
Optimal PID settings for first and
second-order processes
Comparison with different controller tuning

approaches

Iosif Pappas

Master's Thesis

Supervisor: Sigurd Skogestad, IKP
Co-supervisor: Ioannis Kookos, IKJ

Department of Chemical Engineering

Submission date: July 2016

Norwegian University of Science and Technology

Optimal PID settings for first and
second-order processes

Comparison with different tuning approaches

by

Iosif Pappas

NTNU
Norwegian University of Science and Technology

Department of Chemical Engineering
Process Systems Engineering Group

Trondheim, July 2016

Abstract

PID controllers are extensively used in industry. Although many tuning methodologies
exist, finding good controller settings is not an easy task and frequently optimization-
based design is preferred to satisfy more complex criteria. In this thesis, the focus was to
find which tuning approaches, if any, present close to optimal behavior.

Pareto-optimal controllers were found for different first and second-order processes
with time delay. Performance was quantified in terms of the integrated absolute error,
while robustness was defined as the maximum peak of the sensitivity function. Ideal
PID controllers were used to create SIMC, K-SIMC and optimal tuning curves. As for
the FOPTD, the SIMC performed close to the optimal for the whole robustness region.
On the other hand, the K-SIMC settings performed well and outperformed the SIMC
at the less robust region. That is due to the fact, that the K-SIMC rules suggest a PI
controller for small values of the sensitivity peak. When it comes to the SOPTD, the
SIMC and the K-SIMC were almost identical performance-wise. However, when the time
delay is relatively small the I-SIMC tunings should be chosen. If higher-order models are
required to be approximated as a first or second-order process with time delay, the half rule
approximations achieved superior results when compared to the K-SIMC approximations.

Furthermore, SIMC, K-SIMC and optimal controllers were found for a given process
and for specified robustness. The K-SIMC rules suggested a PI controller, instead of
the PID controllers which were suggested by the other two tuning approaches. The
controllers were applied to models, which had slightly different characteristics than the
original process. The PI controller handled a wider variety of processes. However, similar
results would have been derived for a PI SIMC or for an optimal PI controller.

In addition, two other tuning approaches were investigated. Firstly, the Syrcos &
Kookos settings were found and compared with the optimal and the SIMC. The for-
mer methodology showcased very satisfactory results, which could be proven to be more
beneficial than the SIMC for processes with relatively large time delay. Secondly, the
MATLAB™ Tuning Toolbox was used to find balanced controllers, in terms of perfor-
mance and robustness. First and second-order processes with varying time delay values
were examined. Although the ™ Tuning Toolbox presented acceptable results, it should
not be used for small time delay values due to the low proportional gain and the absence
of derivative action of the controller.

Finally, optimal, SIMC and K-SIMC controllers were tested on the thermal/optimal
plant uDAQ28/LT, where only the temperature was the measured variable. The process
was approximated as an integrating process and due to the high input usage and the small
compensation from the use of derivative action, a PI controller is the most advantageous
available choice.

i

Acknowledgments

I want to wholeheartedly thank my supervisor, Professor Sigurd Skogestad, for accepting
as a member of the Process Systems Engineering Group and letting me work on this
project. Without his motivation and contribution, this thesis would never have emerged.
His feedback was always invaluable to me, especially when the results were not as expected.

Words can not describe how grateful i am for the constant guidance, patience and
support of my supervisor, Associate Professor, Ioannis Kookos. He was there for me
throughout this thesis and my studies in general. He always encouraged me, especially
after disappointments, which is something that i will never forget. My education would
not have been the same without him.

My thanks go to all the people from the Process Systems Engineering Group, here in
Trondheim, for making me feel that the 2nd floor of K4 was my home. However, i want to
especially thank Chriss Grimholt who provided me his unpublished work. Without Chriss
this thesis would not have been the same. His comments and suggestions were always on
point. My special thanks go also to Vladimiros Minasidis for everything he did for this
work and for making me enjoy Trondheim even more. But, i mostly want to thank him
for giving me incentives to learn interesting things. I really hope i will get to meet all of
them again in the future.

Professor Petros Koutsoukos helped me so much with his advice and making this trip
a reality. Thank you very much.

This thesis would have impossible to complete without the endless love and support of
Antigoni even though sometimes i was thinking about Process Control when i shouldn’t.
Also, thanks to my good friends from the University of Patras, Konstantinos, Leonidas
and Spyros and to my flatmates in Norway, Ji, Peng and Yi, who will graduate this year
from Jiao Tong in Shanghai and to Heiko.

Finally, i want to dedicate this thesis to my family for all the sacrifices they do, so
that i am here today writing these words.

The financial support of the Erasmus+ program is greatly acknowledged.

Iosif Pappas
July 2016
Trondheim, Norway

iii

iv

Declaration of Compliance

I hereby declare that this thesis is an independent work in agreement with the exam
rules and regulations of the Norwegian University of Science and Technology.

Trondheim, July 30, 2016

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of this work . 2
1.3 Thesis Overview . 2
1.4 Appendices . 2

2 Theoretical Background 3
2.1 Some history . 3
2.2 First and second-order processes with time delay 3
2.3 PID Controllers . 4
2.4 SIMC method . 5

2.4.1 Model reduction . 5
2.4.2 SIMC rules . 6

2.5 K-SIMC method . 8
2.6 Syrcos & Kookos tuning method . 10

3 Pareto Optimization 11
3.1 Feedback system . 11

3.1.1 Performance . 14
3.1.2 Robustness . 15

3.2 Optimization problem . 16
3.3 Gradients . 16

3.3.1 Cost function gradient . 17
3.3.2 Constraint gradients . 18

3.4 Simulations . 19

4 Results and Discussion 20
4.1 First-order processes . 20
4.2 Second-order processes . 26
4.3 Model reduction of higher-order models . 32
4.4 Process model uncertainty . 35
4.5 Other tuning methods . 42

4.5.1 Syrcos & Kookos tuning method . 42
4.5.2 MATLAB Tuning Toolbox . 46

4.6 Case study: The thermal/optical plant uDAQ28/LT 55
4.6.1 Introduction to the plant . 55

vi

Contents vii

4.6.2 Model Identification . 57
4.6.3 Controllers Design . 60
4.6.4 Experiments . 60

5 Conclusions and future work 64

A MATLAB code 70

B SIMULINK 78

List of Figures

3.1 Block diagram of the closed loop system, with controller K(s) and plant
G(s). 12

3.2 Two objectives Pareto optimization. 13
3.3 Peak of the sensitivity function, MS . 15

4.1 Complementary sensitivity function and sensitivity function peak compar-
ison for the FOPTD examined. 21

4.2 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(0.1s+1) . 22
4.3 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–s
(0.5s+1) . 22

4.4 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(s+1) . 23
4.5 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–s
(1.5s+1) . 23

4.6 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(2s+1) . 24
4.7 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–s
(10s+1) . 24

4.8 Complementary sensitivity function and sensitivity function peak compar-
ison for the FOPTD examined. 27

4.9 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(s+1)(0.4s+1) . 28
4.10 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–0.7s
(s+1)(0.1s+1) . 28

4.11 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(s+1)(0.7s+1) . 29
4.12 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–0.7s
(1.3s+1)(0.4s+1) . 29

4.13 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(0.7s+1)(0.4s+1) . 30
4.14 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = e–2s
(s+1)(0.5s+1) . 30

viii

List of Figures ix

4.15 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.9s

(1.5s+1)(1.2s+1) . 31
4.16 Cost function J for difference constraint values, using ideal PID controllers

for the process G (s) = (–0.5s+1)(–0.1s+1)
(5s+1)(3s+1)(s+1)(0.5s+1) e

–s. First and second-order
approximations are presented. 33

4.17 Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = (20s+1)(14s+1)

(42s+1)(5s+1)(2s+1)(s+1) e
–s. First and second-order

approximations are presented. 35
4.18 Input and Output responses for step input and output disturbances for

the process G(s) = e–s
(8s+1) . 37

4.19 Input and Output responses for step input and output disturbances for
the process G(s) = e–s

(5s+1) . 38
4.20 Input and Output responses for step input and output disturbances for

the process G(s) = e–s
(11s+1) . 38

4.21 Input and Output responses for step input and output disturbances for
the process G(s) = 2

(5s+1) e
–s . 39

4.22 Input and Output responses for step input and output disturbances for
the process G(s) = 1

(5s+1) e
–2s . 39

4.23 Input and Output responses for step input and output disturbances for
the process G(s) = 1

(5s+1)(s+1) e
–s . 40

4.24 Input and Output responses for step input and output disturbances for
the process G(s) = (s+1)

(5s+1) e
–s . 40

4.25 Input and Output responses for step input and output disturbances for
the process (–s+1)

(5s+1) e
–s . 41

4.26 Sensitivity peak for different process time constants using Syrcos & Kookos
method. 42

4.27 Cost function for different different robustness constraints using Syrcos &
Kookos method. 43

4.28 Resulting PID controller settings method for different process time
constants using Syrcos & Kookos method. Comparison with ideal PID,
SIMC and PO controllers. 44

4.29 System Margins for different process time constants using Syrcos & Kookos
method. Comparison with ideal PID, SIMC and PO controllers. 45

4.30 Sensitivity peak for different process time constants using the MATLAB
Tuning Toolbox for a FOPTD. 46

4.31 Resulting controller settings for different process time constants using the
MATLAB Tuning Toolbox for a FOPTD. 47

4.32 Cost function for different process time constants using the MATLAB
Tuning Toolbox for a FOPTD. 48

4.33 System Margins for different process time constants using the MATLAB
Tuning Toolbox for a FOPTD. Comparison with ideal PID, SIMC and PO
controllers. 50

4.34 Sensitivity peak for different process time constants using the MATLAB
Tuning Toolbox for a SOPTD. 51

x List of Figures

4.35 Cost function for different process time constants using the MATLAB
Tuning Toolbox for a SOPTD. Comparison with ideal PID, SIMC and PO
controllers. 52

4.36 Resulting controller settings for different process time constants using the
MATLAB Tuning Toolbox for a SOPTD. Comparison with ideal PID,
SIMC and PO controllers. 53

4.37 System Margins for different process time constants using the MATLAB
Tuning Toolbox for a SOPTD. Comparison with ideal PID, SIMC and PO
controllers. 54

4.38 The thermal/optical plant uDAQ28/LT. 55
4.39 Sketch of the uDAQ28/LT thermal/optical plant. 56
4.40 Open-loop step response to obtain the parameters k′ and θ for an

integrating process. 58
4.41 Step response of thermal/optical plant uDAQ28/LT. 58
4.42 Step response of thermal/optical plant uDAQ28/LT. 59
4.43 Output responses of the thermal/optimal plant uDAQ28/LT using using

the controllers mentioned in Table 4.10. 61
4.44 Input responses of the thermal/optimal plant uDAQ28/LT using using the

controllers mentioned in Table 4.10. 61
4.45 SIMC PI and Optimal PID input responses of the thermal/optimal plant

uDAQ28/LT using using the controllers mentioned in Table 4.10. 62

B.1 SIMULINK model to calculate the integrated absolute error for input and
output disturbances. 78

B.2 SIMULINK model to calculate the integrated absolute error for input and
output disturbances. 79

List of Tables

3.1 Creating Pareto-optimal curves. 18

4.1 Comparison of PID controller settings with different tuning methods for
FOPTD with MS = 1.59. 20

4.2 Performance comparison of the different FOPTD examined. 25
4.3 Comparison of PID controller settings with different tuning methods for

SOPTD for MS = 1.59 . 26
4.4 Performance comparison of the different SOPTD examined. 32
4.5 PID controller settings for the process 4.7 for MS = 1.59. 36
4.6 Cases considered to evaluate the performance of the controllers in Table ??. 36
4.7 Thermal/optical plant uDAQ28/LT inputs 56
4.8 Thermal/optical plant uDAQ28/LT outputs 56
4.9 SIMC and K-SIMC tunings for an integrating process. 60
4.10 PID controller settings for the process 4.12 for MS = 1.59. 60

xi

Nomenclature

Greek Symbols

Symbol Description Unit

ω Frequency rads–1

φdu
Input disturbance normalization fac-
tor

φdy
Output disturbance normalization
factor

τ Time s

τD Controller derivative time s

τI Controller integral time s

τ0 Process time constant

θ Process time delay

θ
′ Normalized process time delay

τ
′
I Controller integral time in series form s

τD
′ Controller derivative time in series

form s

Roman Symbols

Symbol Description Unit

du Plant step input disturbance

dy Plant step output disturbance

e Process error

f PID series and parallel form connec-
tion factor

G Process model

xii

Nomenclature xiii

IAE Integrated absolute error

IAEdu
IAE for PID controller only with step
input disturbance

IAEo
du

Reference IAE for PID controller only
with step input disturbance

IAEdy
IAE for PID controller only with step
output disturbance

IAEo
dy

Reference IAE for PID controller only
with step output disturbance

J Cost function - Performance

K Process controller

kc Process gain

kd Derivative gain s

ki Integral gain s–1

kp Process gain

Mub Sensitivity peak upper bound

MS Peak of the Sensitivity function

MT
Peak of the Complimentary Sensitiv-
ity function

n Process noise

S Sensitivity function

s Laplace variable

T Complimentary sensitivity function

Tinv
j0 Positive numerator time constant

u Controller output

ys Set-point value

G′ Approximated process model

kc′ Controller gain in series form

List of Abbreviations

Abbreviation Description

FOPTD First-order process with time delay

I-SIMC Improved Simple Internal Model Control

MIMO Many Inputs Many Outputs

SIMC Simple Internal Model Control

SOPTD Second-order process with time delay

PO Pareto - Optimal

xiv

Chapter 1

Introduction

1.1. Motivation

The proportional-integral-derivative (PID) controllers are the main controllers used in
industry. Therefore, it is of great significance to efficiently tune them. Many tuning
methods and approaches have been proposed for the determination of the tuning param-
eters. Some of the previous work includes the paper by Ziegler and Nichols, the IMC
tunings by Rivera et al. and the direct synthesis tuning rules in the book by Smith and
Corripio. In 2003, Skogestad proposed the famous SIMC tuning rules, which were lately
revisited by Lee et al.

Grimholt and Skogestad [2012, 2013] have done extensive work on finding optimal
controllers and they have tested both PI and PID controllers using numerical gradients.
Moreover, in 2016, they have successfully applied analytical expressions for the gradients
of the objective functions and the constraints, in order to find optimal controllers, which
satisfy specific design criteria. The optimal controllers are derived through the mini-
mization of the Integral Absolute Error (IAE), which is determined as the performance
objective. Nonetheless, the controllers should have the same robustness in order to be
compared. Thus, the sensitivity peak, MS, is selected as the robustness criterion.

