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Preface 1ii

Preface

This thesis comprises on introduction and three journal papers. Paper 1 is pub-
lished in Engineering Fracture Mechanics, where also Paper 2 is accepted with
minor revision. Paper 3 is submitted for publication in International Journal of
Fracture.

I have been the main author and responsible for the implementation and
simulations in all the papers. However, I have received helpful contributions,
corrections and comments from the co-authors. The framework and methodology
in Paper 1 are built on strain-based fracture mechanics equations derived by
Erling Ostby (second author).
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Abstract

The thesis comprises on introduction chapter and three journal papers considering
probabilistic fracture assessment of pipes, using three different approaches.

In Paper 1 semi-analytical strain-based equations for surface cracked pipes
were used to establish probabilistic fracture assessment models. The pipes were
subjected to global plastic strains, and the tangency criterion was used to deter-
mine the global failure strain. The results showed that the strain capacity and
the CTOD were strongly influenced by the effect of internal pressure. A major
drop in the probability of failure was observed as the pressure increased. Simi-
larly, the crack depth also strongly influenced the probability of failure together
with the global strain capacity. The effect from increasing the crack length in
the hoop direction also resulted in an increase in the probability of failure. The
reliability analyses employed the FORM and SORM techniques. It should be
noted that no explicit capacity term in the limit state function was calculated.
Point-wise capacity solutions were obtained from an iterative procedure linked to
the probabilistic software Proban.

In Paper 2 the probabilistic model is based on 3D FEM models including
the effect of ductile tearing using the Gurson-Tvergaard-Needleman model. The
quasi-static FEM-solutions were obtained using Abaqus/Explicit, which origi-
nally was developed for scenarios where shock and mass effects play an important
role. The simulations showed how the Abaqus/Explicit solver enabled detailed
analyses of a pipe with a surface defect. The different simulations were used to
establish so-called response surfaces. These surfaces (i.e. equations) represented
the capacity term in the limit state equation. The pipes were subjected to uni-
form tension in combination with internal pressure. The results showed a loss
of capacity when the internal pressure was included. Additionally, a significant
decrease in strain capacity was observed when the crack depth increased. Finally,
the variation in crack length and material hardening also influenced the global
strain capacity and the CTOD. The probability of failure was calculated using
FORM and SORM.

In Paper 3 a computationally attractive method using line-springs and shell
elements is used to establish a probabilistic fracture mechanics (PFM) model.
The crack was represented by nonlinear finite element springs, line-springs, with
various compliance dependent on the plastic deformation and the crack depth.
Ductile tearing is included using the traditional CTOD-Aa relationship. As a
result, the material resistance curve was included in the PFM-model together
with crack depth, crack length and internal pressure. The results illustrated the
effect of variation in material resistance and the internal pressure. The model
was also found to be applicable for engineering purposes.






Acknowledgements vii

Acknowledgements

This thesis contains the main results from my work during the past three years.
The work has been a part of the Joint Industry Project "Fracture Control -
Offshore Pipelines" with the following funding participants: Statoil, Hydro, BP,
ENT Norge, Technip and the Research Council of Norway.

The supervisors from The Norwegian University of Science and Technology
have been Professor Dr.ing. Christian Thaulow and Professor Dr.ing. Dr.tech.
Arvid Naess. Their assistance, encouragement and advice throughout the study
are greatly acknowledged.

I have worked in close cooperation with Dr.ing. Erling Ostby (Sintef). His
patient and thorough guidance and criticism throughout the research study has
been highly appreciated.

[ also appreciate the assistance provided by Dr. Gudfinnur Sigurdsson (Det
Norske Veritas) with programming of the probabilistic framework, and by Dr.ing.
Knut-Aril Farnes (Statoil) with programming topics in Fortran and Matlab. I
also want to thank my Statoil colleagues Dr. Richard Verley, Dr.ing. Mons
Hauge and Dr.ing. Per Gerhard Grini. Richard helped me with proof-reading
the manuscript, and Mons gave me the opportunity to embark on the doctoral
program. Per Gerhard has motivated me to keep the time schedule, which has
been important to me. When I struggled with the research progress the advice
was simple but effective: don’t give up; work!

Finally, I want to thank my family and colleagues for their patience and
support during my PhD-study.






Acknowledgements ix

Contents
1 Introduction and motivation 1
1.1 Elastic-plastic fracture mechanics . . . . ... .. ... ... ... 3
1.1.1 Constraint . . . . . . . .. ... 5
1.2 Ductile crack-growth simulation . . . . . .. ... ... ... ... 7
1.3 Failure criteria . . . . . . . . ... 8
1.4 Reliability analysis . . . . . . .. ... Lo 9
References 12
Paper 1: Probabilistic fracture assessment of surface cracked pipes
using strain-based approach 17
1 Nomenclature 18
2 Introduction 19

3 Structural reliability - establishment of the probability of failure 21

4 The probabilistic fracture mechanics model 23
4.1 The strain-based simplified fracture mechanics equation . . . . . . 24
4.2 Calculation of the critical strain - e¢pip . .« .« o o o L 30

4.2.1 Strain due to external loading, €4pp . . . . . . . ... L. 31
4.2.2  Defect location, effective crack length and modified strain . 31
4.2.3 Defect distributions . . . . . . ... ... L. 33

5 Results 35
5.1 Analyses using deterministic defect values . . . . . . ... .. .. 35
5.2 Calculations using stochastic crack geometry values . . . . . . .. 36
5.3 Comparison of FORM and SORM calculations . . . . ... .. .. 37

6 Concluding remarks and discussion 38

References 41

Appendix 43

A Relationship between J and CTOD 44

Paper 2: A probabilistic fracture mechanics model including 3D
ductile tearing of bi-axially loaded pipes with surface cracks 47



6

Introduction

3D FE-models
2.1 Solution method and solution quality . . . . . .. ... ... ...

Results and discussion

The probabilistic fracture mechanics model

4.1 Failure and response surfaces . . . . . . . ... ... ...
4.2  Global failure criterion . . . . . . . ... ... L.
4.3 Local failure criterion . . . . . . . . ... .00
4.4 Example using the PEM-model . . . . .. .. ... ... .....

Results and discussion
5.1 Limitations . . . . . . . . . .

Conclusions and further work

References

48

50
54

55

62
65
66
66
69

71
73

74

75

Paper 3: A probabilistic ductile fracture mechanics model for bi-
axially loaded surface-cracked pipes using shell and line-spring

elements
Introduction

FEM-model
2.1 Results from FEM simulations . . . . . . . . . . . . . . ... ...

The probabilistic fracture mechanics model
3.1 Failure and response surfaces. . . . . . .. ... ... ... ....

3.2 Failure criteria . . . . . . . . .

3.3 Example . . . ...
4 Results of the probabilistic simulations

4.1 DIScussion . . . . . ..o
5 Conclusions
References

81

83

84
89

93
96
96
98

98
105

105

106



Introduction 1

1 Introduction and motivation

Structure of the thesis

This thesis contains an introduction section and three journal papers which were
completed consecutively during the course of the past three years. I have also
contributed at four international conferences during the period, but these contri-
butions are not presented herein.

There are some "disadvantages" in presenting a thesis based on journal pa-
pers. Firstly, the structure tends to be repetitive as each paper has a similar
introduction section explaining the same motivation and background to the work.
Additionally, it may be difficult to see the direct connection between the papers
although they are close in topic. This is the main reason I have added a section
giving the motivation of the project providing short discussions and some short
explanations of the central concepts applied in the thesis. Finally, the journal
structure does not cover all the work done.

One clarification should be noted on the vocabulary used: the meaning of a
"crack" and "defect" are used synonymously.

Motivation

This thesis is about fracture mechanics assessment of offshore pipelines, where
outer surface defects located in the circumferential direction are considered.
Pipelines are used to transport oil and gas for short and long distances, and
may be exposed to a large variation of loads, depending on the surroundings
and area of application. In fracture mechanics assessment the main interest is
focused on the loading conditions resulting in tensile strains. If a crack appears
in a tensile region it may develop and grow sufficiently to cause structural failure.
The behaviour depends on several factors, e.g. crack size and load level. During
operation, the pipeline may be exposed to temperature loads resulting in lateral
or upheaval buckling with subsequent large tensile and compression strains. Ad-
ditionally, free-spans due to irregular seabed topography may also introduce large
deformations, see illustration in Fig. 1. The effect of internal pressure may be
important as well, since the resulting hoop stresses may cause the fracture me-
chanics response to change considerably when longitudinal tensile strains appears
in the pipe. Another scenario where the pipeline is exposed to relatively large
deformations is during laying. The level of deformation depends on the laying
technique and the sea depth. Fig. 2 illustrates the principle of J- and S-laying. In
J-laying the pipeline leaves the lay barge vertically. Typically, several linepipes of
~ 12m length are girth-welded in the horizontal position, lifted into the vertical
position and welded to the pipeline. In S-laying the linepipes are girth-welded on
deck, the pipeline leaves the vessel horizontally and is (gradually) deformed/bent
over the stinger. The tension in the pipeline must be adjusted to avoid local
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Figure 1: A possible seabed configuration for a pipeline with free-spans.
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Figure 2: S- and J-laying technique. (Unknown origin of the figure)
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buckling problems at touchdown on the seabed and when leaving the stinger.

Due to the nature of welding the resulting weld may contain defects, e.g. due
to lack of fusion between weld and base material, or between the weld layers, or
defects at the start-stop regions of the weld layers. A sketch of a girth-welded
pipe with a surface defect is shown in Fig. 3. Fig. 4 gives a schematic view of the
inspection process for girth welds for offshore pipelines. As the pipes are girth
welded they are inspected, e.g. using automated ultrasonic testing (AUT) units,
which are calibrated to detect defect-like cracks above a certain size. The AUT
quality is ensured in qualification tests, and is represented by the probability of
detection curve (POD). Since the weld inspection does not necessarily detects
all the defects, some defects will pass undetected. These defects are shown as
"Not observed defects" in Fig. 4. The detected defects exceeding a certain size
will be repaired and re-inspected. As a result the defects remaining after welding,
inspection and repair are represented in "Defect distribution before laying". This
is the defect distribution that may be convenient to apply in probabilistic fracture
assessment procedures for pipelines. When the structural and fracture response
is known the probabilistic calculations can be used to calibrate safety factors in
design equations. These are on the form

R
— = Lp, 1
TR i ()

where R and L denotes the structural resistance and load, respectively. yr and vz,
are the partial safety factors. The partial safety factors are calibrated for different
target reliability levels dependent on the area of application and failure mode.
As a result, when a guideline is established, an engineer can employ it within the
region of validity and be certain that he has achieved a safe and cost-effective
design for the given operational conditions or laying procedure.

1.1 Elastic-plastic fracture mechanics

Linear elastic fracture mechanics (LEFM) is valid when there are only small local
plastic deformations around the crack tip. The stress intensity factor K describes
the stress field near the crack tip, see e.g. [1|. However, ductile materials may be
impossible to characterize with LEFM when large plastic deformations appear
around the crack tip. Consequently, other strategies have been developed to
consider these situations.

Rice proposed the path-independent integral J as a fracture characteriz-
ing parameter for a nonlinear-elastic material. This implied the assumption of
isotropic material, small strains, rate-independency and non-dissipative material
behaviour. If ¢; = o;;n; is the traction on the contour I', o;; the stress tensor and
n; the unit vector normal to I', the J-integral can be written as:

0ui
J = /F(Wdy — ti%ds). (2)



Figure 3: A girth-welded pipe with a defect. (Fig. used with permission from
Snamprogetti.)
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Figure 4: Schematic inspection process for girth welds in offshore pipelines. (Fig.
is used with permission from DNV, Norway)
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u; denotes the displacement in direction ¢, and W is the strain energy density for
a hyper-elastic material defined as:

oW
oy = Do (3)

Hutchinson |2| and Rice and Rosengren |3]| showed how the J-integral could
be viewed as a stress intensity parameter that describes the asymptotic strain
and stress fields in a nonlinear material obeying the Ramberg-Osgood strain-
hardening function. Additionally, they showed that the stress and strain had to
vary proportionally as 1/r near the crack tip to maintain the path independence
for the J-integral, see Fig. 5. This is termed the Hutchinson-Rice-Rosengren
(HRR) singularity.

The singular field around the crack tip does not exist in ductile materials.
When large deformations appear around the crack tip, the crack tip blunts as in-
dicated in Fig.6. The blunting results in a stress deviation from the HRR-solution.
However, McMeeking |4] also showed that the HRR-solution was representative
outside the near-tip region. As a consequence the J-parameter can also be ap-
plicable for situations involving large deformations. Rice [5| and Hutchinson |6]
have shown that CTOD and the J—integral describe the ductile tearing behaviour
sufficiently. An equivalence between J and CTOD has been shown for both a
stationary and a growing crack by Shih [7], i.e.

J = m*O'ys(S, (4)

where m* is a constant dependent on the material properties (mainly hardening)
and stress state, oy is the yield stress, and ¢ is the CTOD. In this thesis, however,
the following relation has been applied:

J = m00.257 (5)
where 0g5 denotes the yield stress at 0.2% plastic strain, and the m-factor is

m(O'(),g/O'Ts) = 3.87 — 2.64(0’0_2/0'1“5’). (6)

ors denotes the tensile strength. The explanation for use of this function is found
in Appendix A in Paper 1.

In the first paper J is used as fracture mechanics parameter, whereas with
the two last papers CTOD is used for characterization of initiation and growth
of ductile cracks.

1.1.1 Constraint

Geometry and mode of loading can influence the conditions around the crack
tip, and therefore influence the fracture toughness. This is termed geometric



Figure 5: An arbitrary contour line around a crack tip for J-integral evaluation.

Deformed blunted crack

Figure 6: An initially sharp crack that is blunted due to inelastic deformations
at the crack tip. The CTOD is depicted as 9.

constraint effect. When this effect is taken into account the one parameter theory
must be extended. Betegon and Hancock [8] investigated the the stress field in
front of the crack for different geometric constraint levels for a hardening material.
They showed that the constraint could be represented by the T-stress parameter.
The two-parameter theory is named J-T theory. Another approach is the J-Q
theory proposed by O’Dowd and Shih [9,10]. The theory behind two-parameter
fracture mechanics is not presented in detail, and readers are referred to the
references above for a more in-depth presentation The basis for not addressing
constraint issues in this work can be seen from Fig. 7, showing the constraint
level in different fracture mechanics specimens compared to the constraint level
in pipes. Recent developments in fracture assessment of pipelines have tended
towards using the SEN'T specimen in determination of the fracture toughness,
see e.g. Nyhus et al. [11]. From Fig. 7 it can be observed that the constraint
levels in pipes and SENT specimens are of negligible difference, thus, using the
fracture toughness from the latter should give representative values also for the
pipes without further corrections. In this work it has been assumed that crack
growth resistance curves are obtained using SENT specimens, and the variation in
fracture toughness is rather assumed to be due to variation in material properties,
and not directly due to differences in constraint level.
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PIPE SENT

FRACTURE ( )
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Figure 7: Illustration on how the fracture toughness varies with the constraint
level. (Fig. used with permission from B. Nyhus, Sintef)

1.2 Ductile crack-growth simulation

J-Aa and CTOD-Aa curves

In Paper 1 the J — Aa curve was employed to advance the crack front in the
strain-based equations. This means that the connection between J and the crack
growth, Aa, is known prior to the analysis. In the Paper 2 the Gurson-Tvergaard-
Needleman model is adjusted to obtain a wanted CTOD-Aa relationship. In the
Paper 3, the CTOD-Aa curve is applied as input to the Link,,,. software.

Gurson-Tvergaard-Needleman

In the second paper 3D FEM analyses are conducted where the Gurson-
Tvergaard-Needleman approximate yield model was applied to model the effect
of ductile tearing. This ductile crack growth model was proposed by Gurson [12],
and later modified |13,14]. The model simulates the microvoid nucleation, growth
and coalescence, and assumes that the porous material behaves like a continuum
where the plastic yield surface is adjusted dependent on the hydrostatic stress
level and current void volume fraction. The yield condition is expressed as

90007, 1) = (L + 200 com(ZEZ2) — (1 + o)) =0, ()



where o, is the von Mises stress, 0, the mean stress, & the tensile flow stress and
f* is the current effective void volume fraction. ¢, ¢ and g3 = ¢? are constants.
The original Gurson model [12]| is obtained by setting ¢; = ¢2 = ¢3 = 1, and
f* = f, where f denotes the current void volume fraction. Void coalescence is

accounted for using the effective void volume fraction, f*, from Tvergaard and
Needleman [14] i.e.

