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Abstract

A model of a subsea system was developed and optimization for operation and remain-
ing life time. For the modelling of the remaining life time the compressor efficiency was
used as there is no statistical or physical model available. Before the optimization was
performed a degree of freedom analysis were executed, and it was found that 3 variables
could be used for control. For the optimization four cases was examined. In the three first
cases the objective function was changed. In the fourth case uncertainty was included and
for handling the uncertainty chance-constraint was used. All of the calculation was done in
Python 2.7 and the optimal control problem was formulated in CasADi 3.0. Optimization
result from case 1 yielded 3 active constraint, these constraint was also active in all of the
other cases. The lower bound the compressor efficiency which restricted the overall gas
production. The upper bound on the mass fraction of gas in stream 3, which restricted the
separation efficiency. The lower bound on the pressure in stream 6 was reached because
of degeneration of the compressor efficiency. For case 2 the end time was included as a
free variable. From the result of case 2 the upper bound on the end time was reached, as
lower daily production of gas gave better separation. In case 3 the net present value of the
gas was included in the objective function. In case 3 the optimizer found it advantageous
to maximize the gas production in the beginning, which caused the time horizon to be
reduced. For case four uncertainty in the reservoir flow coefficient was included for the
optimization. For solving the optimal control problem with uncertainty chance-constraint
was used. Chance-constraint was included on the lower bound on the compressor effi-
ciency at the end of the time horizon and the upper bound on the mass fraction of gas
in stream 3. The optimization result gave a higher probability of holding the constraint
than the probability level. But calculating new back-offs and solving the optimal control
problem again the probability of holding the constraint started to converge towards the
probability level. With uncertainty in the optimization problem chance-constraint can be
used. With chance-constraint the probability of constraint violation can be decided such
that the back-off is reduced.
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Chapter 1
Introduction

Due to low oil prices the offshore industry are forced to improve the efficiency of opera-
tion to remain competitive in the global marked. One of the technologies that has gotten an
increased focus from both the industry and the scientific communities, is subsea technol-
ogy. Subsea technology has shown to improve production, increase expected life-time of
the reservoir, decrease processing costs and reduce environmental impact [25] [29]. Fur-
thermore, subsea technology is also looking promising for developing new offshore fields
where the climate is harsh and the water depth is high.

On the Norwegian continental shelf, subsea technology has been used for improve the ex-
pected life-time and production of fields like Tordis and Troll [11] [25]. Though subsea
technology is a mature technology on the Norwegian continental shelf, there are still un-
solved problems. One of the problems is that for each field the conditions are unique thus
each field is facing unique technological challenges [28] [29]. These challenges need to
be identified and addressed when designing a subsea system.

For the daily operation of a subsea system, small changes in operating conditions can have
huge effects on the performance of the system. Therefore, finding and keeping the system
at the conditions that gives the best performance often translates into large savings. Sub-
sea systems can often consist of multiple processing units [12] [25] [35] with complicated
and interacting phenomena occurring. In the chemical industry model predictive control
(MPC) have shown good results for controlling system with similar complexity [24] [27].
The MPC solves an open loop optimal control problem (OCP) repeatedly over a receding
time horizon for finding the optimal control action sequences. Then the first control se-
quence is applied and the process is repeated. Therefore needs the model that the MPC
uses to accurate predict the future state of the system but also not be to complex or the
computational time for solving the OCP will be to high.

The OCP used in the MPC often have an objective function that tries to maximize profit
or similar economical objectives. This usually causes the system to be driven towards the
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Chapter 1. Introduction

constraints [6]. The system is in reality often subjected to various form of uncertainties,
for example measurement noise. Therefore, if the constraints are active these uncertainties
can often lead to constraint violations or sub-optimal control sequences. Therefore is it
common to add a safety margin (back-off) from the constraints such that the constraints
is not violated. This back-off is often found by considering a worst case scenario of the
uncertainty [4] [5]. However, this approach often leads to overly conservative control ac-
tion such that system are kept at sub-optimal conditions. Therefore if the uncertainties in
the system are included in the OCP the system can be kept closer to the optimal without
causing constraint violations. This would improve the efficiency of operating and make
the subsea system more competitive.

For gas field like Snøhvit and Ormen Lange gas compression system is used for increase
life-time of the gas field [12] [35]. One of the technological challenges these fields are
phasing is when to schedule maintenance of the compressor system. Therefore, in this
Master thesis it have been examined how to model a subsea separation system with com-
pression. The optimize the system with considering operation and remaining life time of
the compressor. For this purpose, first a model of a subsea system with gas compression
was developed. Then the control objective of the system was defined and 3 cases with
different objective function of the OCP was examined. Then a fourth case was examined
where there was uncertainty in the system and chance constraint was used for handling the
uncertainty. The OCP was solved and compared with the previous cases.

This Master thesis is organized as follows: in Chapter 2 general theory about dynamic and
stochastic dynamic optimization is presented. Thereafter in Chapter 3 the model of the
subsea system is presented. In Chapter 4 it is explained how the OCP is formulated, both
with and without uncertainty. In Chapter 5 the four cases that are examined is presented. In
Chapter 6 the results of the optimizations are presented and discussed. Finally in Chapter
7 the conclusion along with future work is presented.
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Chapter 2
Optimization Theory

The theory of optimization can trace its roots back to the work of Euler and Lagrange with
the development of the Euler-Lagrange equation [30] in the 18th century. Further develop-
ment in the theory of optimization was done by the likes of Gauss and Newton. Research
on optimization stayed mostly inside the field of mathematics. Not before Dantzig devel-
oped the Simplex method in 1947 [17] did optimization start to get focus from other fields
than mathematics. This is often stated as the beginning of modern optimization. Since
then a great deal of research and development has been done in the field of optimization.
The introduction of dynamics optimization by Bellman in 1954 [3] and development of
non-linear solvers like Ipopt [42] are some examples. With these advances, optimization
is now often used in fields like economics, engineering and science.

For chemical engineers today optimization have found applications in numerous areas.
One of the area of chemical engineering where optimization have yield good results is in
process control [6]. As small changes in the operating conditions of process equipment
can often have huge effect on the performance of the equipment. Therefore having a
systematic approach for finding the conditions which yields the best economical results
can help with reducing the expenses. The optimization problems one solves in process
control is often called optimal control problems (OCPs). These OCPs include a large
variety of optimization problems. The solving method for OCPs differ depending on what
kind of optimization problem it is. A common form of OCP is dynamic optimal control.
Dynamic optimal control are optimization problems where the optimal changes with time.
More about how dynamic optimization and how it works is given in Section 2.1. In process
control one often take measurements of the system for calculating the state of the system.
The problem with using measurements for calculating the state of the system is that the
measurements include some uncertainty. A widespread approach more dealing with this
uncertainty of the measurement is to use the expected value [27]. The problem with using
the expected value in the optimization is that the optimum one get can be infeasible or not
close to the actual optimum [34]. In process control and other field there have been a lot of
work on including the uncertainty of the measured values or other kind of uncertainties into
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Chapter 2. Optimization Theory

the optimization formulation [26]. When the uncertainty is included into the optimization
problem the problem becomes stochastic. More about dynamic stochastic optimization is
given in Section 2.2.

2.1 Dynamic Optimization
Before going into the theory of dynamic optimization lets us first start with some notation
and how to formulate a general dynamic optimization problem. This is done since the
notation and formulation often differ depending on the field of studies [6], [30].

Assume that the dynamics system that is going to be optimized can be modelled by a set
of differential-algebraic equations (DAEs). Furthermore assume that the problem can be
expressed as an initial value problem. For control one often has knowledge of the initial
state of the system, so the assumption that the problem can be expressed as an initial value
problem is reasonable [6]. With these assumption the set of DAEs can be expresses as:

dx

dt
= f (x(t), z(t),u(t),p) (2.1a)

x(0) = x0 (2.1b)
g (x(t), z(t),u(t),p) = 0 (2.1c)

In the equation above f are the differential equations and g are the algebraic equations.
x(t) ∈ Rnx are the differential variables, x0 are the initial values at time equal to zero,
z(t) ∈ Rnz are the algebraic variables, u(t) ∈ Rnu are the control variables and p ∈ Rnp
are the parameters that are independent of t.

For the set of DAEs given in Equation (2.1) let us assume that with given values of x(t),
u(t) and p, z(t) can be found uniquely by g.

The set of DAEs given in Equation (2.1) are included into the optimization formulation
as constraints. This is to make certain that any solution of the optimization problem is a
feasible solution of the set of DAEs. The set of feasible solutions of (2.1) may include
solutions that are physically infeasible or not inside the safe zone of operation. Because
of this, upper and lower bounds on the variables need to be added to the optimization for-
mulation. These bounds can be given by the design of the system, for example maximum
temperature inside a reactor. Bounds are also added such that the solutions are physical
consistent, for example that all mass fractions are between zero and one. Also a good engi-
neer can use his/her insight to further restrict the feasible set by adding/adjusting bounds,
for example that mass fraction of a reactant should be above some minimum value. The
lower and upper bounds on the variables are usually expressed as in Equation (2.2) where
it is divided by the different type of variables.
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2.1 Dynamic Optimization

xlb ≤ x ≤ xub (2.2a)
zlb ≤ z ≤ zub (2.2b)
ulb ≤ u ≤ uub (2.2c)

(2.2d)

Here the subscript lb denotes lower bounds and the subscript ub denotes upper bounds.

Then the feasible set contains all the solutions that satisfy the constraints given by Equa-
tion (2.1) and the bounds given by Equation (2.2). For the feasible set assume that it is not
empty [30], and therefore there exist a least one solution that satisfy both the constraints
and variables bounds.

To differentiate the solutions given by the feasible set, an objective function is added. This
objective function defines the function that is going to be minimized or maximized. The
objective function defines the goal of the optimization for example maximize production
of gas for a subsea processing system. Assume that time horizon is bounded, then the
objective dunction can be expressed as:∫ tf

0

Φ (x(t), z(t),u(t),p) dt, (2.3)

In Equation 2.3 tf finial value of the time horizon and Φ is the Lagrange term of the ob-
jective function.

Now with the constraints defined by Equation (2.1), the variables bounds defined by Equa-
tion (2.2) and the objective function defined by Equation (2.3), the whole optimization
problem formulation can be expressed. Assume that the problem is a minimization prob-
lem. The the optimization problem formulation can be expressed as:

min
u(t)

∫ tf

0

Φ (x(t), z(t),u(t),p) dt (2.4a)

s.t.
dxk

dt
= f (x(t), z(t),u(t),p) (2.4b)

x(0) = x0 (2.4c)
g (x(t), z(t),u(t),p) = 0 (2.4d)
xlb ≤ x(t) ≤ xub (2.4e)
zlb ≤ z(t) ≤ zub (2.4f)
ulb ≤ u(t) ≤ uub (2.4g)

The above equation is a general formulation of a dynamic optimization problem, with the
notation normally used in process control.
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Chapter 2. Optimization Theory

To solve a dynamic optimization problem like the one given in Equation (2.4), Bellman
suggested that the problem is divided into finite number sub-problems [3]. Each sub-
problem is solved for given time. Such that solution does not get discontinuous from one
time period to the next. Bellman added additionally constraints, often called continuity
constraints. These constraints stated that at the end of time k the variables is equal to
variables at the start of time k + 1. Equation (2.5) shows such a constraint.

xk+1(0) = xk(tk). (2.5)

In the equation above xk+1(0) are the differential variables at time period k + 1 at time
equal to zero, and xk(tk) are the differential variables at time period k at the end of that
time period.

By dividing the time horizon into a finite number of discrete points, the objective function
can be approximated by the following Riemann sum:

N−1∑
k=0

Φk (x(tk+1), z(tk+1),u(tk),p) ∆tk, (2.6)

where N is the number of time periods, x(tk+1), z(tk+1) are the values of the differential
and algebraic variables at the end of the time period k and ∆tk is the length of the time
period k. The values of x and z are sampled at tk+1 because X0is assumed to be given,
so it is not a decision variable.

By adding the continuity constraint given by Equation (2.5) and the new objective function
given by Equation (2.6), the dynamic optimization problem defined by Equation (2.4)
can be defined as set of optimization problems. Where the optimization problem defined
at time step k is only dependent on the previous time steps. In Equation (2.7) the new
dynamics optimization formulation is given, where the time horizon is divided into a finite
number of discrete points.

min
U

N−1∑
k=0

Φk (xk+1, zk+1,uk,p) ∆tk (2.7a)

s.t. xk+1 = fk (xk, zk,uk,p) , ∀ k = 1, .., N (2.7b)
xk+1(0) = xk(tk), x0 = given, ∀ k = 0, .., N − 1 (2.7c)
gk (xk, zk,uk,p) = 0, ∀ k = 0, .., N (2.7d)
xlb ≤ xk ≤ xub, ∀ k = 1, .., N (2.7e)
zlb ≤ zk ≤ zub, ∀ k = 1, .., N (2.7f)
ulb ≤ uk ≤ uub, ∀ k = 0, .., N − 1 (2.7g)

(2.7h)

In the equation above notation y(tk) is shortened to yk, where y is one of the variables.
This is done so the notation gets more compact.
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2.2 Dynamic Stochastic Optimization

Before solving the optimization problem defined in Equation (2.7) it is important to define
which category of optimization problems the problem belongs in. This is since different
optimization problems require different solution approaches. For example, linear prob-
lems are commonly solved using the simplex method, whereas non-linear problems are
solved using the interior point (IP) method or the sequential quadratic programming (SQP)
method. More about the different solving methods can be found in Numerical Optimiza-
tion by Nocedal [6] and in Nonlinar Programming by Biegler [30].

2.2 Dynamic Stochastic Optimization
When controlling a system with a MPC the system is often driven to the constraints. In
reality there is always some form of uncertainty either from measurements or model mis-
match. These uncertainties can often lead to constraint violations or sub-optimal solutions.
Therefore have the been done a great deal of research on how handle the uncertainties. The
first approach to handle the uncertainties was the use of min−max MPC [4] [7] [44]. For
the min−max MPC approach the solution of the OCP must satisfy all of the possible
outcomes of the uncertainties. As the worst case scenario is considered it usually lead to
conservative control actions or in some cases infeasible solution [5] [20]. For overcome
the limitations of min−max MPC, tube-based MPC was developed [20] [32]. Tube-based
MPC uses a partially separable feedback control law parameterization such that the uncer-
tainties can be handled directly. Though tube-based MPC could handle the uncertainties
directly it is not easily designed for non-linear systems and it can often give conserva-
tive control action. Both min−max MPC and tube-based MPC falls into the category of
robust MPC (RMPC). The problem with RMPC is that it rely on bounded, deterministic
descriptions of the uncertainties in measurement or model mismatch. In reality the un-
certainties are usually more accurate described as probabilistic functions. Therefore with
the uncertainty described by some probability distribution function (PDF) it is natural to
include this into the OCP. With the inclusions of the PDF in the OCP the MPC is called
stochastic MPC (SMPC). SMPC exploits the characteristics of the PDF to define chance
constraints, which require the constraint to hold with some specific probability level [5]
[13] [21] [22] [31]. Therefore enables SMPC for a systematic approach of finding a trade-
off between constraint violations and conservative control actions. In the text below it is
explained how to formulate a stochastic optimal control problem (SOCP).

For the formulation of the SOCP let us start with the OCP given by Equation (2.7). First,
include some form of uncertainty in the OCP and formulate the constraints with uncer-
tainty as chance-constraints. Examining the OCP that the variable bounds are the only
inequality constraints, as the other constraints are the model equation. Therefore is all
of the chance-constraint linear which was it usually in control [5] [13] [21] [31]. Before
formulating the complete SOCP lets first look at how an individual chance-constraint is
formulated. The general formulation of a chance constraint is given as:

P
(
HT y(ξ) ≤ c

)
≥ α. (2.8)

In the above equation, P is the probability of holding the constraint, HT is the constraint
vector, y(ξ) is the random variable given by some probability distribution ξ, c is the lower
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Chapter 2. Optimization Theory

bound of the constraint and α is the probability level.

For the chance-constraint given in Equation (2.8) lets rewrite it, as it is not easily in-
terpreted. Assume that α is larger than 0.5 and let the covariance of y(ξ) be given by
Equation (2.9) and the variance given by Equation (2.10).

Y = E(y(ξ)− ȳ)(y(ξ)− ȳ)T . (2.9)

Here Y denotes the covariance matrix of y(ξ) and ȳ denotes the expected value of y(ξ).

σ2 = HTE(y(ξ)− ȳ)(y(ξ)− ȳ)TH = HTY H, (2.10)

where σ is standard variance of y(ξ).

Thereafter let us normalize the probability distribution such that the computations becomes
easier.

pn(ξ) =
HT y(ξ)− ȳ

σ
. (2.11)

In the above equation the probability distribution have been normalized, where pn(ξ) is the
normal Gaussian distribution with unit variance and zero mean. Thereby by reformulating
the linear constraint as:

hT y(ξ) ≤ c⇒ HT y(ξ)− ȳ
σ

≤ c− ȳ
σ
⇒ pn(ξ) ≤ c− ȳ

σ
. (2.12)

Thereby using the above reformulation to rewrite the chance-constraint given by Equation
(2.8), the constraint can be written as:

FG

(
c− ȳ
σ

)
≥ α. (2.13)

Where FG is the standard one dimensional Gaussian distribution function.

Then take the cumulative Gaussian distribution of Equation (2.13) the constraint can be
written as:

c− ȳ
σ
≥ F−1

G (α). (2.14)

Where F−1
G (α) is the inverse cumulative Gaussian distribution function of α.

Lastly let us shuffle the terms such that c get one side of the inequality and use Equation
(2.10) for replacing the variance.

HT ȳ + F−1
G (α)

√
HTY H ≤ c (2.15)
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2.2 Dynamic Stochastic Optimization

Then the chance-constraint in Equation (2.8) have been rewritten to something more easily
interpreted.

