ion
12 // c a s e D e s c r i p t i o n
13 Case [ 1 ] [ 8 ] = ”The c a l c u l a t e d s l o p e o f the c u r r e n t data . . . ” ;
14 // c a s e S o l u t i o n
15 Case [ 1 ] [ 9 ] = ” Perform a v i s u a l i n s p e c t i o n . Move anchor . . . ” ;
16 // caseID
17 Case [ 1 ] [ 1 0 ] = ”1” ;
18 // c a s e T i t l e
19 Case [ 1 ] [ 1 1 ] = ” S l i p p i n g anchor ” ;
20 }
21 }

Listing 8.4: Implementation of the case base.
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To calculate the similarity between cases we use local similarity
measures for the attribute to attribute comparison, and a global simi-
larity measure. The latter makes it possible to choose which attributes
that are relevant for the different cases, and to calculate the total sim-
ilarity based on the local similarity.

Listing 8.5 shows the implementation of the global similarity. In-
side this method, we are calculating the local similarity as shown at
line 10 to line 12 for the ”Current Speed” symptom attribute. The if-
test is checking whether the attribute is unspecified for the case in the
case base. If so, the local similarity does not contribute to the global
similarity. The if-test is done for each of the symptom attributes.
At last we calculate the global similarity which is a weighted sum of
the relevant local similarities. The local similarities are calculated by
comparing the symptom attribute in the input case with the cases in
the case base. The result is often a degree of similarity, as mentioned
in Section 6.2.1. An overview of the local similarities for all the pos-
sible states of each symptom attribute is given in the Tables 8.1-8.5.
The query attribute is to the left of the tables, and the compared case
attribute is on top. The Manual Work attribute is not included, as it
is a binary value.

1 p u b l i c ArrayList <Double> globalSim ( S t r i n g currentSpe , S t r i n g DeviantData1 ,
S t r i n g DeviantData2 , S t r i n g DeviantData3 , S t r i n g manualWork , S t r i n g
s h a c k l e S t a t u s , S t r i n g slopeDev , S t r i n g WeatherCon ) {

2 double s i m i l a r i t y = 0 ;
3
4 ArrayList <Double> s i m i l a r i t i e s , r e s u l t = new A r r a y L i s t ( ) ;
5
6 double divSym = 0 . 0 ;
7
8 f o r ( i n t i = 0 ; i< CB. CaseBase . l e n g t h ; i ++){
9

10 i f ( !CB. CaseBase [ i ] [ 0 ] . e q u a l s ( ”u” ) ){
11 s i m i l a r i t i e s . add ( currentSpeSim ( currentSpe ,CB. CaseBase [ i ] [ 0 ] ) ) ;
12 }
13 .
14 .
15 .
16 i f ( !CB. CaseBase [ i ] [ 7 ] . e q u a l s ( ”u” ) ){
17 s i m i l a r i t i e s . add ( weatherConSim ( WeatherCon ,CB. CaseBase [ i ] [ 7 ] ) ) ;
18 }
19 divSym = 1 . 0 / s i m i l a r i t i e s . s i z e ( ) ;
20
21 f o r ( Double value : s i m i l a r i t i e s ){
22 s i m i l a r i t y += value∗divSym ;
23 }
24
25 r e s u l t . add ( s i m i l a r i t y ) ;
26 s i m i l a r i t y = 0 ;
27 s i m i l a r i t i e s . c l e a r ( ) ;
28 }
29 r e t u r n r e s u l t ;
30 }

Listing 8.5: Implementation of the global similarity function.
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Table 8.1: Local similarity for current speed.

low medium high
low 1.0 0.0 0.0
medium 1.0 1.0 0.5
high 1.0 1.0 1.0

Table 8.2: Local similarity for deviant data.

over under low
over 1.0 0.0 0.0
under 0.0 1.0 0.0
low 0.0 0.0 1.0

Table 8.3: Local similarity for shackle status.

good bad
good 1.0 0.0
bad 0.0 1.0

Table 8.4: Local similarity for slope deviation.

low high
low 1.0 0.0
high 0.0 1.0

Table 8.5: Local similarity for weather condition.

extreme bad good
extreme 1.0 0.0 0.0
bad 0.5 1.0 1.0
good 0.0 0.0 1.0
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8.5 Graphical User Interface

The graphical user interface has the ability of starting the decision
support system, enable the manual work symptom, display cases with
similarity within the threshold value defined by a slider and display-
ing information about the cases in the list. The GUI is primarily
developed for testing purposes, and it is not design optimally for an
operator. Even though it is simple, it is informative and contains the
most important elements of a GUI for a decision support system. The
GUI is shown in Figure 8.1.

