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Nomenclature

γW Curve �tting parameter (Walker model)

θ̂ Crack propagation angle

µ Shear modulus

ν Poisson's ratio

∆K Equivalent zero-to-tension stress intensity

σy Yield strength

CW , mW Parameters in the Walker model

E Young's modulus

Eeff E�ective Young's modulus

G Energy Release Rate

Kc Fracture toughness

KI , KII , KIII mode I, II and III stress intensity factor (SIF)

R Stress ratio
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u Displacement

W Strain energy density

API American Petroleum Institute

FCG Fatigue Crack Growth

FEA Finite Element Analysis

GUI Graphical User Interface

LEFM Linear Elastic Fracture Mechanics

MCS Maximum Circumferential Stress criterion

MCS Maximum Circumferential Stress criterion

MERR Maximum Energy Release Rate criterion

MERR Maximum Energy Release Rate criterion

MTS Maximum Tangential Stress criterion

MTS Maximum Tangential Stress criterion

SIF Stress Intensity Factor

UTS Ultimate Tensile Strength

XFEA Extended Finite Element Analysis

XFEM Extended Finite Element Method
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Abstract

Summary (English)

The purpose of this study was to explore the possibilities and challenges

with simulating fatigue crack growth (FCG) by the extended �nite element

method (XFEM). Another aim was to develop a procedure for XFEM FCG

simulations in Abaqus by means of scripting. Finally was the procedure used

to simulate FCG in an API standard, cone shaped threaded connection.

Di�erent FCG models were reviewed by a limited literature search and a

procedure 2D FCG simulations was carried out by a python script. The

procedure succeeded with the simulation of FCG when applied to a model

with re�ned mesh around the crack tip.

In the suggested partial tasks of the thesis description were a procedure 3D

FCG simulation also suggested, but as this required more computer capacity

than available in the study this was not carried out.

Sammendrag (Norwegian)

Målet med denne masteroppgaven var å utforske mulighetene og utfordrin-

gene med å simulere utmattingssprekkvekst (FCG) ved hjelp av den ut-

videde elementmetoden (XFEM). Et av delmålene var deretter å utvikle

en prosedyre for FCG simuleringen i Abaqus ved hjelp av et skript. Til

viii



slutt ble prosedyren benyttet til å simulere FCG i en standard API konet

gjengekobling .

Et begrenset litteratursøk ble utført på FCG modeller med mulighet til å

modelere kombinasjoner av �ere brudd-moder (engelsk: mixed-mode capabil-

ity), og en prosedyre for 2D simulering av FCG ved hjelp av et python-skript

utviklet og testet. Så lenge elementnettet rundt sprekkspissen er kraftig

for�net, fungerer prosedyren som den skal.

En av de foreslåtte deloppgavene i oppgavebeskrivelsen var å i tillegg utvikle

en prosedyre for 3D simulering av FCG. På grunn av begrenset tilgang til

datakapasitet var ikke dette praktisk mulig å gjennomføre.

ix



Chapter 1

Introduction

In engineering components are fatigue failure a imporatant consideration

which may lead to fatal consequences. Fatigue failure has been subject a sig-

ni�cant research by engineers in more than 150 years. Nucleation and propa-

gation of cracks caused by repeated cyclic loading below the yield stress of a

material may cause catastrophic failure. The increased awareness of fatigue

failures the last 50 years is a consequence of many sudden tragic accidents.

Some of the most well-known and often mentioned accidents within fatigue

failure are probably the disintegration of the two de Havilland Comet jetlin-

ers during �ights in 1954, and the capsizing of the Alexander L. Kielland oil

platform due to a poor weld reducing the fatigue strength of the structure.

Analyzing and designing against fatigue failure may be divided into three

major approaches [4]; the stress-based approach, the strain-based approach

and the fracture mechanics approach. The stress-based approach consider

the nominal (average) stresses in the a�ected areas in the analysis of the

fatigue life. The strain-based approach treats the localized plastic defor-

mations/yielding that may occur in regions with stress raisers as edges and

notches. The last approach, the fracture mechanics approach involves ana-

lyzing crack growth by using the methods of fracture mechanics. This is the
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Figure 1.1: Di�erent periods of the fatigue life [2]

approach which this master thesis is based on.

The fracture mechanics approach are further divided into a lifetime approach

(number of cycles to failure) or a fatigue crack growth approach (damage

tolerance). Fatigue crack growth (FCG) is de�ned as crack growth caused

by repeated cyclic loading [4].

Since the 1950s many researchers have investigated how early cracks may be

detected in fatigue life and divided the fatigue life in two periods/phases;

the crack initiation period and the crack growth period [2]. Under high-cycle

fatigue may the crack initiation period be the largest period of the fatigue

life, while for low-cycle fatigue may the crack growth period be the most

signi�cant phase. One of the di�culties with this de�nition may be how

to specify the transition between the two phases, from micro to macro crack

growth 1.1. To de�ne the transition between crack initiation period and crack

growth period (illustrated in 1.1) Paris et al. proposed in 1961 a correlation

between crack growth rate, da/dN , and the stress intensity factor range,

∆K.

1.1 Problem statement

There are today many di�erent approaches and methods to perform lifetime

prediction calculations on components, but the procedures are either time

2



consuming, demand high computer capacity or have low accuracy.

Inadequate knowledge about fatigue crack growth and the existing proce-

dures are either demanding with a high degree of complexity, i. e. conven-

tional FEA (�nite element analysis), or give too conservative results, i.e. the

result give a lifetime of two years while the component has already lasted for

�ve years with any indication of being close to failure.

In this thesis a procedure for FCG with a focus on the extended �nite element

method (XFEM) is developed. The XFEM is a relatively new method which

has been developed during the last decade. The method has many possi-

bilities since it does not need remeshing when the crack propagate. With a

procedure for using this method in Abaqus, the simulation of FCG may be

signi�cantly easier to carry out.

