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Abstract 

Uncertainties on different soil properties affect the reliability of geotechnical analysis. In geotechnical design the most 
adopted procedure to account for uncertainty is, to maintain some degree of safety by using characteristic values and 
factor of safety approaches. This method does not give a complete indication of safety margin. Too high safety stand-
ards cause expensive system, whereas too low factor of safety results many casualty and economic damage. How the 
uncertainties in soil parameters affect the geotechnical reliability analysis should be dealt adequately and the uncer-
tainties should be quantified and carefully evaluated.  
 
This thesis focuses on the evaluation of the effect of uncertainty and soil variability on stability analysis within the 
formwork of probabilistic methods and contributes to the application of advanced probabilistic method in geotechnical 
slope stability analysis. Conditional random finite element method (CRFEM) creates a computational model able to 
estimate the probability of failure of a slope while fully accounting for for spatial variability of soil. The applicability 
of CRFEM shows the potential of the framework of uncertainty quantification and the effects of soil variability and 
spatial variability at different scales on the studied case.  
 
The case study is based on the ground investigation made while planning a road project in Rissa area located in Sør-
Trøndelag, Norway. The area is famous for the quick clay slide that occurred in 1978. 
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Summary 
 

The core competence of a civil engineer is developing reliable and effective systems for 

the society by mitigating risk and reducing failure. This includes forecasting and preven-

tion against catastrophes due to natural hazards. Natural hazards cause significant damage 

on human life and economic loss. To minimize these enormous amount of damages, espe-

cially caused by geohazards, an appropriate preventing techniques are needed and reliabil-

ity analysis relating geohazards should be adopted.  

 

Uncertainties on different soil properties affect the reliability of geotechnical analysis. In 

geotechnical design, the most adopted procedure to account for uncertainty is to maintain 

some degree of safety by using characteristic values and factor of safety approaches. This 

method does not give a complete indication of safety margin and is unable to properly 

characterize spatial variability. Too high safety standards cause expensive system, whereas 

too low factor of safety results many casualty and economic damage. Therefore, how the 

uncertainties in soil parameters affect the geotechnical reliability analysis should be dealt 

adequately and the uncertainties should be quantified properly. Quantifying the uncertain-

ties in geotechnical engineering subjected to inherent randomness in properties is becom-

ing increasingly important, and the implementation of more advanced and sophisticated 

techniques to ensure proper safety standards for society is becoming essential.    

 

This thesis focuses on the evaluation of the effect of soil variability within the formwork 

of probabilistic methods and contributes to the application of advanced probabilistic 

method in geotechnical slope stability analysis. Advanced probabilistic analysis method 

provides a means to quantify the reliability of complex systems. The integration between 

probability concept (conditional random field) and a numerical technique, Finite Element 

Method (FEM) created a powerful analysis method called Conditional Random Finite El-

ement Method (CRFEM). CRFEM creates a computational model that is able to estimate 

the probability of failure of a slope while fully accounting for spatial variability of soil. A 
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case study, Rissa slope demonstrates the applicability of CRFEM approach and shows the 

potential of the framework on uncertainty quantification and the effects of soil variability 

and spatial variability at different scales. 

 

This thesis is structured thematically in the following parts: 

Chapter 2: The background information concerning the basic statistic terms such as, ran-

dom variable, continuous probability distributions and brief explanation on cone penetra-

tion testing are presented.  

Chapter 3: This chapter focuses on the basics of soil variability and safety. It provides a 

description on source of uncertainties and common approaches for dealing with soil varia-

bilities.  The basics of generation of random numbers and conditional random field are 

included. Moreover, an introduction into slope stability and probabilistic analysis method 

are given.  

Chapter 4: This chapter briefly describes the studied case, Rissa area. Background infor-

mation and the famous quick clay land slide appeared on this area are presented. It also 

explains the ground investigations made, the challenges faced during planning of a road 

project and the cause for the termination the planned project which is the main initiative 

for this study.  

Chapter 5: This chapter presents the application of statistics from chapter 3 on the availa-

ble data described in chapter 4. The applied method in estimation of soil variability and the 

proceeding probabilistic interpretation of soil parameters form the available data, CPT is 

provided clearly.  

Chapter 6: The results followed by the application of Conditional Random Finite Element 

Method based on the outcomes of chapter 5 as an input is described. A number of different 

simulations used to analyze the effect of soil variability and spatial variability is presented 

in detail.   

Chapter 7: The outline for the overall procedure and brief discussion about the results 

identified in chapter 5 and chapter 6 are presented.  

Chapter 8: In this chapter, conclusion is drawn on the achievement of the whole project. 

A summary of the objectives of this thesis and finally, recommendations for further work 

is proposed.  
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Chapter 1                                        

Introduction 

1.1 Background and rationale  

The core competence of a civil engineer is developing reliable and effective systems for 

the society by mitigating risk and reducing failure. This includes forecasting and preven-

tion against catastrophes due to natural hazards. According to a 2014 report by the United 

Nations, since 1994, natural disasters caused around USD 2 trillion economic damage 

world wide and affected more than 4 billion people (Kellet, 2014). To minimize these enor-

mous amount of damages, especially caused by geohazards, an appropriate preventing 

techniques are needed. The assessment, prevention and mitigation methods of geohazards, 

including risk associated with landslide and mass transport in soil due to flooding, and 

earthquakes should take one step further and implement more advanced and sophisticated 

techniques to ensure proper safety standards for society.    

 

In deterministic geotechnical design, global and partial factor of safety concepts are com-

monly used to maintain some degree of safety, mainly driven by expat judgement or expe-

rience. There is no standard measure for factor of safety due to the variability and uncer-

tainty of natural phenomenon. Too high safety standards cause expensive system, whereas 

too low factor of safety results many casualty and economic damage. How to properly 

handle variability and uncertainty of nature is challenging task, and as described by Fenton 

and Griffiths, “We will never know the precise distribution of any natural phenomenon. 

Nature cares not at all about our mathematical models and the truth is usually far more 

complex than we are able to present” (Fenton & Griffiths, 2008c). Therefore, an advanced 
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method is necessary for evaluating safety of structures by considering variability and un-

certainty in a proper way. One of the techniques is the implementation of advanced proba-

bilistic slope stability analysis on factor of safety concept. This helps geotechnical engi-

neers to analyze the impact of hazards on structures and also for making an economical 

and safe design approach. 

1.2 Problem formulation 

In geotechnical engineering, evaluation of land slide hazards and slope stability analysis 

are still carried out in a deterministic framework based on experience. The determined fac-

tor of safety does not give any information on failure occurrence probability. Especially in 

assessing regional land slide risks, estimation of the probability of slope failure during 

some specific period of time is the most basic. Therefore, this study put the emphasis to 

examine factor of safety and failure probability by implementing advanced probabilistic 

analysis method.  

 

How to quantify uncertainty and variability of soil parameters, probabilistic interpretation 

of soil properties from CPT measurement, how to incorporate a number of observations of 

CPT profiles in slope stability analysis, the interaction between unobserved and observed 

points within a slope geometry are the basic concepts dealt in this thesis by taking a specific 

case study on Rissa Slope.    

1.3 Research aim  

This paper is focusing on evaluation of the effect of soil variability and uncertainty on 

stability analysis within the formwork of probabilistic methods. Application of probabilis-

tic analysis by sampling techniques on real case, Rissa Slope, and discovering the inherent 

relationship between soil shear strength parameters (undrained shear strength and friction 

angle) with failure probability is the main intention. To achieve this aim, several topics on 

theory of geostatistics, random field and uncertainties due to interpretation of CPT are 

studied widely.  
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1.4 Structure of the report   

In addition to this introduction section, the thesis is arranged in seven chapters as indicated 

below:  

At first an introduction to background information is given in Chapter 2. This includes 

recognizing basic statistic terms such as random variable, continuous probability distribu-

tions and brief explanation on cone penetration testing are presented. The basics of soil 

variability and safety within Chapter 3 provides a description on source of uncertainties 

and common approaches for dealing with soil variabilities.  The basics of generation of 

random numbers and conditional random field are included. Moreover, an introduction into 

slope stability and probabilistic analysis method are provided.  

Chapter 4 briefly describes the studied case, Rissa area. The background information and 

the famous quick clay land slide appeared on this area are presented. The ground investi-

gations that are made several times are briefly stated.  

In Chapter 5, a specific method for estimation of soil variability and the proceeding prob-

abilistic interpretation of soil parameters form the available CPT measurement data are 

provided clearly.  

Chapter 6 presents the application of Conditional Random Finite Element Method on 

Rissa slope based on the preceding outcomes of chapter 5. A number of different simula-

tions used to analyze the effect of spatial soil variability are presented in detail.   

Chapter 7 gives the outline for the overall procedure and brief discussions are provided 

about the results identified in chapter 5 and chapter 6.  

Chapter 8 is a summary of the objectives of this thesis. Finally, recommendations for fur-

ther work is proposed.  

 

All calculations regarding estimation of soil variability and probabilistic interpretation of 

soil parameters are performed by using MATLAB ® R2015b, mesh generation for CRFEM 

is adapted by a software, GMSH 2.12, and simulations with sampling techniques are made 

by interacting a programing language, Python (xy) with the finite element software, 

PLAXIS 2D 
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Chapter 2  

Theoretical foundation 

2.1 Basics of Probability  

The main concern of this thesis, advanced probabilistic slope stability analysis, is the out-

come of a combined effect of simple and basic statistics. Therefore, it is inevitable to recall 

some basic knowledge concerning probabilistic theory. The basic statistics terms men-

tioned in this chapter are applied in this study and worth describing them briefly.   

2.1.1 Random variable  

A random variable is a variable that is subject to randomness, which can take numerical 

values by the outcome of some chance process. The definition given by ISSMGE technical 

committee on risk assessment and management is: “a quantity, the magnitude of which is 

not exactly fixed but rather the quantity may assume any of the number of values described 

by a probability distribution”(ISSMGETC32, July, 2004). A random variable can be either 

discrete or continuous.  

 

A discrete random variable is a variable that represent numbers found by counting. It has 

countable set of outcomes and takes fixed set of possible value like number of blows in a 

standard penetration test. The probability distribution gives the possible values of the var-

iables and their probability. 

 

Continuous random variables are random variables that are found from measuring and 

take values in an interval or on continuous scale such as, the values of undrained shear 



Theoretical foundation 
  

 

 

6 

strength of clay. The probability distribution is described by a density curve and the prob-

ability of an event is the corresponding area under the curve. 

2.1.2 Measure of central tendency and variability   

Random variables can be described by using easy estimated measures. The most important 

of these measures are central tendency (mean) and variability (standard deviation). These 

quantities convey information about the properties of random variable that are of first im-

portance in practical application (Fenton & Griffiths, 2008a). 

 

Mean or expected value is a measure of central tendency of random variable or probability 

distribution. For a given sample 𝑥, the mean value, 𝜇V is computed as the sum of all the 

observed outcomes from the sample divided by the total number of events,	𝑁. 

 

 𝜇V = 	𝐸 𝑥 =
1
𝑁 𝑥z

P

z{|

 (2.1) 

 

Standard Deviation is a measure of dispersion or how spread the set of data values are. A 

standard deviation close to zero, indicates that the data points tend to be very close to the 

mean value of the data set, while a high standard deviation indicates that the data points 

are spread out over a wider range of values. Sample standard deviation,	𝜎V of the popula-

tion based on a set of observation 𝑥|, 𝑥(, … 𝑥P is calculated by:  

 

 𝜎V = 𝐸(𝑥 − 𝜇V)( = 	
1
𝑁 (𝑥z − 𝜇V)

P

z{|

 (2.2) 

 

The variability of a random quantity is often expressed using dimensionless measures 

called coefficient of variation,	𝐶𝑜𝑉 which is a ratio of standard deviation over mean. 

