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Abstract

Coronary artery disease is one of the most common causes of death in Norway, and
the world. While diagnosing this disease, and treating it is a common procedure
at many hospitals, discovering and documenting a faster, safer and cheaper way to
detect the disease could be critical for many patients. Our goal is to implement an
algorithm that can automatically detect and produce a segmentation of the coronary
arteries from Computed Tomography Angiography (CTA) images.

In this thesis we explore and discuss several different methods and approaches for
segmentation of the coronary arteries and vessels in general in relation to compati-
bility for parallel execution on a GPU, accuracy and practicality. A suitable method
is chosen based on the discussion and implemented.

The results show that the algorithm is able to segment large portions of the coro-
nary arteries. But the produced results are vulnerable to noise, artifacts and irregular
vessels. The most significant improvement would be a centerline selection addition,
where the centerlines that are chosen to produce the segmentation is chosen based
on their location in relation to the heart. Or some other method that is more reliable
then the current bio-mechanical method. Our implementation is able to produce a
segmentation and a centerline in around 10 minutes.

The method implemented in this thesis is a general approach to vessel segmenta-
tion, but tuned for coronary artery segmentation. The approach could potentially be
adapted and used for extraction of other tubular structures.
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Sammendrag

Koronarsykdom er en av de vanligste dødsårsakene i Norge, og i verden. Diagnose-
ring og behandling av denne sykdomsgruppen er en standardisert og vanlig prose-
dyre på mange sykehus. Men siden det er stort behov for effektiv diagnostisering,
og behandling så kan utviklingen og dokumenteringen av raskere, tryggere og bil-
ligere måter å oppdage koronarsykdom kan være svært nyttig for både pasienter og
sykehus. Målet i denne oppgaven er og implementere en algoritme som automatisk
kan oppdage og segmentere ut de koronararteriene fra et CTA bilde.

I denne oppgaven vil vi utforske og diskutere en rekke forskjellige metoder og
tilnærminger til segmentering av koronararteriene og årer generelt i henhold til
kompatibilitet med parallell utførelse på en GPU, nøyaktighet i segmenteringen og
pålitelighet. En passende metode blir valgt og implementert basert på diskusjonen.

Resultatene viser at algoritmen greier og segmentere store deler av koronararteri-
ene. Men resultatet er sårbar for bildestøy og bildefeil, og uregelmessig årefasong.
Den mest signifikante forbedringen til denne algoritmen ville vært en metode som
velger ut hvilke årer som skal segmenteres ut basert på deres avstand til hjerte. Al-
goritmen implementert i denne oppgaven presterer og produsere en senterlinje, og
en segmentering på rundt 10 minutter.

Metoden som er brukt i denne oppgaven er en generell tilnærming til åresegmentering,
som er spesielt justert for og segmentere koronararteriene. Metoden kan potensielt
bli brukt til og oppdage og segmentere andre åre strukturer ved framtidige prosjekt.
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Chapter 1
Introduction

1.1 Background and Motivation

Coronary artery disease has one of the highest mortality rates in Norway, and the
world. Coronary artery disease is a subclass of diseases from Cardiovascular dis-
ease. Currently it is estimated that Cardiovascular diseases account for 17 million
deaths globally per year, and this number is expected to increase to 23.6 million by
2030[31]. Of these 17 million deaths, coronary artery disease was the most com-
mon cause, accounting for 8.14 million deaths globally[51]. At St. Olavs Hospital
in Trondheim the standard procedure to diagnose coronary artery disease is an ini-
tial screening with a non-invasive CT angiography (CTA), followed by an invasive
coronary angiography (ICA) if the initial CTA indicate that coronary artery disease
might be present.

ICA is considered to be the gold standard to determine the presence, severity and
location of coronary artery disease. The measurement used to determine coronary
artery disease is fractional flow reserve (FFR). FFR is measured by inserting a pres-
sure wire at the entrance of the coronary arteries to determine the maximal coronary
blood flow through that specific artery. This estimate for maximum blood flow is
then compared to a hypothetical case where the coronary arteries are healthy.

The Norwegian University of Science and Technology (NTNU) and St. Olavs Hos-
pital in Trondheim, Norway has launched a joint project to aid in the diagnosis and
detections of coronary artery disease. This project involves performing a FFR anal-
ysis on the initial CTA, to further determine if a patient is at risk of having coronary
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Chapter 1. Introduction

artery disease. Since the initial CTA does not involve a pressure wire, a maximal
blood flow measurement cannot be conducted in the normal way. Computational
FFR is an alternative approach to estimate the maximal blood flow in the coronary
arteries. This method only utilizes the initial CTA to produce an estimated value for
the maximal blood flow. One of the components required to perform a computa-
tional FFR is an accurate segmentation of the coronary arteries. This segmentation
can be done manually, but the process of manual segmentation is a very time con-
suming process. To make computational FFR practical in a medical environment,
the segmentation needs to be fully automatic, and to be produced quickly.

Many different methods for segmenting the coronary arteries exists in literature.
Common for most of these methods is that they are very computationally expen-
sive, and require a long time to produce an segmentation. In this thesis we wish
to utilize the computational power of graphical processing units (GPUs) to reduce
the processing time of one of these methods. GPUs are ideal for processing large
amounts of data parallel computations where many of the computations require the
same instructions. We will utilize a framework FAST[43], which is based around
the Open Computing Language (OpenCL) to implement our solution.

1.2 Project Goals

The purpose of this thesis is to explore Coronary Artery centerline extraction and
segmentation, and to implement a program that performs these tasks while utilizing
the computation power of graphical processing units to speed up the calculations.
The main goals of this projects are:

• Explore state-of-the-art methods for Coronary Artery segmentation and cen-
terline extraction

• Determine which methods that are applicable for this project, with respects
to:

– Potential performance increase by utilizing a GPU

– Opportunity to make the method fully automatic

– Accuracy of potential methods

• Implement one of these methods in FAST[43], using OpenCL and document
the results.

2



1.3 Outline

1.3 Outline

The following is an outline for this thesis.

Chapter 2 - Background
In the background chapter a background study will be conducted. This will involve
an introduction to the anatomy, terminology, and medical practises related to the
coronary arteries. We will cover how the framework FAST[43] functions, theory
on parallel programming, and how the imaging technology utilized to produce CTA
images work. Finally, we will explore many different approaches to coronary artery
segmentation and centerline extraction, and discuss and choose one of them to lay
the foundation of our implementation.

Chapter 3 - Methodology
Chapter 3 goes in-depth on the method chosen in chapter 2. Each part of the method
is explained and elaborated upon and implementation details, as well as pseudo code
for the relevant parts is presented.

Chapter 4 - Results
The results chapter presents images of the extracted centerlines and segmentations
produced by our implementation. Here we also present evaluation statistics, and
run-time measurements for both available datasets.

Chapter 5 - Discussion
In chapter 5 we discuss the performance, quality, strengths and weaknesses of our
implementation and the extracted centerlines and segmentations.

Chapter 6 - Conclusions
The final chapter contains conclusions for this project, and suggestions for future
work.

3
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Chapter 2
Background

In this chapter a background study will be conducted. This study will include an
introduction to the anatomy of the coronary arteries, how the images used in this
project are created, how coronary heart disease is normally diagnosed, parallel and
GPU computing and a review of different coronary vessel tree segmentation and
centerline extraction methods.

2.1 Coronary Artery Disease

Coronary artery disease(CAD) is a group of diseases under the larger group car-
diovascular diseases(CVD). The most common CADs are stable angina, unstable
angina and myocardial infarction and together they are the most common CVDs[4,
49]. The risk of death from CAD has decreased from 1980 to 2010 especially in de-
veloped countries[23], but despite this CAD is still on of the most common cause of
death globally with around 7.4-8.1 million deaths annually[51, 34]. In general over
any age, men are more prone to getting CAD, especially at ages over 65[4, 49]. The
symptoms for CAD is often unclear and difficult for the patient to asses. The most
common symptom for stable angina is chest pain that occurs regularly with physi-
cal activity or after other activities that strain or pressure the heart, this is associated
with narrowing of the coronary arteries. The most common symptom for unstable
angina is also chest pain, but when it is unstable the pain can change in intensity,
frequency or character[4, 49]. It is estimated that about 30% of adults who go to
the hospital with an unclear cause of chest pain, has pain due to CAD[4]. There
are several risk factors associated with CAD, so in the absence of clear symptoms
the risk factors are used to estimate the likelihood of CAD and to determine future
investigation or treatment. The most common risk factors include family history,
obesity, diabetes, smoking, lack of exercise, stress, high blood pressure, and high
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Chapter 2. Background

blood lipids[4, 51, 23, 34]. Smoking is by far the most telling non-inherited risk
factor, as about 36% of CAD patients are current or previous smokers[4]. Obesity
is also a significant factor, as 20% of CAD patients are reported as obese[4].

Figure 2.1: Anatomy of coronary arteries and heart[13]

2.1.1 Anatomy

The coronary arteries run on the surface of the heart and their function is to supply
blood to the heart muscle. Like all other muscles the heart muscle needs oxygen-
enriched blood to function and oxygen-depleted blood to be carried away. There
are two main coronary arteries, the left main and the right coronary arteries[16].
The right coronary artery supplies blood to the right ventricle, the right atrium and
the sinoatrial and atrioventricular nodes. The right atrium is one of two blood col-
lection chambers in the heart, the right ventricle is one of two ventricles in the
heart. The ventricles are responsible for pumping oxygen-depleted blood to the
lungs[16]. The right coronary artery branches of into smaller branches, including
the acute marginal artery and the right posterior descending artery. The left main
coronary artery supplies blood to the left heart muscle, the left atrium and the left
ventricle[16]. It then branches of into two branches, the left anterior artery and the
circumflex artery. The circumflex artery encircles the heart muscle and supplies
blood to the outer and back side of the heart. The left anterior artery supplies blood
to the front and left side of the heart[16].

