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Abstract

Influenza is one of the most common viral infections in the world, and puts millions of
people at risk every year. Currently, detecting influenza is done by hospitals reporting
data, which is very slow. Modern day technology has given a rise of interest in the field
of influenza awareness, especially on the topic of detection. Researchers have found that
mining messages from Twitter can accurately find influenza outbreaks that correlates with
hospital reported data.

Health officials need to be prepared for influenza outbreaks, so that measures can be
made to minimize the impact of a potential epidemic. Rvachev and Longini has created a
mathematical model for the spread of influenza by air travel, which we have implemented
as a public API.

Our implementation of the model use influenza related tweets as a real-time source of
influenza incidents, as well as publicly available flight data, to be able to predict spread
in case of an influenza pandemic. The results created by this implementation correlates to
a reasonable degree with Rvachev and Longini’s original results, and have been tested on
more recent data. The final system also has a simple interface, which visualizes the spread
using Google Maps with an isopleth overlay.
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Sammendrag

Influensa er en av verdens mest vanlige virusinfeksjoner, og setter millioner av folk i fare
hvert år. I dag oppdages influensautbrudd ved at sykehus rapporterer data til en offisiell
instans, noe som er tregt. Moderne teknologi har gitt økt interesse innen bevisstgjøring
av influensa, spesielt på temaet influensadeteksjon. Forskere har funnet ut at å ekstrahere
meldinger fra Twitter kan finne influensautbrudd med høy nøyaktighet, som korrelerer
med data rapportert fra sykehus.

Helsemyndigheter må være forberedt på influensautbrudd, slik at man kan gjøre tiltak
for å minimere konsekvensene av en potensiell pandemi. Rvachev og Longini har laget
en matematisk modell for influensaspredning gjennom flytrafikk, som vi har implementert
som et offentlig API.

Vår implementasjon av modellen bruker influensarelaterte tweets som en real-time
kilde av influensatilfeller, i tillegg til offentlig tilgjengelig flydata, for å kunne forutse
spredning ved en eventuell influensapandemi. Resultatene fra denne implementasjonen
korrelerer til en rimelig grad med de originale resultatene til Rvachev og Longini, og
har blitt tested på nyere data. Sluttsystemet har et enkelt grensesnitt, som visualiserer
spredning ved bruk av Google Maps med et isopleth lag over.
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Chapter 1
Introduction

1.1 Background and motivation

The influenza virus is dangerous for millions of people at risk every year. If people become
infected with new strains of influenza, there could be little immunity among the general
population. This, together with large air traffic volumes can contribute to rapid spread of
the disease, which can potentially create a pandemic if not stopped. Health officials need
to constantly monitor influenza activity, which currently is done by local hospitals report-
ing confirmed influenza incidents. This is usually done at a set time interval, e.g. every
one or two weeks. It is important for health officials to know early when an epidemic is
imminent, so that measures can be taken to minimize the impact of a potential epidemic or
pandemic. Generally, there is a need for faster and automated influenza detection, which
potentially can save money, time, and even lives.

Lately, there has been a surge in the interest of data available from social media and find-
ing real-world trends in these. Earlier research have found connections between social
media trends and different real-world events, like political elections, earthquakes, or most
relevant to us, influenza outbreaks. Flutrack1 is a service that scans Twitter for influenza-
related tweets on a daily basis, and displays the tweets on a map at their respective loca-
tions. Others have tried applying machine learning to Twitter mining, and have been able
to increase the general relevancy of the collected tweets. Finding influenza trends through
Twitter can be a lot quicker than current methods, and analyzing these large amounts of
tweets can potentially be very helpful in the case of a pandemic.

An aspect of minimizing the impact of an influenza pandemic is knowing where and when
the virus will spread. By knowing this, health officials can try to contain the virus if pos-
sible, or vaccinate the people at risk. This thesis is heavily based on a paper written by
Rvachev and Longini[1], who created a mathematical model for the spread of influenza

1Flutrack.org
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through air travel. By implementing the model, and using it together with air travel data,
we can forecast the spread of an influenza pandemic originating from a specific city.

This thesis’ contribution to the field will be an open-source system which is able to detect
an influenza epidemic, and then model the spread through air traffic. We have found that
a general problem with the health informatics field, is that contributions are not easily
available and accessible to the general public. This makes it hard for researchers to build
on each other, and to improve the different software out there. We hope that our system
can be improved on by others, and that the result will be an available and open system that
can raise the influenza awareness of the general public.

1.2 Objective and research questions

1.2.1 Objective

The objective is to design, create, and implement the system that is specified in this thesis.
The system should be able to analyze influenza trends in major cities, identify increase in
Twitter influenza activity, and forecast global spread of potential epidemics. It should also
visualize real time influenza trends and the forecast of future spread in an intuitive and
user friendly manner.

1.2.2 Research questions

In order to achieve the objective stated above we have formulated two key research ques-
tions, which can be used to see if we have accomplished what we wanted. By answering
these questions, we can conclude whether or not the proposed system will work as desired.

RQ1: How can we use real-time Twitter data to monitor influenza activity?
RQ2: Is it possible to predict the spread of an influenza pandemic through air travel?

1.3 Thesis structure

Chapter 2 presents the previous work done on this subject, and lays a foundation on which
we will base the research in this thesis on.

Chapter 3 describes the system and its design. We will break down the different parts of
the system, and describe how they work together to form the end result. This will give the
reader a look into the different decisions we have faced throughout the project.

Chapter 4 shows how the system is validated and tested, and presents the results from these
tests. We will show how the results of our system compares to the results of others, and
how we have done this.

2



1.3 Thesis structure

Chapter 5 will discuss the results provided in chapter 4, and will provide further insight
into the system.

Finally, in chapter 6 we will conclude the project. We will look at the outcome of this
thesis, and describe further work needed.

3
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Chapter 2
Previous work

This chapter will describe some of the previous work done in the subjects of our thesis, as
well as some systems which may have similarities to ours. Note that this whole chapter,
excluding section 2.1, 2.6, and 2.7, is repeated from our specialization project in the au-
tumn of 2015 [2]. Some minor additions have been made to section 2.3, and chapter 2.8
has been revised.

2.1 ILI surveillance
A lot of research effort has gone into detecting influenza trends in search queries [3, 4, 5],
especially with the Google Flu Trends service. The service provided statistical data con-
cerning search queries of symptoms to Google’s search engine. The service has since been
shut down, although the historical data is still available. This method of ILI surveillance
has proven effective in a lot of research, and is in some ways the predecessor to using
Twitter for self reported ILI incidences.

Social media in general is a source with vast amount of data, which previously has been
underestimated. Lately, a surge in the interest of detecting trends in this data source has
taken place. Research has shown that mining this data can detect general trends in many
real-word events [6], and more specifically can be used in detecting influenza trends [7, 8].

Twitter.com1 is a micro-blogging service on the web that allows users to post small, char-
acter limited messages called tweets, that becomes publicly available. This has caused an
increased interest in research attempting to detect influenza epidemics through the analysis
of tweets specifically [9, 10, 11, 12]. This topic is of high importance, as it can help the
response times for the prevention of a potential pandemic, as well as increasing the over-
all awareness of the general population. Recently, Thapen, Simmie, Hankin, and Gillard
developed a disease nowcasting system, which aims to aid public health officials in their

1Twitter.com
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work with monitoring disease levels [13]. This system uses data from Twitter, where they
classify tweets that are relevant, and places them in a location network.

2.2 Spread by air travel

Billions of people travel by airplane yearly, and international travel by airplane has be-
come a significant source of the spread of influenza. In 2009, a study examined the effect
of influenza spread by flights from Mexico in march and April, 2008 [14]. Travelers from
Mexico were unknowingly carrying the influenza (H1N1) virus around the world. Out of
the 20 countries with the most travelers arriving from Mexico these two months, 16 of
them have been confirmed to have imported the Mexican influenza virus. This shows that
there is a relevant correlation between international travel and the spread of influenza.

This correlation has also been proved empirically by Brownstein, Wolfe and Mandl. They
looked at the flu seasons from 1996 through 2005, and found an inverse correlation be-
tween the volume of inter-regional travel in the US and the transnational spread of the
influenza virus [15]. Increased travel resulted in an earlier influenza peak. Interestingly,
after the flight reduction proceeding the terrorist attack in September 2001, the virus took
68% longer to spread transnationally than the previous two seasons.

2.3 Prediction

The ultimate goal of our research would be to create a system that could predict where
in the world outbreaks of influenza would spread based on travel data and known out-
breaks. The work of Rvachev and Longini provides a mathematical model for forecasting
the spread of influenza based on information from the initial city in the transportation net-
work to experience the disease [1].

In their research, Rvachev and Longini uses the model to “forecast” the 1968-1969 Hong
Kong influenza pandemic in 52 cities based on background data. The model successfully
forecasts the broad patterns of the geographic spread of the pandemic influenza.

In [16] Grais, Ellis, and Glass uses the model devised by Rvachev and Longini to simulate
the spread of an influenza pandemic like the Hong Kong influenza, with travel data from
the year 2000. Their simulations show that the influenza spreads from Hong Kong to its
neighboring cities first, but also to cities with high rates of travelers arriving from Hong
Kong at early stages of the pandemic. This suggests that increased airline travel is a large
contributor to the spread of infectious agents, and that forecasting where outbreaks might
occur globally could help health professionals prevent large pandemics. Flahault, LEtrait,
Hazout, Ménarés, and Vallerion have implemented this model with travel by train as the
travel data [17], which proves that the model is general enough to work with travel data
other than air as well.

6



2.4 Geolocation

In [13], Thapen, Simmie, Hankin, and Gillard have created a system for forecasting the
number of tweets mentioning different influenza like symptoms. They gather tweets re-
lated to different illnesses based on mentions of selected symptoms and using historical
tweet counts, together with a graph network to predict future tweet counts. Their network
is constructed as nodes which correspond to locations, with connecting edges between
them which are weighted by transportation data. These weights are derived from informa-
tion about the tweets, as they are looking at the user location of the tweets. If one user have
tweeted from more than one location in a given day, this is used as evidence for traveling
between these locations.

2.4 Geolocation

Using Twitter data to report occurrences of influenza is most useful in such a setting if the
location of the person reporting an illness is known. Twitter provides four options for users
to represent their location from a tweet. 1. Exact GPS location. This method uses the GPS
position given by the device used to post the tweet. 2. GPS coordinates of a place. This
method gives a bounding box of four coordinates corresponding to an area. Usually a city
or municipality. 3. User profile location. Twitter users have the possibility of reporting a
location on their user profiles. 4. Time zone associated with the twitter account. Twitter
infers a time zone on a user’s profile when the account is created. The time zone is gath-
ered from the local device the account was created on, and can be changed by the user at a
later time.

Both option 1 and 2 are disabled by default, and users therefore have to manually opt to
provide such information with each tweet. These two possibilities combined are present
on 2.02% of all tweets. Exact GPS coordinates are present in 0.91% of all tweets, and GPS
coordinates of a place are present in 1.92% of all tweets. 2.70% of twitter users provide
GPS location with either a place or an exact location [18].

When creating an account, twitter allows for users to input their location. Such locations
are more static, and are associated with a user’s main location rather than the actual tweet
location. Furthermore, such locations are just a text string, which can be anything the user
desires. Twitter provides place suggestions when editing this location, but a user may opt
to give any text string. Main problems with this are humorous locations such as “Heaven”
or “Neverland”.

