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Prefa
e iiiPrefa
eThis thesis 
omprises on introdu
tion and three journal papers. Paper 1 is pub-lished in Engineering Fra
ture Me
hani
s, where also Paper 2 is a

epted withminor revision. Paper 3 is submitted for publi
ation in International Journal ofFra
ture.I have been the main author and responsible for the implementation andsimulations in all the papers. However, I have re
eived helpful 
ontributions,
orre
tions and 
omments from the 
o-authors. The framework and methodologyin Paper 1 are built on strain-based fra
ture me
hani
s equations derived byErling Østby (se
ond author).
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Abstra
t vAbstra
tThe thesis 
omprises on introdu
tion 
hapter and three journal papers 
onsideringprobabilisti
 fra
ture assessment of pipes, using three di�erent approa
hes.In Paper 1 semi-analyti
al strain-based equations for surfa
e 
ra
ked pipeswere used to establish probabilisti
 fra
ture assessment models. The pipes weresubje
ted to global plasti
 strains, and the tangen
y 
riterion was used to deter-mine the global failure strain. The results showed that the strain 
apa
ity andthe CTOD were strongly in�uen
ed by the e�e
t of internal pressure. A majordrop in the probability of failure was observed as the pressure in
reased. Simi-larly, the 
ra
k depth also strongly in�uen
ed the probability of failure togetherwith the global strain 
apa
ity. The e�e
t from in
reasing the 
ra
k length inthe hoop dire
tion also resulted in an in
rease in the probability of failure. Thereliability analyses employed the FORM and SORM te
hniques. It should benoted that no expli
it 
apa
ity term in the limit state fun
tion was 
al
ulated.Point-wise 
apa
ity solutions were obtained from an iterative pro
edure linked tothe probabilisti
 software Proban.In Paper 2 the probabilisti
 model is based on 3D FEM models in
ludingthe e�e
t of du
tile tearing using the Gurson-Tvergaard-Needleman model. Thequasi-stati
 FEM-solutions were obtained using Abaqus/Expli
it, whi
h origi-nally was developed for s
enarios where sho
k and mass e�e
ts play an importantrole. The simulations showed how the Abaqus/Expli
it solver enabled detailedanalyses of a pipe with a surfa
e defe
t. The di�erent simulations were used toestablish so-
alled response surfa
es. These surfa
es (i.e. equations) representedthe 
apa
ity term in the limit state equation. The pipes were subje
ted to uni-form tension in 
ombination with internal pressure. The results showed a lossof 
apa
ity when the internal pressure was in
luded. Additionally, a signi�
antde
rease in strain 
apa
ity was observed when the 
ra
k depth in
reased. Finally,the variation in 
ra
k length and material hardening also in�uen
ed the globalstrain 
apa
ity and the CTOD. The probability of failure was 
al
ulated usingFORM and SORM.In Paper 3 a 
omputationally attra
tive method using line-springs and shellelements is used to establish a probabilisti
 fra
ture me
hani
s (PFM) model.The 
ra
k was represented by nonlinear �nite element springs, line-springs, withvarious 
omplian
e dependent on the plasti
 deformation and the 
ra
k depth.Du
tile tearing is in
luded using the traditional CTOD-∆a relationship. As aresult, the material resistan
e 
urve was in
luded in the PFM-model togetherwith 
ra
k depth, 
ra
k length and internal pressure. The results illustrated thee�e
t of variation in material resistan
e and the internal pressure. The modelwas also found to be appli
able for engineering purposes.
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Introdu
tion 11 Introdu
tion and motivationStru
ture of the thesisThis thesis 
ontains an introdu
tion se
tion and three journal papers whi
h were
ompleted 
onse
utively during the 
ourse of the past three years. I have also
ontributed at four international 
onferen
es during the period, but these 
ontri-butions are not presented herein.There are some "disadvantages" in presenting a thesis based on journal pa-pers. Firstly, the stru
ture tends to be repetitive as ea
h paper has a similarintrodu
tion se
tion explaining the same motivation and ba
kground to the work.Additionally, it may be di�
ult to see the dire
t 
onne
tion between the papersalthough they are 
lose in topi
. This is the main reason I have added a se
tiongiving the motivation of the proje
t providing short dis
ussions and some shortexplanations of the 
entral 
on
epts applied in the thesis. Finally, the journalstru
ture does not 
over all the work done.One 
lari�
ation should be noted on the vo
abulary used: the meaning of a"
ra
k" and "defe
t" are used synonymously.MotivationThis thesis is about fra
ture me
hani
s assessment of o�shore pipelines, whereouter surfa
e defe
ts lo
ated in the 
ir
umferential dire
tion are 
onsidered.Pipelines are used to transport oil and gas for short and long distan
es, andmay be exposed to a large variation of loads, depending on the surroundingsand area of appli
ation. In fra
ture me
hani
s assessment the main interest isfo
used on the loading 
onditions resulting in tensile strains. If a 
ra
k appearsin a tensile region it may develop and grow su�
iently to 
ause stru
tural failure.The behaviour depends on several fa
tors, e.g. 
ra
k size and load level. Duringoperation, the pipeline may be exposed to temperature loads resulting in lateralor upheaval bu
kling with subsequent large tensile and 
ompression strains. Ad-ditionally, free-spans due to irregular seabed topography may also introdu
e largedeformations, see illustration in Fig. 1. The e�e
t of internal pressure may beimportant as well, sin
e the resulting hoop stresses may 
ause the fra
ture me-
hani
s response to 
hange 
onsiderably when longitudinal tensile strains appearsin the pipe. Another s
enario where the pipeline is exposed to relatively largedeformations is during laying. The level of deformation depends on the layingte
hnique and the sea depth. Fig. 2 illustrates the prin
iple of J- and S-laying. InJ-laying the pipeline leaves the lay barge verti
ally. Typi
ally, several linepipes of
∼ 12m length are girth-welded in the horizontal position, lifted into the verti
alposition and welded to the pipeline. In S-laying the linepipes are girth-welded onde
k, the pipeline leaves the vessel horizontally and is (gradually) deformed/bentover the stinger. The tension in the pipeline must be adjusted to avoid lo
al
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Figure 1: A possible seabed 
on�guration for a pipeline with free-spans.

Water depth

“J” lay “S” lay

Regions
with
tensile
strains

Figure 2: S- and J-laying te
hnique. (Unknown origin of the �gure)



Introdu
tion 3bu
kling problems at tou
hdown on the seabed and when leaving the stinger.Due to the nature of welding the resulting weld may 
ontain defe
ts, e.g. dueto la
k of fusion between weld and base material, or between the weld layers, ordefe
ts at the start-stop regions of the weld layers. A sket
h of a girth-weldedpipe with a surfa
e defe
t is shown in Fig. 3. Fig. 4 gives a s
hemati
 view of theinspe
tion pro
ess for girth welds for o�shore pipelines. As the pipes are girthwelded they are inspe
ted, e.g. using automated ultrasoni
 testing (AUT) units,whi
h are 
alibrated to dete
t defe
t-like 
ra
ks above a 
ertain size. The AUTquality is ensured in quali�
ation tests, and is represented by the probability ofdete
tion 
urve (POD). Sin
e the weld inspe
tion does not ne
essarily dete
tsall the defe
ts, some defe
ts will pass undete
ted. These defe
ts are shown as"Not observed defe
ts" in Fig. 4. The dete
ted defe
ts ex
eeding a 
ertain sizewill be repaired and re-inspe
ted. As a result the defe
ts remaining after welding,inspe
tion and repair are represented in "Defe
t distribution before laying". Thisis the defe
t distribution that may be 
onvenient to apply in probabilisti
 fra
tureassessment pro
edures for pipelines. When the stru
tural and fra
ture responseis known the probabilisti
 
al
ulations 
an be used to 
alibrate safety fa
tors indesign equations. These are on the form
R

γR
= LγL, (1)where R and L denotes the stru
tural resistan
e and load, respe
tively. γR and γLare the partial safety fa
tors. The partial safety fa
tors are 
alibrated for di�erenttarget reliability levels dependent on the area of appli
ation and failure mode.As a result, when a guideline is established, an engineer 
an employ it within theregion of validity and be 
ertain that he has a
hieved a safe and 
ost-e�e
tivedesign for the given operational 
onditions or laying pro
edure.1.1 Elasti
-plasti
 fra
ture me
hani
sLinear elasti
 fra
ture me
hani
s (LEFM) is valid when there are only small lo
alplasti
 deformations around the 
ra
k tip. The stress intensity fa
tor K des
ribesthe stress �eld near the 
ra
k tip, see e.g. [1℄. However, du
tile materials may beimpossible to 
hara
terize with LEFM when large plasti
 deformations appeararound the 
ra
k tip. Consequently, other strategies have been developed to
onsider these situations.Ri
e proposed the path-independent integral J as a fra
ture 
hara
teriz-ing parameter for a nonlinear-elasti
 material. This implied the assumption ofisotropi
 material, small strains, rate-independen
y and non-dissipative materialbehaviour. If ti = σijnj is the tra
tion on the 
ontour Γ, σij the stress tensor and

nj the unit ve
tor normal to Γ, the J-integral 
an be written as:
J =

∫

Γ

(Wdy − ti
∂ui

∂x
ds). (2)
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Pipe

Girth Weld

Defect

Pipe

Girth Weld

Defect Defect

Figure 3: A girth-welded pipe with a defe
t. (Fig. used with permission fromSnamprogetti.)

Figure 4: S
hemati
 inspe
tion pro
ess for girth welds in o�shore pipelines. (Fig.is used with permission from DNV, Norway)
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ui denotes the displa
ement in dire
tion i, and W is the strain energy density fora hyper-elasti
 material de�ned as:

σij =
∂W

∂εij

. (3)Hut
hinson [2℄ and Ri
e and Rosengren [3℄ showed how the J-integral 
ouldbe viewed as a stress intensity parameter that des
ribes the asymptoti
 strainand stress �elds in a nonlinear material obeying the Ramberg-Osgood strain-hardening fun
tion. Additionally, they showed that the stress and strain had tovary proportionally as 1/r near the 
ra
k tip to maintain the path independen
efor the J-integral, see Fig. 5. This is termed the Hut
hinson-Ri
e-Rosengren(HRR) singularity.The singular �eld around the 
ra
k tip does not exist in du
tile materials.When large deformations appear around the 
ra
k tip, the 
ra
k tip blunts as in-di
ated in Fig.6. The blunting results in a stress deviation from the HRR-solution.However, M
Meeking [4℄ also showed that the HRR-solution was representativeoutside the near-tip region. As a 
onsequen
e the J-parameter 
an also be ap-pli
able for situations involving large deformations. Ri
e [5℄ and Hut
hinson [6℄have shown that CTOD and the J−integral des
ribe the du
tile tearing behavioursu�
iently. An equivalen
e between J and CTOD has been shown for both astationary and a growing 
ra
k by Shih [7℄, i.e.
J = m∗σY Sδ, (4)where m∗ is a 
onstant dependent on the material properties (mainly hardening)and stress state, σY S is the yield stress, and δ is the CTOD. In this thesis, however,the following relation has been applied:
J = mσ0.2δ, (5)where σ0.2 denotes the yield stress at 0.2% plasti
 strain, and the m-fa
tor is

m(σ0.2/σTS) = 3.87 − 2.64(σ0.2/σTS). (6)
σTS denotes the tensile strength. The explanation for use of this fun
tion is foundin Appendix A in Paper 1.In the �rst paper J is used as fra
ture me
hani
s parameter, whereas withthe two last papers CTOD is used for 
hara
terization of initiation and growthof du
tile 
ra
ks.1.1.1 ConstraintGeometry and mode of loading 
an in�uen
e the 
onditions around the 
ra
ktip, and therefore in�uen
e the fra
ture toughness. This is termed geometri
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x

y ds

GFigure 5: An arbitrary 
ontour line around a 
ra
k tip for J-integral evaluation.
Initial sharp crack

Deformed blunted crack

dFigure 6: An initially sharp 
ra
k that is blunted due to inelasti
 deformationsat the 
ra
k tip. The CTOD is depi
ted as δ.
onstraint e�e
t. When this e�e
t is taken into a

ount the one parameter theorymust be extended. Betegon and Han
o
k [8℄ investigated the the stress �eld infront of the 
ra
k for di�erent geometri
 
onstraint levels for a hardening material.They showed that the 
onstraint 
ould be represented by the T-stress parameter.The two-parameter theory is named J-T theory. Another approa
h is the J-Qtheory proposed by O'Dowd and Shih [9, 10℄. The theory behind two-parameterfra
ture me
hani
s is not presented in detail, and readers are referred to thereferen
es above for a more in-depth presentation The basis for not addressing
onstraint issues in this work 
an be seen from Fig. 7, showing the 
onstraintlevel in di�erent fra
ture me
hani
s spe
imens 
ompared to the 
onstraint levelin pipes. Re
ent developments in fra
ture assessment of pipelines have tendedtowards using the SENT spe
imen in determination of the fra
ture toughness,see e.g. Nyhus et al. [11℄. From Fig. 7 it 
an be observed that the 
onstraintlevels in pipes and SENT spe
imens are of negligible di�eren
e, thus, using thefra
ture toughness from the latter should give representative values also for thepipes without further 
orre
tions. In this work it has been assumed that 
ra
kgrowth resistan
e 
urves are obtained using SENT spe
imens, and the variation infra
ture toughness is rather assumed to be due to variation in material properties,and not dire
tly due to di�eren
es in 
onstraint level.
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GEOMETRY / CONSTRAINT     [T,Q]

FRACTURE

TOUGHNESS

[J, K, CTOD]

CT (a/W = 0.5)

SENB (a/W = 0.5)

PIPE

SENB (a/W = 0.3)

SENT

FRACTURE

TOUGHNESS

[J, K, CTOD]

CT (a/W = 0.5)

SENB (a/W = 0.5)

PIPE

SENB (a/W = 0.3)

SENT

Figure 7: Illustration on how the fra
ture toughness varies with the 
onstraintlevel. (Fig. used with permission from B. Nyhus, Sintef)1.2 Du
tile 
ra
k-growth simulation
J-∆a and CTOD-∆a 
urvesIn Paper 1 the J − ∆a 
urve was employed to advan
e the 
ra
k front in thestrain-based equations. This means that the 
onne
tion between J and the 
ra
kgrowth, ∆a, is known prior to the analysis. In the Paper 2 the Gurson-Tvergaard-Needleman model is adjusted to obtain a wanted CTOD-∆a relationship. In thePaper 3, the CTOD-∆a 
urve is applied as input to the Linkpipe software.Gurson-Tvergaard-NeedlemanIn the se
ond paper 3D FEM analyses are 
ondu
ted where the Gurson-Tvergaard-Needleman approximate yield model was applied to model the e�e
tof du
tile tearing. This du
tile 
ra
k growth model was proposed by Gurson [12℄,and later modi�ed [13,14℄. The model simulates the mi
rovoid nu
leation, growthand 
oales
en
e, and assumes that the porous material behaves like a 
ontinuumwhere the plasti
 yield surfa
e is adjusted dependent on the hydrostati
 stresslevel and 
urrent void volume fra
tion. The yield 
ondition is expressed as

g(σe, σm, σ̄, f ∗) = (
σe

σ̄
)2 + 2q1f

∗ cosh(
3q2σm

2σ̄
) − (1 + q3(f

∗)2) = 0, (7)



8where σe is the von Mises stress, σm the mean stress, σ̄ the tensile �ow stress and
f ∗ is the 
urrent e�e
tive void volume fra
tion. q1, q2 and q3 = q2

1 are 
onstants.The original Gurson model [12℄ is obtained by setting q1 = q2 = q3 = 1, and
f ∗ = f , where f denotes the 
urrent void volume fra
tion. Void 
oales
en
e isa

ounted for using the e�e
tive void volume fra
tion, f ∗, from Tvergaard andNeedleman [14℄ i.e.

f ∗(f) =

{

f if f ≤ fc,
fc −

f∗

F
−fc

fF−fc
(f − fc) if fc < f < fF . (8)

fc is the 
riti
al void volume fra
tion at the start of void 
oales
en
e. fF denotesthe �nal failure void volume fra
tion, and is given by fF = 0.15 + 2f0, wherewhere f0 is the initial void volume fra
tion of f . The ultimate value wherethe ma
ros
opi
 stress 
arrying 
apa
ity vanishes is de�ned as f ∗
F = 1/q1. Theevolution of f in the se
ond paper is purely dependent on growth of existing voidswhi
h is based on the law of 
onservation of mass, i.e.

dfgrowth = (1 − f)dεp
kk, (9)where dfgrowth denotes the in
remental void volume growth of existing voids overan in
rement of load, and dεp

kk is the in
remental volumetri
 plasti
 strain. Thesummation rule over repeated indi
es must be applied.1.3 Failure 
riteriaThree di�erent failure 
riteria are applied in this thesis. The 
hoi
e of failure
riterion in�uen
es the results sin
e they are based on di�erent failure 
onditions.In Paper 1 the traditional tangen
y 
riterion was employed. This 
riterionimplies 
al
ulation and 
omparison of the applied 
ra
k driving for
e and thematerial 
ra
k growth resistan
e 
urve. The 
riti
al point is the tangen
y pointde�ned as the instability point. If the applied J is denoted Japp and the materialresistan
e JR the following 
ondition is met at the tangen
y point:
Japp = JR (10)and

dJapp

da
=

dJR

da
. (11)This point must normally be solved by an iterative pro
edure. The 
orrespondingstrain at this level, εcrit, has to be determined, and used in the subsequent prob-abilisti
 analyses. The 
riterion is used in existing standards, su
h as BS7910,[16℄. The pro
edure is simple and suited to pra
ti
al analyses, sin
e the materialresistan
e 
urve is obtained from simple experiments.Another failure point is the maximum load 
riterion. This 
riterion is il-lustrated in Fig. 8(a). The highest point (i.e. maximum load) on the 
urve is
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tion 9marked with the horizontal line with the 
orresponding 
riti
al strain εcritG onthe 
o-ordinate axis. The CTOD level at εcritG on the 
ra
k driving for
e 
urveis seen in Fig. 8(b). Finally, we have a lo
al failure 
riterion proposed by Østby
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C
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O
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m

]

ε
critL

ε
critG(b)Figure 8: The 
riti
al strain using the maximum load failure 
riterion (solid lines)and the lo
al failure 
riterion (dotted line). (a) Load vs. strain 
urve, (b) CTODvs. strain for a tensile loaded pipe. εcritL and εcritG denote the 
riti
al strainusing the lo
al and global 
riteria, respe
tively.et al.[17℄. This 
riterion predi
ts the CTOD at maximum load, δmax, in the 
ra
kligament. If L is the ligament height, and δ∆a=1mm is the CTOD at 1mm 
ra
kgrowth, the lo
al failure 
riterion is written as

δmax = (0.03L + δ∆a=1mm − 0.61)(−12.1(
σ0.2

σTS
)2 + 18.9(

σ0.2

σTS
) − 6.28). (12)The 
riti
al strain, εcritL, is depi
ted in Figs. 8(a) and 8(b) for 
omparison withthe global maximum 
riterion.1.4 Reliability analysisThe deterministi
 
al
ulations provide the basis for the probabilisti
 fra
tureme
hani
s models. Su
h models 
an be used to des
ribe the stru
tural reliabilityof a pipe, given that we have statisti
al information for e.g. the load 
onditions,defe
t geometry, material, et
. This information is used to establish the limitstate fun
tion, G(x). If fX(x) is the joint probability density fun
tion of X, the



10probability of failure integral 
an be written as:
pf =

∫

G(X)≤0

fX(x)dx. (13)The limit state fun
tion is:
G(X) = εcrit(X1) − εapp(X2). (14)where X = (X1,X2) 
ontains the basi
 variables. The 
apa
ity part is expressedas εcrit(X1) with the variables of interest represented in the ve
tor X1. This
ould, as an example, be X1 = (a, 2c) where a and 2
 denote the 
ra
k depth andlength, respe
tively, although it may in general 
ontain other variables as well.

