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Abstract

A systematic approach to quantify uncertainties in an integrated reforming combined cycle (IRCC) process

model employing CO2 capture is presented. IRCC involves reforming of natural gas into a hydrogen-rich

fuel which is then used as gas turbine fuel. Included in an IRCC plant is also a steam bottoming cycle. The

analysis treats uncertain parameters as random variables whose probability distributions are estimated from

limited existing information using entropy maximization. Uncertainties of model parameters were propa-

gated through the process model using the deterministic equivalent modeling method as a computationally

efficient alternative to Monte Carlo simulations. The method also quantifies the effect of each parameter

on the total uncertainty of model outputs. The IRCC process model was evaluated in terms of four perfor-

mance metrics: 1) net plant power output, 2) net plant efficiency, 3) CO2 capture rate, and 4) CO2 emitted

per kWh of generated electricity. Simulation results showed that there was considerable uncertainty in the

predicted net power output whereas the other three variables were less affected by input uncertainties. The

IRCC plant was predicted to have a median net efficiency of 43.4% with a standard deviation of 0.5%,

representing a loss of approximately 13%-points compared to a natural gas combined cycle plant without

CO2 capture. Results also indicated that the probability of meeting the requirement of at least 85% CO2

capture rate for the plant was approximately 95%. Parameters with the largest impact on uncertainties of

power output and efficiency predictions proved to be gas turbine inlet temperature, and compressor and

turbine efficiencies. For the CO2 emissions, the equipment pressure drop and the steam-to-carbon ratio

proved important. Therefore, the focus of future work should be to reduce uncertainties in these parameters

in order to improve the confidence of the IRCC model.
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1. Introduction1

Capturing the greenhouse gas CO2 from fossil fueled power plants can be part of a mitigation strategy2

to attenuate climate change. There are several approaches for capturing CO2 from power generation. Pre-3

combustion capture, where the fossil fuel is decarbonized to produce a syngas, is one option. The carbon, as4

CO2, is separated out before the combustion takes place. For coal, pre-combustion capture could be imple-5

mented in an integrated gasification combined cycle (IGCC). IGCC plants exist, but none of them employs6

CO2 capture. For natural gas pre-combustion capture, the integrated reforming combined cycle (IRCC)7

which reforms natural gas into a hydrogen-rich fuel, is one alternative. This technology has yet to be imple-8

mented in practice. Research and development of new energy and environmental control technologies like9

the IRCC, without exception, face significant challenges due to lack of experience in commercial application10

of such technologies. Uncertainty is likely to exist in a wide range of parameters that characterize process11

models, including material properties, operating conditions, and design factors. The uncertain nature of12

model parameters, coupled with uncertainty associated with process configuration, renders predictions of the13

commercial-scale performance and cost of a new technology inherently uncertain. This suggests uncertainty14

need to be systematically and explicitly analyzed in modeling advanced technologies in order to examine the15

impact on model outputs and establish confidence limits of the predictability of models. Failure to account16

for uncertainty often results in point estimates of performance and cost that are based on poorly calibrated17

data or assumed values of parameters. Such estimates are unable to capture the full spectrum of possi-18

ble outputs and can sometimes have misleading implications regarding comparative analysis of alternative19

technologies [1].20

A systematic approach is needed to explicitly characterize uncertainties in IRCC systems. Uncertainty21

analysis provides the means to carry out this investigation and aims to address three major issues: (1)22

uncertainty quantification; (2) uncertainty propagation; (3) sensitivity analysis. The primary aim of uncer-23

tainty quantification is to select a set of parameters that are subject to significant uncertainties and develop24

quantitative representation of their uncertainties. Uncertainty propagation implements process models with25

probabilistic inputs and determine uncertainties in the model predictions. Sensitivity analysis, defined in26

a slightly different way from convention, examines the dependence of model predictions to uncertainties in27

the input parameters and identifies those which contribute the most to overall uncertainties. By excluding28

insignificant parameters from future analysis, computational requirement can be lowered and research ef-29

forts be directed to those where reduction in uncertainty would best improve the predictive capability of the30

models. Uncertainty propagation is by far, among the three tasks, the most demanding one.31

Conventional approach to propagation of parametric uncertainty is via Monte Carlo simulation with ei-32

ther simple or stratified sampling methods. In Monte Carlo simulations, each uncertain parameter is treated33

as a random variable and assigned an appropriate probability distribution. Samples of model parameters34
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are drawn from their respective probability distributions and the process model is solved repeatedly to yield35

a set of predicted values from which the probability distribution and other statistics of model response can36

be inferred. Monte Carlo simulation has by far been predominantly employed in study of uncertainties37

associated with advanced energy and environmental control technologies [1, 2, 3, 4]. Monte Carlo simu-38

lation, however, suffers from two major drawbacks. First, computational requirement heavily depends on39

the number of uncertain parameters and the complexity of process models. It easily becomes intractable as40

hundreds of thousands of samples may be needed for models with large number of parameters. Variance41

reduction techniques like stratified sampling can alleviate computational burden but only to modest extent.42