. f if f < f.,
P *_ 8
P {fc—;”;_;”;(f—fc) if f. < f < fr. ®

fe is the critical void volume fraction at the start of void coalescence. fr denotes
the final failure void volume fraction, and is given by fr = 0.15 + 2f,, where
where fy is the initial void volume fraction of f. The ultimate value where
the macroscopic stress carrying capacity vanishes is defined as f5 = 1/¢;. The
evolution of f in the second paper is purely dependent on growth of existing voids
which is based on the law of conservation of mass, i.e.

fgrown = (1 — [f)dej, (9)

where df ;001 denotes the incremental void volume growth of existing voids over
an increment of load, and de},_is the incremental volumetric plastic strain. The
summation rule over repeated indices must be applied.

1.3 Failure criteria

Three different failure criteria are applied in this thesis. The choice of failure
criterion influences the results since they are based on different failure conditions.

In Paper 1 the traditional tangency criterion was employed. This criterion
implies calculation and comparison of the applied crack driving force and the
material crack growth resistance curve. The critical point is the tangency point
defined as the instability point. If the applied J is denoted .J,,, and the material
resistance Jp the following condition is met at the tangency point:

Japp = IR (10)

and
gy _ @ (11)
da da
This point must normally be solved by an iterative procedure. The corresponding
strain at this level, €..;;, has to be determined, and used in the subsequent prob-
abilistic analyses. The criterion is used in existing standards, such as BS7910,
[16]. The procedure is simple and suited to practical analyses, since the material
resistance curve is obtained from simple experiments.
Another failure point is the maximum load criterion. This criterion is il-

lustrated in Fig. 8(a). The highest point (i.e. maximum load) on the curve is
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marked with the horizontal line with the corresponding critical strain .. on
the co-ordinate axis. The CTOD level at .. on the crack driving force curve
is seen in Fig. 8(b). Finally, we have a local failure criterion proposed by Ostby

x 10

CTOD [mm]
N

[y
T

‘ ‘ _— ‘ o ‘ ‘ i ‘
0 0.005 0.01 0.015, 02 0.025 0 0.005 0.01 0.015 , 0.5'2 0.025
Global strain

€ . .
critL. critG critL €eritc

Global strain

(a) (b)

Figure 8: The critical strain using the maximum load failure criterion (solid lines)
and the local failure criterion (dotted line). (a) Load vs. strain curve, (b) CTOD
vs. strain for a tensile loaded pipe. e and .4 denote the critical strain
using the local and global criteria, respectively.

et al.[17]. This criterion predicts the CTOD at maximum load, d,,4,, in the crack
ligament. If L is the ligament height, and da,—1mm is the CTOD at 1mm crack
growth, the local failure criterion is written as

Smar = (0.03L + Saacrmm — 0.61)(—12.1(222)2 4+ 18.9(7%2) — 6.28).  (12)

ars ars

The critical strain, €..;1,, is depicted in Figs. 8(a) and 8(b) for comparison with
the global maximum criterion.

1.4 Reliability analysis

The deterministic calculations provide the basis for the probabilistic fracture
mechanics models. Such models can be used to describe the structural reliability
of a pipe, given that we have statistical information for e.g. the load conditions,
defect geometry, material, etc. This information is used to establish the limit
state function, G(x). If fx(x) is the joint probability density function of X, the
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probability of failure integral can be written as:

pr= /G(X)<0 fx(x)dx. (13)

The limit state function is:
G(X) = 5crit(X1) - 5app(X2)' (14)

where X = (X, X5) contains the basic variables. The capacity part is expressed
as £qit(Xy) with the variables of interest represented in the vector X;. This
could, as an example, be X; = (a, 2¢) where a and 2c denote the crack depth and
length, respectively, although it may in general contain other variables as well.
Eapp(X2) represents the load part of the limit state function, where X, contains
the load variables. G(X) < 0 defines the region with structural failure, whereas
G(X) > 0 defines the safe region. The next part is to choose how Eq. (13) should
be solved. Several methods exist, both analytical and numerical [18-20], and a
brief overview of the methods applied in this thesis is given here.

First and second order reliability methods are popular methods to solve
Eq. (13). Using these methods implies that the equation is solved by performing
a mapping of the model with n correlated basic variables into uncorrelated, inde-
pendent, standard, normal-distributed variables, followed by an approximation
of the failure surface at the design point with a hyperplane or a parabolic surface.
This mapping retains the statistical properties and can be applied for a general
multi-dimensional problem with correlated statistical variables, see e.g. [21,22].
The mapping is illustrated in two dimensions in Fig. 9.

u-space is also denoted the Gaussian u-space where different possibilities exist
for the limit state function. The first option is to use First Order Reliability
Method (FORM). This method involves linearisation of the function around the
design point using a first order Taylor expansion. The design point represents
the highest probability of failure on the given failure surface, i.e the point on the
failure surface closest to the co-ordinate origin. The distance from the origin to
the design point is denoted as (3, known as the safety index. Due to the rotational
symmetry in the u-space the probability of failure can be determined from

Py ~ (I)(_6>7 (15)

where @ is the univariate standard normal integral. Another approximation is
to apply a parabolic function around the design point, see Fig. 9. This solution
technique is termed the second order reliability method (SORM) which may give a
better estimate of the failure integral since the nonlinearity is better represented,
e.g. Melchers [18] or Madsen et al. [19]. The FORM/SORM provide strictly
asymptotic solutions, i.e., when the reliability index § — oo. In cases with
small [-values, the FORM/SORM yields robust solutions only for linear and
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SORM
Safe set G(x)=0 ‘&“;‘ G(u)=0
X, L. —— u, \
I//,»’ :: ::"\\\\ Safe set Failure set
E(X2)i— 4 ‘
\‘\:‘ ! Design point——__ N
Failure set A%
gg-2s
1 I\\ “\ - /" ," Y
N T FORM

_____

Figure 9: Illustration of mapping in two dimensions from the physical x-space to
the Gaussian u-space.

quadratic failure functions. In this thesis the failure probabilities are expected to
be small, i.e. we expect to have large G-values. Consequently, the FORM/SORM
should be applicable.

Simple integration techniques are to use Monte Carlo simulations (MCS) or
Monte Carlo simulations with importance sampling (MCSI). MCS involves ran-
dom sampling of the basic variables to simulate a large number of cases to deter-
mine the proportion that fall into the unsafe region. This is checked by using an
indicator function /[G(x) < 0] which returns 1 (true) if G(x) < 0 or 0 (false) oth-
erwise. From sample statistics the probability of failure integral can be estimated
as:

b 5 Sy <0 (16)

where x; denotes the vector j of random observations from the joint probability
density function, fx(x), and N is the total number of simulations.

This method may be criticized due to its poor efficiency. A large number of
simulations is often necessary to obtain a probability of failure estimate with a
high confidence level. If some a priori information from a problem is employed,
the sampling region can be selected to improve the MCS method. This is the
background for so-called importance sampling, see details in e.g. Melchers [18|.
In this work the sampling has been done in the Gaussian u-space around the
design point |23,35| using the ideas of Shinozuka [24].
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Probabilistic ductile fracture mechanics

Probabilistic fracture mechanics models have been in use for several years. The
main application, however, has been to brittle fracture problems. The most well-
known statistical brittle fracture model is probably the one established by the
French research group Beremin [25]. They proposed a local criterion for cleavage
assuming that the probability of finding a micro-crack with a critical length is
a function of the volume (locally around the crack tip) of the material involved.
This method has later been applied in numerical models of fracture in the ductile-
brittle transition regime, see e.g. Gao [26], based on the approach from Xia and
Shih |27]. Attempts have also been made to establish probabilistic models for
fracture assessment of welds, see e.g. [28,29].

However, a modern pipeline steel material is normally very ductile, and large
plastic deformations may be allowed. The ductile fracture behaviour is funda-
mentally different from the brittle fracture, and new probabilistic ductile fracture
mechanics models have to be established. The main contribution the past decade
on this topic has been from S. Rahman and co-authors. Several approaches
have been applied in their probabilistic models, e.g. analytical equations [30],
FEM-models [31-33] and Galerkin meshless methods [34]. They have focused on
thick-walled pipes, which are of main concern for e.g. the nuclear industry. This
is different from the pipes investigated in this thesis, where the focus has been
on thinner pipes with surface cracks and large deformations.
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Probabilistic fracture assessment of surface
cracked pipes using strain-based approach’

Andreas Sandvik, Erling Ostby, and Christian Thaulow

Abstract

Simplified strain-based fracture mechanics equations, established for ex-
ternal surface cracked pipelines subjected to an external bending load, are
presented and used in probabilistic assessment of a pipeline girth weld. The
model takes into account several parameters, such as variation in crack
depth, crack length, internal pressure and material hardening. The critical
strain from ductile tearing in the cracked pipeline is found by using the
tangency criterion. The reliability problem is solved using first and second
order reliability methods for different pipe dimensions and load levels.

“Published in Engineering Fracture Mechanics, Vol. 73, pp. 1491-1509, 2006.
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pipe wall thickness

outer pipe wall diameter

angle at the circumference of the pipe

stress at the proportional limit, stress at 0.2% plastic strain
flow stress, tensile strength

von Mises, mean stress

flow stress, hoop stress

hardening exponent

Young’s modulus

Poisson ratio

crack tip opening displacement

nominal uniaxial strain

strain at the proportional limit, plastic strain

strain due to laying, strain input to the limit state equation,
critical strain (capacity)

strain due to external static and dynamic load (load part)
initial slope on the driving force curve where Region 2 starts
probability of failure

n-dimensional random vector

realizations of X

joint probability density function of X

joint probability function

i-th random variable in z-space

n-dimensional random vector in u-space

realizations of U

1-th uncorrelated standard normal random variable

limit state functions in x and u-space

univariate standard normal integral

safety index

polynom coefficients

current void volume fraction

initial void volume fraction

effective void volume fraction

the ultimate value where the microscopic stress carrying capacity vanish

constants in the Gurson yield function
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2 Introduction

Offshore pipelines are an effective long-distance transportation method for oil
and gas. Many new offshore development projects are in ultra-deep water depths
with reservoirs and pipelines exposed to higher pressures and temperatures than
in earlier projects. This requires better pipeline material utilization in addition
to robust and reliable design guidelines.

In particular there are three conditions in which large plastic deformations
may occur in the pipeline. During laying the pipeline may be exposed to
large curvatures with corresponding large deformations. Further, considerable
deformations may occur under operational conditions such as free-spans due to
irregular seabed topography or lateral buckling due to temperature variations.
Today the tensile side often limits the allowable load/deformation. In DNV-OS-
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Figure 1: The difference in allowed strain on the compression and tension side in
a pressurized pipeline according to different standards.

F101 [1] the local buckling criteria for a pipe with internal pressure limit the
longitudinal compression strain to about 2 %, Fig. 1. In comparison, existing
procedures for fracture assessment limit the tensile strain to about 0.3-0.5 %
and therefore limit the utilisation of the given design. It is believed that existing
fracture assessment methods may be overly conservative in addition to not fully
accounting for the effects of internal pressure. As a result, new calculation
strategies should enable qualification of higher tensile strains in pipelines during
both laying and operation.

In fracture assessment the calculated driving force equations are important.
Existing procedures, such as BS7910 [2] and R6 |3|, do in general assume load-
controlled approaches. This means that the stress (i.e. load) is used as input to
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the analyses. To take into account the appearance of a defect in a structure (e.g.
in a pipeline girth weld), the so-called reference stress is calculated. The choice of
formula in the reference stress calculation will influence the results significantly. A
common approach for fracture assessment of pipelines with circumferential cracks
is to determine the reference stress by the method of Kastner et al. [4]. A potential
problem with load-controlled methods has been their weakness in situations with
large plastic deformations. The stress distribution in the structure is established
from the applied load, and the corresponding strain distribution is obtained by
the material’s stress-strain relation. Since we now are considering the inelastic
region, a small change in the stress level may result in a significant change in
the strain level. Reference stress method using the Kastner solution applied to
pipelines with circumferential surface defects are shown to be very conservative
for long cracks and un-conservative for short cracks, Thaulow et al. [6].

Another method is to make use of displacement-controlled calculations, where
the strain is determined from a given displacement and the corresponding stress
is established through the material stress-strain relation. Evaluations performed
with this strategy are called strain-based assessments. If the pipeline is subjected
to an external load resulting in a load-controlled or a mixed load/displacement-
controlled situation the strain-based methods may still be applicable in conjunc-
tion with appropriate safety factors, see Bratfos |7]. The same paper gives theory
and basis for strain-based design.

It is believed that a strain-based design will enable a more reliable and precise
fracture assessment when global plastic deformations occur in the pipeline. With
this background the crack driving force equation applied in this paper is strain-
based. A defect appears in the cross-section of a pipeline girth weld as shown in
Fig. 2. The weld defects are assumed to be constant-depth (a) surface cracks with
finite lengths (2¢). This is reasonable since such defects may appear from welding.
Further, an assumption is made that a defect can appear at an arbitrary position
in the circumferential direction. The equations are developed for tension loads in
addition to biaxial loading due to internal pressure. Further, it is assumed that
the cross-section remains circular throughout the deformation and that there is
no ovality or diameter expansion. Realistic dimensional parameters for offshore
pipelines are considered in the examples.

Traditionally, the main focus in probabilistic fracture assessment has been
brittle fracture, e.g. [8-11]| and fatigue [12|. To the authors’ knowledge, only
minor research has been made on probabilistic fracture assessment of ductile
steel materials. The main contribution on this topic seems to be from Rahman
with colleagues, who have investigated the probability of failure in steel pipes
with either circumferential constant-depth surface cracks or through-thickness
cracks using simplified equations and Finite Element Method (FEM) calcu-
lations. In [13] and [14] Rahman established J solutions for through-wall
cracked pipes subjected to pure bending loads by use of so-called influence
functions established from FEM calculations. These functions are used in the
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probabilistic computations together with various failure criteria and loads.
Furthermore, Rahman and Brust [15] established another method for simplified
computation of the J-integral for an internal, circumferential, constant-depth
and finite-length surface crack, subjected to bending loads. In these methods
they applied classical beam theory and deformation theory of plasticity. Ad-
ditionally, they used a power-law idealisation of both the stress-strain curve
and the crack-growth resistance curve. In the simulation of system compliance
due to the presence of a crack, they applied a pipe with reduced thickness.
This methodology was used by Rahman in e.g. [16] in a probabilistic fracture
mechanic model. The model enabled closed form estimates for a range of
deformation levels. However, the accuracy of the solutions for shallow cracks
has not been verified. Other papers using similar methods may be found, for
example Francis and Rahman [17], Rahman et al. [18], or Foxen and Rahman [19].

In Section 3, we present some basic structural reliability theory on how to
solve the probability integral. In Section 4, the new probabilistic fracture
mechanics model is presented, including details about how it was developed. The
critical strain term is established, which is applied as the resistance term in the
limit state equation. The calculation procedure and its implementation in the
probabilistic software, Proban [20|, are explained. In Section 4.2, the statistical
input and preprocessing prior to the probabilistic calculations are presented.
In Section 5 the results from the probabilistic ductile fracture analyses are
presented and discussed.

3 Structural reliability - establishment of the
probability of failure

In order to perform probabilistic fracture assessment we establish probabilistic
calculations based on traditional structural reliability methods. The objective is
to find the probability of failure from the multi-dimensional integral

(G20 = [ felxjax i

G(x)<0

where fx(x) is the joint density function and X = (Xi,..,X,) is an n-
dimensional vector that represents the basic variables, i.e. the load and
resistance variables. X, denotes the i-th random variable represented by a
statistical distribution. G(X) is a general form of the limit state function, also
called the performance function. It may be linear or non-linear and is a function
of the load and resistance variables. G(X) > 0 defines an outcome in the safe
region, whereas G(X) < 0 identifies the failure region. Finally, G(X) = 0 defines
the failure surface. The limit state equation used in this paper is presented in
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Figure 2: (a) The pipe geometry with an external circumferential constant-depth
surface flaw. (b) Details of the canoe type defect with arc length, 2¢, depth, a,
and end radius, r, equal to the crack depth, a.

Section 4.

Different solution strategies are available in solving the integral in Equa-
tion (1), including both analytical and numerical methods, [21-23]. A widely
used, and simple, numerical integration technique is Monte Carlo Simulation
(MCS) with or without sampling techniques. Details about such methods may
be found in e.g. Melchers [23].

However, the main focus in this article is on transformation methods. The idea
is to solve Equation (1) by performing a mapping of the probabilistic model with
n correlated basic variables into uncorrelated, independent, standard, normally-
distributed variables, followed by an approximation of the failure surface at the
design point with a hyperplane or a parabolic surface. This mapping retains the
statistical properties of the probabilistic model.