εapp(X2) represents the load part of the limit state fun
tion, where X2 
ontainsthe load variables. G(X) ≤ 0 de�nes the region with stru
tural failure, whereas
G(X) > 0 de�nes the safe region. The next part is to 
hoose how Eq. (13) shouldbe solved. Several methods exist, both analyti
al and numeri
al [18-20℄, and abrief overview of the methods applied in this thesis is given here.First and se
ond order reliability methods are popular methods to solveEq. (13). Using these methods implies that the equation is solved by performinga mapping of the model with n 
orrelated basi
 variables into un
orrelated, inde-pendent, standard, normal-distributed variables, followed by an approximationof the failure surfa
e at the design point with a hyperplane or a paraboli
 surfa
e.This mapping retains the statisti
al properties and 
an be applied for a generalmulti-dimensional problem with 
orrelated statisti
al variables, see e.g. [21,22℄.The mapping is illustrated in two dimensions in Fig. 9.u-spa
e is also denoted the Gaussian u-spa
e where di�erent possibilities existfor the limit state fun
tion. The �rst option is to use First Order ReliabilityMethod (FORM). This method involves linearisation of the fun
tion around thedesign point using a �rst order Taylor expansion. The design point representsthe highest probability of failure on the given failure surfa
e, i.e the point on thefailure surfa
e 
losest to the 
o-ordinate origin. The distan
e from the origin tothe design point is denoted as β, known as the safety index. Due to the rotationalsymmetry in the u-spa
e the probability of failure 
an be determined from

pf ≈ Φ(−β), (15)where Φ is the univariate standard normal integral. Another approximation isto apply a paraboli
 fun
tion around the design point, see Fig. 9. This solutionte
hnique is termed the se
ond order reliability method (SORM) whi
h may give abetter estimate of the failure integral sin
e the nonlinearity is better represented,e.g. Mel
hers [18℄ or Madsen et al. [19℄. The FORM/SORM provide stri
tlyasymptoti
 solutions, i.e., when the reliability index β −→ ∞. In 
ases withsmall β-values, the FORM/SORM yields robust solutions only for linear and
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x
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�

G( )=0x

G( )=0u

E(X )1

E(X )2

Figure 9: Illustration of mapping in two dimensions from the physi
al x-spa
e tothe Gaussian u-spa
e.quadrati
 failure fun
tions. In this thesis the failure probabilities are expe
ted tobe small, i.e. we expe
t to have large β-values. Consequently, the FORM/SORMshould be appli
able.Simple integration te
hniques are to use Monte Carlo simulations (MCS) orMonte Carlo simulations with importan
e sampling (MCSI). MCS involves ran-dom sampling of the basi
 variables to simulate a large number of 
ases to deter-mine the proportion that fall into the unsafe region. This is 
he
ked by using anindi
ator fun
tion I[G(x) ≤ 0] whi
h returns 1 (true) if G(x) ≤ 0 or 0 (false) oth-erwise. From sample statisti
s the probability of failure integral 
an be estimatedas:
pf ≈

1

N

N
∑

j=1

I[G(x̂j) ≤ 0], (16)where x̂j denotes the ve
tor j of random observations from the joint probabilitydensity fun
tion, fX(x), and N is the total number of simulations.This method may be 
riti
ized due to its poor e�
ien
y. A large number ofsimulations is often ne
essary to obtain a probability of failure estimate with ahigh 
on�den
e level. If some a priori information from a problem is employed,the sampling region 
an be sele
ted to improve the MCS method. This is theba
kground for so-
alled importan
e sampling, see details in e.g. Mel
hers [18℄.In this work the sampling has been done in the Gaussian u-spa
e around thedesign point [23,35℄ using the ideas of Shinozuka [24℄.



12Probabilisti
 du
tile fra
ture me
hani
sProbabilisti
 fra
ture me
hani
s models have been in use for several years. Themain appli
ation, however, has been to brittle fra
ture problems. The most well-known statisti
al brittle fra
ture model is probably the one established by theFren
h resear
h group Beremin [25℄. They proposed a lo
al 
riterion for 
leavageassuming that the probability of �nding a mi
ro-
ra
k with a 
riti
al length isa fun
tion of the volume (lo
ally around the 
ra
k tip) of the material involved.This method has later been applied in numeri
al models of fra
ture in the du
tile-brittle transition regime, see e.g. Gao [26℄, based on the approa
h from Xia andShih [27℄. Attempts have also been made to establish probabilisti
 models forfra
ture assessment of welds, see e.g. [28,29℄.However, a modern pipeline steel material is normally very du
tile, and largeplasti
 deformations may be allowed. The du
tile fra
ture behaviour is funda-mentally di�erent from the brittle fra
ture, and new probabilisti
 du
tile fra
tureme
hani
s models have to be established. The main 
ontribution the past de
adeon this topi
 has been from S. Rahman and 
o-authors. Several approa
heshave been applied in their probabilisti
 models, e.g. analyti
al equations [30℄,FEM-models [31-33℄ and Galerkin meshless methods [34℄. They have fo
used onthi
k-walled pipes, whi
h are of main 
on
ern for e.g. the nu
lear industry. Thisis di�erent from the pipes investigated in this thesis, where the fo
us has beenon thinner pipes with surfa
e 
ra
ks and large deformations.Referen
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ture Me
hani
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ations, 2nd Edi-tion, CRC Press In
., 1995.[2℄ J. Hut
hinson, Singular behavior at the end of a tensile 
ra
k in a hardeningmaterial, Journal of Me
hani
s and the Physi
s of Solids 16 (1968) 13�31.[3℄ J. Ri
e, G. Rosengren, Plane strain deformation near a 
ra
k-tip in a power-law hardening material, Jornal of Me
h Phy Solids 16 (1968) 1�12.[4℄ R. M
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Probabilisti
 fra
ture assessment of surfa
e
ra
ked pipes using strain-based approa
h*Andreas Sandvik, Erling Østby, and Christian ThaulowAbstra
tSimpli�ed strain-based fra
ture me
hani
s equations, established for ex-ternal surfa
e 
ra
ked pipelines subje
ted to an external bending load, arepresented and used in probabilisti
 assessment of a pipeline girth weld. Themodel takes into a

ount several parameters, su
h as variation in 
ra
kdepth, 
ra
k length, internal pressure and material hardening. The 
riti
alstrain from du
tile tearing in the 
ra
ked pipeline is found by using thetangen
y 
riterion. The reliability problem is solved using �rst and se
ondorder reliability methods for di�erent pipe dimensions and load levels.

*Published in Engineering Fra
ture Me
hani
s, Vol. 73, pp. 1491-1509, 2006.



18 Probabilisti
 fra
ture assessment of surfa
e 
ra
ked pipes usingstrain-based approa
h1 Nomen
lature
t pipe wall thi
kness
D outer pipe wall diameter
φ angle at the 
ir
umferen
e of the pipe
σ0, σ0.2 stress at the proportional limit, stress at 0.2% plasti
 strain
σi, σTS �ow stress, tensile strength
σe, σm von Mises, mean stress
σ̄, σh �ow stress, hoop stress
n hardening exponent
E Young's modulus
ν Poisson ratio
CTOD 
ra
k tip opening displa
ement
ε nominal uniaxial strain
ε0, εp strain at the proportional limit, plasti
 strain
εlay, εapp, εcrit strain due to laying, strain input to the limit state equation,
riti
al strain (
apa
ity)
εs, εd strain due to external stati
 and dynami
 load (load part)
C initial slope on the driving for
e 
urve where Region 2 starts
pf probability of failureX n-dimensional random ve
torx realizations of X
fX(x) joint probability density fun
tion of X
FX(x) joint probability fun
tion
Xi i-th random variable in x-spa
eU n-dimensional random ve
tor in u-spa
eu realizations of U
Ui i-th un
orrelated standard normal random variable
G(x), G(u) limit state fun
tions in x and u-spa
e
Φ univariate standard normal integral
β safety index
α, αi, αii, αij polynom 
oe�
ients
f 
urrent void volume fra
tion
f0 initial void volume fra
tion
f ∗ e�e
tive void volume fra
tion
f ∗

U the ultimate value where the mi
ros
opi
 stress 
arrying 
apa
ity vanish
q1, q2, q3 
onstants in the Gurson yield fun
tion



2 Introdu
tion 192 Introdu
tionO�shore pipelines are an e�e
tive long-distan
e transportation method for oiland gas. Many new o�shore development proje
ts are in ultra-deep water depthswith reservoirs and pipelines exposed to higher pressures and temperatures thanin earlier proje
ts. This requires better pipeline material utilization in additionto robust and reliable design guidelines.In parti
ular there are three 
onditions in whi
h large plasti
 deformationsmay o

ur in the pipeline. During laying the pipeline may be exposed tolarge 
urvatures with 
orresponding large deformations. Further, 
onsiderabledeformations may o

ur under operational 
onditions su
h as free-spans due toirregular seabed topography or lateral bu
kling due to temperature variations.Today the tensile side often limits the allowable load/deformation. In DNV-OS-
Fracture / plastic collapse

Buckling

Figure 1: The di�eren
e in allowed strain on the 
ompression and tension side ina pressurized pipeline a

ording to di�erent standards.F101 [1℄ the lo
al bu
kling 
riteria for a pipe with internal pressure limit thelongitudinal 
ompression strain to about 2 %, Fig. 1. In 
omparison, existingpro
edures for fra
ture assessment limit the tensile strain to about 0.3-0.5 %and therefore limit the utilisation of the given design. It is believed that existingfra
ture assessment methods may be overly 
onservative in addition to not fullya

ounting for the e�e
ts of internal pressure. As a result, new 
al
ulationstrategies should enable quali�
ation of higher tensile strains in pipelines duringboth laying and operation.In fra
ture assessment the 
al
ulated driving for
e equations are important.Existing pro
edures, su
h as BS7910 [2℄ and R6 [3℄, do in general assume load-
ontrolled approa
hes. This means that the stress (i.e. load) is used as input to



20 Probabilisti
 fra
ture assessment of surfa
e 
ra
ked pipes usingstrain-based approa
hthe analyses. To take into a

ount the appearan
e of a defe
t in a stru
ture (e.g.in a pipeline girth weld), the so-
alled referen
e stress is 
al
ulated. The 
hoi
e offormula in the referen
e stress 
al
ulation will in�uen
e the results signi�
antly. A
ommon approa
h for fra
ture assessment of pipelines with 
ir
umferential 
ra
ksis to determine the referen
e stress by the method of Kastner et al. [4℄. A potentialproblem with load-
ontrolled methods has been their weakness in situations withlarge plasti
 deformations. The stress distribution in the stru
ture is establishedfrom the applied load, and the 
orresponding strain distribution is obtained bythe material's stress-strain relation. Sin
e we now are 
onsidering the inelasti
region, a small 
hange in the stress level may result in a signi�
ant 
hange inthe strain level. Referen
e stress method using the Kastner solution applied topipelines with 
ir
umferential surfa
e defe
ts are shown to be very 
onservativefor long 
ra
ks and un-
onservative for short 
ra
ks, Thaulow et al. [6℄.Another method is to make use of displa
ement-
ontrolled 
al
ulations, wherethe strain is determined from a given displa
ement and the 
orresponding stressis established through the material stress-strain relation. Evaluations performedwith this strategy are 
alled strain-based assessments. If the pipeline is subje
tedto an external load resulting in a load-
ontrolled or a mixed load/displa
ement-
ontrolled situation the strain-based methods may still be appli
able in 
onjun
-tion with appropriate safety fa
tors, see Bratfos [7℄. The same paper gives theoryand basis for strain-based design.It is believed that a strain-based design will enable a more reliable and pre
isefra
ture assessment when global plasti
 deformations o

ur in the pipeline. Withthis ba
kground the 
ra
k driving for
e equation applied in this paper is strain-based. A defe
t appears in the 
ross-se
tion of a pipeline girth weld as shown inFig. 2. The weld defe
ts are assumed to be 
onstant-depth (a) surfa
e 
ra
ks with�nite lengths (2c). This is reasonable sin
e su
h defe
ts may appear from welding.Further, an assumption is made that a defe
t 
an appear at an arbitrary positionin the 
ir
umferential dire
tion. The equations are developed for tension loads inaddition to biaxial loading due to internal pressure. Further, it is assumed thatthe 
ross-se
tion remains 
ir
ular throughout the deformation and that there isno ovality or diameter expansion. Realisti
 dimensional parameters for o�shorepipelines are 
onsidered in the examples.Traditionally, the main fo
us in probabilisti
 fra
ture assessment has beenbrittle fra
ture, e.g. [8-11℄ and fatigue [12℄. To the authors' knowledge, onlyminor resear
h has been made on probabilisti
 fra
ture assessment of du
tilesteel materials. The main 
ontribution on this topi
 seems to be from Rahmanwith 
olleagues, who have investigated the probability of failure in steel pipeswith either 
ir
umferential 
onstant-depth surfa
e 
ra
ks or through-thi
kness
ra
ks using simpli�ed equations and Finite Element Method (FEM) 
al
u-lations. In [13℄ and [14℄ Rahman established J solutions for through-wall
ra
ked pipes subje
ted to pure bending loads by use of so-
alled in�uen
efun
tions established from FEM 
al
ulations. These fun
tions are used in the



3 Stru
tural reliability - establishment of the probability of failure 21probabilisti
 
omputations together with various failure 
riteria and loads.Furthermore, Rahman and Brust [15℄ established another method for simpli�ed
omputation of the J-integral for an internal, 
ir
umferential, 
onstant-depthand �nite-length surfa
e 
ra
k, subje
ted to bending loads. In these methodsthey applied 
lassi
al beam theory and deformation theory of plasti
ity. Ad-ditionally, they used a power-law idealisation of both the stress-strain 
urveand the 
ra
k-growth resistan
e 
urve. In the simulation of system 
omplian
edue to the presen
e of a 
ra
k, they applied a pipe with redu
ed thi
kness.This methodology was used by Rahman in e.g. [16℄ in a probabilisti
 fra
tureme
hani
 model. The model enabled 
losed form estimates for a range ofdeformation levels. However, the a

ura
y of the solutions for shallow 
ra
kshas not been veri�ed. Other papers using similar methods may be found, forexample Fran
is and Rahman [17℄, Rahman et al. [18℄, or Foxen and Rahman [19℄.In Se
tion 3, we present some basi
 stru
tural reliability theory on how tosolve the probability integral. In Se
tion 4, the new probabilisti
 fra
tureme
hani
s model is presented, in
luding details about how it was developed. The
riti
al strain term is established, whi
h is applied as the resistan
e term in thelimit state equation. The 
al
ulation pro
edure and its implementation in theprobabilisti
 software, Proban [20℄, are explained. In Se
tion 4.2, the statisti
alinput and prepro
essing prior to the probabilisti
 
al
ulations are presented.In Se
tion 5 the results from the probabilisti
 du
tile fra
ture analyses arepresented and dis
ussed.3 Stru
tural reliability - establishment of theprobability of failureIn order to perform probabilisti
 fra
ture assessment we establish probabilisti

al
ulations based on traditional stru
tural reliability methods. The obje
tive isto �nd the probability of failure from the multi-dimensional integral
pf(G(X) ≤ 0) =

∫

G(x)≤0

fX(x)dx, (1)where fX(x) is the joint density fun
tion and X = (X1, ..., Xn) is an n-dimensional ve
tor that represents the basi
 variables, i.e. the load andresistan
e variables. Xi denotes the i-th random variable represented by astatisti
al distribution. G(X) is a general form of the limit state fun
tion, also
alled the performan
e fun
tion. It may be linear or non-linear and is a fun
tionof the load and resistan
e variables. G(X) > 0 de�nes an out
ome in the saferegion, whereas G(X) ≤ 0 identi�es the failure region. Finally, G(X) = 0 de�nesthe failure surfa
e. The limit state equation used in this paper is presented in
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Figure 2: (a) The pipe geometry with an external 
ir
umferential 
onstant-depthsurfa
e �aw. (b) Details of the 
anoe type defe
t with ar
 length, 2c, depth, a,and end radius, r, equal to the 
ra
k depth, a.Se
tion 4.Di�erent solution strategies are available in solving the integral in Equa-tion (1), in
luding both analyti
al and numeri
al methods, [21-23℄. A widelyused, and simple, numeri
al integration te
hnique is Monte Carlo Simulation(MCS) with or without sampling te
hniques. Details about su
h methods maybe found in e.g. Mel
hers [23℄.However, the main fo
us in this arti
le is on transformation methods. The ideais to solve Equation (1) by performing a mapping of the probabilisti
 model with
n 
orrelated basi
 variables into un
orrelated, independent, standard, normally-distributed variables, followed by an approximation of the failure surfa
e at thedesign point with a hyperplane or a paraboli
 surfa
e. This mapping retains thestatisti
al properties of the probabilisti
 model.For a general, multi-dimensional problem with 
orrelated variables repre-sented with di�erent statisti
al distributions, Hohenbi
hler and Ra
kwitz [24℄proposed to use the established Rosenblatt transformation te
hnique [25℄, to ob-tain un
orrelated, independent, standard, normally-distributed variables. This isa stepwise mapping te
hnique requiring a known joint probability fun
tion FX(x)



4 The probabilisti
 fra
ture me
hani
s model 23in addition to 
onditional distributions. Consider n basi
 variables, whi
h maybe 
orrelated, de�ned in the x-spa
e as X = (X1, X2, ..., Xn). The un
orrelatedstandard normal variables are represented in u-spa
e with un
ertainty variablesU = (U1, U2, ..., Un). Hen
e, the variable transformation may be written as:
u1 = Φ−1(F (x1))

u2 = Φ−1(F (x2 | x1))

.

.

un = Φ−1(F (xn | x1, x2, ..., xn−1)).where the 
onditional 
umulative distribution is given by
Fn(xn | x1, ..., xn−1) =

∫ xn

−∞
fXn

(x1, ..., xn−1, t)dt

fXn−1(x1, ..., xn−1)
. (2)Further, we transform the limit state fun
tion into the u-spa
e, i.e.