As with user profile location, the time zone associated with a twitter account is also a
static location indicator. Furthermore, time zones cannot indicate any specific location,
but rather distinguish between major regions of the world. This information could be used
to disambiguate city names or region names. If a user has profile location set to Birming-
ham without a mention of country, a look at the time zone could establish whether the user
is located in Birmingham, Great Britain or Birmingham, Alabama.

7
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2.4.1 User profile location accuracy

The work of Graham, Hale, and Gaffney [19] analyzed twitter location data and made
some interesting findings regarding geolocation. They gathered a number of tweets using
the whole earth as a bounding box, securing that every tweet in their data set included
a valid geolocation. Using a sample of 1000 tweets from unique users in a specific area
(city) in their data set, the researchers tested the accuracy of self reported user profile
locations. Using Google’s Geocoder, the researchers could determine a location within the
correct bounding box for 45.8% of the tweets. Of the resolved locations which fall outside
the correct bounding box, 5.8% of these are locations within the correct bounding box.
There was multiple reasons as to why the geocoder wasn’t able to place the user locations
inside the correct bounding box, including abbreviations of location names, and multiple
locations stated.

2.4.2 Carmen

Carmen [20] is a system developed for inferring a tweet’s location based on the user pro-
file location. The system uses a list of places constructed from common user locations
extracted from millions of tweets. Duplicates are merged (New York City and NYC) and
invalid locations are removed through a combination of automated filters and manual re-
view. This list is called the human curated list (HCL). This list is then extended by adding
places found in a process called geolocation by association [21]. This method includes
places such as “bmore” or “balto” and identifies that these are abbreviations for the actual
location “Baltimore” by observing that users with these locations frequently communicate
with users that has “Baltimore” as their location [20]. This extended list is called the au-
tomatically extended list (AEL).

When evaluating this system, the researchers tested it on a set of 1% of all public tweets
from the first 9 days of March 2013 (43,656,388 tweets). The system was able to resolve
a location on the city level for 57.9% of the tweets using the HCL, and on 63.4% of the
tweets when using the AEL [20].

2.5 Visualization
The thematic map was popularized in the 19th century by Charles Joseph Minard, a french
cartographer and engineer [22]. A thematic map, unlike a general reference map, is de-
signed to show a specific theme, and does not care about the usual spatial characteristics
of the map. Normally, it is used to visualize statistical data in relation to spatial informa-
tion. For example, it can be used to show economical aspects of a region, or in our case,
show the spread of the influenza virus and the risk of influenza associated with a specific
geographic location.

There are several types of thematic maps used for displaying statistics. A widely used
one is the choropleth map, which shows statistical data over predefined regions, often
represented by shadings or different colors [23]. One challenge with this kind of map is
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optimizing the number and the range of the class intervals used as the statistical foundation
[23]. An example of a choropleth map is shown in figure 2.12.

Figure 2.1: A choropleth map, showing motor vehicle fatalities of the different states of USA

On the other side of the map continuum is the isopleth map, which displays data continu-
ously. Schmid and MacCannel defines an isopleth map as a map where isopleths connect
equal rates or ratios for specific areas [24]. An example of such a map is a population den-
sity map. This type of map can be hard to create dynamically though, partly because one
will have to use areal interpolation to create the dividing lines in the area [24]. An example
of an isopleth map can be seen in figure 2.2, which is used as an example of heatmap.js’
capabilities3.

2Figure taken from http://www.d.umn.edu/˜eisch032/ChoroplethLab5.png
3http://www.patrick-wied.at/static/heatmapjs/
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Figure 2.2: An isopleth map, also known as a heatmap

In between these two different thematic maps is the dasymetric map, which is considered
the midway between the discrete nature of choropleth maps and the continuous nature of
isopleth maps. Eicher and Brewer [25] did a study on the implementation and evaluation
of dasymetric maps, and defines it as: “A dasymetric map depicts quantitative areal data
using boundaries that divide the mapped area into zones of relative homogeneity with the
purpose of best portraying the underlying statistical surface.” The popularity of dasymetric
maps has been increasing over the years with the introduction of geographic information
systems, but still lack standardization [25]. Similar to the isopleth maps, the dasymetric
map is usually made with the use of areal interpolation. See figure 2.3 for an example of
a dasymetric map with its error. This figure is taken from Eicher and Brewer’s research
[25].

Figure 2.3: An example of a dasymetric map with its associated error
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2.6 Machine learning
Using Twitter as a data source means that one will get a lot of data to process. Machine
learning has become more and more used with the increased amount of data stored around
the world. Companies use machine learning on large datasets to extract trends and in-
formation on otherwise unknown topics, and researchers use it to find patterns previously
unexplored. In the case of influenza and Twitter, there has been several attempts to create
an influenza detection system using machine learning to filter out irrelevant or misleading
tweets.

Aramaki, Maskawa and Morita [11] tried to use a support vector machine [26] based sen-
tence classifier to detect cases of influenza with Twitter, and found that their method had
higher correlation of 0.89 compared to the gold standard data from IDSC (Institute of
Decontamination Sciences) than the state-of-the-art methods at that time. These state-of-
the-art methods included Google Flu Trends and simple Twitter keyword search. This
research proves that tweets can be used to accurately detect influenza at a reasonable de-
gree of certainty, and that using machine learning and natural language processing (NLP)
is an effective way of filtering these tweets. Work done by Culotta [27] confirms that the
use of a classifier can be beneficial for filtering out tweets that are not influenza-related,
but states that the classifier needs to take use of relatively advanced NLP techniques, e.g.
n-grams and synonyms, in order to achieve sufficient correlation. He also states the impor-
tance of pre-processing of the tweets, as they often feature informal syntax and spelling
mistakes.

Lamb, Paul and Dredze [12] confirms the importance of differentiating types of tweets,
in that a tweet regarding influenza not necessarily implies a case of influenza. In their
research, they for every tweet first decided if the tweet was influenza related or not, then if
the tweet was influenza related they decided of the tweet concerned influenza awareness or
an actual case of influenza and if the tweet concerned the author or someone else. Overall,
they found that evaluating only influenza related tweets gave better correlation than any
other twitter based classifiers at that time.

2.7 Open-source software
Open-source software has become increasingly popular in the later years. The trend of
exposing source code has created a new way of developing and maintaining software, also
in the research community. However, there are still a big part of the academic world where
source code never gets released. This makes it hard for other researchers as ourselves to
find a basis for research in creating software. We therefore want to emphasize on mak-
ing our software open-source, so that it can be reused and studied by others. Recently, a
movement trying to bring awareness to this issue has arisen. SoftwareX4 is a journal that
focuses on acknowledging the importance of software and source code as research, and
values software as research contribution as much as textual reports. The goal of the jour-
nal is to make it easier for researchers and engineers to build upon each other’s software,

4http://www.journals.elsevier.com/softwarex/
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rather than rebuilding it from scratch.

Work done by Baldwin and Clark [28] suggests that modularity and option value are two
important architectural features when it comes to the success of an open-source system. In
their paper, they define modularity as: ”A complex system is said to exhibit modularity if
its parts operate independently, but still support the functioning of the whole” [28, p. 6]. A
modular system is often based on a stable platform of code on which compatible modules
can be built upon. Modularity is important in an open-source system because of it’s ability
to support adding features and different parts of the system independently, which in turns
increases the capabilities of the system. The second feature the article mentions is option
value, which is the possibility to change the design as one experiments and tries different
methods. This is supportive of the open-source ideology in that one wants to be able to
add new features which previously was not thought of. Modularity and option value are
thus two important architectural tactics we can implement in order to make it easier to
contribute to an open-source system.

2.8 Similar systems
There have been several attempts to create real-time influenza surveillance systems, espe-
cially in the later years. Most health institutions report data to some organ, which oversees
the potential of an epidemic, but these methods are slow. Normally, such reports are done
at a set time interval, for example every week. This reporting provides accurate influenza
detection, but it may detect an influenza too late. Real-time surveillance systems have
been created to combat this issue. They may not be as accurate as reported data from hos-
pitals, but it’s possible to detect epidemics much earlier, and the findings often have a high
correlation with reported data. This section will feature some of the existing systems that
somehow relates to the system we are trying to make.

2.8.1 Flutrack
Flutrack uses data from tweets publicly available in the twitter API. The system gathers
tweets, processes them and places markers on a modified Google Maps module. The sys-
tem uses linguistic filtering to filter out tweets that are not influenza-relevant, like ”Fever
cough diarrhoea upset stomach joint aches headache . . . I lost my appetite” [29]. When
the relevant tweets have been found, the system uses geolocation to find the respective
tweet’s coordinates. This system will be the basis of our research, as it is open source and
provides a foundation of the end result.

2.8.2 NowTrending.HHS.gov
NowTrending.HHS.gov5 is a health service provided by the US government which gathers
tweets concerning everything from natural disasters to influenza. The system shows rele-
vant statistics about the tweets, as well as visualizing this as a heatmap on their respective

5http://nowtrending.hhs.gov/
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locations. While this service uses similar methods as our research will do, it has a much
broader scope, and covers a lot more tweets than necessary in our case. Our system will
also implement a prediction module, which this system is missing.

2.8.3 Flutracking.net
Flutracking.net6 gathers data from a weekly survey distributed to Australian citizens. The
system has quickly become a great example of how an online influenza-like illness track-
ing system can work. It’s results corresponds with national reports [30], and accurately
pinpoints Influenza outbreaks. Flutracking.net updates it’s data weekly along with a map
to visualize it. Our project will seek to be even more real-time than that, and this system
proves that collecting symptoms from people can provide satisfyingly accurate results.

2.8.4 Bluedot.global
Bluedot.global7 began as a research program at St. Michael’s Hospital in Toronto with
the goal of understanding how infectious diseases spread worldwide. The main focus of
the program was to study how air travel has connected the world population, and with it
the international spread of diseases. The program analyzes air traffic, weather conditions,
livestock density, etc at real-time to predict potential pandemics. However, the system is
highly closed, is not available to the public population, and is first and foremost meant for
health officials.

2.8.5 NLP flu warning
Aramaki, Maskawa and Morita [11] has created a influenza surveillance system with a 0.97
correlation at the outbreak and early spread of an influenza epidemic, which outperforms
many other systems. The system can be found at http://mednlp.jp/influ/, but is in Japanese
and only covers Japan. The system uses machine learning (SVM based approach) to filter
out tweets that are not influenza related, which has improved the resulting correlation
greatly.

6http://www.flutracking.net/
7http://bluedot.global/
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Chapter 3
System Design

This chapter will describe the design of the different components in the system. It will
elaborate on what their purpose is, and how they were built. The chapter will also cover
some fundamental principles on which the system is built upon.

3.1 Architecture
The designed architecture of a system is essential for it to thrive as open-source, as men-
tioned in chapter 2. The goal of our system is to create a platform on which others can
contribute and expand. The main architectural feature we have chosen to focus on is mod-
ularity. The idea is to have a set of modules which are more or less independent from each
other that together form the system in its entirety. The system consists of a back-end to
process data, as well as a front-end to visualize it. The back-end consists of some python
modules for gathering and processing data, as well as some exposed REST API endpoints
made with Django rest-framework. The endpoints are accessible to anyone, but are pri-
marily used by the front-end. The front-end is a basic AngularJS application which queries
the back-end for data, and then visualizes it.