 𝐶𝑜𝑉V = 	
𝜎V
𝜇V

 (2.3) 
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2.1.3 Continuous probability distributions 

There are several models that describe the distribution of random variables. Values of soil 

parameters identified by measurement take values in interval scale. These continuous ran-

dom variables of soil parameters are represented by continuous probability distributions 

and the equation used to describe is called probability density function. In this study, the 

continuous models used to represent soil characterizations are explained briefly.    

 

Normal distribution is the most important continuous distribution in use today. This is 

because the whole distribution can be defined completely with only the first two moments, 

mean and standard deviation. Central limit theorem shows that the sums of random varia-

bles tend to follow a normal distribution (Dudley, 1999). Since many natural phenomena 

involve many accumulating factors, they tend to have normal distribution. Normal distri-

bution is symmetric about the mean, which is also the maximum point of the distribution 

as shown in Fig. 2.1. A random variable X follows a normal distribution if its probability 

density function has the form:  

 𝑓V 𝑥 = 	 |
� (�

exp	 − |
(

V��
�

(
;		−∞	 < 𝑥	 < ∞   (2.4) 

 
Figure 2.1 Probability density plot of normal distribution with µ = 5 and σ = 2
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Lognormal distribution  

A continuous variable tends to follow a lognormal distribution, if the variable is a product 

of a large number of independent, identically distributed variables as proven by central 

limit theorem (Dudley, 1999). A random variable will follow a lognormal distribution if 

the logarithm of the variable is a normally distributed random variable. Thus, if the random 

variable 𝑋 is lognormally distributed, then 𝑌 = ln𝑋  is normally distributed. Likewise, if 

Y has a normal distribution with range −∞ < 𝑌 < ∞, then 𝑋 = exp	(𝑌) is lognormally 

distributed with a range of 0 ≤ 𝑋 < ∞. A random variable that is lognormally distributed 

takes only positive real values as shown in Fig. 2.2. The probability density function for 

lognormal distribution is given by:  

 
𝑓V 𝑥 = 	

1
𝑥𝜎�PV 2𝜋

exp −
1
2
𝑙𝑛𝑥 −	𝜇�PV

𝜎�PV

(

	; 			0 ≤ 𝑥	 < ∞												 

 

(2.5) 

Where, 𝜇�PV	𝑎𝑛𝑑	𝜎�PV		are the mean and standard deviation of the underlying normally dis-

tributed random variable, ln 𝑥 and given by: 

 𝜎�PV = 	 𝑙𝑛 1 +
𝜎V
𝜇V

(
				 ; 		𝜇�P� = ln 	 𝜇V −	

𝜎�PV(

2  (2.6) 

 
Figure 2.2  Probability density plot of lognormal distribution with 𝝁 = 𝟓 and	𝝈 = 𝟐 
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Generalized extreme value distribution  

Generalized extreme value distribution is one of the continuous probability distribution 

used to model extreme events. It is a model that combines Gumbel and Weibull maximum 

extreme value distribution. The probability density function for generalized extreme value 

distribution with location parameter,	𝜇 scale parameter,	𝜎 and shape parameter, 𝑘 ≠ 0 is 

given by: 

 𝑓V 𝑥 = 	
1
𝜎 exp	 − 1 + k

𝑥 − 𝜇
𝜎

�|
_

1 + k
𝑥 − 𝜇
𝜎

�|�|_
 (2.7) 

 
Figure 2.3 Probability density plot of generalized extreme value distribution with  
𝝁 = 𝟓, 𝝈 = 𝟐 and 𝒌 = −𝟎. 𝟓 

2.2 Cone penetration testing  

Cone penetration testing (CPT) permits rapid exploration of subsurface conditions while 

minimizing retrieval of subsurface material. This exploration method employs sensors that 

are pushed into the ground to infer the properties of both soils and pore fluids (Noce, 2003). 

The test method consists of pushing an instrument cone into the ground at a controlled rate. 
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While penetrating the ground with a constant rate, a continuous real time measurement of 

cone resistance,	𝑞d and sleeve friction,		𝑓d  is recorded. CPTU is an improved CPT with 

capability of excess pore water pressure measurement behind the cone, 𝑢( and is more 

suited for measuring fine grained soils like clay. Figure 2.4 shows the cone diagram of 

CPTU. 

 
Figure 2.4 Schematic of Piezocone (CPTU)  picture taken from (Craig, 2004) 

 

2.2.1 Cone tip resistance  

The tip resistance is determined by the force required to push the tip of the cone. Mathe-

matically, its calculated by dividing the force acting on the cone to the area of the cone. 

Tip resistance is theoretically related to undrained shear strength of saturated cohesive ma-

terial (Peter Kay Robertson & Campanella, 1986)   

 

Corrected tip resistance  

The conical tip is demountable and can be separated from the rest of the probe by a joint. 

While penetrating, pore pressure will develop and act in this joint. This produce unbalanced 
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force due to different end areas of the probe components. Therefore, the effect of pore 

pressure has to be accounted and the corrected tip resistance is calculated by: 

 

 𝑞` = 𝑞d + 1 − 𝑎 𝑢( (2.8) 

 

where 𝑞` is corrected cone resistance,	𝑞d is recorded cone resistance, 𝑢( is total pore pres-

sure in the joint and 𝑎 is the net area ratio given by;  ��
��

 and depends on probe design. 𝐴P 

is cross-sectional area of the load cell and 𝐴O is the projected area of the cone.  
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Chapter 3  

Soil variability and Safety 

3.1 Soil variability  

Soil properties vary spatially. Characterization of this spatial variability is essential for 

probabilistic interpretation, and a better understanding of the soil parameters. In addition 

to the variability, measurement errors and modeling assumptions magnify the uncertainties 

in geotechnical design. Estimation of soil parameters is usually a challenging task due to 

inherent soil variability. Traditionally, in deterministic stability analysis, high factor of 

safety is a requirement to cover the uncertainty in characteristic soil parameters. The limi-

tation of this adopted procedure is, it is unable to properly characterize spatial variability 

and operating with high factor of safety might cause an expensive system. Therefor, it is 

important that the uncertainties in parameters be adequately quantified and carefully eval-

uated (Lacasse & Nadim, 1997).  

 

This study describes the probabilistic characterization of soil properties. Probabilistic char-

acterization includes, uncertainties in soil and how the uncertainties in soil properties are 

distributed, managed and quantified.  

3.1.1 Uncertainty  

Uncertainties in soil properties are commonly a consequence of inherent soil variability 

and incomplete knowledge or lack of understanding and insufficient data. Uncertainties 

associated with geotechnical problem can be divided into two categories, Aleatory uncer-

tainty and Epistemic uncertainty.    
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Aleatory uncertainty describes inherent natural randomness of natural processes. Inherent 

variability of soil properties is primarily caused by the natural geologic process in soil for-

mation. Spatial variation of soil parameter within a uniform geological layer is good ex-

ample. Aleatory uncertainties cannot be eliminated or reduced.   

 

Epistemic uncertainty describes the uncertainty due to lack of knowledge on a variable. It 

can be caused due to measurement uncertainty, statistical uncertainty because of limited 

data or model uncertainty. Statistical uncertainties are due to limited information or limited 

number of observations and can be improved by increasing the number of observations. 

Measurement error arise due to imperfection of measuring equipment, fault in procedure 

or random testing effect. This can be minimized by improving measurement accuracy. 

Model uncertainties develop due to the estimation capability of design model on the real 

phenomena. Model uncertainty is generally large and can be reduced by improving simu-

lation models (Nadim, 2007). Epistemic uncertainty can be reduced or eliminated. 

 

Uncertain soil properties and model uncertainty are best defined as random variables de-

scribed by mean trend, standard deviation (or coefficient of variation), correlation function 

and probability distribution function. 

3.1.2 Trend analysis  

In chapter 2, it is discussed that, mean value and standard deviation are used to describe 

variability. But in some cases, two sets of data might have the same mean and standard 

deviation but reflect different soil conditions as shown in Fig. 3.1. The difference cannot 

be identified from mean and standard deviation alone. These data can be examined with 

trend analysis. The trend analysis is conducted by separating the random process into de-

terministic trend (trend mean) and variability around the trend (Baecher & Christian, 2005).  

 

 𝑟 𝑧 = 	𝑡 𝑧 + 𝑢(𝑧) (3.1) 

 

Where 𝑟 𝑧  is the soil property at location 𝑧, 𝑡 𝑧  is the value of the trend at 𝑧, and 𝑢(𝑧) 

is the residual variation.  
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Figure 3.1 Two data having same mean and standard deviation, but different pat-
tern of spatial variation. Picture taken from (Baecher & Christian, 2005) 

 

The residuals are characterized statistically as a random variable. The randomness repre-

sents the uncertainty in the difference between the interpolated trend and the actual value 

of the soil property at the unobserved location. This residual usually described with zero 

mean, and non-zero variance, 𝑉𝑎𝑟 𝑢 :   

 

  𝑉𝑎𝑟 𝑢 = 𝐸 𝑟 𝑧 − 𝑡 𝑧 (  (3.2) 

 

3.1.3 Local average  

Characterization of soil parameters are done in a point level by point statistics. The mean 

value, variance, marginal distribution and so on are defined at point level. However, since 

soil particles are discontinuous, soil properties are rarely measured at a point. For instance, 

a volume of soils with in a vicinity of radius about 100 – 200mm are involved in a CPT 

measurement and CPT cone averages the soil resistance over this volume (Fenton & 

Griffiths, 2008a). Detail explanation and application of local averaging is described in Sec-

tion 6.44. 
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3.2 Random field  

Soil properties vary spatially. In addition to errors due to measurement and modeling as-

sumptions, estimations of soil parameters are challenging because of the inherent nature 

due to geological and pedological soil forming factors. Characterization of this spatial var-

iability is essential for better understanding and can be modeled by using mathematics of 

random process. Random field provides a method for incorporating spatial variation in en-

gineering and reliability models. It also provides statistical results which can be used to 

draw inferences from limited field observations (Baecher & Christian, 2005).  

 

Random Field  A random field 𝑅 𝑥  is defined in ℝP	is a function such that for every fixed 

𝑥 ∈ ℝP,	𝑅 𝑥  is a random variable in the probability space.  

3.2.1 Gaussian random field 

Soil properties vary extremely between locations and there is some kind of dependency 

between neighboring observations depending on the separation distance. The closer the 

distance, the more the dependence will be. This dependency can be described by joint bi-

variate distribution, 𝑓¥¦	(𝑥, 𝑦) meaning, the probability that 𝑋 = 𝑥	𝑎𝑛𝑑	𝑌 = 𝑦 at the same 

time. The consideration can be extended to infinity but the parameters are difficult to esti-

mate from real data. For simplification, Gaussian Process is assumed. It states, the joint 

probability density function is a multivariate normally distributed random process (Fenton 

& Griffiths, 2008b). The great advantage of using Gaussian random field is that the com-

plete distribution can be specified by only mean vector and covariance matrix, and has a 

form of:  

 𝑓¥¨¥©...¥ª 𝑥|𝑥( …𝑥_ = 	
1

(2𝜋)_/(
1

|𝐶||/( 	exp	 −
1
2 𝑋 − 𝜇 N𝐶�| 𝑋 − 𝜇  (3.3) 

 

Where, 𝜇 = 𝐸 𝑋  is the vector of mean vales for X, 𝐶 is the covariance matrix between the 

X’s, and given by 𝐶 = 𝐸[ 𝑋 − 𝜇 𝑋 − 𝜇 N], while the superscript 𝑇 is for matrix transpose, 

and |𝐶| is the determinant of the covariance matrix.  
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For infinite consideration, because of the variation of the mean and the covariance with 

position, the joint probability function could not be used in practice due to the difficulties 

to estimate from real data and the mathematical complication. For this reason, the Station-

arity assumption will be used to make it more simplified.   