The implementation of the GUI is done with the e(fx)clipse plug-
in, and the information displayed are extracted from the CBR com-
ponent of the system.

Figure 8.1: Screenshot of the GUI.



102 Chapter 8. Implementation

8.6 System Walkthrough

This system walkthrough describes the process of the system. This
will hopefully give a deeper understanding of the components of the
decision support system we have created. This chapter shows the
steps in the system from first input to final output. The implemented
prototype is inspired by the architecture, but as mentioned we do not
analyse any raw data in the Data Interpretation component. The
preprocessing was a part of the data analysis, and the resulting data
sets are used as input.

8.6.1 Data Acquisition

The first step of the system is to acquire the data in the Data Ac-
quisition component. This component reads the weather.csv and
shackle.csv files, which is shown in top of Figure 8.2. As mentioned,
the weather data contains measurements of the current, wind and
wave, and the shackle data contains strain measurements from three
shackles.

After the files are read into the system, the different measurements
are stored in separate containers. In our prototype we have configured
the system to store data from the last two hours in these containers.
At every iteration, the containers are updated with data from a new
hour, and the oldest is thrown. This is shown in the bottom of Figure
8.2. These containers constitutes the basis for the system, and are
now ready for usage in the Data Interpretation component.
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Figure 8.2: Overview of the Data Acquisition component.
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8.6.2 Data Interpretation

The second step of the system is to use the data in the containers
to describe the state of the defined symptoms. Figure 8.3 shows the
containers and their relations to the different symptoms in the blue
boxes. Some of the containers are related to a single symptom only,
and others are related to more. At the bottom of the figure, the ar-
rows points to the resulting state of each symptom. The states are
described by a textual description, and is calculated from the values
in the containers. This calculation is shown in Listing 8.2 and 8.3
in Section 8.3. The states are describing the current situation, and
are the product of this component. The textual description from each
symptom is then used as the input to the CBR component. The states
are updated every iteration, as the data in the containers are updated.

Figure 8.3: Overview of the Data Interpretation component.
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8.6.3 Case-Based Reasoning

The third step of the system is to calculate how similar the query case
is to any case in the case base. The query case represents the cur-
rent situation. The textual descriptions from the Data Interpretation
component is then used as the query for calculating the similarity be-
tween the cases. This is shown to the left in Figure 8.4, which shows
the calculation of the similarity between the new case and Case #1
in the case base. As Case #1 is undefined (”u”) for all symptoms
except shackleStatus and slopeDeviation, the local similarity is only
calculated for these two. As both the query and the case has ”good”
as shackleStatus and ”high” on slopeDeviation, the local similarities
for these symptoms are 1.0. The complete similarity tables are shown
in Section 8.4. The global similarity is calculated in the bottom of
the figure. It is calculated by giving each of the symptoms that are
defined equal weights, and summing the weighted local similarities.
Figure 8.4 shows that Case #1 has a global similarity of 1.0, and
Figure 8.5 shows the same calculations for Case #4 that has a global
similarity of 0.5. It is the global similarity that decides how similar
two cases are. The result from the CBR component is a list of the
similarity between all the cases in the case base and the query case.

Figure 8.4: Query case and similarity to case #1.
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Figure 8.5: Query case and similarity to case #4.

8.6.4 Graphical User Interface

The final step of the system is to display the results from the CBR
component in a graphical user interface. The GUI has some simple
features, like choosing the minimum threshold of similarity for a case
to be displayed, choosing whether manual work is in progress or not,
and a button for starting the process.

The list provided from the CBR component contains the case ID
and the associated similarity. It is then sorted by similarity, and
the cases with similarity above the given threshold is displayed in
the display list. The fields below the display list shows information
about the most similar case to the user. The information displayed
are the case ID, the case title, case description and case solution. This
information are provided for all the cases in Chapter 6 Modelling. As
the program runs, the fields are updated continuously as the initial
information containers iterate.
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Figure 8.6: Screenshot of the GUI.
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Chapter 9

Evaluation

This chapter contains the results of this project, as well as the eval-
uation of one of the symptoms created. As mentioned in Section 4.4
evaluating the implemented system is difficult due to lack of empir-
ical data. Our main results are the symptoms and the cases, which
implies that it is more meaningful to evaluate and discuss these el-
ements. The methods of the evaluation will be performing machine
learning tests, and an analytic discussion. We also find it useful to
discuss different aspects we have worked with during the project pe-
riod, like the sensors, challenges and the fact that the symptoms and
cases are artificial.