For a general, multi-dimensional problem with correlated variables repre-
sented with different statistical distributions, Hohenbichler and Rackwitz [24]
proposed to use the established Rosenblatt transformation technique [25], to ob-
tain uncorrelated, independent, standard, normally-distributed variables. This is
a stepwise mapping technique requiring a known joint probability function Fx (x)
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in addition to conditional distributions. Consider n basic variables, which may
be correlated, defined in the x-space as X = (X1, X5, ..., X,,). The uncorrelated
standard normal variables are represented in u-space with uncertainty variables
U = (U1,U,,...,U,). Hence, the variable transformation may be written as:

uy = (I)_l(F(Il))

uy = OH(F(xy | 21))

Up = ®_1(F(l’n | T, T2, ...,Z’n_l)).
where the conditional cumulative distribution is given by

ff:o fxn (1’1, ey Tn—1, t)dt
Fo(z, |1, tpq) = ) (2)
fxn,l(%, ---7%—1)

Further, we transform the limit state function into the u-space, i.e.

G(x) — G(u) (3)

The limit state function can, for example, be linearized using a first order Tay-
lor expansion. This technique is known as the First Order Reliability Method
(FORM). The linearization is made around the design point, which is the point
on the failure surface closest to the co-ordinate origin in the Gaussian u-space.
This distance is denoted 3 and is known as the safety index. In Fig. 3 this is
illustrated in a 2D situation for simplicity. ( represents the highest probability
of failure on the given failure surface. Hence, the probability of failure can be
established by using the relation

by = (I)(_ﬁ)a (4)

where @ is the univariate standard normal integral.

We use the general non-linear optimization constraint procedure solver called
Sequential Quadratic Programming (SQP) optimizer |26] for determination of the
design point.

As indicated in Fig. 3 there also exists a Second Order Reliability Method
(SORM). Here, the failure surface is approximated by a parabolic function at the
design point and a better approximation of p; may be obtained when having large
curvatures on the failure surfaces where FORM may produce inaccurate results.
Theory about SORM may be found in e.g. Madsen et al. [21] or Melchers [23].

4 The probabilistic fracture mechanics model

The limit state equation, as defined in Equation (1), is expressed as

G(X) - 5crit(X1) - 5app(X2)' (5)



Probabilistic fracture assessment of surface cracked pipes using
24 strain-based approach

2
‘ Failure region
G(u)<0
SORM

0=-VG(u)/|VG(u)|

Safe region Design point
G(u)>0 ‘

AN
Q2//\" G(u)

Figure 3: Approximation of the failure surface about the design point, i.e. the
point of maximum likelihood, in the u-space where u; and wuy are uncertainty
variables.

The basic variables are included in X = (X;,Xj3). Furthermore, the resistance
part, (capacity) is represented by e.(X;) with the variables represented in the
vector X;. Similarly, the load part is expressed as €,p,(Xs), where Xy contains
the variables on the load side. There is in general assumed to be no correla-
tion between the resistance and the load variables. However, it should be noted
that in the present case the resistance function consists of both statistical and
deterministic variables.

The problem was solved using the general purpose probabilistic analysis pro-
gram, Proban [20]. The critical strain was calculated in an external Fortran sub-
routine using the driving force equation and the tangency criterion. The basic
variables involved in the problem were given as input to Proban as distributions
or deterministic values. Subsequently, the £.,.;,-value was calculated. In this way,
several pointwise solutions were obtained enabling a numerical representation of
the limit state surface. This enabled a subsequent FORM/SORM solution with
a corresponding estimate of the probability of failure.

4.1 The strain-based simplified fracture mechanics equa-
tion

The basic idea of the simplified strain-based driving force equations is presented
in Ostby et al. |27] and Ostby [28|. In the following, the equations are based
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on three dimensional (3D) FEM-analyses using Abaqus [29] with solid elements
and Link,;,. using linespring elements based on the ideas of Rice and Levy [30]
and Parks and White [31]. A thorough examination of the numerical aspects
and implementation of the linespring element into the Link,;,. software is given
in [32-34].

J

[Region 1 Region 2 I Region 3
|

| I/

| Onset of 1

| global
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‘Japp

v

=

Global strain, ¢

Figure 4: Characteristics of the driving force curve with the initial slope where
the global plastic region starts.

The general concept is to express the relationship between the applied J,
Japp, and the global strain, ¢, in a surface cracked pipe. J,,, is here the so-called
far field J that is not influenced by the local crack tip conditions. First, it is
assumed that global elastic deformation, shown as Region 1 in Fig. 4, is of minor
interest. This is reasonable since we are interested in the fracture mechanisms
with global plastic deformations, as shown in Region 2 and Region 3 in Fig. 4.
C is defined as the initial slope that characterizes the crack driving force curve
where Region 2 starts. This region is characterized by plasticity development
through the whole pipe wall thickness. There is a tendency that the curve has
a slight upward curvature. This is due to the necking of the crack ligament as
significant plastic strains develop. Furthermore, Region 3 defines the collapse
region with rapid increase of J. In this region the J increases rapidly since the
collapse develops in the crack ligament. More details of the local deformation
levels in the pipe due to external load may be found in [5,27|.
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The strain on the abscissa axis is global strain, which means that the strain
is not influenced by local deformations. It was found that this was ensured if the
strain was extracted one pipe diameter in the lengthwise direction away from the
crack in the FEM analyses, [5,27].

All the derivations were done with a material following an isotropic power law

hardening, namely
o= (142) )
€0

where o, is the flow stress, o¢ is the stress at the proportional limit, ¢, is the
plastic strain and n the hardening exponent. Next, g = 0¢/FE, is the strain at
the proportional limit, and F is the Young’s modulus. If 0 < oy the material
behaviour is linear elastic. It should be noted that the material hardening in this
paper is obtained as 0¢ 2 /0rs, which is convenient in engineering application. org
is defined as the tensile strength at ¢ = n and o5 is the yield stress at 0.2 %
plastic strain.
The parameterised driving force equation is in the form

Japp = tm00.2 / fgdé, (7)
0

where f, g, and m are functions presented in the following and ¢ is the pipe wall
thickness. As seen, the expression is integrated with respect to the global strain,
g, from zero to the desired strain value. m is a function merely dependent on the
material hardening, and is defined as

m = 3.87 — 2.64 (UO'Q/O-TS) . (8)

Details about this function are found in Appendix A. Next, f takes into account
the crack depth and crack length, i.e.

f <%, :—lc)) = A, (%)2 + Ay <%> + Ao, (9)

where a is defined as the current crack depth, D is the pipe diameter, and 2c is
the crack length, all depicted in Fig. 1. The parameters, A;, are expressed as

2¢ \ 2 2c
Ag = 18343 — | —27.32( — | +0.5507,

wD D

A = =2078 (2)2 + 191.56 (2) + 2.577, and
D D

Ay = 4238.2 <£)2 + 339.32 (£> —16.4.
D D

The effect of crack depth and crack length variation on the calculated J,, is
shown in Fig. 5 and Fig. 6, respectively. It should be noted that the curves in
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Fig. 5 to Fig. 8 are from ductile tearing calculations using the J — Jp relation
referred to in Section 4.2. Jg follows the power law function

JR = bl(ACI,)bz, (10)

where Aa defines the ductile crack growth and b; and b, are constants.
In the following deterministic curves with by = 852 and b, = 0.52, which are
representative values for X65 steel, Table 1, are used in the figures in this section.

t = 20mm, oo, = 0.0, 6g4/ors = 0.88, Go, = 480MPa, 2¢/D = 0.1, D = 400mm
1600 -

—a=3mm
00 { a=smm
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Figure 5: The evolution of applied J against global strain, for different a/t ratios.

The effect of material hardening has been included by two approximations
dependent on the relative crack depth and the relative crack length. Conse-
quently, the function g when a/t < 0.25 is

a 2c¢ 09 00.2 2c a
02 c0a) gy (e (20 (0 gy
g(t wD UTS) + (UTS) (WD) t 0 ( )
On the other hand, if a/t > 0.25 then
a 2c 0o 00.2 2c
——,—— | =14+h|—= — ] 0.15. 12
g <t’7rD’UTS> + <0T5) <7TD) (12)

As observed, these expressions for g depend on the function h. This function
gives a direct expression for the material hardening:

2
L (@) — 923105 <@> — 3765.2 <@> +1524. (13)
ors ors ors
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Figure 6: The evolution of applied J against global strain for various crack
lengths, 2c.

In Fig. 7 the effect of various hardening levels is depicted. As seen in this
range, no significant difference is observed. However, it should be noted that the
hardening effect increases with deeper cracks. The equations given so far have
been fitted for the case where D/t = 20. To make the equation applicable for
several D /t-ratios the following transformation has been shown to give reasonably
good results:

2¢/mD — (2¢/7D)(D/t),20. (14)

The background for this transformation is that for longer crack lengths, FE sim-
ulations show that the slope of the driving force curve saturates, and become
virtually independent of 2c. When considering different D/t ratios the crack
length at which this saturation occurs is closely related to the absolute length of
the crack. Thus, the transformation proposed in Equation 14 relates other D/t
ratios to the case with D/t = 20 through the value of 2c.

Finally, the biaxial loading due to internal pressure is taken into account by
adjusting the effective pipe wall thickness as a function of the hoop stress to yield
stress ratio, while the crack ligament height is kept constant. When assuming
a von Mises yield surface, this will lead to an increase in the effective relative
crack depth in case of internal overpressure in the pipe. o3, is defined as the hoop
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Figure 7: The evolution of J,,, against global strain from the simplified driving
force equation, for various material hardening levels.

stress, and for 0, /002 < 0.5 we have:

(D=5 i 19

9\ —1/2
P R/ (&) .
00.2 00.2

In the case where gj,/092 > 0.5 the effect of the internal pressure saturates and
the relative crack depth is set to

where

a

a
- =0.134 1
<t>eff 0134+ 1.15¢ (16)

Further discussion about the effect of internal pressure may be found in |28|.
The significant effect of variation of the internal pressure is shown in Fig. 8.

Equation (7) now has the expressions needed to calculate the relation be-
tween the global strain and the applied J. The equations have been established
within the following window of parameters:

e Pipe wall thickness, [mm|: 15 <t <35
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Figure 8: The effect of variation of internal pressure, 0y, /002, on the evolution of
Japp against global strain.

Diameter to thickness ratio: 20 < D/t < 40

Relative crack depth: a/t < 0.35

Crack length [mm]|: 2¢ < 300

Material hardening: 0.82 < gq5/075 < 0.93

In this range the accuracy of the equation generally lies within +£20%. This is
significantly better, when compared to 3D FE simulations, than when using the
Kastner solution [4] as input to calculation of the reference stress in the BS7910
[2] equations, Thaulow et al. [6].

4.2 Calculation of the critical strain - ¢,

The complete history of the crack development (i.e. ductile tearing) due to load-
ing may be expressed by J,,, and the material resistance Jg. The material crack
growth resistance increases as the crack is loaded, and the crack growth will
remain stable as long as the crack driving energy is lower than the resistance.
However, a critical point, named the tangency point or the instability point, is
reached when the following condition is met:

Japp = IR, (17)
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and ATy dJ
app R
da da (18)

Then, an incremental change in crack size results in instability and a subsequent
unstable crack growth. Since this criterion is a nonlinear relation, (17) and (18)
have to be solved by an iterative procedure. During this procedure the critical
strain, €..;4, which is defined as the strain level where ductile tearing instability
occurs, is calculated.

The J-resistance curve follows the power law function:

Jr = X;bi1(Aa)?, (19)

where the variable X is chosen to represent the statistical variation in the mate-
rial resistance curve with the relation Z; = log X;. Representative data for X65
pipeline steel are found in Table 1.

4.2.1 Strain due to external loading, ¢,

The second term in the limit state equation is the load part, €,,,, which is the
strain due to external loading. Two load cases are considered with 0.5 % and
1.0 % global strain. The load has two contributing parts, static and dynamic.
2 These are represented by normal distributions summed up to a "total" strain
distribution with mean value of 0.5% in the first load case, and 1.0% in the second
load case. These load cases are presented in the result section as "Load case 0.5%
strain" and "Load case 1% strain", respectively. The static load contributes 85%
and the dynamic 15% to the total distribution, and the density distributions are
illustrated in Fig. 9 for the "Load case 0.5% strain" case. The mean values and
covariances for the distributions are presented in Table 1.

4.2.2 Defect location, effective crack length and modified strain

A linear strain variation over the pipe cross-section is assumed as depicted in
Fig. 10. The maximum strain acting on a specific defect is obtained from the
cross-section and used as input to the equation. This assumption implies that
the pipe is subjected to a uniform load equal to the maximum strain.

Only defects subjected to tension in the pipe cross-section are assumed to
contribute to the probability of failure. Thus, the strain due to laying, ,,,, and
the crack length, 2¢, have to be modified in the analyses, as described below.

The localization of the surface crack was determined from a stochastic sam-
pling from the uniform distribution for ¢ (Table 1). Then the maximum strain
acting on the defect was determined. If the defect location passed the top of the
pipe (12 o’clock in the cross-section in Fig. 10) the maximum strain was set to

2By dynamic load we mean a load not resulting in inertial effects.
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Figure 9: The static, dynamic, and total strain distributions. The given total
mean strain is 0.5%.

Table 1: Input parameters and distributions used in the analyses.

Description Distribution  E[—] cov
Jr Z; Normal 0 0.11~
Jr by - 852 -

I by - 0.52 -
Yield stress [MPa] 00.2 - 480 -
Static load (strain) €s Normal 4.4-107% 0.1
Dynamic load (strain) &4 Normal 6.0-107% 1
Angle 0] Uniform m -
Pressure on/ooa - 0,0.5 -

* StD

remain €,p,. Otherwise, the maximum tension strain acting on the defect was
chosen (i.e. the defect end), and &,,, was modified to &,,04.

Since the defect location is known, the effective crack length, 2c.f¢, was mod-
ified from the original crack length, 2c¢ as illustrated in Fig. 10.

The output from this procedure was used to modify .y, in the limit state
equation, Equation (5), to €,,04. Additionally, the effective crack length, 2c.yy,
was used as input to the crack driving force computation.



4.2 Calculation of the critical strain - ¢, 33

8Iay
/ Eapp
€mod

Tension

Compression

Figure 10: Illustration of a pipe cross-section with a surface defect. The ad-
justed effective crack length, 2¢c. ¢, and the modified strain, €,,,4, are depicted in
addition to the strain due to laying, €4pp.

4.2.3 Defect distributions

In the second part of the result section we present results from complete prob-
abilistic analysis using defect geometry distributions. The distributions are re-
trieved by performing a "virtual inspection" procedure.

The distributions are not necessarily realistic distributions, but definitely il-
lustrative in realistic probabilistic analyses. The main idea was to reproduce the
situation where we have a given girth weld inspected by Non Destructive Testing
(NDT). Unfortunately, NDT tools do not necessarily discover all defects, due to
the nature of defect location and occurrence in addition to measurement quality.
Consequently, some defects pass the NDT control. To simulate this, we performed
a conditional Monte Carlo Simulation procedure on a given initial crack defect
distribution conditional on the probability of detection (PoD) distribution for a
given NDT tool. Afterwards, the result was fitted to a lognormal distribution
with values shown in Table 2. All the input variables used in the analyses with
defect geometry represented with statistical distributions are found in Table 1
and Table 3.

The crack length distribution, 2¢, was established from a known two param-
eter Weibull distribution for aspect ratios between crack length and crack depth
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conditional on defect depth, i.e.

a r Brl@)=1 \Br@
fR‘A(r|a) = /GR( ) < a)) e (O‘R(“)) . (20)

agr(a) \ag(

The distribution parameters, namely the scale parameter, ag(a), and the shape
parameter, fr(a), are given as exponential functions in the form

H(a) =y + cleac2, (21)

where a is the current crack depth value and ¢y, ¢; and ¢y are constants presented
in Table 3. Furthermore, r is defined as the ratio between the crack length
and crack depth, namely r = 2¢/a. As a result, we now have the crack length
distribution for a given crack depth.

Table 2: Distributions parameters and input variables in the second part of the
analysis.

Description Distribution  E[—] cov
Depth [mm] a Lognormal  3.67 0.1
Diameter [mm| D - 300 — 800 -
Thickness [mm] ¢ - 7 —40 -
Pressure on/oo2 - 0,0.5 -

* StD

Table 3: Parameters in the conditional Weibull distribution in Equation 20.