 

Stationarity  

A Gaussian random field is said to be stationary if the joint probability function is depend-

ent only on the vector separation among the observations 𝑥z … 𝑥_ rather than the absolute 

location. This assumption implies that the mean is 𝐸[𝑅 𝑥z ] = 	𝜇 for all	𝑥, and the covari-

ance 𝐶[𝑅 𝑥z , 𝑅 𝑥° ] depends only upon vector separation of 𝑥z	𝑎𝑛𝑑	𝑥° not on absolute 

location. Therefore; 

 𝐶 𝑅 𝑥z , 𝑅 𝑥° = 𝐶l(𝑥z − 𝑥°) (3.4) 

3.2.2 Autocorrelation and correlation length 

Autocorrelation is a measure that shows the extent at which two values of the same variable 

fluctuate at distance or time 𝑥z	𝑎𝑛𝑑	𝑥z±². A measure of dependency between two values of 

a random variable with in a distance 𝜏,	is commonly expressed by correlation coefficient: 

 

 𝜌 𝑥z, 𝑥° = 𝜌 𝑥z, 𝑥z±² =
𝐶𝑜𝑣(𝑥z, 𝑥°)
𝜎Vz𝜎V°

 (3.5) 

 

Where, the correlation coefficient 𝜌 𝑥z, 𝑥° = 𝜌 𝑥z, 𝑥z±² = 𝜌 𝑥z±², 𝑥z  and standard devi-

ations 𝜎Vz	𝑎𝑛𝑑	𝜎V° = 	𝜎V for Gaussian stationary random field, while 𝐶𝑜𝑣(𝑥z, 𝑥°) is the co-

variance between 𝑥z	𝑎𝑛𝑑	𝑥°. 

 

Correlation length, 𝜽  is one of the measure of variability of random field. It is defined as 

a distance within which two observations are significantly correlated (the term significantly 

is defined by more than about 10 % according to Fenton & Griffiths (2008b).  
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Relating correlation length with a correlation function, a random process following Markov 

correlation function with separation distance,	𝜏 between two values, has a from:  

 

 𝜌 𝜏 = 𝑒𝑥𝑝 −2
𝜏
𝜃  (3.6) 

 

It can be observed that when two observations are close to each other,	𝜏 → 0, the correla-

tion function will approach to one, 𝜌 → 1 and in a likely manner, 𝜌 will approach to zero, 

while the separation distance increases, 𝜏 → ∞. Contrariwise, for large correlation length, 

𝜃 → ∞,	𝜌 → 1 and clearly, 𝜌 approaches to zero when 𝜃 decreases.  

3.2.3 Conditional Gaussian random field 

In geotechnical analysis, a number of measurements are made and values of soil property 

are observed at measured locations. In the process of generating random field, deterministic 

values are assigned for measured locations, while estimation is made for unobserved loca-

tions based on the observed values. Apparently, the soil parameters near the observed lo-

cations most likely possess the same or nearly same properties as the observed properties 

than that of far away. This concept is integrated by conditional random field and described 

below.  

For a Gaussian random field, defined as:  

 

 𝑅~𝑓 𝑟 = 𝑁 𝑟; 𝜇·, 𝐶·  (3.7) 

 

where 𝜇· is mean, and 𝐶· is covariance matrix with  𝑚 number of discretization, let 𝑋 =

𝑋|, 𝑋(, … , 𝑋P  be observed values inside the discretized domain at location 𝑥|, 𝑥(, … , 𝑥P  

with covariance matrix between observed points,	𝐶V/·,  then the conditional random field, 

𝑅 given observation 𝑋 is normally distributed with mean and covariance matrix: 

 

 
𝜇·/V = 𝜇· + 𝐶·𝐻N 𝐻𝐶·𝐻N + 𝐶V/·

�| 𝑋 − 𝐻𝜇· 	 

  
(3.8) 
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 𝐶·/V = 𝐶· − 𝐶·𝐻N 𝐻𝐶·𝐻N + 𝐶V/·
�|	𝐻𝜇· (3.9) 

 

where 𝐻 is a linear model, defined as a (𝑛	×	𝑚) matrix with a value 𝐻 1, 𝑥| =

	𝐻 2, 𝑥( … = 𝐻 𝑛, 𝑥P = 1 and 0 otherwise. The superscript 𝑇 is standing for matrix 

transpose.   

3.2.4 Generating random field  

In reliability analysis, the generated random field realization is considered as an input to 

the model that simulate the response of the studied structure.  

 

From conditional Gaussian random field, for 𝑚 number of discretization, the conditional 

mean, 𝜇·/V and covariance matrix, 𝐶·/V is given by Eqs. 3.8 and 3.9 respectively. By using 

Cholesky decomposition, 𝐶·/V which is a (𝑚	×	𝑚) matrix, is decomposed to give a lower 

𝐴 and upper triangle 𝐴N. 

 

 𝐶·/V = 𝐴𝐴N (3.10) 

 

By generating (𝑚	×	1) vector of standard normal distributed random values, 𝐿	~	𝑁	(𝜇» =

0, 𝜎» = 1), a conditional Gaussian random field realization, 𝑅 with mean 𝜇·/V, is calculated 

as: 

 𝑅 = 𝜇·/V + 𝐴𝐿 (3.11) 

 

3.3 Slope stability  

3.3.1 Factor of safety 

Slope stability analysis is made to check whether a slope is safe or unsafe. The measurer 

of safety is called factor of safety. Factor of safety can be defined as the ratio between the 

the average shear strength of the soil,𝜏B to the average mobilized shear stress developed 
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along the potential failure surface, 𝜏urv  𝐹- =
²¼

²½¾¿
 and failure is assumed to occur when 

𝐹- < 1 (Bromhead, 2006). Factor of safety often used as a design criterion. Different coun-

tries in the world have different standards for factor of safety to ensure safe design. This 

values are often based on experience. Table 3.1 shows the factor of safety values required 

for slopes according to U.S Army Corps of Engineers’. They are intended for application 

to natural slopes, slopes of embankment dams, other embankment and excavations 

(Duncan, Wright, & Brandon, 2014).     

 

Table 3.1 Factor of safety criteria from U.S Army Crops of Engineers’ slope stabil-
ity manual 

		 Required	factor	of	safety		

Types	of	Slopes	 For	End	of	
Construction		

For	Long-Term	
Steady	Seepage			

For	Rapid	Draw-
down		

Slopes	of	dams,	
levees	and	dikes,	
and	other	em-
bankment	and	
excavation	
slopes		

1.3	 1.5	 1.0	–	1.2	

 

There are different types of numerical techniques used to analyze the stability of slope.  

 

Limit equilibrium method investigates the stability of a soil mass tending to slide down 

transitionally or rotationally by assuming potential slip surface (Army, 2003). 

 

Finite element method (FEM) is a numerical technique used to find the approximate so-

lution to partial differential equations. In slope stability, the large slope divided into smaller 

elements and the analysis at each element assembled to represent the large slope. The main 

advantage of FEM over limit equilibrium is, shape and location of failure surface is not 

assumed and failure mechanism develop freely by detecting the weakest zone. Different 

types of soil models can be computed using different failure criteria with complex slope 

configuration. In this thesis FEM method is used with computer programing, PLAXIS 2D.   



3.3 Slope stability 
 

 

 

21 

3.3.2 Probabilistic slope stability method  

The main limitation of factor of safety is, it does not describe how safe a slope is and 

limited on providing the likelihood of the design failure. Uncertainties in the input param-

eters also affect the failure likelihood. This is best handled with probabilistic analysis. 

Probabilistic analysis method, in general, provides a tool to quantify the possible risk as-

sociated with failure and assesses the reliability of a slope. To handle uncertainty, input 

parameters are treated as random variables described by their corresponding distribution 

type, measure of tendency (mean), and variability (standard deviation).  

 

Single random variable approach (SRV) is a probabilistic analysis method so that the 

input mechanism is based on distribution type, mean value and standard deviation of the 

parameter. A single random value is assigned for the entire slope or for the corresponding 

one layer in the case where slope is made up of different layers. This means, the value of 

the parameter does not change with in a layer (Fenton & Griffiths, 2008d).   

 

Random finite element method (RFEM) is a combined effect of random field with a finite 

element method. It follows the same method as SRV on assigning random values for pa-

rameters, but one value is assigned for one discretized element instead of one layer.   

These input parameters directly incorporated to the analysis model using sampling tech-

niques. Many commercial software programs are available to carry out such kind of com-

putations automatically. 

3.3.3 Monte Carlo sampling technique  

In probabilistic slope stability analysis, the shear strength input parameters such as un-

drained shear strength for clay and friction angle for sand, are not deterministic and treated 

as random variable. The values of these parameters can be distributed about their means in 

a manner which can be described by one of the continuous distribution functions. This 

information can not be used directly in the analysis. Sampling methods incorporate this 

given information and provide an input value for the analysis (FEM). One of the simplest 

sampling method is Monte Carlo method and used in this study.   
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Monte Carlo (MC) simulation is a numerical simulation that generates random or pseudo 

random numbers based on the given probability distribution. All numbers within the dis-

tribution have the same chance of probability for being selected. The generated samples 

then can be used in a calculation and for each sample the corresponding output is collected. 

From the collected output, distribution of factor of safety and failure probability can be 

computed. The Monte Carlo simulation is well suited for slope stability analysis where 

several random parameters exist or if the slope is a combination of different layers while 

each layer is represented with random variable.  
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Chapter 4                                      

Description of Rissa Area 

4.1 Rissa landslide  

Rissa is a municipality in Sør-Trøndelag county, Norway. It is part of the Fosen region. In 

April 1978, Rissa was home to a quick clay landslide which encompassed an area of 

330,000 square meters and a flow of 6,000,000 cubic meters of clay from the Årnset area 

on the shore into Botn, causing a miniature tsunami on the north shore in Leira (Gregersen, 

1981). Figure 4.1 shows a picture taken during the landslide (picture taken from Google 

Maps). A lot of researches have been done in the area to study the event.  

 

 
Figure 4.1 Rissa landslide occurred on 29 April, 1978  
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4.2 Background information  

The Norwegian Public Roads Administration (NPRA) was planning to build a new road, 

RV 717 between Sund and Bradden in Rissa, located on the peninsula Fosen, northwest of 

Trondheim in Rogaland county as shown in Figure 4.2. 

 

 
Figure 4.2 Aerial Photography map of Rissa showing the planned road alignment 
(Google Maps) 

 

This costal area is covered with marine deposits. The planning works started in 2009 but 

were halted due to the geotechnical challenges of the project and the marginal safety factor 

of the area. There is a gentle slope between Rein Church and Botn lake consisting of sen-

sitive clay. The slope is located on the other side of the lake where Rissa landslide took 

place. The area has been studied previously with several laboratory experiments, total 

soundings, CPTU and R CPTU (resistivity), block samples. Block samples were taken by 

NTNU, supported by the Public Roads Administration. Field and laboratory test results are 

complied and presented by Kornbrekke (2012).  
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The area around Lake Botn is covered by a thick layer of sea deposits. These sea deposits 

sit directly on the rock surface. The other dominating soil type is, the marine deposits that 

cover the western parts of the area. The marine deposits are formed when the glacial were 

retreating approximately 12,500 years ago. The glacial had melted in the Rissa area around 

9000 years ago. After that the land heaved around 158 m over the former coastal line. The 

land heave has exposed the marine clay for fresh water that have washed out the salt and 

lowered strength. This have lead to the formation of quick clay in some parts of the area 

(Kornbrekke, 2012). 