Since optimal controllers could be found, they could compare them with SIMC con-
trollers. The SIMC rules have been assessed in terms of optimality for PI and PID
controllers for numerous processes and different parametrizations (Grimholt and Skoges-
tad [2012, 2013]). PI, PID or even Smith Predictors have been thested by comparing
them with the Pareto optimal and surprisingly, the SIMC rules gave controllers close to
the optimal. The most recent case examined, which was presented here in Trondheim,
was the double integrating process, which proved that SIMC rules give controllers with
almost identical performance with the optimal.

However, there are numerous methodologies that have not been tested in terms of their
optimality. Therefore, for various processes it was interesting to see, which approaches are
the most advantageous to follow. In addition, their sensitivity in the presence of model
uncertainty for a given robustness might lead the engineer to different choices.

1

2 Chapter 1. Introduction

1.2. Aim of this work
Grimholt and Skogestad, did not only give the opportunity and the capability to find
optimal controllers but also to compare them only with SIMC controllers. Taking ad-
vantage of their approach, it is possible to compare controllers obtained using different
methodologies and evaluate them in terms of their performance and their robustness.

This thesis is an effort to try to extend the results to even more processes. A variety
of values of time constants and time delays is examined. For those processes, the SIMC,
the I(improved)-SIMC and the K-SIMC rules are utilized to find sufficient controllers for
different robustness constraints. Furthermore, the approach proposed by Syrcos & Kookos
is investigated, since it gave promising results. Finally, PID tunings are compared against
the tunings suggested by the MATLAB Tuning Toolbox. The main focus of this study was
to evaluate how close to the optimal are the tunning parameters that each methodology
gives

In addition to that, it is often very difficult to find or approximate the model of a
plant. Thus, it is even more complicated to design sufficient controllers. For that reason,
it is interesting to see how sensitive the controller tunings are for cases with model error.
As a final part of this work, it was interesting to evaluate the different controllers in a
practical example and demonstrate their performance and robustness on a real process.
Therefore, in the last section of the results, a case study is presented and a try-out of the
controllers for setpoint changes and disturbances is conducted.

1.3. Thesis Overview
This Thesis consists, besides the introductory and concluding remarks, of three main
chapters. More specifically, Chapter 2 covers the all the necessary theoretical aspects of
this work. The tuning methodologies, which are used in this work are analytically pre-
sented. Chapter 3 describes the Pareto optimization and the optimization methodology
in general. Chapter 4 contains all the results, which were derived using the different
controller tuning methodologies. The tuning approaches are compared in terms of their
performance and their robustness. Various processes are considered and the SIMC, the
I-SIMC, the K-SIMC, the Syrcos & Kookos method and MATLAB Toolbox settings are
applied. Moreover, the sensitivity of the PID settings to model error is investigated to
evaluate the performance of the controllers in processes with model error. In the final part
the tunings are tested in a case study, a thermal/optical plant. Furthermore, Chapter
4 captures all the analysis and the discussion of the results. Ultimately, future work is
discussed.

1.4. Appendices
The appendices consist of two parts: one which contains MATLAB scripts, utilized for
the results and a second one which has all the Simulink schemes used.

Chapter 2

Theoretical Background

2.1. Some history
Nowadays, process control plays one the most significant roles in the efficient, safe and
smooth operation of an operation unit or even a plant. However, how was that point
reached?

Ctesibius (Kτησ́ιβιoς, 285 ∼ 222 B.C.) was a Greek inventor and mathematician, who
lived in Alexandria, Egypt. His device, which was called, the hydrion horoskopion
(”ὺδρ́ιoν ὼρoσκoπε̃ιoν”), was a hydraulic clock, which was suitably controlled, so that
the level of the liquid was a linear function of time. It is considered the first feedback
control system in history. Ctesebius disseminated his knowledge to his student, Philo of
Byzantium (Φ́ιλων ò Bυζάντιoς) (ca. 280 B.C. – ca. 220 B.C.), who also lived in Alexan-
dria. He created an oil lamp which was automatically controlled with a feedback control
loop.

After three centuries, H̀ρων o Àλεξανδρεὺς (Hero of Alexandria), created many ma-
chines, which were mainly used for the automatic control of the level of liquids.

Later, Drebbel (∼ 1600) and Papin (∼ 1700) created temperature and pressure con-
trollers respectively. In 1769, Watt created the Flyball governor, which is considered the
first industrial controller and it controlled the shaft rounds of a steam engine. Maxwell,
in 1868 created the first theory of automatic control using differential equations.

Contemporary, process control flourished in many fields and especially contributed in
the development of telecommunications, space technology and generally in industry.

2.2. First and second-order processes with time delay
Processes that possess the capacity to store, mass or energy and act as a buffer between
inflowing and outflowing streams are be modeled as a first-order system. First-order
systems include the most common processes in chemical plants and generally in practice.
For instance, the dynamic response of tanks that have the capacity to store liquids or
gases can be modeled as a first-order process.

On the other hand, second or even higher-order dynamics can arise from

3

4 Chapter 2. Theoretical Background

• Processes that consist of two or more first-order systems, which are connected in
series.

• Fluid or mechanical solid components of a process that possess inertia or are sub-
jected to acceleration.

• The controller, which is used, may exhibit second or higher-order dynamics. There-
fore, the installed controller introduces additional dynamics to the process itself and
it will result to second or higher-order behavior.

If a change takes place in one of the input variables, its effect is never instantaneously
observed in the output variables. Thus, there is always a time interval during which no
change is noticed on the outputs of the system. This time interval is called time delay
or dead time.

It is clear that the most common processes in industry and especially in chemical
plants can be approximated as first and second-order processes. That was the main drive
that led to the examination of processes in this thesis.

2.3. PID Controllers
The commercial controllers are usually electronic devices, which process electric signals,
based on simple mathematical relations. Based on the deviation between the set point
and the measurement value, three actions can be applied by them:

• Proportional action: Its actuating output produces a value which is proportional to
the current error value.

• Integral action: Its actuating signal eliminates the offset and accelerates the move-
ment of the process towards the setpoint value.

• Derivative action: With the presence of the derivative action, the controller can
anticipate what the error will be in the immediate future.

In this work, the PID controller is examined. The output of the controller is given by:

K (t) = kce (t) + kc
τI

∫
e (t) + kcτD

de
dt + Ks (2.1)

or

K (s) = kc
(
1 + 1
τIs

+ τDs
)

(2.2)

which is the parallel form.

A PID controller can also be created from a serial junction of a PI and a PD controller

2.4. SIMC method 5

K (s) = k′c
(
1 + 1
τI′s

)(
1 + τD′s

)
(2.3)

and is called the serial form of the PID controller.
In the past, there were cases that people thought that no difference existed between

the parallel and the serial form. After the years, the different PID parametrizations were
well-known. Nowadays, the parallel form is the most dominant and the most widely used
and controllers in that form are going to be examined here.

2.4. SIMC method

The two-step systematic procedure proposed by Skogestad [2003] is a method to find
sufficient settings of a PID controller.

The procedure consists of two steps:

1. Approximate a high-order model into a first or second order model with time delay
using the Half-rule.

2. Derive the controller settings using the SIMC rules.

2.4.1. Model reduction
It is often possible that a process might have more complicated process dynamics. Sko-
gestad [2003] proposed an approximation method which can reduce a high-order model
with multiple time constants to a first or second order process with time delay.

Assume a given transfer function model, which has the following form,

g0(s) =
∏
j
(
–Tinv

j0 s + 1)
)

∏
i
(
τi0s + 1)

) eθ0s (2.4)

where the lags τi0 are sorted according to their magnitude and –Tinv
j0 < 0.

Half-rule

The largest neglected (denominator) time constant (lag) is distributed evenly to the
effective delay (θ) and the smallest retained time constant (τ1 or τ2).

Following that rule, one can approximate a model of the form in 2.4 into a first-order

6 Chapter 2. Theoretical Background

process with time delay as:

τ1 = τ10 +
τ20
2 (2.5)

θ = θ0 +
τ20
2 +

∑
i≥3
τi0 +

∑
j
Tinv
j0 + h

2 (2.6)

or as a second-order process with time delay as:

τ1 = τ10 (2.7)

τ2 = τ20 +
τ30
2 (2.8)

θ = θ0 +
τ30
2 +

∑
i≥4
τi0 +

∑
j
Tinv
j0 + h

2 (2.9)

When it comes to positive numerator time constants T0, they can be canceled against
a "neighboring" lag time constant τ0 by the following rules:

T0s+1
τ0s+1 ≈



T0/τ0 for T0 ≥ τ0 ≥ τc (Rule T1)

T0/τc for T0 ≥ τc ≥ τ0 (Rule T1a)

1 for τc ≥ T0 ≥ τ0 (Rule T1b)

T0/τ0 for τ0 ≥ T0 ≥ 5τc (Rule T2)

(τ̃0/τ0)
(τ̃0–T0)s+1 for τ̃ def= min (τ0, 5τc) ≥ T0 (Rule T3)

Keep in mind, that only the desired closed-loop time constant, τc, is the only tuning
parameter. Usually, τc is selected equal to the effective time delay.

2.4.2. SIMC rules
After the first- or second-order plus delay model is obtained the SIMC rules can be, the
model-based controller parameters can be derived:

For a first-order model
g1(s) =

k
(τ1s + 1)e

–θs (2.10)

2.4. SIMC method 7

the SIMC method results in a PI controller settings

k′c =
1
k
τ1
τc + θ

= 1
k′

1
τc + θ

(2.11)

τ
′
I = min {τ1, 4 (τc + θ)} (2.12)

In 2013, Grimholt and Skogestad, updated the SIMC rules so that a PID controller
can result from a first-order with time delay process. More specifically, the suggested
that:

τ
′
D = θ/3 (2.13)

For a second-order model

g1(s) =
1

(τ1s + 1) (τ2s + 1)e
θs (2.14)

the SIMC method results in a PID controller settings in cascade form

k′c =
1
k
τ1
τc + θ

= 1
k′

1
τc + θ

(2.15)

τ
′
I = min {τ1, 4 (τc + θ)} (2.16)

τ
′
D = τ2 (2.17)

However, the I-SIMC was proposed, which stands for Improved SIMC and sets τ′D =
θ/3. In fact, it is mentioned that when the value of τ2 is very small, the I-SIMC rule
should be used.

The settings for the second order plus time delay process apply to a PID controller in
the series form. The corresponding settings for a parallel PID controller are

kc = k′cf τI = τ
′
If τD = τ′D/f (2.18)

Normally, the tuning parameter (τc) is chosen after obtaining the effective time delay.
Therefore, one might have to guess the value of τc and iterate in order to approximate
the desired model.

8 Chapter 2. Theoretical Background

2.5. K-SIMC method
Similarly to Skogestad, Lee et al. [2013] proposed an alternative method to find the PID
controller settings. More specifically, they re-examined the SIMC rules and introduced
some improvements compared to the SIMC. Nevertheless, it should be mentioned that
the mindset behind the K-SIMC method is very close to Skogestad’s.

Suppose a model of the following form, where τi0 ’s are in descending order

g0(s) =
∏
j
(
–Tinv

j0 s + 1)
)

∏
i
(
τi0s + 1)

) eθ0s (2.19)

According to the K-SIMC method the approximations positive numerator time con-
stants are

T0s+1
τ0s+1 ≈



k =

√
1+(T0/λ)2√
1+(τ0/λ)2

for T0 ≥ τ0 or τ0 ≥ T0 ≥ λ (Rule 3a)

1+T02/(2λ)2

1+τ0T0/(2λ)2
1

τ0–T0
1+τ0T0/(2λ)2

s+1
for 5λ ≥ τ0 ≥ T0 (Rule 3b)

apply Rules 3a and 3b to 5λs+1
τ0s+1

T0s+1
5λs+1 for τ0 ≥ 5λ ≥ T0 (Rule 3c)

After the elimination of positive numerator time constants the high-order model can
be reduced to a first-order process with time delay

g1(s) =
k

(τ1s + 1)e
–θs (2.20)

τ1 = τ10 + 0.5τ220/τ10 (2.21)

θ = θ0 + τ20 (1 – 0.5τ20/τ10) +
∑
i≥3
τi0 +

∑
j
Tinv
j0 + h

2 (2.22)

or as a second-order process with time delay as:

τ1 = τ10 (2.23)

2.5. K-SIMC method 9

τ2 = τ20 + 0.5τ320/τ20 (2.24)

θ = θ0 + τ20 (1 – 0.5τ30/τ20) +
∑
i≥4
τi0 +

∑
j
Tinv
j0 + h

2 (2.25)

For a first-order model

g1(s) =
k

(τs + 1)e
–θs (2.26)

The resulting parameters for a PID controller are

k′c =
τ

λ+ θ (2.27)

τ
′
I = min {τ, 5 (λ+ θ)} (2.28)

τ
′
D = max {(θ – λ) /2, 0} (2.29)

For a second-order model

g1(s) =
k(

τ2s2 + 2ζτs + 1
)e–θs (2.30)

the SIMC method results in a PID controller settings in parallel form

kc =
τ
2/τD

k (λ+ θ) (2.31)

τI = min(2ζτ, 7.07λ) (2.32)

τD = min
(
τ

2ζ , 3.54λ
)

(2.33)

Please bear in mind, that equations 2.27-2.28 refer to the cascade form of the con-
troller while equations 2.30-2.32 refer to the ideal form. The controller parameters for the
FOPTD using the K-SIMC method will be suitably calculated for the ideal form of the
PID controller by using equations 2.18.

10 Chapter 2. Theoretical Background

2.6. Syrcos & Kookos tuning method
In 2005, Syrcos and Kookos [2005] proposed a general mathematical programming formu-
lation in order to obtain customized PID controller settings. The solved a mixed integer
nonlinear optimization problem by minimizing an objective cost function which is depen-
dent on the output and the control variables. After the examination of several cases, they
concluded that when θ ∈ [2, 5] a FOPTD can be tuned using the following rules:

kckp = 0.31 + 0.6
(1
θ′

)
(2.34)

τI
τ1

= 0.777 + 0.45θ′ (2.35)

τD
τ1

= 0.44 – 0.56
(1
θ′

)2.2
(2.36)

where

θ
′ = θ
τ1

(2.37)

The equations above refer to the ideal form of the PID controller. The results of that
specific approach were very promising for the values of the time delay considered. It
has to be noted, that the tuning rules are not universal, since the suggested settings are
restricted for a specific region of time delays. Nevertheless, many processes exhibit such
behavior. Therefore, a case study was considered and compared with the optimal and the
SIMC.