G(x) → G(u) (3)The limit state fun
tion 
an, for example, be linearized using a �rst order Tay-lor expansion. This te
hnique is known as the First Order Reliability Method(FORM). The linearization is made around the design point, whi
h is the pointon the failure surfa
e 
losest to the 
o-ordinate origin in the Gaussian u-spa
e.This distan
e is denoted β and is known as the safety index. In Fig. 3 this isillustrated in a 2D situation for simpli
ity. β represents the highest probabilityof failure on the given failure surfa
e. Hen
e, the probability of failure 
an beestablished by using the relation
pf = Φ(−β), (4)where Φ is the univariate standard normal integral.We use the general non-linear optimization 
onstraint pro
edure solver 
alledSequential Quadrati
 Programming (SQP) optimizer [26℄ for determination of thedesign point.As indi
ated in Fig. 3 there also exists a Se
ond Order Reliability Method(SORM). Here, the failure surfa
e is approximated by a paraboli
 fun
tion at thedesign point and a better approximation of pf may be obtained when having large
urvatures on the failure surfa
es where FORM may produ
e ina

urate results.Theory about SORM may be found in e.g. Madsen et al. [21℄ or Mel
hers [23℄.4 The probabilisti
 fra
ture me
hani
s modelThe limit state equation, as de�ned in Equation (1), is expressed as

G(X) = εcrit(X1) − εapp(X2). (5)
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Failure region

G( )<0u

Safe region
G( )>0u

b=|u
*|

Design point

U1

U
2

a Ñ Ñ=- G( )/| G( )|u u

FORM

SORM

G( )uFigure 3: Approximation of the failure surfa
e about the design point, i.e. thepoint of maximum likelihood, in the u-spa
e where u1 and u2 are un
ertaintyvariables.The basi
 variables are in
luded in X = (X1,X2). Furthermore, the resistan
epart (
apa
ity) is represented by εcrit(X1) with the variables represented in theve
tor X1. Similarly, the load part is expressed as εapp(X2), where X2 
ontainsthe variables on the load side. There is in general assumed to be no 
orrela-tion between the resistan
e and the load variables. However, it should be notedthat in the present 
ase the resistan
e fun
tion 
onsists of both statisti
al anddeterministi
 variables.The problem was solved using the general purpose probabilisti
 analysis pro-gram, Proban [20℄. The 
riti
al strain was 
al
ulated in an external Fortran sub-routine using the driving for
e equation and the tangen
y 
riterion. The basi
variables involved in the problem were given as input to Proban as distributionsor deterministi
 values. Subsequently, the εcrit-value was 
al
ulated. In this way,several pointwise solutions were obtained enabling a numeri
al representation ofthe limit state surfa
e. This enabled a subsequent FORM/SORM solution witha 
orresponding estimate of the probability of failure.4.1 The strain-based simpli�ed fra
ture me
hani
s equa-tionThe basi
 idea of the simpli�ed strain-based driving for
e equations is presentedin Østby et al. [27℄ and Østby [28℄. In the following, the equations are based



4.1 The strain-based simpli�ed fra
ture me
hani
s equation 25on three dimensional (3D) FEM-analyses using Abaqus [29℄ with solid elementsand Linkpipe using linespring elements based on the ideas of Ri
e and Levy [30℄and Parks and White [31℄. A thorough examination of the numeri
al aspe
tsand implementation of the linespring element into the Linkpipe software is givenin [32-34℄.

Figure 4: Chara
teristi
s of the driving for
e 
urve with the initial slope wherethe global plasti
 region starts.The general 
on
ept is to express the relationship between the applied J ,
Japp, and the global strain, ε, in a surfa
e 
ra
ked pipe. Japp is here the so-
alledfar �eld J that is not in�uen
ed by the lo
al 
ra
k tip 
onditions. First, it isassumed that global elasti
 deformation, shown as Region 1 in Fig. 4, is of minorinterest. This is reasonable sin
e we are interested in the fra
ture me
hanismswith global plasti
 deformations, as shown in Region 2 and Region 3 in Fig. 4.
C is de�ned as the initial slope that 
hara
terizes the 
ra
k driving for
e 
urvewhere Region 2 starts. This region is 
hara
terized by plasti
ity developmentthrough the whole pipe wall thi
kness. There is a tenden
y that the 
urve hasa slight upward 
urvature. This is due to the ne
king of the 
ra
k ligament assigni�
ant plasti
 strains develop. Furthermore, Region 3 de�nes the 
ollapseregion with rapid in
rease of J . In this region the J in
reases rapidly sin
e the
ollapse develops in the 
ra
k ligament. More details of the lo
al deformationlevels in the pipe due to external load may be found in [5,27℄.



26 Probabilisti
 fra
ture assessment of surfa
e 
ra
ked pipes usingstrain-based approa
hThe strain on the abs
issa axis is global strain, whi
h means that the strainis not in�uen
ed by lo
al deformations. It was found that this was ensured if thestrain was extra
ted one pipe diameter in the lengthwise dire
tion away from the
ra
k in the FEM analyses, [5,27℄.All the derivations were done with a material following an isotropi
 power lawhardening, namely
σi = σ0

(

1 +
εp

ε0

)n

, (6)where σi is the �ow stress, σ0 is the stress at the proportional limit, εp is theplasti
 strain and n the hardening exponent. Next, ε0 = σ0/E, is the strain atthe proportional limit, and E is the Young's modulus. If σ < σ0 the materialbehaviour is linear elasti
. It should be noted that the material hardening in thispaper is obtained as σ0.2/σTS, whi
h is 
onvenient in engineering appli
ation. σTSis de�ned as the tensile strength at ε = n and σ0.2 is the yield stress at 0.2 %plasti
 strain.The parameterised driving for
e equation is in the form
Japp = tmσ0.2

∫ ε

0

fgdε, (7)where f , g, and m are fun
tions presented in the following and t is the pipe wallthi
kness. As seen, the expression is integrated with respe
t to the global strain,
ε, from zero to the desired strain value. m is a fun
tion merely dependent on thematerial hardening, and is de�ned as

m = 3.87 − 2.64 (σ0.2/σTS) . (8)Details about this fun
tion are found in Appendix A. Next, f takes into a

ountthe 
ra
k depth and 
ra
k length, i.e.
f

(

a

t
,

2c

πD

)

= A2

(a

t

)2

+ A1

(a

t

)

+ A0, (9)where a is de�ned as the 
urrent 
ra
k depth, D is the pipe diameter, and 2c isthe 
ra
k length, all depi
ted in Fig. 1. The parameters, Ai, are expressed as
A0 = 183.43

(

2c

πD

)2

− 27.32

(

2c

πD

)

+ 0.5507,
A1 = −2078

(

2c

πD

)2

+ 191.56

(

2c

πD

)

+ 2.577, and
A2 = 4238.2

(

2c

πD

)2

+ 339.32

(

2c

πD

)

− 16.4.The e�e
t of 
ra
k depth and 
ra
k length variation on the 
al
ulated Japp isshown in Fig. 5 and Fig. 6, respe
tively. It should be noted that the 
urves in



4.1 The strain-based simpli�ed fra
ture me
hani
s equation 27Fig. 5 to Fig. 8 are from du
tile tearing 
al
ulations using the J − JR relationreferred to in Se
tion 4.2. JR follows the power law fun
tion
JR = b1(∆a)b2 , (10)where ∆a de�nes the du
tile 
ra
k growth and b1 and b2 are 
onstants.In the following deterministi
 
urves with b1 = 852 and b2 = 0.52, whi
h arerepresentative values for X65 steel, Table 1, are used in the �gures in this se
tion.
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Figure 5: The evolution of applied J against global strain, for di�erent a/t ratios.The e�e
t of material hardening has been in
luded by two approximationsdependent on the relative 
ra
k depth and the relative 
ra
k length. Conse-quently, the fun
tion g when a/t ≤ 0.25 is
g

(

a

t
,

2c

πD
,
σ0.2

σTS

)

= 1 + h

(

σ0.2

σTS

)(

2c

πD

)

(a

t
− 0.1

)

. (11)On the other hand, if a/t > 0.25 then
g

(

a

t
,

2c

πD
,
σ0.2

σTS

)

= 1 + h

(

σ0.2

σTS

)(

2c

πD

)

0.15. (12)As observed, these expressions for g depend on the fun
tion h. This fun
tiongives a dire
t expression for the material hardening:
h

(

σ0.2

σTS

)

= 2310.5

(

σ0.2

σTS

)2

− 3765.2

(

σ0.2

σTS

)

+ 1524. (13)
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Figure 6: The evolution of applied J against global strain for various 
ra
klengths, 2c.In Fig. 7 the e�e
t of various hardening levels is depi
ted. As seen in thisrange, no signi�
ant di�eren
e is observed. However, it should be noted that thehardening e�e
t in
reases with deeper 
ra
ks. The equations given so far havebeen �tted for the 
ase where D/t = 20. To make the equation appli
able forseveral D/t-ratios the following transformation has been shown to give reasonablygood results:
2c/πD → (2c/πD)(D/t)/20. (14)The ba
kground for this transformation is that for longer 
ra
k lengths, FE sim-ulations show that the slope of the driving for
e 
urve saturates, and be
omevirtually independent of 2
. When 
onsidering di�erent D/t ratios the 
ra
klength at whi
h this saturation o

urs is 
losely related to the absolute length ofthe 
ra
k. Thus, the transformation proposed in Equation 14 relates other D/tratios to the 
ase with D/t = 20 through the value of 2c.Finally, the biaxial loading due to internal pressure is taken into a

ount byadjusting the e�e
tive pipe wall thi
kness as a fun
tion of the hoop stress to yieldstress ratio, while the 
ra
k ligament height is kept 
onstant. When assuminga von Mises yield surfa
e, this will lead to an in
rease in the e�e
tive relative
ra
k depth in 
ase of internal overpressure in the pipe. σh is de�ned as the hoop
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Figure 7: The evolution of Japp against global strain from the simpli�ed drivingfor
e equation, for various material hardening levels.stress, and for σh/σ0.2 ≤ 0.5 we have:
(a

t

)

eff
=

k − 1

k
+

a

kt
, (15)where

k =

(

1 −
σh

σ0.2
+

(

σh

σ0.2

)2
)−1/2

.In the 
ase where σh/σ0.2 > 0.5 the e�e
t of the internal pressure saturates andthe relative 
ra
k depth is set to
(a

t

)

eff
= 0.134 +

a

1.15t
. (16)Further dis
ussion about the e�e
t of internal pressure may be found in [28℄.The signi�
ant e�e
t of variation of the internal pressure is shown in Fig. 8.Equation (7) now has the expressions needed to 
al
ulate the relation be-tween the global strain and the applied J . The equations have been establishedwithin the following window of parameters:

• Pipe wall thi
kness, [mm℄: 15 ≤ t ≤ 35
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Figure 8: The e�e
t of variation of internal pressure, σh/σ0.2, on the evolution of
Japp against global strain.

• Diameter to thi
kness ratio: 20 ≤ D/t ≤ 40

• Relative 
ra
k depth: a/t ≤ 0.35

• Cra
k length [mm℄: 2c ≤ 300

• Material hardening: 0.82 ≤ σ0.2/σTS ≤ 0.93In this range the a

ura
y of the equation generally lies within ±20%. This issigni�
antly better, when 
ompared to 3D FE simulations, than when using theKastner solution [4℄ as input to 
al
ulation of the referen
e stress in the BS7910[2℄ equations, Thaulow et al. [6℄.4.2 Cal
ulation of the 
riti
al strain - εcritThe 
omplete history of the 
ra
k development (i.e. du
tile tearing) due to load-ing may be expressed by Japp and the material resistan
e JR. The material 
ra
kgrowth resistan
e in
reases as the 
ra
k is loaded, and the 
ra
k growth willremain stable as long as the 
ra
k driving energy is lower than the resistan
e.However, a 
riti
al point, named the tangen
y point or the instability point, isrea
hed when the following 
ondition is met:
Japp = JR, (17)
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dJapp

da
=

dJR

da
. (18)Then, an in
remental 
hange in 
ra
k size results in instability and a subsequentunstable 
ra
k growth. Sin
e this 
riterion is a nonlinear relation, (17) and (18)have to be solved by an iterative pro
edure. During this pro
edure the 
riti
alstrain, εcrit, whi
h is de�ned as the strain level where du
tile tearing instabilityo

urs, is 
al
ulated.The J-resistan
e 
urve follows the power law fun
tion:

JR = Xjb1(∆a)b2 , (19)where the variable Xj is 
hosen to represent the statisti
al variation in the mate-rial resistan
e 
urve with the relation Zj = log Xj. Representative data for X65pipeline steel are found in Table 1.4.2.1 Strain due to external loading, εappThe se
ond term in the limit state equation is the load part, εapp, whi
h is thestrain due to external loading. Two load 
ases are 
onsidered with 0.5 % and
1.0 % global strain. The load has two 
ontributing parts, stati
 and dynami
.2 These are represented by normal distributions summed up to a "total" straindistribution with mean value of 0.5% in the �rst load 
ase, and 1.0% in the se
ondload 
ase. These load 
ases are presented in the result se
tion as "Load 
ase 0.5%strain" and "Load 
ase 1% strain", respe
tively. The stati
 load 
ontributes 85%and the dynami
 15% to the total distribution, and the density distributions areillustrated in Fig. 9 for the "Load 
ase 0.5% strain" 
ase. The mean values and
ovarian
es for the distributions are presented in Table 1.4.2.2 Defe
t lo
ation, e�e
tive 
ra
k length and modi�ed strainA linear strain variation over the pipe 
ross-se
tion is assumed as depi
ted inFig. 10. The maximum strain a
ting on a spe
i�
 defe
t is obtained from the
ross-se
tion and used as input to the equation. This assumption implies thatthe pipe is subje
ted to a uniform load equal to the maximum strain.Only defe
ts subje
ted to tension in the pipe 
ross-se
tion are assumed to
ontribute to the probability of failure. Thus, the strain due to laying, εapp, andthe 
ra
k length, 2c, have to be modi�ed in the analyses, as des
ribed below.The lo
alization of the surfa
e 
ra
k was determined from a sto
hasti
 sam-pling from the uniform distribution for φ (Table 1). Then the maximum straina
ting on the defe
t was determined. If the defe
t lo
ation passed the top of thepipe (12 o'
lo
k in the 
ross-se
tion in Fig. 10) the maximum strain was set to2By dynami
 load we mean a load not resulting in inertial e�e
ts.
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Figure 9: The stati
, dynami
, and total strain distributions. The given totalmean strain is 0.5%.Table 1: Input parameters and distributions used in the analyses.Des
ription Distribution E[−] COV

JR Zj Normal 0 0.11∗

JR b1 - 852 -
JR b2 - 0.52 -Yield stress [MPa℄ σ0.2 - 480 -Stati
 load (strain) εs Normal 4.4 · 10−3 0.1Dynami
 load (strain) εd Normal 6.0 · 10−4 1Angle φ Uniform π -Pressure σh/σ0.2 - 0, 0.5 -
∗ StDremain εapp. Otherwise, the maximum tension strain a
ting on the defe
t was
hosen (i.e. the defe
t end), and εapp was modi�ed to εmod.Sin
e the defe
t lo
ation is known, the e�e
tive 
ra
k length, 2ceff , was mod-i�ed from the original 
ra
k length, 2c as illustrated in Fig. 10.The output from this pro
edure was used to modify εapp in the limit stateequation, Equation (5), to εmod. Additionally, the e�e
tive 
ra
k length, 2ceff ,was used as input to the 
ra
k driving for
e 
omputation.
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app

Figure 10: Illustration of a pipe 
ross-se
tion with a surfa
e defe
t. The ad-justed e�e
tive 
ra
k length, 2ceff , and the modi�ed strain, εmod, are depi
ted inaddition to the strain due to laying, εapp.4.2.3 Defe
t distributionsIn the se
ond part of the result se
tion we present results from 
omplete prob-abilisti
 analysis using defe
t geometry distributions. The distributions are re-trieved by performing a "virtual inspe
tion" pro
edure.The distributions are not ne
essarily realisti
 distributions, but de�nitely il-lustrative in realisti
 probabilisti
 analyses. The main idea was to reprodu
e thesituation where we have a given girth weld inspe
ted by Non Destru
tive Testing(NDT). Unfortunately, NDT tools do not ne
essarily dis
over all defe
ts, due tothe nature of defe
t lo
ation and o

urren
e in addition to measurement quality.Consequently, some defe
ts pass the NDT 
ontrol. To simulate this, we performeda 
onditional Monte Carlo Simulation pro
edure on a given initial 
ra
k defe
tdistribution 
onditional on the probability of dete
tion (PoD) distribution for agiven NDT tool. Afterwards, the result was �tted to a lognormal distributionwith values shown in Table 2. All the input variables used in the analyses withdefe
t geometry represented with statisti
al distributions are found in Table 1and Table 3.The 
ra
k length distribution, 2c, was established from a known two param-eter Weibull distribution for aspe
t ratios between 
ra
k length and 
ra
k depth
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onditional on defe
t depth, i.e.
fR|A(r|a) =

βR(a)

αR(a)

(

r

αR(a)

)βR(a)−1

e
−
(

r
αR(a)

)βR(a)

. (20)The distribution parameters, namely the s
ale parameter, αR(a), and the shapeparameter, βR(a), are given as exponential fun
tions in the form
θ(a) = c0 + c1e

ac2 , (21)where a is the 
urrent 
ra
k depth value and c0, c1 and c2 are 
onstants presentedin Table 3. Furthermore, r is de�ned as the ratio between the 
ra
k lengthand 
ra
k depth, namely r = 2c/a. As a result, we now have the 
ra
k lengthdistribution for a given 
ra
k depth.Table 2: Distributions parameters and input variables in the se
ond part of theanalysis.Des
ription Distribution E[−] COVDepth [mm℄ a Lognormal 3.67 0.1Diameter [mm℄ D - 300 − 800 -Thi
kness [mm℄ t - 7 − 40 -Pressure σh/σ0.2 - 0, 0.5 -
∗ StD

Table 3: Parameters in the 
onditional Weibull distribution in Equation 20.Distribution Exponential fun
tionparameters parameters
c0 c1 c2S
ale αR(a) 5.25 60.94 −0.425Shape βR(a) 6.62 −5.83 −0.0084