4.3 Ground investigations 

Ground investigations have been performed several times. Norwegian Geotechnical Insti-

tute, NGI has made the first ground investigations in 2007 in connection with the first detail 

planning of the project. Additional investigations were made in 2009.  

 

The NGI ground investigations showed the presence of quick clay in the area. In 2011, 

NGI performed a slope stability analysis based on data from their own investigations and 

the investigations that NPRA have been made from 1974 to 2009. It is found to be that the 

areas around Reinsalléen and Åsen are the most susceptible to failure. The road construc-

tion was planned to pass by Reins church but halted due to the low factor of safety which 

failed to fulfill the regulations.  

 

Geological survey of Norway, NGU in cooperation with a master student from Norwegian 

University of Science and Technology, NTNU made electrical resistivity measurement 

during 2009 to 2010. In 2011 and 2012, NGU continued the geophysical investigations and 

made a seismic refraction measurement around Lake Botn and Rein church. In 2011 Geo-

Vest Haugland and Multiconsult performed extensive ground investigations.  

 

In this thesis, a specific slope, section 3-3 profile C is chosen and all the available data are 

used from Statens Vegvesen (NPRA). The geometry of the slope, section profile, soil strat-

ification and CPT profile points are shown in Figure 4.3.  
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Figure 4.3 Geometry, soil layering and CPT profile points of Rissa slope, section 3-3 
profile C 

 

The horizontal length of the slope is around 210m. The highest elevation, left top, is +28m 

and the lowest, right bottom is -28m. The slope is resting on bedrock. CPTU investigation 

has been made on different positions within the slope. C4, C2, C5, KK3, and C5 are CPTU 

profiles as shown in Figure 4.3. The data from the CPT measurements are used for proba-

bilistic interpretation of soil parameters and the methods are described in chapter 5. sum-

mary of the test results with soil layering depth, and ground water level depth are presented 

in Table 4.1. 

Table 4.1 Soil layering and ground water depth of CPT profiles 

		 	Layer	depth	

		 C4	 C2	 C5	 KK3	 C3	

GWL	 1.27m	 2.35m	 1.85m	 2.00m	 2.00m	

Sand	 0	-	8m	 0	-	2m	 	   

Quick	Clay	 8	-	23m	 2	-	11m	 0	-	11m	 0	-	6.5m	 0	-	4.5m	

Clay		 below	
23m	 11	-	18m	 11	-	21m	 6.5	-	18.5m	 4.5	-	15m	

Sensitive	clay		 		 below18m	 below	21m	 below18.5m	 below	15m	
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Chapter 5  

Probabilistic interpretation of 

soil parameters from CPT 

5.1 Estimation of correlation length    

All possible soil parameters should be estimated to represent a particular soil variability 

with more certainty. One of the interesting parameters in representing spatial variability is 

correlation length. Maximum likelihood estimation (MLE) method is one of the many dif-

ferent ways used to estimate the correlation length from CPT data.  

5.1.1 Maximum likelihood estimation  

Maximum likelihood method is a process and procedure of estimating values of one or 

more parameters for a given statistical model data which makes the known likelihood dis-

tribution a maximum (Harris & Stöcker, 1998). It is more efficient when the data are nor-

mally distributed or somehow have been transformed from their actual state to approximate 

normal distribution (Fenton & Griffiths, 2008a). 

 

The likelihood,		𝐿 of observing a sequence of normally distributed observations 𝑋 =

𝑥|, 𝑥(, … 𝑥P  given the distribution parameters, mean	𝜇V, variance 𝜎V(, and correlation 

length, 𝜃 is: 

 𝐿 𝑥 𝜇V, 𝜎V(, 𝜃 =
1

2𝜋𝜎V( P ( 𝜌 | ( exp −
𝑥 − 𝜇 N𝜌�| 𝑥 − 𝜇

2𝜎V(
 (5.1) 
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Where, 𝜌 is a correlation function given as a function of the correlation length,	𝜃. In this  

study a Markov correlation function is used and described in Eq. 3.6.  𝜌 	and 𝜌�| are the 

determinant and inverse of  𝜌 respectively. 𝜇 is a vector of means corresponding to each 

observed location. 𝑥 − 𝜇 N is vector transpose for 𝑥 − 𝜇 .  

Since the likelihood function is nonnegative, maximizing 𝐿 𝑥 𝜇V, 𝜎V(, 𝜃  is equivalent to 

maximizing its logarithm, ℒ 𝑥 𝜇V, 𝜎V(, 𝜃 , which ignores constants. After making a partial 

derivation of the likelihood function with each unknown parameters,	𝜇V, 𝜎V(, 𝜃, the loga-

rithm likelihood function, ℒ is calculated as: 

 

 ℒ = 	−
𝑛
2 ln 𝜎( +	 ln 𝜌 	  (5.2) 

	 

From Rissa CPT measurements, for the observed corrected cone tip resistance 𝑞`,which is 

log normally distributed (determined on the previous project) and the equivalent normally 

distributed, 𝑌 = ln 𝑞`, with depth dependent mean trend, 𝜇�PO` and depth, 𝑧 defined by a 

matrix 𝐹 as  𝐹 =
1 𝑧|
⋮ ⋮
1 𝑧P

, the regression problem,  

 𝐹	𝜇�PO` = 𝑌 (5.3) 

 

has the generalized least square solution:  

 

 𝜇�PO` = 𝐹N𝜌�|𝐹 �|𝐹N𝜌�|𝑌 (5.4) 

and the variance estimate:  

 

 𝜎�PO`( =
1
𝑛 𝑌 − 𝐹𝜇�PO`

N

𝜌�| 𝑌 − 𝐹𝜇�PO`  (5.5) 

 

 

The matrix 𝜌, 𝜇�PO` and 𝜎�PO`(  are dependent on 𝜃. The optimal choice 𝜃 is then defined as 

the maximum likelihood estimator, the maximizer of: 
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 ℒ = 	−
𝑛
2 ln 𝜎�PO`( +	 ln 𝜌 	 	 (5.6) 

The solution for the maximum likelihood estimator, ℒ is determined with iteration process 

by guessing value for 𝜃 at first. Probable range of 𝜃 is selected and the corresponding	ℒ 

values are computed by the equations given above. The most likely value of 𝜃 that gives 

the maximum value of ℒ is then identified by making 𝜃 verses ℒ plot as shown in Fig. 5.1.  

 

 
Figure 5.1 Log-likelihood function for a range of correlation lengths,	𝜽𝒍𝒏 𝒒𝒕 for C4 
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As shown in the geometry of Rissa slope, Fig. 4.3, different types of soil layers are identi-

fied. Each layer is assumed to be statistically homogeneous so that the correlation length 

holds same only within a certain layer and vary when enters to another layer. This is shown 

in Fig. 5.1, for a single CPT profile C4, different layers have different correlation length 

values.  

The computed results for all other profiles are summarized in Table 5.1.    

 

Table 5.1 Maximum likelihood estimation result for 𝜽𝒍𝒏𝒒𝒕, 𝝁𝒍𝒏𝒒𝒕, and 𝝈𝒍𝒏𝒒𝒕
𝟐 for all   

profiles 

Profile		 Soil	Type		 𝜽𝒍𝒏𝒒𝒕(𝒎)	 𝝁𝒍𝒏𝒒𝒕		 𝝈𝒍𝒏𝒒𝒕
𝟐 	

C4	

Sand		 0.685	 0.203	(	Z	)	+6.712	 0.121	

Quick	Clay		 0.175	 0.045	(	Z	)	+	5.919	 0.0018	

Sensitive	Clay		 0.155	 0.040	(	Z	)	+	6.035	 0.000194	

C2	

Quick	Clay		 0.34	 0.074	(	Z	)	+	5.699	 0.0028	

Clay		 0.4	 0.037	(	Z	)	+	6.197	 0.0027	

Sensitive	Clay		 0.205	 0.029	(	Z	)	+	6.294	 0.0024	

C5	

Quick	Clay		 0.32	 0.071	(	Z	)	+	5.634	 0.0018	

Clay		 0.3	 0.054	(	Z	)	+	5.875	 0.0019	

Sensitive	Clay		 0.51	 0.054	(	Z	)	+	5.863	 0.0027	

KK3	

Quick	Clay		 0.25	 0.145	(	Z	)	+	5.019	 0.015	

Clay		 0.49	 0.061	(	Z	)	+	5.674	 0.0039	

Sensitive	Clay		 0.29	 0.039	(	Z	)	+	6.122	 0.003	

C3	

Quick	Clay		 0.45	 0.012	(	Z	)	+	5.894	 0.003	

Clay		 0.245	 0.062	(	Z	)	+	5.689	 0.0013	

Sensitive	Clay		 0.21	 0.039	(	Z	)	+	6.009	 0.001	
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5.2 Probabilistic interpretation of shear strength of soil 

In slope stability analysis the main inputs are shear strength parameters of soil. That is 

undrained shear strength for clay soil, and friction angle for sand. These parameters can be 

quantitatively derived from the available CPT data. If someone wants to extend the stability 

analysis further to a probabilistic one, strength parameters are needed to be described prob-

abilistically, and all the possible uncertainties in the derivation process should be quantified 

and accounted. The methods to drive probabilistic shear strength parameters of soil from 

CPT data which accounted for uncertainty is detailed in here.    

5.2.1 Undrained shear strength 

There are several methods available to estimate undrained shear strength, 	𝑆* of clays of 

different type. One of the earliest application of CPT in soil exploration is determining the 

undrained shear strength of clays (Schmertmann, 1975). Due to the common interpretation 

of 𝑆* from CPT measurements, 𝑆* is linked with significant uncertainties. 

 

In geotechnical practice, classical interpretation of 𝑆* by corrected cone tip resistance, 𝑞` 

from CPT measurements in clays is given by  (Lunne, Robertson, & Powell, 1997): 

 

 𝑆* = 	
𝑞` − 𝜎qr
𝑁_`

	 (5.7) 

 

Where 𝜎qr is the insitu total overburden stress and 𝑁_` is the empirical cone penetration 

resistance factor. All the parameters used to interpret 𝑆* are subjected to uncertainty. The 

uncertainties in 𝑞` are a result of inherent soil variability and measurement error. Soil var-

iability is caused primarily by natural geological process involved during soil formation, 

while measurement error arises from equipment, procedural operator and random testing 

effect (Phoon & Kulhawy, 1999). The uncertainty from soil variability is considered to be  

statistical error and appointed in mean trend and variance estimation of 𝑞`. 𝑞` is lognor-

mally distributed and the normal depth dependent mean trend, 𝜇�PO` and variance 𝜎�PO`(  are 
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directly determined by maximum likelihood estimation method, after computing the cor-

relation length for each soil layers as presented in Table 5.1.  

 

The measurement error, 𝜖O is considered as lognormally distributed with a unit mean and 

𝐶𝑜𝑉 to be 10%. The 𝐶𝑜𝑉 value is selected based on the CPT equipment type as stated by 

Phoon and Kulhawy (Phoon & Kulhawy, 1999). 

 

𝜎qr can also be influenced by soil variability and measurement error. In this study a deter-

ministic stress state is assigned for 𝜎qr that depends on the unvaried soil unit weight, 𝛾- for 

each soil type due to relatively low variability (Lacasse & Nadim, 1997), stable ground 

water level and soil depth. 

 

𝑁_` is obtained by empirical correlation and there is no constant 𝑁_`	value that can repre-

sent each clay types (P. K.  Robertson & Campanella, 1983b). It is complicated to define a 

single soil property that governs 𝑁_` because there are more factors affecting the values of 

𝑁_`	like clay sensitivity, plasticity index of the clays tested, and the type of cone used.  