1.2 Limitations

Due to the scope of the thesis to carry out a limited literature search are only

a few models reviewed in this thesis. In the literature search many di�erent

models were studied, but as many of the models are not relevant or rarely

used, only the most common are review in this thesis. Beden et al. (2009)

have studied a signi�cant amount of models both for constant and variable

amplitude loading and written a extensive review of many FCG models [2].

Due to limited access to computer capacity, this thesis cannot provide a

procedure for three-dimensional numerical simulations. This is further stated

in section 3.4. The procedure is based on the assumption that the results from

the preliminary study of the XFEM implementation in ABAQUS version 6.10

also is valid for version 6.11.

The analyses in this study are executed on a computed laptop with an Intel

core i5 processor and with only 8GB RAM. Consequently the number of

elements in the models could not exceed 300,000 to keep the computation

time reasonably low. With this restriction the computation time for the

3



simulations of the threaded connection in chapter 4 was kept to 8-9minutes

per increment (9 min/increment · 150 increments ≈ 22 hours). If the number of

elements exceed 300,000, it can take hours per increment, and are not possible

within the time frame of the thesis.
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Chapter 2

Background and literature review

2.1 Fracture mechanics and fatigue crack growth

models

FCG models are empirical models generally based on fracture mechanics

developed to describe data from experiments by empirical curve �tting pa-

rameters on the form[2]:
da

dN
= f(∆K,R) (2.1)

Irwin (1958) introduced the stress intensity factor (SIF) K for static fracture

analysis 2.2, after his analysis of the stress �eld around the crack tip in 1957

[2].

K = Fσ
√
πa (2.2)

where a is the crack length and F is the geometry factor which depends on

the relative crack length α = a/b.

In 1961 proposed Paul C. Paris a concept of using a simple empirical equa-

tion (2.3) to apply linear elastic fracture mechanics (LEFM) to fatigue [10].
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Paris' law describes fatigue crack growth rate, da/dN , and is today the most

common model to use for FCG analysis.

da

dN
= CP (∆K)mP (2.3)

∆K = F∆S
√
πa (2.4)

where CP and mP are constants which depend on the material, frequency of

the cycles and the environment, and ∆S is the stress range. This model is

further reviewed in section 2.3.

2.2 Fatigue Rate Curve

The fatigue rate curve is a da
dN

versus ∆K curve as shown in �gure 2.1. The

curve is often divided into three regions; Region I, Region II and Region III.

In region I is the early development of the fatigue crack represented, and

the growth rate is in the order 10−6mm/cycle or below. This region is very

sensitive to micro structure features like grain size, the means stress of the

applied load, the environment and the operating temperature[2]. The most

important feature in this region is the FCG threshold, ∆Kth. This is the

limit for the propagation of fatigue cracks start. For SIF ranges below the

∆Kthcrack growth will usually not occur [4].

Region II is the intermediate zone for growth rates in the order of 10−6

to 10−3mm/cycle. In this region the crack growth is stable, the data is

following a power equation and the plastic zone in front of the crack tip is

large compared to the mean grain size [2]. Since the data is following a power

equation, the �t will be linear on a log-log plot (�gure 2.1) and the use of

LEFM concepts are applicable. For region II the mean stress has the highest

in�uence on the results, but the in�uence is small compared with region I.
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Figure 2.1: Fatigue rate curve

The last region, region III, starts where the curve (�gure 2.1) again become

steep, and is usually in the order 10−3mm/cycle and above. This is high crack

growth rates caused by the rapid unstable growth prior to �nal failure. The

curve approaches in this region an asymptote corresponding to the fracture

toughness,Kc, for the material. The in�uence of nonlinear properties cannot

be ignored in this region due the present of large scale yielding. This results

in that LEFM cannot be used for the data in this region and nonlinear

fracture mechanics should be applied instead. FCG analysis for this region

is therefore very complex and as the FCG rates are high and little fatigue

life involved. This results often in that analysis for this region are ignored.

2.3 Review of fatigue crack growth models

Engineering components are rarely exposed to constant amplitude loading,

but rather variable amplitude. To decrease calculation time and simplify the

7



cases may the variable amplitude loading be modi�ed and simpli�ed in order

to use constant amplitude models with fewer parameters. In FCG models

are the parameters often empirical.

2.3.1 Paris Model

The FCG model which is the most common used in fatigue analysis today is

the power law introduced by Paris and Erdogan (1961)[10] is the Paris model,

also known as the Paris law 2.3. The model is simple in use and only needs

two curve �tting parameters to be determined. In the descriptions of data in

region II (�gure 2.1) are Paris law widely used, but region I and region III

cannot be su�ciently described by this model. Other limitations of the Paris

law are that the model does not account the e�ect of stress ratio, the results

depend upon the material used and most important Paris law are only for

pure mode I loading. Paris' law can be modi�ed to be applicable to mixed

mode loading by the use of equivalent SIF, further described in section 2.5.

In the common used standard BS7910:2005 [1] and the �Wellhead Fatigue

Analysis Method� by DNV are Paris' law the suggest model to use in fatigue

analysis. For obtaing correct results from Paris' model is it important to

collect the fatigue rate data from the related stress ratio.

2.3.2 Walker Model

As a wish to improve the Paris model proposed Walker (1970) [2]a model

which includes the e�ect of stress ratio, R. The model is given by the fol-

lowing relationship:

da

dN
= CW

(
∆K

)mW
= CW

(
∆K

(1−R)1−γW

)mW

(2.5)

∆K = Kmax (1−R)
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where the constants CW and mW are similar to the constants in Paris model

(equation (2.3)) CP and mP . The parameter ∆K is an equivalent zero-

to-tension stress intensity that causes the same growth rate as the actual

Kmac, R combination. The third curve �tting parameter, γW , is a constant

for the material. This parameter may be obtained from data of various R

values, linear regression or trial and error. It is possible that there is no value

to be found for γW , then the Walker model cannot is not valid. If γW = 1

then ∆K equals ∆K and the stress ratio has no e�ect on the data.