5 Results 355 ResultsThis se
tion has three subse
tions. In the �rst subse
tion results from the anal-yses with load and JR as un
ertainty parameters is presented. Di�erent runsare presented for several deterministi
 defe
t values to investigate the physi
albehaviour of the equations. In the next subse
tion we present results where thedefe
t geometry is represented by statisti
al distributions. In the �nal part we
ompare results where FORM and SORM are used to investigate the solutiona

ura
y in the 
al
ulations.5.1 Analyses using deterministi
 defe
t valuesIn this part we present results illustrating the physi
al behaviour of the estab-lished probabilisti
 model. Only results for a pipe with diameter 600 mm and
t = 15 mm are presented for two di�erent load 
ases. The �rst load 
ase has amean value of 0.5% strain. This is referred as "Load 
ase 0.5% strain" in the�gures and text. The other load 
ase, "Load 
ase 1% strain" is similar, but herethe mean strain value is 1%.In Fig. 11 the probability of failure (PoF) is plotted against the defe
t depth(a) for the two load 
ases. A pronoun
ed di�eren
e is seen between the di�erentload 
ases for di�erent 
ra
k geometries. Only 
ra
k depths from 2 − 4 mm areplotted with 
onstant 
ra
k lengths (2c) equal to 50 mm and 100 mm. This is
hosen sin
e the PoF is already as low as 10−8 for Load 
ase 0.5% strain" with
2c = 50 mm. The PoF is about equal to one in Load 
ase 1% strain" with
2c = 100 mm and a = 4 mm. Cra
ks with a = 2 mm and a = 4 mm represent
a/t = 0.13 and a/t = 0.27, respe
tively. In "Load 
ase 1% strain", the di�eren
ein PoF between the two relative 
ra
k depths is about �ve orders of magnitude.Additionally it is seen that in
reasing the 
ra
k length from 50 mm to 100 mm inthe same load 
ase in
reases the PoF by about three order of magnitude. Next,in Fig. 12, the in�uen
e from variation in pipe wall thi
kness is presented. Thethi
kness is varied from 15 mm to 20 mm resulting in a diameter to thi
kness ratioof 40 and 30. As seen, there is a 
hange of about three orders of magnitude whenin
reasing the thi
kness from 15 mm to 20 mm for the "Load 
ase 0.5% strain".However, for "Load 
ase 1% strain" the 
hange in PoF is less pronoun
ed, i.e.from one to two orders of magnitude.
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Figure 11: In�uen
e of variation in 
ra
k lenght in the two di�erent load 
ases.Finally, in Fig. 13, we present results where the internal pressure is takeninto a

ount. Here, the 
ra
k length and thi
kness are kept 
onstant. It is seenthat the PoF is in�uen
ed signi�
antly by introdu
tion of internal pressure inparti
ular for shallow 
ra
k depths. This is observed in both load 
ases, howeverfor deeper 
ra
ks (i.e. in
reasing a) the di�eren
e is less pronoun
ed.5.2 Cal
ulations using sto
hasti
 
ra
k geometry valuesIn this se
tion we present the results from the analyses where defe
t distributionsare used as input.Di�erent load 
ases are presented, with and without internal pressure. Resultsfrom pipes with D/t ratios ranging from 20 to 40 are presented in Fig. 14. Theseresults are from 
omputations from "Load 
ase 0.5% strain" and "Load 
ase 1%strain", with and without internal pressure.In "Load 
ase 0.5% strain", the PoF is ranging from about 10−1 to 10−4. Theanalysis results are from pipe diameters from 300 mm to 800 mm and is shownas an almost 
ontinuous line. Further, it is seen that the small diameter pipeshave the highest PoF. We also observe that the PoF in
reases when the internalpressure is in
luded. This in
rease is most pronoun
ed for thi
k-walled pipeswhere the di�eren
e in PoF is about one order of magnitude.In "Load 
ase 1% strain" the PoF in
reases signi�
antly when in
reasing thestrain load, both for the pressurised and non-pressurised pipes, Fig. 14. The e�e
t
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Figure 12: In�uen
e of variation in pipe wall thi
kness on the probability offailure.of internal pressure is most signi�
ant for the thi
kest pipes. For the thinner pipes,minor di�eren
es are seen in the PoF in the pressurised and un-pressurised 
ases.However, the di�eren
es show a monotoni
 in
rease as the pipe wall thi
knessin
reases. Another observation is that the un-pressurised results seem to be ofthe same order as the pressurised pipe in "Load 
ase 0.5% strain".5.3 Comparison of FORM and SORM 
al
ulationsIn this se
tion we 
ompare results obtained by use of FORM and SORM. Theresults are presented in Fig. 15 and Fig. 16. The SORM results are given as brokenlines and the FORM solutions are given as 
ontinuous lines. It is observed thatboth solution methods give results of the same order of magnitude. In "Load
ase 0.5 % strain" without pressure, Fig. 15, the FORM and SORM solutionsare more or less 
oin
ident, at least for engineering purposes. In the pressurised
ase, the SORM solutions predi
t a lower PoF 
ompared with FORM solutions.Minor di�eren
es are observed between the two solution methods in "Load 
ase
1 % strain". However, the solutions are almost 
oin
ident in the pressurised load
ase and some di�eren
e is seen in the un-pressurised load 
ase, see Fig. 16.All the analysis results tend to have the SORM solution on the lower side of theFORM solutions. This means that the FORM results are on the 
onservative side.
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Figure 13: The in�uen
e on the probability of failure of internal pressure in thetwo di�erent load 
ases.Overall, for pra
ti
al appli
ations, we observe only minor di�eren
es between theFORM and SORM. Consequently, it appears that the FORM solution te
hniqueis su�
ient to use in the further development of probabilisti
 models.6 Con
luding remarks and dis
ussionIn this paper we have presented a methodology for probabilisti
 du
tile tearing
al
ulations for pipes with surfa
e 
ra
ks, subje
ted to global plasti
 strains. Themethod involves the use of strain-based driving for
e equations and the tangen
y
riterion to determination the global failure strain. This has served as a basis fora numeri
al representation of the failure surfa
e with subsequent use of FORMand SORM solution methods. The model has been implemented in the Probansoftware for probabilisti
 
al
ulations.The simulations using a strain-based approa
h showed that an in
rease inthe strain results in a 
orresponding in
rease in the probability of failure. Wheninternal pressure was in
luded a similar in
rease in PoF was observed. Addition-ally, the defe
t depth in�uen
ed the PoF signi�
antly together with the defe
tlength. Finally, it was shown that using the FORM solution gave robust and"
onservative" results 
ompared to SORM.
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Figure 14: Results from the FORM 
al
ulations. 0.5 % and 1.0 % mean strain with andwithout internal pressure.
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Figure 15: Comparison of FORM and SORM 
al
ulations in Load 
ase 0.5 % strain with andwithout internal pressure.
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Figure 16: Comparison of FORM and SORM 
al
ulations in Load 
ase 1 % strain with andwithout internal pressure.Several topi
s should be subje
t to further investigation. The driving for
eequation has potential for further improvement. This is due to the fa
t that thea

ura
y of the equation is about ±20 %. Investigation in this respe
t is 
urrentlybeing 
arried out. However, for the time being it is worth to underline that theproposed driving for
e equations generally are more a

urate than the referen
estress method using the Kastner solution. Another aspe
t is to implement otherphysi
al e�e
ts like material mismat
h and misalignment. A proposal for howthis 
an be implemented is found in Østby [28℄.The tangen
y 
riterion is used in the du
tile tearing 
al
ulations to establishthe 
riti
al global strain. The appli
ability of this 
riterion for 
ases with globaldu
tile behaviour is un
ertain, and possible alternative 
riteria determining the
riti
al strain level should be investigated.Another extension of the work is to analyse a 
omplete pipeline system. Herewe need to take into a

ount the defe
t rate in addition to investigate the distin
-tion between system e�e
ts, in whi
h all defe
ts are likely to be subje
ted to thesame load, and 
ases where only a small part of the pipeline experien
es extremeloads.Additionally, the physi
al un
ertainty of more parameters should be in
ludedin the model, like variation in yield stress, pipe thi
kness and internal pressure.A study on how the statisti
al un
ertainty in�uen
es the PoF is also essential.One way to in
lude this is to model the parameters, e.g. mean and varian
e, as
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44 Probabilisti
 fra
ture assessment of surfa
e 
ra
ked pipes usingstrain-based approa
hA Relationship between J and CTODThe equations in this proje
t is derived in parallel for CTOD (denoted δ) and
J . As a result a 
onversion fa
tor, m was found when the material follows theisotropi
 material hardening, Equation (8) as presented in Se
tion 4.1. On a

(a) (b)

(
) (d)Figure 17: (a)The relationship between J and CTOD with the assumption ofplain strain and axis-symmetri
 solutions, respe
tively. (b) The e�e
t of therelative 
ra
k depth on the relationship between J and CTOD. (
) Comparisonbetween the J-CTOD relationship from 2D analyses and 3D pipes with di�erent
ra
k depths. (d) The e�e
t of the σ0.2/σTS ratio on the relationship between Jand CTOD.theoreti
al basis Shih [35℄ has shown that there is a dire
t link between J andCTOD, thus, they are equally valid parameters for expressing the 
ra
k drivingfor
e. The basi
 relation between the two parameters 
an be given as:
J = mσ0.2δ (22)where m is a 
onstant that depends on the material properties and possibly the
ra
k depth.
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Figure 18: The fa
tor m relating J and CTOD as a fun
tion of the σ0.2/σTS ratio.In the results below the J-integral is 
al
ulated as the so-
alled far �eld J , toprevent break-down of the path independen
e at very small J values, as observedwhen 
al
ulating the J-integral 
lose to the 
ra
k tip.It 
an be shown that the yield stress (with �xed σ0.2/σTS ratio) had no e�e
t onthe driving for
e against the applied strain, when the driving for
e was expressedas the CTOD. In 
ase of J this holds with one ex
eption, the CTOD value mustbe multiplied by the ration between the two yield stresses, when going from onevalue to the other. This follows dire
tly from Equation (22).In Fig. 17 (a) the e�e
t of relative 
ra
k depth on the relationship between Jand CTOD is shown for an axisymmetri
 model. It 
an bee seen that there is alinear relationship between the J and the CTOD. Further, only a negligible e�e
tof the relative 
ra
k depth is seen. Thus, the dependen
e of the relative 
ra
kdepth 
an be dis
arded. In Fig. 17 (b) the axisymmetri
 model is 
omparedwith a model assuming plane strain 
ondition. Also in this 
ase we see thatthe two di�erent models yield more or less the same relationship between J andCTOD. A 
omparison between the results from a 2D axis-symmetri
 simulationsand di�erent 3D simulations is shown in Fig. 17 (
). We see that there is somedi�eren
e in the slope of the J-CTOD relation in the 3D simulations. However,the di�eren
e between the 2D axis-symmetri
 analysis and all the 3D analysesare not very signi�
ant (within 10%). Based on this it is proposed to use 2Dsimulations to establish the e�e
t of the material properties on the relationshipbetween J and CTOD.Figure 17 (d) shows the e�e
t of 
hanging the σ0.2/σTS ratio on the relationbetween J and CTOD ( σ0.2 = 480N/mm2). From this �gure we see that theslope, i.e. the m-fa
tor in Equation 22, in
reases as the σ0.2/σTS ratio de
reases
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e 
ra
ked pipes usingstrain-based approa
h(or as the hardening of the material in
reases). This is in line with what was the-oreti
ally shown by Shih in [35℄. To establish the dependen
y of the m-fa
tor thefollowing value has been 
al
ulated based on the results presented in Fig. 17 (d):
m =

Jδ=1mm

σ0.2
(23)where Jδ=1mm is the J value at 1mm. Fig. 18 shows the m-value value as afun
tion of the σ0.2/σTS ratio 
al
ulated based on the results in Fig. 17 (d). Asseen from Fig. 18 the m-value is quite 
lose to a linear fun
tion of the σ0.2/σTSratio. As a result, the following m-fa
tor is used:

m (σ0.2/σTS) = 3.87 − 2.64 (σ0.2/σTS) . (24)



A probabilisti
 fra
ture me
hani
s modelin
luding 3D du
tile tearing of bi-axially loadedpipes with surfa
e 
ra
ks*Andreas Sandvik, Erling Østby, and Christian ThaulowAbstra
tThis paper presents a probabilisti
 fra
ture me
hani
s model establishedfrom three dimensional FEM analyses of surfa
e 
ra
ked pipes subje
tedto tension load in 
ombination with internal pressure. The models areparti
ularly interesting for o�shore pipelines under operational 
onditionsor during laying, where inelasti
 deformations may o

ur. In the numer-i
al models the plasti
 deformations, in
luding du
tile tearing e�e
ts, area

ounted for by use of the Gurson-Tvergaard-Needleman model. Thismodel is 
alibrated to represent a typi
al X65 pipeline steel behaviour un-der du
tile 
ra
k growth and 
ollapse. Several parameters are taken intoa

ount, su
h as 
ra
k depth, 
ra
k length and material hardening. An-other important topi
 is the examination of the in�uen
e of bi-axial loadingdue to internal pressure on 
apa
ity. From the results of the deterministi
analyses a probabilisti
 fra
ture me
hani
s model is established using theresponse surfa
e methodology. Two failure 
riteria are examined to repre-sent the stru
tural 
apa
ity. Based on the established model we illustratethe methodology by examples employing the two di�erent failure 
riteriasolved with �rst and se
ond order reliability methods.

*A

epted for publi
ation with minor revision in Engineering Fra
ture Me
hani
s



48A probabilisti
 fra
ture me
hani
s model in
luding 3D du
tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksNomen
lature
t pipe wall thi
kness
D pipe wall diameter
φ angle at the 
ir
umferen
e of the pipe
σ0, σ0.2 stress at the proportional limit, stress at 0.2% plasti
 strain
σi, σTS �ow stress, tensile strength
σe, σm von Mises stress, mean stress
σh hoop stress
n hardening exponent
E Young's modulus
ν Poisson ratio
CTOD 
ra
k tip opening displa
ement
ε nominal global longitudinal strain
ε0, εp strain at the proportional limit, plasti
 strain
εlay, εapp strain due to laying, strain input to the limit state equation
εcrit, ε̄crit 
riti
al strain (
apa
ity), 
riti
al strain fun
tion
εs, εd strain due to external stati
 and dynami
 load
pf probability of failureX n-dimensional random ve
torx realizations of X
fX(x) joint probability density fun
tion of X
FX(x) joint probability fun
tion
Xi i-th random variable in x-spa
eU n-dimensional random ve
tor in u-spa
eu realizations of U
Ui i-th un
orrelated standard normal random variable
G(x), G(u) limit state fun
tions in x and u-spa
e
Φ univariate standard normal integral
β safety index
α, αi, αii, αij polynomial 
oe�
ients
f0, f , f ∗ initial, 
urrent, and e�e
tive void volume fra
tion
ḟgrowth 
hange in void volume fra
tion due to void growth
f ∗

F the ultimate value where the mi
ros
opi
 stress 
arrying 
apa
ity vanishes
q1, q2, q3 
onstants in the Gurson yield fun
tion1 Introdu
tionUnder installation and operational 
onditions of o�shore pipelines it is of utmostimportan
e to have 
al
ulation pro
edures to a

ount for di�erent failure modes,su
h as brittle and du
tile fra
ture and bu
kling. Additionally, it is important toutilize the pipe 
apa
ity to enable a safe and 
ost e�e
tive design. In this paperwe fo
us on steel pipe materials, su
h as X65, exposed to du
tile fra
ture. Inhigh grade pipeline steels fra
ture me
hani
s assessment is important due to the



1 Introdu
tion 49high utilization of the material. Large plasti
 deformations may be allowed, anda defe
t positioned in an area with high tension load 
an result in 
atastrophi
failure. Under operational 
onditions with internal pressure, the external loadsmay 
ome from free-spans due to seabed topography or lateral snaking due tothermal loads. This means that the loading is often introdu
ed as applied strain.Presently, BS7910 [1℄ and R6 [2℄ are two examples of 
ommon fra
ture as-sessment pro
edures used in pipeline engineering. These pro
edures are mainlyestablished for elasti
 global response and do not 
onsider large plasti
 defor-mations. It has been shown that BS7910 [1℄ has restri
ted appli
ability wherelarge longitudinal plasti
 deformations o

ur, Thaulow et al. [3℄. In addition,the stress-based BS7910 pro
edure is not able to predi
t safe strain limits forhigh strain 
onditions a

ounting for internal pressure. Therefore, the emphasisin the Joint Industry Fra
ture Control-O�shore Pipelines proje
t [4℄ is on largeplasti
 deformations in pipelines and strain-based design. It is believed that astrain-based methodology has the potential to improve the physi
al predi
tion ofthe fra
ture me
hani
s response. Strain-based fra
ture me
hani
s equations, in-
luding the e�e
ts of biaxial loading, mismat
h, and misalignment, have re
entlybeen presented, Østby [5℄. These simpli�ed equations are used to establish astrain-based design pro
edure for laying and operational 
onditions for o�shorepipelines using the partial safety fa
tor format as found in e.g. DNV-OS-F101[6℄. It is believed that probabilisti
 
al
ulation for du
tile materials is an area ofin
reasing importan
e due to the trend of using high strength steels and utilizingthe material to high strains. Probability analyses will give fundamental informa-tion about the reliability of the stru
tural system of interest in addition to thesensitivity of the various parameters involved. In the past mu
h fo
us has beenon the probability of brittle fra
ture , e.g. [7-10℄, and fatigue[11℄. Probabilis-ti
 models taking into a

ount du
tile tearing prior to 
leavage fra
ture are alsofound, e.g. [12℄. Du
tile tearing analyses using 3D FEM are still not 
ommon.However, some results in
luding du
tile tearing e�e
ts in wide plates have beenobtained, Chen and Lambert [13℄, who 
ompared simulation results with pipese
tion experiments and illustrated the appli
ability of the solutions. Probabilis-ti
 
al
ulations for du
tile materials have mainly been 
ontributed in the pastde
ade by Rahman and various 
o-authors. Their main fo
us has been on pipeswith through-wall or internal 
ra
ks on relatively thi
k-walled pipes using usingFEM and analyti
al methods [14-18℄. Ernst et al. have established stru
tural re-liability models for reeling pro
esses [19,20℄. The response surfa
e te
hnique hasalso been applied in probabilisti
 fra
ture assessment, Rahman et al. [21℄. Foxenand Rahman [22℄ analysed small 
ra
ks in tubes under internal pressure andbending loads, where one of the observations was that for through-wall-thi
kness
ra
ks the e�e
t of internal pressure was signi�
ant for high-hardening pipe ma-terials, and insigni�
ant otherwise. However, none of these models is dire
tlyappli
able for our purpose for highly du
tile o�shore pipelines. In Sandvik et



50A probabilisti
 fra
ture me
hani
s model in
luding 3D du
tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksal. [23℄ a probablisti
 fra
ture me
hani
s model (PFM) of surfa
e 
ra
ked pipesusing a strain-based approa
h is presented. This PFM-model was based on semi-analyti
al strain based equations established by Østby [5℄. These results showedthat the 
ombination of internal pressure with tension load gave a signi�
antredu
tion of the pipe 
apa
ity 
ompared with an un-pressurized pipe.In this paper we present 3D FEM-models of pipes with external surfa
e de-fe
ts, in
luding the e�e
t of du
tile tearing. The analysis results are used toestablish response surfa
es suitable for use in reliability analyses. The stru
tureof the paper is as follows: In the �rst part we present the three dimensionaldeterministi
 FE-models. Pipe and defe
t geometry, material properties and thedu
tile tearing model are presented and explained. A separate result se
tion
omments the �ndings from the FE-simulations. The simulation results are thenused to establish response surfa
es in the proposed PFM-model [24,25℄, and thisis presented in the se
ond part. In the following se
tion the proposed method-ology is illustrated with examples where the probability of failure is determinedusing �rst and se
ond order reliability methods (FORM and SORM). Finally, wepresent 
on
lusions and suggestions for further work.2 3D FE-modelsGeometryA sket
h of the pipe geometry 
ontaining a 
onstant depth surfa
e defe
t is shownin Fig 1. The uniform 
ra
k depth, a, and 
ra
k length, 2c, are depi
ted. Thedefe
t end has a radius equal to the defe
t depth. A single pipe diameter andthi
kness are used in all the analyses, but the defe
t geometry is varied, seeTable 1. Three defe
t depths and three defe
t lengths are modelled, giving atotal of nine defe
t geometries.Element meshDue to loading and geometri
 
onditions two-plane symmetry was applied inall the analyses su
h that only one quarter of the 
ylinder was modelled. Theelement mesh is a fo
used mesh with two levels. First, the lo
al level representsthe defe
t zone, where the element mesh size in the pipe's lengthwise dire
tionis 0.1 mm around the 
ra
k front. This element size was �xed for all analysesdue to the mesh dependent material parameter f0. Details about this are foundin the "Material" subse
tion. Se
ond, a gradually 
oarser element mesh in thelengthwise and 
ir
umferential dire
tion were applied using transition elementsto minimize the model size. An element mesh of a pipe with a 
ra
k is shown inFig. 2, and a more detailed view of a lo
al mesh around the defe
t front in Fig. 3.Details on pre-pro
essing of FE-models with surfa
e 
ra
ked pipes are given in
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Figure 1: (a) Pipe geometry with an external 
ir
umferential 
onstant-depthsurfa
e �aw. (b) Details of the 
onstant depth surfa
e defe
t with ar
 length, 2c,depth, a, and end radius, r, equal to the 
ra
k depth, a.Sandvik et al. [26℄.In all the analyses the 8-node linear 
ontinuum element with redu
ed integra-tion and hourglass 
ontrol, C3D8R, [27℄ was applied. Due to variation in defe
tlength in the di�erent models there is some variation in the number of elements inthe 
ir
umferential dire
tion. Consequently, the element and node number rangefrom 49299 elements and 58170 nodes to 65790 elements and 75816 nodes, for themodels with the shortest (50 mm) and the longest (250 mm) 
ra
ks, respe
tively.Loads and boundary 
onditionsBoth the pressure load and tension load were su

essively applied using a smoothamplitude fun
tion [27℄ to ensure a quasi-stati
 behaviour. The amplitude fun
-tion has the property that the �rst and se
ond derivatives are zero at both endpoints. If s denotes the amplitude, t̂ the load step time, and the end points aregiven as (t̂0, s0) = (0, 0) and (t̂1, s1) = (1, 1) the amplitude fun
tion is expressedas:
s(t̂) = t̂3(10 − 15t̂ + t̂2). (1)
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hani
s model in
luding 3D du
tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksA satisfa
tory loading rate was found when 200000 in
rements were used for ea
hload step. For the pressurized 
ases, loading due to internal pressure load wasapplied as a separate load step prior to the tension load. The uniform tensionload was applied as a displa
ement at the un-
ra
ked end of the pipe. Further,three di�erent load levels for the internal pressure were analysed. Sin
e internalpressure results in a biaxial load state, it is expressed through σh/σ0.2, where σhis the hoop stress and σ0.2 is the stress at 0.2 % plasti
 strain. Three load levelswere analysed, σh/σ0.2 = 0, 0.25 and 0.5.
Crack

