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Abstract

The present thesis treats the simulation of crack initiation and growth by the use
of cohesive zone models under dynamic loading conditions . The first chapter reviews
the aspects of fracture mechanics that are related to the subject. The rest of the thesis
consists of two self-contained articles and one conference paper. Finite element models
containing rate dependent cohesive elements have been introduced in the papers. The
rate dependency of cohesive elements is obtained through calculations on single elements
obeying rate dependent Gurson type equations. The papers represent three main aspects:
model establishment, validation, and application.

In the first article, the aim is to establish a model which has the ability to account
for crack growth simulations under dynamic loading conditions. A rate-dependent Gurson
type model has been used to define rate and triaxiality dependency of cohesive elements.
The rate- and triaxiality-dependent cohesive elements are used in a finite element model to
simulate crack propagation in a middle-cracked tension M(T) specimen made of aluminum
alloy. The calculations show the importance of strain rate and stress triaxiality on the rate
of the crack growth and the change of the load.

The second paper examines the validation of the rate sensitive cohesive elements and
the proposed procedure by comparing the results of the simulations and experiments on
aluminum round bars under dynamic loading conditions. Smooth and notched round bars
are tested and simulated and the load-diameter reduction curves are compared.

The third paper applies the model to a bi-material (laser welded) compact tension
C(T) specimen under dynamic loading conditions. The specimen made of aluminum alloy
contains an initial crack on the interface of fusion zone and base metal. The crack growth
is simulated by rate dependent cohesive elements which are oriented in different directions
so that mixed mode crack propagation is feasible.

The articles show the importance of considering rate dependency in the calculation
of both the energy dissipated by plastic deformation and the energy of separation. They
also show that the approach used is convenient for the simulation of dynamic ductile crack
initiation and growth. The procedure considered can also be used for other areas of fracture
simulation where the energy of separation is a function of variables that exist at the crack
tip area.

iii



Introduction

Fracture mechanics is a field of solid mechanics that deals with the behavior of cracked
bodies subjected to mechanical and environmental loads. The problem is usually treated
using the framework of continuum mechanics, thus field quantities like stresses and strains
are used to describe the loading of a part or a structure by solving a boundary value
problem. In this regard, approaches are needed to be developed which can not only provide
solutions to assess mechanical integrity of structures in simple situations like small scale
yielding under pure mode I isothermal loading, but also more complex situations, i.e.
large-scale yielding, mixed-mode crack growth and non-isothermal loading.

Since many of structural failures are the results of crack growth, fracture mechanics has
a wide application in different fields of industry, e.g. marine technology, offshore industry,
aerospace, automotive industry, power plants and pipelines. The increasing application
of aluminum alloys in industry, especially in car body and aircraft construction, has pro-
moted the need for better understanding of the mechanical behavior of aluminum cracked
structures under various loading conditions, e.g. cyclic and dynamic loadings. Since in
many cases, crack growth in aluminum alloys is the result of the formation and growth of
cavities, ductile fracture has been considered in the present study. In the case of dynamic
loading conditions, in a macroscopic scale, when the inertia of large pieces of material is
so high that the balance of energy in the structure requires the consideration of kinetic
energy, dynamic fracture mechanics is regarded. In this case, in addition to inertia, rate
dependency of the material, stress waves and adiabatic heating effects are necessary to be
considered. The formulation of a constitutive law accounting for the relevant effects is thus
a key issue.

The present study aims to develop a framework for finite element simulation of ductile
crack initiation and growth in aluminum structures under dynamic loading conditions.
Both simulation and experimental works have been performed.

Fracture mechanics can generally be performed on a variety of length scales ranging
from the macroscopic to the atomic scales. In the approaches which are applied in macro-
scopic scales, known as global approaches, it is assumed that the fracture resistance can
be measured in terms of a single parameter, i.e. KIc, JIc or CTOD. In more recent global
approaches, a second parameter (T and Q stresses) have been introduced. Although this
area of fracture mechanics has a wide application, it has many limitations related to the
amount of plasticity, constraint and geometry. The limitations related to constraint means
that the criteria defined are not material properties and may change from one geometry
to another or depend on the mode of loading.

Besides the analyses performed in a specific scale, there are approaches where results
from one scale can be transferred into another scale. The transition of stress or displace-
ment from micro- to macro-scale is performed via a so called meso zone which can be
analyzed e.g. by the use of local approaches. The background for local approaches is that
the global failure of the material is triggered by the local behavior in the area where stress
concentration exists, i.e. crack tip. Since local behavior is considered in this approach,
transferability from one structure (or sample) to another is possible as long as the micro-
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mechanism of failure remains unchanged. This advantage of local approaches has been the
main motivation of using them in the present study.

To perform a local approach, it is necessary to fulfill two conditions: to establish a
micromechanically based model, and to provide reliable knowledge of the crack tip stress-
strain field. To establish a micromechanically based model for ductile rupture, fully coupled
damage models have been proposed which introduce the effect of growing cavities on the
constitutive equations of porous materials. A well-known model of this kind is Gurson
model which has been further developed to capture void coalescence known as Gurson-
Tvergaard-Needleman (GTN) model. In a so-called Gurson type model, the presence of
a void results in a reduction of the stresses to be transformed in a material volume and
therefore the plastic flow potential is not only a function of stress and strain, but also
a function of porosity (the ratio of the total volume of the cavities to the volume of the
body). Another local approach known as cohesive zone modeling is a phenomenological
model in which a crack initiates and grows by the separation of the two crack surfaces in the
process zone. In the finite element representation of the cohesive zone models, the cohesive
elements are inserted as interfaces between the continuum non-damage elements. One of
the advantages of using cohesive elements in modeling fracture is to split the total dissipated
energy into the energy dissipated by plastic deformation and the energy of separation. In
this way, it is possible to evaluate the damage and deformation processes separately, but
coupled. Besides, as long as cohesive elements adequately resolve the fracture process zone
of the material, no mesh dependency is expected in using cohesive zone models.

Since cohesive zone models are phenomenological, Gurson type models have been em-
ployed in this study as michromechanism based models in order to obtain the properties
of the cohesive elements. By the use of a single rate-dependent Gurson type element, the
effect of stress triaxiality and strain rate on the properties of the representative cohesive
elements have been examined. The cohesive elements are introduced as interfaces on the
boundaries of continuum elements in finite element models. The values of strain rates
and stress triaxiality are calculated in the surrounding continuum elements and they are
transferred to the adjacent cohesive elements. The properties of each cohesive element
are updated based on these transferred variables. All the simulations are performed in
ABAQUS finite element code and based on the FORTRAN subroutine developed in the
code. Transient dynamic analyses have been used to take into account the inertia and
stress waves globally.

In order to achieve the desired framework for simulating dynamic ductile fracture,
the work has been divided into three main parts: model establishment, validation and
application. In the first part, it has been shown that the recommended approach has the
ability to explain the local effects of strain rate, stress triaxiality and inertia in a proper
manner. The second part uses experimental results to show the abilities and limitations
of the approach to obtain the global mechanical response of the aluminum samples tested
under dynamic loading conditions. It shows that the approach has partly succeeded to
obtain reasonable results compared to the tests. It also discusses the limitations regarding
the use of Gurson type elements to obtain cohesive element properties. The third part
uses the described approach in the simulation of crack extension in an aluminum welded
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structure driven by dynamic loading. It shows the abilities and limitations of the approach
in simulating mixed-mode crack growth in a mismatch welded connection.

In general, the thesis shows that the recommended approach has reasonable capabilities,
both qualitatively and quantitatively, to model crack initiation and growth in aluminum
structures influenced by dynamic loading. Moreover, limitations and deficits of the pro-
posed approach have been discussed in details. The three parts of the thesis have been
presented in the form of three papers as explained on the following.

Paper I. Model establishment

In the first paper entitled Simulation of dynamic ductile crack growth using strain-rate and
triaxiality-dependent cohesive elements [9], a finite element model is established in which
cohesive elements are both strain-rate and stress triaxiality dependent. The crack growth
is considered to be ductile. To account for the effect of stress triaxiality and strain rate on
the cohesive properties, a unit cell obeying the constitutive equations of a rate-dependent
Gurson type model has been used. The aim is to investigate the influence of these variables
on the energy absorption of a fracture specimen, center cracked M(T) specimen, and on
the rate of the crack growth for slow and fast loading speeds. The specimen is made
of aluminum alloy 6xxx series and only mode I is simulated. The unit cell is loaded
under a variety of stress biaxialities and loading speeds (strain rates). The resulting stress-
elongation curves have then been used as input to define traction separation laws (TSL) for
the cohesive elements. In this way, it is possible to define cohesive properties as functions
of both strain rate and stress triaxiality simultaneously. The calculations show that the
variation of the maximum stress in the cell vs. the loading speed (initial applied strain
rate) has similar behavior to the rate sensitivity of the bulk material. In other words,
the cohesive strength has the same rate of change as the bulk material as a function of
strain rate. In the simulations performed, the values of strain rate and stress triaxiality
are calculated in the continuum elements and are then transferred to the adjacent cohesive
elements to update the cohesive properties.

The simulations show that ignoring the influence of strain rate results in overestimation
of the energy absorbed by the specimen, whereas considering it for only bulk material
results in highly underestimation of the absorbed energy. They also show that although
strain rate sensitivity postpones the crack growth initiation, it favors the crack to grow
faster compared to rate independent material. It is also worth noting that for the case under
study, ignoring triaxiality variation results in a contrast with ductile fracture assumption
due to the high speed of crack growth prediction. The analyses also show that the value
of triaxiality increases initially and it drops very quickly when the crack starts to grow,
whereas in quasi static cases the value of triaxiality does not decrease. The decrease of the
stress triaxiality in dynamic loading is due to the inertia effect. In general, the paper shows
that strain rate sensitivity and triaxiality have significant effects on the energy absorption.
It also shows that the introduced procedure has the ability to quantify the local effects of
stress triaxiality, strain rate and inertia in a proper way.
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Paper II. Model verification

In the second paper entitled Dynamic fracture in aluminum round bars: Experiments and
simulations [7], it has been attempted to validate the procedure used in paper I with
experiments. The mechanical properties of the bulk material, aluminum alloy 6060-T6
have been defined through quasi-static and dynamic tests on smooth round bars. Similar
procedure as in Paper I has been employed to obtain the effect of strain rate and stress
triaxiality on cohesive properties. Dynamic tests have been performed by split-Hopkinson
tension bar and a high speed digital camera to measure load and diameter reduction for a
variety of notch radii and applied strain rates.

The notched round bars have been modeled by axisymmetric continuum and cohesive
elements. The simulations show that the most precise results on load vs. time are obtained
when both cohesive and continuum elements are rate sensitive with the same rate depen-
dency as found in the smooth bar experiments. They also show that for the cases studied,
the effect of mesh size and adiabatic heating on the load and on the diameter reduction is
insignificant. These influences are considerable only at the very last part of deformation.
Since the range of the stress triaxiality is relatively low for the cases studied, the authors
have not succeeded to use triaxiality dependent cohesive elements similar to paper I. It
has been shown that Bridgman’s equation is an acceptable assumption to calculate average
stress triaxiality for obtaining the cohesive properties. It is also discussed that the cohesive
energy calculated by the recommended method needs to be modified for high notch radius
due to the very low stress triaxiality values. The models can simulate diameter reduction
during deformation in a proper manner; however, they cannot calculate final diameter re-
duction precisely. This is due to high local strains, the use of axisymmetric elements and
adiabatic heating. Finally it is shown that the model has the ability to simulate the crack
initiation from the notch root for very sharp notches.

Paper III. Model application

The third paper entitled Simulation of crack extension in aluminum weldment using rate-
dependent cohesive elements [10] reports the application of the model in an aluminum
welded compact tension C(T) specimen. The weldment is the source of strength mismatch
in the simulated specimen. In this investigation, mixed mode is possible and the crack
has the possibility to change its path during the deformation. Triaxiality dependency
of cohesive elements has not been considered in this paper, but cohesive properties that
have resulted good agreement with quasi-static experiments have been employed. Rate
dependency of the cohesive elements has been defined based on the experience of the two
previous papers. Since multilayer cohesive elements are applied in different orientations in
the model, the subroutine in use needs to have the possibility to automatically recognize
and transfer variables between continuum elements and their adjacent cohesive elements.
This request has been implemented in the developed subroutine. To simplify the model,
strengths of the different areas in the joint have been idealized to lead to a bi-material
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mismatch (undermatch) case.
The simulations show that with decreasing the amount of strength mismatch (increasing

the strength of the soft zone), the maximum load increases, but there is only a minor
influence on the crack growth rate, the crack growth resistance curve and the direction of
crack growth. Mismatch introduces a significant effect on these results compared to the
model with homogeneous material. The calculations to evaluate the effect of the speed of
loading show that although the rate of crack growth increases with the increase in loading
rate, the crack growth resistance curves remain unchanged. The influence of element
orientation is investigated by introducing another model with a different angle for the
cohesive elements. The results show that in the latter model, the crack changes its direction
immediately to mode I after extension into the softer material. The results demonstrate
that the finite element models in which cohesive elements are imposed at the boundaries
of undamaged continuum elements suffer from the dependency of the orientation of the
cohesive elements. If the orientations of these elements are defined properly, the model has
the ability to perform mixed mode crack growth under dynamic loading while the cohesive
zone is rate dependent. The paper also shows that although the maximum load and the
crack speed change, the introduced resistance curve is almost insensitive to the considered
global changes.

Other articles

In addition to the mentioned articles, three other papers [8,11,12] have been prepared and
presented in scientific conferences. These articles are not printed in this dissertation.

Shortcomings of the present work

Using Gurson model to obtain cohesive properties has limited the applied cohesive models
to the simulation of ductile crack growth. In addition, Gurson model does not have the
possibility to model void growth when tangential load is high. Therefore, it is not possible
to obtain cohesive properties in the tangential directions based on Gurson type elements.

In paper II [7], it has been discussed how the recommended approach has limitations for
low values of stress triaxialities. It should be noted that it does not mean any limitations
for using Gurson model or cohesive models when the stress triaxiality is relatively low. It
means that if a single Gurson model is used to obtain cohesive energy, as proposed in the
present work, modifications are necessary to be performed on the obtained cohesive energy
when the value of applied stress triaxiality is relatively low.

In all the analyses, only 2D elements (plane strain, axisymmetric, plane stress) elements
have been used. Using 3D elements extends the application of the present procedure
and can improve the accuracy of the results. The finite element model used with the
cohesive elements has also the limitation of having the crack move on the boundaries
of continuum elements. This limitation has made the crack growth dependency on the
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element orientation.
In using split-Hopkinson tension bar, the digital camera was not synchronized with the

test rig measurements. This drawback can slightly affect the experimental curves obtained
for diameter reduction vs. time.

Recommendations for future works

Cohesive elements which are compatible with shell elements have recently been introduced
by other authors, see e.g. [114]. Using rate dependent cohesive elements as proposed here,
but in models with shell elements will be of more interest for automotive and aerospace
industry.

Adiabatic heating can play an important role in crack propagation, especially for fast
running cracks. If cohesive elements which are temperature dependent in addition to rate
dependent are used, they will improve the results of simulations in comparison with tests.
In general, the developed subroutine proposed here has the ability to consider different
local effects simultaneously. If these effects are considered correctly, they can be used
in different loading and geometric cases without the need to consider major changes in
cohesive properties. It should also be reminded that the experimental rate dependency
obtained is for the strain rates up to 1000 1/s and the related curve has been extrapolated
for higher values of strain rates. Obtaining rate dependency of the material for higher
strain rates can also improve the simulation results.

A bi-material model is assumed for the welded joints which is a major simplification
for welded joints. If the aim is to compare the simulation results with real welded joints
tested, this simplification will be considerable. To improve the model, it is recommended
to use rate dependent cohesive elements with tri-material. Recently, cohesive elements
have been used under dynamic loading conditions for functional graded materials (FGM).
Similar approaches, but for rate dependent cohesive elements, can be used for welded
joints in which graded inhomogeneity of material is considered. It should be reminded that
considering FGM in this case might be complicated and needs high amount of information
on material properties at the weld area.
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Dynamic Fracture and Cohesive Zone
Modeling

Abstract

The increasing application of aluminum alloys in automotive and aerospace industries and
the importance of estimating the effect of growing cracks on the energy absorption of the
structures under dynamic loading, e.g. crashworthiness, is an important issue nowadays.
Since in many cases, the failure mechanism in such structures is ductile, it will be very
useful for design purposes to provide a reliable numerical model which can simulate ductile
crack initiation and growth under dynamic loading conditions. One of the important
applications of the model is for the aluminum welded structures which is a multi material
case.