2.3.3 Forman Model

When the SIF approach the critical value will there be a instability of the

crack growth (region III, �gure2.1), neither Paris' or Walker's models take

this into account. The Forman expression is given by the following relation-

ship:

da

dN
=

CF (∆K)my

(1−R)Kc −∆K
=

CF (∆K)my

(1−R) (Kc −Kmax)
(2.6)

where Kcis the fracture toughness. The use of this constant is necessary

to model cracks with high growth rates. Also from the Forman model the

relationship between Kmax, Kc and
da
dN

show that as the maximum SIF ap-

proaches the fracture toughness, the crack growth tends to in�nity. With

this can the Forman equation be used to represent data for both region II

and region III (�gure2.1). If crack growth data for various stress ratios are

available, can these be used by computing the quantity in equation (2.7) for

each data point.

Q =
da

dN
[(1−R)Kc −∆K] (2.7)

If the di�erent combinations of ∆K and R all fall together on a straight

line on a log-log plot of Q and ∆K, the Forman equation is assumed to be

successful and may be used [4].
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2.3.4 XFEM crack growth

A preliminary study has been performed under the title �Modeling fatigue

crack growth using XFEM in ABAQUS 6.10� [15], where the principle of the

XFEM crack model are studied.

A variety of techniques are used to calculate the mixed mode stress intensity

factor by the XFEM. Literature reviews performed by Pais [9] and Belytschko

[3] identi�es the procedures, the advantages and the disadvantages of the

di�erent calculation techniques. According to their prior studies is the use

of the domain form of interaction integrals extracted from J-integrals the

most common technique. This method has high accuracy for di�erent crack

conditions when used together with a suitable mesh [9].

In short is the domain form of the interaction integrals an extension of the

J-integral where the line integral is converted to an area integral. The J-

integral is used to �nd the energy release rate while the interaction integral

is used to obtain the mixed-mode stress intensity factor.

2.3.4.1 Theory of interaction integral

Prior to obtaining the integration integrals the J-integrals need to be estab-

lished.

On the basis of the relationship between the J-integral, stress intensity factors

and the e�ective Young's modulus, Eeff , may the energy released rate G for

a general homogenous two-dimensional mixed-mode crack be expressed as

[9]:

G = J =
K2
I

Eeff
+
K2
II

Eeff
(2.8)
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Eeff =

E plane stress

E
1−ν2 plane strain

(2.9)

where E is Young's modulus and ν is Poisson's ratio. Further are the J-

integral speci�ed as[9]:

J =

ˆ

Γ

(
Wn1 − σjknj

∂uk
∂x1

)
dΓ (2.10)

where W is the strain energy density, σ is stress and u is displacement. To

ease the implementation to a �nite element code should equation 2.10 be

rewritten by introducing the Dirac delta to the �rst term of the integral.

J =

ˆ

Γ

(
Wδ1j − σjk

∂uk
∂x1

)
nj dΓ (2.11)

To determine the mixed-mode SIFs are auxiliary stress and displacement set

superimposed onto the XFEM displacement and stress state. The auxiliary

displacement and stress states at the crack tip for a homogenous crack are cal-

culated from the de�nitions established by Westergaard[16]and Williams[18]:

u
(a)
1

u
(a)
2

u
(a)
3

=

1
2µ

√
r

2π

[
KI cos θ

2
(κ− cos θ) +KII sin θ

2
(κ+ 2 + cos θ)

]
1

2µ

√
r

2π

[
KI sin θ

2
(κ− sin θ) +KII cos θ

2
(κ+ 2 + cos θ)

]
2
µ

√
r

2π
KIII sin θ

2

(2.12)
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σ(a) =

 σ
(a)
11 σ

(a)
12 σ

(a)
13

σ
(a)
22 σ

(a)
23

sym. σ
(a)
33

 (2.13)

σ
(a)
11 =

1√
2πr

[
KI cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
−KII sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)]
(2.14)

σ
(a)
22 =

1√
2πr

[
KI cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+KII sin

θ

2
cos

θ

2
cos

3θ

2

]
(2.15)

σ
(a)
33 = ν (σ11 + σ22) (2.16)

σ
(a)
12 =

1√
2πr

[
KI sin

θ

2
cos

θ

2
cos

3θ

2
+KII cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)]
(2.17)

σ
(a)
23 =

1√
2πr

KIII cos
θ

2
(2.18)

σ
(a)
13 = − 1√

2πr
sin

θ

2
(2.19)

κ =

3−ν
1+ν

plane stress

3− 4ν plane strain
(2.20)

where r and θare the polar coordinates from crack tip, µ is , ν is Poisson's

ratio and κ is Kosolov constant. The superposition of the auxiliary displace-

ment, u
(a)
ij , and stress, σ

(a)
ij , states and the XFEM displacement, u

(x)
ij , and

stress, σ
(x)
ij , states into equation 2.11 gives:

J (a+x) =

ˆ

Γ

1

2

(
σ

(a)
ij + σ

(x)
ij

)(
ε

(a)
ij + ε

(x)
ij

)
δ1j −

(
σ

(a)
ij + σ

(x)
ij

) ∂ (u(a)
i + u

(x)
i

)
∂x1

nj dΓ

(2.21)

On the basis of equation 2.21can the interaction integral be obtained by sepa-

rating the integral into XFEM state J (x), auxiliary state J (a) and interaction

state I(a,x).
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J (a+x) = J (a) + J (x) + I(a,x) (2.22)

The interaction integral is given by[9]:

I(a,x) =

ˆ

Γ

[
W (a,x)δ1,j − σ(a)

ij

∂u
(x)
i

∂x1

− σ(x)
ij

∂u
(a)
i

∂x1

]
nj dΓ (2.23)

W (a,x) = σ
(a)
ij ε

(x)
ij = σ

(x)
ij ε

(a)
ij (2.24)

where W (a,x)is the interaction strain energy density. Finally are the diver-

gence theorem used to convert interaction integral from a line integral to an

area integral[9]:

I(a,x) =

ˆ

A

[
σ

(x)
ij

∂u
(a)
i

∂x1

− σ(a)
ij

∂u
(x)
i

∂x1

−W (a,x)δ1,j

]
∂qs
∂xj j

dA (2.25)

where qsis a smoothing function with a value of 1 inside the line integral

and 0 (zero) outside the integral. In order to select the area for the inte-

gration integral must path-independency be considered. Normally are path-

independence achieved at a radius equal to three elements about crack tip

[9].