Figure 2: A typi
al FE-mesh of one quarter of a pipe 
ontaining a surfa
e defe
t.The dotted frame marks the 
lose-up view of the defe
t zone shown in Fig. 3.MaterialThe material's plasti
ity behaviour was represented using an isotropi
 power lawhardening relationship, i.e.
σi = σ0

(

1 +
εp

ε0

)n

. (2)
σ0 is the stress at the proportional limit, σi is the �ow stress, εp is the plasti
strain and n the hardening exponent. Further, ε0 = σ0/E, is the strain at theproportional limit, and E is Young's modulus. If σ < σ0 the material behaviour islinear elasti
. In the analyses σ0 = 460MPa, E = 200GPa and the Poisson ratio
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Crack front

Figure 3: Close-up view of the defe
t zone where the smallest element size is
0.1 mm in the lengthwise dire
tion.was ν = 0.3. Three di�erent hardening levels were used in the models, namely
n = 0.05, n = 0.07 and n = 0.09, see Table 1.Du
tile tearing e�e
ts were taken into a

ount using the Gurson-Tvergaard-Needleman approximate yield model. This model was proposed by Gurson [28℄,and later modi�ed [29,30℄. The model simulates the mi
rovoid nu
leation, growthand 
oales
en
e, and assumes that the porous material behaves like a 
ontinuumwhere the plasti
 yield surfa
e is adjusted dependent on the hydrostati
 stresslevel and 
urrent void volume fra
tion. The yield 
ondition is expressed as

g(σe, σm, σ̄, f ∗) = (
σe

σ̄
)2 + 2q1f

∗ cosh(
3q2σm

2σ̄
) − (1 + q3(f

∗)2) = 0, (3)where σe is the von Mises stress, σm the mean stress, σ̄ the tensile �ow stress and
f ∗ is the 
urrent e�e
tive void volume fra
tion. q1 = 1.5, q2 = 1.0 and q3 = q2

1are 
onstants with values proposed by Tvergaard [29℄. These 
onstants improvedthe model 
onsiderably 
ompared with the original model whi
h predi
ted toohigh maximum loads. The original Gurson model [28℄ is obtained by setting
q1 = q2 = q3 = 1, and f ∗ = f , where f denotes the 
urrent void volume fra
tion.Void 
oales
en
e was taken into a

ount using Tvergaard and Needleman's [30℄



54A probabilisti
 fra
ture me
hani
s model in
luding 3D du
tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksTable 1: Input parameters for the di�erent FEM-models (9 runs per model).Model a 2c n σh/σ0.2 D tmm mm mm mm
1 3 50 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
2 3 50 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
3 3 50 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
4 4 150 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
5 4 150 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
6 4 150 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
7 5 250 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
8 5 250 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20
9 5 250 0.05, 0.07, and 0.09 0, 0.25, and 0.5 400 20e�e
tive void volume fra
tion, f ∗, i.e.

f ∗(f) =

{

f if f ≤ fc,
fc −

f∗

F
−fc

fF−fc
(f − fc) if fc < f < fF . (4)

fc is the 
riti
al void volume fra
tion referring to start of void 
oales
en
e. fF =
0.15 + 2f0, where f0 is the initial void volume fra
tion of f . fF denotes the �nalfailure void volume fra
tion. Sin
e f0 is element size dependent, it was �ttedto represent a traditional X65 steel material, and the 
orresponding elementsize was �xed in all the analyses. It should be noted that a variation of f0implies a 
orresponding variation of the 
ra
k growth resistan
e 
urve. f ∗

F =
1/q1 is de�ned as the ultimate value at whi
h the ma
ros
opi
 stress 
arrying
apa
ity vanishes. The du
tile 
ra
k growth is simulated by removing elementssu

essively as the 
ra
k grows, and an element is removed from the analysiswhen the element's material point rea
hes failure. The evolution of f in ouranalyses is purely dependent on growth of existing voids whi
h is based on thelaw of 
onservation of mass, i.e.

dfgrowth = (1 − f)dεp
kk, (5)where dfgrowth denotes the in
remental void volume growth of existing voids overan in
rement of load, and dεp

kk is the in
remental volumetri
 plasti
 strain.2 Theemployed input data are listed in Table 2.2.1 Solution method and solution qualityAbaqus Expli
it [27℄ was applied in the solution of the 3D models. One reason forthis is that it in
ludes the failure e�e
t in Eq. 4, whi
h is not the 
ase for Abaqus2The summation rule over repeated indi
es must be applied.
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ussion 55Table 2: Material input to the FEM-models.
E ν σ0 n q1 q2 q3 f0 fF fc

200[GPa℄ 0.3 460[MPa℄ 0.05, 0.07, 0.09 1.5 1.0 2.25 0.0002 0.1504 0.013Standard. Expli
it solvers were originally developed for dynami
 s
enarios wheresho
k and mass e�e
ts played an important role. The solver is based on theprin
iple of 
onservation of mass, momentum and energy, and theory and ba
k-ground information are found in Wilkins [31℄ and Belyts
hko et al. [32℄. Further,quasi-stati
 solutions are obtainable for several stru
tural problems with use ofexpli
it solvers as long as the dynami
 e�e
ts are negligible [27,32℄.To illustrate the solution quality of the expli
it solution we have performeda 
omparison between an impli
it and an expli
it solution using Abaqus Stan-dard and Abaqus Expli
it, respe
tively. The impli
it analyses are presented inJajadevan et al. [33℄, who performed a detailed mesh sensitivity study for theirmodels. The pipe diameter was D = 400 mm, and the pipe thi
kness, t = 20 mm.Two di�erent defe
t geometries were investigated. The �rst model had a defe
tdepth, a = 2 mm and a defe
t length whi
h was 10 % of the outer 
ir
umferen
e.The other model had a = 4 mm and defe
t length that was 20 % of the outer
ir
umferen
e. In the Abaqus Standard analyses 20-node 3D elements with re-du
ed integration were used, with 0.25 mm element size around the 
ra
k tip inthe lengthwise dire
tion. However, 8 node 
onstant stress elements with 0.1 mmelement size in the lengthwise dire
tion around the 
ra
k tip were applied in theexpli
it solutions. The pipes were subje
ted to a uniform tension load.In order to 
ompare the two solution methods the 
ra
k driving for
e 
urvesobtained from the analyses are presented, i.e. the 
ra
k tip opening displa
ement(CTOD) is plotted against global axial strain. In Fig. 4 (a) 
ra
k driving for
e
urves are presented for the 
ase with stationary 
ra
ks. The 
urves are seento almost 
oin
ide whi
h means that the expli
it solution mat
hes the impli
itsolution. In Fig. 4 (b) another 
omparison is presented for the 
ase with a deeperand longer 
ra
k. However, in this 
ase the expli
it solution in
ludes du
tiletearing, whereas the impli
it results are from a stationary 
ra
k solution. The
urves are seen to 
oin
ide until the du
tile tearing starts in the expli
it solution
ase. The du
tile tearing results in a more rapid growth in CTOD.From these results it is seen that the 
hosen loading rate for the expli
itsolutions, for the given load s
enario, agrees well with the impli
it solutions.Consequently, this loading rate is applied in the further work.3 Results and dis
ussionIn this se
tion we present an extra
t of results from the 81 analyses performed.CTOD has been applied as the fra
ture parameter for 
hara
terization of ini-
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(b)Figure 4: Comparison of Abaqus Standard and Abaqus Expli
it solutions for twodi�erent 
ra
k geometries with D = 400 mm and t = 20 mm. (a) a/t = 0.1 and
c/πR = 0.1 and solutions without du
tile tearing. (b) a/t = 0.2 and c/πR = 0.2where the Standard solution is without and the Expli
it solution is in
ludingdu
tile tearing.tiation of du
tile 
ra
k growth, stable 
ra
k growth and subsequent instability.CTOD and the J-integral are the most appli
able fra
ture parameters des
rib-ing du
tile fra
ture behaviour a

ording to Ri
e [34℄ and Hut
hinson [35℄. Anequivalen
e between J and CTOD has been shown for both a stationary and agrowing 
ra
k by Shih [36℄. The results herein are presented as driving for
e
urves, i.e. CTOD against global strain. The CTOD value was extra
ted from a�xed node in the symmetry plane two nodes above the initial 
ra
k front nodes. Itwas found that using this node the high plasti
 deformations around the 
ra
k tipwere 
aptured during the loading. Additionally, this node was used as the CTODoutput node during the du
tile 
ra
k growth. The global longitudinal strain wasextra
ted 25 mm from the (un-
ra
ked) tension loaded end. It has been validatedthat lo
al deformation e�e
ts are avoided if the strain is extra
ted at least twopipe diameters in the lengthwise dire
tion away from the 
ra
k [33,37℄.In order to simplify the interpretation of the results we give a short explanationof general trends in the 
ra
k driving for
e 
urves. In Fig. 5 a 
hara
teristi
driving for
e 
urve is plotted, and three di�erent regions are indi
ated. Region 1denotes the global elasti
 deformation and is of minor interest in this 
ontext,sin
e we are interested in predi
ting fra
ture after global plasti
 deformationhas o

ured, shown as Region 2 and Region 3. In Region 2 a relatively linearrelationship between the CTOD and global strain. This region is 
hara
terizedby plasti
ity development through the whole pipe wall thi
kness, and we also
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Global strain

C
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O
D
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global plastiicty

Region 3Region 1

Figure 5: Three 
hara
teristi
 regions on the 
ra
k driving for
e 
urve.observe a slight upward 
urvature of the 
urve. Region 3 de�nes the 
ollapseregion with rapid in
rease of CTOD where signi�
ant plasti
 deformations anddu
tile tearing develop in the 
ra
k ligament. Thus, the rapid 
ra
k growthleads to loss of strain 
apa
ity, shown as an almost verti
al 
ra
k driving for
e
urve, indi
ating a limit for the pipe's global strain 
apa
ity. More details ofthe lo
al deformation levels in the pipe due to external load may be found inJayadevan et al. [33℄. In Figure 6(a), the CTOD is plotted against the globalstrain, for a surfa
e 
ra
ked pipe with three 
ra
k depths, a = 3, 4, and 5 mm,
ra
k length 2c = 50 mm and n = 0.05. It is observed that the defe
t deptha�e
ts the 
ra
k driving for
e, the CTOD at a spe
i�
 strain level is in
reasing asthe defe
t depth in
reases. Similar trends are seen in Figs. 6(b)-6(
) with longer
ra
ks, i.e. 150 and 250 mm. For the deepest and longest 
ra
ks the transitionfrom Region 1 to 3 o

urs dire
tly. As a result a small 
hange in the strainlevel 
auses a large in
rease in CTOD, even for low strain levels. Consequently,we observe approximately 75 % strain 
apa
ity redu
tion from the shallowestto the deepest defe
t. Similar trends are seen in Figs. 7(a)-7(
), but here thestrain 
apa
ity is higher, as expe
ted, due to the higher hardening, n=0.09. InFigs. 8(a)-8(
) the three 
ra
k depths are plotted with three di�erent 
ra
k lengthsfor the 
ase with n = 0.07. The 
ra
k length variation is also seen to a�e
t the
ra
k driving for
e. A large in
rease in the 
ra
k driving for
e is observed asthe 
ra
k length is in
reased from 50 mm to 150 mm. Furthermore, the in
reaseis most pronoun
ed for the deepest 
ra
ks. The shortest 
ra
k has the lowestCTOD at a spe
i�
 strain, and the 150 mm and 250 mm 
ra
ks are more or less
oin
ident until Region 3 starts. This indi
ates that the 
ra
k length in�uen
e onthe 
ra
k driving for
e 
urve saturates around this 
ra
k length level. Further,
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)Figure 6: The e�e
t of di�erent defe
t depths, a, with 2c = 50 mm, n = 0.05.the di�eren
es are most pronoun
ed for a = 5 mm, as seen in Figure 8(
). Itis observed that Region 2 is narrowed signi�
antly for the two longest defe
ts,su
h that a rapid in
rease is CTOD starts almost immediately after the initiationfor the deepest 
ra
ked pipe. Similar trends are also observed for the two otherhardening levels. In Figs. 9(a)-9(
) the e�e
t of hardening variation for one defe
tlength and three di�erent defe
t depths is illustrated. As expe
ted, the 
apa
ityin
reases as the hardening in
reases. In Region 2 we observe that the slopein
reases as the hardening de
reases. This means that we have lower CTOD at agiven strain for the higher hardening materials. A signi�
ant e�e
t is seen on theCTOD evolution for the 
ases with biaxial loading, 
aused by internal pressure,as depi
ted in Figs 10-11. The internal pressure is expressed as the ratio between
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)Figure 7: The e�e
t of di�erent defe
t depths, a, with 2c = 50 mm, n = 0.09.the pipe wall hoop stress, σh, and the stress at 0.2 % plasti
 strain, σ0.2. InFigure 10(a) a 
omparison between three di�erent pressure levels is presentedfor a �xed 
ra
k depth, a = 3 mm, 
ra
k length, 2c = 50 mm, and n = 0.07.A signi�
ant in
rease in CTOD at a spe
i�
 strain level is seen from the un-pressurized to the pressurized 
ase. Region 1-3 from Figure 5 are still evident,but the slope of the 
urves in
reases with in
reasing internal pressure. An in
reasein the internal pressure also redu
es the pipe's strain 
apa
ity signi�
antly. Thesame trend for the 
ra
k driving for
e is seen in Figs. 10(
) and 10(b) with deeperdefe
ts and 
onsequently less strain 
apa
ity. In Fig. 11 results with 
ra
k length
2c = 250 mm are presented. For the deepest 
ra
k with a = 5 mm, a more seriousin�uen
e of the internal pressure is observed. The e�e
t is more signi�
ant whenthe pressure is in
reased from σh/σ0.2 = 0 to σh/σ0.2 = 0.25 
ompared with the
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)Figure 8: The in�uen
e of variation of defe
t lengths, 2c, with a = 3, 4, and
5 mm, and n = 0.07.in
rease from σh/σ0.2 = 0.25 to σh/σ0.2 = 0.5. For the 
ase in Fig. 11(
) with
σh/σ0.2 = 0.25 and σh/σ0.2 = 0.5 there is an almost dire
t transition from theglobal elasti
 response situation to a detrimental 
ra
k growth. Moreover, itis seen that the CTOD at the end of Region 1 in
reases rapidly for the 
aseswith internal pressure. Similar observations have been reported by Jayadevanet al. [33℄ for stationary 
ra
ks in 3D FEM analyses of surfa
e 
ra
ked pipes intension. They observed that the biaxial loading strongly enhan
ed the ligamentlo
alization.Finally, in Figure 12, the 
ra
k growth resistan
e 
urves derived from some ofthe analyses are presented. Here the CTOD is plotted against the 
ra
k growth,
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)Figure 9: The e�e
t of di�erent hardening levels for a defe
t with 2c = 150 mmand three di�erent hardening levels.
∆a. The 
ra
k growth 
urves have been shifted to the right with the value of
0.5 times the CTOD at initiation of du
tile tearing. This is an approximativemethod to a

ount for the blunting in
luded in the experimentally measured 
ra
kgrowth. Some variation is observed between the analyses with various geometries,espe
ially at higher ∆a levels. However, only one 
lear trend was observed in the
urves, namely in the 
ases with the shortest 
ra
ks (2c = 50 mm). These are thesix most elevated resistan
e 
urves in the region above ∆a = 1 mm. This result
ould be a topi
 for further investigation. From the resistan
e 
urve we observethat at ∆a = 1 mm a 
hara
teristi
 CTOD value is about 1.2 mm.
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)Figure 10: The e�e
t of three di�erent pressure levels for a defe
t with 2c =
50 mm, a = 3, 4 and 5 mm, and n = 0.07.4 The probabilisti
 fra
ture me
hani
s modelThe next step is to use the deterministi
 
al
ulations to establish a PFM-model.Su
h models 
an be used to des
ribe the stru
tural reliability of a pipe giventhat we have statisti
al information of the loading 
onditions, defe
t geometryand material, et
. Typi
ally we need an expression to predi
t when the stru
turefails, i.e. a failure point, that denotes the stru
tural 
apa
ity. If we extra
tfailure points from several simulations that 
over a region of interest, and assumea 
ontinuous relation between these points, we 
an establish a fun
tion des
ribingthe pipe 
apa
ity in the region of interest. This fun
tion is dire
tly appli
able inreliability analyses as the 
apa
ity term in the limit state fun
tion, G(x). When
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(
)Figure 11: The e�e
t of three di�erent pressure levels for a defe
t with 2c =
250 mm, a = 3, 4 and 5 mm, and n = 0.07.this fun
tion is known, and we have statisti
al information of the parametersinvolved in the problem, we 
an 
al
ulate the probability of failure integral, i.e.

pf =

∫

G(x)≤0

fX(x)dx, (6)where fX(x) is the joint probability density fun
tion of X, and the limit statefun
tion is
G(X) = εcrit(X1) − εapp(X2). (7)where X = (X1,X2) 
ontains the basi
 variables. The 
apa
ity part is expressedas εcrit(X1) with the variables of interest represented in the ve
tor X1. In our
ase X1 = (a, 2c, σh/σ0.2, n), but in general it may 
ontain other variables as
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Figure 12: Cra
k growth resistan
e 
urves from the analyses, where CTOD isplotted against 
ra
k growth, ∆a.well. Further, the load part is denoted εapp(X2), where X2 
ontains the loadvariables. G(X) ≤ 0 de�nes the region with stru
tural failure, whereas G(X) > 0de�nes the safe region. It is possible to solve the multi-dimensional integral inEq. (6) with both analyti
al and numeri
al methods, [25,38,39℄. A well knownand simple numeri
al integration te
hnique is Monte Carlo Simulation (MCS)with or without sampling te
hniques, see e.g. Mel
hers [25℄. In this paper weapply �rst and se
ond order reliability methods in the 
al
ulation of Eq. (6). Thismeans that the equation is solved by performing a mapping of the probabilisti
model with n 
orrelated basi
 variables into un
orrelated, independent, standard,normal-distributed variables, followed by an approximation of the failure surfa
eat the design point with a hyperplane or a paraboli
 surfa
e. A vital propertyfrom this mapping is that it retains the statisti
al properties of the probabilisti
model. For a general, multi-dimensional problem with 
orrelated variables rep-resented with di�erent statisti
al distributions, Hohenbi
hler and Ra
kwitz [40℄proposed to use the established Rosenblatt transformation te
hnique [41℄. Thisstepwise mapping te
hnique requires a known joint probability fun
tion FX(x)in addition to 
onditional distributions. If we have n basi
 variables, whi
h maybe 
orrelated, de�ned in the x-spa
e as X = (X1, X2, ..., Xn), and the un
orre-lated standard normal variables represented in u-spa
e with un
ertainty variables
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es 65U = (U1, U2, ..., Un), we 
an express the variable transformation T as:
T :



















u1 = Φ−1(F1(x1))

u2 = Φ−1(F2(x2 | x1))

...

un = Φ−1(Fn(xn | x1, x2, ..., xn−1)).