Chapter 3

Pareto Optimization

The term "Controller Optimization" refers to the selection of the optimal parameters of
the controller, which ensures that the operation of the controlled system is the optimal.
Many methods have been proposed in order to find good PID controller settings. However,
some of these approaches give insufficient results or might be very time consuming, such
as the trial and error method. The necessity to satisfy more complex criteria leads to
optimization-based design.

In the past, efforts have been made to find controllers through optimization. Namely,
not only Hall [1943] but also Hazebroek and Van der Waerden [1950] proposed that the
minimization of the integrated square error (ISE) can lead to optimal controller settings.
Later, in 1958, Balchen, was the first to introduce the minimization of the integrated
absolute error (IAE), which included the performance and robustness trade-off. In the
last two decades, influential has been the work of Shinskey [1990], Panagopoulos et al.
[2002], Skogestad (2003), Åström and Hägglund [2012], where IAE is adopted as the main
evaluation criterion in terms of performance in PID design. This approach is used also
in this work. Foss [2012] and Holene [2013] have investigated both first and second-order
processes and compared the SIMC tunings with the optimal. However, the gradients were
calculated numerically and convergence problems were stated.

Grimholt and Skogestad [2016] managed to overcome problems with the estimation of
the gradients by developing analytical expressions for them. As a result, they achieved
much better results in terms of convergence for a wider range of conditions and models.
Their approach is going to be used in this work.

3.1. Feedback system

The linear feedback system depicted in Figure 2.1 is considered. The system consists of
two components, the process (plant) G(s) and the controller K(s). Moreover, the system is
influenced by three external signals, the reference ys, the plant input disturbance du and
the plant output disturbance dy. The plant output disturbance can be also considered as
a setpoint change. Control is based on the measured signal y, while the measurements are
corrupted by the output step disturbance. The process is also influenced by the controller
through the control variable u. The difference between the measured variable and the

11

12 Chapter 3. Pareto Optimization

reference point is denoted by, e. Summing up:

• Inputs: control variable u, process input disturbance du, process output disturbance
dy.

• Output: Measured signal y.

Figure 3.1: Block diagram of the closed loop system, with controller K(s) and plant
G(s).

By determining the Laplace transforms, the following functions are obtained from the
block diagram in Figure 3.1, which describe the relations between the different variables
of the system

S(s) = 1
1 + G(s)K(s), T(s) = 1 – S(s) (3.1)

GS(s) = G(s)S(s), KS(s) = K(s)S(s) (3.2)

In this case, F is considered equal to 1 and the control actions are based from the
feedback from the error only. The (pure) system can be described by those four transfer
functions above, which are nicknamed as, The Gang of Four. In addition to that, S(s)
can be specified as the sensitivity function and T(s) as the complementary sensitivity
function.

The effect on the control error and plant input is,

–e = y – ys = S(s)dy +GS(s)du – T(s)n (3.3)

–u = KS(s)dy + T(s)du +KS(s)n (3.4)

When it comes to the controller type, the PID controller in parallel form is used,

3.1. Feedback system 13

KPID(s; p) = kp + ki/s + kds = kc =
(
1 + 1
τIs

+ τDs
)
, (3.5)

where p =
(
kp ki kd

)T (3.6)

The proportional, integral and derivative gain are represented as kp = kc, ki = kc/τI
and kd = kcτD respectively, while τI and τD are the integral and derivative times.

Grimholt and Skogestad [2016] proposed a method to optimal PID controllers for
known process models. This approach, gives Pareto-Optimal results in terms of controller
performance and robustness. Pareto-optimality can be applied in many different aca-
demic fields, such as economics, engineering and life sciences. It refers to multiobjective
problems, and means that no further improvement can be achieved in objective 1 without
sacrificing objective 2.

Objective 1

Objective 2

Infeasible solutions

Unintersting region

Figure 3.2: Two objectives Pareto optimization.

However, many issues have to be considered in the analysis and the design of control
systems, which must satisfy some basic requirements

• Stability

• Ability to follow reference signals (performance)

14 Chapter 3. Pareto Optimization

• Reduction of effects of load disturbances (performance)

• Reduction of effects of measurement noise (performance)

• Reduction of effects of model uncertainties (robustness)

In this case, optimality is represented by:

• Output performance (Objective 1)

• Robustness and input usage (Objective 2)

3.1.1. Performance
The performance of the controller is specified by considering the integrated absolute error
(IAE) when the system is subject to step disturbances.

IAE(p) =
∫ tf
0

|e(t; p)| dt (3.7)

Both plant input and output step disturbances enter the system and a weighted cost
function is chosen

J(p) = 0.5(φdy IAEdy (p) + φdu IAEdu (p)) (3.8)

In equation (2) φdy and φdu are the "weights" or the normalization factors. In general,
the normalization method can be chosen on a subjective basis. Nevertheless, it is necessary
to normalize the resulting IAEdy and IAEdu, to to be able to to get a good balance of
the two terms, compare them and evaluate which contributes more to the cost function.

In this case the normalization factors are selected, similar to Shinskey (1990), as the
inverse of the optimal IAE values for reference controllers (e.g. PI, PID) tuned for a step
change on the plant input (IAEo

dy) and output (IAEo
du) respectively.

It must be noted, that the IAE values calculated for the weighting are for optimal (e.g.
PI, PID) controllers for plant input and output step disturbances respectively. Those
controllers are required to have MS = MT = 1.59. This specific value MS = 1.59 is the
resulting MS value for a Simple Internal Control (SIMC) tuned PI controller for τc = θ
of a first order process with time delay (FOPTD) with τ ≤ 8θ. Therefore, two optimal
controllers are used to obtain the two reference IAE values, whereas a single controller K
is used to find the IAEdu and IAEdy values for the desired controller.

φdu = 1
IAEo

du
φdy = 1

IAEo
dy

(3.9)

3.1. Feedback system 15

3.1.2. Robustness
Robustness is quantified in terms of the largest sensitivity peak, MST = max(MS,MT)
(Garpinger and Hägglund, 2008). Thus,

MS = max
ω

|S(jω)| = ‖S(jω)‖∞ (3.10)

MT = max
ω

|T(jω)| = ‖T(jω)‖∞ (3.11)

where ‖·‖∞ is the H∞ norm (maximum peak as a function of frequency).

The maximum sensitivity essentially gives the largest amplification of the disturbances.
The maximum occurs at the frequency ωMS or ωMT respectively.

M
a
g
n
it
u
d
e
(d
B
)

Bode Diagram

Frequency (rad/s)

Figure 3.3: Peak of the sensitivity function, MS

The sensitivity peaks can also be related with the gain and phase margins by the
following relations

GM ≥ MS
MS – 1 GM ≥ 1 + 1

MT
(3.12)

PM ≥ 1
MS

PM ≥ 1
MT

(3.13)

In that thesis, as it was mentioned, the ideal form of the PID controller is used. The
optimal controller can have several peaks or plateaux for the magnitude of the sensitivity

16 Chapter 3. Pareto Optimization

function in the frequency domain |S(jω)|. Therefore, the optimizer may jump between
peaks during iterations. To avoid this issue, which might lead to inaccuracies, multiple
constraints are obtained by gridding the frequency response,

|S (jω)| ≤ Mub for all ω in Ω, (3.14)

where Ω is the set of selected frequency points. According to this approach, one
inequality constraint is derived for each grid frequency.

3.2. Optimization problem
Summing up, the desired optimal controller can be found by solving the following opti-
mization problem

minimize︸ ︷︷ ︸
p

J(p) = 0.5(φdy IAEdy (p) + φdu IAEdu (p)) (3.15)

subject to cS(p) = |S(jω; p)| – Mu
S
b ≤ 0 for all ω in Ω (3.16)

cT(p) = |T(jω; p)| – Mu
T
b ≤ 0 for all ω in Ω (3.17)

Mu
S
b and Mu

T
b represent the upper bound on S(s) and T(s) respectively and in most

cases it is selected as Mu
S
b = Mu

T
b = MST. If there is a trade-off between performance

and robustness, at least one of the constraints will be active.

3.3. Gradients

Consider a function f(p) which is dependent of np parameters.

∇p f(p) =
 ∂f

∂p1
∂f

∂p2
... ∂f

∂pnp

T
(3.18)

Each partial derivative or sensitivity of the function f can be approximated with the
assistance of forward finite differences

∂f
∂pi
≈ f(pi +Δpi) – f(pi))

Δpi
(3.19)

Please keep in mind, that ∇ ≡ ∇p.

3.3. Gradients 17

3.3.1. Cost function gradient
The gradient of the cost function J(p) has the following expression

∇J(p) = 0.5(φdy ∇IAEdy (p) + φdu ∇IAEdu (p)) (3.20)

Assuming that |e(t); p)| and sign {e(t)}∇e(t) are continuous, the sensitivities of IAE
can be expressed as

∇IAEdy =
∫ tf
0

sign
{
edy

}
∇edy(t)dt (3.21)

∇IAEdu =
∫ tf
0

sign {edu}∇edu(t)dt (3.22)

In addition to that, edy and edu are evaluated as

edy(s) = S(s)dy for process output disturbances (3.23)

edu(s) = GS(s)du for process input disturbances (3.24)

and the sensitivities of the errors are

∇edy = –GS(s)S(s)∇K(s)dy (3.25)

∇edu = –GS(s)GS(s)∇K(s)du (3.26)

As it is shown in equations 3.23 and 3.24 the sensitivities of the errors can be expressed
as a function of the sensitivity of the controller.

Furthermore, the ideal PID controller parameter sensitivities have the following form

∇KPID(s) = (1 1/s s)T (3.27)

Here, it should be noted, that |e(t); p)| and sign {e(t)}∇e(t) might be not continuous
in the whole time span. However, very small steps are used at the numerical integration
method which is used for the simulation and therefore this inaccuracy can be considered
negligible. Also, this method is only valid for processes with proper transfer functions. If
the transfer functions are not proper, a filter is necessary to be added to make either the
controller or the gradient transfer function proper.

18 Chapter 3. Pareto Optimization

3.3.2. Constraint gradients
The expressions for the robustness constraints are

∇cS (jω; p) = ∇|S (jω) | =
1

|S (jω)| {S
∗ (jω)∇S (jω)} for all ω in Ω (3.28)

∇cT (jω; p) = ∇|T (jω) | = 1
|T (jω)| {T

∗ (jω)∇T (jω)} for all ω in Ω (3.29)

Elaborating a little more and using the chain rule we obtain

∇S (jω) = –GS (jω) S (jω)∇K(jω) (3.30)

∇T (jω) = ∇ (1 – S (jω)) = –∇S (jω) (3.31)

Summing up, a Pareto optimal controller can be found by following the procedure
described in Table 3.1.Of course, one can adjust the algorithm in terms of his present
needs. For instance, it might be the case that the aim is to examine the performance for
different values of the time delay. Then, what should be determined, are the values of the
time delay while the robustness remains at the desired point.

Table 3.1: Creating Pareto-optimal curves.

Step Description

1: Set the process model whose optimal controller is to be found

2: Decide the controller parametrization and determine its derivative

3: Specify the time and frequency interval of the calculations

4: for MS = 1.59 find the optimal PID which minimizes J for input disturbances

5: for MS = 1.59 find the optimal PID which minimizes J for output disturbances

6: Set the weights of the objective function, J

7: Determine the desired values of of MS

8: Find the optimal PID which minimizes J for input and output disturbances

9: Create Performance vs. Robustness plots

1The asterisk (*) is used to indicate the complex conjugate.

3.4. Simulations 19

3.4. Simulations
For all the calculations, the time was selected accordingly to each process. However,
the simulations must be done until a stead-state is reached. Usually 104 steps are more
than enough. Also, the frequency "scan" interval was selected from 0.01/ θ to 100/ θ.
As the interval of the sensitivity function peak, it was selected as 1.3 < MS < 2, which
corresponds to the most common case.

In the results chapter which follow, SIMC refers to the tuning method developed by
Skogestad [2003], K-SIMC to the revisited SIMC rules which were developed by Lee et.
al. [2013] and I-SIMC to the improved SIMC which uses θ/3 as the derivative time.
Furthermore, Syrcos & Kookos refers to the methodology developed by Syrcos & Kookos
[2005] and finally Toolbox refers to the MATLAB Tuning Toolbox.

When it comes to the form of the PID controller used in the simulations, the parallel
form was selected. It has to be mentioned that in order to find the optimal controller
parameters the exact model was used. In addition, that is the case for the sensitivity peaks
too. As initial conditions, the SIMC or the K-SIMC settings for each specific controller
were used.

For all the results and the calculations MATLAB and SIMULINK were used. For
the optimization an active set method was chosen. Not only the SIMULINK model
is included in the Appendix B, but also all the codes utilized for the results. All the
calculations were conducted on an Intel Core i7 @ 1.80GHz / 8.00GB RAM computer
and the the computational time was of the order of seconds.

Chapter 4

Results and Discussion

4.1. First-order processes

Pareto optimal curves were created for first-order processes with time delay (FOPTD).
Different cases were examined. The process time constant varied while the time delay
remained constant and equal to 1. The optimal controllers were compared with those
calculated using the SIMC and K-SIMC tunings. No approximations on the models
were used. It has to be mentioned that, the K-SIMC method gives the PID controller
parameters for FOPTD only in serial form. Therefore, the same rule as in 2.18 is used in
order to find the controller parameters for the parallel form. The processes examined are
summarized in Table 4.1, which also presents the tuning parameters for MS = 1.59 .

Table 4.1: Comparison of PID controller settings with different tuning methods for
FOPTD with MS = 1.59.