Second, this approach does not provide direct information about the sensitivity of model outputs to specific43

parametric uncertainties.44

To address the aforementioned problems associated with conventional methods, a comprehensive uncer-45

tainty analysis framework has been developed. It possesses the following key features: (1) quantification46

of parametric uncertainties by means of entropy maximization; (2) propagation of uncertainties using a47

computationally efficient method; and (3) determination of sensitivities of uncertain parameters. The main48

objectives of this paper are to demonstrate the effectiveness of the uncertainty analysis framework in process49

modeling and to assess the effect of parametric uncertainties on the predictions of an IRCC model. Similar50

process configurations have previously been studied [5, 6, 7, 8, 9, 10, 11]. Results from these studies show51

lower heating value (LHV) net plant efficiencies ranging from 42% to 51% and CO2 capture rates between52

80% and 95%.53

The remainder of the article is divided into the following sections: Section 2 describes the details of54

the methodologies used in the article including a description of the process, model assumptions, and the55

uncertainty methodology. The results are shown and analyzed in Section 3, and concluding remarks are56

given in Section 4.57

2. Methodology58

The IRCC was modeled in GT PRO and Aspen Plus. GT PRO was used for the power plant model59

including the gas turbine (GT), steam turbine (ST), and heat recovery steam generator (HRSG). The Aspen60

Plus simulations consisted of two separate models. One included the reforming process and the water-gas61

shift reactors. In this model, numerous heat exchangers were included, among those the whole process62

pre-heating section. Air and CO2 compression was also incorporated into the model. The other Aspen Plus63

model was a chemical absorption CO2 capture process model as part of the pre-combustion setup. This64

sub-system was modeled as a hot potassium carbonate process. The models were linked by Microsoft Excel65

utilizing Aspen Simulation Workbook and the Thermoflow E-LINK. For the CO2 capture sub-system, the66

model was not directly linked to Excel, instead a simple separator model, with inputs from the full capture67
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model, was included in the reforming flow sheet. The uncertainty analysis was done in Matlab and Excel.68

Matlab was, not the least, used because of its strong random number generator.69

The process model and its assumptions are described in Sections 2.1 and 2.2. The uncertainty method70

is described in Section 2.3.71

2.1. Process description72

The process reforms natural gas to a syngas as shown in Fig. (1). Reforming of natural gas is modeled

as a two-step process. In the pre-reformer higher hydrocarbons are converted to protect against coking in

the auto-thermal reformer (ATR) according to endothermic reaction (1) and exothermic reactions (2) and

(3).

CxHy + xH2O(g) → xCO + (x +
y

2
)H2 − ∆H0

298 < 0 kJ/mol (1)

CO + 3H2 ⇋ CH4 + H2O(g) − ∆H0
298 = 206 kJ/mol (2)

CO + H2O(g) ⇋ CO2 + H2 − ∆H0
298 = 41 kJ/mol (3)

The air-blown ATR is divided into a combustion zone, a thermal zone, and a catalytic zone. The

heat generated in the combustion zone provides heat for the reforming in the thermal and catalytic zones.

Substoichiometric methane combustion in the ATR can be represented as

CH4 +
3

2
O2 → CO + 2H2O(g) − ∆H0

298 = 519 kJ/mol (4)

In the thermal and catalytic zones, below the combustion zone, the main reactions are the water-gas shift

reaction (3) and methane-steam reforming

CH4 + H2O(g) ⇋ CO + 3H2 − ∆H0
298 = −206 kJ/mol (5)

In the high-temperature and low-temperature water-gas shift reactors (HTS and LTS) most of the the73

remaining CO is converted to CO2 according to reaction (3). Due to the temperature driving force in the74

HTS, the shift reactor equipment size can be kept smaller. However, the conversion would be too low if75

only using an HTS. Therefore, an LTS with a lower temperature and a more active catalyst is needed.76

Downstream of the shift reactors consisting of about 90% CO2 is separated in the CO2 capture sub-system77

which is intended to removed 85% of the CO2. The hydrogen-rich fuel vented from the absorber is used for78

the gas turbine. As the ATR is air-blown there will be a significant portion of nitrogen in the gas. This79

nitrogen is used as fuel diluent for NOx abatement in the GT combustor. The air needed for the ATR is80

bled from the GT compressor discharge plenum and boosted up to system pressure with an air compressor.81

There are a number of heat exchangers in the system. The pre-heating of the reforming streams is handled82

in various zones in the HRSG. The syngas cooler, located after the ATR, acts as an evaporator for the high-83

pressure (HP) steam cycle. The other heat exchangers for the process streams either generate low-pressure84
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Figure 1: IRCC process flow sheet.