For Rissa area, the 𝑁_`	values are presented as a deterministic value with possible plus or 

minus range. It has been stated in the report that the values are determined from a combined 

impact of the variables 𝐵O, 𝑆𝑡, 𝑂𝐶𝑅, 𝐼𝑝. These values vary from one CPT profile to another 

and through out depth within a single profile.  

 

To create a probabilistic link between undrained shear strength and the cone factor, in this 

report, 𝑁_` is assumed to be lognormally distributed with a mean same as the deterministic 

value given in the report. Coefficient of variation, 𝐶𝑜𝑉 = 30% is used as reported by 

Kulhawy and Carter, based on the the types of tests (F. Kulhawy & Carter, 1992) to include 

the inherent bias (Fell, MacGregor, Stapledon, & Bell, 2005). 

 

All the input parameters values and the quantified uncertainties used for probabilistically 

interpreting undrained shear strength of clay of profile C4 are summarized and presented 

in Table 5.2. The normal mean trend and variance of  ln 𝑞𝑡	is taken from Table 5.1. 
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Table 5.2 Input values of parameters used for probabilistic interpretation of  𝑺𝒖 for 
clay layers of profile C4 

                       C4 Profile		

Parameters  Quick Clay  Sensitive Clay  

𝜇�PO` 0.045 ( Z ) + 5.919 0.040 ( Z ) + 6.035 

𝜎�PO`(  0.0018 0.000194 

𝜇á� 1 1 

	𝐶𝑜𝑉á	 0.1 0.1 

𝜇âªã1 9 

𝜇âªã 2  6 

𝐶𝑜𝑉âªã	  0.3 
𝜇âªã1 and 𝜇âªã  2  are mean cone factor values for depth less than 16m and greater that 16m respectively as stated in the 

Rissa Slope Report  

 

The probabilistic derivation of 𝑆* from 𝑞` including CPT measurement error, 𝜖O is then 

given by:  

 

 𝑆* = 	
𝜖O𝑞` − 𝜎qr

𝑁_`
 (5.8) 

 

The logarithmic transformation of Eq. 5.8 gives the parameter  ln 𝑆*, given by:  

 

 ln 𝑆* = 	 ln 𝜖O𝑞` − 𝜎qr −	 ln𝑁_` (5.9) 

 

The product of two lognormal random variables (𝜖O	𝑎𝑛𝑑	𝑞`) is lognormally distributed 

with mean 𝜇á�Oã and standard deviation 𝜎á�Oã. The distribution parameters are calculated 

by utilizing the relation to the normal distribution:  

 

 ln 𝜖O𝑞` = ln 𝜖O +	 ln 𝑞` (5.10) 
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The sum of normally distributed random variable is normally distributed with mean and 

variance:        

             𝜇"# á�Oã = 𝜇	"# á� +	𝜇"# Oã; 								𝜎"# á�Oã
( = 𝜎	"# á�

( 	+	𝜎"# Oã
(  (5.11) 

 

Where,  𝜇"#Oã	𝑎𝑛𝑑		𝜎"# Oã
(  are the mean and variance of ln 𝑞` as computed by maximum 

likelihood estimation method and presented in Table 5.1. 𝜇	"# á�	𝑎𝑛𝑑		𝜎	"# á�
(  are the mean 

and variance of ln 𝜖O, calculated as: 

 

 	𝜎	"# á�
( = ln 1 +	

𝜎á�
(

𝜇á�(
; 		 											𝜇	"# á�	 = ln 𝜇á� −	

1
2 	𝜎	"# á�

(  (5.12) 

 

The product 𝜖O𝑞` is lognormally distributed with mean and standard deviation: 

 

 𝜇	á� Oã	 = 𝑒𝑥𝑝 𝜇"# á�Oã +	
1
2 𝜎"# á�Oã

(  (5.13) 

 
 

𝜎á�Oã = 𝜇	á� Oã	 𝑒𝑥𝑝 	𝜎"# á�Oã
( − 1 

(5.14) 

 

𝜎qr being deterministic, it only affect the mean value of 𝜖O𝑞` keeping the standard devia-

tion unchanged. Then, 𝜖O𝑞` − 𝜎qr  is lognormally distributed with mean and standard 

deviation: 

 

 𝜇 	á� Oã	–�ä¾ = 	𝜇	á� Oã	– 𝜎qr;										𝜎 	á� Oã	–�ä¾ = 𝜎á�Oã (5.15) 

 

Since all the terms on Eq. 5.9 are normally distributed, the mean and variance of a normally 

distributed  ln 𝑆* is calculated by: 

 

 𝜇"# åæ = 𝜇"# 	á� Oã	–�ä¾ − 𝜇"#âªã; 						𝜎"# åæ
( = 𝜎"# 	á� Oã	–�ä¾

( + 𝜎"#âªã
(  (5.16) 
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where 𝜇"# 	á� Oã	–�ä¾  and 𝜎"# 	á� Oã	–�ä¾  are parameters of  ln 𝜖O𝑞` − 𝜎qr , while 𝜇"#âªãand 

	𝜎"#âªare parameters of ln𝑁_` and calculated as: 

 

 𝜎"# 	á� Oã	–�ä¾ = ln 1 +	
𝜎 	á� Oã	–�ä¾
(

𝜇 	á� Oã	–�ä¾
(  (5.17) 

 

 𝜇"# 	á� Oã	–�ä¾ = ln 𝜇"# 	á� Oã	–�ä¾ −
1
2𝜎"# 	á� Oã	–�ä¾

(  (5.18) 

 

 

	𝜎"#âªã = ln 1 +	
𝜎âªã
(

𝜇âªã
( ; 		 			𝜇	"#âªã	 = ln 𝜇âªã −	

1
2 	𝜎	"#âªã

(  

  

(5.19) 

 

Knowing that ln 𝑆* is normally distributed, 𝑆* is lognormally distributed with the mean 

and standard deviation: 

 

 𝜇åæ = 𝑒𝑥𝑝 𝜇"# åæ +	
1
2 𝜎"# åæ

( ;							𝜎åæ = 𝜇åæ 𝑒𝑥𝑝 	𝜎"# åæ
( − 1 (5.20) 

 

The correlation length in section 5.1.1 is computed from the underlying normal distribu-

tion, ln 𝑞`. However, 𝜃�P Oã is assumed to be not much different from the correlation length 

in real space. Therefore, 𝜃�P Oã = 𝜃Oã(Fenton & Griffiths, 2008d). It is also assumed that 

the correlation length will remain same for all the parameters though out the derivation 

process so that the transformation only affects the mean and variance, while the the auto-

correlation properties remain unchanged, 𝜃åæ = 𝜃Oã = 	𝜃�P Oã. 

 

Following all the procedures mentioned above, the calculated mean value of 𝑆* and the 

90% interval estimates  of 𝑆* (90% confidence interval (CI) with upper and lower limit) 

are presented for profile C4 in the Fig. 5.2. The depth, 𝑍 starts approximately from 8m 
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because of the presence of sand layer on top for this specific profile which will be dealt on 

the next section. 

 

 
Figure 5.2 Mean value of  𝑺𝒖 with 90% confidence interval for profile C4 clay layers  

 

5.2.2 Friction angle  

There are theories and empirical correlations for the interpretation of friction angle of sand 

from cone resistance based on bearing capacity theory (Durgunoglu & Mitchell, 1973), 

(Senneset & Janbu, 1985). Work by Vesic (Vesic, 1963) has shown the influence of the 

soil compressibility on cone resistance, and the existence of non unique relationship be-

tween friction angle for sand and cone resistance. This is mainly due to the compressibility 

parameters will also control penetration resistance beside the shear strength of the sand. 

Al-Awkati (1975) in his work shows that shear strength has significantly more influence 

on cone resistance than compressibility due to the fact that variation in compressibility is 

low and can be ignored when compered to the possible variation of shear strength (Al-
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Awkati, 1975). Thus bearing capacity theories with a neglected influence of compressibil-

ity has been used and produce reasonable estimates of friction angle (P. K.  Robertson & 

Campanella, 1983a). Accordingly, the point resistance can be approximated by: 

 

 𝑞` = 𝑁O − 1 𝜎qrs  (5.21) 

 

Where, 𝜎qrs  is the effective vertical stress at the depth of penetration and 𝑁O is bearing 

capacity ratio. For a firm sand soil (plastification angle, 𝛽 = 0), 𝑁Ois calculated using the 

formula: 

 𝑁O = tan(
𝜋
4 +

𝜑
2 exp 𝜋 tan𝜑  (5.22) 

 

Where, 𝜑 is friction angle. The uncertainties in corrected tip resistance,𝑞` are discussed in 

section 5.2.1. Even though 𝜎qrs  is subjected to varies uncertainties, in this study a determin-

istic effective stress state that depends on the unvaried soil unit weight 𝛾- and fixed ground 

water table is used. 

 

Combining Eq. 5.21 and Eq. 5.22, it can be realized that 𝑞` is directly related to both ver-

tical stress, 𝜎qrs  and friction angle, 𝜑 for  0 < 𝜑 < 90°. Therefore,  𝜑 is positively corre-

lated to the ratio 𝑞` 𝜎qrs . Its possible to get the value for 𝜑 by solving Eq. 5.21 and Eq. 

5.22 simultaneously. But, the derivation of an expression for 𝜑 as a function of 𝑞` and 𝜎qrs  

is a challenging task. However, once all the values of 𝜑 is computed for each values of 𝑞` 

and 𝜎qrs ,  𝜑 can be approximated well with a relatively simple log-regression model for 

values of 𝑞` 𝜎qrs  as shown in Fig 5.3. 

The approximated regression model has a form: 

 

 𝜑 = 7.55 ln
𝑞`
𝜎qrs

+ 8.67 + 𝜖l (5.23) 

 

Where, 𝜖lis normally distributed regression model error with zero mean and standard de-

viation equal to the root mean square error of the regression model, 𝜎áé = 0.19°.  
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Figure 5.3 Computed values of 𝝋 using Eq. 5.21 and Eq. 5.22 with the fitted regres-
sion model having a form as Eq.5.23 

Including the measurement error	𝜖O for 𝑞`, which is lognormal distributed with 𝜇á� = 0 

and 𝜎á� = 0.1 as discussed in section 5.2.1, and accounting for the transformation error, 

𝜖N, the transformed model will become: 

 

 𝜑 = 7.55 ln
𝜖O𝑞`
𝜎qrs

+ 8.67 + 𝜖l + 𝜖N (5.24) 

 

𝜖N is normally distributed random variable with mean, 𝜇áë = 0 and standard deviation is 

to be obtained by calibrating the transformation in Eq. 5.23 from the observed values. 

Kulhawy and Mayne obtained an estimate of  𝜎áë = 2.8° after employing a log-regression 

model for sand  (F. H. Kulhawy & Mayne, 1990). Incorporating all random variables, the 

normally distributed 𝜑 can be described with parameters: 

 

 𝜇ì = 7.55 𝜇	"# á� +	𝜇"# Oã − ln 𝜎qr
s + 8.67 (5.25) 

  

 
𝜎ì( = 7.55( 𝜎	"# á�

( 	+	𝜎"# Oã
( + 𝜎áé

( + 𝜎áë
(  (5.26) 
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Where,  𝜇"#Oã	𝑎𝑛𝑑		𝜎"# Oã
(  are the mean and variance of ln 𝑞` computed by MLE method 

and presented in Table 5.1. 𝜇	"# á�	𝑎𝑛𝑑		𝜎	"# á�
(  are the mean and variance of normally dis-

tributed ln 𝜖O, derived using Eq. 5.12. 

All the input parameters values and the quantified uncertainties used for probabilistically 

interpreting friction angle of sand layer of profile C4 are summarized and presented in 

Table 5.4.  

