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Abstract

This thesis is focused on modeling the dynamic evolution of the drop size density

distribution of emulsions in turbulent pipe flow with and without the mass balance

of the surfactant. First, the interplay between coalescence and breakage was stud-

ied by changing the fitting parameters of coalescence- and breakage frequency and

the fitting parameters of coalescence- and breakage efficiency. Lastly, an attempt

was made to include the surfactant mass balance in the model for comparison.

The base case showed that coalescence is stronger at shorter axial positions in the

pipe and grows weaker along the z-axis. Breakage showed the complete opposite

trend. L∞ varied greatly with changes in the fitting parameters for coalescence-

and breakage frequency and it was showed that when kω = kg1, equal changes in

magnitude of these fitting parameters does not change the shape of the drop size

distribution. However, the shape of the drop size distribution showed great de-

pendence on the fitting parameters for coalescence- and breakage efficiency. The

volume density distribution fv showed the expected alterations in shape when it

was studied with different sets of fitting parameters. When the mass balance of the

surfactant was included in the model, few or no changes were seen in the average

droplet radius of the volume distribution.

Overall, the model without the mass balance worked well, showing the appropriate

results when changes were made to key parameters. Larger variations in the shape

of the density distribution was expected when the mass balance was included but,

these changes failed to appear. It was concluded that the lumping of the retarded

Hamaker constant into the fitting parameter for coalescence efficiency was insuffi-

cient to describe the dynamics of the intermolecular forces working on the surface

of droplets.
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Sammendrag

Denne oppgaven har fokusert på å modelllere den dynamiske utviklingen av emuls-

joners dråpestørrelsesfordeling i turbulent rørstrømning med og uten massebal-

ansen for tensider. Først, ble smaspillet mellom koalesens og brytning av dråper

studert ved å endre tilpasningsparametrene for koalesens- og brytningsfrekvens og

tilpasningsparametrene for koalesens- og brytningseffektivitet. Til slutt, ble det

gjort ett forsøk på å inkludere massebalansen for tensider i modellen.

Den grunnleggende studien viste at koalesens er sterkere ved kortere axielle pos-

isjoner i røret og ble svakere og svakere langs z-aksen. Brytning viste eksakt

motsatt trend. L∞ varierte betydelig med endringer i tilpasningsparametrene for

koalesens- og brytningsfrekvens. Det ble vist at når kω = kg1 har endring i disse

parametrene av like stor størrelse ikke noe å si for fasongen til dråpestørrelsesdis-

tribusjonen. Formen til dråpestørrelsesdistribusjonen viste stor varians når det ble

gjort endringer i tilpasningsparametrene for koalesens- og brytningseffektivitet.

Volumtetthetsdistribusjonen, fv, endret form som forventet når foskjellige sett med

tilpasningsparametre ble undersøkt. Når massebalansen for tensider ble inkludert

i modellen ble det observert få endringer i den gjennomsnittlige dråpestørrelsen til

volumtetthetsdistribusjonen.

Alt i alt fungerte modellen bra uten massebalansen og viste passende resultater

når det ble gjort endringer i nøkkelparametre. Det var forventet større endringer

i formen til tetthetsdistribusjonen når massebalansen for tensider ble inkludert i

modellen, men disse endringene uteble. Det ble konkludert med at inklusjonen

av den forsinkede Hamakerkonstanten i tilpasningsparameteren for koalesensef-

fektivitet ikke var tilstrekkelig for å beskrive dynamikken i de intermolekylære

kreftene som virker på overflaten til dråpene.
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Chapter 1

Introduction

Recently, modeling of fully dispersed flow has been given an unprecedented amount

of attention. Understanding of how particulate solutions act when they are moving

in pipes, reactors etc. have become more important as the number of applications

involving dispersions has risen in the last decades. Fully dispersed flow is present

in many industrial applications such as bubble columns, oil refinery equipment and

pipe flow in general.

The history of fully dispersed flow modeling can be traced back to the models of

Brownian motion presented by Einstein[1] and Smoluchowski[2] in the early 20th

century. These models were attempts to predict the random motion of particles

in a solution based on kinetic theory, equivalent to a dispersion that contains gas

bubbles or liquid drops. The equations presented by both Smoluchowski and Ein-

stein are probability distributions of a particle with respect to time and one spatial

dimension. In terms of modeling fully dispersed flow, this methodology would

only work for monodisperse particles and at lower velocity non-turbulent flow re-

gimes.

In 1938 Landau and Rumer[3] published a paper on the cascade theory of elec-

tronic showers. They presented functions that described the number of photons

and the number of particles as well as their evolution in spatial coordinates. Even

though electronic showers are not comparable with fully dispersed two phase flow,

it was one of the earliest formulations of a population balance, which later became

a very important tool for modeling fully dispersed two phase flow.

Most of the applications of fully dispersed flow mentioned above involve turbulent

flow regimes. In 1955 Saffman and Turner[4] issued a paper on drop collision in

turbulent clouds. This paper puts forward a model of how turbulent eddies affect

1



2 Introduction

the efficiency with which drops coalesce and how drops collide. This was a huge

step in the direction of a more comprehensive and accurate model of dispersed two

phase flow.

In 1964 the generalized population balance equation came along as a modeling

tool for fully dispersed two phase flow. Hulburt and Katz[5] published an article

in which they explored the use of differential equations to show the variation in

average particle size to predict the behaviour of dispersed phase systems. This is

the grounds on which the current prevailing models are built. Now, there was a dif-

ferential equation that could predict the distribution of particle size as a function of

time and spatial variables in a more accurate manner. Going forward, the focus of

model developers was directed towards finding the best way to incorporate prob-

abilities of collision and efficiency of coalescence or other particle phenomena into

the differential equations.

Introducing the population balance into the modeling of fully dispersed two phase

flow has not only given more accurate predictions, it has also brought along the

challenge of an immense amount of equations having to be solved. The computa-

tional efforts required for solving these differential equations increase rapidly with

the amount of equations. As the last three decades have seen rapid advances in

computer technology, more involved and computationally demanding models have

been solved. Computational fluid dynamics(CFD) have also been combined with

population balance models to predict the behaviour of two phase fully dispersed

flow.

This thesis is focused around building a comprehensive model of fully dispersed

flow in Matlab, by combining the population balance equation with the surfactant

mass balance. Including the mass balance for surfactants is important because of

the effect that surfactants have on phase separation and therefore also on the flow

properties of the fluid at hand. By adsorbing on the surface of liquid droplets,

surfactants change the surface properties of the droplets and therefore the extent

to which they coalesce and break up. Many of the applications of fully dispersed

flow involves complex mixtures of components with multiple substances and many

different surfactants present. These mixtures commonly occur in the petroleum

industry and predictive knowledge of how they act are therefore crucial to efficient

oil recovery.

First, the population balance will be solved without adding the surfactant mass

balance to the model. This is not only good modeling practice, to solve one part

of the model before adding complexity, but it is also crucial to compare the model

with and without the surfactant mass transfer. Next, the surfactant mass transfer

equation will be incorporated into the model. A comparison will be made between
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the model with and without the mass balance equations to evaluate whether a more

complex approach to the surfactant mass balance has to be taken.
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Chapter 2

Background and Theory

2.1 Population Balance Equation

A pipe of length L and diameter D is considered. Inside the pipe a liquid-liquid

dispersion flows in a locally isotropic turbulent flow-field [6].The flow profile is as-

sumed to be plug-flow and the fluid velocity is described by an average velocity U .

An illustration of the pipe is shown in Figure 2.1. Any radial variances in droplet

sizes are neglected. A density function η(r, z) describes the distribution of droplet

sizes, where r denotes the radius of droplets and z denotes the axial position in

the pipe. r serves as the internal coordinate and z as the external coordinate. The

difference is that the external coordinate tells the position of the drop in the pipe,

while the internal coordinate relates to the properties of the droplet. Locally, the

total number density Nd(z) at a given axial position z is[6]

Nd(z) =

∫ Rmax

0

η(r′, z) dr′ (2.1)

In Equation 2.1 Rmax denotes the upper limit of the radius in the number distri-

bution. The volume fraction, φ(z), of droplets at any radial position is then given

by[6]

φ(z) =

∫ Rmax

0

(

4π

3
r′3

)

η(r′, z) dr′ (2.2)

No droplets are introduced into the pipe at any radial position and therefore φ(z)
should remain constant throughout the length of the pipe.

5



6 Background and Theory

Figure 2.1: Pipe section with length L, diameter D and average fluid velocity, U .

Convection transports the droplets along the axial direction of the pipe, z, and

coalescence and breakage alter the size of the droplets in the internal coordinate

space, r. Based on the foregoing assumptions and definitions the governing trans-

port equation of the droplets in the pipe is described by the population balance[6]

U
dη

dz
= RC,+ −RC,− +RB,+ −RB,−, for 0 ≤ z ≤ L, 0 ≤ r ≤ Rmax

(2.3)

Initial condition: at z = 0, η(r, 0) = η0(r), for 0 ≤ r ≤ Rmax (2.4)

where RC,+ is the birth rate of a droplet of radius r due to coalescence, RC,− is

the death rate of a droplet of radius r due to coalescence, RB,+ is the birth rate of

a droplet of radius r due to breakage, RB,− is the death rate of a droplet of radius

r due to breakage and η0(r) is the droplet size distribution at the initial position in

the pipe(z = 0).

2.1.1 Birth- and Death Rate Due to Coalescence

When two parent droplets of radius r′ and r′′ coalesce, they form a droplet of

size r. Due to the conservation of volume we can write r′′ = [r3 − r′3]1/3. The

coalescence birth rate as a function of radius r and axial position z is then given

by[6]

RC,+(r, z) =

∫ r/ 3
√
2

0

rC(r
′, r′′)η(r′, z)η(r′′, z) dr′,

for 0 ≤ z ≤ L, 0 ≤ r ≤ Rmax (2.5)

According to the conservation of mass the death of particles due to coalescence

also have to be taken into account. The following expression gives the death rate

of drops with radius r at the axial position z[6]
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RC,−(r, z) = η(r, z)

∫ Rmax

0

rC(r, r
′)η(r′, z) dr′,

for 0 ≤ z ≤ L, 0 ≤ r ≤ Rmax (2.6)

The rate of coalescence rC , found in Equations 2.5 and 2.6, is determined by the

constitutive equations of coalescence frequency(or swept volume rate), ωC , and

probability of coalescence, ψE , for two colliding drops. The rate of coalescence

between two drops of radius r1 and r2 is written as follows[6]

rc(r1, r2) = ωC(r1, r2)ψE(r1, r2) (2.7)

One of the most common ways of determining the constitutive equation for colli-

sion frequency is to assume that the collision of droplets in a locally isotropic flow

field is analogous to the collisions between molecules in kinetic gas-theory[7, 8, 9].

In kinetic gas-theory, the collisions are determined based on the mean square fluc-

tuation velocities of the droplets in the flow field. Neglecting the contribution of

eddies in the wave number range beyond the inertial sub-range[7, 8, 9], allows for

the mean square fluctuation velocities of the droplets to be expressed in terms of

the local energy dissipation rate per unit mass, ǫ, and the droplet volume. The

collision frequency of droplets is then expressed as[7, 8, 9]

ωC(r1, r2) = kω
ǫ1/3

(1 + φ)
(r1 + r2)

2[r
2/3
1 + r

2/3
2 ]1/2 (2.8)

where kω is a proportionality constant that is used as a fitting parameter in the

model. As a general estimate, the following expression can be used to find the

value of ǫ[10]

ǫ = 0.01766
U3

D

(

µc

ρcUD

)3/8

(2.9)

where D is the pipe diameter and µc and ρc are the viscosity and density of the

continuous phase, respectively. An estimate of ǫ is sufficient since it is directly

multiplied by the fitting parameter, kψ.

The probability of coalescence can be expressed as the ratio between the contact

time of two droplets and the time it takes before film drainage and rupture between
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two drops occur(coalescence time). The coalescence time is determined from a

film drainage expression between two deformable drops[7, 8, 9, 11], where the

force compressing the droplets is proportional to the mean-square velocity differ-

ence of the drops at either end of the eddy. The contact time is considered to be a

random variable that is proportional to the characteristic period of velocity fluctu-

ation of an eddy of size 2(r1 + r2)[7, 8, 9, 12]. The efficiency of coalescence is

thus written[7, 8, 9, 12]

ψE(r1, r2) = exp

[

− 1

kψ

µcρcǫ

γ20

(

r1r2

r1 + r2

)4
]

(2.10)

where kψ is a proportionality constant that is used as a fitting parameter in the

model and γ0 is the surface tension. kψ is lumped in with the difference between

the inverse squares of the initial film thickness and film thickness at which film

rupture occurs and therefore has units of m2.

2.1.2 Birth- and Death Rates Due to Breakage

It can be assumed that an oscillating deformed drop will break if the turbulent

kinetic energy transmitted to the drop exceeds the surface energy of the droplet.

The death rate of a given droplet due to breakage is therefore determined by both

local flow characteristics and the breakage frequency g(r). Thus, the death rate of

a droplet of radius r can be determined by the product of the number distribution

η(r, z), and breakage frequency, g(r)[6]

RB,− = g(r)η(r, z), for 0 ≤ z ≤ L, 0 ≤ r ≤ Rmax (2.11)

Again, to account for the conservation of volume an expression for the birth of

droplets due to breakage have to be included in the population balance equation.

The birth rate due breakage can be determined by integrating RB,− over the inter-

val of drop sizes, r′, larger than r (r ≤ r′ ≤ Rmax). To account for the forma-

tion of at least two drops under breakage, the breakage death rate is modified by

a daughter size distribution function, β(r, r′), that represents the probability that

breakage of a drop of size, r′, will form a drop of size, r. The birth rate of droplets

due to breakage is given by the following expression[6]

RB,+(r, z) =

∫ Rmax

r
2β(r, r′)g(r′)η(r′, z) dr′,

for 0 ≤ z ≤ L, 0 ≤ r ≤ Rmax (2.12)
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The number, two, in the integrand of Equation 2.12 is necessary because the nature

of the breakage is binary. Only binary breakage has been taken into account in this

model due to the fact that there is no theoretical basis to determine the number of

drops formed based on the drop size, the interfacial tension or the forces applied

to the drop[7, 8, 9]. In addittion, binary breakage is a good approximation for

droplets of diameter less than 1 mm[9].

As mentioned above, the premise for droplet breakage is that the kinetic energy

transmitted from an eddy to the droplet exceeds the the surface energy of the

droplet. It can also be assumed that the distribution of total kinetic energy of

drops are proportional to the distribution of kinetic energy of turbulent eddies. The

following equation gives the frequency of breakage[7, 8, 9]

g(r) = kg1
ǫ1/3

r2/3(1 + φ)
exp

[

−kg2
γ0(1 + φ)2

ρdǫ2/3r5/3

]

(2.13)

where ρd is the density of the dispersed phase, and kg1 and kg2 are proportionality

constants that are used as fitting parameters in the model.

A symmetric beta distribution has been employed by Hsia and Tavlarides[9] and

Azizi and Taweel[10] to represent the daughter size distribution β(r, r′). It satisfies

several requirements: (1) that there is zero probability for infinitely small daughter

droplets; (2) it avoids zero probability for the evolution of equal size drops; (3) the

combined size of the daughter droplets always equal the size of the parent droplet.

The daughter size distribution representing the probability that a droplet of size,

r′, will break to form a droplet of size, r, can then be written as[9, 10]

β(r, r′) =
45
3
√
2

r2

r′3

(

r3

r′3

)2
[

1−
(

r3

r′3

)2
]

(2.14)

A couple of other properties of the number density distribution and volume density

distribution are relevant to evaluate the results of the model. The evolution of the

mean droplet radii, µaN and µaV , based on the number density distribution and

the volume density distribution respectively, are given by

µaN (z) =
1

Nd(z)

∫ Rmax

0

r′η(r′, z)dr′ (2.15)

µaV (z) =
1

φ

∫ Rmax

0

r′
(

4π

3
r′3

)

η(r′, z)dr′ (2.16)
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The standard deviations, σaN and σaV , of the droplet number density distribution

and the volume density distribution respectively, are given by

σaN =

√

1

Nd(z)

∫ Rmax

0

(r′ − µaN (z))2η(r′, z)dr′ (2.17)

σaV =

√

1

φ

∫ Rmax

0

(r′ − µaV (z))2
(

4π

3
r′3

)

η(r′, z)dr′ (2.18)

2.2 The Surfactant Mass Balance

Considering the pipe section shown in Figure 2.1 and general conservation of mass

with no net transport through the chosen boundary, the following equation holds

true

d

dt

∫

V
C dV = 0 (2.19)

where d
dt is the time derivative and C is the concentration of surfactant within the

total volume of the dispersion, V .

If the total volume of the dispersion is divided into volume of dispersed phase, Vd,

and volume of continuous phase, Vf , as shown in Figure 2.2 the conservation of

mass can be written as

d

dt

∫

Vf

Cf dVf +
d

dt

∫

Vd

Cd dVd = 0 (2.20)

where Cf and Cd are the concentrations of the surfactant in the continuous phase

and the dispersed phase respectively.