9.1 Machine Learning Tests

We have used machine learning algorithms to predict the strain value
based on the current speed and the current direction. We have used
the current data as the visualisations and correlation analysis proved
that the current speed and direction was most related to the strain.
The point of conducting the following tests is to evaluate which ma-
chine learning algorithm that gives the best accuracy for the men-
tioned classification. The best algorithm is then used to build the
model that we are using in the symptom ”Deviant Data from Past
Similar Conditions”.

The training sets consists of 521 instances and the test sets consists

109
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of 151 instances. We have chosen to evaluate six different learning al-
gorithms on all three shackles at the one available rooster foot. The
first three are regression algorithms, and depends on a numerical, con-
tinuous value to be predicted. Here we are using the shackle data with
no modifications. The last three are classification algorithms, which
depends on a nominal, discrete attribute as the class to be classified.
This requires us to create separate classes of the numerical shackle
data, and we have made three classes which represent low, medium
and high values.

When evaluating the different machine learning algorithms we are
testing, the following aspects will be the most important:

• The accuracy should be higher in the critical areas of the scale,
which are the area where the strain values are highest.

• The learning algorithm should rather over estimate than under
estimate, as higher values are the most dangerous for the cage.

• The general accuracy and running and building time should be
within reasonable limits.

The following subsections display the results from the tests done in
the Weka data mining program. We provide it with with one data
set as the training set, and we use a separate test set for evaluation.
Figure 9.1 shows the training set selection with visualisations of the
instance distribution and statistical values of shackle 85130. Figure
9.2 shows the distribution of the classes when converting the shackle
data to nominal. The information provided for shackle 85130 in the
figures are representative for the three shackles on the same rooster
foot that we have used in the data analysis. The test information,
as well as the explanation is only showed for shackle 99875, but the
results for all three shackles are presented and discussed later on.
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Figure 9.1: Visualisation of the training set with numerical values
in Weka.

Figure 9.2: Visualisation of the distribution in the training set with
nominal classes. The blue bar shows class 1 instances, the red class 2
and the cyan class 3.
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9.1.1 Linear Regression

Linear regression is an approach for modelling the relationship be-
tween a dependent variable y and one or more explanatory variables
X. Our variable y is the strain value, and the X is the current speed
and direction [Wikipedia, 2016g]. When using linear regression for
prediction the method is used to fit a predictive model to an observed
data set of y and X values. The Listing 9.1 shows the input configura-
tions used for the linear regression in Weka, and Listing 9.2 shows the
results. We have not changed the parameters in this test, but some
available choices are the attribute selection method, to eliminate co-
linear attributes or not and the ridge.

1 === Run in format ion ===
2 Scheme : weka . c l a s s i f i e r s . f u n c t i o n s . L inearRegre s s i on −S 0 −R
3 Relat ion : 99875
4 In s tance s : 521
5 Att r ibute s : 3
6 s h a c k l e s
7 speed
8 d i r e c t i o n
9 Test mode : user supp l i ed t e s t s e t : 151 i n s t a n c e s

Listing 9.1: Linear regression run information.

The results show that the building time of the model is extremely fast,
as the number of instances are relatively low. The model is also not
very complex as we only have two dimensions. The evaluation on the
test set shows highly correlated data, but the relative absolute error1

is high.
1 Time taken to bu i ld model : 0 seconds
2 === Evaluat ion on t e s t s e t === === Summary ===
3

4 Cor r e l a t i on c o e f f i c i e n t 0 .8657
5 Mean abso lu t e e r r o r 0 .0639
6 Root mean squared e r r o r 0 .0817
7 Re la t i v e abso lu t e e r r o r 50 .0346 %
8 Root r e l a t i v e squared e r r o r 56 .5576 %
9 Total Number o f In s tance s 151

Listing 9.2: Linear regression evaluation summary.