Distribution  Exponential function
parameters parameters

Co C1 Co
Scale  ag(a) 525 60.94 —0.425
Shape fr(a) 6.62 —5.83 —0.0084
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5 Results

This section has three subsections. In the first subsection results from the anal-
yses with load and Jir as uncertainty parameters is presented. Different runs
are presented for several deterministic defect values to investigate the physical
behaviour of the equations. In the next subsection we present results where the
defect geometry is represented by statistical distributions. In the final part we
compare results where FORM and SORM are used to investigate the solution
accuracy in the calculations.

5.1 Analyses using deterministic defect values

In this part we present results illustrating the physical behaviour of the estab-
lished probabilistic model. Only results for a pipe with diameter 600 mm and
t = 15 mm are presented for two different load cases. The first load case has a
mean value of 0.5% strain. This is referred as "Load case 0.5% strain" in the
figures and text. The other load case, "Load case 1% strain" is similar, but here
the mean strain value is 1%.

In Fig. 11 the probability of failure (PoF) is plotted against the defect depth
(a) for the two load cases. A pronounced difference is seen between the different
load cases for different crack geometries. Only crack depths from 2 — 4 mm are
plotted with constant crack lengths (2¢) equal to 50 mm and 100 mm. This is
chosen since the PoF is already as low as 1078 for Load case 0.5% strain" with
2¢c = 50 mm. The PoF is about equal to one in Load case 1% strain" with
2¢ = 100 mm and a = 4 mm. Cracks with a = 2 mm and a = 4 mm represent
a/t =0.13 and a/t = 0.27, respectively. In "Load case 1% strain", the difference
in PoF between the two relative crack depths is about five orders of magnitude.
Additionally it is seen that increasing the crack length from 50 mm to 100 mm in
the same load case increases the PoF by about three order of magnitude. Next,
in Fig. 12, the influence from variation in pipe wall thickness is presented. The
thickness is varied from 15 mm to 20 mm resulting in a diameter to thickness ratio
of 40 and 30. As seen, there is a change of about three orders of magnitude when
increasing the thickness from 15 mm to 20 mm for the "Load case 0.5% strain".
However, for "Load case 1% strain" the change in PoF is less pronounced, i.e.
from one to two orders of magnitude.
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Diameter 600mm and thickness, t = 15mm
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Figure 11: Influence of variation in crack lenght in the two different load cases.

Finally, in Fig. 13, we present results where the internal pressure is taken
into account. Here, the crack length and thickness are kept constant. It is seen
that the PoF is influenced significantly by introduction of internal pressure in
particular for shallow crack depths. This is observed in both load cases, however
for deeper cracks (i.e. increasing a) the difference is less pronounced.

5.2 Calculations using stochastic crack geometry values

In this section we present the results from the analyses where defect distributions
are used as input.

Different load cases are presented, with and without internal pressure. Results
from pipes with D/t ratios ranging from 20 to 40 are presented in Fig. 14. These
results are from computations from "Load case 0.5% strain" and "Load case 1%
strain", with and without internal pressure.

In "Load case 0.5% strain", the PoF is ranging from about 107! to 107%. The
analysis results are from pipe diameters from 300 mm to 800 mm and is shown
as an almost continuous line. Further, it is seen that the small diameter pipes
have the highest PoF. We also observe that the PoF increases when the internal
pressure is included. This increase is most pronounced for thick-walled pipes
where the difference in PoF is about one order of magnitude.

In "Load case 1% strain" the PoF increases significantly when increasing the
strain load, both for the pressurised and non-pressurised pipes, Fig. 14. The effect
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Diameter 600mm and crack length, 2c = 100mm
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Figure 12: Influence of variation in pipe wall thickness on the probability of
failure.

of internal pressure is most significant for the thickest pipes. For the thinner pipes,
minor differences are seen in the PoF in the pressurised and un-pressurised cases.
However, the differences show a monotonic increase as the pipe wall thickness
increases. Another observation is that the un-pressurised results seem to be of
the same order as the pressurised pipe in "Load case 0.5% strain".

5.3 Comparison of FORM and SORM calculations

In this section we compare results obtained by use of FORM and SORM. The
results are presented in Fig. 15 and Fig. 16. The SORM results are given as broken
lines and the FORM solutions are given as continuous lines. It is observed that
both solution methods give results of the same order of magnitude. In "Load
case 0.5 % strain" without pressure, Fig. 15, the FORM and SORM solutions
are more or less coincident, at least for engineering purposes. In the pressurised
case, the SORM solutions predict a lower PoF compared with FORM solutions.
Minor differences are observed between the two solution methods in "Load case
1 % strain". However, the solutions are almost coincident in the pressurised load
case and some difference is seen in the un-pressurised load case, see Fig. 16.

All the analysis results tend to have the SORM solution on the lower side of the
FORM solutions. This means that the FORM results are on the conservative side.
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Diameter 600mm and crack length, 2c = 100mm

Load case 1% strain
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Figure 13: The influence on the probability of failure of internal pressure in the
two different load cases.

Overall, for practical applications, we observe only minor differences between the
FORM and SORM. Consequently, it appears that the FORM solution technique
is sufficient to use in the further development of probabilistic models.

6 Concluding remarks and discussion

In this paper we have presented a methodology for probabilistic ductile tearing
calculations for pipes with surface cracks, subjected to global plastic strains. The
method involves the use of strain-based driving force equations and the tangency
criterion to determination the global failure strain. This has served as a basis for
a numerical representation of the failure surface with subsequent use of FORM
and SORM solution methods. The model has been implemented in the Proban
software for probabilistic calculations.

The simulations using a strain-based approach showed that an increase in
the strain results in a corresponding increase in the probability of failure. When
internal pressure was included a similar increase in PoF was observed. Addition-
ally, the defect depth influenced the PoF significantly together with the defect
length. Finally, it was shown that using the FORM solution gave robust and
"conservative" results compared to SORM.



6 Concluding remarks and discussion 39

1.0E+00
= Load case1.0% strain Load case 1.0% strain
== Ohlco2 = 0.0 onlog2 = 0.5
1.0E-01 - /
—
~—

1.0E-02 : | oad case 0.5% strain
Onlop2 = 0.5

onlcgz = 0.0 /

1.0E-03 § | oad case 0.5% strain

PoF

1.0E-04

1.0E-05 : : : : : :
5 10 15 20 25 30 35 40
Thickness, t [mm]

Figure 14: Results from the FORM calculations. 0.5 % and 1.0 % mean strain with and
without internal pressure.
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Figure 15: Comparison of FORM and SORM calculations in Load case 0.5 % strain with and
without internal pressure.
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Figure 16: Comparison of FORM and SORM calculations in Load case 1 % strain with and
without internal pressure.

Several topics should be subject to further investigation. The driving force
equation has potential for further improvement. This is due to the fact that the
accuracy of the equation is about +20 %. Investigation in this respect is currently
being carried out. However, for the time being it is worth to underline that the
proposed driving force equations generally are more accurate than the reference
stress method using the Kastner solution. Another aspect is to implement other
physical effects like material mismatch and misalignment. A proposal for how
this can be implemented is found in Ostby [28].

The tangency criterion is used in the ductile tearing calculations to establish
the critical global strain. The applicability of this criterion for cases with global
ductile behaviour is uncertain, and possible alternative criteria determining the
critical strain level should be investigated.

Another extension of the work is to analyse a complete pipeline system. Here
we need to take into account the defect rate in addition to investigate the distinc-
tion between system effects, in which all defects are likely to be subjected to the
same load, and cases where only a small part of the pipeline experiences extreme
loads.

Additionally, the physical uncertainty of more parameters should be included
in the model, like variation in yield stress, pipe thickness and internal pressure.
A study on how the statistical uncertainty influences the PoF is also essential.
One way to include this is to model the parameters, e.g. mean and variance, as
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A Relationship between J and CTOD

The equations in this project is derived in parallel for CTOD (denoted ¢§) and
J. As a result a conversion factor, m was found when the material follows the
isotropic material hardening, Equation (8) as presented in Section 4.1. On a
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Figure 17: (a)The relationship between J and CTOD with the assumption of
plain strain and axis-symmetric solutions, respectively. (b) The effect of the
relative crack depth on the relationship between J and CTOD. (¢) Comparison
between the J-CTOD relationship from 2D analyses and 3D pipes with different
crack depths. (d) The effect of the og2/0rg ratio on the relationship between .J
and CTOD.

theoretical basis Shih [35] has shown that there is a direct link between .J and
CTOD, thus, they are equally valid parameters for expressing the crack driving
force. The basic relation between the two parameters can be given as:

J = m00.25 (22)

where m is a constant that depends on the material properties and possibly the
crack depth.
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Figure 18: The factor m relating J and CTOD as a function of the o¢5/org ratio.

In the results below the J-integral is calculated as the so-called far field J, to
prevent break-down of the path independence at very small J values, as observed
when calculating the J-integral close to the crack tip.

It can be shown that the yield stress (with fixed o¢ 5/0rg ratio) had no effect on
the driving force against the applied strain, when the driving force was expressed
as the CTOD. In case of J this holds with one exception, the CTOD value must
be multiplied by the ration between the two yield stresses, when going from one
value to the other. This follows directly from Equation (22).

In Fig. 17 (a) the effect of relative crack depth on the relationship between J
and CTOD is shown for an axisymmetric model. It can bee seen that there is a
linear relationship between the J and the CTOD. Further, only a negligible effect
of the relative crack depth is seen. Thus, the dependence of the relative crack
depth can be discarded. In Fig. 17 (b) the axisymmetric model is compared
with a model assuming plane strain condition. Also in this case we see that
the two different models yield more or less the same relationship between J and
CTOD. A comparison between the results from a 2D axis-symmetric simulations
and different 3D simulations is shown in Fig. 17 (c). We see that there is some
difference in the slope of the J-CTOD relation in the 3D simulations. However,
the difference between the 2D axis-symmetric analysis and all the 3D analyses
are not very significant (within 10%). Based on this it is proposed to use 2D
simulations to establish the effect of the material properties on the relationship
between J and CTOD.

Figure 17 (d) shows the effect of changing the oy5/0rg ratio on the relation
between J and CTOD ( 095 = 480N/mm?). From this figure we see that the
slope, i.e. the m-factor in Equation 22, increases as the ogo/0rg ratio decreases
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(or as the hardening of the material increases). This is in line with what was the-
oretically shown by Shih in [35]. To establish the dependency of the m-factor the
following value has been calculated based on the results presented in Fig. 17 (d):

00.2

where Js—1mm is the J value at Imm. Fig. 18 shows the m-value value as a
function of the o y/0rs ratio calculated based on the results in Fig. 17 (d). As
seen from Fig. 18 the m-value is quite close to a linear function of the g5 /0ors
ratio. As a result, the following m-factor is used:

m (UO'Q/O-TS) = 3.87 — 2.64 (UO'Q/O-TS) . (24)



A probabilistic fracture mechanics model
including 3D ductile tearing of bi-axially loaded
pipes with surface cracks’

Andreas Sandvik, Erling Ostby, and Christian Thaulow

Abstract

This paper presents a probabilistic fracture mechanics model established
from three dimensional FEM analyses of surface cracked pipes subjected
to tension load in combination with internal pressure. The models are
particularly interesting for offshore pipelines under operational conditions
or during laying, where inelastic deformations may occur. In the numer-
ical models the plastic deformations, including ductile tearing effects, are
accounted for by use of the Gurson-Tvergaard-Needleman model. This
model is calibrated to represent a typical X65 pipeline steel behaviour un-
der ductile crack growth and collapse. Several parameters are taken into
account, such as crack depth, crack length and material hardening. An-
other important topic is the examination of the influence of bi-axial loading
due to internal pressure on capacity. From the results of the deterministic
analyses a probabilistic fracture mechanics model is established using the
response surface methodology. Two failure criteria are examined to repre-
sent the structural capacity. Based on the established model we illustrate
the methodology by examples employing the two different failure criteria
solved with first and second order reliability methods.

*Accepted for publication with minor revision in Engineering Fracture Mechanics
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48 of bi-axially loaded pipes with surface cracks
Nomenclature

t pipe wall thickness

D pipe wall diameter

10) angle at the circumference of the pipe

00, 00.2 stress at the proportional limit, stress at 0.2% plastic strain

Oi, OTS flow stress, tensile strength

Oy, Om von Mises stress, mean stress

on hoop stress

n hardening exponent

E Young’s modulus

v Poisson ratio

CTOD crack tip opening displacement

€ nominal global longitudinal strain

€0, Ep strain at the proportional limit, plastic strain

Elay> Eapp strain due to laying, strain input to the limit state equation

Eerits Ecrit critical strain (capacity), critical strain function

€s,Ed strain due to external static and dynamic load

Df probability of failure

X n-dimensional random vector

X realizations of X

fx(x) joint probability density function of X

Fx(x) joint probability function

X; i-th random variable in x-space

U n-dimensional random vector in u-space

u realizations of U

U; i-th uncorrelated standard normal random variable

G(x),G(u) limit state functions in x and u-space
) univariate standard normal integral
154 safety index

o, i, v, ;- polynomial coefficients

fo, £, f* initial, current, and effective void volume fraction

fgmwth change in void volume fraction due to void growth

fr the ultimate value where the microscopic stress carrying capacity vanishes
a1, G2, q3 constants in the Gurson yield function

1 Introduction

Under installation and operational conditions of offshore pipelines it is of utmost
importance to have calculation procedures to account for different failure modes,
such as brittle and ductile fracture and buckling. Additionally, it is important to
utilize the pipe capacity to enable a safe and cost effective design. In this paper
we focus on steel pipe materials, such as X65, exposed to ductile fracture. In
high grade pipeline steels fracture mechanics assessment is important due to the
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high utilization of the material. Large plastic deformations may be allowed, and
a defect positioned in an area with high tension load can result in catastrophic
failure. Under operational conditions with internal pressure, the external loads
may come from free-spans due to seabed topography or lateral snaking due to
thermal loads. This means that the loading is often introduced as applied strain.

Presently, BS7910 [1] and R6 [2| are two examples of common fracture as-
sessment procedures used in pipeline engineering. These procedures are mainly
established for elastic global response and do not consider large plastic defor-
mations. It has been shown that BS7910 [1] has restricted applicability where
large longitudinal plastic deformations occur, Thaulow et al. [3]. In addition,
the stress-based BS7910 procedure is not able to predict safe strain limits for
high strain conditions accounting for internal pressure. Therefore, the emphasis
in the Joint Industry Fracture Control-Offshore Pipelines project [4] is on large
plastic deformations in pipelines and strain-based design. It is believed that a
strain-based methodology has the potential to improve the physical prediction of
the fracture mechanics response. Strain-based fracture mechanics equations, in-
cluding the effects of biaxial loading, mismatch, and misalignment, have recently
been presented, Ostby [5]. These simplified equations are used to establish a
strain-based design procedure for laying and operational conditions for offshore
pipelines using the partial safety factor format as found in e.g. DNV-OS-F101
6].

It is believed that probabilistic calculation for ductile materials is an area of
increasing importance due to the trend of using high strength steels and utilizing
the material to high strains. Probability analyses will give fundamental informa-
tion about the reliability of the structural system of interest in addition to the
sensitivity of the various parameters involved. In the past much focus has been
on the probability of brittle fracture , e.g. |7-10|, and fatigue|11]. Probabilis-
tic models taking into account ductile tearing prior to cleavage fracture are also
found, e.g. [12]. Ductile tearing analyses using 3D FEM are still not common.
However, some results including ductile tearing effects in wide plates have been
obtained, Chen and Lambert [13|, who compared simulation results with pipe
section experiments and illustrated the applicability of the solutions. Probabilis-
tic calculations for ductile materials have mainly been contributed in the past
decade by Rahman and various co-authors. Their main focus has been on pipes
with through-wall or internal cracks on relatively thick-walled pipes using using
FEM and analytical methods [14-18]. Ernst et al. have established structural re-
liability models for reeling processes [19,20|. The response surface technique has
also been applied in probabilistic fracture assessment, Rahman et al. [21]. Foxen
and Rahman [22] analysed small cracks in tubes under internal pressure and
bending loads, where one of the observations was that for through-wall-thickness
cracks the effect of internal pressure was significant for high-hardening pipe ma-
terials, and insignificant otherwise. However, none of these models is directly
applicable for our purpose for highly ductile offshore pipelines. In Sandvik et
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al. |23] a probablistic fracture mechanics model (PFM) of surface cracked pipes
using a strain-based approach is presented. This PFM-model was based on semi-
analytical strain based equations established by @Ostby [5]. These results showed
that the combination of internal pressure with tension load gave a significant
reduction of the pipe capacity compared with an un-pressurized pipe.