Now that the individual chance-constraint have been formulated, one can go back to the
OCP and look at how the constraint given by Equation (2.15) can included in the dynamic
optimization problem given by Equation (2.7). As the problem is dynamic, it means that
for each time period a chance-constraint needs to be added. Furthermore, if the constraint
is an greater or equal constraint the same derivation as above can be used, just that one
subtract the back-off. Therefore lets apply the chance constraint to the bounds on the
variables in Equation (2.7), such that the SOCP can be formulated. In Equation (2.16) the
stochastic optimal control problem is formulated.

min
U

N−1∑
k=0

Φk (xk+1, zk+1,uk,p, ξ) ∆tk (2.16a)

s.t. xk+1 = fk (xk, zk,uk,p, ξ) , ∀ k = 1, .., N (2.16b)
xk+1(0) = xk, x0(tk) = given, ∀ k = 0, .., N − 1 (2.16c)
gk (xk, zk,uk,p, ξ) = 0, ∀ k = 0, .., N (2.16d)

x̄k + F−1
G (α)

√
Xk ≤ xub, ∀ k = 1, .., N (2.16e)

x̄k − F−1
G (α)

√
Xk ≥ xlb, ∀ k = 1, .., N (2.16f)

z̄k + F−1
G (α)

√
Zk ≤ zub, ∀ k = 1, .., N (2.16g)

z̄k − F−1
G (α)

√
Zk ≥ zlb, ∀ k = 1, .., N (2.16h)

ulb ≤ uk ≤ uub, ∀ k = 0, .., N − 1 (2.16i)
(2.16j)

In the above equation, x̄k is the expected value of xk, Xk is the covariance matrix of xk,
z̄k is the expected value of zk, Zk is the covariance matrix of zk and ξ is the uncertainty
given by some probability distribution function.
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Chapter 3
Model Description

The model that are described in this Chapter is based on a simplified version of the subsea
installation for the Ormen Lange field. In the model the parameters describing the charac-
teristics of the subsea separation system are taken from literature about the Ormen Lange
field [8] [25] [35]. Some parameters are also adjusted so that the system fits operating
conditions for the Ormen Lange field, these adjustments are given in Appendix B. In Fig-
ure 3.1 a diagram of the subsea system is shown. The system consist of the reservoir, a
well-bore, vales, a gravity separator and a compressor. An explanation of how each unit is
modelled is described in Sections 3.1-3.4.

F1 F2

F5 F6

F3 F4

Reservoir

Wellbore

Separator

Compressor

Valves

Figure 3.1: Diagram of the subsea separation system, consisting of the reservoir, well bore, valves,
separator and compressor. Where the Fi indicates a stream i.
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Chapter 3. Model Description

3.1 Reservoir
In this section the reservoir and well bore equations are derived and explained. With these
equations one can find the well performance curves which is used to find the production
of gas and oil. As the pressure gradient from the reservoir to the well bore is the main
driving force of the system [18]. Given a pressure gradient the fluid in the reservoir will
move towards the well bore-head, assuming that the pressure is lower at the well bore-
head than in the reservoir. Darcy was the first to model how fluids moves through a solid
in 1856 [43], whit the development of Darcy’s law which is given in Equation (3.1). Even
though Darcy found the relation between the pressure difference and flow rate through
experiments it was later shown that it could be derived from Navier-Stokes law [43].

q0 = J(Pr + Pwf ), (3.1)

where q0
[
m3 s−1

]
is the flow rate, J

[
m3 s−1 Pa−1

]
is the flow coefficient, Pr [Pa] is the

average reservoir pressure and Pwf [Pa] is the well bore bottom hole pressure.

Darcy’s Law gives a good estimation for unsaturated oil wells but not for saturated oil
wells or gas wells [18] [41]. The reason for this is that Darcy’s law assumes laminar flow
and incompressibility of the fluid. These assumptions do not hold for gas wells or satu-
rated oil wells. Vogel presented an empirical equation called Vogel Equation (3.2) in 1968
[41] after studying how the flow rate changes with the pressure gradient.

ṁo

ṁomax

= 1− 0.2

(
Pwf
Pr

)
− 0.8

(
Pwf
Pr

)2

. (3.2)

Here ṁo

[
kg s−1

]
denotes the flow of oil and ṁomax

[
kg s−1

]
denotes the maximum flow

of oil, i.e. the flow when Pwf = 0.

Vogel equation (3.2) gives good results for saturated oil wells but not for high-velocity
wells [18]. Fektovich also studied how the flow rate changed with pressure gradient [14].
Fetkovich did his study for gas and two-phase flows while Vogel had mainly done for oil
wells [18]. Fektovich equation (3.3) showed good result both for gas and oil wells.

ṁi = ki
(
P 2
r − P 2

wf

)n
, (3.3)

where ṁi

[
kg s−1

]
is the flow of component i, ki

[
kg s−1 Pa−2n

]
is the flow coefficient

for component i and n is deliverability exponent, where n is from 0.5 - 1.0.

In this work, the Fektovich Equation (3.3) will be used for the estimation of the oil and
water flow rates. The reason for this is that the Ormen Lange is a gas reservoir and the
Fektovich equation has shown best results for gas reservoirs. The gas-oil-ratio (GOR) is
used, which is given by Equation (3.4). The gas flow is given by Equation (3.5)

GOR =
kg
ko

(Pr − Pwf )
2
, (3.4)
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3.1 Reservoir

ṁg =
kg
ko
ṁo (Pr − Pwf )

2
, (3.5)

in the above equations kg
[
kg s−1 Pa−2n + 2

]
is the flow coefficient for gas and ko[

kg s−1 Pa−2n
]

is the flow coefficient for oil.

For the pressure drop from the reservoir to the seabed, the stationary mechanical energy
balance is used. It is assumed that there is no slip between the phases, no friction and
that work and kinetic energy can be neglected. Furthermore it is assumed that the fluid
is a single-phase pseudo-fluid with negligible mixing volumes and density is given by the
volume average of the fluid. Then the pressure drop is given by Equation (3.6).

dp = ρmixgdh, (3.6)

where dp [Pa] is the pressure drop, ρmix is the density of the mixture given by Equation
(3.7), g

[
m s−2

]
is the gravitational constant and dh [m] is the height difference between

the reservoir and seabed.

ρmix =
ṁg + ṁo + ṁw

ṁg

ρigg
+ ṁo

ρo
+ ṁw

ρw

. (3.7)

In the above equation ρigg
[
kg m3

]
denotes the density of gas assuming ideal gas law.

The pressure at the seabed is found by integrating Equation (3.6) from (Pwf , hr) to
(P1, h1) which gives:

ṁ1g∆h =
ṁgRTr
Mg

ln

(
P1

Pwf

)
+

(
ṁo

ρo
+
ṁw

ρw

)
(Pwf − P1) (3.8)

Here R
[
J K−1 mole−1

]
denotes the universal gas constant, Tr [K] denotes the temper-

ature of the reservoir, Mg

[
kg mole−1

]
denotes the molar weight of the gas and P1 [Pa]

denotes the pressure at the seabed.

The logarithmic term in Equation (3.8) can be simplified with using Taylor series. This is
shown in Equation (3.9).

ln

(
P1

Pwf

)
= ln

(
Pwf
Pwf

+
P1 − Pwf
Pwf

)
= ln

(
1 +

P1 − Pwf
Pwf

)
≈ P1 − Pwf

Pwf
(3.9)

Inserting Equation (3.9) into Equation (3.8) one can express P1 as a function of Pwf . The
result is given in Equation (3.10).

P1 = Pwf +
ṁ1gPwf∆h

ṁgRTr
Mg

+ Pwf

(
ṁo
ρo

+ ṁw
ρw

) (3.10)

Assuming that there are no accumulation of mass in the well bore, therefore due to the
conservation of mass the mass flow into the well bore is the same the mass flow out.
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Chapter 3. Model Description

Furthermore one also assumes that the system are in equilibrium so the mass fraction is
also constant over the well bore.

Reservoir degeneration
The pressure inside a reservoir will decrease over the lifetime of the reservoir. The pressure
decrease are caused by gas and oil being pumped out of the reservoir. There exist many
different models for modelling how the pressure decreases. These models can based in
physical and/or historical data [18]. In this Master thesis an empirical model is used and
is given by Equation (3.11). This model assumes that the pressure decrease is linear with
respect to time. This model is used as overall pressure decrease data for the Ormen Lange
field was not available.

dPr
dt

= C, C < 0, (3.11)

here C
[
Pa s−1

]
stands for the reservoir degeneration factor.

3.2 Valves
Valves are often included into a system for control. By adjusting the position of the valve-
head one can increase/decrease the pressure drop over the valve, which can be used for
controlling the flow. The valve equation from [33] is used for modelling the flow through
a valve and is given by Equation (3.12).

ṁ = Cvf(y)

√
∆P

SG
, (3.12)

where Cv
[
kg s−1 Pa−1/2

]
is the valve coefficient, f(y) is the valve characteristic func-

tion dependent on the position of the valve-head, z, ∆P [Pa] is the pressure drop over the
valve and SG is the specific gravity of the fluid.

The valve characteristic function indicates how the flow changes with the position of the
valve-head, y. If y is equal to one it indicates fully open valve and if y is equal to zero
that the valve is closed. In this Master thesis lets assumes that the valve characteristics
function is linear with respect to y, which is shown in Equation (3.13).

f(y) = y. (3.13)

In the above equation y is the position of the valve-head and where y takes values from
zero to one.
Furthermore one assumes that the system is in equilibrium over the valve so the mass flow
and mass fractions are consistent over the valve.
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3.3 Separator

3.3 Separator
In this section the separator model is derived and explained. The separator is used for
separating the different phases of the fluid; gas and liquid. For this separation a horizontal
gravity separator is used. The dynamics of the separator are very depending on the design
of the separator, where different inlet diverter, internal vessels etcetera will change the
dynamics of the separator [2] [23] [36] [37]. The separator can be divided into three major
parts; inlet, gravity section and demister [2]. A figure of a three phase gravity separator
is shown in Figure 3.2, where the three major parts are indicated. At the inlet the stream
will hit the inlet diverter and have a change of momentum. This change of momentum will
separate the liquid and gas. The inlet diverter is also used for distribution of the gas. The
design of the inlet diverter will dictate what kind of distribution occurs [23]. Gravitational
forces will separate the different components depending on the density of the components,
this is the main separation process in the gravity section. In the liquid phase, gas bubbles
will rise due having lower density than the liquid and similarly, for liquid droplets in the
gas phase. In the gravity settling section one can also have internal vessels like mesh pads
and vane packs to enhance the separation of gas and liquid [23]. Before the gas leaves
the separator, it will go through a demister. The demister will separate out some of the
remaining droplets in the gas phase. The demister can have different designs [36] and
what kind of separation process that occurs is dependent on the design. The design of the
demister also effects the effectiveness of the droplet removal [36], where some demister
can effectively remove droplets down to the size of 3-5 µm [23]. In this work the inlet
diverter and demister are not included in the modelling. Therefore the separator model
only consist of the gravity section.

Demister

Inlet Diverter
Gravity Section

Min
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o
u
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M
o
o
u
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M
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Oil & Emulsion

Water

W
ei

r

Figure 3.2: Schematic of a horizontal three-phase gravity separator, with the three major separation
parts; Inlet, gravity settling and demister.

Assuming that no mass is accumulated inside the separator, the overall mass balance is:

ṁin = ṁgout + ṁlout (3.14)

In Equation (3.14) if one assumes that the flow into the separator is known, then there are
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Chapter 3. Model Description

two unknowns and one equation. Therefore another equation is needed for solving both of
the outlet flows. Figure 3.3 shows a basic overview of the in and out flows along with the
internal flows.The two internal flows, Fg and Fl, are the flows of gas from the liquid phase
to the gas phase and the flow of liquid from the gas phase to the liquid phase, respectively.
Assuming that the mass fractions at the inlet is known, the component mass balances can
be solved. For modelling liquid in gas or gas in liquid, one can use multiphase flow theory
[9]. For this Master thesis multiphase flow theory is not used because of the complexity.
Instead, a simplified expression is used to describe the amount of liquid that leaves with
the gas and the amount of gas leaving with the liquid.

Demister

Inlet Diverter
Settling Section
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Bubble

Droplet

Gas
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Figure 3.3: Show the separation of droplets from the gas phase and bubbles from the liquid phase
for a gravity separator.

The amount of liquid that goes out with the gas is called the liquid carryover and the gas
leaving with liquid is called the gas carryunder. In the section below only the how the
modelling of liquid carryover is discussed, but similiar equations can be used to model the
gas carryunder.

Let the droplet velocity towards the interface be govern only by the size of the droplet and
gas properties. This assumption implies that the droplets have constant density, there is
no break-up or coalescence, no re-entering of droplets from the liquid phase into the gas
phase. Additionally, that the separation is isothermal and the droplets size is independent
of the vertical position. Finally assume that the size of the droplets is determined by
the design of the separator and the inlet conditions and that the separation coefficient is
constant. With these assumptions and simplifications one can express the liquid carryover
as a function of the residence time and the separation coefficient. The expression of the is
given in Equation (3.15). The expression is taken from [38], and the expression is not very
accurate, due to the number of assumptions and simplifications made. But nonetheless it
is used in this Master thesis as an indication of liquid carryover.

dZo
dτ

= −Soτ, (3.15)
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3.4 Compressor

where τ [s] is the residence time and So
[
s−2
]

is the separation efficiency for the oil.

When solving Equation (3.15), the mass fraction of gas/liquid can be found for the two
outlet streams. The mass fraction is given by Equation (3.16).

Z5,o =
ṁin

ṁj
Z2,o exp

(
−So

Vg
ṁ5

ρ5

)
. (3.16)

In the equation above Z5o is the mass fraction of oil in outlet stream 5, see Figure 3.1,
Vg
[
m3
]

is the volume of the gas phase in the separator given by Equation (3.17), ṁ5[
kg s−1

]
is the mass flow in stream 5, and ρ5 is the density of outlet stream 5 and it is

given by Equation (3.18).

Vg = Vsep − L((h−R)
√

2Rh− h2 +R2 arccos

(
1.0− h

R

)
, (3.17)

where Vsep
[
m3
]

is whole volume of the separator, L [m] is the length of the separator
and R [m] is the radius of the separator.

ρ5 = ρw (Z5,gSGg + Z5,oSGo + Z5,wSGw). (3.18)

For the equation above ρw
[
kg m−3

]
is the density of water, SGg [−] is the specific den-

sity of the gas, SGo [−] is the specific density of the oil and SGw [−] is the specific
density of water.

For finding the liquid in stream 5 the component balances for the separator can be used.
The component balance are given as:

Z2,oṁ2 = Z5,oṁ5 + Z3,oṁ3 (3.19)

By combining Equations (3.14), (3.16) and (3.19) the mass flows out and the separator,
along with the corresponding mass fraction, can be expressed..

The components are in this work considered to be; gas, oil and water. Also it is assumed
that there are no water in stream 5 as water have a higher density than oil.

3.4 Compressor
The compressor is used to increase the pressure of the gas outlet stream such that the pres-
sure is high enough to transport itself to the top-side processing plant.

The stream entering the compressor is assumed to be only gas, then the static-head terms,
velocity-head terms and friction terms can be neglected [16]. The mechanical energy
balance for compression of gas is given in Equation (3.20).

dWs =
dP

ρ
, (3.20)
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Chapter 3. Model Description

where dWs
[
J kg−1

]
is the specific work done by the compressor, dP [Pa] is the pressure

increase over the compressor.

The compression is assumed to be adiabatic. Therefore that the compression follows an
isentropic path way, which is given by Equation (3.21).

P

P1
=

(
ρ1
ρ

)γ
(3.21)

Equation (3.21) is inserted into Equation (3.20) and then integrated from (W0, P1) to
(W,P2) then solve for W . Assuming ideal gas law holds, the adabatic compression work
canb e expressed as:

Ws =
γ

γ − 1

RT1
M

((
P2

P1

)( γ−1
γ )
− 1

)
, (3.22)

here Ws

[
J kg−1

]
denotes the specific work done by the compressor and γ denotes the

heat capacity ratio.

The total work of the compressor, the specific work defined in Equation (3.22) is multiplied
with the mass flow and divided by the compressor efficiency, this is shown in Equation
(3.23).

W =
γ

γ − 1

RT1
M

((
P2

P1

)( γ−1
γ )
− 1

)(
ṁ

η

)
, (3.23)

Where η is the compressor efficiency.

Compressor Degeneration
As times goes, the compressor efficiency will decrease and the probability of breakdown
of the compressor will increase. The reason for this is mainly wear and tear of the com-
pressor. An empirical mode is used to model the decrease of compressor efficiency. No
statistical or physical models for such degradation are available, therefore a simple linear
model is used. For the probability of breakdown it is assumed that it is correlated with the
compressor efficiency. Therefore no model of the breakdown is presented in this work.
For the degeneration of compressor efficiency it is given by Equation (3.24). Where it is
assumed that liquids will have a higher wear and tear factor than gas on the compressor,
as the compressor is designed for handling gas, not liquids.

dη

dt
= Aṁg +Bṁl. (3.24)

In the above equation, A
[
kg−1

]
is the gas degeneration factor and B

[
kg−1

]
is the liquid

degeneration factor, with 0 > A > B.
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Chapter 4
Optimal Control Problem
Formulation

In this chapter the optimal control problem (OCP) for the subsea separator system de-
scribed in Sections 3.1-3.4 is explained. Where each of the three majors part of the OCP
is discussed. First a degree of freedom analysis is done, this is for deciding the control
variables

4.1 Degree of Freedom Analysis
The subsea separation system is considered to be controlled by a model predictive con-
troller (MPC). The MPC is controlling the system by adjusting some variable such that
the some variables are kept at desired values. The variables that are adjusted is called ma-
nipulated variables (MVs), while the variables that are kept at the desired values is called
control variables (CVs) [33]. For the subsea separation system these CVs can be found
from analysing the set of model equations given in Sections 3.1-3.4. From analysing the
model equation one finds that there are 3 more variables than equations, therefore there are
3 degree of freedom for control. The CVs that was chosen is: separator pressure, P2, liq-
uid height in the separator, h, and the compressor duty, W . The reservoir pressure can be
used for controlling the pressure drop between the reservoir and well bore-head, thereby
controlling the mass flow. The liquid height in the separator can control the mass fractions
in the gas outlet and the liquid outlet of the separator by changing the residence time of
the liquid and gas, see Equations (3.16) and (3.17). The last CV is the compressor duty as
it can control the pressure in stream 6, see Equation (3.23).
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Chapter 4. Optimal Control Problem Formulation

4.2 Optimal Control Problem
The OCP for the subsea separation system will have a same formulation as the ones used
in Chapter 2. So the formulation used in Equation 2.7 will be used when there is no
uncertainty in the system, while Equation 2.16 will be used when there is uncertainty in
the system. The objective function, constraint and variables bound is explained below.

4.2.1 Objective Function
From Equation 2.7 the objective function is given as :

N−1∑
k=0

Φk (xk+1, zk+1,uk,p) ∆tk (4.1)

If the system had some uncertainty the objective function from Equation 2.16 was used,
and is given as:

N−1∑
k=0

Φk (xk+1, zk+1,uk,p, ξ) ∆tk (4.2)

From the two above equations Φk is the scalar function which describes the properties of
the system that one want to minimize or maximize. For the subsea separation system this
property is the profit, as higher profit would make the system operate more efficiently.

