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A B S T R A C T

For loudspeaker horns, the throat acoustic impedance and the far
field directional characteristics are important measures of perfor-
mance. Both quantities depend greatly on the shape of the horn, and
the acoustical conditions at the mouth of the horn.

The Mode Matching Method (MMM) is a semianalytical method
for the simulation of sound propagation in ducts, and is the method
used as the fundamental building block in this work. In previous
work using this method, the horn has usually been assumed to be
mounted in an infinite baffle, a condition that is not realistic for most
real-world applications. Most horns are usually mounted in finite baf-
fles or cabinets, or placed close to reflecting surfaces or in rooms.
This work has therefore focused on extending the MMM to new cases
closer to real-world applications.

For horns without baffle, or with finite baffles or flanges, two meth-
ods have been explored; one for axisymmetric horns based on the
solution for a semi-infinite unflanged duct, and one for general ge-
ometries based on edge diffraction. For horns near infinite reflecting
surfaces, a method has been derived to compute the modal mutual ra-
diation impedance. For the final radiation condition, a horn mounted
in the wall of a room, two methods have been explored, where in
both cases analytical expressions for radiation impedance and radi-
ated pressure are found for shoebox shaped rooms. Experimental
verification of some of the cases mentioned above is provided.

The MMM is restricted to certain cross-sectional geometries; round
and rectangular geometries are treated in this work. In many prac-
tical cases a rectangular horn is connected to a circular loudspeaker,
and in order to simulate this and similar configuration, a method has
been developed to interface the MMM with the Boundary Element
Method.

By modifying the MMM, it has also been possible to simulate ra-
diation from concave structures like loudspeaker diaphragms. Using
this approach it is also possible to simulate concave reflectors, as long
as the source is not outside of the cavity.

A final application of the MMM in this work, is the use of the
method to compute the transfer function and resonance frequencies
of non-shoebox shaped rooms. While the shape of the room is still
somewhat restricted compared to Finite Element Method simulations,
a wide range of rooms can be simulated.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

This part is an introduction to this thesis, and is divided
into three chapters: a general introduction describing the
background and motivation for this work, a historical
background that serves as an introduction to horns used
for sound reproduction, and an overview of horn simula-
tion methods.





1
I N T R O D U C T I O N

The introduction of this thesis is split into three chapters. This chapter
is mainly a short description of the background and motivation for
this work, and an overview of the rest of thesis. The following two
chapters will give a historical background and an overview of horn
simulation methods.

1.1 background

Horns and horn loudspeakers are in use in a variety of fields. Horns
as used in music instruments are of course of great interest, and much
work has been done on this topic. Horn loudspeakers are mainly used
in three fields: sound reinforcement at concert venues and the like,
public address and paging, and for cinema sound systems. A fourth
field is the use in high fidelity home audio systems, but this field is a
rather small part of the total volume of horn loudspeakers in use.

Originally, horns were used in gramophones and loudspeakers to
increase the power output of the source by impedance matching.
High efficiency loudspeakers were required due to amplifier power
being very expensive. Extensive use of horns in early cinema and pub-
lic address systems also highlighted the problem of directivity: the ex-
ponential horns, almost universally used in the early days because of
their impedance matching properties, had directional characteristics
that varied with frequency. Clusters of horns were necessary to cover
the entire audience with a reasonably uniform frequency response.

Horn loudspeakers for home entertainment use were common in
the early 1920s, but fell out of favor when the direct radiating cone
loudspeaker was introduced. Even if horn speakers are in use for
home entertainment by quite a few enthusiasts (the author included),
the percentage of the total home audio market is small.

As amplifier power became cheaper, the purpose of horns became
more and more directed towards directivity control. Still, for many
years horn designers also put effort into designing horns that pro-
vided uniform acoustic loading over the horn’s working range. Multi-
cellular horns used exponential cells [1], radial horns sought to keep
the wave front area expansion exponential, and Keele’s Constant Di-
rectivity design from the 1970s used an exponential throat section for
loading, followed by a radial conical section for directivity control [2].
It was probably the Manta-Ray horns developed by Altec Lansing [3]
that first disregarded horn loading in favor of directivity control.

3



4 introduction

In horn design today, directivity is of prime importance, and any
numerical tool used for horn simulation should aim to accurately
predict the directivity performance of the horn.

This thesis is concerned with the development of numerical meth-
ods for horn loudspeaker simulation, but the methods are not re-
stricted to this area of application: the methods are applicable in the
rather broad field concerning sound propagation in, and radiation
from, ducts.

1.2 areas of application

The three main areas of application for horn (or duct) simulation
methods are horn loudspeakers, musical wind instruments, and duct
systems such as ventilation systems and acoustic filters. In addition,
simulations of the ear canal and vocal tract may employ similar meth-
ods, sometimes with non-rigid walls (See for instance Hudde [4]). The
main three areas of application do, of course, have some similarities
and some differences, and these will be highlighted in the following
sections. But basically, the similarities are in how the sound field in
the horn or duct is calculated, the differences lie in the emphasis put
on the different quantities that are calculated. Importance of input
impedance, directivity and flow differs widely between the methods.

1.2.1 Horn Loudspeakers

Simulation of horn loudspeakers is the main motivation behind the
work described in this thesis. Horn loudspeakers differ from the two
other main areas of application for duct simulation methods in at
least three ways. Firstly, the frequency range (in terms of wave length
vs. size, kL) usually extends far beyond that of ventilation systems,
and often into a higher kL range than for many musical instruments.
Secondly, the computation of directivity is extremely important, as
one of the main reasons for using horns in modern sound reinforce-
ment systems is directivity control [3, 5]. Thirdly, since horns in sound
reinforcement systems are often operated at very high levels, nonlin-
ear distortion can be considerable, and this has implications for the
perceived sound quality [6, 7].

As the acoustic load of the horn also affects the smoothness of the
frequency response. This parameter that is still important despite the
availability of equalization [8], so it should not be forgotten. Knowing
the acoustic load presented by the horn is also required in order to
couple the horn with a loudspeaker driver model.



1.2 areas of application 5

1.2.2 Musical Instruments

In musical wind instruments, horn simulation has two primary pur-
poses: the forward problem; to accurately predict the resonance charac-
teristics of instruments of a given bore profile, and the inverse problem;
to reconstruct the bore profile of instruments from measurements, to
aid in repair, modifications or analysis. Resonance frequencies should
ideally be predicted with the accuracy of a few cents of a semitone,
and therefore the methods developed for this purpose aim to give
good accuracy in this respect. As peaks of the input impedance curve
are usually what is used for detecting resonance frequencies, the in-
put impedance is what has received most attention in wind instru-
ment modeling research.

The forward problem may relate to the design of new instruments,
or to the synthesis of instrument sounds. For the last application,
computational efficiency is usually very important, as the synthesis
may have to be performed in realtime.

In the inverse problem, the task is often to reconstruct the bore pro-
file based on measurement of the input impedance[9, 10, 11, 12], or
to produce a horn with a given set of resonance frequencies [13, 14].
This is usually done by running an optimization algorithm that tries
to minimize the difference between the measured (or specified) and
the simulated impedance. For this, it is important that the simula-
tion algorithm is fast, and at the same time accurately calculates the
resonance frequencies.

Directivity has largely been neglected, but if it is to be included, it
is often desirable to include the radiation from finger holes as well as
from the bell [15]. Nonlinear effects are usually also neglected. While
wind instruments also have flow, this is often neglected in the models,
but viscous losses and the effect of temperature gradients along the
instrument are often taken into account. The effects of bends may also
be included [16, 17, 18, 19, 20, 21, 22].

1.2.3 Duct Systems and Acoustic Filters

Simulation of ducts, like HVAC systems, silencers, mufflers and other
acoustic filters, and also sound radiation from turbofan engines, of-
ten use methods similar to, and often applicable to, horn simulation.
The main purpose of the simulation is usually to calculate the trans-
mission loss of the system, often with the purpose of computing
the attenuation of noise from the fans. Pioneers in this field were
George Walter Stewart, who analyzed acoustic filters as early as 1922
[23, 24, 25, 26, 27], and Warren P. Mason of The Bell Telephone Labo-
ratories, who developed approximate equations for designing several
types of such filters based on filter theory [28, 29].
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For duct systems, the effects of cavities, step discontinuities, junc-
tions and bends, on the transmission loss are often of great interest.
Acoustic impedance as a separate quantity is usually not important,
but may be useful during calculations. Directivity is usually of little
importance. This is both because the duct cross sectional dimensions
in many cases are small compared to the wavelength, but most often
because the investigations are only concerned with what happens in-
side the duct, and not outside the radiating end. An exception is in
the case of turbofan machinery, where directivity may have some im-
portance [30, 31]. Often the effect of flow is of some importance too,
again especially in turbofan machinery, where the flow velocity is not
negligible [32].

1.3 motivation

To describe the motivation for this work is not a simple task. Moti-
vation ranges from personal interest (which fits better in the preface)
to the needs of horn designers, and the need to investigate certain
aspects of horn loudspeakers that have not been sufficiently covered
in the literature.

Designing a horn with certain properties can in many cases look
more like art than science. The reason for this is mainly the complex
nature of acoustic wave propagation in horns, which in general is
not analytically solvable, except for in a few special cases. And even
though analytical solutions can be found for some cases, there are
still issues to be solved. For instance, a conical horn in a sphere (a
problem which is analytically solvable) will have significant diffrac-
tion at the mouth, which gives a less-than-perfect directivity pattern
[33]. This problem can be reduced by introducing a flare at the mouth
of the horn, but then we no longer have an analytical solution of the
problem. In addition, it is usually impractical to mount horns in large
spheres; more often they are mounted in rectangular loudspeaker en-
closures.

The traditional approach, dating back to Rayleigh [34] and Web-
ster [35], is to reduce the three-dimensional wave equation to a one-
dimensional one, which can then be analytically solved for a number
of horn contours. However, a one-dimensional equation gives no in-
formation about directivity. Since directivity control is the main rea-
son for using horns today, this is not a viable option.

For general horn design, one therefore must resort to numeri-
cal methods. There are several methods available, all of them usu-
ally require some discretization of the boundary and/or domain. A
common factor for these methods is that they require relative large
amounts of memory, and often long computation times. While these
limitations are slowly reduced as computing power increases, they
still impose a challenge, especially when it comes to using them in
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optimization algorithms, which requires hundreds or thousands of
evaluations of the complete horn design.

Therefore, one motivational factor for the work described in this
thesis is to develop methods that make faster and more efficient simu-
lation of horn speakers possible. The Mode Matching Method (MMM),
first implemented by Alfredson [36] and Roure [37], appeared to be
a good candidate, and I familiarized myself with the method during
the work on my Master’s thesis [38].

The use of the method, as presented in the literature, had clearly
been limited to horns mounted in infinite baffles. Since this is rarely
the case in practice, another motivational factor was to extend the
applicability of this method to other cases, like free standing horns
and horns near reflecting boundaries.

Placing horns near corners is an old technique for reducing the size
of the horn, by utilizing the image sources created by the walls [39].
But nothing appeared to have been done on investigating how the
distance to the walls would effect the performance of the horn beyond
the classical Waterhouse curves [40]. Another question was how a
horn would perform when radiating into a room. These questions
provided another motivational factor.

The Mode Matching Method has some restrictions on geometry. To
be truly useful in more general horn speaker modeling, the ability to
couple the method with other numerical methods that could be used
in the more complex parts of the horn, had to be investigated.

As the work progressed, new questions appeared: extension to
new geometries, application of the Mode Matching Method to loud-
speaker cones and room acoustics, simulation of folds in horns, and
the inclusion of geometrical acoustics for high frequency modeling.
Some of the questions have been answered, the rest will be discussed
under Future Work in Chapter 13.

Throughout the work, the main motivation has been to extend the
toolbox of the horn designer with efficient tools that can easily be
applied to a variety of different cases. The practical aspects of the
methods have been very important. Elegant methods that are imprac-
tical to use are of little value.

1.4 scope

A sketch of a typical horn loudspeaker is shown in Figure 1. A horn
driver is connected to the throat of the horn, and the mouth of the
horn radiates into the surrounding environment. The acoustical con-
ditions outside the horn influences the radiated pressure and the ra-
diation impedance, Zrad, at the horn mouth. The shape of the horn
determines its directivity, and how the radiation impedance is trans-
formed into the throat impedance, Zth, seen by the driver.
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HornDriver
Surrounding
environment

Zth Zrad

Figure 1: A horn loudspeaker.

The work presented in this thesis focuses mainly on the horn and
the surrounding environment. The properties of the driver is to a
large degree separated from the properties of the horn [41, 7]. There-
fore it makes sense to leave out the driver modeling from this study,
but instead make room for exciting the horn with an arbitrary sound
field. This way, the effects of the driver can be taken into account at a
later stage.

Some work has, however, been done to include the driver: the ba-
sic MMM has been extended to cases where the entire structure vi-
brates, and it is therefore possible to take the geometry of the driver
diaphragm shape into account. Structural and electromechanical cou-
pling in the driver is considered beyond the scope of this work, and
is not included.

Nonlinear distortion in the horn is a complex task even in simple,
one-dimensional horn models [42]. To extend distortion modeling to
the MMM is considered beyond the scope of this work. Viscous and
thermal losses, often of great interest in music instruments, have also
been neglected, since they play a relative minor part in the perfor-
mance of horn loudspeakers.

Another task that is considered to be outside the scope of this work
is the investigation of the subjective perception of horn based sound
reproduction. To properly investigate this side of horn loudspeak-
ers would require large, and presumably expensive, subjective tests.
Some work has also already been done on this topic [43].

1.5 this thesis

Since there are relatively many chapters in this thesis, it has been
divided into four parts, which are described below.

part i is the introductory part, and is divided into three chapters,
the first of which is this one. In addition come the following
two chapters:
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chapter 2 gives the historical background and context of
horn loudspeakers. The chapter is somewhat more de-
tailed than what one would usually find in a thesis about
numerical simulation, but this is due to my great interest
in the history of audio technology.

chapter 3 gives an overview of methods used for simulation
of horns and ducts.

part ii is devoted to the Mode Matching Method, which is the main
method that is used in this text.

chapter 4 presents the theoretical foundation for the MMM,
and contains all the equations necessary for implementing
the discrete version of the method. This chapter is mostly
based on the work of others. The coupling matrices for
asymmetric rectangular ducts were derived in my Mas-
ter’s thesis [38], and is not part of this work. The coupling
matrices for annular ducts were derived by Karen Bras-
tad Evensen in her Master’s thesis [44] under my supervi-
sion. My contribution in this chapter is the rearrangement
of the basic MMM algorithm to reduce memory require-
ments, first presented in [45].

chapter 5 covers some general aspects of modal radiation
from horns. New in this chapter is the discussion of modal
radiation impedance matrix and its relation to the modal
reflectance matrix. Here it is shown how the higher or-
der terms in the reflectance matrix directly influences the
smoothness of the plane wave radiation impedance. The
computation of the radiated pressure is treated, including
the far field radiation from horns based directly on the
mouth velocity mode amplitudes. The treatment of asym-
metric rectangular horns in this respect is new. A rather
large part of this chapter is devoted to efficient computa-
tion of the radiation impedance for ducts ending in an in-
finite baffle. Various methods are discussed and compared.
This work is new.

in chapter 6 , two methods are presented for computing the
response of an unbaffled horn. The first method is appli-
cable to axisymmetric horns, and is based on the work of
Anna Snakowska on unflanged circular ducts (see for in-
stance [46, 47, 48]). Her methods and results have been
adopted, as far as possible, to the problem of unflanged
circular horns. The contribution of this work is to inte-
grate Snakowska’s method with the MMM, and compar-
ing the results with a BEM simulation. This work is not
complete. The second method is based on the edge diffrac-
tion method of Peter Svensson [49, 50], and is based on
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the work presented in [45]. The contribution of this work
is to use Svensson’s method to compute the contribution
of the diffracted field to the modal radiation impedance
at the horn mouth and to the radiated pressure. The total
impedance and radiated pressure is found as a sum of the
two components; the diffraction component and the direct
sound.

chapter 7 covers the problem of horns placed near reflect-
ing boundaries, like walls. The material in this chapter is
based on the work presented at the 139th AES Conven-
tion [51]. The contribution of this work is to develop a
new method for computing the multimodal mutual radi-
ation impedance matrix using matrix multiplication, and
also showing the effect of horn-to-wall distance on throat
impedance. This distance has a rather greater effect on
horns than on direct radiators, and this appears to not have
been investigated before.

chapter 8 is a continuation of Chapter 7 in that more walls
are added; in fact a complete room. The problem of a horn
placed inside the room is not solved, but the related prob-
lem of a horn mounted in the wall of a room is investigated
using two different methods. The contribution of this work
is to present analytical expressions for the modal radiation
impedance seen by a rectangular distributed radiator in
the wall of a room. A part of this work has been published
in [52].

chapter 9 gives experimental verification of the mode match-
ing methods for several of the cases presented previously
in this part: half-space, full space and fractional space. This
chapter is based on measurements in the anechoic cham-
ber at NTNU, and the material has previously been pre-
sented in [45] and [51]. The contribution in this chapter is
the verification of the accuracy of the MMM for horns not
mounted in an infinite baffle, by the addition of diffraction
or reflections.

in part iii, the MMM is extended in several ways, to make it a
more flexible and versatile tool in loudspeaker simulation ap-
plications.

chapter 10 couples MMM to a BEM mesh. Methods for us-
ing the BEM mesh as a load or boundary condition for
MMM, and MMM as a boundary condition for BEM, are
given. This work has been presented at the 139th AES Con-
vention [53]. The contribution of this work is to find sim-
ple ways of coupling the two methods, and expressing this
coupling in a straight-forward matrix formulation.
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in chapter 11 , the MMM is extended to include velocity on
the walls of the “horn”, as well as on the throat surface.
This work has been published in [54]. The contribution of
this work is to present a straightforward method of solv-
ing the problem of concave radiators, in contrast to the
overly complicated methods previously published [55, 56],
making the MMM able to simulate the radiation from dif-
ferently shaped loudspeaker cones. With the inclusion of
a source inside the domain, which is possible with this
method, reflectors can also be simulated.

in chapter 12 , the MMM is applied to the simulation of non-
shoebox shaped rooms. The contribution of this work is the
application of MMM to room acoustics as an alternative to
FEM and BEM for finding the resonance frequencies and
transfer function of a non-shoebox shaped room. The chap-
ter is based on the work described in [57].

part iv gives a summary and conclusion of the work presented in
this thesis, with suggestions for further work.

the appendices contain the following chapters:

appendix A compares the one-dimensional plane wave solu-
tion for the throat impedance of a finite exponential horn
to the results obtained using MMM, in order to show that
there is no “optimum” mouth size for an exponential horn.

appendix B lists the expressions for the polynomial coeffi-
cients for the low frequency modal radiation resistance of
a circular duct ending in an infinite baffle.

appendix C presents a summary of the theory of the un-
flanged circular duct, including the numerical methods to
compute the special functions involved.

appendix D describes the model horn used in the experiments
in Chapter 9.

appendix E is a summary of the equations derived for the ra-
diation impedance and radiated pressure for a multimodal
distributed source placed inside a hard-walled room.





2
H I S T O R I C A L B A C K G R O U N D

Texts on horn loudspeakers usually start with a short historical intro-
duction, often stating that horns have been in use for a very long time,
then mentioning Webster and the need for high efficiency in earlier
times, before moving on to introducing the background of the prob-
lem at hand. This often leaves the reader with the impression (unless
he or she has been active in the field for some time) that horn loud-
speaker technology has been in a rather primitive state until quite
recently. Also common in technical texts is to present the technology
in question as a given entity, as if its origin and its originators were
not worthy of study.

So while the main focus of this thesis is simulation models for horn
loudspeakers, this chapter will give an overview of the development
of horn theory and horn loudspeakers, with extra emphasis on the
work done during the early sound film era.

2.1 early use of horns

The horn for sound production has been in use since ancient times,
and both empirical and approximate methods for designing them
have been available. The horn used for sound amplification1 might
also be ancient, especially if we regard cupping one’s hands in front
of the mouth when shouting as a form of horn.

However, the first scientific descriptions of using horns for some-
thing other than sound production, are found in the 17th century, and
I will in the following give a short summary of the accounts found in
Miller [58] and Hunt [59].

Athanasius Kircher (1602-1680), a German learned Jesuit, devel-
oped the speaking tube, and also claims to have invented the speak-
ing trumpet. In his work Musurgia Universalis, a richly illustrated
encyclopedic book of 1100 pages, he also gives dimensions for a
parabolic speaking trumpet, see Figure 2b, and an exponential ear
trumpet. The material was also published in Phonurgia Nova in 1673,
expanding on the original text. The republication of this material,
which seems to have been done in haste, was perhaps to press his
claim of discovering the loud-speaking trumpet before Morland (see
below).

1 Although a horn does not amplify sound, but rather makes it possible for the source
to radiate sound more efficiently, in addition to restricting the solid angle into which
the sound radiates.

13
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(a) Athanasius Kircher
(1602-1680) (Wikimedia
Commons).

(b) Kircher’s horn, 1650
(from Miller [58]).

Figure 2: Kircher and his horn.

Kircher’s claim is based on a conical horn, about 16 feet long and
made from iron plates, extending from a 2 inch diameter throat in
his office to a 2-foot mouth in an outside wall facing a courtyard. He
used is both as a megaphone, and for eavesdropping.

He also discussed the effect of giving various shapes to horns, but
his work did little to advance the art. He did, however, present vari-
ous uses for horns, for instance for broadcasting music from players
inside a room to dancers in the courtyard, see Figure 3, giving voice
to statues, and for eavesdropping. He also made a “portable” loud-
speaking trumpet nearly 10 feet long and 3 feet in diameter that was
used to summon 2200 people to a special church service from as far
away as four miles.

Another 17th century scientist that claims to have invented the
speaking trumpet, is Sir Samuel Morland of London. In 1671 or
1672 he published a 17–page brochure entitled Tuba Stentoro-Phonica,
where he describes, with illustrations, the design for a

“loud speaking trumpet, which may be used in a storm at sea,
in calm weather on a dark night, in case of fire, by a town be-
sieged, by the general of an army in giving order, by an overseer
of works, and in case a number of thieves and robbers attaque a
house that is lonely and far from neighbors.”

He concludes that

“the instrument must be enlarged by degrees and not too sud-
denly,”

and he refers to experiments he has done with a vessel of quicksilver
of the “same figure”, that confirmed this. But to find the exact shape,
he proposes as a problem for the learned philosophers.
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Figure 3: Broadcasting music from musicians in a room (Kircher, 1650, Wiki-
media Commons).

Morland’s first horn was a 32 inches long glass instrument, 11
inches in diameter, and later he progressed to a 21 feet horn with a
2-foot mouth. He also worked with a “parabolical concave” of pewter.
Morland appears to be the first to investigate the directivity of horns,
by moving both along the axis of the horn, and along a line perpen-
dicular to the axis.

In 1672, Cassegrain proposed that the speaking trumpet should
have a hyperbolic form. Sir John Conyers (1644-1719) suggested that The form of a

hyperbola, not to be
confused with
hyperbolic-
exponential
horns.

the shape should be a paraboloid. In 1678 he demonstrated a mod-
ified horn, and the drawings of the horn clearly show that this is a
form of a what is now called a re-entrant folded horn, with side feed.

Richard Helsham (1680-1738) gave the first demonstration of an
exponential horn. In analyzing the problem of the optimum shape of
the horn, he divided the air into thin slices perpendicular to the axis,
and looked at the transmission of motion from one to the next. He
concluded that the area of any slice should be the geometrical mean
of the two slices next to it, which is still a valid argument for the
exponential horn. He explains,

“From this reasoning they have been led to consider the best
form for such tubes, and have concluded that to be the best,
which is generated by the revolution of the logarithmic curve
round its axis, as in a tube of this form the elastic bodies will
increase in such a manner as most to increase the quantity of
motion.”
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2.1.1 Early Mathematical Analysis

The mathematical analysis of horns begins somewhat later in history,
and the early history of the horn equation is given in a paper by
Eisner [60], which forms the basis for this section. While Eisner wasWhere no references

are given in section
2.1.1, these can be

found in Eisner.

mainly concerned with the history of the equation itself, this text will
look more the history of the treatment of horns in connection with
sound reproduction.

The horn equation looks like this:

∂2 p
∂x

+

[
1
S

∂S
∂x

]
∂p
∂x
− 1

c2
∂2 p
∂t2 = 0, (1)

where S equals the cross-sectional area of the horn. Equations on
the form of Eq. (1) govern not only wave propagation in horns, but
also propagation in strings where the mass varies along its length,
and non-uniform transmission lines, for example. One would expect
Isaac Newton to have looked into the matter, but he only gave a qual-
itative remark about the speaking trumpet. John II Bernoulli gave a
differential equation for transverse vibrations in a string of linearly
varying diameter, but did not solve it. Daniel Bernoulli derived the
equation for sound propagation in a tube of varying cross section,
and solved it for the conical horn. His work was published in 1764,
but was probably performed in the 1740s. In the meantime, Lagrange
had published a better derivation (in 1760), and solved the equation
for a wedge, a cone, and the general Bessel horn. He also discussed
the problem of transverse vibrations in a non-uniform string, as did
d’Alembert, D. Bernoulli and Euler in the 1760s and 70s. Euler de-
rived and solved the equations for cylindrical and spherical sound
waves, and gave the dynamical equation for sound of finite ampli-
tude, in a fluid of varying density, contained in a tube of varying
cross section, including the effect of gravity. He also discussed so-
lutions for the case of infinitesimal amplitude, and gave a detailed
treatment of the cone and the hyperboloid (S ∝ x−2).

After all this work on the horn equation in the 18th century, little
happened until the 20th century. There are just a few exceptions: a
detailed treatment in 1839 by Duhamel of sound in cones and wedges,
without the restriction to small cross section, a treatment by George
Green of water waves in tapered channels in 1837, and work by von
Helmholtz in 1898 on short, non-cylindrical tubes smoothly joined to
cylindrical tubes. Also, a treatment of the conical horn was given by
Barton in 1908 [61].

2.1.2 Birth of Sound Reproduction

The invention of the telephone and the phonograph marks the begin-
ning of the era of the reproduction, and not merely the production,
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of sound. Space does not permit a detailed treatment of the history of
the telephone in this text. A rather detailed history of electroacoustics
up to about 1950 can be found in the excellent book by Frederick V.
Hunt [62], where he also covers in detail the telegraph and telephone.
Sufficient for the current text is a short summary.

Alexander Graham Bell is usually considered to be the inventor of
the telephone, but there were several others tinkering with similar
ideas several decades before him. Charles Bourseul, Antonio Meucci
and Johan Philipp Reis all had ideas, and some of them were put
into (more or less successful) practice, in the 1850s and 60s. Then two
inventors with significantly improved, successful telephone devices
made it to the patent office on the same day, February 14, 1876. These
two inventors were Elisha Gray (1835-1901) and A. G. Bell (1847-1922).
Of these two, Bell was awarded the patent for the telephone, a patent
which was upheld in several court cases. With the invention of the
telephone, the foundation of modern communication technology was
laid. Bell’s company grew quickly, and today’s American Telegraph
and Telephone Company, AT&T, has evolved in direct line from the
first gentlemen’s agreement between Alexander Graham Bell and his
investors, through several iterations. The corporate history of the Bell
System and AT&T is covered in detail by others, see for instance Fa-
gen [63], and will not be repeated here.

When Thomas A. Edison in 1877 managed to record and repro-
duce sound with his phonograph, the foundation was laid for musical
home entertainment for the masses.

Edison’s device was purely mechanical, as there were no amplify-
ing devices available that could be used, no electrical pick-ups, and
no loudspeakers. The only way to get enough volume was to attach
a horn to the needle and diaphragm. As the little work that had been
done on horn theory was largely unknown or forgotten by this time,
progress was by trial and error. Figure 4 shows a few examples of Vic-
tor gramophones from the years 1900–1906. Reproduction was rather
poor by today’s standard, but that didn’t stop the public from buying
records.

2.2 amplification and early loudspeakers

During the first decade or two of the 20th century, gramophones and
phonographs were sold by the thousands, all employing some form
of horn. Horns were also used to create one of the first loudspeakers Actually, a few

gramophones also
employed direct
radiating
diaphragms,
actuated by a lever
from the needle.

worthy of the name. Peter L. Jensen and Edwin S. Pridham had been
developing a moving coil telephone receiver, Figure 5, but it was too
heavy and bulky for the telephone companies [64]. The moving coil
principle was not new, it had been suggested as early as 1874 by Ernst
Werner Siemens [65], but it is probably Jensen and Pridham that first
used the principle in a device actually performing loudspeaker duty.
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Figure 4: The evolution of Victor gramophones. Note the exponential-like
horn from 1906. (Image courtesy of Hagley Museum.)

In 1914 the uncle of Jensen’s wife suggested attaching a phonograph
horn to their moving coil receiver, and the result was a quite good
loudspeaker, which they called “Magna Vox” (Latin for “great voice”).
The first public demonstration of the Magna Vox loudspeaker was
made in the Golden Gate Park on December 10, 1915. Jensen and
Pridham formed the Magnavox Company in 1917.

Means for amplification is needed to turn any loudspeaker into a
practical device. The large inherent gain of the carbon microphone
provided some system gain, but it was noisy and had a limited
frequency response. In 1907 Lee DeForest patented the first three-
electrode vacuum tube (the "Audion"), and in 1912, he offered AT&T
the rights. The device was still crude and too weak to be directly
employed in telephone service, but Harold D. Arnold of the West-
ern Electric Engineering Department grasped the underlying physics,
and began work to develop the Audion into a practical device. Af-
ter he had demonstrated the promise of the improved Audion, AT&T
bought the patent from deForest. By the end of 1914, vacuum tube
amplifiers had been successfully tested in repeater service between
New York and San Francisco. Magnavox obtained the right to use the
DeForest Audion in 1915, but not the AT&T tube.

In 1919, Magnavox loudspeakers were used to amplify a speech by
Woodrow Wilson in San Diego, and were also used in 1920 political
conventions, in the campaigns of James Cox and Warren Harding. By
this time the AT&T had developed their public address systems to a
point where they dominated the market, and the Magnavox company
backed out of the public address system business, instead directing



2.3 theory again 19

Figure 5: Patent figure of the Pridham/Jensen receiver, from US patent
1,448,279.

its efforts at producing loudspeakers for the radio and phonograph
industries.

With vacuum tube amplifiers available, Western Electric, the man-
ufacturing arm of AT&T, soon applied the new amplification tech-
nology to problems other than telephone repeaters. One of the first
applications were public address systems. I. B. Crandall and others
had experimental loudspeakers in use in 1914-1915 [66]. The develop-
ment proceeded to the stage of large scale arena tests before the work
had to be stopped due to World War I [67]. During the war, the W.
E. engineers worked on underwater detection and transmission, and
one of the results of this was a greatly improved loudspeaker unit,
the 196-W armature transducer.

The first major demonstrations of this system were at the 1920 pres-
idential conventions, and at the inauguration of President Harding in
March 1921. But it was perhaps Harding’s dedication of the Tomb of
the Unknown Soldier on November 11, 1921, that was the major boost
for this system. Harding’s speech was transmitted from the Arlington
National Cemetery over telephone lines to loudspeakers in New York
and San Francisco. By the end of 1922, the W.E. public address system
was a standard.

2.3 theory again

As mentioned, wave propagation in ducts and horns had been treated
to a degree in the 18th and 19th century, but the publications were of
highly academic nature, and inaccessible to the practical workers in
the field. No one seemed to be interested in treating sound propaga-
tion in horns until Lord Rayleigh in 1916 [34], and Arthur Gordon
Webster in 1919 [35] published their papers. Webster’s paper was ac-
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(a) John William Strutt, 3rd
Baron Rayleigh (1843-1919).

(b) Arthur Gordon Webster (1863-
1923).

Figure 6: Rayleigh and Webster (Wikimedia Commons).

tually read at a meeting of the American Physical Society at Philadel-
phia in December, 1914, but was held back due to development of
experimental apparatus.

When Rayleigh and Webster rediscovered the horn equation, it
came as a very timely contribution to the art. Webster’s equations
provided engineers with the ability to compute the loading perfor-
mance of finite horns, given the radiation impedance at the mouth.
Coupled with the knowledge of how the electrical and mechanical
parts of the transducer mechanism were connected, as provided by
A. E. Kennelly and G. W. Pierce [68], and the analogy between elec-
trical and mechanical impedances as described by W. S. Franklin [69],
performance of the entire electro-mechano-acoustical system could
be computed. Still, little appeared in the literature on the subject the
first years after the publications. George Walter Stewart used Web-
ster’s equations in his studies of the performance of conical horns in
1920 [70], and Webster mentions that Stewart had used his then un-
published theory in the design of horns during the First World War.
But perhaps the best known paper dealing with horn theory is the
classical paper by Clinton R. Hanna and Joseph Slepian in 1924 [71].
They both worked for the Westinghouse Electrical and Manufacturing
Co., and their paper has a good discussion of horn theory, especially
exponential horns, mouth size, and flare rate, and how to match the
horn to a loudspeaker to obtain the desired response.

In the discussion after the presentation of the paper, Prof. V. Kara-
petoff gives a very fitting remark about the state of theory and prac-
tice in loudspeaker design at the time:

This problem of horns is a ’house-on-fire’ problem, in the sense
that loud speakers are now being manufactured by the thousand,
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(a) Paul B. Flanders (b) Donald A. Quarles

Figure 7: Flanders and Quarles, who did the mathematical analysis of horns
at Western Electric. (Images courtesy of the AT&T Archives and
History Center.)

and while they are being manufactured and sold, we are trying
to find out their fundamental theory.

It is perhaps less known that similar work on the theory of horns
and horn loudspeakers was undertaken by the Western Electric Engi-
neering Department, and patents by Henry C. Harrison in 1923 [72]
and Paul B. Flanders in 1924 [73] show a clear understanding of the
exponential horn and its mouth termination. The patents are good
summaries of basic horn theory, and also show that it was known
that the wave fronts in the horn are not plane but curved. A method
to design a horn based on curved wave fronts with exponentially
increasing area is described. It was Harrison who introduced the ex-
ponential horn to Western Electric [74], but the mathematical analysis
was done by Flanders and Donald A. Quarles.

The analysis by Flanders and Quarles was published as two inter-
nal memoranda in 1924 [75, 76], and it is clear that this material was
not intended to be published: these memoranda are filed in an AT&T
file case marked “strictly confidential”. Part of the theory (for the ex-
ponential horn only) was, however, published in the book “Theory of
Vibrating Systems and Sound” by Irving B. Crandall [77] in 1926. The
analysis is interesting, in that it differs from the analysis of Rayleigh
and Webster, and seems to have been derived independently of their
work. Flanders’ memoranda also computed the response character-
istics of a Western Electric horn speaker. These calculations used a
lumped parameter model for the transducer and throat chamber, and
the one-dimensional analytical solution for the horn. The mouth radi-
ation impedance was that of a piston in an infinite baffle.

The 1920s saw much development in horn loudspeakers, perhaps
mostly practical, but some theoretical work was also done. The work
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of Hanna and Slepian is already mentioned. The same year, in 1924,
Alfred N. Goldsmith and John P. Minton, both of Radio Corporation
of America (RCA), published a long paper entitled “The Performance
and Theory of Loudspeaker Horns” [78], in which they presented
extensive measurements on various types of horns; 16 conical horns
of various sizes and shapes were built and tested. Most of the horns
were rather narrow, and appear to be quite resonant. The measure-
ment results were presented as pressure responses on a linear scale,
which makes it hard to judge the actual performance of the horns for
someone used to a decibel level scale.

They also gave a detailed mathematical analysis based on Webster’s
work for conical, exponential and parabolic horns. The analysis did,
however, result in some peculiar conclusions. First, their comparison
of conical and exponential horns led to the conclusion that conical
horns are better than exponential horns at both low and high frequen-
cies. The sharp cutoff of the exponential horn does of course mean
that an equivalent conical horn will provide more output below the
cutoff frequency of the exponential horn. At high frequencies, how-
ever, they should converge to the same output2. This is, however, not
the conclusion of Goldsmith and Minton, and the reason is that they
assume the conical horn to have a point source at its vertex. This leads
to a pressure that increases proportionally with frequency for a con-
stant volume velocity, and will at some point produce more output
than the exponential horn, where a source of finite size was assumed.
With a realistic source for the conical horn, the conclusion would have
been different.

Their second erroneous conclusion is that pressure and velocity in
a parabolic horn are 90° out of phase for all frequencies, and that
the horn does not produce any output. This is due to selecting the
standing wave solution instead of the traveling wave solution to the
horn equation for parabolic horns.

In 1925, Hoersch investigated the existence of “non-radial vibra-
tions”, i.e. higher order modes, in conical horns [79]. This is perhaps
the first treatment of this phenomenon in horns. Little was, however,
done on the subject for years. Hoersch’s interest in the more complex
behavior of horns came from a desire to better understand the “opti-
mum angle” for receiving conical horns that Stewart had found in his
investigations [70, 80, 81]. Conical horns as receivers of sound was in
extensive use at the time for recording purposes, but this was soon to
change, as will be covered in the next section.

Empirical data on horns of various kinds, including the effect of
curving, was provided in 1926 by S. T. Williams, chief engineer at the
Victor Talking Machine Company [82].

2 This analysis is based on the horn equation, and real life behavior is somewhat more
complex.
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(a) Percy Wilson (b) Paul G. A. H. Voigt (Image
courtesy of the Lowther Voigt
Museum).

Figure 8: Wilson and Voigt, two British contributors to the science of horn
loudspeakers.

In England, Percy Wilson became interested in gramophones at this
time [83, 84], and thanks to his two articles on the needle tracking
alignment problem in The Gramophone, he became part of the Expert
Committee of that publication. In 1925-26, he applied his mathemati-
cal mind to the problem of sound propagation in horns and extended
Rayleigh’s analysis to exponential horns, unaware of Webster’s work.
Wilson also recognized the fact that wave fronts in an exponential
horn cannot be plane, as is usually assumed in the theory, and that it
is the wave front areas, not the cross section, that should increase ex-
ponentially. He therefore proceeded to derive a modified exponential
horn, the theory of which is presented in the book Modern Gramo-
phones and Electrical Reproducers [85].

Paul Gustavus Adolphus Helmuth Voigt, a British engineer, also
made contributions to horn technology at the time. While he was
a few months too late to patent the moving coil loudspeaker (that
patent went to Rice and Kellogg [86, 87, 88]), he contributed to the
art of horn speakers by inventing the tractrix horn [89]. This horn is
formed by a revolution of the tractrix curve, and the mouth ends with
a tangent that is normal to the axis. Voigt’s reason for choosing this
kind of horn profile was not based on mathematical reasoning; he
admitted himself that he was “rotten at math”. It was rather based on
intuitive and geometrical reasoning, with a desire to produce a gentle
transition from the horn throat to a 90° termination at the mouth.

The existence of a cutoff frequency in exponential horns led some
to question the validity of Webster’s horn theory. One of these were
Stuart Ballantine who in 1927 analyzed horns of the general shape
S ∝ xn [90]. These horns are called Bessel horns due to the appearance
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Figure 9: The catenoidal horn, described in Norton’s patent 1,792,655.

of Bessel functions in the solution. These horns do not show the cutoff
phenomenon of exponential horns. But it was subsequently shown by
Hanna [91] that if n goes to infinity, the horn becomes an exponential
horn.

Edward L. Norton of the Bell Telephone Laboratories (BTL) made
a little recognized contribution to the technology of horn loud-
speakers in his 1929 US patent 1,792,655 [92], where he introduced
the catenoidal horn. This was later shown to be a member of the
hyperbolic-exponential horn family introduced by Salmon [93]. The
catenoidal horn is special in that the infinite horn does not have any
reactance above cutoff. Norton also did an analysis of annular slit
phase plugs, and correctly identified the best placement of the annu-
lus for a single-slit phase plug. Both these contributions have been
largely forgotten.

In 1930, G. W. Stewart and and Robert Bruce Lindsay [94] pub-
lished a much-needed textbook [94] on acoustics with a large chapter
on horn theory. With this publication, Crandall’s book, and conse-
quently the horn theory of Flanders and Quarles, lost its significance,
although it was deeply founded in practical loudspeaker research.
Harry F. Olson, one of Stewart’s students, used the work of Stewart
and Webster, and thanks to his large number of publications, this
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approach dominated the field for many decades. More details on Ol-
son’s contributions to the science will be given in Section 2.5.

Some work on horn loudspeakers was also done in Germany at
this time by Heinrich Stenzel at AEG [95], who treated Bessel horns
of even order (with a series expansion for the throat resistance and
reactance components), and exponential horns. The work at AEG was
part of the development of the Klangfilm-Tobis sound film system
[96].

It was clear from the beginning (Webster mentions it himself) that
the horn theory was only approximate. It is a one-dimensional ap-
proximation, which means that it cannot predict the directivity of
horns, a serious limitation of the method. In an effort to shed some
more light on what actually happens inside a horn, as a first step to-
wards a more complete theory, William M. Hall, in his M.Sc. thesis at
MIT, built a small condenser microphone and made measurements of
the sound field inside an exponential and a conical horn [97, 98]. His
hopes for an improved theory of horns were not fulfilled, though.

That the horn equation method could not predict directivity was
well known in the early days of horn technology; at least no one tried
to use it as a basis for directivity predictions. There actually is no start-
ing point for building a directivity model from a one-dimensional
horn equation. But since directivity early on became an important is-
sue in high quality cinema sound systems, a way to design horns with
the desired characteristics had to be found. Empirical data was used
in the early days. For instance, Olson of RCA built and tested several
conical and exponential horns, where size and shape were systemat-
ically varied [99]. Measurements on scale models of horns were also
used [100]. Kozi Sato seems to be the first to have investigated the
directivity of horns mathematically with a more realistic model than
the equivalent piston [101, 102], by using the radiation from a conical
horn in a sphere. Wolff and Malter3 [103] investigated the directivity
of lines and arcs of point sources, and applied the method to horns.

Although mostly interested in direct radiating loudspeakers, Nor-
man William McLachlan gave a detailed treatment of horn loudspeak-
ers in his 1934 book [104], including a good discussion on mouth ra-
diation impedance models and mouth size. He also gave an outline
of how to calculate distortion in horns, a problem that was starting to
receive attention at the time because of the increased power and fre-
quency range of loudspeakers. Distortion was also investigated by
Jenkins, Thuras and O’Neil at BTL in 1935 [105], and McLachlan
(with Goldstein) published his own completed treatment the same
year [106]. He also contributed to the theory of Bessel horns [107],
and investigated the transient behavior of horns (with McKay) [108].

An important, but for many years largely forgotten, contribution to
the theory of horns, was the study by John Edwin Freehafer of the hy-

3 RCA and RCA Photophone
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perbolic horn (presently better know as the oblate spheroidal waveg-
uide), for which there is an analytical solution to the wave equation.
In his Ph.D. thesis at MIT (1937) [109] he also shows the existence
of higher order modes, and plots equipotential curves for two of the
radial modes. His results were presented in a paper a few years later
[110].

2.4 talking pictures , gramophones and at&t

The commercialization of talking motion pictures, or sound film, re-
sulted in lot of research into high quality sound reproduction. Let us
backtrack a little, and look at how this revolution in entertainment
came about, and what it meant for the loudspeaker industry.

The idea of combining sound and moving pictures (movies) is al-
most as old as film itself [111]. Edison’s invention of the phonograph
in 1877, which provided means for recording and reproducing sound,
and his Kinetograph and Kinetoscope for recording and reproducing
movies, resulted in two large industries: the record industry and the
film industry. It did not take much imagination to come up with the
idea to combine the two, which Edison did with his Kinetophone in
1895. But there were two big problems with this system, and with
almost all the systems that were unsuccessfully tried in the years to
follow: synchronization and volume. Without accurate synchroniza-
tion, sound film was not more than a novelty that the public quickly
lost interest in, and without means for amplification, including good
microphones and loudspeakers, only the first few rows could under-
stand the dialogue. Several systems were tried, and failed, convincing
the film industry that sound film would never, could never, work.

Sound recording was needed at the Western Electric Engineering
Department for quite other reasons than the commercial exploitation
of music reproduction or sound films. From about 1913, huge efforts
were being made to analyze speech and hearing in order to enhance
the quality of the telephone networks in the areas where it mattered
most, and the ability to record speech for later reproduction and anal-
ysis was crucial. While Edison’s Phonograph made this possible, the
quality of the acousto-mechanical system was not good enough for
research purposes, and would have to be re-engineered completely.
Another option was of course sound-on-film. After WW I, work be-
gan in earnest, and two groups were set down: one, headed by I. B.
Crandall, and including E. C. Wente and D. MacKenzie, should look
into sound-on-film, while the other, headed by J. P. Maxfield, should
work on disc recording.

By mid-1922, Maxfield’s group had a workable system for electri-
cal disc recording, using Wente’s condenser microphone, Arnold’s
amplifiers, and a rubber line recorder developed by Harrison and
Norton [112]. Maxfield and Harrison also improved the mechanical
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Figure 10: The Orthophonic Victrola, showing the internal contruction of the
folded horn (Image courtesy of Hagley Museum).

playback system to a high state of perfection using electrical filter the-
ory applied to the mechano-acoustical system. E. B. Craft encouraged
them to develop their prototype into a commercially workable sys-
tem, which took two more years. In 1921, an effort had been made to
commercialize an early version of the rubber line recorder, through
the short-lived company Phonic Laboratory, but this had not been
successful [62]. Three years later, however, things had changed. Ra-
dio had become a more dangerous competitor to the record industry,
and the Columbia Phonograph Company obtained a license for using
the rubber line recorder late 1924 or early 1925. Later, but in time for
the 1925 Christmas trade, Victor Talking Machine Company obtained
licenses for both the rubber line recorder and the improved mechan-
ical playback system, which were marketed under the trade name
Orthophonic Victrola.

In 1922, a set of records for a running commentary for the film
The Audion, a film explaining the workings of the vacuum tube, were
made, and a crude system of synchronization devised, consisting of
two revolution counters that the projectionist would keep reading
alike by adjusting the speed of the film projector [113, 114]. Further
work was done on synchronization, and Craft got clearance from the
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management to try to sell the system to the film industry. Due to the
history of (often expensive) sound film flops over the last 25-30 years,
no one was interested, apart from the Warner brothers.

On April 20, 1926, after enough of the initial problems were over-
come, Warner and AT&T signed a contract giving the Vitaphone
Corp., a new subsidiary of W. E., an exclusive license to produce
sound films using the W. E. equipment, and to equip theaters with W.
E. reproduction equipment. The idea was that other producers would
take out sub-licenses from Vitaphone. W. E.’s management was impa-
tient with the Warners’ sub-licensing efforts, however, and January 1,
1927, W. E. formed a new subsidiary to take care of their sound pic-
ture and other non-telephone business, Electrical Research Products
Inc. (ERPI). ERPI’s president, John E. Otterson, pressed Warner Bros.
to renegotiate the contract, giving ERPI the rights to theater installa-
tions and relations with other producers, and making Warner Bros. a
non-exclusive licensee of ERPI.

The industry was still largely uninterested, but the simultaneous
development of the Fox Movietone sound-on-film meant that it was
time to either “go talkie” or see Warner and Fox run off with the busi-
ness. In February, 1927, the “Big Five”, Paramount Famous–Lasky,
Loew’s (MGM), First National, Universal and the Producers Distribut-
ing Corporation, agreed to study the sound question for one year, and
then decide on a single system to avoid the disastrous consequences
of incompatible systems. In January 1927, RCA had entered the scene,
offering a well-financed alternative in the RCA Photophone system.
At this time, ERPI offered a combination system, with both sound-
on-disk and sound-on-film. Early in 1928, ERPI was selected, partly
because they would take responsibility for equipment manufacture,
installations and maintenance. The contract was signed on May 11,
1928. It was now either “sound or sink”, and the question was not
“how much will it cost”, but “how fast can it be done” [115].

Bell Telephone Laboratories, formed in 1925 as a successor of the
W. E. Eng. Dept., did the main part of the research on sound record-
ing and reproduction, including the loudspeakers for the Vitaphone
sound system, as detailed in [116]. This included of course the horns,
but also important contributions like the W. E. 555-W horn compres-
sion driver, and later the 596-A horn tweeter. Cooperation with the
famous director Leopold Stokowski resulted in the Auditory Perspec-
tive experiments in 1933, where the sound of an orchestra was trans-
mitted in three-channel stereo and with full volume- and frequency
range, from the ball room of the Academy of Music in Philadelphia, to
the auditorium in the Washington Constitution Hall [117]. The exper-
iment resulted in the development of perhaps the best loudspeaker
system available at the time [1], see Figure 11, and the multicellular
horns and high frequency compression drivers used in this system
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Figure 11: Albert L. Thuras (left) and Edward C. Wente, of BTL, with one
of the loudspeakers that were used for the Auditory Perspective
demonstrations (Image courtesy of the AT&T Archives and His-
tory Center).

was adopted by the industry [118] and remained standard for several
decades.

In 1937, the servicing and installation division of ERPI was sold to
its employees and became the Altec Service Corporation. W. E. still
remained on the recording side of the business for several years.

2.5 rca photophone and h . f . olson’s contributions

The RCA Photophone sound system was originally based on direct
radiating full-range cone loudspeakers of the Rice-Kellogg type [88,
119], set in two columns, one on each side of the stage. This system
was satisfactory for music and sound effects, but less so for speech,
due to the reverberation. Large throat horns using cone drivers were
developed by John D. Seabert (then at Westinghouse) in 1929, and
these were called directional baffles to distinguish them from the long
small-throat horns, and to emphasise that the primary function of
these devices was directivity control, not acoustical loading [120].

In 1928, Harry F. Olson (1901-1982) joined the RCA Laboratories
in New York City, and started working with Irwing Wolff on loud-
speakers and microphones. Olson had B.E., M.Sc., Ph.D. and E.E. de-
grees from the University of Iowa, where he had studied under G. W.
Stewart. His first contribution to horn loudspeakers was an analysis
and design of new MI-477 directional baffles in 1930 [122, 123]. This
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(a) Harry Ferdinand Olson (Im-
age courtesy of the ethw.org).

(b) Frank Massa (Reproduced
from [121], with the permis-
sion of The Acoustical Society
of America).

Figure 12: Olson and Massa, RCA.

is probably the first published work where a complete analysis of a
horn loudspeaker has been made, including the driver parameters
and the effect of a finite horn, and the resulting efficiency computed.
As mentioned in Section 2.3, similar work had been done at W.E. in
1924, but this had not been published.

In 1929, RCA bought the Victor Talking Machine Company, and
Frank Massa (1906-1990) joined the team. Together he and Olson
made many contributions to the loudspeaker art, including the pub-
lication of the book Applied Acoustics in 1934 [124]. The horn theory
in this book is basically a restatement of the theory in [122], in addi-
tion to comparisons of the throat impedance characteristics of infinite
horns. Some of the early work of Olson and Massa was on improv-
ing the driving units of the Photophone equipment, by for instance
introducing corrugations in the cone [125].

As the RCA High Fidelity range of cinema loudspeakers was intro-
duced, a folded low frequency horn was designed to extend the low
frequency end of the spectrum [126]. This horn included the interest-
ing feature of a Helmholtz resonator near the throat, tuned to 170 Hz,
to provide a sharp acoustic roll-off above the intended 35-125 Hz pass
band.

Olson and Massa also worked on compound horns [127, 128],
where a single driver is loaded on the rear side by a bass horn, and
on the front side by a small high-frequency horn, Figure 13. Com-
pound horns were also designed for cinema use [129], and a series
of compound horns were designed and tested for use with high qual-
ity radio receivers [130], but the extended frequency range of these
horns did not give the desired advantage due to noise and distortion
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Figure 13: Compound horn by Olson and Massa (Image courtesy of Hagley
Museum).

in the radio channel [131]. The work did, however, result in at least
one commercial product [132].

It was during this time in the mid-1930s, that Olson did most of his
work on horns. Some of it was published in Applied Acoustics4, and
some in RCA technical reports [133, 134]. Two papers in RCA Review
in 1937 summed up much of the work done until then [135, 99].

These papers include both theoretical work and results from prac-
tical investigations5. Perhaps of special interest are the investigations
of the directivity characteristics of various conical and exponential
horns, where the size and shape was systematically varied, Figure 14.
This was data that was much needed for horn designers, since no
good model for horn directivity existed. Multicellular horns were also
investigated, and a method to predict the directivity of such horns
presented.

For maximum efficiency at low frequencies, a horn loudspeaker
should have a large throat. As the mass reactance of the diaphragm
increases toward higher frequencies, the throat area must be small in
order to maintain the efficiency, but this reduces the low frequency

4 The book, not the journal.
5 Although some claim that Olson was known “to just draw in the data

curves” (see for instance http://www.diyaudio.com/forums/multi-way/

103872-geddes-waveguides-613.html#post3676299), there is no support for
this in his notes or in the lab reports. While the resolution and numerical accuracy
is far lower than what we are accustomed to today, there is no doubt that there is a
large amount of experimental work behind what he published.
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Figure 14: Page from Olson’s note book #2158 [130], showing sketches of
the first horns to be tried in the investigation of directional char-
acteristics. The page is undated, but judging from the dates on
the previous and following pages, it was written between August
21, 1935 and April 6, 1936.
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efficiency. Therefore, the effective throat area should change with fre-
quency. In addition, distortion in the horn increases with the ratio
of operating frequency to cut-off frequency, and with the power per
area at the throat, so a small throat horn horn with a low cutoff will
have high distortion. The initial flare should therefore be rapid. The
idea of combining several exponential segments to achieve this, ap-
pears to have occurred to Olson in late 1936 [130, p. 74], and he
did the theoretical work early 1937. Using a series connection of ex-
ponential horns of different flares required calculation of the throat
impedance below the cutoff frequency of the horn, which seemingly
caused some head-scratching, judging from the correspondence be-
tween Olson and Stewart [136]. However, the theory was successfully
worked out [137, 138], and used in commercial products [139].