By the same principle may an interaction integral also be obtained with the

basis in equation 2.8. The J-integral are then superimposed and separated

to:

J (a+x) = J (a) + J (x) +
2
(
K

(a)
I K

(x)
I +K

(a)
II K

(x)
II

)
Eeff

(2.26)

I(a,x) =
2
(
K

(a)
I K

(x)
I +K

(a)
II K

(x)
II

)
Eeff

(2.27)
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2.4 Crack growth direction

The direction of the crack propagation is established to be a function of

the mixed-mode stress intensity factors at the crack tip. Their are several

di�erent criteria too choose from the calculate the direction. Some of the

most widely used mixed mode criteria are: the maximum tangential stress

criterion, the maximum energy release rate criterion, the zero KII criterion

(KII = 0) and maximum circumferential stress criterion.

2.4.1 The maximum tangential stress criterion (MTS)

With this criterion are the de�ection angle of the crack growth de�ned to

be perpendicular to the maximum tangential stress at the crack tip. This

criterion is based on the work of Erdogan and Sih [5] and are given by:

θ̂ = cos−1

(
3K2

II +
√
K4
I + 8K2

IK
2
II

K2
I + 9K2

II

)
(2.28)

where θ̂ is the and with respect to the crack original plane. If mode II

SIF (KII) is positive, the propagation angle is negative and opposite. The

maximum tangential stress σθmare descibed by the following relationship [17]:

σθm =
1√
2πr

cos2 θm
2

[
KI cos

θm
2
− 3KII sin

θm
2

]
(2.29)

One important remark with this criterion is that the crack will not propagate

in its own plane (except for pure mode I loading) but in respect to the original

plane [17].
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2.4.2 The maximum energy release rate criterion (MERR)

The MERR criterion is based on the work of Hussain et al. (1974) [7]. The

criterion assume that the crack propagate in the direction which maximizes

the energy release rate.

2.4.3 The zero KII criterion (KII = 0)-

The essence of the KII = 0 criterion is to let the mode II SIF dissipate in

shear mode for microscopic crack extensions.

2.4.4 The maximum circumferential stress criterion (MCS)

The MCS criterion is de�ned as the angle θc, given by the following relation-

ship:

θc = − arccos

(
2K2

II +KI

√
K2
I + 8K2

II

K2
I + 9K2

II

)
(2.30)

This is a simple and a widely used in the literature for XFEM crack growth,

but as this is not an option in the ABAQUS software, is this not considered

as an alternative for the FCG simulation in this thesis.

2.5 Crack growth magnitude

To calculate the magnitude of the increment at each iteration for constant

amplitude loading are two methods established in the literature [9]. The �rst

method assumes that for all the given iterations will a constant amount of

crack growth increment occur. The second method assumes that a FCG law

may be used to �nd the amount of growth for the corresponding iteration

(i.e. Paris law(2.3)). While for variable amplitude loading are the methods
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for constant amplitude loading no longer valid and the amount of growth

need to be calculated separately for each cycle.

For both cases can the SIF ranges be de�ned by the maximum and minimum

SIF for each mode within each cycle:

∆KI = KI,max −KI,min (2.31)

∆KII = KII,max −KII,min (2.32)

In order to determine the FCG for mixed mode loading by Paris law is an

equivalent stress intensity factor required. To calculate the equivalent SIF

are several di�erent models proposed.

Tanaka [14] proposed a relationship for the equivalent SIF based on curve

�tting data. The is given as

∆Keq = 4

√
∆K4

I + 8∆K4
II (2.33)

A relationship based on the energy release rate is the equivalent SIF de�ned

as [9]:

∆Keq =
√

∆K2
I + ∆K2

II (2.34)

From the maximum circumferential stress criterion are relationship is the

following expression given as [9]:

∆Keq =
1

2
cos

(
θ

2

)
[∆KI (1 + cos θ)− 3∆KII sin θ] (2.35)

The modi�ed Paris law is given as:

da

dN
= CP (∆Keq)

mP (2.36)

By integrating eq (2.36) are a function to determine number of cycles N
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needed for å crack to propagate from a initial crack a0to a crack length a:

N(a) = 1
Cp

á

a0

(
1

∆Keq

)mp

da (for a ≥ a0) (2.37)
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Chapter 3

Procedure for numerical

simulation of FCG

The FCG phenomen represents a major concern among engineers and is sub-

ject to signi�cant research. Engineering components are often subjected to

three-dimensionel stresses, and mixed mode fracture are realistic assump-

tions.

3.1 Implementation of XFEM in ABAQUS 6.11

The XFEM was �rst introduced in Abaqus 6.9 in 2009 [12]and the imple-

mentation has been signi�cantly developed and improved since that. The

implementation give a solution for modelling crack growth without remesh-

ing and without requiring the mesh to match the geometry of the crack.