The subsea separation system model in this work is a simplified version of the Ormen
Lange subsea installation. The Ormen Lange field consist mostly of gas [35] [40], there-
fore is the production of gas much larger than the production of oil. Assuming that the
income from the oil production can be neglected, the income is given by the amount of gas
produced. For the expenses assume that they are not affected by the production volume
of the system and therefore fixed values. As the expenses are fixed values they can be
removed from the OCP without effecting the optimal solution. With these assumptions the
maximizing of the profit is the same as maximizing gas production. In Equation (4.3) an
objective function that maximize gas production is presented.

N−1∑
k=0

pkṁ6k+1
Z6,gk+1

∆tk, (4.3)

where N is the number of time periods, pk is the price of gas in time period k, ṁ6k+1[
kt d−1

]
is the mass flow in stream 6, see Figure 3.1, for time period k, Z6,gk+1

[−] is the
mass fraction of gas in 6 for time period k and ∆tk [d] is the length of time period k.

4.2.2 Constraints
The constraints are functions that restricts the feasible region of the optimization problem.
For the OCP of the subsea separation system the feasible region one are interested in are
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where the model equations hold. By adding the model equations from Sections 3.1-3.4 as
constraints, the feasible region would be restricted to where the model equations holds. In
Equations 2.7 and 2.16 the constraint was divided in three. These three set of constraint
was the differential equations, algebraic equations and continuity constraints. In the model
equations there are two differential equations, Equation (3.11) and (3.24), while the rest
is algebraic. Furthermore, as the time horizon is divided into N time steps, one has to
add all of the model equations as constraints in each time period. Therefore the number
of constraints is the number of model equations multiplied with the number of time steps.
The last set of constraints is the continuity constraints, these connect time period k with
k + 1. For connecting the two time periods with each other the end time value of period
k need to be found. For finding the values at the end of a time period there exist a large
variety of methods, in this work collocations was used.

4.2.3 Upper and Lower Bounds
The upper and lower bounds restrict the values of the states. In Table A.2 all of the upper
and lower bounds is given. The bounds are given by physically restriction on the states
,system design restrictions and engineering insight of the system. Some of the bounds that
are chosen by the insight into the system will be explained in more details here. The upper
bounds on the mass fraction of gas in stream 3 and oil in stream 5 is chosen such that
gas carryunder and liquid carryover is kept below those bounds. With restricting the gas
carryunder and liquid carryover the solutions with poor separation efficiency is removed.
The lower bound of the pressure in stream 6 is given such that the pressure is sufficient
to drive the gas from the subsea installation to the topside receiving facility. Lastly the
lower bound of compressor duty is given as an indication for when the compressor need
maintenance.

4.2.4 Chance-Constraint
Chance-constraints was added to the OCP for handling uncertainty in the system. Chance-
constraint was chosen as it gave a trade-off between number of constraint violations and
how large the back-off from the optimal conditions is. In Section 2.2 the chance-constraint
was given as:

hT ȳ + F−1
G (α)

√
hTY h ≤ g. (4.4)

For being able to formulate the chance-constraint in Equation (4.4) the expected value of
the variable, ȳ, the inverse cumulative Gaussian distribution function, F−1

G (α), and the
covariance matrix, Y needs to be found. These variable can be found by the probability
distribution function (PDF) of y, where y stands for the differential or algebraic variables.
The PDF of y can be approximated by doing Monte Carlo simulations [10] [15], assuming
that the uncertainty in the system can be expressed by some known PDF. Monte Carlo
simulation work with one simulates the system multiple times with random outcomes of
the uncertainty. Then the PDF of y can be approximated from the results of the simula-
tions. For more about Monte Carlo simulations see Monte Carlo: Concepts, Algorithms,
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and Applications [15].
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Chapter 5
Case Studies

For studying the OCP described in Chapter 4 four different cases have been studied. These
cases have been chosen to get an understanding of the system by stepwise include addi-
tional terms to the objective function. These cases are also to illustrate how changes in the
OCP can change the solution and how this can cause constraint violations and sub-optimal
operating conditions. In Section 5.1 the first case where the time horizon is fixed is pre-
sented. In Section 5.2 the time horizon is added as an additional degree of freedom, which
is case 2. Thereafter, in 5.3 the third case is presented, where present value is included in
the objective function. Lastly, in Section 5.4 uncertainty is included in the system.

5.1 Case 1: Fixed Time Horizon
The time horizon of the OCP is given by when the maintenance of the compressor oc-
cur. Assuming a fixed time horizon for the OCP because the compressor maintenance is
scheduled for given time in the future. That the maintenance is performed after a given
time period can be because it is company policy, the guarantee on the equipment expires
or special equipment are need to perform the maintenance.

In case 1 the time horizon is fixed, so by dividing the time period into equally large sections
the length of the time period, ∆tk, can be removed from the objective function without
effecting the optimal solution. Furthermore, in case 1 it is assumed that the price of the
gas is constant throughout the time horizon, and can therefore also be removed form the
objective function. With these assumption the objective function is given as:

N−1∑
k=0

ṁ6k+1
Z6,gk+1

. (5.1)

Case 1 is studied for getting an insight into how the system behaves and what the optimal
conditions of the system is.
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5.2 Case 2: Varying Time Horizon
In case 1 the time horizon was fixed as it was assumed that the maintenance was schedul-
ing for given time in the future. If the time period is short to would lead to unnecessary
maintenance. Since the equipment is at the seabed the expenses associated with mainte-
nance is large. Therefore if the maintenance is occurring too regularly it will it will lead to
large maintenance expenses over time. If the time period is to long it could lead to failure
in the equipment. As the equipment is not easily accessible for repair, the time before
repair can be done is large. This will lead to large time periods of down time which causes
loss in income. Furthermore, one also want to prevent failures, such that accident like
the ”Deepwater Horizon” accident do not occur. So for scheduling maintenance of the
compressor it should not be too often or too infrequently. For planning the optimal time
for preforming the maintenance the time for maintenance is added to the OCP, such that
the end time becomes a variable.

In case 2 one still assumes that the price of gas is constant throughout the time horizon,
and can therefore be removed from the objective function. But since the end time is vari-
able the length of the time periods can no longer be removed from the objective function.
Assume that all of the time periods is divided such that they are equally large. With these
assumptions the objective function for case 2 is:

N−1∑
k=0

ṁ6k+1
Z6,gk+1

∆tk. (5.2)

For preventing the end time to be negative or be unrealistic large, variables bounds on the
end time need to be added. These bounds are given in Table A.1. For the differential, al-
gebraic and control variable the bounds was added for each time period, this is not needed
for the end time as it is consistent in all time periods. Therefore is it enough to add just
one extra lower and upper bound for the end time.

Case 2 is studied to examine how addition of end time as a degree of freedom changes the
optimal solution. Moreover, it is discussed why the reason for the change in the optimal
solution can be.

5.3 Case 3:Net Present Value
In the two cases above the price of gas is assumed constant over the time horizon. Even if
the price of gas is constant over the the time horizon it does not mean that the value of the
income from the gas is constant over the time period. This is because income today can
be used for other investments or be set in a bank account an earn interest. For calculating
income in different times in the future net present value (NPV) is used. The calculation of
NPV is given by Equation (5.3).

PV =
Cf

(1 + i)
n , (5.3)
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where PV is the net present value, Cf is the income, i is the interest rate and n is the
number of time periods from the present the income occur.

For case 3 the NPV is included in the objective function, this is to examine if different
prices of the gas have an effect on the optimal solution. With the inclusion of NPV in the
objective function the objective function will be given as:

N−1∑
k=0

C

(1 + i)
k
ṁ6k+1

Z6,gk+1
∆tk. (5.4)

In case 3 it is studied how the optimal control sequence changes when there is different
prices on the gas. Moreover, the reasons for why the optimal solution changes when NPV
is considered are discussed.

5.4 Case 4: Uncertainty
For the subsea separation system described in Sections 3.1-3.4 there can be many sources
of uncertainty. In this work it is assumed that the uncertainty comes from model mis-
match, this is because all of the assumptions and simplifications done in the modelling.
In the model there is a number of parameters that was adjusted such that the system fitted
operating data for the Ormen Lange field, see Appendix B. Since these parameters are
adjusted from the steady-state condition of the Ormen Lange field there is no certainty
that it holds when the operating conditions are changed. Therefore will these parameters
considered as the main source of uncertainty for the system. In this case it assumed that
uncertainty lies in the reservoir flow coefficient for oil, ko.

Because of uncertainty a back-off from the constraint is usually added such that the prob-
ability of constraint violation is kept above some safety margin. In this work the back-off
is calculated by use of chance-constraint. For calculating the back-off with use of chance-
constraint the probability distribution function (PDF) of the variables need to known. The
PDF of the variables can be approximated with use of Monte Carlo simulations, if the
PDF of the uncertainty is known. Therefore it is assumed that the PDF of ko is Gaussian
distribution function with mean value of 0.016 and a variance of 0.0016.

For some constraint the probability of constraint violation is below the safety margin with-
out adding a back-off. The reason for this can be that the state is far away from the con-
straint or the state is not effected by the uncertainty. For finding the constraints they may be
violated, the deterministic problem is solved first. Therefore by examining the results from
the previous cases the constraints that are active can be identified. Monte Carlo simulations
are then performed such that the PDFs can be found for the active constraints. The PDFs
are examined to see how the uncertainty effects the different active constraints. Examin-
ing how the uncertainty is effecting the probability of constraint violation the probability
level can be decided. The probability level decides the probability that the constraints are
violated. The probability levels are often given by safety margins of the equipment. In this
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work it is assumed that the probability level is 0.95.

With the PDF and probability level the chance-constraints can be calculated. The back-off
calculated by the chance-constraint is added and the OCP is solved. Since back-offs are
added to the active constraints the solution of the OCP will change. With new solution
the state of the system is changed. This can cause the system to behave differently such
that new constraint becomes active or that the PDFs is changed. With different active con-
straint back-off may be needed to reduce the probability of constraint violation for these
constraint also. If the PDF is changed it means that back-off calculate by the chance-
constraint may be too large/small. Therefore is new Monte Carlo simulation performed
such that back-off calculated by the chance-constraint have a probability of constraint vi-
olation equal to the probability level. Then the OCP is solved again. This is done in an
iterative process until number of constraints violations are the same as the probability level
plus/minus some error. Furthermore, with end time as a variable the iterative process start
to oscillate. Therefore is the end time not included as a variable in case 4, instead the end
time from case 3 is used.
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Chapter 6
Results and Discussion

In this chapter the results from the optimization for the 4 cases described in Chapter 5 are
presented and discussed. In Section 6.1 the results from case 1 is presented and discussed.
The results from case 2 is presented in Section 6.2. In Section 6.3 the results from the
optimization of case 3 is presented and discussed. Then in Section 6.4 the results from the
optimization with uncertainty are presented and discussed.

All calculations were done in Python 2.7. The optimal control problem was formulated in
CasADi 3.0 [1]. The optimization solver used was Ipopt 3.12.3. The python scripts can be
found in Appendix D and the parameters, initial values and variables bounds used in the
calculations can be found in Appendix B.

6.1 Results Case 1: Fixed Time Horizon
In this section the results for case 1 are presented. It is discussed how the control sequence
is optimizing the gas production for the subsea separation system described in Sections
3.1-3.4. Furthermore, the active constraints are discussed along with how they are effecting
the control sequences.
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Figure 6.1: The optimal control sequences for the fixed time horizon optimization. Where P2

[bar] is the pressure in the separator, h [m] is the liquid level in the separator and W [MW] is the
compressor duty.

In the figure above the optimal control sequence for case 1 is given. In the figure there are
three dotted lines, the first dotted line indicates when the upper bound on the compressor
duty is reached. The second line indicates when the lower bound on the liquid height in
the separator is reached, and the last line indicates when the lower bound on the separator
pressure is reached.
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Figure 6.2: The mass flows in and out of the separator, see Figure 3.1, for the optimization with
fixed time horizon.

From Section 5.1 the objective function of case 1 was to maximize gas production. In
Figure 6.2 the mass flows of stream 2, 3 and 5 are given, which are the flows in and out
the separator, see Figure 3.1. From the graphs one can see that the flows never reaches
the upper bound for the mass flows which is 45.34

[
kt d−1

]
. Therefore must there be

a bound that restricts the mass flow for increase, thereby increasing the gas production.
In Section 4.1 a degree of freedom analysis was done for the subsea separation system.
From that analysis it was found that the separator pressure was determines the mass flows.
From Figure 6.1 the separator pressure is not at the lower bound before the end of the
time horizon. The separator pressure only restricts the mass flow from increasing at the
end of the time horizon, so there must be another bounds that restricts the mass flows
before that. From the plot of the compressor efficiency, see Figure 6.3, the lower bound
is reached at the end of the time horizon. From Equation (3.24) the degeneration of the
compressor efficiency is given by the mass flow into the compressor. If one was to increase
the mass flows the mass flow into the compressor would also increased. This would caused
compressor efficiency to drop below its lower bound. So the optimizer finds the maximum
gas production that does not decrease the compressor efficiency below its lower bound.
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Figure 6.3: The compressor efficiency, η, for the optimizing with fixed time horizon.

From Equation (3.24) there are two terms to the degeneration of the compressor efficiency,
one for the gas mass flow and one for the oil mass flow. From Table A.1 the gas damag-
ing factor, A, is −3.0× 10−6 [kg−1] while the oil damaging factor, B, is −3.0× 10−5

[kg−1]. Comparing those two parameters, that the oil damaging factor is 10 times larger
than the gas damaging factor. So if the mass fraction of oil in stream 5 was to decrease the
production of gas could increase. From the degree of freedom analysis the liquid height
in the separator was chosen for controlling the mass fractions. The mass fraction is given
by the residence time and separation efficiency which is a constant. For the residence time
for the oil in the gas phase, it is given by volume of the gas phase and the volumetric flow
of stream 5. Thereby increasing the volume of the gas phase would increase the residence
time of the liquid in gas, thereby decreasing the mass fraction of oil in stream 5. The
volume of the gas phase is changing inversely with the liquid height of the separator, so
if the liquid height is at the minimum one would get the best separation of oil as possible.
From Figure 6.1 the liquid height in the separator is not at the lower bound in the begin-
ning. Therefore must there be a bound that restricts liquid height. In Figure 6.4 the mass
fraction of gas in stream 3 is presented. From the plot one can see that mass fraction of
gas in stream 3 is at its upper bound in the beginning. Earlier it was stated by decreasing
the liquid height the mass fraction of oil in stream 5 will decrease. If the liquid level is
decreased it would mean that the residence time of the gas in the liquid would increase.
Thereby would the separation efficiency of the gas decrease, meaning that the mass frac-
tion of gas in stream 3 would increase. So the restriction on the liquid level is that the mass
fraction of gas for stream 3 as its upper level. Therefore in the beginning it is the upper
bound on the mass fraction of gas in stream 3 that restricts the separation of oil from the
gas phase.
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Figure 6.4: The mass fraction of gas in stream 3, for the fixed time optimization.

From Figure 6.2 two bends in the mass flow for stream 2 and 5. Comparing when the
bends occur with when the compressor duty reach its upper bound, see Figure 6.1, that the
first bend occur at the same time. Therefore it seems that this first bend in the mass flow
is because of the compressor duty is at the upper bound. In Equation (3.23) the expression
for the compressor duty is given. From that equation that the compressor duty is given
by the pressure increase over the compressor, mass flow and the compressor efficiency.
Form Figure 6.1 that the compressor duty is kept at its upper bound and from Figure 6.2
that the mass flow is decreasing. Therefore it means that the pressure increase over the
compressor need to increase or the compressor efficiency is decreasing. From Figure 6.5
and Figure 6.1 that the pressure in stream 6 is at the lower bound when the compressor
duty is at its upper bound. This was expected, as the degree freedom analysis that the
compressor duty was used for controlling the pressure in stream 6. Looking at Figure 6.1
again that the pressure in the separator is decreasing, this means the pressure increase over
the compressor is increasing. So the pressure increase over the compressor is the cause of
the decrease in mass flow. But examining Equation (3.24) that the compressor efficiency
will also decrease. Therefore is the decrease of mass flow not only cause by an increase in
the pressure over the compressor but also from a decrease in compressor efficiency.
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Figure 6.5: How the pressure in streams 6, see Figure 3.1, changes over the time horizon when the
time horizon is fixed.

The other bends occur when separator pressure reach its lower bound, see Figure 6.1 and
Figure 6.2. Going back to Section 3.1 the mass flow in the system is given by Equations
(3.3) and (3.5). From does two equation the mass flow is given by the pressure drop from
the reservoir and well bore-head. So if the pressure drop should decrease the mass flow
would decrease. In Equation (3.11) the degeneration of the reservoir pressure is given.
Since the reservoir pressure is decreasing and one can not decrease the pressure in the
separator it will cause a decrease in pressure drop. Therefore is the second bend caused
by the separator pressure reach its lower bound. This is also expected, as the degree of
freedom analysis stated that the separator pressure was for controlling the mass flow.

6.2 Results Case 2: Varying Time Horizon
Here are the results from case 2 presented. In this section it is examined how the inclusion
of the end time as an additional degree of freedom is effecting the optimal solution.
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Figure 6.6: The optimal control sequences for the varying time horizon optimization. Where P2

[bar] is the pressure in the separator, h [m] is the liquid level in the separator and W [MW] is the
compressor duty.

In Figure 6.6 the optimal control sequences for the varying time is presented. Comparing
the control sequence with the one from case 1, one observers same sequence of arcs in
optimal solution, but bends occur at different times. Furthermore, that the time horizon is
now 2190 days instead of 1825 days which it was in case 1.
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Figure 6.7: The mass flows in and out of the separator, see Figure 3.1, for the optimization with
varying time horizon.

The above figure shows the mass flows in and out of the separator for case 2. Comparing
the mass flows in case 2 with case 1 that stream 2 and stream 5 are much lower in case 2.
But looking at time line in Figure 6.7 that the time horizon is at the upper bound. So the
optimizer finds it advantageous to increase the time horizon and decrease the mass flow.
In case 1 it was discussed that the gas production was restricted by the lower bound on
the compressor efficiency. Also in case 1 it was stated that the oil damaging factor on the
compressor was much larger than gas damaging factor. So if one could reduce the oil mass
fraction in stream 5 one could produce a great deal more gas. The mass fraction of oil in
stream 5 was given by Equation (3.16). In case 1 it was explained that if the liquid level
was reduced it would reduce the mass fraction of oil in stream 5. Comparing the liquid
level in the separator for the two cases, that in case 1 that the liquid level is a bit higher
in the start and is decreased to its lower bound later than in case 2. So it would mean that
the mass fraction of oil in stream 5 would be lower in the beginning for case 2. The mass
fraction of oil in stream 5 for both case are shown in Figure 6.9, and comparing the two
mass fractions that in case 2 it is lower but not only in the beginning. So there is another
reason beside the liquid level that the mass fraction is lower in case 2.
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Figure 6.8: The compressor efficiency, η, for the optimizing with varying time.