In 1940, the successor of Applied Acoustics, Elements of Acoustical En-
gineering, was published, with Olson as the only author. After World
War II, Olson published two revisions of his book in, 1947 [140] and
in 1957 [141].

2.6 other , and more recent, developments of horn the-
ory

In 1938, Vincent Salmon wrote his Ph.D. thesis at MIT on a general-
ized plane wave horn theory, with the purpose of simplifying Free-
hafer’s exact analysis of the hyperbolic horn, and also verifying his
predictions by measurements on a model horn [142]. Salmon subse-
quently developed his generalized theory further [143], and based
on this work a new family of horns was found, the hyperbolic-
exponential horns [144, 93]. This horn type was trademarked Hypex
horns by Jensen Mfg. Co., Salmon’s employer. Daniel J. Plach and
Philip B. Williams, also at Jensen, showed how a horn loudspeaker
system could be designed using Hypex horns, including how to res-
onate the driver suspension compliance with the air mass of the horn
to improve low frequency performance [145, 146], a method origi-
nally developed by Thuras of BTL and first used in the W. E. 555-W
compression driver [147].

Philip M. Morse introduced the concept of one-parameter horns in
his 1948 book Vibration and Sound [149], and presented a treatment of
the transient response of horns.

At this time, late 1940s to mid 1950s, almost everything a loud-
speaker designer needed to know was found in Olson’s book Elements
of Acoustical Engineering [140, 141] and in Leo L. Beranek’s Acoustics
[150]. In particular, the method of lumped parameter analysis cou-
pled with the horn equation was used to predict the power response
of horn speakers. Basically, the method is based on computing the
throat impedance Zth of the horn, which together with a lumped pa-
rameter representation of the transducer, makes it possible to com-
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(a) John Edwin Freehafer (Image
courtesy of the MIT Museum).

(b) Vincent Salmon (Repro-
duced from [148], with the
permission of The Acousti-
cal Society of America).

Figure 15: Freehafer and Salmon, who both worked on the hyperbolic
(oblate spheroidal) horn.

pute the volume velocity into the horn throat, Uth. Assuming a loss-
less horn, the radiated power is given as

P = |Uth|2 Re(Zth).

As computers, often analog computers, were applied to loud-
speaker simulations, approximating the horn as well by lumped pa-
rameters had some advantages, and this was done by Locanthi in
1952 [151].

The use of either pure lumped parameter simulation, or a combi-
nation of lumped parameter and solutions to the horn equation, com-
pletely dominated the field until the 1970s, and is still much used. It
still has some value in simulating low frequency systems like bass
horns, and can often be used as a starting point for a design [152].

In the field of horn theory, some work was done after 1945 on math-
ematical transformation and more general solutions of the horn equa-
tion. Mawardi discussed generalized solutions of the horn equation,
and showed how an investigation of the singularities of the equation
could lead to the discovery of new families of horns [153]. Charles
T. Molloy (BTL) investigated resonance peaks in Hypex horns, and
showed how to calculate the parameters of horns having predeter-
mined peaks [154]. He also computed the directivity index of several
types of radiators, including sectoral and multicellular horns, based
on “what seemed to be reasonable pressure distributions” [155].

The tractrix horn was analyzed theoretically for the first time by
Robert F. Lambert [156, 157] in 1954. Lambert also measured the
throat impedance of a tractrix horn to validate the theory, and in-
vestigated the directivity of two horns.
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Attempts on a more complete horn theory was made. Stevenson
presented a solution in the form of an infinite set of differential equa-
tions [158]. Holtsmark et at. [159] analyzed exponential horns of small
flare, and showed the existence of higher order modes and modal cou-
pling. Maezawa [160] introduced higher order correction terms to the
horn equation. These attempts do not seem to have penetrated into
the practical design of horns.

What did penetrate into the engineering community, however, was
Don B. Keele’s analysis of the optimum mouth size for exponential
horns [161]. This analysis concluded that there is an optimum mouth
size for exponential horns that minimizes the throat impedance rip-
ple, and that ripple increase for larger mouth sizes. This had already
been shown by Flanders [73], although not as detailed as in Keele’s
analysis. It can, however, be shown that this analysis is not correct,
as it is based on plane wave propagation in the horn. If a more ad-
vanced model is used (See Appendix A on page 271, see also [162]
for simulations using a corrected one-dimensional model), the ripple
will decrease instead of increase as the mouth size is increased.

Keele also analyzed horn loudspeaker systems using the Thiele-
Small parameters [163], as did Richard H. Small [164], in 1977. Mar-
shall W. Leach followed up with a design methodology for horn loud-
speakers, also based on Thiele/Small parameters, where front and
rear chamber volumes, throat area etc. could be calculated from spec-
ifications [152].

While the development of horn theory continued in other fields,
such as in the analysis of musical instruments [165, 166], jet engines
etc [30], developments in the field of electroacoustics were more in
the form of practical implementations or numerical investigations.

The work of Earl R. Geddes on the Oblate Spheroidal Waveguide,
earlier analyzed by Freehafer and Salmon as mentioned above, is
an interesting exception. Geddes first presented his work in an AES
preprint in 1987 [167], which was later made into a JAES paper in 1989
[5]. Geddes abandoned the earlier question of horn theory, “what is
the loading characteristics of a specified horn contour?” and instead
asked the question “what horn contour is required to yield the desired
performance?” He sought the answer to this question in finding a
one-parameter solution (see [149]) to the wave equation in separable
coordinate systems, and adopted the oblate spheroidal (OS) coordi-
nate system as a good candidate, as its coordinate surfaces produce a
suitable horn shape.

The claim set forth by Geddes in [167], that sound propagation in
the OS coordinate system is in the form of a one-parameter wave,
was challenged by Gavin R. Putland [168], leading Geddes to per-
form a more detailed analysis, including higher order modes [169].
Putland demonstrated that only three coordinate systems admit one-
parameter waves [170].
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2.7 practical developments

This chapter has focused on the development of horn theory, and in
order to not make it too lengthy, many of the practical engineering
developments have been left out. This includes Paul W. Klipsch’ in-
troduction of the corner horn [171, 39], the Electro-Voice Constant
Directivity horn [2], the Altec Lansing Manta-Ray horns [3] and two-
segment exponential horns [172], and a host of other developments.

2.8 horn loudspeaker simulation

As mentioned above, a lumped parameter model combined with a
one-dimensional model of the horn and empirical directivity data,
was the basis for computing the performance of horn loudspeakers
for many years. But as more powerful computers became available,
more advanced methods were used.

Geddes and Clark [167] also used an approach based on lumped
parameters for the transducer and associated cavities, and equations
based on the horn equation for describing the horn, but computed the
sound field based on the radiation from a spherical cap in a sphere. In
[173], Geddes investigated various source velocity distributions based
on numerical integration of the Rayleigh integral, and in [174], he
looked at aperture diffraction in sources where a more realistic source
condition was assumed; the source was no longer assumed to have in-
finite impedance. The problem still remained to calculate the source
velocity distribution. Geddes had in a way circumvented the prob-
lem by using the oblate spheroidal waveguide and assuming that the
mouth wave front was essentially spherical. Then what remained was
more or less to take aperture diffraction into account. A similar cir-
cumvention, or simplification, of the design problem is found in the
Manta-Ray horns designed by Henricksen and Ureda [3], where the
horn was designed based on line-of-sight geometrical considerations,
aided by a few empirical observations. Approximate methods for di-
rectivity prediction have also been applied in recent years, see for
instance Gloukhov [175], who used a method based on the Huygens-
Fresnel principle. The interest in directivity control has also resulted
in investigations of the actual sound field in the horn mouth, in an
effort to better understand directivity anomalies [176, 177, 178].

As more general numerical methods became available, these were
also applied to horn loudspeaker simulation. Kagawa et al. [179] and
Morita et al. [180] in 1980 computed the throat impedance and di-
rectional characteristics of a horn using the Finite Element Method
(FEM). In 1981, Kyouno et al. [181] expanded the method to also in-
clude the diaphragm. Kristiansen [182] used a method where a finite
element description of the near field was coupled to an analytical
solution for the far field. Kristiansen and Johansen [183] used the
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indirect Boundary Element Method (BEM) for simulation of a horn,
with more work done by Johansen on horn directivity using BEM
[184, 185]. Henwood [186] and Henwood and Geaves [187] applied
BEM to the design and optimization of a horn tweeter. Other applica-
tions of BEM to horn speaker design include Shindo et al. [188], who
used BEM in combination with semi-analytical methods, Hodgson
and Underwood [189], who gave an example of comparison of BEM
with one-dimensional theory, Bright et al. [190], who studied a folded
low frequency horn, Morgans [8] who used BEM and a source super-
position model to optimize horns for coverage angle and smoothness
of response, and Makarski [7]. A version of BEM that should also
be mentioned is the Boundary Element Rayleigh Integral Method
(BERIM) developed by Stephen Kirkup, and described in Kirkup et
al. [191]. This method combines BEM with the Rayleigh integral, and
makes it possible to simulate cavities opening up into an infinite baf-
fle. This removes the need for discretizing the outside of the horn,
resulting in a reduced computational load.

FEM continues to be popular for horn simulations, see for instance
Holm, 2010 [192], who compared FEM models of horns with mea-
surements, and the method has also been used in optimization of
horn shapes, see the work of Wadbro et al. and Udawalpola et al.
[193, 194, 195].

As air non-linearity in horns can be considerable at the levels oc-
curring in sound reinforcement and public address situations, proper
analysis of this phenomenon is important. Including air non-linearity
is not a simple task, however, as the governing equations now are non-
linear, and require different solution methods than the linear equa-
tions. Most of the analyses of non-linearity in horns have been based
on one-dimensional approaches. Thuras et al. [105], Goldstein and
McLachlan [106] and Bequin and Morfey [196] analyzed non-linear
distortion in exponential horns analytically. Zamorski [197] analyzed
non-linearity in Bessel horns. Usually more general horns must be an-
alyzed, and models for predicting the resulting distortion from such
horns have usually been one-dimensional. Klippel has had several
papers on models for non-linearity in horns [42, 198, 199, 200], and
Holland et al. [201] developed a computational model that showed
reasonable agreement with measurements. The work by Voishvillo
should also be mentioned [202]. Few fully three-dimensional non-
linear models have been published, although it has been shown that
directivity has a bearing on the relative magnitude of the distortion
products [203]. For instance, if directivity is narrower at the frequen-
cies of the harmonics than at the frequency of the fundamental, the
relative magnitude of the harmonics, and thereby the distortion, will
be greater on-axis than off-axis.

Tsuchiya et al. presented an FEM model for horns that also includes
transducer non-linearity [204]. A simplified model was presented by
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Makarski [205], who used BEM to compute the pressure along a line
extending from the horn throat to the far field point where it was de-
sired to calculate the distortion, and used a post-processing technique
to estimate the distortion at this point based on the sound pressure
along the line of field points. This technique should be adaptable to
other computational methods.

The next chapter will go into simulation methods in more detail.



3
O V E RV I E W O F H O R N S I M U L AT I O N M E T H O D S

This chapter is a combination of a literature review and an overview
of methods for simulating horns. Chapter 1 discussed the three main
areas of application of the simulation methods, and their similarities,
differences and requirements. In this chapter, a review of the various
methods are given. Review of previous work is made where relevant.
It is of course impossible to give a complete review of all existing
literature on the subject, but an attempt is made of making the review
rather comprehensive.

It is not felt necessary to give detailed derivations of the various
methods in this work. This can be found in the references provided.
Derivations or equations given in this chapter rather serve to illustrate
the basic ideas of the methods.

3.1 analysis approaches

Methods for simulating the horn ranges from simple lumped parame-
ter models that are based on a one-dimensional approximation of the
horn, to full three-dimensional numerical models that require com-
plex discretization of the boundary or domain.

One-dimensional models are limited to a low ka range, below the
cut-in of the first transversal mode. They can usually give a reason-
able accurate prediction of the throat impedance, and hence can be
used to calculate the power response of the system. But these meth-
ods cannot predict the directivity of the horn. They are also blind to
the actual cross-sectional shape of the horn, only the area change is
taken into account. For applications where the directivity is of lesser
importance, or where the horn can be assumed to be small enough
to be omnidirectional in the frequency range of interest, these models
can be surprisingly accurate. They can also take losses into account
in a simple way.

Three-dimensional analytical solutions also exist for a few geome-
tries, but the solution is very involved mathematically, if a full three
dimensional solution is desired. Due to the restrictions imposed on
the geometry, using this approach for analysis of practical designs is
difficult, but the solutions may serve as useful references.

Numerical methods models includes the Finite Difference Method
(FDM), the Finite Element Method (FEM) , and the Boundary Element
Method (BEM) . They require detailed discretization of the horn walls
(BEM) or the domain (FDM, FEM), and can simulate both throat
impedance and directivity. These models are usually much more time

39
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consuming due to the vastly increased number of degrees of freedom,
but can yield very accurate results for general geometries. The main
problem with these methods, however, is how they scale with kL,
where L is a measure of the size of the horn.

In between these two categories, we have the semi-analytical meth-
ods. These methods can be as accurate as element based methods,
but are usually faster. The principle of the methods is to divide the
horn into small segments that each have analytical solutions, and then
couple these segments together. Because of this, these methods are
restricted to certain cross-sectional geometries, but the shape in the
axial direction is arbitrary. The methods are therefore much less re-
stricted than the analytical methods.

3.2 analytical methods

One way to simulate horns is to set up the three-dimensional wave
equation in a coordinate system where the wave equation is separa-
ble, and letting the horn walls follow the coordinate surfaces. Then
it is for certain cases possible to find analytical solutions. These so-
lutions will include higher order modes of propagation, and one is
therefore able to predict the sound field inside the horn. There are,
however, only eleven coordinate systems where the wave equation is
separable, and very few of them have surfaces that give useful horn
contours [5]. Furthermore, if analytical solutions are to be found for
radiation from finite horns, one is restricted to enclosures that also
follow the coordinate surfaces. For instance, it would be possible to
find an analytical solution for a conical horn mounted in a sphere,
but not for the same horn mounted in a rectangular box. Analysis of
arbitrary geometries is therefore not possible.

3.2.1 The Horn Equation

In order to be able to mathematically analyze sound propagation in
horns of more general shape, the dimensionality of the wave equation
may be reduced. By lumping all transversal variations into a function
S(x) describing the area variations of the horn, an essentially one-
dimensional equation may be obtained. This equation is known as
the horn equation, the history if which was given in Chapter 2.

The horn equation can be derived in the same manner as the one-
dimensional wave equation, but using volume velocity U instead of
particle velocity v, via U = vS(x). The Euler equation and the lin-
earized equation of state (mass conservation equation) then become

∂U
∂t

= −S(x)
ρ0

∂p
∂x

, (2)
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∂p
∂t

= − ρ0c2

S(x)
∂U
∂x

. (3)

Differentiating the first one with respect to x and the second one with
respect to t, we get

∂

∂x
∂U
∂t

= − 1
ρ0

(
S(x)

∂2 p
∂x2 +

∂S(x)
∂x

∂p
∂x

)
, (4)

∂2 p
∂t2 = − ρ0c2

S(x)
∂

∂t
∂U
∂x

. (5)

By combining these two equations, we get

∂2 p
∂t2 =

c2

S(x)

(
S(x)

∂2 p
∂x2 +

∂S(x)
∂x

∂p
∂x

)
(6)

or
∂2 p
∂x2 +

1
S(x)

∂S(x)
∂x

∂p
∂x
− 1

c2
∂2 p
∂t2 = 0, (7)

which is the horn equation for pressure. This equation can now be
solved for different functions S(x).

The horn equation is built on several assumptions, in addition to
the assumption of infinitesimal amplitudes used when linearizing the
wave equation. The additional assumptions are [98, 104]:

1. The walls of the horn are perfectly rigid, reflecting and smooth.

2. There are no transversal modes in the horn, i.e. the pressure
and velocity is uniform over the wave front.

3. The horn axis is straight.

Assumption 1 assures that the wave front in the horn will be perpen-
dicular to the horn walls. It can be closely approximated in practice
by making the walls hard and reflective, and by avoiding material
resonances.

Assumption 2 is usually dependent on a cross-section that is
small in terms of wavelengths. For horns where the cross-section is
not small compared to a wavelength, and especially in horns with
strongly curved walls, the actual wave fronts inside the horn will
deviate significantly from the assumed ones. This is also the reason
for assumption 3: for a curved horn we can be certain that the wave
fronts are not uniform.

Since the horn equation is not able to predict the interior and exte-
rior sound field for horns other than true one-parameter horns (see
the next section), it has been much criticized. It has however been
shown [165, 206] that the approximation is not as bad as one would
perhaps think in the first instance. By considering the wave front area
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expansion instead of the physical cross-section of the horn, the load-
ing performance of horns of arbitrary shape can be predicted with
reasonably good accuracy, and this will be discussed in Section 3.4.2.

The horn equation has been solved for several shapes, or classes
of shapes. Webster himself treated the straight tube, the conical horn,
S(x) ∝ x2, and the exponential horn, S(x) ∝ e−mx in Webster’s nota-
tion, in addition to a cursory treatment of horn profiles where S ∝ xn

(also known as Bessel horns) for n = 0 (straight tube), -2 and 2, and
also horns where S ∝ e−mx2

. Ballantine considered infinite Bessel
horns in greater detail [90]. In his thesis [142], Vincent Salmon de-
veloped a generalized one-dimensional horn theory, and applied it
to the hyperbolic horn that had previously been treated exactly by
Freehafer [109, 110]. Later, Salmon published his generalized theory
[143] and used it to find a new family of horns [144, 93] known as
hyperbolic-exponential horns.

Mawardi [153] gave generalized solutions of the horn equation by
considering its singularities. Eisner [60] presented complete solutions
of the horn equation, where the behavior of a horn for any frequency
and loading can be derived from the solution for one loading, at one
frequency.

Other researchers have also given more or less general solutions of
the horn equation, extensions, and solutions for various specialized
horn contours. For instance, Nagarkar and Finch [207] give the solu-
tions for sinusoidal horns. These horns are in the shape of sine or
cosine waves and have cusps, where the cross-sectional area becomes
zero. They are not very useful for loudspeaker modeling. Nagarkar
and Finch use them for instrument modeling.

Many of the solutions exist in the form of transfer matrix equations,
that relate pressure and volume velocity at one end of the horn to
pressure and volume velocity at the other:[

p1

U1

]
=

[
a11 a12

a21 a22

] [
p2

U2

]
= T12

[
p2

U2

]
. (8)

This is a very versatile approach that can either be used directly for
horn shapes that have analytical solutions, or for a piecewise approx-
imation to the actual horn contour, as described in Section 3.4.1.

The analytical solutions to the horn equation, often in the form of
transfer matrices, have been used by a host of investigators, and it
is futile to try to list all of them here. Of some interest is Leach’s
adoption of the SPICE simulation software to simulate horns [208]. It
should also be mentioned that the horn equation is still an active area
of research [209, 210, 211, 212].

An important concept in one-dimensional horn theory is the con-
cept of One-Parameter (1P) horns. This idea was first presented by
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Figure 16: One-parameter coordinate systems for three horn types. Redrawn
from Morse [149].

Morse [149], and can be described as follows: In a plane wave, the
pressure can be expressed as

p = Ae−j(φ−ωt) (9)

i.e., it is a function only of time and the real function φ, which is the
phase of the wave. For a plane wave, φ = kx, where x is the distance
from the source plane, and surfaces of constant phase (isophase sur-
faces) are planes, perpendicular to the x-axis. Similarly, for a spheri-
cal wave with the source at the origin, A is inversely proportional to
r, the distance to the origin, and φ = kr. The isophase surfaces are
spheres. For both these cases, we note that both amplitude and phase
are functions of only one coordinate, or one parameter, and time.

To apply this concept to horns, we set up an orthogonal coordinate
system (μ, ν) for the horn in question, so that the horn wall is at
νs, the axis is at ν = 0, and μ = x along the axis of the horn. See
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Figure 16. The μ surfaces define the isophase surfaces in our new
horn-dependent coordinate system, it is the one parameter on which
pressure and phase depends. We are not restricted to plane waves.

To see if a horn can be analyzed as a one-parameter (1P) horn, we
may set up the wave equation in the coordinate system for the horn,
and see if we can obtain a solution of the form in Eq. (9). If this can be
done accurately, the horn is a 1P horn, and can be analyzed accurately
by the horn equation.

However, there are very few coordinate systems where this is the
case. Putland has shown [168, 170] that exactly three coordinate sys-
tems can be analyzed in this way: the Cartesian (plane waves), the
cylindrical (cylindrical waves), and the spherical (spherical waves). In
these systems, the horn equation is exact.

Many other horn shapes are approximately 1P, to a smaller or
larger degree. Morse defined “good horns” as horns that have horn
coordinate surfaces close to the surfaces of a coordinate system ad-
mitting 1P waves. Perhaps the most useful of these is the Oblate
Spheroidal waveguide, which will be discussed in Section 3.2.3. Other
horn shapes may also be close to 1P where the horn does not flare too
rapidly.

If the horn is not 1P, the wave fronts in the horn will not correspond
to the μ surfaces, and there will be be a particle velocity component
parallel to these surfaces [184]. There will be reflection and scattering,
giving rise to higher order modes.

3.2.2 Three–Dimensional Solutions

As mentioned above, there are few coordinate systems in which the
full three-dimensional wave equation may be solved analytically, and
even fewer of them have useful horn contours. One of them is the
spherical coordinate system, where the problem of a conical horn in
a sphere, the horn having its apex at the center of the sphere, may
be solved analytically. No published paper showing the full solution
is known to the author, but Sato [213, 101, 102] treated the problem
with the simplification that no higher order modes existed inside the
horn. Hoersch [79] treated the problem of higher order modes inside
a conical horn, but used a pressure release boundary condition at the
mouth. This makes the paper less useful as a contribution to horn
simulation methods. Of interest, however, is his expansion for the
Legendre polynomials Pm(x) that makes it possible to find the non-
integer order m of the spherical harmonics for a given cone angle.

In 1951, Stevenson [158] presented exact equations for wave propa-
gation in horns of arbitrary shape, but the solution is in the form of
an infinite set of equations. The problem has later been shown by Pag-
neux et al. [214] to be nearly impossible to solve in the form proposed
by Stevenson.
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Holtsmark et al. [159] looked at a solution for the exponential horn
by setting up an orthogonal coordinate system which made the expo-
nential horn a coordinate surface. The wave equation is not separable
in this coordinate system, but by making some approximations, and
by restricting the solution to the region of little flare, the wave equa-
tion is made separable, and solved. The solution is rather involved,
but shows the existence of higher order modes and modal coupling.

Maezawa [160] used a perturbation method to add correction terms
to the one-dimensional horn equation, and compared the mathemat-
ical results to those of Stevenson. An example was included, where
an exponential horn was treated.

From the above, it is clear that deriving an analytical solution of
the sound field in horns is a nearly impossible task, unless the horn
follows the coordinate surfaces in a separable coordinate system. If
this is not the case, further approximations must be made in order to
solve the problem.

The solution of the wave equation for separable coordinate systems
have been termed waveguide theory by Geddes [5], and is the topic
of the next section.

3.2.3 Waveguides

While the concept of waveguides has been used in microwave tech-
nology for many decades, it is relatively new in audio. Although the
term had occasionally been used in acoustics literature, it was not
until Earl Geddes introduced the term in his 1987 AES preprint [167],
and in later papers [5, 169, 215, 33], that it received widespread use in
the audio community. After the turn of the millennium, many horn
manufacturers started to call their products waveguides, to distin-
guish them from the “old fashioned” horns. Many of these devices
cannot be called waveguides in the sense Geddes uses the term, since
they rely on diffraction slots and similar tricks to achieve directivity
control. Others are closer to wide-flaring traditional horns.

So what is a waveguide? The idea propagated by Geddes is that
a true waveguide must follow the coordinate surfaces in one of the
eleven coordinate systems in which the wave equation is separable.
If this is the case, then the device can be analyzed exactly by the
wave equation in that coordinate system. In addition to the funda-
mental wave, the modes can also be described. We can now describe
the sound field in the device for any throat excitation, and we can
find the mouth velocity distribution, which is needed for directivity
calculations.

When this is done, we will find that some throat wave fronts will
give a very simple sound field inside the waveguide, actually the
simplest sound field we can possibly obtain. An axisymmetric conical
horn, for instance, is a wave guide in spherical coordinates, and may
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be called a spherical waveguide. If a conical horn is inserted into
a spherical sound field, and if the center of this sound field is at
the apex of the cone, the presence of the cone will not disturb the
sound field. Therefore, if a spherical waveguide is fed with a spherical
wave at the throat, only a spherical wave is needed to describe the
field inside the waveguide. The wave will follow its natural expansion
through the device.

On the other hand, if the throat is excited by a plane wave, we
must describe this plane wave in spherical coordinates. To do this,
we have to expand it in a series of angular spherical modes, which
means that infinitely many spherical modes are excited by the plane
wave. These modes will propagate through the waveguide and create
complex pressure distributions, and a more complex velocity distri-
bution at the mouth. The same happens if the wave front is forced to
change curvature, for instance by a change in wall slope. As we will
see, this will require a new modal description after the change, and
new modes will have to be generated. A true waveguide (by Geddes’
definition) will try to avoid this as much as possible.

The mouth is also a point where modes always will be generated
due to the large discontinuity. So while we can minimize the gener-
ation of modes inside the waveguide itself, we cannot avoid mode
generation at the mouth. It can be minimized by flaring the mouth,
but this mode generation will still influence the directivity pattern.

Many of the usable waveguide shapes comes from coordinate sur-
faces in elliptic or spheroidal coordinate systems. Figure 17 shows the
the elliptic coordinate system in two dimensions. The origin here is a
strip of width 2d, not a point, and is marked by the thick line along
the x-axis. If d = 0, we get polar coordinates, and if d → ∞, we get
the Cartesian coordinates. If we extend the system in and out of this
figure, perpendicular to the paper, we generate the Elliptic Cylinder
Coordinates. Rotating it around the line marked η = 1.0 generates the
Oblate Spheroidal Coordinates, where the origin is a disc of radius d.
The Prolate Spheroidal Coordinates are generated by rotating the fig-
ure around the z = 0 line. We can immediately see that the oblate
spheroidal coordinates may make a usable waveguide, illustrated by
the thick lines at η = 0.87.

This Oblate Spheroidal (OS) waveguide shape is the basis for most
of Geddes’ published works on waveguides [5, 33, 169, 215] (although
it had previously been investigated by Freehafer [109, 110]), and ap-
pears to be an optimal solution for the transition from a plane wave
at the throat to a spherical wave at the mouth. As has been shown
by Geddes, however, the OS waveguide also has higher order modes,
and these modes are coupled [169]. That means that even if the waveg-
uide is excited by a perfect plane wave, higher order modes will be
generated. Actually, the only coordinate systems where coupling be-
tween the modes does not exist are the ones that admit 1P waves,
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Figure 17: Two-dimensional elliptic coordinate system

and as discussed in Section 3.2.1, these are the Cartesian, cylindrical
and spherical coordinate systems, given wave propagation along the
proper coordinate. It is interesting to note that under these conditions,
the wave front does not change its curvature. One may therefore say
that it is the change of wave front curvature that generates higher
order modes.

3.3 general numerical models

In some cases, horns (or waveguides) that follow the coordinate sur-
faces of separable coordinate systems produce the desired results, but
in many situations more control over horn performance is desired.
Waveguides have a relatively limited range of variation in properties,
and it may be desirable to design horns with a different set of prop-
erties for a given situation.

With general numerical methods, any horn shape may be analyzed
and optimized to meet a certain set of criteria. A disadvantage of
a purely numerical solution is that we are left with a large set of
numbers, and no clue of the underlying mechanisms. Where analyti-
cal solutions provide functions and relations describing the problem,
numerical methods will often only provide such insights after analy-
sis of large data sets. Techniques like modal decomposition may be
employed, but this requires at least a partial understanding of the
mathematics of the problem at hand.

This chapter will give an overview of numerical methods that have
been used in horn simulation. In general, many of these methods are
not restricted to horn modeling, but may be used for general acoustic
problems. The common approach is to discretize the problem, either
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Figure 18: Lumped parameter representation of a horn.

just the structure (horn) itself, or the entire domain, and compute a
numerical solution to the wave equation or Helmholtz equation for
this grid or mesh. A common challenge for such approaches is that,
especially for 3D domains, the number of nodes or elements increases
very rapidly with frequency. The requirement of a certain maximum
element size for a given wave length (commonly at least six elements
per wavelength is required) can make high frequency simulation of
large structures prohibitively expensive in terms of computer mem-
ory and solution time.

3.3.1 Lumped Parameter Models

This method was probably first used by Locanthi [151], and is based
on the way transmission lines can be represented by lumped compo-
nents. It may be viewed as a one-dimensional Finite Element method.
Series masses and shunt compliances are used to represent the horn.
Locanthi derived the values of these components by a finite difference
approximation to the horn equation, resulting in (using the mobility
analogy)

Li =
S0 f (xi)Δx

ρ0c2

Ci+1/2 =
ρ0Δx

S0 f (xi + 1/2)

where f (x) is the horn contour function. See Figure 18.
While this method was useful when simulation was done on analog

computers, it is now rarely used, and transmission line elements are
used instead, if not more accurate methods.

3.3.2 The Finite Difference Method

The FDM1 is based on approximating the differential operators of the
wave equation by finite differences, and is one of the most classical

1 Not related to the little known Infinite Indifference Method.
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numerical methods used for solving partial differential equations nu-
merically. As an example, the one-dimensional wave equation

∂2 p
dx2 −

1
c2

∂2 p
∂t2 = 0 (10)

is discretized in space and time with spatial steps Δx and time steps
Δt. With spatial index i and time index k, the x coordinate is now
given as xi = iΔx, and the time as tk = kΔt. The resulting discretized
wave equation is then

pk
i+1 − 2pk

i + pk
i−1

Δx2 − 1
c2

pk+1
i − 2pk

i + pk−1
i

Δt2 = 0. (11)

This equation can be solved for the next time step pk+1
i to yield

pk+1
i = 2

(
1− α2) pk

i + α2
(

pk
i+1 + pk

i−1

)
− pk−1

i (12)

where α = cΔt/Δx. This means that we can find the pressure at
the next time step from the values at the current and previous time
steps, and the values at the two neighboring nodes. This is known
as the Finite Difference Time Domain (FDTD) method. It can with-
out much effort be extended to two or three dimensions. It is also
possible to solve the Helmholtz equation using this method. Barjau
[216] compared a one dimensional FDM to related methods; the de-
lay line method and cellular automata method for simulation of one-
dimensional flaring structures line musical instruments.

A related method, that has also been shown to be equivalent to the
FDTD method, is the Transmission Line Method (TLM) [217, 218, 219],
which is a method based on the Huygens’ principle: that each point
on a wave front is in itself a new source of waves. The TLM is based
on discretization of the domain by a square grid, where each node is
connected to four neighboring nodes through acoustic transmission
lines that each have an impedance Z0. A wave incident to a node
through one of these transmission lines will be reflected and scattered
into the neighboring nodes, where the process continues.

Another related method is the method of digital waveguides [15,
220], where the structure to be modeled is made up of a combination
of delay lines, digital filters, and sometimes non-linear elements. This
method has been used for modeling of wind instruments, but also
other types like string instruments.

Finite difference based methods have the advantage of being rel-
atively simple to implement. The localized updating scheme makes
massive parallel processing feasible, for instance using a computer
graphics card [221]. One challenge is to provide a non-reflecting ter-
mination of the domain for free field radiation problems. Another is-
sue is that the grid in most cases is rectangular, so that a sloping and
curving boundary, as found in horns, will be represented by small
rectangular steps. This may introduce numerical artifacts, and a finer
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Figure 19: Discretization of the domain in the Finite Element Method.

discretization may be required than would otherwise be necessary. A
solution to this problem has been presented by Noreland [222], who
used an orthogonal coordinate transformation to avoid the problem.

Computer memory can also be an issue with large FDTD meshes,
as the pressure at each node for several time steps has to be stored.

3.3.3 The Finite Element Method

The FEM was first developed for analyzing complex structures in en-
gineering [223], but has also been applied to acoustics [224, 225]. The
method is based on discretizing the domain into elements, Figure 19,
impose boundary conditions, and solve for the pressure (or velocity
potential) at the nodes. This makes the method well suited for inte-
rior problems like cavities. For infinite domain radiation problems
(like radiation from structures like horn loudspeakers), special tech-
niques must be used. [182] describes how spherical harmonics can be
used to set the boundary conditions at a spherical outer boundary
for radiation into an infinite domain. So-called infinite elements [226]
may also be used, or a Perfectly Matcher Layer (PML) may be used
to completely absorb the outward propagating wave.

The sound field in the domain must satisfy the Helmholtz equation

∇2 p + k2 p = 0, (13)

subject to the boundary conditions. The domain is divided in ele-
ments, that are described by nodes, and FEM seeks to find an approx-
imate solution to Eq. (13) at a these nodes. For the rest of the domain,
the pressure is found by interpolation of basis functions. As an exam-
ple, let us use a simple rectangular element with four nodes as our
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basic element. We know the pressure values at each node pi, and each
node also have a basis function Ni. The pressure inside each element
can then be expressed as

p(x, y) = N1(x, y)p1 + N2(x, y)p2 + N3(x, y)p3 + N4(x, y)p4, (14)

or in matrix form,
p(x) = N(x) · p. (15)

The basis functions satisfy the requirements that

• Ni(xi, yi) = 1 and Nj �=i(xi, yi) = 0, and

• ∑i Ni = 1 everywhere on the element.

We now wish to set up a system of equations including all the ele-
ments in the domain to solve for the unknown node pressures. This
can be done by writing the Helmholtz equation as(

∇2 + k2) p(x) = DH p(x) = 0 (16)

and inserting the approximation from Eq. (15), p(x) ≈ N(x) · p, into
it. This is only approximately correct, and we will get a residual R(x):

DH (N(x) · p) = R(x). (17)

We now want to set up a system of equations that can give us the
set of node values that minimizes the residual. By integrating over
both sides of Eq. (17), the right-hand side now describes the average
residual over the domain:∫

Ω

DH (N(x) · p) dΩ =
∫
Ω

R(x)dΩ. (18)

Minimizing the right-hand side can now result in either a good solu-
tion with small residuals everywhere, or large residuals that cancel
each other. By in addition using weighting functions that are non-
zero only over a small area, and by using many weighting functions
so that the entire domain is covered (i.e. using a vector of weighting
functions, W(x)), we can set up a system of equations so that∫

Ω

W(x)DH (N(x) · p) dΩ =
∫
Ω

W(x)R(x)dΩ = 0. (19)

Each row is now a single equation,∫
Ω

Wi(x)DH (N(x) · p) dΩ = 0. (20)

A common choice of weighting functions is to use the basis func-
tions themselves as weighting functions. This is known as Galerkin’s
method. The basis functions and element types are usually chosen so
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that the numerical integration is efficient. To improve accuracy, higher
order elements are often used, in which more nodes than corners are
used. For example, triangular elements with 6 nodes, or quadrilat-
eral elements with 8 nodes are common, and are known as quadratic
elements.

The matrices that are set up to solve the system of linear equations
for the FEM are usually sparse, often band diagonal. This reduces the
amount of memory required, and special solution techniques adapted
to sparse matrices may be used. Rotational symmetry may be used to
reduce the dimensionality of the problem.

We will not go into any more mathematical details about the FEM,
as this method has not been used to any great extent in this work.

3.3.4 The Boundary Element Method

The basis of the BEM is to replace the equations that describe the solu-
tion to the Helmholtz equation (or other partial differential equations)
in the domain Ω, as in FEM, by equations that describe the solution
on the boundary of the domain [225, 227]. The mathematical founda-
tion for this is Green’s second theorem:∫

Ω

(
u∇2v− v∇2u

)
dΩ =

∫
Γ

(
u

∂v
∂n
− v

∂u
∂n

)
dΓ (21)

where ∂/∂n is the normal derivative at the surface Γ. Both functions
u(x) and v(x) must be continuously differentiable inside Ω.

Now let u(x) = ϕ(x) and v(x) = G(x), both solutions to the
Helmholtz equation, where ϕ(x) is the velocity potential, and G(x|x0)

is a Green’s function, i.e. the sound field at x due to a source at x0:

G(x|x0) =
e−jkr

4πr
(22)

where r = |x− x0|.
The integrand of the volume integral in Eq. (21) now becomes [225]

ϕ∇2G− G∇2 ϕ = −k2 ϕG + k2 ϕG = 0 (23)

and we are left with ∫
Γ

(
ϕ

∂G
∂n
− G

∂ϕ

∂n

)
dΓ = 0. (24)

After some manipulation, and taking into account that when x =

x0, Eq. (22) is singular and therefore not continuously differentiable2,
we arrive at the following expression:

ϕ(x) =
∫
Γ

(
G

∂φ

∂n
− ϕ

∂G
∂n

)
dΓ, (25)
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Γ

Ω

Figure 20: Example of discretized boundary for the Boundary Element
Method.

which is the Kirchhoff-Helmholtz integral theorem.
To be useful, Eq. (25) must obviously be discretized, otherwise we

are stuck with cases with analytical solutions. We therefore divide the
surface Γ into elements Γi, see Figure 20, and seek to find the velocity
potential and velocity at the center of each element. Using the element The use of velocity

potential here is to
make the treatment
compatible with that
of Kirkup [227].
Pressure is related to
the velocity potential
as p = −jρωϕ. For
Kirkup’s
formulations, the
surface normal is
always outward
from the boundary.

centers and assuming a constant value over each element is known
as the collocation method.

By using the operator notation used by Kirkup [227], we have

{Lkζ}Γi
(p) ≡

∫
Γi

Gk (p|q) ζ(q)dSq (26)

{Mkζ}Γi
(p) ≡

∫
Γi

∂Gk

∂nq
(p|q) ζ(q)dSq, (27)

where Γi is (part of) a surface, nq is the outward normal to Γi at q,
and ζ(q) is a function defined for q ∈ Γi. The discretized Kirchhoff-
Helmholtz integral theorem then becomes[

Mk +
1
2

I
]

Γ
ϕ(p) = [Lk]Γ v(p) (28)

where v = ∂ϕ
∂n is the surface normal velocity, and the brackets indi-

cate that the operators are now matrices relating each point3 on the
surface to every other point on the surface, including itself. It is now
possible to employ boundary conditions to solve for ϕ and v at each
element, and from the values at the elements, the velocity potential
in the domain can be found as

ϕ(x) = [Lk]Γ v(p)− [Mk]Γ ϕ(p). (29)

2 We solve this by placing a small surface around x0 to remove it from the domain.
3 Center point on each element.
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As can be seen, the velocity potential in the domain can be found
when ϕ and v are known on the boundary. The matrices are now re-
lations between the field points and the elements, instead of relations
between elements.

The formulation in Eq. (28) is satisfactory for interior BEM, ex-
cept for the Dirichlet (pressure release) boundary condition. As this
boundary condition never appears in horns (where we usually have
a hard wall (Neumann) or impedance (Robin) boundary condition),
we will not go into any more details on the interior problem.

If either ϕ or v is known at the boundary, Eq. (28) can be solved
rather simply, by first a matrix-vector multiplication, followed by a
matrix inversion. Sometimes, however, the more general boundary
condition

α(p)ϕ(p) + β(p)v(p) = f (p), (30)

is desired, where α, β and f are diagonal matrices. Equation 28 can
now be combined with Eq. (30) to form a linear system of equations:[

[M] Lk

Dα Dβ

] [
ϕ

v

]
=

[
0

F

]
, (31)

where [M] = −
[
Mk +

1
2 I
]
, and Dα and Dβ are diagonal matrices

containing the boundary conditions. Since Dα and Dβ are diagonal,
Eq. (31) can be rearranged into an Ne × Ne linear system using stan-
dard methods [227], instead of the 2Ne× 2Ne system shown, Ne being
the number of elements.

In the case of exterior problems, application of the Kirchhoff-
Helmholtz integral theorem result in the following equation[

Mk −
1
2

I
]

Γ
ϕ(p) = [Lk]Γ v(p) (p ∈ Γ) (32)

ϕ(x) = [Mk]Γ ϕ(p)− [Lk]Γ v(p) (p ∈ D). (33)

Eq. (32) is, unfortunately, unsuitable for general use, because the
operator Mk − 1

2 I is singular for a set of characteristic wavenumbers
k∗ that are the eigenfrequencies of the interior Dirichlet problem, and
are ill-conditioned at wavenumbers near k∗. This is known as non-
uniqueness.

Several methods have been developed to solve this problem. The
method by Schenck [228], often referred to as the CHIEF method,
adds interior points to make an overdetermined set of equations. The
matrices are no longer square, and the system of equations must be
solved by the least squares method or similar. The problem with the
CHIEF method is that the optimum location of the interior points is
not known, other than that they must not lie on the internal node
lines, and that more and more points are necessary at higher frequen-
cies to maintain accuracy.
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Burton and Miller [229] introduced a method that is based on a
hybrid between the direct formulation in Eq. (32), and the equations
resulting from differentiating Eq. (32) with respect to the boundary
normal. This results in the following linear system of equations:[

Mk −
1
2

I + μNk

]
Γ

ϕ(p) =
[

Lk + μ

(
MT

k +
1
2

I
)]

Γ
v(p) (34)

where the new operators are{
MT

k ζ
}

Γi
(p; up) ≡

∂

∂up

∫
Γi

Gk (p|q) ζ(q)dSq (35)

{Nkζ}Γi
(p; up) ≡

∂

∂up

∫
Γi

∂Gk

∂nq
(p|q) ζ(q)dSq, (36)

and μ is a weighting factor such that

μ =
i

k + 1
.

The matrices are now square, but the Mt
k and Nk operators are hyper-

singular and difficult to discretize. However, they are available in the
Fortran subroutines provided by Kirkup [227], as is an implementa-
tion of the Burton-Miller method.

A more recent solution to the problem of non-uniqueness is de-
scribed by Mohsen et al. [230], and is known as the Dual Surface
Method. This method adds interior points on an interior surface S
located close to Γ at a distance δ along the normal to the surface, to
the system of equations with a purely imaginary weighting factor α:[

Mk + αMk −
1
2

I
]

ϕ =
[
Lk + αLk

]
v (37)

where the underline indicates that the operators are applied to the
points in the interior domain. This method avoids the hypersingu-
larity of the Burton-Miller method, and the matrices are square, so
common solution techniques may be employed. If kδ < π, the cavity
formed between S and Γ is too small to support any resonant modes,
and the solution is unique.

For completeness, the indirect BEM should also be mentioned. This
method uses the difference of velocity and pressure (or velocity po-
tential) across a thin surface as the variable, and is therefore able to
model thin structures directly. See for instance Johansen and Kris-
tiansen [183] and Johansen [184] for a discussion of this method.

As documented in a paper by Cheng and Cheng [231], since the
early 1990s over 500 articles per year are published on BEM, so no
further attempt will be made on discussing all the possible refine-
ments and variations of the method. However, a few special cases
will be mentioned.
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Π

W

D
⇔

Figure 21: Principle of the Boundary Element Rayleigh Integral Method. The
interior BEM domain D is bounded by surfaces W and Π, and
surface Π radiates into half-space. This is equivalent to a horn
mounted in an infinite baffle, right.

3.3.5 The Boundary Element Rayleigh Integral Method

An interesting extension or variation of BEM is the Boundary Element
Rayleigh Integral Method (BERIM) developed by Stephen Kirkup [232,
191]. This method is developed to simulate cavities that open into an
infinite baffle, and combines the BEM for the cavity with the Rayleigh
integral for the field in front of the baffle. The basis for the method is
Eq. (28), but the surface is divided into two parts (see Figure 21): the
surface W belonging to the cavity, and the interface surface Π.

The radiation from Π is described by the Rayleigh integral, and this
can be used to set the boundary condition here. It is now possible to
set up the following systems of equations:[

Mk +
1
2

I
]

WW
ϕW + [Mk]WΠ ϕΠ = [Lk]WW vW + [Lk]WΠ vΠ (38)

[Mk]ΠW ϕW +

[
Mk +

1
2

I
]

ΠΠ
ϕΠ = [Lk]ΠW vW + [Lk]ΠΠ vΠ (39)

ϕΠ = −2 [Lk]ΠΠ vΠ (40)

[Dα]WW ϕW +
[
Dβ

]
WW vW = fW (41)

These equations are then reorganized into a linear system of equa-
tions as⎡
⎢⎢⎢⎢⎣

[M]ΠΠ −Mk,ΠW Lk,ΠΠ Lk,ΠW

−Mk,WΠ [M]WW Lk,WΠ Lk,WW

I 0 2 [Lk]ΠΠ 0

0 Dα 0 Dβ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ϕΠ

ϕW

vΠ

vW

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

FW

⎤
⎥⎥⎥⎥⎦ , (42)



3.3 general numerical models 57

where, as above, [M] = −
[
Mk +

1
2 I
]
, and Dα and Dβ are diagonal

matrices containing the boundary conditions at W.
BERIM has the advantage of not requiring the hypersingular oper-

ators MT
k and Nk, and that the exterior of the horn does not need to

be discretized. This method will be used as a reference method for
much of the work in this thesis, as many of the simulations are done
with the horn mounted in an infinite baffle.

A related method is presented by Post and Hixon [206], who de-
scribe a method where interior BEM is coupled to a hemisphere on
which the sound field is described by spherical harmonics. The hemi-
sphere is used as a “super-element”, and the coefficients of the spheri-
cal harmonics expansion are found as part of the solution of the BEM
system of equations.

3.3.6 Fast Multipole BEM

As traditional BEM generates dense, asymmetric matrices, requiring
O(N2) operations for assembly and O(N3) for solving the system
of equations using direct solvers (O(N2) for iterative solvers like GM-
RES [233, 234]) , methods to accelerate the solutions have been sought.
One such method is the Fast Multipole BEM (FMBEM) [235]. In this
method, the BEM mesh is subdivided into clusters, and if a pair of
clusters are in the far field of each other, the computations that would
ordinarily have been performed on an element-to-element basis is re-
placed by calculations for the midpoint of the clusters. For clusters in
the near field, traditional BEM is used. It is also possible to use dif-
ferent levels of clusters (clusters of smaller clusters) to enhance speed
further.

FMBEM is mainly applied to large structures, like the sound field
from submarines or planes, and it is not known if the method has
been successfully applied to concave structures like horns. But as
most of the elements in the interior of a horn are in the near field
of each other, there may not be large savings over traditional BEM,
unless a relatively large exterior mesh is needed.

3.3.7 Other Methods

This section will briefly mention two other numerical methods that
have been used for horn simulation, and that are somewhat related
to BEM.

The Source Superposition Method (SSM)

The SSM is due to Koopmann and Fahnline [236], and has been
used by Morgans [237] to model and optimize horns. In this method,
the surface is discretized, much as in BEM, and a combination of
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Sn

qi

D

Figure 22: The principle of the source superposition method. Sources qi are
placed at the center of the elements Sn.

monopoles and dipoles are placed at the center of each element, Fig-
ure 22. The dipole is aligned normal to the element surface. The solu-
tion in the field is now found as a linear combination of these simple
sources:

p(x) =
N

∑
i=1

si

{
αiG (x|xi) + βi

[
∇G
(
x|xj
)
· nj
]

xj=xi

}
(43)

where si is the unknown strength of source i, and αi and βi are con-
stants for each source type given in Table 1.

Source type α β

Monopole 1 0

Dipole 0 j/k

Tripole 1 j/k

Table 1: Constants αi and βi for monopole, dipole and tripole (combination
of monopole and dipole) sources.

The source strengths are found by applying a matching technique,
matching the specified normal velocity with the normal velocity due
to the sources, given as

v(x) · n = − 1
jωρ

N

∑
i=1

si∇
{

αiG (x|xi) + βi
[
∇G
(
x|xj
)
· nj
]

xj=xi

}
· n,

(44)
through the volume velocity:

Un =
∫ ∫

Sn

v(x) · ndS(x) (45)
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Γ

qi

D

Figure 23: Principle of the Method of Fundamental Solutions. Sources qi are
placed away from the boundary Γ, outside the domain D, and
their strengths Qi are adjusted to enforce the boundary condi-
tions at Γ.

Combining these two equations gives

Un =
N

∑
i=1
− si

jωρ

∫ ∫
Sn

∇
{

αiG (x|xi) + βi
[
∇G
(
x|xj
)
· nj
]

xj=xi

}
·ndS(x).

(46)
This equation is calculated for each element, and gives a system of
equations

U�s = �U (47)

where �s is a vector of source strengths, �U is the vector of volume
velocities, and U is the matrix to be inverted.

The SSM forces the volume velocity of the simple sources to match
the volume velocity boundary condition, which means that the ra-
diated power is correctly calculated (the initial goal of the method).
This again means that the far field pressure is also accurate, even for
coarse meshes, but the near field may not be correct, and hence the
method cannot be relied on for predicting the throat impedance of
horns.

The Method of Fundamental Solutions (MFS)

The MFS is related to the SSM in that it relies on computing the
sound field from a distribution of simple sources. In the MFS, how-
ever, the sources are not placed on the boundary, but instead outside
the domain in which the sound field is to be calculated, Figure 23. In
addition, no mesh needs to be defined, only discrete points outside
the domain boundary are required. The boundary conditions are then
enforced and used to compute the strengths of the sources [238, 239].
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Given the fundamental solutions

G
(
x|xj
)
=

1
r

e−jkr (48)

H
(
x|xj, n

)
=

1
−jρω

−jkr− 1
r2 e−jkr ∂r

∂n
, (49)

and the boundary conditions for surface Γ = Γ1 ∪ Γ2, where Γ1 has
Dirichlet, and Γ2 has Neumann boundary conditions

p = pK, in Γ1 (50)

− 1
jρω

∂r
∂n

= vK, in Γ2, (51)

two sets of equations can be set up to find the source strengths Qj:

NS

∑
j=1

QjG
(
x|xj
)
= pK,i for each xiin Γ1 (52)

NS

∑
j=1

QjH
(
x|xj, n

)
= vK,i for each xiin Γ2. (53)

Here i is the index of the collocation points, the points distributed along
the boundary where the boundary conditions are enforced. With NC
collocation points and NS sources, the source strengths can now be
found, either as a linear system of equations if NC = NS, or as an
optimization problem if NS < NC.

Since the collocation version of the MFS does not require any inte-
gration over the surface, it can be very efficient. However, Candy [239]
points out that the collocation rule used to obtain source coefficients
is not unique, and prefers to use a Galerkin method with integration
over the surface.

3.3.8 Efficiency

It is well known that when discretizing a problem, the discretization
must be sufficiently fine to sample the wave field accurately. The gen-
eral rule is to apply at least six elements per wavelength, although for
far field calculations using BEM, sufficiently accurate results seem to
be obtainable with three elements per wavelength [8]. In any case, the
number of elements, N, depend on the size of the problem in wave-
lengths, or kL, where k is the wave number and L is the characteristic
size of the problem.

For volume based elements (FDM, FEM), N ∝ O
(
[kL]3

)
. The ma-

trices are sparse, so memory requirements are in the order of O (N),
and the computational cost required for solving the matrices is also
O (N) (per iteration, in the case of FDTD) due to the sparseness.
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Boundary based methods (BEM) require fewer elements due to
only the surface being discretized, so N ∝ O

(
[kL]2

)
, but since the

matrices are full, memory requirements are in the order of O
(

N2),
and the computational cost for the solution is O

(
N3). FMBEM can

achieve O
(

N3/2) or O (N log N).
The SSM appears to have similar requirements as BEM, but may

work well also with fewer elements than BEM due to the matching of
surface volume velocity. Morgans [8] reports increased efficiency over
BEM.

For the MFS, no definite number of sources for a given frequency
limit is given in the references cited, so it is hard to judge the effi-
ciency of this method directly. The study in [238], however, indicates
a rather large increase in efficiency over BEM.

From this quick overview of memory requirements and computa-
tion cost, it is clear that both increase quite rapidly with frequency.
For a large constant directivity horns, with mouth size in the order
of one meter, and considering an upper frequency limit of 20 kHz, kL
is in the order of 365. Simulation of such a horn with FEM or BEM
can be very demanding, and the time required can be prohibitive if
computer optimization is desired.

3.4 semi-analytical models

So far, the methods discussed have been either analytical or numer-
ical. Analytical methods give up flexibility (or accuracy, in the case
of one-dimensional models) to achieve exact solutions that may give
new insights into the problem. These solutions are in many cases are
rather computationally efficient. Numerical methods give up the ex-
act mathematical description to achieve flexibility. The price is usually
increased computational cost, and that it is harder to get fundamen-
tal insights into the problem at hand. Where analytical solutions may
suggest certain solutions to a problem based on the mathematical for-
mulation, this is very seldom found in purely numerical methods.