The total amount of surfactant in moles are conserved in the dispersed phase and

since the surfactant adsorbs on the surface of the droplets a balance over the dis-

persed phase can be written

d

dt

∫

Vd

Cd dVd +

∫

Ad

Ns · ns dAd = 0 (2.21)

where Ad is the surface area of the dispersed phase, Ns is the amount of surfact-

ant adsorbed at the surface in moles and ns is the surface normal vector. When
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Figure 2.2: Generic colloidal system with total volume, V , dispersed phase volume, Vd
and continuous phase volume, Vf [14].

combining Equation 2.20 and Equation 2.21 the following expression is found

d

dt

∫

Vf

Cf dVf −
∫

Ad

Ns · ns dAd = 0 (2.22)

If all droplets are assumed to be spherical then ns = [1, 0, 0], which means that

Ns · ns = Nsr. The concentration of surfactant in the continuous phase, Cf ,

is assumed to be constant throughout the continuous phase volume, Vf , and the

amount of surfactant adsorbed at the surface, Ns, is assumed to be constant across

the surface area of the dispersed phase Ad. Equation 2.22 now becomes

dCf
dt

Vf −NsrAd = 0 (2.23)

The volume fraction is defined as

φ =
Vd

V
and 1− φ =

Vf

V
(2.24)

Combining the volume fraction relations and inserting them into Equation 2.23

yields

dCf
dt

=
φ

1− φ

Ad

Vd
Nsr (2.25)
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By assuming that the solute concentration is very dilute the following relation

holds true

Nsr = −Kf (Cf − C∗) (2.26)

where Kf is the average velocity through the boundary layer formed by the sur-

factants adsorbed on the dispersed phase surface and C∗ is the concentration at

the outside of the same boundary layer. Ad

Vd
is the surface to volume ratio of the

dispersed phase, when multiplied with the volume fraction, φ, it becomes

Ad

Vd
φ =

Ad

Vd

Vd

V
=
Ad

V
= α (2.27)

Where α is the surface to volume ratio between the area of the dispersed phase,

Ad, and the total volume of the dispersion, V . Substituting Equation 2.26 and

Equation 2.27 into Equation 2.25 yields

dCf
dt

= − αφ

1− φ
Kf (Cf − C∗) at t = 0, Cf = Cf,0 (2.28)

where Cf,0 is the concentration of surfactant at the initial time t = 0. α can be

found from the volume density distribution, fv, as follows

α =
1

φ

∫ Rmax

0

3

r′
fv dr

′ (2.29)

A quick look at the dimensions of the volume density distribution shows that this

integral in fact becomes the area of the dispersed phase droplets over the total

volume of the distribution. fv has dimensions of m3droplets

m3total
.

Equation 2.28 accounts for the change of surfactant mass in the continuous phase.

An equation for the change of surfactant mass in the dispersed phase is still needed.

The solute is assumed only to be present at the surface of the droplets and not

inside them. Adsorption on the surface of the dispersed phase is approximated by

the Langmuir isotherm

Γ = Γmax
KC∗

1 +KC∗ (2.30)

where Γ is the concentration of solute adsorbed on the dispersed phase surface,

Γmax is the maximum amount of solute that can be adsorbed on the dispersed
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phase surface and K is an equilibrium constant. The dynamic behaviour of the

adsorbed phase concentration is given by the flux to the surface and the change in

surface area due to coalescence

dΓ

dt
= Kf (Cf − C∗)− Γ

α

dα

dt
(2.31)

By rearranging Equation 2.30 to solve for C∗ and inserting it into Equation 2.31

the following expression is found

dΓ

dt
= Kf

(

Cf −
Γ

K(Γmax − Γ)

)

− Γ

α

dα

dt
at t = 0, Γ = Γ0 (2.32)

where Γ0 is the amount of surfactant adsorbed on the dispersed phase at the initial

time, t = 0.

The Langmuir isotherm can also be substituted for C∗ in Equation 2.28, yielding

dCf
dt

= − α

1− φ
Kf

(

Cf −
Γ

K(Γmax − Γ)

)

at t = 0, Cf = Cf,0 (2.33)

Initial conditions for Equation 2.32 and Equation 2.33 are respectively

Γ0 =
KΓmax

1 +KCf,0
Cf,0 (2.34)

Cf,0 = − 1

2K

[

1 +
α0KΓmax
1 + φ

−KCf,∞

]

± 1

2K

√

1 + 2KCf,∞ +K2C2
f,∞

+
α2
0K

2Γ2
max

(1 + φ)2
+

2α0KΓmax
1 + φ

− 2αK2ΓmaxCf,∞
1 + φ

(2.35)

where Cf,∞ is the concentration of surfactant in the continuous phase at infin-

ite dilution and α0 is the surface ratio of droplet area to the total volume of the

dispersion for the initial distribution, meaning fv at t = 0.

The interfacial tension of the dispersed phase droplets are calculated by the fol-

lowing expression

γ = γ0 −RTΓmaxln(1 +KC) (2.36)
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where R is the gas constant and T is the temperature.

Considering that the interfacial tension affects the coalescence and breakage effi-

ciency, a couple of subtle modifications has to be made to Equation 2.10 and Equa-

tion 2.13. The second order inverse ratio of surface tension to the initial surface

tension,
(

γ
γ0

)−2

, is multiplied into the exponent of Equation 2.10 and the ratio of

surface tension to the initial surface tension, γ
γ0

, is multiplied into the exponent of

Equation 2.13 yielding

ψE(r1, r2) = exp

[

− 1

kψ

µcρcǫ

γ20

(

γ0

γ

)2(
r1r2

r1 + r2

)4
]

(2.37)

g(r) = kg1
ǫ1/3

r2/3(1 + φ)
exp

[

−kg2
γ0(1 + φ)2

ρdǫ2/3r5/3

(

γ

γ0

)]

(2.38)

It is worth noting that Equations 2.37-2.38 are what couples the surfactant mass

balance with the number density- and volume density distribution.

This concludes the governing equations of the model. In Appendix A the model is

converted into non-dimensional variables.



Chapter 3

Programing and Software

The model equations derived in Chapter 2 have been implemented in Matlab using

a combination of the built in ODE-solvers and the numerical method of colloc-

ation. The ODE solvers are based on initial value problems, which is how the

model equations are formulated. On the account that the equations that constitute

the population balance are integral differential equations a separate approach to

solve the integral parts had to be applied. The quadrature weights generated by the

collocation method have been used to solve the integral parts of the equations be-

fore implementing the initial value problem solver in the code. A brief description

of the math behind the collocation method is provided in Appendix B.

3.1 Matlab Code

All the Matlab scripts and -functions used to solve the model are given in Appendix

C. To start solving the model the script main is ran in the command window. It

rescales the original distribution, sets up the grid points, calculates the initial con-

ditions and solves the generated set of equations. The script parameters accounts

for most of the constants that are used in the model equations. The code is generic,

so any change to a parameter of the system changes the whole code to accommod-

ate it.

Before the initial experimental distribution can be used in the model solver it has

to be normalized, as it has no physical meaning in its rawest form. The script

rescale is given the water cut and a text file that contains the raw distribution.

For the experimental distribution to get the appropriate dimensions it has to be

normalized so that Equation 2.2 holds true. After the distribution is normalized it

is also converted to its non-dimensional form, as shown in Appendix A.

15
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Figure 3.1 shows an example of how the collocation grid can be set up. SetUp-

Grid is the function that splits the radius domain into elements and calls the colloc

routine[15] that generates the roots and weights used to calculate the integrals in

the differential equation. First, strategic sub-domains are chosen so that the amount

of collocation points can be varied in different regions of the distribution. This

makes sure that regions of the radius domain where steep gradients in the number

distribution occur can be allowed more points and regions where the number dis-

tribution is zero can be given fewer points. Domains were chosen between r = 0
and the first non-zero value of the distribution, between the first non-zero value of

the distribution and the highest value of the distribution and between the highest

value of the distribution and the last non-zero value. The next domains are just

equally spaced until the end of the distribution. A minimum of four domains are

required for the script to work and the amount of domains and collocation points

in each domain can be changed inside parameters.

Figure 3.1: Illustration of arbitrary collocation grid for demonstration purposes.

For each domain the colloc function[15] is called and the quadrature weights and

roots are stored in separate arrays. The vector of roots is then scaled to range

from 0 to 1, which is the non-dimensional radius domain. Finally, the scaled num-

ber distribution is interpolated with the scaled vector of roots to yield the initial

distribution and radius domain that is given to the ODE-solver.

When the initial conditions for the mass balance have been calculated through

the function alphacalc, the ODE-solver is called. The solver calls the function

differentialeq that creates the vector of differentials that are to be solved. Inside

differentialeq a call is made to the function interp, which calculates all the birth

and death rates of breakage and coalescence. This is done using the quadrature

weights generated in the SetUpGrid function earlier. To accommodate the limits

of the integrals that change depending on which point they are being solved on,

interpolation with the current distribution is done. Interp also calculates the surface

to volume ratio of the distribution and the derivative of the surface to volume ratio,

which are used in the differential equations governing the surfactant mass balance.

To solve the model without the surfactant mass balance the only change that has
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to be made is to replace the gamma ratios mentioned in Equations 2.37 and 2.38

with unity. This way the surfactant mass balance is no longer coupled with the

number distribution and the distribution remains unaffected by the surfactant mass

balance.

The functions PlotInitialConditions, PlotLengthVariables, PlotProperties, PlotRa-

diusVariables, PlotTransientData, SurfPlots, PlotSurfactantVariables and Con-

Plots provides all the plots used in the results and discussion section below.
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Chapter 4

Results and Discussion

4.1 Base Case Study

A base case was studied first, to give the reader an overview of what goes into

the program(see section 4.1.1) and what comes out(see section 4.1.2), in terms

of plots and parameters. In the base case, one set of the fitting parameters for

coalescence frequency, kω, coalescence efficiency, kψ, breakage frequency, kg1
and breakage efficiency, kg2, generates one set of output plots. Fitting parameters,

species properties[16] and other parameters used in the program are given in Table

4.1. This set of parameters has been chosen arbitrarily for demonstration purposes.

In addition, the ODE-solver has to be given an experimental distribution[16] as a

initial condition. The experimental distribution has arbitrary units, thus it is scaled

so that Equation 2.2 holds true.

4.1.1 Input to The Program

Table 4.1 shows the parameters that are given to the program as input for the base

case study. The value of Rmax was chosen to be large enough so that the number-

and volume density distribution does not exceed Rmax as they evolve with the

length of the pipe.

In Figure 4.1 the experimental number density distribution, fn,exp, and the

experimental volume density distribution, fv,exp, is plotted as a function of the

droplet radius, r. The blue and red circles show the interpolated initial number

density distribution, fn,0, and the interpolated initial volume density distribution,

fv,0, plotted as a function of the droplet radius, r. Interpolation is necessary

because a set of experimental data points have to be mapped on to the set of

collocation points that comprise the simulation grid mesh, and are generated in the

19
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Matlab code in Appendix C. Piecewise Cubic Hermite Interpolating Polynomials

was used in Matlab, as it is focused on curve shape preservation and therefore

avoids oscillating data points. Figure 4.1 shows that the fn,0 and fv,0 perfectly fits

the curves of fn,exp and fv,exp respectively.

Table 4.1: Parameters that are given to the program.

Parameter Value Explanation

φ 0.34 Volume fraction of water

U 0.16
[

m
s

]

Average velocity of fluid

L 3000[m] Pipe length

Rmax 600[µm] Upper bound of the radius domain

D 0.0254[m] Pipe diameter

ρd 1023
[

kg

m3

]

Density of the dispersed phase

µd 0.001[Pas] Viscosity of dispersed phase

ρc 786
[

kg

m3

]

Density of the continuous phase

µc 0.0013[Pas] Viscosity of continuous phase

γ0 0.05
[

N
m

]

Initial interfacial tension

kω 0.1 Fitting parameter for the coalescence frequency expression

kg1 0.1 Fitting parameter for breakage frequency expression

kψ 1e− 19 Fitting parameter for coalescence efficiency expression

kg2 1e− 5 Fitting parameter for breakage efficiency expression



4.1. Base Case Study 21

Figure 4.1: Experimental number density distribution, fn,exp, and experimental volume

density distribution, fv,exp, plotted as a function of the droplet radius, r. Blue and red

circles show the interpolated initial number density distribution, fn,0, and the interpolated

initial volume density distribution, fv,0, respectively, plotted as a function of the droplet

radius, r.

4.1.2 Output From The Program

In Figure 4.2 the number density distribution, fn, is plotted as a function of the

droplet radius, r, at nine different pipe lengths. At the initial pipe length (z = 0)

there is a large quantity of drops of equal size and as the distribution evolves along

the pipe it gets smaller in magnitude, indicating fewer drops of equal size. This is

expected in the case where coalescence is dominant considering that many smaller

sized drops will coalesce and form fewer larger drops, leading the curve in Figure

4.2 to flatten out as z increases.

In Figure 4.3 the volume density distribution, fv, is plotted as a function of the

droplet radius, r, at nine different pipe lengths. fv evolves from a low and wide

distribution at very low pipe lengths to a thinner and taller distribution as z in-

creases. This confirms that overall coalescence is dominating overall breakage,

considering there are more larger droplets. If breakage had dominated overall, a

wider distribution than the initial distribution would be expected.

Figure 4.4 shows the average radius of the number density distribution, µn, and the

average radius of the volume density distribution, µv, plotted as a function of the

axial position in the pipe, z. Both µn and µv increases over the total pipe length

indicating that coalescence is dominating over breakage for this set of fitting
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Figure 4.2: Number density distribution, fn, plotted as a function of the droplet radius, r,

at nine different pipe lengths. The fitting parameters that were used are shown at the left

side of the plot.

Figure 4.3: Volume density distribution, fv , plotted as a function of the droplet radius

radius, r, at nine different pipe lengths. The fitting parameters that were used are shown at

the left side of the plot.

parameters. There is a gap between µn and µv at lower z-values that becomes

smaller as z increases. The reason for this becomes clear when comparing Figure

4.2 and 4.3, where it can be seen that the relative change in fn along the pipe

length is a lot larger than it is for µv. This means that µn should have a larger

gradient than µv. The distribution also becomes narrower, which suggests that the

values of µn and µv are approaching each other.

At the point where the average radius is no longer growing the distribution is

said to be equilibriated, meaning that µn and µv have reached a constant value.

The length at which equilibrium is achieved, L∞, is set to the point on the z-axis

where the gradient of µv reaches a threshold value set to be 1e − 4. µv is is used
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Figure 4.4: Average radii of the number distribution, µn, and average radii of the volume

distribution, µv , plotted as a function of the axial position in the pipe, z. The fitting

parameters that were used are shown at the left side of the plot.

to determine L∞, because from experience with running the code it settles later

than µn. This way, both µn and µv have reached equilibrium at the chosen value

of L∞. For this set of fitting parameters L∞ was found to be 9.7 m. The average

radii of the number density distribution at L∞, µn,∞, and the average radii of the

volume density distribution at L∞, µv,∞, were found to be 63.3 µm and 69.3 µm
respectively.

L∞ is a very useful number to measure, because the relative effect and interplay

of the coalescence and breakage mechanisms and their effects on the system

dynamics can by studied by simulating different combinations of the fitting

parameter given in Table 4.1. Also, L∞ is a parameter of practical importance

for pipeline flow simulations because the volume and number density distribu-

tion at L∞ are important information to estimate the total fluid viscosity and,

consequently, pumping requirements. Considering that L∞ shows how fast the

distribution reaches a constant average radius, it should vary significantly when

the fitting parameters are changed. Specifically, changes in kω and kg1 should

control L∞ as they influence how fast coalescence and breakage takes place.

From Equation 2.8 and 2.13 it is evident that an increase in either kω or kg1
should increase coalescence- or breakage frequency respectively. This increases
dfn
dz , which is the main reason why the system equilibriates faster. Thus, kω and

kg1 can be considered to be "gain" constants that control the relative magnitudes

between coalescence- and breakage frequency and have a strong influence on L∞.

Variations in L∞ due to changes in kω and kg1 are studied in Section 4.2.

The average drop size of the volume distribution, µv,∞, at L∞ is another useful
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number to measure. As argued above µv is used because it is equilibriated later

than µn. µv,∞ should mainly be controlled by kψ and kg2 as these two parameters

influence the efficiency with which droplets coalesce and break up respectively.

An increase in kψ or a decrease in kg2 should lead to increased coalescence- and

breakage efficiency respectively. If coalescence efficiency is high, larger droplets

are expected to coalesce and if breakage efficiency is high, smaller drops are

expected to break, leading to higher or lower average drop size respectively. kψ
and kg2 are thus considered to be "gain" constants that influence the shape of

the distribution. Variations in µv,∞ due to changes in kψ and kg2 are studied in

Section 4.3.

The model equations are designed so that the mass balance is upheld, by having

terms that account for both death and birth of droplets. The mass created and

the mass that disappear therefore have to balance each other so that the following

equations hold true

∫ Rmax

0

vRC,+ dr −
∫ Rmax

0

vRC,− dr = 0 (4.1)

∫ Rmax

0

vRB,+ dr −
∫ Rmax

0

vRB,− dr = 0 (4.2)

Since the use of interpolation introduces errors that may accumulate over time,

measures have to be taken to make sure that the mass balance remains intact. The

ratio of the mass balance of coalescence, MC , and the ratio of the mass balance of

breakage, MB , are given by the following expressions

MC =

∫ Rmax

0
vRC,− dr

∫ Rmax

0
vRC,+ dr

(4.3)

MB =

∫ Rmax

0
vRB,− dr

∫ Rmax

0
vRB,+ dr

(4.4)

To make sure that φ stays constant, meaning that no drops are introduced or taken

away along the pipe length, MC and MB are multiplied with the birth rate of

coalescence and the birth rate of breakage respectively at every iteration of the

ODE-solver.