(8)where the 
onditional 
umulative distribution for j = 2, .., n is given by
Fj(xj | x1, ..., xj−1) =

∫ xj

−∞
fXj

(x1, ..., xj−1, t)dt

fXj−1
(x1, ..., xj−1)

. (9)The limit state fun
tion in u-spa
e, G(u), in terms of G(x), is expressed as
G(x) = G(T−1(u)). (10)In the Gaussian u-spa
e we have di�erent possibilities for the limit state fun
tion.One is to linearize around the design point using a �rst order Taylor expansion.The design point represents the highest probability of failure on the given failuresurfa
e, i.e the point on the failure surfa
e 
losest to the 
o-ordinate origin. Thedistan
e from the origin to the design point is denoted as β, known as the safetyindex. Due to the rotational symmetry in the u-spa
e the probability of failure
an be determined from

pf ≈ Φ(−β), (11)where Φ is the univariate standard normal integral. This solution te
hnique isreferred to as �rst order reliability method (FORM). Alternatively, the failuresurfa
e 
an be approximated by a paraboli
 fun
tion around the design point.This solution te
hnique is termed the se
ond order reliability method (SORM),and theory about this method is found in e.g. Mel
hers [25℄ or Madsen et al. [38℄.Finally, we determined the design point by using the general non-linear optimiza-tion 
onstraint pro
edure solver 
alled Sequential Quadrati
 Programming (SQP)optimizer [42℄.4.1 Failure and response surfa
esIt is normally a 
hallenge to establish expressions for the 
apa
ity and load termsin the limit state fun
tion. If possible, analyti
al fun
tions are to be preferred,but they may be 
omplex to establish. Another method is to establish 
ontinuousfun
tions from deterministi
 point-wise solutions for the 
apa
ity using e.g. FEMor experiments. In this paper the established fun
tion representing the 
apa
ityis denoted εcrit, Eq. (7). This method is 
alled the Response Surfa
e Method(RSM). Based on the parameter variation in the present work a se
ond degreepolynomial was found to represent the failure points with a

eptable pre
ision.
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tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksThe 
ross-terms in the polynomial fun
tion were found to be important for thesurfa
e quality. It should be noted that the 
hoi
e of limit state fun
tion isdependent on the spe
i�
 
ase. Four variables are varied in the deterministi
analyses to des
ribe a se
ond degree polynomial:
ε̄crit = α0 +

4
∑

i=1

αiyi +

4
∑

i=1

αiiy
2
i +

4
∑

i=1
i<j

4
∑

j=1

αijyiyj, (12)where yi and yj denote the variables, and the α 
oe�
ients are determinedthrough regression analyses and least square optimization. A base point inthe middle of all the simulations results was sele
ted with values a = 4 mm,
2c = 150 mm, σh/σ0.2 = 0.25, and n = 0.07. This implied the following linearvariable transformation: y1 = a

4
−1, y2 = 2c

150
−1, y3 = 4 σh

σ0.2
−1 and y4 = n

0.07
−1.Sin
e the response surfa
e approximation is an expli
it expression, the limit statefun
tion, Eq.5 
ould be solved by dire
t Monte Carlo Simulations (MCS). How-ever, MCS are time-
onsuming when low failure probability estimates shall beestablished. This is in
onvenient in pra
ti
al appli
ations, and in this paper itwas 
hosen to apply the faster FORM/SORM te
hnique. The next step was toextra
t the failure points from the FEM-analyses. Two di�erent failure me
ha-nisms were 
onsidered to represent the pipe's global strain 
apa
ity, in the pro
essof establishing the response surfa
es as des
ribed in the next se
tion.4.2 Global failure 
riterionFirst, we 
onsidered the maximum load 
riterion whi
h is meaningful in engi-neering design due to its simple physi
al interpretation. An example of how todetermine the global failure is illustrated in Figure 13(a), where the applied loadis plotted against the global strain, εnom. The 
riti
al strain, εcrit, at maximumload is also illustrated. In this 
ase the 
ra
k growth and lo
al deformation resultsin a global 
ollapse, Figure 13(b). Here the global strain εnom, is plotted againstCTOD. A rapid 
hange in CTOD for a small variation of the global strain isobserved in this region. Consequently, the almost verti
al driving for
e 
urve in-di
ates a maximum 
apa
ity level. In this 
ase, the du
tile tearing starts at aboutCTOD= 0.6 mm, and a signi�
ant amount of du
tile tearing has therefore o
-
urred before the maximum load is rea
hed. The 15 
oe�
ients determined fromthe least square optimization from the establishment of the response surfa
e, aregiven in Table 3.4.3 Lo
al failure 
riterionAdditionally, a lo
al failure 
riterion proposed by Østby et al. [43℄ was examined.This 
riterion predi
ts the CTOD at maximum load in the 
ra
k ligament, δmax,
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ted in both �gures.
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al failure 
riteria. (a) Load vs. strain 
urve and the 
orre-sponding (b) CTOD vs. strain for a pipe with a = 5 mm, 2c = 250 mm andn=0.09. The 
riti
al strain, εcrit, is depi
ted in both �gures.i.e.

δmax = (0.03L + δ∆a=1mm − 0.61)(−12.1(
σ0.2

σTS
)2 + 18.9(

σ0.2

σTS
) − 6.28), (13)where L is the ligament height, δ∆a=1 mm is the CTOD at 1 mm 
ra
k growth,and σ0.2 and σTS are the engineering yield stress and tensile strength, respe
-tively. The same optimization pro
edure as used in Se
tion 4.2 was followed to
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luding 3D du
tile tearingof bi-axially loaded pipes with surfa
e 
ra
ksTable 3: Coe�
ient values for the response surfa
e from the global failure 
rite-rion.Coe�. α0 α1 α2 α3 α4 α11 α22 α33Value 0.0148 -0.0509 −0.0168 −0.0162 0.0229 0.0565 0.0169 0.0087Coe�. α44 α12 α13 α14 α23 α24 α34Value 0.0117 0.0058 0.0309 −0.0342 0.0035 −0.0067 −0.0073establish the 
oe�
ients in Eq. (12) whi
h are listed in Table 4.Table 4: Coe�
ient values for the response surfa
e established using the lo
alfailure 
riteria.Coe�. α0 α1 α2 α3 α4 α11 α22 α33Value 0.0122 −0.043 −0.0096 −0.0109 0.0218 0.0531 0.0095 0.0052Coe�. α44 α12 α13 α14 α23 α24 α34Value 0.0047 0.0086 0.0262 −0.0338 0.0004 −0.0050 −0.0069Three examples of the response surfa
e using the lo
al failure 
riterion are pre-sented in Figs.15-17. The response fun
tion is plotted in three di�erent spa
eswithin the prede�ned parameter window listed in Table 1. The original failurepoints whi
h were extra
ted using the lo
al failure 
riterion are depi
ted as '+'.Additionally, a bar from this point to the established surfa
e is drawn to illus-trate the a

ura
y of the approximation. Thus, if the bar is above or below thesurfa
e the approximation is 
onservative or un-
onservative, respe
tively. First,in Figure 15, the 
riti
al strain is plotted as a fun
tion of the 
ra
k depth, a, andinternal pressure, σh/σ0.2. A very good �t between the deterministi
 point-wisesolutions and the established surfa
e is observed. Some minor deviations are seenon the edges but these represent rather small relative errors. In Figure 16 the
riti
al strain is plotted as a fun
tion of the 
ra
k depth, a and 
ra
k length, 2c.Again a very good �t between the established response surfa
e and the point-wisesolutions is observed. Finally, in Figure 17, the fun
tion values on the axes are
ra
k depth, a and hardening, n. The surfa
e almost represents the points sat-isfa
torily, but a signi�
ant deviation is observed at the 
orner where a = 5 mmand n = 0.05. The surfa
e is 
onservative in this area, i.e. the strain 
apa
ity isunder-predi
ted. However, this may not be a problem as long as the 
al
ulateddesign point ends up elsewhere in our domain. If this region needs modi�
ation,several adjusting te
hniques are available to solve this problem, su
h as weighting,but they are not dealt with in this paper.
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Figure 15: The response surfa
e plotted as a fun
tion of the 
ra
k depth, a, andthe internal pressure, σh/σ0.2.
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Figure 16: The response surfa
e plotted as a fun
tion of the 
ra
k depth, a, andthe 
ra
k length, 2c.4.4 Example using the PFM-modelThe PFM-model is now applied for a spe
i�
 
ase with a pipe subje
ted to bend-ing. The results from the tension loaded pipes are applied, but the external load
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Figure 17: The response surfa
e based on the lo
al 
riterion plotted as a fun
tionof the 
ra
k depth, a, and the material hardening exponent, n.
is assumed to form a linear strain variation over the pipe 
ross-se
tion as depi
tedin Fig. 18. The defe
t lo
alization was determined from a sto
hasti
 samplingusing MCS from the uniform distribution for φ (Table 5), and the maximumstrain at the given defe
t was obtained. This assumption implies that the defe
twas subje
ted to a uniform strain 
orresponding to the maximum strain. Ad-ditionally, the 
riti
al strain for the given defe
t geometry was taken from theestablished response fun
tions. The pro
edure also 
al
ulated the e�e
tive 
ra
klength, whi
h is the part of the defe
t pla
ed in the tension part of the pipe
ross se
tion. If the defe
t lo
ation passed the top of the pipe (12 o'
lo
k in the
ross-se
tion in Fig. 18) the maximum strain was set to remain εlay. Otherwise,the maximum tension strain εapp was modi�ed to εmod.Two load 
ases were investigated for several deterministi
 pressure levels. Theload with a 
orresponding strain, whi
h here is given as the strain εlay, hastwo 
ontributing parts, stati
 and dynami
. These are represented by normaldistributions summed up to a "total" strain distribution with mean value 1 %and 1.5 % in load 
ases LC1 and LC2, respe
tively. The dynami
 load 
ontributeswith 15 % and the stati
 85 % to the total load. The input data for the reliabilityanalyses is listed in Table 5.



5 Results and dis
ussion 71Table 5: Input parameters and distributions used in the analyses.Des
ription Distribution E[−] COVDepth, [mm℄ a Lognormal 1 0.5Length, [mm℄ 2
 Lognormal 75 0.33Hardening, [-℄ n Normal 0.07 7.14 · 10−2Stati
 load (strain) [-℄ εs Normal 0.0085, 0.01275 0.1Dynami
 load (strain) [-℄ εd Normal 0.0015, 0.00225 1Angle [-℄ φ Uniform π -Pressure [-℄ σh/σ0.2 - 0 − 0.5 -
app

Figure 18: The e�e
tive 
ra
k length and the applied strain, εapp in a given pipe
ross se
tion for a pipe in bending.5 Results and dis
ussionIn Figs. 19-21 the probability of failure, pf , is plotted against internal pressure,
σh/σ0.2. Two di�erent load 
ases are presented, namely LC1 and LC2 from sim-
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e 
ra
ksulations using the "Global 
riterion" and the "Lo
al 
riterion". The mean val-ues were E[Load℄=0.01 and E[Load℄=0.015 in LC1 and LC2, respe
tively. BothSORM and FORM results are presented.In Figure 19 results from the "Global 
riterion" simulations for LC1 and LC2are presented. The FORM results over-predi
t the pf 
ompared with the SORMsimulations. However, this over-predi
tion is most signi�
ant for the lower pres-sure ratios. Another observation is that an in
rease in internal pressure, σh/σ0.2,
"Global criterion"
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Figure 19: Probability of failure plotted against σh/σ0.2, for LC1 and LC2 usingthe "Global 
riteria".results in a 
orresponding in
rease in pf . There is an approximately two de
adedi�eren
e in the pf level from the un-pressurized pipe to pressurized pipe with
σh/σ0.2 = 0.5, whi
h is in a

ordan
e with earlier observations, [23℄. The sametrend is observed for both load 
ases. In the 
ases using the "Lo
al 
riterion",Fig. 20, we observe similar trends of the in�uen
e of internal pressure. However,the lo
al 
riterion predi
ts higher probability of failure than the global 
riterion.This is as expe
ted sin
e the 
riti
al strain level using the "Lo
al 
riterion" is



5.1 Limitations 73
"Local criterion"

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 0.1 0.2 0.3 0.4 0.5
h/ 02

p
f

FORM LC1

SORM LC1

FORM LC2

SORM LC2

Figure 20: pf plotted against σh/σ0.2, for LC1 and LC2 using the "Lo
al 
riteria".lower than using the "Global 
riterion". In Figure 21 the SORM results from thetwo previous �gures are 
ompared. A signi�
ant di�eren
e is observed for low
σh/σ0.2 ratios. However, it is believed that both 
riteria are appli
able for 
ali-bration purposes. Finally, it should be noted that the presented failure estimatesusing FORM/SORM depends on the representativeness of Eq. (12). Possibly,some e�ort 
ould be done to evaluate the goodness of the 
hoi
e of fun
tion.This would, however, involve a larger number of heavy FEM-
al
ulations, whi
hare inappropriate in this 
ontext.5.1 LimitationsThe response surfa
es are established within a spe
i�
 window of parameters.It has been assumed that we have a 
ontinuous failure value relation inside thisregion. This may be plausible, but the validity outside this region is likely to bemore restri
ted. Consequently, in a pra
ti
al problem it must be 
he
ked whether
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Figure 21: Comparison of SORM-results from analyses using the "Lo
al" and"Global" 
riteria for LC1 and LC2.the design point obtained from the reliability analyses is within the parameterwindow. If not, some pre
autions should be taken. One alternative is to run a fewextra FEM-analyses to 
he
k if the out
ome is on the "safe side" of the responsesurfa
e. If so, the reliability solution may be valid for the given 
ase. Anothersolution is to de�ne a new solution matrix with another basis point whi
h isnearer to the design point in the former analyses. Alternatively, other fun
tionexpressions may be investigated.6 Con
lusions and further workAbaqus Expli
it and FEM were employed in the solution of surfa
e 
ra
ked pipessubje
ted to tension load in 
ombination with internal pressure. A total of 81 3DFE-analyses were made in
luding large plasti
 deformations with du
tile tearingusing the Gurson-Tvergaard-Needleman 
riterion. The defe
t depth variation



REFERENCES 75and the e�e
t of internal pressure were shown to signi�
antly in�uen
e the strain
apa
ity of the pipes. An in
rease in the material hardening in
reased the pipe
apa
ity. A 
ra
k length e�e
t was observed with a de
rease in the pipe 
apa
ityas the 
ra
k length in
reased. However, this e�e
t was redu
ed for larger 
ra
klengths.The simulation results were used to establish response surfa
es. Both lo
aland global failure 
riteria were employed, and it was shown that the 
apa
ityof the surfa
e 
ra
ked pipes in tension 
ould be well represented with quadrati
surfa
es. The strong in�uen
e of internal pressure was 
learly evident.3D du
tile tearing analyses represent high 
omputational 
ost in addition tobeeing time-
onsuming and 
omplex to handle. Therefore, we have de
ided to useLinkpipe in the following work. This is a newly developed program using linespringand shell elements based on the ideas of Ri
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ount du
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e this solution te
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e the
omputational time 
onsiderably, further parameters 
an easily be in
luded inthe sto
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 models in order to improve their appli
ability.Finally, an alternative method to the RSM and FORM/SORM exists, namelya new dimensional de
omposition method suitable for sto
hasti
 me
hani
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A probabilisti
 du
tile fra
ture me
hani
s modelfor bi-axially loaded surfa
e-
ra
ked pipes usingshell and line-spring elements*Andreas Sandvik, Erling Østby, and Christian ThaulowAbstra
tA new probabilisti
 fra
ture me
hani
s model for surfa
e-
ra
ked pipes ispresented. The model applies FEM-simulations using shell and line-springelements where du
tile tearing e�e
ts are a

ounted for. The pipes are sub-je
ted to loading in tension 
ombined with internal pressure. A number ofvariables are in
luded in the model: internal pressure, material resistan
e,
ra
k depth and 
ra
k length. In the reliability analyses the strain 
apa
ityis predi
ted from the FEM results using two di�erent failure 
riteria:the maximum load 
riterion and a lo
al 
riterion. The response surfa
ete
hnique is applied to represent the stru
tural resistan
e in the reliabilitymodels, and examples are presented for illustration. The establishedmodels are solved using �rst and se
ond order reliability methods as wellas Monte-Carlo Simulation with and without importan
e sampling. Theresults 
learly illustrate the important e�e
t from the internal pressure onthe pipe's strain 
apa
ity; in
reasing pressure de
reases the strain 
apa
ity.