2.1.2 Diagnosis

There are several ways to diagnose CAD. Some of these methods are not definitive
on their own, but they can provide an indication or reinforce the suspicion that a

6



2.1 Coronary Artery Disease

Figure 2.2: Abdominal aortic aneurysm[12], Electrocardiogram electrodes placement [14],
Echocardiogram Ventricular spatial defect[11]

CAD might be present. The most common methods are CT angiogram, echocardio-
gram, electrocardiogram and stress test. Following is a short explanation of what
each of them are:

Electrocardiogram: An electrocardiogram (ECG) records electrical activity in the
heart using electrodes placed on the patients body. The electrodes record tiny elec-
trical variations on the surface of the skin that arise from the heart muscle during
each heartbeat.

Echocardiogram: Is using ultrasound on the heart. If any parts of the heart is mov-
ing weakly/irregularly it may indicate that these parts is receiving too little oxygen.

Stress test: A stress test is in this instance a stress test of the heart. This can be done
in several different ways, and can involve several kinds of additional measurements.
It can simply be to see if the patient experiences pain during heavy heart activity.
Or it can involve etc echo/electrocardiogram, to get more information from the test.
This test alone in not enough to diagnose CAD, but it might reveal a problem and
give an indication for future testing.

CT angiogram(CTA): Is a heart imaging technique to determine if plaque buildup
is obstructing the blood flow in the coronary arteries. To see the blood flow on a
CT image contrast material is required. This contrast material is injected in two
portions, the first to establish how long time the contrast material injection needs to
travel to the coronary arteries, the second injection is then for the actual angiogram.

Cardiac catheterization: This is not a test on its own but rather a technique where
a flexible, long, thin tube called a catheter, is inserted into a blood vessel in the arm,
upper thigh or neck and threaded to the heart. When the catheter is in place, a vari-
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ety of tests can be conducted. It can be a delivery mechanism for contrast material
during a CT Angiogram, or it can be used while an echocardiogram is conducted
to detect blockages or obstructions in the coronary arteries. It can also be used to
measure loss of blood pressure because of obstructions in the arteries. This kind of
testing is more invasive than the other alternatives but it has a much higher chance
to successfully detect and diagnose CAD.

More information on these diagnosis methods can be found here:[4, 49, 16]

2.2 Imaging

This thesis will be about segmenting the coronary arteries from CT images. The
CT imaging technology, what it shows, and how those images are generated play a
major part in how the algorithm for the coronary artery segmentation is designed.
This chapter will cover a simple, general explanation of how CT imaging works
from a practical standpoint.

2.2.1 Conventional X-ray

A CT scan uses a combination of many X-ray images taken from different angles
to create a cross-sectional image. Therefore to properly explain how CT works,
we need to explain X-rays. X-rays are created by shooting a plate of metal with
electrons. The electrons will interact with the atoms in the metal and photons will
be emitted with a very high frequency. The photons are then directed at a body.
The denser material in the body will absorb most of the photons, while the less
dense material will absorb less. As the photons pass through the body they hit a
film behind the body. Locations where the photons hit will become darker, and as
more photons hit the same locations the darker that location becomes on the film.
The film becomes the X-ray image.[1]

Some materials in the body absorb more of the photons than other. Bone and teeth
absorb a lot, meaning that the areas on the final image that are almost completely
white are bone or teeth. The other, less dense parts form shadows or silhouettes on
the image. Because of this, X-rays are usually used to examine teeth and bone as
the image simply doesn’t provide enough contrast on the rest of the tissue to provide
useful information.[1]
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2.2.2 Computed Tomography

An X-ray computed tomography (CT scan) uses computer-processed combinations
of several X-ray images taken from different angles to create a 3D image. By doing
this some of the disadvantages with conventional 2D X-ray images are diminished.
Meaning that CT can display more than just shadows and it is better at displaying
contrast between different soft-tissue. Because of the nature of multidirectional X-
rays, CT can image the absorption of each location in a 2D slice of the body. This
is an advantage over X-rays as it can only display the sum of all absorption at a
specific direction through the body. By interpolating all the different X-ray signals
in the frequency domain, a 2D frequency image can be collected. The actual image
this produces can be retrieved by applying the inverse fourier transform.[10]

As stated earlier, a CT scanner use several 2D slices to form a 3D volume. Each
voxel at any specific location has a number indicating the amount of X-ray absorp-
tion at that location. This number is usually stored in Hounsfield Units (HU). The
Hounsfield Unit scale is a linear transformation of absorption value and is defined
so that distilled water at 1 bar and 25C has 0 HU. Below is the equation that defines
the HU scale and a table that show a list of common substances in the body.[47]

HU = 1000
µ− µwater
µwater − µair

(2.1)

Substance Air Lung Soft Tissue Water Blood Muscle Bone
HU -1000 -700 -200 0 30-45 40 700-3000

Table 2.1: Table of HU values for some substances

2.3 Parallel and GPU Computing

Parallel computing is the practise of performing several calculations simultaneously.
This builds on the principle that large or complicated problems often can be split
into smaller sub-problems[30]. These sub-problems are then solved in a parallel
manner to solve the overarching problem in less time than with conventional serial
computation. Parallel computation has been relevant in high performance compu-
tation for several years, but for lower end, consumer grade systems it was largely

9



Chapter 2. Background

unused until the introduction of multi-core CPUs in the early 2000s[30]. Since then
more and more applications and programs have started to utilize parallel computing
to increase performance. Several different forms of parallel computing/parallelism
exist, but they are usually divided into two main groups: Task parallelism and Data
parallelism.

2.3.1 Task Parallelism

Task parallelism, also known as function parallelism is based on the idea of divid-
ing a program into separate tasks and then run them simultaneously on different
processing elements. These tasks, or subprograms can be very different from each
other. Meaning that there are no specific code or complexity requirements to enable
task parallelism. The different subprograms usually need to communicate with each
other, and to perform synchronization between each other to ensure data validity.

There are two main categories of sub-problem communication, shared memory and
messages. Shared memory is when two or more of the tasks share a certain portion
of the memory available to them both or all of them. To make this work without
synchronization issues, some sort of access or validity system to make sure that
none of the tasks are working with false data needs to be implemented.

Messaging between tasks is often used for larger distributed memory machines.
Since their memory is distributed on a per machine or per component basis, hav-
ing shared memory is unpractical. Therefore a message passing protocol is more
practical. An obvious downside to performing synchronization and management
through messages is the speed, but in the case where shared memory is not a viable
option, and/or the different tasks are large enough to warrant a large system (super-
computer) it is often the best alternative.

Shared memory is done by giving all, or the relevant tasks access to a shared por-
tion of the available memory. While this practice is fairly simple, making sure that
the data in the shared memory is valid is a major problem. Since several tasks can
both read and write/overwrite invalid or false data can be a problem. There are sev-
eral solutions to this problem, the most common solution concepts are barriers and
flags. Barriers block tasks until all tasks have reached a predetermined point. Flags
enforce that only one task can modify the shared memory at a time.
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2.3.2 Data Parallelism

Data parallelism focuses on distributing data to different computing nodes. In gen-
eral the same task is performed on the distributed data in parallel on the different
computing nodes. This form of parallelism works well with tasks where the data is
independent, meaning that one part of the data does not depend on any other part
of the data. With for example image processing, where each pixel, or voxel is pro-
cessed independently from any other pixel or voxel data parallelism works well.

SIMD (Single Instruction, Multiple Data) is a term from Flynn’s taxonomy which
is recognized as the simplest form of data parallelism. With SIMD a single instruc-
tion is performed on each element in the data. This is largely used as a concept
rather than actual practice when it comes to parallel programming. A more practi-
cal approach is to incorporate classical procedural programming with SIMD. This
is referred to as stream processing, and it take the concept of SIMD but instead of
just performing one instruction it performs several, in the same way procedural pro-
gramming handles instructions. This gives to possibility for higher efficiency as it
can allow higher arithmetic intensity compared to vector processing where data is
read and stored per instruction. As some instruction require more time than others,
stream processing can enable a more strategic approach to parallel programming.
The set of instructions that are applied to each part of the data is usually referred to
as a kernel.

An additional variation of stream programming is SPMD (Single Program, Multi-
ple Data), this incorporates the stream processing approach, but also includes the
option to use branching. Branching is typically done by if-else statements, and it
opens up the possibility that some of the data skip or include instructions, meaning
that all the data parts does not necessarily perform all the instructions.

2.3.3 Parallel architectures

Parallel computation requires hardware architectures that enables parallel compu-
tation execution. There are 4 general layers of parallelism in modern hardware,
multi-chip, multi-core, multi-thread and instruction. Modern processors use a com-
bination of these types of architectural parallelism.

Multi-chip: Several physical processor chips
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Multi-core: Multiple processing cores on the same chip

Multi-thread: Two or more threads on one processing core, that can be switched in
between with very little overhead and delay. This enables the processor to reduce
idle time.

Instruction: A processing core that can perform more than one instruction per cy-
cle.