(LP) steam for the reboiler in the capture sub-system or pre-heat fuel for the GT. The selected gas turbine85

is a GE 9FB. The bottoming steam cycle, including the HRSG and a ST, is a single-pressure system at86

approximately 85 bar. The CO2 capture sub-system consists of a hot potassium carbonate process. After87

the capture sub-system, the CO2 is compressed to 150 bar in the CO2 compression (4 stages) and pump88

train.89

2.2. Process model assumptions90

The process was designed with a requirement of at least 85% CO2 capture rate. To achieve an overall91

capture rate of about 85% the chemical absorption sub-system was modeled for a 90% capture rate. During92

the simulation work it was noted that the low-pressure and intermediate-pressure sections in the HRSG93

became quite small because of the significant pre-heating requirements. Because of this and to simplify the94

process it was decided to have a single-pressure level in the HRSG. Other assumptions include ISO ambient95

conditions and a direct seawater cooled condenser with a condensating pressure of 0.04 bar. The natural96

gas composition used in the model is displayed in Table 1.97
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Table 1: Natural gas composition
Component name Chemical formula Unit Value

Methane CH4 vol% 79.84

Ethane C2H6 vol% 9.69

Propane C3H8 vol% 4.45

i-Butane C4H10 vol% 0.73

n-Butane C4H10 vol% 1.23

i-Pentane C5H12 vol% 0.21

n-Pentane C5H12 vol% 0.20

Hexane C6H14 vol% 0.21

Carbon dioxide CO2 vol% 2.92

Nitrogen N2 vol% 0.51

Hydrogen sulfide H2S ppmvd 5

The pre-reformer and ATR are modeled as Gibbs reactors. The HTS and LTS are modeled as equilibrium98

reactors with restricted equilibrium based on temperature approach. The capture sub-system absorber and99

desorber are modeled with Aspen Plus RadFrac columns. However, in the reforming flow sheet the capture100

sub-system was modeled as a simple separator model with inputs such as split ratios, temperatures, and101

pressures from the absorption model. Outputs from the absorption model also included pump work and102

reboiler duty. For the simplified absorption model within the reforming flow sheet, the reboiler duty was an103

input rather than an output.104

2.3. Uncertainty analysis105

Parametric uncertainties are typically represented by probability distributions. It is therefore a major106

objective of the proposed uncertainty analysis framework to encode currently available information about107

model parameters and estimate the probability distributions of model predictions based on input uncertain-108

ties. Characterization of parametric uncertainties can be carried out using various techniques depending109

on the nature of uncertain variables and level of information available. Uncertainties in input parameters110

can be simultaneously propagated through the process models to yield estimates of uncertainties in output111

values. An equally important outcome is sensitivities of output uncertainties to input parameters through112

which controlling sources of uncertainties can be identified. A schematic diagram of the framework is shown113

in Fig. 2.114

115

Uncertainty quantification116

Uncertainty exists in several aspects of a new process regarding its technical performance and costs. This117

work focused solely on the technical performance of an IRCC process. There are several types of uncertain118

parameters, including material properties, equipment design factors, operating condition parameters, and119

performance variables. By nature, these uncertain variables fall into three categories: (1) stochasticity,120

variables whose values vary in an unpredictable manner. Examples include conversion rate over an reactor121

and isentropic efficiency of a compressor; (2) systematic and statistical error, variables with fixed values122

which, however, cannot be measured with perfect accuracy. Thermal chemical and kinetic parameters are123
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Figure 2: Diagram of the uncertainty analysis framework.

typically of this type; (3) empirical parameters lacking experimental justification. This type of variables124

are normally contingent on the choice of model and its assumptions. For instance, temperature approach125

is used to account for non-ideality in equilibrium-based reactor models. The GT turbine inlet temperature126

also falls within this category.127

Uncertainties of different types can be quantified using different approaches. When experimental mea-128

surements are available, types 1 and 2 variables can be estimated by means of statistical inference techniques.129

Unfortunately there is often insufficient data for some variables, particularly for new technologies. When130

data are lacking, estimation of uncertainty has to rely on informed judgments of technical experts. This is131

specially necessary for type 3 variables whose values are difficult, if not impossible, to validate by experi-132

mentation. In this work, an information theoretic method, namely entropy maximization, was employed to133

encode experts’ judgments regarding parametric uncertainties as probability distributions.134

The information prescribed by technical experts generally pertains to descriptive characteristics of the135

uncertain variables, such as range, average value, most likely value, measurement error, etc. This information136

is typically insufficient to define a unique probability distribution. There usually exists more than one137

probability distribution satisfying a single set of conditions. Solution to this problem relies on the maximum138

entropy principle. In the theory of information, entropy S of a probability distribution f(x) is a measure of139

uncertainty associated with f(x)140

S = −

∫

X

f(ζ)lnf(ζ)dζ (6)

The maximum entropy principle suggests the probability distribution that has the maximum entropy

(uncertainty) permitted by the available information be used to make inference based on incomplete informa-

tion. This implies any other probability distribution with less uncertainty will invoke unwarranted additional

information and thus could be biased. Based on this principle, the appropriate probability distribution can

be selected by maximizing the entropy in Eq. (6) subject to constraints posed by the available information.