1The RAE is the normalised mean absolute error in percent. The MAE is the
measure of how close the predictions are to the actual values..
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9.1.2 Artificial Neural Network

Artificial neural networks are models based on biological neural net-
works found in the brain [Wikipedia, 2016b]. It can be used with a
large number of inputs, and the network consists of interconnected
nodes in different layers. The layers are the input, the hidden layer(s)
and the output. Listing 9.3 shows the configuration of our neural
network model called Multilayer perceptron. A Multilayer perceptron
consists of multiple layers of nodes in a directed graph. We have cho-
sen to run the ANN with the learning rate parameter -L=0.1, training
time -N=10000 and the rest as standard configured.

1 === Run in format ion ===
2

3 Scheme : weka . c l a s s i f i e r s . f u n c t i o n s . Mul t i l ayerPercept ron −L
0 .1 −M 0.2 −N 10000 −V 0 −S 0 −E 20 −H a

4 Relat ion : 99875
5 In s tance s : 521
6 Att r ibute s : 3
7 s h a c k l e s
8 speed
9 d i r e c t i o n

10 Test mode : user supp l i ed t e s t s e t : 151 i n s t a n c e s

Listing 9.3: Multilayer perceptron run information.

The results in Listing 9.4 show that the model is fast to build, be-
cause of the same reasons as mentioned for the linear regression. The
correlation coefficient shows highly correlated data, and the accuracy
is better than for linear regression.

1 Time taken to bu i ld model : 1 .83 seconds
2

3 === Evaluat ion on t e s t s e t ===
4 === Summary ===
5

6 Cor r e l a t i on c o e f f i c i e n t 0 .8843
7 Mean abso lu t e e r r o r 0 .0541
8 Root mean squared e r r o r 0 .0796
9 Re la t i v e abso lu t e e r r o r 42 .3528 %

10 Root r e l a t i v e squared e r r o r 55 .1073 %
11 Total Number o f In s tance s 151

Listing 9.4: Multilayer perceptron evaluation summary.
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9.1.3 Instance-Based Learner

Instance-based learning compares new problem instances with pre-
viously training instances to predict its value [Wikipedia, 2016f]. It
does not perform explicit generalisation after training, which means
that IBL is a kind of lazy learning. A common problem for learner
that create hypotheses directly from the training instances is that
all training data must be stored in memory and overfitting. In our
case we have the advantage of few training instances because of our
dynamic structure. We have chosen to use K* as our IBL, which
uses an entropy-based distance function for similarity assessing. The
run information of the K* is shown in Listing 9.5, with the standard
parameter configuration.

1 === Run in format ion ===
2

3 Scheme : weka . c l a s s i f i e r s . l a zy . KStar −B 20 −M a
4 Relat ion : 99875
5 In s tance s : 521
6 Att r ibute s : 3
7 s h a c k l e s
8 speed
9 d i r e c t i o n

10 Test mode : user supp l i ed t e s t s e t : 151 i n s t a n c e s

Listing 9.5: Lazy K* run information.

The results in Listing 9.6 show that the model is extremely fast to
build, and the results are encouraging.

1 Time taken to bu i ld model : 0 seconds
2

3 === Evaluat ion on t e s t s e t ===
4 === Summary ===
5

6 Cor r e l a t i on c o e f f i c i e n t 0 .9104
7 Mean abso lu t e e r r o r 0 .045
8 Root mean squared e r r o r 0 .069
9 Re la t i v e abso lu t e e r r o r 35 .2546 %

10 Root r e l a t i v e squared e r r o r 47 .8062 %
11 Total Number o f In s tance s 151

Listing 9.6: Lazy K* evaluation summary.
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9.1.4 Support Vector Machine

As the first classification based learning algorithm with nominal class
values, we have chosen a support vector machine. A model build
by an SVM represents examples as point in space, mapped so that
examples of each category are divided by a gap that is as wide as
possible [Wikipedia, 2016k]. New examples are then mapped into the
same space and classified to a category based on which side of the gap
they fit in. Listing 9.7 shows the configuration of the SVM, where we
are using a first degree polynomial kernel.

1 === Run in format ion ===
2

3 Scheme : weka . c l a s s i f i e r s . f u n c t i o n s . LibSVM −S 0 −K 1 −D 1 −G
0.0 −R 0.0 −N 0.5 −M 40.0 −C 1.0 −E 0.001 −P 0 .1 −seed
1

4 Relat ion : 99875
5 In s tance s : 521
6 Att r ibute s : 3
7 s h a c k l e s
8 speed
9 d i r e c t i o n

10 Test mode : user supp l i ed t e s t s e t : s i z e unknown ( read ing
inc r ementa l l y )

Listing 9.7: LibSVM run information.