3.1.1 Modularity as the main architectural trait
The back-end is implemented with modularity in mind, so that it can be extended easily,
both by us and potential other contributors. It is divided into modules, each with separate
concerns, to minimize coupling and ensure high cohesion. One module is for the API
and its respective endpoints, another handles the tweet metadata as well as the gathering
of these, and another one processes the tweets and calculate prediction. By structuring
the code in this way, it is easy to build upon these modules independently, or even build
completely new ones without overlapping the concern of the other existing ones. This also
paves way for option value, as the options are endless when it comes to implementing new
modules or changing existing ones. A diagram of the implementation of this modularity
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can be seen in figure 3.1.

Figure 3.1: Diagram of the modules and their relations in the back-end

3.2 API design
The REST API is designed with the aforementioned traits in mind. As of now, the API
consists of two endpoints, and is publicly available. The service is available at http://
flutrack-backend.herokuapp.com/, and returns JSON responses. An overview
of the available endpoints can be seen in table 3.1. Further details about the endpoints can
be found below.

Endpoint Description Returns
/tweets An endpoint to get the avail-

able twitter data
Returns a JSON response
with all available influenza-
related tweets

/prediction An endpoint for predicting
the spread in a city

Returns a JSON response
with day-to-day infection
data about each city on each
day

Table 3.1: REST API endpoints

3.2.1 GET /tweets
The /tweets endpoint returns the available influenza-related tweets from the system in the
respective city, as well as some metadata. Each entry in the returned list represent a city
in the defined city matrix, which contains location as latitude and longitude, the amount
of tweets for each of the eight previous weeks, a field stating whether the city is under
an influenza epidemic, and a field stating whether the city has an increasing trend. The
purpose of the endpoint is for the user to be able to collect the data used by the system.
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Resource URL
http://flutrack-backend.herokuapp.com/tweets

Resource information

Response format JSON
Availability Public

Parameters
None

Example result

[
{
"city": "Atlanta",
"location": {
"lat": 33.7489954,
"lng": -84.3879824

},
"weeks": [
14,
1,
4,
21,
5,
4,
16,
20

],
"increasing": false,
"epidemic": false

},
{
"city": "Bangkok",
"location": {
"lat": 13.7563309,
"lng": 100.5017651

},
"weeks": [
125,
4,
4,
0,
2,
0,
37,
10
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],
"increasing": false,
"epidemic": false

}
]

3.2.2 GET /prediction
The /prediction endpoint returns spread data for each city for the whole forecast time pe-
riod, based on an index city where the influenza outbreak has originated. Each day is
represented as an array of the tracked cities with the respective computed morbidity rates
on that day.

Resource URL
http://flutrack-backend.herokuapp.com/prediction

Resource information

Response format JSON
Availability Public

Parameters
None

Example result
Snippet from a request to https://flutrack-backend.herokuapp.com/prediction.
This returns the morbidity, location, and city name of each of the cities for each day in the
forecast. Each day is represented as an array of the registered cities. The example here is
limited to only showing the two first days of results from Atlanta for simplicity.

[
[
{
"location": {
"lng": -84.3879824,
"lat": 33.7489954

},
"city": "Atlanta",
"morbidity": 22,

}
],
[
{
"location": {
"lng": -84.3879824,
"lat": 33.7489954
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},
"city": "Atlanta",
"morbidity": 5

}
]

]

3.3 Data sources
The system is highly dependent on a high quantity of good quality data in order to perform
as expected. We need a lot of tweets in order to establish that an epidemic has originated
in a certain city, which needs to be identified with an acceptable degree of accuracy The
prediction module is also dependent on flight data, more specifically how many passengers
fly from and to each city in the set of 52 cities described in section 2.3. Additionally, we
need some metadata to be able to connect airports, cities and tweets in a structure which
is usable.

3.3.1 Twitter

Twitter provides two different APIs, the REST API and the streaming API. The REST
API lets us search directly with a specified query, and returns a JSON response with a
non-exhaustive set of tweets which match this query. The API has limitations, and only
allows for 180 queries per 15 minute window. The streaming API provides a connection
directly onto the incoming stream of tweets, which gives us access to a majority of the
tweets real-time. The streaming API, as the REST API, provides the ability to limit the
results with a search query.

With the REST API, we found that it is hard to find a broad enough query which satisfies
the accuracy level and quantity needed for this kind of system. What we saw was that
the more specified our query was, the fewer results we got. For example, searching only
for the keyword ’influenza’ returns tweets like ”ANIMALS 16 dogs, from 3 Chicago area
shelters, naturally infected with canine influenza A H3N2 ... #medsocnews”, which clearly
does not represent an influenza infected individual. This query generates a lot of tweets, so
many in fact, that it quickly exceeds the query limit of 185 queries per 15 minute window.
The REST API returns a maximum of 100 tweets per page. When that is returned, another
query must be made to request another 100 tweets, which means that the limit is reached
after acquiring 18000 tweets. By narrowing the query, we can find more relevant tweets,
for example with the query ’influenza+OR+flu+AND+sore+AND+throat+AND+fever’.
One example tweet we get with this query is ”A torn up stomach, sore throat, fever, body
aches and chills - I either have the flu or I really should’ve stayed...”, which is likely to
be a case of an infected individual. However, with this query, we find only 107 matching
tweets, which is not nearly enough for our purpose. Thus, the main challenge with using
the REST API is to find a balance between accuracy and quantity, where we have tweets

19



Chapter 3. System Design

that depict a case of influenza, and we have enough of them, preferably in the thousands.

With the streaming API, we need to gather for a longer time, as the stream is real-time and
does not provide any historical tweets. Applying only ’influenza’, or similarly ’flu’, as the
only keyword filtering is ineffective. In a ten minute period of streaming, we received zero
tweets with either of the keyword filters. For the streaming API to be effective, we need
more keywords to search for. We therefore tried some more complex filters with several
search terms. With Tweepy1, the streaming API is set up with a list of keyword searches,
where each element in the list represent a disjoint search term. It also allows for joint
keyword searches, which are entered as several words within an element in the list. One
of the symptoms of influenza is sore throat, and this has to be represented as one search
term in order to get accurate results. This is possible with Tweepy, as one would enter
[’sore throat’], and it would return tweets which contains both of those words. We tried
a search with the most common symptoms associated with the influenza, namely [’fever’,
’sore throat’, ’cough’, ’runny nose’, ’headache’], and found that we received a steady
stream of tweets. In a ten minute period, we collected 342 tweets of mostly inaccurate
results. Terms like ’headache’ and ’cough’ is often used in other situation, where it has no
connection with the influenza virus. For example, the tweet ’@User ya *cough* my prom
date’ has nothing to do with influenza, but is still collected through the stream.

3.3.2 Air travel
The system has a module for calculating daily passenger flow between different cities. The
system needs two data sources to make this possible. One source for passenger statistics
between airports, and one source for which airports are associated with a particular city.

Passenger statistics

The system uses the database T-100 market from United States Department of Transporta-
tion2. This offers passenger statistics between airports of the United States and the rest of
the world. The database only offers statistics from flights that are connected by at least one
U.S airport. This means that no travel statistics between cities outside the U.S is available
to our current system.

Airport information

The system’s airport module makes a call to SITA’s Airport API3 to look up all associated
airport codes for every city in the influenza prediction model. The module stores the
information about each city in a database, so that the system does not need to make a call
to the API for each calculation. This is only necessary when a new city is added to the
influenza model. The module ensures that the system is extensible with minimal amount
of modification. By automatically looking up each airport code for a city in the matrix,
one only needs to add a city name to the list of cities for the system to be able to work

1http://www.tweepy.org/
2http://www.rita.dot.gov/bts/home
3https://www.developer.aero/Airport-API/API-Overview

20

http://www.tweepy.org/
http://www.rita.dot.gov/bts/home
https://www.developer.aero/Airport-API/API-Overview


3.4 Machine learning

Figure 3.2: The learning and prediction of a classifier. (a) shows how the classifier learns, while (b)
shows how it uses the learning to label new data.

properly. This will still work even though the system is extended with data from other
sources than the United States Department of Transportation4.

3.4 Machine learning
As explained in section 3.3.1, we generally found that it was hard to get accurate results in
high enough quantities based only on raw twitter search. Machine learning, as mentioned
in chapter 2, can be helpful to further filter the received tweets. We attempted to implement
a two-class sentiment analyzer, that would recognize if a tweet concerns a case of influenza
or not. This process will be explained in this section.

3.4.1 Classifier design
Lamb, Paul and Dredze [12] collected an annotated dataset of tweets for their research, and
has kindly published it5. We can train our classifier on this dataset, and test it on tweets
gathered from the Twitter APIs. An overview of the classifier’s structure can be seen in
figure 3.2.

The classifier begins by preprocessing all the tweets in the learning dataset, converting all
characters to lower case, replacing all URLs with ’URL’, replacing all username mentions
à la ’@flutrack’ with ’AT USER’, and trimming extra unnecessary characters, whitespaces,
and hashtags. Furthermore, we created a feature vector based on all the words in the
dataset, excluding common words that does not contribute to the semantics of the tweets,
like ’a’, ’and’, ’the’, etc. To further increase the accuracy of the training, we added the sup-
port for bigrams in addition to the unigrams. A tweet containing the unigram ’influenza’
seems like it could be a case of influenza. However, if we also look at possible bigrams

4http://www.rita.dot.gov/bts/home
5The dataset can be found at http://www.cs.jhu.edu/˜mpaul/downloads/flu_data.php
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like ’not influenza’ or ’influenza news’, it is apparent that it doesn’t necessarily have to be
related to an infected individual. The end result is a feature list with every unique word
found in the tweets. The classifier’s task is to mark each feature in the feature list with a
positive to negative ratio. This way, the classifier should be able to distinguish influenza-
related tweets from other non-significant tweets. This is done by creating a profile based
on the feature list for each tweet. For example, if the feature list is [’influenza’,

’jacket’, ’cough’], then each tweet would produce a profile looking something like
the snippet below.

{
contains(’influenza’): True,
contains(’jacket’): False,
contains(’cough’): False

}

Based on the classifier’s opinion on the importance of each word, the classifier will come
to a conclusion deciding if the tweet confirms an influenza infected individual or not.

We attempted to implement and test two classifiers, namely Naive Bayes [31] and Maxi-
mum Entropy [32]. Each of them has their advantages, but we found that they produced
similar results. Lamb, Paul and Dredze’s [12] research showed that classifying more than
once proved effective. As stated in chapter 2, they classified with regards to whether a
tweet is influenza related before they classified based on if the tweet concerns awareness
or an actual case, as well as deciding if the tweet talks about someone else or themselves.
We attempted the same approach, but without self/others-classification. We implemented
a related/not related-classifier and an awareness/infection-classifier. The system first trains
the related/not related-classifier, and then the awareness/infection-classifier. As a result,
we can first feed the related/not related-classifier with tweets, and then feed the tweets
which got classified as related into the awareness/infection-classifier in order to filter out
awareness tweets, such as news stories.

3.5 Prediction algorithm
This section will describe how the system plans to predict influenza outbreaks, what data
it uses, and how it structures this data to form meaningful output.

