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Abstract
As the global community becomes increasingly connected, it gets more and
more common to express thoughts and opinions through social networking
websites. Twitter, currently the largest microblog website in the world, is
heavily used for this purpose. Well known politicians, comedians and trend-
ing persons use this medium to express their minds through 140-character
messages. This makes Twitter one of the platforms being most influential
on the global web communities’ way of thinking.

This thesis combines topic modeling and sentiment analysis in order to
obtain information from tweets. While sentiment analysis seeks to find out
what opinions people have, topic modeling tries to find out what they talk
about.

Convential topic modeling schemes, such as Latent Dirichlet Allocation,
are known to perform inadequately when applied to tweets, due to the
sparsity of short documents. To alleviate these disadvantages, we apply
several pooling techniques, aggregating similar tweets into individual doc-
uments. We specifically study the aggregation of tweets sharing authors or
hashtags.

Our Twitter Sentiment Analysis system is comprised of seven di�erent
machine learning classifiers. These aim to predict whether a message’s
polarity is of neutral, negative or positive sentiment. Four machine learning
algorithms, Maximum Entropy, Naïve Bayes, Support Vector Machines and
Stochastic Gradient Descent, have been proposed for performing sentiment
classification in this thesis. The classifiers were trained through experiments
of extensive grid searches on a parameter space and preprocessing methods
in order to achieve optimal classification scores.

To combine topic modeling with sentiment analysis, a visualization ap-
plication called TweetMoods was built. TweetMoods simultaneously exam-
ines the topics contained in a Twitter corpus retrieved by a search query,
and the sentiments expressed in these tweets.

Our topic modeling results show that aggregating similar tweets into
individual documents increases the topic coherence significantly. On per-
forming message polarity classification on tweets, the Maximum Entropy
classifier yielded results outperforming most earlier submitted work to the
International Workshop on Semantic Evaluation of 2015. This proves the
importance of our extensive grid searches on optimizing the parameter space
of the classifiers.
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Sammendrag
Ettersom det globale samfunnet blir stadig mer sammenkoblet, blir det mer
populært å uttrykke tanker og meninger gjennom sosiale nettverk. Twitter,
verdens største nettside for mikroblogging, brukes mye til dette formålet.
Kjente politikere, komikere og andre trendsettere bruker mediet til å uttryk-
ke seg gjennom 140-tegns innlegg. Dette gjør Twitter til en av plattformene
med størst innflytelse på de globale nettsamfunnenes tankegang.

Denne masteroppgaven kombinerer emnemodellering og sentimentanaly-
se for å hente ut informasjon fra tweets (Twitter-innlegg). Mens sentiment-
analyse har som mål å finne ut hvilke meninger folk har, søker emnemodel-
lering å finne ut hva folk snakker om.

Konvensjonelle emnemodelleringsmetoder slik som Latent Dirichlet Al-
location, er kjent for å ha problemer med tweets på grunn av den korte
lengden til innleggene. For å lette disse ulempene, anvender vi flere sam-
lingsteknikker for å aggregere lignende innlegg til individuelle dokumenter.
Her ser vi spesielt på aggregeringen av tweets fra samme forfatter eller som
deler samme emneknagg.

Sentimentanalysesystemet består av syv forskjellige maskinlæringsklassi-
fikatorer. Disse har som mål å klassifisere om et innlegg uttrykker et neg-
ativt, positivt eller nøytralt sentiment. Vi foreslår i denne masteroppgaven
fire forskjellige maskinlæringsalgoritmer for utførelse av sentimentklassifise-
ring: Maximum Entropy, Naïve Bayes, Support Vector Machines og Stocha-
stic Gradient Descent. Hver klassifikator er trent opp gjennom omfattende
rutenettssøk på dets parameterområde og preprosesseringsmetoder, for å
oppnå optimale klassifiseringsmål.

En visualiseringsapplikasjon, kalt TweetMoods, ble utviklet for å kombi-
nere emnemodellering med sentimentanalyse. Denne applikasjonen under-
søker både emne og sentiment i et Twitter-datasett basert på en spørring.

Våre emnemodelleringsresultater viser at aggregering av lignende Twit-
terinnlegg til individuelle dokumenter øker sammenhengen mellom emner
betydelig. Ved polaritetklassifisering av tweets viser vi at Maximum Entropy-
klassifikatoren gir best resultater i våre eksperimenter. I sammenligning
med innsendte resultater ved "International Workshop on Semantic Eva-
luation"i 2015, oppnådde våre systemer bedre resultater enn de fleste kon-
kurrentene som deltok. Dette beviser viktigheten av vårt omfattende rute-
nettssøk ved optimering av klassifikatorenes parameterområde.
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1. Introduction
1.1. Motivation
Due to the tremendous amount of data broadcasted on microblog sites like
Twitter, extracting information from microblogs has turned out to be use-
ful for establishing the public opinion on di�erent issues. O’Connor et al.
[2010] found a correlation between word frequencies in Twitter and pub-
lic opinion surveys in politics. Analyzing tweets over a timespan can give
great insights into what happened during that time, as people tend to tweet
about what’s concerning them and their surroundings. The combination of
sentiment analysis and topic modeling of tweets can therefore help reveal
what is going on in the world and what people feel about it. The annual
SemEval workshop1 and its tasks in the fields of sentiment analysis and
topic modeling of Twitter inspired the main subject of the paper. Many
influential people post messages on Twitter, and investigating the relation
between the underlying topics of di�erent authors’ messages could yield in-
teresting results about people’s interests. One could for example compare
the topics di�erent politicians tend to talk about to obtain a greater under-
standing of their similarities and di�erences. Twitter has an abundance of
messages, and the enormous amount of tweets posted every second makes
Twitter suitable for such tasks.

1.2. Twitter
Twitter is the world’s largest social network for micro-blogging, averaging
310 million monthly active users. Moreover, websites with embedded tweets
get one billion unique visits every month.2 Twitter was originally based on
the idea that an individual should be able to communicate with a small
group of people using an SMS service. The company was launched in 2006,
but had its breakthrough during the South by Southwest Interactive con-
ference in 2007, where Twitter usage increased from 20,000 tweets to 60,000
tweets per day. Quickly recognized globally due to its rapid growth, Twitter
took its place among the largest social networks in the world. From 400,000

1https://en.wikipedia.org/wiki/SemEval
2https://about.twitter.com/company
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1. Introduction

tweets per quarter in 2007, to 100 million per quarter in 2008, and 50 mil-
lion tweets per day in 2010. Currently, Twitter has an average network
tra�c of 500 million tweets per day, and is the 9th most popular website
on the internet.

Among its users, Twitter is actively used for expressing opinions towards
di�erent topics. Due to the limitation of 140 characters per tweet, Twitter
users are generally known for expressing their thoughts through informal
language, using abbreviations and gramatically incorrect language. The
community has also spawned user-generated metatags, like hashtags and
mentions. These relatively new expressive terms have analytical value when
it comes to opinion mining. The informal language also proposes challenges
within natural language processing and information retrieval, as tweets are
usually more incoherent than traditional documents. Despite this, the ex-
tensive amounts of tweets posted daily makes Twitter a great resource for
opinion mining.

1.3. Project goals
We investigate what possibilities are available when analyzing topics and
opinions of tweets over a given timespan. We hypothesize that one can
achieve knowledge of current events by examining the content of microblog
data, by finding what topics are trending and what sentiment is generally
conveyed in a corpus of tweets. These are the subgoals carried out during
the project:

G1: Establish the state-of-the-art

Present an extensive survey of the current state-of-the-art methods
for topic modeling and sentiment analysis of microblogs. There has
been a lot of related research during the latest years, much thanks to
the API and extensive data on Twitter. The research is split in two
parts, where one focus will be on topic modeling and how to e�ectively
retrieve the topics from a corpus of microblogs. The second part
is sentiment analysis and retrieving the sentiment from small texts
known as microblogs. By investigating previous research done on
sentiment analysis and topic modeling, we can establish the current
state-of-the-art.

G2: Create a topic modeling system for microblogs

We aim to create a system for discovering trending topics and events
in a corpus of tweets, as well as exploring the topics of di�erent
Twitter users and how they relate to each other. Utilizing Twit-
ter metadata might mitigate the disadvantages tweets typically have

2



1.4. Contributions

when using standard topic modeling methods; user information as
well as hashtag co-occurrences can give a lot of insight into what
topics are currently trending.

G3: Create a sentiment analysis system for microblogs

We aim to create a state-of-the-art sentiment analysis system optim-
ized for informal microblog posts from Twitter. We wish to attain
the highest accuracies and F1-scores compared to a baseline system
by running a series of experiments on the SemEval data sets.

G4: Create a visualization system

We aim to create a state-of-the-art visualization application of sen-
timents and topics of tweets. The system will incorporate both the
topic modeling and sentiment analysis systems developed during the
project.

1.4. Contributions
C1 A literature review on the subject of sentiment analysis and topic mod-

eling.

C2 The implementation of a Twitter topic modeling system.

C4 The implementation of a Twitter sentiment classification system.

C5 The implementation of a visualization application that incorporates the
Twitter topic modeling and sentiment analysis systems.

C6 A study on the topic modeling and sentiment analysis system in com-
parison to similar proposed systems.

1.5. Overview of the thesis
Chapter 2 is an introduction to the some of the background theory relevant
to the issue of sentiment analysis and topic modeling in Twitter.
Chapter 3 introduces the tools that helped making the project realizable.
Chapter 4 is comprised of a literature study on topic modeling and senti-
ment analysis in microblogs, and presents the current state-of-the-art un-
covered by our survey.
Chapter 6 introduces topic modeling and the task of estimating the number
of topics to use for a topic model. Further, it discusses the use of hashtags
in Twitter, and how they can be utilized to find the currently popular topics
in the social network using a co-occurrence network to connect the most

3



1. Introduction

frequent and trending hashtags.
Chapter 7 introduces the setup and architecture of the Twitter Sentiment
Analysis classifiers.
Chapter 5 discusses the two applications built during the project as well as
their architectures. An application for creating a dataset of reliable tweets
for topic modeling, and a combined topic modeling and sentiment analysis
web application.
Chapter 8 and 9 presents the experiments conducted and results found
with topic modeling and sentiment analysis, and the combination, on Twit-
ter posts.
Finally, in Chapter 10 we discuss the accomplishments of the project goals
put forward in the introduction, and what remains seen as future work.
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The following chapter on background theory presents an introduction to the
most relevant theory to sentiment analysis and topic modeling in Twitter.
Moreover, we discuss some components of Natural Language Processing,
Machine Learning, and Topic modeling. This theory lays ground for the
architecture of the system developed.

2.1. Natural Language Processing

Natural language processing (NLP), extensively explained by Manning and
Schütze [1999] is concerned with the interactions between computers and
human (natural) languages. Many challenges in NLP involve natural lan-
guage understanding, that is, enabling computers to derive meaning from
human or natural language input, and others involve natural language gen-
eration.

2.1.1. Basic text processing

In sentiment analysis and topic modeling systems, the corpus of tweets is
most often represented as a collection of sets, called bag(s)-of-words. Each
vector’s indices represent words in the corpus. The corpora can grow im-
mensely large in size, often comprised of several hundred thousand tweets.
As such, the amount of words encountered grows with the size of the cor-
pus, and therefore also the length of the vectors. Therefore, a set of basic
text processing techniques are required to simplify the complex data.

Yang and Pedersen [1997] presented the importance of textual feature se-
lection. Among which stop word removal and word stemming play essential
parts.

Stop word removal

Stop words refer to the most common words in a language. It is
common to remove these words as they are the least discriminative
to a document. They are removed to relieve the system of excessive
computation.
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Stemming

Stemming reduces a word to its word stem. A quick example would be
to reduce all words in the set [run, running, runner, runners] to the
same stem run or similar. A�x stemmers refer to stripping similar
words of the prefixes and su�xes to the same root.

Bag-of-Words

In their work, Zhang et al. [2010] give an extensive introduction to the
Bag-of-words model. The Bag-of-words model is a way to represent a
textual document by placing all its words into a bag (set of elements),
ignoring the grammar and word order. A simple example is represent-
ing a list of the words ["hello", "good-bye", "greeting", "hello"] as the
vector [2, 1, 1]. Each index represent new words encountered, and its
value represents the number of encounters throughout the document.

Term Frequency-Inverse Document Frequency (TF-IDF)

While the term weighting scheme IDF was originally defined by Sparck Jones
[1988], Ramos [2003] explains how TF-IDF can be used to determine
word relevance in document queries. TF-IDF is a statistic comprised
of a document’s term frequency and inverse document frequency. It
is a common weight in information retrieval, measuring how import-
ant a word is to a document in a corpus. The term frequency is the
amount of times a term occurs in a document. The inverse document
frequency gives a measure of how important the term is.

TFIDF = TF ú IDF = tf
t,d

ú log(N/df
d

)

N-gram

An n-gram is a sequence of n continuous items of either words or
characters in a text. Sequences of one by one item are called unigrams,
two by two items are called bigrams, sequences of three items are
called trigrams, and larger sequences are called n-grams (where n is
the length of the sequence).

2.1.2. Part-of-speech tagging (POS-tagging)
Schmid [1994] explains POS-tagging as the process of marking a word in a
text as corresponding to a particular part-of-speech category. This includes
identifying words as nouns, verbs, adjectives, etc. and how they relate to
di�erent scopes of the sentence. POS-tagging has many applications within
natural language processing, like solving word ambiguity . Traditionally,
o�-the-shelf POS-tagging systems have targeted corpora of news articles.
As with Named Entity Recognition (NER) systems, Twitter has proved a
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Figure 2.1.: An example of a part-of-speech treebank

di�cult domain for POS-tagging. Gimpel et al. [2011] propose a tagger
that e�ectively categorizes words in tweets.