In Figure 6.8 the compressor efficiency for case 2 is presented. From the graph of the
compressor efficiency that it have similarly trajectory as in case 1. This is because the
mass flow of stream 5 behaves similarly in both cases, see Figure 6.2 and 6.7. Since the
mass flow into the compressor decide the degeneration of the compressor efficiency. The
similarly behaviour of the mass flow in the two cases causes the compressor efficiency also
to behave similarly for the two cases. The difference is that in case 2 the degeneration is
slower as the mass flow is lower.
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Figure 6.9: The mass fraction of oil in stream 5 for both case 1 and case 2.

The mass fraction of oil was given by Equation (3.16), and it is expressed by the mass
fraction in stream 2, volume of the gas phase and the volumetric flow of stream 5. There-
fore is it the mass fraction or volumetric flow that causes the mass fraction of oil in stream
5 to be lower in case 2. The volumetric flow is given mass flow divided on the density of
the flow. From Figure 6.9 that stream 5 consist of less than one percent oil, so the density
is approximately the same in both cases. But since mass flow is much lower in case 2, it
means that the volumetric flow lower in case 1 and it is therefore the mass fraction of oil
is lower in case 2.
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Comparing the mass flow of stream 3 for the two cases, that it is almost the same for both
cases. This is because the mass fraction of gas is high in both stream 2 and 5. The gas flow
is given by Equation (3.5) and the gas flow is given by quadratic of the pressure difference
between the reservoir and well bore-head. While the oil flow which is given by Equation
(3.3) the flow is given by the squared of the quadratic pressure difference. This means that
gas flow is much more sensitive to the pressure difference between the reservoir and well
bore-head. Therefore, in case 2 when the separator pressure is higher it reduces the mass
flow of gas more significantly than the mass flow of oil. As stream 3 consists mostly of oil
and the mass flow of the stream will not be so much decreased, and therefore will almost
be the same in both cases.

6.3 Results Case 3: Net Present Value
For case 3 the net present value (NPV) is included in the objective function, see Equation
(5.4). The results are also discussed and compared with the results from the two previous
cases.
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Figure 6.10: The optimal control sequences for case 3, where the net present value is included in
the objective function. Where P2 [bar] is the pressure in the separator, h [m] is the liquid level in
the separator and W [MW] is the compressor duty.

From Figure 6.10 that control sequence have similar trajectory as the two previous cases,
except in the end where separator pressure starts to increase and the compressor duty
decrease significant.
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Figure 6.11: The mass flows in and out of the separator, see Figure 3.1, for the optimization of case
3.

In Figure 6.11 the mass in and out of the separator is presented. From the figure one can
see that mass flow is at the maximum at the beginning, then starts to decrease. In case 2 the
optimizer found it advantageous to decrease the mass flow and increase the time horizon.
But in case 3 the optimizer finds it advantageous to maximize production in the start and
have lower production in the future. This is expected as in case 3 the value of the gas is
higher in the start because of the NPV of the gas. So the trade-off between a increased
daily production and increased production time, a increased daily production is favourable
in case 3 as it allows for maximum production in the start. This can also been seen by the
time horizon in case 3 as it is no longer at the maximum but around 1875 days. Therefore
is the separator pressure increasing at the end as one have had an increased production
in the start, thereby is the compressor efficiency more reduced so more compensating for
this the mass flow needs to be decreased. The compressor efficiency for case 3 is given in
Figure 6.12 and here can one see that compressor efficiency is decreasing more in the start
then flattens out towards the end such that the lower bound is not violated.
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Figure 6.12: The compressor efficiency, η, for the optimizing of case 3.

6.4 Results Case 4: Optimization Under Uncertainty
From the previous cases the deterministic problem was solved with using different objec-
tive functions. From the results of those cases, it was found that the overall production of
gas was restricted by the lower bound of the compressor efficiency. This bound became
active in the end of the time horizon, see Figures 6.3, 6.8 and 6.12. In the beginning of
the time horizon the upper bound of the mass fraction of gas in stream is active, see Fig-
ure 6.4. The bound is active as it restrict the separation efficiency of oil in the separator.
Because of degeneration of the compressor efficiency the lower bound on the pressure in
stream 6 becomes active after some time, see Figure 6.5. Lastly, in case 3 the mass flow
of stream 2 reaches its upper bound, see Figure 6.11. This is because with the NPV of
gas the optimizer finds it advantageous to increase production in the start exchanged for
lower production in the future. It is these four constraints that are active when optimizing
the subsea separation system. With uncertainty in the reservoir oil flow coefficient these
constraint may be violated. Thereafter is it examined if these constraint need a back-off
added, which is calculated by use of chance-constraint.

From Section 4.2.4, that for calculating the back-off by use of chance-constraint the prob-
ability distribution functions (PDFs) of the variables in the constraint need to be known.
Therefore was Monte Carlo simulations executed such that the PDFs of the variables could
be approximated. For the PDFs, they were all approximated as Gaussian distributions. For
more about the fitting of the PDF see Appendix C.
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Figure 6.13: The trajectory of the variables that have active constraints given by the red solid line.
The variables with active constraint is the compressor efficiency, η, the mass fraction of gas in stream
3, Z3,g , the pressure in stream 6, P6 and the mass flow in stream 2, ṁ2. The orange dashed lines
indicates one standard deviation from the mean values, while the blue dashed line indicates two
standard deviation form the mean value. Then black line is the value of the constraint that becomes
active.

In Figure 6.13 the trajectory of the four variable with active constraint are presented with
one and two standard deviations. In the upper left corner of Figure 6.13 the compressor
efficiency is given. From the plot that the uncertainty increases with the time. The uncer-
tainty in the system is the reservoir oil flow coefficient, which effects the amount of oil
out of the reservoir. Therefore will the mass fraction of oil into the separation have an
uncertainty. As the amount oil out with the gas phase is given by the mass fraction into the
separator, there will be an uncertainty in the amount of oil the compressor processes. The
compressor efficiency degeneration is given by the total amount of gas and oil processed,
therefore will the uncertainty in the amount of oil processed be accumulated over time.
This is the cause for the increase in uncertainty for the compressor efficiency over time.
For the mass fraction of gas in stream 3 it is given by the upper right plot in Figure 6.13.
From the plot that the uncertainty decreases some after the constraint becomes inactive.
As the varaible start to decrease the higher values of variable will decrease more than the
lower values. This can be seen in Figure 6.13 by comparing the plot of the two standard
deviations, where the plus two standard deviation have a steeper decrease than the minus
two standard deviation plot. In the lower left corner of Figure 6.13 the trajectory of the
pressure in stream 6 is presented. From the plot one can see that the uncertainty increase
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at the end. With the increase of uncertainty in the compressor efficiency, the uncertainty
of how effective the compression is increased. Therefore will pressure increase over the
compressor have increased uncertainty at the end, which is why the uncertainty increase at
the end for the pressure in stream 6. The last plot in Figure 6.13 the mass flow in stream 2
is presented. From the plot that the uncertainty is relative small. Stream 2 consist mostly
of gas, while the uncertainty is in the amount of oil in the stream. Therefore will the total
mass flow not be as effected by the uncertainty. Further in this work the uncertainty in the
mass flow will not considered, as the uncertainty have a negligible effect on the total mass
flow of stream 2.

In Figure 6.13 the probability of constraint violation is indicated where the trajectory
crosses the black line. For the compressor efficiency that the probability of constraint
violation due not occur before the end of the time horizon. This is because compressor
efficiency decreases over time and therefore not reaches its lower bound before the end of
the time horizon. So adding a chance-constraint at the last lower bound of the compressor
efficiency would increase the overall probability of constraint to hold. Therefore will only
one chance-constraint be added for the compressor efficiency. For the mass fraction of
gas in stream 3 the probability of constraint violation will be 50 % when the constraint
is active. Therefore is back-off needed such to reduce the probability of constraint viola-
tion. When the constraint is inactive the back-off needed is smaller as the probability of
constraint violation is smaller. For the pressure in stream 6 that the mean value is higher
than the constraint value. As the mass flow into the separator is not much effected by
the uncertainty, see Figure 6.13, the mass flow into the compressor will also not be much
effected by the uncertainty. That should make the uncertainty of the pressure in stream 6
relative small, but from Figure 6.13 one can see that this it is larger than the uncertainty
of mass flow. This is because the pressure in stream 6 is also effected by the uncertainty
in the compressor efficiency. Since the pressure in stream 6 is not much directly effected
by the uncertainty, a chance-constraint is not added for the pressure in stream 6. Instead it
is presumed that by adding a chance-constraint on the compressor efficiency it will suffi-
ciently decrease the probability of constraint violations for the pressure in stream 6.

With the chance-constraints identified the new OCP can be solved. In Figure 6.14 the
control sequence from the OCP with chance-constraint is presented.
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Figure 6.14: The optimal control sequences for case 4, where there are uncertainty in the system.
Where P2 [bar] is the pressure in the separator, h [m] is the liquid level in the separator and W
[MW] is the compressor duty.

Comparing the control sequence in Figure 6.14 with the result from case 3, see Figure 6.3,
that both the separator pressure and compressor duty have similarly trends. But for the
liquid height, the lower bound is reached much later in case 4 than in case 3. The liquid
height in the separator was for controlling the mass fraction of gas in stream 3. Since the
mass fraction of gas in stream 3 was one of the constraints that a back-off was added such
that the probability of the constraint to hold would be higher. Therefore will the upper
bound of mass fraction of gas in steam 3 decrease. Thereby must the residence time of the
gas in liquid phase be increase, such that one get higher separation of gas. The residence
time can be increased by increasing the volume of the liquid phase and therefore is the
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liquid level higher in case 4, see Figure 6.14. With a higher liquid level it will take longer
to reach its lower bound. Therefore is the lower bound reached later in case 4 than in case
3.
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Figure 6.15: The mass flows in and out of the separator, see Figure 3.1, for the optimization of case
34.

In the above figure the mass flows in and out of the separator is presented. Comparing
with case 3, see Figure 6.11, the mass flow decreases a little more in case 4. This is
because a back-off is added to the lower bound on compressor efficiency, see Figure 6.16,
and thereby can the compressor efficiency not be decreased as much as in the previous
cases. Therefore must the overall mass flow be decreased. Furthermore in Figure 6.15 that
there is small bump after 1500 days. This bump is caused by the liquid level reaches its
lower bound, see Figure 6.14. The liquid level can no longer be decreased for keeping the
separation efficiency of gas in the separator constant when the mass flow is decreasing,
see Figure 6.15. Therefore will the separation efficiency of the gas increased, and more
gas will go out with the gas phase. This is the cause of the small bump in the mass flow of
stream 5.
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Figure 6.16: The compressor efficiency, η, for the optimizing of case 4.

For the compressor efficiency the trajectory is the same for case 3 and 4, see Figures 6.12
and 6.16. The only difference is that the compressor efficiency do not reach the lower
bound in case 4. This is because of the back-off added to the lower bound of the compres-
sor efficiency.

Comparing Figures 6.10 and 6.14, one can see that the optimal control sequence have
changed, when one have considered the uncertainty in the system. Therefore will the
probability of the active constraint variable also change. For finding the new PDF of the
variables Monte Carlo simulation are performed again. The PDF of the variables with
active constraint is presented in Figure 6.17.
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Figure 6.17: The trajectory of the variables that have active constraints given by the red solid line.
The variables with active constraint is the compressor efficiency, η, the mass fraction of gas in stream
3, Z3,g , the pressure in stream 6, P6 and the mass flow in stream 2, ṁ2. The orange dashed lines
indicates one standard deviation from the mean values, while the blue dashed line indicates two
standard deviation form the mean value. Then black line is the value of the constraint that becomes
active.

Comparing the compressor efficiency curves from Figure 6.13 and 6.17 that the trajectory
of the compressor efficiency and pressure in stream 6 have similarly trajectories. For the
mass fraction of gas in stream 3 the trajectory increases increases in Figure 6.17 where
in Figure 6.17 it decreases. From comparison of the control sequence for case 3 and 4,
the liquid level took longer to reach the lower bound in case 4. This means that the upper
bound on the mass fraction of gas in stream 3 are longer active. From the the previous
discussion in this section, the back-off was reduced when the constraint became inactive
as the probability of constraint violation was reduced. Therefore is the back-off to small
for the area where the constraint are active in case 4 and not in case 3. Since the back-off
is smaller the probability of constraint violation is higher than the probability level, this
can be seen in Figure 6.17 where distance between the constraint and second standard
deviation is increased. For reducing the probability of constraint violation new back-off
needs to be calculated and the OCP need to be solved again, the resulting trajectories and
PDF is presented in Figure 6.18.
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Figure 6.18: The trajectory of the variables that have active constraints given by the red solid line.
The variables with active constraint is the compressor efficiency, η, the mass fraction of gas in stream
3, Z3,g , the pressure in stream 6, P6 and the mass flow in stream 2, ṁ2. The orange dashed lines
indicates one standard deviation from the mean values, while the blue dashed line indicates two
standard deviation form the mean value. Then black line is the value of the constraint that becomes
active.

From Figure 6.18 that the trajectory of the mass fraction of gas in stream 3, is no longer
increasing but have a small decrease instead. This is caused by the probability of con-
straint violation were high after the first iteration. Thereby was the back-off calculated by
the chance-constraint larger for the part of the trajectory were increasing. Therefore is the
trajectory decreasing after the second iteration as the back-off calculated is too large.

Comparing Figures 6.17 and 6.18 that the mean value is not the same for the two cases.
This is because the back-off calculated for the first OCP with uncertainty is larger than for
the second OCP. From comparing Figures 6.10 and 6.14 the optimal solution was changed
when back-off was added to the active constraints. Therefore is the PDF of the active
variable also changed, therefore is the back-off calculated by the chance-constraint not ac-
curate. This is easily observable from comparing the mass fraction of gas plots in Figures
6.17 and 6.18. In Figure 6.17 the probability of constraint violations is below the second
derivation line in the start. While in Figure 6.18 the probability lies between the first and
second deviation line. Thereby doing iteration the probability of constraint violation will
converge towards the probability level.
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For the probability of constraint violation of the pressure in stream 6 that it is the same for
all of the cases, see Figures 6.13, 6.17 and 6.18. The reason for no back-off was added
to the lower bound of pressure in stream 6 was since the uncertainty was effected the
uncertainty of the compressor efficiency. Thereby adding a chance-constraint to the lower
bound of the compressor efficiency would decrease the probability of the lower bound of
the pressure in stream 6 to be reduced also. This was not the case therefore should chance-
constraints also be added for the lower bound of the pressure in stream 6 for reducing the
number of constraint violations.
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Chapter 7
Conclusion

The purpose of the thesis is to develop a model of a subsea system and to optimize if for
operation and remaining life time.First a model of the subsea separation system was devel-
oped. Due to no statistical or physical models of the remaining life time of the compressor
is available the compressor efficiency was used for indicating the remaining life time of
the compressor. Thereafter was a degree of freedom analysis performed. The degree of
freedom analysis yielded 3 variables that could be used for control. The variables chosen
was the separator pressure, the liquid level in the separator, and the compressor duty. The
OCP was formulated, where the profit was given by the amount of gas produced. Four
cases was examined, where the three first cases was without uncertainty in the system but
with different objective functions. The fourth case, uncertainty in the reservoir flow co-
efficient was included and how the use of chance-constraint to restrict the probability of
constraint violations was examined.

In case 1 the objective function was to maximize the gas production over a fixed time hori-
zon. From the optimization there was three constraint that was active. The lower bound on
the compressor efficiency, the upper bound on the mass fraction of gas in stream 3 and the
lower bound on the pressure in stream 6. The lower bound on the compressor efficiency
is the restriction on the amount of gas produced. The upper bound on the mass fraction of
gas in stream 3 restrict the separation efficiency. While the pressure in stream 6 reaches its
lower bound because of the degeneration of the compressor efficiency.

For case 2 the end time was introduced as a free variable. With the end time as a free
variable the optimizer found it advantageous to decrease the daily production volume but
increase the time horizon. This caused the upper bound on the end time to be reached.
The decrease of daily production gave an increased separation of oil which reduced the oil
damaging term of the compressor degeneration.

For case 3 the NPV of the gas was included in the objective function. The optimization
found it advantageous to maximize production of gas in the beginning. This also caused
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the time horizon to be reduced to 1875 days.

The last case uncertainty was included in the OCP. The uncertainty was handled with us-
ing chance-constraint. For calculating the chance-constraints the PDFs are needed. Monte
Carlo simulations was performed for finding the PDFs. From examining the PDFs, the
probability of constraint violation was high for the lower bound on the compressor effi-
ciency at the end of the time horizon and for the upper bound on the mass fraction of gas
in stream 3. For the pressure in stream 6 and the mass flow the uncertainty in the vari-
ables was relative small and therefore was no chance-constraint added for those bound.
The OCP was then solved with the back-off calculated from the chance-constraint. The
back-off on the upper bound on the mass fraction of gas in stream 3 cause the constraint
to be active longer. This caused the probability of constraint violation to be above the
probability level. Therefore was new Monte Carlo simulation performed and new back-off
calculated. Repeating this process the probability of constraint violations goes towards the
the probability level.

The overall conclusion of the thesis is that if there is uncertainty in the system the prob-
ability of constraint violation can be controlled by the use of chance-constraint. Thereby
can the back-off be reduced such that effectiveness of operation can be increased.

7.1 Future Work
The model of the subsea separation system can be improved upon in some ways:

• Develop a model of the remaining life time of the compressor and implement the
model in the OCP.

• Use reservoir statistics from the Ormen Lange field to adjust the reservoir flow co-
efficients and improve the model of the reservoir pressure degeneration.

• Add extra separation steps or multiple well bore-head in the model.

For the dynamic optimization under uncertainty other methods for handling uncertainty
in the optimization should be examined and compared with the chance-constraint method.
Monte Carlo simulations are relative slow way of approximating the PDF, therefore should
other methods of finding the PDFs be examined.
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Appendix A
Parameters, Initial Values and
Bounds

In this appendix all of the parameters, initial values and variables bounds is given. In
Table A.1 the parameters and initial values used in the calculations of the results, which is
presented in Sections 6.1-6.2 is given. In Table A.2 the upper and lower bounds used in
the optimization is presented.