3.5.1 The model
The model for spread of influenza is the same model as the one described in Rvachev and
Longinis work [1]. For a more detailed explanation, see their work. The model divides
a city’s population in four different, disjoint states: Susceptible, latent, infectious, and re-
moved. A fraction of the population is assumed to be susceptible to the disease initially.
For the city that is the source of the epidemic, the number of latent and infectious indi-
viduals are calculated for the days leading up to the outbreak and set to zero for all of the
other cities. At the start of the forecast, the number of susceptible, latent, and infectious
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individuals are calculated for each city for each day up until the forecast horizon. The
model uses a matrix of average daily number of passengers that travel by airplane between
each city in the model. This is then used as a probability for any infectious individual
traveling to another city and infecting that city’s inhabitants.

Key values

The model uses different key values that are calculated in the original paper. This includes
a set of infection probability distributions, the length of incubation and infection period,
daily infectious contact rate, and fraction of susceptible population. These values are all
taken directly from the original paper.

Key values
Length of incubation period 2
Length of infection period 8

Daily infectious contact rate 1.055
Fraction of susceptible population 0.641
Fraction of ill individuals reported 0.3

Table 3.2: Key values concering characteristics about influenza [1].

Seasonal swing

Because influenza is a respiratory disease, it exhibits a characteristic seasonal pattern of
higher infection rates in colder months, and lower infection rates in warmer months. The
model therefore implements a scaling factor for seasonality, in which the daily infectious
contact rate is lowered by a certain factor depending on which month it is, and in which
part of the world the city is in. The world is divided into three zones: Northern hemisphere,
tropical hemisphere, and southern hemisphere. Cities located in the tropical hemisphere do
not exhibit seasonal swinging. This seasonality scaling factor is identical to the seasonality
scaling factor used by Grais, Ellis, and Glass [16]. Table 3.3 show how this scaling factor
is applied to the cities in the different zones of the world at different times of the year.

Month Southern hemisphere Northern hemisphere
January 0.10 1.0

February 0.25 0.85
March 0.55 0.70
April 0.70 0.55
May 0.85 0.25
June 1.0 0.10
July 1.0 0.10

August 0.85 0.25
September 0.70 0.55

October 0.55 0.70
November 0.25 0.85
December 0.10 1.0

Table 3.3: Different seasonal scaling factors applies for northern and southern hemispheres. Cities
in the tropical hemisphere do not exhibit seasonal swinging [16].
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Flight data

To make the system easily extensible, it needs to be able to add cities to the model on
demand. Our only source of passenger traffic is on a per-airport basis, which means that
various airports are associated with each city. Statistics for each of these airports needs
to be gathered and categorized together with other airports belonging to the same city.
Therefore, the system uses a module for handling passenger travel data between cities.

3.6 Geolocation
Geolocation is a very important aspect to our system. The geolocation must be accurate
to city level, coordinates beyond that is not needed. The tweets we gather from Flutrack
has exact coordinates, which we need to reverse geocode to the name of the city or town.
We keep a MongoDB database of all the required cities, which for now is the 52 cities
listed in Rvachev and Longinis research [1]. In each document in the database, there is
data on population count, point coordinates, the name of the city, as well as city bounds as
coordinates. The point coordinates are there to have a point to represent in the front-end
map, the population count is used in the prediction, and the city bounds are used to deter-
mine which city a tweet is coming from. The system looks up these bounds for each city
through Google Maps Geocode API6. When an incoming tweet is processed, the system
checks if it is located within one of the bounds in the database, and adds the city name to
the tweet document in the database if it is. If it’s not, then the system reverse geocodes the
location through the Google Geocode API, and adds the result to the database document.
The Geocode API has a limit of 2500 requests per day, which is not enough for the amount
of tweets returned by the Flutrack API. This is solved by introducing this saved bound-
ing box for each city, which makes it simple to lookup the city from where tweets originate.

3.7 Front-end and visualization
Being able to clearly and efficiently visualize the data our system produces is imperative.
We have chosen to use the Google Maps API together with Heatmap.js7 as the visualiza-
tion tools in our application. A heatmap is an isopleth map, and is efficient at portraying
data in relation to each other. We decided in our specialization project [2], that using an
isopleth map for visualization would be the best choice. With this setup, it’s easy to see
the general area and intensity of the influenza spread.

The front-end is built using AngularJS8, and features a viewable Google map with a
heatmap layer on top. The page also features a mechanism to change the amount of days
in the future to predict an influenza epidemic. A screenshot of this can be seen in figure
3.3. The front-end collects tweets with their associated metadata from the API, namely

6https://developers.google.com/maps/documentation/geocoding/intro
7http://www.patrick-wied.at/static/heatmapjs/
8https://angularjs.org/
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Figure 3.3: Screenshot of the visualized data. This visualization shows the state of the spread 191
days in the future when Honolulu is the pandemic origin. Cities marked yellow means that they have
an increasing trend, and should be watched.

from the /prediction endpoint. Ultimately, this feature can be merged together with the
original Flutrack system, and work as one total influenza awareness service. The front-end
application can be found at http://flutrack.almyy.xyz

3.8 Deployment

Both the back-end and front-end are hosted on Heroku, a cloud hosting service with flex-
ible scaling and pricing. The service is based on scalable dynos, which are small linux
containers that run a single user command. Each dyno operates within the app’s slug, a
compressed copy of the application and its dependencies. The dyno is scalable horizon-
tally, meaning one can have several dynos working together in the same slug, or vertically,
which means one can upscale a single dyno with more available memory and general com-
puting power. The price depends on the scaling of the application, but Heroku offers a free
version, where one can get a single dyno per application with some limitations. These
free dynos can only be active 18 hours in a 24 hour time frame. If the dyno exceeds this
limit, it will be forced into sleep for six hours. Heroku offers a simple way to host small
applications, as we can just push a specific git branch to a specific remote, which then
automatically gathers and compresses the application’s slug and deploys the application
on a desired dyno.

By using Heroku, one has access to many different add-ons, which provides extra func-
tionality or customized content. Our back-end uses a MongoDB add-on, namely mLab
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MongoDB9, which provides 496 MB of storage for free. The service is used to store
tweets with their respective metadata, as well as city information.

9https://elements.heroku.com/addons/mongolab
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Chapter 4
Results and testing

This chapter presents our results. It will elaborate what types of data was needed for
testing the different modules of the system, how we acquired these, and how we used them
to validate that our system was implemented correctly.

4.1 Prediction model

This section will describe what parts of the model for global spread of influenza needs to
be validated, how we intend to test the different parts, and will present the results attained
by these tests.

4.1.1 Data

To validate the model for global spread of influenza, we decided to try and replicate the
results of Longini and Rvachev [1]. If we could reproduce the results for the global spread
of influenza, using the 1968 air traffic volumes as our source, this would give a strong
indication that our implementation of the model would be correct.

To reproduce the results Rvachev and Longini produced, we would have to use the same
data as was originally used in their article. We therefore copied the transportation matrix
from their work, and implemented the model with this matrix.

The model is implemented with the same 52 cities as used in the original article, and with
the same population count as used in the original paper. The transportation matrix contains
the same air traffic volumes as used in their work, to give the same prerequisites when im-
plementing the model.
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Figure 4.1: The original transportation matrix reproduced from Rvachev and Longini’s work [1].

Grais, Ellis, and Glass.

In addition to using the data and results from Rvachev and Longinis original work, we
decided to use one other source as validation of a correctly implemented model. The work
of Grais, Ellis, and Glass [16] utilizes the same influenza model with air traffic volumes
and city population from the year 2000. By substituting the transportation matrix from
Rvachev and Longini’s work with the transportation matrix from the work of Grais, Ellis,
and Glass, we have two different points of reference to compare against. Confirming the
model against two different sources gives an even stronger indication that the model is
correctly implemented.

Because the work contains air traffic volumes from the year 2000, we can also use their
results as a point of reference when examining if the system is able to predict the spread
of influenza using only the currently implemented data sources for air traffic volumes. To
validate this, the system will run a forecast with the transportation matrix generated by the
system itself using the T-100 market database1 from the year 2000 as the only data source.
The resulting forecast will be compared with the forecast of Grais, Ellis, and Glass, which
used many different sources for air traffic volumes, including the T-100 market database
[16].

Key values

In addition to data about the different cities, the model uses a set of infection distribution
probabilities which are taken from the original paper. These key values, such as maximum
length of incubation and infection period, daily infectious contact rate, fraction of suscep-

1http://www.transtats.bts.gov/databaseinfo.asp?DB_ID=111
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4.1 Prediction model

Figure 4.2: The transportation matrix used in the work of Grais, Ellis, and Glass, to model the
spread of influenza in 2000. [16]

tible population and fraction of newly ill individuals reported are all taken directly from
the work of Rvachev and Longini. This reduces the risk of miscalculating any values, and
gives the best basis for validating our implementation of the model. We are ensuring that
the system has implemented the correct values for these key values by unit testing.

4.1.2 Validation
Rvachev and Longini [1] presents their results as a forecast of predicted daily reported
morbidity compared with observed daily reported morbidity. In order to validate that our
system implements the model proposed by Rvachev and Longini correctly, we compare
the results of our predicted daily reported morbidity, with the predicted daily morbidity of
the original article. If we are able to create the same forecast with the same input data,
that’s a strong indication that we’ve implemented the model correctly.

Gathering results

We decided that the best way to compare the results with our own system’s results, would
be to produce a forecast on a similar format. We did this programmatically, and ran the
forecast over 440 days, as done in the original article. The computer then divided daily
morbidity into four day intervals, and plotted the results. We then took a picture of these
results, and fitted them to the same size and matrix as in the original paper. From there, we
manually plotted the results with photo editing software, in color coding. This was done
so we could easily determine whether or not our results are correlating with Rvachev and
Longini’s results.

When comparing our system with the results from Grais, Ellis, and Glass [16], we decided
to calculate the temporal progression of the forecast in the same way as done in their paper.
This means calculating the number of days since the epidemic outbreak each city expe-
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riences its peak influenza activity. The results can then be used to calculate correlation
between the two resulting forecasts.

After comparing our results with that of Grais, Ellis, and Glass for the temporal pro-
gression of the forecast using 1968 air traffic volumes, we found that the results weren’t
correlating as much as we had expected. We therefore decided to manually create a tem-
poral progression of the results given in Rvachev and Longini’s work. This was done to
ensure that the results from Grais, Ellis, and Glass were in fact reliable, as there are many
sources of errors when trying to recreate the results. This would also give us another point
of comparison to further validate our implementation, giving us a numerical value of the
statistical correlation between the forecast generated from our system, and the original
forecast done by Rvachev and Longini [1].

4.1.3 Results

The original forecast from Rvachev and Longini’s work can be seen in the appendix in
figures A.1 and A.2, while our systems forecast can be seen in figures A.3 and A.4. Fig-
ures A.5 and A.6 show our results superimposed on to the original results, to highlight the
correlation of the two forecasts.

Rvachev and Longini’s forecast show that the pandemic spreads from Hong Kong to the
neighboring cities first, then progresses to the northern hemisphere and eventually reaches
the southern hemisphere. From the results it is easy to see that our forecast is very similar
to the forecast produced in the original article. It seems our forecast is able to predict
the epidemic peak correctly, with an error of around 2 weeks, for most of the 52 cities
on the list. The forecast displays a notable lack of correlation for the four cities: Sydney,
Melbourne, Perth, and Wellington, as it predicts that Wellington would not experience in-
fluenza activity at all, and the three cities in Australia would reach their epidemic peak 272
days before the forecast of Rvachev and Longini.