CPU - Central Processing Unit
The CPU is the traditional processor found in computers, tablets, phones and so on.
It is the main processing unit in traditional systems. As stated earlier, traditionally
programs were executed serially on a single CPU, meaning that each instruction
was executed in a strict order. An internal clock, usually referred to as cpu cycle, is
used to control the rate in which instructions are computed. This clock, or cycle, is
also integral in synchronizing the various components in the computer. In general,
CPUs were made faster by increasing the amount of transistors, and by increasing
the clock frequency. To increase the frequency and the amount of transistors the
voltage has to be increased. This leads to an increased power consumption, and
while that might be manageable, the heat that increased power consumption pro-
duces is a problem. Around 2004, Intel’s CPUs throughput reached roughly 4 GHz.
This proved to become an estimated limit of what is practical to handle with con-
ventional cooling systems.

Because of this limit, the focus in CPU manufacturing changed from increasing
processing speed on a single core into increasing processing speed by using par-
allelism. As mentioned earlier, there are several approaches to parallelism that is
viable for different purposes. While supercomputers can do well by using several
connected computers in a multi-chip system, this is not viable for consumer grade
computers. A multi-thread and Instruction parallelism approach was and is effec-
tive, but in itself it was not enough to provide a solid base for future development in
processing speed. The focus turned to multi-core processors with multi-threading
and Instruction parallelism. This made the CPU capable of processing several dif-
ferent programs at the same time on the same chip. At the time of writing, CPUs in
the commercial market usually have four, six, eight or even sixteen cores.
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GPU - Graphic Processing Unit
A graphic processing unit, also known as a visual processing unit, is a specialized
processor. GPUs have several purposes, but as the name suggests, the primary fo-
cus is to process graphical content. GPUs does this very well compared to the
more general purpose CPU, as the calculations the GPU is intended for areas like
texture mapping, polygon rendering and coordinate transformations. All of these
operations can often be very memory intensive, promoting the trend of including
more and more integrated memory to the GPU, usually referred to as VRAM or
Video Ram. The nature of these operations in a graphical setting is also very uni-
form, meaning that in many cases the same set of instructions is to be performed
on each individual member of data. That makes the typical graphical operations
highly data parallelizable, and thus the development on GPUs over the years have
been to promote the parallel processing speed, by including more functional units,
more memory and so on. Therefore GPUs are typically a type of SIMD processor.
This means that a GPU is optimal for performing the same sets of instructions on
a collection of data in parallel. A GPU is better at this than an CPU because it
typically has hundreds of functional units. A functional unit is sometimes referred
to as a “core”, in the same way a CPU might have multiple cores. But this is not
entirely accurate, as McCool et al[30] defined a core as a processing element with
independent flow control. This is not true for the individual functional units on the
GPU. Instead the functional units on a GPU is grouped together, meaning that the
group of functional units all has to perform the exact same instruction in the same
cycle. Each of these groups can be referred to as a core, as they do fulfill McCool
et al[30] definition, but that might be easily misunderstood when considering that
“core” is usually used for the individual cores on a CPU.

GPUs usually comes in two forms, dedicated, or embedded/ integrated. The em-
bedded/integrated type of GPU is usually on motherboards. These are typically a
lot slower than dedicated graphics card. The dedicated GPU is a standalone card,
this allows for much more space for both additional functional units, more memory,
and dedicated cooling.

Most GPUs use the SIMD variation SPMD, meaning that they allow branching.
While this is practical and might make programming for the GPU easier, it does
create the need for both knowledge of how to use branching effectively, and the
necessary functionality in GPUs to handle when the branching is inconsistent, or
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divergent as it is typically named. If the instruction flow, or code flow for all the
execution threads in one SIMD group follows the exact same path with the same
branching, the code flow is convergent. When this is the case, the SIMD group can
simply process the data with no special treatment. But if this is not the case, if the
code flow is divergent, the GPU has to run all the different paths that are present
within the SIMD group, for all members of the group. That means that even if
one particular code flow on one particular functional unit does not branch or avoids
some branches entirely, it will still have to do it. The result of this is that the time
saved by performing parallel computation is lowered, or even negative. The GPU
will still be able to produce the correct result though, as it has masking techniques
to ensure that the unnecessary code that is run does not affect the final result.

2.4 FAST

The purpose of this thesis is to implement an segmentation algorithm for segmen-
tation and centerline extraction of the coronary arteries. This is to be implemented
within an already existing framework named FAST. FAST stands for Framework for
Heterogeneous Medical Image Computing and Visualization[43] and is developed
by Erik Smistad, Mohammadmehdi Bozorgi and Frank Lindseth. FAST primar-
ily focus is on computing medical images by utilizing the computational power
in GPUs. There are several benefits to implementing the algorithms required for
this thesis in FAST, it has functionality for visualization, a standardized execution
pipeline which helps with memory management and synchronization, and many of
the complementary tools needed to perform this kind of segmentation is already
present.

As the focus of FAST is to execute the necessary image processing algorithms on a
GPU, we will elaborate on some of the tools needed to exploit the parallel architec-
ture for general purpose programming on GPUs. This will also involve some of the
basics theory behind programming for parallel execution.

2.4.1 Parallel programming

In order for programs to exploit parallel execution, the CPU/GPU has to know what
it can run in a parallel manner. There has been and there are still compiler and pro-
cessor designers who tries to do this automatically. But so far, adapting serial code
to perform in parallel automatically, has largely been unsuccessful. To effectively
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run and write code for parallel architectures, explicit parallel languages, libraries,
and APIs are needed.

Message Passing Interface (MPI) is such an API. MPI is primarily used for writ-
ing parallel code on machines with distributed memory, such as supercomputers.
POSIX Threads (PThreads) is a more basic API for creating and managing threads
that run on the CPU. PThreads in itself only gives the programmer the capability to
use threads, it does not aid in synchronization or data management, therefore this
needs to be done by the programmer. OpenMP is another popular parallel program-
ming API. It covers more than PThreads in many ways, but it is more restrictive
in that it only works on shared memory systems. There are many other APIs out
there, like Linda, TCGMSG an alternative to MPI, PVM another one but designed
for networks, and many more.

There is also programming languages especially designed for parallel programming.
These were made as many of the older, and more popular programming languages
were not made with the express purpose of making parallel programming easy, or
understandable. Therefore, some programmers believe that new programming lan-
guages would be better suited for the task of parallel programming. X10 is one
example of such a language, it is developed by IBM and is heavily influenced by
Java and C++ in the effort to make it easy to learn for developers. Chapel is another
one, and is designed with the goal of increasing supercomputer productivity, but it
also works on smaller consumer grade systems.

GPUs and CPUs can be capable of doing the same thing, but programming for
them is sadly not the same, at least until the introduction of languages like OpenCL.
Solving a general purpose problem on a GPU was originally done by using shader
programming. Shader programming refers to using certain parts of the rendering
pipeline found in GPUs. There are several programming languages for this, like
GLSL, also know as OpenGL Shading Language, HLSL (High Level Shader Lan-
guage) and C for Graphics (Cg). But none of these languages are capable of solving
the general problem with shader programming. To solve general purpose problems
with shader programming the problem has to be transformed into a graphics ren-
dering problem, and this has in many cases proven to be a difficult and frustrating
task. Therefore new solutions, not only from external users but also from the GPU
producers were introduced. CUDA is a language/API developed by NVIDIA for
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general purpose programming on NVIDIA GPUs. This language made it possible
for a developer to exploit the power of NVIDIA’s GPUs without first transforming a
problem into a rendering problem. A few years later OpenCL was released, this was
inspired by CUDA and does many of the same things. It is much more inclusive, in
that it can be used for parallel programming on GPUs from several producers, on
CPUs and other parallel architectures.

2.4.2 OpenCL

Open Computing Language[22, 24] is a framework for writing programs that can
run on both CPUs and GPUs. More specifically, OpenCL is made to make pro-
gramming for heterogeneous platforms easier. OpenCL is ratified and maintained
by the Khronos group[24] but it is up to the GPU producers to make drivers and
compilers for OpenCL so that OpenCL code can run as specified in the standard on
that specifics producers hardware.

OpenCL consists of two parts:
OpenCL C Language - Is used to write kernels, and is effectively an extended ver-
sion of C.

OpenCL Runtime API - An API that is used to synchronize and control the different
devices available on the machine.

OpenCL is modeled to have a single host that distributes work to several devices.
The main distributer/executer is a thread running on the CPU. The additional de-
vices can be accessed through the OpenCL API, where the host can perform queries
towards these devices to get information about them. These queries are important,
as they make a difference in how these devices are programmed towards. Since
the available devices differ from system to system these queries are important, as
information like the number of compute units, or max clock frequency can make
a difference when programming for those devices. It is also the host’s responsi-
bility to compile kernels for each specific device. These kernels are written in the
OpenCL C language and they are command/instruction queues. As mentioned ear-
lier, OpenCL supports both task and data parallel execution, where the data parallel
model used is SPMD.
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When programming for a GPU OpenCL uses a NDRange hierarchy. An NDRange
can be in up to 3 dimensions and all the potential dimensions can be set. The
NDRange is then divided into work-groups based on the dimensions set. These
work-groups are divided again into work-items, and it is these work-items who ex-
ecute the kernels. Each kernel has a global-id, group-id and a local-id which is an
N-vector. All the work-items in a work-group run on the same compute unit. For

Figure 2.3: OpenCL execution model - NDRange

kernels written for GPUs in OpenCL C can access four different memory levels.
Each of these has different parameters for how they are shared, physical location,
speed and size. The largest, but slowest memory is the global memory. This can be
accessed by any work-unit and can be both written to and read from. The second
level is the constant memory. This memory works the same way as global memory
does, but it is smaller and read-only and that means that it can be accessed faster.
The third level is the local memory. This is accessible for each member of a work-
group. It is faster than the constant memory, but is usually quite small in size. The
fourth and final level is the private memory. The private memory is private to each
work-unit and is the fastest memory available, but is also the smallest in size.