Table A.1: The parameters used in the calculation.

Variable Value Unit Description

SGg 0.7 [−] Specific density of gas

SG0 0.9 [−] Specific density of oil

SGw 1.0 [−] Specific density of water

ρw 1e.3
[
kt m−3

]
Density of water

g 7.323e10
[
m d−2

]
Gravitational constant

M 1.604e-5
[
kt kmole−1

]
Molecular weight of the gas

gr 0.08314
[
bar m3 K kmole

]
Universal gas constant

Tr 374 [K] Temperature of the reservoir

kg 1e-5
[
kt bar−3 d

]
Reservoir flow coefficient for gas

ko 1.6e-2
[
kt bar−1 d

]
Reservoir flow coefficient for oil

kw 2.5e-3
[
kt bar−1 d

]
Reservoir flow coefficient for water
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n 0.5 [−] Dimensionless flow exponential

C 1.5e-4
[
bar d−1

]
Reservoir pressure degeneration factor

Cv1 5.5
[
kt bar−0.5 d−1

]
Sizing coefficient for valve 1

Cv1 5.5
[
kt bar−0.5 d−1

]
Sizing coefficient for valve 2

y1 1.0 [−] Valve head position for valve 1

y2 1.0 [−] Valve head position for valve 2

Ts 274 [K] Temperature in the separator

L 7.0 [m] Length of the separator

R 1.5 [m] Radius of the separator

Sg 2000
[
d−1

]
Separation efficiency for gas

So 3500
[
d−1

]
Separation efficiency for oil

γ 1.31 [−] Heat capacity ratio

A -3.0e-6 [kg−1] The gas damaging factor on the compressor

B -3.0e-5 [kg−1] The oil damaging factor on the compressor

Pr0 290 [bar] Initial value of the reservoir pressure

η0 1.0 [−] Initial value of η

TF 1875 [d] Time horizon in days

N 60 [−] Number of time periods

Table A.2: The upper and lower bounds used in the optimization.

Variable Lower bound Upper Bound Unit

ṁg 0.0 45.34
[
kt d−1

]
ṁo 0.0 45.34

[
kt d−1

]
ṁw 0.0 45.34

[
kt d−1

]
ṁ1 0.0 45.34

[
kt d−1

]
ṁ2 0.0 45.34

[
kt d−1

]
ṁ3 0.0 45.34

[
kt d−1

]
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ṁ4 0.0 45.34
[
kt d−1

]
ṁ5 0.0 45.34

[
kt d−1

]
ṁ6 0.0 45.34

[
kt d−1

]
Z1,g 0.0 1.0 [−]

Z1,o 0.0 1.0 [−]

Z1,w 0.0 1.0 [−]

Z2,g 0.0 1.0 [−]

Z2,o 0.0 1.0 [−]

Z2,w 0.0 1.0 [−]

Z3,g 0.0 0.1 [−]

Z3,o 0.0 1.0 [−]

Z3,w 0.0 1.0 [−]

Z4,g 0.0 1.0 [−]

Z4,o 0.0 1.0 [−]

Z4,w 0.0 1.0 [−]

Z5,g 0.0 1.0 [−]

Z5,o 0.0 0.01 [−]

Z6,g 0.0 1.0 [−]

Z6,o 0.0 1.0 [−]

Pwf 0.0 290 [bar]

P1 0.0 290 [bar]

P2 58.0 290 [bar]

P3 0.0 290 [bar]

P4 0.0 290 [bar]

P5 0.0 290 [bar]

P6 140 290 [bar]

Vl 0.0 49.5
[
m3
]

ρ3 0.0 1.0e-3
[
kt m−3

]
ρ5 0.0 1.0e-3

[
kt m−3

]
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η 0.8 1.0 [−]

h 0.5 2.5 [m]

W 0.0 50
[
M W

]
Tf 1460 2190 [d]
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Appendix B
Parameter Adjustment

The parameters in Table B.1 was not found in the literature but are fitted such that system
operates similarly to the Ormen Lange field. How this parameters was fitted is described
in this appendix.

Table B.1: The parameters that are not found in literature but fitted from operation data from the
Ormen Lange field.

Variable Unit Description

kg
[
kt bar−3 d

]
Reservoir flow coefficient for gas

ko
[
kt bar−1 d

]
Reservoir flow coefficient for oil

kw
[
kt bar−1 d

]
Reservoir flow coefficient for water

Cv1
[
kt bar−0.5 d−1

]
Sizing coefficient for valve 1

Cv1
[
kt bar−0.5 d−1

]
Sizing coefficient for valve 2

Sg
[
d−1

]
Separation efficiency for gas

So
[
d−1

]
Separation efficiency for oil

A [d−1] The gas damaging factor on the compressor

B [d−1] The oil damaging factor on the compressor

C
[
bar d−1

]
Reservoir pressure degeneration factor

For calculating the mass flow of gas, oil and water from the reservoir the reservoir flow
coefficients needed to be fitted. From literature the composition of the Ormen Lange reser-
voir is given in [8]. Assuming that methane and components with lower molar weight are
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gas while those components with higher molar weight are oil, the mass fraction of gas, oil
and water was found. With the mass fraction the ratio between the gas, oil and water flows
is given. Furthermore the maximum production of gas is given in [35]. Thereby using
the mass fractions and max production the reservoir flow coefficients can be found from
Equations (3.3) and (3.5) if the pressure drop from the reservoir to the well bore-head is
known. Assuming that the reservoir was 290 bar the pressure at the well bore-head was
160 and bars the three flow coefficient was fitted such that the total mass flow was equal
to the maximum gas production.

For the sizing coefficient of the valves they gives the pressure drop over the valves. For the
pressure drop over the first valve it would represent the pressure drop that would have been
if one include, choke valve, christmas tree, pipe lines etcetera into the model. From [35]
it is given that the pressure into the separator is 80 bar, therefore assuming with a pressure
of 80 bars in the separator that one have maximum production. The using Equation (3.12)
and assuming that the valve is fully open the valve sizing coefficient for the first valve was
calculated. For the second valve the valve coefficient was found such that it equalled the
increase of pressure because of the liquid in the separator, when the height of the liquid is
equal to 1 meter.

The amount of gas carryunder and oil carryover is decided by the separation coefficients.
For finding those parameters the model equations of the separator was solved. Where one
assumed that the mass flow of stream 3 was equal to the mass flow of oil and water into
the separator under maximum production properties.

For A and B those was found from the assumption that under maximum production of
gas the compressor efficiency would decreas with 25 percent if only gas was compressed.
Then assuming that the damaging factor of oil was ten times larger then for gas. For the
C is was fitted such that over a 5 years period the pressure would decrease with around 20
percent.
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Appendix C
Probability Distribution Fitting

In this chapter the probability fitting of the outcome for compressor efficiency, mass frac-
tion of gas in stream 3, pressure in stream 6 and the mass flow in stream 2 from the Monte
Carlo simulation is presented in Figures C.1-C.4. For the Monte Carlo simulation 1000
simulations was preformed. In the figures the green bars is the histogram of the outcome
from the simulations, while the red line is the approximated PDF. From the figures that
the approximation of a normal distribution is a good fit for all of the variables. For the
pressure in stream 6 and mass flow in stream 2 the variables are made dimensionless in the
calculation and is therefore between one and zero. The variables was made dimensionless
by dividing on the upper bounds.
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0.98

µ : 0.98000, σ : 0.00017

0.94

µ : 0.93994, σ : 0.00050

0.9

µ : 0.90085, σ : 0.00082

0.87

µ : 0.86500, σ : 0.00113

0.83

µ : 0.83398, σ : 0.00143

0.8

µ : 0.80014, σ : 0.00181

Figure C.1: Histogram of the outcome of the compressor efficiency, η, from the Monte Carlo simu-
lation, with the red line indicating the normal distribution fitting of the outcomes. The histogram is
made for time periods 155 days, 465 days, 775 days, 1085 days, 1395 days and 1875 days, from left
to right and top to bottom.

68



0.1

µ : 0.10038, σ : 0.02566

0.1

µ : 0.10035, σ : 0.02574

0.1

µ : 0.10002, σ : 0.02561

8.99 · 10−2

µ : 0.08988, σ : 0.02333

7.67 · 10−2

µ : 0.07674, σ : 0.02013

5.25 · 10−2

µ : 0.05247, σ : 0.01443

Figure C.2: Histogram of the outcome of the mass fraction of gas in stream 3, Z3,g , from the Monte
Carlo simulation, with the red line indicating the normal distribution fitting of the outcomes. The
histogram is made for time periods 155 days, 465 days, 775 days, 1085 days, 1395 days and 1875
days, from left to right and top to bottom.
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0.58

µ : 0.58085, σ : 0.00415

0.5

µ : 0.50450, σ : 0.003602

0.48

µ : 0.48343, σ : 0.00367

0.48

µ : 0.48404, σ : 0.00383

0.6

µ : 0.59773, σ : 0.00549

0.74

µ : 0.73571, σ : 0.00776

Figure C.3: Histogram of the outcome of the pressure in stream 6, P6, from the Monte Carlo
simulation, with the red line indicating the normal distribution fitting of the outcomes. The histogram
is made for time periods 155 days, 465 days, 775 days, 1085 days, 1395 days and 1875 days, from
left to right and top to bottom.
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0.99

µ : 0.99131, σ : 0.00135

0.99

µ : 0.99128, σ : 0.00145

0.94

µ : 0.94002, σ : 0.00162

0.87

µ : 0.86925, σ : 0.00183

0.72

µ : 0.72127, σ : 0.00219

0.49

µ : 0.49083, σ : 0.00265

Figure C.4: Histogram of the outcome of the mass flow in stream, ṁ2, from the Monte Carlo
simulation, with the red line indicating the normal distribution fitting of the outcomes. The histogram
is made for time periods 155 days, 465 days, 775 days, 1085 days, 1395 days and 1875 days, from
left to right and top to bottom.
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Appendix D
Python Code

Here is all of the python codes used for in the calculations of the results.

D.1 Parameter

from math import p i

def P a r a m e t e r s ( ) :
c l a s s p a r a ( ) :

” P a r a m e t e r s and i n i t i a l c o n d i t i o n s ”
pass

p = p a r a ( )
# I n i t i a l c o n d i t i o n s
p . P r 0 = 1 . 0 # P r e s s u r e i n t h e r e s e r v i o r [−]
p . e t a 0 = 1 . 0 # S t a r t i n g v a l u e f o r compressor e f f i c i e n c y
# Va lve p a r a m e t e r s
p . Cv1 = 5 . 5 # Va lve 1 s i z i n g c o e f i c i e n t [ k t / bar ˆ ( 1 / 2 ) d ]
p . Cv2 = 3 . 5 # Va lve 2 s i z i n g c o e f i c i e n t [ k t / bar ˆ ( 1 / 2 ) d ]
p . u1 = 1 . 0
p . u2 = 1 . 0
# S e p a r a t o r
p . L = 7 . 0 # Leng th o f s e p a r a t o r [m]
p . R = 1 . 5 # Radius o f S e p a r a t o r [m]
p .V = p i ∗p . L∗p . R∗∗2 # Volume o f s e p a r a t o r [mˆ 3 ]
p . Sep o = 3500 .0 # S e p a r a t o r per fo rmance c o n s t a n t f o r o i l

s e p a r a t i o n [ 1 / d ]
p . Sep g = 2000 .0 # S e p a r a t o r per fo rmance c o n s t a n t f o r gas

s e p a r a t i o n [ 1 / d ]
# Compressor
p . gamma = 1 . 3 1 # t h e r a t i o o f h e a t c a p a c i t i e s ( methane )
p .A = −3.0e−6 # [ 1 / t ]
p . B = −3.0e−5 # [ 1 / t ]
p . P6 = 0 .4828 # P r e s s u r e a f t e r t h e c o m p r e s s i o n [ bar ]
# R e s e r v o i r
p . C = −1.5e−4 # P r e s s u r e change w i t h r e s p e c t t o t i m e c o n s t a n t
p . ko = 0 .0160 # [ k t / bar d ]
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p . kw = 0 .0025 # [ k t / bar d ]
p . kg = 1 . 0 e−5 # [ k t / bar ˆ3 d ]
p . n = 0 . 5 # d i m e s i o n l e s s c o n s t a n t f o r F e t k o v i c h e q u a t i o n
p . D e l t a h = −2000 # H e i gh t from r e s e r v o i r t o t h e seabed [m]
# Data
p . SG g = 0 . 7 # S p e c i f i c g r a v i t y gas s [−]
p . SG o = 0 . 9 # S p e c i f i c g r a v i t y o i l [−]
p . SG w = 1 . 0 # S p e c i f i c g r a v i t y wa ter [−]
p . rho w = 1 . 0 e−3 # D e n s i t y wa ter [ k t /mˆ 3 ]
p . g = 7 .323 e10 # G r a v i t a t i o n a l c o n s t a n t [m/ d ˆ 2 ]
p . Rg = 0 .08314 # Gas c o n s t a n t [ bar mˆ3 / K kmole ]
p . Tr = 374 .0 # Tempera ture i n t h e r e s e r v o i r [K]
p . Ts = 274 .0 # Tempera ture i n t h e s e p a r a t o r [K]
p .M = 1 .604 e−5 # Molecu la r w e i g h t methane [ k t / kmol ]
p .N = 60 # Number o f i n t e r g r a t i o n p o i n t s
p . TF = 1825 .0 # End t i m e [ d ]
p . Pa Bar = 1 .33959 e−9 # Conver t from k t /m d ˆ2 t o bar
p . d = 5 # Degree o f i n t e r p o l a t i n g p o l y n o m i a l
p . m max = 45 .34 # Maximum p r o d u c t i o n [ k t / d ]
p . P max = 290 .0 # Maximum p r e s s u r e [ bar ]
p . V max = p .V # Maximum volume o f l i q u i d i n t h e s e p a r a t o r [mˆ 3 ]
p . rho max = 1 . 0 e−3 # Maximum d e n s i t y [ k t /mˆ 3 ]
p . W max = 5 0 . 0 # Maximum compressor d u t y [Mw]
p . P2 = 0 . 3 5
p . h = 1 . 0
p .W = 0 . 4 5
p . On = 1 # 1 end t i m e i s a v a r i a b l e , 0 end t i m e i s f i x e d
p . PV = 1 # P r e s e n t v a l u e on / o f f .
p . ns = 1000 # Number o f s i m u l a t i o n s
p . t x = 2 + p . d∗2 # S t a r t i n g p o s i t i o n o f t h e a l g e b r a i c v a r i a b l e s
p . t z = p . t x + 34∗p . d # S t a r t i n g p o s i t i o n o f t h e C o n t r o l v a r i a b l e s
re turn p

D.2 Model Equations

from math import p i
from c a s a d i import ∗
import numpy as np

def Model ( p ) :
# End t i m e v a r i a b l e s
t e n d = SX . sym ( ” t e n d ” )
# A l g e b r a i c v a r i a b l e s
# Mass v a r i a b l e s
m g = SX . sym ( ”m g” )
m o = SX . sym ( ”m o” )
m w = SX . sym ( ”m w” )
m1 = SX . sym ( ”m1” )
m2 = SX . sym ( ”m2” )
m3 = SX . sym ( ”m3” )
m4 = SX . sym ( ”m4” )
m5 = SX . sym ( ”m5” )
m6 = SX . sym ( ”m6” )
# Mass f r a c t i o n v a r i a b l e s
Z1 g = SX . sym ( ” Z1 g ” )
Z1 o = SX . sym ( ” Z1 o ” )
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Z1 w = SX . sym ( ”Z1 w” )
Z2 g = SX . sym ( ” Z2 g ” )
Z2 o = SX . sym ( ” Z2 o ” )
Z2 w = SX . sym ( ”Z2 w” )
Z3 g = SX . sym ( ” Z3 g ” )
Z3 o = SX . sym ( ” Z3 o ” )
Z3 w = SX . sym ( ”Z3 w” )
Z4 g = SX . sym ( ” Z4 g ” )
Z4 o = SX . sym ( ” Z4 o ” )
Z4 w = SX . sym ( ”Z4 w” )
Z5 g = SX . sym ( ” Z5 g ” )
Z5 o = SX . sym ( ” Z5 o ” )
Z6 g = SX . sym ( ” Z6 g ” )
Z6 o = SX . sym ( ” Z6 o ” )
# P r e s s u r e
Pwf = SX . sym ( ”Pwf” )
P1 = SX . sym ( ” P1 ” )
P3 = SX . sym ( ” P3 ” )
P4 = SX . sym ( ” P4 ” )
P5 = SX . sym ( ” P5 ” )
# Other v a r i a b l e s
V l = SX . sym ( ” V l ” ) # L i q u i d volume i n t h e s e p a r a t o r [mˆ 3 ]
r h o 3 = SX . sym ( ” r h o 3 ” ) # D e n s i t y o f s t r ea m 3 [ k t /mˆ 3 ]
r h o 5 = SX . sym ( ” r h o 5 ” ) # D e n s i t y o f s t r ea m 5 [ k t /mˆ 3 ]
P6 = SX . sym ( ” P6 ” ) # P r e s s u r e s t r ea m 6 [ bar ]

# C o l l e c t a l l t h e a l g e b r a i c v a r i a b l e s i n t o a v e c t o r
z = v e r t c a t ( m g , m o , m w , m1 , m2 , m3 , m4 , m5 , m6 ,

Z1 g , Z1 o , Z1 w , Z2 g , Z2 o , Z2 w , Z3 g , Z3 o ,
Z3 w ,

Z4 g , Z4 o , Z4 w , Z5 g , Z5 o , Z6 g , Z6 o ,
Pwf , P1 , P3 , P4 , P5 ,
V l , rho 3 , rho 5 , P6 )

# D i f f e r e n t i a l v a r i a b l e s
e t a = SX . sym ( ” e t a ” )
Pr = SX . sym ( ” Pr ” )
x = v e r t c a t ( Pr , e t a )
# C o n t r o l V a r i a b l e s
P2 = SX . sym ( ” P2 ” )
h = SX . sym ( ” h ” )
Ws = SX . sym ( ”Ws” ) # Work done by compressor [MW]
u = v e r t c a t ( P2 , h , Ws)

# a l g e b r a i c e q u a t i o n s
# R e s e v o i r
eq27 = P1 − Pwf − ( p . Pa Bar ) ∗ (m1∗p . g∗p . D e l t a h ∗Pwf ) / \