Almost all commonly used probability distributions, discrete or continuous, can be derived in this way. For
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example, uniform distribution has the largest entropy when only the range is known. Gaussian distribution

has the largest entropy provided the mean and standard deviation are known for variables who have support

on (-∞, ∞). We shall not elaborate on the derivation. More details can be found in information theory

related texts [e.g., 12].

Uncertainty propagation

Uncertainties were simultaneously propagated through the IRCC process model using the determinis-

tic equivalent modeling method (DEMM), a computationally efficient method developed by Tatang [13] as

an attractive alternative approach to Monte Carlo simulation for complex models. In DEMM, parametric

uncertainties are directly represented by polynomial chaos expansion of uncertain basis. For instance, a

Gaussian uncertain parameter x with mean µ and standard deviation σ can be expressed by

x = µ + σζ (7)

where ζ, a standard Gaussian random variable, represents the uncertain basis. DEMM approximates the

output uncertainties as probabilistically weighted polynomials of uncertain model parameters.

y =

∞
∑

k=0

akHk(ζ1, ..., ζM ) (8)

where Hk are orthogonal polynomial functions of ζ1, ... and ζM , the basis used to represent uncertain model141

parameters. Various types orthogonal polynomial functions can be used for Hk in Eq. (8) depending on the142

nature of the uncertain parameters being considered.143

In practice, Eq. (8) is truncated at a finite order for ease of implementation. For the uncertain pa-

rameters considered in this work, second-order polynomials were sufficient to approximate their probability

distributions with reasonable accuracy. The coefficients ak of the expansion were computed by evaluating

the process model at collocation points specific to the probability distributions of model parameters. The

number of model evaluations required to compute the unknown coefficients depends on the number of un-

certain parameters and the number of terms used in the polynomial chaos expansion. This number is of

the same order as the number of uncertain parameters thus is much smaller than needed by Monte Carlo

simulation. DEMM has proven capable of closely approximating the results of Monte Carlo simulation with

significantly reduced computational time, often 2-3 orders of magnitude less [13, 14, 15, 16, 17].

Sensitivity analysis

DEMM also provides direct means of evaluating the sensitivity of model output to parametric uncertain-

ties and identifying the parameters contributing the most to output uncertainty. Parametric sensitivities,

defined as the portion of variance of model output that is attributable to individual parameters, are readily

computable upon obtaining the coefficients of polynomial chaos expansion from Eq. (8). Assume the model
8



output y is approximated by second-order polynomial functions of M Gaussian parameters, neglecting cross

product terms

y = a0 +

M
∑

k=0

[a2k−1ζk + a2k(ζ2
k − 1)] (9)

The variance of y is computed based on Eq. (9) as follows

var[y] = E[(y − E[y])2] =

M
∑

k=0

(a2
2k−1 + 2a2

2k) (10)

Evaluation of the variance makes use of orthogonality of Hermite polynomials and the following properties

of standard Gaussian random variable

E[ζn] =







0 n = 2k − 1

1 · 3 · 5 · ...(n − 1) n = 2k, k = 1, 2, ..., M
(11)

The portion of variance attributable to j-th (j = 1, 2, ..., M) parameter is clearly seen from Eq. (12)

var[y]|ζj = a2
2j−1 + 2a2

2j (12)

This highlights the parameters where reduction in uncertainty would most effectively improve the predictive144

performance of the model. Those with negligible contribution to overall uncertainty can be phased out from145

further analysis.146

3. Results and discussion147

3.1. Uncertain input parameters148

17 uncertain input parameters were selected for the analysis, as displayed in Table 2. The pressure drop149

∆p/p was simply modeled as being the same for all equipment in the system. This means, for example,150

that the ATR was modeled with the same pressure drop (%) as the LTS. The steam-to-carbon ratio (S/C)151

is the moles of steam per moles of fuel carbon admitted to the reforming section. TA is the temperature152

approach for reaction (3) in the HTS and LTS respectively. Parameters 5 and 6 represent the air booster153

compressor isentropic efficiency ηboost and pressure ratio PRboost. The turbine inlet temperature (TIT) for154

the gas turbine set was an uncertain input parameter to the model. The full TIT for the GE 9FB GT is155

1427 ◦C, however, the IGCC setup of the 9FB includes replacing the hot gas path of the FB with FA parts.156

The 9FA design turbine inlet temperature is 1327 ◦C. Also, because of the hydrogen fuel which leads to157

an increase in steam content in the turbine compared to when firing natural gas, the heat transfer rate to158

the turbine blades increases, leading to a higher blade metal temperature. The TIT reduction necessary159

to compensate for this is uncertain. Chiesa et al. [18] report TIT reductions of 10-45 K. A 50 K range160

of the TIT reduction was selected for the uncertainty analysis. GT PRO allows for altering the polytropic161
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Table 2: Input uncertain parameters for IRCC process: nominal values and probability distributions
No. Sub-system Variable Distribution Central

value

Lower

bound

Max

likeli-

hood

Upper

bound

Mean St.

dev.

