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Problem formulation

(In Norwegian)
Et treghetsnavigasjonssystem (tns) er basert på å integrere opp akselerasjons-

og vinkelakselerasjonsmålinger fra akselerometre og gyroer for å bestemme po-
sisjon og orientering for en plattform. Et slikt system vil alltid ha en avdrift i
posisjon og orientering på grunn målefeil i sensorene. Uavhengig av kvaliteten
på sensorene, vil det derfor før eller siden være behov for støttemålinger fra ek-
sterne sensorer. En mulighet er å bruke en bildestrøm fra et optisk kamera som
en støtte for treghetsnavigasjonssystemet.

Prinsippet bak bildenavigasjon er å følge et sett med gjenkjennelige bilde-
merker fra bilde til bilde i en videostrøm. Bildemerkene er avbildninger av lan-
demerker i scenen. Et grunnproblem innenfor bildenavigasjon er å bestemme
skalaen for scenen, det vil si størrelsen på objektene kameraet avbilder og hvor
langt plattformen har beveget seg i scenen. Dersom man integrerer bildenav-
igasjon med treghetsnavigasjon, vil denne skalaen bli observerbar. Et relatert
problem er å bestemme avstanden til de observerte bildepunktene . Målet for
oppgaven er å studere disse problemene gjennom simuleringer. Oppgaven tar ut-
gangspunkt i banegenerator og simulator utviklet i foregående fordypningspros-
jekt.
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Naturlige arbeidspunkter for oppgaven blir:

• Lage et Kalman�lter for et forenklet treghetsnavigasjonssystem støttet av
posisjonsmålinger (gps) og bildepunkter fra kameramålinger basert på ar-
beid gjort i fordypningsprosjekt

• Lage en simulator for problemet som gjør det mulig å teste ut ytelsen til
systemet i ulike scenarioer, særlig med tanke på avstandsestimering og
skala for scenen

• Bruke simulatoren og estimatoren til å bestemme ytelsen i systemet i ulike
scenarier og med ulike sensorkvaliteter , f.eks. ulike klasser av treghetssen-
sorer, gps med og uten fasemålinger osv.

• Dersom tiden tillater det, kan det også bli aktuelt å teste ut resultatene på
ekte data på et datasett innsamlet av Forsvarets forskningsinstitutt (ffi).
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Co-supervisor: Kjetil Bergh Ånonsen, Dept. of Eng. Cybernetics, ntnu



Abstract

Camera measurements can be used to replace or supplement gps measurements
for aiding inertial navigation systems. This is especially useful in cases where
gps is unavailable or unreliable, whether it is because the signals are blocked by
the environment or intentionally corrupted. In this thesis a system is developed
for aiding inertial navigation by a simple vision system consisting of a single
camera, and computer simulations are done to test its performance. The system
is represented as a state space model which is used in an extended Kalman �lter
to estimate the navigation states.

The system model is created by relating the acceleration and angular velocity
to the rate of change of the orientation, velocity and position of a vehicle and to
the relative position of a stationary landmark, which is represented by a pinhole
camera projection. Noise values used for simulating inertial sensor noise are cal-
culated based on speci�cations obtained from a user manual. The state space
model is based on considering the inertial measurements as control inputs, di-
rectly a�ecting the states, whle the camera and gps measurements are outputs
of the system. An extended Kalman �lter is then implemented, which uses mea-
sured inputs and outputs to estimate the state based on a linearized model.

Simulations are done which show that the system works as intended and
is able to restrain the drift in position from the inertial navigation. Monte Carlo
simulations show that the best results are achieved when the vehicle swings from
side to side as it approaches the landmark, however the �lter has problems esti-
mating the standard deviations correctly. Suggested further work includes using
more landmarks and replacing the extended Kalman �lter with an unscented �l-
ter.
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1 Introduction

An inertial navigation platform, consisting of a gyroscope and an accelerome-
ter, can be used to calculate the position and orientation of a body with respect
to an inertial frame of reference, as long as the body is subject to acceleration
and angular velocities, and the initial placement is known. However, since the
values are obtained by integrating the measurements, the calculated trajectory
will diverge quickly from the true value as small errors are accumulated in the
integration. In order to rectify this, inertial navigation systems are usually aided
by additional sensors.

Direct position updates from satellite navigation systems like gps are com-
monly used. These systems give good performance when the satellite signals are
available, but there are many situations in which this is not the case. Examples of
situations where satellite navigation is not available are indoor, underground or
underwater applications, as well as extra-terrestrial navigation. In military sit-
uations the satellite signals may also be jammed or spoofed, making alternative
means of determining position necessary.

One alternative method for determining position is through computer vision,
where the software picks out certain features in an image and tracks the same
feature over several images. The movement of the image features is used to
determine the placement of the vehicle. In this thesis, an e�ort is made to study
the e�ects of di�erent factors on the performance of a simpli�ed camera aided
inertial navigation system via computer simulations. The navigation system that
is developed uses a single camera as the aiding sensor for the ins by tracking one
or more stationary landmarks.

The central problem, in this case, is to create a good model of the navigation
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2 Chapter 1. Introduction

system that takes all the measurements into account and to use this model to im-
plement an estimation algorithm that gives as good an estimate of the placement
of the body as possible using data from the sensors and information about their
uncertainties. In order to use common techniques for estimation, it is necessary
to create a state-space model of the system. Important states in the system are
the position and orientation, as well as disturbances and those noise terms that
can not be modeled as simple white noise.

1.1 Related work
Huster [1] has shown a strategy for determining the relative position of a moving
observer relative to a stationary object, using inertial sensors and single camera
measurements of a single feature. This is achieved using an unscented Kalman
�lter. The �lter uses information about the force-input that causes the acceler-
ation, in addition to the measurements, and also contains a disturbance model
based on the speci�c application as a navigation system for an underwater vehi-
cle.

In [2] an algorithm is presented where a single camera is used to constrain
drift in inertial navigation by estimating both the image points and the vehi-
cle position. The algorithm was able to handle environments of arbitrary scale.
In [3] a di�erent kind of parametrization for image features is presented where
each feature is related to where it was �rst observed, and it includes discussion
about how to initialize features when the range is unknown. In [4] it is shown
analytically that the vehicle speed, feature position, roll and pitch angles, and
inertial biases are observable when using camera aided inertial navigation, even
when only one feature is used.

1.2 Thesis structure
The thesis is organized into 7 chapters. Chapter 2 contains a descrWiption of the
mathematical models of the sensors and their relation to the physical environ-
ment. Chapter 3 presents the general estimation concepts as a simple example
before introducing the model and the calculations used for estimation. Chap-
ter 4 contains desriptions of the di�erent tests that were done of the simulated
system. Chapter 5 contains the results of the tests. Chapter 6 contains some in-
terpretations of the results and discussion based on those, and chapter 7 provides
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conclusions along with some suggestions for further work.
Additionally three appendices are included. In appendix A some mathemat-

ical background is presented, concerning the description of random signals and
processes. Appendix B contains the mathematical descriptions of the trajectories
from the trajectory generator that is used for the simulations. The main part of
the Matlab code used for the simulations is included in appendix C.
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2 System model

This chapter presents mathematical models relating the physical attributes of the
vehicle and the environment to the otputs of the sensors used for navigation.

2.1 Inertial sensor model
For the accelerometer, the total error is modelled as the sum of a zero mean
white noise term n, and a bias term b which is initialized based on a Gaussian
distribution and held constant over the simulation. For the gyroscope, a white
noise term and a bias term is used in addition to a �rst order Markov process (see
appendix A), which will be termed bias instability. The measurements, from the
accelerometer and the gyroscope respectively, can then be written as

f̃a = fa + ba − na, (2.1)
ω̃ = ω + bg + µg − ng, (2.2)

where fa and ω are the actual speci�c force and angular velocity, and na and
ng are white noise terms. The subscript a is used on the speci�c force vector fa
to distinguish it from the state derivative function f(x) that is introduced later.
The Gaussian noise terms have negative signs here for consistency, as this gives
positive signs in the state space model. As the noise has zero mean, the signs
have no practical relevance.

The bias terms are constant, so their di�erential equations are

ḃa = 0, (2.3)
ḃω = 0, (2.4)

5



6 Chapter 2. System model

Figure 2.1: Projection of a point in 3d space onto the image plane

and the bias instability of the gyroscope is de�ned by

µ̇g = − 1

T
µg + nµ (2.5)

where nµ is a white noise driving term for the Markov process and T is the time
constant. It has been shown in [5] that a �rst order Markov process like this can
be a good model for the bias instability.

2.2 Camera model
The camera is modeled using a simple pinhole model, with uncertainties and
noise modeled as simple white noise. The camera measurements consist of point
coordinates in a two-dimensional image, corresponding to points on landmarks
in the world. Figure 2.1 shows the geometric relation between a point P in space,
seen from the camera centered reference frame, and its projection p on the image
plane in a simple pinhole model.

To simplify the state equations, the image points will be represented by nor-
malized pinhole coordinates. This means that the focal length f , shown on �gure
2.1, is set equal to one, and the origin of the camera frame is assumed to be in the
same point as the body frame origin. Thus, the normalized pinhole coordinates
are related to the position of the landmark relative to the vehicle, seen from the
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Figure 2.2: Reference frames and position vectors used in the model

camera reference frame, by [
sx
sy

]
=

1

rcz

[
rcx
rcy

]
, (2.6)

where rc = [rcx, r
c
y, r

c
x]T is the position of the landmark relative to the camera as

shown on �gure 2.2, expressed in camera frame coordinates. The superscripts n,
b, and c are used to denote that the coordinates of a vector are given in terms of
the inertial frame, the body frame, or the camera frame, respectively.

The normalized coordinates are obtained from the image data by converting
the actual pixel coordinates. The pixel coordinates are

up = fxsx + cx, vp = fysy + cy, (2.7)

where fx and fy are the e�ective focal lengths for each dimension and (cx, cy) is
the pixel coordinate of the optical axis (the midpoint of the image). The e�ective
focal lengths are given by the ratio of the actual focal length to the pixel width
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w and height h:

fx[px] =
f [m]

h[m/px]
, fy[px] =

f [m]

w[m/px]
. (2.8)

The correct units for the e�ective focal lengths are pixels, as the normalized
coordinates are dimensionless.