In this thesis is ABAQUS 6.11 used [13], as this is the latest version of

ABAQUS available at NTNU in the beginning of the semster. As there

still is a signi�cant amount of limitations in the implementation of XFEM

in ABAQUS 6.11 are some limitations necessary to be highlighted. One

major limitation is the selection of elements, as only �rst-order solid con-

18



tinuum stress/displacement elements and second-order stress/displacement

tetrahedron elements can be used in combination with XFEM. Contour in-

tegrals found by XFEM can only be evaluated in �rst-order brick elements,

�rst-order tetrahedron and second-order tetrahedron [13]. Another major

limitation is the di�erences in the implementation for analysing two- and

three-dimensional models. For three-dimensional cases are both stationary

and propagating crack possible to simulate, while for two-dimensional cases

are only propagating cracks implemented.

A limited study of the implementation of XFEM in ABAQUS 6.10 was exe-

cuted as a preliminary study the autumn before this thesis was started [15].

The results from the study show that the mesh around the crack need to be

relatively �ne. The mesh size h should not exceed 3% of the crack size to get

acceptable results.

Further has there been discovered during the process of making a procedure

for FCG in this thesis that ABAQUS gives SIFs twice the analytical answer.

So all the SIFs collected by the script have to be divided by a factor 2 to get

the correct answers.

3.2 Procedure for 2D FCG simulation

To simulate two-dimensional FCG in ABAQUS is a python script developed

(Appendix A).

The buildt-in functions in ABAQUS do not provide the function of simulating

a propagating crack and get J-integral or SIF output. ABAQUS 6.11 has the

choices either simulating stationary three-dimensional crack to get the output

or simulating crack growth in two-dimensions. In order to avoid remeshing is

XFEM a prefered choice of crack modeling, but to collect SIFs from ABAQUS

is also the contour integral crack functions used. The crack tip is de�ned as

a contour integral while the crack surface is a XFEM crack. The traction

separation properties for the material are set to a in�nite high maximum
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principal stress. As a result of the high maximum principal stress the crack

is locked from propagation and mixed-mode SIFs may be obtained from the

output database �le.

XFEM is developed with the aim to be a mesh independent method, but this

is not the reality with the implementation in Abaqus. In order to get accurate

results the mesh size has to be below 3% of the crack size [15]. With a coarse

mesh the calculated crack propagation directions become too large and the

crack will propagate in an oscillating pattern until the crack has grown and

the mesh size is below 3% of crack size. The limitation a�ects the initial crack

size as this is dependent of the mesh. This can be partly solved by creating

di�erent partitions with di�erent mesh size along the expected crack path.

The results of have a higher degree of inaccuracy in the transistion area

between the di�erent mesh sizes, but if this is acceptable will this decrease

the computation time signi�cantly.

The procedure to simulate two-dimensional FCG are given as:

1. Create (or import) the uncracked model in ABAQUS

2. Prepare the model for standard static analysis with assigning materials,

create steps, apply loads and boundary conditions etc.

3. Create mesh with �ne mesh in the area for crack growth. It is prefered

to use �rst-order brick elements.

4. Create a set in the assembly called �crackedPart� contaning the part

to be cracked

5. Complete the script, by �lling in the necessary inputs.

6. Make sure the script and the .cae-�le are saved in the same folder

7. Execute the script from the Abaqus Command window:

(a) Open the folder containing the �les

(b) Write �abaqus cae noGUI=XFEMscript.py�, whereXFEMscript.py
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is the name of the script and noGUI indicates running the script

without the graphical user intergace (GUI)

8. Collect the results fromXFEMCrackResults_modelName_analysisIdentity.txt

9. The results may then be further processed in i.e. MATLAB or MS

EXCEL

3.2.1 Dependency to mesh

XFEM is supposed to be a mesh independent method, but this is not the

reality when used in Abaqus. In order to get accurate results the mesh size

has to be below 3% of the crack size [15]. With a coarse mesh the calculated

crack propagation directions become too large and the crack will propagate

in an oscillating pattern until the crack has grown and the mesh size is below

3% of crack size.

3.2.2 Unexpected error 193

In the process of creating the procedure a bug in Abaqus were discovered. If

the script are executed from the GUI, often Abaqus crashes and shuts down

with the error message �Unexpected error 193 �. This is probably a bug in

the GUI, as the same error never occur when the script are executed from

Abaqus command window without the GUI. Some search has been done to

�nd the reason for the error message, however without success. The error

code is neither mentioned in the dosumentation [13] or in any academic online

forums.

3.3 Procedure tested on reference geometries

In order to control the procedure were two tests executed for two of the refer-

ence geometries from the preliminary study [15]; in�nite plate with internal
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through thickness crack and semi-in�nite plate with edge notch.

The test for FCG in a two-dimensional in�nite plate with internal through

thickness crack gives good results 3.1. The crack propagates as expected and

the SIFs obtained by the script have a very high accuracy. From the graph

in �gure 3.1D are three bumps observed. These are the results from the

transition between �ne and coarser mesh.

The semi-in�nite plate results were compared with analytical SIF from Mu-

rakami [8]. The results, given in �gure 3.2, di�er a little from the handbook

solution. In the preliminary study [15]was the transition depth between shal-

low crack and deep crack calculated to be a = 1.12 mm for this type of notch.

The results from the script give at the most a deviation of 10% from Mu-

rakami in the area around the transition depth. Otherwise the SIFs are in

good agreement with a deviation of 3-4%. This is the same results as reported

in the preliminary study.

3.4 Procedure for 3D FCG simulation

In the objective of the thesis are one of the suggested partial tasks to es-

tablish a procedure for numerical simulation of 3D FCG. To simulate three-

dimensional FCG demand much more computer capacity than what is avail-

able in this study. For instance simulation of the threaded connection in

chapter 4; approx. 250,000 elements were generated for the 2D case. 3D

simulations of this threaded connection demands millions of elements gen-

erated to get satisfying results. This is one of the drawbacks with XFEM.