2.4.3 Execution Pipeline

In addition to OpenCL, the execution pipeline FAST utilizes is important to how
both algorithms and additional components are implemented. The purpose of the
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Figure 2.4: OpenCL memory model

Memory Access Read/Write
Global All Read/Write

Constant All Read only
Local Work-group Read/Write

Private Work-unit Read/Write

Table 2.2: Table of GPU memory access

execution pipeline is to make sure that each individual component in a larger se-
quence is executed in the correct order. A program will probably have several com-
ponents, like initial gui creation, pre computation, execution on both the CPU and
GPU, and more. It is important that these components are executed in the correct or-
der to avoid synchronization issues like race condition or missing/unavailable data.
The execution pipeline in FAST consists of ProcessObjects. These are parent ob-
jects that are linked together to form the pipeline.

2.4.4 Data and access management

A ProcessObject can have DataObjects connected to it. DataObjects, as the name
implies controls the data any FAST implementation uses. The DataObjects, and
the connection between a particular DataObject and ProcessObject ensures that
synchronization errors like race-conditions and data validity doesn’t occur. Each
DataObject has an internal time-stamp, this time-stamp is updated each time data in
that particular object is changed. The connections between a DataObject and a Pro-
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cessObject also has an time stamp, this indicates which version of the DataObject
was used the last time the ProcessObject was executed. A DataObject can contain

Figure 2.5: FAST memory management

pointers to data on several devices, and in some cases the same sets of data can
be on different devices. Image and Mesh data are two of these cases, where the
same data can be in several different devices memory. This can be an error source,
as in when data is changed one device it no longer matches with the data on other
devices. FAST handles this by changing the affected data according to the original
change on the device where the change occurred. This ensures that the data, usually
an Image or a Mesh is the same on all devices.

2.4.5 Visualization

There are several renderers implemented in FAST. These are implemented with the
renderer object, which has ProcessObject as a parent class. Therefore the renderer
follows the execution pipeline, and the rules that it implements. FAST has also
integrated Qt. Qt is a well known framework and library used to develop application
software. In FASTs case, Qt is primarily used to develop GUIs. FASTs renderers
work on both 2D and 3D images, and is specialized to handle medical images. This
is a large benefit of using FAST, as implementing custom renderers is both time
consuming and difficult.

2.5 Coronary Artery Segmentation

In this thesis the main goal is to produce an accurate segmentation of the coronary
arteries with only a CTA image as input. A segmentation is a labeling of each voxel
in the CT image that determines if the voxel is a part of the coronary arteries or
not. There are two notable reviews on this topic by Kirbas et al[25] and Dehkordi
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et al[15] respectively. They both cover many of the same issues and reach a similar
conclusion.

In the review by Dehkordi et al[15] they divide the different approaches of coronary
artery segmentation into pattern recognition, model-based tracking and propagation,
neural network, fuzzy, and artificial intelligence based methods. They cover a large
number of suggested approaches within each method field, and discuss strengths
and weaknesses based on the presented results.

While the review by Dehkordi et al[15] focuses solely on coronary artery segmen-
tation, a review by Kirbas et al[25] focuses on vessel segmentation in general, and
applies them where applicable to the coronary arteries. The review by Kirbas et
al[25] is larger and more in-depth then the review by Dehkordi et al[15]. They cover
a large array of methods, and in a similar fashion as Dehkordi et al[15], they divide
the different methods into categories. The categories presented by Kirbas et al[25]
are: pattern recognition, model-based , tracking-based, artificial intelligence-based,
neural network-based, and miscellaneous tube-like object detection approaches.

At the 11th International Conference on Medical Image Computing and Computer
Assisted Intervention 2008 workshop ”3D Segmentation in the Clinic: A Grand

Challenge II”[7] a framework for validation and testing of coronary artery center-
line extraction was presented. This framework consisted of testing software, and 30
coronary artery centerline extractions done manually by professionals and validated
by professionals within the field. This eventually got the name Rotterdam Coronary

Artery Algorithm Evaluation Framework[17]. This framework allows for scoring
and validation of coronary artery centerline extraction algorithms on independent
data, and the algorithms tested are all ranked against each other with public scores.
This framework has stayed relevant since the release in 2008, and is still being used
today. Many of the algorithms that are currently ranked high where released after
2008.

In this chapter we will cover a basic introduction to the most common approaches
to coronary artery segmentation and centerline extraction. The review by Kirbas et
al[25] is used as the primary source of categorization, with the review by Dehkordi
et al[15] supporting, particularly within the artificial intelligence, machine learning
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and neural network categories. The ranking from MICCAI’08[7, 18] will provide
the final up to date reference for centerline extraction algorithms.

2.5.1 Pattern Recognition

The review by Kirbas et al[25] and the review by Dehkordi et al[15] covers a large
array of pattern recognition based methods. Kirbas et al[25] further divides Pattern
Recognition into several categories: Multi-scale, Skeleton-based, Region growing-
based, Ridge-based, Differential geometry-based, and Matching filters-based ap-
proaches. Some of the methods covered by Kirbas et al[25] are covered by Dehko-
rdiet al[15] to. But since the review by Kirbas et al[25] was conducted in 2003, and
the review by Dehkordi et al[15] was conducted in 2011 most of the approaches
covered by Dehkordi et al[15] are slightly more refined, but still follows the same
concepts.

Multi-scale-based Approach:
Multi-scale approaches performs the segmentation at several image resolutions. The
main advantage and motivation behind this technique is increased processing speed.
Large structures are extracted from a low resolution representation of the original
image and fine or smaller structures are extracted from either the original image or
an enhanced version. This general approach also offers another advantage in that
since the extraction of structures normally is done at least twice, there is a greater
chance that one or more of the iterations discover the same structures. And when
the same structure is detected more than one time they can both/all be used to refine
the final result.

The multi-scale approach is usually teamed with some other method of vessel de-
tection and/or segmentation to perform the actual segmentation, as the multi-scale
technique is used primarily to decrease processing time. Kirbas et al[25] referrers
to two implementations where the multi-scale approach is used: One is a 3D coro-
nary artery centerline extraction based on three resolutions where they use linear
programming and relaxation-based labeling on each resolution and then match and
extract from all three resolutions. The second one uses a multi-resolution analysis
based on wavelet transformation. Their implementation also aims to detect flow di-
rection and flow volume and they use velocity-sensitive, phase contrast MR images.
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Skeleton-based Approach:
Skeleton-based methods extract centerlines and then use them to perform 3D recon-
struction. Both Kirbas et al[25] and Dehkordi et al[15] covers some methods where
centerline extraction is used.

A method by Niki et al[33] uses a short scan cone-beam filtered back-propagation
reconstruction algorithm aided by a graph description of the blood vessels to ex-
tract the centerline and then uses thresholding and an object connectivity procedure
to perform the segmentation.

Another method where the goal is to segment airways in the lungs uses threshold-
ing, then a 3D thinning algorithm to extract the centerlines.

A more complex approach by Sorantin et al[44] is presented where a five step algo-
rithm is applied to a CT angiogram. Laryngo-tracheal tract(LTT) is extracted using
fuzzy connectedness based on a user-supplied seed points. 3D dilation is applied
to avoid uncertain boundary points due to partial volume effect. The resulting 3D
volume is then converted into cubic voxels based on interpolation. The second step
is then to apply a 3D thinning procedure on the volume from the first step. The
third step is to use a shortest patch searching algorithm on the thinned volume from
step two. This step requires the user to manually input start and endpoint on the
estimated central path. The forth step is to smooth the result, and the final step is to
calculate a cross-sectional profile along the medial axis of the smoothed result.

Both Kirbas et al[25] and Dehkordi et al[15] reviews several more methods where a
skeleton-based approach is used. Many of them use methods that are fairly similar
to the first and second method presented here.

Region growing-based Approach:
The region growing-based approach starts from one or more seed points, and iter-
atively/incrementally add neighbouring pixels or voxels to a the segmented region
based on some predefined criteria. It is based on the assumption that pixels or vox-
els that are close to each other and have similar intensity values belong to the same
object. The main disadvantage to region growing-based methods is that they often
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requires user-input for the seed points. Because of how the region grows incremen-
tally it is also vulnerable to noise and image artifacts as these can lead to holes or
leaking (over-segmentation). Both Kirbas et al[25] and Dehkordi et al[15] reviews
methods based on the region growing -approach.

O’Brien and Ezquerra[35] uses a region growing approach to extract centerlines of
coronary arteries from CT images. Their algorithm start with a low pass filtering of
the initial image as pre-processing. Then an initial segmentation by region grow-
ing is performed based on user provided seed points. After that the centerlines are
extracted from this initial segmentation by employing a balloon test. Undetected
vessel segments will then be located by a spatial expansion algorithm. Then graph
theory is applied to determine which centerlines to include in the extraction and
which centerlines to ignore.