It may also be noted from �gure 2.2 that the camera frame is assumed to be
centered at the same point as the body frame. This means that any e�ects caused
by the moment arm between the inertial sensors and the actual camera center
are neglected.
2.2.1 Field of view
A point with line of sight to the camera is within its �eld of view if the pixel co-
ordinates given by (2.7) are within the resolution of the image. That is, a camera
measurement of a landmark can be taken if

0 < fxsx + cx < resx and 0 < fysy + cy < resy. (2.9)

The �eld of view can also be given as a maximum angle in each direction
between the optical axis and the line of sight to the landmark. From �gure 2.1 it
can be seen that the angles are

θx = tan−1 sx, θy = tan−1 sy, (2.10)

and by rearranging (2.9), we get

θx,max = tan−1

(
resx − cx

fx

)
, (2.11)

θy,max = tan−1

(
resy − cx

fy

)
. (2.12)

2.3 Inertial navigation equations
A simpli�ed inertial navigation model is used, where the earth is viewed as �at
and non-rotating. This means that a navigation frame which is stationary with
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respect to the ground is also an inertial frame, that is a reference frame that is not
under acceleration. The basic kinamatic di�erential equations for the orientation,
position and velocity of the vehicle are [6]

Ṙ
n
b = Rn

bS(ωb), (2.13)
v̇n = Rn

b a
b, (2.14)

ṗn = vn, (2.15)

where Rn
b is the rotation matrix that transforms a vector from the body frame

to the inertial frame, S(ωb) is the skew symmetric matrix formed by the angular
velocityωb, vn is the vehicle velocity, and pn is its position, both given in inertial
frame coordinates. The relative position vector from the vehicle to the landmark
can be written as

r = pL − p, (2.16)

where pL is the position vector from the inertial frame origin to the landmark as
shown on �gure 2.2. Since the landmark is assumed to be stationary with respect
to the inertial frame, this gives

ṙn = −vn. (2.17)

It is desirable to express the orientation of the vehicle as a vector and not
a matrix. This is commonly done using Euler angles [6], often of the roll-pitch-

yaw variety, or using quaternions. For roll-pitch-yaw Euler angles, stored in the
vector

λ =

φθ
ψ

 =

 roll
pitch
yaw

 , (2.18)

the kinematic equation is
λ̇ = E(λ)Rn

bω
b, (2.19)

where

E(λ) =

 cosψ/ cos θ sinψ/ cos θ 0
− sinψ cosψ 0

sin θ cosψ/ cos θ sin θ sinψ/ cos θ 1

 , (2.20)
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as shown in [1]. The Euler anglesλ that correspond to the rotation matrix Rn
b (λ)

are de�ned as the angles of rotation about each axis that when performed suc-
cessively gives the rotation described by Rn

b . When using the roll-pitch-yaw
de�nition, the �rst rotation is the roll, about the x-axis , the next is the pitch

about the y-axis (now in the partially rotated reference frame), and the last angle
is the yaw about the z-axis [7]. This can be written on matrix form as

Rn
b (λ) = Rz(ψ)Ry(θ)Rx(φ) (2.21)

where Rx, Ry , and Rz are de�ned by

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , (2.22)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (2.23)

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 . (2.24)

The resulting matrix is

Rn
b (λ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 , (2.25)

where c and s stand for cosine and sine respectively.

2.4 GPS
Inertial navigation systems are commonly aided by use of gnss (global naviga-
tion satellite system). The most well known gnss is the American gps (Global
Positioning System). A gps receiver uses radio signals from several satellites (at
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least four) to calculate the distance to each satellite, which is then used to pin-
point the receiver location. The satellite signal contains data that can be used
to calculate satellite position and velocity, clock error, and satellite health. The
distance to a satellite is calculated using the signal transmission time, however,
this calculated value will be biased by errors particularly due to clock inaccu-
racy. Therefore, the calculated distance is called the pseudorange, to distinguish
it from the actual range. An estimate for the true range is found by subtracting
an estimate of the clock error from the pseudorange. [8]

To assess the performance of camera-based navigation working together with
gps measurements, this thesis will consider a loosely coupled approach, mean-
ing that the gps error states are not estimated in the �lter, but are assumed to
have been corrected beforehand. The simulated gps measurements are then rep-
resented by simple position updates with Gaussian noise added to represent in-
accuracy.

2.5 Noise values
The noise on the gyroscope and accelerometer measurements is described as a
sum of white noise and a constant bias term for both sensors, and an additional
bias �uctuation on the gyroscope, modeled as a 1st order Markov process. The
power spectral densities of the white noise processes (see appendix A) are ob-
tained from nominal values in the Xsens mti user manual [9].

The most relevant speci�cations are the noise density, which is related to the
white noise, the bias repeatability, which is interpreted as the standard deviation
of the bias, and the in-run bias stability for the gyroscope, which de�nes the
white noise driving term of the bias �uctuations.

The units for the noise density is [°/s/
√

Hz] for the gyroscope and [µg/
√

Hz]
for the accelerometer. The bias stability of the gyroscope is given in [°/h].

The proper units for the noise terms are the same as the units of the measured
values, [rad s−1] and [m/s2], so the unit for the gyroscope bias �uctuation term
should be [rad/s2].

Power spectral density represents “power” per unit frequency interval, so
the units are [(rad/s)2/Hz], [(m/s2)2/Hz], [(rad/s2)2/Hz], [(m/s3)2/Hz]. The
psd of the white noise terms have the same dimensions as the square of the noise
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densities. Converting the units gives

Sg =

(
2π

360°Dg

)2

, (2.26)

Sa =

(
1

g
m/s2 · 10−6Da

)2

, (2.27)

where Sg and Sa are the psd of the gyroscope white noise and the accelerometer
white noise respectively, and Da and Dg are the noise densities as given in the
user manual.

The in-run bias stability is interpreted as the steady-state value of the stan-
dard deviation of the Markov process, and is used to calculate the psd of the
driving noise nµ. The covariance of a random process described by the di�eren-
tial equation

ẋ(t) = Fx(t) + Gn(t), (2.28)

where n(t) is a white noise term, is described by the di�erential equation [10]

Ṗx(t) = FPx(t) + Px(t)FT + GQ̃GT , (2.29)

where Q̃ is the psd of n(t). For the bias stability, given by (2.5), this becomes

Ṗµ(t) = − 2

T
Pµ(t) + Q̃nµ, (2.30)

where T is the time constant. The steady-state value Pµ,s is found by setting
(2.30) equal to zero, which gives

Q̃nµ =
2

T
Pµ,s. (2.31)

Denoting the in-run bias stability value given in the user manual as σµ, we have

Pµ,s =

(
2π

360° ·
1

3600

)2

σ2
µ

σ2
µ

σ2
µ

 . (2.32)

The time constant is chosen as T = 100 [s].
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The noise is simulated as a discrete-time sequence. The relation between the
spectral densities of the continuous-time signal and the covariances of the noise
samples is found by looking at the e�ect of integrating the noise. One sample of
simulated noise is represented by

νsim,k =

∫ tk+1

tk

n(τ) dτ, (2.33)

where n(t) is the continuous time white noise vector. The covariance of the
discrete-time simulated noise samples is

Qsim = E[νsim,kν
T
sim,k] =

∫ tk+1

tk

Q̃ dτ = (∆t)Q̃, (2.34)

where the power spectral density matrix is

Q̃ =

Q̃a

Q̃g

Q̃nµ

 (2.35)

and the diagonal terms are the psd matrices for the white noise of each sensor
and for the bias stability driving noise for the gyroscope. Assuming uncorrelated
noise with the same psd for each axis, we have

Q̃a =

Sa Sa
Sa

 (2.36)

for the accelerometer white noise psd, and similar for the other psd-matrices.
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3 State estimation

An estimator is developed for the system presented in the previous chapter. First
a simple example is presented in section 3.1 to illustrate the general concepts
used, and then the complete estimator model is presented in section 3.2.

3.1 Simple scalar example
Consider a point moving along a straight line. The goal is to accurately estimate
its position using an acceleration measurement as well as a position measure-
ment. Both measurements are modeled as the true value added with zero mean
Gaussian white noise. The position is related to the acceleration by the kinematic
equations

ṗ = v, (3.1)
v̇ = a. (3.2)

The acceleration measurement is modeled as

ã = a− na, (3.3)

so that the derivative of the velocity can be given in terms of the measurement
as

v̇ = ã+ na. (3.4)

The position measurement is modeled as

p̃k = p(k∆t) + np,k, (3.5)

where δt is the time interval between position measurements.

15



16 Chapter 3. State estimation

In this way, we get a state space model that can be written as

ẋ = Fx + Lu+ Gna, (3.6)
zk = Hxk + np,k (3.7)

where the state vector is x = [p v]T , u = ã is the acceleration measurement,
na is the process noise, zk = p̃k is the position measurement and np is the mea-
surement noise. The matrices are

F =

[
0 1
0 0

]
, L =

[
0
1

]
, G =

[
0
1

]
, H =

[
1 0

]
, (3.8)

and the noise terms are de�ned by their mean and autocorrelation (for continous-
time noise) or covariance (for discrete-time noise):

E[na] =0, E[na(t)na(t+ τ)] = qδ(τ) [m2/s3], (3.9)
E[np] =0, E[np,knp,l] = rδkl [m2], (3.10)

where δ(τ) is the Dirac delta function and δkl is the Kronecker delta.
This model is continuous, but we want to use a discrete-time �lter which can

be easily implemented, so we have to create an equivalent discrete-time model.
The matrices for the discrete-time model can be calculated from the exact solu-
tion to the system of di�erential equations, which is

x(t) = eFtx(0) +

∫ t

0
eF(t−τ)

(
Lu(τ) + Gna(τ)

)
dτ. (3.11)

However, the calculations can be very complicated, and most nonlinear systems
do not have a suitable closed form solution at all. Therefore, we will instead con-
sider methods for numerical integration, the simplest of which is Euler’s method.
Denoting the discrete-time model as

xk+1 = Φxk + Λuk + na,k, (3.12)
zk = Hxk + np,k, (3.13)
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the matrices derived from applying Euler’s method are

Φ = I + F∆t, Λ = L∆t. (3.14)

The discrete-time process noise na,k is described by its covariance matrix
Qd. This is derived from equation (3.11), which when compared to (3.12) yields

na,k =

∫ tk+1

tk

eF(tk+1−τ)Gna(τ) dτ. (3.15)

Taking the covariance of this expression we get

Qd = qΦGGTΦT

∫ tk+1

tk

dτ = qΦGGTΦT∆t. (3.16)

The optimal estimate of position and velocity is then calculated using the
Kalman �lter algorithm [10]:

x̄k = Φx̂k−1 + Λuk−1 (3.17)
P̄k = ΦP̂k−1Φ

T + Qd (3.18)

Kk = P̄kH
T
(
r + HP̄kH

T
)−1

(3.19)

x̂k = x̄k + Kk (zk −Hx̄k) (3.20)
P̂k = (I−KkHk) P̄k (3.21)

The �rst two lines form the prediction step, or time update, which is based on
the acceleration measurement and the previous estimate. The next step is the
computation of the Kalman gain, and the last two lines form the estimation step,
or measurement update, which incorporates the aiding position measurement
zk. The initial estimates x̂0 and P̂0 are chosen based on prior knowledge or
assumptions about the initial state:

x̂0 = E[x0], P̂0 = Cov(x0) (3.22)

In practice, the inertial measurements are often available at a much higher
rate than the aiding measurements. This can be accounted for by computing the
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time update at the rate of the inertial measurements, and only computing the
Kalman gain and measurement update when the aiding measurement is avail-
able. If the time between inertial measurements is ∆t1 and the time between
aiding measurements is ∆t2 = N∆t1, the estimate can be computed as shown
in algorithm 1, only performing the measurement update a times tk = k∆t1
where k is an integer multiple of N . It is assumed here that the �rst aiding mea-
surement is available at k = N .