This chapter reviews the physical aspects that are necessary to be explained in or-
der to solve ductile dynamic crack growth problems. The emphasis will be on using
local approaches and in particular cohesive elements for simulating crack growth under
dynamic loading conditions. Section 1 addresses macroscopic linear elastic fracture me-
chanics (LEFM) and elastic plastic fracture mechanics (EPFM) in quasi-static cases and
their limitations. Section 2 discusses the effect of dynamic loading on structures and the
related important phenomena. In section 3, local approaches and specifically cohesive zone
modeling are discussed. Section 4 pays attention to the application of Gurson type models
and cohesive zone modeling in simulation of fast running cracks. Section 5 has a brief
review on the application and fracture simulation of aluminum weldment. In section 6,
split-Hopkinson tension bar as the test rig used in the thesis is reviewed briefly.

1 Macroscopic fracture mechanics

Macroscopic fracture mechanics represents formulations in order to obtain the stress and
strain distribution in structures containing crack(s). It also represents criteria to predict the
capacity of structures to resist the growth of the existing cracks. This field of mechanical
science is generally divided into ”linear elastic fracture mechanics” (LEFM) and ”elastic
plastic fracture mechanics” (EPFM).

1.1 Linear elastic fracture mechanics (LEFM)

Stress values around a crack tip are always higher than the surrounding material because
of geometric discontinuity. If this stress is lower than the yield stress of the material or the
nonlinear material deformation is limited to a very small region around the crack tip, linear
elastic formulations can be used. In this case, the theory of elasticity can be employed to
calculate the stress field at the crack tip area.
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Figure 1: Stresses and coordinates at the tip of an arbi-
trary crack

The stresses for a material element shown in Fig. 1, for r → 0, is expressed as:

σij =
K

√
2πr

fij(θ) (1)

As Eq. 1 is derived for an arbitrary crack in an arbitrary body with an arbitrary loading,
it must be able to describe the stress distribution for each and every crack in each and
every elastic body. Therefore, K will appear in every crack problem. K is known as the
stress intensity factor and is shown by KI , KII and KIII depending on the direction of the
stresses at the crack tip. In a general form, K can be expressed as:

K = β(
a

L
, mode of loading)σ

√
πa (2)

where β is an elastic geometry factor, σ is the applied stress, a is the crack length and L is
a length dimension describing the geometry of the cracked body. Equation 2 shows that K
is not only dependent on the mode of loading, but also the crack and the part dimensions.
Because of the simplicity with theory of elasticity, formulations have been developed to
obtain β as functions of different geometries and loading modes.

Fracture will occur when the stresses at the crack tip exceed a value which the material
can bear. This means that the fracture can occur when K becomes too high for the
material. The allowable maximum value of K for each material can be obtained by test
and is known as the fracture toughness of the material shown as Kc.

If yielding happens at the crack tip area, the size of the plastic zone at the crack plane
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will be:

rp =
K2

απσ2
y

(3)

where σy is the yield strength of the material and α is a parameter depending on the stress
state at the crack tip (α=2 for plane stress and α=6 for plane strain). The size of plastic
zone can be used as a measure for validity of LEFM approaches.

Based on Eq. 1, the stress becomes zero far from the crack tip which is incorrect since
this value is equal to the applied stress. The reason is that Eq. 1 does not provide the
complete solution which is a series of terms. In fact, the stress value normal to the crack
surfaces on the symmetry line for mode I loading is:

σyy =
KI√
2πx

+ Cx0 + Dx
1

2 + Ex1 + ... (4)

It should be noted that Eq. 3 was derived using only the first term of the stress distribution
in Eq. 4. If the plastic area is so large that the other terms of the stress series come into
play, stress values will not be only a function of K and using the same K values does
not guarantee equal stress distributions. In this case, fracture is not likely to happen at
the same value of K known as Kc. Since rp depends on both K and σy, it is concluded
that Kc is better applicable for materials of low toughness and high yield strength. It is
worth noting that to obtain Kc from tests (usually on C(T) specimens), the obtained load-
displacement curves must be linear or close to linear to ensure small plastic deformation
at the crack tip. In the cases where plastic area at the crack tip is large (high toughness,
low yield strength), EPFM is used.

1.2 Elastic-plastic fracture mechanics (EPFM)

If the material surrounding the crack tip experiences local plastic stresses and the size of the
plastic zone is not ignorable, EPFM is used. Two important parameters that can charac-
terize the crack tip conditions are J contour integral and ”crack tip opening displacement”
(CTOD) of which only the former one is described briefly as follows.

Rice [105] introduced J integral in 1968. The J integral is defined as:

J =

∫

Γ

(

wdy − Ti
∂ui

∂x
ds

)

(5)

where w is the strain energy density, Ti are components of the traction vector, ui are the
displacement vector components, and ds is a length increment along the contour Γ around
the crack tip. Rice also proved, based on a theorem of Eshelby [42], that for hyperelastic
materials, this integral is path independent. The parameter is actually equivalent to energy
release rate, the rate at which energy is absorbed by growth of a crack, but in a nonlinear
elastic body. This condition does not put any restriction on the use of J only as long as
there is no unloading. In the other words, the resulting equations are valid for load control
cases, so that the fracture analysis is meaningful only up to the maximum load.

9



Regarding J integral being path independent (based on the deformation theory of
plasticity) and by considering power law for plastic stress-strain of material, Hutchinson [56]
and Rice and Rosengren [106] showed how J integral can describe the stress and strain
distribution at the region around the crack tip :

σij = σ0

(

EJ

ασ2
0Inr

)
1

n+1

σ̃ij (n, θ) (6)

and

ǫij =
ασ0

E

(

EJ

ασ2
0Inr

)
n

n+1

ǫ̃ij (n, θ) (7)

where In is an integration constant as a function of n, the strain hardening exponent of
the material. α is a dimensionless parameter used in the power law equations and σ̃ and ǫ̃
are dimensionless functions of n and θ. Equations 6 and 7 are known as HRR singularity
since they show stress and strain singularities (infinite stresses and strains at the crack
tip). It is worth noting that the analysis that results in HRR singularity does not consider
the effect of blunted crack on the stress field.

Similar to LEFM, it is possible to define a J value from test where the crack growth
is initiated. This J is known as the critical J or material toughness which ensures similar
stress and strain distribution at the crack tip area when fracture happens in a structure at
hand.

Using J integral as a single parameter to characterize crack tip conditions fails in the
presence of excessive plasticity. In such cases, fracture toughness is not a material property
anymore and depends on the specimen size and geometry and loading mode. This argument
was a motivation for developing two parameter fracture theories, one of which is the J −Q
methodology developed by O’Dowd and Shih [95, 96]. In this methodology, Q is defined
as:

Q =
σθθ − (σθθ)HRR

σ0

at θ = 0 and
rσ0

J
= 2 (8)

where σθθ is the stress value calculated from finite element analysis containing sufficient
fine mesh to resolve the field at length r = 2J

σ0
and (σθθ)HRR is the stress obtained from

HRR singularity formulation. Q in this case represents the constraint at the crack tip.
Based on the two parameters approach, a laboratory specimen must match the constraint
of the structure at hand, therefore the two geometries should have the same Q at failure
in order to have the same critical J .

2 Dynamic loading and fracture mechanics

Dynamic fracture mechanics is regarded in two general cases [91]: (i) Stationary crack
subjected to impact loading, impact fracture mechanics and (ii) Fast motion of the crack
tip, fast fracture mechanics . In both cases, additional influences compared to quasi-static
cases have to be considered: The high speed of deformation introduces stress waves in
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Figure 2: Propagation of a disturbance of magnitude σ
from the end of a bar of an elastic-linear plastic material
at two different times, t and 2t [73]

the structure. Inertia effects become significant and can affect the energy absorption of
the structure. Strain rate increases the flow stress and influences the strain hardening
of metals. And the local temperature increase due to adiabatic heating reduces the flow
strength and counteracts the strain rate hardening.

In general, flow stress in a uni-axial tension case can be expressed as:

σ = σ(ǫ, ǫ̇, Θ) (9)

where ǫ and ǫ̇ are strain and strain rate, respectively and Θ is the temperature.
In the following subsections, each of these influences are discussed in more details.

2.1 Stress waves propagation and inertia effects

Consider a straight bar influenced by impact loading at one end. The stress wave propa-
gation in the bar is expressed as:

∂2u

∂x2
=

1

c2
0

∂2u

∂t2
(10)

where c0 =
√

E′

ρ
is the characteristic longitudinal wave velocity in the uniform bar and

E ′ is the Young’s modulus of the material. Whether the material is elastic or plastic, the
wave speed is different. Figure 2 shows how plastic stress wave is slower than elastic one.

When the longitudinal stress wave is moving in the bar, another wave is introduced
normal to the longitudinal direction because of poisson’s ratio which is called dilatational
wave with the velocity of cd. It can also lead to a shear or transverse wave propagation with
velocity cs. For the elastic case, the mentioned wave velocities can be presented as [73]:

Cd =

√

E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, Cs =

√

G

ρ
=

√

E

2ρ(1 + ν)
(11)
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Figure 3: Dynamic loading of a wire of mass m and
impulsive amplitude created by the shock in the case of
elastic behavior of the wire [124]

The other stress wave introduced in structures is Rayleigh surface wave, CR, e.g. see
Freund [45]:

CR = Cs
0.862 + 1.14ν

1 + ν
(12)

To evaluate how these waves induce stress in a structure, consider a wire of mass m
with cross section A impacted by heavy mass M (Fig. 3). For elastic behavior, we will
have:

Mg(h + δl) =
1

2

σ2
m

E
Al (13)

and for h >> δl:

σm = ρV c0

√

M

m
(14)

Figure 3 shows that the stress waves in two ends of the wire have time difference and σm

is obtained after some time. It can also be shown that the stress initially transmitted to
the wire is proportional to the speed, not the mass. The value of elastic stress wave in the
continua is:

σm = ρV c0 (15)

Therefore, the stress wave introduced is not only a function of material density (inertia
effect), but also the speed of the load. Since a uniaxial stress wave can introduce multiaxial
stresses with different speeds, Eqs. 11 and 12, the stress state at a crack tip, whether it
is a fast running crack or a crack under high speed of loading, is a function of time and
is different from quasi-static cases. For example, these multiaxial stress waves can lead

12



Figure 4: Equivalent stress-strain curves for mild steel
[4]

to crack closure [126] and local unloading at the crack tip or produce lateral tensile or
compressive stresses in the structure [40]. Inertia can also affect localization in structures.
For example, when long tensile bars are loaded by high speed deformation, more than one
necking can happen [22, 90].

2.2 Strain rate sensitivity and thermal effect

A material is rate sensitive if the stress-strain curve changes with the rate of loading. A
sample of this phenomenon is shown in Fig. 4.

El-Magd et al. [41] showed that applying static stress-strain curve in crash analysis
of aluminum car structures would cause a wrong prediction of fracture, and that it is
necessary to consider rate sensitivity of the material. Many studies on ductile dynamic
fracture [16,17,39,53,71,85,87,93,143] are based on strain rate viscoplastic solid as follow
[98]:

˙̄ǫpl = ǫ̇0

(

σ̄

g (ǭ, Θ)

)(1/m)

(16)

where ˙̄ǫpl and ǫ̇0 are the plastic and a reference strain rate, respectively. m is a rate
exponent and m → 0 means rate-independent material. g function is defined as:

g (ǭ, Θ) = σ0 [1 − β (Θ − Θ0)]

[

1 +
ǭ

ǫ0

]N

(17)

where N is the strain hardening of the material and β is known as thermal softening
coefficient. Θ0 and σ0 are reference temperature and stress, respectively and ǭ is the
equivalent plastic strain. If there is no temperature change due to adiabatic heating or
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material is insensitive to temperature change, Eq. 17 is simplified to:

g (ǭ) = σ0

[

1 +
ǭ

ǫ0

]N

(18)

Although Eqs. 16 and 18 have widely been used in the literature, ABAQUS finite
element code [1] uses Cowper-Symonds law [33] named ”overstress power law” as:

˙̄ǫpl = D(Θ, fi)

(

σ̄

σ0
− 1

)p(Θ,fi)

(19)

where D(Θ, fi) and p(Θ, fi) are material parameters that can be functions of temperature
and, possibly, of other predefined state variables. The other parameters are the same as
used in Eq. 16 and σ0 is the same as g function in Eq. 17. It is worth noting that if σ̄ and
σ0 are considered to be the yield strength of the material at a certain strain rate and at
quasi-static conditions, respectively, and D and p are constant, Eq. 19 is reduced to pure
isotropic hardening case in which viscosity, i.e. time dependent effects, are not considered.

When the rate of deformation in a structure is high and failure intends to happen in
a short time, the material does not have enough time to transfer the heat induced caused
by plastic dissipation to the environment. Therefore, the structure heats up locally. The
phenomenon is called adiabatic heating and can result in a decrease of flow stress of the
material. The effect of temperature on flow stress has been included in Eq. 17. The heat
increase can be calculated by this equation:

ρcp
∂Θ

∂t
= ησ : ǫ̇

pl (20)

where Θ is the temperature, σ : ǫ̇
pl is the inner product of stress and plastic strain rate

tensors, ρ is density, cp is the heat capacity, and η defines the fraction of plastic strain
energy converted to heat and its typical value for metals is 0.9 [125].

2.3 Dynamic J integral

In a cracked body under quasi-static loading, the conservation of energy reads:

d

da
(F − U − W ) = 0 (21)

or
d

da
(F − U) =

dW

da
(22)

where F and U are the work done by the applied load and the strain energy stored in
the structure, respectively. W is the energy required for the fracture and da is the crack
extent. Fracture will occur when enough energy can be delivered to provide for the fracture
energy. dW

da
is the energy release rate.
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In dynamic fracture, kinetic energy due to the dynamic deformations and inertia needs
to be considered which reads:

dW

da
=

d

da
(F − U − K) (23)

Therefore, the energy release rate for a steady state dynamically propagating crack in
a plate can be expressed as:

G =
1

B

(

dF

da
−

dU

da
−

dK

da

)

=
1

B.V

(

dF

dt
−

dU

dt
−

dK

dt

)

(24)

where B is the plate thickness, K is the kinetic energy stored in the plate, and V is the
speed of the crack growth. Similar to quasi-static cases, to obtain macroscopic behavior
and fracture toughness in dynamic case, dynamic J integrals should be defined based on the
energy release rate. Nishioka and Atluri [92] presented path-independent elastodynamic
J-integral and later Atluri, Nishioka and Nakagaki [14] derived the general form of path-
independent integral for nonlinear dynamic fracture mechanics and called it T ∗.

Dynamic J integral formulation for numerical simulations was also presented by Naka-
mura et al. [79] and Moran and Shih [76] who added more terms to Nakamura’s equation
which involves an area integral as well as a line integral. It is important to consider that
the integral is not path-independent like quasi-static cases and does not necessarily serve
as a characteristic parameter, see Needleman and Tvergaard [85]. They showed that J is
path-independent only in early stages of crack blunting and decreases smoothly as plastic
flow becomes more extensive and the value of the area integral is typically 8 to 10 percent
of the total J value. On the other hand, Basu and Narashimhan [17] showed numerically
that similar to quasi-static loading, J integral is not the only parameter to characterize the
dynamic elastic-plastic crack tip fields. Therefore, they considered Q parameter in their
analyses and showed that constraint effect under dynamic loading can be considerably
different and even more important than quasi-static cases. They also showed that Q is a
function of both J and its time derivative.

2.4 Scales in dynamic fracture

In general, dynamic fracture is important when the inertia of relatively large pieces of
material is large enough to balance the energy of fracture required, including the kinetic
energy. For a propagating crack, dynamic effects are important when the crack tip speed
is considerable compared to stress wave velocities. This is the necessary condition for
macroscopic dynamic fracture, otherwise, all fractures are dynamic at some scale [34]. For
example, at the atomic scale, the most fundamental for understanding crack propagation
is the inertia of individual atoms even when the crack at the macroscopic scale appears to
be advancing quasi-statically. Atomic studies, largely represented by molecular dynamics
simulations, have been used significantly to date to provide fundamental understanding of
underlying basic physical processes of dynamic fracture, rather than being predictive or
specific to a particular material.
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Figure 5: Different micromechanisms of fracture in met-
als under monotonic loading conditions [5]

In addition to macroscopic and microscopic scales, geological scales and atomic scales
are important in dynamic fracture regarding their applications in different fields. For
example, earthquake modeling is concerned with dynamic shear cracks under slow loading.
Although the load is slow, it is shown that there is a complex phenomenon of dynamic
cracking under such conditions [20].

For a comprehensive review of the different scales on dynamic fracture, see [34].
In the present thesis, microscopic and macroscopic scales have been in focus. In this

way, mechanisms of nonlinear damage at microscopic scale are simulated and the analyses
are performed for an appropriately defined problem in macroscopic fracture.