Both Kirbas et al[25] and Dehkordi et al[15] reviews several more methods based
on region growing. Common for all of the methods covered is that they require user
input for the seed points, and that they use these points to either generate a center-
line, or to directly segment the target vessel based on the supplied seed points.

Ridge-based Approach:
Ridge-based approaches uses the ”ridges” created by intensity or gray-scale or some
other image characteristic mapping. The general technique uses intensity from a
gray-scale image as a 3D elevation map. The method builds on the assumption that
the local maxima in this elevation map are points in the segmentation/centerline.
These local maxima points can be used as a representation of the centerline alone,
or they can be used as seed points where the ridges are traversed based on the seed
points. Usually, methods which use the ridge-based approach generates a center-
line, therefore the methods presented here can also be classified as skeleton-based
approaches. Both Kirbas et al[25] and Dehkordi et al[15] reviews several methods
who utilize a ridge-based approach.

One of the main methods where the ridge-based approach is utilized is a method
by Bullitt and Aylward[3]. Their method relies on manually selected seed points
for each vessel to be extracted. An intensity ridge map is constructed and for each
seed the closest ridge is traversed. This results in a line of points generated from
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the traversal and for each point and estimate of the diameter of the vessel can also
be calculated based on the intensity map.

Aylward et al[2] uses the same technique described earlier but with further refine-
ment to more accurately extract centerlines. They apply the cores method[37] on
the intensity ridges. From manual seed points they locate the ridges to be traversed
by using a conjugate directions search with respect to the hessian matrix.

Differential geometry-based Approach:
Differential geometry based approaches treat images as hypersurfaces, and extract
features from these using curvature and the crest lines of the surface. This technique
is based on the assumption that the crest points of the hypersurface corresponds to
the centerlines of the vessel structure to be segmented. This method works for both
2D and 3D images, and they are modelled as 3D and 4D hyperstructures respec-
tively. For a 3D image the generated surface can be described by two principal
curvatures and by their corresponding orthogonal directions. The orthogonal cur-
vatures correspond to the eigenvalues of the Weingarten matrix and the orthogonal
directions are the eigenvectors. The local maxima of the maximum curvature given
by the hyperstructure are used as link points to create a centerline structure. Kirbas
et al[25] reviews several methods where differential geometry is used.

A method by Krissian et al[26] is reviewed where they use a Directional Anisotropic

Diffusion method derived from Gaussian convolution to reduce the image noise.
Their method is based on the differentiation of the diffusion in the direction of the
gradient, minimum, and maximum curvatures. One of the primary benefits with the
Directional Anisotropic Diffusion method used is that it effectively reduce noise,
without introducing significant blurring. This method is applied to a set of phantom
images, and produces an image where the vessels are significantly enhanced and
suited for some other extraction algorithm.

A method by Prinet et al[39] is reviewed where they utilize the method described
above. A cylindrical mathematical model is used to identify and represent the ves-
sels from the 3D/4D image generated from the general method presented. This
method requires no additional knowledge, and is fully automatic. This method gen-
erates a centerline, therefore it can also be classified as a skeleton-based method.
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2.5 Coronary Artery Segmentation

Matching filters-based Approach:
The matching filters approach uses as the name implies several matched filters to
extract the objects in question. For vessel extraction these filters is normally dif-
ferentiated by the size and orientation of the vessels to be extracted. Then after
the filters has been applied some other image processing or extraction method, like
thresholding to get the final segmentation and/or centerline extraction. Kirbas et
al[25] reviews a few methods where the matching filters principle is applied.

A method presented by Poli and Valli[38] is reviewed where they use a set of mul-
tiple oriented linear filters obtained as linear combination of properly shifted Gaus-

sian kernels to detect vessels in real time. The filters applied are sensitive to both
different orientation and thickness of the vessels to be extracted. In addition to this
they use convolution masks to obtain maximum efficiency of the vessels. And they
use the orientation and scale information obtained from the linear filters to only
extract vessels and no other structures. This results in a centerline, and they use
thresholding with hysteresis[8] to perform the segmentation based on that.

2.5.2 Model-based Tracking and Propagation

Model-based tracking and propagation approaches attempt to apply vessel models
to extract or identify vessel structure in medical images. Kirbas et al[25] divides
the different model-based and propagation approaches into four general categories:
deformable models, parametric models, template matching and generalized cylin-
ders. Generalized cylinders is a spacial case of the parametric approach, and will
be included in the short explanation about the parametric models.

Deformable models:
Deformable models is a generalization of methods where one or more deformable
objects interact with image characteristics through internal and external forces. The
active contour model or snakes is probably the most popular method within the de-
formable models category. The snakes method is a general method where a line or
”snake” of connected points are affected by external and internal forces. Each of
the points on the line is affected by theses forces, and by each other. The internal
forces impose smoothness and connectivity to the snake. They enforce that the line
does not rip apart, or bend in curves. The external force pull the points in the line
towards the desired image features.
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These two forces makes the deformable line robust to both image noise and arti-
facts. The main disadvantage with this model is initialization. Where the snake or
snakes are positioned at initialization, or how long each snake is, make a significant
difference for the end result. Each snake needs to be handled individually, but it
is also necessary to avoid collision and overlap between the snakes. Therefore, it
is advantageous to have a limited number of snakes active, at good positions, so
that the results are satisfactory and the computational load is manageable. Kirbas et
al[25] reviews several implementations of this and very similar methods.

Parametric models:
The parametric approach tries to identify objects of interest parametrically. In gen-
eral, for vessels and tubular objects, and assumption is made that their general shape
is a set of overlapping ellipsoids. This is normally referred to as the circular ves-
sel model. On of the problems with this model is irregular vessel shapes. Vessel
junctions, irregular vessels in general, or vessel stenoses might not fit within the el-
lipsoids shape assumption and negatively affect the results produced. Therefore, in
practice this method is usually teamed with some other method to detect the shapes
that fall outside of the overall assumption. Kirbas et al[25] reviews a few methods
where this approach is used, most of these are teamed with either an artificial intel-
ligence method or a pattern recognition method.

Template matching:
The template matching approach attempts to recognize a structure, or structures in
an image. This method normally uses a priori knowledge normally referred to as a
context or a template to match with the potential structures in the input image. For
coronary arteries this context is usually a series of points or nodes that is deformed
within some restrictions to fit the structures detected in the image. Kirbas et al[25]
reviews a few methods where this approach is used. These methods vary in that
they use different methods for the deformation to fit the objects to be identified.
Petrocelli et al[36] uses dynamic programming to handle the deformation. Sum-
mers and Bhalerao[45] uses an estimation system where they estimate features like
flow direction, vessel angle, and diameter to attempt to perform the deformation.

2.5.3 Artificial Intelligence

The Artificial Intelligence category is very broad. Kirbas et al[25] defines it as
methods who utilize knowledge to guide the segmentation or detection process and
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2.5 Coronary Artery Segmentation

the delineate vessel structures. This knowledge can be general knowledge about
the imaging technique used, the area captured in the image, knowledge about the
patient or the patient condition, and much more. In practice many, if not all the
methods covered here can be classified as AI methods. Smets et al[42] presents 11
general rules about the appearance of blood vessels. The main disadvantage Kirbas
et al[25] argues is the computational complexity of most AI detection and segmen-
tation methods. Therefore, artificial intelligence approaches are usually combined
with other less complex methods to remove some of the unwanted information and
reduce the computational load the AI method needs to process. As mentioned ear-
lier the review by Kirbas et al[25] was done in 2003. Since then there has been
significant development within the AI field when it comes to medical image analy-
sis.

Several newer methods tested with the MICCAI’08[7, 17, 18] framework utilizes
AI techniques and methods. Some algorithms, like the one presented by Schaap et
al[41] and the one presented by Kitamura et al[55] are based on machine learning.
While others, like Zheng et al[54], Szymczak et al[46], Lesage et al[29], Yang et
al[53], Cetin et al[9], Krissian et al[28], and Bauer et al[6, 5] are based on expert
knowledge and intelligent searching.

A method presented by Friman et al[21] utilizes a multiple hypothesis tracking ap-
proach which is complemented by a minimal path search when needed. They de-
scribe their algorithm as an ”interactive approach to the identification of coronary

arteries”. By that they refer to the fact that their method is not fully automatic.
How much user interaction that is required varies depending on how well the multi-
ple hypothesis tracking algorithm performs. But some interactions is required, both
starting points and end points need to be supplied by the user. If the hypothesis
tracking algorithm performs well, in that it produces a complete connected center-
line network, then no more user input is required. The minimal path search then
works as a backup solution, where the user can supply more start and endpoints,
and the minimal path search will attempt to connect them. Finally, if the centerline
network is still incomplete, their algorithm and design allows the user to manually
trace the centerline.

A method presented by Zheng et al[54] uses a model-driven approach. Their algo-
rithm attempts to first locate the general area of the coronary arteries by detecting
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the heart chambers, and then attempting to place a mean centerline in close relation
to the heart chambers. Then the mean centerline is transformed iteratively based
on image information to fit the coronary arteries. This transformation is done by
analyzing each ”point/coordinate” in the mean centerline, searching for the best
candidate among a field of neighbours based on a cost function, its distance from
the already located best points in previous iterations, and a balancing parameter.
This method utilizes machine learning in both the creation of the mean centerline,
and in balancing the cost function, and in the weighting of distance versus cost score
within the overall cost function.