Figure 4.5 shows the volume fraction of water, φ, the coalescence mass balance

ratio, MC , and the breakage mass balance ratio, MB , plotted as a function of the

axial position in the pipe, z. In an ideal situation these should all remain constant

throughout the length of the pipe, which φ and MB does. MC on the other hand
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is never equal to one and makes a leap up to around 1.3 at a low pipe length

and settles there. From Equation 4.1 is is clear that RC,+ is reduced relative to

RC,− since MC is larger than 1. As long as MC does not escalate further, it

is reasonable to assume that this does not affect the models accuracy to a large

extent. The behavior of MC most likely indicates that the coalescence birth rate

is missing a term that arises from the assumption of representing the droplet pair

correlation function as simply the product of the number density distribution of

droplets with size r′ and r′′[17].

Figure 4.5: Volume fraction of water, φ, coalescence mass balance ratio, MC , and break-

age mass balance ratio, MB , plotted as a function of axial position in the pipe, z.

Figure 4.6 shows the total rate of coaelscence, RCt, plotted as a function of the

droplet radius, r, for nine different pipe lengths. Figure 4.7 shows the total rate of

breakage, RBt, plotted as a function of droplet radius, r, for nine different pipe

lengths, z. In Figure 4.6 and 4.7 the negative sections of the curves represent the

death of droplets due to coalescence and breakage respectively and the positive

parts represent the birth of droplets due to coalescence and breakage respectively.

It is logical that RCt is negative at low r-values, since smaller drops are the most

likliest to coalesce and vice versa for RBt.

In Figure 4.6 RCt is large at the outset and becomes smaller and smaller as z

increases, indicating that coalescence is strong at the beginning of the pipe. The

rate of coalescence is determined by multiplying the frequency of collisions with

the efficiency of coalescence, as can be seen in Equation 2.7. At lower z-values

there are a lot of small droplets that will coalesce and turn into fewer larger

droplets. As droplets grow larger, fewer and fewer are able to coalesce and the

rate of coalescence declines.
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Figure 4.6: Total coalescence rate, RCt, plotted as a function of the droplet radius radius,

r, at nine different pipe lengths. The fitting parameters that were used are shown at the left

side of the plot.

Figure 4.7: Total breakage rate, RBt, plotted as a function of the droplet radius radius, r,

at nine different pipe lengths. The fitting parameters that were used are shown at the left

side of the plot.

From Figure 4.7 it is evident that RBt has the exact opposite trend that RCt
showed. It becomes larger as z increases indicating that breakage becomes

stronger towards the end of the pipe. The rate of breakage, in opposition to the

rate of coalescence, does not depend on the collision of droplets and therefore

not on the amount of droplets that are present in the system. Breakage becomes

stronger when the droplets in the system become larger, because when droplets

become larger breakage frequency increases as can be seen from Equation 2.13.

With these two opposing trends in mind it is clear why, in Figure 4.4, µn and µv
increases at lower pipe lengths as coalescence is strong here. At the inflection
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point of µn and µv drop sizes have become sufficiently large that breakage is

now overcoming coalescence. Then, breakage becomes larger and larger with

increasing z until an equilibrium is reached and µn and µv reach constant values.

4.2 Analysis of System Behaviour Based on Variations in

Coalescence- and Breakage Frequencies

As discussed in section 4.1.2 changes made to kω and kg1 should control L∞
as these two parameters govern how fast coalescence and breakage occur in the

system. It is therefore interesting to look at how L∞ changes when kω and kg1 are

varied and see if this analysis is correct.

Figure 4.8 shows the length at which the volume density distribution is equilib-

riated, L∞, plotted as a function of the fitting parameter for breakage frequency,

kg1, and the fitting parameter for coalescence frequency, kω. The fitting paramet-

ers of coalescence efficiency, kψ, and breakage efficiency, kg2, were kept constant

at 1e− 19 and 1e− 4 respectively.

Figure 4.8: Length at which µv is equilibriated, L∞, plotted as a function of the fit-

ting parameter for breakage frequency, kg1, and the fitting parameter for coalescence fre-

quency, kω . The fitting parameters of coalescence efficiency and breakage efficiency were

kept constant at 1e− 19 and 1e− 4 respectively.

An increase in the magnitude of kω or kg1 should result in increased coalescence

frequency or breakage frequency respectively. As discussed in section 4.1.2

this should in term shorten L∞. This is exactly what can be seen in Figure
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4.8, where L∞ reaches its lowest magnitudes when both kω and kg1 have low

magnitudes. L∞ also seems to vary more along the the kω-axis when kg1 is at

lower magnitudes. This makes sense, because at lower magnitudes of kg1 the

frequency of breakage is low allowing the variation in magnitude of kω to have a

larger impact on L∞.

Figure 4.9 shows the average radius of the volume density distribution, µv,∞, at

L∞, plotted as a function of the fitting parameter for breakage frequency, kg1,

and the fitting parameter for coalescence frequency, kω. The fitting parameters

of coalescence efficiency, kψ, and breakage efficiency, kg2, were kept constant at

1e− 19 and 1e− 4 respectively.

Figure 4.9: Average radius of the volume density distribution, µv,∞, at L∞, plotted as a

function of the fitting parameter for breakage frequency, kg1, and the fitting parameter for

coalescence frequency, kω . The fitting parameters of coalescence efficiency and breakage

efficiency were kept constant at 1e− 19 and 1e− 4 respectively.

Moving along any horizontal line in Figure 4.9 corresponds to changing the

values of kω and kg1 by equal magnitudes either up or down. µv,∞ is constant

along any horizontal line in Figure 4.9 as well, indicating that the average radius

of the volume density distribution does not change as long as changes of equal

magnitude are made in the values of kω and kg1. In other words, it demonstrates

that as long as kω = kg1 µv,∞ does not change. This observation suggests that

as long as changes of equal magnitude are made to the value of kω and kg1, only

changes made in the magnitude of kψ and kg2 can change the shape of the final

distribution. This is an important result to consider when attempting to use this
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model to fit experimental data sets. Specifically, if kω and kg1 are treated as

the same parameter, kfrq, then the statistical reliability of the model fit should

improve since kfrq would mainly control the axial translation of the distribution

while kψ and kg2 would mainly determine the width and shape.

Figure 4.10 shows the length at which the volume density distribution is equilib-

riated, L∞, plotted as a function of the fitting parameter for breakage frequency,

kg1, and the fitting parameter for coalescence frequency, kω. The fitting paramet-

ers of coalescence efficiency, kψ, and breakage efficiency, kg2, were kept constant

at 1e− 20 and 1e− 5 respectively. This means that coalescence will not create as

large drops and breakage will occur on smaller drops than the previous case.

Figure 4.10: Length to equilibriated number distribution, L∞, plotted as a function of the

fitting parameter for breakage frequency, kg1, and the fitting parameter for coalescence

frequency, kω . The fitting parameters of coalescence efficiency and breakage efficiency

were kept constant at 1e− 20 and 1e− 5 respectively.

Figure 4.10 looks similar to Figure 4.8 except for a sharp elevation in L∞
when kg1 is large and kω is small. In Figure 4.10 both kψ and kg2 have been

decreased in magnitude, which should lead to lower coalescence efficiency

and higher breakage efficiency as discussed above. Since the peak in Fig-

ure 4.10 appears at low kω indicating low coalescence frequency, it might

be an indication that total rate of coalescence is so low that the distribution

reaches equilibrium slower. However, since overall breakage usually increases

with z as discussed above, it is unusual that L∞ increases when kg1 is large. It

might indicate that the parameter combination of kω and kg1 is in an unlikely state.
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The variation in L∞ along the kω-axis everywhere else in Figure 4.10 is small,

which corresponds to the trend seen in Figure 4.8. This could indicate that L∞
is more dependent on the magnitude of kg1, which makes sense considering that

breakage is known to grow larger with increasing z, as discussed above. L∞ is a

lot lower in general in Figure 4.10 than it is in Figure 4.8. This is an indication

that changes in kψ and kg2 also affect L∞ to a large extent.

Figure 4.11 shows the average radius of the volume distribution µv,∞, at L∞,

plotted as a function of the fitting parameter for breakage frequency, kg1, and

the fitting parameter for coalescence frequency, kω. The fitting parameters of

coalescence efficiency, kψ, and breakage efficiency, kg2, were kept constant at

1e− 20 and 1e− 5 respectively.

Figure 4.11: Average radius of the volume density distribution, µv,∞, at L∞, plotted as a

function of the fitting parameter for breakage frequency, kg1, and the fitting parameter for

coalescence frequency, kω . The fitting parameters of coalescence efficiency and breakage

efficiency were kept constant at 1e− 20 and 1e− 5 respectively.

Figure 4.11 shows the exact same trend as Figure 4.9. When changes of equal

magnitude are made to the values of kω and kg1, µv,∞ is constant. This shows

that the trend is consistent for a different set of kψ and kg2 values and proves

that it is not an anomaly. In Figure 4.11 average drop size is smaller in general.

Since kψ and kg2 are lower, the coalescence efficiency and the breakage efficiency

have been decreased and increased respectively. When coalescence efficiency

decreases larger drops are not able to coalesce and when breakage efficiency
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increases smaller drops are able to break. This should amount to a significant

lowering of the average drop size.

4.3 Analysis of System Behaviour Based on Variations in

Coalescence- and Breakage Efficiencies

As discussed in Section 4.1.2 changes in the magnitudes of kψ and kg2 should

have an effect on the equilibriated average drop size. To better understand the

dynamics of coalescence- and breakage efficiency it is interesting to look at how

µv,∞ changes in magnitude when kψ and kg2 are varied.

Figure 4.12 shows the average radius of the volume density distribution, µv,∞, at

L∞ plotted against the fitting parameter for coalescence efficiency, kψ, and the

fitting parameter for breakage efficiency, kg2. The fitting parameter of coalescence

frequency, kω, and the fitting parameter for breakage frequency, kg1, were kept

constant at 0.1.

Figure 4.12: Average radius of the volume density distribution, µv,∞, at L∞ plotted as a

function of the fitting parameter for coalescence efficiency, kψ , and the fitting parameter

for breakage efficiency, kg2. The fitting parameter for coalescence frequency and the fitting

parameter for breakage frequency were kept constant at 0.1.

From Figure 4.12 it is clear that the efficiency of breakage only has an effect

on the average drop size at lower values of kg2. As discussed in section 4.1.2

decreasing the magnitude of kg2 increases the efficiency of breakage and therefore



32 Results and Discussion

lowers µv,∞. This can be seen in Figure 4.12 for lower magnitudes of kg2. For

higher magnitudes of kg2 there seem to be no effect on µv,∞, which is most likely

caused by breakage efficiency becoming so small that coalescence is completely

dominant and changes in kψ completely determines µv,∞. Increasing the mag-

nitude of kg2, exponentially decreases the magnitude of breakage efficiency, as

can be seen in Equation 2.13. This explains why at higher magnitudes of kg2 the

effect of breakage is lost on µv,∞, because at such low breakage efficiency not

even the larger drops are able to break.

As discussed in section 4.1.2 the efficiency of coalescence should increase with

increasing magnitude of kψ and with higher coalescence efficiency more drops

will coalesce and µv,∞ should increase. This is exactly the case in Figure 4.12

where the trend clearly shows that the magnitude of µv,∞ increases when the

magnitude of kψ is increased. When the magnitude of kg2 becomes smaller, hence

increasing breakage efficiency, the effect of increasing kψ is counteracted and

becomes less clear than for higher magnitudes of kg2. This shows a very clear and

dynamic balance between coalescence efficiency and breakage efficiency.

Figure 4.13 shows the average of the volume density distribution, µv,∞, at L∞
plotted against the fitting parameter for coalescence efficiency, kψ, and the fitting

parameter for breakage efficiency, kg2. The fitting parameter for coalescence

frequency, kω, and the fitting parameter for breakage frequency, kg1, were kept

constant at 1 and 0.01 respectively.

Figure 4.13 indicates the same trend that Figure 4.12 does. Also here µv,∞ varies

greatly with the magnitude of kψ, but to a lesser extent on the magnitude of kg2.

The fact that the these trends occur in both Figure 4.12 and 4.13 proves that the

trend is not an anomaly. However, the extent to which µv,∞ varies with kg2 is

even lesser in Figure 4.13 than it is 4.12. The reason for this is most likely that

kω is two orders of magnitude larger than kg1 causing coalescence to occur much

more often than breakage. More coalescence than breakage increase µv,∞. The

difference in the magnitudes of µv,∞ between these two figures is however modest

compared to the magnitude of change induced by variations in kψ in each figure

individually.This shows that µv,∞ is much more dependent on the coalescence

efficiency than it is on the coalescence frequency.
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Figure 4.13: Average radius of the volume density distribution, µv,∞, at L∞ plotted as a

function of the fitting parameter for coalescence efficiency, kψ , and the fitting parameter

for breakage efficiency, kg2. The fitting parameter for coalescence frequency and the fitting

parameter for breakage frequency were kept constant at 0.1 and 0.01 respectively.

4.4 Analysis of System Behaviour Based on Total Coalescence

Rate, Total Breakage Rate and Evolution of The Volume

Density Distribution

To further expand the analysis of the system four different sets of fitting paramet-

ers have been studied in the context of total coalescence rate, RCt, total breakage

rate, RBt, and the volume density distribution, fv. This is done with the intention

of comparing these variables and their evolution as coalescence and breakage are

varied in their influence.

Figures 4.14-4.16 show the total coalescence rate, Rct, the total breakage rate,

Rbt, and the volume density distribution, fv, respectively as a function of droplet

radius at nine different pipe lengths. kω is set to 0.33e− 2, kg1 is set to 0.33e− 2,

kψ is set to 1e− 20 and kg2 is set to 1e− 5 in all three plots.

Figures 4.17-4.19 show the total coalescence rate, Rct, the total breakage rate,

Rbt and the volume density distribution, fv, respectively as a function of droplet

radius at nine different pipe lengths. kω is set to 0.66, kg1 is set to 0.66, kψ is set

to 1e− 20 and kg2 is set to 1e− 5 in all three plots.
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Figure 4.14: Total rate of coalescence, Rct, plotted against droplet radius, r, at nine

different pipe lengths. The fitting parameters that were used are shown at the left side of

the plot.

Figure 4.15: Total rate of breakage, Rbt, plotted against droplet radius, r, at nine different

pipe lengths. The fitting parameters that were used are shown at the left side of the plot.

Comparing the system in Figure 4.14-4.16 and the system in Figure 4.17-4.19

several distinct differences become apparent. The magnitude of RCt is larger for

all z-values in Figure 4.17 than it is in Figure 4.14. This makes sense because kω
is larger in Figure 4.17 and as discussed in section 4.1.2 an increase in kω should

increase the rate of coalescence. RBt is larger for all z-values in Figure 4.18

than it is in Figure 4.15. kg1 is also larger in Figure 4.18 than it is in Figure 4.15

and as discussed in Section 4.1.2 this should increase the rate of breakage. The

shape of the volume density distributions in Figure 4.16 and Figure 4.19 appear
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Figure 4.16: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

Figure 4.17: Total rate of coalescence, Rct, plotted against droplet radius, r, at nine

different pipe lengths. The fitting parameters that were used are shown at the left side of

the plot.

to be identical which supports the previously made argument that increasing kω
and kg1 by equal magnitudes yields no change in average drop size. This is

logical because an increase of kω and kg1 of equal magnitude should induce the

same increase in the magnitude of coalescence frequency as in the magnitude of

breakage frequency. kω and kg1 are direct multiplying factors for coalescence

frequency and breakage frequency as seen in Equation 2.8 and 2.13, respectively.

In Figure 4.20 the volume density distribution, fv, is plotted as a function of the

droplet radius, r, at nine different pipe lengths. kω is set to 0.33, kg1 is set to

0.33e− 2, kψ is set to 1e− 20 and kg2 is set to 1e− 5.
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Figure 4.18: Total rate of breakage, Rbt, plotted against droplet radius, r, at nine different

pipe lengths. The fitting parameters that were used are shown at the left side of the plot.

Figure 4.19: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

In Figure 4.21 the volume density distribution, fv, is plotted as a function of the

droplet radius, r, at nine different pipe lengths. kω is set to 0.33e− 2, kg1 is set to

0.66, kψ is set to 1e− 20 and kg2 is set to 1e− 5.

Note that in Figure 4.16, 4.19, 4.20 and 4.21 kψ and kg2 have the same magnitude.

This means that the relationship between coalescence efficiency and breakage

efficiency remains unchanged and any alterations to the shape of the volume

density distribution is caused by changes in the frequency of coalescence and

the frequency of breakage. As discussed above the shape of the volume density

distribution does not change as long as changes of equal magnitude are made to

kω and kg1.

When changes were made only to either kω or kg1, as in Figure 4.20 and 4.21
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Figure 4.20: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

Figure 4.21: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

respectively, the shape of the volume density distribution was altered. When kω is

increased it is expected that the volume density distribution should become taller

and thinner and skewed towards larger drop sizes as coalescence frequency is then

increased in magnitude while breakage frequency remains unchanged. This is

exactly what happens, as seen by comparing Figure 4.16 and Figure 4.20, where

the final shape of fv is both taller, narrower and skewed more towards larger drop

sizes in Figure 4.20. In Figure 4.21 kg1 has been increased compared to Figure

4.16. With an increase in the kg1 an increase in breakage frequency would be

expected as discussed in section 4.1.2. This should lead to a wider and shorter

volume density distribution skewed towards smaller drop sizes, as breakage

frequency is now increased in magnitude compared to coalescence frequency.