Algorithm 1 Kalman �lter with update rate N times the measurement rate
{Time update}
x̄k = Φx̂k−1 + Λuk−1

P̄k = ΦP̂k−1Φ
T + Qd

if k mod N == 0 then
{Measurement update}
Kk = P̄kH

T
(
r + HP̄kH

T
)−1

x̂k = x̄k + Kk (zk −Hx̄k)
P̂k = (I−KkHk) P̄k

else
x̂k = x̄k
P̂k = P̄k

end if

3.2 Estimator model
The state space model that is used for the estimator consists of a simpli�ed ins
model as shown in section 2.3, using Euler angles to represent orientation, and
seeing the earth as �at and non-rotating. The non-Gaussian noise terms in the
sensor model are also modeled as separate states. This ins model is then aug-
mented with three scalar states for the relative position of each landmark. The
�rst two of these are normalized image coordinates, and the third is the inverse
range. This choice of states is taken from [11], where it is shown that it results
in comparatively good estimation properties. One particular advantage of repre-
senting the landmark position using the camera coordinates as states is that the
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measurement model becomes linear.
The total state vector is

xT = [pn,vn,λ,ba,bg,µg, s
1
x, s

1
y, ζ

1, ..., sNx , s
N
y , ζ

N ] (3.23)

where pn is the vehicle position in global frame coordinates, vn is the velocity
in global frame coordinates, λ is the orientation given as roll-pitch-yaw Euler
angles, ba and bg are constant bias terms on the accelerometer- and gyroscope
measurements,µg is the slowly varying part of the gyroscope noise, six and siy are
normalized image coordinates for landmark number i, ζi is the inverse feature
range, and N is the total number of landmarks that are tracked by the vision
system. For the rest of this thesis only one one single landmark will be used, but
it should be possible to include an arbitrary number simply by expanding the
state and measurement vectors as shown. The state dynamics are modeled as

ṗn = vn, (3.24)
v̇n = Rn

b (λ)f ba − g, (3.25)
λ̇ = E(λ)Rn

bω
b, (3.26)

ḃa = 0, (3.27)
ḃg = 0, (3.28)

µ̇g = − 1

T
µg + nµ, (3.29)

ṡx = −vcxζ + sxv
c
zζ + sxsyω

c
x − (1 + s2

x)ωcy + syω
c
z, (3.30)

ṡy = −vcyζ + syv
c
zζ + (1 + s2

x)ωcx − sxsyωcy − sxωcz, (3.31)
ζ̇ = vczζ

2 + ζsyω
c
x − ζsxωcy, (3.32)

where fa is the speci�c force acting on the vehicle, and ω is the angular velocity
vector. The equations for sx, sy , and ζ are taken directly from [11]. The speci�c
force and angular velocity are related to the inertial measurements by

fa = f̃a − ba + na, (3.33)
ω = ω̃ − bg − µg + ng, (3.34)
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where (̃·) denotes the measured value. nµ,na, and nω are white noise terms. The
matrix E(λ) in the derivative of the Euler angles is given in (2.20). The camera
frame velocity vc is computed from the global frame velocity using

vc = Rc
bR

b
nv

n (3.35)

where the orientation of the camera relative to the body, represented by Rc
b is

assumed to be known, and Rb
n is calculated from the euler angles λ. Similarly

for the camera frame angular velocity,

ωc = Rc
bω

b. (3.36)

For the rest of this thesis the camera frame is assumed to concide with the body
frame, that is Rc

b = I, so vc = vb, ωc = ωb

The states are predicted from the inertial measurement during the time-
update step of a Kalman �lter, and updated using camera- and position (gps)
measurements in the measurement-update step. This means that the inertial
measurements are used as inputs, giving the input vector

uT = [f̃a, ω̃
b], (3.37)

while the camera- and position measurements are modeled as outputs. The mea-
sured image coordinates are given in pixels, and are related to the normalized
image coordinates in the state vector by (2.7). In addition to position and camera
measurements, velocity measurements can also be used. This gives the output
vector

z = h(x) + nmeas =



fxs
1
x + cx

fys
1
y + cy
...

fxs
N
x + cx

fys
N
y + cy
pn

vn


+



nsx
nsy

...
nsx
nsx
np
vv


(3.38)

The size of the output vector changes depending on what measurements are
available at the time, and unavailable measurements are simply removed from
the vector.
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The complete model can be written as

ẋ(t) = f
(
x(t),u(t),nsys(t)

)
, (3.39)

zk = h
(
x(tk)

)
+ nmeas,k, (3.40)

where the state transition function f
(
x(t),u(t),nsys(t)

)
is given by equations

(3.24 – 3.35).
An extended Kalman �lter is implemented by discretizing the state dynamics

using Euler’s method:

xk+1 = fd(xk) = xk + ∆tf(xk), (3.41)

and calculating the jacobian at each iteration using complex step di�erentiation.
For a scalar function of a single scalar variable, the complex step di�erentiation
is

df

dx0

≈
Im
(
f(xo + ih)

)
h

, (3.42)

where h is a small, real valued parameter, and Im(z) denotes the imaginary part
of a complex number z. In the Matlab implementation by [12], h is chosen to
be the �oating point relative accuracy times the number of states. For an n-
dimensional state vector, the algorithm for complex step di�erentiation is
for j = 1 to n do

x∗ =
[
x1 . . . xj + ih . . . xn

]T
∂ f
∂xj

= Im
(
f(x∗)

)
/h

end for
F =

[
∂ f
∂x1

. . . ∂ f
∂xn

]
To make the di�erent types of aiding measurements available at the deter-

mined rate and over the determined time intervals, the arrays of simulated mea-
surements are �lled with the value “NaN” (not a number) for all the time instances
where the measurement is not supposed to be available. The program then does
a check for “NaN” values for all the measurement arrays before each iteration of
the extended Kalman �lter and de�nes the measurement function h(x) and the
measurement covariance matrix R according to the correct number and types of
measurements avalable at that iteration.
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3.3 Error state model
In order to implement the extended Kalman �lter it is also necessary to �nd the
proper values for the state covariance matrix Qk that is passed to the �lter at
each iteration. One way to derive this matrix is to look at the error state model.
The error state vector δx is de�ned as the di�erence between the true state vector
x, and a nominal or mechanized state vector x̌ which is computed from the ins-
measurements f̃

b and ω̃b, that is

δx = x− x̌ (3.43)

The true state dynamics are de�ned by the true speci�c force f b and angular
velocity ωb.

The error equations are derived below. Note that the orientation is repre-
sented by rotation matrices and not Euler angles when deriving the error state
dynamics. The rotation error itself, however, is represented using error angles ε,
such that

Rn
b = Rn

b (ε)Ř
n
b , (3.44)

where
R(ε) = I + S(ε). (3.45)

The position error is
δṗn = δvn. (3.46)

The velocity error is

δv̇n = Rn
b f
b
a − Ř

n
b f̃
b
a

= (I + S(ε))Ř
n
b (f̃

b
a + δf ba)− Ř

n
b f̃
b
a

= Ř
n
b (f̃

b
a + δf ba) + S(ε)Ř

n
b (f̃

b
a + δf ba)− Ř

n
b f̃
b
a

= Ř
n
b δf

b
a + S(ε)Ř

n
b f̃
b
a + S(ε)Ř

n
b δf

b
a.

(3.47)

We want the equations to be linear in the error terms, so products of error terms
are ignored, giving

δv̇n = Ř
n
b δf

b
a − S(Ř

n
b f̃
b
a)ε (3.48)
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where the following property of skew symmetric matrices has been used:

S(a)b = a× b = −b× a = −S(b)a (3.49)

The error equation for the orientation is

ε̇ = Ř
n
b δω. (3.50)

The error equations for the �rst image coordinate is

δṡx =− vcxζ + sxv
c
zζ + sxsyω

c
x − (1 + s2

x)ωcy + syω
c
z

−
(
−v̌cxζ̌ + šxv̌

c
z ζ̌ + šxšyω̃

c
x − (1 + š2

x)ω̃cy + šyω̃
c
z

)
.

(3.51)

After replacing the true states with the sum of computed states and error states,
and removing products of error states, we have

δṡx =ζ̌δvcx + šxζ̌δv
c
z + (šxv̌

c
z − v̌cx)δζ + (v̌cz ζ̌ + šyω̃

c
x − 2šxω̃

c
y)δsx

+ (šx + ω̃cz)δsy + šxšyδω
c
x − (1 + š2

x)δωcy + šyδω
c
z.

(3.52)

Similarly for the second image coordinate,

δṡy =ζ̌δvcy + šy ζ̌δv
c
z + (šyv̌

c
z − v̌cy)δζ + (v̌cz ζ̌ − šxω̃cy + 2šyω̃

c
x)δsy

+ (šy + ω̃cz)δsx + (1 + š2
y)δω

c
x − šy šxδωcy − šxδωcz,

(3.53)

and the inverse range,

δζ̇ =ζ̌2δvcz + (2ζ̌ v̌cz + šyω̃
c
x − šxωcy)δζ

− ζ̌ω̃cyδsx + ζ̌ω̃cxδsy + ζ̌ šyδω
c
x − ζ̌ šxδωcy.