Szymczak et al[46] algorithm for centerline extraction consists of two major steps.
The first step is to identify core points. These points are centers of intensity in
two-dimensional slices through the input image. Then, a weighted core graph is
constructed by connecting nearby core points with edges. These edges are con-
structed by a shortest path weighted search. Then when all the core points have
been processed, the output is the shortest path connecting the starting point and the
endpoints. The starting point and the endpoints can be detected automatically (i.e
core point with only one connection), or they can be user supplied.

Yang et al[53], Krissian et al[28] and Bauer et al[6, 5] all have strong similarities
in their methods for extraction of the coronary artery centerlines. In all three meth-
ods they use variations of Frangi et al[19] tubular detection filter to detect potential
points within the arteries. Bauer et al[6, 5] uses the conventional Frangi et al[19]
vesselness filter, while Krissian et al[28] uses a an vesselness estimation filter simi-
lar to a circle fitting filter. Yang et al[53] vesselness filter utilizes the base of Frangi
et al[19] filter, but removes points at the boundaries of the cardiac chambers.

Then the points/scores created by the vesselness filters are processed to create the
centerlines. Yang et al[53] chooses the most promising points, and uses these as
start points in a ridge traversal search manner. The search is supported by bio-
mechanical metrics, to avoid errors as big and sudden direction changes, or invalid
connections.

Krissian et al[28] uses a region growing approach based on the most prominent
vesselness points. Where the most prominent points are calculated based on their

28



2.5 Coronary Artery Segmentation

vesselness score, and its location relative to each other and the aorta. Region grow-
ing is then utilized based on the two best points. The region growing algorithm is
limited by estimated radius, to avoid leakage, and extraction of the aorta, and it is
limited by range and step size. This results in a segmentation, and the centerline is
extracted by simply tracking the center of the segmentation.

Bauer et al[6, 5] uses a ridge traversal approach based on the Hessian matrix gen-
erated from the intensity changes in the original input image. Several of the most
promising points from the vesselness algorithm is selected, and for each point the
closest ridge is traversed in both directions. The ridge traversal is supported by
avoiding sudden shifts in direction and leniency for a limited distance to reduce
noise problems. After all the promising points have been traversed the shortest
traversals are discarded. The remaining lines are then attempted linked up based
on bio-mechanical metrics in a cost function focusing on angle between lines to be
connected and distance.

Then all of the methods has a post-processing routine where the longest connected
centerline, where the average radius is within some threshhold and the HU value
within some threshhold, is selected as the complete centerline for the coronary ar-
teries. All of these methods are very close to each other in results.

In practise it seems like the usage of expert knowledge is a requirement to achieve
accurate results when it comes to coronary artery centerline detection and extrac-
tion.

2.5.4 Machine Learning

Machine learning is a broad term used to simply describe algorithms that in some
way improve, or adapt based on data or training. There are several sub categories of
approaches to machine learning. The review by Kirbas et al[25] only covers Neural

network based machine learning approaches, and the review by Dehkordi et al[15]
only mentions it. Yet, two of the algorithms tested on the MICCAI’08[7, 17, 18]
framework utilizes machine learning. Their performance is comparable to the other
algorithms ranked by the MICCAI’08[7, 17, 18] framework.
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Kiramura et al[55] algorithm uses the Hessian matrix combined with machine learn-
ing to detect candidate points within the coronary arteries. They describe the ma-
chine learning component as a classifier, as its purpose is to determine whether a
structure is a part of the vessel tree or not. The classifier is thought by the Adap-

tive Boosting algorithm[20] by exposing it to both positive and negative training
samples. The positive training samples are manually labeled centerlines and vessel
contours. The adaptive boosting algorithm learns the classifier that discriminates the
positive and negative samples through sequentially combining the feature vectors of
the samples. The feature vectors where extracted using Haarlike filtering[48]. The
candidate points are then connected through a graph reconstruction algorithm con-
sisting of three steps, shape model, matching method and energy matching. The
construction of the shape model is done by placing 30 relative connected points.
The relative position of these points is decided through the same machine learning
algorithm mentioned earlier. Then the extracted candidate points matched to this
model by applying an energy function that works in a similar manner to the Snake

algorithm described in the model-based approach chapter. This ensures that the
original candidate points keep their general shape while still adapting to the model
shape. This results in a centerline for the coronary arteries.

Schaap et al[41] proposes an algorithm fairly similar to the algorithm presented by
Kiramura et al[55]. Schaap et al[41] utilizes machine learning to attempt to es-
tablish a general shape of the vessel structures normally observed in the coronary
arteries. Their method is coined at improving an already existing centerline, and
they describe this as a rough centerline that can either be manually labeled or de-
livered by some other centerline extraction algorithm. Schaap et al[41] algorithm
improves upon the rough centerline in a similar fashion as Kiramura et al[55] where
the rough centerline is deformed based on several factors to more closely resemble
the general shape of the thought vessel tree.

2.6 Conclusion from background study

For this thesis the objective is to implement an automatic coronary artery segmen-
tation algorithm, and to utilize the parallel capabilities of a GPU. Based on these
requirements some of the approaches presented above can be eliminated as options
for this thesis. Any of the algorithms presented that are not fully automatic, mean-
ing that they require more then just a single CT image as input are not applicable.
Second, it will be advantageous to use an approach that is compliant with a parallel
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implementation. While it is possible to utilize a GPU with a serial approach, it is
much slower and in many cases both less reliable and slower then a serial imple-
mentation for a CPU. Third, while the assignment doesn’t specifically say anything
about it, choosing an approach that relies on large amounts of training data could
also lead to difficulties. As training data for segmentation algorithms normally are
manual segmentations performed by experts in the field. These manual segmenta-
tions are very time consuming to make, and most approaches that requires training
data need many of them.

Therefore, many of the approaches covered in the Neural Network and Artificial
Intelligence sections are non applicable for this thesis. Some of the approaches
covered in Pattern Recognition, Model-based Tracking and Miscellaneous also re-
lies on additional human interaction, and are also non applicable. The methods
presented by Bauer et al[6, 5], Krissian et al[28] and Yang et al[53] all fulfill these
requirements. The method presented by Krissian et al[28] utilizes region growing
from a low number of seeds. This means that the method is not very applicable
for parallel execution. Yang et al[53] and Bauer et al[6, 5] are very similar, where
their approaches can easily be divided into stages, and the same stages for both are
very applicable for parallel execution. Bauer et al[6, 5] approach is slightly more
applicable for a parallel execution. They utilize the Hessian matrix, with the corre-
sponding eigenvectors and eigenvalues, preparing and processing this information
is data parallel. Then a ”simple” vesselness filter is used twice, both of these are
also data parallel, before a ridge traversal is performed which largely isn’t very ap-
plicable for a parallel execution. Yang et al[53] also uses a ridge traversal method
that suffers from the same parallel execution issues as Bauer et al[6, 5] approach.
Both Yang et al[53] and Bauer et al[6, 5] presents methods for segmentation based
on the centerlines they produce. Therefore, the approach we have chosen to focus
on is the one by Bauer et al[6, 5], supported by some of the methods presented by
Krissian et al[28].
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Chapter 3
Methodology

This chapter describes our implementation of a coronary artery segmentation and
centerline extraction algorithm. As stated in the conclusion of the background study
we have chosen to base our implementation on the method presented by Bauer et
al[6, 5]. As stated in the background chapter, our implementation will be in the ex-
isting framework FAST[43]. This framework was made with the purpose to support
parallel implementations on GPUs and works as a solid base for our implementa-
tion. FAST utilizes C++ and OpenCL, and those two programming languages will
therefore also be the languages we use in our implementation.

The method proposed by Bauer et al[6, 5] presents a collection of steps, ordered in
a pipeline. The steps are: Pre-processing, Tubular detection filter, ridge traversal,
grouping and linking, and segmentation.

The first step, pre-processing is a collection of operations and algorithms. These
algorithms and operations include optional de-noising, creation of the gradient vec-
tor field, gradient vector flow, and conversion to Hounsefield units. There are two
de-noising filters available in FAST[43], Gaussian smoothing and Non-local means.
In Bauer et al[6, 5] method the de-noising is stated as optional, so in the results and
discussion chapter we will present results with and without these filters applied, and
later discuss whether they should be utilized or not. All the components of the pre-
processing step will be explained in greater detail in chapter 3.1.

The tubular detection filter step involves running the tubular detection filter twice.
The first is run on the gradient vector field, the second is run on gradient vector
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field with gradient vector flow. The purpose of doing this is to detect both small
and large tubular structures. Bauer et al[6, 5] uses a vesselness filter purposed by
Frangi[19]. In our implementation we have also used this, yet in FAST there is an
alternative filter implemented, known as a circle fitting tubular detection filter pro-
posed by Krissian et al[28, 27]. This tubular detection filter is more computationally
expensive to execute, yet if it provides fewer but more accurate points the overall
execution time can be lowered. Therefore our implementation can utilize either of
these filters. In the results and discussion chapter we will present results for both of
these tubular detection filters, and their corresponding execution times.

The ridge traversal step is closely linked with the linking and grouping step. The
ridge traversal algorithm proposed by Bauer et al[6, 5] produces several centerlines.
Most of these centerlines should form a graph tree, yet because of the nature of the
coronary arteries there will probably be some smaller vessels that are not connected
to the overall tree. The grouping and linking step processes those and attempt to
connect them to the final centerline tree. Both of these steps are implemented ac-
cording to the description by Bauer et al[6, 5].