2.1.3. Named Entity Recognition (NER)

A recent survey by Nadeau and Sekine [2007] explains how NER seeks
to find and classify elements in text into categories such as the names
of persons, organizations, locations, etc. Today, state-of-the-art systems
that perform NER methods achieve near-human performance in identifying
entities in texts in given domains. NER can be used in combination with
topic modeling algorithms to give named entities a higher weight. This
would make organizations, locations and persons more likely to be classified
as a topic. This would also a�ect the entities and words that do not fall
under these categories. Twitter has been proven to be somewhat di�cult,
due to the informal language used by its users. A proposed open-source
system to solve the Twitter-specific problems can be seen in Ritter et al.
[2011].

2.2. Machine Learning for Sentiment Analysis

This section includes a brief overview of classification scoring and evalu-
tion methods for sentiment analysis. Based on the literature study from
Chapter 4 we settled on Support Vector Machine (SVM), Naive Bayes,
Maximum entropy (MaxEnt) and the Stochastic gradient descent (SGD)
machine learning methods.
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2.2.1. Classification Scoring

There are many ways to perform classification scoring and evaluation. The
most common metrics of classification scoring includes precision, recall,
accuracy and the F-score.

False / True positives and negatives

True positives (T
p

) are the samples correctly identified as belonging to a
specific category. True negatives (T

n

) are the samples that are correctly
identified as not belonging to a specific category. False positives (F

p

) and
false negatives (F

n

) are the samples that are incorrectly identified as be-
longing to a category.

Precision

Precision is the measure of result relevancy. It is defined as the number of
true positives over the sum of true positives and false positives.

precision = T
p

T
p

+ F
p

(2.1)

Recall

Recall is the measure of how many truly relevant results are returned. It is
defined as the number of true positives, over the number of true positives
and false negatives.

recall = T
p

T
p

+ F
n

(2.2)

Accuracy

Accuracy is the number of correctly predicted cases out of all existing cases.

accuracy = T
p

+ T
n

T
p

+ T
n

+ F
p

+ F
n

(2.3)

F1-score

The F
1

score is the harmonic mean of precision and recall, and is one of the
most common metrics for evaluating machine learning classifiers.

F
1

score = 2 ú Precision ú Recall

Precision + Recall
(2.4)
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2.2.2. Naïve Bayes

Naïve Bayes is a particularly popular method for text categorization in su-
pervised machine learning. Because of its simplicity, Naïve Bayes usually
requires appropriate preprocessing to compete with more advanced meth-
ods, like Support Vector Machines.

Naïve Bayes builds on the concepts of conditional probability and Bayes’
rule. Simply stated, conditional probability is finding the probability of
something that will happen, given that something else already has happened.
This is the base for Bayes’ rule in statistics. Bayes Rule is in Naïve Bayes
used for going from knowing the probability of A given B, P(A|B), to find-
ing the probability of B given A, P(B|A). In reality, it’s more complicated
because we have to find out the probability of A given multiple evidence
— instead of just one. To simplify the complication, we uncouple all the
evidence and treat each piece of evidence individually, which is why we call
the method naïve.

2.2.3. Support Vector Machines

Support Vector Machines (SVM) is a popular classification method, first
introduced by Cortes and Vapnik [1995]. It is among the most common
classification techniques for supervised learning of textual data in tweets.
The algorithm is a binary classification technique, assigning input data to
belong to one of two classes. Input data are vectors containing features. In
conjunction, the features can be put into a high-dimensional feature space.
The SVM looks at the data and splits the feature space into optimal class
segments. This is done by constructing a hyperplane that maximizes the
margin between the two classes. The margin is an essential part of Support
Vector Machines, and is the largest distance to the nearest training-data
point between the classes. The larger the margin, the lower the generaliz-
ation error of the classifier.

In our case, input data consists of data labeled within one of three classes.
Since SVM is a binary classification technique, we reduce the approach into
several binary classification problems (either one-versus-one or one-versus-
many).

Here are some advantages and disadvantages of SVM, based on inform-
ation from the open-source library SciKit Learn1.

Advantages:
1http://scikit-learn.org
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• E�ective in high dimensional spaces.

• Still e�ective in cases where number of dimensions is greater than the
number of samples.

• Uses a subset of training points in the decision function (called sup-
port vectors), so it is also memory e�cient.

• Versatile: di�erent Kernel functions can be specified for the decision
function. Common kernels are provided, but it is also possible to
specify custom kernels.

Disadvantages:

• If the number of features is much greater than the number of samples,
the method is likely to give poor performances.

• SVMs do not directly provide probability estimates, these are calcu-
lated using an expensive five-fold cross-validation.

2.2.4. Maximum Entropy (MaxEnt)

Maximum Entropy is a multinomial logistic regression model suited for
classifiying problems with more than two classes. It is a probabilistic clas-
sification model with no assumptions of conditional independence. It is
therefore suited for feature selection methods where there is no conditional
independence among the features, like textual domains. The model is called
Maximum Entropy (or MaxEnt for short) because it seeks the model with
the maximum information entropy and best represents the dataset.

2.2.5. Stochastic Gradient Descent (SGD)

SGD is an optimization method for unconstrained optimization problems.
Both gradient descent and stochastic gradient descent updates a set of para-
meters in an iterative manner to minimize an error function. Stochastic
gradient descent only uses one training sample from a training set to up-
date a parameter in a particular iteration, rather than running through all
samples before updating. This way the linear classifier converges quickly
and is well suited for large datasets. Using convex loss functions like hinge
or loss, the classifier can act much like an SVM or MaxEnt classifier, re-
spectively.

10



2.3. Topic modeling

2.3. Topic modeling
This section introduces some important topic modeling methods, as well
as describing the task of evaluating the coherence of a topic model. A
more thorough description of topic modeling and its applications is given
in Chapter 6.

2.3.1. Latent Dirichlet Allocation

LDA (Latent Dirichlet Allocation) is an unsupervised generative probabil-
istic model of a set of documents, introduced by Blei et al. [2003]. It has
become one of the most commonly used methods for document modeling,
proving e�cacy in its ability to accentuate the latent topics contained in
a collection of documents. LDA is a generative topic model which gener-
ates mixtures of latent topics from a collection of documents, where each
mixture of topics produces words from the collection’s vocabulary with cer-
tain probabilities. These documents might consist of text corpora or other
types of discrete data. The generative process of running LDA consists
of several steps. A distribution over topics is first sampled from a Dirich-
let distribution, and a topic is further chosen based on this distribution.
Moreover, each document is modeled as a distribution over topics, and a
topic is represented as a distribution over words. The following steps out-
lines the generative process of running LDA on a set of documents, as seen
in Blei [2012]:

1. Randomly choose a topic distribution t.

2. For each word in document d:
a) Randomly choose a topic from the topic distribution in t.
b) Randomly choose a word from the corresponding distribution

over the vocabulary.

LDA consequently represents the topics as a list of words and their prob-
abilities of being generated by that particular topic.

Online Latent Dirichlet Allocation

Ho�man et al. [2010] implements Online Latent Dirichlet Allocation (OLDA),
which is an extension to LDA that allows the model to be updated with
new documents incrementally. This could be useful when analyzing docu-
ments arriving in a stream, allowing the topic model to adapt to changes
in incoming documents. The visualization application presented in Section
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5.1 incorporates online topic modeling as a way for users to update a topic
model with tweets retrieved from a search.

2.3.2. Dynamic Topic Model
Dynamic Topic Model (DTM), proposed by Blei and La�erty [2006], takes
the temporal ordering of the documents into consideration. It is a sequential
extension to LDA. Blei and La�erty [2006] originally used dynamic topic
modeling to show how trends in word usage in topics evolve over time,
finding that a topic model trained with past documents better fit incoming
documents for a new timeslot than standard LDA. Furthermore, Wang
et al. [2012] developed a continuous dynamic topic model to predict the
timestamps of documents.

2.3.3. Author-topic model
Several methods for retrieving information about documents and their re-
spective authors have been proposed by researchers. The Author-topic
model [Rosen-Zvi et al., 2004] is an extension to LDA which takes informa-
tion about an author into account. The process of running the Author-topic
model on a corpus resembles LDA: for each word in a document d, an au-
thor from the document’s set of authors is chosen at random. A topic t is
then chosen from a distribution over topics that are specific to that author,
and the word is generated from that topic. Note that the Author-topic
model manages to handle multiple authors per document, although tweets
only have one author. The model gives information about the diversity
of the topics covered by an author, and makes it possible to calculate the
distance between the topics covered by di�erent authors, to see how similar
they are in their themes and topics. Hong and Davison [2010] proposes
a simpler extension to LDA for modeling the authors of tweets. By ag-
gregating tweets written by an author into one individual document, they
mitigate the disadvantages caused by the sparse nature of tweets. They
found that this method of aggregating messages from the same author can
improve classification and topic model tasks in short text environments. We
perform experiments employing both the Author-topic model proposed by
Rosen-Zvi et al. [2004] and a variant of the Author-topic model proposed by
Hong and Davison [2010]. See Section 8.1.4 for the experiments conducted
using these methods.

2.3.4. Topic model scoring
There isn’t a single method for evaluating the accuracy of a topic model, and
several evaluation metrics have been proposed. The unsupervised nature of
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topic discovery makes the assessment of topic models challenging. Quantit-
ative metrics don’t necessarily provide an accurate reflection of a human’s
perception of a topic model, as it’s di�cult to mathematically reproduce
human judgement. Moreover, human judgement is not clearly defined, as
di�erent people might disagree on the e�ciency of a topic model. The topic
models produced in the experiments conducted in this thesis are therefore
evaluated by a variety of metrics.

UMass coherence metric

The UMass coherence metric, introduced by Mimno et al. [2011], measures
the topic coherence in a topic model. The topic coherence C for a topic is
defined as:

C =
Mÿ

m=2

m≠1ÿ

l=1

log
D(w

m

, w
l

) + 1
D(w

l

) (2.5)

(w
1

, ..., w
M

) being the M most probable words in the topic, D(w) being
the number of documents that contain word w, and D(w

m

, w
l

) being the
number of documents that contain both words w

m

and w
l

. This metric util-
izes word co-occurrence statistics gathered from the corpus, which ideally
already should be accounted for in the topic model. Mimno et al. [2011]
concludes that standard topic models do not fully utilize the co-occurrence
information, and they achieved reasonably good results when comparing the
scores obtained by this measure with human scoring on a corpus contain-
ing 300,000 journal paper abstracts from the NIH (National Institutes of
Health). However, statistical methods cannot model a human’s perception
of the coherence in a topic model perfectly.

Human judgement

Due to the di�culties of calculating the e�cacy of a topic model mathemat-
ically, researchers also employ human judgement to evaluate topic models.
Mimno et al. [2011], in their attempt to produce a method that automat-
ically evaluates topic models, simply let two experts evaluate the topics as
either good, intermediate or bad. Chang et al. [2009] propose two tasks
where humans can evaluate topic models: word intrusion and topic intru-
sion. We also propose a new method for evaluating an author-topic model
using human judgement.

Word intrusion The word intrusion task lets humans measure the co-
herence of the topics in a topic model by evaluating the latent space in
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the topics. The human subject is presented with six words, and the task
is to find the intruder, which is the one word that does not belong with
the others. The idea is that the subject should easily identify the intruding
word when the set of words minus the intruder makes sense together. For
a set of words lacking coherence, it is di�cult to find the intruder, and it
will typically be chosen at random. The following method is proposed for
constructing a set of words to present to the subject:

1. Select a random topic from the model.

2. Select the five most probable words from the topic.

3. Select an intruder at random from a pool of words with low probability
in the current topic.

One example mentioned in their paper is that it is easy to identify the out
of place word apple in the set {dog, cat, horse, apple, pig, cow}, since the
other words are all animals, but it is di�cult to identify one out of place in
a set of words lacking coherence, like the set {car, teacher, platypus, agile,
blue, Zaire}.

Topic intrusion In the topic intrusion task, subjects are shown a docu-
ment’s title along with the first few words of the document. They are also
presented four topics, three of those being the highest probability topics
assigned to that document, and the remaining intruder topic being chosen
randomly from the low-probability topics in the model. The task of the
subject is to find the low-probability topic.

In our attempt to evaluate the di�erent Twitter topic models generated
in Chapter 8, we used methods based on human judgement as well as the
UMass measure. In Section 6.3, we propose a method for evaluating an
Author-topic model, specifically with the Twitter domain in mind.
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This section includes a brief overview of the several tools and resources we
used in this project. They include Twitter-specific tools, such as the Twitter
API, as well as several tools and resources useful for sentiment analysis and
topic modeling tasks.

3.1. Twitter API
The Twitter API was used for retrieving tweets for our datasets. There are
two main components to the Twitter API, the Twitter Streaming API 1 and
the Twitter Search API 2.

3.1.1. Twitter Streaming API
The Streaming API allows retrieving tweets in real-time, returning a small
random sample of all public statuses. This was used for collecting large
datasets of tweets to be used for both sentiment analysis and topic mod-
eling. This API is favorable to the Search API if the goal is to retrieve a
large amount of random tweets.

3.1.2. Twitter Search API
The Search API allows conducting searches, reading user data and posting
tweets. The Search API should be used if you need specific tweets, such as
tweets from certain users, or tweets containing specific hashtags or words.
This API was mainly used for retrieving tweets for the Author-topic model
and for the visualization application.

3.2. Scikit-learn (sklearn)
Scikit-learn by Pedregosa et al. [2011] is a free machine learning library for
the Python programming language. The module contains state-of-the-art
implementations of many machine learning algorithms, as well as tools for

1https://dev.twitter.com/streaming/overview
2https://dev.twitter.com/rest/public/search
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customizing and optimizing these methods. It o�ers an extensive API and
documentation of its library, and has been used in the sentiment classific-
ation system of the project.