(3.54)

The error equations can be used to �nd a linear approximation to the in�u-
ence of the inertial sensor noise on the states, which will give the values for the
state covariance matrix in the Kalman �lter. Using the error model

δω = bg + µg + ng, δfa = ba + na (3.55)
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as presented in section 2.1, and augmenting the error state vector with the sensor
bias states, we have

δẋ = Fδx + Gnsys. (3.56)

where
nTsys = [na,ng,nµ]. (3.57)

The system matrix is given by

F =

[
Fins

Fcam

]
(3.58)

where

Fins =



0 I 0 0 0 0

0 0 −S(Ř
n
b f̃a) 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − 1

T I 0


(3.59)

The noise matrix is given by

G =


Gins

Gcam,1
...

Gcam,N

 (3.60)

where N is the number of image features,

Gins =



0 0 0

Ř
n
b 0 0

0 Ř
n
b 0

0 0 0
0 0 0
0 0 I


, (3.61)
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and

Gcam =

0 šxšy −(1 + š2
x) šy 0

0 (1 + š2
y) −šy šx −šx 0

0 ζ̌ šy −ζ̌ šx 0 0

 . (3.62)

The general solution to (3.56) is [13]

δẋ(t) = Φ(t, t0)δx(t0) +

∫ t

t0

Φ(t, τ)G(τ)nsys(τ) dτ, (3.63)

where Φ(t, t0) is the state transition matrix from t0 to t such that

Φ̇(t, t0) = F(t)Φ(t, t0), Φ(t0, t0) = I. (3.64)

The solution is used to derive an equivalent discrete-time error model of the form

δxk+1 = Φkδxk + νsys,k, (3.65)

where νsys,k denotes discrete-time noise which has an equivalent e�ect on the
discrete-time state as the nsys has on the continuous-time state. Comparing
(3.63) and (3.65), we have

Φk = Φ(tk+1, tk), (3.66)

νsys,k =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)nsys(τ) dτ. (3.67)

The noise vector νsys,k has samples from a Gaussian distribution with zero mean,
and covariance

Qk = E[νsys,kν
T
sys,k] =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)Q̌(τ)GT (τ)ΦT (tk+1, τ) dτ,

(3.68)
where Q̌(t) is the power spectral density (psd) of the noise vector nsys(t) in the
continuous-time model:

E[nsys(t)nsys(τ)] = Q̌(t)δ(t− τ) (3.69)



26 Chapter 3. State estimation

where δ(·) is the Dirac delta function. The solution to (3.68) can be approximated
by assuming F(t) to be constant from tk to tk+1. This gives

Φ(tk+1, tk) = e∆tF(tk), (3.70)

and
Φ(tk+1, τ) = e(tk+1−τ)F(tk). (3.71)

We also assume G(t) and Q̌ to be constant over the interval, and get

Qk =

∫ tk+1

tk

e(tk+1−τ)F(tk)G(tk)Q̌(tk)G
T (tk)

(
e(tk+1−τ)F(tk)

)T
dτ

=

∫ ∆t

0
eθF(tk)G(tk)Q̌(tk)G

T (tk)
(
eθF(tk)

)T
dθ,

(3.72)

where the substitution θ = tk+1−τ is used to simplify the integral. This integral
can be computed using a method developed by [14], which is based on taking the
matrix exponential of a block triangular matrix and combining the sub-matrices
of the resulting matrix to get the solution to the integral. Here we use the matrix

A =

[
−F(tk) G(tk)Q̌(tk)G

T (tk)

0 FT (tk)

]
, (3.73)

where

e∆tA = B(∆t)

[
B11(∆t) B12(∆t)

0 B22(∆t)

]
, (3.74)

and
Qk = BT

22(∆t)B12(∆t). (3.75)

A simpler, but less accurate, approximation to Qk can be computed numeri-
cally from the di�erential equation

Q̇
∗
(t, tk) = F(t)Q∗(t, tk) + Q∗(t, tk)F

T (t) + G(t)Q̌(t)GT (t), (3.76)

de�ned for t ∈ [tk, tk+1], with the initial condition Q∗(tk, tk) = 0, and

Qk = Q∗(tk+1, tk). (3.77)
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A �rst order approximation to Qk, using Euler’s method, is then

Qk ≈ Q∗(tk, tk) + (∆t)Q̇
∗
(tk, tk)

= (∆t)G(tk)Q̌(tk)G
T (tk)

(3.78)

This approximation can be used as long as the sample period ∆t is short com-
pared to the rate of change of the system states and parameters. [13]

3.4 State initialization
3.4.1 Position
The position is assumed to be given in relation to some known location in the
inertial frame, and can either be initialized by gps measurements or entered man-
ually. If the initial position is obtained from the gps, the corresponding initial
covariance is the same as the measurement covariance of the gps.
3.4.2 velocity and orientation
The initial estimates of the velocity and orientation of the vehicle and their co-
variances depend on how well these states are assumed to be known. For the tests
that are used here, the velocity and orientation are assumed to be well known
and the estimated and actual initial covariances are low.
3.4.3 Landmark
For many practical purposes, the position of the landmark is completely un-
known before it is observed by the camera. A way of initializing the feature
after a sinlge observation is presented in [3]. At the �rst observation of a new
feature, the estimator state vector is augmented with the states encoding the po-
sition of the new feature. The initial bearing estimates are taken directly from
the measurements, while the inverse depth is initialized based on the fact that
the feature has to be in front of the camera. This is done by choosing an initial
value and standard deviation such that a 95 % con�dence interval spans a range
from close to the camera up to in�nity. Emphasis is placed on the importance
of including in�nity in the con�dence interval, even though this may cause the
estimated inverse range to become negative. This allows for the utilization of
points at in�nity, such as stars, to estimate orientation.
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The values chosen in [3] is 0.1 for the initial inverse depth estimate, and
0.5 for the initial standard deviation. It should be noted that [3] de�nes inverse
depth as the inverse of the length of the vector from the camera to the feature.
This di�ers from the de�nition used in this thesis, which is the inverse of the
z-coordinate of the vector in the camera frame, when z is chosen as the optical
axis. This de�nition is the one used by [11] and [2].



4 Description of tests

The estimator was tested using values obtained from the trajectory generator
software developed in [15]. This software takes a list of trajectory segments and
generates the proper values for position, velocity and orientation given in the
global reference frame, and the acceleration and angular velocity given in the
body frame of reference.

Following is a description of the di�erent simulations done to test the per-
formance of the system. The results from the tests are presented in chapter 5.

4.1 Model veri�cation and numeric accuracy
The model is veri�ed by computing the state over the simulation interval, using
(3.41) with the true speci�c force and angular velocity as inputs, no added noise
and complete knowledge about the initial state. The trajectory that is used here
is de�ned as follows:

• Stand still for 10 seconds
• Accelerate to 5 m/s over 50 meters
• Decelerate back to 0 m/s over 50 meters
• Stand still for 10 seconds

The vehicle moves in a straight line along the x-axis of the body frame, which is
always aligned with the inertial frame as there are no rotations in this trajectory.
The position, velocity and acceleration over time is shown on �gure 4.1.

4.2 Kalman �lter assessment
The performance of the Kalman �lter is assessed using the same trajectory as in
the previous section. For this test gaussian noise is added to the inertial mea-

29
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Figure 4.1: Position, velocity and acceleration of vehicle along the test trajec-
tory used for model veri�cation. All movement happens along the x-axis in the
inertial frame.



4.2 Kalman filter assessment 31

surements and the aiding measurements. Additionally, the initial state estimate
is drawn from a normal distribution to simulate uncertainty about the true state.
The covariance of the initial state estimate is

P0 =



σ2
p0I

σ2
v0I

σ2
λ0I

σ2
ba0I

σ2
bω0I

σ2
µ0I

σ2
cam0I

σ2
ζ0


, (4.1)

where

σp0 = 2, (4.2)
σv0 = 0.01, (4.3)
σλ0 = 1× 10−3, (4.4)
σba0 = 0.03, (4.5)
σbω0 = 0.2, (4.6)
σµ0 = 1.745× 10−6, (4.7)

σcam0 = 0.01, (4.8)
σζ0 = 0.5. (4.9)

The position, velocity, orientation and camera coordinates are drawn from the
normal distribution, using the true values as the mean. The inertial measurement
error states on the other hand are set to zero in the initial estimate, because for
these states it is the true values that are randomized. The inverse depth state
is also set to a �xed value of 0.1 each time, with a large initial covariance to
simulate a lack of knowledge about its true value, as discussed in section 3.4.3.
The standard deviations for position, velocity, and camera coordinates are the
same as those used to produce the simulated measurements. The same is true for
the ins error states, where σµ0 was calculated using (2.34).
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For this test the inertial measurements are given at a rate of 50 Hz, while
camera measurements are given at 1 Hz. Additionally position (gps) and veloc-
ity measurements are available at 1 Hz for the �rst 10 seconds when the vehicle
is standing still. The velocity measurements were added together with the po-
sition measurements to get a better calibration of the inertial biases before the
vehicle starts moving. This is justi�ed by the assumption that the vehicle can be
forced to stand still in the beginning so that zero velocity can be assumed with
reasonable accuracy during that time. The standard deviation for the noise added
to the simulated velocity measurements was set equal to σv0, which is chose as
1 cm/s. The camera �eld of view is set to 140 degrees, which is too large to be
a realistic value, but is useful in the simulations to study the e�ects of camera
measurements without implementing camera rotations and/or additional land-
marks. The landmark is positioned at (40, 5, 20), and is visible to the camera at
the start of the trajectory.

4.3 Comparison of di�erent trajectories

Monte Carlo simulations are performed for four di�erent trajectories to study
their e�ects on the accuracy of the estimates. The trajectories that are tested are
one with constant velocity past the landmark, one with acceleration and decel-
eration, one with several stops on the way past, and one with a swaying motion
consisting of several turns from side to side.