The final step is the segmentation step. The inverse gradient flow tracking algorithm
is described by Bauer et al[6, 5] but not utilized for segmentation of the coronary ar-
teries as the overall objective of their proposal was to produce an accurate centerline
extraction. Yet the inverse gradient flow tracking algorithm is used here because it
utilizes the gradient vector field, and it has been proposed by Bauer et al[6, 5] for
similar vessel segmentation purposes.

3.1 Pre-processing

3.1.1 Hounsefield unit conversion

The intensity values of X-ray and CT images are measured in Hounsefield Units
(See chapter 2.2.2). These values correspond to the radiation absorption amount of
the tissue at a specific location, and can therefore be used to distinguish different
types of tissue from each other. Air is estimated to be around -1000 HU, while
bone is roughly between 700 and 3000 HU. In this thesis the objective is to extract
the centerlines of and segment the coronary arteries from CTA images. As stated
earlier in chapter 2.1 and 2.2 a contrast fluid is injected into the vessels in question
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Figure 3.1: Diagram of algorithm

to makes them more visible in the image. Vessels with contrast fluid is estimated to
have a HU value around 200.

Any value significantly outside of this range is largely irrelevant for this thesis. In
chapter 3.1.2 and 3.1.3 we will see that the gradient results depends on the intensity
displayed in the image. Therefore to limit the amount of false positives, and to
reduce the amount of data the other parts of the implementation needs to process,
the HU values observed in the image is capped at 500. Any value greater than that
is simply set to 500. The same action is performed on any value lower then 0, where
any lower value is set to 0. These two variables are labeledHUmin andHUmax. The
remaining values between 0 and 500 are scaled so that the range of intensity values
is converted to a floating point number from 0.0 to 1.0. The equation used for this
can be seen in equation[3.1].

I(~v) =

1.0 if I(~v ≥ HUmax)

I(~v)−HUmin
HUmax−HUmin else

(3.1)
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3.1.2 Gradient vector field

The purpose of this step is to prepare information for several other steps. Tubular
Detection Filters (TDFs) are used to detect tubular structures, such as vessels in
3D images. TDFs usually perform some sort of shape analysis on each voxel in an
image and return a value indicating the likelihood that a specific voxel is a part of a
tubular structure.

Hessian-based TDFs are TDFs that uses the Hessian Matrix for the shape analysis.
The Hessian matrix is a set of variables that represent the second-order derivative in-
formation at any specific voxel position, while the first order derivative information
at any specific voxel in each direction is refereed to as the gradient. The first order
derivative information, denoted ∇I(~v) = (∂I(~v)

∂x
, ∂I(~v)

∂y
, ∂I(~v)

∂z
), where ~v is a voxel.

These vectors corresponds to the change in intensity values in all three direction at
the voxel position. The direction of these vectors indicate the direction of largest
intensity change, and the magnitude of the vector |∇I(~v)| indicates how much the
intensity changes in that direction. The second-order derivative information needed

Figure 3.2: Gradients of a sliced, ideal tube

for the Hessian matrix can then be extracted from the first-order derivatives by cal-
culating the gradients again on each component of the first-order derivative. The
Hessian matrix H(~v) is a matrix of these three gradients. Each of these gradients
describes the change of the change of intensity in their respective direction.

H(~v) =

 ∇(∇I(~v)x)∇(∇I(~v)y)
∇(∇I(~v)z)

 =


∂2I(~v)
∂xx

∂2I(~v)
∂xy

∂2I(~v)
∂xz

∂2I(~v)
∂yx

∂2I(~v)
∂yy

∂2I(~v)
∂yz

∂2I(~v)
∂zx

∂2I(~v)
∂zy

∂2I(~v)
∂zz

 (3.2)
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Calculating the Hessian matrix for each voxel is needed for both of the TDFs de-
scribed in chapter 3.2.2 and 3.2.3. The task of calculating the Hessian matrix is very
well suited for a parallel execution. Each voxel in the image can be processed indi-
vidually while only relaying on information from the original image. The product
created when all voxels have been processed is refereed to as the gradient vector
field in this thesis.

In our implementation we calculate the gradients by using a central difference
scheme which looks at two neighbouring voxels in each direction and calculates
the variation as shown below (x,y,z indicates direction):

∇I(~v)x =
I(~v + (1, 0, 0))− I(~v − (1, 0, 0))

2
(3.3)

∇I(~v)y =
I(~v + (0, 1, 0))− I(~v − (0, 1, 0))

2
(3.4)

∇I(~v)z =
I(~v + (0, 0, 1))− I(~v − (0, 0, 1))

2
(3.5)

To further prepare the gradients for the next step in pre-processing (gradient vector
flow), they need to be normalized. The normalization is required to promote con-
trast invariance, and to make sure that the gradient information that is significant for
this project is maintained through the gradient vector flow process. The parameter
Fmax is used as a threshold for the gradient magnitudes, all magnitudes above this
value will then be scaled to max length. This is necessary for the next step gradient

vector flow to work, and it makes the gradient creation and consequently the gradi-

ent vector flow less sensitive to noise. The equation below shows how the gradient
vector field is normalized:

~V n(~v) =


~V (~v)

|~V (~v)|
if |~V (~v)| ≥ Fmax

~V (~v)
Fmax

else
(3.6)
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3.1.3 Gradient vector flow

The purpose of gradient vector flow is to propagate the gradient information away
from the original gradients. While this to some extent will diffuse the gradients, it
will maintain the original information where the gradients is of a significant magni-
tude. This quality, in the context of tubular detection is known as edge preservation
or feature preservation. This is because all the Hessian-based TDFs detect tubular
structures based on the assumption that the edge of a structure will either be at a
valley or ridge, meaning that the edge will be where two or more gradients point
towards each other. In this case, the purpose of using gradient vector flow is to en-
able gradient information at positions further away from an edge while preserving
the original edge information. This is necessary for detection of larger structures,
and for the segmentation algorithm described in chapter 3.5. Gradient vector flow

Figure 3.3: Gradient vector flow illustration

was originally introduced by Xu and Prince[52] as an external force field for active
contours. The gradient vector field created by the gradient vector flow attempts to
minimize the energy function below.

E(~V ) =

∫
µ|∇~V (~x)|2 + |~V0(~x)|2|~V (~x)− ~V0(~x)|2d~x (3.7)

Xu and Prince[52] also presents a solution to iteratively utilize gradient vector flow
by solving the following Euler equation for each vector component independently:

~0 = µ∇2~V − (~V − ~V0)|~V0|2 (3.8)
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This equation is solved by treating ~V as a time function and the resulting equation
can be solved by utilizing the numerical scheme shown in algorithm 1. The lapla-
cian∇2~V (~v) is approximated by using a 6 point finite difference scheme.

Algorithm 1: Gradient Vector Flow
for implementation specific number of iterations do

for all point ~v = (x, y, z) in image do
laplacian← −6~V (~v) + ~V (x+ 1, y, z) + ~V (x− 1, y, z) + ~V (x, y +

1, z) + ~V (x, y − 1, z) + ~V (x, y, z + 1) + ~V (x, y, z − 1);
~V (~v)← ~V (~v) + µ∗ laplacian −(~V (~v)− ~V0(~v))|~V0(~v)|2;

end
end

3.1.4 Gaussian Smoothing

Gaussian Smoothing as a very common algorithm to reduce noise and to reduce
detail. It is widely used and has many applications. In this case it can be useful
to enhance the propagation of information in Gradient Vector Flow. The purpose
of GVF is to propagate the edge information towards the center, so that the Tubular
Detection Filters can utilize the information later. This can be done by running many
iterations of GVF, or it can be made easier by applying a Gaussian Smoothing filter
on the image first to aid the GVF in the propagation.

Gaussian Smoothing is done by convolution of the image with a Gaussian kernel
with a standard deviation σ. The Gaussian Smoothing algorithm utilized in our
implementation is included in FAST and utilizes discrete convolution by calculating
a new value for each voxel based on the weighted sum of the neighbouring voxels.
The size of the neighbourhood is determined by σ in the following manner, N =

2[3σ] + 1, giving a NxNxN neighbourhood. The weight for the current voxel, and
the each neighbouring voxel is calculated with the equation shown below. W is for
normalization, and is equal to the sum of the weights.
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(I ∗Gσ)(~v) =
1

W

[3σ]∑
x=−[3σ]

[3σ]∑
y=−[3σ]

[3σ]∑
z=−[3σ]

I(~v)e−
x2+y2+z2

2σ2 (3.9)

3.1.5 Non-Local Means

Non-Local Means is an algorithm used to reduce noise. It does this on a per
voxel basis, making it ideal to be executed on a GPU. For each voxel the algo-
rithm inspects several neighbourhoods surrounding the voxel in an attempt to iden-
tify neighbourhoods that are similar to the neighbourhood surrounding the original
voxel. Each neighbourhood inspected is given a weight dependent on how similar
the neighbourhood is. This is based on the assumption that the averaging of voxels
in a similar environment, with a similar color/intensity will produce the true voxel
value.

Ideally, the search for voxels with similar environments should be done in the entire
image, thus the name Non-local. In practise though that would be very computation-
ally expensive, so a limitation, or window(Wsize) is introduced. The window(Wsize)
limits the search area around a the voxel to be de-noised. Each voxel inside the
window acts as a centerpoint for an environment. These environments are normally
refereed to as groups. The group(Gsize) around the voxel to be de-noised, and each
group around each voxel in the window, is compared in the search for viable voxels
to include in the averaging. There are several variations on how the comparisons be-
tween groups are judged and weighted. The two most common is, a genuine average
of the voxel value of all the voxels except the center voxel, and a Gaussian kernel.
Since Gaussian Smoothing will be utilized in this project the averaging method will
be used. In addition to the averaging, a de-noising parameter(NLMs) is introduced,
meant to balance the effect of the algorithm. Psudo-code of our implementation of
Non-Local Means, for each voxel in the CTA image can be found in Algorithm 2.