In between these two approaches is what can be termed semi-
analytical methods4. In these methods, the problem is only partially
solved analytically, and these partial analytical solutions are com-
bined numerically. When applied to horns, an often used approach
is to divide the horn into small sections or elements that each have
an analytical solution, Figure 24, and then to match the sound fields
at the interfaces, or discontinuities, between the element. If each ele-
ment is one-dimensional, the cross-sectional area can be arbitrary. The

4 When numerical output is desired from an analytical method, for instance to plot
curves, numerical calculations are necessary. These methods are still not considered
semi-analytical, as they provide a solution in the form of equations that adequately
describe the solution without the need for numerical evaluation.
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Ei ZradE1

Figure 24: Principle of semi-analytical methods. The horn is divided into
elements Ei that can be (depending on the model used) cylin-
drical, conical, exponential, or other shapes that have analytical
solutions. A radiation impedance Zrad defines the boundary con-
dition at the mouth.

elements can for instance be cylindrical, conical [240] or exponential
[241].

Conical elements may also include transversal modes, and may
be used for 3D models of axisymmetric horns. If the elements are
straight ducts, a modal description based only on the cross-sectional
shape of each element is required. This is a more flexible approach
than using conical elements, as now both cylinders, annular cylinders
and rectangular ducts may be used. The cross-sectional shape is still
restricted compared to purely numerical methods, but now the axial
shape of the horn can be arbitrary. This approach is the basis for the
work in this thesis and will be discussed in general terms in Section
3.4.3 and in detail in Chapter 4.

3.4.1 Transmission Line Elements

This method must not be confused with the Transmission Line
Method (TLM) described in Section 3.3.2. The principle of the trans-
mission line elements method was first described by Olson [138, 140].
He describes how the throat impedance of a horn of any shape can
be found by dividing the horn into segments. The throat impedance
of the last segment is used as the mouth impedance of the second last
segment, and so on, from the mouth to the throat. Young [242] used a
similar method for computing the resonance of musical instruments.
Plitnik and Strong used straight cylindrical segments and introduced
losses into the model [243].

A more elegant method is to express each segment by it’s trans-
fer matrix (also known as four-pole parameters, two-port elements,
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transmission matrices, T-matrices5 or ABCD-matrices), and find a
complete matrix for the horn by multiplying together the matrices
for all the segments. The method originated in the analysis of electri-
cal circuits, and an early reference in electroacoustics on this method
is a paper by Molloy [244] from 1957, where T-matrices were used for
lumped and distributed parameter analysis of vibrational systems, in-
cluding loudspeakers. Lampton [245], in a paper from 1978, showed
more advanced applications of T-matrices, and he also referred to it
as being a common method in the analysis of electromagnetic waveg-
uides. The method was used by Kergomard and Caussé [246] for sim-
ulation of musical instruments, and they also introduced losses, some-
thing also done by Keefe [247]. McLean et al. [248] used a series of
straight elements to simulate constant directivity horns. The method
is described in detail by Mapes-Riordan [240], with applications to
electroacoustics.

Thanks to the computational efficiency and simplicity of the
method, it has found much use in the simulation of musical instru-
ments [249].

The T-matrix method has the advantage that the T-matrix for any
horn shape can be found, and from this, the response to any mouth
radiation impedance, and the mouth pressure and volume velocity
for any excitation, can easily be found. The complete T-matrix H for
the series of matrices can be found by multiplying the transfer matri-
ces. For a horn consisting of n− 1 elements,

[
p1

U1

]
= H

[
pn

Un

]
= T12 · T23 · ... · Tn−2,n−1 · Tn−1,n

[
pn

Un

]
(54)

where Tn−1,n is the T-matrix of element n− 1.

3.4.2 Advanced One-Dimensional Models

When using transmission line elements, it is not uncommon to use
a combination of uniform tubes and conical elements; the uniform
tubes are used for the straight portion of the horn, while the conical
elements are used in the flaring sections. Wave fronts in horns are not
either plane or spherical, however; they are often in the form of flat-
tened spherical caps [241]. Also by simple reasoning, as long as the
sound speed is constant in the horn, the distance between each suc-
cessive wavefront must be constant over the wave front. If the horn,
assuming axisymmetry, is not conical or of uniform cross-section, this
leads to wave fronts that are neither spherical nor plane, but that are
again flattened spherical caps. Using conical elements with spherical
wave fronts also brings up the issue of the discontinuity created be-
tween the mouth wave front of one conical element and the throat

5 Not to be confused with the T-matrix method in scattering theory.
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wave front of the next, if these two elements don’t share a common
apex [250].

For wind instruments, where radiation directivity is of minor im-
portance, there has been much research into one-dimensional models
for predicting their resonance frequencies [251, 250, 252]. The use
of spherical, or even oblate ellipsoidal, wave fronts have been used,
together with a proper choice of radiation impedance model, to im-
prove accuracy [253, 254, 255]. It appears that for improved accuracy
in these models, the radiation impedance should change with the
horn profile, as discussed in [254].

3.4.3 Mode Matching Methods

Traditionally, sound in ducts was treated one-dimensionally, assum-
ing that the cross-section of the duct was smaller than a wavelength.
That the wave equation also has solutions that can expressed as a sum
of eigenfunctions, or modes, that can be found based on the boundary
conditions imposed, has been known for a long time. An early, per-
haps the earliest, example in acoustics comes from Rayleigh [256],
paragraph 267, where he treats the sound in a rectangular enclosure
by the familiar sum of cosine modes, and paragraph 268, where one
of the enclosure dimensions is extended to infinity. Here, Rayleigh
also discuss the phenomenon of mode cutoff and evanescent waves:

“If we fix our attention on any particular simple mode of
vibration (for which p and q [mode indices] do not not both van-
ish), and conceive the frequency of vibration to increase from
zero upwards, we see that the effect, at first confined to the
neighbourhood of the source, gradually extends further and fur-
ther and, after a certain value is passed, propagates itself to an
infinite distance, the critical frequency being that of the two di-
mensional free vibrations of the corresponding mode.”

While Hoersch [79] probably was the first to analyze higher order
modes in horns, it seems that Miles [257, 258, 259] was the first to
analyze the generation of modes at a discontinuity, and using the
method of matching of the fields. Miles was, however, mainly inter-
ested in a better lumped parameter model of the discontinuity, and he
also treated right-angled joints [260] and bifurcations [261] this way.

The analytical treatments by Stevenson [158] and Holtsmark et al.
[159] have already been mentioned, but while these treatments take
modes into account, they are not directly related to mode matching
as such. It should, however, be mentioned that mode matching has a
long tradition in modeling of electromagnetic waveguides [262, 263].

The first complete implementation of a Mode Matching Method
(MMM) for horns is probably due to Alfredson [36]. Here many of
the elements used in this thesis are in place: discretization of the horn
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into short, cylindrical ducts, a step-by-step iteration down the horn,
and matching of the sound fields, described by modes, at each discon-
tinuity. Alfredson used an iterative technique to compute the sound
field radiated from an axisymmetric exponential horn, first assum-
ing no reflected wave, and working from a plane wave at the throat
towards the mouth. At the mouth the boundary condition of an un-
flanged circular duct was used to obtain the reflected wave, which
was then propagated back to the throat. The procedure was repeated
to convergence. The method is a bit unwieldy in that the calculations
are performed iteratively directly on the pressure field.

Roure [37] pioneered the method as used in the present thesis (the
mathematical description will be presented in the following chapters),
where he showed that by propagating the impedance at the mouth
back to the throat, only a single iteration is necessary, and no assump-
tions about the source need to be made6. The method was applied to
a muffler expansion chamber by Kergomard et al. in 1989 [264], where
it was also compared to other mode matching formulations.

From about 1996, several papers from Laboratorie d’Acoustique,
France, were published, where Roure’s method was used. These pa-
pers describe the model in detail. Pagneux et al. [214] give a detailed
treatment of the discrete model described by Roure, a version of the
discrete model carried to the limit of infinitesimal segment length,
and a purely continuous model. Amir et al. [265] have verified exper-
imentally and numerically that the discrete model carried to the limit
is able to predict both the sound field inside the horn, and the input
impedance of the horn. Amir and Starobinski [266] also describe how
the method may be used to find the eigenmodes of two-dimensional
cavities.

The discrete model is also used by Kemp [267]. Kemp has also
demonstrated that the discrete model is able to predict the input
impedance of wind instruments with good accuracy. In both Kemp’s
and Amir’s studies, the horn was assumed mounted in an infinite
baffle.

Further work on the mode matching methods described by Pag-
neux et al. have been done by many (the 1996 paper has been cited
over 140 times), but in particular the work by for instance Felix
[19, 20, 268, 269, 21] and Braden [22] to extend the method to include
bends, could be mentioned.

An alternative matrix formulation of the method is given by Shindo
et al. [188] and Schuhmacher and Rasmussen [270], who simulated
rectangular horns. Here the amplitudes of the propagating and re-
flected waves in each section were found by solving a linear system
of equations. Shindo et al. used the Boundary Element Method in the
narrow parts of the horn, claiming that MMM had numerical chal-

6 Roure’s thesis is in French, and is in general hard to obtain. The reference is provided
to give proper credit for the origin of the method.



66 overview of horn simulation methods

�a0

�b0

S(1)

�a1

�b1

S(2)

�an−1

�bn−1

S(n)

�an

�bn

Figure 25: Principle of the Scattering Matrix approach.�a represents a vector
of incoming wave mode amplitudes,�b represent the mode ampli-
tudes of the scattered wave.

lenges when dealing with evanescent waves, but Schuhmacher and
Rasmussen show no problems in this regard. They did not, however,
use more than four modes.

Other mode based methods are also presented by Ando [55] and
Oie et al. [56].

A different approach to the mode matching method is the scat-
tering matrix method. This method has been used in modeling
of electromagnetic waveguides [262], but also in modeling the ear
canal [4, 271, 272] (including non-rigid walls) or ventilation systems
[273, 274, 275]. Here a matrix is defined that relates waves in the two
directions of propagation at the two sides of a duct element, see Fig-
ure 25. The relations are[

�an

�bn−1

]
=

[
S(n)

11 S(n)
12

S(n)
21 S(n)

22

] [
�an−1

�bn

]
=

[
T R

R T

] [
�an−1

�bn

]
(55)

where T and R are N×N matrices specifying the modal transmission
and reflection characteristics of the segment. For a straight segment,
R = 0 and T = diag

[
e−jkm L] where km is the modal wave number of

mode m.
The matrices can be multiplied together to form a composite scatter-

ing matrix for the entire duct system, but this may lead to instability
due to evanescent modes, as T now will contain exponential numbers
that may become very large.

It appears that the scattering matrix method can more easily be
employed to compute the characteristics of bends (Furnell [273]) and
junctions and right angle joints (Muehleisen [275]) than the formula-
tion by Roure.

A final mode matching variant that should be mentioned, is the
one described by Geddes [33]. Here the horn is discretized into coni-
cal elements approximating the contour. The sound field inside each
cone is described by spherical Hankel functions. As the cones will
have different angles, the spherical mouth surface of one cone will
not match the throat surface of the next. The sound field is therefore
matched at a plane surface perpendicular to the horn axis at the point
where the two cones join. A simple example of a cone in a sphere is
given in the Appendix of [33].

Similar to the one-dimensional horn models, the mode-matching
models also require a good model for the radiation impedance. For-



3.5 summary 67

tunately, the dependence of the radiation impedance on the shape
of the horn, as discussed in [254], is now expressed by coupling be-
tween pressure and velocity modes. Now the radiation impedance
model can be computed based only on the cross-sectional shape of
the horn mouth, and possibly other external influences, like diffrac-
tion and reflections.

3.5 summary

Acoustic modeling of duct-like structures can be roughly divided into
three areas: loudspeaker horns, musical instrument horns, and venti-
lation systems, acoustic filters and similar. These three areas have
different requirements: for loudspeaker horns, directivity and to a
degree throat impedance are important factors. As horns for loud-
speakers are mainly used to control directivity, accurate computation
of this quantity is very important. For musical instruments, accurate
computation of the resonance frequencies is the main goal. And for
the last category, transmission and attenuation characteristics usually
take on great importance.

Methods employed for these categories may have many similarities,
and many of the methods can be used for all three. Benefits may
be had from studying methods originally developed for a different
purpose than the problem at hand.

The methods can be divided into three groups: analytical, numeri-
cal, and semi-analytical methods.

Analytical methods can give exact solutions, but only for a very
small set of geometries. Numerical efficiency of the analytical meth-
ods (as numerical values are almost always required in the end) is
usually high, although problems may be encountered for some cases
where, for instance, a convergent series expansion that is analytically
convergent may not converge numerically. Analytical methods (if we
disregard the final numerical implementation) do not have frequency
limitations, if we disregard low- or high frequency asymptotic meth-
ods.

For numerical methods, a discretization (meshing) of the problem
must be made, and an approximation to the true solution is computed
over the elements. This mesh must be sufficiently fine to sample the
wave field accurately. The general rule is to apply at least six elements
per wavelength, although for far field calculations using BEM, suffi-
ciently accurate results seem to be obtainable with three elements per
wavelength [8]. Creating an optimal mesh is not entirely straightfor-
ward [276].

Semi-analytical methods are based on breaking up a problem into
elements, or subdomains, that each have analytical solutions. In the
case of horns, this can be a series of straight or conical elements. These
piecewise analytical solutions are then combined numerically using
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matching techniques. These methods are more restricted in choice
of geometry than fully numerical methods, but more flexible than
analytical methods. The numerical efficiency is somewhere between
the two.

In this thesis, one of the semi-analytical methods will be used: the
discrete segment mode matching method pioneered by Roure and
further developed by Kergomard, Pagneux, Amir and others. There
are several reasons for the choice of this method.

• The method is relatively easy to implement,

• It is efficient, both in terms of memory usage, and computation
time,

• It is easily scalable,

• Discretization of the horn is very simple.

• By describing the sound field in the horn in terms of modes,
new insights into the behavior of horns may be found,

In many of the references by Pagneux, Kergomard, Felix and others,
a discrete method carried to the limit of infinitesimal step size is used
(see for instance [214]), and here the impedance along the horn is ex-
pressed in the form of a Riccati differential equation that is integrated
numerically. The infinitesimal step size method method has not been
used in this thesis mainly due to the somewhat higher implementa-
tion complexity, but also since the discrete model makes it easier to
experiment with the step size and other parameters. In addition, the
extension described in Chapter 11 would not be possible.

In contrast to the Mode Matching Methods, analytical methods are
mathematically very complicated, the allowable geometries are very
few, and solution of any problem of practical interest would probably
require significantly more mathematical training than the author has.

General numerical methods are already developed to a high state
of perfection, with many commercial packages available. It does not
seem to be much left to do here for someone primarily interested in
horns; horns can be simulated, but that is hardly something to write
a PhD thesis on. Gaining new insights into horn behavior is also not
so easy with purely numerical methods.

Due to the apparent advantages of the MMM, this method was
taken as a starting point for the work in this thesis; as the funda-
mental building block. The main work has then been to extend the
applicability of the method to new areas, either by direct extension,
or by combination with other methods.



Part II

T H E M O D E M AT C H I N G M E T H O D

In this part, the Mode Matching Method is described in de-
tail. Three cross-sectional geometries are covered: circular,
annular circular, and rectangular. The method is applied
to simulation of horns under three common conditions:
mounted in a large (infinite) baffle, radiating into free
space, and placed close to reflecting boundaries. Experi-
mental verification of the three cases is presented. In addi-
tion, the multimodal radiation impedance seen by horns
radiating into rooms is briefly covered.





4
T H E M O D E M AT C H I N G M E T H O D

The general idea and historical background of the Mode Matching
Method (MMM) was presented in Section 3.4.3. This chapter will
give a more detailed overview of the theory of the MMM, and for-
mulations for several possible geometries.

The method described here is the method developed by Roure [37],
and later studied and further developed by Kergomard, Amir, Pag-
neux, Kemp and others. See Section 3.4.3 for a more detailed listing
of references.

This chapter is mainly based on the references given in Section
3.4.3. In addition, the work by Evensen [44, 277] has been included,
extending the MMM to annular geometries. The new contribution
to the method itself, is the slight change of the algorithm to reduce
memory requirements, as first presented in [45].

4.1 modal description of the sound field

A time harmonic factor of ejωt is implicitly assumed throughout this
thesis.

The wave equation and the Helmholtz equation can be solved in
terms of expansions of eigenfunctions. This enables the pressure and
velocity in a duct to be expressed as a weighted sum of orthogonal
eigenfunctions appropriate for the coordinate system used [267, 278,
279].

Starting with the Helmholtz equation for pressure, we have

Δp = −k2 p (56)

where Δ = ∇2 is the Laplacian operator.
There are now two possible approaches for a modal solution. The

first option is to describe the sound field solely by modes, which is
appropriate for a closed volume:

p(x, y, z) =
∞

∑
n=0

Pnψn(x, y, z). (57)

This approach is not suitable for describing wave propagation.
Therefore, for our purpose is more convenient to describe the sound
field as a sum of two components; the component in the z-direction,
and the component in the (x, y) plane perpendicular to the z-
direction:

Δ = Δ⊥ +
∂2

∂z2 . (58)

71
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We can then solve the Helmholtz equation by separation of vari-
ables, by describing the pressure as

p(x, y, z) =
∞

∑
n=0

Pn(z)ψn(x, y). (59)

Inserting this expression for p into Eq. (56) we get

1
ψn

Δ⊥ψn +
1
Pn

∂2Pn

∂z2 = −k2. (60)

Since each term is a function of a separate variable, each term must
be constant, giving

∂2

∂z2 Pn(z) = −k2
nPn(z) (61)

Δ⊥ψn(x, y) = −α2
nψn(x, y), (62)

which again are linked through the wavenumber k

k2 = k2
n + α2

n. (63)

αn is the wavenumber in the x− y plane.
Along a uniform pipe of arbitrary, but uniform, cross-section, solu-

tion of Eq. (61) gives

Pn(z) = Ane−jknz + Bnejknz. (64)

Using the relation

ρ
∂vz

∂t
= −∂p

∂z
, (65)

a similar expression can be found for the volume velocity

Un(z) =
knS
kρc

(
Ane−jknz − Bnejknz

)
. (66)

We also have the relation

Un = Zc,nPn(z) (67)

where Zc is the characteristic impedance, which for the multimodal
case is

Zc,n =
kρc
knS

. (68)

Strictly speaking, only the first (plane wave) term U0 can rightly
be called the volume velocity. However, since the �U vector can be
expressed as S�v, where �v is a vector of particle velocity mode ampli-
tudes, we will refer to the entire �U vector as the volume velocity.

Solution of Eq. (62) with the appropriate boundary conditions (for
our case, the Neumann (hard wall) boundary condition would be the
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most appropriate in most cases) gives the mode functions ψn(x, y).
These can be found analytically for certain geometries (rectangular,
circular, annular and elliptic), but may also be found by numerical
methods. The αn values will turn out to be the eigenvalues of the
mode functions. Given the eigenvalues, kn is determined from Eq. (63).
When k < αn, kn will be imaginary, and the mode is said to be in
cutoff. The pressure will decay exponentially when propagating away The term ’cut-on’ is

also often used for
the phenomenon
happening at the
cutoff frequency. A
mode is cut-on above
this frequency, and
in cutoff below it.
What term to use
depends on what
direction along the
frequency axis one
considers. Moving
from a low to a high
frequency, the modes
“cut on”, while
moving from a high
to a low frequency,
the modes “cut off”.

from the source, it is evanescent, and the sign of the root is chosen so
that this is the case:

kn =

⎧⎨
⎩−
√

k2 − α2
n : k < αn√

k2 − α2
n : k > αn

. (69)

With the expressions given above, any sound field in a uniform
duct can be described. If we know the pressure or velocity distribu-
tion, we can find the mode amplitudes Pn or Un as follows:

Pn is found by multiplying both sides of Eq. (59) by ψn and integrat-
ing over S, giving

∫
S

p(x, y)ψn(x, y)dS =

∞

∑
m=0

∫
S

Pmψm(x, y)ψn(x, y)dS = PnS, (70)

where the last equality comes from the orthogonality relation∫
S

ψnψmdS = Sδnm. (71)

We may notice that the modes are not orthonormal, in which case
the integral would be unity, but the formulation used here can often
be more convenient [266]. Note that Braden [22] uses orthonormal
mode functions.

Rearranging, we get

Pn =
1
S

∫
S

p(x, y)ψn(x, y)dS. (72)

Similarly, we have, for velocity,

v⊥(x, y) =
1
S

∞

∑
m=0

Umψm(x, y), (73)

Um =
∫
S

v⊥(x, y)ψm(x, y)dS, (74)

were v⊥ is the velocity normal to the x, y-plane, and Um is the modal
volume velocity amplitude of mode m.
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Figure 26: Duct geometries treated in this thesis.

In addition, it is possible to describe pressure mode amplitudes
in terms of a matrix of modal acoustic impedances, and the volume
velocity mode amplitudes,

Pn =
∞

∑
m=0

ZnmUm, (75)

or, in vector notation,
�P = Z�U. (76)

How to compute the Z-matrix will be discussed in more detail in
connection with radiation impedance in Section 5.2, but in principle
each column of the matrix consists of the pressure mode amplitudes
due to volume velocity mode Um, scaled by the amplitude of Um.

For a field decomposed into modes and a subsequently recon-
structed to be identical to the original field, i.e.

p(x, y, z) =
∞

∑
n=0

ψn(x, y)
1
S

∫
S

p(x, y, z)ψn(x, y)dS (77)

the mode functions must be scaled so that the following relation
holds: ∫

S

(ψn)
2 dS = S. (78)

Therefore the mode functions must be normalized, although they do
not have to be orthonormal.

4.2 mode functions

The mode functions depend on the geometry and the boundary con-
ditions. For horns, we usually assume rigid walls, as treating ducts
with a general impedance condition at the wall complicates things
somewhat. Here follows the mode functions for some useful geome-
tries, Figure 26.
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4.2.1 Cylindrical Geometry

In cylindrical coordinates, Δ⊥ in Eq. (58) is

Δ⊥ =

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
, (79)

or, assuming axisymmetry,

Δ⊥ =

(
∂2

∂r2 +
1
r

∂

∂r

)
, (80)

which gives (
∂2

∂r2 +
1
r

∂

∂r

)
ψn(r) = −α2

nψn(r) (81)

for Eq. (62). This equation can be turned into Bessel’s equation of
order zero with some manipulation, the the general solution of which
is

ψn(r) = c1 J0 (αnr) + c2Y0 (αnr) . (82)

If the horn has no central member, c2 = 0, since Y0 is singular at
the origin. With the boundary condition

∂ψn

∂r
= 0, r = a, (83)

where a is the radius of the duct, Figure 26a, it can be shown that the
mode function is

ψn =
J0(μnr/a)

J0(μn)
(84)

where μn are the successive zeros of J1, which is the the derivative of
J0.

The case of non-axisymmetry will not be treated in this thesis, but
see [22] for the relevant expressions.

4.2.2 Annular Geometry

In the case of a structure with central member of radius b, Figure 26b,
we have to retain c2 in Eq. (82). By again applying the hard wall
boundary condition, we get the mode function [280, 281]

ψn(r) = c1

{
J0

(
ϕn

r
b

)
− J1 (ϕn)

Y1 (ϕn)
Y0

(
ϕn

r
b

)}
(85)

where ϕn are the zeros of the characteristic equation

J′0(ϕn)Y′0
(

ϕn
a
b

)
− J′0

(
ϕn

a
b

)
Y′0(ϕn) = 0, (86)

which is slightly easier (and more efficient) to handle in the form

J1(ϕn)Y1

(
ϕn

a
b

)
− J1

(
ϕn

a
b

)
Y1(ϕn) = 0. (87)
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The zeros of Eq. (87) have to be found numerically, but a useful ap-
proximation [282] for the higher order zeros is

ϕn ≈ β +
p
β
+

q− p2

β3 +
r− 4pq + 2p3

β5 (88)

where
β =

nπ

λ− 1
,

λ = a/b,

p =
3

8λ
,

q =
−63

(
λ3 − 1

)
6(4λ)3(λ− 1)

r =
1899

(
λ5 − 1

)
5(4λ)5 (λ− 1)

.

This approximation can be used as the basis for a root finding algo-
rithm. It should, however, be noted that for large values of λ the first
zeros from the approximation are not usable.

In addition, we need to know the normalization factor ηn = 1/c1

so that ∫
S

(ψn)
2 dS =

c2
12π

a∫
b

{
J0

(
ϕn

r
b

)
− J1 (ϕn)

Y1 (ϕn)
Y0

(
ϕn

r
b

)}2

rdr

= π
(
a2 − b2) (89)

Performing the integration, using relation 11.4.2 from [282], we get

η2
n =

2
a2 − b2

[
1
2

r2
(

ψ2
n

(
ϕn

r
b

)
+ ψ′2n

(
ϕn

r
b

))]r=a

r=b

which, when written out, becomes

η2
n =

1
(a2 − b2)Y2

1 (ϕn)

×
{

a2 [Y2
1 (ϕn)

(
J2
0 (ζ) + J2

1 (ζ)
)

−2J1 (ϕn)Y1 (ϕn) (J0 (ζ)Y0 (ζ) + J1 (ζ)Y1 (ζ))

+J2
1 (ϕn)

(
Y2

0 (ζ) + Y2
1 (ζ)

)]
−
(

2b
πϕn

)2
}

(90)

where ζ = ϕn
a
b .
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n (nx, ny) n (nx, ny)

1 (0,0) 9 (2,2)

2 (0,1) 10 (0,3)

3 (1,0) 11 (3,0)

4 (1,1) 12 (1,3)

5 (0,2) 13 (3,1)

6 (2,0) 14 (2,3)

7 (1,2) 15 (3,2)

8 (2,1) 16 (3,3)

Table 2: Mode pairs sorted in increasing order.

For the plane wave mode ϕ0 = 0, which means that we must nor-
malize this mode separately. The result is

η2
0 =

2
a2 − b2

[
1
2

u2 (J2
0 (u) + J′20 (u)

)]u=ϕa/b

u=ϕ

= 1

as one would expect.

4.2.3 Rectangular, Quarter Symmetric Geometry

The results for this case are well known [267]. Since we now have
modes it two directions, it is advantageous to separate ψn into two
parts, one dependent on x, and the other on y:

ψn = φnx σny . (91)

Here n is used as a short hand index for nx, ny, and the modes are
sorted in increasing order, see Table 2. It would also be

possible to sort the
modes by cutoff
wave number, but as
the aspect ratio may
change through the
horn, the sorting
would have to
change trough the
horn as well.

In a quarter symmetric duct having hard wall boundary conditions,
width 2a and height 2b, Figure 26c, the mode functions in Eq. (91), are
[279]

φnx =

⎧⎨
⎩1 : nx = 0
√

2 cos
( nxπx

a

)
: nx > 0

(92)

σny =

⎧⎨
⎩1 : ny = 0
√

2 cos
(

nyπy
b

)
: ny > 0.

(93)

The corresponding eigenvalues are

αn =

√(nxπ

a

)2
+
(nyπ

b

)2
(94)

We have here made use of the fact that asymmetric modes are
not excited in a symmetrical duct, so that the actual mode functions
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z
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Figure 27: Propagation along a uniform tube.

√
2 cos

( nxπx
2a

)
have been changed to

√
2 cos

( nxπx
a

)
by replacing nx

and ny by 2nx and 2ny. This is done in Equations Eq. (92) through
Eq. (94).

4.2.4 Rectangular, Asymmetric Geometry

If the horn is geometrically symmetric, the source is symmetric, and
there is no asymmetry introduced by external factors like asymmetric
baffles or reflectors, only symmetric modes propagate in the horn. If
asymmetry is introduced, for instance if the horn expands more up-
wards than downwards, referred to the horn axis, asymmetric modes
will be introduced.

For asymmetric ducts extending from a−to a+, and from b− to b+,
the mode functions in Eq. (91) become

φnx =

⎧⎨
⎩1 : nx = 0
√

2 cos
(

nxπ(x−a−)
a+−a−

)
: nx > 0

(95)

σnx =

⎧⎨
⎩1 : ny = 0
√

2 cos
(

nyπ(y−b−)
b+−b−

)
: ny > 0

(96)

The corresponding eigenvalues are

αn =

√(
nxπ

a+ − a−

)2

+

(
nyπ

b+ − b−

)2

(97)

Note that the mode numbers are not the same as for a symmetric
duct; in the symmetric case all odd modes are zero, and can conse-
quently be removed. Therefore nx and ny in Eq. (94) will correspond
to 2nx and 2ny in Eq. (97).
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4.3 propagation along a uniform duct – general

If we know the pressure and volume velocity at the far end of a duct
of length d, Figure 27, the pressure and volume velocity at the near
end can be found as

P(0)
n = cos(knd)P(1)

n + j sin (knd) Zc,nU(1)
n (98)

U(0)
n = j sin(knd)Z−1

c,n P(1)
n + cos (knd)U(1)

n . (99)

By defining column vectors �P and �U containing the modal pres-
sure and volume velocity amplitudes Pn and Un, respectively, we can
rewrite in matrix notation

�P(0) = D1�P(1) + D2Zc�U(1) (100)

�U(0) = D2Z−1
c

�P(1) + D1�U(1) (101)

where D1, D2 and Zc are diagonal matrices defined as

D1(n, m) =

⎧⎨
⎩cos(knd) : n = m

0 : n �= m
(102)

D2(n, m) =

⎧⎨
⎩j sin(knd) : n = m

0 : n �= m
(103)

Zc(n, m) =

⎧⎨
⎩kρc/knS : n = m

0 : n �= m
(104)

If the impedance at end (1) of the tube is known, the input
impedance at end (0) can be calculated as

Z(0) = (jD3)
−1 Zc − D−1

2 Zc

(
Z(1) + (jD3)

−1 Zc

)−1
D−1

2 Zc (105)

where

D3(n, m) =

⎧⎨
⎩tan(knd) : n = m

0 : n �= m
(106)

Subsequently, the modal volume velocity at end (1) can be calcu-
lated as

�U(1) =
(
−D2Z−1

c

(
Z(0) − Zc

)
+ E
)
�U(0) (107)

where the extra diagonal matrix is:

E(n, m) =

⎧⎨
⎩e−jknd : n = m

0 : n �= m
(108)
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Figure 28: Multimodal reflection at a discontinuity. The incident plane wave
(Mode 0I) creates transmitted modes in duct 2 (subscript t) as
well as reflected modes (subscript r).

These are the general equations for multimodal propagation along
a uniform duct, and are independent of the mode functions. In pass-
ing, it should be noted that Eq. (107) is a matrix-vector multiplication,
a fact we will later use to our advantage in reducing the memory
requirement of the MMM over that of previous implementations.

4.4 propagation across a discontinuity – general

At a discontinuity in a duct, the sound field will be disturbed, and
additional modes must be used to describe this disturbance. At the
discontinuity there is an edge that will produce diffraction; the edge
can be viewed as a source of the diffracted waves, and this source
is driven by the incident waves. The diffracted waves will propagate
in all directions (with a certain directivity [49]), both into the space
after the discontinuity, but also in the reverse direction of the incident
wave. The diffracted wave thus alters the field at both sides of the
discontinuity, and both fields will thus contain a sum of modes, even
if only a single mode was incident. We therefore have both reflected
modes and transmitted modes, Figure 28. In order to take this into
account in the MMM, we need a description of what happens at the
discontinuity.

Refer to Figure 29. Denoting the pressure at surface 1 p(1) and the
pressure at surface 2 p(2), if If S1 < S2, we must have that

p(1) = p(2) on S1, S1 ≤ S2. (109)

If S1 > S2, the pressure is matched over S2.
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Figure 29: Two ducts joined by a discontinuity.

The modes are orthogonal, so that∫
S

ψnψmdS = Sδnm, (110)

where ψn is the eigenfunction of mode n. Multiplying the pressure
field p with the nth eigenfunction and integrating of the area will
extract the nth mode component from the field. Since pressure may
be also expressed as a sum of modes, we can write

∫
S

ψn pdS =
∫
S

ψn

∞

∑
m=0

ψmPmdS, (111)

where Pm is the amplitude of the mth pressure mode. In the following,
P(1)

n and P(2)
m will be the complex mode amplitudes at surfaces 1 and

2, respectively, and ψ
(1)
n and ψ

(2)
m will be the corresponding mode

profiles on these surfaces.
Combining (109) and (111), we get

P(1)
n =

1
S1

∫
S1

ψ
(1)
n p(1)dS =

1
S1

∫
S1

ψ
(1)
n p(2)dS

=
1
S1

∫
S1

ψ
(1)
n

∞

∑
m=0

ψ
(2)
m P(2)

m dS, (112)

which we can write as

P(1)
n =

∞

∑
m=0

FnmP(2)
m (113)

where
Fnm =

1
S1

∫
S1

ψ
(1)
n ψ

(2)
m dS. (114)

In matrix notation:
�P(1) = F�P(2). (115)

Because of continuity, the velocities on the surfaces S1 and S2 must
match as well. It is also clear that the velocity into the part of S2 that is
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larger than S1, denoted S2 − S1, must be zero for a hard-walled duct
with no wall vibration. For the case where the velocity on S2− S1 �= 0,
see Chapter 11 on page 227.

v(1)z = v(2)z on S1, S1 < S2 (116)

v(2)z = 0 on S2 − S1, S1 < S2. (117)

In terms of volume velocities, we have that U(1)/S1 = U(2)/S2, and
U(2) = 0 on S2 − S1. Again using the orthogonality of the modes, we
can set up the following:

U(2)
n =

∫
S2

ψ
(2)
n v(2)z dS =

∫
S1

ψ
(2)
n v(1)z dS +

∫
S2−S1

ψ
(2)
n 0dS

=
1
S1

∫
S1

ψ
(2)
n

∞

∑
m=0

ψ
(1)
m U(1)

m dS, (118)

which we can write as

U(2)
n =

∞

∑
m=0

FmnU(1)
m . (119)

In matrix notation:
�U(2) = FT�U(1). (120)

If S1 > S2, the relations are

�P(2) = V�P(1) (121)

and
�U(1) = VT�U(2), (122)

where the elements of the matrix V are defined as

Vnm =
1
S2

∫
S2

ψ
(2)
n ψ

(1)
m dS. (123)

The V-matrix is thus computed in the same way as the F-matrix,
even using the same functions, but with the (1) and (2) indices
swapped.

Pressure and volume velocity are related through the modal
impedances, Eq. (75). This relation, together with Eq. (115) and
Eq. (120), or Eq. (121) and Eq. (122), can be used to express how the
modal impedances are coupled across the discontinuities:

Z(1) = FZ(2)FT, S1 < S2 (124)

Z(1) = V−1Z(2)(VT)−1, S1 > S2. (125)

There may be numerical problems involved in inverting the V-
matrix, as it may be close to singular. The larger the discontinuity,
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and the higher the number of modes, the more problematic is this
problem. Roure [283], Amir and Starobinski [266] and Pagneux et
at. [214] suggests using using the admittance matrix Y instead of Z,
where Y is defined by

�U = Y�P,

and
Y = Z−1.

Then the V-matrix can be used directly, without inversion, to find the
admittance at (1) from the admittance at (2) as1

Y(1) = VTY(2)V, S1 > S2. (126)

If the mode functions have been be found numerically, a challenge
is to find the F-matrix. In the case of analytically derived modes, the
F-matrix can usually be found analytically.

The next section will detail how to compute the F and V matrices
and their combinations for the geometries treated in this thesis.

4.5 F -matrices

In this section, the expressions for the F-matrices for geometries
treated above, are given. The matrices are frequency independent,
and will only need to be computed once for a given horn.

4.5.1 Cylindrical Geometry

For axisymmetric polar coordinates, (114) can be written as2

Fnm =
1

π R2
1

a1∫
0

2π∫
0

ψ
(1)
n ψ

(2)
m rdθ dr (127)

Inserting the mode functions,

ψn =
J0 (μn r/a)

J0 (μn )
(128)

and integrating with respect to θ , we get [267]

Fnm =
2

a2
1 J0 (μn ) J0 (μm )

a1∫
0

r J0 (μn r/a1 ) J0 (μm r/a2 )dr , (129)

1 Another possible approach would be check the condition number of the V-matrix,
and then partition the discontinuity into several smaller discontinuities that each
had an invertible V-matrix. The inverted V-matrices are then multiplied together.

2 This derivation is taken from Kemp [267].
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which is a standard integral of the form

∫
x Jp (αx) J p (βx) =

βx Jp (αx) J p−1 (βx) − αx Jp−1 (αx) J p (βx)
α2 − β2 .

(130)
With some variable substitution, we arrive at

Fnm =

(
2

a2
1 J0(μn)J0(μm)

)
×

[
(μmr/a2)J0(μnr/a1)J−1(μmr/a2)− (μnr/a1)J−1(μnr/a1)J0(μmr/a2)

(μnr/a1)2 − (μmr/a2)2

]r=R1

r=0
(131)

The contribution from r = 0 is zero, and J−1(x) = −J1(x). Since μn is
a zero of J1, some terms vanish. This gives us

Fnm =

(
2

a2
1 J0(μn)J0(μm)

)
(μma1/a2)J0(μn)J1(μma1/a2)

(μn/a2)2 − (μm/a1)2 (132)

If we now set β = a1/a2, we get

Fnm(β) =
2βμm J1(βμm)

(β2μ2
m − μ2

n) J0(μm)
(133)

and
Vnm(β) = Fnm(1/β). (134)

4.5.2 Annular Cylindrical Geometry

For the annular geometry, there are two types of discontinuity to
be considered. The first type of discontinuity for which we need to
find the F-matrix, is the annular-to-annular type, shown in Figure 30a.
From the definition in Eq. (114), we must solve the integral

Fnm =
2π

S1η
(1)
n η

(2)
m

a1∫
b1

{
J0

(
ϕn

r
b1

)
− J1 (ϕn)

Y1 (ϕn)
Y0

(
ϕn

r
b1

)}

×
{

J0

(
ϕm

r
b2

)
− J1 (ϕm)

Y1 (ϕm)
Y0

(
ϕm

r
b2

)}
rdr (135)

which can be expressed as a sum of four integrals, and results in [44]

Fnm =
2π

S1η
(1)
n η

(2)
m

{
[I1(r)]

r=a1
r=b1

− J1 (ϕm)

Y1 (ϕm)
[I2(r)]

r=a1
r=b1

− J1 (ϕn)

Y1 (ϕn)
[I3(r)]

r=a1
r=b1

+
J1 (ϕm) J1 (ϕn)

Y1 (ϕm)Y1 (ϕn)
[I4(r)]

r=a1
r=b1

}
(136)

with the functions
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Figure 30: The two types of discontinuities

I1(r) = r
αn J1 (αnr) J0 (αmr)− αm J0 (αnr) J1 (αmr)

α2
n − α2

m

I2(r) = r
αn J1 (αnr)Y0 (αmr)− αm J0 (αnr)Y1 (αmr)

α2
n − α2

m

I3(r) = r
αm J1 (αmr)Y0 (αnr)− αn J0 (αmr)Y1 (αnr)

α2
m − α2

n

I4(r) = r
αnY1 (αnr)Y0 (αmr)− αmY0 (αnr)Y1 (αmr)

α2
n − α2

m

where αm = ϕm/b1, αn = ϕn/b1, and ηn is defined in Eq. (90). Eq. (136)
is valid for m �= 0 and n �= 0. If m = n = 0, the integral reduces to
an integral over r, and F00 = 1. The case where either m or n are zero
must be treated separately, because in this case, ϕ0 = 0, and Y0(0) is
singular. It can be shown that

lim
ϕn→0

ψn(r) = J0

(
ϕn

r
b

)
.

This results in following expressions:

Fn0 =
2π

S1η
(1)
n

a1b1

ϕnY1(ϕn)

× (J1 (αna1)Y1(ϕn)− J1(ϕn)Y1 (αna1)) , (137)

F0m =
2π

S1η
(2)
m

b2

ϕmY1(ϕm)

×{Y1(ϕm) (a1 J1 (αma1)− b1 J1 (αmb1))

−J1(ϕm) (a1Y1 (αma1)− b1Y1 (αmb1))} . (138)
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For an annular-to-circular transition, shown in Figure 30b, the inte-
gral is

Fnm =
2π

S1η
(1)
n J0(μm)

×
a1∫

b1

[{
J0

(
ϕn

r
b1

)
− J1 (ϕn)

Y1 (ϕn)
Y0

(
ϕn

r
b1

)}

× J0

(
μm

r
a2

)]
rdr

=
2π

S1η
(1)
n J0(μm) {α2

n − β2
m}

×
{
[I5(r)]

r=a1
r=b1

− J1 (ϕn)

Y1 (ϕn)
[I6(r)]

r=a1
r=b1

}
(139)

with
I5(r) = r {αn J1 (αnr) J0 (βmr)− βm J0 (αnr) J1 (βmr)}

I6(r) = r {αnY1 (αnr) J0 (βmr)− βmY0 (αnr) J1 (βmr)}
where βm = μm/a2. Again we need to treat the case n = 0 separately:

F0m =
2π

S1 J0(μm)βm
(a1 J1 (βma1)− b1 J1 (βmb1)) (140)

As before, the V-matrices are computed the same way as the F-
matrices, but with arguments changed so that a1 is used instead of a2

and so on.
As can be seen, the mode functions and F-matrices are significantly

more complex for the annular case than for the ordinary circular ge-
ometry. The computational load is, however, not materially increased,
and although the F−matrices and the roots of Eq. (87) have to be
found for each combination of a and b, this only has to be done once
for the entire structure, as both are frequency independent. In the
programming of the method, the only change from the ordinary cir-
cular geometry case, is calling different subroutines a few places.

4.5.3 Rectangular, Quarter Symmetric Geometry

The general geometry for a rectangular duct is illustrated in Figure 29
and Figure 31. For two symmetric ducts, a− = −a, a+ = a, b− = −b
and b+ = b.
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Figure 31: General discontinuity between two rectangular ducts.

For a rectangular duct, it is most convenient to express Eq. (114) as
an element-wise multiplication of two matrices:

Fnm(βx, βy) =
1
S1

∫
S1

ψ
(1)
n ψ

(2)
m dS

=
1

2a1

a1∫
−a1

φ
(1)
nx φ

(2)
mx dx

1
2b1

b1∫
−b1

σ
(1)
ny σ

(2)
my dy

= XnxmxYnymy (141)

where βx = a1/a2 and βy = b1/b2, and

Xnxmx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : nx = mx = 0,
√

2sinc (mxπβx) : nx = 0, mx > 0,

2sinc (π(mxβx − nx))
mx βx

mx βx+nx : nx > 0
(142)

Ynymy =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : ny = my = 0,
√

2sinc
(
myπβy

)
: ny = 0, my > 0,

2sinc
(
π(myβy − ny)

) myβy
myβy+ny : ny > 0

(143)
The V matrix then becomes

Vnm = Fnm(1/βx, 1/βy) (144)
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4.5.4 Rectangular, Asymmetric Geometry

The geometry is illustrated in Figure 31. It is again most convenient
to express the F matrix as an element-wise product of two terms:

Fnm =
1
S1

∫
S1

ψ
(1)
n ψ

(2)
m dS

=
1

a1+ − a1−

a1+∫
a1−

φ
(1)
nx φ

(2)
mx dx

1
b1+ − b1−

b1+∫
b1−

σ
(1)
ny σ

(2)
my dy

= XnxmxYnymy (145)

where Xnxmx and Ynxmx now are

Xnxmx =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 : nx = mx = 0,
√

2sinc
(mxπ

2 βx,t
)

cos
(mxπ

2 βx,a
)

: nx = 0, mx > 0,

sinc
(

π
2 (nx −mxβx,t)

)
cos
(

π
2 (nx −mxβx,a)

)
+sinc

(
π
2 (nx + mxβx,t)

)
cos
(

π
2 (nx + mxβx,a)

) : nx > 0

(146)

Ynymy =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 : ny = my = 0,
√

2sinc
(

myπ
2 βy,t

)
cos
(

myπ
2 βy,a

)
: ny = 0, my > 0,

sinc
(

π
2

(
ny −myβy,t

))
cos
(

π
2

(
ny −myβy,a

))
+sinc

(
π
2

(
ny + myβy,t

))
cos
(

π
2

(
ny + myβy,a

)) : ny > 0

(147)
Here the ratio

βx,t =
a1+ − a1−
a2+ − a2−

(148)

describes the symmetrical part of the field at the junction, and corre-
sponds to βx in the symmetrical case.

βx,a =
a1+ + a1− − 2a2−

a2+ − a2−
(149)

describes the asymmetry. The V-matrix is again Vnm =

Fnm(1/βx, 1/βy).

4.5.5 Complex Discontinuities

In certain cases it may be difficult to describe the discontinuity analyt-
ically. An example is rectangular horns where the profile expands in
one direction and contracts in the other, Figure 32. This can be solved
in an elegant way if one is prepared to compute two matrices instead
of one. Since the F matrices are computed only once for each horn
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Figure 32: Discontinuity with both expansion and contraction.

profile, the extra computational cost is small. The idea is to split the
discontinuity into two or more successive discontinuities, each with
its own F-matrix. The F-matrices are then multiplied together at the
end to describe the actual discontinuity.

Another reason for doing it this way, is convenience. For disconti-
nuities in annular ducts, there are 8 possible combinations of expand-
ing and contracting inner and outer radii, but all can be created from
combinations of four different F-matrices.

The following example focus on rectangular horns, but the princi-
ple is the same in every case. In this example, the discontinuity is
split in two, where first discontinuity expands in only one direction,
with no change in the other, and the second contracts in the other
direction, with no change in the first. See Figure 33. For instance,
βx < 1, βy = 1 for the first, and βx = 1, βy > 1 for the second.

For velocity propagation across these two discontinuities, which we
will call a and b, we have that

�U(2) = FT
a
�U(1) (150)

�U(3) = FT
b
�U(2) (151)

so that
�U(3) = FT

b FT
a
�U(1). (152)

Since (AB)T = BT AT, we can form a composite matrix FC = FaFb
that replaces the two F matrices. Actually, one of the matrices will
be a V matrix, since there is a contraction in one plane. If this is the
second matrix, FC = FaV−1

b . However, this introduces the same issues
with inversion of the V-matrix as discussed in 4.4.

That this also works for impedances, can be seen from the follow-
ing:

Z(1) = FaZ(2)FT
a (153)

Z(2) = FbZ(3)FT
b (154)

Z(1) = FaFbZ(3)FT
b FT

a (155)

where we again can form the composite matrix FC = FaFb.
The case of a skewed duct where, for instance, a1+ < a2+ while at

the same time a1− < a2−, can also be solved using this technique, by
splitting the discontinuity into more than two successive ones.
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Figure 33: Partitioning of a discontinuity.

4.6 summary of the method

The radiation impedance at the mouth end of the horn needs to be
known in order to specify the boundary conditions at this end of the
horn [214].

Together with Eq. (120), Eq. (107) can be used to calculate the vol-
ume velocity mode amplitudes at the mouth of the horn, given the
volume velocity amplitudes at the throat.

The traditional method to do this is outlined in [267], and is sum-
marized as follows:

1. Calculate the impedance matrices at all points in the horn, start-
ing from the mouth, using equations (124) or (125), and (105).

2. Excite the throat end with a given vector of volume velocity am-
plitudes, and propagate it to the mouth using equations (107),
and (120) or (122), and the impedance matrices from step 1.

This procedure requires storage of a large number of impedance ma-
trices per frequency, one for each end of each duct element, which
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can be prohibitive if many modes and many duct elements are used.
In addition, step 2 above must be repeated for each new throat veloc-
ity distribution. As the method has previously primarily been used
for impedance calculations, this drawback may not have been of any
great concern. For loudspeaker simulations, however, one often need
to change other parameters while the horn is kept constant.

However, inspection of equations (122) and (107) shows that both
are matrix-vector multiplications. Therefore, a single matrix for the
entire horn, relating mouth volume velocity to throat volume veloc-
ity, can be found by multiplying together the matrices from these
equations. What is more, this matrix can be built up from either end
of the horn. The result is that the volume velocity transfer matrix
can be built up simultaneously with the impedance matrix, from the
mouth through to the throat, without storing the impedance values
through the horn. This will result in a significant saving of computer
memory. The fact that the diagonal matrices D2 and Zc only have to
be calculated once per frequency and position will also reduce the
computation time slightly. The revised procedure will then be:

1. Start with mouth impedance Z(N) = Zend (which could be
the radiation impedance) and volume velocity transfer matrix
U(N,N) = I, the identity matrix.

2. For a straight duct element between positions n− 1 and n, cal-
culate Z(n−1) from Eq. (61) and Z(n).

3. Calculate

M(n−1,n) =
(
−D2Z−1

c

(
Z(n−1) − Zc

)
+ E
)

and
U(n−1,N) = U(n,N) ×M(n−1,n).

4. For a discontinuity between positions m − 1 and m, calculate
Z(m−1) from Eq. (124) or (125), and Z(m).

5. Calculate
U(m−1,N) = U(m,N) × FT(m−1,m)

from Eq. (120) or (122), and Z(m).

The results from these operations are a throat impedance matrix Z(0)

and a volume velocity transfer matrix U(0,N), that can be used to
evaluate the performance of the horn.

In the case where the sound field inside the horn is to be computed,
the traditional method must be used.
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4.7 practical notes

There are a few practical issues to keep in mind when implementing
and using the MMM. A common question is the number of modes
required, and this factor is addressed in the next section. A discussion
of the number of modes in terms of accuracy of the far field pressure
can also be found in Section 5.1.5. The issue of element length is
addressed in Section 4.7.2.

A more hidden potential problem is what happens if the calculation
frequency coincides with the cutoff frequency of one mode in one
of the elements. In this case, kn = 0, as can be seen from Eq. (63),
and from Eq. (68), this results in a characteristic impedance Zc that is
infinite for that particular mode.

4.7.1 Convergence: Number of Modes

An interesting question for the practical use of the MMM is the num-
ber of modes required for a given accuracy. Kergomard and Garcia
investigated the convergence for a single discontinuity [284]. Some
tests on entire horns have been previously been performed by the
author [285]. In these tests, average and maximum error over a fre-
quency range as a function of the number of modes was computed
for several types of horns. The results do not, unfortunately, give con-
crete guidelines for choosing the number of modes to use in a certain
case.

In order to arrive at a better estimate of how many modes to use,
tests were run to look at the error as a function of the ratio of the
cutoff frequency of the highest mode used in the simulation, to the
calculation frequency. This way, the curves also apply to rectangular
horns, where the modes are not equally spaced, which they approx-
imately are in an axisymmetric horn. In the following, the cutoff
frequencies of the modes will be referred to the mouth radius, so that
the cutoff wavenumber of mode n is kc,n = μn/am. In the narrower
parts of the horn, the cutoff frequencies will be higher.

A conical horn, an exponential horn, and a tractrix horn, all hav-
ing a length of 50 cm, and throat and mouth areas of 10 cm2 and
1250 cm2, respectively, were used. The horns were axisymmetric and
mounted in an infinite baffle. 1000 elements per wavelength were
used in all horns, for all frequencies. The reference was simulation
results using 192 modes. A series of simulations were run at a few
selected frequencies, some well below the first cut-on frequency of
the lowest mode, and some right above the cut-on frequencies of the
first few modes, varying the number of modes. The result is a family
of curves, one for each calculation frequency, that show how the error
decreases as the number of modes is increased.
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Figure 34: Relative error in mouth plane wave volume velocity amplitude as
a function of the ratio of the cutoff frequency of the highest mode
used to the frequency used in the calculations. Single frequency,
kam = 1.29.

The results are plotted as kc,max/k = μn,max/kam. A single curve,
with N, the total number of modes used in the simulation (including
the plane wave mode) indicated along the line, is shown in Figure 34.
This curve requires a few comments. First of all, the curve shows how
the error for a single frequency decreases as the number of modes in-
creases. The discrepancy between the curves for the conical horn and
for the exponential and tractrix horns requires a comment. As can
be seen from the curves in Appendix A, the first resonance frequency
of the horns differ between the plane wave approximation and the
MMM simulations. The frequency in Figure 34 is close to the first
resonance peak for the exponential and tractrix horns, and the error
is in this case greater due to slight shifts in the location of the peak.
The conical horn is large enough to not have a clear peak near this
frequency.

Plotting the similar curves for different frequencies, a clear trend
emerges, see Figure 35. The curves group into two categories, where
the curves for frequencies where all modes are in cutoff everywhere
in the horn behave differently from the curves for frequencies where
one or more propagating mode exist. For the last case, the curves are
practically overlapping, and the slope of error vs. μn,max/kam is -1.
When all modes are in cutoff, the slope appears to be the same, but
with an additional factor that causes an offset that is dependent on
the frequency. From the curves, it appears that to achieve an error of
less than 1%, the cutoff of the highest mode used must be 10-20 times
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Figure 35: Relative error in mouth plane wave volume velocity amplitude
as a function of the ratio of the cutoff frequency of the highest
mode used to the frequency used in the calculations. Note that
each triplet of curves is for a single frequency, see previous figure,
which shows the dashed curves in detail.

the calculation frequency. An exception is around the first resonance
peak of the horn, as commented above.