( ( m g∗p . Rg∗p . Tr / p .M) + p . P max∗Pwf∗ ( m o / ( p .
rho w∗p . SG o ) \

+ m w / p . rho w ) ) # P r e s s u r e drop from r e s e r v o i r t o
seabed [ bar ]

eq28 = m o − ( p . ko / p . m max ) ∗ ( ( p . P max∗Pr ) ∗∗2 − ( p . P max∗Pwf ) ∗∗2)∗∗
p . n # Mass f l o w o f o i l i n s t r ea m 1 [ k t / t a u ]

eq29 = m w − ( p . kw / p . m max ) ∗ ( ( p . P max∗Pr ) ∗∗2 − ( p . P max∗Pwf ) ∗∗2)∗∗
p . n # Mass f l o w o f wa ter i n s t r ea m 1 [ k t / t a u ]

eq30 = m g − m o∗ ( p . kg / p . ko ) ∗ ( p . P max∗Pr − p . P max∗Pwf ) ∗∗2 # Mass
f l o w o f gas i n s t r e am 1 [ k t / t a u ]

eq31 = m1 − m g − m o − m w # T o t a l mass f l o w i n s t r ea m 1 [ k t / t a u ]
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eq32 = Z1 g − m g / m1 # Mass f r a c t i o n o f gas i n s t r ea m 1
eq33 = Z1 o − m o / m1 # Mass f r a c t i o n o f o i l i n s t r ea m 1
eq34 = Z1 w − m w / m1 # Mass f r a c t i o n o f wa ter i n s t r ea m 1

# Valve1
eq1 = m1 − m2 # c o n s t a n t mass f l o w over v a l v e 1
eq2 = m2 − p . u1∗p . Cv1 / p . m max∗ s q r t ( ( p . P max ∗ ( P1−P2 ) ) / ( Z1 g∗p . SG g

\
+ Z1 o∗p . SG o + Z1 w∗p . SG w ) ) # Mass f l o w o u t o f

t h e v a l v e [−]
eq3 = Z1 g − Z2 g # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq4 = Z1 o − Z2 o # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq5 = Z1 w − Z2 w # Mass f r a c t i o n c o n s t a n t ove r v a l v e

# S e p a r a t o r
eq6 = m2 − m3 − m5 # t o t a l mass b a l a n c e over t h e s e p a r a t o r
eq7 = Z2 g∗m2 − Z3 g∗m3 − Z5 g∗m5 # mass b a l a n c e gas s
eq8 = Z2 o∗m2 − Z3 o∗m3 − Z5 o∗m5 # mass b a l a n c e o i l
eq9 = Z5 o − Z2 o∗exp(−p . Sep o ∗ ( ( p . V−V l∗p . V max ) / ( ( p . m max∗m5) / ( p

. rho max∗ r h o 5 ) ) ) ) # Mass f r a c t i o n o f o i l as f u n c t i o n o f
s e p a r a t o r e f f i c i e c n y and r e s i d e n t t i m e .

eq10 = Z3 g − Z2 g∗exp(−p . Sep g ∗ ( ( V l∗p . V max ) / ( ( p . m max∗m3) / ( p .
rho max∗ r h o 3 ) ) ) ) # Mass f r a c t i o n o f gas as f u n c t i o n o f
s e p a r a t o r e f f i c i e c n y and r e s i d e n t t i m e .

eq11 = Z5 g + Z5 o − 1 # mass f r a c t i o n s e q u a l t o 1 f o r s t r ea m 5
eq12 = Z3 g + Z3 o + Z3 w − 1 # mass f r a c t i o n s e q u a l t o 1 f o r

s t r e am 3
eq13 = P2 − P5 # No p r e s s u r e drop over t h e s e p a r a t o r
eq14 = P3 − P2 − ( p . rho max / p . P max ) ∗ r h o 3 ∗p . g∗h ∗ ( p . Pa Bar ) #

P r e s s u r e i n o u t l e t s t r e am 3 [−]
eq15 = r h o 3 − ( p . rho w / p . rho max ) ∗ ( Z3 g∗p . SG g + Z3 o∗p . SG o +

Z3 w∗p . SG w ) # D e n s i t y s t r ea m 3 [−]
eq16 = r h o 5 − ( p . rho w / p . rho max ) ∗ ( Z5 g∗p . SG g + Z5 o∗p . SG o ) #

D e n s i t y s t r ea m 3 [−]
eq17 = V l − p . L∗ ( ( h − p . R) ∗ s q r t (2∗ p . R∗h−h∗∗2) + p . R∗∗2∗ acos (1.0−h

/ p . R) ) ∗ ( 1 . 0 / p . V max ) # Volume o f l i q u i d i n t h e s e p a r a t o r [−]

# Valve2
eq18 = m3 − m4 # Mass b a l a n c e over v a l v e [ k t / t a u ]
eq19 = m4 − ( p . u2∗p . Cv2 / p . m max ) ∗ s q r t ( ( p . P max ∗ ( P3−P4 ) ) / ( Z3 g∗p .

SG g \
+ Z3 o∗p . SG o + Z3 w∗p . SG w ) ) # Mass f l o w o u t o f

t h e v a l v e
eq20 = Z3 g − Z4 g # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq21 = Z3 o − Z4 o # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq22 = Z3 w − Z4 w # Mass f r a c t i o n c o n s t a n t ove r v a l v e

# Compressor
eq23 = m5 − m6 # mass f l o w c o n s t a n t ove r compressor
eq24 = Z5 g − Z6 g # Mass f r a c t i o n c o n s t a n t ove r compressor
eq25 = Z5 o − Z6 o # Mass f r a c t i o n c o n s t a n t ove r compressor
eq26 = Ws − ( p . gamma / ( p . gamma − 1) ) ∗ ( ( p . Rg∗p . Ts / p .M) ∗ ( ( P6 / P5 ) ∗∗ ( ( p

. gamma−1) / p . gamma ) \
−1) ) ∗ ( (m5∗p . m max ) / ( p . W max∗p . e t a 0 ) ) ∗1 .1574 e−6 #

Compressor d u t y [MW]
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# C o l l e c t a l l o f t h e a l g e b r a i c e q u a t i o n s i n t o a v e c t o r
f = v e r t c a t ( eq30 , eq28 , eq29 , eq31 , eq1 , eq6 , eq18 , eq7 , eq23 ,

eq32 , eq33 , eq34 , eq3 , eq4 , eq5 , eq10 ,
eq8 , eq12 ,

eq20 , eq21 , eq22 , eq11 , eq9 , eq24 , eq25 ,
eq27 , eq2 , eq14 , eq19 , eq13 ,
eq17 , eq15 , eq16 , eq26 )

i f p . On == 1 :
# D i f f e r e n t i a l e q u a t i o n s
d P r d t = p . TF∗ t e n d ∗p . C # P r e s s u r e d e c r e a s e
d e t a d t = p . TF∗ t e n d ∗ ( p .A∗m5∗p . m max∗Z5 g + p . B∗m5∗p . m max∗

Z5 o ) # Change o f compressor e f f i c i e n c y
dx = v e r t c a t ( dPrd t , d e t a d t )

# O b j e c t i v e f u n c t i o n
o b j = − m6∗Z6 g # o b j e c t i v e f u n c t i o n

e l s e :
# D i f f e r e n t i a l e q u a t i o n s
d P r d t = p . TF∗p . C # P r e s s u r e d e c r e a s e
d e t a d t = p . TF∗ ( p .A∗m5∗p . m max∗Z5 g + p . B∗m5∗p . m max∗Z5 o )

# Change o f compressor e f f i c i e n c y
dx = v e r t c a t ( dPrd t , d e t a d t )

# O b j e c t i v e f u n c t i o n
o b j = − m6∗Z6 g # o b j e c t i v e f u n c t i o n

re turn f , dx , obj , x , z , u , t e n d

D.3 Initial Guess

from math import p i
from c a s a d i import ∗
import numpy as np
from Layout import Layout
from Model import Model
from c o l l e c t i o n s import O r d e r e d D i c t
from h e l p e r s import c a s a d i v e c , c a s a d i s t r u c t , c a s a d i v e c 2 s t r u c t ,

c a s a d i s t r u c t 2 v e c

def I n i t i a l ( p , z , V block ) :
[ f , dx , obj , x , z , u , t e n d ] = Model ( p ) ;
[ I n t , dae , dae , dae x , dae z , dae u , t a u r o o t , d a e t e n d ] = Layout ( p , f , dx

, obj , x , z , u , t e n d ) ;
i n i t = [ ]
u = [ p . P2 , p . h , p .W]
U i n i t = u
# t s = ( [ 0 ] + c o l l o c a t i o n p o i n t s ( p . d , ’ radau ’ ) )
# t = [ x / p . N f o r x i n t s ]
# p r i n t t
# t = [ 0 ] + c o l l o c a t i o n p o i n t s ( p . d , ’ radau ’ )
f o r i in range ( p .N) :

i f i == 0 :
x = [ p . Pr 0 , p . e t a 0 ]
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X i n i t = x

# a l g e b r a i c e q u a t i o n s
# R e s e v o i r
eq27 = z [ 2 6 ] − z [ 2 5 ] − ( p . Pa Bar ) ∗ ( z [ 3 ]∗ p . g∗p . D e l t a h ∗z

[ 2 5 ] ) / \
( ( z [ 0 ]∗ p . Rg∗p . Tr / p .M) + p . P max∗z

[ 2 5 ]∗ ( z [ 1 ] / ( p . rho w∗p . SG o ) \
+ z [ 2 ] / p . rho w ) ) # P r e s s u r e drop

from r e s e r v o i r t o seabed [ bar ]
eq28 = z [ 1 ] − ( p . ko / p . m max ) ∗ ( ( p . P max∗x [ 0 ] ) ∗∗2 − ( p . P max

∗z [ 2 5 ] ) ∗∗2)∗∗p . n # Mass f l o w o f o i l i n s t r ea m 1 [−]
eq29 = z [ 2 ] − ( p . kw / p . m max ) ∗ ( ( p . P max∗x [ 0 ] ) ∗∗2 − ( p . P max

∗z [ 2 5 ] ) ∗∗2)∗∗p . n # Mass f l o w o f wa ter i n s t r ea m 1 [−]
eq30 = z [ 0 ] − z [ 1 ] ∗ ( p . kg / p . ko ) ∗ ( p . P max∗x [ 0 ] − p . P max∗z

[ 2 5 ] ) ∗∗2 # Mass f l o w o f gas i n s t r ea m 1 [−]
eq31 = z [ 3 ] − z [ 0 ] − z [ 1 ] − z [ 2 ] # T o t a l mass f l o w i n

s t r e am 1 [−]
eq32 = z [ 9 ] − z [ 0 ] / z [ 3 ] # Mass f r a c t i o n o f gas i n s t r ea m 1
eq33 = z [ 1 0 ] − z [ 1 ] / z [ 3 ] # Mass f r a c t i o n o f o i l i n s t r ea m

1
eq34 = z [ 1 1 ] − z [ 2 ] / z [ 3 ] # Mass f r a c t i o n o f wa ter i n

s t r e am 1

# Valve1
eq1 = z [ 3 ] − z [ 4 ] # c o n s t a n t mass f l o w over v a l v e 1
eq2 = z [ 4 ] − ( p . u1∗p . Cv1 / p . m max ) ∗ s q r t ( ( p . P max ∗ ( z [26]−u

[ 0 ] ) ) / ( z [ 9 ]∗ p . SG g \
+ z [ 1 0 ]∗ p . SG o + z [ 1 1 ]∗ p . SG w ) ) #

Mass f l o w o u t o f t h e v a l v e [ k t
/ t a u ]

eq3 = z [ 9 ] − z [ 1 2 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq4 = z [ 1 0 ] − z [ 1 3 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq5 = z [ 1 1 ] − z [ 1 4 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e

# S e p a r a t o r
eq6 = z [ 4 ] − z [ 5 ] − z [ 7 ] # t o t a l mass b a l a n c e over t h e

s e p a r a t o r
eq7 = z [ 1 2 ]∗ z [ 4 ] − z [ 1 5 ]∗ z [ 5 ] − z [ 2 1 ]∗ z [ 7 ] # mass b a l a n c e

gass
eq8 = z [ 1 3 ]∗ z [ 4 ] − z [ 1 6 ]∗ z [ 5 ] − z [ 2 2 ]∗ z [ 7 ] # mass b a l a n c e

o i l
eq9 = z [ 2 2 ] − z [ 1 3 ]∗ exp(−p . Sep o ∗ ( ( p . V−z [ 3 0 ]∗ p . V max ) / \

( ( p . m max∗z [ 7 ] ) / ( p . rho max∗z [ 3 2 ] ) ) ) ) # Mass
f r a c t i o n o f o i l as f u n c t i o n o f s e p a r a t o r
e f f i c i e c n y and r e s i d e n t t i m e .

eq10 = z [ 1 5 ] − z [ 1 2 ]∗ exp(−p . Sep g ∗ ( ( z [ 3 0 ]∗ p . V max ) / \
( ( p . m max∗z [ 5 ] ) / ( p . rho max∗z [ 3 1 ] ) ) ) ) # Mass

f r a c t i o n o f gas as f u n c t i o n o f s e p a r a t o r
e f f i c i e c n y and r e s i d e n t t i m e .

eq11 = z [ 2 1 ] + z [ 2 2 ] − 1 # mass f r a c t i o n s e q u a l t o 1 f o r
s t r e am 5

eq12 = z [ 1 5 ] + z [ 1 6 ] + z [ 1 7 ] − 1 # mass f r a c t i o n s e q u a l t o
1 f o r s t r ea m 3

eq13 = u [ 0 ] − z [ 2 9 ] # No p r e s s u r e drop over t h e s e p a r a t o r
eq14 = z [ 2 7 ] − u [ 0 ] − ( p . rho max / p . P max ) ∗z [ 3 1 ]∗ p . g∗u [ 1 ] ∗ (
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p . Pa Bar ) # P r e s s u r e i n o u t l e t s t r ea m 3 [ bar ]
eq15 = z [ 3 1 ] − ( p . rho w / p . rho max ) ∗ ( z [ 1 5 ]∗ p . SG g + z [ 1 6 ]∗

p . SG o + z [ 1 7 ]∗ p . SG w ) # D e n s i t y s t r ea m 3 [ k t /mˆ 3 ]
eq16 = z [ 3 2 ] − ( p . rho w / p . rho max ) ∗ ( z [ 2 1 ]∗ p . SG g + z [ 2 2 ]∗ p

. SG o )
eq17 = z [ 3 0 ] − p . L∗ ( ( u [ 1 ] − p . R) ∗ s q r t (2∗ p . R∗u[1]−u [ 1 ]∗∗2 )

\
+ p . R∗∗2∗ acos (1−u [ 1 ] / p . R) ) ∗ ( 1 / p . V max ) #

Volume o f l i q u i d i n t h e s e p a r a t o r [m
ˆ 3 ]

# Valve2
eq18 = z [ 5 ] − z [ 6 ] # Mass b a l a n c e over v a l v e [ k t / t a u ]
eq19 = z [ 6 ] − ( p . u1∗p . Cv1 / p . m max ) ∗ s q r t ( ( p . P max ∗ ( z [27]− z

[ 2 8 ] ) ) / ( z [ 1 5 ]∗ p . SG g \
+ z [ 1 6 ]∗ p . SG o + z [ 1 7 ]∗ p . SG w ) ) # Mass

f l o w o u t o f t h e v a l v e
eq20 = z [ 1 5 ] − z [ 1 8 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq21 = z [ 1 6 ] − z [ 1 9 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e
eq22 = z [ 1 7 ] − z [ 2 0 ] # Mass f r a c t i o n c o n s t a n t ove r v a l v e

# Compressor
eq23 = z [ 7 ] − z [ 8 ] # mass f l o w c o n s t a n t ove r compressor
eq24 = z [ 2 1 ] − z [ 2 3 ] # Mass f r a c t i o n c o n s t a n t ove r

compressor
eq25 = z [ 2 2 ] − z [ 2 4 ] # Mass f r a c t i o n c o n s t a n t ove r

compressor
eq26 = u [ 2 ] − ( p . gamma / ( p . gamma − 1) ) ∗ ( ( p . Rg∗p . Ts / p .M) ∗ ( ( z

[ 3 3 ] / z [ 2 9 ] ) ∗∗ ( ( p . gamma−1) / p . gamma ) \
−1) ) ∗ ( ( z [ 7 ]∗ p . m max ) / ( p . W max∗x [ 1 ] ) )

∗ ( 1 . 1 5 7 4 e−6) # Compressor d u t y [MW]

i f i == 0 :
S o l z = v e r t c a t ( eq30 , eq28 , eq29 , eq31 , eq1 , eq6 , eq18 ,

eq7 , eq23 ,
eq32 , eq33 , eq34 , eq3 , eq4 , eq5

, eq10 , eq8 , eq12 ,
eq20 , eq21 , eq22 , eq11 , eq9 ,

eq24 , eq25 ,
eq27 , eq2 , eq14 , eq19 , eq13 ,
eq17 , eq15 , eq16 , eq26 )

f z = F u n c t i o n ( ” f z ” , [ z ] , [ S o l z ] )

Z 0 = [ 0 . 8 4 3 9 8 3 , 0 .0845017 , 0 .0132034 , 0 . 9 4 1 6 8 8 ,
0 . 9 4 1 6 8 8 , 0 .0632842 , 0 .0632842 , 0 . 8 7 8 4 0 4 ,
0 . 8 7 8 4 0 4 ,

0 . 8 9 6 2 4 5 , 0 .0897343 , 0 . 0 1 4 0 2 1 , 0 . 8 9 6 2 4 5 ,
0 .0897343 , 0 . 0 1 4 0 2 1 , 1 .03142 e−009 ,
0 . 7 9 1 3 6 4 , 0 . 2 0 8 6 3 6 ,

1 .03142 e−009 , 0 . 7 9 1 3 6 4 , 0 . 2 0 8 6 3 6 ,
0 . 9 6 0 8 1 4 , 0 .0391857 , 0 . 9 6 0 8 1 4 ,
0 .0391857 ,

0 . 5 6 4 0 9 1 , 0 . 5 0 1 0 6 6 , 0 . 3 5 1 6 2 3 , 0 . 3 5 0 7 5 9 ,
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0 . 3 5 ,
0 . 7 0 8 2 0 9 , 0 . 9 2 0 8 6 4 , 0 . 7 0 7 8 3 7 , 0 . 7 0 3 7 2 ]

s = r o o t f i n d e r ( ” s ” , ” k i n s o l ” , f z )

Z i n i t = s ( Z 0 )