In this paper we present 3D FEM-models of pipes with external surface de-
fects, including the effect of ductile tearing. The analysis results are used to
establish response surfaces suitable for use in reliability analyses. The structure
of the paper is as follows: In the first part we present the three dimensional
deterministic FE-models. Pipe and defect geometry, material properties and the
ductile tearing model are presented and explained. A separate result section
comments the findings from the FE-simulations. The simulation results are then
used to establish response surfaces in the proposed PFM-model [24,25], and this
is presented in the second part. In the following section the proposed method-
ology is illustrated with examples where the probability of failure is determined
using first and second order reliability methods (FORM and SORM). Finally, we
present, conclusions and suggestions for further work.

2 3D FE-models

Geometry

A sketch of the pipe geometry containing a constant depth surface defect is shown
in Fig 1. The uniform crack depth, a, and crack length, 2¢, are depicted. The
defect end has a radius equal to the defect depth. A single pipe diameter and
thickness are used in all the analyses, but the defect geometry is varied, see
Table 1. Three defect depths and three defect lengths are modelled, giving a
total of nine defect geometries.

Element mesh

Due to loading and geometric conditions two-plane symmetry was applied in
all the analyses such that only one quarter of the cylinder was modelled. The
element mesh is a focused mesh with two levels. First, the local level represents
the defect zone, where the element mesh size in the pipe’s lengthwise direction
is 0.1 mm around the crack front. This element size was fixed for all analyses
due to the mesh dependent material parameter f,. Details about this are found
in the "Material" subsection. Second, a gradually coarser element mesh in the
lengthwise and circumferential direction were applied using transition elements
to minimize the model size. An element mesh of a pipe with a crack is shown in
Fig. 2, and a more detailed view of a local mesh around the defect front in Fig. 3.
Details on pre-processing of FE-models with surface cracked pipes are given in
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(a)

(b) I 20

Figure 1: (a) Pipe geometry with an external circumferential constant-depth
surface flaw. (b) Details of the constant depth surface defect with arc length, 2¢,
depth, a, and end radius, r, equal to the crack depth, a.

Sandvik et al. [26].

In all the analyses the 8-node linear continuum element with reduced integra-
tion and hourglass control, C3D8R, [27]| was applied. Due to variation in defect
length in the different models there is some variation in the number of elements in
the circumferential direction. Consequently, the element and node number range
from 49299 elements and 58170 nodes to 65790 elements and 75816 nodes, for the
models with the shortest (50 mm) and the longest (250 mm) cracks, respectively.

Loads and boundary conditions

Both the pressure load and tension load were successively applied using a smooth
amplitude function |27] to ensure a quasi-static behaviour. The amplitude func-
tion has the property that the first and second derivatives are zero at both end
points. If s denotes the amplitude, ¢ the load step time, and the end points are
given as (fy,s0) = (0,0) and ({1, s1) = (1,1) the amplitude function is expressed
as:

s(t) = £3(10 — 15¢ + £%). (1)
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A satisfactory loading rate was found when 200000 increments were used for each
load step. For the pressurized cases, loading due to internal pressure load was
applied as a separate load step prior to the tension load. The uniform tension
load was applied as a displacement at the un-cracked end of the pipe. Further,
three different load levels for the internal pressure were analysed. Since internal
pressure results in a biaxial load state, it is expressed through oy, /02, where oy,
is the hoop stress and oq 5 is the stress at 0.2 % plastic strain. Three load levels
were analysed, 0y,/002 = 0,0.25 and 0.5.

Figure 2: A typical FE-mesh of one quarter of a pipe containing a surface defect.
The dotted frame marks the close-up view of the defect zone shown in Fig. 3.

Material

The material’s plasticity behaviour was represented using an isotropic power law

hardening relationship, i.e.
8 n
0; = 0p (1+—p> . (2)
€0

0o is the stress at the proportional limit, o; is the flow stress, ¢, is the plastic
strain and n the hardening exponent. Further, g = 0¢/F, is the strain at the
proportional limit, and £ is Young’s modulus. If 0 < ¢ the material behaviour is
linear elastic. In the analyses og = 460MPa, £ = 200GPa and the Poisson ratio
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Crack front

Figure 3: Close-up view of the defect zone where the smallest element size is
0.1 mm in the lengthwise direction.

was v = 0.3. Three different hardening levels were used in the models, namely
n = 0.05, n = 0.07 and n = 0.09, see Table 1.

Ductile tearing effects were taken into account using the Gurson-Tvergaard-
Needleman approximate yield model. This model was proposed by Gurson [28|,
and later modified [29,30]. The model simulates the microvoid nucleation, growth
and coalescence, and assumes that the porous material behaves like a continuum
where the plastic yield surface is adjusted dependent on the hydrostatic stress
level and current void volume fraction. The yield condition is expressed as

90007, 1%) = (50 + 20, f" cosh(P22%) — (1 g5(F) =0, (3

where o, is the von Mises stress, 0, the mean stress, & the tensile flow stress and
f* is the current effective void volume fraction. ¢, = 1.5, ¢o = 1.0 and ¢3 = ¢}
are constants with values proposed by Tvergaard [29]. These constants improved
the model considerably compared with the original model which predicted too
high maximum loads. The original Gurson model [28] is obtained by setting
¢1 = ¢ =q3 =1, and f* = f, where f denotes the current void volume fraction.
Void coalescence was taken into account using Tvergaard and Needleman’s [30|
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Table 1: Input parameters for the different FEM-models (9 runs per model).
Model | a 2¢ n on/0o0.s D t
mm mm mm
50  0.05,0.07, and 0.09 0, 0.25, and 0.5 400 20
50 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
50 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
150  0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
150  0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
150  0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
250 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
250  0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
250  0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20

=
=
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Ot O O i s e W0 W0 W

effective void volume fraction, f*, i.e.

T ity < 1.,
== * 4
P {ﬁ—%(f—fc) it f, < f < fi. “

fe is the critical void volume fraction referring to start of void coalescence. fr =
0.15 4 2fy, where fy is the initial void volume fraction of f. fr denotes the final
failure void volume fraction. Since fy is element size dependent, it was fitted
to represent a traditional X65 steel material, and the corresponding element
size was fixed in all the analyses. It should be noted that a variation of f
implies a corresponding variation of the crack growth resistance curve. f; =
1/q; is defined as the ultimate value at which the macroscopic stress carrying
capacity vanishes. The ductile crack growth is simulated by removing elements
successively as the crack grows, and an element is removed from the analysis
when the element’s material point reaches failure. The evolution of f in our
analyses is purely dependent on growth of existing voids which is based on the
law of conservation of mass, i.e.

dfgrowth - (]- - f)dgzm (5)

where df j,ou1n, denotes the incremental void volume growth of existing voids over
an increment of load, and de},_ is the incremental volumetric plastic strain.? The
employed input data are listed in Table 2.

2.1 Solution method and solution quality

Abaqus Explicit |27] was applied in the solution of the 3D models. One reason for
this is that it includes the failure effect in Eq. 4, which is not the case for Abaqus

2The summation rule over repeated indices must be applied.
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Table 2: Material input to the FEM-models.

E v 0y n Q@ Q2 g3 fo Ir fe

200[{GPa] 0.3 460[MPa] 0.05,0.07,0.09 1.5 1.0 225 0.0002 0.1504 0.013

Standard. Explicit solvers were originally developed for dynamic scenarios where
shock and mass effects played an important role. The solver is based on the
principle of conservation of mass, momentum and energy, and theory and back-
ground information are found in Wilkins [31] and Belytschko et al. [32]. Further,
quasi-static solutions are obtainable for several structural problems with use of
explicit solvers as long as the dynamic effects are negligible [27,32].

To illustrate the solution quality of the explicit solution we have performed
a comparison between an implicit and an explicit solution using Abaqus Stan-
dard and Abaqus Explicit, respectively. The implicit analyses are presented in
Jajadevan et al. [33|, who performed a detailed mesh sensitivity study for their
models. The pipe diameter was D = 400 mm, and the pipe thickness, ¢ = 20 mm.
Two different defect geometries were investigated. The first model had a defect
depth, @ = 2 mm and a defect length which was 10 % of the outer circumference.
The other model had @ = 4 mm and defect length that was 20 % of the outer
circumference. In the Abaqus Standard analyses 20-node 3D elements with re-
duced integration were used, with 0.25 mm element size around the crack tip in
the lengthwise direction. However, 8 node constant stress elements with 0.1 mm
element size in the lengthwise direction around the crack tip were applied in the
explicit solutions. The pipes were subjected to a uniform tension load.

In order to compare the two solution methods the crack driving force curves
obtained from the analyses are presented, i.e. the crack tip opening displacement
(CTOD) is plotted against global axial strain. In Fig. 4 (a) crack driving force
curves are presented for the case with stationary cracks. The curves are seen
to almost coincide which means that the explicit solution matches the implicit
solution. In Fig. 4 (b) another comparison is presented for the case with a deeper
and longer crack. However, in this case the explicit solution includes ductile
tearing, whereas the implicit results are from a stationary crack solution. The
curves are seen to coincide until the ductile tearing starts in the explicit solution
case. The ductile tearing results in a more rapid growth in CTOD.

From these results it is seen that the chosen loading rate for the explicit
solutions, for the given load scenario, agrees well with the implicit solutions.
Consequently, this loading rate is applied in the further work.

3 Results and discussion

In this section we present an extract of results from the 81 analyses performed.
CTOD has been applied as the fracture parameter for characterization of ini-
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Figure 4: Comparison of Abaqus Standard and Abaqus Explicit solutions for two
different crack geometries with D = 400 mm and ¢ = 20 mm. (a) a/t = 0.1 and
¢/mR = 0.1 and solutions without ductile tearing. (b) a/t = 0.2 and ¢/7R = 0.2
where the Standard solution is without and the Explicit solution is including
ductile tearing.

tiation of ductile crack growth, stable crack growth and subsequent instability.
CTOD and the J-integral are the most applicable fracture parameters describ-
ing ductile fracture behaviour according to Rice [34] and Hutchinson [35]. An
equivalence between J and CTOD has been shown for both a stationary and a
growing crack by Shih [36]. The results herein are presented as driving force
curves, i.e. CTOD against global strain. The CTOD value was extracted from a
fixed node in the symmetry plane two nodes above the initial crack front nodes. It
was found that using this node the high plastic deformations around the crack tip
were captured during the loading. Additionally, this node was used as the CTOD
output node during the ductile crack growth. The global longitudinal strain was
extracted 25 mm from the (un-cracked) tension loaded end. It has been validated
that local deformation effects are avoided if the strain is extracted at least two
pipe diameters in the lengthwise direction away from the crack [33,37].

In order to simplify the interpretation of the results we give a short explanation
of general trends in the crack driving force curves. In Fig. 5 a characteristic
driving force curve is plotted, and three different regions are indicated. Region 1
denotes the global elastic deformation and is of minor interest in this context,
since we are interested in predicting fracture after global plastic deformation
has occured, shown as Region 2 and Region 3. In Region 2 a relatively linear
relationship between the CTOD and global strain. This region is characterized
by plasticity development through the whole pipe wall thickness, and we also
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Figure 5: Three characteristic regions on the crack driving force curve.

Global strain

observe a slight upward curvature of the curve. Region 3 defines the collapse
region with rapid increase of CTOD where significant plastic deformations and
ductile tearing develop in the crack ligament. Thus, the rapid crack growth
leads to loss of strain capacity, shown as an almost vertical crack driving force
curve, indicating a limit for the pipe’s global strain capacity. More details of
the local deformation levels in the pipe due to external load may be found in
Jayadevan et al. [33]. In Figure 6(a), the CTOD is plotted against the global
strain, for a surface cracked pipe with three crack depths, a = 3, 4, and 5 mm,
crack length 2¢ = 50 mm and n = 0.05. It is observed that the defect depth
affects the crack driving force, the CTOD at a specific strain level is increasing as
the defect depth increases. Similar trends are seen in Figs. 6(b)-6(c) with longer
cracks, i.e. 150 and 250 mm. For the deepest and longest cracks the transition
from Region 1 to 3 occurs directly. As a result a small change in the strain
level causes a large increase in CTOD, even for low strain levels. Consequently,
we observe approximately 75 % strain capacity reduction from the shallowest
to the deepest defect. Similar trends are seen in Figs. 7(a)-7(c), but here the
strain capacity is higher, as expected, due to the higher hardening, n=0.09. In
Figs. 8(a)-8(c) the three crack depths are plotted with three different crack lengths
for the case with n = 0.07. The crack length variation is also seen to affect the
crack driving force. A large increase in the crack driving force is observed as
the crack length is increased from 50 mm to 150 mm. Furthermore, the increase
is most pronounced for the deepest cracks. The shortest crack has the lowest
CTOD at a specific strain, and the 150 mm and 250 mm cracks are more or less
coincident until Region 3 starts. This indicates that the crack length influence on
the crack driving force curve saturates around this crack length level. Further,
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Figure 6: The effect of different defect depths, a, with 2¢ = 50 mm, n = 0.05.

the differences are most pronounced for « = 5 mm, as seen in Figure 8(c). It
is observed that Region 2 is narrowed significantly for the two longest defects,
such that a rapid increase is CTOD starts almost immediately after the initiation
for the deepest cracked pipe. Similar trends are also observed for the two other
hardening levels. In Figs. 9(a)-9(c) the effect of hardening variation for one defect
length and three different defect depths is illustrated. As expected, the capacity
increases as the hardening increases. In Region 2 we observe that the slope
increases as the hardening decreases. This means that we have lower CTOD at a
given strain for the higher hardening materials. A significant effect is seen on the
CTOD evolution for the cases with biaxial loading, caused by internal pressure,
as depicted in Figs 10-11. The internal pressure is expressed as the ratio between
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Figure 7: The effect of different defect depths, a, with 2¢ = 50 mm, n = 0.09.

the pipe wall hoop stress, oj, and the stress at 0.2 % plastic strain, ogs. In
Figure 10(a) a comparison between three different pressure levels is presented
for a fixed crack depth, a = 3 mm, crack length, 2¢ = 50 mm, and n = 0.07.
A significant increase in CTOD at a specific strain level is seen from the un-
pressurized to the pressurized case. Region 1-3 from Figure 5 are still evident,
but the slope of the curves increases with increasing internal pressure. An increase
in the internal pressure also reduces the pipe’s strain capacity significantly. The
same trend for the crack driving force is seen in Figs. 10(c) and 10(b) with deeper
defects and consequently less strain capacity. In Fig. 11 results with crack length
2c¢ = 250 mm are presented. For the deepest crack with @ = 5 mm, a more serious
influence of the internal pressure is observed. The effect is more significant when
the pressure is increased from o, /092 = 0 to 05, /092 = 0.25 compared with the
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Figure 8: The influence of variation of defect lengths, 2¢, with a = 3, 4, and
5 mm, and n = 0.07.

increase from oy, /092 = 0.25 to 0,/092 = 0.5. For the case in Fig. 11(c) with
on/o0e = 0.25 and o0y,/092 = 0.5 there is an almost direct transition from the
global elastic response situation to a detrimental crack growth. Moreover, it
is seen that the CTOD at the end of Region 1 increases rapidly for the cases
with internal pressure. Similar observations have been reported by Jayadevan
et al. 33| for stationary cracks in 3D FEM analyses of surface cracked pipes in
tension. They observed that the biaxial loading strongly enhanced the ligament
localization.

Finally, in Figure 12, the crack growth resistance curves derived from some of
the analyses are presented. Here the CTOD is plotted against the crack growth,
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Figure 9: The effect of different hardening levels for a defect with 2¢ = 150 mm
and three different hardening levels.

Aa. The crack growth curves have been shifted to the right with the value of
0.5 times the CTOD at initiation of ductile tearing. This is an approximative
method to account for the blunting included in the experimentally measured crack
growth. Some variation is observed between the analyses with various geometries,
especially at higher Aa levels. However, only one clear trend was observed in the
curves, namely in the cases with the shortest cracks (2¢ = 50 mm). These are the
six most elevated resistance curves in the region above Aa = 1 mm. This result
could be a topic for further investigation. From the resistance curve we observe
that at Aa = 1 mm a characteristic CTOD value is about 1.2 mm.
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Figure 10: The effect of three different pressure levels for a defect with 2c¢ =
50 mm, a = 3,4 and 5 mm, and n = 0.07.

4 The probabilistic fracture mechanics model

The next step is to use the deterministic calculations to establish a PFM-model.
Such models can be used to describe the structural reliability of a pipe given
that we have statistical information of the loading conditions, defect geometry
and material, etc. Typically we need an expression to predict when the structure
fails, i.e. a failure point, that denotes the structural capacity. If we extract
failure points from several simulations that cover a region of interest, and assume
a continuous relation between these points, we can establish a function describing
the pipe capacity in the region of interest. This function is directly applicable in
reliability analyses as the capacity term in the limit state function, G(x). When
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Figure 11: The effect of three different pressure levels for a defect with 2¢ =
250 mm, a = 3,4 and 5 mm, and n = 0.07.

this function is known, and we have statistical information of the parameters
involved in the problem, we can calculate the probability of failure integral, i.e.