The results in Listing 9.8 shows that the model is fast to build, and the
classification is 83.4% accurate. The confusion matrix at the bottom
shows the how the SVM has classified each of the test instances.

1 Time taken to b u i l d model : 1 . 8 seconds
2
3 === Evaluat ion on t e s t s e t ===
4 === Summary ===
5
6 C o r r e c t l y C l a s s i f i e d I n s t a n c e s 126 83.4437 %
7 I n c o r r e c t l y C l a s s i f i e d I n s t a n c e s 25 16.5563 %
8 Kappa s t a t i s t i c 0 . 7 0 7 5
9 Mean a b s o l u t e e r r o r 0 . 1 1 0 4

10 Root mean squared e r r o r 0 . 3 3 2 2
11 R e l a t i v e a b s o l u t e e r r o r 2 9 . 8 6 1 %
12 Root r e l a t i v e squared e r r o r 77.9517 %
13 Total Number o f I n s t a n c e s 151
14
15 === Confusion Matrix ===
16 a b c <−− c l a s s i f i e d as
17 71 7 0 | a = 1
18 3 51 13 | b = 2
19 0 2 4 | c = 3

Listing 9.8: LibSVM evaluation summary.
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9.1.5 Bayesian Classification

A Näıve Bayes classifier is a probabilistic classifier based on apply-
ing Bayes Theorem with strong independence assumptions between
the feature [Wikipedia, 2016h]. Näıve Bayes is widely used and stud-
ied, and it is highly scalable. Even though the algorithm has a naive
design and oversimplified assumptions, it works well on many diffi-
cult real-world problems. When dealing with Näıve Bayes one should
always remember that it believes that all features contribute to the
classification independently, regardless any correlation between them.
Listing 9.9 shows the configuration of the classifier with the standard
parameters.

1 === Run in format ion ===
2

3 Scheme : weka . c l a s s i f i e r s . bayes . NaiveBayes −K
4 Relat ion : 99875
5 In s tance s : 521
6 Att r ibute s : 3
7 s h a c k l e s
8 speed
9 d i r e c t i o n

10 Test mode : user supp l i ed t e s t s e t : s i z e unknown ( read ing
inc r ementa l l y )

Listing 9.9: Näıve Bayes run information.

Listing 9.10 shows the results of the classification. The time to build
the model is extremely good, and the results are good as well.

1 Time taken to b u i l d model : 0 seconds
2
3 === Evaluat ion on t e s t s e t ===
4 === Summary ===
5
6 C o r r e c t l y C l a s s i f i e d I n s t a n c e s 128 84.7682 %
7 I n c o r r e c t l y C l a s s i f i e d I n s t a n c e s 23 15.2318 %
8 Kappa s t a t i s t i c 0 . 7 3 3 4
9 Mean a b s o l u t e e r r o r 0 . 1 6 8 7

10 Root mean squared e r r o r 0 . 2 8 7 6
11 R e l a t i v e a b s o l u t e e r r o r 45.6417 %
12 Root r e l a t i v e squared e r r o r 6 7 . 4 8 5 %
13 Total Number o f I n s t a n c e s 151
14
15 === Confusion Matrix ===
16 a b c <−− c l a s s i f i e d as
17 72 6 0 | a = 1
18 2 51 14 | b = 2
19 0 1 5 | c = 3

Listing 9.10: Näıve Bayes evaluation summary.
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9.1.6 Learning Tree

Decision trees are a predictive model to assess instances to classes.
Each leaf represent a class and the branches are conjunctions of fea-
tures which eventually lead to the classification [Wikipedia, 2016d].
Decision trees can be used both for continuous and discrete values.
We have chosen J48 as our algorithm which is based on the popular
C4.5 algorithm. Listing 9.11 shows the run information where we have
changed the parameter -C, confidence factor used for pruning to 0.01.

1 === Run in format ion ===
2

3 Scheme : weka . c l a s s i f i e r s . t r e e s . J48 −C 0.01 −M 2
4 Relat ion : 99875
5 In s tance s : 521
6 Att r ibute s : 3
7 s h a c k l e s
8 speed
9 d i r e c t i o n

10 Test mode : user supp l i ed t e s t s e t : s i z e unknown ( read ing
inc r ementa l l y )

Listing 9.11: J48 run information.