3.2.1. Transformers

Scikit-learn provides a library of transformers that can be used to clean,
reduce, expand or generate feature representations. In this project they are
used to generate feature representations, e.g. transforming a tweet into a
simple vector containing the amount of negations found in the tweet.

3.2.2. Feature Union

The Feature Union module takes a set of transformers, which it concat-
enates resulting in a combined list of transformer objects. It essentially
serves the same purpose as the first step of an sklearn pipeline, therefore it
is common to include a feature union in a pipeline.

3.2.3. Pipeline

The pipeline sequentially applies a list of transformers and a final estimator
(e.g. a machine learning classifier). It is used as a convenient way of
combining the several stages of feature extraction and setting a classifier’s
parameters. The pipeline allows for cross validation and grid searching on
a set of parameters for each estimator, or just training the final estimator
with a set of custom or default parameters.

3.2.4. Grid Search

A parameter space can be set for each estimator in the Pipeline framework,
which allows us to perform an exhaustive grid search across the various
combinations of parameters to find the setup with the best cross-validation
score. The grid search is a very important step of feature engineering for
optimizing a classifier, and was found to be one of the most e�ective ways
to improve results of classification during this project.

3.3. Sentiment lexicons

Bing Liu sentiment lexicon presented in Liu [2010] is an english senti-
ment lexicon first started in 2004 on product reviews, but has been extended
several times since. The version used for this project was published in 2012.
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NRC Twitter sentiment lexicon presented in Kiritchenko et al. [2014]
is an english sentiment lexicon that was integrated in some of the winning
systems of the SemEval workshop of 2013 and 2014.

MPQA sentiment lexicon presented in Wilson et al. [2005] is an english
sentiment lexicon from 16,000 subjective expressions from a system built in
2005.

3.4. Pandas

Pandas by McKinney [2014] is an open source high-performance data struc-
ture and data analysis tool for the Python programming language. It has
been utilized in the project for creating appropriate data structures for
sentiment classification on the di�erent Twitter datasets imported.

3.5. Twitter NLP

Twitter NLP by Ritter et al. [2011] is a Python library providing useful
resources for Twitter natural language processing. Many similar solutions
are also available in the well-known Natural Language ToolKit (NLTK)
library; however, Twitter NLP is made specifically for processing tweets,
appropriate for our project. We used Twitter NLP’s Twokenize by Owoputi
et al. [2012] which is tailored for tokenizing tweets.

3.6. Gensim

Gensim by �eh��ek and Sojka [2010] is an open-source topic modeling
toolkit for Python, providing implementations of LDA and other topic mod-
els. We used Gensim’s LDA implementation for performing the topic mod-
eling experiments, including generating topic models, calculating the UMass
coherence scores and inferring topic distributions for new documents.

3.7. Tornado

Tornado3 is a web application framework for Python. This was used for
creating an API used for sharing data between the Python back-end and
the visualization application.

3http://www.tornadoweb.org/en/stable/
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3.8. MeteorJS
MeteorJS4 is a web application framework built on top of Node.js5. We
chose this framework for building two applications; the classification ap-
plication and the visualization application. MeteorJS integrates with Mon-
goDB by default, which makes it suitable for handling Twitter data; the
Twitter API represents the tweets as JSON, and the database fields in
MongoDB are JSON objects.

3.9. langid
Langid6 is a language identification system for Python. We used it to
identify the language of tweets that were classified as undefined by the auto-
matic Twitter language identificator7, helping discard non-english tweets.

4https://www.meteor.com/
5https://nodejs.org
6https://github.com/sa�sd/langid.py
7https://blog.twitter.com/2015/evaluating-language-identification-performance
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We will in this section establish the state-of-the-art regarding topic mod-
eling and sentiment analysis, by performing a systematic literature review.
The structure of this literature review is inspired by the work of Kofod-
Petersen [2012] on the topic, as well as his course held at NTNU during the
Fall semester of 2015.

4.1. Structured Literature Review Methodology
Step 1 & 2: Planning the review
For the purpose of this document we can assume that a need has already
been identified (step 1) and that a review has been commissioned (step 2).
This description will cover steps 3 and 4 in the planning phase.

Step 3: Specifying research questions
It is assumed that a specific problem (P) is tackled using some specific con-
straints, methods and/or approaches (C) to develop a system, application
or algorithm (S).

1. What are the existing solutions to the problem of finding sentiment of
Twitter posts regarding specific topics (P)?

2. How does the di�erent solutions found by addressing question 1 com-
pare to each other with respect to the di�erent methods for finding
sentiment in tweets?

3. What is the strength of the evidence in support of the di�erent solu-
tions (C)?

4. What implications will these findings have when creating the system
(S)?

Step 4: Developing a review protocol

The search of related and relevant research papers to our literature study
will be executed through the Google Scholar search engine, which searches
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several scientific literature websites (such as citeseerx, ACM, major univer-
sities, etc.).

The grouping of keywords developed for the literature review can be seen
in Table 4.1:

Group 1 Group 2 Group 3
Term 1 Sentiment analysis Topic (modeling) Twitter
Term 2 Opinion mining Named Entity Recognition Microblog

Table 4.1.: Grouping of queries

The following queries were developed based on keyword grouping:

• Topic AND ("Sentiment Analysis" OR "Opinion Mining") AND (Twit-
ter OR Microblog)
Which produced 9,530 results.

• ("Named entity recognition" OR "Topic Modeling") AND ("Sentiment
analysis" OR "Opinion mining")
Which produced 3,830 results.

The following prioritized criteria are the basis for selection of papers:

1. Title and Abstract

2. Conclusion and Future Work

3. Experiments and results
• Data and Algorithms

4. Discussion
• Related work

5. Background reading
• Introduction and Reference

As both social media platforms and sentiment analysis techniques are
rapidly evolving, we reject papers submitted before 2011.

4.2. Review of literature
In this section we apply the protocol developed in Section 4.1, choose our
literature and present the results of the review.
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4.2.1. Identification of research
Google Scholar is e�ective at retrieving the most relevant articles to your
queries, supplied with metadata such as citations, as well as grouping du-
plicate results. This was clearly evident, as the articles became decreasingly
relevant to our literature review. Google Scholar makes for e�cient search-
ing and inspection of which articles to read and inspect furtherly, and is an
appropriate tool for this task.

For each query we went thirty results into the search.

4.2.2. Selection of primary studies
The selection process of the articles is split into three di�erent stages, the
primary and secondary inclusion stage and the quality assessment.

The primary inclusion stage concerns inspecting the title, abstract and
metadata of the article for sentiment analysis or topic modeling, and whether
it has produced relevant results.

The secondary inclusion stage concerns whether the study focuses on
microblogs, or short textual data — as well as whether it has proposed
techniques for implementing the previous criteria.

This can be split into the following inclusion criteria:
Primary:

IC 1 The article concerns sentiment analysis, topic modeling or entity re-
cognition.

IC 2 The article has produced relevant results.

Secondary:

IC 3 The article focuses on microblogs, or specifically Twitter.

IC 4 The article proposes techniques for implementing previous inclusion
criteria.

4.2.3. Study quality assessment
The quality of the articles that pass the first two inclusion stages, are
evaluated by a set of ten di�erent quality assessment criteria. This allows
us to score the article and rank all retrieved articles, and finally choose the
set of articles with the highest scores. The articles score 1 point for including
a criterion, 1

2

point for partial inclusion, and 0 points for exclusion.
Quality assessment criteria:

QC 1 Is there a clear statement of the aim of the research?
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QC 2 Is the study put into context of other studies and research?

QC 3 Are system or algorithmic design decisions justified?

QC 4 Is the test data set reproducible?

QC 5 Is the study algorithm reproducible?

QC 6 Is the experimental procedure thoroughly explained and reprodu-
cible?

QC 7 Is it clearly stated in the study which other algorithms the study’s
algorithm(s) have been compared with?

QC 8 Are the performance metrics used in the study explained and justi-
fied?

QC 9 Are the test results thoroughly analysed?

QC 10 Does the test evidence support the findings presented?

4.3. Results
The results are presented, in no particular order, in Figures 4.1, 4.2, and
4.3 found on the following pages. Figure 4.1 presents the scores of each
paper reviewed. Figure 4.2 presents the results from the first query, while
Figure 4.3 presents the results from the second query. The most relevant
papers are discussed in Sections 4.4.2 and 4.4.3.

4.4. Other
This section describes the International Workshop on Semantic Evaluation
(SemEval), as well as discussing the most relevant papers from the literature
review.

4.4.1. International Workshop on Semantic Evaluation
(SemEval)

The International Workshop on Semantic Evaluation1 is an annual series
of evaluations of computational semantic analysis systems. The workshop
presents several tasks each year, which researchers around the world can
take part in. The tasks are intended to explore the nature of meaning in

1https://en.wikipedia.org/wiki/SemEval
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Team Twitter 2015 Twitter sarcasm
1 TwitterHawk 50.51 31.30
2 KLUEless 45.48 39.26
3 Whu-Nlp 40.70 23.37
4 whu-iss 25.62 28.90
5 ECNU 25.38 16.20
6 WarwickDCS 22.79 13.57
7 UMDuluth-CS8761 18.99 29.91

Table 4.2.: Results of the SemEval 2015 workshop, task 10 subtask C

language, from a computational standpoint. The annual SemEval workshop
of 2015 presented a task on Topic-Based Message Polarity Classification, a
task which is similar to what is studied in this paper. The scores of each
team can be found in Table 4.2, and were calculated by

(F1
pos

+ F1
neg

)/2 (4.1)

The most successful teams of the SemEval workshop on the targeted
sentiment task in 2015, used common methods in achieving their results.
Boag et al. [2015] used a supervised learning approach using linear SVM,
heavily focused on text pre-processing and feature engineering. Plotnikova
et al. [2015] used a supervised approach on the SemEval datasets with the
Maximum Entropy method, using text preprocessing, lexicon and emoticon
scores and trigrams. They essentially ignored topics in their technique,
which is interesting given the task — coming in second. Zhang et al. [2015]
was di�erent to the other techniques by focusing on word embedding fea-
tures, as well as the traditional textual features and preprocessing. Though
they argued that when the model was only extended with the word embed-
ding features, it didn’t necessarily significantly improve their results.

4.4.2. Topic Modeling

Based on the retrieved documents of the literature study, there was some
variety to the proposed methods for modeling topics. The majority of the
studied research used the Latent Dirichlet Allocation (LDA) algorithm and
its variations.

LDA has proven e�cacy in modeling the semantics in a document cor-
pus. Koltsova and Koltcov [2013] present their findings on the use of LDA
on mostly political topics regarding the presidential elections in Russia, but
also on recreational and other topics. Applied to a dataset of all posts of
2,000 Russian bloggers on LiveJournal, they managed to correctly identify
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between 30-40% of the topics in their corpus, despite the broad categories
— giving evidence to the robustness to LDA. Similar research worth men-
tioning include the work by Sotiropoulos et al. [2014] on targeted sentiment
towards topics related to the two major telecommunication firms, ATT and
Verizon in the USA, as well as the work by Waila et al. [2013] on identifying
socio-political events and entities during the Arab Spring and finding the
global sentiment towards these events.

Topic modeling algorithms have gained increased attention in modeling
tweets. Tweets do, however, pose some di�culties because of their sparse-
ness, as the short documents might not contain su�cient data to estab-
lish satisfactory term co-occurrences. Several pooling techniques, which
involves aggregating similar tweets into individual documents, have there-
fore been applied to mitigate the disadvantages of sparse data. Hong and
Davison [2010] show that the e�ectiveness of topic models is highly in-
fluenced by the document’s length, and that aggregating short messages
produces better models. Moreover, Quan et al. [2015] present a solution for
topic modeling for sparse documents, finding that automatic text aggreg-
ation during topic modeling is able to produce more interpretable topics
from short texts than standard topic models.

4.4.3. Twitter Sentiment Analysis

The following section discusses research focused on the sentiment analysis
part, rather than the topic modeling.

Part-of-speech tagging is an important feature of many sentiment ana-
lysis systems. Pak and Paroubek [2010] proposed that some POS-tags may
be strong indicators of emotional text, contrary to Kouloumpis et al. [2011]
who found that part-of-speech features may not be useful for sentiment
analysis. Supporting the claim of POS-tags as important features, Agar-
wal et al. [2011] proposed a tree kernel and feature based method that
beats their unigram base models and concludes in accordance with Pak
and Paroubek [2010] that prior polarity of words and part-of-speech tags
contribute greatly to identifying the sentiment of text.

Wang et al. [2011] propose a state-of-the-art Twitter Sentiment Ana-
lysis system, using a two-stage SVM classifier. The first of which determ-
ines whether a tweet is neutral or subjective, while the second determines
the polarity of a subjective tweet. Their approach is incorporated with a
hashtag graph model to boost results, which combines the information on
hashtags co-occurrence and tweet sentiment. Meng et al. [2012] is another
study with emphasis on hashtags, but only use them as weakly supervised
information in their topic modeling algorithms. Jiang et al. [2011] presen-
ted a TSA model that incorporates syntactic features and related tweets.
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Utilizing a graph-based optimization they take related tweets into consid-
eration to finding the sentiment of the target, which significantly improves
performance. Lastly, Si et al. [2013] proposed a technique to predict the
stock market with sentiment analysis, using topic modeling to extract the
related targets to the market. Their approach performs better than the
existing state-of-the-art topic based methods.
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5. Architecture
This chapter describes the main application for our system, a visualiza-
tion application, called TweetMoods, that allows users to retrieve topic and
sentiment information of tweets retrieved by a search. We also describe a
polarity classification application that lets users label tweets manually.