3 Fracture mechanisms in metals - local approaches

In order to obtain a good understanding of fracture process and simulating crack initiation
or growth, it is necessary to understand what happens in the material at micro scale
under slow or fast loading conditions. Under the influence of monotonic loading, the
most common fracture mechanisms in metals and alloys are ductile fracture, cleavage and
intergranular fracture, Fig. 5. Ductile materials usually fail as the result of nucleation,
growth and coalescence of microscopic voids that initiate at the inclusions and second
phase particles. Cleavage fracture involves separation along specific crystallographic planes.
Intergranular fracture occurs when the grain boundaries are the preferred fracture path in
the material. This article reviews only ductile fracture as the main fracture mechanism for
aluminum alloys at room temperature.
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The limitations regarded to analytical and macroscopic fracture mechanics approaches
were briefly explained in the previous sections. Because of the limitations of macroscopic
approaches, another approach has been developed since the 80s called ”local approach”
to model the fracture based on the local fracture criteria (see e.g. [21, 77, 101, 102, 109]).
The general advantage with these approaches is that the parameters of the respective
models depend only on the material, and not on the geometry. Therefore, by using these
approaches, it is possible to transfer fracture criteria from specimens to structures over a
wide range of geometries and dimensions as long as the fracture mechanisms are the same.

The first approaches [21, 77], used a conventional behavior for the material supple-
mented by models of local fracture processes to model brittle fracture. In later studies,
softening due to the micromechanical mechanisms of damage was introduced locally to
model ductile fracture [52, 104, 109]. In these models, an equation for the evolution of
damage variables and a correlation between damage variables and stress and strain are
needed to be established. For that purpose, a representative volume element (RVE) is
used as a volume element of the material. In an RVE, the microscopic properties and
mesoscopic quantities are linked in order to generate a macroscopic constitutive equation
for the material damage. A material element can have its complexity regarding microstruc-
tural damage and with increasing this complexity, the possibility to obtain an analytical
constitutive equation decreases. In practice, using relatively simple unit cells can be used
to simulate ductile damage mechanism. For example, Koplik and Needleman [62] used a
plastically deforming matrix containing a spherical void to model void growth and coales-
cence with respect to Gurson model [52]. In addition to micromechanically based models,
there are phenomenological models for material separation introduced as material elements
surrounded by elastic-plastic non failure material. The most widely known of the former
approach is the Gurson model, which was later improved by Tvergaard [133] and Tver-
gaard and Needleman [140] known as Gurson-Tvergaard-Needleman or GTN model. The
most well-known phenomenological model is cohesive zone model. Each of these models
are described in the following.

3.1 Gurson type model

Ductile crack growth consists of three main steps: Void initiation from second phase in-
clusions, void growth, and finally, void coalescence. To obtain the related constitutive
equation for damage in this case, not only equivalent stress, but also hydrostatic stress is
important. Maybe the most well known work in this regard was performed by Gurson [52]
in 1977. He examined different material unit cells including isolated voids. He considered
the material surrounding the void to be rigid-plastic and obtained a constitutive equation
for cylindrical and spherical void shapes. The following approximate yield function is the
result of his work:

Φ =
σ2

e

σ̄2
+ 2fcosh

(

3σh

2σ̄

)

− 1 − f 2 = 0 (25)

where σ̄ is the matrix yield strength, f is the void volume fraction and is defined as the
volume of void divided by volume of the cell. With σ the stress tensor and I the second
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order identity tensor, σh and σe will be:

σh =
1

3
trace(σ), σe =

√

3

2
S : S, S = σ − σhI (26)

Tvergaard [133] modified Gurson model by adding three additional parameters:

Φ =
σ2

e

σ̄2
+ 2q1fcosh

(

3q2σh

2σ̄

)

− 1 − q3f
2 = 0 (27)

He suggested that q1 = 1.5, q2 = 1 and q3 = q2
1 . Details on how to find q values are

explained elsewhere [135].
The Gurson model presented by Eq. 25 does not contain any separate coalescence cri-

terion. To facilitate coalescence predictions by the Gurson model, Tvergaard and Needle-
man [140] proposed an effective void volume fraction f ∗ as follows:

f ∗ =

{

f , f ≤ fc

fc + f∗

u−fc

ff−fc
(f − fc) , f > fc

(28)

where ff and fc denote the void volume fraction at failure and at a critical situation at
which f starts to deviate from f ∗. f ∗

u is the value of f ∗ at fracture. The combination of
Eqs. (27) and (28) is known as Gurson-Tvergaard-Needleman or GTN model.

In general, the evolution of void volume fraction results from growth of the existing
voids and nucleation of new voids. Chu and Needleman [28] presented the following void
nucleation rate criteria whether they are strain or stress controlled as:

ḟn
nucleation =

fn
N

Ss
N

√
2π

exp

[

−
1

2

(

ǫp − ǫN

Sn
N

)2
]

ǫ̇p (29)

ḟ s
nucleation =

f s
N

Ss
N

√
2π

exp

[

−
1

2

(

σeq + σm − σN

Ss
N

)2
]

(σ̇eq + σ̇m) (30)

where fn
N and f s

N are the volume fractions of void nucleating particles, Sn
N and Ss

N are the
standard stress deviations, and ǫN and σN are the mean nucleation strain and nucleation
stress respectively. The strain controlled nucleation can be used for small particles and the
stress controlled nucleation is proper for large inclusions [71].

The application of the approach in dynamic cases will be reviewed in section 4.1.

3.1.1 Complete Gurson model

Zhang et al. [154] presented another version of the Gurson model which they called ”com-
plete Gurson model”. They used Thomason’s coalescence criteria [128] combined with the
Gurson model and succeeded to eliminate critical void volume fraction (in Eq. 28) which
works well only for low stress triaxiality cases, and slightly worse for high stress triaxial-
ity cases [62]. They also proposed final void volume fraction to be a function of initial
void volume fraction. The research has been done for quasi-static loading only and no
investigation has been performed in dynamic cases as yet.
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3.2 Models of ductile fracture micromechanisms under dynamic

loading

The ductile fracture micromechanisms in quasi-static cases, Gurson type model and also
the macroscopic influences of dynamic loading have been explained briefly in the previous
sections. To develop Gurson constitutive equations in dynamic cases, two subjects need to
be considered: (i) how to consider the effect of strain rate, inertia and temperature increase
in the constitutive equations and (ii) how and if the Gurson parameters are influenced.

It was shown in the previous section that void nucleation formulations, Eqs. 29 and 30,
are defined as the functions of changes of stress and/or strain versus time. A similar set
of equations can be used for dynamic cases, see e.g. [85].

During the last decades, many investigations have been performed on void expansion
simulation under dynamic loading. The first step in this regard is to consider the stress in
the constitutive equation not only as a function of strain but also strain rate and temper-
ature. A pioneering work on considering the effect of material rate sensitivity in Gurson
type equations was performed by Pan et al. [98] and was developed by Needleman and
Tvergaard [85] to consider the void nucleation and temperature increase in addition to
rate sensitivity. Whether the deformation is slow or fast, the rate of the increase of void
volume fraction for an incompressible matrix material is:

ḟgrowth = (1 − f)ǫ̇pl : I (31)

In rate-dependent representation of Gurson constitutive equation, Φ serves as a plastic
potential [98] and the plastic part of the rate of deformation is taken normal to the flow
potential as:

ǫ̇
pl = Λ̇

∂Φ

∂σ

(32)

By setting the rate of the plastic work equal to the matrix dissipation, we will have:

σ : ǫ̇
pl = (1 − f)σ̄ ˙̄ǫ (33)

and the plastic work proportionality factor, Λ̇ is determined as:

Λ̇ =
(1 − f)σ̄ ˙̄ǫ

σ : ∂Φ
∂σ

(34)

The effect of temperature increase and the strain rate on stress-strain curve of the
matrix material can be calculated by the equations shown in section 2.2.

Finally, the rate of deformation (total strain rate) will be calculated as the sum of an
elastic part, a plastic part and a part due to thermal straining. Based on the Hooke’s law,
the Jaumann stress rate will then be calculated as:

σ̇ = C :

(

ǫ̇ − Λ̇
∂Φ

∂σ

− αΘ̇I

)

(35)
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Figure 6: Long circular cylindrical cell model [53]

where C is the modulus of elasticity tensor and α is the thermal expansion coefficient of
the material.

For details on how to implement the above formulations to a numerical finite element
code like ABAQUS, see [78].

In the formulations obtained above, the influence of micro-inertia in a single RVE has
been ignored. The inertia effect on crack growth can be considered in macroscale in the
form of transient dynamic analysis performed for a structure containing elements which
obey dynamic Gurson type constitutive equations. The application of dynamic Gurson
type models in simulating fast fracture or impact fracture will be reviewed in section 4.1.
To consider the micro-inertia effects in a Gurson constitutive equation, Hao and Brocks [53]
combined Eq. 35 and the momentum balance equations for a long cylindrical cell model,
Fig. 6. The resulting radial stress was then obtained as sum of two parts, one part related
to viscoplasticity of the material and the second part due to the inertia effects. The
mesoscopic yield function they developed was not only a function of temperature, strain
rate and material properties like thermal expansion coefficient and rate sensitivity, but also
the cell outside diameter, 2b0, which the spacing of void nucleation sites, and density of
the matrix material:

Φ =
σ2

e

σ2
Y 1

+ 2q1fcosh

(

3q2σh

2σY 2

)

− 1 − q3f
2 (36)

where σY 1 and σY 2 are functions of porosity (f), strain rate, temperature, cell outside
radius, visco plastic strain and the matrix material properties (for example, the effect of
material density is considered in σY 2).

The importance of micro-inertia on the expansion rate and coalescence of the voids
depends on the rate of deformation, spacing of the voids, material porosity and density.
Johnson [58] considered a hollow sphere of inner and outer initial radii as b0 and a0 respec-
tively for the cell model, Fig. 7. He considered an incompressible perfectly plastic material
with mass density of ρ, and succeeded to obtain a relationship between the stress σb and

20



Figure 7: Relation between the normalized tensile stress
applied on the outer surface of the sphere and the time
to rupture. a0,b0: inner and outer radius of unit cell.
tR: time to rupture, ρ: material density. [58]

the time to rupture tR as shown in Fig. 7. The figure shows that if b0

tR
√

σ0/ρ
is larger than 2,

which means tR is less than 1
2

b0√
σ0/ρ

, the effect of the inertia of individual voids is important.

In this case, if we consider the crack growth speed as 2b0
tR

, it means that crack speed must

be more than 4
√

σ0/ρ. Based on these results, the inertia effect is important when the
crack speed is higher than 1200 m/s in high strength steel (σ0=790 MPa, ρ=7720 kg/m3)
and higher than 1100 m/s for aluminum alloy 6XXX series (σ0=225 MPa, ρ=2710 kg/m3).
A similar result had been obtained by Glennie [49] in 1972 who considered dynamic growth
of void in a plastic material subjected to a far-field starin rate and mean normal stress.

He concluded that micro-inertia is important when 3σ0 ≈ 3
2
ρ
(

b0
tR

)2

or 2 b0
tR

≈ 4.83
√

σ0

ρ
.

Curran et al. [36] considered rate sensitive material for a hollow sphere of internal radius
a subjected to internal constant pressure P0. The considered material was rigid, perfectly
plastic with a viscosity coefficient. Numerical investigation for aluminum alloy (Fig. 8)
showed that the inertia effect becomes important for quite large voids larger than 10 µm
and for a wide range of radii a, maximum rate governs by the viscous regime only. Klöcker
and Montheillet [60] studied the effect of hydrostatic load and inertia on the expansion of
a spherical void subjected to an axisymmetric deformation similar to a notched round bar
for the case where stress flow obeys the rule σ = σ0 + νǫ̇eq and showed the important effect
of inertia when ǫ̇ >1000 s−1. They showed that triaxiality and inertia are both important
parameters in the void expansion rate.
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Figure 8: Void expansion rate as a function of void ra-
dius in aluminum under a hydrostatic tensile stress [36]

In all of the references mentioned up to now, the void and cell shapes are either spherical
or cylindrical. There have been researchers who have considered other shapes in micro-
mechanisms based constitutive equations, e.g. [47, 50]. In this overview, only Liu’s [69]
investigation is shortly presented. He developed a dynamic void growth model including
strain rate, void shape, and inertia effect as a combined set. The void shape he consid-
ered was ellipsoidal. He used elastic rigid plastic rate sensitive material and combined
the constitutive equations developed by G̊ar̊ajeu et al. [47] and Molinari and Mercier [75].
His model is reduced to G̊ar̊ajeu’s model when the inertia effect is neglected and returns
to Molinari’s model when the void shape effect is ignored (spherical void and cell shape).
Obviously, the model decreases to Gurson model, when both of the mentioned parameters
are ignored. He concluded that higher initial void volume fraction decreases the effect of
inertia. He also showed that void shape can influence inertia effect remarkably only when
the triaxiality is low, but when the triaxiality is high, spheroidal shape will change to
spherical. He also demonstrated that increasing strain rate will increase the inertia effect,
but this effect is significant only when the strain rate is over 10000 1/s for aluminum alloy.

The other complicating factor in developing ductile fracture process, whether it is slow
or fast, is that voids can join by mechanism other than simple expansion up to coalescence.
Fracture surfaces often show evidence of plastic strain localization in ligaments between
voids resulting in coalescence by shearing of the ligament [135]. These shear bands can
be divided into two types; those in which thermal softening role is negligible which are
called isothermal shear bands and those in which thermal softening is very effective which
are called adiabatic shear bands. Localization of deformation in a narrow band makes a
thermo-plastic instability. Plastic shear gives rise to adiabatic heating in the band and
therefore the flow stress decreases in that region. Because of this flow stress decrease and
the geometry of the band, very high local strains exist in that region. These bands prop-
agate similar to mode II fracture and are formed preferably in compressive zones and at
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Figure 9: Strip-yield models, Dugdale (left) and Baren-
blatt (right). σ0 and σ(x) are the resisting stresses (co-
hesive stresses) at the crack tip

high strain rates. Adiabatic shear banding is prominent at large local strains (order of 5
to 10), high shear strain rate (order of 104 − 106s−1) and high local temperature (increase
of order 500oC) [73]. Under adiabatic deformation condition, the equation of energy con-
servation is the same as Eq. 20. Such discussions arise the question that how much the
coalescence criterion and parameters recommended in a GTN model are influenced by the
rate of loading. Doing cell calculations and comparing them with GTN model calculations
for rate and temperature dependency values of steel, Brocks et al. [25] showed that loading
rate has little effect on critical void volume fraction (fc) in the GTN model. This low
effect of rate of loading on critical void volume fraction was also shown by Sun et al. [122]
through comparison of simulations and test on Charpy-V and SENB specimens.

3.3 Cohesive zone model (CZM)

A phenomenological local approach used for the numerical simulation of crack propagation
is known as the cohesive zone model. The idea is based on the pioneering work by Dug-
dale [38] and Barenblatt [15] who introduced the strip-yield model. Both authors divided
the crack into two parts as shown in Fig. 9: One corresponds to the physical length of the
crack, which is stress free, and the other one is the fracture process zone, where yielding
and degradation of the material occur and which is loaded by a finite stress named cohesive
stress. Later developments of cohesive models, particularly in combination with finite ele-
ment method, e.g. [55,80,100,135], considered the cohesive stress as a function of material
separation and not of the distance from the crack-tip as Barenblatt did. In finite element
representation of cohesive zone models, cohesive elements are introduced as interface be-
tween continuum elements and damage occurs only in the interface elements which obey a
constitutive equation named traction separation law (TSL), Fig. 10. Separation in these
elements is calculated from the difference of the displacements of the continuum elements
adjacent to them. The maximum opening at which the cohesive element completely fails
is called critical separation, δ0, and is one of the fracture parameters. The other fracture
parameter is the maximum traction or cohesive strength, S. The area under the TSL is the
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Figure 10: Cohesive zone obeying a TSL and the surrounding undamaged elastic-plastic
material

energy absorbed by the cohesive element and is known as the cohesive energy, Γ0:

Γ0 =

∫ δ0

0

T (δ)dδ (37)

where δ is the opening and T (δ) is the traction of cohesive element as a function of the
opening. If the shape of a TSL is known or presumed, having two of the aforementioned
parameters is enough to define the cohesive law. Note that δ is not only a normal opening,
but it can be a combination of normal and tangential openings. In 3D case, there are one
normal and two tangential displacements and of course three tractions. Further discussions
on this subject, related to mixed-mode conditions, will be presented in section 3.3.4.

3.3.1 Shape of traction separation law

Since the cohesive model is known as a phenomenological model, authors have introduced a
variety of formulations for defining the shape of TSL and the cohesive values. For example,
Needleman [80] considered the following function:

T (δ) =
27

4
S

δ

δ0

(

1 −
δ

δ0

)2

(38)

where δ is the opening. The form of the function is shown in Fig. 11(a).
Needleman [81] also proposed another function as exponential form to simulate ductile

crack growth:

T (δ) = zSe
δ

δ0

exp

(

−z
δ

δ0

)

(39)

where e = exp(1) and z = 16e/9. The form of the function is shown in Fig. 11(b). Note
that in this model, the traction is not zero at δ = δ0.
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The model represented in Fig. 11(c) was proposed by Hillerborg et al. [55] for brittle
materials, e.g. rocks. The models shown in Fig. 11(d) were proposed by Bazant [18] and
Guinea et al. [51].