The results differ slightly between the three horn types: for the
conical horn more modes will be cut-on in a larger part of the horn,
while for the exponential and tractrix horns, fewer modes are cut-on
close to the throat.

4.7.2 Convergence: Element Length

The number of elements per wavelength required for a given accu-
racy was investigated by simulating the conical horn used above for
a certain number of elements per wavelength, compared to a refer-
ence simulation using 1000 elements per wavelength. All simulations
were run using 64 modes. The resulting relative error in mouth plane
wave volume velocity is shown in Figure 36. Δz is the length of each
element. Convergence is rather slow; the slope of the curves is ap-
proximately -1, corresponding to O(n). While this may seem a bit
depressing, it should be remembered that a in terms of error, 1 dB
equals 12%, and 0.5 dB 6%. 0.5 dB error in the plane wave mouth
volume velocity requires about 40 elements per wavelength, and for
a 50 cm long horn operating at 5 kHz, this corresponds to about 2900
elements. The requirement is relaxed as frequency is lowered.

The very high errors for long elements for the lowest frequencies in
Figure 36 comes from numerical problems that occurs for evanescent
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Figure 36: Relative error in mouth plane wave volume velocity amplitude as
a function of the number of elements per wavelength. 64 modes
were used in the simulations.

modes if an element is to long. There is no problem in computing the
projected impedance matrix, using Eq. (105), the error comes from the
propagation of the volume velocity down the horn using Eq. (107). As
the wavenumber for an evanescent mode is imaginary, the complex
exponentials become real, and this will produce very large or very
small values in the matrix E, causing underflow or overflow. An
absolute minimum length for an element is therefore set by making
sure that

e−jknΔz

is a representable number for the highest mode in the element with
the smallest dimensions. This is because the cutoff frequency of the
modes depend on the transversal size of the element, and high order
modes are more likely to cause trouble in elements of small cross
section.

As the throat impedance approaches ρ0c at high frequencies, accu-
rate computation of this quantity does not require as many elements.
This fact causes the error in impedance to decrease with frequency,
and 3 elements per wavelength is sufficient to achieve less than 10%
error for the two highest frequencies in this test. For the lowest fre-
quency, 20 elements per wavelength is required for 10% error.





5
R A D I AT I O N F R O M H O R N S I N H A L F - S PA C E

The most commonly treated case for horns is radiation into half-space
(2π solid angle). This is also a very important case, as it is part of all
other radiation cases, as will be discussed in section 6.2.

The previous chapter outlined the basics of the Mode Matching
Method (MMM), and as mentioned in Section 4.6, the impedance
at the mouth end of the horn must be known in order to compute
the impedances at all points in the horn, and the volume velocity
transfer matrix. This impedance can be the radiation impedance, ei-
ther into half-space, or into other solid angles, or it can be the throat
impedance of another horn, or the characteristic impedance of an
infinite duct, Zc. In this chapter, we will look in more detail into
the multimodal radiation impedance and its physical meaning. In
addition, expressions for radiation impedance for axisymmetric and
rectangular geometries will be given for the infinite baffle (IB) case.
For detailed derivations of the expressions, please see the references.
This chapter will instead focus on how to improve the computational
efficiency.

With the volume velocity transfer matrix, the modal volume veloc-
ity amplitudes at the mouth of the horn can be found, given a vector
of throat volume velocity amplitudes. This chapter will also look at
the basic methods to compute the radiated pressure from the horn
mouth.

An experimental verification of the MMM applied to a horn
mounted in an infinite baffle is given in Section 9.2 on page 195.

The main contributions in this chapter are the improvements in
efficiency for calculating the modal radiation impedance matrix for
circular and rectangular geometries. In addition, a derivation of the
equations for far field radiation from asymmetric rectangular horns
is presented, and the relation between the reflectance matrix and the
radiation impedance is discussed in terms of the physical meaning of
modal radiation impedance and the influence of the reflected modes.

Computation times in this and subsequent chapters are given for
comparison only, the absolute values have little significance. All the
computations have been performed on a computer that had an Intel
i7-2600 CPU running at 3.4 GHz, and 8 GB RAM.

5.1 calculation of the pressure response

Calculation of the pressure radiated from the horn is also necessary
if the model is to be used for directivity predictions. One way to do

97
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this, for a radiator in an infinite baffle, is to use the Rayleigh integral
[286, 174], mapping the velocity profile in the mouth of the horn to
the pressure response. From a throat volume velocity vector �U(1) and
the volume velocity transfer matrix U(1,N), the mouth volume veloc-
ity mode amplitude vector �U(N) can be found as �U(N) = U(1,N)�U(1).
From this, the radiated pressure, pIB, can be calculated using a multi-
modal variant of the Rayleigh integral over the mouth area S:

pIB(x) =
jωρ

2πS

∫
S

∞

∑
m=0

ψm(x0, y0)U
(N)
m

e−jkr

r
dS0 (156)

where x = (x, y, z) and

r =
√
(x− x0)

2 + (y− y0)
2 + z2.

This expression is valid for the case of an infinite baffle, as indicated
by the subscript IB for p. The Rayleigh integral is accurate for any
distance to the source.

5.1.1 Far Field Approximation

If only the far field pressure is required, the pressure can be calcu-
lated directly from the amplitudes of the velocity modes at the mouth.
This method was first described for circular geometries by Morse
[149], and later for circular and rectangular geometries by Geddes
[33]. The derivation is somewhat involved, and outside the scope of
this text, but can be found in the references. The basic idea is that in
the far field, the distance r to the observation point is much greater
than the size of the source, and the factor e−jkr/r can be moved out-
side the integral:

p(r, θx, θy) = jρck
e−jkr

2πr ∑
mx ,my

∫ ∫
S

v(x, y)ejkxxejkyydxdy (157)

where
kx = k sin θx

ky = k sin θy

and θx and θy describe the angle between source surface normal and
the line from the source to the observation point in the x and y direc-
tions, respectively.

In the following sections, the results for three geometries will be
presented: cylindrical axisymmetric, rectangular symmetric, and rect-
angular asymmetric.
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5.1.2 Cylindrical Geometry

The result for the axisymmetric case is [149]

p(r, θ) = jρck
e−ikr

2πr ∑
n

UnΘn(ka sin θ) (158)

where

Θn(s) =
2sJ1(s)
s2 − μ2

n
. (159)

The function Θn is plotted in Figure 37 as a function of the argu-
ment ka sin θ. It is clear that as the frequency increases, a larger range
of the argument is used.
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Figure 37: The function Θn for some radiation modes for an axisymmetric
horn.

5.1.3 Rectangular, Quarter Symmetric Geometry

Given a rectangular radiator with half-width a and half-height b, with
a velocity profile is given as

ψm(x, y) = Amx cos
(mxπx

a

)
· Bmy cos

(myπy
b

)
(160)

the pressure can be found as [33]

p(r, θx, θy) = jρck
e−jkr

2πr ∑
mx ,my

Amx Bmy

×
b∫

−b

a∫
−a

cos
(mxπx

a

)
cos
(myπy

b

)
e−jkxxe−jkyydxdy. (161)
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By solving the integral

a∫
−a

cos
(nπx

a

)
e−jkxx = 2a2(−1)n kx sin(akx)

(akx)2 − (nπ)2 (162)

we can express the radiated pressure as

p(r, θx, θy) = jρckS
e−jkr

2πr ∑
mx ,my

Amx Bmy Gmx(ka sin θx) · Gmy(kb sin θy)

(163)
where

Gn(s) = (−1)n s sin(s)
s2 − (nπ)2 , (164)

which reduces to the familiar sinc function for n = 0. The function is
plotted for a few modes in Figure 38, and is symmetric with respect
to the argument.

Amx and Bmy can be found from modal decomposition of the veloc-
ity profile, but when the modal amplitudes already are known from
the modal propagation through the horn, we have

Amx Bmy = Nmx Nmy umxmy (165)

where

Nmx =

⎧⎨
⎩1 mx = 0
√

2 mx > 0
(166)

and similarly for Nmy , and umxmy are the modal velocity amplitudes.

5.1.4 Rectangular, Asymmetric Geometry

For the asymmetric case, the radiator having half-width a and half-
height b, the velocity profile is given as (see Section 4.2.4)

ψm(x, y) = Amx cos
(

mxπ(x− a)
2a

)
· Bmy cos

(
myπ(y− b)

2b

)
. (167)

By using the same procedure as above,

p(r, θx, θy) = jρck
e−jkr

2πr ∑
mx ,my

Amx Bmy

×
b∫

−b

a∫
−a

cos
(

mxπ(x− a)
2a

)
cos
(

myπ(y− b)
2b

)
e−jkxxe−jkyydxdy,

(168)
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Figure 38: The function Gn for some radiation modes for a symmetric rect-
angular horn.

and we need to solve the integral

a∫
−a

cos
(

nπ(x− a)
2a

)
e−jkxxdx

= −4ja2 e−jakx
(
(−1)n e2jakx − 1

)
4(akx)2 − (nπ)2 . (169)

Now we can express the radiated pressure as

p(r, θx, θy) = jρckS
e−jkr

2πr ∑
mx ,my

Amx Bmy GA
mx
(ka sin θx) · GA

my
(kb sin θy)

(170)
with the function GA

n (s) defined as

GA
n (s) = −2j

e−js ((−1)n e2js − 1
)

4s2 − (nπ)2 . (171)

This function can be simplified somewhat, to remove the complex
exponentials. For even modes, it reduces to a function very similar to
the G-function for symmetric modes:

GA
n,even(s) =

s sin(s)
s2 − (nπ/2)2 , (172)

which again reduces to the sinc function for n = 0. For odd modes,

GA
n,odd(s) = −4j

s cos(s)
(nπ)2 − 4s2 . (173)
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The function is plotted in Figure 39 for a few odd modes. Note the
asymmetry of the function with respect to the argument. For the even
modes, see Figure 38.
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Figure 39: The function Gn for odd radiation modes for an asymmetric rect-
angular horn from Eq. (173) (imaginary part plotted).

5.1.5 Convergence: Far Field Pressure

Inspection of the plots of the directivity functions, Figures 37, 38 and
39, show that all functions have certain values of the argument where
only one mode contributes. For instance, in Figure 37, at ka sin θ =

10.2 only the mode with n = 3 contributes. If this mode is not present,
there will be a null in the response for this value of the argument.

l

v0(σ)

σ

Figure 40: Spherical wave front in an aperture.

To illustrate the effect of this, the velocity distribution of a shaded
spherical wave front in the aperture, Figure 40, was computed from
the following equation [33]:

v(σ) = wv0
l2

l2 + σ2 e−jk(
√

σ2−l2−l) (174)



5.1 calculation of the pressure response 103

where
w = e−0.7−1σ2

is the shading function, and l and σ are defined in Figure 40. The aper-
ture velocity distribution was decomposed into a number of modes,
which were then propagated to the far field using Eq. (158).

The results are shown in Figure 41. The lower halves of the plots
(negative angles) show the reference polar response, computed using
the Rayleigh integral directly on the velocity distribution, while the
upper halves (positive angles) show the polar responses for a plane
wave (Figure 41a) and for five modes included (plane wave and four
higher modes, Figure 41b). By comparing the upper and lower halves
of the plots, it is possible to judge the accuracy of the approximations.

The plane wave polar plot has a series of null lines (due to the
finite resolution of the plot they are not continuous lines in the fig-
ures), and four of these null lines are gone when the four first higher
modes are added. Adding successive modes will remove additional
null lines. Also note that the polar response at smaller angles and
lower frequencies (lower ka sin θ) approaches the correct shapes fairly
quickly.
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(a) Polar response for a plane wave (up-
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(b) Polar response for 5 modes (upper).

Figure 41: Normalized polar responses for a shaded spherical wave front de-
scribed by a plane wave or by 5 modes (including the plane wave).
Upper half of the plots (positive angles) are shows the truncated
modal description, lower half (negative angles) shows the refer-
ence polar response computed from the Rayleigh integral.

Figure 42 shows the relative error in the far field as a function of
ka sin θ for a number of added modes, compared to a reference solu-
tion using 100 modes. The results were computed for θ = 90°. It can
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Figure 42: The relative error in far field pressure various number of modes.
The reference is a solution with 100 modes.

be seen that the error is reduced significantly at frequencies below
the cutoff frequency of the highest mode included. Unfortunately,
the number of modes required for a given error increases at higher
frequencies, but it is clear that at least the mode with a cutoff identi-
cal to the highest ka value in use should be included, and preferably a
few extra. This, of course, assumes that the mode amplitudes are cor-
rect in the first place, and this also depends on the number of modes
used in the simulation of the horn, see Section 4.7.

One should also note that only the plane wave mode contributes
to the on-axis response, and that the higher modes becomes more
important as one moves off-axis.

5.2 generalized modal radiation impedance

In general, the mechanical radiation impedance is defined as the area
integral of the specific radiation impedance p/vn, where vn is the
normal surface velocity [279]. The acoustic radiation impedance, Zrad,
for a surface S in an infinite baffle, is thus defined as

Zrad =
jωρ

2πS2

∫
S

∫
S

e−jkh

h
dS0dS (175)

where h =
√
(x− x0)

2 + (y− y0)
2.



5.2 generalized modal radiation impedance 105

In the multimodal case, the radiation impedance for a given veloc-
ity distribution is more complicated. Now, the radiation impedance
must be expressed as [287]

Zrad =
W

S2
〈
|vn|2

〉 (176)

where
〈
|vn|2

〉
= 1

S

∫
S vnv∗ndS is the mean square normal velocity, and

W =
∫

S pv∗ndS is the radiated power. However, this is not a formu-
lation that can be used directly with the MMM. What we need is a
relation between each pressure mode and each velocity mode, so that
the radiation impedance can be described as a matrix in the form of
Eq. (75). The physical meaning of this is discussed in the next chapter.
By combining Eq. (70) with the orthogonality relation [267]∫

S

ψmψndS = Sδmn,

we can find the amplitude of the nth pressure mode as

Pn =
1
S

∫
S

p(x, y, 0)ψn(x, y)dS. (177)

By substituting Eq. (156), page 98, into Eq. (177), we can find the am-
plitude of the nth pressure mode due to all velocity modes as

Pn =
jωρ

2πS2

∞

∑
m=0

Um

∫
S

∫
S

e−jkh

h

· ψm (x0, y0)ψn (x, y) dS0dS. (178)

The factor 2e−jkh/h in Eq. (178) is the infinite-baffle Green’s func-
tion, but other Green’s functions can be inserted instead, if the sur-
roundings are not represented by an infinite baffle. So, for the general
case,

Pn =
jωρ

4πS2

∞

∑
m=0

Um

∫
S

∫
S

G(x|x0)

· ψm (x0, y0)ψn (x, y) dS0dS, (179)

where x0 = (x0, y0). This equation assumes that there are no inde-
pendent sources outside S, i.e. that G(x|x0) vanishes outside S. Sec-
ondary sources, like image sources, or edge sources due to diffraction
of the pressure radiated from S, however, may be included.

Comparing Eq. (75), page 74, to Eq. (179), we see that we can ex-
press the elements of the Zrad as

Znm =
jωρ

4πS2

∫
S

∫
S

G(x|x0)

· ψm (x0, y0)ψn (x, y) dS0dS (180)
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The Green’s function in Eq. (180) can include the contribution to the
self impedance (the ordinary infinite baffle radiation impedance), con-
tributions from image sources, and contributions from edge diffrac-
tion [45]. See Section 6.2 for details.

5.3 physical meaning of the modal radiation
impedance

The radiation impedance describes the reaction on the wave propa-
gating to the mouth of the horn by the medium outside: the resistive
part describes the dissipation of power into the medium, the reac-
tive part describes the oscillating air mass (radiation mass). As can
be seen from Eq. (176), there is a direct relation between the radi-
ation impedance and power radiated by each mode. This relation
can also be found from the Bouwkamp integral, where the radiation
impedance is found directly from integration over the far field pres-
sure [288]:

Rs =
k2ρc
4π2

2π∫
0

π
2∫

0

|D(θ, φ)|2 sin θdθdφ (181)

Xs = −j
k2ρc
4π2

2π∫
0

π
2 +j∞∫

π
2 +j0

|D(θ, φ)|2 sin θdθdφ (182)

This leads to the definition in Eq. (176), which, as mentioned, does not
produce the desired impedance matrix in Eq. (75). What we require is
a matrix that will give us the modal amplitudes of the pressure, given
the modal amplitudes of the volume velocity. What is the physical
meaning of such a matrix?

To get insight into this problem, let us take a closer look at what
physically happens when a multimodal wave encounters a disconti-
nuity, which can be either a step in the duct, or the radiation into
free field at the mouth. As we have seen in Section 4.4 on page 80,
an incident mode at a discontinuity produces an infinite number of
reflected modes, see, Figure 28, and the same applies to the duct exit,
Figure 43.

There must therefore be a matrix that relates the modal amplitudes
of the incident wave �P+ to the modal amplitudes of the reflected wave
�P−, so that

�P− = R�P+. (183)

The matrix R is called the reflectance matrix [267]. In the case where
only plane waves are considered, this is simply the reflection factor,
given by

R =
Z2 − Z1

Z2 + Z1
(184)
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Figure 43: Multimodal reflection at the duct exit. The incident plane wave
(Mode 0I) creates a radiated wave as well as reflected modes (sub-
script r).

where Z1 and Z2 are the impedances of the medium before and after
the discontinuity, respectively.

To derive1 the multimodal reflectance matrix, we make use of the
relations

�P = �P+ + �P− �U = �U+ + �U−
�U+ = Z−1

c
�P+ �U− = −Z−1

c
�P−

where Zc is the characteristic impedance given by Eq. (104). By com-
bining these relations, we have that

�P+ + �P− = ZZ−1
c

(
�P+ − �P−

)
(185)

or (
ZZ−1

c + I
)
�P− =

(
ZZ−1

c − I
)
�P+. (186)

Using Eq. (183), we find that

R =
(

ZZ−1
c + I

)−1 (
ZZ−1

c − I
)

. (187)

Similarly,
ZZ−1

c = (I + R) (I −R)−1 . (188)

A factor that we encounter here, and which will prove to be impor-
tant when considering circular, unflanged ducts, is the intermingling
of the reflection factors for individual modes, when computing the

1 This derivation is due to Kemp [267].
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impedance. This intermingling is not immediately apparent due to
the matrix formalism used above, but as is well known, matrix in-
version and multiplication never leaves a single element untouched
by the others. This can easily be ascertained by writing out Eq. (188)
term by term. This means that all reflected modes have influence
on all elements in the impedance matrix, there is no one-to-one cor-
respondence between the elements of the reflectance matrix and the
impedance matrix, and thus it is not possible to correctly calculate
the plane wave impedance Z00 from R00 alone.

The effect of not including higher order modes in the reflectance
matrix will now be examined. For this example, the radiation
impedance matrix for a duct ending in an infinite baffle, as given
by Zorumski [280], has been used. For each frequency, an impedance
matrix of 64 modes was calculated and converted into a reflectance
matrix using Eq. (187). This reflectance matrix was then truncated
to a specific number of modes, and thereafter converted back into
an impedance matrix using Eq. (188), from which the Z00 impedance
was extracted. The results are shown in Figure 44. The reference is
the radiation impedance of a piston.

The curves have the following interesting properties:

• Using only R00, both the resistance and reactance components
of the radiation impedance are a little too low in the ka = 1− 3
region.

• The resistance has a peculiar “jumpy” behavior near the cut-in
wavenumbers of the modes.

• The reactance has a discontinuous derivative at the cut-in
wavenumbers.

• As one mode is added, the curve smooths out near the first
mode cut-in wavenumber, but the discontinuities at higher wave
numbers remain.

• Each mode added smooths out the discontinuity near its own
cut-in wavenumber.

We can now clearly see the reason for the ripple in the radiation
impedance for a circular piston: the ripple peaks correspond to the
cut-in of the successive modes in the pressure distribution across the
piston. This is also why there is no ripple for the radiation impedance
for a pulsating sphere: in this case only the zeroth order mode is ex-
cited, and no higher order modes are involved. This is illustrated in
Figure 45, where the pressure in front of a piston with is compared to
the piston in front of a pulsating sphere. For the piston, there is a dis-
continuity in velocity at the edge; this results in a complex pressure
distribution that indicates the presence of higher order modes in the
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Figure 44: Normalized radiation impedance for a duct ending in an infinite
baffle (see Figure 46), calculated from reflectance matrix. 2 modes
indicate that a 2× 2 reflectance matrix was used, and so on.

pressure field. For the pulsating sphere, the velocity is constant with
angle, and consequently the pressure distribution is too.

It is also clear that the higher order modes must be included to pro-
duce the smooth behavior of the radiation impedance curves. Even
when a mode is evanescent, as all modes are below ka = 3.83, it
contributes to the impedance. This is because the impedance is the
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Figure 45: Velocity and pressure distribution for a piston (left) and a pulsat-
ing sphere (right). For the piston, the pressure distributions for
ka = 3 (black) and ka = 5 (blue) are shown.

quotient of the near field pressure to the velocity, and even evanescent
modes may contribute significantly to the near field pressure.

Therefore, in order to produce smooth impedance curves from a
reflectance matrix, enough modes must be included that at least one
mode is in cutoff at the highest wavenumber of interest.

5.4 radiation impedance , axisymmetric duct

The radiation impedance of a circular duct ending in an infinite baffle,
Figure 46, has been derived by Zorumski [280], with a simplification
to axisymmetric excitation by Kemp [267].

a

Figure 46: Geometry of a circular duct ending in an infinite baffle.

Starting from Eq. (180), G(x|x0) = 2e−jkh/h for the axisymmetric
case, where

h =
[
r2 + r2

0 − 2rr0 cos(θ − θ0)
] 1

2 (189)
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is the distance between the points (r0, θ0) and (r, θ). The mode func-
tions are given in Eq. (84). After some extensive manipulation of the
integrals, the result, as given by the references, is reduced to two
single integrals:

Znm =
ρc
S

π/2∫
0

sin φDn(sin φ)Dm(sin φ)dφ

+
jρc
S

∞∫
0

cosh ξDn(cosh ξ)Dm(cosh ξ)dξ (190)

where

Dn(τ) =
−
√

2τ J1 (τka)( μn
ka

)2 − τ2
(191)

These integrals are then numerically integrated. According to Kemp,
the integrand of the reactance function decays exponentially quite
fast to about 10−6 around ξ = 10, so the integration can be termi-
nated here without much error. It turns out, however, that a larger
integration range is needed for very low ka values due to the decay
behavior of the integrand.

For the plane wave mode, an analytical expression can be found,
this is the well known relation first derived by Rayleigh [256]:

Z00 =
ρc
S

[
1− J1(2ka)

ka
+ j

H1(2ka)
ka

]
, (192)

where H1(x) is the Struve function.

5.4.1 Polynomial Approximation

At low frequencies, it is possible to make polynomial approximations
for the radiation resistance. By expanding Eq. (191) around ka = 0,
we get

Dn ≈ −
τ2 (ka)3

√
2μ2

n
+

(−8 + γ2
n)τ

4 (ka)5

8
√

2μ4
n

− ((192− 24μ2
n + μ4

n)τ
6)(ka)7

192
√

2μ6
n

+O(ka)9 (193)

This expression can be integrated by term by term to give an ana-
lytical polynomial expression for Rnm. Using only the first term, the
expression for the normalized radiation resistance becomes

RLF ≈
4 (kR)6

15μ2
nμ2

m
(194)
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which clearly cannot be used for m = 0 or n = 0. In the case μn = 0,
we have

D0 ≈
ka√

2
− τ2 (ka)3

8
√

2
+

τ4 (ka)5

192
√

2
− τ6 (ka)7

192
√

2
+O(ka)9 (195)

Which gives the following expression for m = 0, n �= 0:

RLF ≈
(ka)4

(
(ka)2 − 10

)
30μ2

n
(196)

For m = n = 0:

RLF ≈
(ka)2

240
(120− 20 (ka)2 − (ka)4) (197)

which corresponds to the traditional normalized value RLF = 0.5(ka)2

when using only the first term. As can be seen from the approxima-
tions, and also from Figure 47 below, the low frequency slope of the
radiation resistance is different for the different combination of or-
ders. For mode (0,0), the slope is second order, and it is fourth order
for (0, m) and (n, 0) modes. For (n, m) modes, it is sixth order. This
means that the radiation resistance for most higher modes is very low
at low frequencies. The modes merely add a little to the radiation
mass.

Using more terms in (ka)2, the polynomial coefficients are given
in Table 20 and Table 21 in Appendix B on page 275. For R00, the
expression in Eq. (192) is usually used, but it may be advantageous to
use the polynomial expression for very low values of ka, depending
on the accuracy of the Bessel and Struve function algorithms for small
arguments.

These polynomial coefficients may be precomputed and stored in
a data file, which makes for a very efficient computation of the multi-
modal radiation resistance at low frequencies.

A similar approach was tried for the reactance, but the resulting
integrals did not have any analytical solutions, and an alternative
method was sought. Numerical evaluation indicated that the slope of
the reactance curves is independent of mode order and combination;
it is always a mass reactance with a first order slope. This was also
brought out by making a polynomial approximation for the modal
radiation impedance of a rectangular duct (Section 5.5.2), where the
first polynomial coefficient always was non-zero, indicating a mass
term. By computing the reactance integral in Eq. (190) for a few fre-
quencies well below ka = 1, a constant can be found, which, when
multiplied with ka, gives the reactance at low frequencies. Below
ka = 0.5, this gives an error smaller than 10%.

For the modal impedances on the diagonal of the impedance ma-
trix, from now on called diagonal modes, it was found that the reac-
tance is represented fairly well by the characteristic impedance of a
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duct the same radius as the opening, Zc, as defined in Eq. (68). Thus
the low frequency reactance for diagonal modes can be found as

Xm ≈
ρck
Skm

=
jρω

S
√( μm

a

)2 − k2
. (198)

For low mode numbers, there is some discrepancy between this value
and the true value, so a correction factor must be found based on the
true value from Eq. (190).

5.4.2 A High Frequency Approximation

At high ka values, numerical integration is slow, due to the oscillatory
integrals. However, looking at the impedance curves in Figure 47, we
notice the following:

• At wave numbers higher than the highest mode cutoff, all
curves converge to one of three shapes; one shape for the re-
actance, and for the resistance, one for diagonal modes and one
for off-diagonal modes.

• These shapes appear to be scaled versions of the plane wave
radiation impedance curves.

An experimental scaling function applied to the plane wave radia-
tion impedance appears to give good agreement for values 2-3 times
the highest mode cutoff, μq = max(μn, μm). The scaling function
gives the following expressions:

Rmn,HF ≈
R00,HF − 1

1−
(

μq
ka

)2 , (199)

Xmn,HF ≈
X00,HF

1−
(

μq
ka

)2 . (200)

Using these approximations for ka > 2μq yields a maximum er-
ror of approximately 10%, decreasing approximately as 1/ω2 with
increasing frequency.

This method does not work well for the diagonal modes, however.
But here a very good approximation can be found by exploiting the
fact that above mode cutoff, the radiation resistance oscillates around
the characteristic impedance Zc. In addition, these oscillations are
very close to the oscillations in the plane wave mode impedance.
Thus,

Rmm,HF ≈ R00
k√

k2 −
( μm

a

)2 . (201)
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(a) Radiation resistance for some modes.
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(b) Radiation reactance for some modes.

Figure 47: Radiation impedance for a few selected modes. Note that the
curves converge, for large ka, to two shapes for resistance and
one shape for reactance. The term “diagonal mode” refers to an
element from the diagonal of the impedance matrix.

In between the ranges where the above approximations are possi-
ble, the simplest approach is interpolation of precomputed data. It
has been found advantageous to use linearly spaced frequency points
for the precomputed data, in order to make the error fairly constant
with frequency.

5.4.3 Performance

A few examples of the error resulting from application of all the tech-
niques outlined above are shown in Figure 48. The transition wave
numbers are 0.5 and 26.6. Mostly the error is below 1% (which was
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the target accuracy), except for the high frequency approximation.
The noise in the error for low frequency reactance comes from inac-
curacies in the integration of Eq. (190) for low frequencies.

As for timing, using the Matlab quadv function with a tolerance of
1 · 10−8 for the integration of Eq. (190), takes about 6.8 s for a single
mode, for 1500 frequencies. By using the techniques described in this
section, computation time is down to about 3.4 ms. In addition comes
computation of the tabulated data for interpolation, and computation
of the polynomial coefficients, which have also been tabulated. But
this computation is only done once.
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(a) Relative error for mode (2,4).
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(b) Relative error for mode (4,4).

Figure 48: Relative error for approximation and interpolation of circular
duct radiation impedance.
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5.5 radiation impedance , rectangular duct

Figure 49: Geometry of a rectangular duct ending in an infinite baffle.

The radiation impedance for a rectangular duct ending in an in-
finite baffle, Figure 49, has been given by Kemp for symmetric [267]
and asymmetric [11] modes. To sum up, the equations given by Kemp
are, for duct with only symmetrical modes:

Zmn =
jωρ

2πS2

2a∫
0

dξ

2b∫
0

dζ
e−jkh

h
G(nx, mxξ, a)G(ny, my, ζ, b) (202)

where
h =
√

ξ2 + ζ2, (203)

and

G(nx, mx, ξ, a) = Nnx Nmx(2a− ξ)×[
sinc
(
(nx + mx)π

(
1− ξ

2a

))
cos
(
(nx −mx)πξ

2a

)
+

sinc
(
(nx −mx)π

(
1− ξ

2a

))
cos
(
(nx + mx)πξ

2a

)]
(204)

with

Nnx =

⎧⎨
⎩1 : nx = 0
√

2 : nx > 0
. (205)

Kemp then does a change of variables to express the integrals in
terms of dimensionless variables u = kξ and v = kζ, giving

Zmn =
jρc

2πS

2ka∫
0

du
2kb∫
0

dv
e−j

√
u2+v2

√
u2 + v2

G(nx, mx
u

2ka
,

1
2
)G(ny, my,

v
2kb

,
1
2
).

(206)
This equation has a singularity at the origin if nx = mx and ny = my,

which Kemp removes by splitting up the integral:
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Znm =
jρc

2πS

2ka∫
0

du
2kb∫
0

dv
(
1− u

2ka

) (
1− v

2kb

)
√

u2 + v2
×

[
e−j

√
u2+v2 G(nx, mx, u

2ka , 1
2 )

1− u
2ka

G(ny, my, v
2kb , 1

2 )

1− v
2kb

− f (n, m)

]

+
jρc

2πS

2ka∫
0

du
(

1− u
2ka

)
×

[
ln
(

2kb +
√

u2 + (2kb)2
)
+

u
2kb

− 1
2kb

√
u2 + (2kb)2

]
f (n, m)

+
jρc

2πS

[
−ka ln(2ka) +

3
2

ka
]

f (n, m), (207)

where

f (n, m) = Nnx Nmx Nny Nmy×
[sinc (nx + mx)π + sinc (nx −mx)π]×[

sinc
(
ny + my

)
π + sinc

(
ny −my

)
π
]

. (208)

Similarly, the expressions for ducts where asymmetric modes are
included, are given by Kemp in [11]. Apart from a different G func-
tion, the basic equation is identical to 202 with integration limits a and
b, respectively. The dimensionless equation is identical to Eq. (206) ex-
cept that the integration limits are now ka and kb, respectively, and
the handing of the singularity for nx = mx and ny = my results in a
slightly different equation:

Znm =
jρc

2πS

ka∫
0

du
kb∫

0

dv
(
1− u

2ka

) (
1− v

2kb

)
√

u2 + v2
×

[
e−j

√
u2+v2 G(nx, mx, u

ka , 1)
1− u

2ka

G(ny, my, v
kb , 1)

1− v
2kb

− f (n, m)

]

+
jρc

2πS

ka∫
0

du
(

1− u
2ka

)
×

[
ln
(

kb +
√

u2 + (kb)2
)
+

u
2kb

− 1
2kb

√
u2 + (kb)2

]
f (n, m)

+
jρc

2πS

[
−3

4
ka ln(ka) +

7
8

ka
]

f (n, m), (209)



118 radiation from horns in half-space

where f (n, m) is given as before, but

G(nx, mx, ξ, a) = Nnx Nmx×{
cos
(
(nx −mx)π

ξ

2a

)
×

1
2

[
(2a− ξ) sinc

(
(nx + mx)π

(
1− ξ

2a

))

−ξsinc
(
(nx + mx)π

ξ

2a

)]

+ cos
(
(nx + mx)π

ξ

2a

)
1
2

[
(2a− ξ) sinc

(
(nx −mx)π

(
1− ξ

2a

))

−ξsinc
(
(nx −mx)π

ξ

2a

)]}
. (210)

When nx = mx = 0, then

G (nx, mx, ξ, a) = 2 (a− ξ) (211)

which gives the radiation impedance of a piston in an infinite baf-
fle.

5.5.1 Improving the Computational Efficiency

When computing the terms in the radiation impedance matrix, the
dimensionless equations given by Kemp do not give optimum effi-
ciency, because all terms, including the arguments to the G function,
are frequency dependent. If we, however, look at the basic equations,
before the change of variables, we see that the only frequency depen-
dent part of the integral is the complex exponential. The arguments
for the G functions depend on mode index and position, but are not
frequency dependent. This realization will make it possible to im-
prove the computation efficiency significantly if a fixed number of
integration points are used (e.g. by using Gauss-Legendre integra-
tion). The method works as follows:

1. The number of integration points are determined based on the
frequency, the highest mode to be computed, and on the accu-
racy needed.

2. A matrix of the complex exponential and h is computed for all
integration points.

3. Matrices of the two G functions are computed for the various
mode combinations and integration points along the two axes.

4. The most expensive part of the computation is now done, and
the elements of the Z matrix are then computed by combining
the precomputed data.
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By taking advantage of the frequency independence of parts of the
integral, a speedup of 4-6 times has been observed in the C++ imple-
mentation.

The singularity at nx = mx and ny = my still exist, though. If a
similar procedure as employed by Kemp is used, the following sum
of integrals result, first for the symmetrical case:

Zmn =
jρω

2πS2

2a∫
0

dξ

2b∫
0

dζ
(a− ξ/2) (b− ζ/2)√

ξ2 + ζ2

×
{

e−jk
√

ξ2+ζ2 G(mx, nx, ξ, a)G(my, ny, ζ, b)
(a− ξ/2) (b− ζ/2)

− f (m, n)
}

+
jρω f (m, n)

2πS2

2a∫
0

dξ (a− ξ/2)

×
{

b ln
(

2b +
√

ξ2 + 4b2

)
+

1
2

(
ξ −
√

ξ2 + 4b2

)}

− jρω f (m, n)
2πS2 ab

(
a ln (2a)− 3

2
a
)

(212)

and for the asymmetrical case:

Zmn =
jρω

2πS2

a∫
0

dξ

b∫
0

dζ
(a− ξ/2) (b− ζ/2)√

ξ2 + ζ2

×
{

e−jk
√

ξ2+ζ2 G(mx, nx, ξ, a)G(my, ny, ζ, b)
(a− ξ/2) (b− ζ/2)

− f (m, n)
}

+
jρω f (m, n)

2πS2

a∫
0

dξ (a− ξ/2)

×
{

b ln
(

b +
√

ξ2 + b2

)
+

1
2

(
ξ −
√

ξ2 + b2

)}

− jρω f (m, n)
2πS

(
ln a
(

1− a
4

)
+

a
8
− 1
)

(213)

Note that the single integrals and final constants in Equations (212)
and (213) are frequency independent, apart from the factor jρω/2πS2

that is common for all the parts.
It should also be noted that the function f (m, n) can be significantly

simplified, based on the fact that sincnπ = 0, n �= 0. In fact, the
function is only non-zero if nx = mx and ny = my, in which case it
equals 4. Therefore,

f (m, n) = 4δnxmx δnymy , (214)

where δnm is the Kronecker delta, that is zero except when n = m, in
which case it is 1.
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Two other factors will also contribute to improving the efficiency of
the computations: symmetry and sparseness. This is especially true
for the asymmetric modes.

Where the impedance matrix for the axisymmetric case is only di-
agonally symmetric, the rectangular case has more symmetries that
reduce the number of elements needed significantly:

Znxnymxmy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Zmxmynxny ,

Znxmymxny ,

Zmxnynxmy .

(215)

For symmetric modes, the matrix is full, but for asymmetric modes,
modal coupling only occurs between mode pairs that have the same
parity indices in both directions, with the result that only one fourth
of the modes are non-zero [289]. A few examples of the reduction in
matrix elements that must be computed are given in Table 3.

Nmodes Total Symmetric Asymmetric

9 81 36 16

16 256 100 36

256 65536 18496 5184

Table 3: Number of radiation impedance matrix elements necessary to com-
pute when the symmetry of the matrix is taken into account.

5.5.2 Polynomial Approximation

As for the axisymmetric case, employing a polynomial approxima-
tion for the low frequency impedance values is possible, and also
extremely efficient, much more so than interpolation. Tests indicates
that due to finite numerical precision, the absolute limit for the poly-
nomial approximation is for ka ≈ 15 (assuming ka ≥ kb), regardless
of the number of terms.

Repeating Eq. (202),

Znm =
jωρ

2πS2

2a∫
0

dξ

2b∫
0

dζ
e−jk
√

ξ2+ζ2√
ξ2 + ζ2

G(nx, mx, ξ, a)G(ny, my, ζ, b),

the basic idea is to express the exponential as a series expansion:

ex = 1 + x +
x2

2!
+

x3

3!
+ ...

By inserting this expansion into Eq. (202), and simplifying the nota-
tion by setting Gx = G(nx, mx, ξ, a), etc, we get
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Znm =
jωρ

2πS2

⎧⎨
⎩

2a∫
0

dξ

2b∫
0

dζ
1√

ξ2 + ζ2
GxGy +

2a∫
0

dξ

2b∫
0

dζ(−jk)GxGy

+

2a∫
0

dξ

2b∫
0

dζ
(−jk)2

2!

√
ξ2 + ζ2GxGy + ...

⎫⎬
⎭ , (216)

or

Znm =
jωρ

2πS2

⎧⎨
⎩

2a∫
0

dξ

2b∫
0

dζ
1√

ξ2 + ζ2
GxGy − jk

2a∫
0

dξ

2b∫
0

dζGxGy

+k2
2a∫

0

dξ

2b∫
0

dζ
1
2!

√
ξ2 + ζ2GxGy − ...

⎫⎬
⎭ , (217)

i.e. we get a polynomial in −jk with the coefficients

Kp
nm =

2a∫
0

dξ

2b∫
0

dζ

(
ξ2 + ζ2) p−1

2

p!
GxGy, p = 0, 1, 2... (218)

The first term is the mass reactance. For higher order modes, the
low frequency slope of the radiation resistance is very steep (4th to
10th order), and the mass term will dominate up to a fairly ka value.

It is of course possible to split the expression into real and imagi-
nary parts [290]:

Rnm = − ωρ

2πS2

2a∫
0

dξ

2b∫
0

dζ
sin
(

k
√

ξ2 + ζ2
)

√
ξ2 + ζ2

G(nx, mx, ξ, a)G(ny, my, ζ, b)

(219)

Xnm =
jωρ

2πS2

2a∫
0

dξ

2b∫
0

dζ
cos
(

k
√

ξ2 + ζ2
)

√
ξ2 + ζ2

G(nx, mx, ξ, a)G(ny, my, ζ, b)

(220)
and then approximate the sine and cosine functions as power series
[291]:

sin x = x− x3

3!
+

x5

5!
− ...

cos x = 1− x2

2!
+

x4

4!
− ...

Due to the steep slope of the radiation resistance for many of the
higher order modes, the polynomial approximation will be more ac-
curate than numerical integration for low frequencies. For instance,
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for mode (3,5)(3,5), the radiation resistance is 1 · 10−21 at ka = 0.1, and
numerical integration can be quite inaccurate.

5.5.3 A High Frequency Approximation

As for the axisymmetric case, it is possible to make a high frequency
approximation based on the plane wave impedance. Unfortunately
the rectangular opening does not have the same high frequency
asymptotes for all modes. But for the diagonal mode radiation resis-
tance, the following approximation works well for symmetric modes:

Rmm,HF = R00
k√

k2 −
(mxπ

a

)2 − (myπ
b

)2
. (221)

Note that for diagonal modes, mx = nx and my = ny.

5.5.4 Impedance Impulse Response

As is well known, it is possible to express the radiation impedance
in the time domain, as an impulse response [292, 293]. For many
piston shapes, an analytical expression for the impulse response can
be found. For the multimodal case, numerical integration is necessary.
The most straightforward way to implement this, is to replace the
complex exponential with the Dirac delta function in Eq. (202). We
can then express the radiation impedance as a frequency dependent
constant multiplied by the Fourier transform of an impulse response:

Z =
jωρ

2πS2FT {h(t)}

where

h(t) =
2a∫

0

dξ

2b∫
0

dζ

δ

(
t−

√
ξ2+ζ2

c

)
√

ξ2 + ζ2
G(nx, mx, ξ, a)G(ny, my, ζ, b). (222)

The length of the impulse response is given by the maximum dis-
tance between two points on the baffle, which is the length of the
diagonal, and the sampling frequency. Computing the radiation
impedance is now a simple Fourier transform of the (tabulated) im-
pulse response, followed by a multiplication. While using FFT may
seem like a good idea, it requires very many bins to get good low
frequency resolution, and the high frequency resolution is then much
too high. In most cases, DFT is more efficient, since relatively few
frequency points are usually needed, and these are typically logarith-
mically spaced.
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Examples of the resulting impulse response for three modes for
a square piston are given in Figure 50. The integral has been com-
puted using Gauss-Legendre quadrature rule, with 1000 points for
Figure 50a and 3000 points for Figures 50c and d. The sampling fre-
quency corresponds to ka = 1460.

In addition, the numerically differentiated impulse response is com-
pared with Lindemann’s analytical result, Figure 50b. The agreement
is good, but shows some numerical noise in the numerically differenti-
ated impulse response. The original impulse response was computed
with 3000 integration points, but is otherwise identical to Figure 50a.

0 2 4 6 8

·10−3

0

0.05

0.1

t [s]

A
m

pl
it

ud
e

(a) Mode (0,0,0,0)

0 2 4 6 8

·10−3

−2

0

2

4

·10−3

t [s]

A
m

pl
it

ud
e

Num. diff.
Lindemann

(b) Mode (0,0,0,0), differentiated im-
pulse response compared with Lin-
demann’s analytical expression.

0 2 4 6 8

·10−3

−0.05

0

0.05

0.1

t [s]

A
m

pl
it

ud
e

(c) Mode (5,5,5,5)

0 2 4 6 8

·10−3

−2

−1

0

1

2
·10−3

t [s]

A
m

pl
it

ud
e

(d) Mode (5,5,4,4)

Figure 50: Example impulse responses

The resulting impedance curves for the two cases in Figure 50a and
Figure 50c are given in Figure 51, plotted up to ka = 730. In the same
plots, the impedance computed by the numerical integration methods
are given. Several comments are in order.

• The impulse response based impedance is computed using a
2048-point FFT, which gives a rather poor low frequency resolu-
tion. This illustrates the comment given above.
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Figure 51: Impedance computed from the impulse responses in Figure 50a
and Figure 50c.

• Some high frequency noise is apparent, and it is more obvious
when fewer integration points are used. For the (0,0,0,0)-mode,
the noise can also be seen by looking closely at the impulse
response, especially around t = 2 · 10−3s.

• There is a high frequency droop in the radiation resistance. This
is only a problem for the diagonal modes, where the impulse re-
sponse starts with a step, and is not so obvious for other modes,
where the impulse response starts from zero. The cause is most
likely an error in the initial sample of the impulse response.

• Due to the very steep slope of the radiation resistance curve at
low frequencies for higher order modes, the resistance values
are very small. Numerical errors then result in large relative er-
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rors at low frequencies. The error that can be seen in Figure 51b
below ka = 1 is not due to the small FFT-size; the slope of the
curve is wrong.

Fortunately, there are ways to overcome these problems, as outlined
above. The droop in the diagonal mode radiation resistance for large
ka can be circumvented by using the high frequency approximation
here, and the low frequency error can be avoided by using the poly-
nomial approximation below ka = 2 or so. The high frequency noise
is reduced by increasing the number of integration points, and this is
most likely most critical for the first part of the impulse response.

5.5.5 Performance

Mean and maximum errors for three different methods are shown in
Figure 52. Here the radiation impedance for 256 mode combinations
at 300 frequencies have been computed. The reference is numerical in-
tegration of Eq. (202) using Gauss-Legendre integration. The impulse
response has been computed using 3000 Gauss-Legendre points in
each direction, and the legend IR, D indicates that for this case, the
impedance of the diagonal modes has been computed using the high
frequency asymptote above 1.75kc. The basis for the interpolation is
impedance values computed using the reference method, using 525
linearly spaced frequency values (Nk = 1.75 · ka,max), and interpola-
tion is by the cubic spline method. Note that the error is rather large
at some individual frequencies; this is close to the zero-crossings of
the oscillating functions.

Using the high frequency approximation for the diagonal modes
for the impulse response does not improve the mean or maximum
error for the impulse response method, as the error for the other
modes follow the same behavior. Low/mid frequency error is rather
good for the impulse response method, but the error increases with
frequency and goes over 1% at around fs/20. This could probably be
improved by a better integration scheme for this method.

Interpolation performance is rather uniform over the frequency
range covered, and has lower high frequency error. The low fre-
quency error can easily be improved by adding a few more data
points here.

Both methods could clearly be improved, and it should also be
noted that relative error can be misleading in cases where the values
in question are very small. In some frequency ranges, certain mode
impedances are very small, and contributes very little to the total
error in practical use, but may give a large contribution to a mean or
maximum relative error calculation.
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Figure 52: Mean and maximum relative error for three methods for comput-
ing the radiation impedance for rectangular ducts. IR indicates
impedance calculated from the impulse response. IR, D indicates
that the impedance of the diagonal modes has been computed
using the high frequency asymptote above 1.75kc. IP indicates
interpolation.
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5.5.6 Aspect Ratio Transformation

For axisymmetric ducts, the radiation impedance can be tabulated
once and for all, and interpolation, polynomial approximations etc
can be used for all future calculations. For rectangular ducts, there
is one additional variable: the aspect ratio. Horns come in all sorts
of aspect ratios, although ratios between 1:1 and 1:5 are probably
most common. Tables can be computed for a set of aspect ratios, but
what to do when the aspect ratio is between two of the tabulated
ratios? Interpolation between normalized impedance curves for two
aspect ratios is possible, but usually results in low accuracy since the
oscillations of the curves often are more or less out of phase.

Perhaps the most elegant transformation of aspect ratios is to use
the same method as is used for a discontinuity in MMM: using the
F-matrix (seeEq. (124)):

Z(1) =
S1

S2
FZ(2)FT. (223)

In this way, the radiation impedance for any aspect ratio can be found
with two matrix multiplications. Note that it is only necessary to have
a dimensional change in one plane, either x or y.

0 0.5 1 1.5 2

−2

0

2

x

A
m

pl
it

ud
e

Duct 1
Duct 2

(a) Mode 3 in duct 2.
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(b) Mode 5 in duct 2.

Figure 53: Mode resolution in F-matrix aspect ratio transformation. Duct 1
belongs to the tabulated impedance, Duct 2 belongs to the trans-
formed impedance. 10 modes are used.

One should be aware, however, that to get an accurate transformed
impedance, there must be enough modes in the original impedance
matrix to describe the highest mode to be used in the transformed
impedance matrix. This assumes that the impedance is transformed
from a larger to a smaller area so that F-matries can be used. Figure 53
illustrate the idea. Here a rather large aspect ratio transform takes
place, from 1:2 to 1:1, so the width of the duct is reduced by a factor of
two. A total of 10 modes are used in the computation. As can be seen,
the lower order modes in the narrow duct can (duct 2) be sufficiently
represented by the modes in the wide duct (duct 1) to represent the
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sound field with reasonable accuracy, Figure 53a. But as the higher
modes in duct 2 will have a higher spatial frequency than the highest
mode in duct 1, these modes can no longer be represented by the
modes in duct 1.

Based on the above, and on the periodic nature of the mode func-
tions for rectangular ducts, the number of possible modes in the orig-
inal and transformed impedance matrices can be found from

A1

A2
=

n2

n1
(224)

where A1 and A2 are the two aspect ratios, assuming that change
occurs by changing only one of the dimensions, and n1 and n2 are
the highest indices of the modes in the direction of change. As an
example, if the transformation ratio is 2, and 10 modes (the highest
mode index is 9) are used in the original impedance matrix, we find
that n2 = A1

A2
n1 = 1

2 9 = 4.5 = 4. That is, the highest mode index
that can be used in the transformed matrix is 4, which verifies the
examples in Figure 53. The other way around, if mode 5 is to be
represented, the highest mode index is n1 = A2

A1
n2 = 2

1 5 = 10, i.e. 11
modes must be used.

Figure 54 shows two example of the results. In Figure 54a, enough
modes are present to adequately describe the field in duct 2, and the
impedance is correct up to ka = 26. In Figure 54b, there are no longer
enough modes (the mode index in the y-direction is one higher than
in the previous example), and the transformed impedance values de-
viates rather much from the actual values.

The deviation above ka = 26 in Figure 54a needs commenting. The
exact origin of this deviation is hard to determine due to the complex-
ity of the interaction between the modes through the matrix multipli-
cations. But the magnitude of the deviation is to a degree dependent
on the transformation ratio, and the frequency at which it appears
depends on the number of modes in the transformation. Tests indi-
cates that the error increases above the cutoff frequency of the highest
mode of the transformed impedance2 up to the cutoff frequency of
the highest mode in the original impedance matrix. These values are
approximate, but seem to given an indication of where the error can
be expected to be large.

If the aspect ratio is just the inverse of the aspect ratio of the pre-
computed data, the transformation can be performed without loss
of accuracy by rearranging the radiation impedance matrix. All that
needs to be done is to interchange elements so that

Znxnymxmy → Znynxmymx , (225)

2 Each modal impedance describes a relation between a pressure mode and a velocity
mode, which each have their own cutoff frequency. The cutoff frequency mentioned
is the highest of these.
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Figure 54: Aspect ratio impedance transformation, using a total of 64 sym-
metric modes in the transformation. Aspect ratio changes from
1:1 to 2:1.

i.e. the indices corresponding to x are exchanged for those corre-
sponding to y. This means that the impedance for Z1234 for the new
aspect ratio can be found at the place of Z2143 in the table of the in-
verse aspect ratio.

5.6 summary

This chapter has shown several methods to speed up the calculation
of the infinite baffle radiation impedance. While not radically new
methods, some work has been put into determining the appropri-
ate frequency ranges and conditions for the various methods. These
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ranges must necessarily be approximate, based on a judgment of
what is adequate accuracy.

For the axisymmetric case, interpolation in the middle frequency
range, combined with a simple high frequency approximation above
the highest mode cutoff and a polynomial approximation for low fre-
quencies appears to be the most appropriate.

For the rectangular case, it has been shown that a reformulation of
the equations given by Kemp offers a computational advantage when
the impedances for many modes and frequencies are to be computed.
Tabulation and interpolation of impedance is also an option in the
rectangular case, although instead tabulating the impulse response
is also an option. However, a definite upper frequency limit is now
imposed, and if this limit is, say, doubled, the number of data points
is also doubled. For tabulation/interpolation, one is able to get away
with the high frequency approximation for the diagonal matrix ele-
ments, and would have no upper frequency limit here. For the other
elements, a few sample points for, say, ka > 300, could give a good
enough approximation, since the impedance elements on the diago-
nal of the matrix dominate in this range.

Unless the high frequency performance of the impulse response
method can be improved, interpolation with a somewhat denser sam-
pling in the region of maximum modal contribution, is probably the
method of choice.

For low frequencies, again the polynomial approximation is the
most suitable.

To be able to simulate horns with aspect ratios that are not tab-
ulated, a transformation using the F-matrix is suitable for low and
medium frequencies, up to approximately the cutoff frequency of
the highest mode in the original impedance matrix. Above this fre-
quency, some error begin to creep in, and interpolation between two
aspect ratios may be a better option, in particular for reactance and
off-diagonal elements. Although this method will not give the exact
shape of the curves, the error may be less than for the F-matrix trans-
formation. The high frequency approximation may be used for the
resistance for the diagonal elements.

No horn example is given in this chapter, as the infinite baffle
model has been evaluated and verified numerically in previous work
[38]. But an experimental verification is provided in Section 9.2.



6
H O R N S I N F U L L - S PA C E

In many cases the horn is not mounted in an infinite baffle. More
common is that the horn is either free standing or mounted in a box,
the width of the box often being not much larger than that of the
horn. In order to simulate horns under such conditions, the influence
of the pressure diffracted from the edges on the radiation impedance
and radiated pressure, must be taken into account. Two methods will
be presented: the method developed by Snakowska [287] for multi-
modal radiation from a circular unflanged duct, and the Edge Diffrac-
tion Method (EDM) due to Svensson [49], which is usable for general
geometries including the enclosure. The methods will be discussed
separately.

An experimental verification of the EDM as applied to horns, as
outlined in this chapter, is given in Section 9.3 on page 198.