 

Table 5.3 Input parameters’ values used for probabilistic interpretation of  𝝋 of 
sand layer of profile C4 

                              C4 Profile		

Parameters  Sand 

𝜇�PO` 0.203 ( Z ) + 6.712 

𝜎�PO`(   0.121 

𝜇á� 1 

𝜎á� 0.1 

𝜇áé 0 

𝜎áé 0.190 

𝜇áë 0 

𝜎áë 2.80 

 

 

The correlation length in section 5.1.1 is computed from the underlying normal distribu-

tion, ln 𝑞`. However, 𝜃�P Oã is assumed to be not much different from the correlation length 

in real space. Therefore, 𝜃�P Oã = 𝜃Oã(Fenton & Griffiths, 2008d). It is also assumed that 

the correlation length will remain same for all the parameters though out the derivation 

process so that the transformation only affects the mean and variance, while the the auto-

correlation properties remain unchanged, 𝜃ì = 𝜃Oã = 	𝜃�P Oã. 
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Following all the procedures mentioned above, the calculated mean value of 𝜑 and the 90% 

interval estimates (90% confidence interval (CI) with upper and lower limit) of 𝜑 are pre-

sented in the Fig. 5.4. 

 
Figure 5.4 Mean value of  𝝋 with 90% confidence interval for profile C4, sand layer 

 
Fig. 5.4 shows curved shape plot for mean friction angle with depth. The reason for this is 

clearly described in Eq. 5.25. Both 𝜇"#Oã and vertical effective stress,	𝜎qrs  are linear with 

depth and all the other parameters in the equation are constants and do not affect the shape 

of the graph. However, the logarithm of 𝜎qrs  will follow a logarithmic curve and the nu-

merical subtraction, 𝜇"#Oã − ln 𝜎qr
s  will result a convex type curve bulged outwards as il-

lustrated in Fig. 5.4. 

 

 

 

 

 

 

  



 

 

41 

 
 

Chapter 6                                       

Results 

6.1 Slope stability analysis 

The main purpose of this paper is to introduce and implement advanced probabilistic slope 

stability analysis method, that is conditional random finite element method (CRFEM) ap-

proach on Rissa slope. Other non-probabilistic and simple probabilistic slope stability anal-

ysis methods are also implemented and presented in this chapter briefly. This is mainly to 

demonstrate the effect of the analysis method transition from deterministic stability ap-

proach to simple probabilistic one and again to more complex slope stability, CRFEM ap-

proach. Initially, the slope is investigated using traditional approach with a constant, one 

deterministic value for each soil layer. Simple probabilistic concept is then implemented 

with random variable technique governed by mean value and standard deviation of the 

parameters. Finally, a number of different simulations have been made using CRFEM ap-

proach by varying the values of unobserved parameters (unobserved standard deviation 

and horizontal correlation length) and lastly, local averaging concept is implemented and 

the effect on CRFEM is assessed.  

6.2 Deterministic slope stability method 

Traditionally, a fixed soil parameter value is assigned for each soil layer. There is no vari-

ation in properties within a layer. The shear strength parameters are computed directly from 

CPT using 𝑞` without incorporating any uncertainty. The computed results from all CPT 

profiles with in a specific soil layer are collected and the one average value is set to 
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be the shear strength of the corresponding layer. The PLAXIS 2D input geometry of the 

slope with layer stratification is shown in Fig. 6.1. 

 
Figure 6.1 Plaxis 2D input Geometry of Rissa Slope 

The computed deterministic shear strength values are summarized in the table below.  

 

Table 6.1 Plaxis 2D  deterministic input parameters 

Layer	 𝛾-	 𝐾𝑁 𝑚î 			|	 𝑆*	 𝐾𝑁 𝑚( 	 𝜑(0)	 			𝑎	 𝐾𝑁 𝑚( 		|		 				

Sand	 19.0	 	 38.94	 10	

Quick	Clay		 19.7	 42.80	 	  

Clay		 19.7	 56.53	 	  

Sensitive	

Clay		 19.7	 94.50	 		 		

                  The superscript 1 is to indicate that the values are directly taken from Rissa Slope Report 

 

The likely failure mechanism in terms of deviatoric strain is presented in Fig.6.2. The com-

puted factor of safety is equal to 1.022. It is close to the value described in Rissa Slope 

Report which is 1.03. This can be taken as a grant for the precision of the slope geometry 

and the resemblance of the analyses method used with the one described here.  

 
Figure 6.2 Failure mechanism of the slope in terms of  deviatoric strain 
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6.3 Single Random Variable method  

This method is similar to the deterministic approach in a way that only a single parameter 

value is assigned for each layer. But the assigning process is governed by generating ran-

dom values based on the distribution type, mean value and standard deviation of parame-

ters. In this probabilistic method, assigning same uniform shear strength value for each 

layer and completely ignoring the soil shear strength variation within a layer indicates that 

the correlation length is infinity,	𝜃 = 	∞. Meaning, the parameters are perfectly correlated 

within a layer. The input parameters are probabilistically analyzed form CPT as described 

in chapter 5 and arranged according to the layer family they represent. The distribution 

type, the computed mean value, and standard deviation that are representative for each 

layer are summarized in Table 6.2. Other parameters, soil unit weight,	𝛾- and attraction, 𝑎 

remain deterministic.  

 

Table 6.2 Plaxis 2D input values of parameters for single random variable approach 

Layer	 Distribution		 𝜇ì	(ï)	 𝐶𝑜𝑉ì	

sand	 N	 36.41	 0.15	

	 	 𝜇åæ 𝐾𝑁 𝑚( 	 𝐶𝑜𝑉åæ	

Quick	Clay	

LN	

54.52	 0.20	

Clay	 62.25	 0.25	

Sensitive	Clay	 94.40	 0.25	

                                 N – normal distribution, LN – lognormal distribution 

 

The geometry and layer stratification remain same as shown in Fig. 6.1. The factor of 

safety,	𝐹- is analyzed for each 2000 random realization generated using MC sampling 

method. The output is presented in Fig. 6.3 in histogram plot with the proximate fit of 𝐹- 

which is normal distribution. The mean value and standard deviation of 𝐹- can easily be 

obtained from the fitted distribution.  
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Figure 6.3 Histogram plot and distribution fit of 𝑭𝒔 for 2000 MC realizations 

 

After MC realization, the output gives a mean factor of safety,	𝜇óô = 1.075 with a standard 

deviation, 	𝜎óô = 0.152, a minimum value of  0.61 and a maximum 1.59. Fig. 6.3 clearly 

shows the possibility for 𝐹- to be less than one. This is an indication for the probability that 

the slope is unsafe and can be described by failure probability,	𝑝B.  Since 𝐹- is most likely 

to be fitted to normal distribution, 𝐹- ~ N (𝜇óô, 𝜎óô),  the probability of failure, without 

including any model uncertainty for 𝐹-, can be calculated using the standard normal, Φ 

transformation:  

 

 𝑝B = 𝑃 𝐹- < 1 	 (6.1) 

 

 𝑝B = Φ
1 − 𝜇óô
𝜎óô

 (6.2) 

 

𝑝B is calculated to be 30.1% and can also be spotted on the cumulative density function 

graph of the representative normally distributed 𝐹- as shown in Fig. 6.4. The 𝑝B can be 

interpreted as; for the given slope geometry (Rissa Slope), for the range of shear strength 

parameters assumed, 30 out of 100 similar slopes to be expected to fail at some time during 

the life of slope, or a length of 30m could be expected to fail in every 100m of slope.  
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Figure 6.4 Cumulative density function of 𝑭𝒔 showing 30.1% probability of failure 

6.4 Conditional Random Finite Element Method  

CRFEM is a powerful analysis method that accounts for spatially random shear strength 

parameters and spatial correlation. The inclusion of natural randomness of parameters 

makes the model much more close to what exists in reality. The software Python(x,y) in-

terface to PLAXIS 2D integrates the probability analysis with finite element analysis and 

create a CRFEM approach. The probabilistic method accounts for randomness of shear 

strength. Soil properties are deterministic at measured, but unknown at unobserved loca-

tions. The unknown points are estimated from measurements made at a limited number of 

locations. This is the point where conditional random field is applied. Detail about the 

conditional random field are presented in Section 3.23. The input to the deterministic finite 

element model will be conditioned random values assigned by MC sampling method.  

6.4.1 Generating Mesh  

A computer software, GMSH is used to generate mesh within the entire slope. In CRFEM 

approach, each and every element is assigned to a specific parametric property based on 

the probabilistic analysis. So one element possess unique soil property covered by its area 

to represent the real phenomena. The generated mesh is illustrated in Fig.6.5. Boundary 
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lines are made centering all the measured locations. The elements inside the boundaries 

take the observed (measured) values which are probabilistically interpreted in chapter 5. 

Since each element covers larger area than the CPT measurement reading interval distance, 

the average of the observed values within an element area is set to be the value of that 

element. Fine mesh is generated around the observed locations to get more advantage from 

the observed measurements. Once, all the elements at the observed location assigned to be 

deterministic, the others will be treated as random variables. The size and the amount of 

the elements are selected based on the maximum number of random elements that PLAXIS 

2D can take. For this particular slope, the generated mesh has 3190 elements.  

 

 
Figure 6.5  Generated mesh diagram with boundary box surrounding CPT profiles 

 

6.4.2 Spatial Length  

Horizontal correlation length is not possible to estimate because of the limited data set on 

horizontal direction. Its known that due to deposition history, the correlation lengths in 

horizontal direction are longer than in vertical. In this report the effect of the horizontal 

correlation on factor of safety and failure probability is studied by varying the horizontal 

correlation length, 𝜃ö to 1m, 15m, 50m, and 100m.   

 

6.4.3 𝑪𝒐𝑽 of unobserved elements 

The shear strength parameters at unknown points are estimated from measurements made 

at some limited locations. The estimated values may deviate from the existing reality. To 
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analyze this deviation effect, simulations have been made by varying the coefficient of 

variation values of unobserved points.  

6.4.4 Local averaging of elements 

Characterization of soil parameters are done in a point level. But, in reality, its impossible 

to achieve a point resolution while making soil measurements. Normally, soil property 

measurements average the property over the volume incorporated while the measurement 

is taken. The Rissa Slope is discretized into finite number of elements. In each of these 

elements, a local averaging process is applied to assign a constant value of shear strength 

based on the point statistics of the property within the area. Application of local averaging 

in each element causes a degree of variance reduction and the implementation is made 

based on PLAXIS 2D scientific manual (Manual).  

 

Numerical integration of area elements 

The procedures described in the scientific manual are followed for this study. For 15 node 

triangle elements, there are two local coordinates,	𝜉 and 𝜂 with an auxiliary coordinate, 

𝜁 = 1 − 𝜉 − 𝜂. The shape functions for 15 nodes are given in the manual (Manual).  

 

 
Figure 6.6 Local numbering and positioning of nodes of a 15 - node triangular ele-
ment 
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The Gaussian numerical integration over the element area is given as: 

 𝐹 𝜉, 𝜂 𝑑𝜉	𝑑𝜂 = 𝐹 𝜉z, 𝜂z 𝑤z

_

z{|

 (6.3) 

Where, 𝐹 𝜉z, 𝜂z  is a Markov correlation function at position 𝜉z and 𝜂z and 𝑤z is the weight 

factor of point 𝑖. For 15 node element, 12 integration points are used. The position and 

weight factors of the integration points are given in Table 13 (PLAXIS 2D manual). 