In conventional FEM symmetry and antisymmetry in models are used to

decrease the number of DOFs and increase the accuracy of the analysis. The

enrichment functions restrain the possibility of employing this in extended

�nite element analyses (XFEA). Consequently XFEA often demand many

elements. The discussion will be either remeshing and a acceptable number

of elements or no remeshing and a high amount of elements.
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Figure 3.1: Results from using the procedure to simulate FCG in in�nite
plate with internal crack: A: The in�nite plate with an internal through
thickness crack; B: The stress distribution around the crack; C: The stress
distribution when the crack tip is about to grow into the transistion area
between two di�erent mesh sizes; D: Graphical illustration of the results.
Red line is the KI obtained from the script and black dots are the exact KI .
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Figure 3.2: Results from using the procedure to simulate FCG in semi-in�nite
plate with edge notch: A: The semi-in�nite plate with an edge notch; B: The
stress distribution around the crack; C: The stress distribution around the
crack tip; D: Graphical illustration of the results. Red dots is theKI obtained
from Murakami [8] and blue line is the KI obtained from the script.
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Previous studies have reported small di�erences in results from two- and

three-dimensional FCG simulation.
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Chapter 4

FCG Simulation of threaded

connection

4.1 Threaded connections in subsea installations

Threaded connections are a reliable and cost e�cient method for joining

pipes compared to welded joints, and are extensively used in risers and drill

pipe string in o�shore applications [11]. The threads are cone shaped API

(American Petroleum Institute) standard threads consisting of a pin (male

part) and a box (female part). Because of the cone shape, the coupling are

easily perform with only a minor twist rotation.

Threaded connections in risers and drill pipe strings are often subjected to

cyclic loading due to waves and movements of the connected oil platforms.

Consequently is fatigue one of the most important failure modes in such com-

ponents. The design of the threaded connections is therefore a compromise

between sealing capacity and resistance to fatigue failure.
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4.2 Simulation of FCG in a threaded connec-

tion

The simulation of FCG for a threaded connection is here described with a

independent analysis report in order to make it easy to follow.

The analysis is based on constants given in the standards BS7910:2005 [1]

and chapter 6 of �Wellhead Fatigue Analysis Method� [6]. From BS7910 are

the FCG threshold value ∆Kth given as:

∆Kth = 63N/mm
3/2 (4.1)

The Paris' constants Cp and mp may also be obtained from the same stan-

dards.

4.2.1 Geometry

The geometry of the model used in the analysis is based on the design of

the machine drawings provided by 4Subsea AS. The measurements had to

be modi�ed and some assumptions to be taken to make it �t when sketched

in ABAQUS.

Previous studies have shown few contradictions in the results between two-

dimensional and three-dimensional FCG simulations of threaded connections.

Therefore a simpli�cation from a 3D- to 2D-model is made to save computer

capacity. The simpli�cation should have been to a 2D axis symmetric model,

however this is not implemented for XFEM in ABAQUS and could not be

done.

The geometry consists of two parts, a box and a pin. The threads has a cone

shape as illustrated in �gure 4.1.
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Figure 4.1: Geometry of threaded connection

4.2.2 Material

The material used in the analysis are the API steel grade B [11]. The material

properties for this material are listed in table 4.1.

Yield strength, σy UTS (23% elongation) Young's modulus, E Poisson's ratio, ν
356 MPa 575MPa 208 GPa 0.3

Table 4.1: Material properties for API steel grade B

4.2.3 Boundary conditions

The model is locked in y-direction at the bottom and the whole model is

locked in x-direction to obtain a axis symmetric geometry. The boundary

conditions are shown in �gure 4.2 with an orange color.
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Figure 4.2: Boundary conditions (orange) and loadings (blue)

4.2.4 Loads

A constant tension load FN and a table of bending momentsMB as a function

of signi�cant wave height and period was given by 4Subsea AS. The bending

moments are all in the interval 75-80 kNm, however the di�erences in the

moments are small and can be described with only one simple value. The

loads is given as:

FN = 75kN

MB = 80kNm (4.2)

The applied stress is superposed two calculated as the maximum applied

stress σ by super positioning maximum bending stress σband the tensile stress

σN :

σ = σN + σB =
FN
A

+
MBr

I
= 127.1MPa (4.3)

where r is the outer radius of the box, A is the cross-sectional area of the

box and I is the second moment of inertia of the cross-section of the box.
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Figure 4.3: Stresses from a static analysis of threaded connection

4.2.5 Analysis

The analysis are performed according to the procedure described in chapter

3. In order to get accurate results the mesh is divided into many partitions,

the section around the crack has a mesh size of 3% of the initial crack.

The initiation of the crack was located in the area with highest stress. The

knowledge about the location of fatigue crack initiation and propagation is

inadequate. The initiation is often located where the highest stress concen-

tration occurs; at the root of the last threads with full connection (Figure

4.3). In the analysis a initial crack of 0.5mm was initiated at the root of the

last thread on the pin. This is close to where the highest stress occurred in

the static analysis without crack.

A second analysis was also executed with a initial crack of 0.1mm. This

had a very limited crack path as a consequence of the limits for number of

elements.
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Figure 4.4: Propagated crack in threaded connection

4.2.6 Results

Running the script on the model of threaded connection gave results in the

form of the text �le, but Abaqus was not able to show the stress distribution

around the crack in the GUI. However the crack propagated as illustrated in

�gure 4.4. As the highest stress occur a little lower (�gure 4.3) than where

the crack was initiated, the crack propagates in the direction of the highest

stress. The limited analysis with initial crack of 0.1mm follows the same path

as the initial crack of 0.5mm except it starts to change direction at a crack

length of 0.3mm.

The graph of the SIFs 4.5 shows decreasing SIFs as the stress also decrease

and then stabilize. The threshold are in BS7910 [1] given as 63N/mm
3/2. The

simulation show that the combination of the applied stress and the geomet-

rical stress concentration cause SIFs above the threshold value for cracks up

31



Figure 4.5: SIF mode I vs crack size

to a = 0.69 mm.