5.1. TweetMoods

We created an application that combines the sentiment analysis compon-
ents with the topic modeling components and gathers information about
tweets searched for by the user. The idea is that the user should be provided
with accurate information about the sentiments and the latent topics con-
tained in a corpus of tweets. By searching for certain brands or products,
the application should give an overview of the sentiment expressed in mes-
sages mentioning these particular brands or products, as well as providing
information about which underlying topics are contained in these tweets.
We first provide an overview of the API that serves as a layer between
the front-end visualization application and the programs running the senti-
ment classification and topic modeling, before giving a general explanation
of the architecture and the details of our application. Figure 5.1 shows the
architecture of the visualization application.

5.1.1. API

An API was created for connecting the front-end of the visualization ap-
plication with the Python code running the sentiment and topic modeling
programs. The Python web framework Tornado (see 3.7) was used for this
purpose, hence is it referred to as the Tornado API in Figure 5.1. The API
displays several endpoints that trigger di�erent parts of the underlying pro-
grams, which after completion returns the response as JavaScript Object
Notation (JSON). Consider the following API request:

sentiment/search?query=coca-cola&count=100
&result_type=recent&classifier=maxent
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5. Architecture

Figure 5.1.: The overall architecture of the visualization application. Users
submits queries through the MeteorJS app, which sends re-
quests to the Tornado API. The Python backend retrieves
tweets through the Twitter API, runs the sentiment analysis
and topic modeling algorithms on the tweets and returns the
results.
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This API requests accesses the endpoint sentiment/search, which gives
a response with the sentiments of a group of searched tweets. Four para-
meters are given: query (the search query), count (the number of tweets to
search), result_type (whether the tweets should be popular, recent or mixed)
and classifier (which sentiment classifier to use for the classification).

The API request feeds instructions to the underlying Python backend,
and the following tasks are performed:

1. Search for 100 tweets using the Twitter Search API, using the search
query coca-cola, with the result_type parameter set to recent.

2. Classify each tweet as either positive, neutral or negative, using the
specified classifier.

3. Display the response as a list of tweet JSON objects with their cor-
responding sentiment.

5.1.2. Application overview

TweetMoods was developed using the MeteorJS framework (3.8), and provides
several features, the main feature being the possibility to predict the sen-
timent and infer topic mixture of a tweet corpus. The application contains
three components, each serving di�erent purposes related to analyzing the
topics or sentiments of text.

Predict sentiment of text The Predict sentiment of text feature lets
the user test the sentiment classification on an arbitrary string, and choose
which sentiment classifier to use. Figure 5.2 shows how this feature is
presented to the user. By clicking the Predict sentiment button, an API
request is sent to the sentiment endpoint, providing the chosen classifier
and text as queries. In this case, i didn’t like the new avengers movie is
chosen as the text, and MaxEnt is chosen as the classifier. As seen in
Figure 5.2, the returned value for these parameters is negative.

Get topic distribution for text This feature provides a way of inferring
the topic distribution of an arbitrary string over a pre-trained topic model.
The user provides a string and chooses a topic model from a list of pre-
trained topic models. An API request is then sent to the topic/mixture
endpoint, which returns the topic distribution of the text. TweetMoods
then presents the topic distribution in a column chart. See Figure 5.3 for
a demonstration of this feature. In this case, the user chooses to infer the
topic distribution over the text galaxy and election with an Author-topic
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Figure 5.2.: Screenshot of the sentiment prediction feature of TweetMoods.
The user chooses an arbitrary text to classify.

model created from the tweets of 16 Twitter users. Two topics are returned,
each being represented by its 10 most probable words.

Search for tweets The Search for tweets component is the main feature
of TweetMoods, providing both sentiment analysis and topic modeling of
tweets retrieved by a search query. Figure 5.4 shows the search interface
being presented to the user. The users first choose whether they want to
analyze only the sentiments, topics or both, before choosing which classifier
and topic model to use for the sentiment classification and topic distribu-
tion inferral. By clicking the search button, a request is sent to the API.
The Python program running the API then retrieves the wanted tweets
using the Twitter Search API. The tweets are either sentiment classified or
inferred a topic distribution for, or both (depending on the user’s prefer-
ences). The topic distribution is calculated as the average topic distribution
over the retrieved tweets, each topic being represented by its 10 most prob-
able words. The tweets are also listed, with background colors indicating
whether the tweet was classified as positive, neutral or negative. The user
can also choose to update the topic model with the tweets retrieved from
the search, providing incremental updates to the model (Section 2.3.1 gives
an introduction to online topic models). See Figures 5.6, 5.5 and 5.7 for
the results of clicking the Search button with the parameters shown in Fig-
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5. Architecture

Figure 5.4.: Screenshot of the tweet search box. The user can analyze the
sentiments, topics or both of queried tweets.
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ure 5.4. In the scenario pictured in the figures, the user chooses to analyze
both the topics and the sentiments of a tweet corpus retrieved by the query
election. The chosen classifier is MaxEnt, and the topic model is chosen to
be the pre-trained Author-topic model with 50 topics. Moreover, the user
chooses to retrieve 50 tweets before applying the sentiment and topic mod-
eling algorithms to them. The user also wants to include links, retweets
and replies, with a mixed result type, which means that both recent and
popular tweets will be returned. Finally, the user chooses not to update
the pre-trained topic model with the retrieved tweets.

Figure 5.5 shows a sample of the 50 tweets retrieved from this search, with
background colors indicating which sentiments the tweets were classified as.
One can see that not all tweets were classified correctly. Tweet number 2
should probably be negative instead of neutral. Tweet number 3 and 5 is
probably more neutral than positive overall, but words like Good morning
and I had a dream could indicate positive sentiment. Tweet number 8 is
clearly negative instead of positive, and after training the MaxEnt classi-
fier on a more extensive set of training data and rerunning the sentiment
classification on this tweet, it was classified as negative.

Figure 5.6 shows the sentiment ratio of all these 50 tweets, giving a
result of 20% positive tweets, 24% negative tweets and 56% neutral tweets.
Figure 5.7 shows the average topic distribution, using the pre-trained 50-
topic Author-topic model, inferred from these 50 tweets. The three most
probable topics are shown, each being represented by its 10 most probable
words.
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Figure 5.5.: A sample of tweets retrieved by TweetMoods when searching
for election. Green indicates positive sentiment, blue indicates
neutral, and a red background color indicates that the tweet
was classified as negative.
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Figure 5.6.: Pie chart generated by TweetMoods, showing the sentiment
ratio of 50 tweets retrieved from a search on election.

Figure 5.7.: The topic distribution inferred over 50 tweets retrieved by a
search on election.
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5.2. Polarity classification application
We built a web application for easing the manual classification of tweets.
This application was developed using the Javascript web framework Met-
eorJS (see Section 3.8). The intention of this application is to provide a
way to easily perform manual labeling of tweets. In addition to the fields
provided by the Twitter API, we added fields for keeping track of the labels
set by the user.

The web application presents one tweet at a time, with buttons corres-
ponding to possible labels. When a user clicks one of the buttons, the tweet
object is updated with the chosen label, and the application automatically
skips to the next tweet. By allowing users to log in, we could keep track
of which labels each user assigned each tweet, which could help resolve any
ambiguity. Figure 5.8 shows the process of fetching a tweet through the
Twitter API and displaying it to users who classify it.

Initially, we intended to use this application for creating a corpus with
sentiment-classified tweets. However, since we already had access to labeled
corpora, we considered this to be superfluous. We did, however, use this
application for creating a corpus separating high-quality tweets from low-
quality tweets, used in the Super Bowl experiment (Section 8.1.1) on Page
57. Figure 5.9 shows a screenshot of the working application.
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Figure 5.8.: The process of manually labelling tweets. Tweets are fetched
from the Twitter API and displayed to the users who labels the
tweets.

39



5. Architecture

Fi
gu

re
5.

9.
:S

cr
ee

ns
ho

t
of

th
e

cl
as

sifi
ca

tio
n

ap
pl

ic
at

io
n.

40



6. Topic Modeling
Topic models are statistical methods used for representing the latent topics
in a document collection. These probabilistic models usually present the
topics as multinomial distributions over words, assuming that each docu-
ment in the collection can be described as a mixture of these topics. A
variety of topic models have been developed for the purpose of text ana-
lysis, and recently the analysis of tweets has become popular. The language
used in tweets is known for being informal, often containing grammatically
incorrect text, slang, emoticons and abbreviations, making it more di�-
cult to extract topics from tweets than from more standard documents, like
news articles or scientific journals.

Although the informal language and sparse text makes it di�cult to re-
trieve the underlying topics in tweets, Weng et al. [2010] found that LDA
(Latent Dirichlet Allocation) produced decent results on tweets. Quan et al.
[2015] show a topic model tailored for noisy and sparse data, a phenomenon
that is prevalent in tweets. Hong and Davison [2010] compare the LDA
topic model with an Author-topic model for tweets, finding that the top-
ics learned from these methods di�er from each other. There are loads of
approaches to topic modeling given di�erent types of data, although we in
this thesis specifically investigate techniques for modeling tweets. There are
several modeling schemes that needs to be considered when modeling data:
standard LDA models documents as a distribution over topics, and the
Rosen-Zvi et al. [2004] Author-topic model models both authors and doc-
uments as a mixture of topics. Short documents don’t provide satisfactory
term co-occurrence. Therefore, pooling techniques (which involve aggreg-
ating related tweets into individual documents) might improve the results
produced by standard topic model methods. Pooling techniques include,
among others, aggregation of tweets that share hashtags and aggregation
of tweets that share author.

6.1. Clustering tweets
Cluster analysis is an important part of topic modeling, and we will in this
section demonstrate how di�erent corpora of tweets generate particular
clusters.
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Number of clusters An important task related to topic modeling is
determining the number of clusters to use for the model, which is denoted
by k. There is usually not a single correct optimal value, and the answer is
often ambiguous. One must find a balance between maximum compression,
where the whole corpus is one cluster, and maximum accuracy, where the
number of data points equals the number of clusters. Too few clusters will
produce topics that are overly broad and too many clusters will result in
overlapping or too similar topics. One common way to estimate the optimal
number of clusters in a dataset, is by using the Elbow method. This is done
by running k-means clustering on the dataset for di�erent values of k, and
then calculating the sum of squared error (SSE) for each value, as seen in
Equation 6.1.

SSE =
nÿ

i=1

(y
i

≠ (f(x
i

))2 (6.1)

The SSE decreases with higher values of k, until the SSE reaches 0 when the
k-value is equal to the number of datapoints in the dataset. The idea behind
the Elbow method is to increase the k until further increasing of k does not
give us much better modeling of the data, which is presumed to be at the
elbow of the graph. To achieve this, we use LSI (Latent semantic indexing)
as a dimensionality reduction method, to model the data in two dimensions.
Figure 6.2 shows the relationship between the terms and concepts contained
in 91,404 tweets posted on January 27th, 2016. Tweets that are similar
appear close to each other in the graph.
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Figure 6.1.: The Elbow method. The elbow appears at k = 4.
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Figure 6.2.: Clusters of 91,404 tweets.

To find out where the elbow appears, we plot the SSE for di�erent values
of k. As seen in Figure 6.1, the elbow appears at k = 4, which indicates
that 4 should be a reasonable number of topics for this particular dataset.
It is apparent from Figure 6.1 that increasing the k further does not give a
much better modeling of the data.

There are also other methods for estimating the optimal number of
clusters in a dataset. Specifically for text datasets, Can and Ozkarahan
[1990] proposes that the number of clusters can be expressed by the for-
mula mn

t

, where m is the number of documents, n is the number of terms
and t is the number of non-zero entries in the document by term matrix.

Stability analysis Greene et al. [2014] address the issue of choosing the
optimal number of topics by proposing a term-centric stability analysis
strategy, their idea being that a topic model with an optimal number of
clusters is more robust to deviations in the dataset. By repeatedly clus-
tering di�erent subsets of data originating from the same data set and
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comparing the resulting topics, one can see whether or not the topic model
is stable for a given value of k. They found that their method provides
a useful guidance in choosing the number of topics for a topic model. It
is, however, worth mentioning that they performed their research on news
articles, which are much longer and usually more coherent than tweets.
Greene et al. [2014] of the paper have also developed a Python implement-
ation1 of this stability analysis approach, which we used to predict the
optimal number of clusters for one of our Twitter datasets. It generates
topics for each k value in a range specified, before calculating the stability
score for the topic model related to each k value. Greene et al. [2014] pa-
per use NMF (Non-Negative Matrix Factorization) as their topic modeling
method; however, their method holds true for any topic modeling method
that represent topics as a ranked list of terms, including LDA. Here follows
our experiment using stability analysis to estimate the number of topics
in a corpus of tweets. We used a dataset containing 10.000 tweets posted
the 27th of January 2016, using the range {k

min

= 2, k
max

= 10} for the
number of topics. An initial topic model is first generated from the whole
dataset. Proceedingly, · random subsets of the dataset is generated. For
each of the subsets S

1

, ..., S
·

, one topic model per k value is generated.
We chose · = 50, resulting in generating · ú k

range

= 50 ú 9 = 450 topic
models. The stability for a k value is then generated by computing the
mean agreement score between the reference set and the sample sets for k,
as shown in Figure 6.2, where agree(S

0

, S
i

) denotes the agreement score
between the reference ranking set S

0

and ranking set S
i

. The number of
terms to consider, denoted by t, also a�ect the agreement score. A t value
of 20 indicates that the top 10 terms for each topic were used.

Figure 6.3 shows the stability score for the k values 2 through 10 for
t = 20. The low scores are likely caused by the sparse and noisy data in
tweets, as this method was originally used for longer, more coherent docu-
ments. The estimation of number of topics by this method does therefore
not provide a good indication of the number of underlying topics for this
kind of corpus.