Monte Carlo simulations consist of running many simulations of a system
with random elements and taking the average of the results. For dynamic sys-
tems we are interested in looking at the average estimation error and the av-
erage estimated standard deviations. The initial state and the noise values are
re-generated for each simulation. This allows us to isolate the e�ects on the esti-
mator performance that are consistent over di�erent possible realizations of the
random variables. It also allows us to compare the estimated standard deviation
to the actual standard deviation over all the simulated errors. The mean estima-
tion error m(ek), mean standard deviation estimate σ̂k, and the actual standard
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deviation σk are computed by

m(ek) =
1

N

N∑
i=1

eik, (4.10)

σ̂k =
1

N

N∑
i=1

σ̂ik, (4.11)

σk =

√√√√ 1

N − 1

N∑
i=1

(
eik −m(eik)

)
, (4.12)

eik = xik − x̂ik, (4.13)

where xik is the true state at time step k and simulation run number i, x̂ik is the
estimated state, and N is the total number of runs. The simulations were done
with N = 100.

All the trajectories start by standing still for 10 seconds while gps and veloc-
ity measurements are available like in the previous test, after which the camera
measurements are the only measurements available to aid the ins. The landmark
is placed at (70, 5, 20), which is a bit further away in the x-direction than in the
previous test. This causes the landmark to not be visible to the camera until the
vehicle reaches a distance along the x-axis determined by

pnx = pnL,x − pnL,z tan
θfov

2
, (4.14)

where pnL,i is the i-component of the landmark position vector in the inertial
frame of reference and θfov is the angle determining the �eld of view of the
camera. The values used here gives pnx ≈ 46 m. The landmark drops out of view
again at pnx ≈ 94 m.

Since the landmark is not visible at t = 0, the normalized pinhole coordi-
nates can not be assumed known in the initial estimate as it was in the previous
test. Instead, the initial value is set to zero for both coordinates, with a standard
deviation of 2, which represents a very large uncertainty.
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Figure 4.2: The four di�erent position trajectories used for Monte Carlo simula-
tions
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4.3.1 Constant velocity
For this test the vehicle is accelerated to 2 m/s over 5 meters, which is before
the landmark becomes visible, and after that moves in a straight line at constant
velocity. The trajectory is build from the following segments:

• Stand still for 10 seconds
• Accelerate to 2 m/s over 5 meters
• Move at a constant velocity for 70 seconds (140 meters)

The landmark is visible between t = 21 s and t = 74 s.
4.3.2 Acceleration
The vehicle is accelerated slowly up to 5 m/s before it slows back down to zero.
The list that de�nes this trajectory is as follows:

• Stand still for 10 seconds
• Accelerate to 5 m/s over 70 meters
• Decelerate back to 0 m/s over 70 meters
• Stand still for 10 seconds

The landmark is visible between t = 26 s and t = 50 s.
4.3.3 Stops along the way
This trajectory consists of sveral accelerations and decelerations with stops along
the way, as de�ned by the following list:

• Stand still for 10 seconds
• Accelerate to 2 m/s over 5 meters
• Move at a constant velocity for 10 seconds
• Decelerate to 0 m/s over 5 meters
• stand still for 5 seconds
• Accelerate to 2 m/s over 5 meters
• Move at a constant velocity for 10 seconds
• Decelerate to 0 m/s over 5 meters
• stand still for 5 seconds
• Accelerate to 2 m/s over 5 meters
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• Move at a constant velocity for 10 seconds
• Decelerate to 0 m/s over 5 meters
• Stand still for 10 seconds

The landmark is visible between t = 21 s and t = 90 s.
4.3.4 Swaying motion
The last trajectory consists of several turns back and forth in the xy-plane, de-
�ned as follows:

• Stand still for 10 seconds
• Accelerate to 5 m/s over 5 meters
• Turn 45 degrees left
• Turn 90 degrees right
• Turn 90 degrees left
• Turn 90 degrees right
• Turn 90 degrees left
• Turn 90 degrees right
• Turn 90 degrees left
• Turn 45 degrees right
• Decelerate to 0 m/s over 5 meters
• Stand still for 10 seconds

The landmark is visible between t = 13 s and t = 45 s.

4.4 Higher inertial sensor inaccuracy
The test described in the previous sections are done using the “typical” values
for the mti 10-series in [9] as a basis for generating the inertial measurements
and the Kalman �lter system covariance matrix. An additional Monte Carlo sim-
ulation is done using the “max” values for the same series of sensors, in order
to study the e�ects of increased inaccuracy of the accelerometer and gyroscope.
The relevant values from [9] are shown in table 4.1. The trajectory used in this
test will be the one that gives the best results in the trajectory comparison tests.
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Table 4.1: Relevant performance speci�cations for the mti 10-series inertial sen-
sors

Typical Max
Bias repeatability (gyro) [°/h] 0.2 0.5
In-run bias stability (gyro) [°/h] 18 -
Noise density (gyro) [°/s/

√
Hz] 0.03 0.05

Bias repeatability (accel) [m/s2] 0.03 0.05

Noise density (accel) [µg/
√

Hz] 80 150
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5 Results

5.1 Model veri�cation and numeric accuracy

As �gure 5.1 shows, the numeric error reaches 0.1 m in the x-direction and is then
reduced back to 0. The increase in error happens during acceleration, while the
decrease happens during deceleration. The error is consistent with what should
be expected from numerical integration with Euler’s method, thus verifying that
the model is correct, at least for this type of trajectory.

5.2 Estimator assessment

Figure 5.2 shows that the �lter was able to estimate the position with relatively
good accuracy over the entire trajectory. The error in position stays below 5 me-
ters in each direction as shown on �gure 5.3, and the error in velocity stays below
0.5 m/s as shown on �gure 5.4. Figure 5.5 shows the error and standard deviation
in the normalized pinhole coordinates sx and sy , and the inverse depth ζ . The
inverse depth is estimated within 20 seconds, when it reaches a standard devia-
tion of around 2×10−3. Figure 5.6 shows that good estimates are aquired for the
gyroscope biases during the �rst 10 seconds when the vehicle is standing still,
although the z-axis bias estimate has a larger error than the bias on the other two
axes. The accelerometer bias on the z-axis is estimated very closely, while the
y- and x-axis bias estimates have larger standard deviation. All the plots show
estimation errors that seem to correspond well to the estimated standard devia-
tions. Comparing �gure 5.3 to �gure 5.7 shows that the camera measurements
were able to e�ectively constrain drift in the position estimates.
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Figure 5.1: Errors in states predicted from ins with known initial state and no
added noise.
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Figure 5.2: Estimated and actual trajectory shown in relation to the landmark
position.
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Figure 5.3: Error in estimated position shown with estimated standard deviation.
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Figure 5.4: Error in estimated velocity shown with estimated standard deviation.
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Figure 5.5: Error in estimated camera coordinates and inverse depth shown with
estimated standard deviation.
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Figure 5.6: Error in ins biases shown with estimated standard deviation.
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Figure 5.7: Position error when camera measurements are disabled.
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5.3 Comparison of di�erent trajectories
By looking at �gures 5.9, 5.11, 5.13 and 5.15, it seems that the estimated range to
the landmark converges quicker when the vehicle is moving with acceleration
than when it moves at constant velocity. Making stops along the way seems to
result in a worse performance than a single smooth acceleration. The quickest
convergence is seen for the swaying motion, with an error in the inverse depth of
less than 0.01 at the second camera measurement. The inverse depth error seems
to approach zero for all trajectories except for the constant velocity trajectory,
where there is a residual error of about 0.01.

Figures 5.8, 5.10, 5.12, and 5.14 show the results for position and velocity. The
swaying trajectory has the smallest mean errors when comparing all the trajec-
tories over the same time intervals. The standard deviation for the position and
velocity errors are diverging for all the trajectories, even where the estimated
standard deviation seems to have converged to a steady state. The actual stan-
dard deviation is also generally larger over the whole trajectory.

The fact that the estimated standard deviation is too small can be explained
by the fact that it is obtained through a linearization of a highly nonlinear model.
Linearization inevitably introduces errors, and these errors are not accounted for
by the values in the covariance matrices that are given to the Kalman Filter. It
could be possible to improve performance by increasing the assumed noise in the
�lter model for the states that are most a�ected by linearization errors, although
it might be better to implement an unscented Kalman �lter [16,17] and/or particle
�lter [18] to avoid the linearization altogether.

5.4 Higher inertial sensor inaccuracy
The test using less accurate inertial sensor speci�cations were done using the
swaying trajectory (see �gure 4.2), because this trajectory seemed to give the
best estimation results. When using the highter noise values, the results of 11 of
the 100 Monte Carlo runs had to be removed because of nonsensical values for
the inverse range. The results were removed when the absolute value of the es-
timated inverse range was greater than 100, which corresponds to the landmark
being closer than one centimeter in the z-direction.

Figure 5.16 shows a higher standard deviation on the x- and y-components
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Figure 5.8: Monte Carlo results for position and velocity when moving at a con-
stant velocity of 2 m/s past the landmark.
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Figure 5.9: Monte Carlo results for inverse depth when moving at a constant
velocity.

of the position and velocity errors. The z-component of the position error has a
mean value that is much larger in the beginning, but after the initial calibration
the error does not seem signi�cantly greater than in the previous test with the
same trajectory. The inverse feature range has an error after the second camera
update that is slightly larger than in the previous test, but after the third camera
update the mean error and true standard deviation are reduced to less than 0.01.
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Figure 5.10: Monte Carlo results for position and velocity when moving with
acceleration.
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Figure 5.11: Monte Carlo results for inverse depth when moving with accelera-
tion.
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Figure 5.12: Monte Carlo results for position and velocity when moving with
several stops underway.
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Figure 5.13: Monte Carlo results for inverse depth when moving with stops un-
derway.
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Figure 5.14: Monte Carlo results for position and velocity when swinging from
side to side.
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Figure 5.15: Monte Carlo results for position and velocity when swinging from
side to side.
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Figure 5.16: Position and velocity when using higher noise values for the swaying
trajectory.
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Figure 5.17: Inverse feature range when using higher noise values for the sway-
ing trajectory.
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6 Discussion

The state estimator that was developed has shown at least somewhat promising
results with respect to the ability to constrain drift in an inertial navigation sys-
tem. In �rst test that was done with the Kalman �lter, the landmark was within
view of the camera from the beginning and camera measurements were avail-
able together with the initial position and velocity measurements, and the initial
estimate of the pinhole coordinates was chosen with the same accuracy as the
measurements. In this situation the error in the position estimate was less than
�ve meters over the 60 second trajectory and did not seem to be increasing. For
the Monte Carlo simulations on the other hand, the landmark was positioned
further away so that it was not visible at the start. This necessarily causes some
drift in the estimated states between the period when gps is available and when
the landmark becomes visible.