 

Table 6.3 Position and weight factor of 12-point integration for 15 - node elements 

Points		 𝜉z		 𝜂z		 𝜁z		 𝑤z		

1,	2	&	3	 0.063089	 0.063089	 0.873821	 0.050845	

4,	5	&	6	 0.249286	 0.249286	 0.501426	 0.116786	

7…12	 0.310352	 0.053145	 0.636502	 0.082851	
 

In general, 7 simulations have been made by using different combination of inputs for un-

observed parameters. The local averaging concept is applied only on the seventh simulation 

due to the complex procedures and the limit of time. The corresponding effect is studied.   

 

The elements at the observed locations being deterministic, for the unobserved elements 

the input parameters stated in Table 6.4 are used for the first simulation.  

     

Table 6.4 Input values of parameters for unobserved points for simulation 1 

	 Mean	1	 CoV	1	 		

layer	 𝜇ì	(ï)		 𝐶𝑜𝑉ì		 𝜃ö(𝑚)		

sand	 35.4	 0.15	 50	

	 𝜇åæ 𝐾𝑁 𝑚( 		 𝐶𝑜𝑉åæ		 	

Quick	Clay	 54.52	 0.2	 50	

Clay	 62.25	 0.25	 50	

Sensitive	Clay	 94.4	 0.25	 50	
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𝜃ö is correlation length in horizontal direction, while Mean	1 and CoV	1 are set of input 

values for unobserved elements used for simulation 1. For the other simulations, the input 

parameters are presented in terms of the first simulation as described in Table 6.5. 

 

Table 6.5  Input parameters of unobserved points for all simulations given in terms 
of simulation 1 

Simulations	 Mean	 CoV		 𝜃ö(𝑚)		

Simulation	1	 Mean	1	 CoV	1		 50	

Simulation	2	 Mean	1	 1.5	 CoV	1 	 50	

Simulation	3	 Mean	1	 2.0	 CoV	1 	 50	

Simulation	4	 Mean	1	 2.0	 CoV	1 	 1	

Simulation	5	 Mean	1	 2.0	 CoV	1 	 15	

Simulation	6		 Mean	1	 2.0	 CoV	1 	 100	

Simulation	7		(local		
averaging)	 Mean	1	 2.0	 CoV	1 	 50	

 

The analysis is made by dividing the simulation into 3 sections. Simulation 1 to 3 is by 

changing the coefficient of variation of unobserved points. Simulation 3 to 6, by varying 

the horizontal correlation length. And finally simulation 7 with the application of local 

averaging. 

 

6.5 Simulation results  

The geometry output for simulation1 input is shown in Fig 6.7. The variation in shear 

strength input can easily be identified by the color difference of the elements. One element, 

one type of color, has one specific and unique property. In PLAXIS 2D, the assigning of 

colors to each element is random so that the conditional property and the correlation be-

tween elements can not be observed here.  
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Figure 6.7 Plaxis 2D geometry output of generated random field for simulation 1 

 

The deformation of the Finite Element Mesh at the end of elastic analysis is shown in Fig. 

6.8 for the geometry input presented in Fig. 6.7. 

 
Figure 6.8 Deformed mesh output at the end of elastic analysis 

 

The likely failure mechanism is presented in Fig. 6.9 in terms of deviatoric strain. One of 

the advantage of CRFEM analysis is, unlike deterministic analysis method all the possible 

weakest zones accounted for failure are freely detected as shown in Fig. 6.9. 

  

 
Figure 6.9 Failure mechanism in terms of  deviatoric strain for simulation 1 
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For a given set of input shear strength parameters, Monte Carlo simulations are performed. 

For each MC realization, the code developed in Python(x,y) overwrites the input values 

directly on PLAXIS 2D input file package. Similarly, each result is extracted from the 

output file of PLAXIS 2D exactly after each realization. 1000 realizations are made for 

each simulation and the corresponding factor of safety, 𝐹- behavior is studied as shown in 

Fig. 6.10.   

 
Figure 6.10 Histogram plot and distribution fit of 𝑭𝒔  for 1000MC realizations for 
simulation 2 (a) and simulation 3 (b) 
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6.5.1 Probability of failure  

𝐹- calculating by FEM is associated with uncertainties due to the estimation capability of 

design model on the real phenomena. This can be due to geometry of the slope, uncertainty 

in ground water table or calculation method. By taking all this uncertainties into consider-

ation, model error 𝜖k is introduced to be normally distributed with zero mean and standard 

deviation = 0.05 (Wu, 2009). The new factor of safety, 𝐹-∗, which includes uncertainties 

associated with model, can be calculated by:  

 

 𝐹-∗ = 𝐹- + 𝜖k (6.4) 

 

Failure will be observed when 𝐹-∗ < 1. The corresponding failure probability,	𝑝B can be 

expressed by: 

 𝑝B = 𝑃 𝐹-∗ < 1 = 𝑃 𝐹- + 𝜖k < 1 = 𝑃 𝜖k < 1 − 𝐹-  (6.5) 

 

Dividing both side of the inequality by  𝜎á$; 

 𝑝B = 𝑃
𝜖k
𝜎á$

<
1 − 𝐹-
𝜎á$

 (6.6) 

 

Since 𝜖k is normally distributed,  𝜖k ~ N (0,	𝜎á$), the parameter 𝜖k 𝜎á$ follows a stand-

ard normal distribution, 𝜖k 𝜎á$ ~	N 𝜇á$ �%$
= 0, 𝜎á$ �%$

= 1 . Therefore, Eqn. 6.6 

can be calculated using the standard normal transformation: 

 

  𝑝B = Φ
1 − 𝐹-
𝜎á$

 (6.7) 

 

For the total number of 𝑁 realization, the average failure probability is then calculated as:  

 

 𝑝B =
1
𝑁 Φ

1 − 𝐹-
𝜎á$

â

z{|

 (27) 
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The adaptation of probability of failure is illustrated below in Fig. 6.11 and Fig. 6.12 for 

simulation 2 and 3. Keeping the analyzed values of 𝐹-, the normally distributed 𝜖k is ran-

domly generated using 𝜇á$ = 0 and 𝜎á$ = 0.05. The combined effect of  𝐹-∗ = 𝐹- + 𝜖k is 

then studied.  

 
Figure 6.11 Failure probability realization including the effect of model uncertainty 
for simulation 2 (	𝐂𝐨𝐕	 = 	𝟏. 𝟓	𝐂𝐨𝐕𝟏	) 

 
Figure 6.12 Failure probability realization including the effect of model uncertainty 
for simulation 3 (	𝐂𝐨𝐕	 = 	𝟐	𝐂𝐨𝐕𝟏	) 
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The function 𝑔 = 1 = 𝐹- + 𝜖k, is a limit state boundary that separates the safe and unsafe 

domain and also assess the performance of the slope stability. It has positive value (𝑔 −

1 > 0) when the slope is safe and non-positive value (𝑔 − 1 < 0) when the slope is unsafe.   

The failure probabilities calculated for all simulations using Eqn. 6.4 – 6.8 are summarized 

in the Table 6.6.   

Table 6.6 Mean value for 𝑭𝒔 and probability of failure for simulation 1-7 

Simulations	 𝜇óô	 𝜎óô	 𝑝B	

Simulation	1	 1.153	 0.020	 0.24%	

Simulation	2	 1.100	 0.025	 3.66%	

Simulation	3	 1.020	 0.030	 36.00%	

Simulation	4	 1.029	 0.019	 29.43	%	

Simulation	5	 1.029	 0.024	 29.47%	

Simulation	6	 1.025	 0.031	 33.45%	

Simulation	7	 1.120	 0.015	 1.08%	

6.5.2 The effect of CoV  

To analyze the effect CoV, in simulations 1, 2 & 3 the coefficient of variation values of 

unobserved parameters are sated up to be CoV1, 1.5	 CoV1 , 2	 CoV1  respectively with 

same mean,	Mean	1. The exact numerical figures are presented in Table 6.4 and 6.5. The 

corresponding output is summarized in Fig. 6.13. It is expected that for every increase in 

coefficient of variation of the input parameters, there will be an increase in variability of 

the output, 𝐹-. This is due to the fact that for high range of CoV (keeping the mean un-

changed), the MC sampling technique can freely move within relatively large range and 

make different sample combination of the inputs that results a relatively more fluctuating 

output or increase in standard deviation. Similarly, when the CoV of input parameters de-

crease, the resulted 𝐹-𝑠 will get relatively more concentrated around the mean as shown in 

Fig. 6.13. Its is also shown in the figure that, for higher values of CoV, the mean value of 

𝐹- will decreases and results higher failure probability. This can be because of the strength 

domination effect of weaker elements in the distribution for this particular slope.  
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Figure 6.13 The effect of 𝐂𝐨𝐕	on 𝑭𝒔 and 𝒑𝒇 for simulations 1, 2 and 3 

Normal distribution is best fit for simulation 1 and 3 while simulation 2 is most likely to 

follow generalized extreme value distribution with an extending left tail.   

6.5.3 The effect of horizontal correlation length 

The effect of horizontal correlation length is studied from simulation 4, 5 and 6, having 

horizontal correlation length 1m, 15m and 100m respectively. To get a good effect of 𝜃ö 

over 𝑝B,  2	 CoV	1  is used for the simulations with the same mean, Mean1.  The output of 

𝐹- is shown in Fig 6.14 as a histogram plot with the corresponding distribution fit. 

 
Figure 6.14 The effect of horizontal correlation length on 𝑭𝒔 and 𝒑𝒇 for simulations 
4, 5 and 6 (𝜽𝑯 = 𝟏𝒎,𝟏𝟓𝒎	𝒂𝒏𝒅	𝟏𝟎𝟎𝒎 respectively) 
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As shown in Fig. 6.14, the increase in horizontal correlation length does not affect the mean 

value of the factor of safety. But for this particular case study, it increases the standard 

deviation of 𝐹-,  which follows increase in probability of failure. The increase in 𝜃ö does 

not have much effect on 𝑝B for the first two simulations (𝜃ö = 1𝑚	𝑎𝑛𝑑	15𝑚). But, when 

extending 𝜃ö further to 𝜃ö = 100𝑚,	𝑝B increases significantly. When the correlation 

length increases to positive infinity, the parameters will become perfectly correlated, and 

the random finite element approach will convert to single random variable approach, SRV. 

Fig. 6.14 also shows that, for every decrease in standard deviation of 𝐹-, the the peak height 

of the curve increases. This is to fulfill the criteria of probability density function, that 

states, the area under the curve is always unity. Therefor, the peak extends higher to com-

pensate the loss in area due to decrease in standard deviation and makes the area unity.  

6.5.4 Effect of local averaging  

The procedure of local averaging is implemented for the same input parameters of simula-

tion 3 and the effect is shown in Fig. 6.15 as simulation 7.   

 

 
Figure 6.15 The effect of local averaging, simulation 7 on 𝑭𝒔 and 𝒑𝒇 implemented on 
simulation 3 
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The main effect of local averaging is reduction in variance of input parameters, which 

causes the reduction in standard deviation of 𝐹-. This reduction of variance depends on the 

size of the random field discretization (element size). The bigger the element size, the 

higher the variance reduction will be. Fig. 6.15 shows that the standard deviation of simu-

lation 7 (0.015) is half of simulation 3 (0.030). This relatively low variability in the results 

is because of the random field discretization being not fine enough. This results in a sig-

nificant variance reduction in the input parameters and correspondingly reduction in the 

variability of the calculated factor of safety. Beside the variability, mean value of 𝐹- is also 

increased from 1.02 to 1.12 and results very low failure probability. This can be due to the 

variance reduction in the input parameters, the effect of weaker elements is reduced in the 

distribution for this particular slope.  
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Chapter 7                                        

Discussions 
 

The over all procedure followed in this thesis are categorized in to three main parts. The 

sections can be classified into; uncertainty quantification and probabilistic interpretation of 

parameters, conditional random field generation and sampling technique, output probabil-

ity density function of 𝐹- and failure probability. The overall scheme of these sections can 

be summarized in Fig. 7.1.   