Comparing Figure 4.16 and 4.21 this is indeed the case and fv at larger z-values

appear wider and skewed more towards lower drop sizes in Figure 4.21.
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In Figures 4.14-4.21 changes were made in the magnitudes of the coalescence

frequency and in the magnitude of breakage frequency. A couple of cases where

the magnitude of kψ and kg2 are changed while kω and kg1 are kept constant will

now be studied.

In Figure 4.22 the volume density distribution, fv, is plotted as a function of

droplet radius, r, at nine different pipe lengths. kω is set to 1, kg1 is set to 0.01, kψ
is set to 1e− 22 and kg2 is set to 1e− 5.

Figure 4.22: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

In Figure 4.22 breakage appear to be dominant as the distribution is skewed far to

the left. kψ and kg2 are both low which as discussed in Section 4.1.2 should mean

high breakage efficiency and low coalescence efficiency. Since kω is two orders of

magnitude larger than kg1 this shows how dominant the influence of coalescence-

and breakage efficiency is on fv compared to the coalescence- and breakage

frequency. The sensitivity of change in the magnitude of kψ and kg2 is also a lot

larger than the sensitivity in the change in the magnitude of kω and kg1, because

kψ and kg2 contribute to the exponential part of Equation 2.8 and 2.13 respectively.

Figure 4.22 fv has a concerning spike that keeps growing as z becomes larger.

The pointy appearance of the fv-curve could be due to the distribution of grid

points and more grid points in the domain could smooth the curve. fv is becoming

larger and larger because the coalescence efficiency is so low that only very small

drops are able to coalesce, while smaller and smaller drops are able to break

because breakage efficiency is so high. This is a good indication that the chosen

set of parameters are outside the models range of realistic results, which is only
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natural when kψ are kg2 are set to opposite extremes.

In Figure 4.23 the volume density distribution, fv, is plotted as a function of

droplet radius, r, at nine different pipe lengths. kω is set to 1, kg1 is set to 0.01, kψ
is set to 1e− 19 and kg2 is set to 1e− 5.

Figure 4.23: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

In contrast to Figure 4.22 the efficiency of coalescence is larger in Figure 4.23

considering that kψ is increased three orders of magnitude. It is evident that

coalescence has reached a level that is able to cope with the breakage efficiency

creating a shape of fv more resembling of the case shown in Figure 4.20. Unlike

in Figure 4.22 fv does not have spikes in Figure 4.23, which indicates that it is a

more reasonable set of parameters. Coalescence efficiency in Figure 4.23 is large

enough that smaller drops are able to coalesce in spite of the high rate of breakage

efficiency, creating a more physically realistic result.

In Figure 4.24 the volume density distribution, fv, is plotted as a function of

droplet radius, r, at nine different pipe lengths. kω is set to 1, kg1 is set to 0.01, kψ
is set to 1e− 22 and kg2 is set to 1e− 2.

In Figure 4.24 kψ is small and kg2 is large, which should lead to a case of lower

coalescence efficiency and lower breakage efficiency than the case in Figure

4.23. In the case shwon in Figure 4.24 both coalescence efficiency and breakage

efficiency are so low that larger drops do not break or coalesce at all. This is

indicated by the fact that above a certain radius the distribution remains unchanged

along the entire pipe length.
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Figure 4.24: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

In Figure 4.25 the volume density distribution, fv, is plotted as a function of droplet

radius, r, at nine different pipe lengths. kω is set to 1, kg1 is set to 0.01, kψ is set

to 1e− 19 and kg2 is set to 1e− 2.

Figure 4.25: Volume density distribution, fv , plotted at nine different pipe lengths. The

fitting parameters that were used are shown at the left side of the plot.

In Figure 4.25 coalescence efficiency is dominant as a lot of large drops are able

to coalesce and very few are able to break, on the account that the distribution

is tall, narrow and skewed far towards larger radii. This is in accordance with

the magnitude of kψ and kg2 that are both high and should therefore give high

efficiency of coalescence and low efficiency of breakage.
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4.5 Dynamic Drop Growth Model With The Surfactant Mass

Balance

To investigate the dynamics of the system when the mass balance of the surfactant

is included, a study has been done to see how the concentration of surfactant in the

bulk phase, C, the amount of surfactant adsorbed on the dispersed phase, Γ, and

the interfacial tension, γ, changes when the concentration of surfactant at infinite

dilution is varied. A couple of new parameters are added to the model in addition

to the ones in Table 4.1. These are used in the equations for the mass balance of

the surfactant and can be found in Table 4.2. In addition the fitting parameters of

coalescence frequency, breakage frequency, coalescence efficiency and breakage

efficiency that were used to generate all the results in this section are given in

Table 4.2.

Table 4.2: Additional parameters needed for the surfactant mass balance equations and

fitting parameter used in the model.

Parameter Value Explanation

K 100 Langmuir isotherm equilibrium constant

Kf 5e− 5
[

m
s

]

Mass transfer coefficient

Γmax 1e− 6
[

mol
m2

]

Maximum amount of surfactant that can be

adsorbed on the surface of the dispersed phase droplets

T 293.15[K] Ambient temperature

kω 0.66 Fitting parameter for the coalescence frequency expression

kg1 0.66 Fitting parameter for breakage frequency expression

kψ 1e− 20 Fitting parameter for coalescence efficiency expression

kg2 1e− 5 Fitting parameter for breakage efficiency expression

In Figure 4.26 the surface to volume ratio, α, is plotted as a function of

axial coordinate, z, for three different concentrations at infinite dilution,

C∞(0.05, 0.10, 0.15).

Variations in the magnitude of α are miniscule between the three cases dispelayed

in Figure 4.26. This suggest that there is little change in the amount of coalescence

and breakage between the cases, since surface area is not conserved under co-

alescence and breakage. It would therefore be expected to see more of difference
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Figure 4.26: Surface to volume ratio, α, plotted as a function of axial position, z, for three

different concentrations at infinite dilution, C∞.

between the three cases if changes in the magnitude of C∞ had an effect on the

dynamics of coalescence and breakage.

Figure 4.27 shows the concentration of surfactant in the bulk phase normalized

by the concentration of surfactant at infinite dilution, C
C∞

, plotted as a func-

tion of axial position, z, for three different concentrations at infinite dilution,

C∞(0.05, 0.1, 0.15).

Figure 4.27: Bulk concentration of surfactant normalized by the concentration of surfact-

ant at infinite dilution, C
C∞

, plotted as a function of axial position, z, at three different

concentrations of infinite dilution, C∞.

As seen in Figure 4.27 C increases moderately along the axial direction before

settling well below C∞. This indicates that surfactants are migrating from the

dispersed phase and over to the bulk phase. The decline in α seen for all three
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cases in Figure 4.26 supports this, because the amount of available surface area

relative to the volume is decreasing. This means less surface area of dispersed

phase for the surfactant to adsorb on and hence more surfactant ends up in the

continuous phase(bulk phase).

In Figure 4.28 the amount of surfactant adsorbed on the dispersed phase interface

normalized by the maximum amount of surfactant that can be adsorbed on the dis-

persed phase interface, Γ
Γmax

, is plotted as a function of axial position, z, for three

different magnitudes of concentration at infinite dilution, C∞(0.05, 0.10, 0.15).

Figure 4.28: Amount of surfactant adsorbed on the surface of the dispersed phase normal-

ized by the maximum amount of surfactant that can adsorb on the dispersed phase, Γ

Γmax

,

plotted as a function of axial position, z, for three different concentrations at infinite dilu-

tion, C∞.

In neither of the three different cases shown in Figure 4.28 there seem to be large

changes in Γ along the axial direction. A slight increase in Γ is present with each

different magnitude of C∞, but the change is very small. This indicates that the

surface is almost saturated with surfactant even at lower axial positions, which is

also supported by the increase in bulk phase concentration seen in Figure 4.27.

An increase in C when α is decreasing, as seen in Figure 4.26, indicates that the

surface is saturated. This is because as less surface area is available for adsorption,

which is the case when α decreases, more surfactant migrates to the bulk phase.

In Figure 4.29 the interfacial tension of the dispersed phase droplets normalized

by the initial interfacial tension of dispersed phase doplets, γ
γ0

, is plotted as a

function of axial position, z, for three different magnitudes of concentration at

infinite dilution, C∞(0.05, 0.10, 0.15).
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Figure 4.29: Interfacial tension normalized by the initial interfacial tension, γ
γ0

, plotted as

a function of axial position, z, for three different concentrations at infinite dilution, C∞.

The changes in γ are minuscule along the axial direction for all the three

magnitudes of C∞ shown in Figure 4.29. As argued above the dispersed phase

droplets are saturated with surfactant, which means that the surfactant is unable to

change the surface tension of the dispersed phase droplets to a significant extent.

This is an important discovery as the only thing that couples the surfactant mass

balance to the number density distribution and volume density distribution is the

ratio γ
γ0

, as seen in Equation 2.37 and 2.38. In turn, this means that the ability of

the surfactant mass balance to affect the number- and volume density distribution

is rather limited with this model formulation.

In Figure 4.30 the average drop size of the volume density distribution, µv, is

plotted as a function of axial position, r, for three different concentrations at

infinate dilution, C∞(0.05, 0.10, 0.15), and the case where the mass balance of

the surfactant is not included in the model.

As seen by comparing the lines in Figure 4.30 it is evident that including the

surfactant mass balance does not have a significant effect on the average drop size

evolution. Very small differences in µv can be seen as C∞ is changed. However,

Grimes et al.[18] have demonstrated that the presence of surfactant in the solution

is expected to have a much larger effect on coalescence and breakage than Figure

4.30 indicates. Because surfactants have a large impact on the surface tension of

droplets, one would expect that taking the surfactant mass balance into account in

the model would yield quite different results than without it.

One reason that the model is unable to predict the expected dynamics of co-

alescence and breakage when the mass balance is included, is the way that kψ
is defined. The retarded Hamaker constant has been lumped into the fitting
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Figure 4.30: Average drop size of the volume density distribution, µv , plotted as a function

of axial position, z, for three different concentrations at infinite dilution, C∞, and for the

case where the surfactant mass balance is not included in the model.

parameter of coalescence efficiency, kψ, thus it has units of m2. The retarded

Hamaker constant describes the interfacial forces between surfactants adsorbed

on two opposing interfaces that gives rise to the disjoining pressure and is a

strong function of the interfacial surfactant concentration, Γ. Thus, the model

as formulated is insufficient to describe the intermolecular forces at the surface

of droplets as a function of the surfactant concentration. A more comprehensive

model that replaces kψ with a Γ dependant functionality of the retarded Hamaker

constant should be formulated.
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Chapter 5

Conclusion

In this thesis the dynamic evolution of the drop size distribution of emulsions in

turbulent pipe flow was studied, with and without the surfactant mass balance.

The study was performed for a pipe length of 3000 m, pipe diameter of 0.0254
m, a maximum droplet radius of 600 µm and an average fluid velocity of 0.160
m
s

. First, a base case scenario of the model without the surfactant mass balance

was presented to give the reader an overview of how the data from the model is

interpreted. A study was then performed to see how the system dynamics changed

when kω and kg1 was varied in between 1e − 2 and 1. This was followed by a

similar investigation of how the system dynamics changed when kψ was varied

between 1e− 22 and 1e− 19 and kg2 was varied between 1e− 5 and 1e− 2. The

total rate of coalescence, the total rate of breakage and the average volume density

distribution was then studied for several different sets of fitting parameters. Lastly,

the surfactant mass balance was included in the model to see how it affected the

dynamics of the system.

The base case showed that coalescence is strong at lower values of z and gets

weaker and weaker along the z-axis. On the other hand, breakage is weaker at

lower values of z and grows stronger along the z-axis. It was also determined that

the coalescence mass balance ratio MC was larger than one, but that this should

not compromise the integrity of the model notably.

In section 2.2 the system behaviour when changes in magnitude were made to

the coalescence and breakage frequency parameters kω and kg1 were studied

and proved that both parameters have a significant effect on the length at which

equilibrium is reached, L∞. However, kg1 was found to have a slightly larger

effect on L∞ than kω , when kψ and kg2 where kept constant. Another remarkable

47
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observation was made when kω and kg1 was varied, namely that µv,∞ remained

unchanged when changes of equal magnitudes were made to kω and kg1. This

also indicated that as long as kω and kg1 were changed with equal magnitudes

the only thing able to affect the shape of the distribution were changes in kψ and

kg2. This is an important discovery to consider when the model is to be fitted with

experimental data, since now kω and kg1 can be merged to one single parameter

that controls the axial translation of the distribution.

In Section 2.3 the magnitude of kψ and kg2 were varied to study the effect that

coalescence- and breakage efficiency has on the shape of fv. It was found that

kg2 only had an effect on µv,∞ at lower magnitudes, which means only at higher

efficiencies of breakage. The conclusion is that for the tested range of kψ and kg2,

the magnitude of efficiency of coalescence had a far larger impact on µv,∞ than

the magnitude of breakage efficiency had. A change made in the magnitude of kg1
showed small differences in the variance of µv,∞, leading to the conclusion that

kψ and kg2 are more influential on µv,∞ than kω and kg1 are.

In Section 2.4 the total rate of breakage, the total rate of coalescence and the

volume density distribution was studied for different sets of parameters. The total

rate of coalescence and the total rate of breakage was found to vary greatly with

the magnitude of kω and kg1. The shape of fv remained unchanged when changes

of equal magnitude where made to kω and kg1, as predicted earlier. When only

kω was increased the distribution moved towards larger drop sizes and became

thinner and taller, as would be expected when the frequency of coalescence

increases. Increasing only kg1 had the opposite effect and the distribution was

skewed towards the left and became wider.

When kψ and kg2 where changed in magnitude, larger changes occurred in the

shape of fv than it did when kω and kg1 were changed in magnitude. This is due

to the fact that the coalescence- and breakage efficiency parameters are directly

affecting an exponential equation, while the coalescence- and breakage frequency

parameters only are multiplying factors in the model equations. When both kψ
and kg2 were set to low values, which indicates high breakage efficiency and

low coalescence efficiency, fv was skewed far to the left and got very large in

magnitude. Smaller and smaller drops are able to break when breakage efficiency

is high and since coalescence efficiency is low, not even the smallest drops will

coalesce. At this extreme point where kg2 was at its lowest and kω was at its

lowest, fv had some spikes that lead to the conclusion that the parameters were

moving outside the range where the model gives reasonable results.
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All the other changes that where made to kψ and kg2 gave the expected results

in terms of the shape of fv. High coalescence frequency and high breakage

frequency lead to a distribution that narrowed and became slightly taller. With

high coalescence efficiency and low breakage efficiency the distribution grew

even higher, because larger drops were unable to break. The case where both

coalescence frequency and breakage frequency was low gave a case were a lot of

droplets were unable to break or coalesce.

Overall, the changes that were made in kω, kg1, kψ and kg2 gave the changes

that were expected in fv. This is a clear sign that the model is responding like it

should according to the equations in the model formulation. It also became clear

as was discovered earlier that kg2 and kψ have a far larger effect on the shape of

the volume density distribution than kω and kg1 have.

The effect of the mass balance on the volume density distribution and the number

density distribution were found to be minuscule at best. From simulations made

with different magnitude of C∞ it was clear that the interfacial surface tension

did not change notably. Considering that the interfacial surface tension is the only

thing coupling the surfactant mass balance to the evolution of the number- and

volume density distribution, no major changes are expected with the mass balance

incorporated. The addition of the mass balance of the surfactant is therefore

ineffective as the model is formulated.

One more issue with the model was confirmed in regards to the fitting parameter

of coalescence efficiency. The retarded Hamaker constant has been lumped into

kψ, which rendered the model unfitted to describe the intermolecular forces at

the surface of droplets as a function of the surfactant concentration. This lead

to the conclusion that a more comprehensive model were kψ is replaced by a Γ
dependent functionality of the retarded Hamaker constant should be formulated.

This warrants further study and should be the focus of future research on this topic.
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Appendix A - Non Dimenzionalizing the Model
To generate a stable numerical solution the model equations have to be non-

dimenzionalized before they are solved in Matlab[6]. Five dimensionless variables

will be introduced into the equations to achieve this, namely dimensionless axial

position in the pipe, dimensionless radius of droplets, dimensionless number dens-

ity distribution, dimensionless concentration of surfactant in the continuous phase

and dimensionless amount of surfactant adsorbed on the dispersed phase interface

[6]

λ =
z

L
≡ dimensionless axial position in the pipe (A-1)

ξ =
r

Rmax
≡ dimensionless radius of the number density distribution (A-2)

fn =
Rmax

Nd0
η ≡ dimensionless number density distribution (A-3)

θ =
Cf

Cf,∞
≡

dimensionless concentration of surfactant in the continuous phase (A-4)

τ =
Γ

Γmax
≡

dimensionless amount of surfactant adsorbed on the dispersed phase (A-5)

where Nd0 is the number density at the initial position in the pipe(z=0). It can be

found by integrating the initial number density, η0, over the entire radius domain[6]

Nd0 =

∫ Rmax

0

η0(r
′)dr′ (A-6)

The overall population balance equation in dimensionless form is[6]

dfn

dλ
= PC,+ − PC,− + PB,+ − PB,− for 0 ≤ γ ≤ 1, 0 ≤ ξ ≤ 1 (A-7)



Initial condition: at λ = 0, fn(ξ, 0) = fn0(ξ), for 0 ≤ ξ ≤ 1 (A-7.1)

where PC,+ is the dimensionless birth rate due to coalescence, PC,− is the dimen-

sionless death rate due to coalescence, PB,+ is the dimensionless birth rate due to

breakage and PC,− is the dimensionless death rate due to breakage. The birth and

death rate due to coalescence, on dimensionless form are, respectively[6]

PC,+(ξ, λ) =

∫ ξ/ 3
√
2

0

rC(ξ
′,
[

ξ3 − ξ′3
]1/3

)fn(ξ
′, λ)

×fn(
[

ξ3 − ξ′3
]1/3

, λ) dξ′ (A-8)

PC,− = fn(ξ, λ)

∫ 1

0

rC(ξ, ξ
′)fn(ξ

′, λ)dξ′ (A-9)

where rC(ξ1, ξ2) is the dimensionless rate of coalescence of two drops with radius

ξ1 and ξ2 given by the following expression[6]

rC(ξ1, ξ2) = χω(ξ1, ξ2)
2
[

ξ
2/3
1 + ξ

2/3
2

]1/2
exp

[

−χψ
(

ξ1ξ2

ξ1 + ξ2

)4
]

(A-10)

where χω and χψ are respectively[6]

χω = kω
4 3
√
2ǫ1/3R

7/3
maxNd0L

U(1 + φ)
(A-11)

χψ =
1

kψ

16µcρcǫR
4
max

λ2(1 + φ)3
(A-12)

The value of χω represents the ratio between residense time for a drop in the pipe

to the average time between droplet collisions and the value of χψ is the ratio

between the film drainage time constant and the droplet collision time constant.