It is interesting to note that for all the three trajectories that only have move-
ment along the x-axis, the drift in the estimates actually seem to become larger
when the camera measurements become available. This e�ect is particularly vis-
ible for the constant velocity trajectory, although the trajectory with stops un-
derway has the largest drift, with a standard deviation of several hundred meters
even though the camera measurements are available.

The estimated standard deviations however, are small and can not be seen
to diverge, at least not to any signi�cant degree when compared to the actual
standard deviations. This means that the simulated system has behaviors that are
not properly captured by the �lter. The reason for this may be that the higher
order terms in the state equations were signi�cant during these tests and that
the linearized equations used in the Kalman �lter therefore were not accurate.
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The discretization of the equations is also a form of linearization as it is based on
Eulers method. Linearization of the system equations can be avoided by using an
unscented Kalman �lter, so it is possible that this would have given better results
than the extended Kalman �lter which has been used here. It is also possible that
using a higher order Runge Kutta method [6] for discretizing the equations would
give better results.

The swaying trajectory stands out from the others in that the standard devi-
ation of the x-component of the position error seems to stabilize at a low value,
and the y- and z-components are also much lower than for the other three trajec-
tories. It could be that the estimates here are better simply because the landmark
became visible earlier, as the speed was somewhat higher on this trajectory, but
this alone can probably not explain why there is almost no divergence at all in
some of the components. Rather it would seem that the swaying movement of
the vehicle increases the accuracy of the estimator. This may be explained by the
fact that time-varying angular velocities are introduced, and that there is more
movement of the landmark’s projection in the image plane. In fact, because of the
alignment of the camera frame with the body frame, the swaying trajectory is the
only trajectory where both image coordinates are changing, and this might a�ect
the ability of the �lter to use these states when estimating the velocity and po-
sition. Even though this trajectory gave better estimates however, the estimated
standard deviations were still much smaller than the actual ones, suggesting that
the extended Kalman �lter is probably not the best choice.



7 Conclusion

In this thesis a state space model for a simpli�ed camera and position measure-
ment aided navigation system has been developed and used as a basis for im-
plementing an extended Kalman �lter to estimate the system states. Simulations
were done using a previously developed trajectory generator, and measurement
values were created based on inertial sensor product speci�cations.

The results show that such a system can be able to restrain drift in inertial
navigation. The performance seem to be dependent on the type of trajectory
followed by the vehicle, with a swaying motion from side to side showing the
best results. It is also shown that the estimates become less accurate when less
accurate inertial sensors are used, which con�rms intuitive expectations.

The inverse feature range, which is used to represent the distance to the land-
mark, is estimated quickly and with small error for all the tests, so that given a
relatively accurate camera measurements the system should have all informa-
tion needed to give good estimates for position. Despite this, several of the tests
resulted in large and growing estimation errors, indicating that too much trust
is placed on the inertial measurements compared to the camera measurements.
This assumption is supported by the fact that the estimated standard deviations
remain small even as the actual estimation errors increase.

Suggestions for further work include doing more simulations to study the ef-
fects of when the landmark becomes visible, as all the Monte Carlo simulations
were done when the landmark was not visible at the beginning of the trajec-
tory. Simulations of the same trajectories under the same conditions but with
the landmark becoming visible earlier or later may provide useful insights. Im-
plementing another type of estimator, like the unscented Kalman �lter, should
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also be tried.
Furhter, the implementation used in this thesis was based on a single land-

mark only, but it should be relatively easy to expand it to include several land-
marks. This will be necessary for most practical applications as new landmarks
are needed as the old ones fall out of the �eld of view. It is also probable that the
accuracy of the estimator could increase as more landmarks are observed at the
same time. More simulations could be done to test this.
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A Mathematical background

A.1 Gaussian random variables
A Gaussian random variable x, also called a normal random variable, has the
probability density function

p(x) =
1√
2πσ

e−(x−m)2/(2σ2), (A.1)

wherem is the mean and σ is the standard deviation. A realization of a Gaussian
random variable has the highest probability of being close to the mean and valus
further away from the mean are less likely. A Gaussian distribution can often
be assumed when modelling uncertainty, as the total uncertainty can be seen as
sum of many di�erent contributions, and the sum of several random variables
added together always tends toward a normal distribution. This is known as the
central limit theorem. [10]

A.2 Autocorrelation and power spectral density
The autocorrelation function of a random process x(t) is

R(t1, t2) = E[x(t1)x(t2)] (A.2)

and tells how much the process at t1 is correlated with itself at t2. If the process
is stationary, meaning that its probability density function does not change over
time, the autocorrelation can be written as

R(τ) = E[x(t)x(t+ τ)]. (A.3)
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Information about the frequency content of the random process can be obtained
from R(τ) by taking the Fourier transform, which results in the power spectral
density function of the process [10]

S(jω) = F{R(τ)} =

∫ ∞
−∞

R(τ)e−jωτ dτ (A.4)

A.3 White noise
White noise is a continuous-time random signal with a constant power spectral
density function S(jω) = S, meaning that the amplitude of the signal does not
depend on frequency. This means that the autocorrelation function is

R(τ) = Sδ(τ) (A.5)

where δ(t) is the Dirac delta function, which is de�ned by
∫∞
−∞ δ(t) dt = 1 and

δ(t) = 0 for t 6= 0 [19]. By this de�nition, any sample of the white noise has
in�nite variance, which does not make physical sense. It is still a useful model
however, as when the white noise is used as an input to a model of a physical
system the bandwidth of the signal is limited, so the output will be physically
realizable. [10]

Continuous-time white noise is analogous to a discrete-time white sequence,
which is a sequence of zero-mean, uncorrelated random variables. Since the vari-
ables are uncorrelated, the covariance of the white sequence can be written as

E[xkxl] = σ2δkl, (A.6)

where δkl is known as the Kronecker delta, and is de�ned as δkl = 1 for k = l
and δkl = 0 for k 6= l [20].

A.4 Markov processes
A continouos-time process x(t) is �rst-order Markov if its probability distribu-
tion function P [x(t)] satis�es

P [x(tk)|x(tk−1), ..., x(t1)] = P [x(tk)|x(tk−1)] (A.7)
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for all k and t1 < t2 < ... < tk. A �rst-order Markov process can be represented
by a di�erential equation of the form

ẋ(t) = −β(t)x(t) + w(t) (A.8)

where w(t) is white noise. [21]
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B Trajectory generator

The trajectory generator developed in [15] creates a trajectory from a list seg-
ments. Each trajectory segment consists of a position pa(t), velocity va(t), and
acceleration aa(t), given in a local stationary reference frame that coincides with
the body frame at the beginning of the segment. The segments also have an as-
sociated rotation Ra

b (t) and a body frame acceleration ab(t) and angular velocity
ωb(t). Below are the mathematical de�nitions of each segment used in the tests
in this report.

B.1 Straight segment
Inputs

V Desired speed at the end of the segment [m/s]
L Desired length of the segment [m]

Intermediate calculations

Total time from beginning to end of segment:

T =
2L

(V0 + V )
, (B.1)

where V0 is the vehicle’s speed at the beginning of the segment.
Maximal acceleration:

A =
V − V0

T
(B.2)

A parameter used for nicer equations:

β =
2π

T
(B.3)
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Outputs

aa(t) =

A(1− cosβt)
0
0

 (B.4)

va(t) =

V0 +A(t− (sinβt)/β)
0
0

 (B.5)

pa(t) =

V0t+A(t2/2 + (cosβt− 1)/(β2))
0
0

 (B.6)

Ra
b (t) = I (B.7)

ab(t) = aa(t) (B.8)
ωb(t) = 0 (B.9)

B.2 Constant velocity

This trajectory segment is the same as the straight segment, but de�ned by time
instead of length, and with the speed restricted to V = V0.

Inputs

T Desired time to spend on the segment [s]
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Outputs

aa(t) =
[
0 0 0

]T
(B.10)

va(t) =
[
V0 0 0

]T
(B.11)

(B.12)

pa(t) =
[
V0t 0 0

]T
(B.13)

Ra
b (t) = I (B.14)

ab(t) = aa(t) (B.15)
ωb(t) = 0 (B.16)

B.3 Turn
Turns are made up of Euler-spiral segments, which has a curvature that increases
linearly with the distance along the segment, in order to avoid jumps in the side-
ways acceleration. Each turn consists of �rst a regular Euler-spiral segment and
then a reverse Euler-spiral segment appended to it. The reverse Euler-spiral has
a curvature that decreases with the distance along the segment.
Inputs

θend = θ(tend) Desired angle of the turn [°]
r Desired turn radius [m]

B.3.1 Euler-spiral segment

Intermediate calculations

Total time from beginning to end of segment:

T =
2rθend

2V
, (B.17)

where V is the vehicle’s speed at the beginning of the segment.
Acceleration:

A =
V 2

r
(B.18)
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Angle as a function of time:

θ(t) =
At2

2V T
(B.19)

Outputs

aa(t) =
At

T

− sin θ(t)
cos θ(t)

0

 (B.20)

va(t) = V

cos θ(t)
sin θ(t)

0

 (B.21)

(B.22)

pa(t) = V

∫ t

0

cos θ(t)
sin θ(t)

0

dτ (B.23)

Ra
b (t) =

cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

 (B.24)

ab(t) = (At/T )
[
0 1 0

]T
(B.25)

ωb(t) = (At/V T )
[
0 0 1

]T
(B.26)

B.3.2 Reverse Euler-spiral segment

Intermediate calculations

Angle as a function of time:

θ(t) =
A

V

(
t− t2

2T

)
(B.27)

The parameters A and T are the same as for the regular Euler-spiral segment.
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Outputs

aa(t) =
A(T − t)

T

− sin θ(t)
cos θ(t)

0

 (B.28)

va(t) = V

cos θ(t)
sin θ(t)

0

 (B.29)

(B.30)

pa(t) = V

∫ t

0

cos θ(t)
sin θ(t)

0

dτ (B.31)

Ra
b (t) =

cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

 (B.32)

ab(t) = (A(T − t)/T )
[
0 1 0

]T
(B.33)

ωb(t) = (A(T − t)/V T )
[
0 0 1

]T
(B.34)
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C Matlab code

The most important Matlab �les are included here. The program also depends
on a number of smaller functions that are not all included.