The results are shown in Listing 9.12, where we can see that the
building time is very low and the accuracy is not as good as the other
classification algorithms.

1 Time taken to b u i l d model : 0 . 0 1 seconds
2
3 === Evaluat ion on t e s t s e t ===
4 === Summary ===
5
6 C o r r e c t l y C l a s s i f i e d I n s t a n c e s 112 74.1722 %
7 I n c o r r e c t l y C l a s s i f i e d I n s t a n c e s 39 25.8278 %
8 Kappa s t a t i s t i c 0 . 5 6 2 2
9 Mean a b s o l u t e e r r o r 0 . 2 1 3 5

10 Root mean squared e r r o r 0 . 3 2 2 5
11 R e l a t i v e a b s o l u t e e r r o r 57.7704 %
12 Root r e l a t i v e squared e r r o r 75.6641 %
13 Total Number o f I n s t a n c e s 151
14
15 === Confusion Matrix ===
16 a b c <−− c l a s s i f i e d as
17 72 6 0 | a = 1
18 8 36 23 | b = 2
19 0 2 4 | c = 3

Listing 9.12: J48 evaluation summary.
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9.2 Results

This section describes the results from the machine learning test pre-
sented above, and the remaining results from the project itself.

9.2.1 Machine Learning Results and Discussion

The tests above was done for shackle 85130 and 99871 as well, and we
also tried to remove the direction feature to see if there was any im-
provement. The results from these tests are shown in Table 9.2 and
9.3. The information provided are the mean absolute error (MAE)
and the relative absolute error (RAE) for the regression tests, and
correctly classified instances (CCI) and correctly classified instances
of class 3 for the classification tests. As the run and building times
was satisfyingly low on all algorithms, we do not include them in the
tables. To better understand the shackle values, we have provided
the maximum, mean, the threshold value for class 3 and the class 3
percentage split. These values are presented in Table 9.1.

As we can see from Table 9.2, Multilayer perceptron and Lazy
K* has the best overall performance. The latter has remarkable bet-
ter performance on shackle 99875. The RAE is remarkably high on
all test results. This happens because all shackle data sets have an
overweight of entries with a value in the range -0.05 to 0.05 which
drastically affects the mean. We should therefore analyse the visu-
alisations of the regression, and account for the maximum and mean
values shown in Table 9.1. Figure 9.3 shows the visualisation of the
classifiers errors of the K* algorithm, where small crosses means a
small error. As we can see, K* overestimates the middle values and
underestimates the highest values. This is a bad sign, as we rather
want to overestimate the highest values because these are the most
dangerous entries for the production plant. In the figure, the orange
crosses are underestimated, and the blue are overestimated.

When analysing the classification algorithms, it is important to
see which of the instances that are correctly classified. As we have
created the classes manually by using the 35-40% highest values2, we

2Shackle 85130 and 99871 has 7 and 6 instances that has very high values, and
we used a threshold of 38% and 40 % adjusted for them.
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see it more important to classify this class more accurate. It is there-
fore important to look at the confusion matrix to get an indication of
how much the algorithm overestimates or underestimates.

The results in Table 9.3 shows that Näıve Bayes and J48 have the
best accuracy regarding correct classified instances, but Näıve Bayes
performs better for the critical class 3. When studying the confusion
matrices in Listing 9.10 and 9.12, we can see that J48 overestimates
more in class 2 (23 vs. 14 instances classified as class 3) and underes-
timates more in class 3 (2 vs. 1 instance classified as class 2).

Figure 9.3: Visualisation of the classifier errors of the K* algorithm.
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Table 9.1: Max, mean and class 3 threshold and percentage for all
shackles.

Max Mean C3 C3%
Shackle 85130 0.138 0.042 0.085 38%
Shackle 99871 0.337 0.099 0.225 40%
Shackle 99875 0.634 0.135 0.4 37%

Table 9.2: All results from the regression based algorithms.

Shackle
88130

Shackle
99871

Shackle
99875

Shackle
99875

(speed)
MAE RAE MAE RAE MAE RAE MAE RAE

Linear
Reg. 0.0185 56.5% 0.044 66.9% 0.064 50.0% 0.066 51.1%

Multi-
layer

Percep.
0.0134 40.9% 0.032 48.2% 0.054 42.4% 0.059 45.5%

Lazy
K* 0.014 42.6% 0.033 49.6% 0.045 35.3% 0.058 44.8%

Table 9.3: All results from the classification based algorithms.