Case Process J JSIMC JK–SIMC IAEo
du IAEo

dy

Optimal SIMC K-SIMC

kc ki kd kc ki kd kc ki kd

1a G (s) = e–s
(0.1s+1) 1.000 1.074 1.445 1.506 1.504 0.293 0.666 0.037 0.269 0.621 0.021 0.050 0.500 0.000

2a G (s) = e–s
(0.5s+1) 1.000 1.093 1.461 1.494 1.454 0.568 0.767 0.184 0.517 0.621 0.103 0.250 0.500 0.000

3a G (s) = e–s
(s+1) 1.013 1.085 1.416 1.557 1.419 0.856 0.756 0.294 0.829 0.622 0.207 0.500 0.500 0.000

4a G (s) = e–s
(1.5s+1) 1.035 1.115 1.441 1.583 1.327 1.157 0.776 0.413 1.139 0.621 0.311 0.75 0.500 0.000

5a G (s) = e–s
(2s+1) 1.021 1.123 1.445 1.726 1.227 1.461 0.824 0.540 1.450 0.622 0.415 1.000 0.500 0.000

6a G (s) = e–s
(10s+1) 1.304 1.717 2.188 1.608 0.494 6.411 2.040 2.599 6.411 0.931 2.032 4.649 0.808 0.000

First, it is of great interest to see the behavior of the complementary sensitivity func-
tion peak, MT, when it is compared to the sensitivity function peak, MS. A large value of
either MS or MT are indications of poor performance as well as poor robustness. Usually,

20

4.1. First-order processes 21

MS is required to be smaller than 2 and MT to be smaller than 1.3.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Sensitivty function peak, MS

0.8

1

1.2

1.4

1.6

1.8

2

C
o
m
p
le
m
e
n
t
a
r
y

S
e
n
s
it
iv
ty

fu
n
c
t
io
n

p
e
a
k
,
M

T
First-Order Processes

Process 1a
Process 2a
Process 3a
Process 4a
Process 5a
Process 6a
MS = MT

Figure 4.1: Complementary sensitivity function and sensitivity function peak compari-
son for the FOPTD examined.

It is known, that the MS is bound

MT ≤ MS + 1

and generally it is smaller than the MS. That is proven to be also the case for all
the processes investigated here. However, for constant MS, as the process time constant
increases, MT also increases which is also a sign that as the time constant increases the
sensitivity to noise is amplified.

The graphs which follow compare the performance of the controllers, derived from
those 3 methodologies, for different MS values. Clearly, there can be no tuning method-
ology or approach, which can achieve better performance than the optimal. That is
apparent in Figures 4.2– 4.7 for all the cases examined. The question here is how far from
optimality the other two PID tunings are.

22 Chapter 4. Results and Discussion

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5
P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(0.1s+ 1)

Pareto Optimal

SIMC
K-SIMC

τc = θ

λ = θ

Figure 4.2: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(0.1s+1) .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(0.5s+ 1)

Pareto Optimal

SIMC
K-SIMC

τc = θ

λ = θ

Figure 4.3: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(0.5s+1) .

4.1. First-order processes 23

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(s+ 1)

Pareto Optimal

SIMC K-SIMC

τc = θ

λ = θ

Figure 4.4: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(s+1)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(1.5s+ 1)

Pareto Optimal

SIMC K-SIMC

τc = θ

λ = θ

Figure 4.5: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(1.5s+1)

24 Chapter 4. Results and Discussion

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(2s+ 1)

Pareto Optimal

SIMC K-SIMC

τc = θ

λ = θ

Figure 4.6: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(2s+1)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−s

(10s+ 1)

Pareto Optimal

SIMC

K-SIMC
τc = θ

λ = θ

Figure 4.7: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–s

(10s+1)

4.1. First-order processes 25

The divergence of the other two tuning methods is greater for small values of the
sensitivity peak. Nonetheless, as MS increases the performance of the SIMC and K-SIMC
controllers is greatly improved. A prime example is the case 3a, where τ1/θ = 1, where
the performance of both of the other tuning methodologies give close to optimal results.
Nevertheless, for the last case examined in this section, both the methodologies fail to
give similar to optimal behavior and especially the K-SIMC tuning rules give almost twice
as worse results when compared to the optimal.

Furthermore, the SIMC provides much better performance than the K-SIMC tuning for
the majority of the values of MS which were investigated. More specifically, for the smaller
values of MS, or for the more robust controllers, the SIMC highly overpeforms the K-
SIMC. From the performance vs. robustness graphs it is apparent that for approximately
MS < 1.75 the SIMC gives more satisfactory results. On the other hand, for less robust
controllers the K-SIMC tunings can improve the performance by almost 5% in some cases,
than the SIMC. However, this advantage of the K-SIMC controllers is almost nonexistent
for some cases, such as the last case where τ1/θ = 10, where no discrepancy is present.

Moreover, something that needs to be highlighted is the interesting behavior of the
K-SIMC plots. For the more robust regions, the K-SIMC controllers completely under-
perform, even when they are compared to the SIMC controllers. That is a consequence, of
the tuning rule of the derivative time which essentially states that only when λ is smaller
than θ, the resulting controller is a PID. Even though the PI controllers are more robust
to disturbances and process noise, there is a lack of performance mainly due to the lack
of derivative action. That is plainly depicted in the graphs. The turning point, where the
K-SIMC tunings give a PID instead of a PI controller is also evident. After that specific
point, a dramatic increase of performance is displayed, and the K-SIMC controllers start
to "catch up". Eventually, the K-SIMC controllers surpass the SIMC. That is also an indi-
cation that as robustness decreases the value of τc also declines. That should be expected,
since the tuning rules suggest high τc values for more robust controllers in the trade-off
of performance. Finally, it has to be mentioned that for the K-SIMC controllers used in
case 6a, a filter was added for MS > 1.85. The average deviation of the performance of
the cases examined here summarized in Table 4.2

Table 4.2: Performance comparison of the different FOPTD examined.

Case Process PO-SIMC Variance (Avg %) PO-K-SIMC Variance (Avg %)

1a G (s) = e–s
(0.1s+1) 8.7 25.7

2a G (s) = e–s
(0.5s+1) 13.2 30.5

3a G (s) = e–s
(s+1) 10.5 27.3

4a G (s) = e–s
(1.5s+1) 10.7 27.1

5a G (s) = e–s
(2s+1) 12.4 27.0

6a G (s) = e–s
(10s+1) 48.5 84.9

When someone looks at the overall performance, the SIMC tuning rules should be the
way to go for most of robustness region. Table 4.1 shows that the controller proportional

26 Chapter 4. Results and Discussion

gain between the PO and the SIMC is almost identical while the integral time of the SIMC
controllers is slightly larger. In contrast, the PO give higher values of the derivative time.
The K-SIMC controllers are proven to be marginally more efficient for high values of the
sensitivity peak, but a choice of a K-SIMC controller can not be justified when they also
give more than twice worse performance in the whole interval examined. Please bear in
mind, for for very small λ values, a setpoint filter might be added. On the contrary, the
SIMC and the other tuning rules do not associate the controller settings with the filtering.
They suggest that first the controller performance should be seen and then decide about
the filtering.

4.2. Second-order processes
In this section, Pareto optimal controllers are found for second-order processes with time
delay. Please note, that there is no need for approximations. The PO controllers are
compared with the ones found using SIMC , and K-SIMC for different values of MS. Seven
different cases were examined, which present various combinations of, τ1/τ2 and τ1/θ.
More specifically, the cases examined here are summarized in Table 4.3.

Table 4.3: Comparison of PID controller settings with different tuning methods for
SOPTD for MS = 1.59 .

Case Process J JSIMC JK–SIMC JI–SIMC IAEo
du IAEo

dy

Optimal SIMC K-SIMC

kc ki kd kc ki kd kc ki kd

1b G (s) = e–0.7s
(s+1)(0.4s+1) 1.023 1.111 1.111 - 1.376 1.248 1.093 0.819 0.453 1.000 0.714 0.286 1.000 0.714 0.286

2b G (s) = e–0.7s
(s+1)(0.1s+1) 1.025 1.272 1.272 1.099 1.228 1.071 1.041 0.969 0.298 0.786 0.715 0.072 0.786 0.715 0.072

3b G (s) = e–0.7s
(s+1)(0.7s+1) 1.032 1.078 1.078 - 1.417 1.288 1.254 0.773 0.646 1.214 0.714 0.500 1.214 0.714 0.500

4b G (s) = e–0.7s
(1.3s+1)(0.4s+1) 1.041 1.131 1.131 - 1.385 1.199 1.297 0.833 0.570 1.214 0.714 0.371 1.214 0.714 0.371

5b G (s) = e–0.7s
(0.7s+1)(0.4s+1) 1.010 1.110 1.110 - 1.356 1.281 0.895 0.821 0.343 0.786 0.715 0.200 0.786 0.715 0.200

6b G (s) = e–2s
(s+1)(0.5s+1) 1.001 1.258 1.258 1.169 3.445 3.379 0.443 0.250 0.164 0.375 0.250 0.125 0.375 0.250 0.125

7b G (s) = e–0.9s
(1.5s+1)(1.2s+1) 1.049 1.090 1.090 - 1.849 1.626 1.508 0.595 1.184 1.499 0.555 1.000 1.499 0.555 1.000

Again, it is interesting to examine the behavior of the complementary sensitivity func-
tion. Once more, MT does not surpass the value of MS for all the cases examined here.
MT remains almost constant for the majority of the robustness region presented. Never-
theless, for larger values of MS, there is an apparent rise of the MT.

4.2. Second-order processes 27

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Sensitivty function peak, MS

0.8

1

1.2

1.4

1.6

1.8

2

C
o
m
p
le
m
e
n
t
a
r
y

S
e
n
s
it
iv
ty

fu
n
c
t
io
n

p
e
a
k
,
M

T

Second-Order Processes

Process 1b
Process 2b
Process 3b
Process 4b
Process 5b
Process 6b
Process 7b
MS = MT

Figure 4.8: Complementary sensitivity function and sensitivity function peak compari-
son for the FOPTD examined.

The performance vs. robustness graphs follow. Figures 4.9 up to 4.15 show clearly
that for larger values of the sensitivity peak the SIMC and the K-SIMC controllers provide
a closer to optimal performance. Nevertheless, what is impressive, is that the tuning rules
of the SIMC and the K-SIMC give almost the same controllers. That is clearly observed
in Table 4.3, where the tuning parameters are the same up to the third decimal.

More specifically, this had to do more on the K-SIMC rules for the τD and τI. For al-
most every K-SIMC controller in the the second-order performance vs. robustness figures,
the value of λ led to the use of:

τI = 2ζτ and τD = τ

2ζ

Those rules give the same tunings as the SIMC rules when they are used in the
ideal form. The proportional gain of the controller is dependent on the derivative time.
Therefore, all three controller parameters are almost the same. In the MS region of
interest, λ is still large enough that the alternative rules for the calculation of the integral
and derivative time for the K-SIMC method are not used.

28 Chapter 4. Results and Discussion

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2
P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.7s

(s+ 1) (0.4s+ 1)

Pareto Optimal

SIMC

K-SIMC

τc = θ

λ = θ

Figure 4.9: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(s+1)(0.4s+1) .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.7s

(s+ 1) (0.1s+ 1)

Pareto Optimal

SIMC

K-SIMC

I-SIMC

τc = θ

λ = θ
τc = θ

Figure 4.10: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(s+1)(0.1s+1) .

4.2. Second-order processes 29

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.7s

(s+ 1) (0.7s+ 1)

Pareto Optimal

SIMC

K-SIMC

τc = θ

λ = θ

Figure 4.11: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(s+1)(0.7s+1) .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.7s

(1.3s+ 1) (0.4s+ 1)

Pareto Optimal

SIMC

K-SIMC

τc = θ

λ = θ

Figure 4.12: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(1.3s+1)(0.4s+1) .

30 Chapter 4. Results and Discussion

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2
P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.7s

(0.7s+ 1) (0.4s+ 1)

Pareto Optimal

SIMC

K-SIMC

τc = θ

λ = θ

Figure 4.13: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.7s

(0.7s+1)(0.4s+1) .

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−2s

(s+ 1) (0.5s+ 1)

Pareto Optimal

SIMC

K-SIMC

I-SIMC

τc = θ

λ = θ
τc = θ

Figure 4.14: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–2s

(s+1)(0.5s+1) .

4.2. Second-order processes 31

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
e−0.9s

(1.5s+ 1) (1.2s+ 1)

Pareto Optimal

SIMC

K-SIMC

τc = θ

λ = θ

Figure 4.15: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = e–0.9s

(1.5s+1)(1.2s+1) .

Looking more thoroughly in Table 4.4, the K-SIMC tuning settings cause a slim im-
provement in terms of performance for most of the cases, when they are compared to
the SIMC. However, that difference could be considered negligible. The PO controllers
exhibit almost similar kc with the other two tuning approaches. Alike the FOPTD, the
SIMC and the K-SIMC tunings give larger values of the integral time, while the opposite
happens with the derivative time, where the optimal settings consist of larger τD.

As far as the optimality of the tunings investigated is concerned, both tuning method-
ologies present an inferior divergence from the optimal controllers, when compared to the
FOPTD. Notable are the cases 3b and 7b, where less than 8% difference is observed from
the performance of the PO controllers. These are the only cases, where τ2 is smaller than
θ. On the other hand, when time delay is significantly larger than the time constant τ2.
Then, the improved, the I-SIMC tuning comes into play. The I-SIMC settings propose an
alternative for the derivative time. Instead of using, τD = τ2, the derivative time is se-
lected equal to θ/3. A great example which showcases the betterment of the performance
is case 2. There the I-SIMC controller provides almost 20 % superior results. Another
instance, where the I-SIMC is extremely useful is case 6b, where almost 10 % improve-
ment is observed. Table 4.4 presents the average deviation of the different methods, for
the processes investigated in this section.

32 Chapter 4. Results and Discussion

Table 4.4: Performance comparison of the different SOPTD examined.

Case Process PO-SIMC Variance (Avg %) PO-K-SIMC Variance (Avg %) PO-I-SIMC Variance (Avg %)

1b G (s) = e–0.7s
(s+1)(0.4s+1) 12.6 12.3 -

2b G (s) = e–0.7s
(s+1)(0.1s+1) 29.7 29.5 12.2

3b G (s) = e–0.7s
(s+1)(0.7s+1) 7.7 7.4 -

4b G (s) = e–0.7s
(1.3s+1)(0.4s+1) 12.4 12.0 -

5b G (s) = e–0.7s
(0.7s+1)(0.4s+1) 15.2 15.0 -

6b G (s) = e–2s
(s+1)(0.5s+1) 33.8 33.8 24.8

7b G (s) = e–0.9s
(1.5s+1)(1.2s+1) 6.5 6.5 -

4.3. Model reduction of higher-order models

Higher order models are introduced. The models are approximated both as a FOPTD
and a SOPTD using the Half-rule and the K-SIMC model reduction rules. The objective
of this section is to decide which approximations give controllers, which are closer to the
optimal performance-wise.