Another model has been proposed by Scheider [111, 113] as shown in Fig. 11(e). The
model covers the area in which the traction is constant and does not change with opening.
Besides, changing the values of δ1 and δ2 parameters, one can obtain various behaviors
from the introduced model to make it closer to Needleman’s cubic model or to Hilleborg’s
model. A similar model had already been introduced by Tvergaard and Hutchinson [138]
as shown in Fig. 11(f), but the main difference in Scheider’s model is that the obtained
curve is continuously differentiable to avoid numerical problems. Traction as a function of
opening in this definition is:

T = S



















2
(

δ
δ1

)

−
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Although it has been claimed that the shape of TSL does not have or has very little
influence on crack growth behavior [66, 81, 120, 138], there are a few works that show
higher effects of the shape [44, 112, 151]. For example, Scheider and Brocks [112] showed
numerically that not only the shape of TSL can affect load-displacement behavior, but
also the different TSL shapes that make the same results in one specimen, might make
different results in another fracture specimen (Fig. 12). Falk et al. [44] showed that if the
TSL is initially rigid, the model can not capture crack branching using a regular finite
element mesh. They discuss that it is possible to capture branching when the TSL has
initial elasticity, although initial elasticity of the cohesive elements alerts the linear elastic
response of the body containing these elements.

Uncertainties like these arises the question if it is possible to give a physically meaningful
TSL for cohesive elements. The discussions are presented in the next section.

3.3.2 Micromechanism based cohesive law

Considering Eq. 22 with a simple reordering and separating the total strain energy into
elastic and plastic parts, we will have:

dF

da
=

dUel

da
+

dUpl

da
+

dW

da
(41)

Turner [131,132] introduced total energy dissipation rate, R, as a non-recoverable dissipated
energy to be:

R =
dUdiss

da
=

d

da

(

F − Uel
)

=
dUpl

da
+

dW

da
= Rpl + Γ0 (42)

where Rpl is the plastic strain energy fraction of the dissipation rate and can be calculated
by elastic-plastic finite element analysis. To separate the dissipated energy into the plastic
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Figure 11: Various shapes of TSL [24]. δN :
normal opening, TN : normal traction, Γ0:
cohesive energy

(a) (b)

Figure 12: The effect of TSL shape on the mechanical
behavior of fracture specimens. (a) C(T)specimen, (b)
M(T) specimen. Numbers inside the charts are the ratio
of cohesive energy to cohesive strength [112]
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Figure 13: simulating ductile crack growth by a layer of
cell elements at the ligament

dissipation energy and the energy of separation, Γ0, local approaches can be used. In
the finite element representation of ductile fracture, crack growth can be simulated by
one or more layers of elements at the crack tip area obeying constitutive equations for
porous metal plasticity like a GTN model (Fig.13), see e.g. [110, 146]. If we suppose
that each of these elements (cells) contain reasonably sufficient information about crack
growth in the material, we can apply tensile loading on a single element to obtain its
cohesion-decohesion behavior. The area under the cohesion-decohesion curve is regarded
as the energy of separation and the curve can be considered as TSL for cohesive elements.
Cohesive elements with the obtained TSL can be used for CZM as explained in sec. 3.3.
Figure 14 shows schematically how a cell model is used to obtain TSL for a representative
cohesive element and the use of cohesive elements in the ligament. By using cell elements to
obtain cohesive element properties it is possible to calculate the effect of local variables, e.g.
stress triaxiality and strain rate on TSL. This statement is valid as long as the constitutive
equations of the cell model has the capability to capture these variables properly.

The mechanical work dissipated per crack growth increment in one finite element with
dimensions w, b and h as width, thickness and height respectively is expressed as:

∆Udiss = ūdiss∆V (43)

where element volume is ∆V = wbh and ūdiss is the average dissipated energy in the
element. The energy release rate per crack extension increment or work of separation is
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Figure 14: (a) Cohesion-decohesion behavior obtained
from single element calculations and used as a TSL
(b)Cohesive elements at the ligament to simulate ductile
crack growth

then calculated as:

Γ0 =
ūdiss∆V

∆A
=

ūdiss∆V

b∆a
∝ h (44)

Variable h is the characteristic length scale in damage models. Therefore if a single cell
element with unit height is used for obtaining TSL, the calculated area under the cohesion-
decohesion curve must be divided by h in order to be a correct representative of Γ0 for the
cohesive elements, see [118].

3.3.3 Unloading and reverse loading

Local unloading or reverse loading can happen because of global unloading, elastic waves
or crack branching. To study this phenomenon in cohesive elements, one has to divide
the separation into normal and shear separation and also to ductile and cleavage fracture,
see Fig. 15. As it is expected, when unloading happens in cleavage fracture, there is no
plastic strain remained in the element, Fig. 15(c). It is similar in the shear loading with
the difference that the resistance to opening can exist on reverse loading and therefore the
stress-displacement behavior obeys the original shape of TSL but in the opposite direction,
Fig. 15(d). Unloading for ductile cohesive elements is different. Load growth and inelastic
local separation are irreversible and therefore the unloading will be purely elastic with the
same elastic stiffness for loading [107], Fig. 15(a). Unloading in shear direction for ductile
fracture is similar to normal direction, but reverse shear is different since damage is due to
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Figure 15: TSL behavior at unloading for normal and
shear loading [111]

increase in both directions, Fig. 15(b). In this case, the stress-displacement behavior will
be similar to the loading TSL but in the opposite direction.

Even after the failure of the cohesive elements, reverse loading can happen. In this case
a TSL is applicable which simulates contact elements in a finite element model. For shear
loading, a TSL is applicable which simulates friction behavior for fracture surfaces.

3.3.4 Mixed mode fracture

It was mentioned before that δ in a cohesive element or a cohesive zone is not only a
normal opening, but it can be a combination of normal and tangential openings which is
the case for mixed-mode fracture. In 3D case, there are one normal and two tangential
displacements and of course three tractions. In these cases, shear damage can reduce
ductility in normal direction and vise versa. Therefore it is necessary to define traction
separation laws which reproduce this behavior.

Since the cohesive model is phenomenological, it is possible to define the TSL under
mixed mode in various ways. It should be noted that using RVE or cell models to obtain
mixed mode behavior is not well covered yet.

Tvergaard [134] defined a non-dimensional parameter λ as the equivalent dimensionless
displacement:

λ =

[

(

δN

δN,0

)2

+

(

δT

δT,0

)2
]( 1

2)

(45)
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and normal and tangential tractions are defined as:

TN =
δN

δN,0
F (λ) TT = α

δT

δT,0
F (λ) (46)

where F (λ) is a polynomial cohesive law. Subscripts N and T represent the normal and
tangential components, respectively.

A more general form of interaction between shear and normal separation can be defined
as [111]:

D =

[(

δN

δN,0

)ρ

+

(

δT

δT,0

)ρ](1/ρ)

(47)

where D is the damage parameter (D = 1 is equivalent to fully damaged element). For
ρ = 2, Eq. 47 will become the same as Eq. 45.

Camacho and Ortiz [26] considered different weights for the traction components by
weight factor βT :

σeff =
√

β2
T τ 2 + σ2 (48)

Keller et al. [59] represented a cohesive model named generalized cohesive zone model
(GCZM) in which TSL and the cohesive energy are related to mixed model propagation
probability. In their model, triaixlaity and the mode of crack growth are related. If
triaxiality is higher, failure mode I becomes more dominant. The importance of mixed
mode failure increases with decreasing triaxiality. The dependence of interface fracture
toughness and triaixality values on the degree of more mixity is discussed by Tvergaard
[137], too.

Another way to consider the influence of tangential opening on normal one, is to define
the traction in each direction not only as a function of opening in the the same direction
but also the other directions as proposed by Scheider [113]:

TN = TN (δN , δT ) = SN f (δN ) g (δT,0) , TT = TT (δT , δN) = ST f (δT ) g (δN,0) (49)

where
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and

g (δ) = 2

(

δ

δ0

)3

− 3

(

δ

δ0

)2

+ 1 (51)

In most of the simulations performed in the present investigation, only normal displacement
and traction have been considered. It is only in Paper III [10] that normal and shear
properties for TSL have been considered due to the mixed mode crack growth in the
welded structure. The formulation used in that article is based on Eqs. 49 to 51.
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It should be noted that the crack growth behavior in mixed mode not only depends on
the relation between TSL of tangential and normal directions, but also on the modeling and
orientation of cohesive elements when the interface elements are not considered randomly
in the model [113].

3.4 Rate-dependent cohesive model

Considering the relation between cohesive zone modeling and micromechanism of crack
growth in ductile materials, it is concluded that the rate of deformation might affect the
energy of separation. This means that the TSL considered for a fast running crack simula-
tion can be rate dependent. This rate dependency can be the rate of opening, strain rate,
temperature rate or even the rate of traction.

Although most of the investigations performed for rate dependency are for brittle or
semi brittle materials like ceramics, polymers and hard composites, there are a few works,
e.g. [120, 151], that show the importance of rate dependency in ductile fracture.

Rate dependency in CZM can be considered in both finite element analyses and ana-
lytical approaches.

3.4.1 Rate-dependent cohesive elements

There are various approaches to consider rate dependency of cohesive elements because of
phenomenological property of the model.

Corigliano and Ricci [30] considered the displacement in the interface to be the sum
of elastic and viscoplastic displacements. For the elastic part, traction-displacement re-
lationship is linear time independent and for the viscoplastic part, Perzyna [99] law of
viscoplasticity has been used for multiaxial loading cases. The viscoplastic interface model
response to different displacement velocities is shown in Fig. 16. It is observed that increas-
ing velocity increases the strength and also the critical displacement and that the curves
are parallel in the cohesion and decohesion parts.

Xu et al. [147] used standard linear solid (SLS) model that consists of a spring in
parallel to a Maxwell element which consists of a second spring and a dashpot in series.
In their consideration, the critical separation is taken to be constant and independent of
the rate. For the SLS considered, the equivalent modulus (or time dependent cohesive
strength over rate independent strength) becomes constant if the separation rate is either
low or high relative to the reference rate. At intermediate rates, the equivalent modulus
depends on the separation rate (Fig. 17). Similar assumptions were used in the rate-
dependent cohesive elements considered by Liechte and Wu [65]. In their investigation,
they considered nonlinear Kelvin unit (nonlinear spring and dashpot in parallel) for the
rate-dependent cohesive element. The rate-dependent cohesive force was then expressed
as the sum of the non-dissipative force (spring) and the dissipative force (dashpot):

f = fs(δ) + fd(δ̇) (52)
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Figure 16: Viscoplastic interface model: re-
sponse in pure mode at varying displacement
discontinuity velocity. u3 and t3 are opening
and traction of the cohesive element, respec-
tively. [30]

Figure 17: Traction-separation response
at different normalized material separation
rates [147]

32



The rate-dependent force was characterized by an increasing trilinear representation:

fd =


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(53)

Rahul-Kumar et al. [103] considered visco-elastic cohesive elements in which the rate-
dependent normal traction is:

Tnr = Tn (δ)

[

1 +

(

δ̇

δ̇0

)n]

(54)

where δ̇0 and n are the characteristic of the dominant damage mechanism and Tn is the
rate independent traction law and can be defined by any rate-independent TSL. They used
this idea and defined the stress change in the cohesive element by a function G as:

σ(t) = σ(ǫ)

∫ t

0

G
(

t − t
′

) dǫ

dt′
dt

′

(55)

In this way, the evolution of these cohesive tractions are coupled to the response of the
surrounding bulk material.

To consider the effect of temperature change on TSL, Estevez et al. [43] recommended
the viscoplastic separation as:

δ̇vp = δ̇0exp

[

−Acσc

Θ

(

1 −
T

S0

)]

(56)

where Θ is the temperature and Ac and σc are the model parameters. T and S0 are traction
and a reference traction, respectively. The total displacement is defined as:

δ = δel + δvp (57)

It is worth noting that most of the research in this field are for semi-brittle material
and visco-plastic cases.

3.4.2 Rate-dependent cohesive zone

In this approach, analytical models are presented for process zone, rather than cohesive
finite elements, where cohesive stresses are applied on an area at the crack tip.

To avoid ’noise’ problems existing in finite element solution of dynamic crack prop-
agation problems, Costanzo and Walton [31, 32] proposed a numerical solution strategy
to solve systems of integro-differential equations (similar to the equations used in finite
element analysis and finite difference method) for cohesive zone under the conditions of
dynamic crack growth. The bulk material was considered to be elastic. They studied both
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rate-independent and rate-dependent cohesive zones. They concluded that for the rate-
independent cohesive zone, whether linear or nonlinear, there is no limitation for crack
growth rate up to Rayleigh wave speed. They also examined two rate-dependent cohesive
models one of which has the form:

Trd = S + νδ̇ (58)

where Trd stands for rate-dependent cohesive stress, S is the rate-independent cohesive
strength and ν is viscosity coefficient. In the second model, there is a critical value for
displacement. When the opening displacement reaches this critical value, the cohesive
stress vanishes:

Trd =
(

S + νδ̇
)

(

1 −
δ

δ0

)

(59)

The discussions on the effect of rate sensitivity on crack growth behavior are postponed to
section 4.

Kubair et al. [63] used the following rate-dependent cohesive model for mode III fracture
in elastic medium:

Trd = Tri

(

1 + ν
δ̇

cs

)

(60)

where cs is the characteristic wave speed in the material and Tri is the linear damage-
dependent rate independent cohesive stress:

Tri = S

(

1 −
δ

δ0

)

(61)

Equation 60 was first introduced by Glennie [48]. Solving the related analytical equations
with different numerical methods, they concluded that numerical difficulties while solving
the steady-state problem mentioned previously by Langer and Lobkovsky [64] were due to
the solution method employed and did not depend on the choice of the cohesive model.

Zhang et al. [151] considered viscoplastic solids and analyzed mode I steady-state dy-
namic crack growth under small scale yielding conditions. In the plastic region, the cohesive
law was assumed to be both strain hardening and rate dependent. The process zone was
divided into two regions, plastic region in which the cohesive law is assumed to be both
strain hardening and rate dependent; and the damage region which is cohesive zone, and
was considered linear viscose with different viscosity coefficient. The plastic area constitu-
tive equation is:

σ = σpl

(

δ

δc

)N
(

1 + νnδ̇
)

(62)

where N is the hardening exponent, σpl is the ultimate strength and νn is viscosity co-
efficient for plastic area. Similarly, the rate dependency for cohesive zone was presented
by:

T = S

(

1 −
δ

δc

)m
(

1 + νmδ̇
)

(63)
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where m is softening index, νm is viscosity coefficient, δc is critical opening displacement,
S is ultimate tensile strength for the damage zone. In their analyses, the cohesive area has
no elastic (reversible) part. It is maximum stress (strength) and then decohesion. In this
way, the energy dissipated by plastic deformation is captured by the plastic deformation
mechanism. Crack growth in ductile material is governed by the competition between
damage and plastic flow. Both contribute to the fracture energy, but compete against each
other. The results of their parametric studies will be reviewed in section 4.

3.5 The status of cohesive zone modeling

Perhaps the most important development in computational fracture mechanics in the last
decade has been the introduction and refinement of the cohesive element methods [34].

General advantages of cohesive modeling compared to the other well-known fracture
mechanics approaches are as follow:

1. Due to its phenomenological character, a cohesive model is applicable to different
types of material and fracture mechanisms.

2. The model can be applied for the simulation of both crack propagation and crack
initiation.

3. There is not, in principle, any problem with transferring the fracture parameters from
small specimens to large components. Transferability of fracture parameters is possible as
long as the fracture mechanisms are similar between the specimen and the component. It
also requires similar constraint, e.g. stress triaxiality, at the crack tip between the specimen
and the component. In cases where the influence of constraint on crack growth behavior
is high, triaxiality dependent cohesive elements as proposed e.g. in [119] or in the present
investigation are applicable.

4. The number of parameters in defining a cohesive law is low compared to many other
damage approaches.

5. Cohesive laws can be extended to time-dependent material behavior.
6. By using cohesive elements as interface between non-damage continuum elements in

a finite element model, it is possible to split the energy dissipated by plastic deformation
and the energy dissipated by separation.

7. Length scale is inherent in the definition of fracture energy, which eliminates mesh
dependency in the finite element models.

8. Cohesive models can be used in a variety of analyses like fatigue (e.g. [117,150]) and
environmental embrittlement (e.g. [115]).

9. Cohesive models have shown to be an efficient approach for simulation of crack
initiation and growth in functional graded materials (e.g. [57, 152]).