*Published in Engineering Fra
ture Me
hani
s, Vol. 73, pp. 1491-1509, 2006.
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s model for bi-axially loadedsurfa
e-
ra
ked pipes using shell and line-spring elementsNomen
lature
t pipe wall thi
kness
D outer pipe wall diameter
φ angle at the 
ir
umferen
e of the pipe
σ0, σ0.2 stress at the proportional limit, stress at 0.2% plasti
 strain
σi, σTS �ow stress, tensile strength
σh hoop stress
n hardening exponent
E Young's modulus
ν Poisson ratio
CTOD 
ra
k tip opening displa
ement
ε nominal global longitudinal strain
ε0, εp strain at the proportional limit, plasti
 strain
εlay, εapp strain due to laying, strain input to the limit state equation
εcrit, ε̄crit 
riti
al strain (
apa
ity), 
riti
al strain fun
tion
εcritG 
riti
al strain estimated from the global maximum load 
riterion
εcritL 
riti
al strain estimated from the lo
al 
riterion
pf probability of failureX n-dimensional random ve
torx realizations of X
fX(x) joint probability density fun
tion of X
FX(x) joint probability fun
tion
Xi i-th random variable in x-spa
eU n-dimensional random ve
tor in u-spa
eu realization of U
Ui i-th un
orrelated standard normal random variable
G(x), G(u) limit state fun
tions in x and u-spa
e
Φ univariate standard normal integral
β safety index
α, αi, αii, αij polynomial 
oe�
ients
δR CTOD, material resistan
e



1 Introdu
tion 831 Introdu
tionSimple and reliable standardized assessment pro
edures are generally of utmostimportan
e in stru
tural engineering to ensure a safe and 
ost e�e
tive design.This is also the 
ase for o�shore pipeline engineering, where the pipeline 
an beexposed to a variety of loading 
onditions. Large deformations 
an o

ur duringinstallation and under operation. During operation the pressurized pipe maybe subje
ted to external loads for example in free-spans due to irregular seabedtopography or lateral/upheaval bu
kles 
aused by thermal loads.Existing fra
ture assessment pro
edures used in pipeline engineering aremainly established for elasti
 global response and do not 
onsider large plas-ti
 deformations [1℄. This may be unsuitable sin
e highly du
tile materials,su
h as pipeline steel, may be subje
ted to high loads resulting in 
onsiderableplasti
 deformations. Additionally, an amount of du
tile tearing may be a

eptedsin
e it will not ne
essarily in�uen
e the pipe 
apa
ity. Fra
ture Control-O�shorePipelines is a joint industry proje
t [2℄ with fo
us on large plasti
 deformationsand strain-based design for o�shore pipelines. The strain-based methodology isbelieved to hold the potential to improve the physi
al predi
tion of the fra
tureme
hani
s response. This will enable a more fundamental 
alibration of partialsafety fa
tors for fra
ture assessment of pipelines. This proje
t has already de-veloped simpli�ed strain-based fra
ture me
hani
s equations for surfa
e-
ra
kedpipes, in
luding the e�e
ts of biaxial loading, mismat
h, and misalignment, seeØstby [3℄. The simpli�ed equations are used to establish a strain-based proje
tdesign pro
edure for laying and operational 
onditions for o�shore pipelines usingthe partial safety fa
tor format as found in e.g. DNV-OS-F101 [4℄.Three dimensional du
tile tearing FEM-analyses of pipes with defe
ts are
hallenging and still not 
ommon. Su
h 
al
ulations typi
ally involve 
omplexmodelling, time-
onsuming solution and extensive post-pro
essing. However, 3DFEM models are important in order to investigate the detailed physi
s of fra
-ture me
hani
s problems, see e.g. [5℄. This is neither suitable in engineeringfra
ture me
hani
s assessment nor as a basis in probabilisti
 models for pipeswhere numerous analyses are needed. A spe
ially designed program based onshell and line-spring elements for fra
ture me
hani
s analyses is applied in thispaper. This program enables e�
ient fra
ture me
hani
s analysis for pipes withsurfa
e 
ra
ks. The e�e
t of du
tile tearing may be a

ounted for, and the pipe
an be subje
ted to a 
ombination of bending, tension and pressure loads. Lo
albu
kling is also in
luded, whi
h may be 
onvenient sin
e bu
kling and fra
tureare 
ompeting failure modes for a pipe subje
ted to bending loads.Probabilisti
 
al
ulations for du
tile materials have mainly been 
ontributedin the past de
ade by Rahman and various 
o-authors. Their main fo
us hasbeen on through-wall and internal 
ra
ks on relatively thi
k-walled pipes usingFEM and analyti
al methods [6-12℄.In Sandvik et al. [13℄ 3D FEM models of surfa
e-
ra
ked pipes subje
ted



84A probabilisti
 du
tile fra
ture me
hani
s model for bi-axially loadedsurfa
e-
ra
ked pipes using shell and line-spring elementsto tension in 
ombination with internal pressure were presented. These modelswere used to establish a probabilisti
 fra
ture me
hani
s model (PFM) using theresponse surfa
e te
hnique. Another PFM model using simpli�ed strain basedequations from [3℄ was presented in Sandvik et al. [14℄.In the present paper models of pipes with outer surfa
e 
ra
ks subje
ted touniform tension in 
ombination with internal pressure are presented. The modelsin
lude the e�e
t of du
tile tearing. In the �rst part we present the deterministi
FE-models with shell and line-spring elements. Pipe and defe
t geometry, mate-rial properties and the du
tile tearing model are presented and explained. Someof the results are 
ompared with 3D FEM results obtained from Abaqus/Expli
itanalyses [13℄. The subsequent se
tion explains how the response surfa
es areestablished. Thereafter, the proposed methodology is illustrated with exampleswhere the probability of failure is determined using �rst and se
ond order relia-bility methods (FORM and SORM) in addition to Monte-Carlo Simulations withand without importan
e sampling.2 FEM-modelLine-spring elementsThree dimensional du
tile tearing analysis of surfa
e-
ra
ked pipes representshigh 
omputational 
ost in addition to being time-
onsuming and 
omplex tohandle, see e.g. [13℄. A simpler approa
h is to apply line-springs and shellelements. Here the 
ra
k is represented by nonlinear �nite element springs, line-springs, with 
omplian
e dependent on the plasti
 deformation and the 
ra
kdepth. The line-springs are 
onne
ted to the neighbouring shell elements repre-senting the global pipe. The line-spring 
on
ept was originally proposed by Ri
eand Levy [15℄, and extended to elasti
-plasti
 stationary 
ra
k analysis by Leeand Parks [16℄. Du
tile 
ra
k growth was in
luded in the line-spring formulationby Lee and Parks [17,18℄ using the ideas of M
Clinto
k et al. [19℄.Linkpipe is a tailor-made program for pipeline appli
ations based on the line-spring te
hnology. This program applies a 
o-rotated kinemati
 des
ription of theANDES shell and line-spring elements [20,21℄. Implementation and numeri
alaspe
ts of Linkpipe are presented by Skallerud et al. [22℄. In order to simulate thedu
tile 
ra
k growth the traditional material 
ra
k-growth resistan
e 
urve (i.e.CTOD-∆a 
urve) is applied as presented in Jayadevan et al. [23℄.GeometryA sket
h of a pipe with a surfa
e defe
t is shown in Fig 1 where a denotesthe uniform 
ra
k depth and 2c the 
ra
k length. Three values of pipe wallthi
kness were 
onsidered, namely 15, 20 and 25mm, diameter to thi
kness ratio



2 FEM-model 85of D/t = 20 for all 
ases. The pipe length, L, is six times the outer diameterof the pipe to limit so-
alled end e�e
ts, whi
h means that the deformationsaround the defe
t are not in�uen
ed by the boundary 
onditions. The geometri
parameters used in the analyses are found in Table 1 and Table 2.

Figure 1: (a) Pipe geometry with an external 
ir
umferential 
onstant-depthsurfa
e 
ra
k. (b) Details of the 
onstant depth 
ra
k with ar
 length (2c) andend radius (r) equal to the 
ra
k depth (a).
Element meshFig. 2 shows a typi
al shell mesh of a pipe with diameter 400 mm in
luding adefe
t pla
ed in the middle of the pipe with 
ra
k length 2c = 150 mm. Line-spring elements simulate the defe
t. The �gure shows that the shell and line-spring FE-mesh is fundamentally di�erent to a 3D solid mesh, where a denseregular mesh around the defe
t is needed, as seen in Fig. 3. This results in asigni�
ant di�eren
e in problem size: the depi
ted Linkpipe model has about sixthousand degrees of freedom, whereas the 3D Abaqus/Expli
it model is aboutthirty times larger.
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Figure 2: A typi
al shell & line-spring element mesh of a pipe with surfa
e 
ra
k.Insert shows details around the 
ra
k.
Loads and boundary 
onditionsFor the pressurized 
ases, the internal pressure load was applied as a separateload step prior to the tension load. The pressure level is expressed by the ratiobetween the hoop stress, σh, and the stress at 0.2 % plasti
 strain, σ0.2, i.e.
σh/σ0.2. Three load levels were analysed, σh/σ0.2 = 0, 0.25 and 0.5. The uniformtension load was applied through a displa
ement at one pipe end.
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Crack

(a)

Crack front

(b)Figure 3: (a)A typi
al 3D FE-mesh of one quarter of a pipe 
ontaining a surfa
edefe
t. The dotted frame marks the 
lose-up view of the defe
t zone shown in(b) where the smallest element size is 0.1 mm, see [13℄.MaterialThe material's plasti
ity was 
hara
terized by an isotropi
 power-law hardeningrelationship:
σi = σ0

(

1 +
εp

ε0

)n

, (1)where σ0 is the stress at the proportional limit, σi is the �ow stress, εp is theplasti
 strain and n the hardening exponent. ε0 = σ0/E, is the strain at theproportional limit, and E is Young's modulus. For σ < σ0 the material behaviouris linear elasti
. In the analyses σ0 = 460MPa, E = 200GPa and the Poissonratio ν = 0.3.Three di�erent CTOD-∆a 
urves were used in the models. Su
h material
urves are obtained from experiments where the du
tile 
ra
k growth, ∆a, andthe 
ra
k tip opening displa
ement (CTOD), δR, are measured. Similar 
urvesmay also be extra
ted from 3D FEMmodels in
luding the e�e
t of du
tile tearing.Su
h 
urves are then used as input to the Linkpipe software in the form:
δR = c1 + c2(∆a)c3 , (2)where ∆a denotes the du
tile 
ra
k growth and c1, c2 and c3 are 
onstants. Inthe following analyses three di�erent c2 values were 
hosen in the simulations,Table 1 and Table 2.
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Table 1: Input parameters for the FEM-models with 20 and 25mm pipe wallthi
kness.Model a 2c c1 c2 c3 σh/σ0.2 D D/tmm mm mm

1 3 100 0.45 0.5 0.7 0, 0.25 and 0.5 400 and 500 20

2 3 100 0.45 1.0 0.7 0, 0.25 and 0.5 400 and 500 20

3 3 100 0.45 1.5 0.7 0, 0.25 and 0.5 400 and 500 20

4 4 175 0.45 0.5 0.7 0, 0.25 and 0.5 400 and 500 20

5 4 175 0.45 1.0 0.7 0, 0.25 and 0.5 400 and 500 20

6 4 175 0.45 1.5 0.7 0, 0.25 and 0.5 400 and 500 20

7 5 250 0.45 0.5 0.7 0, 0.25 and 0.5 400 and 500 20

8 5 250 0.45 1.0 0.7 0, 0.25 and 0.5 400 and 500 20

9 5 250 0.45 1.5 0.7 0, 0.25 and 0.5 400 and 500 20

Table 2: Input parameters for the FEM-models with pipe wall thi
kness 15mm.Model a 2c c1 c2 c3 σh/σ0.2 D D/tmm mm mm
1 3 50 0.45 0.5 0.7 0, 0.25 and 0.5 300 20

2 3 50 0.45 1.0 0.7 0, 0.25 and 0.5 300 20

3 3 50 0.45 1.5 0.7 0, 0.25 and 0.5 300 20

4 4 100 0.45 0.5 0.7 0, 0.25 and 0.5 300 20

5 4 100 0.45 1.0 0.7 0, 0.25 and 0.5 300 20

6 4 100 0.45 1.5 0.7 0, 0.25 and 0.5 300 20

7 5 150 0.45 0.5 0.7 0, 0.25 and 0.5 300 20

8 5 150 0.45 1.0 0.7 0, 0.25 and 0.5 300 20

9 5 150 0.45 1.5 0.7 0, 0.25 and 0.5 300 20



2.1 Results from FEM simulations 892.1 Results from FEM simulationsIn this paper CTOD has been applied as the fra
ture me
hani
s parameter for the
hara
terization of initiation and du
tile 
ra
k-growth. The results are presentedas driving for
e 
urves, i.e. CTOD versus global strain. Some 
hara
teristi
features of the driving for
e 
urve are shown in Fig. 4, where three di�erentregions are indi
ated for a pipe subje
ted to tension. In Region 1 only minor

Global strain

C
T

O
D

Region 2

Onset of

global plastiicty

Region 3Region 1

Figure 4: Three 
hara
teristi
 regions on the 
ra
k driving for
e 
urve.plasti
 deformations o

ur in the 
ra
k ligament and the the global deformationis elasti
. The main fo
us in this work is predi
tion of fra
ture after global plasti
deformation has o

urred, Region 2 and Region 3. As the loading in
reases theplasti
ity develops through the 
ra
k ligament, Region 2, where a relatively linearrelationship between the CTOD and global strain is observed. The slight upward
urvature of the 
urve is due to the in
rease of the lo
al inelasti
 deformationsin the 
ra
k ligament and du
tile tearing initiation. However, in this region the
ra
k growth will stop if the pipe is unloaded sin
e the material is purely du
tile.Finally, Region 3 de�nes the 
ollapse region with rapid in
rease of CTOD wherelarge plasti
 deformations and du
tile tearing develop in the 
ra
k ligament. Therapid 
ra
k growth leads to loss of strain 
apa
ity, shown as an almost verti
al
ra
k driving for
e 
urve, indi
ating a limit for the pipe's global strain 
apa
ity,Jayadevan et al. [24℄.Linkpipe vs. 3D Abaqus/Expli
itTo illustrate the simulation 
apa
ity of Linkpipe some simulation results are 
om-pared with 3D Abaqus/Expli
it simulations presented in [13℄. These simulationsare for the 
ase with t = 20mm and D/t = 20, subje
ted to a tension load in
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(b)Figure 5: Comparison of Abaqus/Expli
it and Linkpipe analyses fortwo di�erent
ra
k lengths, (a) a = 3mm and (b) a = 5mm.
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(b)Figure 6: Abaqus/Expli
it vs. Linkpipe analyses for pressurized pipes, two 
ra
klengths and (a) a = 3mm and (b) a = 5mm.
ombination with internal pressure. The material resistan
e input to the Linkpipesimulations was obtained from the Abaqus/Expli
it simulations as:
δR = 0.45 + 1.15(∆a)0.7. (3)The Abaqus/Expli
it simulations 
al
ulate the du
tile tearing using the Gurson-Tvergaard-Needleman model whereas Linkpipe uses the CTOD-∆a 
urve to ad-
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e the 
ra
k front. It should be noted that Linkpipe does not a

ount for thedu
tile tearing 
ontribution in the hoop dire
tion, but this is not 
onsidered tobe important in this work. However, development in
luding this e�e
t is ongoing[25℄.In Fig. 5(a) the results with a = 3mm and 2c = 150mm and 250mm and nointernal pressure are 
ompared. These 
ra
k lengths are 
hosen for 
omparisonsin
e they are in line with the defe
t sizes in the probabilisti
 model presentedin Se
tion 3. The Abaqus/Expli
it and Linkpipe results are denoted as 'A' and'L', respe
tively. The dotted line refers to the 2c = 250mm defe
t, whereas thesolid line denotes the 2c = 150mm defe
t. For the shorter 
ra
k (150mm) theLinkpipe analysis yields higher CTOD for a given strain in Region 2. The CTODvalues are seen to 
lose up to about ∼ 0.6mm, whereafter the CTOD in
reasesfaster in the Linkpipe simulations. In Region 3 the Linkpipe simulation predi
ts alower strain 
apa
ity. For the longer 
ra
ks (250mm) the Linkpipe results deviateearlier and more from the Abaqus/Expli
it results.For the deeper defe
t with a = 5mm, Fig. 5(b), Linkpipe predi
ts higher CTODfor the 150mm 
ra
k at any given strain level. However, the strain 
apa
itypredi
tion is almost the same as from the Abaqus/Expli
it simulation. For thelonger 
ra
k Linkpipe predi
ts slightly higher CTOD than the 3D simulation.However, the two driving for
e 
urves 
ross at CTOD ≈ 2mm, resulting inpredi
tion of slightly higher strain 
apa
ity in the Linkpipe simulation.A better agreement is observed when an internal pressure giving σh/σ0.2 = 0.5is in
luded, Figs. 6(a)-6(b), where the same defe
t geometries are 
ompared.The Abaqus/Expli
it and Linkpipe simulations show some di�eren
e for the shal-lower 
ra
k, where Linkpipe yield higher CTOD values. However, an ex
ellentagreement between the two simulation te
hniques is obtained when a = 5mm,Fig. 6(b). In summary, the Linkpipe results are in reasonable a

ordan
e withthe Abaqus/Expli
it simulations and should be suitable for the pipeline fra
tureassessment 
onsidered in this work.Comparison with experimentA 
omparison has been made between a full-s
ale experiment and an analysisusing Linkpipe of a surfa
e-
ra
ked pipe subje
ted to four point bending and in-ternal pressure. The experimental and 
omputational details are not presentedhere, but the obtained 
ra
k driving for
e 
urves are depi
ted in Fig. 7 and arein good agreement. The horizontal lines on the test 
urve are due to unloadingdone to perform 
ra
k-growth measurements during the test.Linkpipe simulationsThis se
tion presents some results from Linkpipe analyses 
ondu
ted to highlightthe e�e
ts of the parameters investigated.
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Figure 7: Comparison between Linkpipe simulation and a large s
ale test of asurfa
e-
ra
ked pipe loaded with internal pressure and bending.Cra
k depth and 
ra
k lengthData presented in Fig. 8(a) illustrates the signi�
ant in�uen
e of the 
ra
kdepth variation on the 
ra
k driving for
e:in
reasing 
ra
k depth giving in
reasedCTOD. Region 2 is narrowed as the 
ra
k depth in
reases, whi
h indi
ates higherplasti
 deformation lo
alization in the 
ra
k ligament. This also in�uen
e thedu
tile 
ra
k-growth 
ontribution at a given strain level. Additionally, the strain
apa
ity de
reases as the 
ra
k depth in
reases sin
e the 
ra
k in�uen
es theglobal 
apa
ity. A similar, but weaker, e�e
t is also seen from the 
ra
k lengthvariation, Fig. 8(b). However the in�uen
e in
reases with in
reasing 
ra
k depth.Internal pressureIf the pipe is subje
ted to tension in 
ombination with internal pressure thedefe
t and pipe rea
h a bi-axial stress state. The bi-axial loading 
ondition re-sults in a signi�
ant stress lo
alization in the 
ra
k ligament 
ompared with annon-pressurized pipe 
ase, see e.g. [24℄. This explains the 
onsiderable loss ofstrain 
apa
ity and 
orresponding in
rease in CTOD as the internal pressure isin
reased, Fig. 9(a).Pipe wall thi
knessData from three di�erent pipe wall thi
knesses, with the same defe
t geometryand a �xed D/t ratio, is presented in Fig. 9(b). The solid line denotes the 
ra
k
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2c=250mm(b)Figure 8: Driving for
e 
urves from Linkpipe simulations for di�erent (a) 
ra
kdepths and (b) 
ra
k lengths, for a pipe with thi
kness 20mm and D/t=20, andno internal pressure.driving for
e in the 
ase with t = 15mm, whereas the dotted lines represents the

20mm and 25mm 
ases. The CTOD is de�nitely higher for the thinnest pipefor a given strain. In addition, as the relative 
ra
k depth in
reases the strain
apa
ity de
reases.Material 
ra
k-growth resistan
e 
urveThe e�e
t from variation in the material resistan
e 
urve is observed in Fig. 10(a).The du
tile tearing starts at ∼ 0.5mm and the 
urves deviate signi�
antly asthe strain in
reases. In the 
ase with a "low" resistan
e 
urve (c2 = 0.5) theCTOD in
reases strongly after the du
tile 
ra
k-growth is initiated. These resultsdemonstrate the importan
e of the 
ra
k-growth resistan
e 
urve in determiningthe strain 
apa
ity of pipes with defe
ts.3 The probabilisti
 fra
ture me
hani
s modelIn 
onjun
tion with stru
tural reliability analyses of a surfa
e-
ra
ked pipe, weneed to establish a 
onvenient model to 
al
ulate the failure probability. This isdone by solving the probability of failure integral, i.e.
pf =

∫

G(x)≤0

fX(x)dx. (4)
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knesses and no internal pressure.

fX(x) is the joint probability density fun
tion of X. The limit state fun
tion isexpressed as
G(X) = εcrit(X1) − εapp(X2). (5)where X = (X1,X2) 
ontains the basi
 variables. The 
apa
ity part is expressedas εcrit(X1) with the variables of interest represented in the ve
tor X1. In thepresent 
ase X1 = (a, 2c, δR, σh/σ0.2). The "load part" is denoted as εapp(X2),where the ve
tor X2 
ontains the "load" variables.2 The stru
tural failure regionis de�ned as, G(X) ≤ 0, and the safe region as G(X) > 0. Several methods existto solve the multi-dimensional integral in Eq. (4) [26-28℄. A simple numeri
alintegration te
hnique is Monte Carlo Simulation (MCS) with or without samplingte
hniques, see e.g. Mel
hers [26℄. MCS with importan
e sampling (MCSI) is
onvenient to apply in this paper, sin
e the limit state equation is expli
itlydes
ribed. Shinozuka [29℄ suggested to use the design point as sampling point in

u-spa
e. The sampling density is represented by a normal distribution for ea
hvariable 
entered around this point.When FORM and SORM solution te
hniques are applied, Eq. (4) is solvedby performing a mapping from x-spa
e with n 
orrelated un
ertainty variablesX = (X1, X2, ..., Xn) to un
orrelated, independent, standard, normal-distributedvariables in u-spa
e with un
ertainty variables U = (U1, U2, ..., Un). This isfollowed by an approximation of the failure surfa
e at the design point, also
alled the most probable point, with a hyperplane or a paraboli
 surfa
e. An2It has been 
hosen to apply the strain due to external loading sin
e the limit state fun
tionis expressed in terms of strains.