The birth rate of breakage, PC,+, and death rate of breakage, PC,−, on dimension-

less form are respectively[6]

PB,+(ξ, λ) =

∫ 1

ξ
2β(ξ, ξ′)g(ξ′)fn(ξ

′, λ)dξ′ (A-13)

PB,−(ξ, λ) = g(ξ)fn(ξ, λ) (A-14)
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where β(ξ, ξ′) is the dimensionless daughter size distribution and g(ξ) is the di-

mensionless rate of breakage, and they are respectively[6]

β(ξ, ξ′) =
45
3
√
2

ξ2

ξ′3

(

ξ3

ξ′3

)2
[

1−
(

ξ3

ξ′3

)2
]

(A-15)

g(ξ) =
χg1

ξ2/3
exp

[

− χg2

ξ5/3

]

(A-16)

where χg1 and χg2 are respectively[6]

χg1 = kg1
ǫ1/3L

3
√
4(1 + φ)R

2/3
maxU

(A-17)

χg2 = kg2
γ(1 + φ)2

3
√
32ρdǫ2/3R

5/3
max

(A-18)

The dimensionless number described by χg1 represents a combination of the

droplet residence time in the pipe to the breakage frequency of the drop in the

turbulent flow field. The dimensionless number described by χg2 represents the

ratio of the surface energy of the drop to the mean turbulent kinetic energy of an

eddy.

The dimensionless form of the bulk surfactant mass balance is given by the fol-

lowing expression

dθ

dλ
= Eα

[

θ − τ

C∞K(1− τ)

]

at λ = 0, θ =
C0

C∞
(A-19)

where E is given by

E =
KfL

(1− φ)U
(A-20)

and the dimensionless form of the ratio between the dispersed phase area and the

total dispersion volume is

α =
1

φ

∫ 1

0

3

ξ′
fv(ξ

′) dξ′ (A-21)

The non-dimensional form of the change in amount of surfactant adsorbed on the

surface of the dispersed phase is given by

dτ

dλ
= F

[

θ − τ

C∞K(1− τ)

]

− τ

α

dα

dλ
at λ = 0, θ =

Γ0

Γmax
(A-22)



where F is given by

F =
KfC∞L

ΓmaxU
(A-23)

and the dimensionless form of the derivative of the ratio between the dispersed

phase area and the total dispersion volume is

dα

dλ
=

1

φ

∫ 1

0

3

ξ′
dfv(ξ

′)

dλ
dξ′ (A-24)
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Appendix B - The Collocation Method
Collocation is a method under the category of weighted residual methods.

Weighted residual methods are based on expanding the solution of a differential

equation, or a set of differential equations, into a set of finite functions[19]. These

equations are normally obtained by a truncated orthonormal polynomial series.

For the case of a two-dimensional equation, or set of equations varying with time t

and internal coordinate x (could be radius, mass etc.) the expansion looks like[19]

f(x, t) ≃ h(x) +

M
∑

n=0

Cn(t)φn(x) (B-1)

where h is the initial condition of f ,Cn are the unknown coefficients and φn are the

functions that the wanted solution is expanded in terms of. φn can be chosen to be

a number of functions including Lagrangian polynomials, Laguerre functions and

Legendre polynomials. It is the residual of these expansions that are minimized to

find the solution of the differential equation. This is done by taking the integral of

the residual function multiplied by an appropriate weighting function and equate

it to 0[19]

∫ ∞

0

Re(f)ψj(x) dx = 0 (B-2)

where Re is the residual of the expansion function in Equation B-1 and ψj is the

weighting function. Weighting functions may be chosen differently depending on

what specific weighted residual method is being used.

In the orthogonal collocation method the solution domain of the differential equa-

tions is discretized into nodes, where the accuracy of the solution depends on how

many nodes there are in the domain. If steeper gradients are encountered in certain

parts of the domain, more collocation points can be generated here. Usually, this

is done by splitting the domain into several separate regions and performing col-

location on each region. The family of Jakobi othogonal polynomials can be used

to decide the distribution of collocation points. The domain of these polynomials

are given by[20]

J
a,b
P = (Jα,βP (x), p = 0, 1, 2, ...) (B-3)

where (Ja,bP )p=0,1,2,.. is a system of algebraic polynomials with degree p. a and b

are weighting parameters that decide the relative displacement of the roots of the



polynomial. The degree of the polynomial decides the amount of roots and there-

fore the amount of nodes. The basis functions that the wanted solution is expanded

in terms of, shown as φn(x) in Equation B-1 can be chosen to be Lagrangian poly-

nomials. Lagrangian polynomials are given by

LP,j(x) =
P
∏

i=1

(x− xi)

xj − xi
(B-4)

where LP,j(x) is 1 if x = xi = xj and LP,j(x) is 0 if x = xi 6= xj . In the case

of orthogonal collocation the weighting function in Equation B-2 is chosen to be

the Dirac-Delta function. This is the reason for the simplicity of the orthogonal

collocation method compared to other weighted residual methods. The Dirac-

Delta function is a function that is zero everywhere on the real domain except for

at the origin.
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Appendix C - Matlab Code
main

1 clear all

2 clc

3 close all

4 tic;

5 % Calling the script containing all the constants

6 parameters

7 global Ne Ni Nd0

8 [r_scale,mew_scale,Nd0] = rescale(’InitialDistribution.txt’,0,0.34);

9

10 [end_vec, ele_vec, rts,wts,P,N_inter] = SetUpGrid(Ne,Ni,mew_scale...

11 ,r_scale);

12

13 [C0,G0,alfa0] = alphacalc(N_inter,P,wts,ele_vec);

14

15 % Setting options for ODE-solver

16 options = odeset(’RelTol’,10^-3,’AbsTol’,10^-6);

17 % Runing ODE-solver

18 [z,fn] = ode15s(@(z,fn)differentialeq(z,fn,P,wts,ele_vec),...

19 [0 1],[N_inter,C0,G0],options)

20

21 toc;

parameters

1 % Definng global variables used in scripts and functions

2 global Ne Ni phi U L Di rho_d mu_d rho_c mu_c...

3 gamma k_o k_p k_g1 k_g2 Rmax Nibc Vmax K Gmax Cinf Kf G F R T

4 Ne = 6; % Number of elements

5 Ni = [5,15,15,15,5,5]; % Number of internal colloc points for each element

6 Nibc = [7,16,16,16,6,6]; % Number of colloc points with boundary

7 % points added

8 phi = 0.34; % Water cut

9 U = 0.16; % Velocity of fluid [m/s]

10 L = 300; % Length of pipe [m]

11 Di = 0.0254; % Pipe diameter [m]

12 rho_d = 1023; % Density of dispersed phase [kg/m3]

13 mu_d = 1E-3; % Viscosity of dispersed phase [Pa*s]



14 rho_c = 786; % Density of the continous phase [kg/m3]

15 mu_c = 1.3E-3; % Viscosity of the continous phase [Pa*s]

16 gamma = 50E-3; % Interfacial tension [N/m]

17 k_o = 1E-1; % Fitting parameter for coalescence frequency expression

18 k_p = 1E-19; % Fitting paramter for coalescence efficiency expression

19 k_g1 = 1E-1; % Fitting parameter for breakage frequency expression

20 k_g2 = 1E-4; % Fitting parameter for breakage efficiency expression

21 Rmax = 300E-6; % Highest radius of measure [m]

22 Vmax = Rmax^3*(4*pi()/3); % Maximum drop volume [m^3]

23

24 K = 100; % Konstant from langmuir equation [m^3/mol]

25 Gmax = 1E-6; % Maximum mols of surfactant adorbed on surface [mol/m^2]

26 Cinf = 0.1; % Concentration at infinate dilution [mol/m^3]

27 Kf = 5E-5; % Constant for surfactant in contninous phase [m/s]

28 R = 8.314; % Universal gas constant [m^3*Pa/mol*K]

29 T = 293.15; % Temperature in Kelvin

30 % Gathering of constants

31 G = (L*Kf)/((1-phi)*Rmax*U);

32 F = (Kf*L*Cinf)/(Gmax*U);

rescale

1 % Function that takes in a textfile with radius and number distribution

2 % , either n=0 if volume distribution og n=1 if number distribution and

3 % water cut phi. Distribution is then scaled appropriately yielding a

4 % vector of r values and values of distribution.

5 function [r_scale,mew_scale,Nd0] = rescale(textfile,n,phi)

6 global Rmax

7 % Open file for reading

8 fileID = fopen(textfile,’r’);

9 % Chosing reading format

10 formatspec = ’%f %f’;

11 sizeA = [2 Inf];

12 data = fscanf(fileID,formatspec,sizeA);

13 data = data’;

14 % Rescaling r into meters

15 for i = 1:length(data)

16 data(i,1) = data(i,1)*1.0e-6;

17 end

18 int1 = 0;

19 nData = length(data);



61

20 if n == 0;

21 % Scale raw vol dist data to make the integral equal phi

22 integral = 0;

23 for i = 2:nData

24 integral = integral + (data(i,1)-data(i-1,1))*((data(i-1,2)...

25 +data(i,2))/2);

26 end

27 data(:,2) = data(:,2)*phi/integral;

28 % Scaling distribution with volume

29 for i = 1:nData

30 data(i,2) = data(i,2)*(3/(4*pi()*data(i,1)^3));

31 end

32 % Calculate Nd0

33 Nd0 = 0;

34 for i = 2:nData

35 Nd0 = Nd0 + (data(i,1)-data(i-1,1))*((data(i-1,2)...

36 +data(i,2))/2);

37 end

38 % Expanding largest radius

39 maxvec = max(data);

40 if Rmax >= maxvec(1);

41 app = linspace(maxvec(1),Rmax,10)’;

42 r_scale = [data(:,1);app(2:10)];

43 mew_scale = [data(:,2); zeros(9,1)];

44 nData = nData+9;

45 else

46 r_scale = [data(:,1)];

47 mew_scale = [data(:,2)];

48 end

49 % Non-dimentionalization

50 for i = 1:nData

51 r_scale(i) = r_scale(i)/Rmax;

52 mew_scale(i) = mew_scale(i)*(Rmax/Nd0);

53 end

54

55 elseif n == 1;

56 % Multiplying distribution with volume before integrating

57 data2 = data;

58 for i = 1:nData

59 data2(i,2) = data(i,2)*(((4*3.14)/3.0)*data(i,1)^3);

60 end
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62 for i = 2:nData

63 int1 = int1 + (data2(i,1)-data2(i-1,1))*((data2(i-1,2)...

64 +data2(i,2))/2.0);

65 end

66 % Scalling distribution with phi/(1st moment with respect to v)

67 for i = 1:nData

68 data(i,2) = data(i,2)*(phi/int1);

69 end

70

71 % Calculate Nd0

72 Nd0 = 0;

73 for i = 2:nData

74 Nd0 = Nd0 + (data(i,1)-data(i-1,1))*((data(i-1,2)...

75 +data(i,2))/2);

76 end

77 % Non dimensionalization

78 maxvec = max(data);

79 % r

80 for i = 1:nData

81 data(i,1) = data(i,1)/maxvec(1);

82 end

83 % mew

84 for i = 1:nData

85 data(i,2) = data(i,2)*maxvec(1)/Nd0;

86 end

87 r_scale = data(:,1);

88 mew_scale = data(:,2);

89 else

90 ’Plug in either 0 for volume distribution or 1 for number distribution’

91

92 end

93

94 end

SetUpGrid

1 % Function that takes in properties of distribution, number of wanted

2 % colloc elements and number of elements in each colloc domain. The

3 % function also takes in key values of the distribution and out comes

4 % a scaled vector of roots, an unscaled vector of roots and a vector with
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5 % corresponding quadrature weights.

6

7 % Ne = number of elements for collocation

8 % Ni = array of number of collocation points for each element

9 % Rf = radius at first non-zero value of distribution

10 % Rp = radius at highest value of distribution

11 % Rc = radius at last non-zero value of distribution

12 % Rmax = max radius of scaled variable (=1)

13 function [end_vec, ele_vec, rts,wts,P,N_inter]=...

14 SetUpGrid(Ne,Ni,mew_scale,r_scale)

15 % Values of r at reference points for elements

16 idx = find(mew_scale); % Finding idecies of non-zero values of mew_scale

17 Rf = r_scale(idx(1));

18 Rc = r_scale(idx(length(idx)));

19 idx2 = find(mew_scale==max(mew_scale)); % Finding indecies of max value

20 % of mew_scale

21 Rp = r_scale(idx2);

22 Rm = 1;

23 end_vec = []; % Creating empty vector to put domain end points in.

24

25 if Ne == 1

26 end_vec = [0,1];

27 elseif Ne == 2

28 end_vec = [0,Rc,Rf];

29 elseif Ne == 3

30 end_vec = [0,Rf,Rc,Rm];

31 elseif Ne == 4

32 end_vec = [0,Rf,Rp,Rc,Rm];

33 elseif Ne == 5

34 end_vec = [0,Rf,Rp,Rc,Rc*2,Rm]

35 elseif Ne > 5

36 end_vec = zeros(Ne+1,1);

37 end_vec(1) = 0;

38 end_vec(2) = Rf;

39 end_vec(3) = Rp;

40 end_vec(4) = Rc;

41 end_vec(5) = Rc*2;

42 for i = 6:Ne+1

43 end_vec(i)= end_vec(i-1)+((Rm-Rc*2)/(Ne-4));

44 end

45



46 end

47

48 ele_vec = zeros(Ne,1); % Creating empty vector for lengths of elements

49 rts = zeros(sum(Ni)+Ne+1,1); %Creating empty vector to store roots

50 % from collocation call.

51 wts = zeros(sum(Ni)+Ne+1,1); % Creating empty vector to store roots from

52 % collocation.

53 % Creating index maping functions.

54 function [x] = maplower(n)

55 if n == 1

56 x = 1;

57 else

58 x = sum(Ni(1:(n-1)))+(n+1);

59 end

60 end

61 function [y] = mapupper(n)

62 y = sum(Ni(1:(n-1)))+(n-1) + Ni(n)+2;

63 end

64

65 for n=1:Ne

66 nx1 = maplower(n);

67 nx2 = mapupper(n);

68 if n == 1

69 ele_vec(n) = end_vec(n+1) - end_vec(n);

70 [r,A,B,q] = colloc(Ni(n),1,1);

71 rts(1:Ni(n)+2) = r;

72 wts(1:Ni(n)+2) = q;

73 else

74 ele_vec(n) = end_vec(n+1) - end_vec(n);

75 [r,A,B,q] = colloc(Ni(n),1,1);

76 rts(nx1:nx2)= r(2:length(r));

77 wts(nx1:nx2)= q(2:length(q));

78 end

79 end

80

81 %Making vector where the roots are scaled from 0 to 1 over the whole

82 %domain.

83

84 P = zeros(1,length(rts));

85 for n=1:Ne

86 nx1 = maplower(n);
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87 nx2 = mapupper(n);

88 if n == 1

89 P(1:Ni(n)+2) = rts(1:Ni(n)+2)*ele_vec(n);

90 else

91 P(nx1:nx2) = end_vec(n) + rts(nx1:nx2)*ele_vec(n);

92 end

93 end

94 % Using cubic spline to find the distribution values at the newly

95 % scaled P vectors data points.

96

97 N_inter = interp1(r_scale,mew_scale,P,’pchip’);

98

99

100 end

colloc

1 function [r, A, B, q]=colloc(n,left,right)

2 % colloc: Calculate collocation weights

3 % [r, A, B, q] = colloc( n [,’left’] [,’right’])

4 % inputs:

5 % n - number of interior node points

6 % ’left’ - include left boundary

7 % ’right’ - include right bounary also

8 % outputs:

9 % r - vector of roots

10 % A - Matrix of first derivative weights

11 % B - Matrix of second derivative weights

12 % q - Quadrature weights.

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 % Copyright (C) 1996, 1997 John W. Eaton

15 %

16 % This program is free software; you can redistribute it and/or modify

17 % it under the terms of the GNU General Public License as published by

18 % the Free Software Foundation; either version 2, or (at your option)

19 % any later version.

20 %

21 % This program is distributed in the hope that it will be useful, but

22 % WITHOUT ANY WARRANTY; without even the implied warranty of

23 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

24 % General Public License for more details.