Like any other approach, the cohesive zone models have drawbacks and uncertainties
which need more research and investigation:

1. The phenomenological nature of the model causes some uncertainties with respect
to the physics of the process under consideration.
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2. Interaction of normal and shear separation in a mixed mode fracture and multiaxial
effects in a process zone are not yet established with sufficient evidence.

3. Simulation of arbitrary crack growth is far from being an established method. Al-
though models which have cohesive elements in different orientations, e.g. [113, 148] and
also non-ordered mesh models, e.g. [130] help in simulation of arbitrary crack propagation,
they are still not efficient enough since the crack is bounded to move on the boundary
of continuum elements. In addition, these models suffer from loss of uniquness of the
equilibrium path and stability by introducing a high number of cohesive elements in the
model [129].

4. Convergence problems related to snap-back instability in numerical solutions is a
general challenge.

5. It is observed that the shape of traction-separation law can affect crack branching
whether to happen or not [44].

6. To overcome the problems related to mesh dependency, a new class of cohesive
elements has been developed in which the crack allows to propagate on any surface within
an element, rather than only along the element boundaries, see e.g. [19, 37, 74]. These
approaches are still under development.

4 Local approaches and simulation of fast running

cracks

This section addresses the application of local approaches previously reviewed and the
important aspects in numerical simulation of fast running cracks.

First, the application of Gurson type models in finite element dynamic fracture analysis
are addressed and then cohesive zone modeling in numerical dynamic fracture will be
discussed in more details.

4.1 Application of Gurson type models in dynamic fracture

By using Gurson type models, it is possible to simulate crack growth simulation free from
any fracture criteria. Ahmad et al. [2] showed that even for rapid crack propagation in a
high strength steel, the effect of crack tip plasticity is significant, so that a conventional
elastodynamic analysis is not sufficient. Considering this fact and remembering that local
approaches give strong numerical tools to simulate fracture mechanics and crack growth
were the motivation for many researchers to use nonlinear rate-dependent Gurson type
model in their finite element dynamic analyses.

A pioneering work on using Gurson type model to simulate dynamic fracture was per-
formed by Tvergaard and Needleman in 1986 [141]. The formulations they used for rate-
dependent bulk material are the same as the equations shown in section 2.2. The aim was
to check numerically the influence of strain rate on competing failure mechanisms (ductile
and cleavage) in Charpy V-notch test. The numerical results showed that in the transition
regime, the porosity in the notch tip region plays a role in the fracture process even when
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failure occurs by cleavage. Quite interestingly, once the transition of failure mode from
cleavage to ductile rupture has occurred, the energy absorbed at low rates is greater than
that absorbed at higher rates. Sun et al. [122] used dynamic GTN model for simulating
Charpy V-notch test, too. To evaluate the effect of stress state at the crack tip, they
modeled the specimen by plane stress, plane strain and a combination of 3D/plane stress
elements. In 2D models, the simulation results were far from test due to the absence of
side grooves in the models. To achieve proper stress triaxiality for such cases, they showed
that a combined 3D/2D model (3D elements in the area close to the crack tip and 2D
elements for the rest of the model) gives a proper solution for the load-displacement curve
compared to the test results.

Needleman and Tvergaard [85] performed similar work to [141] in order to consider
ductile fracture and to account the effect of adiabatic heating using GTN model in a
double edge cracked steel specimen under dynamic loading. In the analyses, waves did
not have enough time to be reflected back to the crack front because failure occurred at a
very short time. In their model, void nucleation was considered and they concluded that
for the plane strain specimen analyzed, only large inclusions (stress controlled) affected
the results. Hence, stress and stress triaxiality can be regarded as the most important
phenomena affecting the failure. In addition, higher void nucleation stresses (σN in Eq. 30)
make the crack growth initiation happen earlier, but has very little effect on crack growth
speed. The only curve that was insensitive to the speed of loading is ∆a-CTOD. They also
showed that in their case study, although temperature rise is about 300oC, these thermal
effects did not greatly affect the crack growth behavior, because porosity had the dominant
softening effect.

Opposite to Needleman and Tvergaard [85], Tvergaard and Needleman [142] showed
that in dynamic loading of notched round bars, the effect of thermal softening was higher
than porosity. This is due to the fact that in the former case, the high hydrostatic tension
at the crack tip drives the void to coalescence at smaller accumulated plastic strains.

Alves and Jones [4] investigated on steel round bars under dynamic loading numerically
(they did not use Gurson model) and experimentally and recommended that for round
bars, a relationship between the stress triaxiality and the plastic strain might determine
the actual location where failure commences. This is somehow revealed in [84] that for
plane strain round bars, the crack can start at the sharp notch root where the plastic strain
is high.

Xia and Shih [145] showed that in a dimensional analysis, the resistance to fracture or
the fracture energy is defined as:

Γ (∆a) = hσ0F

(

∆a

lc
,
σ0

E
, N, ν, f0, fE ,

T

σ0

)

(64)

This means a length scale parameter, h, that can be element height in a finite element
analysis is important, see also sec. 3.3.2. In other words, using Gurson type model is mesh
dependent. They recommended that the spacing between large inclusions can act as the
length scale which controls the crack growth.
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Needleman and Tvergaard [86] reported similar discussions and conclusions for a crack
growth simulation using elastic-viscoplastic GTN model under dynamic loading. They
reported that crack growth predictions in cases where the large-scale voids dominated
showed practically no mesh sensitivity, whereas cases dominated by the small-scale voids
showed a clear mesh sensitivity. They also showed that for initially sharp cracks the
initiation of crack growth was quite sensitive to the mesh. However, for initially blunt cracks
the mesh sensitivity of the initiation time was removed. Comparing tests and simulations,
Sun et al. [122] showed that h is independent of strain rate. Therefore the length scale
value obtained from a quasi-static simulation can be used for dynamic simulations, too.

The mentioned literature above and similar investigations show that dynamic GTN
models are powerful tools for simulating dynamic ductile crack growth but it is important
to notice that mesh dependency is an important issue in such simulations. In cases that it
is necessary to use very fine meshes for large structures or for simulating large amount of
crack growth, mesh dependency for dynamic simulations can result in very time consuming
analyses. It should be noted that transient dynamic solutions in general are relatively time
consuming compared to static solutions.

4.2 Application of cohesive zone models in dynamic fracture

The most straightforward way to simulate dynamic crack growth by finite element analy-
sis and cohesive elements is to choose some interface elements having constant properties
placed between continuum elements, where the properties can be related to dynamic load-
ing. To capture the inertia effect and wave effects, one needs to solve the model using
transient dynamic solution techniques, see e.g. [1, 35].

Siegmund and Needleman [120] performed full transient dynamic analysis on a center
cracked plane strain specimen. They used one array of cohesive elements in the ligament,
so the crack was restricted to grow along the initial crack line (Mode I). The effect of
temperature rise was ignored. Two strain rate hardening calculations were considered
for the bulk material, pure power law and enhanced strain rate hardening as shown in
Fig. 18. (σ0)qs in the vertical axis is the same as g used in Eqs. 16 and 17 with the
simplification that in their analyses, temperature effect was not considered. The enhanced
strain hardening which has exponential form was basically recommended by Zhou et al.
[155] for high strength steel under high rates of loading. As it is shown in Fig. 18, the model
is applicable for strain rates of more than 5000 1/s. For each analysis, they considered
constant properties for the cohesive elements. For all the analyses, cohesive characteristic
length was fixed at 2 µm, but cohesive strength and consequently the work of separation
were varied in different analyses. They showed numerically that having rate sensitive bulk
material increased the crack velocity under the same load speed. The crack speed is even
higher for the enhanced rate sensitivity. They also considered the effect of temperature by
having variety of cohesive strength and strain rate sensitivities and discussed that plastic
straining has an essential effect on the crack speed and also the mode of fracture or brittle
to ductile transition due to the temperature change.

To check the mesh dependency effect, Needleman [83] considered the same center
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Figure 18: Dependence of the normalized
flow strength on plastic strain rate [120]

Figure 19: Crack extension vs. time for left:elstic mate-
rial and right:elastic-viscoplastic material with different
mesh refinements [83]

cracked specimen for elastic and elastic-viscoplastic material with four different mesh refine-
ments. Figure 19 shows how mesh refinement can affect the crack velocity. It is observed
that for the elastic material, mesh size is not important, but for the elastic-viscoplastic
solid, it is very important. The curves do not deny length scale independency or mesh
independency of cohesive zone approach that is related to the fact that the cohesive zone
formulation includes work of separation per unit length or unit area. The curves show
that mesh dependency has occurred because large elements do not have the capability of
calculating plastic stress and strain distribution accurately. The difference is less in the
initiation of crack growth until large scale plastic flow takes place. These discussions prove
again that plastic dissipation plays a major role in crack growth behavior.

Arata and Needleman [13] showed again the importance of plasticity on dynamic crack
growth behavior, this time for a bimaterial case. They chose a center cracked specimen,
elastic material containing a preexisting crack, and viscoplastic material on two sides.
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Each part had different cohesive properties, while there was a line between them in which
interface elements existed. The finite element model was based upon linear displacement
elements arranged in crossed triangular quadrilaterals. They chose mixed mode cohesive
elements with the stress ratio of normal to shear cohesive strength equal to 2.33 and
normal cohesive energy equal to shear cohesive energy. Their analyses showed that for
weak interface (the cohesive energy of interface is 0.15 times of the cohesive energy of the
viscoplastic part), in all cases, the crack deflected into elastic part. Quite interestingly,
when the interface was stronger (the cohesive energy of interface is 0.25 times the cohesive
energy of the viscoplastic part), in all quasi-static cases, the crack still deflected to elastic
part, but in the dynamic cases when the elastic cohesive strength was high, the crack could
penetrate the interface and grow into the elastic-plastic solid. This fact proves again that
not only cohesive properties, but also the plasticity distribution can affect the crack growth
behavior and they explained that crack deflection is promoted into the interface because
the increased cohesive strength in the elastic-viscoplastic solids leads to increased plastic
flow.

In all of the aforementioned references, the cohesive elements properties were considered
constant during the crack growth. The effect of parameters like strain rate and temper-
ature on crack behavior and energy absorption of the specimen analyzed were obtained
by having different analyses with various cohesive properties. But in reality, constraint
changes during crack growth which means the cohesive element properties can change.
The constraint defined as stress triaxiality was considered for cohesive elements (or co-
hesive zone) by e.g. Siegmund and Brocks [118, 119], Wnuk and Legat [144] and also
Broberg [23]. Tvergaard [136] considered stress triaxiality as constraint too, but com-
mented that the stress triaxiality inside the narrow band of porous material might not be
equal to the stress triaxiality outside of the band. He recommended continuity in normal
and tangential strains and obtaining stress triaxiality in the interface elements from the
strain values. Broberg [23] also discussed that the competition between decohesion and
macroscopic plastic flow depends on the ratio between cohesive and yield strength, but is
also influenced by the T-stress. For example, when the ratio of cohesive strength to the
yield strength is low (less than 1.7 for T-stress=0), only process region (cohesive region)
exists and no plastic region exists (Fig.20).

One of the major problems with FE cohesive elements is the numerical convergence.
Because of displacement jump in cohesive elements, there might be an elastic snap-back in-
stability which is higher when the decohesion part happens in a shorter opening. Chaboche
et al. [27] showed that using viscous cohesive elements can highly solve the problem, but
it affects the results. Therefore, if there is not any real viscosity for the cohesive zone, the
results will not match the experimental results. In a similar discussion, Gao and Bower [46]
showed that viscous cohesive elements result in a better rate of convergence. This means
that performing dynamic analysis with rate-dependent cohesive elements can favor conver-
gence compared to quasi-static rate independent analyses. O’Day and Curtin [94] used this
idea and added a small amount of viscous damping to the interface constitutive description
to avoid convergence problems.

There are also a few works in the literature with cohesive zone rate dependency.

40



Figure 20: The effect of strength ratio of
cohesive elements to continuum elements
on the competition between decohesion and
macroscopic plastic flow [23]

Costanzo and Walton [31] showed that rate independent models are intrinsically unable
to account for the experimental evidence available from the literature. They used Eqs. 58
and 59 for rate dependent cohesive zone and showed that the key to control the crack tip
velocity is the inclusion of rate dependence into the cohesive zone constitutive behavior
although rate dependency itself does not allow one to correct all the other shortcomings
of rate independent models. They also showed that in order to calculate proper crack tip
velocity, it is necessary to have limitations for cohesive stresses and a critical crack opening
displacement. Kubair et al. [63] discussed that the effect of rate dependency in cohesive
zone is to increase the fracture toughness with increase in crack speed. Zhang et al. [151]
did parametric studies and showed that for rate-dependent materials, the maximum cohe-
sive stress depends not only on the cohesive material parameters, but also on the crack
propagation rates. They also showed that the traction increases with crack growth velocity,
but in the decohesion part, the TSLs are the same, Fig. 21. The similar behavior exists
for rate dependency so that with increasing rate dependency (viscosity coefficient in this
article), normalized crack opening decreases slightly, but traction increases more and also
this rate dependency does not affect the decohesion part behavior. These results show that
for fast running cracks, more energy is dissipated in the damage zone. They also discussed
that the increase of crack-tip constraints can be related to an increase in crack growth rate
and rate-sensitivity factors. One should remember that crack speed is not an independent
parameter, but it is influenced by material properties and loading rate. In their discussions,
higher crack speed is showing higher crack opening in the zone considered and also higher
strain rate in the surrounding material.
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Figure 21: Normalized traction along the co-
hesive zone at various crack speeds [151].

5 Aluminum alloys and weldment

Increasing use of aluminum alloy in car body construction has promoted the need to have
a better understanding of aluminum joining technique and the material properties of the
weldments. Joining aluminum sheets with spot weld is more costly and less reliable than
spot welding steel sheets. Therefore alternative methods of joining aluminum compo-
nents/sheets have been developed which include self-piercing rivets, MIG (metal-inner-
gas) and laser welding [123]. Laser welding of aluminum alloys has a wide application in
aerospace industry, too. For example, it has been specifically used for body construction
of Airbus A318 aircrafts. Its application in construction of the XXL generation of Airbus
aircrafts has saved 15% of the aircrafts’ weight [108].

Weldment is considered as a source of geometric and material discontinuity in the
analysis of structures. When two metal parts are welded, the new structure does not consist
of single material, but the joint area has a high gradient of material properties. Distinct
microstructural regions occur in fusion welds as a result of the effects of heat. At the weld
centerline is the fusion zone (FZ). Outside the FZ is the partially melted zone (PMZ),
where the temperature of the alloy is below the liquidus but above the solidus. Outside
the PMZ is the heat affected zone (HAZ), where the temperatures are lower, but still high
enough to cause observable microstructural changes due to solid-phase transformations. At
some further distance from the weld centerline is the unaffected base material (BM), where
the temperature rise is too low to cause any noticeable microstructural changes [72]. In a
beam laser welded joint, there is no metal injection and the joint can be ideally divided
into FZ, HAZ and BM. In addition to different microstructural and elastoplastic properties
in a welded joint, welding can leave residual stresses on the structure and affect the stress
distribution.
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In fracture analysis (quasi-static or dynamic) of a welded joint, parameters like me-
chanical properties difference e.g. yield stress between BM, WM and HAZ, the properties
and length of HAZ, the crack location, and residual stresses are important. These kinds
of joints can be modeled in finite element method as a mismatch case. When a crack
exists on the interface of mismatch, the normal and shear stresses are the same in both
materials, but the parallel stress components are different. This jump in the stress com-
ponents results in a different stress triaxiality and constraint for the interface compared
to any of the single materials. The mismatch can cause the crack to grow in one of the
materials and results in mixed mode fracture, see e.g. [88, 97, 136]. Thaulow et al. [127]
considered different strength mismatches and presented an extra parameter in fracture
analysis of welded joints compared to two parameter approaches (J-Q theory). Using finite
element method, they showed that the difference field of material mismatch constraint is
self-similar and can be scaled by a mismatch constraint parameter called M. Therefore,
they presented a new approach which they called ”J-Q-M approach”. It should be noted
that the material models they chose did not have porosity and they used von-Mises failure
criteria. They also did the analyses for only stationary cracks. Later, Zhang et al. [153]
used the Gurson model in the static analysis of welded aluminum structures. To have a
better microstructure property of HAZ, they used a software named WELDSIM, which
simulates HAZ thermally.

Tvergaard and Needleman [143] performed analyses on welded plane strain specimens
under dynamic loading and showed that the transition temperature (ductile-brittle) and
work of fracture is highly different between different strength mismatch cases. They also
showed that the worst location of the notch is not the same in the overmatch ((σ0)WM >
(σ0)BM) and undermatch ((σ0)WM < (σ0)BM) cases. This is true if the mismatch difference
is more than 20% [87]. It is worth noting that during dynamic loading, different values of
strength mismatch can change even the mode of failure [6]. Needleman and Tvergaard [87]
showed that the flow stress and width of HAZ have a large influence on the transition
temperature of a welded structure during dynamic loading. The importance of the width
of HAZ in also quasi-static cases was shown to be high by Liu and Lademo [70], although
they showed that changing HAZ shape does not highly influence the fracture behavior.
Besides, Zhang et al. [153] showed that the dimensions of HAZ primarily determine the
shape of load-displacement curves, while the strength of HAZ influences the loading level.