Grais, Ellis, and Glass also runs their implementation of Rvachev and Longini’s model
with air traffic volumes from 1968. The results are presented as a temporal progression of
the forecast of peak epidemic activity. Comparing the temporal progression forecast in the
work of Grais, Ellis, and Glass [16], with our forecast, and a manually created temporal
progression from the results of Rvachev and Longini, the results can be seen in table 4.1.
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City Rvachev and Longini Grais, Ellis, and Glass Solstad and Almvik
Hong Kong 0 0 0

Manila 37 4 35
Singapore 44 15 41

Jakarta 57 35 51
Sydney 348 300 74

Bangkok 80 62 75
Honolulu 87 65 78
Madras 94 81 88
Mumbai 97 83 91

Melbourne 373 340 105
Perth 381 360 105
Dehli 125 112 118

Kolkata 132 135 123
Karachi 155 137 142

San Francisco 132 115 142
London 182 121 143
Tokyo 136 121 145

Los Angeles 155 125 148
Teheran 144 130 153

Mexico City 177 175 154
New York 163 145 156

Atlanta 157 130 161
Chicago 159 140 166

Washington 159 138 167
Houston 159 140 168

Paris 191 150 171
Montreal 181 160 174

Stockholm 202 145 175
Madrid 195 160 176
Rome 188 160 178

Rio de Janeiro 204 190 180
Seoul 178 163 185

Warsaw 214 172 186
Berlin 226 167 187
Lima 200 195 189

Beijing 188 175 191
Cairo 230 172 191

Caracas 200 197 191
Shanghai 188 180 194
Bogota 238 210 199

Casablanca 224 190 201
Sao Paulo 234 218 206

Lagos 224 180 210
Budapest 245 200 222

Sofia 250 210 222
Kinshasa 245 213 224

Johannesburg 303 218 320
Buenos Aires 377 285 328

Capetown 320 287 341
Santiago 416 340 367

Wellington 385 360 0
Havana 0 202 0

Table 4.1: Comparing the dates for epidemic peak activity with air traffic volumes from 1968 [16,
p. 1068].
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The left column in table 4.1 shows the temporal progression produced from Rvachev and
Longini’s work. The middle column is the temporal progression produced in the work of
Grais, Ellis, and Glass [16], and the right column is the temporal progression from our
own system. Table 4.2 show the respective statistical correlations between the forecasts.
The table includes a calculation done with the most deviating results from both our own
forecast and from Grais, Ellis, and Glass’ forecast.

Comparison All cities Without Oceania and Havana
Grais, Ellis, and Glass - Rvachev and Longini 0.919 0.971
Solstad and Almvik - Rvachev and Longini 0.587 0.978
Solstad and Almvik - Grais, Ellis, and Glass 0.447 0.966

Table 4.2: Calculating the correlation between the results of Rvachev and Longini, Grais, Ellis,
and Glass, and ourselves. The rightmost column is calculated correlation between the data when
removing Sydney, Melbourne, Perth, Wellington, and Havana from the data sets.

The average difference in peak day activity for each city between Rvachev and Longini’s
forecast and Grais, Ellis, and Glass’ forecast is 32.327 and drops to 29.0 when exclud-
ing Havana from the forecast. The average difference in peak day activity for each city
between Rvachev and Longinis forecast and our own forecast is 37.731 days and drops
to 15.813 days when excluding Wellington, Sydney, Perth, and Melbourne. The average
difference in peak day activity between the forecast of Grais, Ellis, and Glass and our
own forecast is 43.1, and drops to 20.49 when excluding Havana, Wellington, Melbourne,
Perth, and Sydney from the forecast. The differences are summarized in table 4.3

Difference All cities Without Oceania and Havana
Grais, Ellis, and Glass - Rvachev and Longini 32.327 29.0
Solstad and Almvik - Rvachev and Longini 37.731 15.813
Solstad and Almvik - Grais, Ellis, and Glass 43.1 20.49

Table 4.3: The average difference in peak day activity for each city. The rightmost column is average
difference when removing Sydney, Melbourne, Perth, Wellington, and Havana from the data sets.
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City Grais, Ellis, and Glass Solstad and Almvik
Hong Kong 0 0
Singapore 36 21

Sydney 36 30
Johannesburg 36 39

Melbourne 36 33
Wellington 36 41

Perth 36 29
Bangkok 40 26
Manila 40 25
Jakarta 48 33

Capetown 48 73
Mumbai 56 38
Honolulu 60 45
Madras 68 50

Sao-Paulo 76 58
Kolkata 84 61

Mexico City 84 153
Santiago 92 100

Lagos 92 62
Bogota 112 123
Caracas 120 127

Lima 120 91
Rio De Janeiro 120 69

Havana 120 88
Atlanta 124 124

Washington 132 122
New York 132 131
Chicago 132 127
Houston 132 121

San Francisco 132 122
Los Angeles 132 124

Delhi 132 40
London 134 126

Buenos Aires 140 105
Rome 140 129

Montreal 140 129
Madrid 140 130
Karachi 144 58
Seoul 144 137
Paris 144 128

Beijing 148 132
Tokyo 148 137

Shanghai 148 132
Cairo 152 141

Budapest 152 141
Berlin 156 145

Stockholm 156 145
Warsaw 160 148

Casablanca 165 130
Sofia 168 158

Teheran 180 140
Kinshasa 0 77

Table 4.4: Comparing the dates for epidemic peak activity with air traffic volumes from the year
2000 [16].
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Table 4.4 shows the same temporal progression but from a forecast using air traffic volumes
from the year 2000. The calculated correlation between the two datasets is 0.848 and an
average difference in peak day activity at 19.6 days.

City Grais, Ellis, and Glass Solstad & Almvik City
Hong Kong 0 0 Hong Kong
Singapore 0 0 Singapore

Sydney -1 0 Manila
Johannesburg -1 0 Bangkok

Melbourne -1 -1 Perth
Wellington -1 -1 Sydney

Perth -1 -1 Melbourne
Bangkok 0 0 Jakarta
Manila 0 0 Mumbai
Jakarta 0 -1 Johannesburg

Capetown -1 0 Delhi
Mumbai 0 -1 Wellington
Honolulu 0 0 Honolulu
Madras 0 0 Madras

Sao-Paulo 0 0 Karachi
Kolkata 0 0 Sao Paulo

Mexico City 1 0 Kolkata
Santiago -1 0 Lagos

Lagos 0 0 Rio De Janeiro
Bogota 1 -1 Cape Town
Caracas 0 0 Kinshasa

Lima 0 0 Havana
Rio De Janeiro 0 0 Lima

Havana 0 -1 Santiago
Atlanta 1 -1 Buenos Aires

Washington 1 1 Houston
New York 1 1 San Francisco
Chicago 1 1 Washington
Houston 1 1 Bogota

San Francisco 1 1 Atlanta
Los Angeles 1 1 Los Angeles

Delhi 0 1 London
London 1 0 Caracas

Buenos Aires -1 1 Chicago
Rome 1 1 Paris

Montreal 1 1 Montreal
Madrid 1 1 Rome
Karachi 0 1 Casablanca
Seoul 1 1 Madrid
Paris 1 1 New York

Beijing 1 1 Beijing
Tokyo 1 1 Shanghai

Shanghai 1 1 Seoul
Cairo 1 1 Tokyo

Budapest 1 1 Teheran
Berlin 1 1 Budapest

Stockholm 1 1 Cairo
Warsaw 1 1 Berlin

Casablanca 1 1 Stockholm
Sofia 1 1 Warsaw

Teheran 1 1 Mexico City
Kinshasa 0 1 Sofia

Table 4.5: Comparing the temporal progressions of both Grais, Ellis, and Glass’ forecast and our
own forecast using air traffic volumes from 2000. The table shows which zone each city is located in,
and both are ordered from earliest to latest epidemic peak day, to highlight the geographical spread
and seasonal characteristics of both forecasts.
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Forecast using only the systems source for air traffic volumes

When running our system with the T-100 market database as the only source of air traffic
volumes, the model is not able to spread influenza when Hong Kong is the epidemic index
city. The system predicts a 60 day period of influenza activity in Hong Kong before the
epidemic dies out. It’s notable that Los Angeles, New York, Chicago, and San Francisco
experience influenza activity, but the daily predicted morbidity never rises above 1.

4.2 Machine learning
This section will look at the tests and results done during the procedure described in section
3.4. We attempted to implement a machine learning module for tweet collection, and the
results can be found here.

4.2.1 Data
As mentioned in chapter 3, Lamb, Paul and Dredze [12] has provided two datasets from
2009 and 2012 of, respectively, 2366 and 4760 tweets, where each tweet is annotated with
a 1 if it is influenza related, and 0 if it is not. Each tweet in the dataset is represented
by a tweet ID, and not the actual text posted in the tweet, because of Twitter’s privacy
policy in regards to publishing personal data. Because of this, we manually looked up
each tweet ID in Twitter’s API, and the resulting dataset was approximately 72% of the
original, amounting to approximately 5130 total available tweets.

4.2.2 Validation
To be able to properly test the accuracy of the classifiers, one should use approximately
half of the annotated dataset. This way, we can train the classifier with one half, and use
the other half for testing whether or not the classifier is functioning as expected. However,
because of the relatively small dataset we had access to, we found that there was no point
to test the classifier on a dataset. We could easily see, just by looking briefly at the results,
that the classifier had a hard time distinguishing an actual influenza incidence and casual
influenza mentions. In order to get a general idea of how the classifiers performed, we
found the most informative features of each of the classifiers. This way, we could at least
see which words the classifiers emphasized more, and see if the classifiers at least were on
the right track.

If we had access to a larger dataset, we could perform tests on a part of it, so that we could
find the specific accuracy of each classifier type, and compare them against each other.

4.2.3 Results
Below follows a list of the ten most informative features for each of the classifier imple-
mentations. This should give an indication of how effective the classifiers have been in
finding the most important words.
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Naive Bayes

Related (1)/Not related (0)

contains(throat) = True 1 : 0 = 22.3 : 1.0
contains(feeling) = True 1 : 0 = 19.0 : 1.0
contains(im getting) = True 1 : 0 = 18.0 : 1.0
contains(flu news) = True 0 : 1 = 17.4 : 1.0
contains(guide) = True 0 : 1 = 16.6 : 1.0
contains(pregnant women) = True 0 : 1 = 16.2 : 1.0
contains(zombie) = True 0 : 1 = 15.8 : 1.0
contains(flu spreading) = True 0 : 1 = 14.3 : 1.0
contains(coughing) = True 1 : 0 = 14.0 : 1.0
contains(women) = True 0 : 1 = 12.6 : 1.0

Awareness (1)/Infection (0)

contains(vote) = True 1 : 0 = 26.4 : 1.0
contains(flu vaccine) = True 1 : 0 = 25.1 : 1.0
contains(seasonal flu) = True 1 : 0 = 17.7 : 1.0
contains(vaccine) = True 1 : 0 = 16.3 : 1.0
contains(cow) = True 1 : 0 = 15.7 : 1.0
contains(finally getting) = True 0 : 1 = 15.0 : 1.0
contains(media) = True 1 : 0 = 12.4 : 1.0
contains(seasonal) = True 1 : 0 = 12.2 : 1.0
contains(winter) = True 1 : 0 = 11.0 : 1.0
contains(shots) = True 1 : 0 = 10.4 : 1.0

Here, the rightmost numbers are ratios of how often a feature is influenza related or not,
as signified by 1 : 0 or 0 : 1 to the left of it. For example, contains(throat)1 :

0 = 22.3 : 1.0 means that the word ’throat’ appears 22.3 times as often than not in
tweets that are influenza related.