The contributions in this chapter are the application of
Snakowska’s method to an unflanged circular horn, and the appli-
cation of the EDM to rectangular horns with small flanges, including
how to compute the radiation impedance for a horn with a small
flange, and investigating the contribution of diffraction to the total
radiation impedance. The work on rectangular horns has previously
been published in [45].

6.1 axisymmetric geometry

r

z

z = 0

a
R

θ

−∞

Figure 55: Geometry of the circular unflanged duct problem.

The problem of an unflanged circular duct is much more compli-
cated than the flanged duct problem. The reasons include the diffrac-
tion at the open end, and the presence of the duct in the sound field,
which introduces a discontinuity of the field. The problem was inves-
tigated by Levine and Schwinger [294] for the plane wave mode, and
by Weinstein [295] for all propagating modes. The solution arrived

131
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at by Weinstein was later taken up by Snakowska [46, 296, 297, 298],
who also expanded the work to include non-axisymmetric modes.
The theory presented in this section is based on their work. For a
more complete summary of the derivation, see Appendix C.

The geometry of the circular unflanged duct problem is shown in
Figure 55. With an incident mode of order l, the total sound field
inside the duct, expressed in terms of the velocity potential, is given
as

Φl(r, z) =
J0
(
r μl

a

)
J0(μl)

eiklz +
N

∑
n=0

Rln
J0
(
r μn

a

)
J0(μn)

e−iknz. (226)

The reflection factor Rln can be expressed as

Rln = − 2kl

kl + kn

[
Nm

∏
i=0,i �=l

ki + kl

ki − kl

Nm

∏
i=0,i �=l

ki + kn

ki − kn

] 1
2

e
1
2 (S(kl)+S(kn)). (227)

It may be more convenient to express Rln as modulus and phase,

Rln = − |Rln| eiθln ,

in which case

|Rln| =
2kl

kl + kn

[
Nm

∏
i=0,i �=l

∣∣∣∣ ki + kl

ki − kl

∣∣∣∣ Nm

∏
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∣∣∣∣ ki + kn

ki − kn

∣∣∣∣
] 1

2

e
1
2 (X(kl)+X(kn))

(228)
and

θln =

⎧⎨
⎩Y(kl) + Y(kn), l + n even,

Y(kl) + Y(kn) + π, l + n odd.
(229)

The functions X(w) and Y(w) are defined as

X(w) =
1
π

P
k∫

−k

Ω(v′a)
w′ − w

dw′ (230)

Y(w) =
2wa

π
−Ω(va)− i lim

M→∞

⎡
⎣ M

∑
n=Nm+1

kn + w
kn − w

− 1
π

kN∫
−kN

Ω(v′a)
w′ − w

dw′

⎤
⎦ ,

(231)
where

Ω(v′a) = arg H(1)
1 (v′a)− π

2
. (232)

From these functions, it is possible to compute the reflectance ma-
trix R, and from Eq. (188) the radiation impedance can be found.

However, these functions are only valid above the mode cutoff fre-
quency.
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Figure 56: Plane wave reflection factor for an unflanged circular duct, com-
parison of BEM and analytical method.

6.1.1 Reflection Factor

For the examples in this section and the next, a reference result for
the radiation impedance was computed using BEM for a range of ka
up to 36. The structure was a cylinder with a radius a = 0.5 m and a
length 4a, where the rear half had an absorbing boundary condition
(surface impedance Z = ρ0c). The sound field at the end surface of
this cylinder was decomposed into modes, creating a matrix of modal
impedances, as described in Section 10.1 on page 215. This matrix
was converted to a matrix of reflection factors using Eq. (187), and the
results compared to the results computed from Eq. (227) above. The
comparison for the plane wave reflection factor is shown in Figure 56.



134 horns in full-space

The results are reasonably similar for the modulus Figure 56a, but
more different for the phase angle, Figure 56b, since the phase is more
sensitive to small numerical errors. As the differences increase with
frequency, it may be suspected that this is a discretization issue.

The equations given in Section 6.1 are not applicable when any
of the modes are in cutoff, as mentioned above. The strategy was
therefore adopted to use the BEM results for frequencies where one
or both modes are in cutoff, and the analytical expressions for the
higher frequencies. The modulus and phase of the reflection factor
for a few mode combinations are given in Figure 57. As can be seen,
the reflectance matrix is not symmetrical, R0,3 differs from R3,0. What
is interesting is that below cutoff, the reflection factor is very small,
and increasing to a maximum at the cut-in frequency of the reflected
mode.

6.1.2 Radiation Impedance

Examples of radiation impedance computed from a 16-mode re-
flectance matrix that is a hybrid between BEM for evanescent modes
and analytical functions for propagating modes, are shown in fig-
ures 58 and 59. The fundamental mode impedance, Figure 58, which
in this case corresponds to a piston in the end of an infinite tube,
is similar to the radiation impedance of a piston in an infinite baf-
fle for ka > 2, except for a slightly higher radiation mass. When
many modes are included in the reflectance matrix, the oscillations
are smooth, and the curves lack the odd discontinuous behavior seen
when the impedance is calculated from the R00 reflection factor only
(see also Figure 44). For lower frequencies, the radiation resistance is
half of the infinite baffle resistance, as expected. Radiation mass is
also slightly lower than for an infinite baffle.

For higher order modes, there is even more similarity between
curves for infinite baffle and the unflanged duct, and again there is
a difference in low frequency radiation resistance. The slope of the
resistance curve for the unflanged duct for ka < 1 is less steep than
for the infinite baffle case, and this is most likely an artifact from
the BEM computations. Similar phenomena appear in other compu-
tations where low level modal information is numerically extracted
from a sound field.

6.1.3 Directivity

The far field pressure of a single mode l radiated from an unflanged
duct [48] is

pl(R, θ) = − ka
2

Pl sin θ J1(ka sin θ)Fl (−k cos θ)
eikR

R
= Pldl(θ)

eikR

R
,

(233)
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Figure 57: Reflection factor for an unflanged circular duct, for a few mode
combinations.

as outlined in Appendix C on page 277. Pl is pressure amplitude of
mode l at the outlet.

A comparison was made with BEM, using the same geometry as in
Section 6.1.1, only that the boundary condition at the radiating end
was set to a constant pressure of 1 Pa. This would then correspond to
the plane wave mode being radiated. Results for this case are given
in figures 60 and 61. The directivity results (Figure 60) are reasonably
close in the front hemisphere, in particular within 60° off axis, but the
BEM results have more lobes for larger angles. This may be due to
the fact that the BEM geometry is not infinitely long, and that there is
a rear edge that causes diffraction that may disturb the sound field.

The frequency response, plotted in Figure 61, shows good agree-
ment for ka > 1, however, there is significant discrepancy at low fre-
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Figure 58: Fundamental mode radiation impedance, Z00, normalized, for in-
finite baffle (subscript IB) and unflanged duct, using either a full
BEM solution (subscript BEM) or the analytical solution for the
cut-on region (subscript ana.).
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Figure 59: Radiation impedance for mode combination (2,2), Z22, normal-
ized, subscripts as above.

quencies. The analytical solution shows a rising on-axis response at
all frequencies, while the BEM solution shows a nearly flat response
at low frequencies. That this is the correct response for a pressure
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Figure 60: Polar response for a few values of ka.
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Figure 61: Frequency response for the plane wave mode, comparison with
BEM.

monopole can be shown as follows: for a pulsating sphere, the radi-
ated pressure is

p(r) = −jkρ0cU0
1

1 + jka
e−jk(r−a)

4πr
.

Given that the acoustic radiation impedance of the sphere is

Zr,a =
ρ0c

4πa2
jka

1 + jka
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and that U = p/Za, the radiated pressure for a sphere with a speci-
fied surface pressure ps is

p(r) = −jkρ0cps
4πa2

ρ0c
1 + jka

jka
1

1 + jka
e−jk(r−a)

4πr
= −ps

a
r

e−jk(r−a),

which is a function of constant amplitude for all frequencies.

6.1.4 A Horn Example

As an example of the application of the theory outlined above, a
horn mounted in a long tube was simulated. The horn was a tractrix
horn, with a throat area of 10 cm², a mouth area of 1250 cm², and a
length of 43 cm. The geometry is shown in Figure 62. A tractrix horn
[89, 156] was chosen since the mouth flare tangent angle approaches
90°, which makes it possible to avoid very sharp angles between the
elements in the BEM mesh near the edge of the horn mouth.

The radiation impedance was computed using a hybrid of BEM
(below mode cutoff) and the analytical equations (above mode cutoff).
The radiated pressure was found by calculating the mouth pressure
mode amplitudes from the mouth velocity mode amplitudes and the
radiation impedance, and then summing the contribution from each
mode calculated from Eq. (233).

u0

−∞

�P

Figure 62: Horn geometry for a tractrix horn in a semi-infinite unflanged
duct. The vector of mouth pressure mode amplitudes, �P, are
used to determine the radiated pressure.

The throat impedance of the horn, compared to BEM, is shown
in Figure 63. Agreement is fairly good between 200 Hz and 3 kHz.
If radiation impedance is computed by BEM for all frequencies, the
MMM results improve above 3 kHz, this indicates that the error exists
in the analytical computations. The discrepancy below 200 Hz still
exists, though, and may be due to the absorption applied to the rear
end of the enclosing tube used in the BEM simulations.

The frequency response for a few angles is shown in Figure 64. We
notice that:
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Figure 63: Throat impedance for the unflanged axisymmetric horn.
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Figure 64: Frequency response for the unflanged axisymmetric horn. The
vertical dash-dotted lines indicate the cutoff frequencies of the
first three modes.

• The same low frequency behavior as observed in Section 6.1.3
can be seen for the horn: the low frequency slope for ka < 1 (in
this case 275 Hz) is too steep.

• The shape of the on-axis response is fairly close, but there is a
level difference of about 2.5 dB. Only the plane wave mode con-
tributes to the on-axis response, as all the higher order modes
have a zero in this direction [47].

• The off-axis response is much more ragged for MMM than for
BEM. A possible explanation is that the higher order modes
are ignored below their cutoff frequencies, and that this may
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Figure 65: Polar response for the unflanged axisymmetric horn. The ka
values correspond to 454 Hz, 1.02 kHz, 1.11 kHz, 1.91 kHz and
1.99 kHz.

create a sudden change in the response when each new mode
is introduced. The cut-off frequencies for the first few modes
are 1.05 kHz, 1.93 kHz and 2.76 kHz. Especially the 90° and 135°
curves show large changes around these frequencies.

Figure 65 show the polar response for a few frequencies, expressed in
terms of ka. Below the cutoff of the first mode, the reduced response
at 90° is missing in the MMM results. The following pairs of fre-
quencies show the polar response just below and just above the first
and second mode cutoff frequencies. One notices the rather abrupt
change in polar response, which is absent in the BEM results. The
BEM results for the frequency pairs are nearly overlapping, while for
the MMM results it is hard to see which curves are at nearly the same
frequencies without consulting the legend.
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6.1.5 Summary

The equations for the reflection factor and directivity for an unflanged
semi-infinite duct, as described by Snakowska [46] have been imple-
mented and applied to an axisymmetric horn. The equations, as
presently developed, ignore evanescent modes. This makes it nec-
essary to use BEM (or other numerical methods) for the frequency
range where the modes are evanescent, in order to properly compute
the reflectance matrix. This approach turned out to be fairly suc-
cessful, although there are some discrepancies at both low and high
frequencies. It should be possible to eliminate these discrepancies by
a careful study of their origin.

Some comments on the results:

• Evanescent modes are ignored in the radiated pressure, and this
makes the resulting response rather ragged, especially around
the mode cutoff frequencies.

• It is clear that the contribution of the evanescent modes just
below their cutoff frequencies should not be underestimated.

• There is an error in the low frequency slope of the analytical
expression. The origin of this error is uncertain, but probably
derives from the approximations used in deriving Eq. (233). In
any case, this error makes Eq. (233) unsuitable for calculating
the radiated pressure below ka = 1.

The analytical expressions for the reflection factor for an unflanged
duct would be useful if they could be expanded to include evanescent
modes. In horns, evanescent modes will be generated also close to
the mouth, and it is not possible to make the assumption that they
have died out before they reach the mouth, an assumption used in de-
riving the expressions used in this Section. The need for using BEM
to obtain a full reflectance matrix makes the computations unneces-
sary complex. The analytical expression for directivity should also be
modified to include the evanescent modes, in order to have a hope of
producing correct results. In addition, the low frequency error must
be corrected. As the equations currently stand, they are not entirely
suitable for loudspeaker response calculations.

6.2 superposition

The principle of superposition will be important in the following sec-
tion and in subsequent chapters. The basic principle, which is also
the foundation of MMM, is that a sound field can be described as a
linear combination of component sound fields, Figure 66. This may
be a sum of the sound field from simple sources, from modes, or from
direct and reflected sound. This, of course, requires that we operate
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Ptot = PIB + Pdi f f + Pre f l

Figure 66: Principle of superposition.

in the region of linear acoustics, which is by no means given in horn
loudspeakers. However, linearity will be assumed here, due to the
much simpler equations that result, and since the results are applica-
ble to most cases. Also, in situations where non-linearity is prominent
in parts of the domain, typically close to the sound generation, the
radiation might be adequately described by linear conditions [299].

Superposition may be applied to both the radiation impedance and
the radiated pressure, and we may set up

ptot(x) = pIB + pdi f f + pre f l

= Q
[
GIB(x|x0) + Gdi f f (x|x0) + Gre f l(x|x0)

]
(234)

where

ptot is the total sound pressure at x due to a monopole source at x0,

p I B is the direct, or geometrical, sound pressure due to the source,
I B indicates Infinite Baffle.

pdi f f is the sound pressure at x that has been diffracted on its way
from the source, and

pre f l is the sound pressure at x that has been reflected on its way
from the source.

We have that

GI B = 2
e− jkr

r
(235)

is the infinite-baffle Green’s function, for a monopole source signal
Q = jω ρU /4π , U is the volume velocity and

r =

√
(x − x0 )

2 + (y − y0 )
2 + (z − z0 )

2 . (236)

Gdi f f and Gre f l are the Green’s functions for diffracted and reflected
sounds, respectively. For a velocity distribution in the mouth of a
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horn, specified by the volume velocity distribution, U (x0 , y0 ), the
radiated sound pressure is then given by a surface integration over
this velocity distribution,

ptot (x) =
jω ρ

4π S

∫
S

U (x0 , y0 )

·
[

GI B (x |x0 ) + Gdi f f (x |x0 ) + Gre f l (x |x0 )
]

dS0 . (237)

The GIB-term yields the Rayleigh integral in Eq. (156) (page 98),
so the sound pressure for the general case of a horn near reflecting
boundaries and diffracting edges is

ptot(x) = pIB(x) +
jωρ

4πS

∫
S

U(x0, y0)

·
[
Gdi f f (x|x0) + Gre f l(x|x0)

]
dS0. (238)

From Eq. (238) and Eq. (180) (page 105), it is clear that

Zrad,tot = ZIB + Zdi f f + Zre f l . (239)

Note that pIB and ZIB are always included in the total, and as we
will see, dominate at high frequencies. At lower frequencies, the con-
tributions from diffraction and reflection play a greater part, and act
as correction terms to the infinite baffle terms. Depending on the
relative magnitude of these extra terms, it may not be necessary to
compute them with as high precision as the direct sound.

6.3 edge diffraction method

In Section 6.1, analytical expressions for the radiation impedance and
directivity of a semi-infinite, unflanged circular duct were presented.
While it may be possible to employ a similar method for rectangular
ducts, the procedure is complex, and the geometry is fairly restricted.
And, as pointed out in Section 6.1.5, there are some problems with
this method that must be solved before it can be applied to horn
speakers.

In order to simulate more general structures external to the horn,
like flanges and cabinets, the Edge Diffraction Method (EDM) due to
Svensson et al. [49] may be used. This method is based on the ana-
lytical solution of the problem of diffraction from an infinite wedge
as given by Biot and Tolstoy [301], where the diffracted wave is de-
scribed in terms of a line integral. A frequency-domain formulation
for the first-order diffraction term was presented by Svensson et al.
[50] in the form of a line integral along the edges of a scattering ob-
ject. An efficient method for computing the resulting integrals was
later presented by Asheim and Svensson [302]. For a finite edge, the
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Figure 67: A wedge, where sound from the source at S is diffracted and
received at R. Redrawn from [300].

integration is performed only over the physical edge. Using the no-
tation that ra,b represents the distance between points a and b, the
diffracted field at receiver position R is expressed as [300]

pdi f f = −
ν

4π

z2∫
z1

e−jkrR,z

rR,z

e−jkrz,S

rz,S
β(R, z, S)dz (240)

where z describes the edge, and ν is a wedge index defined as

ν =
π

θW

where θW is defined as in Figure 67. The function β(R, z, S) is a direc-
tivity function of the diffracted field, given as

β(R, z, S) =
4

∑
i=1

sin (νφi)

cosh (νη)− cos (νφi)
, (241)

where φi are defined, for the Neumann boundary condition, as

φ1 = π + θS + θR, φ2 = π − θS + θR,

φ2 = π − θS − θR, φ4 = π + θS − θR,

and
η = cosh−1 cos ϕS cos ϕR + 1

sin ϕS sin ϕR
. (242)

The angles θR, θS, ϕR and ϕS are defined in Figure 67.
If there is more than one edge, or the edge is not straight, there

will be higher order diffraction. These higher order diffraction com-
ponents could be represented by higher order integrals [49], with
double integrals for second order diffraction and so on, but in [300]
a formulation is described which avoids this exponential increase in
computation cost. There the first order diffraction is computed sepa-
rately, and a special integral equation is used for second and higher
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order diffraction. The total sound field is then the sum of the geomet-
ric field (direct sound) first order and higher order diffraction, using
the principle outlined in Section 6.2.

The methods described in the papers referred to above are, or will
be, implemented in a freely available Matlab toolbox [303].

Considering a sound field where only diffraction and direct sound
is taken into account, the sound pressure radiated by a monopole, p0,
in a position x0, on a finite baffle [300] in z = 0, is:

p0(x) = pIB + pd1 + phod

= Q [GIB(x|x0) + Gd1(x|x0) + Ghod(x|x0)] (243)

where GIB is, as in Section 6.2, the infinite-baffle Green’s function,
Q = jωρU/4π is the monopole strength, and U is the volume velocity.
Gd1 is the corresponding Green’s function for the first-order diffrac-
tion waves off the edges of the finite baffle, and Ghod represents the
second order and all higher orders of diffraction.

Proceeding as in Section 6.2, and further splitting pdi f f up into first
order and higher order diffraction, the radiated sound pressure from
a radiator with the velocity distribution given by U(x0, y0) is

p f b(x) = pIB(x) +
jωρ

4πS

∫
S

U(x0, y0)

· [Gd1(x|x0) + Ghod(x|x0)] dS0. (244)

The first-order diffraction term Gd1 and the higher order diffraction
term, Ghod, can be computed for convex, rigid scattering objects via
an integral equation, as described in [300].

From Eq. (239), we see that we can find the total radiation
impedance as

Zrad,tot = ZIB + Zd1 + Zhod, (245)

where Zd1 and Zhod are impedances due to the diffracted pressure.
To compute Zd1 and Zhod, we must perform the double surface

integral (see Eq. (180), on page 105)

Zmn =
jωρ

4πS2

∫
S

∫
S

G(x|x0) · ψm (x0, y0)ψn (x, y) dS0dS (246)

over the horn mouth surface, using the edge diffraction Green’s func-
tions Gd1 and Ghod, respectively, from Eq. (243), for G(x|x0).

In this study, a simplified geometry has been used, where the ex-
terior of the horn is represented only by an infinitely thin plate cor-
responding to the flange. This simplified geometry reduces both the
number of edges that have to be discretized, and the number of paths
for higher order diffraction, hence reducing computation time. A
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grid of 24 by 24 points distributed according to the Gauss-Legendre
quadrature rule was placed over the area of the horn mouth on one
side of the plate, see Figure 68. Each point was used both as source
and as receiver. Since the direct sound is computed separately, no
singularity occurs when x = x0.

Receiver

Source

1st order diffraction

Higher order diffraction

Flange

Horn

Front view Side view

Figure 68: Geometry of horn flange, with the placement of source and re-
ceiver points for edge diffraction calculation. The sources and
receivers are placed a short distance in front of the flange, which
is modeled as a thin rigid plate. The horn, indicated by dashed
lines, is not part of the EDM geometry. Example paths for first
order and higher order diffraction are indicated.

The method to compute Ghod encounters singularities when a re-
ceiver point, x, in free space is co-planar with two edges. However,
for the impedance computation all receiver points are on the baffle,
and no such singularity problems occur. A final singularity occurs
when x is very close to an edge, but for the horns studied here, a part
of the flange always extends beyond x and x0 when calculating the ra-
diation impedance. Even for horns with no flange, this singularity is
easily avoided by employing integration schemes that do not require
evaluation of the function at the endpoints.

The transfer functions between all combinations of sources and
receivers were calculated separately. First order and higher order
diffraction terms were also kept separate in the calculations, to inves-
tigate their effects separately.

When all transfer functions had been computed, the integral of
Eq. (180) was performed for each combination of modes, using the
Gauss-Legendre rule. This produced an impedance matrix giving the
contribution of the edge diffraction, which was then added to the
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radiation impedance for a duct in an infinite baffle to produce the
total radiation impedance.

The radiated pressure was computed by Eq. (244), using the same
source positions, but placing the receiver points in front of the horn.

The EDM simplifies the discretization of the boundary in that only
the edges need to be discretized. For convex geometries, only diffrac-
tion and direct sound need to be computed, but in the case of con-
cave geometries, specular reflections must also be taken into account,
which may be challenging due to the high order that may be required.

6.3.1 Diffraction Contribution to Radiation Impedance

The pressure diffracted from the flange edges back into the horn
mouth, or into the far field, can also be described by modes. Each
mouth velocity mode will produce a different excitation of the edges,
and the resulting diffracted pressure will modify both the radiation
impedance seen by the horn, and the field point pressure.

This section will study how much the diffracted pressure con-
tributes to the radiation impedance. This will be done using a few
examples, focusing mainly on the plane wave radiation impedance,
since this is an important component, and is familiar to most readers.
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Figure 69: Contribution of higher order diffraction to the fundamental mode
radiation impedance.

In the computations, higher order diffraction up to order 20 has
been included. The ratio of flange size to horn mouth size is 1.44.

Figure 69 shows the total radiation impedance when including di-
rect sound, direct sound and first order diffraction, and direct sound
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Figure 70: The components of the diffraction contribution to fundamental
mode radiation impedance.

and all diffraction. It can be seen from the figure that at low frequen-
cies, higher order diffraction is important, as using only first order
diffraction creates a rather large error in the radiation resistance be-
low ka = 1.5. This is because the resistance due to the first order
diffraction is negative and almost as large as the infinite baffle re-
sistance. Higher order diffraction is needed to return the resistance
value to the correct RIB/2 value. The magnitude, but not the sign,
can be seen from Figure 70a.
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Figure 71: The components of the diffraction contribution to mode (3,3)(3,3)
radiation impedance.

Above ka ≈ 4.5, the contribution from the first order diffraction
to the radiation resistance falls below 1%, and becomes insignificant,
Figure 70. The contribution from higher order diffraction falls away
at a lower frequency, around ka ≈ 3.5.

The contribution of diffraction to radiation reactance is rather more
constant with frequency, approximately 10% of the infinite baffle re-
actance. Also here the higher order diffraction is needed to produce
the correct results at low frequencies, but has little significance above
ka ≈ 4, as for resistance.

Since the higher order modes have directivity patterns different
from that of the plane wave, the resulting contribution from edge
diffraction on the the radiation impedance will also be different. Fig-
ure 71 shows the components of the impedance for mode (3,3)(3,3).
Diffraction contributes very little to the reactance, but the contribu-
tion to resistance is significant over much of the frequency range.

6.3.2 A Horn Example

As an example of application of the EDM to horn loudspeakers, the
horn described in Appendix D has been simulated using this method.
An illustration of the horn is shown in Figure 72. Some results are
given in this section. Section 9.3 compares the simulation results to
measurements, and to results from a BEM model, so the verification
of the model will not be treated here.

Throat impedance is shown in Figure 73, and compared to the
throat impedance for the horn mounted in an infinite baffle. As
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bm

am

bf

a f

Figure 72: Geometry of the horn with a small flange. Mouth dimensions
am = bm = 0.345 m, flange dimensions a f = b f = 0.5 m. The horn
is described in Appendix D.

expected, the lower impedance at low frequencies caused by the
doubled solid angle of radiation causes larger peaks in the throat
impedance near cutoff.
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Figure 73: Throat impedance for the rectangular horn in Figure 72.

Figure 74 shows the frequency response, both the direct sound (de-
noted IB), the diffracted pressure alone, and the total pressure. As
expected, due to the increased solid angle of radiation, the total low
frequency sound pressure level is lower than that of the direct sound
alone. At higher frequencies, however, the total on-axis pressure is
higher. The same can be seen in Figure 75, where the two compo-
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nents of the sound field and the total are plotted in polar coordinates
for two frequencies. Note that the response at 135° and 180° would
be identical to the response of the diffracted pressure alone for 45°
and 0° respectively.

Figure 75 also illustrates the problem of the singularities mentioned
above, when the field points are nearly coplanar with the edges, this
is evident from the “spikes” in the angular response near 90° off-axis.

There are two possible solutions to this problem:

• Increase the number of discretization points along the edges.
However, the equations are converging extremely slowly near
the singularities.

• Use a hybrid EDM/BEM method, where the pressure at the
surface is computed using EDM, and the far field pressure is
computed using BEM techniques [304].
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Figure 74: Frequency response for the rectangular horn with a small flange.
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Figure 75: Polar response for the rectangular horn with a small flange.

6.3.3 Dependence on Number of Modes in Diffraction Calculations

Higher order velocity modes usually have both lower amplitude than
the plane wave mode, and directivity patterns that make their contri-
bution to the edge terms different from that of the plane wave mode.
Since computing the contribution of the diffracted pressure to the
radiation impedance involves the quadruple integral of Eq. (246) for
each mode, it would be advantageous if the number of modes could
be reduced. It is the purpose of this section to investigate the result-
ing error if only a small number of modes is used to describe the
contribution of the diffracted pressure.

In the following, the simulations were performed with 144 modes.
A frequency range of 100 Hz to 2 kHz was used for this study. The
diffraction contribution to the radiation impedance was decomposed
into a number of modes and added to the modal radiation impedance
for an opening in an infinite baffle. For the reference simulation,
all 144 modes were used. For other simulations, 144 modes were
still used in total, the diffraction contribution is only added up to
mode Nm,di f f . I.e. in the 144× 144 impedance matrix, entries (1,1) to
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(Nm,di f f , Nm,di f f ) contained ZIB + Zd1 + Zhod, while the other entries
only contained ZIB. A test was also done using only the diffraction
impedance terms along the diagonal of the impedance matrix, i.e.
where a velocity mode couples to a pressure mode of the same shape.
Since the diagonal terms are dominating in the infinite baffle radia-
tion impedance matrix, the question was raised if this was also the
case for the diffraction contribution.

The test was performed on a numerical model of the horn de-
scribed in Appendix D. The reason for using a horn to evaluate the
influence of diffraction was that this reduces the radiation impedance
matrix (20736 elements) to a single value (the fundamental mode
throat impedance) in a way that is relevant to the problem at hand.

Figure 76 shows the relative error in throat impedance as function
of frequency for a few cases: no diffraction included in the radiation
impedance, plane wave mode diffraction only, and 2 and 64 modes
included. Also the results obtained using only the diagonal terms
of the impedance matrix are plotted. In this case, all the results are
identical, regardless of the number of modes, and are represented by
a single curve. Figure 77 shows the same data as function of the num-
ber of modes included in the diffraction contribution. Please note that
the values are plotted in terms of

√
Nm,di f f to improve readability.

Generally, the error decreases monotonically when more modes are
included in the diffraction computation, as expected, see Figure 77 on
the next page. A maximum error of 10−3 is reached for Nm,di f f = 16.
This could suggest that including only 16 of the 144 modes would
give quite an adequate accuracy for many purposes, in the frequency
range evaluated here, up to 2 kHz. Modal coupling is clearly impor-
tant, as adding only the diagonal terms does not reduce the error
beyond the first mode, see Figures 76 and 77

To see the reason for the modal coupling through diffraction, we
may inspect the pressure distribution in front of the horn, for three
cases: infinite baffle, the diffracted pressure only, and the sum of the
two, which corresponds to a horn with a small flange. In the example,
the mouth of the horn was given a velocity distribution correspond-
ing to symmetric mode (1,0), which has two minima across the horn
mouth in the x-direction (see the definition of mode functions in Sec-
tion 4.2.3 on page 77). The three cases are plotted in Figure 78, where
the pressures along a line across the center of the horn mouth and
1 mm in front of it, are plotted. The horn mouth itself extends from
-0.174 m to 0.174 m on the x-axis, indicated by the dash-dotted verti-
cal lines in the figures. In Figures 78a and 78b, it can be seen that the
infinite baffle pressure follows the shape of the velocity distribution
closely, with minima that move only slowly with frequency. The num-
ber of minima inside the horn mouth is the same as for the excitation.
This means that the dominant pressure mode is the same as the ve-
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Figure 76: Relative error in Zth for the small-flange example. Note that the
curve for “Diagonal terms only” is the same regardless of the
number of modes.
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Figure 77: Relative error in Zth as function of number of modes used in the
diffraction impedance for the small-flange example. Mean and
maximum values have been computed over the 100 Hz to 2 kHz
range.

locity mode, and the radiation impedance matrix will be diagonally
dominant.

The matter is quite different for the diffracted pressure alone, Fig-
ure 78c. Here the number of minima varies strongly with frequency.
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The radiation impedance matrix due to diffraction will therefore not
be diagonally dominant in general.

By comparing the plots in Figure 78, one notices that the magnitude
of the diffracted pressure is well below the magnitude of the infinite
baffle pressure. At low frequencies, the contribution to the total pres-
sure is negligible, which can be seen by comparing the infinite baffle
pressure with the total pressure in Figure 78a. One does, however,
notice that the dips at 500 Hz are shallower with diffraction included.
One may ask why the contribution of the diffracted pressure seems
to be so small, when we know that the effect of diffraction is great-
est at low frequencies. A look at the radiation impedance with and
without diffraction, Figure 69, may clarify the matter. Although this
figure shows the radiation impedance of a piston, the trend is similar
for other modes. At low frequencies, the diffraction has very little
influence on the reactance, but quite a large influence on the radia-
tion resistance. Since the reactive part of the pressure dominates the
near field at these frequencies, and since only the magnitude of the
pressure is plotted in Figure 78, the influence of the diffraction seems
small.

At middle frequencies, we can see from both Figure 78b and Fig-
ure 69 that the contribution of diffraction to the total pressure is
greater (600 Hz to 1 kHz curves), until the effect is again negligible
at 2 kHz. The larger contribution from diffraction in the 500 Hz to
1 kHz range can also be seen from Figure 78c.

In Figure 78c, for positions close to the baffle edge (x ≈ ±0.25 m),
numerical challenges, as described in section Section 6.3, lead to re-
duced accuracy. Therefore, the apparent dip near those baffle edges
might be a numerical artifact.

6.3.4 First Order and Higher Order Diffraction

Usually the most dominant part of the diffracted field comes from
the first order diffraction term, as long as the diffracting edge is visi-
ble from both the source and the receiver positions. Since computing
the higher order diffraction term is time consuming, it is interesting
to see how large a contribution the higher order term makes to ra-
diation impedance and radiated pressure. Several simulations were
run, where the number of first order diffraction impedance modes
(D1ZM), ND1 , was varied from 0 to 64, and the number of higher or-
der diffraction impedance modes (HDZM) was varied from 0 to ND1 .
The case of zero diffraction impedance modes corresponds to the in-
finite baffle case. Otherwise the test was identical to the test in the
previous section, including the stepping of ND1 and NHOD.

The results for relative impedance error and relative pressure error
are presented in Figures 79 and 80, respectively. Again, the values
are plotted against

√
NHOD to improve readability when NHOD is low,
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(a) Infinite baffle pressure and total (infinite baffle and diffraction) pressure, low
frequencies.
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(b) Infinite baffle pressure and total (infinite baffle and diffraction) pressure, middle
to high frequencies.

Figure 78: Pressure across horn mouth for velocity mode (1,0). The horn
mouth extends between the dash-dotted lines. Please note the
different vertical scales. (Cont. next page.)

due to the many data points in this region. The trends are similar for
both impedance and pressure. It is clear that including no more than
the part of the diffraction pressure that corresponds to a plane piston
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(c) Diffraction contribution to pressure.

Figure 78: (Cont.) Pressure across horn mouth for velocity mode (1,0).
The horn mouth extends between the dash-dotted vertical lines.
Please note the different vertical scales.

source, gives a significant reduction in error: the error in impedance
is halved if a single D1ZM is included. However, unless higher order
diffraction is included, adding more D1ZM has little effect. A further
significant reduction of error results by including one or more HDZM.
The large reduction in error from no HDZM to a single HDZM shows
that higher order diffraction is important in establishing the correct
zeroth order mode radiation impedance. The influence on the radi-
ation impedance can be seen in Figure 69. The influence is clearly
largest for the radiation resistance, the reactance being substantially
the same in all three cases.

A reduction of the mean relative error to 0.1% can be achieved
with three D1ZM and two HDZM. About 25 to 36 D1ZM and 9 to 16
HDZM are required to reduce the maximum error to the same level.

This distinction between first order and higher order diffraction is
largely of academic interest, though, as in practice the D1ZM and
HDZM would not be calculated separately. One would rather calcu-
late the modal diffraction impedances from the total diffracted pres-
sure, and it is then logical to use the same number of modes in each
term.

The frequency dependence of the error is shown in Figure 81 for the
throat impedance. The main contribution of higher order diffraction
is at low frequencies, and becomes less significant at higher frequen-
cies. The plane wave HDZM reduces the low frequency error sig-
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Figure 79: Error in throat impedance as function of number of modes in
diffracted pressure. The number of modes in first order diffrac-
tion impedance are indicated by the markings on the lines. Solid
lines indicate mean error, dashed lines indicate maximum error.

0 1 2 3 4 5 6 7 810−4

10−3

10−2

10−1

100

√
NHOD

∣ ∣ Δp/
p r

ef
∣ ∣

0D1 modes
1D1 modes
4D1 modes
9D1 modes
16D1 modes
25D1 modes
36D1 modes
49D1 modes
64D1 modes

Figure 80: Error in radiated far-field pressure as function of number of
modes in diffracted pressure. Legend as in Figure 79.

nificantly, while subsequently adding more modes from the HDZM
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reduces the error at all frequencies, and the effect is to more or less
shift the error curve downward.

As shown above, a general truncation of the number of HDZM to
be less than the number of D1ZM is of little value. Of greater interest,
however, is to limit the calculation of higher order diffraction to low
frequencies.
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Figure 81: Error in throat impedance as function of frequency, for a few of
the combinations in Figure 79.

6.3.5 Summary

This section has shown how the Edge Diffraction Method can be com-
bined with the MMM to simulate horns with small flanges, i.e. free
standing horns. A verification of the performance of the example
horn from Section 6.3.2 is given in Section 9.3, where comparisons
with both BEM and with measurements show excellent agreement.
Further discussions of the results are given there.

This section has also investigated the influence of number of modes
in the diffraction contribution to the radiation impedance and if, and
to what extent, higher order diffraction needs to be taken into account.
The results can be summarized as follows:

• The EDM has some numerical challenges due to singularities
when the receiver point is coplanar with the edges of the model,
causing inaccurate results at some receiver positions. While this
is not an issue for computing the radiation impedance, a so-
lution must be found in order to provide accurate directivity
calculations.



160 horns in full-space

• Including just the plane wave mode in the diffraction
impedance gives a great improvement in accuracy, reducing the
error by an order of magnitude compared to just including the
infinite baffle radiation impedance.

• There is significant modal coupling between the modes in the
diffraction impedance, and just using the diagonal of the diffrac-
tion impedance matrix does not improve the results over that of
using the plane wave mode only.

• Higher order diffraction is required at low frequencies. At least
the plane wave mode of the higher order diffraction must be
included to for any reasonable accuracy.

• Unless more modes are added from the higher order diffraction,
little is to be gained by adding more modes from the first order
diffraction.

• Limiting the calculation of higher order diffraction to low fre-
quencies, on the other hand, appears to be feasible, and since
this part of the diffraction calculation is the most time consum-
ing, this would make it possible to reduce the computational
load at higher frequencies.
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H O R N S N E A R R E F L E C T I N G B O U N D A R I E S

When the space the horn radiates into is reduced from the full
4π steradians solid angle by the introduction of one or more
(semi-)infinite planes, see Figure 82, we say that the horn radiates into
fractional space. Half-space is a common case, and has been treated
separately in Chapter 5. If the solid angle is further reduced, the
problem can in many cases be solved by image source based meth-
ods, which is the approach used in this chapter. The chapter is based
on [51].

The contributions in this chapter are the formulation of the compu-
tation of the modal mutual radiation impedance matrix as a matrix
operation, and the demonstration of the influence of the distance to
reflecting walls on the performance of horns.

7.1 sources in fractional space

When two or more acoustic sources radiate into the same space, there
will be a mutual interaction between them due to the fact that the
pressure from each source will change the pressure on all the others.
All sources will therefore experience a different reaction force to its
vibration velocity than if it was radiating alone, and hence a different
radiation impedance. This impedance is dependent on the spacing in
terms of wavelengths, and the relative placement of the sources.

Expressions for the mutual impedance between circular pistons in
an infinite baffle are given by Klapman [305] and others, and Arase
[306] gives expressions for rectangular pistons. Sha et al. [307] give a
review of previous work on mutual modal radiation impedance, and
also give expressions for computing the mutual impedance matrix.
The results, however, do not agree with other numerical solutions,
including direct numerical integration. Because of this, the author
decided to instead develop another method to compute the mutual
modal radiation impedance.

The method is based on direct numerical integration of the double
surface integral (see also Eq. (180), on page 105)

Zmn =
jωρ

4πS2

∫
S

∫
S

G(x|x0) · ψm (x0, y0)ψn (x, y) dS0dS (247)

with G(x|x0) = 2e−jkh/h, x and x0 now being points on two different
radiators that belong to the same plane. Designating x to be the
mirror source, and x0 the actual horn opening, Eq. (247) describes the
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dx

dy

am

bm

Figure 82: Horn placed near boundaries. The boundaries are planes that
extend outward to infinity.

mutual impedance seen by the horn opening. Due to the mirroring,
the mode functions ψn(x, y) must be symmetric with respect to the
reflecting wall. With more than one reflecting wall, there will be
more than one image source xi, and it is the superposition of all the
pressure fields from the image sources on the actual horn opening
that is of interest. We may thus write the Green’s function as

G(x|x0) =
N

∑
i=1

G(xi|x0) (248)

This Green’s function can then be inserted into Eq. (180) on
page 105 to give the mutual radiation impedance.

7.2 mutual radiation impedance

The radiation impedance for the infinite baffle case is computed from
the equations given in Chapter 5 for the asymmetric case. Even if the
horn in question is quarter symmetric, asymmetry in the sound field
is introduced due to the presence of the reflecting surfaces.

From the relation in Eq. (248), and from superposition as outlined
in Section 6.2, we see that we can then find the total radiation
impedance as

Zrad,tot = ZIB + Z(M), (249)

where Z(M) is the total mutual impedance. Z(M) can thus be com-
puted separately, independently from ZIB. Using direct Gauss-
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Legendre numerical integration [308], for clarity only shown for one
image source,

Z(M)
nm =

jωρ

2πS2

Nx

∑
p=1

Ny

∑
q=1

Nx

∑
r=1

Ny

∑
s=1

e−jk
√

(xp−xr)2+(yq−ys)2√
(xp − xr)2 + (yq − ys)2

× ψm
(

xp, yq
)

ψn (xr, ys)wpwqwrws. (250)

The indices p and q loop over the positions of the image source
surface, while r and s loop over the positions at the receiving surface,
both defined by the abscissas in the Gauss-Legendre rule. wp etc. are
the corresponding weights.

This expression is computationally heavy, and has to be repeated
for every mode in the impedance matrix, for each frequency. There
are some things to note, however:

• The argument h =
√
(xp − xr)2 + (yq − ys)2 for the Greens func-

tion is independent of frequency and mode number.

• The Green’s function is independent of the mode number.

• The mode functions are independent of frequency.

One should also note that the computation of the radiation
impedance is actually a two-stage process: first finding the pressure
distribution for each velocity mode of the source (this corresponds to
the column index m of the matrix) using Eq. (156) and assuming unit
volume velocity, then decomposing each of these pressure distribu-
tions into modes using Eq. (177).

It is evident that when using a fixed number of integration points,
Eq. (156) can be computed for one point and one mode as the inner
product

pm(x, y, z) =
jωρ

2πS
�GT �ψw

m (251)

where �G is a vector of the Green’s function from all source points
on the radiator to x = (x, y, z), and �ψw

m is a vector of the values of
the mode function for mode m at all points on the radiator. The w
indicates that the mode function has been multiplied by the weights
of the employed integration scheme. The volume velocity is assumed
to be unity. By expanding �G into a matrix that contains the Green’s
functions from all Ns source points (columns) to all Nr receiver points
(rows), and expanding �ψw

m to a matrix that contains all used modes,
one obtains the pressure at all receiver points for all source modes by
a single matrix-matrix multiplication:

P =
jωρ

2πS
GΨw (252)

Here G is an Nr × Ns matrix of Green’s functions, and Ψw is an Ns ×
Nmodes matrix of mode functions multiplied by integration weights.
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This gives P as an Nr × Nmodes matrix. The pressure matrix is then
decomposed into modes by another matrix-matrix multiplication by
Ψw. This process gives

Z =
jωρ

2πS2 (Ψw)T
GΨw (253)

which is the desired Nmodes × Nmodes impedance matrix. If Nr = Ns,
G is symmetric, and only half of the entries need to be calculated,
the rest can be copied. Depending on the integration scheme, more
symmetries may be found, further speeding up calculations.

The advantage of this method of computing the mutual radiation
impedance is that the integration is now expressed in terms of matrix-
matrix multiplications, which is a standard operation that has been
highly optimized in linear algebra libraries like BLAS [309].

It should be noted that this method cannot be used directly for the
self impedance ZIB, as the Green’s function becomes singular when
h = 0. But since the self impedance is computed by the methods
presented in Chapter 5, this poses no problem.

The influence of the mutual radiation impedance is small at high
frequencies [310], as we will see, so it is not necessary to compute
Eq. (253) to very high frequencies.

7.3 radiated pressure

The radiated pressure is computed from the Rayleigh integral in
Eq. (177) on page 105. By employing the same reasoning as in the
previous section, it is evident that the integral can also be performed
by matrix-matrix multiplication as in Eq. (252), with an additional
multiplication with the vector of mouth volume velocity mode ampli-
tudes:

p(x, y, z) =
jωρ

2πS
GΨw�U (254)

The pressure is computed for both ordinary receiver points and for
the mirror receiver points, and then summed afterwards. An alterna-
tive is to let the mirror receivers be included in the Green’s functions
when computing G. What is most efficient is a matter of the shape
and size of the matrices.

7.4 radiation impedance for a piston near one or two
walls

From Waterhouse [40] we know that at low frequencies, the power
of a source is doubled if it is placed near a wall, quadrupled if it is
placed near two walls, and eight times as large if it is placed near
three walls. In our case, the source is already placed in an infinite
baffle, and we can only consider the cases of one and two extra walls.
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Figure 83: Relative radiation impedance for a square piston at a distance d
from a single wall.
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Since the radiated power is proportional to the real part of the radi-
ation resistance, we expect the resistance at low frequencies to either
double or quadruple.

The first example considers a square piston of sides a, placed at
various distances from a single wall, the center-to-wall distance being
d. As we can see from Figure 83a, the shape of the relative radiation
resistance, R1π/R2π, is very nearly independent of kd up to kd ≈ 1,
above which the relative distance in terms of the piston size begins
to play a role. One may recognize the dip around kd ≈ 2.25 from
the study by Waterhouse, this corresponds to x/λ = 0.358 in Wa-
terhouse’s notation. The consequence of this dip for horns will be
discussed in more detail in Section 7.5. It is also interesting to note
that power output is doubled even when the distance between the
sources is very large. This is perhaps counter-intuitive, as the pres-
sure from the mirror source becomes small when the distance is large.
But at low frequencies, where the radiation impedance is mainly re-
active, the pressure from the mirror source arrives almost in-phase
with the primary source velocity even if the propagation distance is
large. So even if this contribution is small in absolute terms, it adds
up to double the radiation resistance [311].

The radiation mass shows quite a different behavior, see Figure 83b,
but the reason is the same as for the doubling of the resistance: at
large relative distances, the pressure from the mirror source is more
in-phase with the primary source velocity than at smaller relative
distances. The contribution to the radiation impedance is resistive
rather than reactive, and the contribution to the radiation mass be-
comes smaller as d increases.

The total radiation resistance is shown in Figure 84, and the dou-
bling at low frequencies is readily seen. For larger distances, the
doubling is only approached at low frequencies, and above that, the
curve oscillates around the curve for the infinite baffle resistance.

When two walls are involved, things get more complicated, as there
is one more degree of freedom. A few examples are given in figures
85 and 86. The shape of the curves at low frequencies depend mainly
on the two relative distances, and their relative ratio. If the dy/dx

ratio is large, for instance 16 as in two of the examples, there will
be two transitions, first to a doubling, then to a quadrupling of the
resistance, as frequency is reduced. The dip around kdx ≈ 2− 2.5 is
also deeper, meaning a larger reduction of the radiated power in this
region.

As for the one-wall case, the resistance has a transitional region
where it oscillates around the infinite baffle or quarter-space curve,
before finally reaching a quadrupling at low frequencies, Figure 86.
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Figure 84: Total radiation resistance for a square piston at a distance d from
a single wall.
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dx and dy indicate the distances in the two directions.
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Figure 86: Total radiation resistance for a square piston near two walls, dx
and dy indicate the distances in the two directions.

7.5 case studies

In this section, a few examples of the effect of mutual radiation
impedance on the total radiation impedance and on the performance
of horns will be given. For horns, the focus will be on the throat
impedance, as in the frequency range where the mutual coupling is
significant, the image sources are so close as not to cause significant
lobing in the directivity response.

The horns used in this case study are shown in Figure 87, and the
dimensions are given in Table 4. Horn 1 has the same size and shape
as the horn used in the measurements in Chapter 9, and the dimen-
sional details are also listed in Appendix D. The other horns are ex-
ponential horns.

Horn Sth [cm2] Sm [cm2] L [cm] T

1 42.25 1188.8 50.0 0.7

2 5.0 1180.0 74.8 1.0

3 5.0 590.0 65.3 1.0

4 5.0 295.0 55.8 1.0

Table 4: Dimensions of the horns used in the case studies
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(a) Horn 1 (b) Horn 2

(c) Horn 3 (d) Horn 4

Figure 87: The horns used in the case studies.

7.5.1 Constant Mouth Size, Varying Distance

Horn 1 from Figure 87 is used in this example. 50 elements and 64
modes were used in the MMM simulations.

The distance d is the distance from the center of the horn mouth to
the wall, and is indicated in the figures in terms of mouth size. The
frequency axis is in terms of the non-dimensional parameter k/kc,
where kc is the cutoff wave number of the horn.

Figure 88 shows the throat resistance as the distance to a single
wall is varied. The thickest green curve is the throat resistance for the
horn mounted in an infinite baffle. One notes that the distance does
not need to be increased much before the results are very similar to
the infinite baffle case from approximately the cutoff frequency and
up. A tight coupling (horn very close to the wall) reduces the ripple
significantly, but for distances larger than 0.75am, the ripple is similar
to, or larger than, the infinite baffle case. Below the cutoff frequency,
it is evident that the power is increased, but since this is outside the
pass band of the horn, it is not very useful.

In the case of a horn placed in the corner, the behavior is similar,
see Figure 89. As with the single-wall case, a significant reduction of
ripple is found when the horn is placed in the corner, with increasing
ripples as it is moved away. The worst placement of the cases plotted
for this horn is at dx = dy = am.

7.5.2 Varying Mouth Size and Distance

Now what happens if the horn’s mouth size is reduced, but the horn
is placed near a wall or a corner? In this study, three exponential
horns as listed in Table 4 were used. Horn 2 was used for the infinite
baffle mounting, the mouth area of this horn corresponds to kcam =

0.71. Horn 3 was used for the baffle/wall placement, and horn 4 for
corner placement.
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Figure 88: Throat resistance, horn 1, quarter space. Note that d = 0.5am
means that the wall is immediately next to the horn mouth.
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Figure 90: The effect on the throat impedance of reducing mouth size, while
placing the horn as close as possible to one or two walls, for the
horns in Figure 90.

The resulting throat impedance magnitude curves for the horns
when placed as close as possible to the reflecting surface(s) are shown
in Figure 90. Since the length of the horn is not kept constant, the
curves mostly do not overlap, but the ripple magnitude is approxi-
mately constant. If the horn is made to have a constant length, adjust-
ing the throat area when the mouth area is reduced (i.e. linearly scal-
ing the entire horn), the resulting curves do overlap to a much larger
degree. But usually, when making a horn with reduced mouth size,
the purpose is to make the horn significantly smaller. In addition,
one usually does not want to employ a smaller driver, so the throat
size should be kept constant. One should, however, keep in mind that
the frequencies of the resonance peaks are shifted when the length is
changed. The most important peak is the first one, where a shift will
produce a similar shift in the lower corner frequency of the system.

The reason for the similar throat impedance curves for the three
horns can be understood by looking at the radiation impedance at
the mouth. The radiation resistance for several cases is plotted in
Figure 91. The thick gray lines show the radiation resistance for the
horn mouths without any support from the walls. Adding one or
more wall(s) close to the horn increases the radiation resistance to the
value for the largest horn mouth, which is what we want. For quarter
space the shape of the curve is slightly different; since the horn mouth
itself is square, the total effective mouth surface corresponds to a
rectangle of twice the size and with an aspect ratio of 2. For eighth
space, the effective mouth surface is again square, with four times the
area of the physical mouth.

If the same horns are placed further away from the walls, the throat
ripple increases significantly, as shown in Figure 92. Here the effect
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Figure 91: Radiation resistance for the horns in Figure 87 under the condi-
tions used in Figure 90. In addition, the infinite baffle radiation
resistance curves for horns 3 and 4 are shown.
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Figure 92: The effect on the throat impedance of reducing mouth size, while
placing the horn at a distance from one or two walls.
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Figure 93: Radiation resistance for the horns in Figure 87 under the condi-
tions used in Figure 92. In addition, the infinite baffle radiation
resistance curves for horns 3 and 4 are shown.

of placing the horn at a distance d = 0.75am from the wall is marked,
and even more so at higher frequencies; the peaks do not decrease in
magnitude as fast as in Figure 90. If the eighth space horn is moved
even further away from the corner, to a distance that corresponds to
0.75am,1π, even more ripple results, as expected. The distances in cut-
off wave lengths for the three cases are 0.21λc, 0.15λc and 0.21λc, re-
spectively. So even if the horn is within a quarter cutoff wavelength of
its image(s) at the low end, this is not enough to provide the needed
reinforcement.

The fundamental mode radiation impedance for the four cases is
plotted in Figure 93, and can explain the behavior in Figure 92. First,
at low frequencies, the curves overlap, and as we can see from Fig-
ure 92, the horns behave very similarly at the lowest frequencies, ap-
proximately up to the cutoff frequency. Second, the curves do not
reach their asymptotic values at the same low frequency as for the
previous case, which creates problems in a fairly large frequency
range above cutoff. Even worse, the phase relations between the horn
mouth and its image(s) create dips in the radiation resistance that fur-
ther increase the problem. The location of these dips can be seen to
correlate well with the increased ripple in Figure 92.

Figure 94 shows how the throat impedance ripple changes with the
distance from the wall(s) for the horns described above. The ratio
max|Zth|/min|Zth|, i.e. the ratio between the highest impedance peak
and the lowest impedance dip (after the first peak), is plotted as a
function of wall distance to give an indication of the ripple magni-
tude. it is clear that for a horn designed to be placed near a wall
or in a corner, d/am ratios in the range 1.2 to 3 are especially unfa-
vorable. For horns originally designed for infinite baffle mounting,
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Figure 94: The peak-to-dip ratio max|Zth|/min|Zth| for horns place near
walls.
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d/am ratios in the range 0.75 to 1.5 are unfavorable. The curves also
show that when the horn is designed for infinite baffle mounting,
they approach their infinite baffle performance quickly for distances
larger than 1.5am. For distances where d < 0.7am, there is a general
reduction in ripple for all horns. It should be noted that these curves
applies specifically to the square horns described above, and will vary
when horn profile and aspect ratio are varied. Still, the curves indi-
cate the variation in performance to be expected when the distance
from the reflecting surfaces are varied.