Although residual stresses can significantly affect fracture behavior of welded structures
[116], none of the previously mentioned articles consider this effect. This influence is mostly
considered in brittle fracture and fatigue analysis of weldments.

Although there are a number of investigations in the application of cohesive zone models
in crack growth simulation in mismatch cases, e.g. [67,81,82,139,149], there are not many
publications reporting the application of the model under dynamic loading conditions.
Besides, most of the publications are performed for steel due to its wide application in
industry. Aluminum alloys are different in some aspects compared to steel alloys. The
level of anisotropy and/or inhomogeneity that can affect localization and consequently the
mode of failure [135] are different between steel and aluminum. Besides, aluminum has a
different strain rate sensitivity compared to steel. On the other hand, the effect of adiabatic
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Figure 22: The split-Hopkinson Tension Bar setup at SIMLab of NTNU. The smooth
specimen tested is indicated. Measures are in mm.

heating can be different for these alloys. Aluminum weldments will often include soft zone
whereas a steel weldment will usually be overmatched.

6 Split-Hopkinson tension bar (SHTB)

Split-Hopkinson bar technique, first introduced by Kolsky [61], is the most widely used
method to study material behavior at deformation rates between 100 1/s and 10000 1/s.
In this setup, a short sample made of the material under study is placed between two long
bars made of high strength steel. The specimen is loaded by the stress wave generated in
one of the bars named input bar. When the load reaches the specimen, part of the wave
is transferred into the other bar, output bar, and the other part reflects to the input bar.
The loading bars are chosen long enough to ensure that the specimen breaks before the
waves are reflected into the sample again. The loading bars are supposed to be deformed
elastically to ensure precise calculations on elastic waves. By measuring the strain values
in the loading bars and application of stress wave theories, the load and deformation in
the specimen are monitored. This technique was initially used for compression loading of
the specimen, and has been modified for tension and torsion loadings.

Among the various methods introduced to generate tension load with a short rising time
in the specimen, e.g. [3, 54, 68, 89, 121], the SHTB used in the present thesis is identical
to the one introduced by Albertini and Montagnani [3]. In this technique, tension force
is directly applied on the input bar and a clamp is designed to ensure sufficient pressure
on the bar and a short fracture time. Figure 22 shows the schematic view of the test rig
and the specimen tested. The specimen to be tested is placed between input bar (AC) and
output bar (DE). The experiments consist of two phases. First, the locking mechanism

44



prevents point B to move while a tension force N0 is applied to part AB. After that, the
lock is suddenly removed and a released stress wave moves toward point C. The stress wave
is partly transmitted to bar DE and partly reflected back in CBA. The stress, strain and
strain rate are determined by the use of one-dimensional stress wave theory and the strains
measured at strain gauges 1, 2 and 3. The general formulations to calculate the engineering
stress, strain and strain rates in the specimen based on the traction and reflected measured
waves are:

σs =
E0A0

As
ǫT (65)

ǫs = −2
c0

Ls

∫ t

0

ǫRdτ (66)

ǫ̇s = −2
c0

Ls
ǫR (67)

Subscript 0 refers to the bars and subscript s refers to the specimen. Subscripts T and R
refer to transmitted and reflected waves respectively. E is the modulus of elasticity and
A is the cross section. Ls is the parallel length of the specimen. The strains measured
in this way are valid for smooth specimens up to necking. For notched specimens and
also for obtaining true stresses and strains, it is necessary to measure diameter reduction
in the specimen by a high speed digital camera synchronized with the test rig. For a
comprehensive reference on the theory, formulations and application of SHTB, see [29].
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Abstract

Rate-sensitive and triaxiality-dependent cohesive elements are used to simulate crack growth under quasi-static and
dynamic loading conditions. The simulations are performed for a middle-cracked tension M(T) specimen made of an alu-
minum alloy (6XXX series). To consider the effect of stress triaxiality and strain rate on the cohesive properties, a single
plane strain element obeying the constitutive equations of a rate-dependent Gurson type model has been used. The single
element is loaded under various stress biaxiality ratios and strain rates and the obtained stress–displacement curves are
considered as traction separation law for the cohesive elements. These curves are used for analyzing the aluminum
M(T) specimen. The qualitative effects of constraint, strain rate, inertia and stress waves on the energy absorption of
the specimen and crack growth are discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When a structure is subject to dynamic loading, some additional phenomena compared to quasi-static cases
have to be considered. The high speed of deformation introduces stress waves into the structure. Inertia effects
become significant and can affect the energy absorption of the structure. Strain rate increases the flow stress
and influences the strain hardening of metals. And last, but not least, high local temperature increase due to
adiabatic heating reduces the flow strength and counteracts the strain-rate hardening. Whether it is a station-
ary crack subject to impact loading, called ‘‘impact fracture’’, or it is a fast motion of the crack tip, named
‘‘fast fracture’’ [1], the mentioned phenomena can affect the fracture toughness significantly and it is important
to have an efficient analysis tool for simulating damage and crack growth including these influences.

Analytical and macroscopic approaches used in fracture mechanics have some limitations with respect to
the amount of plasticity allowed at the crack tip, constraint and geometry dependency. As Siegmund and
0013-7944/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Brocks [2] point out, to the present, ‘‘local approaches’’ are the only really successful methods for prediction of
crack growth resistance. In a local approach, in principle, the parameters of the respective model depend only
on the material, and not on the geometry. In this kind of approach, one can simulate ductile fracture either by
employing a micromechanical model of damage, which represents the micromechanism of void initiation,
growth and coalescence, or by using a phenomenological model for material separation and coupling it to
the surrounding undamaged elastic–plastic material. In the former approach, a representative volume element
(RVE) or ‘‘unit cell’’ is considered to study the respective mechanism. The most widely known model of this
kind for ductile damage calculation is the Gurson–Tvergaard–Needleman or GTN model [3]. Zhang et al. [4]
proposed a model called ‘‘complete Gurson model’’ as a combination of GTN and Thomason’s coalescence
criteria [5]. This model has been used for unit cell calculations in the present article.

A phenomenological local approach used for the numerical simulation of crack propagation is known as
the cohesive zone model. The idea is based on the pioneering work by Dugdale [6] and Barenblatt [7] who
introduced the strip-yield model. Both authors divided the crack into two parts: One corresponds to the phys-
ical length of the crack, which is stress free, and the other one is the fracture process zone, where yielding and
degradation of the material occur and which is loaded by a finite stress named cohesive stress. Later develop-
ments of cohesive models, particularly in combination with finite element method (e.g. [8–11]), considered the
cohesive stress as a function of material separation and not depending on the distance from the crack tip as
Barenblatt did. In a finite element representation of cohesive zone models, cohesive elements are introduced as
interface between continuum elements and damage occurs only in the interface elements which obey a consti-
tutive equation named traction separation law (TSL) (Fig. 1). Separation in these elements is calculated from
the difference of the displacements of the continuum elements adjacent to them. The maximum opening at
which the cohesive element completely fails is called critical separation, d0, and is one of the fracture para-
meters. The other fracture parameter is the maximum traction or cohesive strength, S. The area under the
TSL is the energy absorbed by the cohesive element and is known as the cohesive energy, C0:
C0 ¼
Z d0

0

T ðdÞdd ð1Þ
If the shape of a TSL is known or presumed, having two of the aforementioned parameters is enough to define
the cohesive law.

By using cohesive zone modeling in a finite element analysis, it is possible to split the total dissipated energy
into energy dissipated by plastic deformation in the process zone and the energy of separation. In this way, it is
possible to evaluate the damage and deformation processes separately, but coupled. Besides, by entrusting the
nucleation, propagation, branching and other aspects of the fracture behavior of materials to a master cohe-
sive law, the amount of phenomenology is considerably reduced compared to theories of distributed damage.
Since a characteristic length is included in the TSL (cohesive energy is the work of separation per unit area),
the models with cohesive elements are not mesh dependent, which is always an issue for the GTN models [12].

Cohesive elements used in simulating ductile fracture are supposed to represent the mechanism of nucle-
ation, growth and coalescence of microscopic voids that initiate at the inclusions and second phase particles.
Fig. 1. Cohesive zone obeying a TSL and the surrounding undamaged elastic–plastic material.
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The idea of the present contribution is to obtain the cohesive properties by studying the mechanical response of
a single element obeying a rate-dependent Gurson type constitutive equation. This sort of mechanism-based
cohesive model has also been proposed by other authors, e.g. [12–16]. It is well known that the cohesive strength
increases with strain rate [17–19] and this implies an increase in stress triaxiality [20,21]. Using a Gurson type
model provides a mean for exploring the effect of stress triaxiality on TSL parameters [12]. Rate sensitivity of
the cohesive zone is determined by applying different values of loading speed on the rate-sensitive single element
and calculating the cohesive parameters from the mechanical response. A similar procedure is performed by
applying different stress ratios on the single element to study the effect of stress trixiality on the TSL parameters.
The shape of the TSL, cohesive strength and critical displacement are fitted to meet the results of the single ele-
ment calculations for various strain rates and triaxialities. The parameters are then used for crack growth sim-
ulations of an aluminum middle-cracked tension M(T). In the model, the cohesive elements are both triaxiality
and rate dependent. Triaxiality-dependent cohesive elements have already been introduced to cohesive elements
by Siegmund and Brocks [2], whereas the effect of dynamics on cohesive parameters is usually written by a sep-
aration rate dependency (see e.g. [18]). Even though the implementation of a strain-rate effect is a bit more com-
plicated than a separation rate, it has the advantages that are described in Section 2.3.

Since the measures of strain rate and stress triaxiality are not available in the cohesive elements, they are
calculated and transferred from the solid elements adjacent to them, which is performed in a similar way as
proposed in [2] for only stress triaxiality values. The technique has also been used for strain-dependent cohe-
sive elements by Tvergaard and Hutchinson [22]. The analyses are performed in quasi-static and dynamic
cases. The effects of rate dependency, inertia, constraints and waves on mechanical response of the structure
are shown by the load–displacement diagrams and the results are discussed. The influence of the pointed out
phenomena on plastic energy dissipation and crack growth are illustrated, too. The influence of adiabatic heat-
ing has not been considered in the analyses.

The static and transient dynamic analyses are performed in ABAQUS/Standard non-linear finite element
code [23]. The rate-dependent complete Gurson model developed and implemented into ABAQUS as a user
defined material (UMAT) subroutine [24] is used for the single element calculations. The cohesive element cal-
culations are performed by a user defined element (UEL) subroutine developed by Scheider [25] and expanded by
the present authors for rate and triaxiality-dependent cohesive elements to be used in transient dynamic analysis.
2. Calculations

2.1. Material

Smooth round bars made of aluminum alloy 6XXX series were tested by split-Hopkinson tension bar in
SIMLab of NTNU [26]. The experimental stress–strain curves at different strain rates are approximated by
the following equation [27] as shown in Fig. 2:
�r ¼ r0 1þ ��

�0

� �N _��

_�0

� �m

ð2Þ
where �r, ��, r0 and �0 stand for true stress, true plastic strain, yield stress, and a reference strain respectively. _��
and _�0 are the strain rate and a reference strain rate, respectively. N is known as strain hardening and m as
strain-rate hardening exponent. In this formulation, the strength of the material increases with the increase
of strain rate. The constitutive bahavior is based on von Mises plasticity with pure isotropic hardening. Vis-
cous, i.e. time dependent effects are not considered. The values considered for the material tested are:
r0 = 217 MPa, �0 = 0.002, _�0 ¼ 150 s�1, N = 0.0526, m = 0.05. Mass density of aluminum, q = 2700 kg/m3

has been considered in all of the dynamic calculations.
2.2. Single element calculations

For ductile metals, the effective behavior of a unit cell containing a void can be captured by using the
Gurson model [28] developed by Tvergaard [29] and Tvergaard and Needleman [3]. The latter, known as
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Fig. 2. The experimental stress–strain curves for different strain rates approximated by Eq. (6).
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GTN uses a fixed critical void volume fraction, i.e. the point where coalescence starts, as a material parameter.
Koplik and Needleman [30] showed that this assumption works well only for low stress triaxiality cases, and
slightly worse for high stress triaxiality cases, which is the case in front of a crack tip. Zhang et al. [4] intro-
duced the Thomason’s coalescence criteria [5] into the Gurson model so that it can predict void coalescence. In
their approach which they called ‘‘complete Gurson model’’, they also proposed final void volume fraction to
be a function of initial void volume fraction. In the strain-rate-sensitive version of the model, the flow stress is
a function of local strain rate with the same strain-rate hardening exponent as that of the bulk material.
Details on the rate-dependent Gurson model is found elsewhere (e.g. [31,32]).

The question that arises is which of the phenomena influencing ductility because of dynamic loading
conditions is more important to be considered in modeling a single Gurson type element. Curran et al. [33]
considered rate-sensitive material for a hollow sphere of internal radius, a, subjected to internal constant pres-
sure, P0. The material was considered to be rigid, perfectly plastic with a viscosity coefficient. Their numerical
investigation for aluminum showed that the inertia effect becomes important for quite large voids (larger than
10 lm) and for a wide range of radii a, the maximum rate is governed by the viscous regime only. In other
words, as far as void size is smaller than a certain value, inertia can be ignored in modeling void growth under
dynamic loading. Considering the work done by Johnson [34], it is concluded that the inertia effect is impor-
tant in void growth only if the speed of crack growth is higher than 4

ffiffiffiffiffiffiffiffiffiffi
r0=q

p
where r0 and q are the flow stress

and the density of the material, respectively. This value is around 1100 m/s for a typical aluminum alloy. Liu
[35] also showed that increasing strain rate will increase the inertia effect, but this effect is significant only when
the strain rate is over 10,000 s�1.

Based on these discussions, only rate sensitivity of the material has been considered. The effect of the adi-
abatic heating is ignored in all of the calculations.

In the present study, a single four node plane strain element with rate-dependent complete Gurson model as
constitutive equation is used. The initial void volume fraction of f0 = 0.002 is considered in the calculations as
suggested in [36], since no experimental data on micromechanical information is available for this parameter.
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The analyses are performed for an element with the initial size of h · h, h = 1 mm, for different stress biaxial-
ities b, as shown in Fig. 3:
b ¼ r11

r22

ð3Þ
If the material is incompressible, the stress triaxiality which is the ratio between mean normal stress and von-
Mises equivalent stress is given by [12]
H � 1þ bffiffiffi
3
p

1� bð Þ
ð4Þ
The constant stress ratios in static loadings were obtained using modified Riks method implemented in
ABAQUS. The reason for using Riks method is the instability in load controlled calculations due to softening.
Fig. 3 shows the normalized traction separation obtained for different values of triaxiality. Fig. 4 shows the
variation of normalized strength and energy obtained from Fig. 3 versus triaxiality. The curves are fitted to
the calculated values.

In order to investigate the effect of strain rate on the stress–elongation behavior, quasi-static analyses were
performed with a rate-dependent model and high speed loading. Since strain rate was considered, Riks method
was not applicable any more. Thus, two linear springs were added to the model and the multi-point constraint
(MPC) subroutine in ABAQUS was used to obtain constant stress ratios. For low speed of applied loads, the
responses were the same as the Riks method. Fig. 5 shows the normalized traction separation behavior for
different triaxialities for a loading rate of 500 mm/s or, in other words, an initial strain rate of 500 s�1 for
an element of initial length h = 1 mm. The figure shows that the effect of triaxiality is similar to the case with
rate-independent material behavior, but the values of cohesive strength and consequently cohesive energy are
different. To check this, various loading speeds were applied for the same triaxiality of 1.5 (b = 0.44). Fig. 6
shows that the curves are parallel and only the value of strength changes for the same maximum displacement.
Fig. 7 shows the curves fitted to the calculated values of strength and energy for the rate-dependent case at
constant loading rate (V = 500 mm/s) and different triaxiality values. Comparing this figure with Fig. 4, it
is observed that the fitted curves are very similar to the rate-insensitive case.
Fig. 3. The effect of triaxiality on the traction separation behavior of a single element obeying complete Gurson model.
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Fig. 8 shows how the values of cohesive strength and cohesive energy change with loading rate for a con-
stant triaxiality of 1.5. As it is shown, the value of the maximum traction changes as a function of the rate-
independent case for the same triaxiality multiplied by the relative strain rate to the power of m (strain-rate
hardening exponent).