25 %

26 % You should have received a copy of the GNU General Public License

27 % along with Octave; see the file COPYING. If not, write to the Free

28 % Software Foundation, 59 Temple Place - Suite 330, Boston, MA

29 % 02111-1307, USA.

30 %

31 % Adapted from Octave’s colloc.cc by Steve Swinnea.

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33

34 n0 = 0 ; n1 = 0;

35 if (nargin > 1)

36 if (strcmp(left,’left’) | strcmp(left,’l’) )

37 n0 = 1;

38 elseif (left == 0 | left == 1 )

39 n0 = left;

40 else

41 error(’Second argument should be the string left or l’)

42 end

43 end

44 if (nargin > 2)

45 if (strcmp(right,’right’) | strcmp(right,’r’) )

46 n1 = 1;

47 elseif ( right == 1 | right == 0 )

48 n1 = right;

49 else

50 error(’Third argument should be the string right or r’)

51 end

52 end

53

54 [dif1,dif2,dif3,r]=jcobi(n,n0,n1,0,0);

55 q = dfopr(n,n0,n1,0,3,dif1,dif2,dif3,r);

56 for i=1:(n+n0+n1)

57 vect = dfopr(n,n0,n1,i,1,dif1,dif2,dif3,r);

58 A(i,:) = vect’;

59 end

60 for i=1:(n+n0+n1)

61 vect = dfopr(n,n0,n1,i,2,dif1,dif2,dif3,r);

62 B(i,:) = vect’;

63 end

64

65 %%%%%% jcobi %%%%%%%



67

66 function [dif1,dif2,dif3,root]=jcobi(n,n0,n1,alpha,beta)

67 if (n0 ~= 0) & (n0 ~= 1)

68 error(’** VILERR : Illegal value % N0 ’);

69 end

70 if (n1 ~= 0) & (n1 ~= 1)

71 error(’** VILERR : Illegal value for N1 ’);

72 end

73 if (n+n0+n1 < 1)

74 error(’** VILERR : Number of interpolation points less than 1’);

75 end

76 %

77 % -- FIRST EVALUATION OF COEFFICIENTS IN RECURSION FORMULAS.

78 % -- RECURSION COEFFICIENTS ARE STORED IN DIF1 AND DIF2.

79 %

80 nt = n+n0+n1;

81 dif1=zeros(nt,1);

82 dif2=zeros(nt,1);

83 dif3=zeros(nt,1);

84 root=zeros(nt,1);

85 ab = alpha+beta;

86 ad = beta-alpha;

87 ap = beta*alpha;

88 dif1(1) = (ad/(ab+2)+1)/2;

89 dif2(1) = 0;

90

91 if (n >= 2)

92 for i=2:n

93 z1 = i-1;

94 z = ab + 2*z1;

95 dif1(i) = (ab*ad/z/(z+2)+1)/2;

96 if (i == 2 )

97 dif2(i) = (ab+ap+z1)/z/z/(z+1);

98 else

99 z = z*z;

100 y = z1*(ab+z1);

101 y = y*(ap+y);

102 dif2(i) = y/z/(z-1);

103 end

104 end

105 end

106 %



107 % -- ROOT DETERMINATION BY NEWTON METHOD WITH SUPPRESSION OF

108 % -- PREVIOUSLY DETERMINED ROOTS

109 %

110 x = 0;

111 for i=1:n

112 z = 1;

113 while ( abs(z) > 1e-9 )

114 xd = 0;

115 xn = 1;

116 xd1 = 0;

117 xn1 = 0;

118 for j=1:n

119 xp = (dif1(j)-x)*xn - dif2(j)*xd;

120 xp1 = (dif1(j)-x)*xn1 - dif2(j)*xd1 - xn;

121 xd = xn;

122 xd1 = xn1;

123 xn = xp;

124 xn1 = xp1;

125 end

126 zc = 1;

127 z = xn/xn1;

128 if ( i ~= 1 )

129 for j = 2:i

130 zc = zc - z/(x-root(j-1));

131 end

132 end

133 z = z/zc;

134 x = x-z;

135 end

136 root(i) = x;

137 x = x +.0001;

138 end

139 %

140 % -- ADD INTERPOLATION POINTS AT X = 0 AND/OR X = 1

141 %

142 if (n0 ~= 0)

143 root = [ 0 ; root(1:nt-1) ];

144 end

145 if (n1 == 1)

146 root(nt) = 1;

147 end
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148 [dif1 dif2 dif3] = dif( root );

149

150 %%%%% dfopr %%%%%%

151 function vect = dfopr(n,n0,n1,i,id,dif1,dif2,dif3,root)

152 nt = n+n0+n1;

153 vect = zeros(nt,1);

154 if (n0 ~= 0) & (n0 ~= 1)

155 error(’** VILERR : Illegal value % N0 ’);

156 end

157 if (n1 ~= 0) & (n1 ~= 1)

158 error(’** VILERR : Illegal value for N1 ’);

159 end

160 if (nt < 1)

161 error(’** VILERR : Number of interpolation points less than 1’);

162 end

163 if (id ~= 1 & id ~= 2 & id ~= 3 )

164 error(’** VILERR : Illegal ID in DFOPR ’)

165 end

166 if ( id ~= 3 )

167 if ( i < 1 )

168 error(’** VILERR : Index less than zero in DFOPR ’)

169 end

170 if ( i > nt )

171 error(’** VILERR : Index greater than NTOTAL in DFOPR ’)

172 end

173 end

174

175 %

176 % -- EVALUATE DISCRETIZATION MATRICES AND GAUSSIAN QUADRATURE

177 % -- WEIGHTS. QUADRATURE WEIGHTS ARE NORMALIZED TO SUM TO ONE.

178 %

179 if ( id ~= 3 )

180 for j = 1:nt

181 if (j == i)

182 if (id == 1)

183 vect(i) = dif2(i)/dif1(i)/2;

184 else

185 vect(i) = dif3(i)/dif1(i)/3;

186 end

187 else

188 y = root(i)-root(j);



189 vect(j) = dif1(i)/dif1(j)/y;

190 if (id == 2 )

191 vect(j)=vect(j)*(dif2(i)/dif1(i)-2/y);

192 end

193 end

194 end

195 else

196 y=0;

197 for j = 1:nt

198 x = root(j);

199 ax = x*(1-x);

200 if (n0 == 0)

201 ax = ax/x/x;

202 end

203 if (n1 == 0)

204 ax = ax/(1-x)/(1-x);

205 end

206 vect(j) = ax/dif1(j)^2;

207 y = y + vect(j);

208 end

209 vect = vect/y;

210 end

211

212 %%%%% dif %%%%%

213 function [dif1,dif2,dif3] = dif( root )

214 nt = length( root );

215 dif1 = zeros(nt,1);

216 dif2 = zeros(nt,1);

217 dif3 = zeros(nt,1);

218 if ( nt < 1 )

219 error(’** VILERR : Number of interpolation points less than 1’);

220 end

221 for i = 1:nt

222 x = root(i);

223 dif1(i) = 1;

224 dif2(i) = 0;

225 dif3(i) = 0;

226 for j = 1:nt

227 if ( j ~= i)

228 y = x - root(j);

229 dif3(i) = y*dif3(i) + 3*dif2(i);
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230 dif2(i) = y*dif2(i) + 2*dif1(i);

231 dif1(i) = y*dif1(i);

232 end

233 end

234 end

alphacalc

1 % Function that takes in the initial distribution, P, the weights and the

2 % vector of elements and calculates the initial conditions C0 and G0(mass

3 % balance).

4 function [C0,G0,alfa0] = alphacalc(fn,P,wts,ele_vec)

5 global Nibc Gmax K Cinf Ne phi Nd0 Vmax

6

7 % Surface to volume ratio and its derivative

8 fv0 = zeros(1,length(P));

9 for i = 1:length(P)

10 fv0(i) = fn(i)*Nd0*Vmax*P(i)^3;

11 end

12

13 alfa0 = 0;

14 for i = 1:Ne

15 for j = 1:Nibc(i)

16 Nx = indexmapper(i,j);

17 if Nx ==1;

18 else

19 alfa0 = alfa0 + (3/P(Nx))*fv0(Nx)*wts(Nx)*ele_vec(i);

20 end

21 end

22 end

23

24 alfa0 = (1/phi)*alfa0;

25

26 C0 = (1/(2*K))*(-1-((alfa0*K*Gmax)/(1+phi))+K*Cinf+sqrt(1+2*K*Cinf+K^2 ...

27 *Cinf^2+((alfa0^2*K^2*Gmax^2)/(1+phi)^2)+((2*alfa0*K*Gmax)...

28 /(1+phi))-((2*alfa0*K^2*Gmax*Cinf)/(1+phi))));

29 G0 = ((K*Gmax*C0)/(1+K*C0));

30

31

32 end



indexmapper

1 % Function that takes in element number i and point number in that element

2 % j and returns the overal indices of the radius domain.

3 function [x] = indexmapper(i,j)

4 global Nibc

5 if i == 1

6 x = j;

7 else

8 x = sum(Nibc(1:i-1))+j;

9 end

10 end

differentialeq

1 % Function that sets up the system of differential equations to be solved

2 function dfn = differentialeq(z,fn,P,wts,ele_vec)

3 global Cinf K G F

4 lenP = length(P);

5 [BrC,DrC,BrB,DrB,alfa,dalphadz] = interp(fn,P,wts,ele_vec);

6 z

7 % Storing birth and death rate integrals

8 dfn = zeros(lenP+2,1);

9 for i = 1:length(P)

10 dfn(i) = BrC(i) -DrC(i) + BrB(i) - DrB(i);

11 end

12 % Calculating mass balance differentials

13 n1 = lenP +1;

14 n2 = lenP+2;

15 dfn(n1) = -alfa*G*(fn(n1)-((fn(n2))/(Cinf*K*(1-fn(n2)))));

16

17 dfn(n2) = F*(fn(n1)-(fn(n2)/(Cinf*K*(1-fn(n2)))))-(fn(n2)/alfa)...

18 *dalphadz;

19

20 end

interp

1 % Function that calculates the birth and death rates of coalescence and

2 % breakage, the surface to volume ratio and the derivative of the surface
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3 % to volume ratio.

4

5 function [BrC,DrC,BrB,DrB,alfa,dalphadz] = interp(fn,P,wts,ele_vec)

6 global Ne phi U L Di rho_d rho_c mu_c...

7 gamma k_o k_p k_g1 k_g2 ems Rmax Nibc Nd0 R Gmax T K Cinf Vmax

8 % Defining gatherings of constants

9 ems = 0.01766*((U^3)/Di)*((mu_c)/(rho_c*U*Di))^(3/8);

10 fn1 = fn(1:length(P));

11 A = (k_o*4*nthroot(2,3)*(ems^(1/3))*(Rmax^(7/3))*Nd0*L)/(U*(1+phi));

12 B = (16*mu_c*rho_c*ems*(Rmax^4))/(k_p*(gamma^2)*((1+phi)^3));

13 C = (k_g1*(ems^(1/3))*L)/(nthroot(4,3)*(1+phi)*(Rmax^(2/3))*U);

14 D = (k_g2*gamma*((1+phi)^2))/(nthroot(32,3)*rho_d*(ems^(2/3))*...

15 (Rmax^(5/3)));

16 Clim = fn(length(P)+2)/(K*(Gmax-fn(length(P)+2)));

17 gamma1 = gamma - R*T*Gmax*log(1+K*Cinf*Clim);

18 %Making empty matrices to fill in function values from the distribution

19 %at the values of the parrent droplets. This is to be used in the

20 %coalescence birth rate integral.

21 f_1bc = zeros(length(P));

22 f_2bc = zeros(length(P));

23 r_1bc = zeros(length(P));

24 r_2bc = zeros(length(P));

25

26 % Creating and storring the new function values

27 for i = 2:length(P)

28 r_1bc(i,:) = (P(i)/(nthroot(2,3)))*P;

29 for j = 1:length(P)

30 r_2bc(i,j) = (P(i)/(nthroot(2,3)))*(2-P(j)^3)^(1/3);

31 end

32 f_1bc(i,:) = interp1(P,fn1,r_1bc(i,:),’pchip’);

33 f_2bc(i,:) = interp1(P,fn1,r_2bc(i,:),’pchip’);

34 end

35

36 % Finding the values of the distribution used in the solving of the

37 % birth rate due to breakage integral. First creating emprty matrix

38 % to store values.

39

40 f_1bb = zeros(length(P));

41 r_1bb = zeros(length(P));

42

43 for i = 1:length(P)



44 r_1bb(i,:) = P(i) + (1-P(i))*P;

45 f_1bb(i,:) = interp1(P,fn1,r_1bb(i,:),’pchip’);

46 end

47

48 % Creating function that calculates the coalescence rate

49 function [cf] = coalrate(r1,r2)

50 cf = A*(r1+r2)^2*sqrt(r1^(2/3)+r2^(2/3))*exp(-B*(gamma/gamma1)...

51 ^2*((r1*r2)/(r1+r2))^4);

52 end

53 % creating function that calculates rate of breakage

54 function rb = breakrate(r1)

55 rb = (C/(r1^(2/3)))*exp((-D/(r1^(5/3)))*(gamma1/gamma));

56 end

57 % Creating function that calculates daughtersize distribution

58 function dsd = daughter(r1,r2)

59 dsd = (45/nthroot(2,3))*((r1^2)/(r2^3))*(((r1^3)/(r2^3))^2)...

60 *(1-((r1^3)/(r2^3))^2);

61 end

62

63 % Calculating birth and death rates of coalescence and breakage

64 lenP = length(P);

65 BrC = zeros(1,lenP);

66 DrC = zeros(1,lenP);

67 BrB = zeros(1,lenP);

68 DrB = zeros(1,lenP);

69

70 for k = 1:lenP

71 for i = 1:Ne

72 for j = 1:Nibc(i)

73 Nx = indexmapper(i,j);

74 x1 = r_1bc(k,Nx);

75 x2 = r_2bc(k,Nx);

76 x3 = P(k);

77 x4 = P(Nx);

78 x5 = P(k);

79 x6 = r_1bb(k,Nx);

80 rc1 = coalrate(x1,x2);

81 rc2 = coalrate(x3,x4);

82 rb1 = breakrate(x6);

83 drd1 = daughter(x5,x6);

84 BrC(k) = BrC(k) + rc1*f_1bc(k,Nx)*f_2bc(k,Nx)*wts(Nx)*ele_vec(i)...
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85 *P(k)/nthroot(2,3);

86 DrC(k) = DrC(k) + rc2*fn1(k)*fn1(Nx)*wts(Nx)*ele_vec(i);

87 BrB(k) = BrB(k) + 2*rb1*drd1*f_1bb(k,Nx)*wts(Nx)*ele_vec(i)...

88 *(1-P(k));

89 DrB(k) = breakrate(P(k))*fn1(k);

90 end

91 end

92 end

93 % Seting first element of each rate vector to 0 since program returns NaN

94 BrC(1) = 0;

95 DrC(1) = 0;

96 BrB(1) = 0;

97 DrB(1) = 0;

98

99 % Adding the mass balance equation to the mix.

100 % First calculating volumetric distribution and then the surface to

101 % volume ratio of each drop and its derivative

102 %fv = zeros(1,lenP);

103 fvdz = zeros(1,lenP);

104 for i = 1:lenP

105 fv(i) = fn1(i)*Nd0*Vmax*P(i)^3;

106 fvdz(i) = (BrC(i)-DrC(i)+BrB(i)-DrB(i))*Nd0*Vmax*P(i)^3;

107 end

108

109 % Surface to volume ratio and its derivative

110 alfa = 0;

111 dalphadz = 0;

112 for i = 1:Ne

113 for j = 1:Nibc(i)

114 Nx = indexmapper(i,j);

115 if Nx ==1;

116 else

117 alfa = alfa + (3/P(Nx))*fv(Nx)*wts(Nx)*ele_vec(i);

118 dalphadz = dalphadz + (3/P(Nx))*fvdz(Nx)*wts(Nx)*ele_vec(i);

119 end

120 end

121 end

122

123 alfa = (1/phi)*alfa;

124 dalphadz = (1/phi)*dalphadz;

125



126

127 end

Plotting Functions

1 function PlotInitialConditions( param, exper, sim, files )

2 %PLOTINITIALCONDITIONS

3 % Load figure properties

4 properties = PlotProperties ( );

5

6 % Create the figure object and set properties

7 hFigure = figure();

8 set(hFigure, properties.figures);

9

10 % Create the axes object and set properties

11 hAxes = axes();

12 set(hAxes, properties.axes);

13 xlim([0.1 param.Rmax*1e6])

14 hold(hAxes, ’all’);

15

16 % Plot the initial experimental number distribution and set the

17 % plot properties

18 nColor = 4;

19 nMarker = 3;

20 sMarker = 4;

21 plot(exper.rRaw*1e6, exper.fn, ’Color’, properties.plots.Colors{nColor}, ...

22 ’LineWidth’, properties.plots.LineWidth, ...

23 ’Marker’, properties.plots.Markers{nMarker}, ...

24 ’MarkerEdgeColor’, properties.plots.Colors{nColor}, ...

25 ’MarkerFaceColor’, properties.plots.Colors{nColor}, ...

26 ’MarkerSize’, sMarker, ...

27 ’DisplayName’, ’{\itf}_{n,exp}’);

28

29 % Plot the initial experimental volume distribution and set the

30 % plot properties

31 nColor = 9;

32 nMarker = 3;

33 sMarker = 4;

34 plot(exper.rRaw*1e6, exper.fv, ’Color’, properties.plots.Colors{nColor}, ...