1 All ∆p/p (%) Uniform 2.25 0.5 4

2 Reforming S/C Normal 1.5 1.5 0.03

3 WGS TA,HT S (K) Uniform 10 0 20

4 TA,LTS (K) Uniform 5 0 10

5 Booster comp ηboost Triangular 0.85 0.8 0.85 0.9

6 P Rboost Triangular 1.918 1.82 1.918 2.02

7 Gas turbine TIT (◦C) Uniform 1302 1277 1327

8 ∆ηc (%-point) Triangular 0 -2 0 2

9 ∆ηt (%-point) Triangular 0 -2 0 2

10 Steam turbine CFη,HP Triangular 1 0.95 1 1.05

11 CFη,LP Triangular 1 0.95 1 1.05

12 CO2 capture Wre (MJ/kg) Uniform 2.0 1.8 2.2

13 CO2 comp ηCO2,1 Triangular 0.85 0.8 0.85 0.9

14 ηCO2,2 Triangular 0.8 0.75 0.8 0.85

15 ηCO2,3 Triangular 0.8 0.75 0.8 0.85

16 ηCO2,4 Triangular 0.75 0.7 0.75 0.8

17 ηp Triangular 0.7 0.65 0.7 0.75

efficiencies for the GT compressor and turbine for a set model selection. This modification of efficiency is162

termed ∆η. In addition, a correction factor, CFη for the LP and HP steam turbine isentropic efficiencies163

was used. For the CO2 capture sub-system the reboiler duty Wre was deemed uncertain. Parameters 13-17164

are the isentropic efficiencies for the 4-stage compression system and the following pump.165

The distribution of each variable and the associated values of the distribution were selected in consultation166

with technical experts. The selected distributions reflected the best knowledge of the experts in an unbiased167

way. For instance, the percentage pressure drop ∆p/p was believed to vary within the vicinity of 2%. Careful168

assessment determined it might vary between 0.5% and 4% but it was not evident that any value in between169

was more likely than others. A uniform distribution on [0.5%, 4%] was derived, based on the maximum170

entropy principle, in order to avoid biasing the available information. Similarly, the isentropic efficiency of171

the air booster was believed to be 0.85 with high confidence and the largest possible variation was ±0.05. A172

triangular distribution was justifiable in this case. The probability distributions of three variables, steam-173

to-carbon ratio, isentropic efficiency of air booster and turbine inlet temperature, are graphically shown174

in Fig. 3 (a). Second-order polynomial chaos expansion was used to approximate uncertainties in model175

response variables. For the IRCC model with 17 uncertain variables, DEMM required 35 executions of the176

process model.177

3.2. Uncertain model outputs178

Uncertainties in all 17 input variables were propagated through the IRCC model using DEMM to estimate179

uncertainties in four key performance metrics:180

- net plant power output181

- net plant efficiency182
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- CO2 capture rate183

- CO2 emitted184

All results reported are based on a plant size of approximately 350 MW. The GT inlet air mass flow and185

TIT were kept constant during the simulation runs (except during the TIT sensitivity cases where TIT186

was varied). The results are shown both in terms of probability density function (pdf) and cumulative187

probability function (cdf). The pdf describes the density of probability at each point in the range of188

an uncertain variable. It shows the shape of the probability distribution as well as many probabilistic189

characteristics, such as maximum likelihood value, and skewness and peakness. The cdf is the integral of190

probability density function. It gives the probability of a variable being equal to or less than a given value.191

One less the cumulative probability is the probability of exceeding the corresponding value. The pdf and192

cdf each represent a complete description of the probability distribution of an uncertain variable. However,193

they also emphasize different features of the distribution and thus complement each other in displaying an194

uncertain variable.195

The net plant power output was defined as:

Ẇnet,plant = ((Ẇt − Ẇc) + Ẇs)ηmηgen − (Ẇcomp + Ẇp)/(ηmηdrive) − Ẇaux (13)

where Ẇt is the GT turbine power, Ẇc the GT compressor power, Ẇs the ST power, Ẇcomp the total power196

consumption by the air and CO2 compression. Ẇp is the pump power in the absorption sub-system. Ẇaux is197

the auxiliary power requirement. ηm is the mechanical efficiency and ηgen is the generator efficiency. ηdrive198

is the efficiency of the drives for the different compressors and pumps. Note that all the power terms were199

defined as their absolute values meaning all power terms were considered positive and the sign handled in the200

equation itself. The predicted uncertainty of net plant power output is shown in Fig. 4. The deterministic201

model prediction, based on best estimates of all model input parameters, is plotted as a dash-dotted line.202

The pdf plot in Fig. 4 shows the predicted net power output ranged from 322 MW to 384 MW with203

a standard deviation of 9.4 MW. The median value, or 50th percentile, was 352.7 MW which is almost204

equal to the deterministic prediction 352.9 MW. There is about equal chance that the net power output205

exceeds or falls short of the deterministic prediction. This is primarily attributable to the assumed uniformly206

distributed turbine inlet temperature which is shown to account for 75% of the uncertainty in net power207

output. More details of parametric sensitivities are shown in Table 3 and discussed in Section 3.3. The208

shape of the distribution is another illustration of the prominent impact of turbine inlet temperature on209

predicted net power output. The pdf curve has steep tails on both sides and plateaus between 344 MW and210

362 MW, approximately a standard deviation away from the median. The uniformity of the distribution of211

turbine inlet temperature to a large extent translates to that of the distribution of net power output.212
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Although the deterministic value was roughly the same as the predicted median value, the uncertainty213

estimates in Fig. 4 point out that in the worst case scenario, the net power output could drop to as low214

as 322 MW, 8.5% lower than the deterministic value. This downside risk is inherent with the model as215

a result of incomplete knowledge and will not be eliminated unless additional research is taken to reduce216

uncertainties in input parameters. This exemplifies the inability of deterministic simulation in understanding217

the risk associated with process performance. Failure to do so may expose the decision-makers to undesired218

consequences.219

Another key performance metrics was the net plant efficiency which was defined as

ηnet,plant =
Ẇnet,plant

(ṁLHV )NG

(14)

where ṁNG is the natural gas mass flow entering the system and LHVNG the lower heating value of220

the natural gas. As shown in Fig. 5 (a), the net plant efficiency had a median of 43.4%, equal to the221

deterministic value. It could vary within a narrow range between 41.8% and 45.2%, resulting in a small222

standard deviation of 0.5%. The total variability was a mere 7.8% of the median value, indicating high223

confidence of the model in predicting net plant efficiency. It is noteworthy that the net plant efficiency has224

a smaller relative uncertainty, the ratio of standard deviation to median, than the net power output. This225

can be understood through examination of the definition (14). Given the lower heating value is known with226

certainty, the plant efficiency depends on both net power output and mass flow of natural gas fed to the227

system. The latter was allowed to vary so as to maintain the turbine inlet temperature at desired level. As228

is evident from parametric sensitivity results shown in Table 3, the TIT has the most significant influence229

on the plant efficiency. An increase in TIT would require larger inlet flow of natural gas and leads to larger230

power generation and vice versa. Thus, the mass flow of natural gas varies in the same direction as the net231

power output and to some extent offsets the uncertainty of the latter.232

CO2 capture rate and CO2 emitted are two closely related parameters. The CO2 capture rate was defined

as the fraction of formed and fuel CO2, ṁCO2,form and ṁCO2,fuel, that is captured ṁCO2,cap (on a mass

flow basis)

CO2 capture rate =
ṁCO2,cap

ṁCO2,form + ṁCO2,fuel

(15)

The CO2 emitted was defined as the mass of carbon dioxide emitted in the power plant stack, mCO2,emi,

per kWh of net plant electricity output Wnet,plant

CO2 emitted =
mCO2,emi

Wnet,plant

( g

kWh

)

(16)

The pdf in Fig. 6 (a) shows rather small uncertainty in the CO2 capture rate. The median was 85.5% and233

with about 90% probability the model predicted a capture rate between 85% and 86%. Furthermore, as seen234

in Fig. 6 (b), the probability of meeting the requirement of at least 85% capture rate was approximately 95%.235

The pdf and cdf of CO2 emitted are displayed in Fig. 7. The median was 70.6 g/kWh, which was slightly236
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Figure 4: Predicted probability distribution of net plant power output from polynomial approximation obtained via DEMM.