Shackle
88130

Shackle
99871

Shackle
99875

Shackle
99875

(speed)
CCI C3 CCI Class3 CCI C3 CCI C3

LibSVM 74% 79% 73.3% 64% 83.4% 67% 81.3% 60%
Näıve
Bayes 72% 95% 72.6% 82% 84.8% 83% 81.3% 60%

J48 72.6% 89% 74% 82% 74.2% 67% 81.3% 60%
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The results shows that for both regression based and classification
based algorithms, the accuracy decreases when removing the direction.
This indicates that the shackle data is related to current direction, as
we assumed when discussing the tide effects on the current. Figure 9.4
shows the three classes and the distribution of the instances regarding
the direction. It is a distinct top of class 1 instances around 180
degrees, which is where we believe that the tide is changing.

Figure 9.4: Three classes and and instance distribution regarding
direction.

Because of the encouraging performance and since the class at-
tribute is nominal, we chosen the Näıve Bayes as the algorithm to
use in the ”Deviant Data from Past Similar Conditions” symptom.
The advantage with a nominal class is that we can modify the classes
depending on the individual shackle and regulate the critical strain
level. The bad thing by manually assessing the classes is that the
thresholds must be carefully chosen, most preferably by evidence in
the data.

9.3 Project Results and Discussion

Because of the challenges discussed in Section 5.4.1, the implementa-
tion of the decision support system was limited. We chose to focus
more on the method of symptom and case creation, rather than devel-
oping an empty shell of a program. This implies that the main results
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are these symptoms and cases, and experience gathered through the
project period.

Some of the things we have learned that it is important to pass on
is that the load shackles on one rooster foot alone, does not provide
much information that can be used to explain the structural state of
the cage. As mentioned earlier in the report, these sensors can not
register any impacts from the wind and wave. This is because the
sensor is not sensitive enough for the impact the wind and wave have
on the cage. This does not mean that the wind and wave have no
impact on the cage at all. These weather effects have a larger impact
on the parts of the production plant that is over the sea level and just
over the crust.

An important factor for the impact on the cage is the tide. The
data analysis shows that at the location of our platform Rataren, the
tide is the force that decides the movement of the cage. We can see
that the strain measurements follow the current measurements, and
that the current is highly correlated with the tide. This is an im-
portant factor to consider when starting new production plants, and
when attaching the moorings. As we had no options for monitoring
the direction the strain was pulling in, we could not relate this di-
rection to the current direction purely. We did see some correlation
between the strain and the current direction, which means that this
data is somehow dependent.

As we only had the sensors on the shackles on one rooster foot,
the information these sensors provided was limited. We have earlier
showed that the wind are correlated with the accelerometer data from
the specialisation project. If the AHRS sensors was implemented on
Rataren, we could combined this data with the shackle data. We
could then try to identify the direction of the strain, which opens the
possibility of comparing the sensor data with simulation data from
FhSim. We could also do analysis to test if the -0.05 entries represent
the cage moving ”back in place”. This assumption could also be con-
firmed or busted by having more strain sensors, at least on the rooster
foot at the opposite side.

The symptoms and cases we have created are based on knowledge
gathered in meetings with experts and research studies. We assume
that the threshold values we have defined are reasonable for our ar-
tificial symptoms and cases, but we have no empirical data to verify
it. This means that we can not evaluate the system regarding noise
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in the data. It is also a problem that the symptoms and cases may
not be realistic to look for at all, as we do not have any real incident
reports to draw inspiration from. As the cage structure is dynamic
and constantly in change, we can see that the measurements from the
three available shackles are different. This may also occur if the moor-
ings are tightened differently, which probably will occur over time as
the cage goes through maintenance and natural wear. It is therefore
important to not use too old data when creating models by machine
learning, as the old data will be less representative as the time goes
by.

The implemented system are working good according to the im-
plementation of the cases and symptoms. When testing the similarity
measure we have created, we run through the data file containing the
measurements from 28.2 to 26.3 to see if the similarity is calculated
correctly. By analysing this data manually, we know which instances
that are matching with 100% similarity, and we know the id of those
records. When testing the program and collecting the 100% similar
instances, we see that the implemented program is able to catch all
the entries it is supposed to.
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Chapter 10

Conclusion & Future Work

10.1 Conclusion

In this MSc thesis we have developed a prototypical decision support
system for predictive maintenance of exposed aquaculture structures,
and early notification of possible structural damage. The system is
based on a proposed architecture that consists of four modular compo-
nents: Data Acquisition, Data Interpretation, Case-Based Reasoning
and Graphical User Interface. When creating the proposed architec-
ture, we draw inspirations from the fields of Structural Health Moni-
toring, machine learning and Case-Based Reasoning.