Researchers have also achieved good results with using a higher number
of topics for tweets than what is needed for larger, more coherent corpora,
since short messages and a high number of tweets with diverse themes
requires more topics. Hong and Davison [2010] uses number of topics for
tweets in a range from 20 to 150, obtaining the best results for t = 50,
although the chance of duplicate or overlapping topics increase with the
amount of topics. We performed an experiment to investigate how di�erent

1https://github.com/derekgreene/topic-stability
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Figure 6.3.: Stability analysis plot for a corpus of 10.000 tweets.

stability(k) =
·ÿ

i=1

agree(S
0

, S
i

) (6.2)

Figure 6.4.: Stability score, Greene et al. [2014]

tweet corpora produces di�erent clusters. This experiment can be seen in
8.1.1.

6.2. Hashtags
Tweets have user-generated metatags which can aid the topic and sentiment
analysis. Being labels that users tag their messages with, hashtags serve as
an indicator of which underlying topics are contained in a tweet. A hashtag
is usually a word or an abbreviation preceded by the hash character (#).
During the Super Bowl, hashtags like #SuperBowl and #SB50 were used
extensively, SB50 being an abbreviation for Super Bowl 50. If users attend
an event, they might tweet about the event using a hashtag that indicates
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that they are tweeting about that particular event. Searching for hashtags
makes it easier to look up tweets about certain topics or themes. Moreover,
hashtags can help discover emerging events and breaking news, by looking
at new or uncommon hashtags that suddenly get a rise in attention. We
will here present the usage of hashtag co-occurrences as a way to divulge
the hidden thematic structure in a corpus of tweets, using a collection of
3 million tweets retrieved during the Super Bowl match, February 7th,
2016. Hereinafter, this tweet collection will be referred to as the Super
Bowl corpus.

Hashtag co-occurrence Hashtag co-occurrences show how hashtags ap-
pear together in tweets. Since di�erent hashtags appearing in the same
tweet usually share the underlying topics, a hashtag co-occurence graph
might give interesting information regarding the topics central to the tweet.
Looking at which hashtags co-occur with the hashtag #SuperBowl gives
us more information about other important themes and topics related to
Super Bowl. Table 6.1 shows the 10 most popular hashtags from the Su-
per Bowl corpora, about half of them being related to the Super Bowl.
SB50, SuperBowl50 and SuperBowl are all variations of the Super Bowl
hashtag. Interestingly, Broncos (Denver Broncos), which was the winning
team of this year’s Super Bowl, was the 5th most mentioned hashtag, oc-
curring 1290 times, while the losing team Panthers (Carolina Panthers) is
mentioned only 476 times, being the 17th most popular hashtag that day.
Some hashtags are related to a topic without it being apparent, since it re-
quires further knowledge to understand how they are related, which is the
case with the KeepPounding hashtag. A Google search reveals that "Keep
Pounding" is a quote by the late Carolina Panthers player and coach Sam
Mills. Hashtag co-occurrences help reveal such related hashtags. Figure 6.5
displays the co-occuring network graph for the Super Bowl corpus, reveal-
ing the hashtags KeepPounding and SB50 to be the 8th most co-occurring
hashtag pair, appearing together in 186 tweets. The hashtag co-occurrence
network also tells that the hashtag EsuranceSweepstakes co-occurred with
SB50 215 times, indicating that EsuranceSweepstakes is related to the Su-
per Bowl. A Google search again reveals that this is the case; Esurance is
a company that had a commercial during Super Bowl, and in the commer-
cial they encouraged people to tweet using the hashtag EsuranceSpeestakes,
which explains the high amount of that particular tweet.

Figure 6.5 displays the 20 most co-occurring hashtags in a co-occurrence
network for the Super Bowl corpus, with the 20 most frequently co-occuring
hashtag pairs. One can see three clusters of hashtags, with Super Bowl re-
lated hashtag being the largest one. Related topics and terms become more
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Hashtag Frequency
SB50 10234
KCA 3624
SuperBowl 2985
FollowMeCameronDallas 1899
Broncos 1290
EsuranceSweepstakes 1079
followmecani� 995
FollowMeCarterReynolds 938
KeepPounding 794
SuperBowl50 783

Table 6.1.: Most occurring hashtags during Super Bowl 2016.

apparent when displayed in a co-occurrence graph like this. For example do
the artists Beyonce and Coldplay appear in the Super Bowl cluster, which is
because they both performed during Super Bowl’s halftime show. Another
cluster that appeared consists of the three hashtags votelauramarano, KCA
and VoteArianaGrande. A Google search again reveals that KCA is an ab-
breviation of Kid’s Choice Awards, an annual award show where people can
vote for their favorite television, movie and music acts. Viewers can vote by
tweeting the hashtag KCA with a specific nominee-specific voting hashtag
(e.g., VoteArianaGrande).2 Researchers have found that a hashtag-graph
based topic model enhances the semantic relations displayed by standard
topic model techniques [Wang et al., 2014].

6.3. Author evaluation
In Section 2.3.4, we introduced some previously proposed methods for evalu-
ating the accuracy of a topic model. Here follows a method that we propose
for evaluating an Author-topic model, specifically with the Twitter domain
in mind. A topic mixture for each author is obtained from the model.
The subjects should know the authors in advance, and have a fair under-
standing of which themes and topics the authors are generally interested in.
The subjects are then presented a list of the authors, along with the topic
distribution for each author (represented by the 10 most probable topics,
with each topic being represented by the 10 most probable words). The
task of the subject is to deduce which topic distribution belongs to which
user. The idea is that coherent topics would make it easy to recognize the

2http://kca.nickelodeon.fr/info/info-promo-voting-rules/s1ws9a
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authors from a topic mixture, as the authors’ interests would be reflected
by the topic probabilities. An experiment using this evaluation method is
conducted in Section 8.1.4.
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7. Sentiment Analysis
7.1. Twitter Sentiment Classifier
For our Twitter sentiment classifier, we’ve chosen to work with the world-
wide popular Python programming language because of the immense lib-
rary of modules and packages available for di�erent applications. One of
these is the Scikit-learn module which is a machine learning library earlier
described in Section 3.2. The basic steps of the Twitter sentiment classifier
can be summarized in three steps. First is the textual preprocessing of
the data retrieved from Twitter, labeled data for training and raw data for
predicting. Second is the feature extraction of the Twitter data, which the
classifiers train on. And lastly, the training and prediction of the classifiers
on the input data into three di�erent classes; positive, neutral or negative
sentiment regarding the text.

7.1.1. Textual preprocessing of Twitter data
For the textual preprocessing, some of the tweet contents are considered
unnecessary and removed completely for all tasks. All usernames, in the
tweet recognized as @"username", are removed as they would most likely
become considered as more important tokens than they are to the classifiers.
URLs are removed, as their contents are not taken into consideration in
this system. Elongated words with letters repeated more than three times
are reduced to only occur up to two times. Negation contractions (such
as wasn’t, isn’t, etc.) are expanded into their representations (e.g. was
not, is not, etc., respectively). Because of the informal language used on
Twitter with a lot of strange capitalization, all text is made lower cased for
simplification. Hashtagged words are added to its tweet in addition to the
original hashtag (e.g. #obama and obama). Further, redundant whitespace
and english stop words are removed. Symbols that are not possible to create
on a standard English keyboard are also removed.

7.1.2. Feature Extraction and building a feature set
The feature set of the sentiment classifier was built with Scikit-learn’s Fea-
tureUnion (see Section 3.2.2. FeatureUnion simplifies the procedure of
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building a matrix containing the features of all documents, by splitting
the work to be done down to several transformers that take textual data as
input and outputs a matrix (part of the final feature matrix).

Term frequency-inverse document frequency (TF-IDF)
Transformers: word-level & character-level

The TF-IDF transformer transforms each document into a vector with
TF-IDF scores for each token. The transformer assumes the documents
processed to be English and does not include English stop words in its
calculation. All tokens are converted into lower case, and includes a spe-
cified number of the most informative features. The higher the number of
features, the more computation is needed to create the feature vector rep-
resenting each document. An unspecified number will result in all tokens
being features. It is common to set a high number of features for the TF-
IDF transformer based on the Twitter corpora containing a lot of slang
words in addition to standard words. How TF-IDF is calculated can be
found in Section 2.1.1.

The system uses two separate versions of TF-IDF transformers. One
transformer on the word-level, and one on the character level. The word-
level transformer reduces each document representing a tweet to a vector
with TF-IDF scores for unigrams, bigrams, up to a specified n-grams. The
character-level transformer does the same but for characters on a specified
combination of n-grams.

Lexicon Transformer

The Lexicon Transformer traverses through each word of each input docu-
ment for whether or not contain tokens that are included in the sentiment
lexicons. The lexicons used for this quantification are Bing Liu’s Opinion
Lexicon, NRC Emotion Lexicon and the MPQA Subjectivity Lexicons (see
Section 3.3). The lexicon transformer gives the input document a sentiment
score based on the tokens’ values in the sentiment lexicons. Negated tokens
are handled by checking whether the negation tag _NEG is appended the
given token. The negated tokens (e.g. not good – good_NEG) will get the
negative sentiment score, and are placed in on of the two latter indices of
the lexicon vector. Normal a�rmative tokens are placed in the two first
indices of the lexicon vector, depending on it’s sentiment score.

For a document collection with documents d, from i to m, with tokens
of each document j to n, the lexicon score is a list of lexicon scores for for
each document containing the scores:
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Figure 7.1.: Simple visualization of creating a feature vector representing
each tweet. These feature vectors tend to grow immensely in
size proportionally with the size of the dataset.
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Figure 7.2.: Simple visualization of attaching negation tags to a tweet.
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For each document, the lexicon score is calculated for each of the three
lexicons. Each of these three scores are added together using matrix addi-
tion, which is the final transformed vector representing the document.

Emoticon Transformer

Emoticons are representations of facial expressions using textual symbols,
which is most often used for expressing mood in a text. Emoticons can
therefore be valuable in the process of calculating sentiment in a docu-
ment. The emoticon transformer is simple. It takes a document collection
and preprocesses the documents with a script that converts all unicode
emoticons to ascii emoticons. Next, it finds all emoticons using a regular
expression search, and outputs the number of happy and sad emoticons
found in the document as a vector.

Negation Count Transformer

Negation is a common feature of expression, and must be accounted for
in a program that estimates the sentiment of a document. The TF-IDF
transformer supports adding negation tags to terms by naively adding the
tag _NEG to the preceding and three succeeding words.

7.1.3. Training classifiers and predicting textual input
For classification, we have experimented with several di�erent classifiers.
The classifiers are imported from the Scikit-learn module, which are state-
of-the-art machine learning algorithms that are regularly updated. From
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this library, we have chosen to work with SVC which is a Support Vec-
tor Machines (SVM) machine learning method. Logistic Regression, also
known as a Maximum Entropy machine learning method. We’ve also
worked with a couple of Naive Bayes classifiers, the Multinomial Naive
Bayes (MNB) and the Bernoulli Naive Bayes - because of their simplicity.
All of these machine learning algorithms have been proven by numerous
papers (some presented in Section 4 to be e�ective at predicting categor-
ies for big amounts of textual data. These machine learning methods are
passed feature sets in accordance with the previous Section 7.1.2, which is
used for training on labeled data or prediction of unlabeled data.

55





8. Topic Modeling
Experiments

This chapter describes the experiments conducted during this thesis, as
well as displaying the results. Section 8.1 contains the topic modeling ex-
periments, and Section 9 contains the experiments related to sentiment
analysis.

8.1. Topic Modeling
We will in this chapter conduct several experiments related to topic model-
ing. First, we perform a cluster analysis experiment, comparing the clusters
generated by di�erent types of documents. Further, we perform several
experiments for di�erent types of topic models; one standard LDA topic
model, one hashtag-aggregated topic model and two author-topic models.

8.1.1. Clustering experiment

To compare the clusters generated by di�erent tweet corpora, we wanted
a corpus of tweets that included many similar tweets. Moreover, to make
sure that there would be a lot of tweets about similar topics, we decided on
retrieving tweets posted during the Super Bowl 2016 match. Since this is a
very popular event, we assumed that there would be an extensive amount
of posts regarding this match on Twitter, which could be interesting to
analyze. In the timespan from February 7, 16:32 to February 8, 13:05
(times are in GMT), we obtained 357,120 tweets (after removing non-english
tweets), containing 3,634,977 disctinct words.

After retrieving the tweets, we wanted to filter out spam as well as tweets
that didn’t contain any clearly defined topics. This was done by manually
classifying 1000 of the tweets, picked by random, as either high-quality or
low-quality. This was an interesting task, as the definition of what makes a
tweet high-quality or low-quality is often ambiguous, but we generally tried
to distinguish tweets about Super Bowl or any other definite topic from
vague tweets where it’s hard to grasp the context. Here are examples of
which tweets were considered high-quality and low-quality:
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high-quality “Bob Sanders deserved Manning’s first Super Bowl MVP.
If Manning steals one from Von Miller I’ll be pissed. A total NFL thing to
do.”

low-quality “i dont have the time lol”

Preferably, these 1000 tweets should be classified by more than two users.
We considered crowd-sourcing the manual classification by using the po-
larity classification application introduced in Section 5.2. However, due to
time and manpower constraints, we ended up manually classifying them
ourselves, both being second-language English speakers. In total, 792 of
the 1000 tweets were manually classified as low-quality, and the remaining
208 tweets were considered high-quality. For tweets where the sentiment
was unclear, we discussed it among ourselves. 800 of these tweets were
included in the training set, and 200 were used for the test set. A Naïve
Bayes classifier was used for training the tweets, using word occurrence as
the only feature. This was because we only needed to roughly filter the
tweets to distinguish tweets that are somewhat similar to each other from
the remaining tweets.