Main routine
1 function cam_aided_ins3()
2

3 addpath('fordypning','fordypning/generate_trajectory','fordypning/common');
4

5 % *********************************************************************** %
6 % Parameters

%
7 % *********************************************************************** %
8 g = 9.81; % percieved acceleration due to gravity [m/s^2]
9 FREQ_INS = 50; % Samples per second

10 FREQ_CAM = 1; % Images per second
11 FREQ_GPS = 1; % Position updates per second
12 GPS_TIME = 10; % Time before the gps becomes unavailable [s]
13 RANDOM_INIT = 1; % Toggle randomized initial state
14

15 ND_GYRO = 0.05*[1;1;1]; % Noise density on gyroscope [degree/sqrt(Hz)] 0.03
16 ND_ACCEL = 150*[1;1;1]; % Noise density on accelerometer [micro g/sqrt(Hz)] 80
17

18 BIAS_STD_GYRO = 0.5*[1;1;1]; % Standard deviation of gyro bias [deg/s] 0.2
19 BIAS_STD_GYRO = deg2rad(BIAS_STD_GYRO); % Converted to [rad/s]
20

21 BIAS_STD_ACCEL = 0.05*[1;1;1]; % Standard deviation of accel. bias [m/s^2] 0.03
22

23 BIAS_STAB_GYRO = 18*[1;1;1]; % Bias stability [deg/h] for Markov model 18
24 BIAS_TIME_GYRO = 100; % Time constant for gyro bias Markov model [seconds]
25
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26 STD_CAM = 0.01; % Standard deviation of camera measurement noise 0.01
27 STD_GPS = 2; % Standard deviation of GPS measurement [meters] 2
28 STD_VEL = 0.01; % Standard deviation of velocity measurement [m/s] 0.01
29

30 LANDMARK = [70;5;20]; % Position of landmark relative to inertial frame
31 CAM_FOV = 140; % Camera field of view [degrees]
32 CAM_FOV = deg2rad(CAM_FOV); % Converted to [rad]
33 %CAM_PIXELSIZE = 3.45e-6; % Pixel size [meters]
34 %CAM_FOCALLENGTH = 12e-3; % Focal length of camera [meters]
35 %CAM_RESOLUTION = [2448;2048]; % Image resolution [pixels]
36 %CAM_ORIENTATION = [cos(0); [0;1;0]*sin(0)]; % Quaternion for camera
37 % orientation relative
38 % to body frame
39

40 % Assign index values for each state variable and each measurement:
41 pn = 1:3; % Vehicle position in global frame
42 vn = 4:6; % Velocity in global frame
43 angles = 7:9; % Orientation in roll-pitch-yaw Euler angles
44 ba = 10:12; % Accelerometer bias
45 bw = 13:15; % Gyroscope bias
46 mu = 16:18; % Gyroscope bias instability
47 sx = 19; % Normalized image coordinates of landmark
48 sy = 20;
49 zeta = 21; % Inverse depth
50 n_states = 21; % Total number of states
51 n_sysnoise = 9; % Number of elements in noise vector for ins measurements
52

53 msx = 1; msy = 2; % Measured image coordinates
54 mpn = 3:5; % Measured global position
55 mvn = 6:8; % Measured global velocity
56 n_measurements = 8; % Total number of measurements
57

58 % Assumed standard deviations for measurement noise:
59 measurement_stdevs = zeros(n_measurements,1);
60 measurement_stdevs(msx) = STD_CAM;
61 measurement_stdevs(msy) = STD_CAM;
62 measurement_stdevs(mpn) = STD_GPS*[1;1;1];
63 measurement_stdevs(mvn) = STD_VEL*[1;1;1];
64

65 % Initial states:
66 x0 = zeros(n_states,1);
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67 x0(sx) = 0; % Image feature x-coordinate
68 x0(sy) = 0; % Image feature y-coordinate
69 x0(zeta) = 0.1; % Inverse feature range
70 x0(vn) = [0;0;0]; % Velocity wrt inertial frame, in body frame coordinates
71 x0(ba) = [0;0;0]; % Accelerometer bias
72 x0(angles) = [0;0;0]; % Direction of gravity in body frame
73 x0(bw) = [0;0;0]; % Gyroscope bias
74 x0(pn) = [0;0;0];
75 x0(mu) = [0;0;0];
76

77 sample_time_ins = 1/FREQ_INS;
78 if FREQ_CAM == 0
79 ratio_ins_cam = 0;
80 else
81 ratio_ins_cam = FREQ_INS/FREQ_CAM;
82 end
83 if FREQ_GPS == 0
84 ratio_ins_gps = 0;
85 else
86 ratio_ins_gps = FREQ_INS/FREQ_GPS;
87 end
88

89 % Steady-state covariance for gyro bias stability:
90 covar_stab_gyro = ((2*pi/(360*3600))*diag(BIAS_STAB_GYRO)).^2;
91

92 % Power spectral densities for inertial sensor noise:
93 psd_gyro = diag((ND_GYRO*2*pi/360).^2);
94 psd_accel = diag((ND_ACCEL*1e-6/g).^2);
95 psd_stab_gyro = (2/BIAS_TIME_GYRO)*covar_stab_gyro;
96 Q_psd = blkdiag(...
97 psd_accel, psd_gyro, psd_stab_gyro);
98

99 % Initial covariance for Kalman Filter
100 P0 = 0*eye(n_states);
101 P0(pn,pn) = (STD_GPS^2)*eye(3);
102 P0(vn,vn) = (STD_VEL^2)*eye(3);
103 P0(angles,angles) = 1e-6*eye(3);
104 P0(ba,ba) = diag(BIAS_STD_ACCEL).^2;
105 P0(bw,bw) = diag(BIAS_STD_GYRO).^2;
106 P0(mu,mu) = sample_time_ins*psd_stab_gyro*eye(3);
107 P0(sx,sx) = 2^2;
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108 P0(sy,sy) = 2^2;
109 P0(zeta,zeta) = 0.5^2;
110

111 % *********************************************************************** %
112 % True values

%
113 % *********************************************************************** %
114 % Generate a pre defined trajectory:
115 [t,... % Time vector
116 p_n_true,... % Actual position wrt global (inertial) reference frame
117 v_n_true,... % Actual velocity wrt global frame
118 ~,... % Actual acceleration wrt global frame
119 q_true,... % Actual orientation given by quaternions
120 a_b_true,... % Actual acceleration wrt body frame
121 w_true] ... % Actual angular velocity about the body frame axes
122 = generate_trajectory(FREQ_INS);
123

124 n_samples = size(t,2);
125

126 % Relative landmark position from true position, rotated to body frame:
127 r_n_true = bsxfun(@minus,LANDMARK,p_n_true);
128 r_b_true = r_n_true; % Allocate storage
129 for k = 1:n_samples
130 r_b_true(:,k) = quaternionrotation(r_n_true(:,k),...
131 quatconjugate(q_true(:,k)));
132 end
133

134 % True normalized pinhole coordinates for landmark:
135 pinhole_coords_true =...
136 bsxfun(@times,[r_b_true(1,:);r_b_true(2,:)],(1./r_b_true(3,:)));
137

138 inversedepth_true = 1./r_b_true(3,:);
139

140 % Velocity in body frame coordinates:
141 v_b_true = zeros(3,n_samples);
142 for k=1:n_samples
143 v_b_true(:,k) = quaternionrotation(v_n_true(:,k),...
144 quatconjugate(q_true(:,k)));
145 end
146

147 % Convert the quaternions from the trajectory generator to
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148 % roll-pitch-yaw-angles to compare with estimated states:
149 rpy_angles_true = zeros(3,size(q_true,2));
150 for k=1:size(rpy_angles_true,2)
151 R = rotmatrix_from_quaternion(q_true(:,k));
152 rpy_angles_true(:,k) = rpy_angles_from_rotmatrix(R);
153 end
154

155 % *********************************************************************** %
156 % Monte Carlo simulation

%
157 % *********************************************************************** %
158 n_runs = 100;
159 %mc_states = zeros(n_states,n_samples,n_runs); % all estimated states
160 mc_stdevs = zeros(n_states,n_samples,n_runs); % all estimated stdevs
161 mc_errors = zeros(n_states,n_samples,n_runs); % estimation error for all runs
162 %mc_truth = zeros(n_states,n_samples,n_runs); % true states for all runs
163 deleted = 0;
164 wait = waitbar(0,'Running Monte Carlo simulation');
165

166 i = 1;
167 while i <= size(mc_errors,3)
168 [state_est,mc_stdevs(:,:,i),state_true] = simulation_run();
169

170 k = 1;
171 while k <= n_samples
172 % Do a check for nonsensical values of the inverse depth estimate
173 if (state_est(zeta,k) > -100) && (state_est(zeta,end) < 100)
174 % estimate is okay for current k
175 if k == n_samples
176 % estimate was okay for all k, save errors, go to next mc run
177 mc_errors(:,:,i) = state_true - state_est;
178 i = i + 1;
179 end
180 % go to next timestep
181 k = k + 1;
182 else
183 % estimate not okay, remove from array, do not increment index
184 mc_stdevs(:,:,i) = [];
185 mc_errors(:,:,i) = [];
186 deleted = deleted + 1;
187
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188 % Go to next simulation run
189 k = n_samples + 1;
190 end
191 end
192 clear k;
193

194 waitbar(i/n_runs)
195 %x_est = state_est;
196 %sigma_est = mc_stdevs(:,:,i);
197 %x_true = state_true;
198 end
199 close(wait)
200

201 %error_est = x_est - x_true;
202 errors_mean = mean(mc_errors,3); % Use the mean of the estimated states
203 stdevs_true = std(mc_errors,0,3); % Actual standard deviation of estimates
204

205 %x_true = mean(mc_truth,3); % Mean of true values
206 sigma_est = mean(mc_stdevs,3); % Mean of estimated stdevs
207

208

209 % *********************************************************************** %
210 % Functions

%
211 % *********************************************************************** %
212

213 function [x_est,sigma_est,x_true] = simulation_run()
214 % ********************************************************************%
215 % Measurements

%
216 % ********************************************************************%
217 % Generate inertial measurements from sensor model using known trajectory:
218 [a_b_measured,w_measured,accel_bias,gyro_bias,gyro_markov] = ...
219 sensor_model(a_b_true,w_true,q_true,Q_psd,BIAS_TIME_GYRO,...
220 BIAS_STD_GYRO,BIAS_STD_ACCEL,sample_time_ins);
221