35 ’LineWidth’, properties.plots.LineWidth, ...

36 ’Marker’, properties.plots.Markers{nMarker}, ...
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37 ’MarkerEdgeColor’, properties.plots.Colors{nColor}, ...

38 ’MarkerFaceColor’, properties.plots.Colors{nColor}, ...

39 ’MarkerSize’, sMarker, ...

40 ’DisplayName’, ’{\itf}_{v,exp}’);

41

42 % Plot the initial simulation number distribution and set the

43 % plot properties

44 nColor = 4;

45 nMarker = 1;

46 sMarker = 8;

47 plot(sim.r, sim.fnInitial, ’Color’, properties.plots.Colors{nColor}, ...

48 ’LineStyle’, ’none’, ...

49 ’LineWidth’, properties.plots.LineWidth, ...

50 ’Marker’, properties.plots.Markers{nMarker}, ...

51 ’MarkerEdgeColor’, properties.plots.Colors{nColor}, ...

52 ’MarkerFaceColor’, ’none’, ...

53 ’MarkerSize’, sMarker, ...

54 ’DisplayName’, ’{\itf}_{n0}’);

55

56 % Plot the initial simulation volume distribution and set the

57 % plot properties

58 nColor = 9;

59 nMarker = 1;

60 sMarker = 8;

61 plot(sim.r, sim.fvInitial, ’Color’, properties.plots.Colors{nColor}, ...

62 ’LineStyle’, ’none’, ...

63 ’LineWidth’, properties.plots.LineWidth, ...

64 ’Marker’, properties.plots.Markers{nMarker}, ...

65 ’MarkerEdgeColor’, properties.plots.Colors{nColor}, ...

66 ’MarkerFaceColor’, ’none’, ...

67 ’MarkerSize’, sMarker, ...

68 ’DisplayName’, ’{\itf}_{v0}’);

69

70 % Define figure title and axis labels and set properties

71 hTitle = title(’Comparison of the experimental and interpolated initial...

72 number and volume distributions, {\itf}_{n0} and {\itf}_{v0}’);

73 set(hTitle, properties.titles)

74 hXlabel = xlabel(’Drop radius, r (\mum)’);

75 set(hXlabel, properties.labels)

76 hYlabel = ylabel(’{\itf}_{n0} and {\itf}_{v0}’);

77 set(hYlabel, properties.labels)



78

79 % Create the legend object and set properties

80 hLegend = legend(hAxes, ’show’);

81 %set(hLegend, properties.legends);

82

83 % Save the figure to the specified file in the case output folder

84 fileName = [files.OutputDir ’/F01IniDistComp.tiff’];

85 figImage = getframe(gcf);

86 imwrite (figImage.cdata, fileName, ’tiff’);

87

88 end

1 function PlotLengthVariables( sim, files, annote )

2 %PLOTLENGTHVARIABLES

3

4 % Load figure properties

5 properties = PlotProperties ( );

6

7 % Create the figure object and set properties

8 hFigure = figure();

9 set(hFigure, properties.figures);

10

11 % Add annotations to figure

12 hTitle = annotation(hFigure, ’textbox’, [0.135 0.755 0.1 0.16], ...

13 ’String’, (annote));

14 set(hTitle, properties.text);

15

16 % Create the axes object and set properties

17 hAxes = subplot(2, 1, 1);

18 set(hAxes, properties.axes);

19 set(hAxes, ’Position’, [0.1300 0.5838 0.7750 0.3412])

20 hold(hAxes, ’all’);

21

22 % Plot the average number radius and set the plot properties

23 plot(sim.z, sim.MunZ, ’Color’, properties.plots.Colors{4}, ...

24 ’LineWidth’, properties.plots.LineWidth, ...

25 ’Marker’, properties.plots.Markers{1}, ...

26 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

27 ’MarkerFaceColor’, ’none’, ...

28 ’DisplayName’, ’\mu_{n}(z)’);
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29

30 % Plot the average volume radius and set the plot properties

31 plot(sim.z, sim.MuvZ, ’Color’, properties.plots.Colors{9}, ...

32 ’LineWidth’, properties.plots.LineWidth, ...

33 ’Marker’, properties.plots.Markers{1}, ...

34 ’MarkerEdgeColor’, properties.plots.Colors{9}, ...

35 ’MarkerFaceColor’, ’none’, ...

36 ’DisplayName’, ’\mu_{v}(z)’);

37

38 % Define figure title and axis labels and set properties

39 hTitle = title(’Average radii of the number and volume distributions’);

40 set(hTitle, properties.titles)

41 hXlabel = xlabel(’Axial position, z (m)’);

42 set(hXlabel, properties.labels)

43 hYlabel = ylabel(’\mu_{n}(z) and \mu_{v}(z) (m)’);

44 set(hYlabel, properties.labels)

45

46 % Create the legend object and set properties

47 hLegend = legend(hAxes, ’show’);

48 %set(hLegend, properties.legends);

49

50 % Create the axes object and set properties

51 hAxes = subplot(2, 1, 2);

52 set(hAxes, properties.axes);

53 set(hAxes, ’Position’, [0.1300 0.1100 0.7750 0.3412])

54 hold(hAxes, ’all’);

55

56 % Plot the volume fraction and set the plot properties

57 plot(sim.z, sim.PhiZ, ’Color’, properties.plots.Colors{1}, ...

58 ’LineWidth’, properties.plots.LineWidth, ...

59 ’Marker’, properties.plots.Markers{1}, ...

60 ’MarkerEdgeColor’, properties.plots.Colors{1}, ...

61 ’MarkerFaceColor’, ’none’, ...

62 ’DisplayName’, ’\phi(z)’);

63

64 % Plot the coalescence mass balance and set the plot properties

65 plot(sim.z, sim.VbcZ, ’Color’, properties.plots.Colors{5}, ...

66 ’LineWidth’, properties.plots.LineWidth, ...

67 ’Marker’, properties.plots.Markers{1}, ...

68 ’MarkerEdgeColor’, properties.plots.Colors{5}, ...

69 ’MarkerFaceColor’, ’none’, ...



70 ’DisplayName’, ’M_{C}(z)’);

71

72 % Plot the coalescence mass balance and set the plot properties

73 plot(sim.z, sim.VbbZ, ’Color’, properties.plots.Colors{6}, ...

74 ’LineWidth’, properties.plots.LineWidth, ...

75 ’Marker’, properties.plots.Markers{1}, ...

76 ’MarkerEdgeColor’, properties.plots.Colors{6}, ...

77 ’MarkerFaceColor’, ’none’, ...

78 ’DisplayName’, ’M_{B}(z)’);

79

80 % Define figure title and axis labels and set properties

81 hTitle = title(’Volume fraction and coalescence and birth mass balance...

82 ratios’);

83 set(hTitle, properties.titles)

84 hXlabel = xlabel(’Axial position, z (m)’);

85 set(hXlabel, properties.labels)

86 hYlabel = ylabel(’\phi(z) , M_{C}(z) , M_{B}(z)’);

87 set(hYlabel, properties.labels)

88

89 % Create the legend object and set properties

90 hLegend = legend(hAxes, ’show’);

91 %set(hLegend, properties.legends);

92

93 % Save the figure to the specified file in the case output folder

94 fileName = [files.OutputDir ’/F02MeanRadiiMassBal.tiff’];

95 figImage = getframe(gcf);

96 imwrite (figImage.cdata, fileName, ’tiff’);

97 end

1 function properties = PlotProperties ( )

2 %PLOTPROPERTIES

3 % Set the font

4 fonts.Name = ’Calibri’;

5 fonts.Size = 18;

6 fonts.FontWeight = ’bold’;

7

8 % Define a property structure for the figure objects

9 properties.figures.Color = [1 1 1];

10 properties.figures.OuterPosition = [170, 170, 1280, 960];

11
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12 % Define a property structure for the axes

13 properties.axes.FontName = fonts.Name;

14 properties.axes.FontSize = fonts.Size;

15 properties.axes.FontWeight = fonts.FontWeight;

16 properties.axes.Layer = ’top’;

17 properties.axes.Color = ’none’;

18 properties.axes.LineWidth = 1.5;

19 properties.axes.XScale = ’log’;

20 properties.axes.Box = ’on’;

21 properties.axes.XGrid = ’on’;

22 properties.axes.YGrid = ’on’;

23 properties.axes.XMinorTick = ’on’;

24 properties.axes.YMinorTick = ’on’;

25

26 % Define a property structure for the legend

27 properties.legends.FontName = fonts.Name;

28 properties.legends.FontSize = fonts.Size-6;

29 properties.legends.FontWeight = ’normal’;

30 properties.legends.Location = ’NorthEastOutside’;

31 % % properties.legends.YColor = [1 1 1];

32 % % properties.legends.XColor = [1 1 1];

33

34 % Define a color array for the plots

35 properties.plots.LineWidth = 2;

36 properties.plots.Colors{1} = [0 0 0];

37 properties.plots.Colors{2} = [0.600000023841858 0.200000002980232 0];

38 properties.plots.Colors{3} = [0.47843137383461 0.062745101749897...

39 0.894117653369904];

40 properties.plots.Colors{4} = [0 0 1];

41 properties.plots.Colors{5} = [0 0.749019622802734 0.749019622802734];

42 properties.plots.Colors{6} = [0 0.498039215803146 0];

43 properties.plots.Colors{7} = [0.749019622802734 0.749019622802734 0];

44 properties.plots.Colors{8} = [0.87058824300766 0.490196079015732 0];

45 properties.plots.Colors{9} = [1 0 0];

46 properties.plots.Markers{1} = ’o’;

47 properties.plots.Markers{2} = ’square’;

48 properties.plots.Markers{3} = ’diamond’;

49 properties.plots.Markers{4} = ’^’;

50 properties.plots.Markers{5} = ’pentagram’;

51 properties.plots.Markers{6} = ’hexagram’;

52 properties.plots.Markers{7} = ’+’;



53 properties.plots.Markers{8} = ’*’;

54 properties.plots.Markers{9} = ’>’;

55

56 % Define a property structure for plot titles

57 properties.titles.FontName = fonts.Name;

58 properties.titles.FontSize = fonts.Size+2;

59 properties.titles.FontWeight = fonts.FontWeight;

60

61 % Define a property structure for axis labels

62 properties.labels.FontName = fonts.Name;

63 properties.labels.FontSize = fonts.Size;

64 properties.labels.FontWeight = fonts.FontWeight;

65

66 % Define a property structure for text objects

67 properties.text.BackgroundColor = [1, 1, 1];

68 properties.text.Color = [0, 0, 0];

69 properties.text.EdgeColor = [1, 1, 1];

70 properties.text.Editing = ’off’;

71 properties.text.FontName = fonts.Name;

72 properties.text.FontSize = fonts.Size-6;

73 properties.text.FontWeight = ’light’;

74 properties.text.HorizontalAlignment = ’left’;

75 properties.text.VerticalAlignment = ’middle’;

76 properties.text.FitBoxToText = ’off’;

77 end

1 function PlotRadiusVariables ( z, r, f1, f2, zi, titles, xlabels, ylabels...

2 , legtext, annote, filename)

3 %PLOTDENSITYDISTRIBUTIONS

4

5 % Load figure properties

6 properties = PlotProperties ( );

7

8 % Create the figure object and set properties

9 hFigure = figure();

10 set(hFigure, properties.figures);

11

12 % Add annotations to subplot 1

13 hTitle1 = annotation(hFigure, ’textbox’, [0.135 0.755 0.1 0.16], ...

14 ’String’, (annote));
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15 set(hTitle1, properties.text);

16

17 % Add annotations to subplot 2

18 hTitle2 = annotation(hFigure, ’textbox’, [0.135 0.281 0.1 0.16], ...

19 ’String’, (annote));

20 set(hTitle2, properties.text);

21

22 % Loop for each subplot

23 axesPosition{1} = [0.1300 0.5838 0.7750 0.3412];

24 axesPosition{2} = [0.1300 0.1100 0.7750 0.3412];

25 for p=1:2

26 % Create the axes object and set properties

27 hAxes = subplot(2, 1, p);

28 set(hAxes, properties.axes);

29 set(hAxes, ’Position’, axesPosition{p})

30 hold(hAxes, ’all’);

31

32 % Plot the input functions at the selected z points and set the

33 % plot properties

34 for i=1:9

35 % Select function set to plot

36 if (p == 1)

37 f = f1(zi(i),:);

38 elseif (p == 2)

39 f = f2(zi(i),:);

40 end

41 % Plot the set of functions at each z point

42 plot(r, f, ’Color’, properties.plots.Colors{i}, ...

43 ’LineWidth’, properties.plots.LineWidth, ...

44 ’Marker’, properties.plots.Markers{i}, ...

45 ’MarkerEdgeColor’, properties.plots.Colors{i}, ...

46 ’MarkerFaceColor’, ’none’, ...

47 ’DisplayName’, [legtext{p} num2str(z(zi(i)),’%8.3f’) ’)’]);

48 end

49

50 % Define figure title and axis labels and set properties

51 hTitle = title(titles{p});

52 set(hTitle, properties.titles)

53 hXlabel = xlabel(xlabels{p});

54 set(hXlabel, properties.labels)

55 hYlabel = ylabel(ylabels{p});



56 set(hYlabel, properties.labels)

57

58 % Create the legend object and set properties

59 hLegend = legend(hAxes, ’show’);

60 %set(hLegend, properties.legends);

61 end

62

63 % Save the figure to the specified file in the case output folder

64 figImage = getframe(gcf);

65 imwrite (figImage.cdata, filename, ’tiff’);

66 end

1 function PlotTransientData( z, r, fn, fv, Cbr, Cdr, Bbr, Bdr, dfdt )

2 %PLOTTRANSIENTDATA

3 % Close all open figures

4 close all;

5

6 % Load figure properties

7 properties = PlotProperties ( );

8

9 % Plot the current number and volume distribution

10 PlotCurrentDistributions (properties, z, r, fn, fv)

11

12 % Plot the current coalescence birth and death functions

13 PlotCurrentCoalescenceRates (properties, z, r, Cbr, Cdr, dfdt)

14

15 % Plot the current coalescence birth and death functions

16 PlotCurrentBreakageRates (properties, z, r, Bbr, Bdr, dfdt)

17

18 % Pause the program for 10s to allow for the plots to render.

19 pause(10)

20 end

21

22 %--------------------------------------------------------------------------

23 % Density distribution plotting function

24 function PlotCurrentDistributions (properties, z, r, fn, fv)

25

26 % Create the figure object and set properties

27 hFigure = figure();

28 set(hFigure, properties.figures)
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29

30 % Create the axes object and set properties

31 hAxes = axes(’Parent’, hFigure);

32 set(hAxes, properties.axes)

33 hold(hAxes, ’all’);

34

35 % Plot the number distribution and set its properties

36 plot(r, fn, ’Color’, properties.plots.Colors{2}, ...

37 ’LineWidth’, properties.plots.LineWidth, ...

38 ’Marker’, properties.plots.Markers{3}, ...

39 ’MarkerEdgeColor’, properties.plots.Colors{2}, ...

40 ’MarkerFaceColor’, ’none’, ...

41 ’DisplayName’, ’{\itf}_n(r,z)’);

42

43 % Plot the number distribution and set its properties

44 plot(r, fv, ’Color’, properties.plots.Colors{4}, ...

45 ’LineWidth’, properties.plots.LineWidth, ...

46 ’Marker’, properties.plots.Markers{1}, ...

47 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

48 ’MarkerFaceColor’, ’none’, ...

49 ’DisplayName’, ’{\itf}_v(r,z)’);

50

51 % Define figure title and axis labels and set properties

52 hTitle = title([’Normalized volume and number distribution at z...

53 =’ num2str(z,’%8.6f’)]);

54 set(hTitle, properties.titles)

55 hXlabel = xlabel(’R_d (\mum)’);

56 set(hXlabel, properties.labels)

57 hYlabel = ylabel(’{\itf}_n and {\itf}_v’);

58 set(hYlabel, properties.labels)

59

60 % Create the legend object and set properties

61 hLegend = legend(hAxes, ’show’);

62 %set(hLegend, properties.legends);

63 end

64

65 %--------------------------------------------------------------------------

66 % Coalescence birth and death rate plotting function

67 function PlotCurrentCoalescenceRates (properties, z, r, Cbr, Cdr, dfdt)

68

69 % Create the figure object and set properties



70 hFigure = figure();

71 set(hFigure, properties.figures)

72

73 % Create the axes object and set properties

74 hAxes = subplot(2, 1, 1, ’Parent’, hFigure);

75 set(hAxes, properties.axes)

76 hold(hAxes, ’all’);

77

78 % Plot the number distribution and set its properties

79 plot(r, Cbr, ’Color’, properties.plots.Colors{2}, ...

80 ’LineWidth’, properties.plots.LineWidth, ...

81 ’Marker’, properties.plots.Markers{3}, ...

82 ’MarkerEdgeColor’, properties.plots.Colors{2}, ...

83 ’MarkerFaceColor’, ’none’, ...

84 ’DisplayName’, ’R_{Cb}(r,z)’);

85

86 % Plot the number distribution and set its properties

87 plot(r, Cdr, ’Color’, properties.plots.Colors{4}, ...

88 ’LineWidth’, properties.plots.LineWidth, ...

89 ’Marker’, properties.plots.Markers{1}, ...

90 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

91 ’MarkerFaceColor’, ’none’, ...