The results are shown as (a) probability density function, (b) cumulative probability function. The solid lines represent

probability distribution and the vertical dash-dotted line is the deterministic prediction.
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Figure 5: Predicted probability distribution of net plant efficiency from polynomial approximation obtained via DEMM. The

results are shown as (a) probability density function, (b) cumulative probability function. The solid lines represent probability

distribution and the vertical dash-dotted line is the deterministic prediction.
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Table 3: Key input parameters for performance metrics. The contributions to the total variance are expressed as percentage.
Net Power Output Net Plant Efficiency CO2 Capture Rate CO2 Emitted

Parameter Sensitivity Parameter Sensitivity Parameter Sensitivity Parameter Sensitivity

TIT 74.5% TIT 24.7% ∆p/p 53.7% ∆p/p 58.8%

∆ηc 9.6% ∆ηt 22.7% S/C 27.9% S/C 14.5%

∆p/p 7.6% ∆p/p 14.1% TA,LTS 13.1% TA,LTS 9.1%

∆ηt 3.8% CFη,LP 12.2% P Rboost 3.3% ∆ηt 3.8%

CFη,LP 2.0% ∆ηc 11.0% TA,HT S 1.2% ∆ηc 3.3%

Wre 1.6% Wre 9.5% P Rboost 2.8%

S/C 2.8% TIT 2.5%

CFη,HP 2.5% CFη,LP 2.0%

Wre 1.6%

Subtotal 99.0% 99.4% 99.2% 98.4%

lower than the deterministic value 70.9 g/kWh. The difference was smaller than the estimated standard237

deviation of 1.9 g/kWh and thus should be considered insignificant. The shape of the pdf curves of both238

CO2 capture rate and CO2 emitted resembled that of normal distribution but with heavy tails on both sides239

of the median. It reflects the large influence of ∆p/p and steam-to-carbon ratio (S/C), which were assumed240

as uniform and normal distributions respectively, on the output uncertainty. This is shown in Table 3. The241

flat distributed ∆p/p raises the probability of both outputs deviating from their median values.242

3.3. Key uncertain input parameters243

Using the polynomial approximation to the model output, the sensitivity of the output to input uncer-244

tainties can be directly evaluated and key parameters that drive the uncertainty in model performance be245

identified. The contribution to total variance by individual parameters was computed using Eq. (12). The246

parameters which account for over 1% variance of the performance metrics are summarized in Table 3.247

Turbine inlet temperature (TIT) is a critical parameter in relation to gas turbine performance. A higher248

TIT leads to a higher thermal efficiency of the GT. In addition, the exhaust temperature increases with an249

increased TIT leading to a higher steam production in the HRSG. As listed in Table 3, TIT had the biggest250

influence on the uncertainty of the net plant efficiency. Another important parameter is the polytropic251

turbine efficiency since it also changes the GT efficiency and the GT exhaust temperature (although in252

”different” directions since an increase in turbine efficiency increases overall GT efficiency but decreases253

exhaust temperature). These two parameters together contribute to over 45% of the variance.254

As mentioned, TIT effects the GT efficiency and exhaust temperature. In addition, a change in TIT255

alters the GT power output. The compounded effect resulted in a clear dominance of TIT to net power256

output uncertainty as evident in Table 3. For example, an increase in TIT would lead to:257

- an increase in GT thermal efficiency meaning a higher power output for a given fuel input258

- an increase in power output due to an increase in fuel mass flow (a higher fuel mass flow is needed to259

reach a higher TIT for a given air mass flow)260

- an increase in GT exhaust temperature enabling generation of more steam for ST261
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Figure 6: Predicted probability distribution of CO2 capture rate from polynomial approximation obtained via DEMM. The

results are shown as (a) probability density function, (b) cumulative probability function. The solid lines represent probability

distribution and the vertical dash-dotted line is the deterministic prediction.
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Figure 7: Predicted probability distribution of CO2 emitted from polynomial approximation obtained via DEMM. The results

are shown as (a) probability density function, (b) cumulative probability function. The solid lines represent probability

distribution and the vertical dash-dotted line is the deterministic prediction.
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Table 4: Input uncertain parameters for NGCC process: nominal values and probability distributions
No. Sub-system Variable Distribution Value Lower bound Max likelihood value Upper bound

1 Gas Turbine ∆ηc (%-point) Triangular 0 -1 0 1

2 ∆ηt (%-point) Triangular 0 -1 0 1

3 Steam turbine CFη,HP Triangular 1 0.95 1 1.05

4 CFη,LP Triangular 1 0.95 1 1.05

Not surprisingly, TIT accounted for about 75% of the variance of net power output. It should be mentioned262

that a rather wide TIT input uncertainty distribution was chosen, as listed in Table 2. By selecting a263

narrower range, the TIT dominance on output uncertainty would not be as pronounced.264

CO2 capture rate and CO2 emitted, though not quite as uncertain, were dictated by different sets of265

parameters among which pressure drop and steam-to-carbon ratio were the most prominent. The pressure266

drop variation runs were done by keeping the fuel pressure to the GT constant and varying each equip-267

ment’s ∆p. This means that the reformer pressure will vary significantly with changes in the pressure drop268

parameter. For example, by varying ∆p/p from 2.25% to 4%, the ATR outlet pressure changed from 30.6269

bar to 35.4 bar. This shifted the equilibrium in the reforming reaction (5) to the left leading to a higher270

methane slip from the reformer. This CH4 will be passed on to the GT combustor and thereby increasing271

the CO2 content in the GT exhaust. The capture rate would then go down and the CO2 emitted increase.272