4.2.7 Conclusion

The simulation obtained a crack path as expected, and the crack propagated

in the direction of the highest stress. These results show that the required

accuracy of the initial crack location is low as long as it is close to the highest

stress.
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Chapter 5

Conclusion

Using XFEM to simulate FCG give new posibilities to the execution of

the analysis, but are also challenging. The method are still a relative new

method, consequently few people know and trust the method and there is

still a long way to go on the implementation in commercial software. On the

other hand the method make the meshing less challenging and the computa-

tion time for each icrement is reduced signi�cantly.

The procedure developed are easy to use and with few limitations. One of

the biggest drawbacks with the procedure is to get the mesh correct. The

requirement of a very re�ned mesh around the crack tip make the partitioning

and meshing challenging. There is a wish to have the re�ned mesh area as

small as possible, but without making an in�uence on the crack path.

5.1 Future work

In the future work the last partial task should be ful�lled by developing a

procedure for three-dimensional FCG. The procedure should be developed in

the same context as the one developed in this thesis.

Further should the procedure for the 2D simulations be modi�ed to be more
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robust. One of the tasks could be to include the re�ning of the mesh in the

beginning of the script.
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Appendix A

Python script for simulation of

2D FCG in ABAQUS

Below are the developed python script given.

The .py �le is also submitted together with the thesis in a zip-�le
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C:\Users\Stine\Documents\Master thesis\Abaqus\CrackGrowthScript.py 11. juni 2012 16:09

from abaqus import*

from abaqusConstants import*

import part, material, section, assembly, step, interaction

import regionToolset, displayGroupMdbToolset as dgm, mesh, load, job

##===========================================================

## INPUT

##===  IMPORTANT  ===###

# The part with initial crack need to have a set of the whole crack part named "crackedPart" 

## MODEL INPUT

analysisIdentity= 'myIdentity' # Analysis indentity

caeFile= 'myCae' # Name of the .cae file

modelName = 'myModel' # Name of model

partName = 'myPart' # Name of part (in assembly) containing crack

crackStep='MyCrackStep' # Name of Step with crack initiation

NameOfMaterial='myMaterial' # Name of material the material of the part containing crack

## CRACK INPUT 

crackSize = 1.0 # Initial crack size - IMPORTANT: the mesh size around the 

crack cannot exceed 3% of crack size

radiusOfCrackTipNode = 0.01 # Radius of the area containg the crack tip - IMPORTANT: 

Radius of the crack tip node cannot be smaller than crack size

intitialGlobalCrackCoordinates = (0.,0.,0.) # Initial global coordinates of crack initiation

## CALCULATION INPUT

contours=20 # Number of contours for calculation of SIF

contourAverage = 5 # Number of contours to include for calculation of the 

average of contours - IMPORTANT: has to be a positive integer

increment=20 # Number of increments of the crack growth

incrementSize_temp =0.05 # Size of increments - extension of the crack

# END INPUT

##==========================================================

# Create tuples

crackPropagationDirection =[]

K1=[]

K2=[]

outputRes = open('XFEMCrackResults'+"_"+modelName+"_"+analysisIdentity+'.txt','a') # 

Initiate report file

firstLine=['nIncrement'," ",'crackPropagationDirection',"  ",'cracktipX',"  ",'cracktipY',

"    ",'K1',"    ",'K2',"   ","\n"]

outputRes.writelines(firstLine)

outputRes.close()

mdb = openMdb(caeFile+'.cae')

myModel = mdb.models[modelName]

myAssembly = myModel.rootAssembly
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C:\Users\Stine\Documents\Master thesis\Abaqus\CrackGrowthScript.py 11. juni 2012 16:09

myPartInstance = myAssembly.instances[partName]

# XFEM Material properties

myMaterial=myModel.materials[NameOfMaterial]

myMaterial.MaxpsDamageInitiation(table=((1e+30, ), ))

myMaterial.maxpsDamageInitiation.DamageEvolution(table=((1.0, ), ), type=DISPLACEMENT)

#================================================================================

crackLocation=[(0, 0.),(crackSize/2, 0.),(crackSize, 0.)] # Initial crack coordinate(spline 

points)

localCrack_temp = crackLocation

nIncrement= 0 #temp start

for nIncrement in range(increment):

localCrack = tuple(localCrack_temp)

### Create initial crack ###

mySketch2 = myModel.ConstrainedSketch(name='CrackSketch',sheetSize=200.0)

mySketch2.sketchOptions.setValues(viewStyle=REGULAR)

mySketch2.setPrimaryObject(option=STANDALONE)

mySketch2.Spline(localCrack)

myCrack = myModel.Part(name='CrackPart',

dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY)

myCrack.BaseWire(sketch=mySketch2)

mySketch2.unsetPrimaryObject()

del myModel.sketches['CrackSketch']

#==========================================================================

## Create assembly

myAssembly.Instance(name='myCrack-1', part=myCrack, dependent=OFF)

myCrackInstance = myAssembly.instances['myCrack-1']

myCrackInstance.translate(intitialGlobalCrackCoordinates)

# Create a set for the crack

edges = myCrackInstance.edges

myAssembly.Set(edges=edges, name='crackFace')

#=============================================================================

## CREATE SETS

# # Determine the closest node to crack tip

crackTipCoordinates= ((localCrack[len(localCrack)-1][0]+intitialGlobalCrackCoordinates[0