First, the following process is examined

G (s) = (–0.5s + 1) (–0.1s + 1)
(5s + 1) (3s + 1) (s + 1) (0.5s + 1) e

–s (4.1)

The model has only negative numerator time constants. Using the Half-Rule, the
process can be approximated as

G′ (s) = 1
6.5s + 1 e–4.6s (4.2)

as a FOPTD or as a SOPTD:

G′ (s) = 1
(5s + 1) (3.5s + 1) e

–2.6s (4.3)

and by using the K-SIMC approximations the FOPTD process, which is derived is

G′ (s) = 1
5.9s + 1 e–5.2s (4.4)

4.3. Model reduction of higher-order models 33

and the SOPTD is as follows

G′ (s) = 1
(5s + 1) (3.167s + 1) e

–2.933s (4.5)

Figure 4.16 exhibits the performance of the PID settings derived from the different
approximations for the desired values of MS . Please, bear in mind that the tunings were
applied to the exact model.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

3

3.5

4

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
(−0.5s+ 1) (−0.1s+ 1)

(5s+ 1) (3s+ 1) (s+ 1) (0.5s+ 1)
e
−s

Optimal
1st Order SIMC
1st Order K-SIMC
2nd Order SIMC
2nd Order K-SIMC

Figure 4.16: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = (–0.5s+1)(–0.1s+1)

(5s+1)(3s+1)(s+1)(0.5s+1) e
–s. First and second-order approxima-

tions are presented.

Looking more closely at the various approximations (Equations 4.2-4.5), two obser-
vations can be made. As far as the FOPTD are concerned, the mindset behind the
approximation rules is similar. Nonetheless, equation shows that Skogestad preferred to
add more on the time constant instead of the time delay, while Lee et al. preferred to

34 Chapter 4. Results and Discussion

add more on the time delay instead of the time constant. In addition to that, the Half-
rule proposes a larger τ2 than time delay while the K-SIMC approximations suggest the
opposite.

The lack of the derivative term for the first-order K-SIMC approximation is obvious.
Overall the K-SIMC showcases an almost 80 % deviation from the optimal performance,
while the first-order "half-ruled" tunings achieve superior results performance-wise. There-
fore, Skogestad’s approach should be considered more efficient.

On the other hand, the second-order approximations behave significantly closer to op-
timality. Although, the "half-ruled" approximations perform better, none of them presents
a deviation larger than 11 % from the optimal. All in all, the less approximations are
made, of course, the more accurate the process model is. Hence, closer to optimal con-
troller settings are obtained.

Next, a process model with only positive numerator time constants is investigated

G (s) = (20s + 1) (14s + 1)
(42s + 1) (5s + 1) (2s + 1) (s + 1) e

–s (4.6)

Now, the approximation is a function of τc. Therefore the model can not be determined
beforehand. In such circumstances the procedure which is to be done is:

For a given τc

1. Approximate the correct model

2. Find the PID controller

3. Find the corresponding MS

This procedure is more computationally expensive since both the model and the MS
should be evaluated. Again, the performance is compared for the different tuning methods.

Similarly to the previous process, the exact process which was approximated as second-
order processes give better controllers compared to the first-order ones. Due to the
fact that the resulting τc values are relatively small, Rule T2 is used for the fraction
(42s + 1) / (20s + 1) while Rule T1 is used the fraction (14s + 1) / (5s + 1). The K-SIMC
approximations exhibit a non-smooth behavior towards the larger MS values owing to an
approximation rule change. Rule 3a is almost explicitly used for the approximations while
for larger MS Rule 3c is suitably selected.

Once again, a critical point for the first-order K-SIMC controller behavior is the point
where λ = θ and instead of a PI controller, the rules suggest a PID controller. Moreover,
while the first-order SIMC controllers result in more advantageous tunings compared to

4.4. Process model uncertainty 35

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Robustness, MS

0.5

1

1.5

2

2.5

3

3.5

4

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

G (s) =
(20s+ 1) (14s+ 1)

(42s+ 1) (5s+ 1) (2s+ 1) (s+ 1)
e
−s

Optimal
1st Order SIMC
1st Order K-SIMC
2nd Order SIMC
2nd Order K-SIMC

Figure 4.17: Cost function J for difference constraint values, using ideal PID controllers
for the process G (s) = (20s+1)(14s+1)

(42s+1)(5s+1)(2s+1)(s+1) e
–s. First and second-order approxima-

tions are presented.

the equivalent K-SIMC, the settings derived from the approximated second-order K-SIMC
model perform slightly better compared to the respective SIMC.

Overall, the divergence from optimality for all the approximations for the "positive-
numerator-time- constant" process is substantial. More specifically, the average the second-
order approximations for the process 4.1 is around 11 % while the same figure for the
process 4.6 for the second-order approximations is almost 40 %. Like-wise, a similar con-
clusion can be drawn for the first-order processes. The performance of the FOPTD is
almost twice as poor for the process 4.6 when compared to the respective ones for the
process 4.1. More approximations add more uncertainty and hence more deviation from
the optimal performance.

4.4. Process model uncertainty
So far in this work, the process model was assumed beforehand. Hence, all the results
were based on a perfect model. Nonetheless, in practice it is impossible to have such a
model. Usually in industry, bump tests are performed and there is always the presence
of model uncertainty. Process gain or time constants can deviate up to 100 % from the
actual value. For instance, if a time constant is assumed to be equal to 1, there is also a
strong possibility that it might be either 0.5 or 2 too. Having into the mind and analyzing

36 Chapter 4. Results and Discussion

the results above, it seemed interesting to see how sensitive are the methods to model
error. A process model was assumed:

G(s) = e–s
(8s + 1) (4.7)

and for MS = 1.59 the Pareto-Optimal, SIMC and K-SIMC parameters were found
and they are summarized in Table 4.5 :

Table 4.5: PID controller settings for the process 4.7 for MS = 1.59.

Method PID Controller Settings

kc ki kd GM PM

Pareto-Optimal 5.170 1.713 2.084 2.80 49.7

SIMC 5.175 0.757 1.640 2.87 63.1

K-SIMC 3.792 0.684 0 3.23 56.1

While, the PO and the SIMC give PID controllers, the K-SIMC method gives a PI
controller. The performance will benefit from the presence of the derivative action. How-
ever, on the other hand, the PID controllers will be more sensitive to disturbances and
noises, which is a direct consequence of the direct changes happening in the measured
process variable. The controllers above were tested to 7 other process models, which are
listed in the Table 4.6.

Table 4.6: Cases considered to evaluate the performance of the controllers in Table 4.5.

Process Model

G(s) = 1
(5s+1) e

–s

G(s) = 1
(11s+1) e

–s

G(s) = 2
(5s+1) e

–s

G(s) = 1
(5s+1) e

–2s

G(s) = 1
(5s+1)(s+1) e

–s

G(s) = (s+1)
(5s+1) e

–s

G(s) = (–s+1)
(5s+1) e

–s

4.4. Process model uncertainty 37

As it is observed, the time constant, process gain and time delay is altered. More-
over, processes with zeros, both LHP and RHP are introduced. Although, the processes
might not cover every case, they can give an indication on how the various methodologies
could perform. An input and an output step disturbance was added at t=0 and t=20
respectively. It is expected that the PI controller can handle a wider variety of process,
trading-off the worse performance when compared to the PID for the stable systems. The
input and output responses of the systems are displayed in Figures 4.18-4.24.

G(s) = e–s
(8s+1)

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1

-0.5

0

0.5

1

1.5

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1.5

-1

-0.5

0

0.5

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.18: Input and Output responses for step input and output disturbances for the
process G(s) = e–s

(8s+1) .

As it was anticipated, the PO controller outperforms the SIMC and the K-SIMC
controllers. The K-SIMC settings result in slower response, which is due to the lack of
derivative action of the controller. In Figure 4.19 and 4.20 the process time constant is
changed, and once again the optimal and the SIMC give sufficient controllers performance-
wise even though the response is more oscillatory. Although the K-SIMC tunings exhibit
a slower responses, clearly seen in Figure 4.19, they can be characterized acceptable.

What might come to no surprise are the input and output responses when the process
gain or the time delay is doubled while there is also a change in the time constant. Figures
4.21 and 4.22 clearly show that only the PI K-SIMC controller results in a stable system.
The lack of the derivative term causes the system to be less sensitive in the trade-off of
performance. Probably, similar results would have been derived if a SIMC PI controller
was used.

38 Chapter 4. Results and Discussion

G(s) = e–s
(5s+1)

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1

-0.5

0

0.5

1

1.5
O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1.5

-1

-0.5

0

0.5

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.19: Input and Output responses for step input and output disturbances for the
process G(s) = e–s

(5s+1) .

G(s) = e–s
(11s+1)

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1

-0.5

0

0.5

1

1.5

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1.5

-1

-0.5

0

0.5

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.20: Input and Output responses for step input and output disturbances for the
process G(s) = e–s

(11s+1) .

4.4. Process model uncertainty 39

G(s) = 2
(5s+1) e

–s

0 5 10 15 20 25 30 35 40 45 50
Time, t

-20

-10

0

10

20

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-20

-10

0

10

20

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.21: Input and Output responses for step input and output disturbances for the
process G(s) = 2

(5s+1) e
–s .

G(s) = 1
(5s+1) e

–2s

0 5 10 15 20 25 30 35 40 45 50
Time, t

-20

-10

0

10

20

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-20

-10

0

10

20

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.22: Input and Output responses for step input and output disturbances for the
process G(s) = 1

(5s+1) e
–2s .

40 Chapter 4. Results and Discussion

G(s) = 1
(5s+1)(s+1) e

–s

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1

0

1
O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-1

0

1

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.23: Input and Output responses for step input and output disturbances for the
process G(s) = 1

(5s+1)(s+1) e
–s .

G(s) = (s+1)
(5s+1) e

–s

0 5 10 15 20 25 30 35 40 45 50
Time, t

-2

-1

0

1

2

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-2

-1

0

1

2

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.24: Input and Output responses for step input and output disturbances for the
process G(s) = (s+1)

(5s+1) e
–s .

4.4. Process model uncertainty 41

(–s+1)
(5s+1) e

–s

0 5 10 15 20 25 30 35 40 45 50
Time, t

-50

0

50

O
u
t
p
u
t
s
,
y

Optimal
SIMC
K-SIMC

0 5 10 15 20 25 30 35 40 45 50
Time, t

-50

0

50

In
p
u
t
s
,
u

Optimal
SIMC
K-SIMC

Figure 4.25: Input and Output responses for step input and output disturbances for the
process (–s+1)

(5s+1) e
–s .

Furthermore, Table 4.5 also shows that the optimal and the SIMC controllers have
significant higher gain too. So far in the analysis which has been done, the optimal and
the SIMC tunings have almost identical proportional gain values. In addition to that, the
SIMC rule suggests that the higher the process gain or the dead time of the process, the
smaller the proportional term should be. Therefore, a suitable controller for those two
cases here, should have had at least smaller proportional gain. All in all, the PO settings
result in quicker oscillatory response compared to the SIMC. That can be attributed to
the fact that, the PO controller has significantly larger integral gain or the integral time
is less than half of the respective SIMC. To the existing knowledge, more integral actions
tends to produce oscillatory responses and that is also observed here. That causes the
system to be more sensitive, accompanied by sensitivity added by the presence of higher
derivative action.

All of the tunings perform sufficiently in the SOPTD depicted in Figure 4.22 and the
PO parameters settle the fastest. Nonetheless, this is not the case when zeros are added.
It is known that negative values of the poles of the closed-loop characteristic equation can
guarantee stability of a feedback system. Positive roots of the characteristic equations
are present in the final two cases of this section. First, a LHP zero is introduced. The
systems are unstable using the PO and the SIMC settings. But, on the other hand, the
PI controller manages to make the system reach a steady-state, although there are steep
changes in the measured variable. The presence of a RHP zero also makes the optimal
and the SIMC systems to go unstable, which is also the case for the K-SIMC controller.
Those results might be expected since the control of processes with zeros is a different
story.

42 Chapter 4. Results and Discussion

4.5. Other tuning methods

There is an abundance of PID tuning recipes which has been proposed in the literature. In
this section, two of them are examined. The first one was proposed by Syrcos & Kookos,
who solved an optimization problem to find customized PID settings and proposed rules
to tune an ideal PID controller. Secondly, the Matlab Toolbox is able to propose the
PID tuning parameters, which provide a balance between performance and robustness.
For the former method a first-order process is investigated while for latter both first and
second-order processes are tested.

4.5.1. Syrcos & Kookos tuning method
In this section, the PO the SIMC controllers will be compared to the ones derived form
the approach, which was proposed by Syrcos & Kookos.

A first-order process with time delay is considered:

G(s) = e–θs
(0.5s + 1) (4.8)

Now, there is no tuning parameter (τc or λ). Hence, first the time delay is scanned
and the tuning parameters are obtained. Then, for the resulting PID settings the MS
values are calculated and for the same MS values the SIMC controller tunings are found.

0.1 0.15 0.2 0.25
Process time constant, τ1 / θ

1.7

1.75

1.8

1.85

1.9

1.95

2

S
e
n
si
ti
v
ty

fu
n
c
ti
o
n

p
e
a
k
,
M

S

Figure 4.26: Sensitivity peak for different process time constants using Syrcos & Kookos
method.

The results show that the obtained MS ranges around 1.83 which is a reasonable ro-
bustness value. The PO optimal settings provide slightly higher gain and derivative time
values to controller while the integral time is similar to the other two tuning methodolo-
gies. The performance of the different tunings is represented in Figure 4.27, and shows
that for larger values of the time delay Syrcos & Kookos approach, actually performs
better than the SIMC while SIMC gives superior results for smaller values of the time
delay. Overall, both of them, have around 9 % deviation in terms of performance from
the optimal. .

0.1 0.15 0.2 0.25
Process time constant, τ1 / θ

0.85

0.9

0.95

1

1.05

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

Pareto Optimal

SIMC

Syrcos & Kookos

Figure 4.27: Cost function for different different robustness constraints using Syrcos &
Kookos method.

Moreover, it is of great importance to calculate the frequency margins of the systems.
Namely, the gain margin (GM), the phase margin (PM) and the delay margin (DM). All
the derived settings give gain, phase and delay margins which are satisfactory. In general,
a gain margin more than 2 is sufficient and in the case of phase margin, a value larger
than 30 degrees is required. However, what is the most interesting in Figure 4.29 is the
significantly, more than 20 %, larger delay margin that Syrcos & Kookos tunings provide,
and that might be useful for cases where uncertainty is present.