In addition to the reforming pressure, the S/C is a critical reforming and water-gas shift parameter (refer to273

reactions (1) through (5)). A higher S/C decreases the CO2 emitted (but also decreases the cycle efficiency).274

For both the CO2 capture rate and CO2 emitted the S/C and pressure drop combined contribution was over275

70% on output variance, as can be seen in Table 3.276

3.4. Comparison to reference case277

Comparative study plays an important role in evaluation of design trade-offs and competing technologies.278

The preceding sections have shown that predictions of performance by no means are free of uncertainties.279

Comparison based on probabilistic estimates often provides critical insights that could be overlooked by280

deterministic approach. The concept of technology comparison under uncertainty is illustrated with a281

reference case consisting of a natural gas combined cycle (NGCC) system where CO2 capture is not employed.282

The reference case included the same type GT and a triple-pressure steam bottoming cycle. The objective283

was to assess the efficiency penalty, that is, how many %-points in net plant efficiency were lost by including284

CO2 capture.285

Input parameters for NGCC model were selected by virtue of technical experts’ knowledge in a similar286

way to the IRCC case, as shown in Table 4. The predicted pdfs of the net plant efficiency for the NGCC287

reference case and the IRCC model are displayed in Fig. 8. It is clear that the performance of the IRCC was288

more uncertain than that of the NGCC. This is partly because NGCC technology is much more mature than289

IRCC technology. Furthermore, an IRCC plant is more complex than an NGCC plant and thus increasing290
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Figure 8: Predicted probability distribution of net plant efficiency for the NGCC reference plant and the IRCC plant. The

solid lines represent probability distribution and the vertical dash-dotted line is the deterministic value.

model output uncertainties. The median efficiency was 56.3% for NGCC and 43.4% for IRCC, resulting in291

a difference of 12.8%-points, which was same as the efficiency penalty computed by deterministic analysis.292

However the uncertain nature of predicted efficiency of both processes makes the efficiency penalty uncertain.293

In other words, the efficiency loss caused by capturing CO2 may be more significant than the deterministic294

analysis indicated. A plot of the probability distribution of the efficiency penalty provides more insight on295

the effect of CO2 capture, as displayed in Fig. 9. In general, the uncertainty in the difference of two variables296

cannot straightforwardly be derived from their marginal distributions, especially when they share common297

uncertainties. The comparison based on the polynomial representations of parametric uncertainties took298

into account the underlying correlation structure.299

The median of efficiency penalty was 12.8%-points, but it could rise to as high as 14%-points in the worst300

case scenario. From the cumulative probability plot in Fig. 9 (b), there was about 51% probability that301

actual efficiency penalty could exceed the deterministic value. This observation is more remarkable than it302

appears, meaning deterministic analysis would underestimate the efficiency penalty with over 50% chance.303

4. Conclusions304

An integrated approach to characterizing uncertainties has allowed the evaluation of key performance and305

environmental control metrics such as net power output, net plant efficiency, and projected CO2 emissions,306

that are affected by several model input uncertainties. Being able to not only predict the likely values of307

process performance but place confidence limits on the predictions is essential to making informed decisions308

on technology evaluation.309
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Figure 9: Probability distribution of efficiency penalty, the difference in net efficiencies of an NGCC plant and an IRCC plant.

The solid lines represent probability distribution and the vertical dash-dotted line is the deterministic value.
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By explicitly characterizing parametric uncertainties of an IRCC plant with CO2 capture, it was found310

that the net power output from the IRCC plant may incur large uncertainty which primarily is attributable311

to the uncertain behavior of the gas turbine. Improvement of confidence in the prediction of power output312

can be achieved by reducing the uncertainty in the estimate of turbine inlet temperature. Fortunately, the313

model was able to predict the net plant efficiency with relatively high precision. Furthermore, the plant was314

projected to meet the requirement of 85% CO2 capture rate with 95% confidence.315

DEMM has proven to be a computationally efficient method for propagating multiple uncertainties316

through complex flowsheets, in this case an IRCC process model. It would have been unrealistic to run317

thousands of simulations for such a model, as would be necessary with a Monte Carlo approach, not the318

least because the model is linked between different simulation packages. In addition, DEMM enables the319

evaluation of the sensitivity of input uncertainties. Such results can help highlight the parameters where320

reduction of uncertainty via additional research can most effectively improve confidence in model predictions.321

Uncertainty analysis should be an integral part of evaluation of advanced power plant with CO2 capture322

during the planning and design stage. It is likely to have significant implication to subsequent decision-323

making regarding research planning, risk management, and capital investment.324
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