It is also interesting to look at the differences between horns and
direct radiators. If kc, the cutoff wave number, is taken as the lower
limit of the pass band, horns are used from kca = 1 and up, a now
being the effective mouth radius, including the mirror sources. For
direct radiators, ka = 1 marks the upper limit of the piston range,
and much of the utilized pass band is below this frequency. In other
words, horns are used in a frequency range where they are large
compared to the wavelength, while the opposite is true for direct
radiators. As we can see from Figure 93, the help from the mutual
impedance rapidly moves out of the pass band of the horn as the
horn moves away from the wall(s). For a direct radiator, however, the
increased radiation resistance will still be in the pass band, especially
near the low frequency end where it is most needed, for even larger
distances than shown in Figure 93. Another factor is that horns will
exhibit large resonant peaks when presented with a low impedance
load at the mouth (e.g., a small mouth away from reflecting bound-
aries), something that does not happen for direct radiators.

7.6 summary

When horns are placed near reflecting surfaces, the mutual
impedance cannot be neglected, and it is important to be able to calcu-
late this quantity in an efficient manner. This chapter has developed
a method where the mutual impedance is computed by matrix multi-
plication, making it possible to exploit the highly efficient optimized
BLAS libraries available.

Simulations of horns show the influence of the mutual radiation
impedance due to wall reflections on the throat impedance. The re-
sults show that:

• The reflections are beneficial if the distances from the horn to
the walls are small (less than 0.7am for square horns), providing
either a reduction in impedance ripple, or the opportunity to
shorten the horn and reducing the mouth size without increas-
ing the ripple.
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• As the distances are increased beyond 0.7am, the benefit is re-
duced, actually resulting in a notable worsening of the perfor-
mance at certain distances.

• At large distances, the performance approaches that of a horn
in an infinite baffle, as expected.

• Horns designed for near-wall or corner placement typically
have mouth areas that are half or one quarter of the mouth
area for a horn designed for infinite baffle mounting. They can
therefore not be used too far from the supporting surfaces, as
the horn mouth is then too small for good performance with
the resulting infinite baffle radiation condition.

An experimental verification of the method presented in this chapter
is given in Chapter 9, Section 9.4 on page 205.
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H O R N S I N R O O M S

The previous chapters have dealt with free standing horns, horns in
infinite baffles, and baffled horns near one or two infinite boundaries,
i.e. horns near corners. These approximations are useful when the
horn is small compared to the room it is placed in.

If the horn is not small, or the room is not well damped, a better
approximation needs to take the room modes into account. One may
of course use MMM for the room directly, as is done in Chapter 12,
but if the room is shoebox-shaped, more efficient methods can be
used.

In this chapter, two methods are presented; the first method is
based on the familiar mode sum for a rectangular room, and the
second is based on expressions given by Beranek and Mellow [288]
for the input impedance of a closed box with an impedance rear wall.

Part of the work in this work has been presented in [52]. The con-
tributions in this chapter is the derivation of analytical expressions
for the radiated pressure from, and the modal radiation impedance
of, a distributed source in the wall of a shoebox shaped room with
uniform damping, and in the wall of a room with hard walls, except
for the wall opposite the source.

8.1 method 1 : mode sum method

The geometry is shown in Figure 95. Method 1 is based on the transfer
function in a room expressed as a mode sum. The pressure at x due
to a source at x0 is [312, 313]

p(x) =
jωρU0c2

V ∑
N

εxεyεz
ψN(x0)ψN(x)

ω2 −ω2
N − 2jδNωN

(255)

where N = (m, n, q) is the mode index for the room,

εx =

⎧⎨
⎩1 : m = 0,

2 : otherwise,

and similar for the other modes.

ψ(x) = cos
mπx

lx
cos

nπy
ly

cos
qπz
lz

is the ordinary mode function for a rectangular room with rigid walls,
and

ωN = c
√

k2
mx + k2

ny + k2
qz,

177
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lx

lz

ly

a

b

∑ ψN(x, y, z)

Figure 95: Geometry for a horn in the wall of a room.

where
kmx =

mπ

lx
,

etc, where δN = 6.91/T60 [33].
Let ΩN =

εxεyεz

ω2−ω2
N−2jδNωN

to simplify notation. Assume then a source

velocity distribution u(x0, y0, z0), and assume z0 to be constant. The
pressure in the room is then

p(x, y, z) =
jωρc2

V

∫
S0

u(x0, y0, z0)∑
N

ΩNψN(x0, y0, z0)ψN(x, y, z)dS0.

(256)

8.1.1 Plane Wave Excitation

The plane wave (piston) mechanical radiation impedance is given as
(see also Section 5.2)

Zm =
1
u

∫
S

p(x, y, z0)dS, (257)

which when applied to Eq. (256), gives the integral

Zm = − jωρc2

V

∫
S0

∫
S

∑
N

ΩNψN(x0, y0, z0)ψN(x, y, z0)dS0dS. (258)



8.1 method 1 : mode sum method 179

By changing the order of summation and integration, and letting the
source extend from xa to xb and ya to yb, we get

Zm = − jωρc2

V ∑
N

ΩN

xb∫
xa

yb∫
ya

ψN(x0, y0, z0)dx0dy0

xb∫
xb

yb∫
ya

ψN(x, y, z0)dxdy.

(259)
Given the source geometry in Figure 95, Eq. (259) can be solved ana-
lytically by using the relation

x1+a/2∫
x1−a/2

cos
(

mπx
lx

)
dx =

⎧⎨
⎩a, m = 0

2lx
mπ cos

(
mπx1

lx

)
sin
(

mπa
2lx

)
m �= 0

(260)

to give

Zm = − jωρc2

V ∑
N

ΩN cos2
(

qπz0

lz

) 16l2
xl2

y

n2m2π4

×
(

cos
(

mπx1

lx

)
sin
(

mπa
2lx

))2 (
cos
(

nπy1

ly

)
sin
(

nπb
2ly

))2

(261)

for the general case and

Zm = − jωρc2

V ∑
N

ΩN cos2
(

qπz0

lz

) 4l2
y

n2π2

× a2
(

cos
(

nπy1

ly

)
sin
(

nπb
2ly

))2

(262)

for m = 0. Similar expressions are found for n = 0 and for m = n = 0.

8.1.2 Multimodal Excitation

When the source is a rectangle with multimodal excitation, the source
velocity distribution is given by the mode functions given in Section
4.2.4. Given that the source has dimensions a, b, and is parallel to the
xy-plane with the center at the position (x1, y1) in room coordinates,
the mode functions are

φmx = Nmx cos
(

mxπ(x− x1 +
a
2
)/a
)

(263)

where Nmx = 1 for mx = 0 and
√

2 otherwise, and similar for the
y-direction.

It is now useful to define a function Υ that expresses the integral
in one dimension over the the source mode function multiplied with
the room mode function. This integral can be found analytically as
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Υm
mx
(a, x1, lx)

=

x1+a/2∫
x1−a/2

Nmx cos
(

mxπ(x− x1 +
a
2
)/a
)

cos (mπx/lx) dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, m = 0, mx = 0
2lx
mπ cos

(
mπx1

lx

)
sin
(

mπa
2lx

)
m > 0, mx = 0

0 m = 0, mx > 0
√

2a2lxm
(

sin
(

πm(a−2x1)
2lx

)
+(−1)mx sin

(
πm(a+2x1)

2lx

))
π(ma−mxlx)(ma+mxlx)

m > 0, mx > 0

(264)

where m is the room mode index, and mx is the mode index of the
excitation.

The pressure in the room is now found from

p(x, y, z) =
jωρc2

V

x1+a/2∫
x1−a/2

y1+b/2∫
y1−b/2

u(x0, y0, z0)

×∑
N

ΩNψN(x0, y0, z0)ψN(x, y, z)dx0dy0 (265)

where
u(x0, y0, z0) =

1
S ∑

mx ,my

ψmx ,my(x0, y0)Umx ,my (266)

and Umx ,my is the mode amplitude. By changing positions of the inte-
gral and the summation,

p(x, y, z) =
jωρc2

V ∑
N

ΩN

×
x1+a/2∫

x1−a/2

y1+b/2∫
y1−b/2

ψN(x0, y0, z0)u(x0, y0, z0)dx0dy0ψN(x, y, z). (267)

Then for a single excited mode of amplitude Umxmy , the pressure in
the room is

p(x, y, z) =
jωρc2

abV
Umx ,my ∑

N
ΩN

×
x1+a/2∫

x1−a/2

y1+b/2∫
y1−b/2

ψN(x0, y0, z0)ψmx ,my(x0, y0)dx0dy0ψN(x, y, z). (268)
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By using Eq. (264), this integral can be solved analytically, giving

p(x, y, z) =
jωρc2

abV
Umx ,my ∑

N
ΩN cos

(
qπz0

lz

)
× Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)ψN(x, y, z) (269)

The radiation impedance for a single mode is found by

Zm =
1
v

x1+a/2∫
x1−a/2

y1+b/2∫
y1−b/2

p(x, y, z)ψnx ,ndxdy. (270)

By again applying Eq. (264), an analytical expression for the radiation
impedance can be found:

Zm = − jωρc2

V ∑
N

ΩN cos2
(

qπz0

lz

)
× Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)Υm

nx
(a, x0, lx)Υn

ny
(b, y0, ly) (271)

Note that a non-zero value for z0, the source z-position, has been
used. If z0 is different from 0 or lz, the source is placed inside the
room, and corresponds to a monopole source with a given velocity
distribution. This is not appropriate for a horn, which is a one-sided
radiator, but the expression may be used by setting z0 to 0 or lz, indi-
cating a horn mounted in the wall.

In an attempt to find a method to compute the radiation impedance
of a horn placed at a given position in the room, with a given angle to
the z-axis, angled multimodal source distributions were investigated
both for monopole and dipole sources. The results of these investiga-
tions are summarized in Appendix E.

8.2 method 2 : terminated duct method

In [288], Beranek and Mellow presented a two-port network for bass
reflex enclosures where both the port and the driver are mounted
in the front wall of the enclosure, and the rear wall is lined, having
a specific impedance Zs. Figure 96 shows the principle, modified to
show a horn radiating into an enclosure with a lined rear wall, and
with asymmetry in the x-direction added.

The expressions give the impedances seen by each of the pistons
alone, and a coupling impedance, making it possible to compute the
transmission through the system. If only a single piston is used, it is
possible to compute the impedance looking into a closed box with an
impedance at the opposite wall. The method seems like a good start-
ing point for computing the radiation impedance of a horn mounted
in the wall of a room if it is extended to include asymmetry in both
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Figure 96: The geometry of a horn in the wall of a room for Method 2. All
damping is now at the rear wall.

directions (the Beranek and Mellow solution assumes symmetry in
the x-direction), and multimodal excitation.

8.2.1 Basic Equations

From [288], the pressure field inside the room can be found from

p(x, y, z) = ρ0cu0

∞

∑
m=0

∞

∑
n=0

(
Amne−jkmnz + Bmnejkmnz

)
× cos

(
mπx

lx

)
cos
(

nπy
ly

)
(272)

and the velocity in the z direction is found from

uz(x, y, z) =
1

−jkρ0c
∂

∂z
p(x, y, z)

=
1
k

u0

∞

∑
m=0

∞

∑
n=0

(
Amne−jkmnz − Bmnejkmnz

)
× cos

(
mπx

lx

)
cos
(

nπy
ly

)
. (273)

The boundary condition at z = 0 (rear wall) is

p(x, y, z) = −Zsuz(x, y, 0) (274)

giving

Bmn =
kmnZs + kρ0c
kmnZs − kρ0c

Amn. (275)
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The boundary condition at z = lz is found by

uz(x, y, lz) =

⎧⎨
⎩u0, x1 − a1

2 ≤ x ≤ x1 +
a1
2 , y1 − b1

2 ≤ y ≤ y1 +
b1
2

0, otherwise.
(276)

Now, with multimodal excitation,

u0 = umxmy = Nmx cos
(

mxπ(x− x1 +
a1

2
)/a1

)
× Nmy cos

(
myπ(y− y1 +

b1

2
)/b1

)
(277)

where ⎧⎨
⎩Nmx = 1, mx = 0

Nmx =
√

2, mx > 0,
(278)

and similar for Nmy , umxmy is the velocity amplitude of the exciting
mode. We must now also include the mode indices for the excitation
in the labeling of Amn, which from now will be designated Amx ,nx

mn .
Assuming the same mode functions for the horn opening as in

Method 1, Eq. (263), we find Amx ,nx
mn using

uz(x, y, lz) =
2
k

u0

∞

∑
m=0

∞

∑
n=0

kmn Amx ,nx
mn

kρc cos kmnlz + jkmnZs sin kmnlz

kρc− kmnZs

×
lx∫

0

cos (mπx/lx) cos (pπx/lx) dx

ly∫
0

cos
(
nπy/ly

)
cos
(
qπy/ly

)
dy

= umxmy

x1+a1/2∫
x1−a1/2

Nmx cos
(

mxπ(x− x1 +
a1

2
)/a1

)
cos (pπx/lx) dx

×
y1+b1/2∫

y1−b1/2

Nmy cos
(

myπ(y− y1 +
b1

2
)/b1

)
cos
(
qπy/ly

)
dy (279)

Then we apply orthogonality and the integral solutions as in
Method 1:
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x1+a/2∫
x1−a/2

Nmx cos
(

mxπ(x− x1 +
a1

2
)/a1

)
cos (mπx/lx) dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1, m = 0, mx = 0
2lx
mπ cos

(
mπx1

lx

)
sin
(

mπa1
2lx

)
m > 0, mx = 0

0 m = 0, mx > 0
√

2a2
1lxm

(
sin
(

πm(a1−2x1)
2lx

)
+(−1)mx sin

(
πm(a1+2x1)

2lx

))
π(ma1−mxlx)(ma1+mxlx)

m > 0, mx > 0

(280)

We now define a new function Υmr
mh (a1, ξ1, lξ) (note the italics) that

differs from the previously defined Υ only in that lx/π has been
moved out of the function:

Υmr
mh
(a1, ξ1, lξ) = Nmh

a2
1mr

a2
1m2

r − l2
ξ m2

h

{
sin
(

πmr (a1 − 2ξ1)

2lξ

)

+ (−1)mh sin
(

πmr (a1 + 2ξ1)

2lξ

)}
(281)

where ⎧⎨
⎩Nmh = 1, mh = 0

Nmh =
√

2, mh > 0
(282)

and the subscripts r and h indicates the mode index of the room and
the horn, respectively.

Υ also has the following properties:

Υ0
mh
(a1, ξ1, lξ) = 0 (283)

Υmr
0 (a1, ξ1, lξ) =

2 cos
(

mrπξ1
lξ

)
sin
(

mrπa1
2lξ

)
mr

(284)

We can now find the following definitions of Amx ,nx
mn , including spe-

cial cases when some of the mode indices are zero:
Coefficient Amx ,nx

00 is zero for all excitation modes except the plane
wave mode, so all we have left is A00

00:

A00
00 =

a1b1

2lxly

ρc− Zs

ρc cos klz + jZs sin klz
(285)

The other coefficients for plane wave mode excitation are the same
as given in [288], except that symmetry in the y direction is not as-
sumed:
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A00
0n =

2a1

nπlx
cos
(

nπy1

ly

)
sin
(

nπb1

2ly

)

× k
k0n

kρc− k0nZs

kρc cos k0nlz + jk0nZs sin k0nlz
(286)

A00
m0 =

2b1

mπly
cos
(

mπx1

lx

)
sin
(

mπa1

2lx

)

× k
km0

kρc− km0Zs

kρc cos km0lz + jkm0Zs sin km0lz
(287)

A00
mn =

8
nmπ2 cos

(
nπy1

ly

)
sin
(

nπb1

2ly

)
cos
(

mπx1

lx

)
sin
(

mπa1

2lx

)

× k
kmn

kρc− kmnZs

kρc cos kmnlz + jkmnZs sin kmnlz
(288)

As for the other coefficients,

A0,my
0n =

a1Υn
my
(b1, y1, ly)

πlx
· k

k0n

kρc− k0nZs

kρc cos k0nlz + jk0nZs sin k0nlz
(289)

A
mx ,0

m0 =
b1Υm

mx
(a1, x1, lx)

πly
· k

km0

kρc− km0Zs

kρc cos km0lz + jkm0Zs sin km0lz
(290)

Amx ,0
0n = Amx ,my

0n = 0 (291)

A0,my
m0 = Amx ,my

m0 = 0 (292)

Amx ,my
mn =

Υm
mx
(a1, x1, lx)Υn

my
(b1, y1, ly)

4π

× k
kmn

kρc− kmnZs

kρc cos kmnlz + jkmnZs sin kmnlz
(293)

8.2.2 Impedance

The modal radiation impedance Zmxmynxny is found by integrating
over the opening and multiplying with the mode functions as usual:

Zmxmynxny =
1

−Um

x1+a1/2∫
x1−a1/2

y1+b1/2∫
y1−b1/2

Nnx cos
(

nxπ(x− x1 +
a1

2
)/a1

)

× Nny cos
(

nyπ(y− y1 +
b1

2
)/b1

)
p(x, y, lz) (294)
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We also get that

kρc− kmnZs

kρc cos kmnlz + jkmnZs sin kmnlz
×
(

e−jkmnlz +
kmnZs + kρc
kmnZs − kρc

ejkmnlz
)

= −2
kmnZs

kρc + j tan kmnlz

1 + j kmnZs
kρc tan kmnlz

so we can define a factor Cmn as

Cmn =

kmnZs
kρc + j tan kmnlz

1 + j kmnZs
kρc tan kmnlz

For every duct mode combination mxmynxny, the total impedance
is the sum of four factors:

Zmxmynxny
tot = Zmxmynxny

00 +
∞

∑
n=1

Zmxmynxny
0n +

∞

∑
m=1

Zmxmynxny
m0 +

∞

∑
n=1

∞

∑
m=1

Zmxmynxny
mn .

This occurs because it is necessary to treat the cases where the room
mode indices are zero separately.

The general expression for the modal impedances is

Zmx ,my,nx ,ny
mn =

4lxly

π4 Υm
mx
(a1, x1, lx)Υ

n
my
(b1, y1, ly)Υ

m
nx
(a1, x1, lx)Υ

n
nx
(b1, y1, ly)

k
kmn

Cmn

(295)

For the plane wave impedance, great simplifications can be made
since A0,my

m0 = Amx ,0
0n = Amx ,my

0n = Amx ,my
m0 = 0, and we get

Z0000
00 =

a2
1b2

1
lxly

Cmn (296)

The impedance for Zmxmynxny
00 = 0 for all other combinations of duct

modes.
For the plane wave duct mode, the resulting expressions are the

same as given in [288] except that no symmetry is assumed:

Z0,0,0,0
0n =

8a2
1

lxn2π2
k

k0n
cos2

(
nπy1

ly

)
sin2
(

nπb1

2ly

)
Cmn (297)

Z0,0,0,0
m0 =

8b2
1

lym2π2
k

km0
cos2

(
mπx1

lx

)
sin2
(

mπa1

2lx

)
Cmn (298)

Z0,0,0,0
mn =

64lxly

m2n2π4
k

kmn
cos2

(
mπx1

lx

)
sin2
(

mπa1

2lx

)

× cos2
(

nπy1

ly

)
sin2
(

nπb1

2ly

)
Cmn (299)
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Parameter Case 1 Case 2 Parameter Case 1 Case 2

T60 0.5 s 1.5 s a1 1.0 m 1.0 m

Zs 4ρ0c 12ρ0c b1 1.0 m 1.0 m

lx 4.0 m 4.0 m x1 0.5 m 0.5 m

ly 2.4 m 2.4 m y1 0.5 m 0.5 m

lz 6.0 m 6.0 m Ntot,1 42875 42875

εw ∞ ∞ Ntot,2 900 900

Table 5: Parameters for the test cases.

A few other combinations can also be simplified:

Zmx ,0,nx ,0
m0 =

2b2
1lxΥm

mx
(a1, x1, lx)Υm

nx
(a1, x1, lx)

lyπ2
k

km0
Cmn (300)

Z0,my,0,ny
0n =

2a2
1lyΥn

my
(b1, y1, ly)Υn

ny
(b1, y1, ly)

lxπ2
k

k0n
Cmn (301)

Finally, some combinations are zero: Z0,0,nx ,0
0n , Z0,0,0,ny

m0 ,Z0,0,nx ,ny
0n ,

Z0,0,nx ,ny
m0 , Zmx ,0,0,0

0n , Zmx ,0,nx ,0
0n , Zmx ,0,0,ny

0n , Zmx ,0,0,ny
m0 , Zmx ,0,nx ,ny

0n , Zmx ,0,nx ,ny
m0 ,

Z0,my,0,0
m0 , Z0,my,nx ,0

0n , Z0,my,nx ,0
m0 , Z0,my,0,ny

m0 , Z0,my,nx ,ny
0n , Z0,my,nx ,ny

m0 , Zmx ,my,0,0
0n ,

Zmx ,my,0,0
m0 , Zmx ,my,nx ,0

0n , Zmx ,my,nx ,0
m0 , Zmx ,my,0,ny

0n , Zmx ,my,0,ny
m0 , Zmx ,my,nx ,ny

0n ,
Zmx ,my,nx ,ny

m0 . The rest is covered by Eq. (295).

8.3 results and comparisons

The two methods outlined above are somewhat different, and the
results will not be completely comparable. Method 1 assumes that
the damping is uniformly distributed in the room, while in Method
2 all damping is placed on the wall opposite the horn mouth. For
Method 1, therefore, all room modes will experience damping, while
in Method 2, the modes that do not have a z component will not
experience damping.

In this section, a few modal impedances will be computed using
the two methods, and with two different amounts of damping. The
parameters for the test cases are given in Table 5. The value of Zs has
been adjusted to make the results of Method 2 roughly similar to the
results from Method 1 by matching the level of the first resistance
peak for the plane wave impedance. Ntot is the total number of room
modes, the number indicates which method.

With the indicated number of modes, the computation time for
Method 1 is 4.2 s, and for Method 2, 0.06 s. If the number of modes is
reduced to 2750 for Method 1, the computation time is 0.32 s, while
Method 2 takes 0.15 s with 2756 modes.
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Figure 97: Plane wave impedance, test case 1.
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Figure 98: Impedance for mode (2,2,0,0), test case 1.
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Figure 99: Plane wave impedance, test case 2.

The plane wave mode impedance for case 1 is shown in Figure 97.
The effect of uniformly distributed damping can be seen in that some
modes are more damped for Method 1 than for Method 2. At high
frequencies, the curves overlap to a large degree, especially for the
resistance. There is less overlap for reactance. As can be seen from
Table 5, very many modes are used in Method 1 compared to Method
2. The reason is that for Method 1, the reactance will droop slightly
at high frequencies, especially if there is much damping in the room.
For instance, if the number of modes is reduced to 2750 for case 1, the
reactance for the plane wave mode will oscillate around a line that
slopes from about zero at 150 Hz down to -1 (normalized) at 400 Hz.
This may be due to that when the modes are heavily damped, they
influence the results over a much larger frequency range than when
they are less damped.

Figure 97 also plots the corresponding plane wave mode
impedance for the infinite baffle case. Comparing this impedance
with the room impedance, it looks like the low frequency room
impedance oscillates around a line with four times the value of the
infinite baffle impedance. Looking at Figure 86, this would be the
curve for a radiator placed tightly into a corner, which actually is the
case here. Thus the increase in low frequency resistance is due to the
mutual coupling to the nearest walls.

A cross-modal impedance, mode (2,2,0,0), for case 1 is shown in Fig-
ure 98. Here there is less resemblance to the infinite baffle impedance,
which is probably due to how this mode couples to the room modes.

Finally, the plane wave mode impedance for case 2, which has less
damping than case 1, is shown in Figure 99. Naturally, the oscillations
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are greater, but the agreement between the two methods is actually
better. The less damping in the room, the more similar the methods
should be.

8.4 summary

Two methods to find the modal impedance seen by a horn or other
duct exiting in the wall of a room, have been outlined in this chapter.
Both methods are based on a modal description of the sound field
in a room, and on finding the radiation impedance for a distributed
source with a modal excitation by analytically solving the integrals.
The methods are quite different in how damping is applied to the
room, Method 1 has the damping uniformly distributed in the room,
while Method 2 has all damping at one wall. Despite this differ-
ence, the two methods do give reasonably similar results if the values
of reverberation time and wall impedance is properly adjusted, and
both methods can be applied to the problem at hand. Which model
to use depends mostly on what is known about the distribution of
damping in the room. If the damping mainly is at the wall opposite
the source (not an unreasonable assumption in a dedicated listening
room), Method 2 can be used. If the reverberation time is known,
and the damping of the room is more uniformly applied, Method 1
is probably a better choice.



9
E X P E R I M E N TA L V E R I F I C AT I O N

This chapter is based on work published in the papers [45] and [51].
The horn used in the experiments is described in Appendix D.

Measurements were made in an anechoic chamber of both throat
impedance and of the frequency response at various points in front
of the horn.

Some of the MMM simulation results were also compared to results
obtained by BEM or BERIM. By using mirroring of the elements, sym-
metries could be exploited. Either the mesh size could be reduced, or
the effect of introducing one or two infinitely large walls could be
simulated.

The mesh bandwidth used in the BEM and BERIM simulations is The mesh
bandwidth is
understood as the
frequency where the
largest element of
the mesh is not
larger than 1/6th of
a wavelength.

stated in each case, and the Boundary Element results therefore do
not extend beyond this frequency.

9.1 setup

The setup is shown in Figure 100. The loudspeaker unit, a SEAS 11F-
GX 4” mid-range unit, was mounted in a small closed cabinet (gray)
filled with acoustic foam. This combination was connected to the
horn through a 100 mm long impedance tube (black) in which two
Brüel & Kjær 4149 microphones, M1 and M2, were mounted. The
loudspeaker was driven by a signal from the WinMLS measurement
system through a Lynx sound card and a Quad 50E power amplifier.

The radiated pressure was measured with a Brüel & Kjær 4190
microphone.

The mountings used are indicated in Figure 100, and described in
Table 6. The extra reflecting walls used for the fractional space cases
are described in Sections 9.4.1 and 9.4.2.

Mounting type Size [mm] Offset [mm]

Large baffle 1255 × 1361 (107.5, 81.5)

Small flange 500 × 500 (0, 0)

Table 6: The mounting arrangements for the horn when mounted in a large
or small baffle. Offset is the position of the center of the horn mouth
relative to the center of the baffle/flange.

191
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Baffle

Flange

Horn

M1 M2

Z-tube
Loudspeaker

(a) Setup for small flange or infinite baffle.

d

Baffle

Reflecting wall

Horn

M1 M2

Z-tube
Loudspeaker

(b) Setup for reflecting walls.

Figure 100: Measurement setup.
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x = 0
x1 x2

M1 M2

Source PI

PR = R · PI

Figure 101: Principle of the two-microphone method of measuring acousti-
cal impedance. The sound source is to the left, the sample (in
this case the horn) is connected to the end where x = 0.

9.1.1 Throat Impedance

The throat impedance was measured using the conventional two-
microphone method, which is the standard method of measuring the
acoustical impedance of absorbing material, mufflers and horns. The
method, including the calibration, is described in detail in ISO 10534-
2 [314].

See Figure 101. In short, the transfer function p2
p1

= H12 between the
two microphones is measured, and the reflection factor is found as

R =
PR

PI
=

H12 − e−jkΔx

ejkΔx − H12
e2jkx1 (302)

where Δx = x1 − x2, and x1 and x2 are the distances from the horn
throat surface to microphones 1 and 2, respectively. From this, the
normalized throat impedance is found as

ZA =
1 + R
1− R

It is known that the measurement results become unreliable above
the first mode cutoff frequency, and at frequencies where the micro-
phone spacing Δx = nλ/2, n = 1, 2, .... The first mode cuts in at
about 2.6 kHz, and the microphones are one-half wavelength apart at
5.0 kHz.

It should be noted that the impedance tube is much shorter than
the length recommended in the standard, and the distance between
the microphones is also small (33.7 mm), considering the low frequen-
cies measured. It has been found, however, that it is still possible to
achieve good signal-to-noise ratios down to fairly low frequencies us-
ing short impedance tubes [206], and the experiments presented here
confirms this. However, the calibration procedure, to take differences
between the two microphones into account, turned out to be very im-
portant when using short impedance tubes. Calibration is done by
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(0.0,0.0,0.0).0,0.0,0.
(Ref.) (0.0,0.0,0.05) (0.0,0.0,0.5)

(-0.6,0.0,0.1)

Flange

Figure 102: Placement of field points. Units in meters.

first measuring the transfer function HF
12 between the microphones in

their ordinary positions, then reversing the positions and measuring
the transfer function HB

12. A calibration factor Hc is then found as

Hc =

(
HF

12

HB
12

)1/2

. (303)

The corrected transfer function used in further measurements is
then

H12 =
Ĥ12

Hc
(304)

where Ĥ12 is the uncorrected transfer function.
In the BERIM and BEM simulations, the magnitude of the

impedance does not completely reach the asymptotic ρc impedance
value unless the mesh is very fine. This may be related to the collo-
cation used in the method, or to numerical dispersion as discussed
by Bängtson et al. [315]. It has been found necessary to increase the
impedance by an empirical factor of 4.2% to compensate for this.

9.1.2 Frequency Response

The frequency response was measured at several points in front of
the horn, both on- and off-axis, with the impedance tube in place.
Measurements were done relatively close to the horn, compared to
typical directivity measurements. The purpose of the measurements
was, however, the comparison with simulations, and the simulations
should be valid for any distance, as the far field approximations were
not used for the cases considered here.

To make comparisons between simulations and measurements that
are relatively independent of the behavior of the loudspeaker driver
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used, a point at the center of the horn mouth has been used as refer-
ence. This point has been designated as the origin, and the pressures
at all other points are compared to the pressure here. See Figure 102.

9.2 half-space

Amir et al. [265] have verified experimentally and numerically that
the discrete model carried to the limit is able to predict both the sound
field inside the horn, and the input impedance of the horn. Kemp
has also demonstrated that the discrete model is able to predict the
input impedance of wind instruments with good accuracy. In both
these studies, the horn was assumed mounted in an infinite baffle,
although Amir et al. also tested the horn without baffle and with a
closed end. The half-space case is therefore in principle verified. It
is still useful to measure the half-space case for three reasons: first,
the verifications of Amir and Kemp are based on a musical instru-
ment bore, which is a long tube with large resonant peaks (at the
fundamental resonance these peaks have normalized impedance val-
ues larger than 20). While it is challenging to accurately model the
exact resonance frequencies of musical instruments, it is also inter-
esting to see how well the method works for horns that do not have
large resonant peaks, and where the higher order modes are cut-on
in a larger part of the horn’s high frequency range. Second, these for-
mer verifications have not looked at the radiated field. While this has
been done by Schuhmacher and Rasmussen [270], these authors used
no more than four modes, and the agreement with experiment was
only fair. Third, the half-space case also serves as a reference point
for the other cases to follow.

9.2.1 Throat Impedance

The throat impedance for the test horn mounted in a large baffle is
shown in Figure 103. Measurements (solid lines) are compared to
MMM (dashed) and BERIM (dotted).

The introduction of the first mode in the measurement setup at
approx. 2.6 kHz can be seen, and one notices the increased deviation
from the simulated values above this frequency. The measurements
break down completely above approximately 4.2 kHz, as opposed to
the theoretical 5 kHz. This is, however, most likely due to the finite
dimensions of the 0.5” microphones, since the 33.7 mm distance is the
center-center spacing.

256 modes were used in this simulation, and the horn consisted of
100 duct elements. For the BERIM simulation, a mesh bandwidth of
3kHz was used, and the symmetry of the geometry was exploited.

The maximum and mean errors, computed from εM =

|Z− ZM| / |ZM|, are low, as listed in Table 7, and confirm the data
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Figure 103: Throat impedance for the test horn in a large/infinite baffle.

in Figure 103. Z and ZM indicate the simulated and measured
impedance, respectively.

9.2.2 Radiated Pressure

Figure 104 shows the relative responses at three different points in
front of the horn with a large baffle: one very close, one at a distance
on the principal axis, and one that is out to the side and fairly close
to the plane of the baffle. It can be seen that the MMM and BERIM
simulations follow each other well, and both capture the principal
features of the measurements. The deviation at low frequencies is
most likely due to the influence of the finite baffle used in the mea-
surements. This is also most likely the cause of the deviation at 1kHz
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Figure 104: Radiated pressure for the test horn in a large baffle.
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maxεM εM
0.066 0.0123

Table 7: Normalized throat impedance error, horn with large baffle, in the
frequency range 40 Hz to 2.5 kHz.

max
∣∣ΔLp,2π

∣∣ ∣∣ΔLp,2π

∣∣ max
∣∣ΔLp,BERIM

∣∣ ∣∣ΔLp,BERIM
∣∣

Case [dB] [dB] [dB] [dB]

1B 1.1 0.31 1.1 0.29

2B 1.4 0.36 1.5 0.37

3B 2.6 0.65 3.5 0.71

Table 8: Frequency response error, horn with large baffle. Error computed
in the frequency range 100 Hz to 3 kHz.

in Figure 104c, since this point is quite close to the baffle edge. The
maximum and mean errors in frequency response, computed in the
frequency range 100 Hz to 3 kHz, are listed in Table 8.

9.3 full space

For full space (4π), the measurements were compared to both the
MMM, MMM with Edge Diffraction (MMM+ED), and BEM. Ordi-
nary BEM was used [227], with a simple pyramid-shaped enclosure
around the horn, see Figure 105. A simplified geometry was used to
avoid discretizing the thin flange and the many small details on the
outside of the actual horn. Discretizing these thin objects would re-
sult in many small surface elements and extended computation time,
without giving any clear benefit.

The influence of edge diffraction was calculated for the frequency
range 100 Hz–2 kHz. Extrapolation of the data was used below this
range, but above 2 kHz the diffraction contribution was ignored.

As with the large baffle case, increased deviation above 2.6 kHz can
be seen in Figures 106 and 107b. 196 modes have been used for the
simulation, as the modal decomposition of the diffraction-related ra-
diation impedance with the given number of integration points did
not allow for modes of higher order to be reliably resolved. As in
the large baffle case, the horn consisted of 100 duct elements. For
the BEM simulation, a mesh bandwidth of 2 kHz was used, and the
symmetry of the geometry was exploited. The geometry used is illus-
trated in Figure 105.
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Flange

Outer box

Horn

Figure 105: BEM geometry for the horn with flange.

9.3.1 Throat Impedance

The throat impedance for the test horn with the small flange, is shown
in Figure 106 on the next page.

As expected, the impedance ripple is higher for the horn with a
flange than for the horn in the large baffle. This is mainly due to
the reduced value of the radiation impedance at low frequencies for
the flanged case, see Figure 69. The MMM+ED overestimates the first
impedance peaks somewhat. The most likely reason for this is that
the geometry of the horn is approximated by a single thin plate rep-
resenting the flange, and the rear side of the horn is ignored.

In Figure 107 the measured throat impedance for the flanged horn
is compared to simulations using MMM and MMM+ED. In Fig-
ure 107b the relative error is shown for the two cases, in addition to
the BEM simulation. For this figure, the simulated impedance values
have been interpolated to the frequency values in the measurements,
before computing the error.

9.3.2 Radiated Pressure

Figure 108 shows the response at the same points in front of the horn
with a small flange as for the infinite baffle. Again, both MMM+ED
and BEM capture the principal features of the measurements. Above
2kHz the BEM simulation experiences problems with eigenfrequen-
cies, so results for frequencies above 2kHz are not shown. Since
the edge diffraction terms are only calculated in the range 100Hz
to 2kHz, only this range is shown for MMM+ED. The deviation of
the MMM+ED results in the 200–600Hz range in Figure 108c could
be due to the approximate geometry used in the edge diffraction sim-
ulation, since at this point the rear of the horn is visible from the
receiver position.
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Figure 106: Throat impedance for the test horn with a small flange.

9.3.3 Comments

Table 9 shows the maximum and mean relative error for the throat
impedance, computed as εM = |Z− ZM| / |ZM|, in the range be-
tween 100 Hz and 2 kHz, which is where the first mode in the
impedance tube starts to influence the results. Z and ZM indicate
the simulated and measured impedance, respectively. In addition,
the throat impedance simulated by MMM for half-space is compared
to the measurements, and the relative error in this case is calculated
as ε2π = |Z2π − ZM| / |ZM|. As can be seen, the maximum error is
significantly reduced by including edge diffraction.

Figure 109 and Table 10 summarize the responses computed with
MMM, MMM+ED and BEM, relative to the measurements for the
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maxεM εM maxε2π ε2π

0.22 0.027 0.45 0.067

Table 9: Normalized throat impedance error, horn with small flange, in the
frequency range 100 Hz to 2 kHz.

max
∣∣ΔLp,4π

∣∣ ∣∣ΔLp,4π

∣∣ max
∣∣ΔLp,2π

∣∣ ∣∣ΔLp,2π

∣∣
Case [dB] [dB] [dB] [dB]

1F 0.66 0.17 0.70 0.25

2F 0.81 0.83 2.67 0.95

3F 1.7 0.67 6.9 4.0

Table 10: Frequency response error, horn with small flange.

horn with a small flange. Also here, the simulated values have been
interpolated to match the frequencies in the measurements.

It is clear from these comparisons that

• Close to the horn mouth (Figures 108a and 109a) the contri-
bution from edge diffraction is small, even at low frequencies,
since the direct sound is strong there. Still, the methods that
take the finite size of the baffle into account (MMM+ED, BEM)
are more accurate.

• On-axis, but further from the horn mouth (Figures 108b and
109b), edge diffraction contributes significantly below approxi-
mately 1.5 kHz, but above this frequency the difference between
a finite and infinite baffle is small. The reason for this is most
likely the directivity of the horn.

• Off-axis (Figures 108c and 109c), the edge diffraction alters the
directivity pattern significantly over a large frequency range,
causing large errors at all frequencies for the MMM without
ED. The difference between the MMM+ED and BEM results are
probably due to the different geometries for the two methods.
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Figure 107: Throat impedance from MMM simulations compared to mea-
sured values for the test horn with a small flange, with and
without edge diffraction.
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(c) Case 3F: p(−0.6, 0.0, 0.1)/p(0.0, 0.0, 0.0).

Figure 108: Radiated pressure for the test horn with a small flange.



204 experimental verification

102 103

−1

−0.5

0

0.5

1

Frequency [Hz]

L p
,s

im
−

L p
,m

ea
s

[d
B]

MMM (IB)
MMM+ED
BEM

(a) Case 1F: p(0.0, 0.0, 0.05)/p(0.0, 0.0, 0.0).

102 103

−2

0

2

Frequency [Hz]

L p
,s

im
−

L p
,m

ea
s

[d
B]

MMM (IB)
MMM+ED
BEM

(b) Case 2F: p(0.0, 0.0, 0.5)/p(0.0, 0.0, 0.0).

102 103

−5

0

5

Frequency [Hz]

L p
,s

im
−

L p
,m

ea
s

[d
B]

MMM (IB)
MMM + ED
BEM

(c) Case 3F: p(−0.6, 0.0, 0.1)/p(0.0, 0.0, 0.0).

Figure 109: Relative error in radiated pressure for the test horn with a small
flange. Please note the different vertical scales.
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9.4 corner placement (fractional space)

The horn was also measured mounted in a large baffle and close to
one or two extra walls. The large baffle was the same as used for
the measurements in Section 9.2. The results for these two cases are
presented below.

9.4.1 Quarter Space (1π)

Quarter space (1π steradians solid angle) was emulated by placing
a second large surface in the form of a sheet of plywood (1450 mm
wide by 1400 mm high) on the baffle in which the horn was mounted,
and perpendicular to it. This surface was also parallel to one edge
of the horn mouth, and was fixed to the horn baffle by an arrange-
ment of clamps. The distance from the center of the horn mouth
to the second surface was varied from almost touching the edge of
the horn mouth, to 0.4 m. A few examples of the measured and
simulated throat impedance are given in Figure 110. The simulated
throat impedance for 2π solid angle is also shown for comparison. d
indicates the distance from the horn mouth center to the second sur-
face. All examples show reasonable to good agreement with measure-
ments, and indicate the importance of including the mutual radiation
impedance in the calculations.

In Figure 111, the sound pressure levels at two positions, relative
to the horn mouth center, are shown. The closest position shows
very little deviation from the measurements, while there is increasing
deviation at low frequencies at the more distant position.

9.4.2 Eighth Space (0.5π)

Eighth space (0.5π steradians solid angle) is emulated by placing two
large surfaces on the baffle in which the horn is mounted, perpendic-
ular to it and to each other. One of the surfaces is the one used in
Section 9.4.1, the other is a slightly smaller sheet of plywood 990 mm
wide by 1070 mm high. The surfaces are parallel to the edges of the
horn mouth, and again fixed in place by an arrangement of clamps.
No sealing agent was used, but the plywood sheets were held as close
together as practicable to minimize leakage. The distances from the
center of the horn mouth to the surfaces were varied in various ways.
A few examples of the measured throat impedance are given in Fig-
ure 112. The simulated throat impedance for 2π solid angle is also
shown for comparison, as above. dx and dy indicate the distances
from the horn mouth center to the surfaces in the two directions.

Figure 113 shows the sound pressure levels at two positions, rela-
tive to the horn mouth center. Again, there is good agreement with
an increasing deviation at low frequencies.
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(b) Case 2: d = 250 mm = 0.73am.
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Figure 110: Throat impedance, quarter space.
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Figure 111: Relative sound pressure level, quarter space, d = 250 mm =
0.73am (case 2). Upper curves correspond to position 0.0, 0.0,
0.05, the lower curve to position 0.0, 0.175, 0.5.

Case maxεM εM maxε2π ε2π

1 0.14 0.034 0.30 0.069

2 0.17 0.025 0.18 0.043

3 0.21 0.026 0.23 0.036

4 0.22 0.053 0.80 0.14

5 0.18 0.040 0.40 0.072

Table 11: Normalized throat impedance relative error, 100 Hz-2 kHz. εM
and ε2π are defined in the text. Horn near corner.

9.4.3 Comments

The maximum and mean deviations for the five cases presented in
Section 9.4 are given in Tables 11 and 12. For the impedance, the
relative error εM = |Z− ZM| / |ZM| has been computed in the range
between one octave below fc, and 2 kHz, which is where the first
mode in the impedance tube starts to influence the results. For the
frequency response, the frequency range is limited to exclude the dip
in the measured responses at 60 Hz.

In addition, the MMM simulated throat impedance for half-space
is compared to corresponding measurements1 for either quarter
space or eighth space. The relative error is calculated as ε2π =

|Z2π − ZM| / |ZM|. As can be seen, the maximum error is signif-
icantly reduced for the shorter distances by including the mutual
impedance. Additionally, the following points can be made:

1 Note that in [51] the half-space simulations were compared to simulations for quarter
space or eighth space.
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(b) Case 5: dx = 300 mm, dy = 250 mm.

Figure 112: Throat impedance, eighth space.

• The main cause of the impedance errors is a slight shift of the
resonance peaks. In addition, the model is not always able to
correctly predict the amplitude of the first resonance peak at
larger distances, which may again be attributed to the finite
size of the reflecting surfaces.

• The finite reflecting surfaces introduce edge diffraction effects
that are not taken into account in the simulation. Including the
effects in a Boundary Element model would increase the mesh
size significantly, in particular because it is necessary to model
thin structures. While it is possible to include edge diffraction
in the MMM, as shown in Section 6.3, this was omitted since
this contribution is rather small compared to the effect of the
reflecting surfaces.
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Figure 113: Relative sound pressure level, eighth space, dx = 300 mm, dy =
250 mm (case 5). Upper curves correspond to position 0.0, 0.0,
0.25, the lower curves to position 0.175, 0.175, 0.5.

Case max
∣∣ΔLp

∣∣ [dB]
∣∣ΔLp

∣∣ [dB]

2 2.7 0.59

5 7.1 0.96

Table 12: Frequency response error, 80 Hz-4 kHz. Horn near corner

• The pressure diffracted from the edges of the reflecting surfaces
is also most likely the cause of much of the unevenness of the
measured frequency response at medium to high frequencies,
but the high frequency break-up of the diaphragm may also
contribute somewhat.

9.5 computational efficiency

A brief discussion of the computational efficiency will be given here.
First it must be mentioned that in the comparisons above, different
implementations have been used, as they were performed at various
stages in the development of the tools used. All the computations
have been performed on a computer that had an Intel i7-2600 CPU
running at 3.4 GHz, and 8 GB RAM. Computation times are given for
comparison purposes only.

Reference results have been computed using the Boundary Element
Method (BEM) and Boundary Element Rayleigh Integral Method
(BERIM). The computer codes for these methods are developed in
FORTRAN by Stephen Kirkup [227, 191], but for the current appli-
cation, the BEM code has been implemented in C++ with OpenMP
parallelization [316]. The run time for the horn in Section 9.3, which
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had a quarter-symmetric mesh of 858 elements was about 20 minutes
for 100 frequencies.

BERIM has previously been implemented in Pascal, and runs on
only one core. The BERIM horn mesh for quarter space had 1659 ele-
ments, and the computation time was 1 h 47 min for 100 frequencies
on a single core. The horn mesh for eighth space had 3324 elements,
and the computation took 10 h 22 min, for 100 frequencies. The quar-
ter space mesh is smaller due to the use of mirror elements for half
the horn. The reflecting walls were also in both cases simulated by
mirror elements. This not only reduces the memory requirement, but
also shortens the solution time for the linear system of equations. The
time required for building the matrices, however, still corresponds
to the time required if the mirror elements were actual elements, in
the current implementation. Previous experience with parallelizing
boundary element code indicates that the speedup is almost linear.
This indicates that a good estimate of computation time for BERIM
on 4 cores would be one-fourth of the time reported above (27 min
and 2 h 35 min respectively).

The efficiency of the edge diffraction computation used in this work
is very low, due to the lack of parallelization of the code, and exten-
sive use of nested for-loops, which is detrimental to speed in Mat-
lab. The toolbox, as currently implemented, does not handle a large
number of sources efficiently. Run time for the current problem was
several hours. Significantly more efficient implementations are antic-
ipated for compiled implementations tailored to the thin baffle case.
An increase in efficiency could also be had by simulating the sources
as a distributed source (one distributed source per radiation mode)
instead of individual sources. This would enable more efficient com-
putation of the edge source terms, as instead of handling 576 individ-
ual sources, for instance only 144 distributed sources (the maximum
number of modes possible to extract with the used number of Gauss
points) could be used.

Efficiency was not the main interest in this investigation, however,
but rather to investigate the contribution of diffraction separately
from the direct sound. This can hardly be done using conventional
element-based methods like BEM.

For MMM, the computationally heaviest part is to compute the
throat impedance and volume velocity transfer matrices, if ZIB is pre-
computed and Z(M) is not needed at high frequencies. The Matlab im-
plementation of MMM used for the work described in Section 9.3 took
10 minutes for 200 frequencies in the case where the horn had 256
modes and 100 duct elements. This figure does not include the com-
putation of the radiation impedance, which is done in C++/OpenMP
and takes another 10 minutes, or the interpolation of the tabulated
values.
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Nmodes t50 el [s] t150 el [s]

16 5.2 10.8

36 8.7 20.6

64 16.0 42.6

144 52.8 156.3

Table 13: MMM run times for some combinations of modes and elements.
Quarter space, 200 frequencies, 4 cores.

When fewer modes are needed, the computation is significantly
faster. A C++ implementation of MMM was used for the results in
Section 9.4 and uses about 15-20s (for 50 elements, 64 modes, 200
frequencies) when running on 4 cores. Other timing examples are
given in Table 13. The infinite baffle radiation impedance had been
precomputed and tabulated, the mutual impedance was computed
on the fly. The computation time does not increase materially from
going from the quarter space to the eighth space radiation condition.
The time needed to compute the sound pressure from the Rayleigh
integral, Eq. (156), is not included. This time is independent of the
number of elements in the horn, but depends on the number of field
points and on how the integration is performed.

From the above discussion, it is clear that a fair comparison of the
efficiency of the various methods is not readily possible from the re-
sults in this chapter. A proper comparison would require that the
same amount of care and optimization had been applied to all meth-
ods, so that each of them performed at its best. However, the objective
of this chapter has been to experimentally and numerically verify the
accuracy of the methods, although the timing results also indicate
that the MMM has an advantage over BEM and BERIM efficiency-
wise.

9.6 summary

In general, the agreement between simulation and measurement, and
between the simulation methods used, is good. The errors are within
limits acceptable for engineering use. The following observations can
be made:

• For the infinite baffle case, the simulated throat impedance
agrees very well with the measurements, even if the measured
baffle is finite. The average error is in the order of 1%. If the
baffle is “large enough”, it behaves like an infinite baffle, see
Figure 103.

• The simulated radiated pressure for the large/infinite baffle
generally agrees well with the measurements with average er-
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rors less than 1 dB, but there is some deviation at low frequen-
cies when the observation point is close to the edge of the baffle.

• The effects of a small flange or baffle, cannot be ignored. Sim-
ulating the horn as if it was mounted in an infinite baffle gives
average throat impedance errors on the order of 7%, and larger
errors at low to medium frequencies.

• Part of this error comes from a frequency shift of the resonance
peaks, but also from predicting the wrong amplitude of those
peaks.

• When using MMM with edge diffraction, the error in throat
impedance is reduced to below 5% for most of the frequency
range, see Figure 107b. This is actually better than BEM over
much of this range, although this could probably be improved
by using a finer mesh, and by using a mesh closer to the actual
geometry.

• Adding reflecting boundaries near the horn has the effect pre-
dicted by the simulations, even if the added walls are relatively
small. The effect of this can be seen at low frequencies, and is
most evident when the added walls are placed near the horn
mouth.

• The agreement between MMM and BERIM for the infinite baffle
case and for the case of extra reflecting boundaries is excellent,
and the curves are virtually indistinguishable.

In conclusion, the experiments have shown that MMM with the ex-
tensions described in Chapter 6 and Chapter 7 can accurately sim-
ulate the throat impedance and radiated pressure for horns with
small flanges, and mounted near reflecting boundaries. The ability
of MMM to predict the throat impedance for horns mounted in an in-
finite baffle has already been demonstrated by Amir et al. [265] and
Kemp [267], but as shown above, the method is also able to predict
the radiated pressure with good accuracy.



Part III

E X T E N S I O N S

This part covers extensions and new applications of the
Mode Matching Method beyond change of geometry and
radiation impedance. This includes interfacing with the
Boundary Element Method, simulating vibrating concave
structures (like loudspeaker diaphragms) and simulating
non-shoebox shaped rooms.
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H Y B R I D M E T H O D S

As discussed in Chapter 4, MMM can only be applied to cross-
sectional geometries where the mode functions are known. But some-
times it is necessary to make a transition between two kinds of ge-
ometry, or to include a geometry that is not possible to describe in a
separable coordinate system. In many cases, the main part of a horn
may have a simple geometry, with special geometries only at certain
points. For instance, a horn may be rectangular with a transition to
circular at the throat, where it continues as a circular duct into the
compression driver. In this case, most of the horn could be efficiently
simulated by MMM, while the transition part could be simulated by
either FEM or BEM. In addition, the exterior of the horn, like the en-
closure, could be simulated using BEM. A combination of BEM and
MMM is described by Shindo et al. [188], but the MMM part is imple-
mented quite differently from the implementation used in this thesis,
and the interface between the two methods is not clearly described.
The motivation for using BEM for parts of the horn in [188] was to
avoid numerical instability in the MMM part, a problem which is
avoided in the method described in Chapter 4. Post and Hixon [206]
describe a method where interior BEM is coupled to a hemisphere
on which the sound field is described by spherical harmonics. The
hemisphere is used as a “super-element”, and the coefficients of the
spherical harmonics expansion are found as part of the solution of
the BEM system of equations. This method is only applicable to the
axisymmetric cases where the BEM part is closest to the mouth.

This chapter is based on the work described in [53]. The contribu-
tions in this chapter are to present simple methods to couple MMM
and BEM, and to express these methods in a straightforward matrix
form.

10.1 bem as load

The BEM is described in more detail in Section 3.3.4, and the formu-
lation and operators used in the current chapter are described there.

In order to turn a BEM surface into a load for an MMM horn, the
impedance at the surface, as seen by the MMM horn, must be ex-
pressed in terms of a modal impedance matrix. For instance, the
BEM horn shown in Figure 114 may be connected to an MMM horn
at surfaces Θ and Π, and the pressure and velocity at the surface Θ
must be converted into a modal impedance matrix.

215
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Θ Π

W

D

Figure 114: BEM Domain D bounded by surfaces Θ, W and Π.

From the definition of the modal impedance matrix, Eq. (76) on on
page 74, and also from the derivation of modal radiation impedance
(Eq. (179) and Eq. (180)), it can be seen that computing the impedance
matrix is a two-step process that consists of first finding the pressure
response across the surface for one excitation volume velocity mode
of unit amplitude, and then decomposing this pressure into pressure
modes. In summary,

Zmn =
jωρ

S2

∫
Sp

⎧⎪⎨
⎪⎩
∫
Sq

G(p|q) · ψm (q) dSq

⎫⎪⎬
⎪⎭ψn (p) dSp (305)

where G(p|q) is a function that relates the velocity potential at p to
a velocity at q. For a surface in an infinite baffle, G(p|q) = 2Gk(p|q),
where Gk is the free field Green’s function as defined in Eq. (22), and
the inner integral in curly brackets in Eq. (305) corresponds to the
Rayleigh integral with the velocity distribution given by ψm. If the
surface is part of a BEM mesh, G becomes the BEM solution pro-
cess, giving the velocity potential at the elements for a given velocity
distribution. By solving the BEM system of equations for the desired
modal velocity distributions, and afterward applying Eq. (72), we will
obtain the modal impedances on the surface. Due to collocation, the
velocity potential is assumed constant over each element, and the dis-
crete form of Eq. (72) becomes

Pn = − jωρ

S

Ne,t

∑
i=1

ϕi(p)ψn(p)Si (306)
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where ϕ(p) is the velocity potential at the collocation point, and Si
is the area of the element. This can also be expressed as a matrix
multiplication,

�P = − jωρ

S
(Ψw

Θ)
T ϕ (307)

where Ψw
Θ is an Ne,Θ × Nmodes matrix of mode functions for surface Θ,

multiplied by integration weights, Ne,Θ being the number of elements
in surface Θ.