= x)dx
by /G s (6)

where fx(x) is the joint probability density function of X, and the limit state
function is
G(X) = €arit(X1) = app(X2). (7)

where X = (X4, X3) contains the basic variables. The capacity part is expressed
as Ecit(X1) with the variables of interest represented in the vector X;. In our
case X; = (a,2c,04/002,n), but in general it may contain other variables as



A probabilistic fracture mechanics model including 3D ductile tearing
64 of bi-axially loaded pipes with surface cracks
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Figure 12: Crack growth resistance curves from the analyses, where CTOD is
plotted against crack growth, Aa.

well. Further, the load part is denoted e,pp(X3), where Xy contains the load
variables. G(X) < 0 defines the region with structural failure, whereas G(X) > 0
defines the safe region. It is possible to solve the multi-dimensional integral in
Eq. (6) with both analytical and numerical methods, [25,38,39]. A well known
and simple numerical integration technique is Monte Carlo Simulation (MCS)
with or without sampling techniques, see e.g. Melchers [25]. In this paper we
apply first and second order reliability methods in the calculation of Eq. (6). This
means that the equation is solved by performing a mapping of the probabilistic
model with n correlated basic variables into uncorrelated, independent, standard,
normal-distributed variables, followed by an approximation of the failure surface
at the design point with a hyperplane or a parabolic surface. A vital property
from this mapping is that it retains the statistical properties of the probabilistic
model. For a general, multi-dimensional problem with correlated variables rep-
resented with different statistical distributions, Hohenbichler and Rackwitz [40]
proposed to use the established Rosenblatt transformation technique [41]. This
stepwise mapping technique requires a known joint probability function Fx(x)
in addition to conditional distributions. If we have n basic variables, which may
be correlated, defined in the x-space as X = (X, Xo, ..., X,,), and the uncorre-
lated standard normal variables represented in u-space with uncertainty variables
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U = (Uy,U,,...,U,), we can express the variable transformation T as:

U1 = (I)_l(Fl(.l’l))
T - U9 = (I)_l(FQ(.Z’Q ‘ xl))
Uy — (I)_l(Fn(l’n | T, T2, ...,l’n_l)).

where the conditional cumulative distribution for j = 2,..,n is given by

ij fx,(l’l, ...,Ij_l,t)dt
Fi(z; |z, ...,1_) = —2— : 9
J( J ‘ 1 J 1) fXjfl(Ila-'-axj—l) ( )

The limit state function in u-space, G(u), in terms of G(x), is expressed as
G(x) = G(T (). (10)

In the Gaussian u-space we have different possibilities for the limit state function.
One is to linearize around the design point using a first order Taylor expansion.
The design point represents the highest probability of failure on the given failure
surface, i.e the point on the failure surface closest to the co-ordinate origin. The
distance from the origin to the design point is denoted as 3, known as the safety
index. Due to the rotational symmetry in the u-space the probability of failure
can be determined from

pr = ©(=5), (11)

where @ is the univariate standard normal integral. This solution technique is
referred to as first order reliability method (FORM). Alternatively, the failure
surface can be approximated by a parabolic function around the design point.
This solution technique is termed the second order reliability method (SORM),
and theory about this method is found in e.g. Melchers [25] or Madsen et al. |38|.
Finally, we determined the design point by using the general non-linear optimiza-
tion constraint procedure solver called Sequential Quadratic Programming (SQP)
optimizer [42].

4.1 Failure and response surfaces

It is normally a challenge to establish expressions for the capacity and load terms
in the limit state function. If possible, analytical functions are to be preferred,
but they may be complex to establish. Another method is to establish continuous
functions from deterministic point-wise solutions for the capacity using e.g. FEM
or experiments. In this paper the established function representing the capacity
is denoted €., Eq. (7). This method is called the Response Surface Method
(RSM). Based on the parameter variation in the present work a second degree
polynomial was found to represent the failure points with acceptable precision.
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The cross-terms in the polynomial function were found to be important for the
surface quality. It should be noted that the choice of limit state function is
dependent on the specific case. Four variables are varied in the deterministic
analyses to describe a second degree polynomial:

Eerit = Qo + Z a;Y; + Z azzyz + Z Z QiYiY5, (12)

=1 j=1

1<j
where y; and y; denote the variables, and the a coefficients are determined
through regression analyses and least square optimization. A base point in
the middle of all the simulations results was selected with values a = 4 mm,
2¢ = 150 mm, 0y,/002 = 0.25, and n = 0. 07 This implied the following linear
variable transformation: y; = ¢ —1, yo = 150 —1,y3 = 4— —land yy = 55— 1.
Since the response surface approx1mat1on is an exphclt expresswn the limit state
function, Eq.5 could be solved by direct Monte Carlo Simulations (MCS). How-
ever, MCS are time-consuming when low failure probability estimates shall be
established. This is inconvenient in practical applications, and in this paper it
was chosen to apply the faster FORM/SORM technique. The next step was to
extract the failure points from the FEM-analyses. Two different failure mecha-
nisms were considered to represent the pipe’s global strain capacity, in the process
of establishing the response surfaces as described in the next section.

4.2 Global failure criterion

First, we considered the maximum load criterion which is meaningful in engi-
neering design due to its simple physical interpretation. An example of how to
determine the global failure is illustrated in Figure 13(a), where the applied load
is plotted against the global strain, €,,,,. The critical strain, €..;;, at maximum
load is also illustrated. In this case the crack growth and local deformation results
in a global collapse, Figure 13(b). Here the global strain €., is plotted against
CTOD. A rapid change in CTOD for a small variation of the global strain is
observed in this region. Consequently, the almost vertical driving force curve in-
dicates a maximum capacity level. In this case, the ductile tearing starts at about
CTOD= 0.6 mm, and a significant amount of ductile tearing has therefore oc-
curred before the maximum load is reached. The 15 coefficients determined from
the least square optimization from the establishment of the response surface, are
given in Table 3.

4.3 Local failure criterion

Additionally, a local failure criterion proposed by Ostby et al. [43] was examined.
This criterion predicts the CTOD at maximum load in the crack ligament, 0,4,
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Figure 13: The maximum load failure criteria. (a) Load vs. strain curve and the
corresponding (b) CTOD vs. strain for a pipe with a = 5 mm, 2¢ = 250 mm and
n=0.09. The critical strain, €..;, is depicted in both figures.
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Figure 14: The local failure criteria. (a) Load vs. strain curve and the corre-
sponding (b) CTOD vs. strain for a pipe with ¢ = 5 mm, 2¢ = 250 mm and
n=0.09. The critical strain, .., is depicted in both figures.

l.e.

Smar = (0.03L + Saactmm — 0.61)(=12.1(222)2 4+ 18.9(7%%) — 6.28),  (13)
ors ors

where L is the ligament height, da,—; mm is the CTOD at 1 mm crack growth,

and o0y and opg are the engineering yield stress and tensile strength, respec-

tively. The same optimization procedure as used in Section 4.2 was followed to
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Table 3: Coefficient values for the response surface from the global failure crite-
rion.

Coeft. (%)) q Qa9 a3 [e7) 11 Q92 Q33
Value 0.0148 -0.0509 —0.0168 —0.0162 0.0229 0.0565 0.0169 0.0087
Coeff.  ouq a2 a3 a4 Qo3 Qg a3g

Value 0.0117 0.0058  0.0309 —0.0342 0.0035 —0.0067 —0.0073

establish the coefficients in Eq. (12) which are listed in Table 4.

Table 4: Coefficient values for the response surface established using the local
failure criteria.

Coeft. (%)) q (6% Qs (o7} a1l Q92 Q33
Value 0.0122 —-0.043 —-0.0096 —0.0109 0.0218 0.0531 0.0095 0.0052
Coeff.  ouq a2 a3 Qg a3 Qg a3g

Value 0.0047 0.0086 0.0262 —0.0338 0.0004 —0.0050 —0.0069

Three examples of the response surface using the local failure criterion are pre-
sented in Figs.15-17. The response function is plotted in three different spaces
within the predefined parameter window listed in Table 1. The original failure
points which were extracted using the local failure criterion are depicted as '+’ .
Additionally, a bar from this point to the established surface is drawn to illus-
trate the accuracy of the approximation. Thus, if the bar is above or below the
surface the approximation is conservative or un-conservative, respectively. First,
in Figure 15, the critical strain is plotted as a function of the crack depth, a, and
internal pressure, 0, /002. A very good fit between the deterministic point-wise
solutions and the established surface is observed. Some minor deviations are seen
on the edges but these represent rather small relative errors. In Figure 16 the
critical strain is plotted as a function of the crack depth, a and crack length, 2c.
Again a very good fit between the established response surface and the point-wise
solutions is observed. Finally, in Figure 17, the function values on the axes are
crack depth, a and hardening, n. The surface almost represents the points sat-
isfactorily, but a significant deviation is observed at the corner where a = 5 mm
and n = 0.05. The surface is conservative in this area, i.e. the strain capacity is
under-predicted. However, this may not be a problem as long as the calculated
design point ends up elsewhere in our domain. If this region needs modification,
several adjusting techniques are available to solve this problem, such as weighting,
but they are not dealt with in this paper.
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n=0.07 2c=150mm

Figure 15: The response surface plotted as a function of the crack depth, a, and
the internal pressure, o, /0¢2.

n=0.09 Gh/60_2=0.5

Figure 16: The response surface plotted as a function of the crack depth, a, and
the crack length, 2c.

4.4 Example using the PFM-model

The PFM-model is now applied for a specific case with a pipe subjected to bend-
ing. The results from the tension loaded pipes are applied, but the external load
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2c=150mm Gh/60.2:0'25

Figure 17: The response surface based on the local criterion plotted as a function
of the crack depth, a, and the material hardening exponent, n.

is assumed to form a linear strain variation over the pipe cross-section as depicted
in Fig. 18. The defect localization was determined from a stochastic sampling
using MCS from the uniform distribution for ¢ (Table 5), and the maximum
strain at the given defect was obtained. This assumption implies that the defect
was subjected to a uniform strain corresponding to the maximum strain. Ad-
ditionally, the critical strain for the given defect geometry was taken from the
established response functions. The procedure also calculated the effective crack
length, which is the part of the defect placed in the tension part of the pipe
cross section. If the defect location passed the top of the pipe (12 o’clock in the
cross-section in Fig. 18) the maximum strain was set to remain £;,,. Otherwise,
the maximum tension strain e,p,, was modified to €,,04.

Two load cases were investigated for several deterministic pressure levels. The
load with a corresponding strain, which here is given as the strain g;,,, has
two contributing parts, static and dynamic. These are represented by normal
distributions summed up to a "total" strain distribution with mean value 1 %
and 1.5 % in load cases LC1 and LC2, respectively. The dynamic load contributes
with 15 % and the static 85 % to the total load. The input data for the reliability
analyses is listed in Table 5.
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Table 5: Input parameters and distributions used in the analyses.

Description Distribution E[—] cov
Depth, [mm] a Lognormal 1 0.5
Length, [mm] 2c Lognormal 75 0.33
Hardening, [-] n Normal 0.07 7.14-1072
Static load (strain) [-] €s Normal 0.0085,0.01275 0.1
Dynamic load (strain) [-] 4 Normal 0.0015,0.00225 1
Angle [-] @ Uniform ™ -
Pressure [-] on/oo2 - 0—-0.5 -

A

€lay

/ €app
i ol

~t—»/ “mod

Figure 18: The effective crack length and the applied strain, ,,, in a given pipe
cross section for a pipe in bending.

5 Results and discussion

In Figs. 19-21 the probability of failure, p, is plotted against internal pressure,
on/002. Two different load cases are presented, namely LC1 and LC2 from sim-
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ulations using the "Global criterion” and the "Local criterion". The mean val-
ues were E|Load]—0.01 and E[Load]—0.015 in LC1 and LC2, respectively. Both
SORM and FORM results are presented.

In Figure 19 results from the "Global criterion" simulations for LC1 and LC2
are presented. The FORM results over-predict the py compared with the SORM
simulations. However, this over-prediction is most significant for the lower pres-
sure ratios. Another observation is that an increase in internal pressure, oy, /0q 2,

"Global criterion"

1.0E-03 - |
[ | —=—FORM LCH1
—>—SORM LCH
- | —#—FORM LC2
1.0E-04 - —e—SORM LC2

& 1.0E-05 ©

1.0E-06 =

1.0E-07 \ \ \

O'h/0'02

Figure 19: Probability of failure plotted against oy, /0.2, for LC1 and LC2 using
the "Global criteria".

results in a corresponding increase in py. There is an approximately two decade
difference in the p; level from the un-pressurized pipe to pressurized pipe with
on/002 = 0.5, which is in accordance with earlier observations, [23]. The same
trend is observed for both load cases. In the cases using the "Local criterion",
Fig. 20, we observe similar trends of the influence of internal pressure. However,
the local criterion predicts higher probability of failure than the global criterion.
This is as expected since the critical strain level using the "Local criterion" is
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"Local criterion"

1.0E-02 |
F| —8—FORM LC1
| —©—SORM LC1

[| —=— FORM LC2
1.0E-03 | —e—soRmLc2 R el

Figure 20: py plotted against oy, /0.2, for LC1 and LC2 using the "Local criteria.

lower than using the "Global criterion". In Figure 21 the SORM results from the
two previous figures are compared. A significant difference is observed for low
on/oo2 ratios. However, it is believed that both criteria are applicable for cali-
bration purposes. Finally, it should be noted that the presented failure estimates
using FORM/SORM depends on the representativeness of Eq. (12). Possibly,
some effort could be done to evaluate the goodness of the choice of function.
This would, however, involve a larger number of heavy FEM-calculations, which
are inappropriate in this context.

5.1 Limitations

The response surfaces are established within a specific window of parameters.
It has been assumed that we have a continuous failure value relation inside this
region. This may be plausible, but the validity outside this region is likely to be
more restricted. Consequently, in a practical problem it must be checked whether
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SORM, "Local" and "Global" criteria
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Figure 21: Comparison of SORM-results from analyses using the "Local" and
"Global" criteria for LC1 and LC2.

the design point obtained from the reliability analyses is within the parameter
window. If not, some precautions should be taken. One alternative is to run a few
extra FEM-analyses to check if the outcome is on the "safe side" of the response
surface. If so, the reliability solution may be valid for the given case. Another
solution is to define a new solution matrix with another basis point which is
nearer to the design point in the former analyses. Alternatively, other function
expressions may be investigated.

6 Conclusions and further work

Abaqus Explicit and FEM were employed in the solution of surface cracked pipes
subjected to tension load in combination with internal pressure. A total of 81 3D
FE-analyses were made including large plastic deformations with ductile tearing
using the Gurson-Tvergaard-Needleman criterion. The defect depth variation
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and the effect of internal pressure were shown to significantly influence the strain
capacity of the pipes. An increase in the material hardening increased the pipe
capacity. A crack length effect was observed with a decrease in the pipe capacity
as the crack length increased. However, this effect was reduced for larger crack
lengths.

The simulation results were used to establish response surfaces. Both local
and global failure criteria were employed, and it was shown that the capacity
of the surface cracked pipes in tension could be well represented with quadratic
surfaces. The strong influence of internal pressure was clearly evident.

3D ductile tearing analyses represent high computational cost in addition to
beeing time-consuming and complex to handle. Therefore, we have decided to use
Link,;p. in the following work. This is a newly developed program using linespring
and shell elements based on the ideas of Rice and Levy [44] and Parks and
White [45]. A thorough examination of the numerical aspects and implementation
of the linespring element into the Link,,;,. software is given in Skallerud et al. [46],
Jayadevan et al. [47] and Thaulow et al. [48]. Link,,. can, among other things,
take into account ductile tearing effects, internal and external pressure, bending
and tension loads, and mismatch. Since this solution technique will reduce the
computational time considerably, further parameters can easily be included in
the stochastic models in order to improve their applicability.