We see that the related/not related-classifier certainly is on the right track. When actually
testing it against tweets gathered real-time from Twitter, however, we generally see that
the classifier has problems distinguishing influenza related tweets.

Maximum entropy

Related (1)/Not related (0)

-0.003 contains(throat)==True and label is ’0’
-0.003 contains(im getting)==True and label is ’0’
-0.003 contains(feeling)==True and label is ’0’
-0.003 contains(flu news)==True and label is ’1’
-0.003 contains(coughing)==True and label is ’0’
-0.003 contains(guide)==True and label is ’1’
-0.003 contains(zombie)==True and label is ’1’

36



4.3 Tweets

-0.003 contains(stupid)==True and label is ’0’
-0.003 contains(pregnant women)==True and label is ’1’
-0.002 contains(hoping)==True and label is ’0’

Awareness (1)/Infection (0)

-0.003 contains(vote)==True and label is ’0’
-0.003 contains(flu vaccine)==True and label is ’0’
-0.003 contains(seasonal flu)==True and label is ’0’
-0.002 contains(cow)==True and label is ’0’
-0.002 contains(finally getting)==True and label is ’1’
-0.002 contains(media)==True and label is ’0’
-0.002 contains(vaccine)==True and label is ’0’
-0.002 contains(winter)==True and label is ’0’
-0.002 contains(seasonal)==True and label is ’0’
-0.002 contains(risk)==True and label is ’0’

As one can see here, the classifiers have some problems distinguishing important features.
The ten most informative features in both cases are within 0.001 significance of each other,
and are generally low. This means that the classifier will place a lot of the tweets together,
and will have problems separating the positive and the negative tweets.

Generally, tweets often contains informal language, and are prone to grammatical errors.
Words like ’sick’ and ’cough’ are often used outside of describing illness, for example
’Sick of crying. tired of trying. yes, i’m smiling. but inside i’m dying’ contains the word
’sick’, but is completely irrelevant to us. This is often hard for the classifiers to com-
prehend, seeing as an occurrence of the word ’sick’ usually is a good indicator of a sick
individual.

4.3 Tweets
To gather tweets, we first attempted a raw twitter search as explained in section 3.3.1, then
tried utilizing machine learning techniques on the raw data as explained in section 3.4 and
4.2.

Due to mediocre at best results from the raw twitter search and machine learning module,
as well as a large update to Flutrack, which increased the amount of influenza related
tweets by tenfolds, we decided to use the tweet data we get from Flutrack as the basis for
the rest of our research. The available API usually provides between 3000 and 4000 tweets
for each week back in time, up to 60 days.

4.3.1 Results
Although the tweets returned from Flutrack are mostly good and of relevancy, there are
some irrelevant noise as well. At the time of writing this, one particular tweet is circulating
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in Thailand, which seems to be an English translation of common symptoms like ’Cough’
and ’Sneeze’. A screenshot of Flutrack with this tweet can be seen in figure 4.3. Almost
all the markers in the displayed area are repetitions of this one tweet.

Figure 4.3: Screenshot snippet from Flutrack.org, where Thailand can be seen to have a lot of
retweets of the same English translation of common symptoms.

The system will use the tweets gathered to detect a potential epidemic, which is done by
looking at increasing trends of influenza related tweets in each city. Flutrack provides an
API which allows collecting the tweets gathered up to 60 days in the past. This gives us
data from approximately the latest 8 weeks, which lets us compare the trends of each city.

We saw that at a point where we collected a total of 23767 tweets from 60 days back in
time from the Flutrack API, 3981 of them originated in one of the 52 cities, which amounts
to approximately 17%. We find that this is sufficient for looking at increases or decreases
in the amount of tweets from week to week. A snippet from the collected tweets can be
seen in figure 4.4. In this case, Atlanta has an increasing trend the last 3 weeks, which is
why it has been marked with yellow.

Figure 4.4: Snippet of screenshot from the system. Each city has twitter data from 60 days in the
past, and the system looks at influenza trends.
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4.4 Airports

The module uses SITA’s Airport API2 to look up all airports for each city, and categorizes
these airports together. This means that the system is able to automatically identify which
airports are associated with any new city added to the model, and is then able to acquire
all relevant passenger statistics.

To test if the system is actually able to identify and gather all airport codes associated with
a city, we generated a random test dataset consisting of some cities and their associated
airports. We then created unit tests to check whether or not the system is in fact able to
identify, and extract the correct airports for all cities.

4.4.1 Data

We are interested in looking at travel data between cities, not between airports. The air-
port module therefore searches through the passenger travel statistics database and adds up
passenger travel between all airports between two cities. This allows the system to query
how many passengers have flown from Los Angeles to New York City. The result will then
be all passengers from LAX (Los Angeles International Airport) to JFK (John F. Kennedy
International Airport), and all passengers from LAX to LGA (LaGuardia Airport).

To test if the system is gathering the correct statistics, we have designed a test dataset
and are running unit tests to check that the system is acquiring correct values. The test
dataset is created by manually searching through the database, and calculating how many
passengers should travel between two cities, and then comparing these results with what
the system generates.

4.4.2 Validation

To validate that the system is able to find the correct airports from the cities in the list, it
is sufficient to manually check that each airport for each city is added. This is done with
unit testing, where we generate a test dataset for a selection of cities, and confirming that
the module is finding all belonging airports.

4.4.3 Results

The end result is a list of all the airports in the world stored in the database. This is handled
by the system, which converts it into a list of all the airports within each city in the city
matrix. Figure 4.5 represents the resulting dictionary after our system collects all airports
associated with all cities

2https://www.developer.aero/Airport-API/API-Overview
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Figure 4.5: A snippet of the formatted city list with associated airports used by our system. Data is
collected from SITA’s Airport API.

4.5 Current system

The final result of this thesis is an open-source Django REST API, as well as a simple
Angular front-end to visualize the data. This section will quickly describe the system and
it’s capabilities.

The REST API is dependent on a lot of external sources of data. It uses flight data from
the T-100 market database, tweets from api.flutrack.org, and updated airport codes from
SITA’s airport API. It has to query these sources at some frequency, so its data is up to
date. As of now, this has to be done manually, because of Heroku’s restrictions on the free
dynos. Optimally, this task should be automated through a scheduled worker dyno, which
can run the collection tasks one time per day. The API will detect when an epidemic breaks
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out in a single city. This is done by comparing week to week data, and seeing if there’s an
abnormally large increase in the amount of influenza related tweets. When this happens,
the system will calculate the forecast, and update the database. This is then returned to the
users on request, together with the week to week tweet data.

The front-end is a simple one-page interface to the API. It features a map of the calculated
forecast, a temporal slider which updates the map accordingly, as well as a table of the
week to week tweet data. All the underlying data is gathered from the API on load.
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Chapter 5
Discussion

This chapter will discuss the findings and results from the previous chapters. It will present
explanations for why the results appear as they do, and reasons why the results might differ
from what was initially expected.

5.1 Prediction model
The results presented in the previous section clearly show that our implementation of the
model produces a very similar forecast of the global spread of influenza as that of Rvachev
and Longini. Figure A.5 and A.6 show how our results correlate with the expected results.
The influenza activity occurs at roughly the same time period for each of the 52 cities in
the model, with the exception of the four cities located in Oceania: Sydney, Melbourne,
Perth, and Wellington.

Table 4.1 shows that there is a big lack of correlation between the temporal progressions
of the forecast produced from our results, and the forecast produced by Grais, Ellis, and
Glass using air traffic volumes from 1968. This led to us creating a temporal progression
of the forecast of Rvachev and Longini, to examine whether the results of Grais, Ellis, and
Glass correlated with the original report. This also gave us another way of confirming that
our forecast correlated with that of Rvachev and Longini in a more precise way.

When comparing our results with the results of Grais, Ellis, and Glass using air traffic vol-
umes from the year 2000, we clearly see that there is a much stronger correlation between
the two forecasts. Table 4.4 shows the results.

The correlation between the temporal progression datasets indicate to which extent the
influenza spreads to the same areas in the same order. A strong correlation factor indicates
that influenza progresses to the correct cities in roughly the correct order, at roughly the
correct time, and a weak correlation factor indicates the opposite. This correlation might
be strong, even if there are big differences in peak influenza activity.
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5.1.1 1968 Hong Kong influenza

From looking at the comparison of our results on top of the results of Rvachev and Longini
in figure A.5 and A.6, it is clear that the forecasts correlate to some extent. Peak influenza
activity is reached at roughly the same time for both forecasts for all cities with the ex-
ception of the four cities in Oceania. The average difference in peak influenza activity
for each city is 37.731 days, and the correlation between the temporal progression of the
forecasts is 0.587.

Differences

The most obvious differences are of Sydney, Melbourne, Wellington, and Perth. It seems
that our forecast predicts Sydney, Melbourne, and Perth to experience peak influenza ac-
tivity 272.67 days prematurely, and does not produce any influenza activity in Welling-
ton. From figure A.2 we see that Sydney, Melbourne, and Wellington experience actual
reported, as well as simulated influenza activity in July and August 1969, while Perth ex-
periences only simulated influenza activity in the same time period. From figure A.4 we
can see that our forecast simulates influenza activity for Sydney, Melbourne, and Perth in
October and November 1968, and no activity in July and August 1969.

The correlation between the temporal progression of our forecast and that of Grais, Ellis,
and Glass is 0.447, which we would not consider a promising result. This means that there
is a weak positive linear relationship between the two forecasts. These results surprised
us, after preliminary comparisons with Rvachev and Longini looked promising. One big
reason for the lack of correlation is due to our simulation of influenza activity in Sydney,
Perth, Melbourne, and Wellington. This does not however explain it all, as we would
expect similar correlation between us and Grais, Ellis, & Glass and us and Rvachev &
Longini if those four cities were the only major difference.

Examining the data from the forecast of Grais, Ellis, and Glass closer, we found some
inconsistencies which led to us create a temporal progression of the original forecast in
order to compare the two. Rvachev and Longini explicitly states in their paper that ”Only
Havana was predicted not to experience influenza activity over the time period of the sim-
ulation” [1, p.17], while the temporal progression of the forecast of Grais, Ellis, and Glass
shows that Havana reaches peak influenza activity 202 days after the epidemic outbreak
in Hong Kong [16, p.1068]. This result suggest that something has been implemented
incorrectly, or that the model implemented is perhaps updated in a way which does not
immediately become apparent in their article. After comparing the two forecasts, we find
that they have a correlation factor of 0.919, which is a good result, but not as good as one
would expect when trying to replicate an experiment.

Looking at figure A.9 it seems as Wellington and Perth experience peak influenza activity
after 360 days, which is quite similar to the forecast of Rvachev and Longini. However,
when looking at figure A.11, it seems as though both Perth and Wellington are not expe-
riencing influenza activity during the simulation. Changing peak influenza activity to 0
for both cities produces a correlation factor between Grais, Ellis, & Glass and Rvachev &
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Longini of 0.603, which is much more in line with our results. Comparing the temporal
progression of our forecast and that of Grais, Ellis, and Glass after changing peak influenza
for Perth and Wellington to 0, the correlation increases to 0.70.

Similarities

Examining the results after excluding Sydney, Wellington, Perth, and Melbourne from the
forecast, we get a different picture. The average difference in peak influenza activity de-
creases from 37.731 to 15.813 days, and the correlation between the temporal progression
of our forecast and that of Rvachev and Longini rises from 0.587 to 0.978. This correlation
is more in line with what we expected, as even though we are trying to replicate the results,
there are many reasons for us not to expect 100% equal results.