Since the mode functions are orthonormal, �P will contain the modal
impedances of one column in the impedance matrix, for the corre-
sponding velocity mode. Thus

Z = − jωρ

S2 (Ψw
Θ)

T [ϕΘ] (308)

where [ϕΘ] is a Ne,Θ × Nmodes matrix of the solution of Eq. (31),[
[M] Lk

Dα Dβ

] [
ϕ

v

]
=

[
0

F

]
, (309)

for the surface Θ for Nmodes velocity mode shapes. One should keep in
mind that the discretization of Θ is also a discretization of the mode
functions, so a sufficiently dense spatial sampling must be employed
to avoid aliasing effects.

10.2 mmm as load

In this case, the boundary condition at the surface Π, see Figure 114,
is available in the form of a modal impedance matrix Z. In order to
solve the BEM system of equations, we need to express the boundary
conditions in a form similar to Eq. (30). Since there are no sources on
this surface, f (p) = 0, so on Π, Eq. (30) becomes

[α]Π ϕΠ + [β]Π vΠ = 0. (310)

If the surface Π was mounted in an infinite baffle, we could use the
Rayleigh integral, expressed in terms of the operator Lk so that

[I] ϕΠ + [2Lk]Π vΠ = 0 (311)

where [I] is the identity matrix. This would give us the Boundary
Element Rayleigh Integral Method (BERIM) described in [191] and in
Section 3.3.5 on page 56. From this it is clear that one way to proceed
is to express the velocity potential at an element in Π as a function
of the velocity at Π. From the relation in Eq. (76) we see that this is
possible if we know the pressure, impedance and volume velocity in
modal form. Thus the method becomes

1. Find the volume velocity amplitudes from a given velocity dis-
tribution from Eq. (74).
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2. Find the pressure mode amplitudes from Eq. (76).

3. Find ϕ from Eq. (59) and the relation p = −jρ0ωϕ.

In order to allow for any possible velocity distribution, we must find
�U for each element when only that element has a velocity:

Un,i =
∫
Γi

v(q)ψn(q)dΓi. (312)

It is only necessary to integrate over the actual element Γi, as the
velocity of all other elements is zero. The mode functions ψn are
defined by the shape of the surface Π. We use Eq. (312) to fill an
Nmodes × NΠ matrix [U], where NΠ is the number of elements in Π.
This also enables us, through superposition, to find �U for any velocity
distribution vΠ as �U = [U]�vΠ, where vΠ is a vector of the element
velocities at Π.

From Eq. (76) we can now find an Nmodes × NΠ matrix [P] as

[P] = Z[U] (313)

which gives us the modal pressure amplitudes. From there, we can go
back to ϕ at each element by multiplying [P] by a NΠ × Nmodes matrix
ΨΠ of mode functions. The result is that the boundary conditions at
Π will be

[I] ϕΠ −
j

ρ0ω
[ΨΠZ[U]]Π = 0 (314)

where the change of sign comes from the definition of the direction
of the surface normal.

The discretization does not limit the number of modes that can be
used in Z, contrary to what we found in the previous section. The
reason for this is that, first, we know the exact velocity distribution
when finding [U], so the correct mode amplitudes can be found for an
arbitrary number of modes. The integration over mode functions is
not linked to the discretization of the surface Π in any other way than
that the discretization defines the region of integration. Second, when
we know the pressure mode amplitudes in [P], the pressure can be
found at as many spatial points as we wish. The discretization of the
mode functions in this case does not influence the mode amplitudes.

10.3 the mode-matching boundary element method
(mmbem)

The derivations given above can now be combined into a method
where the BEM accepts a modal impedance matrix as boundary con-
dition, and produces another impedance matrix at the other end. The
linear system of equations become[

[M] [L]

[Mα] [Mβ]

] [
[ϕ]

[v]

]
=

[
0

[F]

]
(315)
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where both the solution and the right hand side are matrices, with
one column per mode. The sub-matrices are defined below.

The BEM matrices relate the three parts of the boundary to them-
selves and to each other:

[M] = −

⎡
⎢⎢⎣
[Mk]ΠΠ [Mk]ΠW [Mk]ΠΘ

[Mk]WΠ [Mk]WW [Mk]WΘ

[Mk]ΘΠ [Mk]ΘW [Mk]ΘΘ

⎤
⎥⎥⎦− 1

2
I (316)

[L] =

⎡
⎢⎢⎣
[Lk]ΠΠ [Mk]ΠW [Mk]ΠΘ

[Lk]WΠ [Mk]WW [Mk]WΘ

[Lk]ΘΠ [Lk]ΘW [Mk]ΘΘ

⎤
⎥⎥⎦ (317)

The boundary condition matrices are divided between the three
boundary parts in the same way, and for hard walls they will be:

[Mα] =

⎡
⎢⎢⎣

I 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ (318)

[Mβ] =

⎡
⎢⎢⎣
− j

ρ0ω [ΨΠZ[U]]Π 0 0

0 I 0

0 0 I

⎤
⎥⎥⎦ (319)

The solution matrices are

[ϕ] =

⎡
⎢⎢⎣

ϕΠ

ϕW

ϕΘ

⎤
⎥⎥⎦ , (320)

[v] =

⎡
⎢⎢⎣

vΠ

vW

vΘ

⎤
⎥⎥⎦ , (321)

and finally, the right-hand side

F =

⎡
⎢⎢⎣

0

0

[ΨΘ]

⎤
⎥⎥⎦ , (322)

where [ΨΘ] is a matrix of mode functions over Θ.
If a different boundary condition on W is needed, the center ele-

ments of [Mα] and [Mβ] can be set up according to Eq. (30). F for W
would still be set to zero, to avoid sources in the horn.

The number of modes in the solution of vΘ does not have to be the
same as the number of modes in the modal impedance load matrix.
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Part Sth[cm²] Sm[cm²] L[cm] Ne

A 10 100 20 401

B 100 1000 10 7/26/22

C 1000 2000 10 201

Table 14: Axisymmetric horn details. For part B, Ne indicates the number of
elements in the Θ, W and Π surfaces, respectively.

Lastly, we need to find the modal velocity amplitudes over Π, given
a certain modal velocity distribution over Θ. To do this, we use the
already computed solution matrix giving the velocity at each element
for each mode, Eq. (321), and by superposition we can find the ve-
locity distribution on the surface by multiplying this matrix by the
vector of volume velocity modes:

�vS =
1

SΘ
[v]�UΘ (323)

where �vS is a vector of the velocity at all elements in the surface. The
mode amplitudes at Π are then found from �UΠ = [U]�vΠ , where vΠ

is the vector of the element velocities at Π. �UΠ can then be used as
the input to the following MMM section.

10.4 results

In this section, a comparison between Mode Matching Boundary Ele-
ment Method (MMBEM) and MMM or BERIM is presented. MMM is
used as reference if possible, otherwise BERIM is used.

10.4.1 Axisymmetric Example

In this example, the horn illustrated in Figure 115, with dimensional
details given in Table 14, is investigated. Here, an axisymmetric
BEM segment (B, exponential) is added in between two axisymmetric
MMM segments (A, conical, and C, exponential). The BEM section is
made up of truncated cones as described in [227], with a mesh band-
width of 7 kHz. 32 modes are used in section C, and 7 modes are usedThe mesh

bandwidth is
understood as the

frequency where the
largest element of

the mesh is not
larger than 1/6th of

a wavelength.

in section A, due to the limited spatial sampling of the A–B interface
surface. This combination is compared to a full MMM simulation
using 32 modes.

The results for this combination are given in Figure 116, where
throat impedance, throat impedance relative error, and mouth mode
amplitudes are shown. The relative error is computed as εR =

|(RMMBEM − RMMM)/RMMM| for the resistance, and similarly for the
reactance. Figure 116b shows the relative errors to be mostly below
1% for resistance and 5% for reactance. It is also clear from comparing
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A: MMM
B: BEM

or MMM
C: MMM

Figure 115: Axisymmetric horn example.

Figure 116a and Figure 116b that the error is below 1% for both in the
ranges where the corresponding part of the impedance dominates.

In Figure 116c, the five first mouth volume velocity mode ampli-
tudes are shown. The solid lines are for full MMM with 32 modes,
and the dashed lines for MMBEM. As mentioned above, no more
than 7 modes can be used to excite section B, due to the limited spa-
tial sampling of the interface surface. As can be seen from Figure 116c,
and with greater resolution in Figure 117, this has a clear effect on the
mode amplitudes above about 2kHz. The amplitudes have errors in
the order of 5 dB, and there is a dip around 3 kHz in the amplitudes
of the higher order modes that should not be there. In order to check
the reason for this behavior, an MMM simulation was run using 32
modes in sections B and C, but only 7 modes in section A. The results
(dotted lines) show similar behavior to MMBEM, with very similar
changes in the higher order mode amplitudes.

10.4.2 Axisymmetric to Rectangular Example

In this example, a horn with a transition from round to square cross
section is simulated using BEM for the transition part, and MMM for
the outer part. In addition, a reference simulation of the full horn is
performed with BERIM. The average mesh bandwidth is 5 kHz, with
a denser mesh close to the throat. The geometry and the full BERIM
mesh is shown in Figure 118. Since the horn is quarter symmetric,
only one quadrant is used in the simulation. For the hybrid simula-
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The dip caused by using only 7 modes in part A is indicated by the red circle in the
figure.

Figure 116: Simulation results for axisymmetric horn.
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Figure 117: A close-up of the dip in Figure 116c.

Part Sth[cm²] Sm[cm²] L[cm] Ne

A 19.64 150 10
142

498

104

B 150 1000 10 201

BERIM 16.64 1000 20 1724

Table 15: Axisymmetric to rectangular horn details. For part A, Ne indicates
the number of elements in the Θ, W and Π surfaces, respectively.

Z

Y

X

BEM
MMM or

BERIM

Figure 118: Axisymmetric to rectangular horn geometry and BERIM mesh.
Only a quarter of the geometry is meshed, since the horn is
quarter symmetric.
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Figure 119: Simulation results for axisymmetric-to-rectangular horn.
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tion, the interface surface between the two parts is also meshed. The
number of elements and other dimensions are indicated in Table 15.
For the MMM part, 64 modes are used.

If the modal impedance matrix is desired at the throat surface, the
circular mode functions must in this case include angular modes,
since the axisymmetry is disturbed. For details, see [22] and [278,
Ch. 9.2].

The results for the combination are given in Figure 119. The relative
impedance errors oscillates around 1%, with similar variations as for
the axisymmetric case.

The mode amplitudes are shown in Figure 119c, the first few mode
amplitudes (modes (0,0), (0,1), (1,1), (0,2) and (1,2)) are shown. For
the BERIM reference case, mouth velocity distribution has been de-
composed into modes using Eq. (74). The circular throat is excited by
a plane wave. The plane wave mode (thickest lines) and the lower
order modes are reasonably similar in the two simulations, while the
deviations are larger when the mode amplitudes are low, which they
are for most of the higher order modes over most of the frequency
range covered.

10.5 summary

Many horns fall into the category where a large part of the horn has
a geometry with analytical mode functions, but where a small part
does not. An example is the transition from round to rectangular
geometry. In these cases, part of the horn must be simulated using
other numerical methods, like BEM. In this chapter, a method has
been developed to

• Let BEM be a load for for the MMM by converting the results
from the BEM solution into a modal impedance matrix.

• Let BEM accept a modal impedance matrix as a boundary con-
dition by defining a new type of Green’s function.

It is therefore possible to couple MMM to both the throat and the
mouth surfaces of the BEM section. The new method is termed the
Mode Matching Boundary Element Method (MMBEM).

Simulation results, comparing MMBEM with either full MMM or
full BERIM, show that

• There is good agreement between these methods.

• In the case where a BEM section is placed after an MMM section,
it is important to excite the BEM section with enough modes
to produce an accurate description of the sound field at the
interface.
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C O N C AV E R A D I AT O R S I M U L AT I O N

This chapter is based on the work presented in [54], with some addi-
tional examples for annular geometries and reflectors.

The contribution in this chapter is the formulation of a method
for the simulation of concave radiators derived from the MMM for-
mulation used in this thesis, which is simple and straightforward to
implement compared to the methods of Ando et al. [55] and Oie et
al. [56].

11.1 background

The directivity of cone loudspeakers, as well as the radiation
impedance, are topics that have been of interest to audio engineers
for a long time. It is a common approach to use the approximation
of a rigid plane piston for the study of these quantities, but it is also
known that, in particular for the directivity, this is not a good approx-
imation [288].

Quite early, Stenzel made extensive investigations of pistons and
membranes during his time at AEG [317, 318, 319]. In 1941, Brown
[320] gave expressions for the radiation from rigid and non-rigid
cones, using a Kirchhoff approximation. The non-rigid cones were
characterized by the sound speed in the cone material. Carlisle [321]
provided a similar analysis, where the directivity was computed from
the sum of the pressures radiated from annular rings. Another ap-
proximation was given by Geddes [33], who computed the velocity
distribution at the mouth of the device, converted this velocity distri-
bution into a modal representation, and used this to compute direc-
tivity. The radiation impedance was not computed.

Ando et al. [55] developed a method based on mode matching for
calculating the radiation from a horn or loudspeaker cone mounted
in the end of a semi-infinite circular tube. Ando’s method appears to
be extremely complex, and the paper requires a detailed study simply
to figure out which equations to solve, and in what order. A similar
method was presented by Oie et al [56] for a radiator in an infinite
baffle. While the method for non-vibrating walls is described in detail,
the transition from a horn structure to a structure with vibrating walls
is not clear, and this method too appears rather complex.

Later analyses have usually depended on Finite Element or Bound-
ary Element methods [322, 323, 324, 325, 326], but an interesting de-
parture from this was demonstrated bu Murphy [327], who used a
method similar to that of Carlisle. Murphy modeled the cone as a

227
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set of concentric rings and delay lines. The radiation impedances of
the rings (considered separately) were used as radiation loads for a
distributed mechanical model of the cone, where each ring was con-
nected to the next by masses and springs to take sound propagation
in the cone material into account. The total radiation impedance was
not given explicitly, and it seems that trying to calculate it from the
pressures and volume velocities in the circuit would also integrate the
cone mass and flexural compliance into this impedance value.

The Mode Matching Method used in this thesis is well suited to
simulate horns, however, it is not directly suited for simulating struc-
tures like a loudspeaker cone, since it is based on working one’s way
from the mouth of the horn back to the throat, given a radiation
impedance specified at the mouth. If any surface inside the structure
vibrates, its effect on other vibrating surfaces, like other parts of the
wall, or the innermost (throat) surface, cannot easily be determined
with this method [44]. While the velocity on each of these surfaces
may be specified, the resulting pressure depends on the interaction
of all the surfaces. Consequently, the same holds for the radiation
impedance seen by the surfaces. Therefore, in order to find the pres-
sures and velocities at all places inside the radiator, a large system of
simultaneous equations must be solved.

It is clear that in order to completely simulate the radiation from a
vibrating mechanical structure like a loudspeaker cone, the variation
of velocity over the surface must be determined, and the acoustical
loading of that surface must be taken into account. This is a complex
problem, in particular when the description of the acoustic field is
in terms of modes, and is considered beyond the scope of this thesis.
The purpose of this chapter is therefore to develop the acoustic mul-
timodal method described above to take vibrating walls into account,
and compare its results to a reference method.

11.2 theory

The method will first be analyzed using a one-dimensional (plane
wave) approximation, and the equations developed can then be ex-
tended to the multimodal case quite easily.

The geometry to be analyzed is shown in Figure 120. The cone is
approximated by a stepped structure of cylindrical segments, and all
horizontal surfaces are given an axial velocity. If the velocities are
equal, this corresponds to a staircase approximation of a perfectly
rigid cone. By refining this staircase approximation, it will converge
to the smooth cone shape. Giving each surface a different velocity
would correspond to a cone which is breaking up. If only u0 is
non-zero, the geometry corresponds to a staircase approximation to
a horn, as in the standard MMM.
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Figure 120: Geometry.
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Figure 121: Principle of the one-dimensional model of Figure 120.

11.2.1 One-Dimensional Approximation

In the one-dimensional approximation, each segment is modeled as a
straight duct, with each vibrating surface injecting a volume velocity
into the system at the appropriate points, as shown in Figure 121.
This method is based on the traditional Transmission Line Elements
method for modeling horns described by Mapes-Riordan [240], but
with sources of volume velocity added along the structure. Each duct
segment, of length Li, is described by a transfer matrix Mi such that[

pi−1

Ui−1

]
= Mi

[
pi

U′
i

]
=

[
a11 a12

a21 a22

] [
pi

U′
i

]
. (324)

For a straight duct, the matrix coefficients are defined as

a11 = cos kLi,

a12 = jZc sin kLi,

a21 = jZ−1
c sin kLi,

a22 = cos kLi, (325)

where Zc = ρc/Si. The conditions at the input end are specified
as functions of the conditions at the output end as a reminder that
the boundary condition (the radiation impedance) is given for the
output end. It also corresponds to the way the multimodal version of
Equation (324) has been defined in Chapter 4, as will be shown in the
next Section.

Assuming we know U0, US1′ and US2′ , the appropriate relations be-
tween pressures and volume velocities can be set up. In this example
we have seven unknowns, and the relations can be set up as a sparse
linear system of equations:
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M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

U′
1

U1

p2

U2

U′
2

p3

U3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

U0

US′1

0

0

US′2

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(326)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 a(1)11 a(1)12

a(1)21 a(1)22

−1 1

−1 a(2)11 a(2)12

−1 a(2)21 a(2)22

−1 1

−1 a(3)11 a(3)12

−1 a(3)21 a(3)22

1 −Zr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (327)

This system can then be solved for the unknown quantities. Zr is the
radiation impedance at the opening. As can be seen from the above
equations, actually nine unknowns are solved for, although due to
the relation U′

1 = U1 + Us′1
, etc., two of the unknowns are redundant.

This formulation, however, simplifies the right-hand side, and the
general appearance of the equations are, as we will see, more similar
to the multimodal version.

11.2.2 Multimodal Formulation

When higher order modes are included, the analysis is similar to
that for plane waves, except that a formulation to couple the modes
across the discontinuity will be needed. By using the expressions
presented in Chapter 4, we have that pressure and volume velocity at
a discontinuity are found as

�P(1) = F�P(2), (328)

�U(2) = FT�U(1), (329)

and the pressure and volume velocity along a duct are given as
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Figure 122: Principle of the multi-modal model of Figure 120.

�P0 = D1�P1 + D2Zc�U1 (330)

�U0 = D2Z−1
c

�P1 + D1�U1. (331)

This can be seen to be the multimodal version of Equation (325), with
a11 = a22 = D1, a12 = D2Zc and a21 = D2Z−1

c .
The step-by-step calculation of impedance and volume velocity pre-

sented in Chapter 4 cannot easily take into account the effects of vi-
brating walls, as this introduces an extra velocity component that will
change the impedances seen by the other surfaces: there is mutual
coupling between the vibrating rings. A new formulation is therefore
required.

Figure 122 shows the multimodal equivalent of Figure 121, with
the modal coupling at the discontinuities introduced in the form of F-
matrices. Based on the method outlined in Section 11.2.1, it is possible
to set up the following linear system of equations:

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�p0

�p1

�U1

�p2

�U2

�p3

�U3

�p4

�U4

�p5

�U5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
�U0

0
�US1

0

0

0
�US2

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(332)

with
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M =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I a(1)11 a(1)12 0 0

0 a(1)21 a(1)22 0 0

0 I 0 −F1 0

0 0 −FT
1 0 I

−I 0 a(2)11 a(2)12 0 0

0 −I a(2)21 a(2)22 0 0

0 0 I 0 −F2 0

0 0 0 −FT
2 0 I

−I 0 a(3)11 a(3)12

0 −I a(3)21 a(3)22

0 0 I −Zr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(333)

The difference from the previous system of equations is the inclu-
sion of the F-matrices, and that each element of the matrix is an
Nm × Nm sub-matrix. Apart from the F-matrices and the Zr matrix,
all matrices are diagonal, I is the identity matrix. The solution vector
contains sub-vectors of pressure and volume velocity mode ampli-
tudes.

The right hand side contains the volume velocity amplitudes of the
exciting volume velocities. It is possible to specify a velocity distribu-
tion over each of the annular surfaces, but in practice one would use a
constant value for each surface, as they are quite small. However, one
must take into account that the surface is annular, and that the con-
tributions of �US1 , �US2 , etc, are not that of plane waves. The annular
excitation mode amplitudes can be found by multiplying the velocity
distribution (here constant) with the mode function of the mode in
question, and integrating over the surface as in Eq. (74):

USi ,n = 2π

a2∫
a1

ψn(r)vSi rdr. (334)

For a perfectly rigid diaphragm, all vSi will be identical. If the
sound speed in the diaphragm is to be taken into account, a phase
shift must be introduced between the individual ring velocities. Other
effects, like diaphragm break-up, are also possible to simulate by ad-
justing the velocity distribution over the diaphragm. This is discussed
further in Section 11.2.4.

Using the same approach as above, it is also possible to simulate
a source inside a cavity. In the plane of the source, the mode am-
plitudes are found as in Eq. (334), only that integration is performed
over the source. If the annulus is also vibrating, integration is also
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performed over this region. For a point source, no integration is re-
quired, and the mode functions are simply evaluated at the source
position. In axisymmetric circular geometries, a point source is only
possible if the source radial position, rs = 0, otherwise the source will
be a ring source. The mode amplitudes are in any case

USi ,n = 2πψn(rs)Usrdr, (335)

where Us is the source volume velocity.
The main matrix can be seen to consist of three sub-matrix types;

the upper left corner matrix of size 4Nm× 5Nm that takes into account
that �U0 is known:

Astart =

⎡
⎢⎢⎢⎢⎣
−I a(1)11 a(1)12

a(1)21 a(1)22

I −F1

−FT
1 I

⎤
⎥⎥⎥⎥⎦ (336)

A general middle matrix of size 4Nm × 6Nm, placed with a 2Nm

columns overlap to the previous one:

Amiddle =

⎡
⎢⎢⎢⎢⎣
−I a(2)11 a(2)12

−I a(2)21 a(2)22

I −F2

−FT
2 I

⎤
⎥⎥⎥⎥⎦ (337)

An end matrix of size 3Nm × 4Nm, also placed with a 2Nm columns
overlap to the previous one, and containing the end boundary condi-
tion expressed through the radiation impedance:

Aend =

⎡
⎢⎢⎣
−I a(3)11 a(3)12

−I a(3)21 a(3)22

I −Zr

⎤
⎥⎥⎦ (338)

For more than three duct elements, matrices of the general middle
matrix type are used for all elements except for the first and the last.

Expressions for the radiation impedance Zr matrix are given in
previous chapters.

11.2.3 Sound Pressure and Radiation Impedance

�Um gives the volume velocity at the output, or mouth, of the structure.
Then the radiated pressure for a radiator in an infinite baffle, pIB, can
be calculated as described in Section 5.1.

The total radiation impedance seen by the vibrating structure is
required to find the radiated power, and to include the model in a
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more complete loudspeaker model. In general, the mechanical radia-
tion impedance is defined as the area integral of the specific radiation
impedance p/vn, where vn is the normal surface velocity [279]. The
impedance will be the quotient of the total reaction force to the aver-
age axial velocity, so that

Zmr =
∑i piSi

S−1
tot ∑i vSi Si

. (339)

The velocities at the step surfaces are known, as they are part of the
right hand side of Equation (332). The pressure is given in terms of
mode amplitudes, so for each surface, the average pressure across the
annular ring must be found by integration:

pi =
2π

Si

a2∫
a1

Nm−1

∑
n=0

ψn(r)pi,nrdr (340)

As a first approximation, the zeroth pressure mode amplitude can
be used to avoid the integration, although the accuracy of this ap-
proach will depend on the ratio of rim velocity to the velocity through
Si due to other parts of the structure.

Only the pressure on vibrating surfaces must be taken into account
in the computation of the radiation impedance, and the total area
must also include only the active parts of the surface.

11.2.4 Structural Coupling

As mentioned in the introduction in Section 11.2, giving each vibrat-
ing surface in the structure a different velocity would correspond to
a cone which is breaking up, and this must be taken into account
in a complete loudspeaker model. If the acoustical loading on the
mechanical structure is neglected (known as weak coupling), the vi-
bration velocity distribution in vacuo can be found by methods like
Finite Element Analysis (FEA). This velocity distribution can then be
used as input for the model described above, for specifying the veloc-
ity at each element. Strong coupling would require that the acoustical
loading is taken into account. Murphy [327] describes a lumped pa-
rameter version where the diaphragm is divided into rings, and each
ring is modeled as a mass connected to the neighboring rings with
springs. In addition, the radiation impedance of each ring in isolation
is taken into account, but the acoustic coupling between the rings is
neglected.

Introducing weak coupling into the model presented above would
be possible by using a separate model of the mechanical structure
to find the vibration velocity. This model could be either an FEA
model, or a model similar to that presented by Murphy. Introducing
strong coupling is rather more involved, and is considered future
work beyond the scope of this thesis.
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Rocking modes (side-to-side movement) can have a large influence
on the output from loudspeakers at certain frequencies [328, 329]. In
order to describe the effect of rocking modes on directivity and ra-
diation impedance, non-axisymmetric modes would have to be intro-
duced. This can, as previously stated, be done by introducing angu-
lar mode functions in the model, giving the new mode function (see
Braden [22])

ψmnσ(r, φ) = Amn Jm (γmnr/a) sin
(

mφ +
σπ

2

)
(341)

where m is the index of the angular mode, and σ is a symmetry index
with value either 0 or 1, and has the effect of rotating the angular
mode pattern a through a right angle about the central axis. Amn is
a normalization factor. Please see [22] for details. It should be noted
that the inclusion of angular modes would increase the size of the
sub-matrices in Equation (333).

In [22], Braden also presented the F-matrix for the coupling be-
tween concentric circular ducts including angular modes. It is in-
teresting to note that angular modes only couple to angular modes
with the same number of nodal diameters. There is also no coupling
between radial and angular modes. As the angular modes are peri-
odic, their average value over a ring would be zero, and they would
therefore not have any influence on the radiation impedance. Any
change of radiation impedance would have to come from a change
in the radial velocity distribution caused by structural coupling from
the rocking modes.

As this thesis is mainly concerned with sound radiation, structural
coupling will not be discussed any further.

11.3 implementation and verification

The equations outlined above were implemented in Matlab, using the
Gauss-Legendre rule for the numerical integration, and employing
Matlab’s sparse matrix functions to save memory and solution time.
Using the sparse solver also had the advantage over the dense solver
in that it was more numerically stable.

To verify the model, a simple two-step geometry was used, as
shown in Figure 123, and compared with results from BERIM [191].
For the MMM model, each segment was divided into five elements
lengthwise, for a total of 15 elements, and 10 modes were used in
the simulation. This amounts to a linear system with 630 degrees of
freedom, and the solution time for 100 frequencies was 0.4s. For this
problem, Matlab appeared to be running on a single core. The com-
puter had an Intel i7-2600 CPU running at 3.4 GHz, and 8 GB RAM.

The BERIM simulation (compiled code) used 64 axisymmetric ele-
ments, and used approximately 8 minutes 41 seconds on a single core
for 100 frequencies.
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Figure 123: Geometry of the test case.
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Figure 124: Radiation impedance for the test case in Figure 123.

Figure 124 compares the total radiation impedance, as defined in
Equation (340), for the two methods. Differences are slight and ap-
pear mainly at high frequencies. Increasing the number of elements
and modes in MMM does not materially change these results.

The SPL computed at a distance of 3 meters for several angles is
shown in Figure 125. No detailed legend is given, since the inten-
tion is simply to show that the results are very similar for the two
methods.
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Figure 125: SPL response for the test case in Figure 123.

11.4 simple circular examples

The main purpose of the proposed method is to be able to simulate
the radiation impedance and directivity of loudspeaker diaphragms.
In this Section two geometries will be studied, see Figure 126. The
outer radius a of both examples is 0.1 m, and the inner radius is
0.025 m. The depth h is 0.5a. The diaphragm is divided into 20
segments, and 20 modes are used. All parts of the diaphragm are
given the same axial acceleration, i.e. the diaphragm is assumed to
be perfectly rigid.

The first example, Figure 126 a), is a straight-sided cone, which is
a fairly typical geometry. The results are shown in Figure 127. The
radiation impedance for a piston of the same size, mounted in an in-
finite baffle, is given for comparison. One notes a large peak in the

(a)

a

b h

(b)

Figure 126: Example geometries.
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(a) Radiation impedance, conical diaphragm.
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Figure 127: Results for the conical diaphragm.
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Figure 128: Directivity of a rigid piston, constant acceleration.

radiation resistance at around ka = 1.9 due to a cavity-like resonance,
and a somewhat increased radiation mass below this frequency. In
addition, the radiation resistance at high frequencies does not ap-
proach ρc, but a somewhat smaller value. This is due to the fact that
it is the projected area that must be used in calculating the radiation
impedance, not the actual surface area of the cone. The same can
be found for other convex and concave, oscillating radiators, see for
instance [330, 331].

The frequency response for the conical diaphragm when oscillat-
ing with a constant acceleration of 1 m/s2 is shown in Figure 127b
for a few positions. Compared to a rigid piston operating under the
same conditions, as shown in Figure 128, it is clear that the shape
of the diaphragm has a significant influence on the directivity. Sev-
eral differences can be noted. The piston has a flat on-axis frequency
response for constant acceleration, while the directivity becomes nar-
row at high frequencies with significant side lobes. The on-axis re-
sponse of the conical diaphragm is not flat at all, there is a low-pass
filtering effect, and the response has a broad peak around ka = 1.9,
due to the peak in the radiation resistance. The off-axis response is
free of the deep notches or nulls, and the directivity is in general
wider than for the piston. It should be mentioned that the low-pass
filtering of the on-axis response does not correspond to a low-pass
filtering of the radiated power, as the radiation resistance is nearly
flat above ka = 4.

The general behavior of the exponentially shaped diaphragm, see
Figure 129, is similar to that of the conical diaphragm. The radiation
resistance peak is slightly higher in frequency, as can be expected
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(b) Frequency response, exponential diaphragm.

Figure 129: Results for the exponentially shaped diaphragm.
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(a) (b) (c)

Figure 130: Example geometries.

from the slightly smaller air volume, but has roughly the same height.
The on-axis response is smoother, and does not fall off as quickly.

It should also be noted that in the practical case of a non-rigid
diaphragm, the difference between the two diaphragm shapes would
also be strongly influenced by the different mechanical structures of
the two geometries.

11.5 annular examples

Three examples of annular geometries are shown in Figure 130. Thick
lines in the figure indicates vibrating surfaces that have a vibration
velocity in the z-direction. Now that the structure can have a cen-
tral member, it is possible to simulate more realistic geometries. As
examples, a cone with a hemispherical dust cap, (a), a cone with a
non-moving phase plug, (b), and a convex dome in a short waveg-
uide, (c), are studied. In the two first examples, the simulated results
are compared to one of the examples above, the driver with a conical
diaphragm and a flat dust cap, see Figure 126a.

11.5.1 Convex Dust Cap

This geometry corresponds to the geometry in Figure 130a. The outer
radius is 0.1 m, the inner radius 0.025 m, the depth 0.05 m, and the
radius (and height) of the hemispherical dust cap is 0.024 m. The
geometry was simulated with 60 elements and 20 modes, and the
computation time was 45 s for 150 frequencies. The difference in ra-
diation impedance is rather small compared to a driver with a flat
dust cap, Figure 131a, but there are clear differences in the frequency
response, perhaps most noticeable is the dip around ka = 15. This
probably comes from the contribution from the convex dome, as it is
common for convex domes to exhibit this behavior, see for instance
Beranek and Mellow [288].
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Figure 131: The results for the conical diaphragm with hemispherical dust
cap.
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11.5.2 Phase Plug

This geometry corresponds to the geometry in Figure 130b. The outer
radius is 0.1 m, the inner radius 0.025 m, the depth 0.05 m, and the
phase plug has a radius of 0.02 m and a length of 0.04 m. The shape
is described as

r = Rp

(
1−
(

z
lp

)3
)

where Rp and lp are the maximum radius and length, respectively, of
the phase plug, and z is the distance from the base. The geometry was
simulated with 25 elements and 20 modes, and the computation time
was 16 s for 150 frequencies. Comparing Figure 132a with Figure 127a,
the difference in radiation impedance from that of a driver with a flat
dust cap is again rather small. As for the frequency response, the
sharp dip around ka = 15 in the on-axis response for the convex
dustcap, Figure 131b is gone, see Figure 132b.

11.5.3 Dome with Waveguide

This case corresponds to the geometry in Figure 130c. The outer ra-
dius is 0.1 m, the inner radius 0.042 m, and the base radius and height
of the dome are 0.04 m and 0.0285 m, respectively. The waveguide is
0.03 m deep, with an exponential profile. This geometry was simu-
lated using 20 modes, and 25 elements. The computation time was
17 s for 150 frequencies. The radiation impedance, Figure 133a, is sim-
ilar to that of a conical horn, but with slightly more low end gain.

The frequency response again shows on-axis dips, in this case as
low as ka = 3, but the off-axis response is smoother than for the
cases (a) and (b) shown above. The level is lower than for the conical
diaphragms because the volume velocity is smaller due to the smaller
vibrating surface.
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Figure 132: The results for the conical diaphragm with phase plug.
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Figure 133: The results for the dome with waveguide.
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11.6 reflector examples

As a final example of applications of this extension of the MMM, we
consider the problem of a reflector with a source within the cavity.
This is possible by setting the wall velocity to zero, and introducing
a source as per Eq. (335). Two geometries will be studied, Figure 134,
where a source is placed at the focal point of a parabolic reflector, Fig-
ure 134a, or at the same position in a corresponding conical reflector,
Figure 134b. A small portion of the bottom of the parabolic reflector is
flat, in order to avoid very small elements, which would result in the
M-matrix being close to singular. Inner radii (flat bottom) and outer
radii of the two geometries are 12.5 mm and 100 mm respectively, the
depth is 51 mm. The source was placed 47 mm from the bottom.

Polar plots for a few wave numbers are shown in Figure 135. The
curves for the parabolic reflector are on the left hand side, those for
the cone are on the right hand side. a is the radius of the reflector.
It is clear that the parabolic reflector has a narrower main lobe and
better suppression of the side lobes than the conical reflector, as one
would expect.

11.7 summary

The Mode Matching Method from Chapter 4 has been extended to
be able to simulate concave structures where the entire wall vibrates.
With the previous method it was possible to find impedance, pres-
sure and volume velocity by working step by step from one end of
the structure to the other. With the new method, pressure and vol-
ume velocity at all points in the structure must be found simultane-
ously, by solving a large but sparse linear system of equations. In this
chapter, the method has been demonstrated for circular and annular
geometries, but it can easily be applied to rectangular geometries by
the appropriate choice of mode functions.

(a)

S

(b)

S

Figure 134: Reflector geometries.
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Figure 135: Polar response of the two reflectors in Figure 134. a is the radius
of the reflector.

The method compares very well to BERIM, and gives results that
are close even with a small number of modes. The method is also
significantly faster, by several orders of magnitude, than BERIM. It
can also be noted that by using different expressions for the radiation
impedance, non-infinite baffle cases can be studied with the same
numerical effort. This also includes horns and waveguides; the tradi-
tional Mode Matching Method can be used to give the horn modal
throat impedance, which in turn can be used as the load impedance
for the present method.

By introduction of annular mode functions, it is possible to analyze
structures with a convex central member, like a dust cap or a phase
plug, as long as it does not extend beyond the baffle plane. The equa-
tions for the mode functions and F-matrices for annular geometries
are significantly more complex than for the purely circular geome-
try, but the complexity of the model framework does not change. In
terms of programming, it is merely a question of calling different
subroutines.

The radiation impedance and frequency response of five examples
have been presented; a conical and a curved diaphragm, both with a
planar dust cap, a conical diaphragm with a convex dust cap, a coni-
cal diaphragm with a phase plug, and a dome with a short waveguide.
These examples illustrate some of the possible uses for this method.
The computation time is in the order of seconds, making the method
viable for use in optimization algorithms.
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Two examples of loudspeaker diaphragm shapes have been given,
demonstrating how the method could be used to optimize diaphragm
shape.

In addition to radiators, it has been demonstrated that concave re-
flectors can be simulated as long as the source is inside the reflector.
Two examples were given to illustrate this application.



12
A P P L I C AT I O N O F T H E M M M T O R O O M
A C O U S T I C S

A standard model for rooms in the low frequency region is the modal
sum. The mode shapes and eigenfrequencies can easily be found
analytically for a shoebox-shaped room with hard walls. For rooms
of most other shapes, no analytical solutions exist, and we must resort
to numerical methods.

One option is to employ general numerical methods like the Fi-
nite Element or Boundary Element Methods (BEM and FEM). In this
chapter, MMM will be employed to solve the problem.

The Mode Matching Method used in this thesis has been developed
to simulate horns, ducts and waveguides, and, as has been shown in
the previous chapters, is able to predict the performance of these
devices with good accuracy.

By considering a room to be a waveguide which is closed at the end,
this method can be used to compute the room resonance frequencies,
transfer functions and mode shapes for a large number of geometries.
Amir and Starobinski [266] have considered this problem for two-
dimensional cavities with two axes of symmetry.

The contribution of this chapter is the application of MMM to
room acoustics as an alternative to FEM and BEM for finding the
resonance frequencies and transfer function of a non-shoebox shaped
room. It is an extension of the work by Amir and Starobinski to three-
dimensional cavities, with alternative suggestions for finding the res-
onance frequencies. The chapter is based on the work described in
[57].

12.1 practical issues

In MMM, the discretization process consists of dividing the room into
short elements of constant cross section and uniform thickness, which
have analytical mode functions. This leads to a few restrictions that
will be described below.

12.1.1 Allowable Geometries

While the proposed method is not restricted to shoebox shaped
rooms, there are still some restrictions on the geometry. In general,
it must be possible to divide the room into slices (or elements) of
constant thickness, each slice being rectangular. A few examples will
make this more clear, see Figure 136.

249
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a) b) c) d)

e) f) g) h)

Figure 136: Examples of geometries. Arrows indicate possible propagation
directions.

In all the examples, it is assumed that the room is discretized by
dividing it into slices or elements, as indicated by the horizontal lines
in the figures, and that the cross-section of each element is rectangular.
That means that the height of the room can also vary, as long as the
restriction on slice geometry is observed.

Room a) has a simple expansion and a contraction. It may be sim-
ulated lengthwise or sideways, or even perpendicular to the skewed
walls.

Room b) has a skewed geometry, and it may be skewed in more
than one direction. This room can only be simulated along the dashed
line.

Rooms c) and d) are simple shapes that may easily be simulated,
but care must be given to the large discontinuities to make sure the
algorithm is numerically stable. It may be worthwhile to divide the
F and V matrices into several matrices, each describing part of the
discontinuity.

Room e) cannot be simulated the way it is discretized in the figure,
since there is no wall at the far end that is parallel to the slices. This
can be solved either by creating a very small flat portion at the far
wall, as in f), or by changing the direction of simulation.

Room g) cannot be simulated due to the niche indicated by the
circle. By changing the orientation of the room to that of d), this
problem is solved.

Room h) has a similar problem, in that the end of the room splits
into two niches. The problem may again be solved by changing the
direction.

As indicated, many room shapes can be simulated by the proper
choice of direction of simulation, but there are of course geometries
that cannot be simulated by this method. An example would be if e)
was the height profile of room g), in which case there is no direction
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Figure 137: Example of velocity distribution for a point source in a corner,
described by 36 (6 by 6) modes.

where all requirements are met. Also rooms with walls that are tilted
in two directions are problematic.

12.1.2 Sources and Receivers

In room acoustics modeling, one usually wants to employ point
sources, which can be positioned anywhere in the room. In the sim-
plest implementation, the excitation of the room must be at the “start-
ing wall”, indicated by an arrow in Figure 136. Furthermore, an ideal
point source is not possible to use, since all calculations are based
on elements each having a 2D modal representation of a sound field.
Therefore, a 2D modal representation of the point source must be
found, i.e. the room must be excited with a number of modes, the
relative amplitudes of which give the best possible approximation of
a point source. The mode amplitudes are found as

Um =
∫
S

v⊥(x, y)ψm(x, y)dS. (342)

To obtain a given volume velocity Utot, one sets v⊥ = Utot/S, and
evaluates ψm at the source position, since for a point source, the veloc-
ity is zero everywhere else. It then turns out that the volume velocity
mode amplitude vector is simply

Um =
∫
S

δ(x, y)v⊥(x, y)ψm(x, y)dS = Utotψm(x, y). (343)

An example of the velocity distribution representing a point source
in a corner, described by a total of 36 modes, is shown in Figure 137.
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As mentioned above, directly using the MMM as presented in
Chapter 4, restricts the source location to the input surface of the
structure. For this method to be useful for general room simulation,
it must be possible to place sources at any location in the room. The
method to do this was described in Chapter 11.

The problem to be solved, is that when a source is placed away
from the “starting wall”, it is not possible to use an end-to-end calcu-
lation method as outlined in Chapter 4. Instead, a linear system of
equations can be set up to solve for all pressures and volume veloc-
ities at the discontinuities simultaneously. The right hand side will
include the additional source volume velocity in modal form. In the
case of a room, the source is no longer a ring with constant velocity,
but a point. The modal amplitudes are found as in Eq. (335). This
solution method can of course be applied to the entire room, but it
is also possible to use it for only the part between the “starting wall”
and the source. From there and forward, the ordinary MMM can be
used.

The receivers may be placed at any convenient location, but it is
most convenient to place them at the interfaces between the elements.
The desired receiver positions should therefore be taken into account
in the discretization of the room. The impedance matrix at the re-
ceiver location must be saved, together with the volume velocity trans-
fer matrix from the source to the receiver location. Given the source
volume velocity vector and the transfer matrix, the volume velocity
vector at the receiver point is found, and the sound pressure is com-
puted using from Equations (76) and (70).

12.1.3 Resonance Frequencies

The resonance frequencies of the room will appear as peaks in the
impedance curve at the input, or more specifically, as a phase rever-
sal that can be seen as a jump in the imaginary part of the impedance.
In the multimodal case, as is the case for MMM, the input impedance
is a matrix, and it may be more convenient to find the peaks by look-
ing at the pressure at the source point, which is found in the same
way as the pressure at the receiver points as outlined above. Amir
and Starobinski [266] suggest looking at peaks in the determinant of
the impedance matrix, or minimum values in the determinant of the
admittance matrix Y = Z−1.

However, due to the presence of evanescent modes, some of the
resonances may be extremely narrow and very difficult to spot in the
impedance (or the pressure at the source point). It may therefore be
easier to find the resonance frequencies by looking at the pressure
response in one corner due to a source in a corner approximately
diametrically opposite of the receiver corner. Looking at the imagi-
nary part of the complex pressure, similar phase reversals as found
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in the impedance may be found, and these may be used to detect
the resonance frequencies. The resonance frequencies may be found
using root finding algorithms as found in [308]. Alternatively, it may
be possible to reformulate the problem as a generalized eigenvalue
problem, as done by Kirkup [332, 333], but this has not been tried.

12.1.4 Mode Shapes

The mode shapes can be illustrated by evaluating the sound pressure
for a grid of receiver points when the room is excited with a frequency
very close to the mode’s resonance frequency. If the room has no
losses, it is not possible to select the excitation frequency exactly at a
mode resonance frequency, because of the infinite amplitude.

12.2 verification : shoebox shaped room

The method described above can of course also be used for shoebox
shaped rooms, and this case serves as a useful verification of the
method.
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Figure 138: Frequency response for a shoebox shaped room, computed ei-
ther with MMM or with the analytical method. 16 modes, two
elements were used in the MMM simulation. Source and re-
ceiver in diagonally opposite corners.

The transfer function of a room, given in Eq. (255) on page 177, was
used to compute the pressure at one corner due to a 1m3/s volume
velocity source in the diagonally opposite corner of a room 2.4× 3.0×
4.67 meters, using a δN = 10−12. The result was compared to MMM
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using 16 modes (4 modes in each direction), Figure 138. All possible
directions for the room were tried, all giving the same results, as can
be seen from the figure.

It turned out that very few duct elements were needed for this
case, and even with only two elements, the method still produced an
accurate frequency response. With these parameters (two elements,
16 modes), the computation time for a Matlab implementation on a
desktop computer was about 0.25 s for 500 frequencies. The analytical
solution under identical conditions took only 7 ms.

12.3 non-shoebox example

3.0 m

2.4 m

2.67 m

1.0 m

1.0 m

1.0 m 2.0 m

Src.

Rec.

Dir. 1
Dir. 3

Dir. 2

Figure 139: Non-shoebox shaped room used in the example. The gray circles
indicate the positions of the source and receiver. The room is
simulated using MMM along the three directions indicated.

Case Elements Modes

MMM, dir. 1 20 36

MMM, dir. 2 20 36

MMM, dir. 3 22 36

Table 16: Parameters for the MMM models.

Method Freq. resp. Mode fr.

FEM 76 s 4 s

MMM, dir. 1 5.0 s -

MMM, dir. 2 6.0 s -

MMM, dir. 3 5.7 s -

Table 17: Computation times for 500 frequencies for the two methods. Note
that the FEM simulation is run with compiled code, while MMM
runs in Matlab.
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40.56 59.83 71.50 74.07 82.20 82.28

93.24 102.96 109.01 110.43 114.10 116.58

Table 18: Resonance frequencies in Hz for the room in Figure 139, as found
by FEM.
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Figure 140: Frequency response for the room in Figure 139, computed either
with MMM or FEM. Source and receiver in diagonally opposite
corners.

A sketch of the test room, including dimensions and placement
of the source and receiver, is shown in Figure 139. The room has a
constant ceiling height of 2.4 m, a total length of 4.67 m, a maximum
width of 3.0 m, and two skewed walls. Source and receiver positions
are indicated in the sketch by gray circles. Also here, three direc-
tions are simulated, as a verification of the model. In addition, the
mode frequencies (listed in Table 18) and the transfer function from
the source to the receiver were computed using Comsol Multiphysics
[334], using a model with a maximum mesh size of 0.45 m. The pa-
rameters for the MMM models are given in Table 16.

As can be seen from the frequency responses in Figure 140, the
agreement between the results for the three directions of MMM sim-
ulation, and the FEM solution, is excellent. All resonance frequencies
are found, although the two resonance frequencies around 82 Hz are
so close that they cannot be discerned in the figure. Repeating the
simulations with very high frequency resolution between 81.5 and
83 Hz shows that these two distinct resonance frequencies can also be
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Figure 141: Close-up of the resonance frequencies near 82 Hz.

found with MMM, see Figure 141. It would, however, be hard (or ex-
pensive) to separate these frequencies using a root finding algorithm.

The resonance frequencies as found by MMM are 82.13 and
82.17 Hz when computed along the length of the room, and 82.11
and 82.40 Hz when simulated in direction 3, a slight difference from
the FEM results given in Table 18. Changing the discretization in FEM
and MMM did not materially improve the agreement, so the differ-
ences are attributed to slight differences in material parameters in
FEM, perhaps due to a more detailed model of the fluid. With sharp
peaks like this, minute changes in sound speed may have large effect.
The differences in resonance frequencies also make for rather large
differences in the sound pressure level close to the resonances. Since
the sound pressure theoretically goes to infinity at these frequencies,
a minute change of frequency around the resonance will result in a
very large jump in sound pressure.

The horizontal mode shape at one of the two resonance frequen-
cies near 82 Hz, as computed by MMM, is shown in Figure 142. This
mode shape is calculated in a plane 1.2 m above the floor of the room.
The horizontal mode shapes at the two resonance frequencies are al-
most identical, but the vertical mode shapes are slightly different, see
Figure 143.

12.4 discussion

The results above show that the MMM gives results comparable to
analytical and FEM solutions for shoebox shaped and non-shoebox
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Figure 142: Horizontal mode shape near 82 Hz, simulated using MMM. The
simulation used a finer discretization of the room than the fre-
quency response simulation above, in order to show the details
of the sound field. Dimensions in meters. Sound pressure level
contours (arbitrary reference).

shaped rooms, respectively. For the shoebox shaped room, the an-
alytical method is orders of magnitude faster, and is the method of
choice. It also has the advantage that the resonance frequencies can
be found analytically. For the other rooms, the MMM is significantly
faster than FEM in computing the transfer function. It has not been
attempted to find the resonance frequencies with high accuracy using
the MMM, but it is not expected that a method using root finding al-
gorithms will be competitive with FEM. FEM has the advantage that
the resonance frequencies (eigenfrequencies) can be found by finding
the eigenvalues of a frequency independent matrix, which is not the
case for MMM.

The geometries that can be investigated with MMM are many, but
there are restrictions. Many rooms can be simulated along several
axes. The modes existing along the simulation axis will always be
found, regardless of how many cross modes that are included in the
computation time, although the accuracy may vary. Since the com-
putation time depends on the number of cross modes used in the
computation, and since a wide room necessitates more cross modes
for an accurate description of the sound field, the simulation axis
should be chosen to make the room, as seen along the axis, as long
and narrow as possible. Otherwise, more modes may be needed if
the room is short and wide.

As the method relies on the computation of modal impedances,
with the impedance at the output end defined, it is straightforward to
introduce damping into the room, in the form of an impedance at the
end wall. It is also possible to let the impedance of this wall be made
up from the impedance of a wall added to the input impedance of
another room behind that wall, or, by using the radiation impedance
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(a) Vertical mode shape, 82.11 Hz.

z [m]
-1 -0.5 0 0.5 1

y 
[m

]

0

0.5

1

1.5

2

2.5

3

90

100

110

120

130

140

150

160

170

(b) Vertical mode shape, 82.40 Hz.

Figure 143: Vertical mode shapes near 82 Hz for the plane at x = 0 in Fig-
ure 142, simulated using MMM. Dimensions in meters. Sound
pressure level contours (arbitrary reference).

for a duct opening in an infinite baffle, Section 5.5, even an open
window may be simulated.

If a small part of the room is to be repeatedly changed, for instance
if the objective is to optimize the room shape for some parameter,
possibilities exist for reducing the total computation time. One would
then compute the input impedance of the part of the room that is to be
kept unchanged, and use this as the load impedance for the variable
part, which has to be at the input end of the structure. The volume
velocity transfer matrix may also be held fixed for the unchanging
part, and then multiplied with the transfer matrix for the variable
part to obtain the total transfer matrix for the room.

12.5 summary

The Mode Matching Method (MMM) has been applied to the prob-
lem of low frequency standing waves in rooms. While the method is
slower than the analytical solution for a shoebox shaped room, the
room shapes are not restricted to analytically solvable geometries.
The room is discretized by dividing it into slices or elements, and
the main restriction is that each element should be rectangular. In
addition, the room must not fork into several separate paths, and a
wave propagating through the series of slices should not have to turn
back to fill the entire room. By careful choice of how the room is
discretized, a large set of geometries can be simulated.

The MMM will efficiently compute the transfer function of a room,
and for the example given in this paper, the algorithm is significantly
faster than the Finite Element Method, and of comparable accuracy.
The room resonance frequencies may be found using a root finding
algorithm, but this is expected to be slower than using FEM modal
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analysis, due to the need to search through the frequency space for
the resonances.
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13
D I S C U S S I O N A N D C O N C L U S I O N S

Each of the previous chapters in the thesis have concluded with a
summary of the work covered in the respective chapter, and that will
not be repeated here.

13.1 the work in this thesis

The work in this thesis has concentrated on the Mode Matching
Method (MMM). The method’s usefulness for horn loudspeaker sim-
ulations for axisymmetric and rectangular geometries were investi-
gated in my Master’s project [285] and my Master’s thesis [38], re-
spectively, and were found to give good accuracy both for throat
impedance and directivity, for the cases tested, all of which were re-
stricted to an infinite baffle radiation condition. Restricting the stud-
ies to horns in an infinite baffle was chosen because expressions for
the radiation impedance for this case were readily available.

This restriction, however, severely limits the applicability of the
method to the few cases of horns mounted in walls or very large
enclosures. Usually, horns may be free standing, mounted in an en-
closure of a size comparable to the horn itself, or placed on a floor
or in a corner (bass horns). The main motivation for this work has
therefore been to extend the method to these more realistic cases.

As Section 6.2 shows, the infinite baffle case is still of high impor-
tance, as it describes the direct sound field from the horn, and is an
important component of the total sound field radiated from the horn.
Much work has therefore been expended on making these calcula-
tions efficient, especially the computation of the radiation impedance,
which involves numerical integration of oscillatory integrals. This
work is described in Chapter 5.