222 u = [w_measured; a_b_measured]; % Inertial measurements used as inputs
223

224 % Generate camera measurements using known trajectory
225 % First image at timestep = the ratio of ins to cam frequency
226 % q_cam = quatmultiply(q_true', CAM_ORIENTATION')';
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227 %
228 % cam_meas = camera_model_pinhole(...
229 % p_n_true, q_cam, LANDMARK, STD_CAM, ratio_ins_cam,...
230 % CAM_PIXELSIZE, CAM_FOCALLENGTH, CAM_RESOLUTION);
231 %cam_meas = pinhole_coords_true;
232 cam_meas = camera_model2(pinhole_coords_true,ratio_ins_cam,STD_CAM,CAM_FOV);
233

234 cam_meas_times = t(~isnan(cam_meas(1,:)));
235 if ~isempty(cam_meas_times)
236 disp(['first cam meas at t=',num2str(cam_meas_times(1))]);
237 disp(['last cam meas at t=',num2str(cam_meas_times(end))]);
238 end
239

240 gps_meas = NaN*zeros(3,n_samples);
241 vel_meas = NaN*zeros(3,n_samples);
242 k = 1;
243 while k <= n_samples && t(k) <= GPS_TIME
244 if ~mod(k,ratio_ins_gps)
245 % Add position and velocity measurements at the proper time instants
246 gps_meas(:,k) = p_n_true(:,k) + STD_GPS*randn(3,1);
247 vel_meas(:,k) = v_n_true(:,k) + STD_VEL*randn(3,1);
248 end
249 k = k + 1;
250 end
251 clear k;
252

253 % Save true state vector
254 x_true = zeros(n_states,n_samples);
255 x_true(pn,:) = p_n_true;
256 x_true(vn,:) = v_n_true;
257 x_true(angles,:) = rpy_angles_true;
258 x_true(ba,:) = accel_bias;
259 x_true(bw,:) = gyro_bias;
260 x_true(mu,:) = gyro_markov;
261 x_true(sx:sy,:) = pinhole_coords_true;
262 x_true(zeta,:) = inversedepth_true;
263

264

265 % ******************************************************************* %
266 % % Kalman Filter

%
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267 % ******************************************************************* %
268 % Camera measurement parameters:
269 %focallength_eff = CAM_FOCALLENGTH/CAM_PIXELSIZE;
270 %image_origin = CAM_RESOLUTION/2;
271

272 % Initial state covariance:
273 P = P0;
274

275 % Draw inital state from normal distribution to simulate uncertainty:
276 if RANDOM_INIT
277 x0 = x0 + sqrt(P)*randn(n_states,1);
278 x0(zeta) = 0.1;
279 x0([ba;bw;mu]) = zeros(9,1);
280 else
281 % Everything known except ins bias
282 x0 = x_true(:,1);
283 x0([ba;bw;mu]) = zeros(9,1);
284 end
285

286 x = x0; % Initial state
287 x_est = zeros(n_states,n_samples); % Estimated states
288 %x_mech = zeros(n_states,n_samples);
289 sigma_est = zeros(n_states,n_samples); % Estimated standard deviations
290 kovar_est = zeros(n_states,n_samples);
291 kovar_est(:,1) = diag(P);
292 sigma_est(:,1) = sqrt(diag(P));
293 x_est(:,1) = x;
294 %x_mech(:,1) = x;
295 %f_ukf = @(x,u,n) f3(u,x,sample_time_ins,Rcb);
296 % H = zeros(2,n_states);
297 % H(1,sx) = 1;
298 % H(2,sy) = 1;
299 % landmark_seen = 0; % set this flag when landmark is seen first time
300 for k=2:n_samples
301 f = @(x) f3(u(:,k-1),x,sample_time_ins);
302 Q = sys_covariance(x); % System covariance matrix
303

304 % Cam measurements are taken when k is an integer multiple of the
305 % ratio of INS freq to cam freq, similar with GPS-measurements
306 if ~isnan(cam_meas(1,k)) ...
307 && ~isnan(gps_meas(1,k))
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308 % Both cam and gps measurement available
309 z = [cam_meas(:,k); gps_meas(:,k); vel_meas(:,k)];
310 h = @(x) h_cam_gps(x); %,focallength_eff,image_origin);
311 R = diag(measurement_stdevs.^2);
312 %R = eye(5);
313

314 elseif ~isnan(cam_meas(1,k))
315 % Only ins and camera measurement available
316 z = cam_meas(:,k);
317 h = @(x) h_cam(x);%,focallength_eff,image_origin);
318 R = diag(measurement_stdevs(msx:msy).^2);
319 %R = eye(2);
320 elseif ~isnan(gps_meas(1,k))
321 % Only ins and gps measurement available
322 z = [gps_meas(:,k); vel_meas(:,k)];
323 h = @(x) h_gps(x); % Measurement function
324 R = diag(measurement_stdevs([mpn,mvn]).^2);
325 else % Only ins-measurements available
326 z = [];
327 h = @(x) [];
328 R = [];
329

330 end
331 % Extended Kalman filter:
332 [x, P] = ekf(f,x,P,h,z,Q,R); % Get estimated state and covariance
333

334 x_est(:,k) = x; % Save state estimates
335 sigma_est(:,k) = sqrt(diag(P)); % Save standard deviation estimates
336 kovar_est(:,k) = diag(P);
337

338 % INS mechanization
339 % Use estimated bias and noise values
340 % x_mech([ba,bw,mu],k-1) = x_est([ba,bw,mu],k-1);
341 % x_mech(:,k) = f(x_mech(:,k-1));
342

343 end
344 end
345

346 function Q = sys_covariance(state)
347 Rnb = rotmatrix_from_rpy(state(angles));
348 G_ins = [zeros(3,n_sysnoise);blkdiag(Rnb,Rnb,zeros(3));
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349 zeros(3,n_sysnoise);zeros(3,6),eye(3);];
350

351 G_cam = [state(sx)*state(sy), -1-state(sx)^2, state(sy);
352 1+state(sy)^2, -state(sx)*state(sy), -state(sx);
353 state(zeta)*state(sy), -state(zeta)*state(sx), 0];
354 G_cam = [zeros(3),G_cam,zeros(3)];
355

356 G = [G_ins;G_cam];
357 Q = sample_time_ins*G*Q_psd*G';
358 end
359

360 function z = h_cam_gps(state) %,focallength_eff,image_origin)
361 z = zeros(8,1);
362 z(1) = state(sx);%*focallength_eff + image_origin(1); % Image feature x-coordinate
363 z(2) = state(sy);%*focallength_eff + image_origin(2); % Image feature y-coordinate
364 z(3:5) = state(pn); % Vehicle position in global frame
365 z(6:8) = state(vn); % Velocity in global frame
366 end
367

368 function z = h_cam(state)%,focallength_eff,image_origin)
369 z = state(sx:sy);
370 end
371

372 function z = h_gps(state)
373 z = zeros(6,1);
374 z(1:3) = state(pn); % Vehicle position in global frame
375 z(4:6) = state(vn); % Velocity in global frame
376 end
377

378 end

State transition function
1 function next_state = f3(old_input,old_state,timestep)
2 % Discrete time state transition function via Euler's method
3 next_state = old_state + timestep*f_c(old_input, old_state);
4

5 % Heun's method:
6 %next_state = old_state ...
7 % + timestep*(f_c(old_input,old_state) + f_c(new_input,x_euler))/2;
8
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9 function dx = f_c(u,x) % State derivative function
10 % Continuous time state transition function
11 g = 9.81;
12

13 vn = x(4:6); % Velocity given in global frame coordinates
14 rpy_angles = x(7:9); % Roll pitch yaw Euler angles
15 ba = x(10:12); % Accelerometer bias
16 bw = x(13:15); % Gyroscope bias
17 mu = x(16:18); % Gyroscope bias stability
18 sx = x(19); % Image feature x-coordinate
19 sy = x(20); % Image feature y-coordinate
20 zeta = x(21); % Inverse feature range
21

22 Rnb = rotmatrix_from_rpy(rpy_angles); % Rotation from body to global
23 vc = (Rnb')*vn; % Velocity in camera frame coordinates
24

25 % Angle derivative matrix from Huster:
26 pitch = rpy_angles(2);
27 yaw = rpy_angles(3);
28 E = [cos(yaw)/cos(pitch), sin(yaw)/cos(pitch), 0;
29 -sin(yaw), cos(yaw), 0;
30 sin(pitch)*cos(yaw)/cos(pitch), sin(pitch)*sin(yaw)/cos(pitch),1];
31

32 omega_meas = u(1:3); % Measured angular velocity from gyro
33 fa_meas = u(4:6); % Measured specific force from accelerometer
34

35 omega = omega_meas - bw;% - mu; % Angular velocity
36 fa = fa_meas - ba; % Specific force
37

38 dpn = vn;
39 dvn = Rnb*fa - [0;0;g];
40 drpy_angles = E*Rnb*omega;
41 dba = [0;0;0];
42 dbw = [0;0;0];
43 dmu = -(1/100)*mu;
44 dsx = -vc(1)*zeta + sx*vc(3)*zeta + sx*sy*omega(1) ...
45 - (1 + sx^2)*omega(2) + sy*omega(3);
46

47 dsy = -vc(2)*zeta + sy*vc(3)*zeta + (1 + sy^2)*omega(1) ...
48 - sx*sy*omega(2) - sx*omega(3);
49
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50 dzeta = vc(3)*(zeta^2) + zeta*sy*omega(1) - zeta*sx*omega(2);
51

52 dx = [dpn;dvn;drpy_angles;dba;dbw;dmu;dsx;dsy;dzeta;];
53

54 end
55

56 end

Camera measurement generation
1 function cam_meas = camera_model2(pinhole_coords,ratio,stdev,fov)
2

3 n_samples = size(pinhole_coords,2);
4 cam_meas = NaN*ones(2,n_samples);
5

6 max_sx = tan(fov/2);
7 max_sy = tan(fov/2);
8

9 for k = 1:n_samples
10 if ~mod(k,ratio)
11 s_x = pinhole_coords(1,k);
12 s_y = pinhole_coords(2,k);
13 if (abs(s_x) <= max_sx) && (abs(s_y) <= max_sy)
14 cam_meas(:,k) = pinhole_coords(:,k) + stdev*randn(2,1);
15 end
16 end
17 end
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