Out of the 200 tweets in the test set, 42 of them were high-quality and
158 of them were low-quality. All of the low-quality tweets were classified
correctly, but only 6 of the high-quality tweets were, which shows that there
were many false positive low-quality tweets. However, since we manage to
filter out all low-quality tweets by using this classifier, we could use this on
the whole set of 357,120 tweets to remove all tweets classified as low-quality,
and be fairly sure that the remaining tweets are high-quality, even though
we are likely to remove many high-quality tweets as well.

We were left with 12,306 tweets after running the classifier on the whole
set and only returning the high-quality ones. Many of them seems to be
about the Super Bowl, which was expected, seeing as a big share of the
original set of high-quality tweets were about this topic. Some of them are
indirectly related to Super Bowl, mentioning Lady Gaga and other artists
that performed during Super Bowls halftime show. We wanted to compare
the clustering of this corpus of tweets that are similar to each other to the
clustering of the corpus shown in Figure 6.2. Figure 8.1 shows the cluster
of the good tweets. As opposed to the random tweets shown in Figure
6.2, there are no clear gaps here, which was expected. To further show
the di�erence in cluster structure generated by di�erent corpora, we also
include the cluster of the low-quality tweets. To avoid the result being
biased by the low-quality corpus containing much more tweets than the
high-quality corpus, we only included 12,306 tweets from the low-quality
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corpus. Since the classifier yielded a lot of false positive low-quality tweets,
it is likely that many of the tweets in the low-quality corpus should belong
to the high-quality corpus instead. We do, however, see a clear distinction
between the clusters, with the low-quality tweets indicating a more disperse
corpus.

Figure 8.1.: Cluster of 12,306 high-quality tweets.

8.1.2. Topic Modeling based on raw tweets
The following topic model experiment was carried out on a corpus contain-
ing 500,000 English tweets posted between the 10th and the 12th of May,
2016. Non-english tweets as well as all words with fewer than 20 characters
were removed. The experiments using standard LDA were performed with
k values of 10 and 50.

The field of topic modeling is relatively new, and there isn’t a general
agreement on how to evaluate topic models. Human evaluation is generally
preferred to mathematical metrics when it comes to assessing the coher-
ence or the interpretability of a topic model, although some quantitative
approaches could be used as an estimation of a topic model’s coherence (see
Section 2.3.4 for an overview of some evaluation methods for topic models).
Table 8.1 shows a sample of the topics generated for k = 50. Many of the
topics are generally incoherent, which is consistent with recent research on
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Figure 8.2.: Cluster of 12,306 low-quality tweets.

standard LDA applied to microblog data. It is, however, possible to gain
some information from the topics. Topic #11 contains words related to the
Teen Choice Award; however, the topics seem generally fairly incoherent to
a human eye.

Table 8.2 shows the topics generated from the same corpus, but with
k = 10 instead of 50. These topics are also incoherent and it isn’t easy to
infer a lot from the data. Moreover, a higher number of topics should be
considered to depict the diversity of large corpora.

8.1.3. Hashtag-aggregated topic model

We apply a pooling technique that involves aggregating tweets sharing
hashtags, the assumption being that tweets that share hashtags also share
underlying topics. The main goal of this method is the same as for the
Author-topic model and other pooling techniques; alleviating the disad-
vantages of short documents by aggregating documents that are likely to
share latent topics. Some restrictions were made: We only used single-
hashtag tweets, and we also only used hashtags that appeared in at least
20 of the documents in the corpus.

A sample of the resulting topics can be seen in Table 8.3. The topics
appear more coherent than the topics generated on tweets as individual
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Topic #7 Topic #11 Topic #31 Topic #44
go teenchoice may watch
sex nominee tonight hey
season look set hillary
body things whole following
proud hate date saying
girlfriend fans nobody dear
meeting car games dad
parents choicefandom truth room
human united eurovision sick
happens everybody congrats project

Table 8.1.: Four of the topics generated from the 500,000 tweets corpus with
k=50.

Topic #1 Topic #6 Topic #8 Topic #10
free video get thank
trump new long please
new youtube cute back
win twitter hair amazing
now photo high baby
last lt ya everyone
girls posted nialo�cial found
instagram thanks hot take
night facebook read play
will food louis_tomlinson also

Table 8.2.: Four of the topics generated from the 500,000 tweets corpus with
k=10.
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Figure 8.3.: Box plots comparing the coherence scores for the standard LDA
topic model with the hashtag-aggregated topic model. The
closer to zero the numbers are, the higher is the coherence.

documents; however, many of the less probable words in each topic might
seem somewhat random. It is, however, easier to get an understanding
of the underlying topics conveyed in the tweets, and aggregating tweets
sharing hashtags can produce more coherence than a topic model generated
by single tweets as documents. There might be event-specific hashtags that
causes di�erent events to show up in the topics. Two tours by respectively
Selena Gomez and Justin Bieber occurred in two di�erent topics, but some
of the lower-probability words seems out of place. The UMass coherence
scores for the topics in this topic model are also much higher than for
standard LDA, and can be seen in Figure 8.3. The standard document
scores are consistent with Mimno et al. [2011], while the hashtag-aggregated
topic model show a much higher coherence.

8.1.4. Author-topic model experiments

Using the Twitter API, we obtained tweets from six popular Twitter users.
We chose users that are known for tweeting about di�erent topics, so that
the results would be distinguishable. We would expect that Barack Obama
tweets about di�erent themes and topics than Neil deGrasse Tyson. While
Barack Obama mostly tweets about topics related to politics, Neil deGrasse
Tyson, being an astrophysicist and cosmologist, would assumingly tweet
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Topic #7 Topic #21 Topic #24 Topic #34
revivaltour new purposetourboston trump
selenagomez soundcloud justinbieber hillary
whumun news boston bernie
wtf video one realdonaldtrump
getting favorite best will
boyfriend sounds tonight clinton
bitch health yet greysanatomy
mad blessed shows vote
resulted efc bitcoin president
blend mealamovie redsox people

Table 8.3.: Four of the 50 topics generated from the hashtag aggregated
corpus.

about science-related topics. Moreover, we could expect the themes com-
municated by Barack Obama and Donald Trump to be quite similar, both
being politicians. We also included tweets from two pop artists, Justin
Bieber and Taylor Swift, expecting them to not share many topics with the
previously mentioned users. Elon Musk, being an engineer and inventor,
would expectedly share more similarities with Neil deGrasse Tyson than
Justin Bieber or Taylor Swift. Since we wanted tweets that reflect the au-
thor’s interests and views, we discarded all retweets and quote tweets,1 since
they aren’t written by that particular user. Furthermore, we discarded all
tweets containing media or URLs, as getting the context of these tweets
require that you have access to the contents of the url or the media. We
compare two approaches to author topic-modeling, one based on Rosen-Zvi
et al. [2004] (hereinafter AT1) and the other based on Hong and Davison
[2010] (hereinafter AT2). An introduction to these approaches is presented
in Section 2.3.3.

AT1 experiment

The quality of an author-topic model can be measured in its ability to ac-
curately portray the user’s interests. A person that has knowledge of which
themes and topics a user usually talks about, should be able to recognize the
user by their topic distribution. We generated 10 topics from this author-

1Quote tweets are retweets that don’t use the built-in retweet feature, usually by being
copied and quoted instead.
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topic model, each topic being represented by the 10 most probable words.
The resulting topics are reasonably coherent, and can be seen in Table 8.4.
The topic distribution for each user can be seen in Figures 8.4 through 8.9.
To evaluate how accurately the topic distributions represent the users, we
asked 8 people to participate in the experiment (a thorough explanation
of the evaluation method for this topic model is given in Section 2.3.4).
Each participant examined each of the topic distributions without knowing
which user it belonged to (the author’s name was replaced by an ID).

All participants managed to figure out which topic distribution belonged
to which author for all author’s, except the distributions of Taylor Swift
and Justin Bieber, which were very similar, both having Topic 4 and 5 as
their most probable topics. These topics show a prevalence of words used
in every-day language, conveying happiness and using words you would ex-
pect from pop artists like these users, such as crowd, thanks, tonight, happy
and good. The remaining author’s had easily recognizable topic distribu-
tions. Beside the obvious author-related words president and obama, Topic
9 include other tokens related to Barack Obama, like american, actoncli-
mate, economy, change and work, indicating that the author having this
topic as the most probable topic is Barack Obama. Among the most prob-
able words occurring in Donald Trump’s most probable topic (Topic 8),
is cruz and hillary, referring to Ted Cruz and Hillary Clinton, two of his
opponent’s in the presidential election. Among the top words for this topic
is also the token makeamericagreatagain, a hashtag version of his slogan
Make America Great Again. By extending the words to including his two
most probable topics, also including Topic 1, the words make, america and
great also occur individually. The remaining two authors Elon Musk and
Neil deGrasse Tyson are also easily recognizable from their topic distribu-
tions if you are familiar with their doings. Neil deGrasse Tyson, being an
astrophysicist and cosmologist, had topics 3, 6 and 10 as his most probable
topics, including words like earth, moon, universe, planet, star and star.
Topic 10 is also Elon Musk’s most probable topics, having words like tesla,
rocket and space as its most probable words. People being familiar with
Elon Musk being the CEO of Tesla and SpaceX, should be able to recognize
his topic distribution, which was confirmed by the experimental results.

AT2 experiment

The Author-topic model proposed by Hong and Davison [2010] performs
standard LDA on aggregated user profiles, a method they denote the USER
scheme. The process is described as follows in their paper:

1. Train LDA on aggregated user profiles, each of which combines all
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Figure 8.4.: AT1 topic distribution for Barack Obama.

Figure 8.5.: AT1 topic distribution for Donald Trump.
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Figure 8.6.: AT1 topic distribution for Elon Musk.

Figure 8.7.: AT1 topic distribution for Justin Bieber.
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Figure 8.8.: AT1 topic distribution for Neil deGrasse Tyson.

Figure 8.9.: AT1 topic distribution for Taylor Swift.
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training messages generated by the same user.

2. Aggregate all testing messages generated by the same user into testing
user profiles.

3. Take training messages, testing user profiles and testing messages as
“new documents”, use the trained model to infer a topic mixture for
each of them.

A similar approach was chosen for conducting this experiment. We first
train the model on a corpus where each document contains aggregated
tweets for each user. Furthermore, new tweets for each author (which are
not part of the training data) are downloaded, and the topic distribution
is inferred for each of the new tweets. Finally, we calculate the topic dis-
tribution for each user as the average topic distribution over all new tweets
written by that user. A higher number of original topics were used in this
case, since a low number of topics produces too many topics containing the
same popular words. One example is the entity President Obama: Many
of the tweets posted by Barack Obama’s Twitter account are posted by his
Organizing for Action2 sta�. This leads to many tweets containing quotes
by Barack Obama, being signed “— President Obama”, which makes Pres-
ident Obama appear in an anomalous amount of topics. We therefore use
50 topics instead of the 10 topics used in the Rosen-Zvi et al. [2004] ex-
periments, so that less occurring themes and topics don’t get drowned in
these popular terms. We want the original topics to cover a broad range of
themes and topics, the idea being that we will subsequently filter out top-
ics not relevant for that particular author when we infer the topic mixture
based on new tweets by that author. This also means that the resulting
amount of topics is not necessarily the same for all authors. A maximum
of 10 topics were used for the resulting topic mixture inferred from the new
tweets.

The resulting topic mixtures for the authors can be seen in Figures 8.10
through 8.15, and the most probable topics for each of the authors are
tabulated in Table 8.5. As opposed to the topic mixtures in AT1, the topic
mixtures for AT2 generally had one topic that was much more probable
than the remaining topics. Therefore, the diversity in the language by each
author might not be captured as well by AT2 as AT1. On the other hand,
the most probable topic for each author generally describes the author
with a higher precision than AT1. Using 50 topics instead of 10 allows
the topics to be more specific. It is therefore easier to distinguish Justin
Bieber from Taylor Swift than it was in the previous experiment; Justin

2https://www.barackobama.com/about-ofa/
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Bieber’s top topic includes words that are specific to him: whatdoyoumean
is a hashtag version of a recent song he made, "What do you mean", and
the word purpose is one of his albums. Barack Obama, Elon Musk, Neil
deGrasse Tyson and Donald Trump should also be easily recognizable from
the topics, and their most probable words for AT2 resembles their most
probable words for AT1. This Author-topic model accurately depicts the
authors’ interests.
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Figure 8.10.: AT2 topic distribution for Barack Obama.

Figure 8.11.: AT2 topic distribution for Donald Trump.
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Figure 8.12.: AT2 topic distribution for Elon Musk.

Figure 8.13.: AT2 topic distribution for Neil deGrasse Tyson.
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Figure 8.14.: AT2 topic distribution for Justin Bieber.

Figure 8.15.: AT2 topic distribution for Taylor Swift.
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9. Sentiment Analysis
Experiments

In this chapter, we discuss the experiments conducted on the sentiment
classifiers, as well as review the results achieved from these tests. It is worth
noting that in the discussion on finding optimal values we are generally
talking about finding sub-optimal values. It would be impractical to find
the optimal solution through a single exhaustive grid search.

9.1. Training the classifiers and grid search
Seven di�erent machine learning classifiers were created during our exper-
iments. Two Näive Bayes (NB) based classifiers, the Bernoulli NB and the
Multinomial NB classifier. Several Support Vector Machines (SVM) based
classifiers, one with a sigmoid kernel, a linear kernel, a radial basis function
(RBF) kernel and a Stochastic Gradient Descent (SGD) classifier on SVM.
Lastly, a Maximum Entropy classifier (also known as logistic regression)
was also built.