Finally, an alternative method to the RSM and FORM/SORM exists, namely
a new dimensional decomposition method suitable for stochastic mechanics pre-
sented by Rahman [49]. This method appears to provide accurate probabilistic
characteristics at lower computational cost, and should be considered in the fur-
ther work.
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A probabilistic ductile fracture mechanics model
for bi-axially loaded surface-cracked pipes using
shell and line-spring elements”

Andreas Sandvik, Erling Ostby, and Christian Thaulow

Abstract

A new probabilistic fracture mechanics model for surface-cracked pipes is
presented. The model applies FEM-simulations using shell and line-spring
elements where ductile tearing effects are accounted for. The pipes are sub-
jected to loading in tension combined with internal pressure. A number of
variables are included in the model: internal pressure, material resistance,
crack depth and crack length. In the reliability analyses the strain capacity
is predicted from the FEM results using two different failure criteria:
the maximum load criterion and a local criterion. The response surface
technique is applied to represent the structural resistance in the reliability
models, and examples are presented for illustration. The established
models are solved using first and second order reliability methods as well
as Monte-Carlo Simulation with and without importance sampling. The
results clearly illustrate the important effect from the internal pressure on
the pipe’s strain capacity; increasing pressure decreases the strain capacity.

“Published in Engineering Fracture Mechanics, Vol. 73, pp. 1491-1509, 2006.
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Nomenclature

t pipe wall thickness

D outer pipe wall diameter

10) angle at the circumference of the pipe

00, 00.2 stress at the proportional limit, stress at 0.2% plastic strain

Oi, OTS flow stress, tensile strength

on hoop stress

n hardening exponent

E Young’s modulus

v Poisson ratio

CTOD crack tip opening displacement

€ nominal global longitudinal strain

€0, Ep strain at the proportional limit, plastic strain

Elay, Eapp strain due to laying, strain input to the limit state equation

Eerits Ecrit critical strain (capacity), critical strain function

EeritC: critical strain estimated from the global maximum load criterion

EeritL critical strain estimated from the local criterion

Df probability of failure

X n-dimensional random vector

X realizations of X

fx(x) joint probability density function of X

Fx(x) joint probability function

X; i-th random variable in x-space

U n-dimensional random vector in u-space

u realization of U

U; i-th uncorrelated standard normal random variable

G(x),G(u)  limit state functions in x and u-space

) univariate standard normal integral

154 safety index

o, v, vy, ;- polynomial coefficients

CTOD, material resistance
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1 Introduction

Simple and reliable standardized assessment procedures are generally of utmost
importance in structural engineering to ensure a safe and cost effective design.
This is also the case for offshore pipeline engineering, where the pipeline can be
exposed to a variety of loading conditions. Large deformations can occur during
installation and under operation. During operation the pressurized pipe may
be subjected to external loads for example in free-spans due to irregular seabed
topography or lateral /upheaval buckles caused by thermal loads.

Existing fracture assessment procedures used in pipeline engineering are
mainly established for elastic global response and do not consider large plas-
tic deformations |[1]. This may be unsuitable since highly ductile materials,
such as pipeline steel, may be subjected to high loads resulting in considerable
plastic deformations. Additionally, an amount of ductile tearing may be accepted
since it will not necessarily influence the pipe capacity. Fracture Control-Offshore
Pipelines is a joint industry project [2| with focus on large plastic deformations
and strain-based design for offshore pipelines. The strain-based methodology is
believed to hold the potential to improve the physical prediction of the fracture
mechanics response. This will enable a more fundamental calibration of partial
safety factors for fracture assessment of pipelines. This project has already de-
veloped simplified strain-based fracture mechanics equations for surface-cracked
pipes, including the effects of biaxial loading, mismatch, and misalignment, see
Ostby [3]. The simplified equations are used to establish a strain-based project
design procedure for laying and operational conditions for offshore pipelines using
the partial safety factor format as found in e.g. DNV-OS-F101 [4].

Three dimensional ductile tearing FEM-analyses of pipes with defects are
challenging and still not common. Such calculations typically involve complex
modelling, time-consuming solution and extensive post-processing. However, 3D
FEM models are important in order to investigate the detailed physics of frac-
ture mechanics problems, see e.g. [5]. This is neither suitable in engineering
fracture mechanics assessment nor as a basis in probabilistic models for pipes
where numerous analyses are needed. A specially designed program based on
shell and line-spring elements for fracture mechanics analyses is applied in this
paper. This program enables efficient fracture mechanics analysis for pipes with
surface cracks. The effect of ductile tearing may be accounted for, and the pipe
can be subjected to a combination of bending, tension and pressure loads. Local
buckling is also included, which may be convenient since buckling and fracture
are competing failure modes for a pipe subjected to bending loads.

Probabilistic calculations for ductile materials have mainly been contributed
in the past decade by Rahman and various co-authors. Their main focus has
been on through-wall and internal cracks on relatively thick-walled pipes using
FEM and analytical methods [6-12].

In Sandvik et al. |[13] 3D FEM models of surface-cracked pipes subjected
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to tension in combination with internal pressure were presented. These models
were used to establish a probabilistic fracture mechanics model (PFM) using the
response surface technique. Another PFM model using simplified strain based
equations from [3| was presented in Sandvik et al. [14].

In the present paper models of pipes with outer surface cracks subjected to
uniform tension in combination with internal pressure are presented. The models
include the effect of ductile tearing. In the first part we present the deterministic
FE-models with shell and line-spring elements. Pipe and defect geometry, mate-
rial properties and the ductile tearing model are presented and explained. Some
of the results are compared with 3D FEM results obtained from Abaqus/Explicit
analyses |13]. The subsequent section explains how the response surfaces are
established. Thereafter, the proposed methodology is illustrated with examples
where the probability of failure is determined using first and second order relia-
bility methods (FORM and SORM) in addition to Monte-Carlo Simulations with
and without importance sampling.

2 FEM-model

Line-spring elements

Three dimensional ductile tearing analysis of surface-cracked pipes represents
high computational cost in addition to being time-consuming and complex to
handle, see e.g. [13]. A simpler approach is to apply line-springs and shell
elements. Here the crack is represented by nonlinear finite element springs, line-
springs, with compliance dependent on the plastic deformation and the crack
depth. The line-springs are connected to the neighbouring shell elements repre-
senting the global pipe. The line-spring concept was originally proposed by Rice
and Levy [15], and extended to elastic-plastic stationary crack analysis by Lee
and Parks [16]. Ductile crack growth was included in the line-spring formulation
by Lee and Parks [17,18| using the ideas of McClintock et al. [19].

Link,;p. is a tailor-made program for pipeline applications based on the line-
spring technology. This program applies a co-rotated kinematic description of the
ANDES shell and line-spring elements [20,21]. Implementation and numerical
aspects of Link,,,. are presented by Skallerud et al. [22]|. In order to simulate the
ductile crack growth the traditional material crack-growth resistance curve (i.e.
CTOD-Aa curve) is applied as presented in Jayadevan et al. [23].

Geometry

A sketch of a pipe with a surface defect is shown in Fig 1 where a denotes
the uniform crack depth and 2¢ the crack length. Three values of pipe wall
thickness were considered, namely 15, 20 and 25mm, diameter to thickness ratio
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of D/t = 20 for all cases. The pipe length, L, is six times the outer diameter
of the pipe to limit so-called end effects, which means that the deformations
around the defect are not influenced by the boundary conditions. The geometric
parameters used in the analyses are found in Table 1 and Table 2.

6D

A4

(a) o

(b) I 2C

Figure 1: (a) Pipe geometry with an external circumferential constant-depth
surface crack. (b) Details of the constant depth crack with arc length (2¢) and
end radius (r) equal to the crack depth (a).

Element mesh

Fig. 2 shows a typical shell mesh of a pipe with diameter 400 mm including a
defect placed in the middle of the pipe with crack length 2¢ = 150 mm. Line-
spring elements simulate the defect. The figure shows that the shell and line-
spring FE-mesh is fundamentally different to a 3D solid mesh, where a dense
regular mesh around the defect is needed, as seen in Fig. 3. This results in a
significant difference in problem size: the depicted Link,;,. model has about six
thousand degrees of freedom, whereas the 3D Abaqus/Explicit model is about
thirty times larger.
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L

Load Caser/Step: 17242 _

Figure 2: A typical shell & line-spring element mesh of a pipe with surface crack.
Insert shows details around the crack.

Loads and boundary conditions

For the pressurized cases, the internal pressure load was applied as a separate
load step prior to the tension load. The pressure level is expressed by the ratio
between the hoop stress, o, and the stress at 0.2 % plastic strain, g, i.e.
0n/00.2. Three load levels were analysed, oy, /092 = 0,0.25 and 0.5. The uniform
tension load was applied through a displacement at one pipe end.



2 FEM-model 87

Crack front

(a) (b)

Figure 3: (a)A typical 3D FE-mesh of one quarter of a pipe containing a surface
defect. The dotted frame marks the close-up view of the defect zone shown in
(b) where the smallest element size is 0.1 mm, see [13].

Material

The material’s plasticity was characterized by an isotropic power-law hardening

relationship:
o = o (1+ip) | 1)
€0

where oy is the stress at the proportional limit, o; is the flow stress, ¢, is the
plastic strain and n the hardening exponent. &y = oo/F, is the strain at the
proportional limit, and £ is Young’s modulus. For ¢ < gy the material behaviour
is linear elastic. In the analyses o0y = 460MPa, £ = 200GPa and the Poisson
ratio v = 0.3.

Three different CTOD-Aa curves were used in the models. Such material
curves are obtained from experiments where the ductile crack growth, Aa, and
the crack tip opening displacement (CTOD), dg, are measured. Similar curves
may also be extracted from 3D FEM models including the effect of ductile tearing.
Such curves are then used as input to the Link,,,. software in the form:

53 =+ CQ(ACL)CS, (2)

where Aa denotes the ductile crack growth and ¢, ¢ and c3 are constants. In
the following analyses three different ¢y values were chosen in the simulations,
Table 1 and Table 2.
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Table 1: Input parameters for the FEM-models with 20 and 25mm pipe wall
thickness.

Model

S|

2¢ c1 co  c3  op/o02 D D/t
mim

100 0.45 05 0.7 0,0.25and 0.5 400 and 500 20
100 0.45 1.0 0.7 0,0.25and 0.5 400 and 500 20
100 045 1.5 0.7 0,0.25and 0.5 400 and 500 20
175 045 0.5 0.7 0,0.25and 0.5 400 and 500 20
175 045 1.0 0.7 0,0.25and 0.5 400 and 500 20
175 045 1.5 0.7 0,0.25and 0.5 400 and 500 20
250 045 0.5 0.7 0,0.25and 0.5 400 and 500 20
250 0.45 1.0 0.7 0,0.25and 0.5 400 and 500 20
250 045 1.5 0.7 0,0.25and 0.5 400 and 500 20

=
=
=
=

© 00 N O Ot s W N
Tt Ot T i = B W W w

Table 2: Input parameters for the FEM-models with pipe wall thickness 15mm.

Model | a 2¢ c ca ¢33 opfooa D D/t
mm mm

50 0.45 0.5 0.7 0,0.25and 0.5 300 20
50 0.45 1.0 0.7 0,0.25and 0.5 300 20
50 0.45 1.5 0.7 0,0.25and 0.5 300 20
100 045 0.5 0.7 0,0.25and 0.5 300 20
100 045 1.0 0.7 0,0.25and 0.5 300 20
100 045 1.5 0.7 0,0.25and 0.5 300 20
150 045 0.5 0.7 0,0.25and 0.5 300 20
150 045 1.0 0.7 0,0.25and 0.5 300 20
150 045 1.5 0.7 0,0.25and 0.5 300 20

=
=

© 00 ~J O Ot = W N
Tt Ot U = s e W W W
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2.1 Results from FEM simulations

In this paper CTOD has been applied as the fracture mechanics parameter for the
characterization of initiation and ductile crack-growth. The results are presented
as driving force curves, i.e. CTOD versus global strain. Some characteristic
features of the driving force curve are shown in Fig. 4, where three different
regions are indicated for a pipe subjected to tension. In Region 1 only minor

Regian 1 Region 2 Regig¢n 3

CTOD

Onset of
global plastiicty

Y

Figure 4: Three characteristic regions on the crack driving force curve.

Global strain

plastic deformations occur in the crack ligament and the the global deformation
is elastic. The main focus in this work is prediction of fracture after global plastic
deformation has occurred, Region 2 and Region 3. As the loading increases the
plasticity develops through the crack ligament, Region 2, where a relatively linear
relationship between the CTOD and global strain is observed. The slight upward
curvature of the curve is due to the increase of the local inelastic deformations
in the crack ligament and ductile tearing initiation. However, in this region the
crack growth will stop if the pipe is unloaded since the material is purely ductile.
Finally, Region 3 defines the collapse region with rapid increase of CTOD where
large plastic deformations and ductile tearing develop in the crack ligament. The
rapid crack growth leads to loss of strain capacity, shown as an almost vertical
crack driving force curve, indicating a limit for the pipe’s global strain capacity,
Jayadevan et al. [24].

Link,,. vs. 3D Abaqus/Explicit

To illustrate the simulation capacity of Link,;,. some simulation results are com-
pared with 3D Abaqus/Explicit simulations presented in [13]. These simulations
are for the case with ¢ = 20mm and D/t = 20, subjected to a tension load in
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Figure 5: Comparison of Abaqus/Explicit and Link,;,. analyses fortwo different
crack lengths, (a) ¢ = 3mm and (b) @ = 5mm.
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Figure 6: Abaqus/Explicit vs. Link,;,. analyses for pressurized pipes, two crack
lengths and (a) a = 3mm and (b) @ = 5mm.

combination with internal pressure. The material resistance input to the Link,;,.
simulations was obtained from the Abaqus/Explicit simulations as:
§p = 0.45 + 1.15(Aa)". (3)

The Abaqus/Explicit simulations calculate the ductile tearing using the Gurson-
Tvergaard-Needleman model whereas Link,;,. uses the CTOD-Aa curve to ad-
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vance the crack front. It should be noted that Link,,,. does not account for the
ductile tearing contribution in the hoop direction, but this is not considered to
be important in this work. However, development including this effect is ongoing
[25].

In Fig. 5(a) the results with @ = 3mm and 2¢ = 150mm and 250mm and no
internal pressure are compared. These crack lengths are chosen for comparison
since they are in line with the defect sizes in the probabilistic model presented
in Section 3. The Abaqus/Explicit and Link,;,. results are denoted as "A’ and
'L, respectively. The dotted line refers to the 2c = 250mm defect, whereas the
solid line denotes the 2¢ = 150mm defect. For the shorter crack (150mm) the
Link,;,. analysis yields higher CTOD for a given strain in Region 2. The CTOD
values are seen to close up to about ~ 0.6mm, whereafter the CTOD increases
faster in the Linky,,. simulations. In Region 3 the Link,,,. simulation predicts a
lower strain capacity. For the longer cracks (250mm) the Link,;,. results deviate
earlier and more from the Abaqus/Explicit results.

For the deeper defect with ¢ = 5mm, Fig. 5(b), Link,;,. predicts higher CTOD
for the 150mm crack at any given strain level. However, the strain capacity
prediction is almost the same as from the Abaqus/Explicit simulation. For the
longer crack Link,;,. predicts slightly higher CTOD than the 3D simulation.
However, the two driving force curves cross at CTOD = 2mm, resulting in
prediction of slightly higher strain capacity in the Link,;,. simulation.

A better agreement is observed when an internal pressure giving oy, /092 = 0.5
is included, Figs. 6(a)-6(b), where the same defect geometries are compared.
The Abaqus/Explicit and Link,;,. simulations show some difference for the shal-
lower crack, where Link,;,. yield higher CTOD values. However, an excellent
agreement between the two simulation techniques is obtained when a = Smm,
Fig. 6(b). In summary, the Link,;,. results are in reasonable accordance with
the Abaqus/Explicit simulations and should be suitable for the pipeline fracture
assessment considered in this work.

Comparison with experiment

A comparison has been made between a full-scale experiment and an analysis
using Link,;,. of a surface-cracked pipe subjected to four point bending and in-
ternal pressure. The experimental and computational details are not presented
here, but the obtained crack driving force curves are depicted in Fig. 7 and are
in good agreement. The horizontal lines on the test curve are due to unloading
done to perform crack-growth measurements during the test.

Link,;,. simulations

This section presents some results from Link,;,. analyses conducted to highlight
the effects of the parameters investigated.
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Figure 7: Comparison between Link,;,. simulation and a large scale test of a
surface-cracked pipe loaded with internal pressure and bending.

Crack depth and crack length

Data presented in Fig. 8(a) illustrates the significant influence of the crack
depth variation on the crack driving force:increasing crack depth giving increased
CTOD. Region 2 is narrowed as the crack depth increases, which indicates higher
plastic deformation localization in the crack ligament. This also influence the
ductile crack-growth contribution at a given strain level. Additionally, the strain
capacity decreases as the crack depth increases since the crack influences the
global capacity. A similar, but weaker, effect is also seen from the crack length
variation, Fig. 8(b). However the influence increases with increasing crack depth.