2.3. Traction separation law

Since the cohesive model is a phenomenological model, authors use various formulations for defining the
shape of TSL and the cohesive values (e.g. [8,10,37,13,38,39]). Among these definitions, the one introduced
by Scheider and Brocks [39] has been used to reproduce the calculated damage and failure of the unit cell by
a cohesive element. This TSL has two shape parameters, d1 and d2, in addition to the cohesive parameters
already introduced and consists of three parts: (a) increasing traction or cohesion, (b) constant traction and
(c) decreasing traction or decohesion (see Fig. 9). The traction as a function of the separation in this model is
T ¼ S

2 d
d1

� �
� d

d1

� �2

; 0 < d < d1

1; d1 < d < d2

2 d�d2

d0�d2

� �3

� 3 d�d2

d0�d2

� �2

þ 1; d2 < d < d0

8>>><
>>>:

ð5Þ
By changing d1 and d2, one can have a variety of TSL shapes. In this formulation, the maximum separation is
d0 ¼
2C0

S
1

1� 2
3

d1

d0
þ d2

d0

ð6Þ
Although it has been claimed that the shape of the TSL hardly influences the crack growth behavior
[13,37,40,41], there are a few investigations that show higher effects of the shape [19,42,43]. For example,
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Scheider and Brocks [42] showed numerically that not only the shape of the TSL can affect the load–displace-
ment behavior, but also the TSL shapes that make the same results in a fracture specimen, might make dif-
ferent results in another specimen. Falk et al. [43] showed that if the TSL is initially rigid, the model
cannot capture crack branching by using a regular finite element mesh and it is possible when the TSL has
initial elasticity.

Regarding uncertainties like these, rate-dependent Gurson type model has been used as the basis for obtain-
ing the TSL.

It is possible to obtain the following expressions for the cohesive strength and energy using the mathemat-
ical approximations shown in Figs. 4, 7 and 8 as
C0

h
� 1:43H�1:36r0

_��

_�0

� �m

ð7Þ

S � 1:1 lnðHÞ þ 2:1ð Þr0

_��

_�0

� �m

ð8Þ
The variable h is the characteristic length scale of the Gurson model, which is usually based on the microme-
chanical structure of the material. A value of h = 0.1 mm is chosen in accordance to [44] who also investigated
an aluminum alloy of 6XXX series. H is the stress triaxiality. The expression in Eq. (8) is similar to the results
obtained analytically by Zhang et al. [19] which show that the curves of normalized traction along the cohesive
zone are parallel at various crack speeds and the cohesive strength increases with crack growth rates. It has
also been pointed out by Freund [45] that as the crack moves more rapidly, the material is deformed more
rapidly and a larger cohesive stress is required in order to achieve the requisite crack tip opening displacement.

Considering e.g. Fig. 5, it is recognizable that the piecewise TSL defined by Eq. (5) and shown in Fig. 5 fits
properly to the curves if the shape parameters d1 and d2 are adjusted accordingly. Combining Eqs. (6)–(8), the
critical separation reads
d0

h
� 2:8H�1:36

1:1 lnðHÞ þ 2:1

1

1� 2
3

d1

d0
þ d2

d0

ð9Þ
The comparison between the stress elongation behavior obtained from rate-dependent Gurson model calcu-
lations and the TSL approximation of Eq. (5) with the cohesive parameters from Eqs. (8) and (9) and
d1

d0
¼ 0:07 and d2

d0
¼ 0:35 are shown in Fig. 10 for two different triaxiality values. Since the curves obtained from

the single element calculations and those based on Eq. (9) are not exactly the same, the critical displacements
are a slightly different for the same cohesive strength and energy, but the differences are reasonable.

It is worth noting that the initial stiffness of the cohesive elements is relatively high. Therefore, the separa-
tions are very small in the beginning until the cohesive strength is reached. This is an important indication for
the use of a strain rate instead of a separation rate-dependent cohesive model. The cohesive strength is
strongly influenced by the rate, and in the beginning most of the deformation takes place in the adjacent
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continuum elements whereas the cohesive elements are still closed. On the other hand, the effect of the rate on
the softening branch of the traction separation law is of minor importance since the characteristic of the dam-
age behavior is then more affected by the cohesive energy parameter which is not much dependent on strain
rate (see Figs. 6 and 8).
3. Crack growth simulations and results

An M(T) specimen of unit thickness and dimensions of 100 · 100 mm2 has been modeled using four node
plane strain elements. The ratio of the initial crack length to the specimen’s width is a/W = 0.5. One row of
cohesive elements with initial zero height has been used at the ligament. Because of symmetry, one fourth of
the specimen has been modeled. Fig. 11 shows the specimen and the detailed mesh at the crack tip and a part
of the ligament. The smallest continuum element size belongs to the elements adjacent to the ligament and it is
0.1 · 0.1 mm2.

The surrounding continuum elements behave according to Eq. (2) and the cohesive elements based on Eqs.
(5), (7), (8) and (9). Each cohesive element possesses four nodes and two integration points. Because of the
symmetry, only the two upper nodes of cohesive elements are shared with the adjacent continuum element
and the other two obey the displacement conditions of symmetry. For each cohesive element, the actual values
of nodal displacement, triaxiality and strain rate are used to compute the current value of traction and element
stiffness. The values of triaxiality and strain rate are calculated in the continuum elements along the ligament
at all of the integration points using UVARM subroutine in ABAQUS. The averages of these values are then
calculated after the load increment and provided to the respective adjacent cohesive elements in the next incre-
ment as shown in Fig. 12. The error of this kind of explicit scheme is accepted since the time increments are
always chosen to be small enough.

Material separation process involving void growth and plastic deformation at microlevel are irreversible by
nature. This property has been implemented in the cohesive element formulation in a sense that a separation



Fig. 12. The triaxiality and strain-rate values are transferred to cohesive elements from the adjacent continuum elements.

Fig. 11. The M(T) specimen and a detailed finite element model of the crack tip.
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already happened to an element remains after local unloading and relaxing the stress [25]. Local unloading can
happen because of global unloading, stress waves or crack branching.

The simulations performed are described in Table 1. The aim of the analyses is to check the influence of
constraint, rate sensitivity, inertia and elastic waves on the energy absorption of a typical M(T) specimen.
In the static simulations, the effect of triaxiality on the energy absorption is studied. In the dynamic analyses,
denoted by DYN-xxx, the effects of inertia and elastic waves are investigated as well as the influence of stress
triaxiality and rate sensitivity.

Fig. 4 shows that the change of cohesive energy (critical displacement) is very high for triaxiality values of
H < 1.5. The reason is that for small values of triaxiality, the initial void grows very little and therefore the
energy absorbed is mostly related to the plastic deformation and not damage in the cell model. For more
detailed discussions on the limitations of the application of cell model and the competition between cohesive
Table 1
Various simulations of M(T) specimen

Case Analysis Plasticity Cohesive zone

QS Quasi-static Rate independent Constant
QS-CTD Quasi-static Rate independent Triaxiality dependent
DYN Transient dynamic Rate independent Constant
DYN-MRD Transient dynamic Rate dependent Constant
DYN-MCRD Transient dynamic Rate dependent Rate dependent
DYN-MCRD-CTD Transient dynamic Rate dependent Rate and triaxiality dependent
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process zone and plastic flow (see [20]). It is also known that the M(T) specimen is a low constraint fracture
specimen. The analyses show that the stress triaxiality at the crack tip increases while the crack is growing.
Regarding these discussions, H = 1.2 was considered as an initial stress triaxiality value used in the simula-
tions. Below this value, the cohesive parameters were considered to be constant, i.e.:
C0

h
¼ 237:6 _�

_�0

� �m
; H < 1:2

Eq: 7; H P 1:2

(
ð10Þ

S ¼ 474 _�
_�0

� �m
; H < 1:2

Eq: 8; H P 1:2

(
ð11Þ
The cohesive parameters for H = 1.2 were also used for the triaxiality independent analyses.
The load was applied as a prescribed displacement at the upper edge of the specimen. In dynamic cases, the

speed of the load was 3.3 m/s. The load and displacements presented in the following diagrams are the values
calculated on the boundary of the model.

Fig. 13 shows the load–displacement curves for quasi-static solutions. The figure shows that ignoring tri-
axiality dependency of interface elements can lead a static crack growth analysis to be highly conservative,
because the prediction of the energy absorption is much lower than the constraint (stress triaxiality) dependent
case. This shows that the values of triaxiality increase to more than the initial value considered in the analyses.

Fig. 14 shows the load–displacement curves obtained from dynamic analyses. Since transient dynamic solu-
tion has been employed, inertia and elastic waves are inherent in the analyses. The existence of oscillations in
the curves is inevitable because of the existence of elastic waves. The time that elastic waves travel the length of
the specimen is around 20 ls; that is much shorter than the total time of fracture (the shortest time of fracture
is 131.8 ls, which is for the case of rate-dependent bulk material). The elastic waves can have two sources, one
is the dynamically applied load and the other is the wave induced by broken cohesive elements or, in other
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Fig. 13. The effect of constraint on the load–displacement behavior (static analysis).
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words, the waves induced because of the relatively high speed of the crack growth. Because of the implicit inte-
gration used in the dynamic analyses, there is no severe limitation on the time increment chosen. Repeating
one of the simulations with very short maximum allowable time increments (0.02 ls instead of 24 ls) showed
that the averaged results are similar, but the rate of convergence is very low and the simulation is extremely
time consuming.

Dynamic simulation considering the rate dependency only for bulk material leads to the most conservative
assumption. Ignoring the effect of strain rate and triaxiality on the behavior of interface elements makes the
results unrealistic. Using rate- and triaxiality-dependent cohesive elements results in more energy absorption,
although it is less than the simulation which ignores all of these influences.

Fig. 15 shows the crack growth versus time for dynamic simulations. In all of the cases, the crack speed is
low in the beginning and then it increases to a somewhat steady state speed. The case with no rate dependency
is an exception in it seems that the crack speed is changing during the growth. The figure shows clearly that the
steady state speed of the crack growth is highest, about 1430 m/s, for the case in which only bulk material is
rate dependent. If an average speed is defined for the case with no rate dependency, the lowest crack growth
speed of around 290 m/s is obtained for this case. It should be noted that for the case where both bulk material
and cohesive zone are rate dependent, the crack growth initiation happens almost at the same time as for the
case with no rate dependency. This is in contrast to the investigations of Basu [46] who numerically showed
that strain-rate sensitivity plays a beneficial role on dynamic ductile fracture initiation. This contradiction is
related to ignoring triaxiality change even at the first stages of deformation. It is observed in Fig. 15 that when
triaxiality dependency is considered, crack growth initiation happens at 69 ls which is higher than the rate-
insensitive case. To check if this effect is due to the rate sensitivity of the material, a dynamic case was sim-
ulated with triaxiality-dependent cohesive elements while no rate sensitivity was considered. The analysis
showed that the crack growth initiation happened at 61.8 ls. This proves that rate sensitivity has postponed
crack growth initiation, although after a short time, crack growth speed is higher than the rate-insensitive case.
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It should also be noted that in the case where stress triaxiality change has been ignored, the crack growth
velocity becomes so high that the assumption of ductile mechanism of crack growth might be inaccurate. It
is worth noting that for the case in which only rate dependency of bulk material has been considered, the crack
speed is around 1400 m/s. In this case, the inertia effect on fracture energy is important, but it has been ignored
in the calculation. Regarding these discussions and back to Fig. 14, it is well understood why the load in the
triaxiality- and rate-dependent case is higher in the beginning and drops very fast after some time. This is qual-
itatively compatible with Freund’s finding [45]. He used a rate-sensitive cohesive zone and showed analytically,
with some assumptions on the amount of plasticity and material behavior, that for high speed of crack growth
(more than about 20% of shear wave propagation velocity), ‘‘as the crack tip speed increases for some fixed
level of viscosity (rate sensitivity), the local stress is elevated and a smaller applied stress intensity factor is
required for crack growth’’. He also showed that for lower crack speeds or smaller viscosities, however, the
criteria is reversed.

The reason why crack speed is much higher in the case of rate-dependent plasticity is that the material hard-
ens due to high loading rate and opens the crack (cohesive elements) more easily. Fig. 16 shows the ratio of
dissipated plastic energy to the external work versus crack growth. This figure shows that for the rate-sensitive
material, the percentage of the energy absorbed by the plastic deformation is less compared to the rate-insen-
sitive case and the difference increases with crack growth. When the cohesive zone is rate dependent, the cohe-
sive strength is increased at high loading rates and this causes more energy dissipated by plasticity in the
surrounding material. Although the stresses needed for crack propagation are higher compared to the case
with rate-independent cohesive parameters, the cohesive strength, S, is not high enough to decrease the crack
growth rate as much as for the rate-insensitive case. The reason is that with increasing plasticity, the crack
opening speed decreases, so the local strain rate and consequently the cohesive strength decrease again.
Besides, stress triaxiality increases initially, but because of inertia it decreases while the crack is growing
[47]. This means that the decrease of the cohesive strength is related to the inertia. Fig. 17 shows the change
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of triaxiality value during crack growth for the case in which rate dependency and triaxiality have been con-
sidered for the cohesive elements.

Fig. 18 shows how the phenomena mentioned in the introduction part affect the mechanical response of the
structure and makes it clear that the effect of the combination of them is not easily predicted. It demonstrates
that although rate dependency and inertia can increase the maximum load in a displacement-controlled load-
ing, rate dependency decreases the total energy absorption of the specimen. This is in contrast to an uncracked
specimen in which rate-dependent plasticity and inertia increase the energy absorption under dynamic loading.

It was already mentioned that models with cohesive elements are mesh independent, but since an average of
field variables is calculated in the adjacent continuum element, this average may depend on the element size.
To check the influence of rate-sensitive cohesive elements on the mesh dependency of the model, the specimen
was also modeled by element size of 0.05 · 0.05 mm2 for the continuum elements adjacent to the ligament.
Fig. 19(a) shows the load–displacement curves for the two models. It is observed that the effect is insignificant
and only exists in the last part of the deformation. Fig. 19(b) shows that the crack growth rates are similar up
to some time and then the crack growth speed is slightly higher in the model with finer mesh. With the element
sizes considered in the present models, mesh density is not very important, especially for the global energy
absorption predicted. It should be noted that although cohesive zone models are theoretically mesh indepen-
dent, the mesh must not be so coarse that the calculation of local plastic strain field is imprecise or mesh
dependent [48].

4. Conclusion

The effect of triaxiality and strain rate on cohesive properties has been considered simultaneously in a finite
element dynamic crack growth simulation. Cohesive strength increases with strain rate and this implies an
increase in stress triaxiality. Taking into account the interaction between these influences to solve dynamic
crack growth problems in a closed form is not an easy task to do. The change of cohesive properties with
these variables has been obtained through calculations on a cell model obeying rate-dependent Gurson con-
stitutive equation. The results of the calculations have been used in crack growth simulations of a center-
cracked specimen under static and dynamic loading. The procedure has the ability to take into account
the effect of stress triaxiality, strain rate and inertia in a proper and relatively simple way. The general results
are:

(1) In a quasi-static loading, triaxiality increases with crack growth, but in dynamic cases it increases ini-
tially whereas inertia leads to its decrease during crack growth.

(2) Although strain-rate sensitivity makes a ductile crack initiation to be postponed, it leads to a faster crack
growth due to a decrease in the amount of plasticity at the crack tip area. In other words, although the
energy absorption increases initially, it drops very fast after a short crack growth. This is in contrast with
a dynamically loaded uncracked specimen, where positive strain-rate sensitivity always makes the spec-
imen absorb more energy.

(3) In the dynamic analyses performed, the presumption of ductile fracture will be inaccurate if the change
of triaxiality is ignored.

(4) Considering strain rate in the dynamic simulations while ignoring the stress triaxiality leads to a high
underestimation of the toughness.

(5) The global energy absorption of the specimen with rate-sensitive cohesive elements is not highly mesh
dependent. This is valid as long as the mesh is fine enough to calculate plastic stress distribution
correctly.

These results are compatible with other studies in this field which have used different approaches.

Acknowledgements

The authors from NTNU would like to acknowledge Hydro Aluminium and the Research Council of Nor-
way for their support through the NorLight project. The first author appreciates the scientific and friendly



M. Anvari et al. / Engineering Fracture Mechanics 73 (2006) 2210–2228 2227
atmosphere in WMS department at GKSS research center during his stay. He also gives his special thanks to
professor Wolfgang Brocks for his precious support and advises.

References

[1] Nishioka T. Computational dynamic fracture mechanics. Int J Fract 1997;86:127–59.
[2] Siegmund T, Brocks W. A numerical study on the correlation between the work of separation and the dissipation rate in ductile

fracture. Engng Fract Mech 2000;67:139–54.
[3] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 1984;32:157–69.
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[8] Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics

and finite elements. Cem Concr Res 1976;6:773–82.
[9] Petersson PE. Crack growth and development of fracture zones in plain concrete and similar materials. Technical report, Report

LUTVDG/TVBM-1006, Lund Institute of Technology. 1981.
[10] Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech 1987;54:525–31.
[11] Tvergaard V. Material failure by void growth to coalescence. Adv Appl Mech 1990;27:83–151.
[12] Siegmund T, Brocks W. Predictions of the work of separation and implications to modeling. Int J Fract 1999;99:97–116.
[13] Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic–plastic solids.