# I n t e g r a t e over t h e e l e m e n t
Ik = I n t ( x0= X i n i t , z0= Z i n i t , p= U i n i t )

temp x = c a s a d i v e c ( dae x , 1 . 0 , Pr= X i n i t [ 0 ] , e t a = X i n i t [ 1 ] )
temp xc = Ik [ ’ x f ’ ] [ : , 1 : p . d +1]
temp z = Ik [ ’ z f ’ ] [ : , 1 : p . d +1]
temp u = c a s a d i v e c ( dae u , 1 . 0 , P2= U i n i t [ 0 ] , h= U i n i t [ 1 ] ,Ws=

U i n i t [ 2 ] )
i n i t . append ( c a s a d i v e c ( V block , 0 . 0 ,X=temp x ,XC=temp xc , Z=

temp z ,U=temp u ) )

# Outpu t f o r x and z
x f i n = Ik [ ’ x f ’ ]
z f i n = Ik [ ’ z f ’ ]
X i n i t = x f i n [ : , p . d ]
Z i n i t = z f i n [ : , p . d ]

i f i == p . N−1:
i n i t . append ( c a s a d i v e c ( dae x , 1 . 0 , Pr= X i n i t [ 0 ] , e t a =

X i n i t [ 1 ] ) )

i n i t = v e r t c a t (∗ i n i t )

re turn i n i t

D.4 Structure

from math import p i
from c a s a d i import ∗
import numpy as np
from c o l l e c t i o n s import O r d e r e d D i c t
from h e l p e r s import c a s a d i v e c , c a s a d i s t r u c t , c a s a d i v e c 2 s t r u c t ,

c a s a d i s t r u c t 2 v e c

def Layout ( p , f , dx , obj , x , z , u , t e n d ) :

d a e i n t = { ’ x ’ : x , ’ z ’ : z , ’ p ’ : u , ’ t ’ : t e n d , ’ ode ’ : dx , ’ a l g ’ : f , ’
quad ’ : o b j }

t s = ( [ 0 ] + c o l l o c a t i o n p o i n t s ( p . d , ’ r a d a u ’ ) )
t = [ q / p .N f o r q in t s ]
o p t s = {}
o p t s [ ’ a b s t o l ’ ] = 1e−8 # abs . t o l e r a n c e
o p t s [ ’ r e l t o l ’ ] = 1e−8 # r e l . t o l e r a n c e
o p t s [ ’ l i n e a r s o l v e r ’ ] = ’ c s p a r s e ’
o p t s [ ’ l i n e a r s o l v e r t y p e ’ ] = ’ u s e r d e f i n e d ’
o p t s [ ’ g r i d ’ ] = t
o p t s [ ’ o u t p u t t 0 ’ ] = True
I n t = i n t e g r a t o r ( ’ I n t ’ , ’ i d a s ’ , d a e i n t , o p t s )
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# Make d i c t i o n a r y f o r v a r i a b l e s and e q u a t i o n s
da e x = O r d e r e d D i c t ( )
d a e z = O r d e r e d D i c t ( )
da e u = O r d e r e d D i c t ( )
d a e t e n d = O r d e r e d D i c t ( )
f o r k in range ( x . shape [ 0 ] ) :

da e x . u p d a t e ({ s t r ( x [ k ] ) : x [ k ]} )
f o r j in range ( z . shape [ 0 ] ) :

d a e z . u p d a t e ({ s t r ( z [ j ] ) : z [ j ]} )
f o r i in range ( u . shape [ 0 ] ) :

da e u . u p d a t e ({ s t r ( u [ i ] ) : u [ i ]} )

dae = {}
dae [ ” x ” ] = c a s a d i s t r u c t 2 v e c ( d ae x )
dae [ ” z ” ] = c a s a d i s t r u c t 2 v e c ( d a e z )
dae [ ” p ” ] = c a s a d i s t r u c t 2 v e c ( d ae u )
i f p . On == 1 :

d a e t e n d . u p d a t e ({ ’ t e n d ’ : t e n d } )
dae [ ” t e n d ” ] = c a s a d i s t r u c t 2 v e c ( d a e t e n d ) ;

dae [ ” ode ” ] = dx
dae [ ” a l g ” ] = f
dae [ ” quad ” ] = o b j

# Get c o l l o c a t i o n p o i n t s
t a u r o o t = [ 0 ] + c o l l o c a t i o n p o i n t s ( p . d , ’ r a d a u ’ )

re turn I n t , dae , dae , dae x , dae z , dae u , t a u r o o t , d a e t e n d

D.5 Collocation Method

from c a s a d i import ∗

def s i m p l e C o l l ( dae , t a u r o o t , h ) :

d ae fu n = F u n c t i o n ( ” fun ” , dae , [ ” x ” , ” z ” , ” p ” , ” t e n d ” ] , [ ” ode ” , ” a l g ” , ”
quad ” ] )

d ae fu n . expand ( )
# Degree o f i n t e r p o l a t i n g p o l y n o m i a l
d = l e n ( t a u r o o t )−1

# C o e f f i c i e n t s o f t h e c o l l o c a t i o n e q u a t i o n
C = np . z e r o s ( ( d +1 , d +1) )

# C o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n
D = np . z e r o s ( d +1)

# D i m e n s i o n l e s s t i m e i n s i d e one c o n t r o l i n t e r v a l
t a u = SX . sym ( ” t a u ” )

# For a l l c o l l o c a t i o n p o i n t s
f o r j in range ( d +1) :

# C o n s t r u c t Lagrange p o l y n o m i a l s t o g e t t h e p o l y n o m i a l
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b a s i s a t t h e c o l l o c a t i o n p o i n t
L = 1
f o r r in range ( d +1) :

i f r != j :
L ∗= ( tau−t a u r o o t [ r ] ) / ( t a u r o o t [ j ]−

t a u r o o t [ r ] )
l f c n = F u n c t i o n ( ’ l f c n ’ , [ t a u ] , [ L ] )

# E v a l u a t e t h e p o l y n o m i a l a t t h e f i n a l t i m e t o g e t t h e
c o e f f i c i e n t s o f t h e c o n t i n u i t y e q u a t i o n

D[ j ] = l f c n ( 1 . 0 )

# E v a l u a t e t h e t i m e d e r i v a t i v e o f t h e p o l y n o m i a l a t a l l
c o l l o c a t i o n p o i n t s t o g e t t h e c o e f f i c i e n t s o f t h e
c o n t i n u i t y e q u a t i o n

t f c n = l f c n . t a n g e n t ( )
f o r r in range ( d +1) :

C[ j , r ] , = t f c n ( [ t a u r o o t [ r ] ] )

# S t a t e v a r i a b l e
CVx = MX. sym ( ” x ” , dae [ ” x ” ] . s i z e 1 ( ) , 1 )

# Helper s t a t e v a r i a b l e s
CVCx = MX. sym ( ” x ” , dae [ ” x ” ] . s i z e 1 ( ) , d )

# A l g e b r a i c v a r i a b l e s
CVz = MX. sym ( ” z ” , dae [ ” z ” ] . s i z e 1 ( ) , d )

# Fixed p a r a m e t e r s ( c o n t r o l s )
CVp = MX. sym ( ” p ” , dae [ ” p ” ] . s i z e 1 ( ) )

# End t i m e
t e n d = MX. sym ( ’ t e n d ’ , 1 ) ;

X = h o r z c a t (CVx , CVCx)
g = [ ]
quad k = 0 . 0
# For a l l c o l l o c a t i o n p o i n t s
f o r j in range ( 1 , d +1) :

# Get an e x p r e s s i o n f o r t h e s t a t e d e r i v a t i v e a t t h e
c o l l o c a t i o n p o i n t

x p j k = 0
f o r r in range ( d +1) :

x p j k += C[ r , j ]∗X [ : , r ]

# Add c o l l o c a t i o n e q u a t i o n s t o t h e NLP
i f j < d :

[ ode , a lg , ] = d ae fu n (CVCx [ : , j −1] ,CVz [ : , j −1] ,CVp ,
t e n d )

e l s e : # Only add t h e c o s t f u n c t i o n a t t h e end o f t h e
e l e m e n t

[ ode , a lg , quad ] = d ae fu n (CVCx [ : , j −1] ,CVz [ : , j −1] ,CVp
, t e n d )

quad k += quad
g . append ( h∗ode − x p j k )
g . append ( a l g )
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# Get an e x p r e s s i o n f o r t h e s t a t e a t t h e end o f t h e f i n i t e e l e m e n t
x f k = 0
f o r r in range ( d +1) :

x f k += D[ r ]∗X [ : , r ]

G = F u n c t i o n ( ”G” , [ CVx , CVCx, CVz , CVp , t e n d ] , [ x f k , v e r t c a t (∗ g ) , quad k
] )

re turn G

D.6 Deterministic Optimization

from math import p i
from c a s a d i import ∗
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from c o l l e c t i o n s import O r d e r e d D i c t
from h e l p e r s import c a s a d i v e c , c a s a d i s t r u c t , c a s a d i v e c 2 s t r u c t ,

c a s a d i s t r u c t 2 v e c
from P a r a m e t e r s import P a r a m e t e r s # I mp or t t h e p a r a m e t e r s
from Model import Model # I mp or t t h e model e q u a t i o n s
from Layout import Layout # I mp or t t h e i n t e g r a t o r , s t r u c t u r e and t i m e g r i d
from I n i t i a l import I n i t i a l # I mp or t t h e i n i t i a l g u e s s

p = P a r a m e t e r s ( ) ;
[ f , dx , obj , x , z , u , t e n d ] = Model ( p ) ;
[ I n t , dae , dae , dae x , dae z , dae u , t a u r o o t , d a e t e n d ] = Layout ( p , f , dx , obj , x , z

, u , t e n d ) ;

def demopt ( dae x , dae z , dae u , dae , p , z ) :
# I mp or t c o l l o c a t i o n s c r i p t
from c o l l o c a t i o n t o o l s import s i m p l e C o l l
i f p . On == 1 :

from c o l l o c a t i o n t o o l s t import s i m p l e C o l l
e l s e :

from c o l l o c a t i o n t o o l s import s i m p l e C o l l
c o l l f u n = s i m p l e C o l l ( dae , t a u r o o t , 1 . 0 / p .N)
c o l l f u n = c o l l f u n . expand ( )
# Number o f v a r i b l e s
nx = dae [ ” x ” ] . shape [ 0 ] # D i f f e r e n t i a l v a r i a b l e s
nu = dae [ ” p ” ] . shape [ 0 ] # C o n t r o l v a r i a b l e s
nz = dae [ ” z ” ] . shape [ 0 ] # A l g e b r a i c v a r i a b l e s
nva r = nx + nx∗p . d + nz∗p . d + nu # number o f v a r i a b l e s
nv = nx ∗ ( p .N+1) + nx∗p . d∗p .N + nz∗p . d∗p .N + nu∗p .N # T o t a l number

o f v a r i a b l e s

Xs = [MX. sym ( ”X” , nx ) f o r i in range ( p .N+1) ]
XCs = [MX. sym ( ”XC” , nx , p . d ) f o r i in range ( p .N) ]
Zs = [MX. sym ( ”Z” , nz , p . d ) f o r i in range ( p .N) ]
Us = [MX. sym ( ”U” , nu ) f o r i in range ( p .N) ]
i f p . On == 1 :

t e n d = MX. sym ( ” t e n d ” )
V block = O r d e r e d D i c t ( )
V block [ ”X” ] = S p a r s i t y . dense ( nx , 1 )
V block [ ”XC” ] = S p a r s i t y . dense ( nx , p . d )
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V block [ ”Z” ] = S p a r s i t y . dense ( nz , p . d )
V block [ ”U” ] = S p a r s i t y . dense ( nu , 1 )

# S im p l e bounds on s t a t e s
l b x = [ ] ;
ubx = [ ] ;

# O b j e c t i v e f u n c t i o n
f = 0 . 0 ;

# L i s t o f c o n s t r a i n t s
g = [ ] ;

# L i s t o f a l l d e c i s i o n v a r i a b l e s ( d e t e r m i n e s o r d e r i n g )
V = [ ] ;

f o r k in range ( p .N) :
# Add d e c i s i o n v a r i a b l e s
V += [ c a s a d i v e c ( V block ,X=Xs [ k ] ,XC=XCs [ k ] , Z=Zs [ k ] ,U=Us [ k

] ) ]

i f k ==0:
# Bounds a t t =0
x l b = c a s a d i v e c ( dae x , 0 . 0 , Pr = 1 . 0 , e t a = 1 . 0 )
x ub = c a s a d i v e c ( dae x , 1 . 0 , Pr = 1 . 0 , e t a = 1 . 0 )
x c l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x c l b = repmat ( x c l b , 1 , p . d )
xc ub = c a s a d i v e c ( dae x , 1 . 0 )
xc ub = repmat ( xc ub , 1 , p . d )
u l b = c a s a d i v e c ( dae u , 0 . 0 , P2 = 0 . 2 , h = 0 . 5 )
u ub = c a s a d i v e c ( dae u , 1 . 0 , h = 2 . 5 )
z l b = c a s a d i v e c ( dae z , 0 . 0 , P6 = 0 . 4 8 )
z l b = repmat ( z l b , 1 , p . d )
z ub = c a s a d i v e c ( dae z , 1 . 0 , Z5 o = 0 . 0 1 , Z3 g = 0 . 1 )
z ub = repmat ( z ub , 1 , p . d )
l b x . append ( c a s a d i v e c ( V block ,− i n f ,X= x l b ,XC= x c l b

, Z= z l b ,U= u l b ) )
ubx . append ( c a s a d i v e c ( V block , i n f ,X=x ub ,XC=xc ub ,

Z=z ub ,U= u ub ) )
e l s e :

# Bounds f o r o t h e r t
x l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x ub = c a s a d i v e c ( dae x , 1 . 0 )
x c l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x c l b = repmat ( x c l b , 1 , p . d )
xc ub = c a s a d i v e c ( dae x , 1 . 0 )
xc ub = repmat ( xc ub , 1 , p . d )
u l b = c a s a d i v e c ( dae u , 0 . 0 , P2 = 0 . 2 , h = 0 . 5 )
u ub = c a s a d i v e c ( dae u , 1 . 0 , h = 2 . 5 )
z l b = c a s a d i v e c ( dae z , 0 . 0 , P6 = 0 . 4 8 )
z l b = repmat ( z l b , 1 , p . d )
z ub = c a s a d i v e c ( dae z , 1 . 0 , Z5 o = 0 . 0 1 , Z3 g = 0 . 1 )
z ub = repmat ( z ub , 1 , p . d )
l b x . append ( c a s a d i v e c ( V block ,− i n f ,X= x l b ,XC= x c l b

, Z= z l b ,U= u l b ) )
ubx . append ( c a s a d i v e c ( V block , i n f ,X=x ub ,XC=xc ub ,

Z=z ub ,U= u ub ) )
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# Obta in c o l l o c a t i o n e x p r e s s i o n s
i f p . On == 1 :

# Vary ing t i m e h o r i z o n
[ Xnext , c o n s t r , quad k ] = c o l l f u n ( Xs [ k ] , XCs [ k ] , Zs [ k

] , Us [ k ] , t e n d )
e l s e :

# Fixed t i m e h o r i z o n
[ Xnext , c o n s t r , quad k ] = c o l l f u n ( Xs [ k ] , XCs [ k ] , Zs [ k

] , Us [ k ] )
g . append ( c o n s t r ) # Add a l g e b r a i c c o n s t r a i n t s
g . append ( Xs [ k +1] − Xnext ) # Add c o n t i n u i t y c o n s t r a i n t

added
# Add t o t h e o b j e c t i v e f u n c t i o n
i f p . PV == 1 :

# P r e s e n t Value i s i n c l u d e d
f += quad k / ( 1 . 0 5 ) ∗∗ ( k∗ t e n d / 1 2 . 0 )

e l s e :
# P r e s e n t Value i s n o t i n c l u d e d
f += quad k

V += [ Xs [−1]]

i f p . On == 1 :
# Add t i m e h o r i z o n as v a r i b l e f o r v a r y i n g t i m e h o r i z i n
V += [ t e n d ]
f ∗= V[−1]

# Bounds f o r f i n a l t
x l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x ub = c a s a d i v e c ( dae x , 1 . 0 )
l b x . append ( x l b )
ubx . append ( x ub )

i f p . On == 1 :
# Add c o n s t r a i n t on end t i m e h o r i z o n
t l b = c a s a d i v e c ( d a e t e n d , 0 . 8 )
t u b = c a s a d i v e c ( d a e t e n d , 1 . 2 )
l b x . append ( t l b )
ubx . append ( t u b )

# I n i t i a l g u e s s
i n i t = I n i t i a l ( p , z , V block ) ;
i f p . On == 1 :

V0 = np . z e r o s ( i n i t . shape [ 0 ] + 1 )
e l s e :

V0 = np . z e r o s ( i n i t . shape [ 0 ] )

f o r q in range ( i n i t . shape [ 0 ] ) :
V0 [ q ] = i n i t [ q ]

i f p . On == 1 :
V0[−1] += 1 . 0 # End t i m e i n i t i a l g u e s s

# Conver t c o n s t r a i n t s t o l i s t s
l b g = np . z e r o s ( v e r t c a t (∗ g ) . shape [ 0 ] ) . t o l i s t ( )
ubg = np . z e r o s ( v e r t c a t (∗ g ) . shape [ 0 ] ) . t o l i s t ( )
l b x = v e r t c a t (∗ l b x )
ubx = v e r t c a t (∗ ubx )
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n l p = { ’ x ’ : v e r t c a t (∗V) , ’ f ’ : f , ’ g ’ : v e r t c a t (∗ g ) }

o p t i o n s = {}
o p t i o n s [ ’ w a r n i n i t i a l b o u n d s ’ ] = True
o p t i o n s [ ’ i p o p t . l i n e a r s o l v e r ’ ] = ’ma27 ’
o p t i o n s [ ’ i p o p t . m a x i t e r ’ ] = 1000
s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , n lp , o p t i o n s )

s o l = s o l v e r ( x0=V0 , l b x = lbx , ubx=ubx , l b g = lbg , ubg=ubg )