Internal pressure

If the pipe is subjected to tension in combination with internal pressure the
defect and pipe reach a bi-axial stress state. The bi-axial loading condition re-
sults in a significant stress localization in the crack ligament compared with an
non-pressurized pipe case, see e.g. |24]. This explains the considerable loss of
strain capacity and corresponding increase in CTOD as the internal pressure is
increased, Fig. 9(a).

Pipe wall thickness

Data from three different pipe wall thicknesses, with the same defect geometry
and a fixed D/t ratio, is presented in Fig. 9(b). The solid line denotes the crack
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Figure 8: Driving force curves from Link,;,. simulations for different (a) crack
depths and (b) crack lengths, for a pipe with thickness 20mm and D/t=20, and

no internal pressure.

driving force in the case with ¢ = 15mm, whereas the dotted lines represents the
20mm and 25mm cases. The CTOD is definitely higher for the thinnest pipe
for a given strain. In addition, as the relative crack depth increases the strain

capacity decreases.

Material crack-growth resistance curve

The effect from variation in the material resistance curve is observed in Fig. 10(a).
The ductile tearing starts at ~ 0.>mm and the curves deviate significantly as
the strain increases. In the case with a "low" resistance curve (c; = 0.5) the
CTOD increases strongly after the ductile crack-growth is initiated. These results
demonstrate the importance of the crack-growth resistance curve in determining

the strain capacity of pipes with defects.

3 The probabilistic fracture mechanics model

In conjunction with structural reliability analyses of a surface-cracked pipe, we
need to establish a convenient model to calculate the failure probability. This is

done by solving the probability of failure integral, i.e.

pf = /G(x)go fx(x)dx. (4)
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Figure 9: Driving force curves from Link,;,. simulations for different (a) o3,/00.2
and (b) pipe wall thicknesses and no internal pressure.

fx(x) is the joint probability density function of X. The limit state function is

expressed as
G(X) = cait(X1) = app(Xa)- (5)

where X = (X4, X3) contains the basic variables. The capacity part is expressed
as Ecit(X1) with the variables of interest represented in the vector X;. In the
present case Xy = (a,2c,dp,0/002). The "load part" is denoted as e,pp(X2),
where the vector X, contains the "load" variables.? The structural failure region
is defined as, G(X) < 0, and the safe region as G(X) > 0. Several methods exist
to solve the multi-dimensional integral in Eq. (4) [26-28]. A simple numerical
integration technique is Monte Carlo Simulation (MCS) with or without sampling
techniques, see e.g. Melchers [26]. MCS with importance sampling (MCSI) is
convenient to apply in this paper, since the limit state equation is explicitly
described. Shinozuka [29] suggested to use the design point as sampling point in
u-space. The sampling density is represented by a normal distribution for each
variable centered around this point.

When FORM and SORM solution techniques are applied, Eq. (4) is solved
by performing a mapping from x-space with n correlated uncertainty variables
X = (X1, Xo, ..., X;,) to uncorrelated, independent, standard, normal-distributed
variables in u-space with uncertainty variables U = (U, Us,...,U,). This is
followed by an approximation of the failure surface at the design point, also
called the most probable point, with a hyperplane or a parabolic surface. An

2Tt has been chosen to apply the strain due to external loading since the limit state function

is expressed in terms of strains.
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Figure 10: Linky;,. simulation results. Influence due to variation of the ¢y co-
efficient in the material crack growth resistance curve in Eq. 9. o04/002 = 0,
2¢ = 150mm, a = 4mm and ¢ = 20mm in the case (a) without internal pressure
and (b) including the effect of internal pressure.

important property from this mapping is that it retains the statistical properties
of the probabilistic model. If the limit state function is linearized around the
design point using the Taylor expansion in the u-space the probability of failure

can be approximated from

py = (=p), (6)

where @ is the univariate standard normal integral. The design point represents
the point giving the highest probability of failure on a specific failure surface.
The distance from the origin to the design point is denoted (, and is known as
the safety index. This solution technique is referred to as first order reliability
method (FORM). Alternatively, the failure surface can be approximated by a
parabolic function around the design point. This solution technique is termed
the second order reliability method (SORM), and the theory of this method is
found in e.g. Madsen et al. [27] or Melchers [26].

In this work we have employed FORM, SORM, MCS and MCSI. 10° simula-
tions were performed to obtain the py estimate with MCSI. In general a coefficient

of variation (COV') of approximately 1 percent was reached for all the solutions
using this method. To verify the MCSI simulations the ¢ = 20mm case is solved

by using MCS employing 107 simulations.
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3.1 Failure and response surfaces

The Response Surface Method (RSM) is applied to establish a continuous func-
tional representation of the capacity term, ..;;, Eq. 5. The function is established
from the deterministic failure points obtained from the Link,;,. simulations and
failure criteria presented in Section 3.2.

A second degree polynomial was found to be sufficient to represent the wide
range of failure points. Simpler polynomial representations were also employed
but the polynomial cross terms were found to be crucial to completely represent
the deterministic failure points. The challenge was to establish a rather complex
relation between the strain capacity of pipes subjected different loading condi-
tions, defect sizes and material crack-growth resistances. A general second degree
polynomial with m variables can be written as

Eerit = Q0 + Z aiy; + Z aiiy; + Z Zawyzy; (7)

1<j

y; and y; denote the variables and the o coefficients are determined through
regression analyses and least square optimization. The functions were established
with one constraint, a base point, to ensure a qualitatively good fit between the
deterministic points and the derived polynomial function®. The basis point was
the center point from the input values listed in Table 1 and Table 2. This point
is denoted as (as, (2¢)p, (Or)b, (75)5). For the cases with pipe wall thickness 20
and 25mm, the base point values were a;, = 4 mm, (2¢), = 175 mm, (dr), = 1.0,
and (), = 0.25. The 15mm case is similar but here (2¢), = 100mm, Table 2.
When the basis point was chosen the following linear variable transformamon
was performed prior to the polynomial fit: y;, = aib — 1, yp = (26) -1, y3 =

(2)/( =)y — 1 and yy = ( - — 1. It should be noted that the calculated design
point should appear within the region of input values from the deterministic
analyses, see i.e. Table 1. This will ensure a more representative estimate of the
failure probability than if the design point appears outside the region.

3.2 Failure criteria

The maximum global load criterion for a tension loaded surface-cracked pipe
is illustrated in Fig. 11(a). When the maximum load is found the correspond-
ing critical strain, .., 1s determined. The critical strain is also depicted in
Fig. 11(b) where the crack driving force curve is almost vertical.

Alternatively we apply the local failure criterion proposed by Ostby et al. [30].

3The uncertainty in the established function with respect to the probability of failure esti-
mate is not considered in this work.
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Figure 11: The critical strain using the maximum load failure criteria (solid lines)
and the local failure criteria (dotted line). (a) Load vs. strain curve, (b) CTOD
vs. strain for a tension loaded pipe. e..41, and e..4¢ denote the critical strain
using the local and global criterion, respectively.

Table 3: Coefficient values for the response surface established from 4 variables
using the local and global failure criteria.

t = 15mm t = 20mm t = 2bmm

Local Global Local Global Local Global
Qo 0.0078 0.0107 0.0093 0.0105 0.0134 0.0180
o | —0.0238 —0.0350 | —0.0315 —0.0388 | —0.0392 —0.0460
as | —0.0096 —0.0259 | —0.0073 —0.0174 | —0.0081 —0.0220
asz | —0.0054 —0.0115 | —0.0091 —0.0142 | —0.0142 —0.0207
Qy 0.0111 0.0206 0.0115 0.0191 0.0157 0.0291
a1 0.0337 0.0375 0.0382 0.0413 0.0422 0.0393
22 0.0090 0.0273 0.0047 0.0168 0.0057 0.0198
33 0.0021 0.0056 0.0048 0.0078 0.0080 0.0109
4y 0.0001 0.0034 0.0003 0.0047 0.0012 0.0052
12 0.0089 0.0207 0.0055 0.0145 0.0028 0.0103
13 0.0157 0.0244 0.0256 0.0303 0.0325 0.0361
ag | —0.0221  —0.0317 | —0.0234 —0.0317 | —0.0262 —0.0370
23 0.0027 0.0109 0.0021 0.0081 0.0015 0.0087
gy | —0.0103 —0.0271 | —0.0070 —0.0207 | —0.0066 —0.0236
asq | —0.0057 —0.0115 | —0.0074 —0.0131 | —0.0103 —0.0189
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This criterion is denoted as €..;r. In this case the CTOD at maximum load,
Omaz, in the crack ligament is predicted according to the formula

Smar = (0.03(t — @) + Saactmm — 0.61)(—12.1(222)2 4 18.9(7%%) — 6.28). (8)
ors ors

t —a denotes the ligament height, dao,—; mm is the CTOD at 1 mm crack-growth
and (2 and opg are the engineering yield stress and tensile strength, respectively.
Since the ductile tearing curves starts at ¢; = 0.45, da,—1 mm was reduced
by CTOD/2 = 0.45/2mm to reflect the CTOD at initiation. In general this
failure criterion predicts similar or lower failure strains than the global criterion
dependent on the loading conditions and defect sizes. This is clearly indicated in
Figs. 11(a)- 11(b) where the two different criteria are applied for the same case.

3.3 Example

In order to illustrate how the models may be applied, some examples are pre-
sented. The PFM-model is customized to represent a pipeline in operation includ-
ing bending and differential pressure. The results from the tension loaded pipes
are applied, but the external load was assumed to form a linear strain variation
over the pipe cross-section as depicted in Fig. 12. The crack localization in the
circumferential direction was determined from a stochastic sampling using MCS
from the uniform distribution for ¢ (Table 4), and the maximum strain at the
given defect was obtained. This assumption implies that the defect was subjected
to a uniform strain corresponding to the maximum strain. The critical strain for
the specific case was obtained from the established capacity response functions.
The effective crack length was defined as the part of the defect positioned in the
tension part of the pipe cross section. As a consequence, if the defect location
passed the top of the pipe (12 o’clock in the cross-section in Fig. 12) the maximum
strain was set to remain 5,,,. Otherwise, the strain was modified to €04

One load case was investigated for various deterministic pressure levels. It
was chosen to represent the load with a corresponding strain, €4, since the
limit state equation is expressed in terms of strain. Variable X, was chosen to
represent the statistical variation in the material resistance curve with the relation
Z; = log(X;). This means that the material resistance curve is expressed as

5R =+ XjCQ(Aa,)C3. (9)

The input data for the reliability analyses is listed in Table 4.

4 Results of the probabilistic simulations

In Figs. 13-20 the probability of failure, ps, is plotted against internal pressure,
on/oo2 for different ¢y coefficients in Eq. 9. Lines are plotted for clarity between
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Table 4: Input parameters and distributions used in the analyses.

Description Distribution  Scale, « Shape, 3 Lower limit
Depth, [mm] a Weibull 0.9 1.2 1.8
Length,[mm] 2c Weibull 33 1 0
Mean COV* or StD**
Strain, [-] Elay Lognormal 0.05 and 0.01 0.3* 0
Angle [-] 0] Uniform T -
Pressure [-] on/0o0.2 0—-0.5 -
OR Z; Normal 0 0.11**
OR Co - 0.5—1.5

8Iay
Eapp
»/ €mod

Figure 12: The effective crack length and the applied strain, €,,,, in a given pipe
cross section for a pipe in bending.

the calculated points. The solid lines refer to the example with ¢o = 1.5, the
dashed lines ¢ = 1.0 and the dotted lines ¢o = 0.5 in the material resistance curve.
One load case is considered with 1% mean strain in the lognormal distribution
in Table 4. A comparison between FORM and SORM solutions is presented
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in Fig. 13, where t = 15mm and the global criterion is employed. The SORM
solutions tend to predict lower failure probabilities for all pressure levels and
material resistances, but from a practical point of view the difference is negligible.
As a consequence, we do not show this comparison for the other cases.

The SORM results are compared with the MCSI results, in Figs. 14 and
15 for the global and local criteria cases, respectively. There is about half an
order of magnitude between the MCSI and the SORM results. This means that
approximate solutions using FORM and SORM when solving the integral, Eq. (4),
overestimate the probability of failure.

In Fig. 16 the local and global failure criteria are compared with MCSI. As
observed, the global criterion predicts lower failure probabilities than the local
criterion, which is in line with the illustration in Fig. 11(b). Here .. had
a lower value than ... Irrespective of the solution technique, the effect of
internal pressure is clear: as the internal pressure increases the probability of
failure increases. When the ¢y parameter of the CTOD-Aa curve decreases the
probability of failure decreases.

Results from the ¢ = 20mm case where the global criterion is applied are
presented in Fig. 17. The probability of failure increases as the internal pressure
increases. From the non-pressurized to the pressurized condition (i.e. 04/0¢2 =
0—0.5) a difference of about two order of magnitude is observed for all the curves.
Some differences are observed between two different failure criteria depicted in
Fig. 18, and the local criterion predicts slightly higher failure probabilities than
the global criterion. The difference is largest for the non-pressurized case. In
order to ensure that the MCSI solutions produce qualitatively robust results, we
performed MCS in the 20mm case for both failure criteria. It was chosen to apply
107 simulations, and the results are shown with the symbol 'x’ in Fig. 18. The
MCSI results are plotted with connecting lines for clarity. As seen, the results
coincide with the results from the MCSI simulations.

Finally, Figs. 19 and 20 present the results when ¢ = 25mm. Similar trends as
in the previous case are observed, which means that the local and global criterion
yield similar results in the pressurized case, but some differences are observed in
the non-pressurized case. The probability of failure is significantly influenced by
the internal pressure.
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Figure 13: Comparison between SORM and FORM for the ¢ = 15mm case using
the global failure criterion and 1% mean strain.
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Figure 14: Comparison between SORM and MCSI for the ¢ = 15mm case using
the global failure criterion and 1% mean strain.
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Figure 15: Comparison between SORM and MCSI ¢ = 15mm case using the local
criterion and 1% mean strain.
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Figure 16: Comparison between the local and global criterion when ¢t = 15mm
and 1% mean strain. Probability of failure results are obtained from MCSIL.
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Figure 17: Comparison between SORM and MCSI for the ¢ = 20mm case using
the global failure criterion and 1% mean strain.
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Figure 18: Comparison between the local and global criterion when ¢ = 20mm
and 1% mean strain. Probability of failure results are obtained from MCSI and
MCS (’x’ from MCS).
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Figure 19: Comparison between SORM and MCSI for the ¢ = 25mm case using
the global failure criterion and 1% mean strain.
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Figure 20: Comparison between the local and global criterion when ¢t = 25mm
and 1% mean strain. Probability of failure results are obtained from MCSIL.
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4.1 Discussion

When analysing pipeline fracture in general, two different scenarios should be
addressed, i.e. pipeline installation and pipeline operation. In the analyses pre-
sented above the same defect distribution and variation in applied strain has
been assumed for all cases for convenience. However, when applying the model
for practical purposes some topics should be noted. In our cases including inter-
nal pressure and a relatively large variation in applied strain are representative
for a pipeline in service. In this case usually only a small part of the pipeline
is subjected to large deformations, since this typically occurs in relation to free-
spans or global buckling phenomena. During installation more or less the whole
pipeline is subjected to the same loading, thus there is a system effect that must
be accounted for in the probabilistic calculations. Another effect that should be
included is the chance of having a defect in at a highly loaded location. This
is directly linked to the expected defect rate from the welding procedures. This
would probably lead to lower fracture probability levels for the operational cases
with internal pressure compared with the reported values above. Consequently,
these issues should be addressed and accounted for in practical applications.

5 Conclusions

A probabilistic fracture mechanics model have been established. The model was
based on FEM-simulations using shell and line-spring elements. Ductile tearing
was included, and the material crack-growth resistance curve was employed to
advance the crack front. Link,;,. and Abaqus/Explicit simulations were com-
pared. The Link,;,. program showed very promising results, and various internal
pressure levels, different defect geometries and CTOD-Aa curves were considered.
The strain capacity was calculated with two different criteria; the maximum load
criterion and a local criterion that predicted the CTOD at maximum load in the
crack ligament. These failure criteria were applied to 243 analyses to establish
models for each of the three pipe wall thicknesses. Each model was established
with four variables, including crack depth, crack length, material resistance and
internal pressure. The failure points were used to establish a continuous surface
representing the capacity term in the limit state equation. It was shown that
a second degree polynomial represented the deterministic failure points satisfac-
tory. Finally, an example on how this model could be applied was presented. The
failure probabilities were calculated using FORM, SORM and MCSI. Similar re-
sults were obtained from FORM and SORM. However, MCSI around the design
point gave robust results and estimated lower failure probabilities than the trans-
formation methods. The failure probability simulations clearly demonstrated the
effect of internal pressure and the material resistance curve.
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