When excluding these cities from the results, the correlation between our results and that
of Grais, Ellis, and Glass also rises from 0.447 to 0.877. Taking it one step further, and re-
moving the obviously erroneous simulation of Havana, the correlation rises to 0.966. The
forecast of Grais, Ellis, and Glass also correlates with that of Rvachev and Longini more
when removing Havana from the comparison. The correlation factor rises from 0.919 to
0.971.

When looking at our forecast, after removing the the most diverging results, the simula-
tion of Sydney, Perth, Wellington, and Melbourne, we are able to predict roughly the same
forecast as both Rvachev & Longini and Grais, Ellis, and Glass The rightmost column in
table 4.2 show how each of the three forecasts correlate with each other in terms of tem-
poral progression. This means that all three forecasts predict mostly the same geographic
spread of global influenza with some exceptions.

5.1.2 2000 Hong Kong influenza

We have already shown that in large, the forecasts correlate when using air traffic volumes
from 1968, and using the forecast from the work of Grais, Ellis, and Glass with updated
air traffic volumes from the year 2000, we can confirm that the models correlate.

Differences

When confirming the forecast using air traffic volumes from 2000, the only available data
for comparison is the temporal progression of the forecast. Looking at table 4.4, we can
see that there are some obvious differences. Kinshasa is not experiencing any influenza
activity in the forecast of Grais, Ellis, and Glass, while our system produces simulated
peak influenza activity at 77 days after epidemic outbreak. The overall correlation be-
tween the forecasts are 0.848 and the average difference in peak influenza activity is 19.60
days. Removing Kinshasa from the forecast increases the correlation to 0.876 and the av-
erage difference decreases to 18.47 days. This means that the diverging result in Kinshasa
doesn’t impact the forecast too much.
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Similarities

Table 4.5 show how both forecasts spread influenza based on geography and seasonality.
Even though the forecasts does not spread influenza to the same cities at the same order,
both forecasts show similarities in terms of geographic spread. The pandemic progresses
from Hong Kong to the neighboring cities before moving on to Australia. Then the pan-
demic continues to spread to cities in the tropical zone, before eventually progressing to
the northern hemisphere.

Overall, the model predicts a similar forecast, but not as similar as expected. There are
many potential reasons for this. The model might have been implemented differently by
Grais, Ellis, and Glass, since when comparing their forecast to that of Rvachev & Longini,
we find some obvious unexpected differences. Taking this into account, one would expect
there to be differences between our forecast and the forecast of Grais, Ellis, and Glass
when using air traffic volumes from 2000 as well. There might also have been an error in
recreating the data from either forecast. Grais, Ellis, and Glass might have an error in their
copy of the 1968 transportation matrix, or we might have an error in our copy of the 1968
transportation matrix, or we might have an error in our copy of Grais, Ellis, and Glass’
2000 transportation matrix.

Using the system’s generated air traffic volume

Running our system using only its own source of air traffic volumes from the year 2000,
results in no mentionable spread of influenza activity outside Hong Kong. The reasons
for this is apparent, as the T-100 market database only contains passenger statistics from
flights with at least one airport located in the U.S. The transportation matrix for Hong
Kong contains average daily passenger statistics for Atlanta, Chicago, Los Angeles, New
York, San Francisco, and Washington. No other cities in the matrix has any daily passen-
ger statistics to Hong Kong.

This is perhaps the biggest limitation to our system, as filling the transportation matrix
with more data produces a somewhat reliable forecast. The extensibility of the system
however, makes it easy for people in the open-source community, us included, to extend
the data gathering capabilities of the system. Being able to fill the transportation matrix
with different transportation statistics than air traffic, such as train travel statistics has
proven feasible in the past. Flahault, Letrait, Hazout, Menares, and Valleron modelled the
1985 influenza epidemic in France using the same model as we have implemented, with
train travel statistics between districts in France instead of air traffic volumes [17].

5.1.3 Error sources

Since the forecast of Rvachev and Longini is presented in four-day intervals, composing a
temporal progression of peak epidemic activity becomes an estimation process. In figures
A.1 and A.2 peak epidemic activity is represented by a cross. The way this data is pre-
sented, makes it difficult to pinpoint the exact number of days since epidemic peak activity
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in Hong Kong, which is explicitly stated to be July 27th 1968 [1, p. 15].

Seasonality

As the four cities that experience substantially diverging results are all located on the
southern hemisphere, and even more specifically in the Oceanic continent, there is reason
to believe that there is something incorrect about the seasonal swinging factor. However,
other cities in the southern hemisphere are not diverging from the original forecast. If there
was an issue with the seasonal factor, we would see more cities in the southern hemisphere
experience diverging results. Moreover, our results simulates influenza activity during
October and November 1968, which would be during the spring time, early summer in
the southern hemisphere, which should decrease influenza activity by scaling the daily
infectious contact rate by 0.55 and 0.25 respectively.

5.2 Feasibility of predicting spread
The previous section show that we in broad terms have been able to replicate the results
of Rvachev & Longini, and implement the model in such a way that allows for automated
updating of necessary information. The model itself can predict the broad patterns of the
geographical spread of the Hong Kong influenza [1, p. 20]. Key parameters such as length
of incubation and infection period, daily infectious contact rate, and infection distribution
could vary among different populations and different strains of influenza. Our model is
implemented on the underlying assumption that a new influenza epidemic have the same
epidemiological features as the Hong Kong virus (Influenza A subtype H3N1). Results
may vary if the next influenza pandemic is of a new strain of influenza.

The model will in broad patterns predict the geographic spread of influenza if an epidemic
is detected. As of now, the simulation of the forecast of our system must be run manually
once per day. Ideally we would want to use the twitter data to recognize the outbreak of an
epidemic in one of the cities that we are tracking, and then automatically run a new forecast
with that city as the index city. We are using a method for looking at trends in the Twitter
data to identify an epidemic as of right now. For the system to have a reliable algorithm
of determining whether an epidemic has occurred or not, more research, and more data is
required. Others have identified the outbreak of different types of epidemics with the use
of social media, so this is not only feasible, but has already been implemented. In [33]
Diaz-Aviles, Stewart, Velasco, Denecke, and Nejdl confirm that their method for detecting
epidemics using social media, is faster than all other methods of reporting epidemics for
the EHEC outbreak in Germany in May 2011.

The system created by Thapen, Simmie, Hankin, and Gillard [13] uses a different ap-
proach for forecasting influenza. Their goal is to predict how many tweets with different
symptoms can be expected in the future, whereas ours have been predicting the geographic
spread of influenza by computing daily reported incidence numbers. They are also using
a different transportation network in that they are gathering all travel information from the
tweets they are monitoring, using a user’s different posting locations as evidence for travel
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between the different locations. This means that they are using actual observed travel,
while our system uses statistical travel data. Their results opens up the question if there
are more ways of predicting disease outbreaks, and strengthens the hypothesis that it is
feasible to predict spread of influenza based on social media.

5.3 Twitter and geolocation
In the previous chapter, we presented some results from the collection of tweets in the
system. This section will discuss these results.

5.3.1 Tweets
Replies and retweets

Twitter is dependent on being a vivid community, with users sharing content and reacting
to other users’ content. This is also represented in influenza related tweets, as many tweets
are either replies to other tweets or so-called retweets, a direct re-post of the original tweet.
Because of these features, tweets with mentions of influenza does not necessarily need to
concern the original poster. The example shown in section 4.3.1 is a good indication of
this. In this case, a single tweet that features English translations of common symptoms
is shared so many times that it seems like there is a big influenza outbreak in Bangkok
and Thailand in general, although it does not indicate a single case of influenza infection.
Usually, Twitter users with a lot of followers, other people who receives the user’s tweets,
have a tendency to have their tweets retweeted and discussed, which will create noise in
the overall data. The example shown earlier clearly shows this type of behaviour where a
single tweet is retweeted by many users. This can be hard to avoid if it is not dealt with
during the original gathering of the tweets. Even though noise can be detrimental to the
system, only approximately 6% of tweets are retweeted1 and retweets should therefore not
be a big problem for our system.

Demographics

Twitter is generally used all around the world, but is a lot more common in the western
community, especially in USA. A report from 2009 and revised in 2014, which analyzed
over 11 million tweets, reports that 62.14% of tweets are from USA and 16.36% are from
the other English speaking countries UK, Canada and Australia[34]. This means that a to-
tal of 78.5% of tweets are from these four English speaking countries. This means that the
constraint of only including English tweets is not a problem, since they cover the majority
of the Twitter activity. However, it also means that the system might not be able to pick
up on trends or influenza epidemics outside of the western civilization. We knew that this
might become an issue early in the process, which is why we have decided to put most of
our focus on Twitter activity in the USA.

1Stats from https://sysomos.com/inside-twitter/twitter-retweet-stats (2010)
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5.4 Machine learning

5.3.2 Geolocation

Because the tweets we use are collected from Flutrack, we do not have any say in the
geocoding of the tweets. The tweets from Flutrack are geolocated through the Google
Geocoding API [29], which is overall quite accurate and provides high resolution results.
However, the results can be improved, as discussed in chapter 2, for example with the
use of the geolocation service Carmen [20], which can increase the overall number of
geolocated tweets. Carmen exists as a python library, and can thus be easily implemented
in the API. However, it requires full tweet objects from the Twitter API for optimal results,
which the Flutrack API does not provide. Therefore, our API will simply have to trust the
Flutrack API in their collection of tweets and their respective geolocation.

5.4 Machine learning

Chapter 4 provided results from testing the implementation of the experimental machine
learning module described in chapter 3, which will be evaluated and discussed in this sec-
tion.

5.4.1 Data

During the ID lookup of the tweets in the dataset, we discovered that approximately 28%
of the tweets were missing. This is most likely because of tweets or user profiles being
deleted since the original collection of these tweets in 2009 and 2012. Although, this is the
largest relevant dataset we could find, it is often generally advised to have an even larger
dataset for training. Additionally, to test the accuracy of the trained classifier, one needs a
similarly sized annotated dataset, which would require at least double the total amount of
annotated tweets.

The dataset is also somewhat biased. In 2009 and 2012, there was an outbreak of H1N1
(more commonly known as swine flu), which may have increased the amount of tweets
mentioning this issue. For example, the bigram feature ’swine flu’ will be heavily repre-
sented in the training dataset, but can barely be found in a collection of tweets from today.
An outbreak such as the H1N1 pandemic will also greatly increase the amount of tweets
concerning influenza awareness, rather than actual infections. This means that a lot of
the tweets will be mentions of news articles or similar, and will add to the noise that the
classifier will have to remove, which is hard, seeing as those tweets may have many of the
significant n-grams in them.

At the time of writing this, the dataset is between four and seven years old. While Twitter
is still used extensively, the trends or norms in the community may have changed since
then. A classifier trained on data from 2009 and 2012 may not give the same results in
2016.
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5.4.2 Implementation
As shown in section 4.2, the machine learning module did not perform as we wanted.
Both the Naive Bayes implementation and the Maximum Entropy implementation seemed
to be able to pick up on the most informative features in the dataset, but was not able to
classify tweets correctly. This might be because of a relatively small and outdated dataset,
as explained in the previous subsection. The trained classifiers places a tweet in one of
two categories, influenza related or not influenza related. To be able to accurately clas-
sify tweets, the two categories have to be distinct and distinguishable. When the training
dataset is too small and the features of the data overlaps, the classifier is not able to clearly
distinguish the two classes. When it comes to tweets that concerns an influenza infection,
the general language of the tweet is likely to be too similar to a tweet that concerns some-
thing else.