The outline of the experiments for each classifier was similar. First, the
SemEval 2015 data set was loaded and each document preprocessed. This
was the chosen data set to work with as this thesis was inspired by the Sem-
Eval 2015 TSA task (Twitter Sentiment Analysis, task 10, subtask B). The
training data and test data was extracted from the SemEval dataset using
stratification and a deterministic pseudo-random shu�ing of the labels, to
ensure the sets are equally balanced on classes in the partitioning. The
FeatureUnion was then defined, Pipelined with the classifier and passed on
for a grid search.

The baseline classifiers are defined as the version of each classifier only
trained on the word n-gram feature, and the score for each baseline classifier
can be found in Appendix A.

9.1.1. Grid Search

A coarse grid search was performed in an e�ort of speeding up the process
of locating sub-optimal parameters for a classifier. A custom parameter
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space to be searched was defined for each classifier. All classifiers include
the features defined in Section 7.1.2, except the Multinomial NB which is
unable to handle the lexicon feature because of negative values. The typical
parameter space with their respective value ranges can be found in Figure
9.1. The coarse grid search is necessary because the amount of unique
combinations of parameter candidates is typically around 10 million, that
are to be tested on a k-fold value of 10 times each. This would take more
than 30,000 years with the average time of testing each candidate on the
NTNU Computer Science Department’s server "translate", even though it
is more powerful than your average desktop computer.1 The k-fold value
specifies the number of tests that are to be done on the same candidate set,
and is commonly chosen around 10 to ensure good average cross validation
scores.

To avoid using this impractical amount of time, the grid search is split
into several steps. First, we find temporary values for the classifier spe-
cific parameters that are used for searching the other features’ parameters.
For the MaxEnt classifier, this would be finding the C value and penalty
while using the other features’ default values. Second, we deactivate all
features except the TFIDF word n-gram feature and optimize its attributes
one, two, or three at a time. Next, we optimize all the attributes of the
TFIDF character n-gram feature up to three at a time. For the last step of
the coarse grid search, we search the parameter space of the final features
which is the Negation Count, Lexicon Score and the Emoticon feature. An
example of the results from the iterative stages of the grid search can be
seen in Figure 9.2. The rest of the classifiers’ full grid search results can be
found in Appendix A.

After the coarse grid search, we estimated our initial parameter values to
be close to their local optima. Therefore a finer grid search was conducted,
where some parameters were reconsidered. The n-gram ranges of the word
and character feature were tested for their adjacent candidates, while some
of the classifier specific parameters such as the C value were tested for
values close to the current estimation. More often than not, the coarse grid
search estimations held for the fine grid search as well.

9.2. Results
The most successful classifier by far was the Maximum Entropy classifier
with an F1-score of 0.722, improved from its baseline score of 0.694. Also
among the top classifiers, we have the SGD, Bernoulli NB and Sigmoid

1‘translate’ is a server equipped with 125 GB internal memory, running four AMD
Opteron 6128 processors.
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Figure 9.1.: The typical parameter space of our machine learning classifiers.

Top classifiers
Bernoulli NB MaxEnt SVM:Sigmoid SGD

Precision 0.662 0.723 0.649 0.725
Recall 0.659 0.729 0.644 0.722
F1-score 0.659 0.722 0.645 0.703

Table 9.1.: Top (four out of seven) scoring classifiers’ average scores
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Figure 9.2.: The iterative results from the grid search on the MaxEnt clas-
sifier
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SVM classifiers as seen in Table 9.1. The SemEval Workshop of 2015’s
Task 10, subtask B was finding positive, neutral or negative polarity in a
Twitter message, where scoring was based on the average of the F1-scores of
the positive and negative tweets, excluding the neutral. The same scoring
of our system would be 61.9 which would place us at an estimated eleventh
place of 40 competing teams, had we taken part in the workshop. This
estimation is based on the scores when run on a local computer several
times, and not by the SemEval workshop — which means that the outcome
might be di�erent.

SemEvalScore = (F1
pos

+ F1
neg

)/2 (9.1)

79



9. Sentiment Analysis Experiments

MaxEnt classifier

The grid search on the MaxEnt classifier established the best parameters for
sentiment classification. MaxEnt performed best using all word n-grams up
to 4-grams, while character n-grams included n-grams from 2- to 4-grams.
Compared to other classifiers, MaxEnt is a�ected more than the others
on the inclusion of the emoticon, negation count and lexicon features. As
seen in Figure 9.2 the best results were from the tests without the negation
count feature, which was probably interpreted as noise by the classifier.
We see that the classifier performs a lot worse without the lexicon feature,
which suggests the sentiment score of words have a noteworthy impact on
this model. Finally, we see that the best classifier specific parameters for
MaxEnt was a C-value of 0.05 and the penalty function "L1".

The confusion matrices for MaxEnt are visualized in Figure 9.3 and 9.4,
where an optimal result would be heavy blue coloring only on the diagonal
from top left to bottom right. This would imply that all the documents
have the correct prediction. Coloring in any other grid indicates wrongly
predicted documents. We see a clear tendency in both figures that neutral
and positive documents are generally correctly predicted, while the negat-
ive documents tend to be predicted as either neutral or negative. These
observations correlate well with the scores in Table 9.2. The extreme cases
of negative documents predicted as positive, or opposite case, fortunately
seem nonexistent.
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MaxEntropy
Label Precision Recall F1-Score
positive 0.764 0.749 0.756
neutral 0.728 0.811 0.767
negative 0.599 0.403 0.482
Average 0.723 0.729 0.722

Table 9.2.: MaxEntropy scores on the test set. The MaxEnt classifier had
the most highest scores in any category, including average F1-
score, highest positive recall and highest positive F1-score.

Figure 9.3.: Confusion Matrix for
MaxEntropy

Figure 9.4.: Normalized Con-
fusion Matrix for
MaxEntropy
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SGD classifier

Also quite successful was the Stochastic Gradient Descent classifier. It
achieved optimal results with word n-grams up to trigrams, and character
n-grams up to 6-grams. For the classifier specific parameters, the elasticnet
penalty function received the highest scores combined with a alpha value of
0.1 and a hinge loss. The hinge loss function basically makes it a linear SVM
classifier. The SGD classifier was one of the two classifiers (out of seven
total) that undoubtedly benefitted most from including all the features.
Looking at the SGD confusion matrix in Figure 9.5 and 9.6 we see good
performance among the positive and neutral documents. However, the
confusion matrix seems generally biased toward the neutral label. The
middle column representing neutral predictions have strong blue coloring
for all of the true labels. Table 9.3 shows a very impressive recall (0.890) on
neutral labels, but very low recall on negative labels. On the other hand,
it is worth noting that the Sigmoid SVM scored the highest precision on
positive labels among the classifiers (0.800).

82



9.2. Results

SGD based on SVM
Label Precision Recall F1-Score
positive 0.800 0.683 0.737
neutral 0.688 0.890 0.776
negative 0.659 0.258 0.370
Average 0.725 0.722 0.703

Table 9.3.: SGD: SVM scores on the test set. The SGD classifier had the
highest positive precision, negative precision, neutral recall, and
neutral F1-score. However, also the lowest negative recall and
F1-score.

Figure 9.5.: Confusion Matrix for
SGD SVM

Figure 9.6.: Normalized Confu-
sion Matrix for SGD
SVM
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Bernoulli classifier

The Bernoulli classifier is a simple Naïve Bayes classifier that achieved
its best results on word unigrams and up to 4-gram character n-grams.
Bernoulli was the other of the two classifiers that benefitted from the in-
clusion of all features, with an F1-score of 0.659. The best alpha value
found through an extensive search was at 0.18, and normalization of all
features. Looking at the Bernoulli confusion matrix in Figure 9.7 and
9.8 we see a strong diagonal line for the correctly predicted cases. The
Bernoulli classifier generally resulted in minor supports in many categor-
ies, even the extreme case of negative labels being predicted as positive.
However, Table 9.4 shows that the Bernoulli classifier, together with the
Sigmoid SVM, had the best recall for negative documents (0.464).
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Bernoulli Naïve Bayes
Label Precision Recall F1-Score
positive 0.638 0.719 0.676
neutral 0.732 0.673 0.701
negative 0.489 0.464 0.476
Average 0.662 0.659 0.659

Table 9.4.: Bernoulli Naïve Bayes scores on the test set. The Bernoulli
had the highest scores in neutral precision, negative recall, and
negative F1-score.

Figure 9.7.: Confusion Matrix for
Bernoulli

Figure 9.8.: Normalized Con-
fusion Matrix for
Bernoulli
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Sigmoid SVM classifier

The Sigmoid SVM classifier scored the best when including all features,
except the character n-grams, with an F1-score of 0.645. A correlation
among the SVM classifiers (except linear) is that they are the only classifiers
where the character n-grams feature seems to have a negative e�ect on
performance. Most likely it is introduced as noise to the SVM classifier.
Optimal scores were found with a C value of 1, and gamma of 0.001. The
Sigmoid SVM scores seem quite similar to the Bernoulli classifier when
comparing their confusion matrices. The normalized confusion matrix in
Figure 9.10 shows a strong diagonal line of correctly predicted cases, but
also considerable support in all other cases except positive cases predicted
to be negative. Both the Bernoulli and Sigmoid SVM classifiers seem to
act too generic, with significant support even in the extreme cases.
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SVM: Sigmoid kernel
Label Precision Recall F1-Score
positive 0.660 0.739 0.697
neutral 0.706 0.626 0.664
negative 0.432 0.464 0.447
Average 0.649 0.644 0.645

Table 9.5.: SVM: Sigmoid scores on the test set. Shared the highest negat-
ive recall score with the Bernoulli classifier.

Figure 9.9.: Confusion Matrix for
Sigmoid SVM

Figure 9.10.: Normalized Confu-
sion Matrix for Sig-
moid SVM
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Scores on negative cases
Precision Recall F1-Score

Maxent 0.599 0.403 0.482
SGD 0.659 0.258 0.370
Bernoulli 0.489 0.464 0.476
Sigmoid 0.432 0.464 0.447
Average 0.545 0.397 0.444

Table 9.6.: Average scores on negative labels among the classifiers. Lowest
scoring category in every classifier.

9.3. Putting it all together

The top four classifiers of the seven trained have been presented in this
chapter. The grid search results from the other classifiers, as well as their
confusion matrices, can be found in Appendix A and B. The greatest chal-
lenge for all the classifiers is in classifying negative documents correctly, as
seen in Table 9.6. The training set contains around 8000 tweets, where 3000
tweets are positive, 1150 are negative and 3850 are neutral. This unequal
partitioning of tweets’ labels has an e�ect on the classifiers’ behaviour in fa-
voring neutral tweets, and to some degree positive, because of their greater
share of the dataset. A quick look at the confusion matrices prediction of
neutral and positive labels confirm this.

Results from experiments conducted on splitting the data set into new
sets with di�erent ratios of the three categories can be seen in Table 9.7.
As expected, the recall of negative documents is much greater when the
data set is evenly distributed on the three categories as seen in Table 9.8.
However, these boosts in the negative category’s score come at a cost of the
two other as the overall F1-score observed in Table 9.7 is lower during these
even distributions. On a few educated guesses, the custom distribution seen
in these results have a significantly better performance than using the entire
data set of 0.731. This shows the importance of distribution of categories
in data sets, and the e�ect deviation away from the uniform distribution of
categories has on the results of classification.

Table 9.9 displays the feature engineering tests done during the grid
searches. We see that the overall highest score for the classifiers was not
including all the features, but in fact excluding the negation count feature.
The bold face scores show the respective classifiers’ best F1-scores by fea-
ture combinations. It is worth noting that the distance between the three
top scores (all features, exclusion of emoticons, and exclusion of negation
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Results when limiting each category
500 1000 1500 2000 Unlimited Custom

Precision 0.643 0.680 0.709 0.698 0.723 0.729
Recall 0.647 0.680 0.708 0.699 0.729 0.730
F1-score 0.642 0.678 0.708 0.697 0.722 0.731

Table 9.7.: Average scores when setting a maximum number of samples per
category on the MaxEnt classifier. The iteration furthest to the
right is on a custom setup of 1200 negative, 1500 positive and
2000 neutral.

Results on the negative category when limiting each category
500 1000 1500 2000 Unlimited Custom

Precision 0.655 0.714 0.724 0.650 0.599 0.697
Recall 0.780 0.710 0.687 0.558 0.403 0.562
F1-Score 0.712 0.712 0.705 0.600 0.482 0.622

Table 9.8.: Scores for the negative category when setting a maximum num-
ber of samples per category on the MaxEnt classifier. The itera-
tion furthest to the right is on a custom setup of 1200 negative,
1500 positive and 2000 neutral.
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Table 9.9.: Comparison of the inclusion/exclusion of features. The notation
"All - feature" should be read "All except feature". The baseline
classifier scores are in F1-score, while the other scores are the
gain in F1-score on that specific combination. The gain is gen-
erally highest when including all features except the negation
score. The two empty slots in the first row and first column are
not available.

MaxEnt results on di�erent sizes of the dataset
1000 3000 5000 8000

Precision 0.571 0.707 0.711 0.723
Recall 0.577 0.712 0.714 0.729
F1-score 0.563 0.705 0.705 0.722

Table 9.10.: Average scores on di�erent sizes of the SemEval2015 dataset
with the MaxEnt classifier. The largest dataset has the highest
score on all metrics.

counts) are rather small. This suggests that the outcome was little a�ected
by either exclusion or inclusion of the negation count and emoticon feature
in the general case.