J Mech Phys Solids 1992;40:1377–97.
[14] Brocks W, Sun DZ, Hönig A. Verification of the transferability of micromechanical parameters by cell model calculations for visco-

plastic materials. Int J Plast 1995;11:971–89.
[15] Broberg KB. The cell model of materials. Comput Mech 1997;19:447–52.
[16] Tvergaard V. Crack growth predictions by cohesive zone model for ductile fracture. J Mech Phys Solids 2001;49:2191–207.
[17] Costanzo F, Walton JR. Numerical simulations of a dynamically propagating crack with a nonlinear cohesive zone. Int J Fract

1998;91:373–89.
[18] Corigliano A, Ricci M. Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 2001;38:547–76.
[19] Zhang X, Mai YW, Jeffrey RG. A cohesive plastic and damage zone model for dynamic crack growth in rate-dependent materials. Int

J Solids Struct 2003;40:5819–37.
[20] Broberg KB. Influence of T-stress, cohesive strength and yield strength on the competition between decohesion and plastic flow in a

crack edge vicinity. Int J Fract 1999;100:133–42.
[21] Wnuk MP, Legat J. Work of fracture and cohesive stress distribution resulting from triaxiality dependent cohesive zone model. Int J

Fract 2002;114:29–46.
[22] Tvergaard V, Hutchinson JW. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids

Struct 1996;33(20–22):3297–308.
[23] ABAQUS. ABAQUS version 6.4. H.K.S. Inc. Pawtucket, USA. 2003.
[24] Zhang ZL. A practical micro-mechanical model-based local approach methodology for the analysis of ductile fracture of welded T-

joints. PhD thesis. Lappeenranta University of Technology, Finland. 1994.
[25] Scheider I. Cohesive model for crack propagation analyses of structures with elastic–plastic material behavior. Foundations and

implementation. Technical report, GKSS internal report no. WMS/2000/19. 2000.
[26] Clausen AH, Auested T. Split-Hopkinson tension bar, experimental set-up and theoretical considerations. Technical report, SIMLab

internal report no. R-16-02. 2002.
[27] Pan J, Saje M, Needleman A. Localization of deformation in rate sensitive porous plastic solids. Int J Fract 1983;21:261–78.
[28] Gurson J. Continuum theory of ductile rupture by void nucleation and growth. Part I—yield criteria and flow rules for porous ductile

media. J Engng Mater Technol 1977;99:2–15.
[29] Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract 1982;18:237–52.
[30] Koplik J, Needleman A. Void growth and coalescence in porous plastic solids. Int J Solids Struct 1988;24:835–53.
[31] Needleman A, Tvergaard V. An analysis of dynamic, ductile crack growth in a double edge cracked specimen. Int J Fract

1991;49:41–67.
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Simulation of Crack Extension in Aluminum
Weldment using Rate-Dependent Cohesive

Elements

Majid Anvari, Christian Thaulow
Department of Engineering Design and Materials, NTNU, Trondheim, Norway

Abstract

A laser welded compact tension C(T) specimen has been analyzed using finite element
method. The loading is dynamic and the crack growth simulation has been performed
by employing rate dependent cohesive elements. The cohesive elements are distributed in
different orientations, so the crack path is not limited to mode I, but mixed mode fracture
is possible. The effect of strength mismatch on maximum load, the rate of the crack growth
speed, and fracture resistance curves are presented. It is also discussed how rate of loading
and crack path restrictions can affect the results.

Keywords: Cohesive zone modeling, Rate sensitivity, mismatch, Dynamic loading

1 Introduction

Aluminum weldment has a vast application in different fields of industry. The load bearing
capacity and the fracture resistance of weldments are difficult to predict due to the inho-
mogeneous microstructures and complex geometries. They also consist of different zones
with a variety of mechanical properties. These zones, in a laser weldment, are divided into
three main areas, weld zone or fusion zone (FZ), heat affected zone (HAZ) which has been
affected by the heat input during welding, and the zone which has not been affected by
the welding process and is called base metal (BM). A welded structure happens to contain
cracks either at the time of manufacturing or after it is loaded by fluctuating forces or
environmental changes. The crack growth can affect the mode of failure and the amount
of energy absorption under dynamic loading conditions. Although classical fracture me-
chanics approaches have been used for many weldment applications, they have a number
of limitations that affects the reliability of their predictions. In addition to the limitations
regarding to the amount of plasticity at the crack tip, geometry and dimensional require-
ments, etc., they need the requirement of the presence and location of a crack as a priority.
There is also the difficulty in accounting for mechanical and fracture properties variation
within the weldment. Local fracture mechanics approaches offer an alternative to solve
welded structures and to obtain more detailed analyses compared to linear-elastic fracture
mechanics and elastic-plastic fracture mechanics approaches. To use local approaches un-
der dynamic loading conditions, it is important to have an effective numerical tool to be
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able to simulate crack growth while considering the dynamic loading influences.
One of the local approaches that has been widely used in numerical fracture mechanics

is the cohesive zone model which is based on the strip yield models proposed by Dugdale [1]
and Barenblatt [2]. In finite element representation of cohesive zone modeling, cohesive
elements are introduced as interfaces between continuum elements. The material separa-
tion and damage occur only in the interface elements which obey a constitutive equation
named traction separation law (TSL). Separation is calculated from the difference of the
displacements of the continuum elements adjacent to the cohesive element.

When a welded structure is under dynamic loading conditions, rate dependency of
the material can affect the energy absorption and mode of failure of the structure. The
rate dependency has several sources; rate dependency of the bulk plastic response, rate
dependency of the weld failure processes, and the effects of temperature dependency in
the responses due to the heating that results from the localized plasticity and heating. In
addition to these influences, elastic waves and inertia can affect the crack path and crack
growth speed.

In the present paper, a laser welded compact tension C(T) specimen, 50x60 mm2, made
of aluminum alloy 6xxx series has been analyzed under dynamic loading conditions. For
simplicity, the yield strengths of HAZ and BM have been considered to be the same so that
a bi-material case is analyzed. An initial crack of length 25 mm (a/w=0.5) is introduced at
bi-material interface. The cohesive elements exist not only on the ligament of the interface
line, but also in some extent of the FZ and BM areas. In all of the analyses, the cohesive
elements and bulk material are strain-rate dependent. The effect of strength mismatch on
maximum load, crack growth and fracture toughness are discussed. It is also discussed
how the speed of loading and the finite element model can affect the results.

2 Method

The finite element model of the C(T) specimen and the crack area are shown in Fig. 1.
The work is based on the model and simulations performed in [3]. In [3], the cohesive

BM

FZ

BM}

}
}

Figure 1: Finite element model of the C(T) specimen.
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properties are validated by tests for three different initial crack placements, in the BM, in
the middle of HAZ, and in the interface of HAZ/BM. All the experiments and analyses
in that investigation are quasi-static. The cohesive and bulk material properties obtained
in [3] have been used in the present article with the difference that in the current paper,
all of the properties are rate dependent. The static TSL properties are different for the
cohesive elements that exist on the interface, in the FZ and in the BM. Since the quasi-static
experiments show crack deviation in the FZ with an average angle of 17 degrees, cohesive
elements are introduced within triangular continuum elements with the same angle. In
this way, the crack has the possibility to grow along the interface, normal to the interface,
or with the angle of 17 degrees into the FZ or BM. It should be noted that a hybrid plane-
strain/plane-stress model has been introduced. Plane strain elements have been used in
the process zone in an area around the crack tip because in that area, the stresses normal
to the thickness are not ignorable. Since the thickness of the specimen is only 4.2 mm, the
rest of the specimen has been modeled by plane-stress elements.

The TSL used for the cohesive elements is according to Scheider and Brocks [4]. Con-
sidering only normal stresses and openings, the TSL chosen has the form of:

T = S f
(

δN
)

(1)

f
(

δN
)

=



















2
(

δN

δ1

)

−
(

δN

δ1

)2

, 0 < δN < δ1

1 , δ1 < δN < δ2

2
(

δN
−δ2

δ0−δ2

)3

− 3
(

δN
−δ2

δ0−δ2

)2

+ 1 , δ2 < δN < δ0

(2)

where T is the traction, S is the cohesive strength, δc is the critical separation in which
cohesive element fails, and δ1 and δ2 are the shape parameters (Fig. 2). The material rate
dependency for aluminum alloy 6xxx series was obtained through experiments [5]:

˙̄ǫpl = D

(

σd

σ0
− 1

)p

(3)

where ˙̄ǫpl is the equivalent plastic strain rate, σd is the yield stress at nonzero plastic strain
rate, σ0 is the static yield stress, and D=8000 s−1 and p=0.8 are material constants.

Anvari et al. [6] used a Gurson type strain-rate dependent cell model to obtain the
TSL for interface elements. They showed that by increasing load speed (strain rate), the
stress-displacement curves (traction separation curves) are almost similar and only the
maximum stresses (cohesive strengths) increase. In this way, the rate dependency of the
cohesive zone is defined as:

S = S0

[

(

ǫ̇

D

)
1

p

+ 1

]

(4)

where S0 is the maximum stress for rate independent material and D and p are the same
constants as in Eq. 3. This formulation has been obtained and tested for normal loading
(mode I) only.
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Figure 2: TSL shape proposed by Scheider and Brocks [4].

In a later investigation [5], it was shown that this assumption for rate dependency
of cohesive elements produces reasonable results when compared with the experimental
results. They also showed that strain rate dependency of the cohesive elements does not
make the model to be highly mesh-sensitive as long as the elements are fine enough to
calculate plastic strain distribution with a reasonable degree of accuracy.

Since there is not any evidence for rate sensitivity when the load is tangential, the cohe-
sive strength on the tangential direction has been considered to be 40% of the instantaneous
normal cohesive strength.

Figure 3 illustrates the strain rate transformation technique employed for the simula-
tions using strain rate dependent cohesive elements. In this technique, the values of strain
rate normal to the cohesive element are calculated in the continuum elements in the be-
ginning of each numerical iteration. A similar technique has already been introduced by
Siegmund and Brocks [7] for triaxiality dependent cohesive elements under quasi static
loading conditions. The averaged values are then transformed automatically to the adja-
cent cohesive elements to update the cohesive strength of the elements based on Equation 4.

The implementation of the cohesive elements has been performed by user-defined ele-
ment (UEL) as a FORTRAN subroutine within the non-linear finite element code ABAQUS
[8]. All the analyses are transient dynamics using implicit integration.
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Figure 3: Schematic illustration of the strain rate transformation technique for rate-
dependent cohesive elements.

3 Calculations and Results

This section is divided into three main categories and shows how maximum force, crack
growth rate and fracture resistance curves are influenced by strength mismatch, rate of
loading and crack path assumptions.

3.1 Effect of mismatch

The experiments performed in [3] report the yield strength values of FZ and BM to be
200 and 300 MPa, respectively which means an undermatch case with mismatch factor
m=200/300=0.67. To check the effect of mismatch on the mechanical response of the
specimen, the yield strength of the FZ has been increased up to 275 MPa without changing
the strain hardening as shown in Fig 4. It is obvious that with changing bulk plasticity, the
values of cohesive strength and cohesive energy change. As a rule of thumb, the cohesive
strengths of FZ and the interface line were considered to be interpolated between the
original value and the values of cohesive strength of BM with the same rate as the yield
strength of the FZ changes. Loading rate of 2 m/s has been applied in all simulations.

In all simulations, the crack deviates immediately into HAZ and grows in a straight
line. Figure 5 shows the force vs. load-line displacement (Vll) for different mismatch cases
and also the change of the maximum load vs. mismatch factor, m. The maximum load
is reached when the first cohesive element fails. The fluctuations in the load is related
to the elastic waves introduced into the structure due to the high rate of the change of
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Figure 4: Stress-strain curves for BM and FZ for different values of mismatch.

the load. Figure 6 shows the crack growth vs. time for the different cases. It shows that
with increasing m (decreasing mismatch), the time of crack initiation slightly increases
and the speed of crack growth slightly decreases. The significant change happens when
there is no mismatch and the specimen is made of only base material. In that case, the
crack starts much later and it grows slowly compared to the undermatch cases. To check
if this difference can be observed in the CTOD R-curves, the δ5 values vs. crack growth
are calculated as presented in Fig 7. The δ5 measurement proposed by Schwalbe [9] is the
displacement difference between two points that are 2.5 mm above and below the original
crack tip. Figure 7 shows that although the existence of mismatch has a significant effect
on the resistance curve, the value of mismatch has only a slight effect on this curve.

To further investigate the results presented in Fig. 7, the change of energy balance for
the whole model vs. crack growth was also calculated, Fig. 8. The energy balance is the
difference between the sum of kinetic and total strain energy for the bulk material and
the external work and therefore can be proposed to represent the energy of separation.
Figure 8 shows similar behavior to the R curves shown in Fig. 7.

3.2 Effect of the rate of loading

To check the effect of loading rate on the results and compare them with static loading,
the original model (m=0.67) was simulated under dynamic load with the rate of 1 m/s
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Figure 5: Effect of mismatch on load (a) Load vs. load line displacement, (b) maximum
load vs. the value of mismatch
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in addition to 2 m/s and static analysis. The simulations show that the maximum loads,
the loads when the crack starts to grow, for the two different loading rates are almost the
same (587 N), while for the static analysis, this value is lower (534 N). Figure 9(a) shows
the crack growth vs. time and linear curves fitted to the results. This figure shows that
the rate of the crack growth is almost twice when the loading rate is doubled. Although
the crack speeds are highly different, the R curves are almost coincident, Fig. 9(b).
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Figure 9: Effect of loading rate on (a) crack growth, and (b) resistance curve.

3.3 Effect of crack path

It is reported in [3] that the angles of crack deviations measured in the tests are not
constant and vary between 10 and 25 degrees for the mismatch value m=0.67. To check
how much the crack path assumption affects the results, the model was made with the
cohesive elements to be in 25 degrees rather than 17 degrees simulated in the previous
section. The simulation with loading rate of 2 m/s showed that the crack deviates initially
into the FZ, but suddenly changes its direction and mode I becomes dominant. Figure 10
shows the crack growth paths for the two models. Figure 11 shows that the maximum load
is initially higher for the 25 degree cases, which is related to the initiation of the crack
growth, but it drops faster than 17 degree case when mode I becomes dominant. The fact
that energy of separation decreases with the crack growth path is confirmed by Fig. 12(b)
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Figure 10: Effect of finite element model on crack path. (a) model with cohesive elements
in 17 degree, (b) model with cohesive elements in 25 degrees.
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Figure 11: Effect of finite element model and crack path on load.
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which shows that δ5 is slightly higher for the 25 degree case in the beginning, but becomes
less that the 17 degree case after a short crack growth. Figure 12(a) shows that the rate
of the crack growth is generally slightly higher for the crack growing in mode I.

160 180 200 220 240
0

1

2

3

4

5

6

7

t (µs)

∆a
 (

m
m

)

0 1 2 3 4 5 6 7
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

∆a (mm)

δ 5 (
m

m
)

17 degrees
25 degrees

17 degrees
25 degrees

(a) (b) 

Figure 12: Effect of finite element model and crack path on (a) crack growth, and (b)
resistance curve.

4 Conclusions

It has been shown how rate-sensitive cohesive elements can be used in simulating crack
growth and its extension into aluminum weldment under dynamic loading conditions. The
results show that although having soft zone (undermatch) in a structure made of aluminum
alloy results in significant decrease of the fracture toughness, the amount of mismatch is not
playing an important role for the resistance curves, crack path and the rate of crack growth.
The maximum load, the load at the initiation of the crack growth, is highly affected by
the amount of mismatch. The results imply that it is not the energy of separation which is
influenced by the value of mismatch, but it is the energy dissipated by plastic deformation.

The simulations with different rates of loading showed that the crack growth speed
is highly influenced, whereas the resistance curves are almost insensitive to the rate of
loading.

The analyes performed with different mesh designs showed that the angle in which
the crack grows affects the resistance curve and that the toughness is minimum for mode
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I. Hence, the conventional method of modeling where cohesive elements are imposed at
the boundaries of undamaged continuum elements suffers from the dependency on the
orientation of the cohesive elements and it is very important to define the orientation of
these elements properly. Alternatively, methods in which cohesive behavior is embedded
directly into the continuum constitutive response can be applied, e.g. [10].

In all simulations, it seems that although the resistance curves represent the crack
growth behavior correctly in a qualitative way, they are not reflecting the change in global
behavior of the structure properly. In other words, the resistance curves (fracture tough-
ness) are insensitive to the amount of mismatch and the rate of loading while the reaction
forces show higher global differences.
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