Section 2.6 presented several successful implementations of classifiers that are able to
accurately detect influenza related tweets, which proves that it is feasible to implement.
However, this would require a much larger dataset, which also would require manually
annotating it, which would take too long. Additionally, the implementation itself can be
improved. Lamb, Paul and Dredze states that n-gram feature sets are insufficient, because
of common vocabularies in the classes [12, p. 790]. They solved this by expanding the fea-
ture sets to include different grammatical properties, which was proven effective by their
results. By doing this, one can increase the gap between the classes, which should increase
the overall accuracy of the classifier greatly. Our implementation included unigrams and
bigrams as features, but in order to increase the efficiency of the classifier, we could also
include 3-gram features.

We implemented a Naive Bayes and a Maximum Entropy classifier which are simple to
implement and are easily available as Python libraries. Aramaki, Maskawa, and Morita
showed that Support Vector Machine is effective at classifying tweets, both in terms of
accuracy and training time [11]. The software developed by Thapen, Simmie, Hankin, and
Gillard [13] also proves that machine learning is a helpful tool when determining whether
or not a tweet is influenza related. Thus, implementing an SVM-based classifier might
produce more accurate and reliable results.

Implementing a machine learning module in the system was not part of the original scope,
and were therefore not prioritized. After the initial attempts, we therefore decided to focus
on other aspects of the system and use the Twitter data obtained from Flutrack’s API
instead.
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Conclusion and future work

This chapter will conclude the thesis, and describe further work needed to improve the
system.

6.1 Conclusion
The goal of this research has been to create an open-source system which can monitor
influenza activity in a specific city, model the pandemic spread by air travel throughout
the world, and visualize this in a simple manner. To do this, we have implemented and
hosted a public Django REST-API based on a mathematical model created by Rvachev
and Longini[1], which uses Twitter data and air travel data to detect a possible epidemic
origin and model the spread of the epidemic. The system also consists of a visualized
representation of the potential spread, which is deployed and live. The research questions
with their respective conclusion can be found below.

RQ1: How can we use real-time Twitter data to monitor influenza activity?

Conclusion: The REST-API is able to gather tweets 60 days from the past from
api.flutrack.org, which provides the opportunity to look at changes in the amount of geolo-
cated tweets related to influenza. This allows us to be able to detect a possible epidemic
whenever there is an unusual change in the amount of influenza related tweets in a specific
city. However, this approach is not completely accurate, and there is no way for the sys-
tem to know for sure if there is an influenza epidemic anywhere. It does provide a decent
estimate, though, as deciding when there is an epidemic is officially done by monitoring
influenza incidents in a certain area. Thus, our attempt at detecting an influenza epidemic
is comparable to current detection methods, although one would have to view the detection
with some healthy scepticism. The implementation therefore answers RQ1 with the fact
that monitoring influenza can be done through the analysis of Twitter data, which is also
proven by several others [9, 10, 11, 12, 13] as presented in chapter 2.
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RQ2: Is it possible to predict the spread of an influenza pandemic through air travel?

Conclusion: Our implementation of the model have been able to reproduce the broad
patterns of the results of both Rvachev and Longini [1], and Grais, Ellis, and Glass [16]
with high correlation. The implementation assumes an ongoing epidemic in a certain city
as detected by the system, and calculates the global spread through available air travel data.

The model is able to predict the broad patterns of the geographical spread of influenza. It
does, however, base this prediction on the underlying assumption that any influenza out-
break has the same epidemiological properties as the 1968 Hong Kong influenza virus.
Having a reliable source for an epidemic outbreak, together with accurate air traffic data,
the system will be able to predict the broad patterns of geographical spread.

We have also found that the air travel data can be replaced with other types of travel data,
and achieve similar results, as stated by [17]. We conclude that predicting spread is possi-
ble under certain conditions and assumptions, and that further work is required for a more
reliable prediction.

Our system should be viewed as a starting point for developing autonomous influenza
forecasting systems. It can be considered a basis for building reliable such systems in
the future. The open-source paradigm allows for our work to be studied, contributed to,
and improved by others. We present the future work that should be prioritized by the
open-source community in the following section.

6.2 Future work

The architecture of the system, and the nature of the open-source ideology, makes contri-
butions almost necessary in order for it to function as it should. The system built during
this thesis is not perfect, and we encourage researchers, developers or other students to
build upon this system and improve it little by little. Appendix B contains a reproducibil-
ity document, which is made for others to be able to download and install the system
locally. This document is also available as the ReadMe on our GitHub.

The system needs reliable data sources, and currently there are some shortcomings with
the data. Especially the travel data is lacking, as the source we have used only contains
passengers from and to at least one American airport. Additionally, the data should be up-
dated automatically daily through a scheduled task, instead of having to be done manually.

The machine learning module was not prioritized in this thesis, but could be a great addi-
tion to the system. Implementing a working classifier with high accuracy could increase
the amount of influenza related tweets, and help us to monitor influenza epidemics more
efficiently. The machine learning module in the system can be viewed as a starting point
for this implementation.
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Finding a reliable way of autonomously detecting an influenza epidemic based on inci-
dence reports is crucial for the prediction to work properly. In [33] Diaz-Aviles, Stewart,
Velasco, Denecke, and Nejdl show that their system is able to use Twitter messages to
identify an epidemic outbreak of EHEC in Germany in May of 2011 earlier than any then
current methods of detection. Their work proves that epidemic detection from Twitter is
not only possible, but can also be an effective method of detection.

The modularity and extensibility of the system allows for other types of travel to be in-
cluded in the prediction module. Others have had success with this exact model and train
travel data for example [17], and it is likely that the model can work with other types of
travel as well. This means that the system could be expanded with different kinds of travel
data, which could generally increase the overall accuracy of the system.

Taking advantage of the extensibility of the system, other cities should be added to the
prediction model. ”In order to make the forecast more realistic, it is necessary to expand
the number of cities modeled from 52 to at least 152.” [1, p. 20]. Rvachev and Longini
explains that the model needs to be implemented with more cities for it to be more realistic,
and more research needs to be done to determine which cities might be optimal additions
to the model.
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Appendix

A Experimental results

A.1 1968-1969 Hong Kong influenza

The results from Rvachev & Longini are presented below. Figure 6.1 and Figure 6.2
Presents the whole inlfuenza forecast as a set of computed daily morbidity counts.

Figure A.1: The original results attained by Rvachev & Longini [1]. The table represent a 4-day
forecasted incidence b(t) per 100 000 inhabitant. • indicate b(t) < 10, - indicate 10 ≤ b(t) < 100
and + indicate b(t) ≥ 100. The lines represent actual reported influenza activity.
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Figure A.2: The second half of the original results from Rvachev & Longini. [1].

Figure A.3: Results from our system. Green dots represents an 4-day incidence of b(t) < 10,
yellow dots represents 10 ≤ b(t) < 100, and red dots represents b(t) ≥ 100.
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Figure A.4: The second half of our system’s forecast.

Figure A.5: Our results superimposed on the results of Rvachev & Longini to highlight the correla-
tion.
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Figure A.6: Notable lack of correlation between our results and Rvachev & Longini’s results for the
four cities located in Oceania.
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Air traffic volumes

Figure A.7: The original transportation matrix reproduced from Rvachev & Longini’s work [1].
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Figure A.8: The transportation matrix used in the work of Grais et al. [16]

64



Results from Grais et al.

Figure A.9: The temporal progression of the forecast of Grais et al. using air traffic volumes from
1968 [16].
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Figure A.10: The average 4-day incidence of Grais et al’s forecast using air traffic volumes from
1968 [16].
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Figure A.11: The average 4-day incidence of our forecast using air traffic volumes from 1968.
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B ReadMe (reproducibility doc)
This appendix can also be found on our GitHub at https://github.com/almyy/
flutrack_backend.

B.1 Flutrack backend

This system is a part of a master’s thesis at NTNU, done by Martin Almvik and Mikael
Rino Solstad. The thesis was delivered 6th of June, 2016.

B.2 Purpose

The goal is to create an open-source web application (angularJS frontend and Django back-
end), available for everyone, that will predict where and when the flu will spread through
air traffic, and visualize this over a time period. It uses tweets gathered from Flutrack.org
for detecting influenza incidences, which the prediction is built upon. Visit their project
on GitHub.

Furthermore, the system will use flight traffic data from BTS, and an algorithm to calculate
the risk of infection in cities connected via air traffic. The algorithm is created by Rvachev
and Longini in 1985, and our results correlates with the results they have found.

B.3 The API

The API is hosted at flutrack-backend.herokuapp.com, and has two publicly
available endpoints:

Endpoint Description
GET /tweets Returns the weekly influenza related tweet count used by

our system.
GET /prediction Returns a list of an entire pandemic forecast, where each

element represents one day in the forecast. Each day is
represented as a list of all the cities included in the fore-
cast with their respective morbidity and location.

B.4 Front-end

As a visualized interface to this API, we have created a simple single-page front-end. It’s
hosted at flutrack.almyy.xyz, and the open-source project can be found at GitHub.

B.5 Installation

The system is based on Python and Django, as well as some third party libraries. The steps
required to install and reproduce our results is listed below.
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Cloning the project

The main source of the system is this Git repository, and everyone is free to use this project
as sees fit. The project can be cloned or forked by the use of Git, using this commands:

git clone https://github.com/almyy/flutrack_backend.git

MongoDB

The system uses MongoDB as datastore, and in order to test the API locally, you need
MongoDB, which can be downloaded from here.

Python and pip

We have used Python 3.5.1, but should work on all installations over version 3.0. Install
Python from here. This download also includes pip, which we will use to install third party
libraries.

After you have downloaded Python and the project, you can navigate into the project
directory, and install the following required libraries using pip:

pip install django djangorestframework tweepy requests pymongo
xlrd

Django and Django Rest Framework are used to setup the API, Tweepy is used for utilizing
the Twitter API, Requests makes it easier to make HTTP requests, Pymongo is used to
communicate with our MongoDB instance, and xlrd is used to read .xls-files.

B.6 API keys
The system is dependent on external geocoding, and it is therefore necessary for you to
get an API key for the Google Geocoding API. This can be obtained here. The key must
be added as an environmental variable named ’GEOLOCATION KEY’.

B.7 Running the API
Now that you have everything installed, you should be able to run a local instance of the
API. First you need to populate the database, so that it has some data to base the prediction
on. We first run the setup.py script, which sets some necessary environment variables. If
you ever want to deploy the API to a production server, the SECRET KEY variable should
be changed and hidden. In the project root folder, run the following command:

python setup.py

Then we can run populateDB.py:

python flutrack_backend/populateDB.py
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This step may take a while. If you get import errors, you might have to add the project
folder to the PYTHONPATH environment variable manually. This will populate the database
with the required cities, airports, as well as some updated tweets from the Flutrack API.
When the database is populated and the secret key is set, the API is ready to be run. You
can run the following command to start the API locally:

python manage.py runserver

This hosts the API locally on localhost:8000, and can be browsed using e.g. Postman.
When running locally, the API also serves a browsable version through browsers, so you
can visit the API in any browser.

Example request: GET localhost:8000/prediction
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