3 The probabilisti
 fra
ture me
hani
s model 95

0 0.02 0.04 0.06 0.08
0

0.5

1

1.5

2

2.5

3

3.5

4

Global strain, ε
nom

 [−]

C
T

O
D

 [m
m

]
2c=150mm σ

h
/σ

0.2
=0 a=4mm t=20mm

c
2
=0.5

c
2
=1

c
2
=1.5

δ
R

=0.45+c
2
(∆a)0.7

(a) 0 0.02 0.04 0.06 0.08
0

0.5

1

1.5

2

2.5

3

3.5

4

Global strain, ε
nom

 [−]

C
T

O
D

 [m
m

]

2c=150mm σ
h
/σ

0.2
=0.5 a=4mm

 

 

c
2
=0.5

c
2
=1

c
2
=1.5(b)Figure 10: Linkpipe simulation results. In�uen
e due to variation of the c2 
o-e�
ient in the material 
ra
k growth resistan
e 
urve in Eq. 9. σh/σ0.2 = 0,

2c = 150mm, a = 4mm and t = 20mm in the 
ase (a) without internal pressureand (b) in
luding the e�e
t of internal pressure.important property from this mapping is that it retains the statisti
al propertiesof the probabilisti
 model. If the limit state fun
tion is linearized around thedesign point using the Taylor expansion in the u-spa
e the probability of failure
an be approximated from
pf ≈ Φ(−β), (6)where Φ is the univariate standard normal integral. The design point representsthe point giving the highest probability of failure on a spe
i�
 failure surfa
e.The distan
e from the origin to the design point is denoted β, and is known asthe safety index. This solution te
hnique is referred to as �rst order reliabilitymethod (FORM). Alternatively, the failure surfa
e 
an be approximated by aparaboli
 fun
tion around the design point. This solution te
hnique is termedthe se
ond order reliability method (SORM), and the theory of this method isfound in e.g. Madsen et al. [27℄ or Mel
hers [26℄.In this work we have employed FORM, SORM, MCS and MCSI. 105 simula-tions were performed to obtain the pf estimate with MCSI. In general a 
oe�
ientof variation (COV ) of approximately 1 per
ent was rea
hed for all the solutionsusing this method. To verify the MCSI simulations the t = 20mm 
ase is solvedby using MCS employing 107 simulations.
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e-
ra
ked pipes using shell and line-spring elements3.1 Failure and response surfa
esThe Response Surfa
e Method (RSM) is applied to establish a 
ontinuous fun
-tional representation of the 
apa
ity term, εcrit, Eq. 5. The fun
tion is establishedfrom the deterministi
 failure points obtained from the Linkpipe simulations andfailure 
riteria presented in Se
tion 3.2.A se
ond degree polynomial was found to be su�
ient to represent the widerange of failure points. Simpler polynomial representations were also employedbut the polynomial 
ross terms were found to be 
ru
ial to 
ompletely representthe deterministi
 failure points. The 
hallenge was to establish a rather 
omplexrelation between the strain 
apa
ity of pipes subje
ted di�erent loading 
ondi-tions, defe
t sizes and material 
ra
k-growth resistan
es. A general se
ond degreepolynomial with m variables 
an be written as
ε̄crit = α0 +

m
∑

i=1

αiyi +

m
∑

i=1

αiiy
2
i +

m
∑

i<j

m
∑

αijyiyj. (7)
yi and yj denote the variables and the α 
oe�
ients are determined throughregression analyses and least square optimization. The fun
tions were establishedwith one 
onstraint, a base point, to ensure a qualitatively good �t between thedeterministi
 points and the derived polynomial fun
tion3. The basis point wasthe 
enter point from the input values listed in Table 1 and Table 2. This pointis denoted as (ab, (2c)b, (δR)b, (

σh

σ0.2
)b). For the 
ases with pipe wall thi
kness 20and 25mm, the base point values were ab = 4 mm, (2c)b = 175 mm, (δR)b = 1.0,and ( σh

σ0.2
)b = 0.25. The 15mm 
ase is similar but here (2c)b = 100mm, Table 2.When the basis point was 
hosen the following linear variable transformationwas performed prior to the polynomial �t: y1 = a

ab
− 1, y2 = 2c

(2c)b
− 1, y3 =

( σh

σ0.2
)/( σh

σ0.2
)b −1 and y4 = δR

(δR)b
−1. It should be noted that the 
al
ulated designpoint should appear within the region of input values from the deterministi
analyses, see i.e. Table 1. This will ensure a more representative estimate of thefailure probability than if the design point appears outside the region.3.2 Failure 
riteriaThe maximum global load 
riterion for a tension loaded surfa
e-
ra
ked pipeis illustrated in Fig. 11(a). When the maximum load is found the 
orrespond-ing 
riti
al strain, εcritG, is determined. The 
riti
al strain is also depi
ted inFig. 11(b) where the 
ra
k driving for
e 
urve is almost verti
al.Alternatively we apply the lo
al failure 
riterion proposed by Østby et al. [30℄.3The un
ertainty in the established fun
tion with respe
t to the probability of failure esti-mate is not 
onsidered in this work.
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al strain using the maximum load failure 
riteria (solid lines)and the lo
al failure 
riteria (dotted line). (a) Load vs. strain 
urve, (b) CTODvs. strain for a tension loaded pipe. εcritL and εcritG denote the 
riti
al strainusing the lo
al and global 
riterion, respe
tively.Table 3: Coe�
ient values for the response surfa
e established from 4 variablesusing the lo
al and global failure 
riteria.

t = 15mm t = 20mm t = 25mmLo
al Global Lo
al Global Lo
al Global
α0 0.0078 0.0107 0.0093 0.0105 0.0134 0.0180

α1 −0.0238 −0.0350 −0.0315 −0.0388 −0.0392 −0.0460

α2 −0.0096 −0.0259 −0.0073 −0.0174 −0.0081 −0.0220

α3 −0.0054 −0.0115 −0.0091 −0.0142 −0.0142 −0.0207

α4 0.0111 0.0206 0.0115 0.0191 0.0157 0.0291

α11 0.0337 0.0375 0.0382 0.0413 0.0422 0.0393

α22 0.0090 0.0273 0.0047 0.0168 0.0057 0.0198

α33 0.0021 0.0056 0.0048 0.0078 0.0080 0.0109

α44 0.0001 0.0034 0.0003 0.0047 0.0012 0.0052

α12 0.0089 0.0207 0.0055 0.0145 0.0028 0.0103

α13 0.0157 0.0244 0.0256 0.0303 0.0325 0.0361

α14 −0.0221 −0.0317 −0.0234 −0.0317 −0.0262 −0.0370

α23 0.0027 0.0109 0.0021 0.0081 0.0015 0.0087

α24 −0.0103 −0.0271 −0.0070 −0.0207 −0.0066 −0.0236

α34 −0.0057 −0.0115 −0.0074 −0.0131 −0.0103 −0.0189
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e-
ra
ked pipes using shell and line-spring elementsThis 
riterion is denoted as εcritL. In this 
ase the CTOD at maximum load,
δmax, in the 
ra
k ligament is predi
ted a

ording to the formula

δmax = (0.03(t − a) + δ∆a=1mm − 0.61)(−12.1(
σ0.2

σTS
)2 + 18.9(

σ0.2

σTS
) − 6.28). (8)

t−a denotes the ligament height, δ∆a=1 mm is the CTOD at 1 mm 
ra
k-growthand σ0.2 and σTS are the engineering yield stress and tensile strength, respe
tively.Sin
e the du
tile tearing 
urves starts at c1 = 0.45, δ∆a=1 mm was redu
edby CTOD/2 = 0.45/2mm to re�e
t the CTOD at initiation. In general thisfailure 
riterion predi
ts similar or lower failure strains than the global 
riteriondependent on the loading 
onditions and defe
t sizes. This is 
learly indi
ated inFigs. 11(a)- 11(b) where the two di�erent 
riteria are applied for the same 
ase.3.3 ExampleIn order to illustrate how the models may be applied, some examples are pre-sented. The PFM-model is 
ustomized to represent a pipeline in operation in
lud-ing bending and di�erential pressure. The results from the tension loaded pipesare applied, but the external load was assumed to form a linear strain variationover the pipe 
ross-se
tion as depi
ted in Fig. 12. The 
ra
k lo
alization in the
ir
umferential dire
tion was determined from a sto
hasti
 sampling using MCSfrom the uniform distribution for φ (Table 4), and the maximum strain at thegiven defe
t was obtained. This assumption implies that the defe
t was subje
tedto a uniform strain 
orresponding to the maximum strain. The 
riti
al strain forthe spe
i�
 
ase was obtained from the established 
apa
ity response fun
tions.The e�e
tive 
ra
k length was de�ned as the part of the defe
t positioned in thetension part of the pipe 
ross se
tion. As a 
onsequen
e, if the defe
t lo
ationpassed the top of the pipe (12 o'
lo
k in the 
ross-se
tion in Fig. 12) the maximumstrain was set to remain εlay. Otherwise, the strain was modi�ed to εmod.One load 
ase was investigated for various deterministi
 pressure levels. Itwas 
hosen to represent the load with a 
orresponding strain, εlay, sin
e thelimit state equation is expressed in terms of strain. Variable Xj was 
hosen torepresent the statisti
al variation in the material resistan
e 
urve with the relation
Zj = log(Xj). This means that the material resistan
e 
urve is expressed as

δR = c1 + Xjc2(∆a)c3 . (9)The input data for the reliability analyses is listed in Table 4.4 Results of the probabilisti
 simulationsIn Figs. 13-20 the probability of failure, pf , is plotted against internal pressure,
σh/σ0.2 for di�erent c2 
oe�
ients in Eq. 9. Lines are plotted for 
larity between
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 simulations 99Table 4: Input parameters and distributions used in the analyses.Des
ription Distribution S
ale, α Shape, β Lower limitDepth, [mm℄ a Weibull 0.9 1.2 1.8Length,[mm℄ 2
 Weibull 33 1 0Mean COV∗ or StD∗∗Strain, [-℄ εlay Lognormal 0.05 and 0.01 0.3∗ 0Angle [-℄ φ Uniform π -Pressure [-℄ σh/σ0.2 0 − 0.5 -
δR Zj Normal 0 0.11∗∗

δR c2 - 0.5 − 1.5

app

Figure 12: The e�e
tive 
ra
k length and the applied strain, εapp, in a given pipe
ross se
tion for a pipe in bending.the 
al
ulated points. The solid lines refer to the example with c2 = 1.5, thedashed lines c2 = 1.0 and the dotted lines c2 = 0.5 in the material resistan
e 
urve.One load 
ase is 
onsidered with 1% mean strain in the lognormal distributionin Table 4. A 
omparison between FORM and SORM solutions is presented
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ture me
hani
s model for bi-axially loadedsurfa
e-
ra
ked pipes using shell and line-spring elementsin Fig. 13, where t = 15mm and the global 
riterion is employed. The SORMsolutions tend to predi
t lower failure probabilities for all pressure levels andmaterial resistan
es, but from a pra
ti
al point of view the di�eren
e is negligible.As a 
onsequen
e, we do not show this 
omparison for the other 
ases.The SORM results are 
ompared with the MCSI results, in Figs. 14 and15 for the global and lo
al 
riteria 
ases, respe
tively. There is about half anorder of magnitude between the MCSI and the SORM results. This means thatapproximate solutions using FORM and SORM when solving the integral, Eq. (4),overestimate the probability of failure.In Fig. 16 the lo
al and global failure 
riteria are 
ompared with MCSI. Asobserved, the global 
riterion predi
ts lower failure probabilities than the lo
al
riterion, whi
h is in line with the illustration in Fig. 11(b). Here εcritL hada lower value than εcritG. Irrespe
tive of the solution te
hnique, the e�e
t ofinternal pressure is 
lear: as the internal pressure in
reases the probability offailure in
reases. When the c2 parameter of the CTOD-∆a 
urve de
reases theprobability of failure de
reases.Results from the t = 20mm 
ase where the global 
riterion is applied arepresented in Fig. 17. The probability of failure in
reases as the internal pressurein
reases. From the non-pressurized to the pressurized 
ondition (i.e. σh/σ0.2 =
0−0.5) a di�eren
e of about two order of magnitude is observed for all the 
urves.Some di�eren
es are observed between two di�erent failure 
riteria depi
ted inFig. 18, and the lo
al 
riterion predi
ts slightly higher failure probabilities thanthe global 
riterion. The di�eren
e is largest for the non-pressurized 
ase. Inorder to ensure that the MCSI solutions produ
e qualitatively robust results, weperformed MCS in the 20mm 
ase for both failure 
riteria. It was 
hosen to apply
107 simulations, and the results are shown with the symbol 'x' in Fig. 18. TheMCSI results are plotted with 
onne
ting lines for 
larity. As seen, the results
oin
ide with the results from the MCSI simulations.Finally, Figs. 19 and 20 present the results when t = 25mm. Similar trends asin the previous 
ase are observed, whi
h means that the lo
al and global 
riterionyield similar results in the pressurized 
ase, but some di�eren
es are observed inthe non-pressurized 
ase. The probability of failure is signi�
antly in�uen
ed bythe internal pressure.
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"Global criterion t=15mm, FORM and SORM"
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Figure 13: Comparison between SORM and FORM for the t = 15mm 
ase usingthe global failure 
riterion and 1% mean strain.
"Global criterion t=15mm, SORM and MCSI"
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Figure 14: Comparison between SORM and MCSI for the t = 15mm 
ase usingthe global failure 
riterion and 1% mean strain.
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"Local criterion t=15mm, SORM and MCSI"
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Figure 15: Comparison between SORM and MCSI t = 15mm 
ase using the lo
al
riterion and 1% mean strain.
"t=15mm, local and global criterion, MCSI"
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Figure 16: Comparison between the lo
al and global 
riterion when t = 15mmand 1% mean strain. Probability of failure results are obtained from MCSI.
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"Global criterion t=20mm, SORM and MCSI"
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Figure 17: Comparison between SORM and MCSI for the t = 20mm 
ase usingthe global failure 
riterion and 1% mean strain.
"t=20mm, local and global criterion, MCSI and MCS"
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Figure 18: Comparison between the lo
al and global 
riterion when t = 20mmand 1% mean strain. Probability of failure results are obtained from MCSI andMCS ('x' from MCS).
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"Global criterion t=25mm, SORM and MCSI"
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Figure 19: Comparison between SORM and MCSI for the t = 25mm 
ase usingthe global failure 
riterion and 1% mean strain.
"t=25mm, local and global criteria, MCSI"
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Figure 20: Comparison between the lo
al and global 
riterion when t = 25mmand 1% mean strain. Probability of failure results are obtained from MCSI.



4.1 Dis
ussion 1054.1 Dis
ussionWhen analysing pipeline fra
ture in general, two di�erent s
enarios should beaddressed, i.e. pipeline installation and pipeline operation. In the analyses pre-sented above the same defe
t distribution and variation in applied strain hasbeen assumed for all 
ases for 
onvenien
e. However, when applying the modelfor pra
ti
al purposes some topi
s should be noted. In our 
ases in
luding inter-nal pressure and a relatively large variation in applied strain are representativefor a pipeline in servi
e. In this 
ase usually only a small part of the pipelineis subje
ted to large deformations, sin
e this typi
ally o

urs in relation to free-spans or global bu
kling phenomena. During installation more or less the wholepipeline is subje
ted to the same loading, thus there is a system e�e
t that mustbe a

ounted for in the probabilisti
 
al
ulations. Another e�e
t that should bein
luded is the 
han
e of having a defe
t in at a highly loaded lo
ation. Thisis dire
tly linked to the expe
ted defe
t rate from the welding pro
edures. Thiswould probably lead to lower fra
ture probability levels for the operational 
aseswith internal pressure 
ompared with the reported values above. Consequently,these issues should be addressed and a

ounted for in pra
ti
al appli
ations.5 Con
lusionsA probabilisti
 fra
ture me
hani
s model have been established. The model wasbased on FEM-simulations using shell and line-spring elements. Du
tile tearingwas in
luded, and the material 
ra
k-growth resistan
e 
urve was employed toadvan
e the 
ra
k front. Linkpipe and Abaqus/Expli
it simulations were 
om-pared. The Linkpipe program showed very promising results, and various internalpressure levels, di�erent defe
t geometries and CTOD-∆a 
urves were 
onsidered.The strain 
apa
ity was 
al
ulated with two di�erent 
riteria; the maximum load
riterion and a lo
al 
riterion that predi
ted the CTOD at maximum load in the
ra
k ligament. These failure 
riteria were applied to 243 analyses to establishmodels for ea
h of the three pipe wall thi
knesses. Ea
h model was establishedwith four variables, in
luding 
ra
k depth, 
ra
k length, material resistan
e andinternal pressure. The failure points were used to establish a 
ontinuous surfa
erepresenting the 
apa
ity term in the limit state equation. It was shown thata se
ond degree polynomial represented the deterministi
 failure points satisfa
-tory. Finally, an example on how this model 
ould be applied was presented. Thefailure probabilities were 
al
ulated using FORM, SORM and MCSI. Similar re-sults were obtained from FORM and SORM. However, MCSI around the designpoint gave robust results and estimated lower failure probabilities than the trans-formation methods. The failure probability simulations 
learly demonstrated thee�e
t of internal pressure and the material resistan
e 
urve.
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