A training set of 8000 tweets is not considered a large training set in
the case of machine learning in sentiment analysis. As these are short
microblog documents, they require a bigger training set than performing
sentiment analysis on documents that are longer (e.g. movie reviews or
news articles) to achieve top results. Simple tests on the MaxEnt classifier,
seen in Table 9.10, with di�erent training set sizes prove that size of the
corpora trained upon has a big impact on classifier performance. There is a
great spike in performance improvement when increasing the dataset from
a sample size of 1000 to 3000, however we still see significant improvement
from 5000 to 8000. This leads us to believe that a dataset comprised of 8000
tweets is might be insu�cient, and working with an even bigger datasets
could improve the performance of our classifiers even further.
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10. Discussion
In this chapter we discuss the fulfillment of the project goals listed in Sec-
tion 1.3, and give some conclusive words on the experimental results and
what remains as future work.

10.1. Evaluation of project goals

G1: Establish the state-of-the-art

We conducted an extensive structured literature review, following the
guidelines put forward by Kofod-Petersen [2012]. The review presents
highly relevant studies that have designed and constructed some of
the most e�etive systems on the topics, and goes into depth in the
methods utilized. It also considers the research and work executed
by the top scoring teams from the annual SemEval workshop of 2015.
This state-of-the-art review has been the foundation on which we built
our sentiment analysis, topic modeling and visualization systems.

G2: Create a topic modeling system for microblogs

A topic modeling system for modeling tweet corpora was successfully
created. We managed to utilize pooling techniques to improve the
coherence and interpretability of standard topic models, our results
indicating that techniques such as author aggregating and hashtag ag-
gregation generate more coherent topics. Moreover, we show that the
author-topic model proposed by Rosen-Zvi et al. [2004], which is not
based on pooling, depicts Twitter users and their tweets accurately
through coherent topics.

G3: Create a sentiment analysis system for microblogs

A sentiment analysis system targeted for Twitter microblogs was cre-
ated, constructed on the most common findings among the selected
systems from the state-of-the-art review. From a total of seven classi-
fiers trained through extensive feature engineering and grid searches,
our experiments show that the Maximum Entropy classifier performed
best in terms of F1-score, rivaling the best teams of the 2015 SemEval
workshop.
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G4: Create a visualization system

A novel visualization application for topic modeling and sentiment
analysis in Twitter was created. The only directly similar system
found was Tweet Viz from the North Carolina State University.1 How-
ever, similar systems tend to use word counts and co-occurrences for
modeling topics. Based on an extensive search, TweetMoods is the
first visualization of its kind in combining sentiment analysis and topic
modeling by use of LDA based methods.

10.2. Conclusions
In this section, we present our conclusions based on the results retrieved
from the conducted experiments. In summary, our topic modeling results
show that applying pooling techniques to tweets increases the topic coher-
ence significantly. On performing message polarity classification on tweets,
the Maximum Entropy classifier yielded results outperforming most earlier
submitted work to the International Workshop on Semantic Evaluation of
2015. This proves the importance of our extensive grid searches on optim-
izing the parameter space of the classifiers.

10.2.1. Topic modeling

Various methods for estimating the optimal number of topics for tweets
were tested. The Elbow method almost exclusively suggested a k value
between 3 and 5, no matter how large or diverse the corpus was. Even
though we managed to show that di�erent types of corpora produce highly
varying clusters, we could not accurately deduce an optimal number of
topics from this. The stability score [Greene et al., 2014] also produced
rather poor scores for all number of topics when applied to a tweet corpus.
The sparsity of tweets is likely the cause of this; the documents do not
contain enough words to produce su�cient term co-occurrences. Hong and
Davison [2010] found that 50 topics produced the optimal results for their
author-topic model, although the optimal number of topics is dependent
on the diversity of the corpora. We therefore used k values of 10 and 50 in
our experiments, using 50 for large corpora where we could expect a diverse
collection of documents.

In Section 6.2, we discussed the use of hashtag co-occurrences to divulge
latent networks of topics and events in a collection of tweets. A hashtag
co-occurrence graph for Super Bowl 2016 helped reveal information about
this event; artists playing during the half-time show, which companies had

1https://www.csc.ncsu.edu/faculty/healey/tweet_viz/tweet_app/
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commercials during the match, etc. A hashtag co-occurrence network was
not directly combined with topic modeling in our experiments; however, we
performed a hashtag aggregating technique that utilizes hashtags in similar
ways.

We show that aggregating tweets to mitigate the disadvantages of sparse
texts do indeed have an impact on the coherence of a topic model. The
hashtag aggregation technique is especially interesting here, as it utilizes a
specific metadata tag that is not present in standard documents. A hashtag
aggregated topic model produced a much better coherence than the stand-
ard LDA variation for the same corpus; this is also consistent with recent
research on topic models for microblogs. Two Author-topic models were
used in our experiments, one using the Rosen-Zvi et al. [2004] topic model
(referred to as AT1 in this thesis) and the aggregated author-topic model
proposed by Hong and Davison [2010] (referred to as AT2), both seeming
to produce interpretable topics. It is worth noting that there is no stand-
ardized methods for evaluating topic models, as most quantitative ways try
to estimate human judgement. Moreover, there is no precise definition of
a gold standard for topic models, which makes the task of comparing and
ranking topic models di�cult. A combination of a computational method
and human judgement was therefore used in our evaluations.

10.2.2. Sentiment analysis

A total of seven di�erent sentiment classifiers were created and experi-
mented on. These machine learning classifiers were based on the algorithms
presented in Section 2.2, the Näive Bayes (NB), Support Vector Machines
(SVM), Maximum Entropy (MaxEnt) and Stochastic Gradient Descent
(SGD). Based on the experiments conducted in Chapter 9 we conclude
that the MaxEnt classifier performs best on classifying tweets into the cat-
egories of positive, neutral or negative based on the scoring defined by
the classification metrics in Section 2.2.1. The experiments show that the
SVM classifiers tend to favor feature sets of smaller size, and performs well
with less information. However, the SVM classifiers were the only cases
whose performance was negatively a�ected when both word and character
n-grams were combined in the feature set. This allows us to hypothesize
that the SVM classifiers do not deal with the curse of dimensionality well,
whereas the MaxEnt classifer’s performance was significantly boosted with
increased information and feature sets of high dimensionality. SVM and NB
achieved greatest performance when choosing parameters that resulted in
small feature sets, generally working with only word unigrams and excluding
character n-grams as seen in Appendix A. We predict that more inform-
ative feature sets with new and extended features can further increase the
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performance of MaxEnt in text classification, that clearly benefited from
the data inflation.

An extensive grid search split into a coarse and a fine stage was per-
formed, which was key to the successful results of the classifiers. Similar
systems as discussed in Chapters 4 and 7 also use grid search as a way
of improving the parameters which are specific to the machine learning al-
gorithm (e.g. alpha-, gamma- and C-values), but generally do not include a
substantial grid search on the feature specific parameters. Our results show
that the classifier specific parameters are most e�ective in improving the
performance of each classifier, but that the additional grid search on the
feature parameters gave the added edge resulting in our higher perform-
ance. Consequently, we speculate that many of the similar projects have
underestimated the importance of optimizing the parameter space of the
added features.

As seen in Table 9.9, using sentiment lexica to build a document sen-
timent score feature proved to be the most e�ective non n-gram feature.
However, the lexicon transformer was based on lexica that are somewhat
outdated and that do not include sentiment scores for much of the informal
language of Twitter. This is especially true for slang language that is con-
stantly changing on the web. The lexica used in this system are from 2005
to 2013, and though they perform quite well, updated versions would be
preferred.

We introduced a naïve negation scope detection in Section 7.1.2. Adding
negation tags to the respective tokens increases the vocabulary of the sys-
tem. As only a minority of tweets contain negations, we’re consequently
extending the vocabulary with less informative features than we would
without the tags. Similarly, we’re currently mapping emoji-smileys to one
of nine ASCII-smileys. This a�ects the information value of these tokens in
the n-gram features, which would be more accurately valued if they were
mapped to a larger set of ASCII-smileys. However, it is di�cult to predict
whether this would have a positive or negative performance outcome.

10.2.3. TweetMoods

Our visualization application can e�ectively infer a topic distribution over
one or more documents, and it gives a good overview of which topics people
talk about, given that the topic model already contains data related to the
tweets retrieved by the search. This is one limitation of using a pre-trained
model to infer a distribution over new documents; the topic distribution
cannot give information about themes and topics in the documents if it
is not already contained in the model. We therefore included a dropdown
menu so that users can choose between several pre-trained topic models.
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Our experiments show that this method can provide an informative over-
view of the topics covered by a corpus of tweets.

The visualization application also provides a great overview of the senti-
ments contained in a corpus of tweets retrieved by a specific query. Users
can search for specific products or politicians and get an overview of the
sentiments conveyed toward these products or politicians. The pie-chart
shows an overview of these sentiments, and the list of tweets shows the
actual tweets with the assigned sentiments. This lets the users verify the
accuracy of any assigned sentiments themselves. The application gives ex-
tensive information about the contents of tweets, and visualizes the com-
bined sentiment analysis and topic modeling information in a way (to our
knowledge) not seen before.

10.3. Future Work
As the system built for this project was generally split into a topic modeling
and a sentiment analysis part, there were several aspects of either part that
fell outside the scope of this thesis.

10.3.1. Topic Modeling
One way to extend the topic modeling system would be to apply online
analysis by implementing automatic updates of a topic model, continu-
ously extended by new tweets retrieved from the Twitter Streaming API.
This would help in detect emerging events, in a fashion similar to Lau et al.
[2012]. Moreover, Dynamic Topic Models, as introduced in Section 2.3.2,
should be considered to provide better temporal modeling of Twitter data.
A limitation to topic modeling in general is the di�culties in evaluating
the accuracy of the models. Computational methods try to simulate hu-
man judgement, which poses di�culties, as human judgement is not clearly
defined. Further research could help provide better methods for evaluating
topic models.

In this thesis, we aggregated tweets sharing authors and hashtags. Fur-
ther work should look into other pooling schemes, and see how they compare
to author and hashtag aggregation. One example would be to aggregate
conversations on Twitter into individual documents. Tweets contain a lot of
metadata that can aid the aggregation of tweets into individual documents.

10.3.2. Sentiment Analysis
For the Twitter sentiment classifier, the next step is including more features
in the system. Features that might be of interest include among others part-
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of-speech tagging and word clustering as proposed by Owoputi et al. [2012].
Part-of-speech tagging was not a prioritized feature for this thesis based on
the results by Kouloumpis et al. [2011] that part-of-speech tagging does not
have significant impact on TSA. Word clustering as a feature was found to
have minor positive results on classification performance by Reitan et al.
[2015].

There are several sentiment lexica that include emotion scores, such as
fear and joy. It would be interesting to see how appending a feature that
incorporates emotions would a�ect the estimation of sentiment. One could
also look into deeper learning of links, pictures and other attachments’
contents as features to improve sentiment classification.

Further work on features includes extending and improving the current
features. The lexicon feature can be extended by constructing a new, up-
dated sentiment lexicon aimed at the current Twitter language. One could
extend also include sentiment scores that are more specific than increment-
ing the positive/negative score by one for each word occurrence. The nega-
tion count feature might be improved if it was not based on a naïve negation
tagging algorithm, but rather a more advanced negation scope detection
system. The emoticon feature can be extended by mapping emojis to more
appropriate ASCII emoticons than the three that are currently being used.

Currently, the same preprocessing methods are being applied to each
feature of the sentiment classification system. Customizing a set of prepro-
cessor methods that are specific for each feature might also yield interesting
results.

Final remarks for the sentiment classification system entails running ex-
periments on other datasets. Some tests were run on the SemEval 2016
datasets that had lower performance but promising potential. However, it
fell outside the scope of this thesis to customize the classifiers and evaluate
the results.

10.3.3. TweetMoods

One way to extend the sentiment classification part of the visualization
system would be to let the users choose whether or not they feel that the
assigned sentiment is the correct one. This would require incrementally
training the classifier with the new document-sentiment pairs, and would
improve the classifier over time, given that the users’ choices are accurate.

On May 24th, 2016, Twitter announced that they will change the way
replies and attachment work on Twitter.2 Media attachments and user-
names at the beginning of a reply will no longer count toward the 140

2https://blog.twitter.com/2016/doing-more-with-140-characters
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character-limit, which allows tweets to become longer. It will be interest-
ing to see if this will have an e�ect on information retrieval on Twitter in
future research.
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A. Tables of each classifier’s
grid search

Below you will find the full results from the most significant iterations of
the extensive grid search (as described in Section 9) done for every classifier,
except the MaxEnt presented in Figure 9.2.
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A. Tables of each classifier’s grid search

Figure A.1.: Grid search results for the Bernoulli NB classifier
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Figure A.2.: Grid search results for the Linear SVM classifier
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A. Tables of each classifier’s grid search

Figure A.3.: Grid search results for the Multinomial NB classifier
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Figure A.4.: Grid search results for the Poly SVM classifier
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A. Tables of each classifier’s grid search

Figure A.5.: Grid search results for the RBF SVM classifier
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Figure A.6.: Grid search results for the SGD classifier
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A. Tables of each classifier’s grid search

Figure A.7.: Grid search results for the Sigmoid SVM classifier
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B. List of confusion matrices
from all classifier
experiments

Below are the confusion matrices from the experiments for all the classifiers
not listed in Chapter 9.

Figure B.1.: Confusion Matrix for
Linear SVM

Figure B.2.: Normalized Con-
fusion Matrix for
Linear SVM

Figure B.3.: Confusion Matrix for
Multinomial NB

Figure B.4.: Normalized Con-
fusion Matrix for
Multinomial NB
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B. List of confusion matrices from all classifier experiments

Figure B.5.: Confusion Matrix for
Poly SVM

Figure B.6.: Normalized Confu-
sion Matrix for Poly
SVM

Figure B.7.: Confusion Matrix for
RBF SVM

Figure B.8.: Normalized Confu-
sion Matrix for RBF
SVM
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