# E x t r a c t a l l o f t h e d e c i s i o n v a r i a b l e s from t h e s o l v e d n l p
v o p t = s o l [ ’ x ’ ]
i f p . On == 1 :

t f = v o p t [−1]
p r i n t t f ∗p . TF

e l s e :
t f = p . TF

re turn v op t , nvar , lbx , ubx , t f

# [ v o p t , nvar , lbx , ubx , t f ] = demopt ( dae x , dae z , dae u , dae , p , z ) ;

D.7 Stochastic Optimization

from math import p i
from c a s a d i import ∗
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
import m a t p l o t l i b . mlab as mlab
from s c i p y . s t a t s import norm
from s c i p y . s t a t s import i n v g a u s s
from c o l l e c t i o n s import O r d e r e d D i c t
from h e l p e r s import c a s a d i v e c , c a s a d i s t r u c t , c a s a d i v e c 2 s t r u c t ,

c a s a d i s t r u c t 2 v e c
from P a r a m e t e r s import P a r a m e t e r s # S c r i p t f o r a l l o f t h e p a r a m e t e r s
from Model import Model # S c r i p t f o r t h e model e q u a t i o n s
from Layout import Layout # S c r i p t f o r s t r u c t u r e o f t h e DAE s y s t e m
from demopt import demopt # D e t e r m i n i s t i c o p t i m i z a t i o n s c r i p t
from I n i t i a l import I n i t i a l # The i n i t i a l g u e s s s c r i p t

p = P a r a m e t e r s ( ) ;
[ f , dx , obj , x , z , u , t e n d ] = Model ( p ) ;
[ I n t , dae , dae , dae x , dae z , dae u , t a u r o o t , d a e t e n d ] = Layout ( p , f , dx , obj , x , z

, u , t e n d ) ;
[ v op t , nvar , lbx , ubx , t f ] = demopt ( dae x , dae z , dae u , dae , p , z ) ;

p . TF = f l o a t ( v o p t [−1])∗p . TF
p . On = 0

[ f , dx , obj , x , z , u , t e n d ] = Model ( p ) ;
[ I n t , dae , dae , dae x , dae z , dae u , t a u r o o t , d a e t e n d ] = Layout ( p , f , dx , obj , x , z

, u , t e n d ) ;
# I mp or t c o l l o c a t i o n s c r i p t
from c o l l o c a t i o n t o o l s import s i m p l e C o l l
i f p . On == 1 :
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from c o l l o c a t i o n t o o l s t import s i m p l e C o l l
e l s e :

from c o l l o c a t i o n t o o l s import s i m p l e C o l l
c o l l f u n = s i m p l e C o l l ( dae , t a u r o o t , 1 . 0 / p .N)
c o l l f u n = c o l l f u n . expand ( )

def MonteCar lo ( p , v op t , nva r ) :
””” T h i s i s a f u n c t i o n t h a t runs t h e Monte Car lo s i m u l a t i o n s .
”””
U i n i t = [ ]
f o r i in range ( p .N) :

U i n i t . append ( v o p t [ ( p . t z + i ∗ nva r ) : ( p . t z +3+ i ∗ nva r ) ] )

U i n i t = v e r t c a t (∗ U i n i t )
X out1 = [ ]
Z ou t1 = [ ]
f o r i in range ( p . ns ) :

# G e n e r a t e s random outcomes f o r ko
i f i == 0 :

ko = p . ko
mu ko = ko # Mean v a l u e o f t h e r e s e r v o i r f l o w c o e f f i c i e n t

o f o i l
s igma ko = 0 .1∗ ko # V a r i a n c e o f t h e r e s e r v o i r f l o w

c o e f f i c i e n t o f o i l
k o = np . random . normal ( mu ko , s igma ko )
p . ko = k o #

# Update t h e model w i t h new v a l u e o f ko

[ f , dx , obj , x , z , u , t e n d ] = Model ( p ) ;

d a e i n t = { ’ x ’ : x , ’ z ’ : z , ’ p ’ : u , ’ ode ’ : dx , ’ a l g ’ : f , ’ quad ’
: o b j }

o p t s = {}
o p t s [ ’ a b s t o l ’ ] = 1e−8# abs . t o l e r a n c e
o p t s [ ’ r e l t o l ’ ] = 1e−8 # r e l . t o l e r a n c e
o p t s [ ’ l i n e a r s o l v e r ’ ] = ’ c s p a r s e ’
o p t s [ ’ l i n e a r s o l v e r t y p e ’ ] = ’ u s e r d e f i n e d ’
o p t s [ ’ t f ’ ] = 1 . 0 / p .N
INT = i n t e g r a t o r ( ’ INT ’ , ’ i d a s ’ , d a e i n t , o p t s )

X out = [ ]
Z ou t = [ ]
f o r j in range ( p .N) :

i f j == 0 :

sim = INT ( x0= v o p t [ 0 : 2 ] , z0= v o p t [ p . t x : p .
t x +34] , p= U i n i t [ 0 : 3 ] )

x f i n = sim [ ’ x f ’ ]
z f i n = sim [ ’ z f ’ ]

X i n i t = x f i n
Z i n i t = z f i n
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X out . append ( X i n i t )
Z ou t . append ( Z i n i t )

e l s e :

sim = INT ( x0= X i n i t , z0= Z i n i t , p= U i n i t [
j ∗3 : j ∗3+3] )

x f i n = sim [ ’ x f ’ ]
z f i n = sim [ ’ z f ’ ]
X i n i t = x f i n
Z i n i t = z f i n

X out . append ( X i n i t )
Z ou t . append ( Z i n i t )

X out1 . append ( v e r t c a t (∗ X out ) )
Z ou t1 . append ( v e r t c a t (∗ Z ou t ) )

X sim = np . h s t a c k ( X out1 )
Z sim = np . h s t a c k ( Z ou t1 )
p . ko = ko

re turn X sim , Z sim

def b a c k o f f ( X out , Z ou t ) :
””” T h i s s c r i p t c a l c u l a t e s t h e b a c k o f f f o r t h e chance c o n s t r a i n t
”””
a l p h a e t a = 0 . 9 5 # p r o b a b i l i t y l e v e l o f e t a
a l p h a Z 3 g = 0 . 9 5 # p r o b a b i l i t y l e v e l o f Z5 o
a l p h a P 6 = 0 . 9 5 # p r o b a b i l i t y l e v e l o f P 6

mu eta = np . z e r o s ( p .N) # Make t h e mean v a l u e m a t r i x
mu Z3 g = np . z e r o s ( p .N) # Make t h e mean v a l u e m a t r i x
mu P 6 = np . z e r o s ( p .N) # Make t h e mean v a l u e m a t r i x

s i g m a e t a = np . z e r o s ( p .N) # Make t h e v a r i a n c e m a t r i x
s igma Z3 g = np . z e r o s ( p .N) # Make t h e v a r i a n c e m a t r i x
s igma P 6 = np . z e r o s ( p .N) # Make t h e v a r i a n c e m a t r i x

b a c k o f f e t a = np . z e r o s ( p .N) # Make t h e b a c k o f f m a t r i x f o r e t a
b a c k o f f Z 3 g = np . z e r o s ( p .N) # Make t h e b a c k o f f m a t r i x f o r Z5 o
b a c k o f f P 6 = np . z e r o s ( p .N) # Make t h e b a c k o f f m a t r i x f o r P 6

f o r i in range ( p .N) :

# C a l c u l a t e s t h e back o f f f o r each t i m e s t e p
[ mu eta [ i ] , s i g m a e t a [ i ] ] = norm . f i t ( X out [ i ∗ 2 + 1 , : ] ) #

N o r m a l f i t t h e outcome o f e t a
[ mu Z3 g [ i ] , s igma Z3 g [ i ] ] = norm . f i t ( Z ou t [ i ∗3 4 + 1 5 , : ] ) #

N o r m a l f i t t h e outcome o f Z3 g
[ mu P 6 [ i ] , s i gma P 6 [ i ] ] = norm . f i t ( Z ou t [ i ∗3 4 + 3 3 , : ] ) #

N o r m a l f i t t h e outcome o f P 6

b a c k o f f e t a [ i ] = norm . ppf ( a l p h a e t a ) ∗ s q r t ( np . cov ( X out [ i
∗ 2 + 1 , : ] ) ) # c a l c u l a t e s t h e back o f f o f e t a
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b a c k o f f Z 3 g [ i ] = norm . ppf ( a l p h a Z 3 g ) ∗ s q r t ( np . cov ( Z ou t [
i ∗3 4 + 1 5 , : ] ) ) # c a l c u l a t e s t h e back o f f o f Z3 g

b a c k o f f P 6 [ i ] = norm . ppf ( a l p h a P 6 ) ∗ s q r t ( np . cov ( Z ou t [ i
∗3 4 + 3 3 , : ] ) ) # c a l c u l a t e s t h e back o f f o f P 6

re turn b a c k o f f e t a , b a c k o f f Z 3 g , b a c k o f f P 6 , mu eta , mu Z3 g ,
mu P 6 , s i g m a e t a , s igma Z3 g , s igma P 6

[ X out , Z ou t ] = MonteCar lo ( p , v op t , nva r ) ;

[ b a c k o f f e t a , b a c k o f f Z 3 g , b a c k o f f P 6 , mu eta , mu Z3 g , mu P 6 , s i g m a e t a ,
s igma Z3 g , s igma P 6 ] = b a c k o f f ( X out , Z ou t ) ;

BO eta = b a c k o f f e t a . t o l i s t ( )
BO Z3 g = b a c k o f f Z 3 g . t o l i s t ( )
BO P6 = b a c k o f f P 6 . t o l i s t ( )

def StochOpt ( p , v op t , nvar , BO P6 , BO Z3 g , BO eta ) :

# I mp or t c o l l o c a t i o n s c r i p t
from c o l l o c a t i o n t o o l s import s i m p l e C o l l
i f p . On == 1 :

from c o l l o c a t i o n t o o l s t import s i m p l e C o l l
e l s e :

from c o l l o c a t i o n t o o l s import s i m p l e C o l l
c o l l f u n = s i m p l e C o l l ( dae , t a u r o o t , 1 . 0 / p .N)
c o l l f u n = c o l l f u n . expand ( )
# Number o f v a r i b l e s
nx = dae [ ” x ” ] . shape [ 0 ] # D i f f e r e n t i a l v a r i a b l e s
nu = dae [ ” p ” ] . shape [ 0 ] # C o n t r o l v a r i a b l e s
nz = dae [ ” z ” ] . shape [ 0 ] # A l g e b r a i c v a r i a b l e s
nva r = nx + nx∗p . d + nz∗p . d + nu # number o f v a r i a b l e s
nv = nx ∗ ( p .N+1) + nx∗p . d∗p .N + nz∗p . d∗p .N + nu∗p .N # T o t a l number

o f v a r i a b l e s

Xs = [MX. sym ( ”X” , nx ) f o r i in range ( p .N+1) ]
XCs = [MX. sym ( ”XC” , nx , p . d ) f o r i in range ( p .N) ]
Zs = [MX. sym ( ”Z” , nz , p . d ) f o r i in range ( p .N) ]
Us = [MX. sym ( ”U” , nu ) f o r i in range ( p .N) ]
i f p . On == 1 :

t e n d = MX. sym ( ” t e n d ” )
V block = O r d e r e d D i c t ( )
V block [ ”X” ] = S p a r s i t y . dense ( nx , 1 )
V block [ ”XC” ] = S p a r s i t y . dense ( nx , p . d )
V block [ ”Z” ] = S p a r s i t y . dense ( nz , p . d )
V block [ ”U” ] = S p a r s i t y . dense ( nu , 1 )

# S im p l e bounds on s t a t e s
l b x = [ ] ;
ubx = [ ] ;

# O b j e c t i v e f u n c t i o n
f = 0 . 0 ;

# L i s t o f c o n s t r a i n t s
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g = [ ] ;

# L i s t o f a l l d e c i s i o n v a r i a b l e s ( d e t e r m i n e s o r d e r i n g )
V = [ ] ;

f o r k in range ( p .N) :
# Add d e c i s i o n v a r i a b l e s
V += [ c a s a d i v e c ( V block ,X=Xs [ k ] ,XC=XCs [ k ] , Z=Zs [ k ] ,U=Us [ k

] ) ]

i f k ==0:
# Bounds a t t =0
x l b = c a s a d i v e c ( dae x , 0 . 0 , Pr = 1 . 0 , e t a = 1 . 0 )
x ub = c a s a d i v e c ( dae x , 1 . 0 , Pr = 1 . 0 , e t a = 1 . 0 )
x c l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x c l b = repmat ( x c l b , 1 , p . d )
xc ub = c a s a d i v e c ( dae x , 1 . 0 )
xc ub = repmat ( xc ub , 1 , p . d )
u l b = c a s a d i v e c ( dae u , 0 . 0 , P2 = 0 . 2 , h = 0 . 5 )
u ub = c a s a d i v e c ( dae u , 1 . 0 , h = 2 . 5 )
z l b = c a s a d i v e c ( dae z , 0 . 0 , P6 =0 .48 )
z l b = repmat ( z l b , 1 , p . d )
z ub = c a s a d i v e c ( dae z , 1 . 0 , Z5 o = 0 . 0 1 , Z3 g =0 .1 −

BO Z3 g [ k ] )
z ub = repmat ( z ub , 1 , p . d )
l b x . append ( c a s a d i v e c ( V block ,− i n f ,X= x l b ,XC= x c l b

, Z= z l b ,U= u l b ) )
ubx . append ( c a s a d i v e c ( V block , i n f ,X=x ub ,XC=xc ub ,

Z=z ub ,U= u ub ) )
e l s e :

# Bounds f o r o t h e r t
x l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x ub = c a s a d i v e c ( dae x , 1 . 0 )
x c l b = c a s a d i v e c ( dae x , 0 . 0 , e t a = 0 . 8 0 )
x c l b = repmat ( x c l b , 1 , p . d )
xc ub = c a s a d i v e c ( dae x , 1 . 0 )
xc ub = repmat ( xc ub , 1 , p . d )
u l b = c a s a d i v e c ( dae u , 0 . 0 , P2 = 0 . 2 , h = 0 . 5 )
u ub = c a s a d i v e c ( dae u , 1 . 0 , h = 2 . 5 )
z l b = c a s a d i v e c ( dae z , 0 . 0 , P6 =0 .48 )
z l b = repmat ( z l b , 1 , p . d )
z ub = c a s a d i v e c ( dae z , 1 . 0 , Z5 o = 0 . 0 1 , Z3 g =0 .1 −

BO Z3 g [ k ] )
z ub = repmat ( z ub , 1 , p . d )
l b x . append ( c a s a d i v e c ( V block ,− i n f ,X= x l b ,XC= x c l b

, Z= z l b ,U= u l b ) )
ubx . append ( c a s a d i v e c ( V block , i n f ,X=x ub ,XC=xc ub ,

Z=z ub ,U= u ub ) )
# Obta in c o l l o c a t i o n e x p r e s s i o n s
i f p . On == 1 :

# Vary ing t i m e h o r i z o n
[ Xnext , c o n s t r , quad k ] = c o l l f u n ( Xs [ k ] , XCs [ k ] , Zs [ k

] , Us [ k ] , t e n d )
e l s e :

# Fixed t i m e h o r i z o n
[ Xnext , c o n s t r , quad k ] = c o l l f u n ( Xs [ k ] , XCs [ k ] , Zs [ k

] , Us [ k ] )
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g . append ( c o n s t r ) # Add a l g e b r a i c c o n s t r a i n t s
g . append ( Xs [ k +1] − Xnext ) # Add c o n t i n u i t y c o n s t r a i n t

added
# Add t o t h e o b j e c t i v e f u n c t i o n
i f p . PV == 1 :

# P r e s e n t Value i s i n c l u d e d
f += quad k / ( 1 . 0 5 ) ∗∗ ( k ∗ 1 . 0 / 1 2 . 0 )

e l s e :
# P r e s e n t Value i s n o t i n c l u d e d
f += quad k

V += [ Xs [−1]]

i f p . On == 1 :
# Add t i m e h o r i z o n as v a r i b l e f o r v a r y i n g t i m e h o r i z i n
V += [ t e n d ]
f ∗= V[−1]

# Bounds f o r f i n a l t
x l b = c a s a d i v e c ( dae x , 0 . 0 , e t a =0 .8 + BO eta [−1])
x ub = c a s a d i v e c ( dae x , 1 . 0 )
l b x . append ( x l b )
ubx . append ( x ub )

i f p . On == 1 :
# Add c o n s t r a i n t on end t i m e h o r i z o n
t l b = c a s a d i v e c ( d a e t e n d , 0 . 8 )
t u b = c a s a d i v e c ( d a e t e n d , 1 . 2 )
l b x . append ( t l b )
ubx . append ( t u b )

# I n i t i a l g u e s s
i n i t = I n i t i a l ( p , z , V block ) ;
i f p . On == 1 :

V0 = np . z e r o s ( i n i t . shape [ 0 ] + 1 )
e l s e :

V0 = np . z e r o s ( i n i t . shape [ 0 ] )

f o r q in range ( i n i t . shape [ 0 ] ) :
V0 [ q ] = i n i t [ q ]

i f p . On == 1 :
V0[−1] += 1 . 0 # End t i m e i n i t i a l g u e s s

# Conver t c o n s t r a i n t s t o l i s t s
l b g = np . z e r o s ( v e r t c a t (∗ g ) . shape [ 0 ] ) . t o l i s t ( )
ubg = np . z e r o s ( v e r t c a t (∗ g ) . shape [ 0 ] ) . t o l i s t ( )
l b x = v e r t c a t (∗ l b x )
ubx = v e r t c a t (∗ ubx )

n l p = { ’ x ’ : v e r t c a t (∗V) , ’ f ’ : f , ’ g ’ : v e r t c a t (∗ g ) }

o p t i o n s = {}
o p t i o n s [ ’ w a r n i n i t i a l b o u n d s ’ ] = True
o p t i o n s [ ’ i p o p t . l i n e a r s o l v e r ’ ] = ’ma27 ’
o p t i o n s [ ’ i p o p t . m a x i t e r ’ ] = 1000
s o l v e r = n l p s o l ( ’ s o l v e r ’ , ’ i p o p t ’ , n lp , o p t i o n s )
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s o l = s o l v e r ( x0=V0 , l b x = lbx , ubx=ubx , l b g = lbg , ubg=ubg )

# E x t r a c t a l l o f t h e d e c i s i o n v a r i a b l e s from t h e s o l v e d n l p
v o p t = s o l [ ’ x ’ ]
i f p . On == 1 :

t f = v o p t [−1]
p r i n t t f ∗p . TF

e l s e :
t f = p . TF

[ X out , Z ou t ] = MonteCar lo ( p , v op t , nva r )

re turn v op t , X out , Z out ,

[ v op t , X out , Z ou t ] = StochOpt ( p , v op t , nvar , BO P6 , BO Z3 g , BO eta ) ;

[ b a c k o f f e t a , b a c k o f f Z 3 g , b a c k o f f P 6 , mu eta , mu Z3 g , mu P 6 , s i g m a e t a ,
s igma Z3 g , s igma P 6 ] = b a c k o f f ( X out , Z ou t ) ;
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