44 Chapter 4. Results and Discussion

0.1
0.15

0.2
0.25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0.3

0.4

0.5

0.6

kc

S
yrco

s &
 K

o
o

ko
s

S
IM

C
O

p
tim

al

0.1
0.15

0.2
0.25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0.1

0.2

0.3

0.4

0.5

ki

S
yrco

s &
 K

o
o

ko
s

S
IM

C
O

p
tim

al

0.1
0.15

0.2
0.25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0

0.1

0.2

0.3

kd

S
yrco

s &
 K

o
o

ko
s

S
IM

C
O

p
tim

al

Figure
4.28:

R
esulting

PID
controller

settings
m
ethod

for
different

process
tim

e
constants

using
Syrcos

&
K
ookos

m
ethod.

C
om

-
parison

w
ith

idealPID
,SIM

C
and

PO
controllers.

4.5. Other tuning methods 45

0.
1

0.
15

0.
2

0.
25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

2

2.
1

2.
2

2.
3

2.
4

2.
5

GM

S
yr

co
s

&
 K

o
o

ko
s

S
IM

C
O

p
ti

m
al

0.
1

0.
15

0.
2

0.
25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

5055606570

PM,degrees

S
yr

co
s

&
 K

o
o

ko
s

S
IM

C
O

p
ti

m
al

0.
1

0.
15

0.
2

0.
25

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

0246810

DM

S
yr

co
s

&
 K

o
o

ko
s

S
IM

C
O

p
ti

m
al

Fi
gu

re
4.
29
:
Sy

st
em

M
ar
gi
ns

fo
r
di
ffe

re
nt

pr
oc
es
s
tim

e
co
ns
ta
nt
s
us
in
g
Sy

rc
os

&
K
oo

ko
s
m
et
ho

d.
C
om

pa
ris

on
w
ith

id
ea
lP

ID
,

SI
M
C

an
d
PO

co
nt
ro
lle
rs
.

46 Chapter 4. Results and Discussion

4.5.2. MATLAB Tuning Toolbox
MATLAB is able to automatically tune a controller for a given process. Taking advantage
of the MATLAB Tuning Toolbox, balanced controllers in terms of performance and ro-
bustness are obtained. Here, ideal PID controllers are requested. The algorithm which is
being used is the pidtune algorithm. Nevertheless, it is possible to manually determine
the attitude of the controller (more aggressive or more robust).

First-order processes

Here, a first-order process with time delay is considered.

G(s) = e–θs
(s + 1) for θ ∈ [0.1, 10] (4.9)

where θ is the time delay.

The MATLAB Tuning Toolbox settings were found for θ ∈ [0.1, 10]. Then, the
resulting MS values are calculated. For the same MS values the SIMC and Pareto Optimal
settings are found and the controllers are compared performance-wise.

1 2 3 4 5 6 7 8 9 10
Process time constant, τ1 / θ

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

S
e
n
si
ti
v
ty

fu
n
c
ti
o
n

p
e
a
k
,
M

S

Figure 4.30: Sensitivity peak for different process time constants using the MATLAB
Tuning Toolbox for a FOPTD.

4.5. Other tuning methods 47

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

0123
kc

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

02468

ki

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

0

0.
1

0.
2

0.
3

0.
4

0.
5

kd

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

Fi
gu

re
4.
31
:
R
es
ul
tin

g
co
nt
ro
lle
r
se
tt
in
gs

fo
r
di
ffe

re
nt

pr
oc
es
s
tim

e
co
ns
ta
nt
s
us
in
g
th
e
M
AT

LA
B

Tu
ni
ng

To
ol
bo

x
fo
r
a
FO

PT
D
.

48 Chapter 4. Results and Discussion

From Figure 4.31 it is clear that the tuning parameters are not consistent or do not
present a smooth behavior. Remarkable fluctuations in both kc and kd are apparent.
Similar to the previous method discussed, kc increases as θ decreases with an almost
steady rate, which for the Syrcos and & Kookos method could be characterized as linear.
Furthermore, even though for small values of the time delay a PI controller is obtained
for θ for values close to θ = 1, there is a considerable increase in the derivative gain. The
reasons why that happens are not yet clear. However, it seems that for the intermediate
values of the time delay the Toolbox suggests that the derivative term should exist. For
very small or for very large values the derivative time is almost zero. Something that
needs to be mentioned is the fact that the tuning obtained using the MATLAB Toolbox
has also to do with the version of the MATLAB software. For instance, the controllers
derived from the 2015 version of MATLAB give controllers with significantly higher MS
values. That probably has to do with the updates that are implemented to the software.
Here, MATLAB 2014b was used.

The varying values of the PI or PID settings cause the sensitivity peak also to showcase
a similar behavior. MS fluctuates for high dead times again, but for the smaller values,
the MS diminishes and very robust controllers are obtained. That might be surprising
because someone might have expected to see a more safe approach to higher dead times.

1 2 3 4 5 6 7 8 9 10
Process time constant, τ1 / θ

0.5

1

1.5

2

2.5

3

P
e
rf
o
rm

a
n
c
e
,
J
(c
)

Pareto Optimal

SIMC
Toolbox

Figure 4.32: Cost function for different process time constants using the MATLAB Tun-
ing Toolbox for a FOPTD.

The Performance vs. Robustness plots in the previous sections show that the difference
of the cost function in the region of smaller MS values is larger for a tuning method when
compared to the optimal. The Matlab Tuning Toolbox gives controllers with low values
of the MS for small time delays. The varying MS is translated also to the performance vs.
robustness plots, in Figure 4.32. The SIMC tunings confirm the close to optimal behavior,
which was demonstrated in the different cases which were investigated in the first section
of the results. On the other hand, the Toolbox seems to noticeably give worse performance
even when compared to the SIMC. That has to do, with the absence of derivative action
of the controller and the substantially smaller proportional gain. When the value of the
dead time decreases, that divergence from optimality is enhanced for both the other tuning
approaches. That is not surprising at all, since for all the first and second-order processes
examined so far, the deviation from the optimal performance was profound in the smaller
values of the sensitivity peak. Overall, the PID Toolbox tunings presented almost 67 %
inferior results when compared to the PO controllers, while the same percentage for the
SIMC was considerably smaller.

All of the tunings, provide controllers with sufficient gain and phase margins while
the delay margin dramatically diminishes as θ decreases. That essentially states that for
the larger values of the time delay, even more time delay can be handled until the system
goes unstable.

The most important part of the system margins graph is the Phase Margin plot. In
the case of the MATLAB Toolbox, the phase margin does not change. It remains for the
whole time delay interval at the same value, which is 60 degrees. Therefore, that is an
indications which shows how the Toolbox chooses the controller parameters. MATLAB
essentially states that balance means that the Phase Margin is 60 degrees! MATLAB
is always trying to tune the controller from the "safe" side. It prefers to find a robust
controller instead of specifying a degree of performance. That is probably the case for
the SIMC tuning rules, in which sufficient margins values are also observed. Moreover, it
should not be forgotten that Toolbox has two more options in terms of how the tuning of
the controller is going to be done. First, the number of the open-loop unstable poles can
be specified. Secondly, one can choose the type of the tuning, such as reference-tracking,
disturbance rejection etc. Here, the default-balanced option is chosen, since the desired
controller is one which has sufficient performance with acceptable robustness.

50 Chapter 4. Results and Discussion

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0 5 10 15 20
GM

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

40 50 60 70 80 90

PM, degrees

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

1
2

3
4

5
6

7
8

9
10

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0 5 10 15 20

DM

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

Figure
4.33:

System
M
argins

for
different

process
tim

e
constants

using
the

M
AT

LA
B

Tuning
Toolbox

for
a
FO

PT
D
.C

om
parison

w
ith

idealPID
,SIM

C
and

PO
controllers.

Second-order processes

In addition to that, the a SOPTD is considered

G(s) = e–θs
(2s + 1) (s + 1) for θ ∈ [0.1, 10] (4.10)

As it mentioned before, many processes can be described by second-order model.
Therefore, it is of an equal interest to the FOPTD to observe the performance of the
MATLAB Toolbox for the different time delays.

2 4 6 8 10 12 14 16 18 20
Process time constant, τ1 / θ

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

S
e
n
si
ti
v
ty

fu
n
c
ti
o
n

p
e
a
k
,
M

S

Figure 4.34: Sensitivity peak for different process time constants using the MATLAB
Tuning Toolbox for a SOPTD.

As for the SOPTD, the results bear some resemblance to the ones derived from the
FOPTD. The time constants of the process remained the same while θ varied. Figure 4.36
exhibits the PO, the SIMC and the MATLAB Toolbox tuning parameters. It is easily
observable that although the the optimal and the SIMC tuning for kc is almost identical,
MATLAB essentially suggests that the gain of the controller should remain constant for
small time delays. In addition to that, the divergence of both ki and kd is substantial.
Something that needs to be highlighted tho, is that for a second-order process with time

52 Chapter 4. Results and Discussion

2 4 6 8 10 12 14 16 18 20
Process time constant, τ1 / θ

0

0.5

1

1.5

2

2.5

3

3.5

4
P
e
rf
o
rm

a
n
c
e
,
J
(c
)

Pareto Optimal

SIMC
Toolbox

Figure 4.35: Cost function for different process time constants using the MATLAB Tun-
ing Toolbox for a SOPTD. Comparison with ideal PID, SIMC and PO controllers.

delay in general, the MATLAB always adds the derivative action to the controller, which
again limited compared to the PO and the SIMC.

Once more, small dead times result in tunings which give very robust controllers. The
addition of the derivative action indeed improves the performance of the controller as it
can clearly be seen from the performance graph. Although, the τ1/θ range is larger again
the overall performance deviation from the optimal remains almost the same. That is not
the case for the SIMC, since the performance deteriorates. That is an direct consequence
of the fact that the span, that MS is at the very robust region, is larger.

All the margins guarantee sufficient stability. Similar to the FOPTD, the MATLAB
Toolbox chooses again the phase margin as the tuning criterion. For all the cases, the
phase margin is set to 60 degrees. Therefore, the Toolbox again prefers to design a robust
controller instead of a more aggressive one. One interesting point, is the tendency of the
Toolbox controllers have huge GM for small dead times. The time delay margin decreases
as the time delay decreases and all three tunings present a similar behavior in terms of
how much delay can be added to the system.

4.5. Other tuning methods 53

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

012345

kc

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

0123

ki

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1
/
θ

0123

kd

T
o

o
lb

o
x

S
IM

C
O

p
ti

m
al

Fi
gu

re
4.
36
:
R
es
ul
tin

g
co
nt
ro
lle
r
se
tt
in
gs

fo
r
di
ffe

re
nt

pr
oc
es
s
tim

e
co
ns
ta
nt
s
us
in
g
th
e
M
AT

LA
B

Tu
ni
ng

To
ol
bo

x
fo
r
a
SO

PT
D
.

C
om

pa
ris

on
w
ith

id
ea
lP

ID
,S

IM
C

an
d
PO

co
nt
ro
lle
rs
.

54 Chapter 4. Results and Discussion

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0 20 40 60
GM

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

40 50 60 70 80 90

PM, degrees

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

2
4

6
8

10
12

14
16

18
20

P
r
o
c
e
s
s
t
im

e
c
o
n
s
t
a
n
t
,
τ
1 /
θ

0 5 10 15 20

DM

T
o

o
lb

o
x

S
IM

C
O

p
tim

al

Figure
4.37:

System
M
argins

for
different

process
tim

e
constants

using
the

M
AT

LA
B

Tuning
Toolbox

for
a
SO

PT
D
.C

om
parison

w
ith

idealPID
,SIM

C
and

PO
controllers.

4.6. Case study: The thermal/optical plant uDAQ28/LT 55

4.6. Case study: The thermal/optical plant uDAQ28/LT

4.6.1. Introduction to the plant

So far in this work, many processes were examined. However, what might be missing,
is a practical example to be able to concretely observe the performance of the different
controller tunings. In such a way, a case study is investigated: The thermal/optical plant
uDAQ28/LT. The plant is depicted in Figure 4.38

Figure 4.38: The thermal/optical plant uDAQ28/LT.

The thermal/optical plant is widely used for teaching mainly purposes in various
universities around the world 2. It has has a bulb and two LED’s, which are sources of
heat and light and a fan, which is used to decrease the temperature. A simplified scheme
of the plant is shown in Figure 4.39.

2The uDAQ28/LT thermal/optical plant was developed at the Faculty of Electrical Engineering
and Information Technology in Bratislava in cooperation with the company Digicon. Several universi-
ties use it at their laboratories for teaching purposes. Namely, some of them are the Fern Universität in
Hagen, the University of Split, the University of Ancona and the NTNU.

56 Chapter 4. Results and Discussion

LED LED

Sensors

Fan

Figure 4.39: Sketch of the uDAQ28/LT thermal/optical plant.

The plant has 3 process inputs u and 2 process outputs y. Some of them have to
do with the temperature manipulation and some of them with the control of the light
intensity. The inputs and the outputs of the plant are summarized in 4.7 and 4.8

Table 4.7: Thermal/optical plant uDAQ28/LT inputs

Input Description Range

u1 Bulb voltage (heat & light source) 0-5 V

u2 Fan voltage (heat source) 0-5 V

u2 LED (diode) (light source) 0-5 V

Table 4.8: Thermal/optical plant uDAQ28/LT outputs

Output Description Unit

y1 Temperature measurement ◦C

y2 Light intensity measurement Not known 3

3The signal from the photodiode, which is used to measure the light intensity is scaled in the hard-
ware.

4.6. Case study: The thermal/optical plant uDAQ28/LT 57

As it is shown in Figure 4.39, the plant has:

• A bulb, which is used as a heat and light source.

• Two LED’s which although give off little heat they are primarily a light source.

• A fan which is used to lower the temperature of the system.

Having that into consideration, there are two measurements: The temperature and
the light intensity. Moreover, filtered measurements of the temperature and the light
intensity are also supported and hence the user can take advantage of them to improve
the control.

Since, the aim of this work is to test different tuning methodologies, a detailed analysis
of the MIMO system is not required. Grimstad has already done such analysis [2009].
For the purposes of this thesis, only the bulb is going to be active during the experiment.
The resulting output measurement will be the temperature.

There are two ways that heat is transferred in this case. First and foremost, through
radiation, which is a direct result of the motion of charged particles. Besides radiation,
heat is also transferred by convection. The temperature of the air between the bulb and
the sensor starts to increase when the bulb turns on. After the while, hot air molecules
reach the sensor and through that the amount of heat transferred increases. Having that
in mind, the goal is to be able to efficiently control the plant using the different approaches.
Nonetheless, first, the model of the plant must be found.