 

 
Figure 7.1 Overall procedure for application of advanced probabilistic slope stabil-
ity analysis 



Discussions 
  

 

 

60 

7.1 Uncertainty and parameters interpretation  

7.1.1 Spatial variability  

The main part of reliability analysis is modelling of uncertainty. Uncertainty may arise 

because of limited information or limited number of observations on the studied variable, 

form imperfection of measuring equipment, fault in measurement procedure, or due to the 

estimation capability of design model on the real phenomena. 

Quantitative characterization and reduction of uncertainties are executed through the 

knowledge of probability theory and statistical analysis. Such modeling of uncertainty in-

creases the confidence on the estimation of the corresponding likelihood of certain out-

come. 

Spatial variability of soil parameters can be modeled by random field theory. For this study, 

corrected tip resistance from CPT measurement is studied as random field. Correlation 

length is one of the parameters that represent spatial variability of soil. Maximum likeli-

hood method is used to estimate the vertical correlation length, trend mean value and stand-

ard deviation of corrected tip resistance for each profile on Rissa slope, section 3-3. Like-

lihood function is a function of mean, standard deviation and correlation length so that it 

identifies the values of the properties, that make the likelihood function a maximum.    

7.1.2 Probabilistic interpretation of parameters 

Factor of safety in slope stability analysis can be defined as the ratio between average shear 

strength of the soil, 𝜏B to the average mobilized shear stress developed along the potential 

failure surface, 𝜏urv  𝐹- =
²¼

²½¾¿
. Therefore, the main parameter in slope stability analysis 

is shear strength of the soil. That is, undrained shear strength for clay soils, and friction 

angle for sand. To implement the advanced probabilistic slope stability analysis, these 

shear strength parameters are needed to pass trough two steps. The first one is, creating a 

link between the strength parameters and the corrected tip resistance from CPT measure-

ment. Secondly, constructing a probabilistic interpretation of strength parameters which 
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accounts for uncertainties of the measured values. Both processes are described in detail in 

chapter 5.  

7.2 Conditional random field 

In advanced probabilistic slope stability approach, each element in the generated mesh 

takes one unique shear strength property. Conditional random field is the techniques used 

to facilitate this assigning process.  

Once the shear strength parameters are probabilistically interpreted in measured locations, 

the parameters at unknown points are estimated from those known values by generating 

conditional random field. The main concept behind is, elements which are near to measured 

locations will possess similar property to the observed values than those which are far 

away. This property of conditional random field is shown in Fig. 7.2. The PLAXIS 2D 

output is assigned to display the mean values of the elements.   

 

 
Figure 7.2 Conditionality effect on the generated random field for simulation 3 

 

The elements within the boundary box centering the measured location, are assigned meas-

ured values that are probabilistically interpreted form corrected tip resistance of CPT. For 

the others, conditional random field is generated and the effect of conditionality is clearly 

shown in Fig. 7.2. The elements next to the boundary box have the same or nearly same 
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color as elements within the box (observed elements) and the effect will decrease (change 

in color will observe) when the unobserved elements get far and far away from the observed 

elements. In other words, when the distance between an observed and an unobserved ele-

ment increases, the correlation and link between these elements will decrease and for fairly 

enough separation distance, the unobserved element will be treated as random field with 

out conditionality. These is the effect of conditional random field with correlation length. 

In Fig. 7.2, to get a clear view of the color differences, the slope is divided into three sec-

tions by varying the color legend and for each section, the color legend is presented next 

to the sectioned piece.   

7.2.1 Monte Carlo sampling  

In the application of conditional random field, Monte Carlo sampling technique is used to 

generate sequence of random numbers. The generating process is guided by the distribution 

type, mean value and standard deviation of the random field parameters. Monte Carlo sam-

pling has two advantages which makes it preferable for this study. First, its simple and 

straight forward to apply and doesn’t require detail knowledge of probability theory. The 

second reason is, compared to other sophisticated sampling techniques, it does not take 

much calculation time.  

For each conditional random finite element simulation, 1000 MC realization is assumed to 

be enough to give reliable and reproducible estimate of failure probability. Normally, total 

number of realization can be estimated for the required coefficient of variation of failure 

probability which in most cases given by 𝐶𝑜𝑉 𝑝B < 0.1.  The coefficient of variation of 

the estimate for number of realization, 𝑁-can be calculated as: 

 

 𝐶𝑜𝑉 𝑝B =
1 − 𝑝B
𝑁-𝑝B

 (7.1) 

 

The highest failure probability calculated in this study is occurred during simulation 3 with 

a value of 36% as described in Table 6.6. The corresponding 𝐶𝑜𝑉 is then calculated using 

Eq. 7.1 and gives a value, 𝐶𝑜𝑉 𝑝B = 0.042 which is in the acceptable range. 
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7.3 Factor of safety and failure probability   

Three different slope stability analysis methods are implemented on Rissa Slope. Initially, 

the slope is investigated using traditional approach with a constant, one deterministic value 

for each soil layer. Simple probabilistic concept is then implemented with single random 

variable technique. Finally, different simulations have been made using CRFEM approach. 

For comparison of the methods, the result from all three methods, for nearly equivalent 

input values of parameters are shown in Table 7.1.  

 

Table 7.1 Comparison between deterministic, SRV and CRFEM approaches 

Methods	 𝜇óô 	 𝜎óô 	 𝑝B 	

Deterministic	 1.022	 -	 -	

SRV	 1.075	 0.152	 30.1%	

CRFEM	 1.153	 0.020	 0.24%	

 

The traditional deterministic approach provides only one factor of safety value for the cor-

responding single value input, without any further information. This value is less than the 

other two methods. There is a result difference between the SRV and CRFEM approach. 

The main reason for this particular case is, SRV approach underestimates the shear strength 

parameters of the soil while representing the whole soil layer with one single value. In 

addition, one single value input with relatively high variation, increases the output varia-

bility, 𝜎óô followed by raise in failure probability as shown in Table 7.1.   

CRFEM is effected for different input values of unobserved parameters using a number of 

different simulations. First three simulations are made by changing the coefficient of vari-

ation for unobserved location. The results are described in detail in section 6.5.2. In here, 

the corresponding effect on failure probability for the changes in 𝐶𝑜𝑉 is plotted as shown 

in Fig.7.3. 
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Figure 7.3 Relation between coefficient of variation and probability of failure 

   

Since the slope is combination of different layers, the increment in 𝐶𝑜𝑉 is made in terms 

of the first simulation input which is 𝐶𝑜𝑉1. The figure clearly shows that the increase in 

𝐶𝑜𝑉 increases the failure probability. this is due to the effect that, for each increase in 𝐶𝑜𝑉, 

weaker elements dominate the strength in the distribution for this particular slope. 

 

The next three simulations are made by changing the horizontal correlation length. The 

results are described in detail in section 6.5.3. In here, the corresponding effect on failure 

probability for change in horizontal correlation length is plotted as shown in Fig.7.4. 

 

 
Figure 7.4 Relation between horizontal correlation length and probability of failure 
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The increase in 𝜃ö does not show much effect on 𝑝B for the first two simulations (𝜃ö =

1𝑚	𝑎𝑛𝑑	15𝑚). But when extending 𝜃ö further to 𝜃ö = 100𝑚,	𝑝B increases significantly.  

 

Finally, the concept of local average is applied on Rissa slope. The main consequence of 

local average is variance reduction which causes reduction in the variability of the calcu-

lated factor of safety. The resulted output can also be described similarly as the effect of 

𝐶𝑜𝑉 reduction.  

All and all, the CRFEM results show that the inclusion of local averaging, reduction in 

𝐶𝑜𝑉 and horizontal correlation length will lead to a smaller probability of failure for the 

particular case, Rissa.   
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Chapter 8  

Conclusions and recommendations 

8.1 Conclusions  

Geotechnical design is traditionally based on deterministic analysis using global or partial 

safety factors to take soil variability into account and does not give a complete indication 

of the safety margin. These traditional approaches are mainly based on experience or expert 

judgment and does not explicitly account for the effect of uncertainties in soil parameters. 

Therefore, the safety margins should be assessed within a mathematical framework by us-

ing probabilistic methods to evaluate the probability of failure. One of the most important 

issues in geotechnical design is the quantification of soil variability. Variability in soil 

properties, uncertainty in measurements, uncertainty in analysis models etc. all contribute 

to a failure probability (Veritas, 1992). It is not possible to completely remove uncertain-

ties. But, such advanced probabilistic approaches provide a way to handle the uncertainty 

in a controlled manner and give a reliable way to calculate probability of failure.  

 

Probabilistic analysis is powerful in investigating the influence of uncertainties on a given 

geotechnical problem. The way to conduct an uncertainty quantification in geotechnical 

engineering is shown in a particular case study, Rissa slope. Advanced probabilistic slope 

stability analysis is conducted to calculate the factor of safety and failure probability of 

Rissa slope. Probabilistic assessments are made to study the relative influence of variability 

and spatial correlation. To account for uncertainties, interpretations of soil properties are 

made based on a probabilistic link between the CPT data and soil parameters. Accounting 

for uncertainties while determining soil parameters brought confidence in predicting the 
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output behavior. Conditional random field is generated to characterize spatial variability of 

soil parameters. Lastly, the potential of the framework of uncertainty quantification, the 

effects of spatial soil variability and local averaging are realized by conducting probabilis-

tic analysis with a Monte Carlo sampling technique. 

All in all, this case study shows the effect of soil variability, spatial variability, and local 

averaging at different scales for the random input parameters.  

 

It is also very important to be aware of the limitations that lie in a probabilistic analysis. 

Geostatistical evaluation in geotechnical parameters are difficult to make due to the limi-

tation of the available data from ground investigation. In order to make probabilistic anal-

ysis, one should be aware of the need for bigger investigation campaign. Beside this, in 

applied engineering, probabilistic concepts are not adapted because of the deficiency in 

statistical background knowledge that is needed to understand the result of probabilistic 

analysis.  

 

In conclusion, within chapter 2 the basic theoretical background that are a base for initiating 

the advanced probabilistic approach are presented. The basics of safety and uncertainty are 

summarized in chapter 3. Chapter 4 concentrates on the characterization of the case study 

area and summarize the available measured values from the ground investigation, CPT. 

Uncertainty quantification and probabilistic interpretation of parameters are developed in 

chapter 5. The the results and discussion of advanced probabilistic approach are presented 

in chapter 6 and 7. These case study shows the application of uncertainty quantification 

and shall guide the reader to a comprehensive understanding of the presented approaches.  

8.2 Recommendations for further work  

Probabilistic approach is a wide and more of a subjective topic. It can be extended unlim-

itedly and can be made more sophisticated. In this study, only shear strength parameters 

are taken as random variables because of time limitation. However, it is possible to further 

extend the amount of random variables in the advanced probabilistic slope stability analysis 

by considering geometry of the slope, boundary of soil layers, height of ground water table, 
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and other soil parameters to be random. This is expected to give more accurate estimation 

for the reliability analysis. The contribution of each random parameter for the probability 

of failure can also be studied with sensitivity analysis.   

The other perception worth mentioning for future work is the integration of Bayesian up-

dating concept while assigning distribution type for the parameters. Application of Bayes-

ian inference identifies the actual range of distribution of the parameter in the probability 

distribution function. This is expected to reduce the domain range for the sampling algo-

rithms so that reduction in variability of the outputs will follow. 

Finally, there are more sophisticated sampling techniques than MC simulation method. As 

a proposition for further work, it would be interesting to apply the more effective sampling 

method on the advanced slope stability analysis.  
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