The most important parts of the decision support system is the
symptoms and the cases, which are based on a data analysis and
knowledge gathered by studying the domain of aquaculture struc-
tures. Knowledge from domain experts at SINTEF FH has also been
invaluable as input when creating the symptoms and cases. The sys-
tem uses CBR as the inference engine, which implies that the cases
represent past situations or incidents. The current state or situation
works as the input case, and the similarity between the input case and
all past cases stored in the system is calculated. The user is then pro-
vided with a textual description and a solution from the most similar
past case, if the similarity reaches a predefined threshold. If no cases
are similar enough, it means that the current situation does not pose
any threat that the system is aware of.

125
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A major drawback during the project period was limited informa-
tion it was possible to extract from the available data. This inferred
that the symptoms and cases that optimally should be based on em-
pirical data and real incidents, became artificial and based on our
experience. We used the available data to create reasonable symp-
toms and cases, but the lack of incidents limited the possibilities of
evaluating our work with real world data.

We can conclude with that the implemented decision support sys-
tem is able to support an operator with advice about what to do, if
a situation similar to previously experienced situations occur. This is
verified by the tests performed on the system, which show that the
performance regarding giving advice about the artificial cases are sat-
isfying. It is reasonable to assume that when creating the symptoms
and cases based on real world data, the threshold values and patterns
we are looking for in our system must be revised drastically.

As we met several challenges with the available data, the need
for a fully functional GUI became less important. The project was
therefore more research based, and we focused on creating reasonable
symptoms and cases, and proposing a proper architecture.

10.2 Future Work

The future work of this MSc thesis are mainly improving the decision
support system and its necessary components. There are many chal-
lenges and problems to be solved in the different components of the
architecture, and we will highlight some potential improvements that
we find important for the future development.

Regarding the system, there are several parts, both minor and ma-
jor, to improve. In the acquisition component, the main improvement
will be to acquire information in real-time. It is expected that the
future sensors store the registered data in a database, and the system
must be capable of collecting and processing this data efficiently.

The interpretation component is considered the most important
part of the system. In the prototype we provided the symptoms with
preprocessed data sets, but the improved system must be capable of
processing sensor data and model it to useful information automati-
cally. It will be important to perform this process within reasonable



10.2 Future Work 127

time. The current sensors sample once per hour, which means that
the maximum processing time for the complete system must follow
this upper limit. The system should optimally be as fast as possible
if the future sensors sample at a higher frequency.

As the symptoms and cases are artificial in the prototype, new
symptoms and cases based on real data should be created. This re-
quires more sensors which provide a wider basis for describing the
structural health of the production plant. By creating symptoms and
cases based on real incidents that can be described by patterns in the
data, these elements could be evaluated properly with empirical data.
Together with an domain expert evaluation, this will eventually lead
to testing the system in a real environment.

When more sensors are available with different types of data, a
new analysis should be performed. This will reveal if there are any
other relations of significance. After conducting the new analysis, one
should consider:

• Which symptoms and cases could be created based on the avail-
able data?

• Should FhSim be considered?

• Could more advanced and accurate machine learning models be
created?

• Are the previous challenges solved or still present?

It is also interesting to consider all the available data that is not pri-
marily provided by the Exposed SFI, like the weather and tide fore-
casts. These forecasts could provide useful information for planning
purposes, like when strong winds are predicted and when the tide is
changing.

When developing the graphical user interface, the general aspects
of a good GUI for an operator should be in focus. GUI designing
for monitoring application are a field on its own, but it is important
that the cases given by the CBR system occupies the attention of
the operator. The operator should also be able to explore the cases,
and receive all the relevant information. The development of the GUI
should be in cooperation with the operators that are actually going
to use it. Additionally, the operator should be able to retain a new
case if desirable. Before retaining a new case, it should be revised by
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domain experts.
When developing a complete system, it will be important that

the code is written after good standards. The system should follow
the modular structure defined by the architecture, and it should be
easy to extend with new features and update with new symptoms and
cases.
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