4.6.2. Model Identification
The model parameters for a process are usually obtained from a step response experiment.
Although, this is probably one of the first things that someone learns in a dynamics course
and it might also be not the most effective method, it is simple to use. For "lag" dominated
processes, which essentially means that τ1 > 8θ, it might take a really long time for a
process to settle and reach an almost constant value. On that occasion, an option is to
approximate it as an integrating process

ke–θs
τ1s + 1 ≈

k′e–θs
s (4.11)

where, k′ def= k/τ1.
The reasoning behind that, is that the individual values of the time constant τ1 and

the gain k are not very important for the controller design. Having that in mind, the
process of the model identification follows.

Figure 4.40 shows how k′ and = theta can be obtained from an open-loop experiment:
The reasoning behind that is that the individual values of the time constant τ1 and

the gain k are not very important for the controller design. On the other hand, what
is extremely significant is their ratio k′, which essentially decides the tuning parameters
according to the SIMC and the K-SIMC rules.

58 Chapter 4. Results and Discussion

Δy

θ

Δu

Δt

Slope, k’ = Δy
Δu Δt y(t)

Figure 4.40: Open-loop step response to obtain the parameters k′ and θ for an integrat-
ing process.

At t=0, the bulb is imposed to a step. As a result, light is emitted and the temperature
starts to increase. The unfiltered temperature is measured and the sampling time was
set to 0.11 seconds. After 300 seconds, the temperature continuous to increase and the
contribution of convection is abundantly clear. The overall change in temperature is
shown in Figure 4.41

0 50 100 150 200 250 300
Time, s

26

28

30

32

34

36

38

40

42

44

T
e
m
p
e
r
a
t
u
r
e
,
o
C

Temperature
Ambient temperature

Figure 4.41: Step response of thermal/optical plant uDAQ28/LT.

4.6. Case study: The thermal/optical plant uDAQ28/LT 59

It is evident that the process is very slow and it takes a long time to settle. That’s
why it is going to be approximated as an integrated process. Looking more closely to
the first seconds of the process, it seems that it can be approximated by an integrating
process, which has the following form:

G (s) = 0.086 e–0.55s
s (4.12)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time, s

27.8

28

28.2

28.4

28.6

28.8

29

29.2

T
e
m
p
e
r
a
t
u
r
e
,
o
C

Temperature
Process Model

Figure 4.42: Step response of thermal/optical plant uDAQ28/LT.

The fitting is very close to the actual experimental data and the behavior of the
temperature function can be approximated by the integrating process as it is depicted in
Figure 4.42. That model is going to be used to find the controllers which are going to be
implemented to control the temperature.

60 Chapter 4. Results and Discussion

4.6.3. Controllers Design
Now that the process model is found, let’s proceed to the design of the controllers. Besides
the PID Pareto-Optimal controller, both the PI and PID using SIMC and the K-SIMC
PI tunings are obtained using the rules presented in Table 4.9.

Table 4.9: SIMC and K-SIMC tunings for an integrating process.

Controller kc τI τD Fr (s)

SIMC PI 1
k′

1
(τc+θ) 4 (τc + θ) - -

SIMC PID 1
k′

1
(τc+θ) 4 (τc + θ) k/3 -

K-SIMC PI 1
k′

1
(λ+θ) 5λ - 2.5λs+1

5λs+1

All the controllers, which are calculated should have the same robustness since they
will be compared and they are summarized in 4.10

Table 4.10: PID controller settings for the process 4.12 for MS = 1.59.

Method PID Controller Settings

kc ki kd F(r) MS

Pareto-Optimal PID 13.143 6.977 3.015 - 1.59

SIMC PID 13.065 3.670 2.395 - 1.59

K-SIMC PI 8.917 2.365 0 1.89s+1
3.77s+1 1.59

SIMC PI 9.431 1.912 0 - 1.59

4.6.4. Experiments
A lot different experiments can be carried out using the plant. Here, the different con-
trollers will be tested in terms of their performance and their robustness. Initially, the
temperature is set to 35 ◦C. After the setpoint is reached, a 3 ◦C degrees step change is
imposed to the plant. At this point, special attention should be paid to the rapidity that
the setpoint is reached and if any oscillations are present. After 50s, a 3 unit plant out-
put disturbance to the temperature causes the controller to act. The evaluation criterion
will be the ability of the controller to efficiently suppress the disturbance. The resulting
output and input responses are depicted in the following two figures:

4.6. Case study: The thermal/optical plant uDAQ28/LT 61

40 50 60 70 80 90 100 110 120 130 140
Time, s

34

35

36

37

38

39

40

41

42

T
e
m
p
e
r
a
t
u
r
e
,
o
C

SIMC PI
Optimal PID
K-SIMC PIF
SIMC PID
Setpoint

Figure 4.43: Output responses of the thermal/optimal plant uDAQ28/LT using using
the controllers mentioned in Table 4.10.

40 50 60 70 80 90 100 110 120 130 140
Time, s

-1

0

1

2

3

4

5

6

7

In
p
u
t
,
V

SIMC PI
Optimal PID
K-SIMC PIF
SIMC PID

Figure 4.44: Input responses of the thermal/optimal plant uDAQ28/LT using using the
controllers mentioned in Table 4.10.

62 Chapter 4. Results and Discussion

It is apparent but also expected, that the derivative action causes higher input usage.
That is more clearly depicted in Figure 4.44

40 50 60 70 80 90 100 110 120 130 140
Time, s

-1

0

1

2

3

4

5

6

7

In
p
u
t
,
V

SIMC PI
Optimal PID

Figure 4.45: SIMC PI and Optimal PID input responses of the thermal/optimal plant
uDAQ28/LT using using the controllers mentioned in Table 4.10.

The PI controllers have the advantage of using less input in the trade-off of perfor-
mance. For instance, the SIMC PI controller requires less than half input compared to
an optimal PID controller. Not only the average is higher but also peaks in Volt usage
are observed. Those fluctuations in the electric potential could possibly cause problems
such as attrition to the device.

The higher input usage should have been translated tho in better performance. That’s
not absolutely true for this experiment. Figure 4.44 clearly shows that the controller very
quickly saturates. In fact, many experiments have been conducted, in which smaller set-
point changes or disturbances were applied and still saturation was observed. Therefore,
one can conclude that the performance advantages which someone gets from the derivative
action is negligible compared to massive difference is the input usage. Although in Figure
4.43 the capabilities of the PID controllers to suppress the disturbance are observable, it
might be not worth to have such high input for that marginal performance increase.

For that reason, a measurement filter could be introduced and hopefully as a conse-
quence, noise would be restrained. However, after many experiments the performance
loss due to the filtering was so significant that the PI controller performed better than
the PID. Comarping now, the two PI controllers, the K-SIMC with the filter and SIMC,
the latter achieves the setpoints faster while both of them show the same performance on

4.6. Case study: The thermal/optical plant uDAQ28/LT 63

the disturbance rejection. Therefore, it can be concluded the PI SIMC controller is the
most suitable for the control of the plant.

Chapter 5

Conclusions and future work

The aim of this work was to find ideal PID controllers using some of the most popu-
lar tuning methodologies and observe, how close to optimality the resulting controller
parameters are. Therefore, Pareto-optimal ideal PID controllers were found, for several
processes. The controllers presented a trade-off between performance and robustness.
Performance was quantified in terms of the integrated absolute error, IAE, while robust-
ness was measured in terms of the maximum peak of the sensitivity function, MS. Due to
the analytical expressions of the gradients both for the objective cost function and for the
constraints, convergence to the true optimal was relatively easily achieved. Initially, first
order-processes with time delay were considered. The time constant varied while the time
delay remained constant. The SIMC rules presented a close-to-optimality behavior while
the K-SIMC controllers perform sufficiently at larger MS values. The K-SIMC controllers
differ significantly performance-wise from the optimal, because they propose a PI con-
troller instead of a PID for a big part of the robustness region, which results in larger IAE
values. The lack of derivative action highly contributed to the deviation from optimality.
Since, 1.3 < MS < 2, the SIMC tuning rules should be preferred. Nonetheless, it should
be mentioned that when the ratio τ1/θ is large, both tuning approaches show substantial
divergence from the optimal.

In addition to that, second-order processes with time delay were investigated. The
ratio between the time-constants and the time delay varied. The SIMC and the K-SIMC
tunings give close to optimal controllers for most of the cases. Both approaches essentially
find the same controller parameters. The desired closed-loop time constant, τc or λ, is
relatively small. Hence, the tuning rule which the K-SIMC rules propose for the integral
and the derivative time give almost the same tuning parameters to the SIMC for an ideal
PID controller. When the second time constant is small compared to the time delay, the
I-SIMC tuning rule should be used. It suggests that the derivative time should be chosen
as the one third of the time delay. A dramatic improvement in terms of performance
was observed when the I-SIMC tunings were implemented. For the examined robustness
region, again the SIMC and the K-SIMC tunings give the same results, so the choice
doesn’t really matter. However, for processes, where the second time constant is very
small the I-SIMC tunings are the way to go due to the advantages of the larger derivative
action.

Furthermore, two more processes were introduced. The first one had negative numer-

64

65

ator time constants while the second one had only positive numerator time constants. It
is evident, that the more approximations are made the more deviation for the optimal
performance will be. In both cases, the SIMC approximations outperformed the K-SIMC
approximations. More specifically, as far the second-order approximation is concerned,
the half-ruled SIMC controller surprisingly presents very close to optimal performance,
although two approximations have already been done. The Half-rule suggests that when
approximations are made it is preferred to add more on the time constant than the time
delay, which is the opposite of what the K-SIMC approximations propose. All in all, the
Half-rules should be the the most suitable choice, when an approximation on a higher-
order model must be done. Therefore, a conclusion might be that time delay contributes
more to performance behavior than the time constant.

Although, the SIMC rules seem to perform better than the K-SIMC, model uncertainty
should also be considered. Almost always in practice, the exact model is not known. A
relatively good MS is chosen for a specific process and the resulting controller settings
were applied to other processes with different characteristics, where process input and
output step disturbances were added. Since, the K-SIMC rules propose a PI controller
it was expected that the PI controller would behave better than the PO and SIMC ideal
PID controllers when the model is significantly different. That was proven to be the case,
and even when a LHP was added the K-SIMC controller was still be able to handle it.
However, similar results would have arisen when a SIMC or PO PI controller would have
been implemented. Therefore, no clear conclusions can be made.

Except for the SIMC and the K-SIMC, the tuning rules proposed by Syrcos & Kookos
where investigated. Different time delay values were tested and the resulting controller
were compared with the SIMC and the optimal. The two former tuning methodolo-
gies resulted in very efficient controllers with sufficient stability margins. It needs to be
mentioned, that Syrcos & Kookos controllers present substantially larger delay margins.
Hence, although their method is not valid for every time delay value, when that is the
case, their settings might be the better choice. Moreover, ideal PID controllers were cal-
culated through the MATLAB Tuning Toolbox. They were compared to the optimal and
the SIMC. The Toolbox controllers perform very well for the larger time delay values. On
the other hand, for small time delay values, MATLAB chooses to propose very robust
controllers, which result in very poor performance. Very often, MATLAB suggested a PI
controller instead of a PID which resulted in poorer performance. Thus, the MATLAB
Toolbox should not be chosen for lag dominated processes.

Finally, a practical example was added. A thermal/optical plant was modeled and op-
timal, SIMC and K-SIMC controllers were implemented. Although, the PID controllers
provide marginal performance advantages compared to the PI, their use is not recom-
mended, since they require substantially higher input usage.

66 Chapter 5. Conclusions and future work

Future work
When it comes to PID controller tuning there are many things that could be investigated.
Some of them follow

• Controllers with very large sensitivity peak values can be investigated. The tuning
rules could more extensively be tested and one could be involved in set-point filter
design which could be used. However, most of the times the controller tuning rules
should not be associated with filter design.

• SIMC and K-SIMC controllers in serial-form might present interesting results, since
here only PID controllers in parallel form were examined. Also, SIMC PI controllers
could be added.

• Other approximation rules which were not used could be tested.

• One might try to expand the Syrcos & Kookos tunings for smaller and larger time
delays and compare them to the optimal.

Bibliography

[1] Åström, K. J. ; Hägglund, T. (1994) Advanced PID Control. ISA-The Instrumenta-
tion, Systems and Automation Society.

[2] Åström, K. J. ; Panagopoulos, H. ; Hägglund, T. (1998) Design of PI-controllers based
on non-convex optimization. Automatica. 34, 585-601.

[3] Balchen, J. G. (1958) A performance index for feedback control systems based on the
Fourier transform of the control deviation. Acta Polytechnica Scandinavica.

[4] Boyd, S. ; Barratt, C. Linear Controller Design: Limits of Performance. Prentice-Hall.
1991.

[5] Foss, M. S. (2012) Validation of the SIMC PID Tuning Rules. Technical Report. Avail-
able at: http://www.nt.ntnu.no/users/skoge.

[6] Grimholt, C. ; Skogestad, S. Optimal PI-control and verification of the SIMC tun-
ing rule. IFAC conference on Advances in PID control (PID’12). The International
Federation of Automatic Control, March 2012.

[7] Grimholt, C. ; Skogestad, S.(2013) Optimal PID-control on first order plus time delays
systems and verification of the SIMC rules. 10th IFAC International Symposium on
Dynamics and Control of Process Systems.

[8] Grimholt, C. ; Skogestad, S.(2016) Optimization of fixed-order controllers using exact
gradients. unpublished, submitted to Journal of Process Control.

[9] Grimholt, C. ; Skogestad, S. (2016) Optimal PID control of double integrating pro-
cesses. 11th IFAC Symposium on Dynamics and Control of Process Systems, including
Biosystems. Trondheim.

[10] Grimstad, B. (2009) Studies in static output feedback control.Master Thesis. Avail-
able at: http://www.nt.ntnu.no/users/skoge.

[11] Hägglund, T. Signal Filtering in PID Control. IFAC conference on Advances in PID
control (PID’12). The International Federation of Automatic Control, March 2012.

[12] Hazebroek, P. ; Van der Waerden, B. L. (1950) The optimum tuning of regulators
Trans. ASME, 72, 317-322.

67

68 Bibliography

[13] Holene A. L. (2013) Performance and Robustness of Smith Predictor
Control and Comparison with PID Control. Master Thesis. Available at:
http://www.nt.ntnu.no/users/skoge.