]),

(localCrack[len(localCrack)-1][1]+intitialGlobalCrackCoordinates[1]), .0)
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C:\Users\Stine\Documents\Master thesis\Abaqus\CrackGrowthScript.py 11. juni 2012 16:09

crackTipNodes = myPartInstance.nodes.getByBoundingSphere((crackTipCoordinates),

radiusOfCrackTipNode)

closestindex = 0 # Assume the first index in the crackTipNodes is closest node

closestX = crackTipNodes[closestindex].coordinates[0]-crackTipCoordinates[0]

closestY = crackTipNodes[closestindex].coordinates[1]-crackTipCoordinates[1]

closestdistance = sqrt(pow(closestX,2)+pow(closestY,2))

for index in range(len(crackTipNodes)):

distanceX = crackTipNodes[index].coordinates[0]-crackTipCoordinates[0]

distanceY = crackTipNodes[index].coordinates[1]-crackTipCoordinates[1]

distance = sqrt(pow(distanceX,2)+pow(distanceY,2))

if distance < closestdistance:

closestdistance = distance

closestindex = index

# The closest node as crack tip

crackTipNode = myPartInstance.nodes.sequenceFromLabels((crackTipNodes[closestindex].label

,))

myAssembly.Set(nodes=crackTipNode, name='crackTip')

crackFront = crackTip = myAssembly.sets['crackTip']

#====================================================================================

### Define crack ##

## XFEM crack ##

myAssembly.engineeringFeatures.XFEMCrack(

crackDomain=myAssembly.sets['crackedPart'],

crackLocation= myAssembly.sets['crackFace'],

name='XFEMcrack')

## Crack tip (CI crack) ##

myAssembly.engineeringFeatures.ContourIntegral(name='ContourCrack',

crackFront=crackFront, crackTip=crackTip,

extensionDirectionMethod=Q_VECTORS, qVectors=(((localCrack[len(localCrack)-2][0],

localCrack[len(localCrack)-2][1],0.0),

(localCrack[len(localCrack)-1][0], localCrack[len(localCrack)-1][1], 0.0)), ),

midNodePosition=0.5)

#====================================================================================

# Request history output for the crack

myModel.HistoryOutputRequest(name='SIF_history',

createStepName=crackStep, contourIntegral='ContourCrack',

numberOfContours=contours, contourType=K_FACTORS, kFactorDirection=KII0, rebar=

EXCLUDE, sectionPoints=DEFAULT)

#====================================================================================

# Create and submit job

myAssembly.regenerate()

myJob = mdb.Job(name=modelName+'_'+analysisIdentity+'_'+str(nIncrement), model=modelName,

description='Contour integral analysis')

mdb.saveAs(pathName=modelName+"_"+analysisIdentity+'_'+str(nIncrement))
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myJob.submit(consistencyChecking=OFF)

myJob.waitForCompletion()

#***************************************************************************

#___________ OUTPUT ______________ OUTPUT _______________ OUTPUT ___________

#***************************************************************************

# Read from history output

import odbAccess

crackODB=session.openOdb(name=modelName+'_'+analysisIdentity+'_'+str(nIncrement), path=

modelName+'_'+analysisIdentity+'_'+str(nIncrement)+'.odb', readOnly=True)

histRegion=crackODB.steps[crackStep].historyRegions['ElementSet  PIBATCH']

crackPropagationDirectionTemp = 0

for i in range(1*contours-contourAverage,1*contours):

crackPropagationDirectionTemp = crackPropagationDirectionTemp + histRegion.

historyOutputs[histRegion.historyOutputs.keys()[i]].data[0][1]

crackPropagationDirection.append(crackPropagationDirectionTemp/(contourAverage))

## Calculate average K1 ##

K1_temp = 0

for i in range(3*contours-contourAverage,3*contours):

K1_temp = K1_temp + histRegion.historyOutputs[histRegion.historyOutputs.keys()[i]].

data[0][1]

K1.append(K1_temp/(2*contourAverage)) #Divided by 2 as Abaqus over estimate by a factor 2

## Calculate average K2 ##

K2_temp = 0

for i in range(4*contours-contourAverage,4*contours):

K2_temp = K2_temp + histRegion.historyOutputs[histRegion.historyOutputs.keys()[i]].

data[0][1]

K2.append(K2_temp/(2*contourAverage)) #Divided by 2 as Abaqus over estimate by a 

factor 2

cracktipX= localCrack_temp[len(localCrack_temp)-1][0]+intitialGlobalCrackCoordinates[0]

cracktipY= localCrack_temp[len(localCrack_temp)-1][1]+intitialGlobalCrackCoordinates[1]

crackODB.close()

#====================================================================================

# Calculate the next crack tip from crackPropagationDirection

q1 = [localCrack[len(localCrack)-1][0]-localCrack[len(localCrack)-2][0], localCrack[len(

localCrack)-1][1]-localCrack[len(localCrack)-2][1], 0.0]

q1len = sqrt(pow(q1[0],2)+pow(q1[1],2))

q1[0] = q1[0]/q1len

q1[1] = q1[1]/q1len
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q2 = [0.,0.,0.]

q2[0] = q1[0]*cos(radians(crackPropagationDirection[nIncrement]))-q1[1]*sin(radians(

crackPropagationDirection[nIncrement]))

q2[1] = q1[0]*sin(radians(crackPropagationDirection[nIncrement]))+q1[1]*cos(radians(

crackPropagationDirection[nIncrement]))

#===================================================================================

# Save the results 

# nIncrement crackPropagationDirection cracktipX cracktipY K1 K2 

outputRes = open('XFEMCrackResults'+"_"+modelName+"_"+analysisIdentity+'.txt','a')

lines = [str(nIncrement),"   ",

str(crackPropagationDirection[len(crackPropagationDirection)-1]),"   ",

str(cracktipX),"   ",

str(cracktipY),"   ",

str(K1[len(K1)-1]),"   ",

str(K2[len(K2)-1]),"   ",

"\n"]

outputRes.writelines(lines)

outputRes.close()

localCrack_temp.append((localCrack_temp[len(localCrack_temp)-1][0]+incrementSize_temp*q2[

0],localCrack_temp[len(localCrack_temp)-1][1]+incrementSize_temp*q2[1]))

print ('Simulation completed!')
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