In addition, three distinct cases have been treated:

1. Free standing horns with no, or a small, flange. This work is
described in Chapter 6.

2. Horns mounted in a wall near one or two hard boundaries ex-
tending to infinity. This work is described in Chapter 7.

3. Horns mounted in the wall of a room. This work is described
in Chapter 8.

Due to the way the MMM works, there is no difference in how the
horn itself is treated in each case. The differences come from the
radiation impedance at the mouth of the horn, and from how the

263
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radiated pressure is calculated. The work in the three cases above
has therefore been to develop the required expressions or methods to
calculate these two quantities.

Experimental verifications, and comparisons with reference meth-
ods like BEM and BERIM, have also been performed, and have ver-
ified that the MMM, with the extensions developed in this thesis, is
capable of good accuracy, as described in Chapter 9.

The computational efficiency of the MMM compared to other meth-
ods has not been extensively studied in this work, but some compar-
isons have been made, in addition to those in [38, 285]. What is clear
from all these investigations, is that MMM can be very fast compared
with other methods, and due to its simple scalability, it is easy to
change the resolution to suit the problem.

In the course of this work, the MMM has also been expanded in
other ways.

• By coupling MMM with BEM, as described in Chapter 10, the
range of applicability is extended to horns where part of the
horn has a geometry not compatible with the standard MMM
geometries. BEM is used for the incompatible part, while MMM
is used for the rest of the horn.

• By allowing the walls to also have a velocity, MMM can be used
to simulate concave vibrating structures like loudspeaker cones,
as described in Chapter 11. While the mode matching approach
has been applied to this problem earlier [55, 56], Chapter 11
describes a much simpler and more straightforward approach.
This method can also be used simulate concave reflectors.

• As rooms can be considered to be large horns that are closed at
both ends, MMM can also be applied to room acoustics, as de-
scribed in Chapter 12, as long as a few restrictions on geometry
is observed. Direct use of the MMM requires the sound source
to be at one wall of the room, but by employing the method
used for reflectors, placing sources anywhere inside the room is
possible.

Specifically, this work has made the following new contributions to
the field:

• The low frequency multi-modal radiation resistance for a cir-
cular duct in an infinite baffle has been expressed in terms of
polynomials to enable fast computation. Analytical expressions
for the polynomial coefficients are given.

• High frequency approximations for the multi-modal radiation
impedance matrix for baffled ducts, both circular (all modes)
and rectangular (diagonal terms), have been found.
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• The method of Snakowska for an unflanged circular duct has
been applied to circular horns without baffle.

• The Edge Diffraction Method of Svensson has been applied to
horns with a small flange. It has been demonstrated how the
method can be used to find the radiation impedance and radi-
ated pressure from such a horn.

• A method to compute the multi-modal mutual radiation
impedance by means of matrix multiplications has been de-
scribed.

• The sensitivity of horns to the distance from reflecting bound-
aries has been demonstrated.

• Analytical expressions for the multi-modal radiation impedance
of a rectangular radiator in the wall of a room have been found.

• A simple method to couple BEM and MMM has been described.

• A straightforward method to simulate concave radiators using
MMM has been developed. A method has been developed to
place a source inside the radiator, making it possible to also
simulate reflectors.

• It has been demonstrated how the MMM can be used to effi-
ciently simulate non-shoebox-shaped rooms.

The extensions of the MMM described in this thesis have resulted in
a set of tools that can be applied to a wide range of horn loudspeaker
problems. But the tools and results are of course not restricted to
horn loudspeakers; other duct-like systems, like musical instruments
or ventilation systems can also be simulated using MMM, in addition
to rooms, as has already been mentioned.

13.2 future work

When working in depth with a problem, it is natural that limitations
are discovered, or that questions and ideas arise that are not directly
related to the problem at hand, or that cannot be further investigated
due to time restrictions, lack of resources, etc. However, these limita-
tions, questions and ideas should not be forgotten. Here follows a list
of ideas and questions that should be further investigated in order to
make the MMM an even more useful tool to the horn designer.

• More work is needed for the case of horns in full space (free
standing horns, Chapter 6). The analytical method explored
for circular horns currently has some limitations making it un-
suitable for horn simulation, and these limitations should either
be removed, or a different method investigated. An approach
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that seems feasible, is to expand on the work on radiation from
a plane piston in a sphere, presented in Beranek and Mellow
[288]. By introducing a modal description of the sound field on
the flat surface, the modal radiation impedance matrix, and the
radiated pressure for each mode, may be found.

• More work is also needed to make the Edge Diffraction Method
efficient and robust. This general method could then be used
for all enclosure and flange geometries. The efficiency problem
could probably be overcome by using compiled code with paral-
lelization, like C++ with OpenMP. In addition, better handling
of the singularities at receiver points coplanar with the edges is
needed.

• Horns placed on a flat surface, but not mounted in a wall, can-
not currently be simulated. This is a very common case for bass
horns, which are almost always placed on a floor, but seldom
built into the wall, and so it is an important problem. For this
case, both edge diffraction and reflections must be taken into
account.

• Horns, or in general, large, partially radiating structures, placed
inside a room, cannot currently be efficiently simulated. The
work done in connection with a horn mounted in the wall of a
room, Chapter 8, was a step in this direction, and the analytical
expressions found gave hope that similar expressions could be
found for a hard, distributed source inside the room. However,
it was not clear how to make the transition from a distributed
monopole source to a distributed one-sided source, and work
stopped. It does, however, appear possible to use the expression
for the transfer function from a point source to a point receiver
in a room as a Green’s function in some sort of BEM implemen-
tation. This would make it possible to discretize only the object
inside the room, without having to discretize the room itself.

• Dividing the sound path of a horn into several smaller paths, is
a technique much used when folding bass horns. Also dividing
a horn into cells that extend from a point near the throat to the
mouth is a technique that was much used in the past. Making
each path or cell of a horn so small that no, or very few, modes
can propagate there, will simplify the description of the sound
field significantly. In order to analyze such horns, the MMM
should be adapted to structures employing two or more parallel
paths.

• Folds in horns should be possible to simulate in MMM. In [288],
Beranek and Mellow describes how the model developed for a
bass reflex enclosure can be used to describe a 180° fold in a
horn. Since this model is the basis for the model for multimodal
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radiation impedance of a duct exiting into the wall of a room,
as presented in Section 8.2, a model for a 180° fold should be
possible to develop along the same lines. It may also be pos-
sible to develop expressions for other types of folds, including
junctions, using similar methods.

• At high frequencies, sound propagation approaches a line-of-
sight propagation, and this is the basis for the ray-tracing meth-
ods used in room acoustics [335]. Direct use of ray-tracing alone
for simulating horn directivity at high frequencies will probably
not give good enough accuracy, and will clearly produce abrupt
changes in the sound field at certain angles. It might, however,
be possible to use ray-tracing as part as a more complete model,
used for instance in combination with modal descriptions and
edge diffraction. A similar idea is used by Sun et al. for the
calculation of scattering from a rigid sphere [336].

• Use of the Edge Diffraction Method for horns consisting of a
few flat panels. This may include horns of the Manta-Ray type
[3], or folded bass horns, where flat panels are typically used
to approximate the ideally curved surfaces. The EDM still has
some challenges when the order of specular reflections becomes
high, however, and work is needed to overcome these problems.

• The efficiency of the MMM, in combination with the simple de-
scription of geometry (simply a list of radius or height/width
as function of distance from the throat), makes the method well
suited for optimization, or as a forward model for inversion
algorithms. This has not yet been tried, but is one of the ob-
vious areas of application for the method. The far field sound
pressure is determined by the mouth velocity mode amplitudes,
Section 5.1.1, and these amplitudes can be found from a de-
sired (or measured) far field response [33]. At low frequencies,
many modes are evanescent in large parts of the horn, which
can make it hard to fulfill certain directivity requirements. In
addition, the contribution of the modes to the far field pres-
sure varies with off-axis angle and frequency, and can be in-
significant for certain combinations of these. The optimization
algorithm may experience problems in such situations. If the
required mode amplitudes for a given mouth size and direc-
tivity function are first found, one can produce a set of realistic
mouth mode amplitude frequency responses that could be used
in further optimization of the horn.

• In order to improve the accuracy of the MMM when an insuffi-
cient number of modes are used (for instance in order to reduce
the computation time), Richardson extrapolation may be used
[337].
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A
M M M V S . P L A N E WAV E H O R N T H E O RY

In [135, 140, 141], H. F. Olson gave the throat impedance curves for
a series of exponential horn of different sizes, showing how the rip-
ple is reduced as the horn approaches the infinite horn. These curves
have been repeated by many authors, for instance Beranek [150], Mer-
haut [338] and Beranek and Mellow [288]. The curves do, however,
not show any results for horns where the mouth circumference is
larger than one cutoff wavelength, i.e. kcam > 1. Although Flanders,
in [73], showed that there is an optimum mouth size for an expo-
nential horn, the general belief was for a long time that if the horn
was increased in size, reflections and throat impedance ripple would
decrease monotonically.

In 1973, D. B. Keele published a study [161], based on computer
simulations, showing that this was not the case; there was an opti-
mum mouth size beyond which the ripple would increase somewhat.
Keele’s study is, however, based on the plane wave horn theory, and
plane waves cannot be assumed when the horn mouth is large.

It is the purpose of this Appendix to show that the throat
impedance of a finite horn does indeed approach that of an infinite
horn as size is increased, and at the same time show the difference
between the plane wave horn theory and the more accurate MMM.

a.1 the horns

All horns simulated here are mounted in an infinite baffle, and have a
throat radius of 0.015λc, where λc is the cutoff wavelength. The other
dimensions are listed in Table 19.

Horn rm L kcam

1 0.05λc 0.192λc 0.31

2 0.10λc 0.302λc 0.63

3 0.15λc 0.367λc 0.94

4 0.19λc 0.405λc 1.20

5 0.23λc 0.429λc 1.40

6 0.32λc 0.486λc 2.00

7 0.64λc 0.597λc 4.00

Table 19: Horn dimensions.
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a.2 results

The plane wave results (designated PW in the figures) Figures 144
through 146 (note the change of scale) correspond to curves that can
be found in available literature referenced above. Here the MMM
results (using 16 modes) do not differ greatly from the plane wave
results.

Figures 147 through 150 show the results for kcam > 1. It is clear
here that the ripple for the plane wave approximation increase for
kcam > 1, reaching a more or less asymptotic value, as reported by
Keele [161]. However, the MMM results show a monotonously de-
creasing ripple magnitude, with a throat impedance curve that ap-
proaches the curve for an infinite horn, Figure 151, with some devia-
tions around the cutoff frequency due to the presence of the radiation
impedance.
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Figure 144: Horn 1: kcam = 0.31.
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Figure 145: Horn 2: kcam = 0.63.
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Figure 146: Horn 3: kcam = 0.94.
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Figure 147: Horn 4: kcam = 1.2.
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Figure 148: Horn 5: kcam = 1.4.
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Figure 149: Horn 6: kcam = 2.0.
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Figure 150: Horn 7: kcam = 4.0.
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Figure 151: Horn 7 (kcam = 4.0) compared to an infinite exponential horn.



B
P O LY N O M I A L C O E F F I C I E N T S F O R R A D I AT I O N
R E S I S TA N C E

The radiation resistance for a circular duct in an infinite baffle is

Znm =
ρc
S

π/2∫
0

sin φDn(sin φ)Dm(sin φ)dφ (344)

where

Dn(τ) =
−
√

2τ J1 (τka)( μn
ka

)2 − τ2
(345)

By expanding Eq. (345) around ka = 0, we get

Dn ≈ −
τ2 (ka)3

√
2μ2

n
+

(−8 + μ2
n)τ

4 (ka)5

8
√

2μ4
n

− ((192− 24μ2
n + μ4

n)τ
6)(ka)7

192
√

2μ6
n

+O(ka)9 (346)

and

D0 ≈
ka√

2
− τ2 (ka)3

8
√

2
+

τ4 (ka)5

192
√

2
− τ6 (ka)7

192
√

2
+O(ka)9. (347)

By integrating these expressions term by term, a polynomial ex-
pansion of the radiation resistance can be found. The polynomial
coefficients are listed in the tables below.
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(ka)n Coefficient

0 0

2 0

4 0

6 4
15μ2

mμ2
n

8 8
35μ4

mμ2
n
+ 8

35μ2
mμ4

n
− 2

35μ2
mμ2

n

10
64

315μ2
mμ6

n
+ 64

315μ4
mμ4

n
− 16

315μ2
mμ4

n

+ 64
315μ6

mμ2
n
− 16

315μ4
mμ2

n
+ 1

189μμ2
n

12
128

693μ4
mμ6

n
− 16

693μ2
mμ6

n
+ 128

693μ6
mμ4

n
− 32

693μ4
mμ4

n

+ 8
2079μ2

mμ4
n
− 16

693μ6
mμ2

n
+ 8

2079μ4
mμ2

n
− 1

4158μ2
mμ2

n

14

512
3003μ6

mμ6
n
− 64

3003μ4
mμ6

n
+ 8

9009μ2
mμ6

n

− 64
3003μ6

mμ4
n
+ 8

3003μ4
mμ4

n
− 1

9009μ2
mμ4

n

− 8
9009μ6

mμ2
n
− 1

9009μ4
mμ2

n
+ 1

216216μ2
mμ2

n

Table 20: Polynomial coefficients for Rnm.

(ka)n Coefficient, R0n Ckoefficient, R00

0 0 0

2 0 1
2

4 − 1
3μ2

n
− 1

12

6 − 4
15μ4

n
+ 1

15μ2
n

1
144

8 − 8
35μ6

n
+ 2

35μ4
n
− 1

168μ2
n

− 1
2880

10 4
315μ6

n
− 4

945μ4
n
+ 13

45360μ2
n

1
90720

12 − 2
2079μ6

n
+ 1

1728μ4
n
− 1

133056μ2
n

− 1
4790016

14 1
54054μ6

n
− 1

432432μ4
n
+ 1

10378368μ2
n

1
498161664

Table 21: Polynomical coefficients for R0n and R00. Coefficients for Rm0 are
identical to those for R0n, apart from using μm instead of μn.



C
U N F L A N G E D C I R C U L A R D U C T

In this appendix, the equations governing the diffraction at the open
end of a semi-infinite, unflanged circular duct, as used in 6.1, will be
summed up. The summary is based on the work by Weinstein [295]
and Snakowska [297, 46], and is included since references [297, 46]
are in Polish and not easily accessible.

Note that to be more consistent with the notation in this thesis,
kn has been used for the axial wavenumber, instead of γn, which is
used in the references. Also, in the summary, a sign convention of
the imaginary unit opposite of that used in the rest of this thesis is
employed. This is to avoid mistakes in the equations. In the final
result, it is only necessary to take the complex conjugate to obtain the
same sign convention as used in the rest of the thesis.

c.1 fundamental equations

We must solve the wave equation

∂2Φ
∂r2 +

1
r

∂Φ
∂r

+
∂2Φ
∂z2 + k2Φ = 0 (348)

for the velocity potential Φ, with the boundary condition

∂Φ
∂r

= 0 for r = a, z ≤ 0. (349)

This is similar to what was done in Section 4.2.1, and gives the mode
function

ψn =
J0(μnr/a)

J0(μn)
. (350)

For the case of an unflanged duct, we are interested in the geometry
shown in Figure 152. We assume an incident wave to be propagating

r

z

z = 0

a
R

θ

−∞

Figure 152: Geometry of the unflanged duct problem (after Snakowska [46]).
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Σ

Σ

S1

S2

S3+

S3−

S3+

S3−
R

0
z

Figure 153: Integration contour (after Snakowska [46]). Σ indicates the duct
wall.

from z = −∞ towards the outlet. Due to the diffraction at the end
of the duct, the sound field inside the duct will consist of the sum of
the incident and the diffracted field, while outside the duct, we only
have the diffracted field. Formally,

Φ(r, z) =

⎧⎨
⎩Φ< = Φinc + Φdi f

< , r ≤ a

Φ> = Φdi f
> , r > a.

(351)

In order to solve the problem we make use of Green’s second theo-
rem,∮

S

(Φ1∇Φ2 −Φ2∇Φ1) · nds =
∫

V(S)

(Φ1ΔΦ2 −Φ2ΔΦ1) dV (352)

where Φ1 is a Green’s function G(r, r′) and Φ2 is the potential. This
is also the basic idea in the Boundary Element Method. The result is
that

Φ(r) =
∮
S

(
G(r, r′)

∂Φ (r′)
∂n′

−Φ
(
r′
) ∂G(r, r′)

∂n′

)
ds′ (353)

where the prime indicates the source. The integration is over the com-
posite surface (S1, S2, S3) shown in Figure 153. Due to the Sommer-
field radiation condition, the integral over surfaces S1 and S2 must be
zero as R goes to infinity, and we are left with integration over the
duct surfaces (inner and outer) only.

This leaves us with the following expression for the potential

Φ(r) = −a
2π∫
0

dϕ′
0∫

−∞

Ψ(a, ϕ′, z′)
∂

∂r
G(r, r′)

∣∣∣∣
r′=a

dz′ (354)

where Ψ describes the jump of potential across the surface at r = a.
Ψ can be expressed as

Ψl(z) = Φinc
l (a, z) + fl(z). (355)
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The Green’s function for cylindrical coordinates is

G(r, r′, ϕ, ϕ′, z, z′) =
i

8π

∞

∑
n=−∞

ein(ϕ−ϕ′)×

×
∞+iη∫

−∞+iη

dweiw(z−z′)

{
H(1)

n (vr)Jn(vr′)

H(1)
n (vr′)Jn(vr)

}
,

r > r′

r < r′
(356)

which reduces to

G(r, r′, z, z′) =
i

8π

∞+iη∫
−∞+iη

dweiw(z−z′)

{
H(1)

0 (vr)J0(vr′)

H(1)
0 (vr′)J0(vr)

}
,

r > r′

r < r′

(357)

if the problem is axisymmetric. Note that it has a form of an inverse
Fourier transform, and that the integration path is parallel to the real
axis.

The potential then becomes

Φl(r, z) = − ia
4

∞∫
−∞

dz′Ψl(z′)

∞+iη∫
−∞+iη

dwe−iw(z−z′)v×

×
{

H(1)
0 (vr)′ J0(vr′)

H(1)′
0 (vr′)J0(vr)

}
,

r > r′

r < r′
, (358)

with the boundary conditions given as

∂Φl

∂r

∣∣∣∣
r=a

= 0 ⇒
∞∫

−∞

Ψl(z′)l(z− z′)dz′ = 0, z ≤ 0. (359)

and

l(z− z′) =
1

2π

∞∫
−∞

dwe−iw(z−z′)v2H(1)′

1 (va)J′1(va). (360)

Solution of the problem of the sound field inside and outside of
a rigid, semi-infinite waveguide now boils down to determining the
function Ψl in Eq. (359), which is a Wiener-Hopf equation with the
offset kernel function l(z − z′). The function l(z − z′) must not be
confused with the mode index subscript l.

Fl(w) and L(w) are the Fourier transforms of fl(z) and l(z) respec-
tively, Fl(w) =

∫ ∞
−∞ fl(z)e−iwzdz and L(w) =

∫ ∞
−∞ l(z)e−iwzdz.

By inspection, Eq. (360) has the form of an inverse Fourier trans-
form of the function v2H(1)′

1 (va)J′1(va), therefore

L(w) = v2H(1)
1 (va)J1(va). (361)
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By the application of the boundary conditions, it can be shown that

Ψl(z) =
1

2π

∞∫
−∞

Fl(w)e−iwzdw + e−iklz = 0, z > 0, (362)

were the second term represents the incident wave, and

∂Φl

∂r

∣∣∣∣
r=a

= 0 ⇒
∞∫

−∞

Fl(w)L(w)e−iwzdw = 0, z ≤ 0. (363)

Eq. (362) says that in the continuation of (in front of) the duct, there
is no jump of potential, while Eq. (363) says that there is a jump for
z ≤ 0, i.e. across the duct wall.

It is now possible by using the Wiener-Hopf technique [295] to find
the expressions for Fl(w) and L(w) that satisfy Equations 362 and 363.
First,

fl(z) = −e−iklz.

This is satisfied if Fl(w) has a first order pole with the residue i−1 at
the point w = −kl , and uniformly tend to zero in the lower half plane
for |w| → ∞.

The equations to be solved for can be written in the form of contour
integrals in the complex plane:∫

C

Fl(w)eiwzdw = 0, z > 0, (364)

∫
C

Fl(w)L(w)eiwzdw = 0, z ≤ 0, (365)

where C is the integration contour, consisting of a line parallel to the
real axis and looping around the point w = −kl .

The requirements for solving this set of equations are

1. Function Fl(w) is analytic in the lower half-plane, Im(w) <

Im(k), excluding the point w = −kl , which is a first-order pole
with residue 1/i, and tends to zero for |w| → ∞.

2. The product Fl(w)L(w) is analytical in the upper half-plane,
Im(w) > −Im(k), and tends to zero for |w| → ∞.

If we assume that L(w) can be factorized as

L(w) = L+(w)L−(w), (366)

both conditions above can be satisfied if

Fl(w) =
K

(w + kl) L−(w)
. (367)

It can be shown that

Resw=−kl Fl(w) = lim
w→−kl

Fl(w)(w + kl) =
K

L−(−kl)
, (368)



C.1 fundamental equations 281

therefore K = −iL−(−kl), and F(w) can be expressed as

Fl(w) =
L−(−kl)

i(w + kl)L−(w)L+
=

L+(kl)L+(w)

i(w + kl)L−(w)L+(w)
, (369)

due to the property of L that L+(−w) = L−(w), and Eq. (366).
It now remains to determine L+(w) and L−(w). This is a long and

complex procedure, detailed in [297, page 233ff], and the results are

L+(w) = (k + w)
[

J0(vr)H′
0(va)

] 1
2 eM

1
2 (w), (370)

L+(w) = (k− w)
[

J0(vr)H′
0(va)

] 1
2 e−

1
2M(w). (371)

The function M(w) is defined as

M(w) =
1
π

∞

∑
n=0

kn+1∫
kn

(
Ω(v′a)−Ω(μn)

) ( 1
w′ + w

− 1
w′ − w

)
dw′

(372)
where

Ω(va) = arg H(1)
1 (va)− π

2
= arctan

Y1(va)
J1(va)

− π

2
(373)

and
Ω(μn) = nπ, Ω(0) = 0 (374)

Therefore,

M(w) =
2w
π

∞

∑
n=0

kn+1∫
kn

Ω(v′a)− nπ

w2 − w′2
dw′ (375)

or

M(w) =
2w
π

i∞∫
k0

Ω(v′a)− nπ

w2 − w′2
dw′. (376)

By writing out the sum and collecting terms, it is possible to write
M(w) as

M(w) =
1
π

∞

∑
n=0

kn+1∫
kn

Ω(v′a)
(

1
w′ + w

− 1
w′ − w

)
dw′

+ lim
M→∞

[
M

∑
n=1

ln
kn + w
kn − w

+ M ln
kn − w
kn + w

]
. (377)

In the sum limM→∞ ∑M
n=1 ln kn+w

kn−w , the Nm first terms are logarithms
of real numbers (the first Nm modes that are propagating), so by writ-
ing

M(w) =
Nm

∑
i=1

ln
kn + w
kn − w

+ S(w), (378)
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we get

eM(w) =
Nm

∏
i=1

ki + w
ki − w

eS(w), (379)

and we can write

L+(w) = (k + w)

[
J0(vr)H′

0(va)
Nm

∏
i=1

ki + w
ki − w

] 1
2

e
1
2 S(w) (380)

L−(w) = (k− w)

[
J0(vr)H′

0(va)
Nm

∏
i=1

ki − w
ki + w

] 1
2

e−
1
2 S(w). (381)

The function S(w), which explicitly is written as

S(w) =
1
π

∞

∑
n=0

kn+1∫
kn

Ω(v′a)
(

1
w′ + w

− 1
w′ − w

)
dw′

+ lim
M→∞

M

∑
n=Nm+1

(
ln

kn + w
kn − w

+ M ln
kn − w
kn + w

)
, (382)

can be split into real and imaginary parts [297, pages 251–254],

S(w) = X(w) + iY(w) (383)

where

X(w) =
1
π

P
k∫

−k

Ω(v′a)
w′ − w

dw′ (384)

Y(w) =
2wa

π
−Ω(va)− i lim

M→∞

⎡
⎣ M

∑
n=Nm+1

kn + w
kn − w

− 1
π

kN∫
−kN

Ω(v′a)
w′ − w

dw′

⎤
⎦ ,

(385)
and the P in Eq. (384) indicates the principal value.

The velocity potential inside the duct, for a single incident mode,
can now be described as

Φl(r, z) =
J0(μnr/a)

J0(μn)
eiklz − ai

4

∞∫
−∞

dwe−iwzvFl(w)H(1)′
0 (va)J0(vr).

(386)
The numerical implementation of these functions will be given in

Section C.4.

c.2 reflection factor

With an incident mode of order l, the total sound field is given as

Φl(r, z) =
J0
(
r μl

a

)
J0(μl)

eiklz +
N

∑
n=0

Rln
J0
(
r μn

a

)
J0(μn)

e−iknz, (387)



C.2 reflection factor 283

where Rln is the reflection factor from mode l into mode n. This
reflection factor is then defined as

Rln = lim
w→kl

L+(w) lim
w→kn

w− kn

(w + kl)L−(w)
. (388)

In order to be able to calculate Rln, we will have to solve these limits
for the L+ and L− functions. There are two cases: l = 0 and l �= 0,
that have to be handled separately. First for l = 0, we have that w = k
and v = 0, so the limit we have to solve is

lim
va→0

J1(va)H(1)
1 (va) = i lim

va→0
J1(va)Y1(va). (389)

Using the approximation to the Bessel functions for small arguments,

Jv(z) ∼=
1

Γ(v + 1)

( z
2

)2
, v ≥ 0, |z| � 1

Yv(z) ∼= −
Γ(v)

π

(
2
z

)2

, v > 0, |z| � 1

we find that
lim

va→0
J1(va)H(1)

1 (va) = − i
π

. (390)

The other limit is for l �= 0. In this case we have a case of 0/0, and
we have to use l’Hopital’s rule. The limit can be split into two parts:

lim
w→kl

J1(va)H(1)
1 (va)

kl − w
= lim

w→kl

J2
1(va)

kl − w
− lim

w→kl

i J1(va)Y1(va)
kl − w

. (391)

For the first part, and using the fact that v2 = k2−w2 giving v = μl/a
when w → kl ,

lim
w→kl

J2
1(va)

kl − w
= 2 J1(μl)︸ ︷︷ ︸

=0

J′1(μl)
kla2

μl
= 0, (392)

due to the fact that μl is the zero of J1.
For the second part,

lim
w→kl

i J1(va)Y1(va)
kl − w

= i

⎡
⎣J′1(μl)Y1(μl)− J1(μl)Y1(μl)︸ ︷︷ ︸

=0

⎤
⎦ akl

μl
a

=
ikla2

μl
J′1(μl)Y1(μl).

(393)
Using the relations

J′1(μl) = J0(μl)

and
Y1(μl) = −

2
πμl J0(μl)

we arrive at

lim
w→kl

i J1(va)Y1(va)
kl − w

= −2ikla2

πμ2
l

. (394)
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By now expanding L+ and L− in Eq. (388), the reflection factor can
be expressed as

Rln = − 2kl

kl + kn

[
Nm

∏
i=0,i �=l

ki + kl

ki − kl

Nm

∏
i=0,i �=l

ki + kn

ki − kn

] 1
2

e
1
2 (S(kl)+S(kn)). (395)

It may be more convenient to express Rln as modulus and phase,

Rln = − |Rln| eiθln ,

in which case

|Rln| =
2kl

kl + kn

[
Nm

∏
i=0,i �=l

∣∣∣∣ ki + kl

ki − kl

∣∣∣∣ Nm

∏
i=0,i �=l

∣∣∣∣ ki + kn

ki − kn

∣∣∣∣
] 1

2

e
1
2 (X(kl)+X(kn))

(396)
and

θln =

⎧⎨
⎩Y(kl) + Y(kn), l + n even,

Y(kl) + Y(kn) + π, l + n odd.
(397)

In calculating the matrix of reflection coefficients, much work can
be saved by first calculating a vector of the values of the modal wave
numbers kn, and the four vectors of X and Y functions for the values
of kn employed. The remainder of the calculations consists then to a
large degree of combining the tabulated values.

c.3 directivity

The sound field in outside of the waveguide can be expressed as [47]

Φl(r, z) =
ia
4

k2
∮
c1

dαeikz sin α cos2 αF(k sin α)

·
{

J0(kr cos α)H(1)′
0 (ka cos α)

J′0(ka cos α)H(1)
0 (kr cos α)

}
,

r > a

r < a
(398)

using the complex variable α, defined as w = k sin α. C1 is the con-
tour of integration in the α complex plane. By using the asymptotic
expansion of the Hankel function for large arguments,

H(1)
0 (z) =

√
2

πz
ei(z− π

4 )
{

1 +
1

8iz
+ ...
}

,

and the saddle-point method, an expression for the potential in the
far field can be found. The procedure is detailed in [47], and gives
[48]

pl(R, θ) = − k
2

Pl sin θ J1(ka sin θ)Fl (−k cos θ)
eikR

R
= dl(θ)

eikR

R
, (399)
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where Pl is the pressure amplitude of mode l. The equation is valid
for kR sin2 θ � 1 and holds for both r > a and r < a, although it is
arrived at in two slightly different ways for the two cases.

If the observation point is closer to the outlet, a higher order ap-
proximation is needed. This approximation is not used in this thesis,
but the details are given in [47].

c.4 numerical calculations

This section will give some details on the numerical implementation
of the kernel functions given above. The details are taken from notes
prepared by Dr. Jerzy Jurkiewicz.

c.4.1 Function X

Function X(w) is defined as

X(w) =
1
π

P
k∫

−k

Ω(v′a)
w′ − w

dw′ (400)

with v′2 + w′2 = k2. It is convenient to used normalized variables. We
introduce p = w/k, y = w′/k, both in the range [−1, 1], giving the
scaled version

X(p) =
1
π

1∫
−1

Ω
(

ka
√

1− y2
)

y− p
dy. (401)

With the following change of variables

y = cos t dy = − sin t

p = cos r r = arccos p

we get

X(p) = − 1
π

0∫
π

Ω (ka sin t) sin t
cos t− cos r

dt =
1

2π

0∫
π

Ω (ka sin t) sin t
sin
( t+r

2

)
sin
( t−r

2

)dt

(402)
By now introducing the function

Θ(x) =
Ω(x)

x
, Θ(0) = 0,

we arrive at

X(p) =
ka
2π

0∫
π

Θ (ka sin t)
sin2 t

sin
( t+r

2

)
sin
( t−r

2

)dt (403)
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which can be integrated by standard methods except in the region
t ≈ r.

In this region we make use of the following transformation:

t ∈ (A, B) A = r− H, B = r + H

X(p) =
ka
2π

B∫
A

f (t)
1

sin
( t−r

2

)dt (404)

where

f (t) = Θ(ka sin(t)) · sin2 t
sin
( t+r

2

) . (405)

We now introduce the new variable

x = sin
(

t− r
2

)
, t = r + 2 arcsin x

X(p) =
ka
2π

D∫
C

2
f (r + 2 arcsin x)√

1− x2︸ ︷︷ ︸
g(x)

·1
x

dx (406)

where the new integration limits are

C = sin
(

A− r
2

)
, D = sin

(
B− r

2

)
The method used to integrate this expression is to make a polyno-
mial approximation of g(x), algorithmically perform a polynomial
division by x, and integrate the resulting quotient and remainder.
With

g(x) ≈ ...c3x3 + c2x2 + c1x + c0 = W(x) (407)

we perform the polynomial division W(x)/x so that

W(x) = P(x) · x + R.

We can now find the integral as

X(p) =
ka
π

⎡
⎣ D∫

C

P(x)dx +

D∫
C

R
x

dx

⎤
⎦ (408)

where the integral over P(x) can be performed algorithmically, pro-
ducing a new polynomial Q(x) =

∫
P(x)dx, and the second integral

can be solved analytically:

X(p) =
ka
π

[Q(D)−Q(C) + R {ln D− ln C}] (409)

For the endpoints, p = ±1, i.e. for r = 0 and r = π, we have first
for r = 0:

X(p) =
ka
2π

0∫
π

Θ (ka sin t)
sin2 t
sin2 t

2

dt (410)
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where we can do the following rearrangement:

(
sin t
sin t

2

)2

=

(
2 sin t

2 cos t
2

sin t
2

)2

= 4 cos2 t
2

= 2(1 + cos t),

and the resulting function

X(p) =
ka
2π

0∫
π

Θ (ka sin t) (1 + cos t) dt (411)

can be integrated by standard methods. A similar procedure can
be followed for r = π, giving a result that is identical, save for an
opposite sign.

c.4.2 Function Y

Function Y(w) is defined as

Y(w) = res +
2w
π

j∞∫
0

ω(v′a)
w2 − w′2

dw′ (412)

with v′2 + w′2 = k2, res is a residual, and1

ω(x) = Ω(x) + nπ, μn < x < μn+1. (413)

By setting y = jw′ we get

Y(w) = res +
2w
π

∞∫
0

ω
(

a
√

k2 + y2
)

w2 + y2 dy (414)

It is convenient to used normalized variables. We introduce p =

w/k and set y = x · k, giving the scaled version

Y(p) = res +
2p
π

∞∫
0

ω
(

ka
√

1 + x2
)

p2 + x2 dx. (415)

We now split up the integral in a sum of sub-integrals over subranges
limited by the zeros of J1:

Y(p) = res+
2p
π

M

∑
n=0

βn+1∫
βn

ω
(

ka
√

1 + x2
)

p2 + x2 dx+
2p
π

∞∫
βM+1

ω
(

ka
√

1 + x2
)

p2 + x2 dx.

︸ ︷︷ ︸
tail

(416)

1 Mind the difference between ω (omega) and w.
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Here

βn =

√(μNm+n

ka

)2
− 1 (417)

where Nm is the index of the first mode in cutoff. The residual res is

res = −
(

Ω
(

ka
√

1− p2

)
− Nπ

)
· sign (p) . (418)

The tail of the integral is approximated as follows: for n > M + 1,
the integration sub-ranges are approximately of length π. The nom-
inator changes almost linearly from 0 to π, and the most significant
factor is x2 > β2

M+1. Therefore, the tail integral can be approximated
as follows:

tail ≈ 2p
π

∞∫
βM+1

π/2
p2 + x2 dx =

∞∫
βM+1

p
p2 + x2 dx

=

[
arctan

x
p

]∞

βM+1

= arctan
βM+|

p
. (419)

For the subranges, we proceed as for X(w). Given

βn+1∫
βn

ω
(

ka
√

1 + x2
)

p2 + x2 dx =

βn+1∫
βn

f (x)
p2 + x2 dx, (420)

we make a polynomial approximation of f (x), algorithmically per-
form a polynomial division by p2 + x2, and integrate the resulting
quotient and remainder. With

f (x) ≈ ...w3x3 + w2x2 + w1x + w0 = W(x). (421)

Now we perform the polynomial division to get

W(x)
p2 + x2 = P(x) +

qx
p2 + x2 +

r
p2 + x2 (422)

where q and r are the remainders. This gives

βn+1∫
βn

W(x)
p2 + x2 dx =

βn+1∫
βn

P(x)dx +

βn+1∫
βn

qx
p2 + x2 dx +

βn+1∫
βn

r
p2 + x2 dx. (423)
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The first part is integrated algorithmically, producing a new polyno-
mial Q(x) =

∫
P(x)dx, and the to other parts are integrated analyti-

cally, giving

βn+1∫
βn

W(x)
p2 + x2 dx = [Q(x)]βn+1

βn

+ q

[
1
2

ln

(
1 +
(

x
p

)2
)]βn+1

βn

+
p
r

[
arctan

x
p

]βn+1

βn

. (424)

A suitable value for M is 30-100.

c.4.3 Directivity Function

The directivity function is given as

dl(θ) = −
k
2

sin θ J1(ka sin θ)Fl (−k cos θ) . (425)

In order to calculate the directivity function, a method to compute
L(w) and Fl(w) is needed. We have that

L(w) = L+(w)L−(w) = v2 J1(va)H(1)
1 (va), (426)

and

Fl(w) =
L+(kl)L+(w)

i(w + kl)v2 J1(va)H(1)
1 (va)

. (427)

L+ and L− are defined in Eq. (380) and Eq. (381), respectively. With
w = k cos θ and v = k sin θ, v2 = k2 − w2,

dl(θ) = −
v
2

J1(av)Fl (−w) . (428)

Let us now express L+ as

L+(w) = (k0 + w)

[
J1(va)H(1)

1 (va)
Nm

∏
n=1

kn + w
kn − w

] 1
2

e
1
2 S(w)

= (k + w)
[

H(1)
1 (va)L1(w)

] 1
2 e

1
2 S(w), (429)

where

L1(w) = J1(va)
Nm

∏
n=1

kn + w
kn − w

. (430)

Le us also introduce normalized arguments, so that

w = k · p p = cos θ

q2 = 1− p2

v = k · q q = sin θ

kn = k · gn g2
n = 1−

(μn

ka

)2
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which enables us to use normalized function calls, so we can use the
normalized X and Y functions derived above. We now have

dl(θ) = −
k · q

2
J1(ka · q)Fl (−p) (431)

where

Fl(p) =
1
k
· L+(gl)L+(p)

i(p + gl) (ka · q)2 J1(ka · q)H(1)
1 (ka · q)

, (432)

L+(w) = (1 + p)
[

H(1)
1 (ka · q)L1(p)

] 1
2 e

1
2 S(p), (433)

L1(p) = J1(ka · q)
Nm

∏
n=1

gn + p
gn − p

. (434)

Now we can simplify d(θ):

dl(θ) = −
k · q

2
J1(ka · q) L+(gl)L+(−p)

ik(−p + gl)k2q2 J1(ka · q)H(1)
1 (ka · q)

= − 1
2k2q

· L+(gl)L+(−p)

i(−p + gl)H(1)
1 (ka · q)

. (435)

By introducing normalized function Lk
+(p) = kL+(p), we can further

simplify to

dl(θ) = −
1
2q
· L+(gl)L+(−p)

i(−p + gl)H(1)
1 (ka · q)

. (436)

J1 (ka · q) has zeros when p = gn, and we get an expression of the
type 0/0. In addition, as p → ±1, q → 0, and Y1 (ka · q)→ ∞. We use
the small argument approximation of J1 and Y1, so that

Y1(z) ∼=
2
π
· 1

z

J1(z) ∼=
1
2

z− z2

8π

giving

J1(z)Y1(z) ∼=
1
π
− z2

8π
.

We can now express the directivity function as

dl(θ) = −
(1− p)

2q
· L+(gl)

i(−p + gl)H(1)
1 (ka · q)

[
H(1)

1 (ka · q)L1(−p)eS(−p)
] 1

2

=
i · L+(gl)

2(p− gl)H(1)
1 (ka · q)

· (1− p)
q

×
[

H(1)
1 (ka · q)J1(ka · q)

Nm

∏
n=1

gn − p
gn + p

.eS(−p)

] 1
2

. (437)
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M O D E L H O R N D E S C R I P T I O N

The horn used in the many of the tests in this thesis has a cross-
sectional area which follows the hyperbolic-exponential horn profile
of Salmon-type horns [93]. The area expansion is given by

S(z) = Sth (cosh kcz + T sinh kcz)2 (438)

where kc is the cutoff wavenumber, Sth is the throat area, and T is a
parameter determining the shape of the horn. The horn is square with
Sth = 42.25 cm2, Sm = 1188.80 cm2, T = 0.7 and a cutoff frequency of
200 Hz. The length of the horn is 0.5 m. It is manufactured using
bent MDF sheets with an inner skin of 1 mm aluminium. Total wall
thickness is 14 mm, and stiffening ribs are glued to the outside. The
horn is fitted with a 0.5 by 0.5 m flange that fits into a large baffle.

A photo of the horn is shown in Figure 154.

Figure 154: The horn used in the experiments.
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E
D I S T R I B U T E D S O U R C E S I N R O O M S

During the work on horns in rooms or room walls, the approach
of Method 1 outlined in Chapter 8 was investigated to see if it was
possible to obtain the radiation impedance for a horn placed inside
the room. A rectangular region of monopoles, as used in Section
8.1, clearly constitutes a radiator radiating in both directions. What
is needed is a one-sided radiator. This could be achieved with a
combination of a monopole and a dipole radiator, as described by
Beranek and Mellow for the one-sided piston in a finite baffle [288].
It was tried using a dipole source consisting of two monopoles in anti-
phase, but it was soon realized that this would not be the appropriate
source for this case, because it does not describe an open oscillating
piston, but rather an open oscillating resilient disc.

While the investigations did not produce directly useful results for
the radiation impedance and sound field of one-sided rectangular ra-
diators in rooms, the equations derived in the process may be useful,
and are therefore presented in this appendix.

A much-used function, that was also used in Chapter 8, is repeated
here:

Υm
mx
(a, x1, lx) =

x1+a/2∫
x1−a/2

Nmx cos
(

mxπ(x− x1 +
a
2
)/a
)

cos (mπx/lx) dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, m = 0, mx = 0
2lx
mπ cos

(
mπx1

lx

)
sin
(

mπa
2lx

)
m > 0, mx = 0

0 m = 0, mx > 0
√

2a2lxm
(

sin
(

πm(a−2x1)
2lx

)
+(−1)mx sin

(
πm(a+2x1)

2lx

))
π(ma−mxlx)(ma+mxlx)

m > 0, mx > 0

(439)

where m is the room mode index, and mx is the mode index of the
excitation.

The equations presented in this chapter, as well as those in Chap-
ter 8, have all been computed using Mathematica symbolic software.
Therefore the steps in the derivations cannot be shown.
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e.1 dipole source

Yousri and Fahy [339] give the mode function for a dipole source in a
room as

ψ(x, y, z) = cos kx

(
x− Δx

2

)
cos ky

(
y− Δy

2

)
cos kz

(
z− Δz

2

)

− cos kx

(
x +

Δx
2

)
cos ky

(
y +

Δy
2

)
cos kz

(
z +

Δz
2

)
� Δxkx sin (kxx) cos

(
kyy
)

cos (kzz)

+ Δyky cos (kxx) sin
(
kyy
)

cos (kzz)

+ Δzkz cos (kxx) cos
(
kyy
)

sin (kzz) (440)

where Δx etc. are the dipole moments in the coordinate directions.
It is then possible to express the pressure in the room (assuming the
dipole is aligned along the x axis) as

p(x, y, z) =
jωρc2

abV
Umx ,my ∑

N
ΩNΔzkz

× sin
(

qπz0

lz

)
Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)ψN(x, y, z). (441)

The radiation impedance is then

Zm = − jωρc2

V ∑
N

ΩNΔzkz sin
(

qπz0

lz

)
cos
(

qπz0

lz

)
× Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)Υm

nx
(a, x0, lx)Υn

ny
(b, y0, ly). (442)

e.2 angled monopole source

Assuming a angled source in a room, with an angle θ to the z-axis.
The source is parallel to the y-axis, but angled with respect to x and
z. See Figure 155.

Let the line along the source in the x− z plane be parametrized by
t = 0...1, with corners in (x1, z1) and (x2, z2), and center in (xc, zc):

x = x1 + t(x2 − x1) (443)

z = z1 + t(z2 − z1) (444)

x1 = xc −
a
2

cos θ (445)

x2 = xc +
a
2

cos θ (446)
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θ

z

x

Source

Room

Figure 155: Angled source in a room.

z1 = zc +
a
2

sin θ (447)

z1 = zc −
a
2

sin θ (448)

x(t) = xc − (
1
2
+ t)a cos θ (449)

z(t) = zc +

(
1
2
− t
)

a cos θ (450)

For a piston, we solve the integrals

IM
zx =

1∫
0

cos
(

mπx(t)
lx

)
cos
(

qπz(t)
lz

)
dt (451)

IM
zx =

1∫
0

cos

(
mπ
(

xc − ( 1
2 + t)a cos θ

)
lx

)
cos

(
qπ
(
zc +

( 1
2 − t

)
a cos θ

)
lz

)
adt

(452)
to give

IM
zx =

2lxlz

π (lzm cos θ − lxq sin θ) (lzm cos θ + lxq sin θ)
×{

cos
(

aπq sin θ

2lz

)
sin
(

aπm cos θ

2lx

) [
lzm cos θ cos

(
mπxc

lx

)
cos
(

qπzc

lz

)

−lxq sin θ sin
(

mπxc

lx

)
sin
(

qπzc

lz

)]

+ sin
(

aπq sin θ

2lz

)
cos
(

aπm cos θ

2lx

) [
lzm cos θ sin

(
mπxc

lx

)
sin
(

qπzc

lz

)

−lxq sin θ cos
(

mπxc

lx

)
cos
(

qπzc

lz

)}
. (453)



296 distributed sources in rooms

For modes in the x-direction, the mode function will be

ψt = Nnx cos (mxπt) (454)

since it will go along the width of the horn, which is now
parametrized as t. The resulting integral is

IM
zx =

alxlzNmx

4

{
(−1)mx 1

π

(
1

lxlzmx + alzm cos θ − alx sin θ

− 1
lxlzmx − alzm cos θ + alx sin θ

)
sin γ1+

+
2a
π

[
(lzm cos θ − lxq sin θ) sin γ2

(lxlzmx + alzm cos θ − alx sin θ) (lxlzmx − alzm cos θ + alx sin θ)
+

+
(lzm cos θ + lxq sin θ)

(
(−1)mx sin γ3 + sin γ4

)
(−lxlzmx + alzm cos θ + alx sin θ) (lxlzmx + alzm cos θ + alx sin θ)

]}
(455)

where

γ1 =
π (2lzmxc + 2lxqzc + alzm cos θ − alxq sin θ)

2lxlz
(456)

γ2 =
π (2lzmxc + 2lxqzc − alzm cos θ + alxq sin θ)

2lxlz
(457)

γ3 =
π (2lzmxc − 2lxqzc + alzm cos θ + alxq sin θ)

2lxlz
(458)

γ3 =
π (−2lzmxc + 2lxqzc + alzm cos θ + alxq sin θ)

2lxlz
. (459)

Some special cases:
m = 0, q = 0, mx = 0:

Izx = a1 (460)

m = 0, q > 0, mx = 0:

IM
zx =

2lz cos
(

qπzc
lZ

)
sin
(

aπq sin θ
2lz

)
πq sin θ

(461)

m > 0, q = 0, mx = 0:

IM
zx =

2lx cos
(

mπxc
lx

)
sin
(

aπm cos θ
2lx

)
πm cos θ

(462)

m = 0, q = 0, mx > 0:
Izx = 0 (463)
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m = 0, q > 0, mx > 0:

IM
zx = Nmx a2lzq sin θ

×

(
sin
(

πq(2zc+a sin θ)
2lz

)
− (−1)mx sin

(
πq(2zc−a sin θ)

2lz

))
π (qa sin θ −mxlz) (qa sin θ + mxlz)

(464)

m > 0, q = 0, mx > 0:

IM
zx = Nmx a2lxm cos θ

×

(
sin
(

πm(2xc−a cos θ)
2lx

)
− (−1)mx sin

(
πm(2xc+a cos θ)

2lx

))
π (mxlx − am cos θ) (mxlx + am cos θ)

(465)

e.3 angled dipole source

For an angled dipole source, there will be a dipole moment in two
directions (denoting the dipole moment by D):

Δz = D cos θ (466)

Δx = D sin θ (467)

so that the mode function (disregarding a modal source distribution)
is

ψN(x0, y0, z0) = D sin θ

(
mπ

lx

)
sin
(

mπxc

lx

)
cos
(

nπyc

ly

)
cos
(

qπzc

lz

)

+ D cos θ

(
qπ

lz

)
cos
(

mπxc

lx

)
cos
(

nπyc

ly

)
sin
(

qπzc

lz

)
. (468)

The integral to be solved is now

ID
zx =

1∫
0

{
D sin θ

(
mπ

lx

)
sin
(

mπxc

lx

)
cos
(

nπyc

ly

)
cos
(

qπzc

lz

)

+D cos θ

(
qπ

lz

)
cos
(

mπxc

lx

)
cos
(

nπyc

ly

)
sin
(

qπzc

lz

)}
adt (469)

which gives

ID
zx =

2D
[
cos
(

aπq sin θ
2lz

)
sin
(

aπm cos θ
2lx

)
F1 − sin

(
aπq sin θ

2lz

)
cos
(

aπm cos θ
2lx

)
F2

]
(lzm cos θ − lxq sin θ) (lzm cos θ + lxq sin θ)

(470)

where

F1 =
(
l2
z m2 + l2

xq2) cos θ sin θ cos
(

qπzc

lz

)
sin
(

mπxc

lx

)

+ lxlzmq cos
(

mπxc

lx

)
sin
(

qπzc

lz

)
(471)
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F2 =
(
l2
z m2 + l2

xq2) cos θ sin θ cos
(

mπxc

lx

)
sin
(

qπzc

lz

)

+ lxlzmq cos
(

qπzc

lz

)
sin
(

mπxc

lx

)
(472)

Special cases:
m = 0, q = 0, mx = 0:

Izx = 0 (473)

m = 0, q > 0, mx = 0:

ID
zx = 2D cot θ sin

(
qπzc

lZ

)
sin
(

aπq sin θ

2lz

)
(474)

m > 0, q = 0, mx = 0:

ID
zx = 2D tan θ sin

(
mπxc

lx

)
sin
(

aπm cos θ

2lx

)
(475)

In the case of multimodal excitation,

ID
zx =

Nmx

1∫
0

{
D sin θ

(
mπ

lx

)
sin
(

mπxc

lx

)
cos
(

nπyc

ly

)
cos
(

qπzc

lz

)

+D cos θ

(
qπ

lz

)
cos
(

mπxc

lx

)
cos
(

nπyc

ly

)
sin
(

qπzc

lz

)}
× cos (mxπt) adt (476)

which gives

ID
zx =

a2DNmx

2
{(

(−1)mx cos γ1 − cos γ2
)

× (lzm cot θ − lxq) (lzm + lxq cot θ)

−a2 (lxq− lzm cot θ)2 + l2
xl2

z m2
x csc2 θ

+

+
1

−a2 (lxq + lzm cot θ)2 + l2
xl2

z m2
x csc2 θ

×
[
(−1)mx cos γ3 (lxq + lzm cot θ) (lzm− lxq cot θ)

+ cos γ4 (lxq + lzm cot θ) (lxq cot θ − lzm)]} (477)

where

γ1 =
π (2lzmxc + 2lxqzc + alzm cos θ − alxq sin θ)

2lxlz
(478)

γ2 =
π (2lzmxc + 2lxqzc − alzm cos θ + alxq sin θ)

2lxlz
(479)
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γ3 =
π (2lzmxc − 2lxqzc + alzm cos θ + alxq sin θ)

2lxlz
(480)

γ3 =
π (−2lzmxc + 2lxqzc + alzm cos θ + alxq sin θ)

2lxlz
(481)

Special cases:
m = 0, q = 0, mx > 0:

Izx = 0 (482)

m = 0, q > 0, mx > 0:

ID
zx = Nmx a2Dq2 sin 2θ

×

(
cos
(

πq(2zc+a sin θ)
2lz

)
− (−1)mx cos

(
πq(2zc−a sin θ)

2lz

))
2 (mxlz − qa sin θ) (mxlz − qa sin θ)

(483)

m > 0, q = 0, mx > 0:

ID
zx = Nmx a2Dm2 sin 2θ(

cos
(

πm(2xc−a cos θ)
2lx

)
− (−1)mx sin

(
πm(2xc+a cos θ)

2lx

))
2 (am cos θ −mxlx) (am cos θ + mxlx)

(484)

e.4 radiation impedance , angled source

Again, we have that the radiation impedance is given as

Zm = − jωρc2

V ∑
N

ΩN

x2∫
x1

y2∫
y1

ψN(x0, y0, z0)dx0dy0

×
x2∫

x1

y2∫
y1

ψN(x, y, z0)dxdy (485)

which gives for a straight monopole source

Zm = − jωρc2

V ∑
N

ΩN cos2
(

qπz0

lz

)
× Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)Υm

nx
(a, x0, lx)Υn

ny
(b, y0, ly), (486)

and for a straight dipole source:

Zm = − jωρc2

V ∑
N

ΩNΔzkz sin
(

qπz0

lz

)
cos
(

qπz0

lz

)
× Υm

mx
(a, x0, lx)Υn

my
(b, y0, ly)Υm

nx
(a, x0, lx)Υn

ny
(b, y0, ly). (487)
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An angled monopole gives

Zm = − jωρc2

V ∑
N

ΩN

(
IM
zx (m, q, mx, lx, lz, x0, z0)

)2

× Υn
my
(b, y0, ly)Υn

ny
(b, y0, ly), (488)

and and angled dipole

Zm = − jωρc2

V ∑
N

ΩN

(
ID
zx(D, m, q, mx, lx, lz, x0, z0)

)2

× Υn
my
(b, y0, ly)Υn

ny
(b, y0, ly). (489)
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