[14] Kookos, I. K.; Koutinas, A. A. Optimization of processes and systems with applica-
tions in MATLAB and GAMS. Tziolas Publishing. 2013.

[15] Kravaris, C. (2014) Notes on Process Dynamics and Control Course. Department of
Chemical Engineering. University of Patras.

[16] Lee, J. ; Cho, W. ; Edgar T. F. (2014) Simple Analytic PID Controller Tuning Rules
Revisited. Ind. Eng. Chem. Res., 53, 5038-5047.

[17] O ’Dwyer, A. Handbook of PI and PID Controller Tuning Rules, 2nd edition. Imperial
College Press. 2006.

[18] Panagopoulos, H. ; Hägglund, T. ; Åström, K. J. The Lambda Method for Tuning
PI Controllers. Internal Report. Department of Automatic Control. Lund Institute of
Technology, August 1997.

[19] Rivera, D. E.; Morari, M. ; Skogestad, S.(1986) Internal Model Control. 4. PID
Controller Design. Ind. Eng. Chem. Process Des. Dev., 25, 252-256.

[20] Seborg, D.E. ; Edgar, T.F. ; Mellichamp, D.A. ; Doyle, F.J. Process Dynamics and
Control 3rd ed. ; John Wiley and Sons. New York, 2010.

[21] Shinskey, F. G.(1990) How good are our controllers in absolute performance and
robustness? Measurement and Control, 23, 114-121.

[22] Shinskey, F. G. ; Process-Control Systems, 2nd edition.McGraw-Hill. February, 1979.

[23] Skogestad, S.(2003) Simple analytic rules for model reduction and PID controller
tuning. Journal of Process Control, 13, 291-309.

[24] Syrcos, G. ; Kookos, I. K.(2005) PID controller tuning using mathematical program-
ming. Chem. Eng. Res., 44, 41-49.

[25] Stephanopoulos, G. Chemical Process Control: An Introduction to Theory and Prac-
tice. Prentice-Hall. 1984.

[26] Skogestad, S. ; Postlethwaite, I. Multivariable Feedback Control. John Wiley and
Sons. 1996.

[27] Ziegler, J. G. ; Nichols, N. B. (1942) Optimum settings for automatic controllers.
trans. ASME, 64.

Appendix A

MATLAB code

Optimization
The following MATLAB script, is the script used to find the Pareto-Optimal controllers.
This script calculates an optimal ideal PID controller for input and output disturbances.
Two more optimal controllers should be found before. One optimal ideal PID only for
input disturbances and an optimal ideal PID controller only for output disturbances.
Since the full code is too long to be added, the most important point are selected and
presented.

Listing A.1: Specifying the problem, for which the optimal controller should be found
1 %% Main script for generating trade–off curves
2 % Written by Chriss Grimholt in 2015 to calculate an optimal PI controller

for input disturbances.
3
4 % Modified by Iosif Pappas in Spring 2016 to calculate the optimal ideal

PID controller for input and output disturbances.
5
6 % Define the Laplace variable
7 s = tf('s');
8
9 %Set the process model, where k is the process gain, y the time delay and

t
10 %the process time constant.
11
12 G = k*exp(–y*s)/(ts+1)
13
14 % PID controller, p = [kp + ki + kd]
15 K = @(p) (p(1) + p(2)/s + p(3)*s);
16
17 % The derivative of the ideal PID controller
18 dK = @(p) [tf(1); 1/s; s];
19

70

71

20 % Specify the robustness constraint
21 problem.ms_eqcon = 1.59;
22 problem.mt_eqcon = problem.ms_eqcon;
23
24 % Specify the initial guess
25 problem.x0 = [kc ki kd];
26
27 % Parameters for the step simulation and the gridding of the frequncy

domain
28 problem.time_gridding = linspace(0,20, 1e4);
29 problem.freqency_gridding = logspace(–10,10,1e4);
30
31
32 % Create the transfer functions
33
34 % The Gang of Four
35 S = @(p) 1/(1+G*K(p));
36 GS = @(p) G*S(p);
37 KS = @(p) K(p)*S(p);
38
39 % The gradient of the error
40 de_dy = @(p) –GS(p)*S(p)*dK(p);
41 de_di = @(p) –GS(p)*GS(p)*dK(p);

Listing A.2: Solving the optimization problem
1
2 %In this case too, Chriss Grimholt in 2015 wrote the original script and

was accordingly modified by Iosif Pappas in 2016 for the purposes of
this thesis.

3
4 %This script solves the problem specified.
5
6
7 %Solving the problem
8 opt = optimset('Algorithm','active–set','GradConstr','on','GradObj','on','

DerivativeCheck','off','Display','off');;
9
10 [res.tuning, res.cost, res.exitflag, res.output, res.lambda] = fmincon(...
11 @(x) obj_fun_grad(x), ... %cost function
12 x0, ... % initial guess
13 [], ...
14 [], ...

72 Appendix A. MATLAB code

15 [], ...
16 [], ...
17 [], ... % lower bounds
18 [], ... % upper nounds
19 @(x) nonlin_con(x), ... % constraints
20 opt);
21
22 %Objective and gradient of the objective function
23
24 function [J,g_J] = obj_fun_grad(x)
25
26 S = S_fun(x);
27 e_dy = step(S,t);
28
29 GS = GS_fun(x);
30 e_di = step(GS, t);
31
32 J_1 = trapz(t, abs(e_dy));
33 J_2 = trapz(t, abs(e_di));
34 J = 0.5*((1/f_1)*J_1 + (1/f_2)*J_2) ;
35
36
37 if nargout > 1;
38 dSs = step(de_dy_fun(x), t);
39 dGSs = step(de_di_fun(x), t);
40
41 g_J_1 = trapz(t, bsxfun(@times, sign(e_dy), dSs));
42 g_J_2 = trapz(t, bsxfun(@times, sign(e_di), dGSs));
43 g_J = 0.5*((1/f_1)*g_J_1 + (1/f_2)*g_J_2);
44
45 end
46 end
47
48 %Constraints and gradients of the constraints
49
50 function [c, ceq, g_c, g_ceq] = nonlin_con(x)
51
52 ceq=[];
53 nx = length(x);
54
55 % Find corresponding frequency responce
56 Sw = squeeze(freqresp(S_fun(x),w));
57 Sm = abs(Sw);
58
59 Tw = 1 – Sw;
60 Tm = abs(Tw);

73

61
62 cs = Sm – ms_eqcon;
63 ct = Tm – mt_eqcon;
64
65 c=[cs,ct];
66
67 if nargout > 2;
68
69
70 g_cs = zeros(nx,length(Sm));
71 g_ct = zeros(nx,length(Tm));
72 g_ceq = [];
73
74 Gw = squeeze(freqresp(G, w));
75 dKw = squeeze(freqresp(dK_fun(x), w)).';
76
77 for i = 1:nx
78
79 g_cs(i,:) = –Sm.*real(Sw.*Gw.*dKw(:,i));
80 g_ct(i,:) = Tm.*real((Sw).^2./Tw.*Gw.*dKw(:,i));
81
82 end
83
84 g_c = [g_cs, g_ct];
85
86 end
87 end

Other tuning methods
The following script calculates the ideal PID controller parameters for the positive ap-
proximations process. Similar are the scripts for all the other tunings, where only the
tuning rules must be changed.

Listing A.3: Half-rule approximations and SIMC ideal PID parameters calculations for
a positive numerator time constant process.

1
2 %Written by Iosif Pappas in Spring 2016.
3 %The script approximates a high–order process model to a second–order

process with time delay.
4 %In addition, it calculates the ideal PID SIMC parameters which satisfy

the desired Ms values. Finally the resulting PID settings can be sent
to a Simulink file to calculate the IAE.

5

74 Appendix A. MATLAB code

6 tic
7 %Set the Laplace variable
8 s=tf('s');
9
10
11 %Original Model G(s) = ((20*s+1)*(14*s+1)*exp(–theta*s))/((42*s+1)*(5*s+1)

*(2*s+1)*(s+1))
12
13 %process time constants
14 To_1 = 20;
15 To_2 = 14;
16 tau_1 =42;
17 tau_2 =5;
18 tau_3 =2;
19 tau_4 =1;
20
21 %counters
22 p=0
23 j=0
24
25 %specify the desired Ms value
26 for ms = 1.29:0.01:2
27 p=0
28 j=j+1
29
30 for tc = 0:0.01:5
31 p=p+1;
32
33 %Half–rule for (14*s+1)/(5*s+1)
34 if (To_2>=tau_2) && (tau_2>=tc)
35 g1(p,1) = To_2/tau_2;
36 elseif (To_2>=tc) && (tc>=tau_2)
37 g1(p,1) = To_2/tc;
38 elseif (tc>=To_2) && (To_2>=tau_2)
39 g1(p,1)= 1;
40 else
41 g1(p,1)=1
42 end
43
44 %Half–rule for (20*s+1)/((42*s+1)
45 if (tau_1>=To_1) && (To_1>=5*tc);
46 h = To_1/tau_1;
47 H(p,1) = (g1(p,1)*h*exp(–1*s))/((2*s+1)*(s+1))
48 q=0;
49 k=1;
50 tau1=2;

75

51 tau2=1;
52 kp=g1(p,1)*h;
53 else
54 tau = min(tau_1,5*tc);
55 q = tau–To_1;
56 v = tau/tau_1;
57
58 if (q>2)
59 w = q;
60 H(p,1) = (g1(p,1)*v*exp(–1.5*s))/((w*s+1)*(2.5*s+1));
61 k=1.5;
62 tau1=w;
63 tau2=2.5;
64 kp=g1(p,1)*v;
65 elseif (q<2)&&(q>1)
66 H(p,1) = (g1(p,1)*v*exp(–1.5*s))/((2*s+1)*((q+0.5)*s+1));
67 k=1.5;
68 tau1=2;
69 tau2=q+0.5;
70 kp=g1(p,1)*v;
71 elseif (q<1)
72 H(p,1) = (g1(p,1)*v*exp(–(1+q/2)*s))/((2*s+1)*((1+q/2)*s+1));
73 k=1+q/2;
74 tau1=2;
75 tau2=1+q/2;
76 kp=g1(p,1)*v;
77 end
78
79 end
80
81 % end
82 G(p,1) = H(p,1);
83
84 kc = ((tau1)/(kp*(tc+k)));
85 taud = tau2;
86 %set integral time
87 if tau1 < (4*(tc+k));
88 ti=tau1;
89 else
90 ti = 4*(tc+k);
91 end
92 f = 1 + (taud/ti);
93 kc = kc*f;
94 ti = ti*f;
95 taud = taud/f;
96

76 Appendix A. MATLAB code

97 %Calculate the Ms
98 [G_n G_d] = tfdata(G(p,1),'v');
99 delay = totaldelay(G(p,1));
100 w = logspace(–10,10,10^4);
101 GG_no = conv([kc*ti*taud kc*ti kc],G_n);
102 GG_de = conv([ti 0],G_d);
103 GG_w1 = polyval(GG_no,w*1i);
104 GG_w2 = polyval(GG_de,w*1i);
105 delay_w = exp(–delay*w*1i);
106 G_G = GG_w1./GG_w2.*delay_w;
107 S = 1./abs(1+G_G);
108 MS_S = max(S);
109
110 %save the values which satisfy the requirements
111 %if Ms = 1.59 save the controller parameters
112 if (abs(ms–MS_S)<1e–4)
113
114 break;
115
116 %print the results
117 end
118 b(j,1) = kc;
119 b(j,2) = ti;
120 b(j,3) = taud;
121 b(j,4) = tc;
122 b(j,5) = k;
123 b(j,6) = MS_S;
124 b(j,7) = ms;
125 b(j,8) = p;
126
127 end
128 end
129
130 %If needed, calculate the IAE in Simulink
131 for p=1:1:71
132 SimOut = sim('Test');
133 h(p,1) = output1;
134 h(p,2) = output2;
135 end
136
137 toc

77

Plots
The Performance vs. Robustness plots are created using the MATLAB script which
follows. Of course, suitable changes for each specific case have been made.

Listing A.4: Typical script used for plot creation.
1
2 % Written by Iosif Pappas in Spring 2016, to create Performance vs

Robustness graphs
3 p1=plot(num(31:1:101,1),num(31:1:101,2),'Color',[0.5 0 0.5])
4 hold on
5 p2=plot(num(31:1:101,1),num(31:1:101,3),'Color',[0 0.5 0.5])
6 hold on
7 p3=plot(num(31:1:101,1),num(31:1:101,4),'b')
8 hold on
9 p4=plot(num(44,1),num(44,3),'x','Color', [0 0.5 0.5])
10 hold on
11 p5=plot(num(69,1),num(69,4),'xb')
12 hold on
13
14 %Labels
15 ylabel('\textbf{Performance, J(c)}', 'Interpreter','LaTex')
16 xlabel('\textbf{Robustness, $\bf{M_S}$}','Interpreter','LaTex')
17 %Axis limits
18 ylim([0.5 5])
19 xlim([1.3 2])
20 %Font
21 set(gca,'FontSize',10,'Fontweight','Bold');
22 legend('Optimal', 'SIMC', 'K–SIMC')
23 set(p1,'LineWidth',1.5)
24 set(p2,'LineWidth',1.5)
25 set(p3,'LineWidth',1.5)
26 set(p4,'LineWidth',1.5)
27 set(p5,'LineWidth',1.5)
28 legend([p4,p5],'\tau_c = \theta','\lambda = \theta', 'Location','

SouthWest')
29 legend([p4,p5],'\tau_c = \theta','\lambda = \theta','Location',[0.68

0.4 0.15 0.05])
30
31 %Latex annotations
32 str = '$$G\left (s \right) = \frac{e^{–s}}{\left (10s+1 \right)} $$';
33 text(1.7,4.1,str,'Interpreter','LaTex')
34 gtext('Pareto Optimal','Color', [0.5 0 0.5])
35 gtext('SIMC','Color', [0 0.5 0.5])
36 gtext('K–SIMC','Color', 'b')

Appendix B

SIMULINK

The SIMULINK flow sheets are also added. The SIMULINK model belows calculates
the integrated absolute error for input and output disturbances for an example process.
Please, keep in mind that from a feedback point of view, output disturbances are equiva-
lent to a step point change.

Figure B.1: SIMULINK model to calculate the integrated absolute error for input and
output disturbances.

In addition to that, the main SIMULINK flow sheet of the udaq28/LT thermal/optical
plant is presented it Figure B.2.

78

79

Figure B.2: SIMULINK model to calculate the integrated absolute error for input and
output disturbances.