92 ’DisplayName’, ’R_{Cd}(r,z)’);

93

94 % Define figure title and axis labels and set properties

95 hTitle = title([’Normalized coalescence birth and death rates at...

96 z =’ num2str(z,’%8.6f’)]);

97 set(hTitle, properties.titles)

98 hXlabel = xlabel(’R_d (\mum)’);

99 set(hXlabel, properties.labels)

100 hYlabel = ylabel(’R_{Cb}(r,z) and R_{Cd}(r,z)’);

101 set(hYlabel, properties.labels)

102

103 % Create the legend object and set properties

104 hLegend = legend(hAxes, ’show’);

105 %set(hLegend, properties.legends);

106

107 % Create the axes object for the total rate and differential and

108 % set properties

109 hAxes = subplot(2, 1, 2, ’Parent’, hFigure);

110 set(hAxes, properties.axes)
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111 hold(hAxes, ’all’);

112

113 % Plot the number distribution and set its properties

114 Ctr = Cbr-Cdr;

115 plot(r, Ctr, ’Color’, properties.plots.Colors{2}, ...

116 ’LineWidth’, properties.plots.LineWidth, ...

117 ’Marker’, properties.plots.Markers{3}, ...

118 ’MarkerEdgeColor’, properties.plots.Colors{2}, ...

119 ’MarkerFaceColor’, ’none’, ...

120 ’DisplayName’, ’R_{ct}(r,z)’);

121

122 % Plot the number distribution and set its properties

123 plot(r, dfdt, ’Color’, properties.plots.Colors{4}, ...

124 ’LineWidth’, properties.plots.LineWidth, ...

125 ’Marker’, properties.plots.Markers{1}, ...

126 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

127 ’MarkerFaceColor’, ’none’, ...

128 ’DisplayName’, ’df_n/dz(r,z)’);

129

130 % Define figure title and axis labels and set properties

131 hTitle = title([’Comparison between the coalescence rate and the...

132 total system differential at z =’ num2str(z,’%8.6f’)]);

133 set(hTitle, properties.titles)

134 hXlabel = xlabel(’R_d (\mum)’);

135 set(hXlabel, properties.labels)

136 hYlabel = ylabel(’R_{Ct}(r,z) and df_n/dz(r,z)’);

137 set(hYlabel, properties.labels)

138

139 % Create the legend object and set properties

140 hLegend = legend(hAxes, ’show’);

141 %set(hLegend, properties.legends);

142 end

143

144 %--------------------------------------------------------------------------

145 % Coalescence birth and death rate plotting function

146 function PlotCurrentBreakageRates (properties, z, r, Bbr, Bdr, dfdt)

147

148 % Create the figure object and set properties

149 hFigure = figure();

150 set(hFigure, properties.figures)

151



152 % Create the axes object and set properties

153 hAxes = subplot(2, 1, 1, ’Parent’, hFigure);

154 set(hAxes, properties.axes)

155 hold(hAxes, ’all’);

156

157 % Plot the number distribution and set its properties

158 plot(r, Bbr, ’Color’, properties.plots.Colors{2}, ...

159 ’LineWidth’, properties.plots.LineWidth, ...

160 ’Marker’, properties.plots.Markers{3}, ...

161 ’MarkerEdgeColor’, properties.plots.Colors{2}, ...

162 ’MarkerFaceColor’, ’none’, ...

163 ’DisplayName’, ’R_{Bb}(r,z)’);

164

165 % Plot the number distribution and set its properties

166 plot(r, Bdr, ’Color’, properties.plots.Colors{4}, ...

167 ’LineWidth’, properties.plots.LineWidth, ...

168 ’Marker’, properties.plots.Markers{1}, ...

169 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

170 ’MarkerFaceColor’, ’none’, ...

171 ’DisplayName’, ’R_{Bd}(r,z)’);

172

173 % Define figure title and axis labels and set properties

174 hTitle = title([’Normalized breakage birth and death rates at...

175 z =’ num2str(z,’%8.6f’)]);

176 set(hTitle, properties.titles)

177 hXlabel = xlabel(’R_d (\mum)’);

178 set(hXlabel, properties.labels)

179 hYlabel = ylabel(’R_{Bb}(r,z) and R_{Bd}(r,z)’);

180 set(hYlabel, properties.labels)

181

182 % Create the legend object and set properties

183 hLegend = legend(hAxes, ’show’);

184 %set(hLegend, properties.legends);

185

186 % Create the axes object for the total rate and differential and

187 % set properties

188 hAxes = subplot(2, 1, 2, ’Parent’, hFigure);

189 set(hAxes, properties.axes)

190 hold(hAxes, ’all’);

191

192 % Plot the number distribution and set its properties
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193 Btr = Bbr-Bdr;

194 plot(r, Btr, ’Color’, properties.plots.Colors{2}, ...

195 ’LineWidth’, properties.plots.LineWidth, ...

196 ’Marker’, properties.plots.Markers{3}, ...

197 ’MarkerEdgeColor’, properties.plots.Colors{2}, ...

198 ’MarkerFaceColor’, ’none’, ...

199 ’DisplayName’, ’R_{ct}(r,z)’);

200

201 % Plot the number distribution and set its properties

202 plot(r, dfdt, ’Color’, properties.plots.Colors{4}, ...

203 ’LineWidth’, properties.plots.LineWidth, ...

204 ’Marker’, properties.plots.Markers{1}, ...

205 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

206 ’MarkerFaceColor’, ’none’, ...

207 ’DisplayName’, ’df_n/dz(r,z)’);

208

209 % Define figure title and axis labels and set properties

210 hTitle = title([’Comparison between the breakage rate and the...

211 total system differential at z =’ num2str(z,’%8.6f’)]);

212 set(hTitle, properties.titles)

213 hXlabel = xlabel(’R_d (\mum)’);

214 set(hXlabel, properties.labels)

215 hYlabel = ylabel(’R_{Bt}(r,z) and df_n/dz(r,z)’);

216 set(hYlabel, properties.labels)

217

218 % Create the legend object and set properties

219 hLegend = legend(hAxes, ’show’);

220 %set(hLegend, properties.legends);

221 end

SurfPlots

1 % Script that provides surface plots of length, average volume and

2 % average radius against different parameters of the model

3 % at the point where the distribution is equilibriated.

4 close all

5 clc

6 % Function that plots the outputs taken from runs of the code with

7 % different parameter sets.

8 komegavec = [1e-3; 0.33e-2; 0.66e-2; 1e-2; 0.33e-1; 0.66e-1;...

9 1e-1; 0.33; 0.66; 1];



10 kg1vec = [1e-3; 0.33e-2; 0.66e-2; 1e-2; 0.33e-1; 0.66e-1;...

11 1e-1; 0.33; 0.66; 1];

12 kpsivec = [1e-22; 0.33e-21; 0.66e-21; 1e-21; 0.33e-20; 0.66e-20;...

13 1e-20; 0.33e-19; 0.66e-19; 1e-19];

14 kg2vec = [1e-5; 0.33e-4; 0.66e-4; 1e-4; 0.33e-3; 0.66e-3;...

15 1e-3; 0.33e-2; 0.66e-2; 1e-2];

16 % Storing the length to equlibrium in aray.

17 Linfmat = zeros(10);

18 Muninfmat = zeros(10);

19 Muvinfmat = zeros(10);

20

21 for i = 1:10

22 for j = 1:10

23 n = (i-1)*10+j;

24 m = 100 +(i-1)*10+j;

25 Linfmat(j,i) = SimOutput{n}.Liv;

26 Muninfmat(j,i) = SimOutput{m}.MunZ(SimOutput{m}.nZinf);

27 Muvinfmat(j,i) = SimOutput{m}.MuvZ(SimOutput{m}.vZinf);

28 end

29 end

30

31 % Making surface plot of the length to equilibrium vs diferent pairings

32 % of ko and kg1 paramters.

33

34 figure

35 surf(kg1vec,komegavec,Linfmat)

36 xlabel(’\fontsize{15}\bf k_{g1}’)

37 ylabel(’\fontsize{15}\bf k_{\omega}’)

38 zlabel(’\fontsize{15}\bf L_{\infty}’)

39 title(’Linf for different paramter sets’)

40 set(gca,’xscale’,’log’,’yscale’,’log’)

41

42 figure

43 surf(kg2vec,kpsivec,Muninfmat)

44 xlabel(’\fontsize{15}\bf k_{g2}’)

45 ylabel(’\fontsize{15}\bf k_{\psi}’)

46 zlabel(’\fontsize{15}\bf \mu_{n,\infty}’)

47 set(gca,’xscale’,’log’,’yscale’,’log’)

48

49 figure

50 surf(kg2vec,kpsivec,Muvinfmat)
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51 xlabel(’\fontsize{15}\bf k_{g2}’)

52 ylabel(’\fontsize{15}\bf k_{\psi}’)

53 zlabel(’\fontsize{15}\bf \mu_{v,\infty}’)

54 set(gca,’xscale’,’log’,’yscale’,’log’)

PlotSurfactantVariables

1 function PlotSurfactantVariables( sim, files, annote )

2 %PLOTLENGTHVARIABLES Summary of this function goes here

3 % Detailed explanation goes here

4

5 % Load figure properties

6 properties = PlotProperties ( );

7

8 % Create the figure object and set properties

9 hFigure = figure();

10 set(hFigure, properties.figures);

11

12 % Add annotations to figure

13 hTitle = annotation(hFigure, ’textbox’, [0.132 0.715 0.1 0.196], ...

14 ’String’, (annote));

15 set(hTitle, properties.text);

16

17 % Create the axes object and set properties

18 hAxes = subplot(2, 1, 1);

19 set(hAxes, properties.axes);

20 set(hAxes, ’Position’, [0.1300 0.5838 0.7750 0.3412])

21 ylim([0 1]);

22 hold(hAxes, ’all’);

23

24 % Plot the bulk surfactant concentration and set the plot properties

25 plot(sim.z, sim.CbsZ, ’Color’, properties.plots.Colors{4}, ...

26 ’LineWidth’, properties.plots.LineWidth, ...

27 ’Marker’, properties.plots.Markers{1}, ...

28 ’MarkerEdgeColor’, properties.plots.Colors{4}, ...

29 ’MarkerFaceColor’, ’none’, ...

30 ’DisplayName’, ’C(z)/C_\infty’);

31

32 % Plot the interfacial surfactant concentration and set the plot

33 % properties

34 plot(sim.z, sim.GbsZ, ’Color’, properties.plots.Colors{9}, ...



35 ’LineWidth’, properties.plots.LineWidth, ...

36 ’Marker’, properties.plots.Markers{1}, ...

37 ’MarkerEdgeColor’, properties.plots.Colors{9}, ...

38 ’MarkerFaceColor’, ’none’, ...

39 ’DisplayName’, ’\Gamma(z)/\Gamma_{max}’);

40

41 % Plot the average volume radius and set the plot properties

42 plot(sim.z, sim.IftZ, ’Color’, properties.plots.Colors{6}, ...

43 ’LineWidth’, properties.plots.LineWidth, ...

44 ’Marker’, properties.plots.Markers{1}, ...

45 ’MarkerEdgeColor’, properties.plots.Colors{6}, ...

46 ’MarkerFaceColor’, ’none’, ...

47 ’DisplayName’, ’\gamma(z)/\gamma_0’);

48

49 % Define figure title and axis labels and set properties

50 hTitle = title(’Surfactant concentration in the bulk and interface...

51 / Interfacial tension’);

52 set(hTitle, properties.titles)

53 hXlabel = xlabel(’Axial position, z (m)’);

54 set(hXlabel, properties.labels)

55 hYlabel = ylabel(’C(z)/C_\infty ; \Gamma(z)/\Gamma_{max}...

56 ; and \gamma(z)/\gamma_0’);

57 set(hYlabel, properties.labels)

58

59 % Create the legend object and set properties

60 hLegend = legend(hAxes, ’show’);

61 set(hLegend, properties.legends);

62

63 % Create the axes object and set properties

64 hAxes = subplot(2, 1, 2);

65 set(hAxes, properties.axes);

66 set(hAxes, ’Position’, [0.1300 0.1100 0.7750 0.3412])

67 hold(hAxes, ’all’);

68

69 % Plot the surface to volume ratio and set the plot properties

70 plot(sim.z, sim.SvrZ, ’Color’, properties.plots.Colors{5}, ...

71 ’LineWidth’, properties.plots.LineWidth, ...

72 ’Marker’, properties.plots.Markers{1}, ...

73 ’MarkerEdgeColor’, properties.plots.Colors{5}, ...

74 ’MarkerFaceColor’, ’none’, ...

75 ’DisplayName’, ’\alpha(z)ÂůR_{max}’);
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76

77 % Define figure title and axis labels and set properties

78 hTitle = title(’Surface to volume ratio of the emulsions versus...

79 pipe length’);

80 set(hTitle, properties.titles)

81 hXlabel = xlabel(’Axial position, z (m)’);

82 set(hXlabel, properties.labels)

83 hYlabel = ylabel(’\alpha(z)ÂůR_{max}’);

84 set(hYlabel, properties.labels)

85

86 % Create the legend object and set properties

87 hLegend = legend(hAxes, ’show’);

88 set(hLegend, properties.legends);

89

90 % Save the figure to the specified file in the case output folder

91 fileName = [files.OutputDir ’/F07SurfactantPlot.tiff’];

92 figImage = getframe(gcf);

93 imwrite (figImage.cdata, fileName, ’tiff’);

94 end

ConPlots

1 close all

2

3 G1 = SimOutput{1}.GbsZ;

4 G2 = SimOutput{2}.GbsZ;

5 G3 = SimOutput{3}.GbsZ;

6 C1 = SimOutput{1}.CbsZ;

7 C2 = SimOutput{2}.CbsZ;

8 C3 = SimOutput{3}.CbsZ;

9 I1 = SimOutput{1}.IftZ;

10 I2 = SimOutput{2}.IftZ;

11 I3 = SimOutput{3}.IftZ;

12 S1 = SimOutput{1}.SvrZ;

13 S2 = SimOutput{2}.SvrZ;

14 S3 = SimOutput{3}.SvrZ;

15 Z1 = SimOutput{1}.z;

16 Z2 = SimOutput{2}.z;

17 Z3 = SimOutput{3}.z;

18 Z4 = ans.z;

19 M1 = SimOutput{1}.MuvZ;



20 M2 = SimOutput{2}.MuvZ;

21 M3 = SimOutput{3}.MuvZ;

22 M4 = ans.MuvZ;

23

24

25 figure

26 semilogx(Z1,C1,’-o b’,Z2,C2,’-o y’,Z3,C3,’-o r’,’LineWidth’,2);

27 axis([1e-4 1e2 0 1])

28 xlabel(’\fontsize{20}\bf z[m]’)

29 ylabel(’\fontsize{20}\bf C/C_{\infty}’)

30 set(gca,’fontsize’,18)

31 title(’Surfactant concentration in the bulk phase’)

32 legend(’\fontsize{17}C_\infty = 0.05’,’\fontsize{17}C_\infty = 0.1’,...

33 ’\fontsize{17}C_\infty = 0.15’)

34

35 figure

36 semilogx(Z1,G1,’-o b’,Z2,G2,’-o y’,Z3,G3,’-o r’,’LineWidth’,2);

37 axis([1e-4 1e2 0 1])

38 xlabel(’\fontsize{20}\bf z[m]’)

39 ylabel(’\fontsize{20}\bf \Gamma/\Gamma_{max}’)

40 set(gca,’fontsize’,18)

41 title(’Surfactant adsorbed on the interface’)

42 legend(’\fontsize{17}C_\infty = 0.05’,’\fontsize{17}C_\infty = 0.1’,...

43 ’\fontsize{17}C_\infty = 0.15’)

44

45 figure

46 semilogx(Z1,I1,’-o b’,Z2,I2,’-o y’,Z3,I3,’-o r’,’LineWidth’,2);

47 axis([1e-4 1e2 0 1])

48 xlabel(’\fontsize{20}\bf z[m]’)

49 ylabel(’\fontsize{20}\bf \gamma/\gamma_0’)

50 set(gca,’fontsize’,18)

51 title(’Interfacial tension’)

52 legend(’\fontsize{17}C_\infty = 0.05’,’\fontsize{17}C_\infty = 0.1’,...

53 ’\fontsize{17}C_\infty = 0.15’)

54

55 figure

56 semilogx(Z1,S1,’-o b’,Z2,S2,’-o y’,Z3,S3,’-o r’,’LineWidth’,2);

57 axis([1e-4 1e2 0 80])

58 xlabel(’\fontsize{20}\bf z[m]’)

59 ylabel(’\fontsize{20}\bf \alpha’)

60 set(gca,’fontsize’,18)
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61 title(’Surface to volume ratio’)

62 legend(’\fontsize{17}C_\infty = 0.05’,’\fontsize{17}C_\infty = 0.1’,...

63 ’\fontsize{17}C_\infty = 0.15’)

64

65 figure

66 semilogx(Z1,M1,’-o b’,Z2,M2,’-o y’,Z3,M3,’-o r’,Z4,M4,’-o...

67 g’,’LineWidth’,2);

68 axis([1e-4 1e2 20 50])

69 xlabel(’\fontsize{20}\bf z[m]’)

70 ylabel(’\fontsize{20}\bf \mu_{v}’)

71 set(gca,’fontsize’,18)

72 title(’Average drop size evolution’)

73 legend(’\fontsize{17}C_\infty = 0.05’,’\fontsize{17}C_\infty = 0.1’,...

74 ’\fontsize{17}C_\infty = 0.15’,’Without mass balance’)
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