3.2 Tubular detection filters

As mentioned earlier, the two TDFs that will be utilized in this thesis are Frangi’s
vesselness filter and Circle Fitting TDF by Krissian et al[28, 27]. These two repre-
sent the two major categories of TDFs, central TDFs and offset TDFs. Central TDFs
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3.2 Tubular detection filters

Algorithm 2: Non-Local Means
Vp ← voxel to be de-noised;
for each voxel w within Wsize do

for each voxel pi around v within Gsize do
C ← pi − Vpi

end
NormSum += C ∗NLMs;
Sum += C;

end
Vp ← Sum/NormSum

is a subcategory of TDFs that only use information at or close to the current voxel.
While Offset TDFs use information at specific offsets (usually predetermined) from
the current voxel, as well as information from the current voxel. Offset TDFs can
utilize more information than central TDFs and that can give higher accuracy, but
the added complexity increases the execution time.

Both the vesselness filter and the circle fitting TDF are, as mentioned earlier, Hessian-
based TDFs. That means that they utilize the Hessian matrix in an attempt to deter-
mine whether a voxel is a part of a tubular structure or not. This is based on four
basic observations about tubular structures and their corresponding first and second
order derivatives.

Figure 3.4: Slice views of ideal tubular structures and gradients

The four observation can be deducted from the figures 3.4, 3.5, 3.6.

1. The smallest change in intensity is in the same direction as the direction of the
tube. (See figure 3.4)

41



Chapter 3. Methodology

Figure 3.5: Graph of first order derivatives

Figure 3.6: Graphcs of second order derivatives

2. The largest change in intensity is in the cross-section plane of the tube (see figure
3.4)

3.The gradient, or first order derivatives, creates a valley or ridge at the center of the
tube depending on whether the tube is dark or light.(see figure 3.4 and 3.5)

4. The largest change in intensity ∂2I(~v) is at the center of the tube, because the
gradients present there change direction.(see figure 3.5)

These four observations can be used to detect tubular structures. This could be
done by checking all possible tube direction and their corresponding derivatives,
but this would be a very computationally expensive task. Therefore, an alternative
solutions is needed, and the eigenanalysis with it’s corresponding eigenvectors and
eigenvalues are just that.

3.2.1 Eigenvectors and Eigenvalues

The N eigenvectors of a NxN matrix are non-zero vectors with N components.
Eigenvectors have the property that when multiplied with their corresponding ma-
trix, they remain parallel to that matrix. Each eigenvector ~ei has a corresponding
eigenvalue λi. That is the factor the eigenvector is scaled by when multiplied with
the matrix.
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3.2 Tubular detection filters

H~ei = λi~ei (3.10)

The Hessian matrix is a 3x3 symmetric matrix, and therefore it has 3 eigenvec-
tors and 3 eigenvalues. The eigenvectors are orthonormal, meaning that they are
all normal to each other. The eigenvectors can be interpreted geometrically. The
eigenvectors correspond to the directions of the second order derivatives, which are
the directions in the volume where the curvature is both the largest and smallest.
Based on observation 1. and 2. we can determine that one of the three eigenvectors
will correspond to the direction of the tube, and that the other two will be in the
cross-sectional plane of the tube. To determine which eigenvector is which, we can
use the eigenvalues.

If we sort the eigenvalues, and their corresponding eigenvectors so that we have the
relation: |λ1| < |λ2| < |λ3|, the direction of the tube will be given by ~e1 because
it is the eigenvector with the smallest magnitude. The eigenvalues correspond to
the principal curvature (in this case change in intensity change) which means that
they correlate to the amount of curvature. Based on observation 1. we can conclude
that the eigenvector with the smallest eigenvalue magnitude will also point in the
direction of the tube. Based on this we can also determine that ~e2 and ~e3 will be in
the cross-sectional plane of the tube and therefore have high eigenvalues. As men-
tioned earlier, this is because the change in intensity is higher in the cross-sectional
plane of the tube, and because all the eigenvectors are orthonormal. The figure be-
low illustrates how the eigenvectors relate to each other and to a tube. We use the

Figure 3.7: Ideal tubular structure with eigenvectors
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absolute value of the eigenvalues because the sign of the eigenvalues only indicate
the direction of the gradient. While this is relevant in specific cases, it only deter-
mines if the tube is white or black, and the background is white or black. If the
tube is white and the background is black, λ2 and λ3 will be negative. In the reverse
case, both λ2 and λ3 will be positive. Ideally, based on the figure, and the observa-
tions mentioned earlier, a tubular structure with its corresponding eigenvectors and
eigenvalues should have these qualities:

|λ1| ≈ 0 (3.11)

|λ1| << |λ2| (3.12)

|λ2| ≈ |λ3| (3.13)

In table 3.1 we show which type of structures correspond to different configura-
tions of eigenvalues. The Hessian matrix and the eigenanalysis to detect tubular

λ1 λ2 λ3 Structure

-H -H -H Blob (Dark)

+H +H +H Blob (Dark)

L +H +H Tubular (Dark)

L -H -H Tubular (Bright)

L L +H Plate (Dark)

L L -H Plate (Bright)

Table 3.1: Table of tubular shapes

structures relies on the gradient information. In the event where there is very little
intensity change, like in the center of a large tubular structure, it is not possible to
calculate the Hessian. Therefore a technique for propagating the needed informa-
tion away from the edges is needed. In this case that method is gradient vector flow
and is described in 3.1.3.
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3.2 Tubular detection filters

There are several algorithms for calculating eigenvalues and eigenvectors of a ma-
trix. The one used in FAST is QL, The idea of QL is that, that any real matrix can
be decomposed to the form:

H = Q · L (3.14)

Where Q is the orthogonal matrix and L is the lower triangle of the Hessian. The
Householder transformation is used to get this decomposition. QL is an iterative
algorithm that performs a sequence of transformations that will eventually converge
into the eigenvalues and the eigenvectors. QL start with H0 = H , then for each
iteration i it finds the orthogonal and lower triangle matrix of the current matrix Hi

and generate the next matrix Hi+1 by applying the equation below.

Hi+1 = Li ·Qi (3.15)

After several iterations the eigenvectors will appear at the columns of the orthogonal
matrix Qi and the eigenvalues will be on the diagonal of the Li matrix. The time
complexity for QL isO(n3) per iteration. The implementation in FAST is an implicit
adaptation from the tql2 subroutine from the Fortran library EISPACK.

3.2.2 Frangi vesselness filter

The Frangi vesselness filter[19] is a very popular, and fairly simple TDF. It uses
three variables: a, b and s, in addition to the eigenvalues. These three variables are
used for weighting of three criteria,Ra,Rb, and S. Ra andRb are geometric criteria,
meaning that they attempt to determine what shape that is present at and around the
current voxel, S is a noise handling criteria. Each of these criteria are weighted by
the three variables, this gives the filter flexibility, and adaptability to handle varying
circumstances.
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Ra purpose is to distinguish between plate-like and line-like structures, whileRb in-
dicates blob-like structure. And the purpose of S as mentioned earlier, is to provide
robustness against noise.

Ra =
|λ2|
|λ3|

(3.16)

Rb =
|λ1|√
|λ2||λ3|

(3.17)

S =
√
|λ1|2 + |λ2|2 + |λ3|2 (3.18)

These criteria makes more sense if you consider the eigenvalues as the length of
each of an ellipsoids axis. This also makes it clearer that the criteria above relies on
the eigenvalues being sorted to form the relation |λ1| < |λ2| < |λ3|. By imagining
this, a perfect ellipsoid in this case would be almost flat in that |λ1| should be very
small, and |λ2| and |λ3| should be large. Frangi et al[19] combines Ra, Rb and S
into the expression below, where a tube-like structure should have a high Ra and a
low Rb.

V = (1− exp
(
− R2

a

2a2

)
)exp

(
− R2

b

2b2

)
(1− exp

(
− S2

2c2

)
) (3.19)

To detect both small and large tubular structures the Frangi vesselness filter[19] is
run twice. First it is applied to the gradients produced in pre-processing (chapter
3.1.2), then it is applied to the resulting gradients after the original gradients have
been treated with the gradient vector flow algorithm (chapter 3.1.3). This produces
two outputs for every voxel in the original image, and they will both be utilized later
by the ridge traversal algorithm (chapter 3.3).
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3.2 Tubular detection filters

3.2.3 Circle-fitting TDF

The Circle Fitting TDF by Krissian et al[28, 27] is a computationally more expen-
sive method than the vesselness filter, yet it can return better results. It works by
using each voxel as a center point, and from there slowly expand a circle until some
border is reached. As stated earlier, an ideal circular structure should have a very
small |λ1| value, and larger |λ2| and |λ3| values. The Circle Fitting algorithm does
not utilize the eigenvalues, but rather the eigenvectors, and the same rule applies for
them.

The two eigenvectors ~e2 and ~e3 is used to construct a circle in the cross-sectional
plane. First a very small radius is used, defined by a minRadius parameter. Then,
for a N number of positions along the circle the radius r will be sampled. The
individual direction to each position ~di is calculated in the following way:

~di = ~e2 sin
2πi

N
+ ~e3 cos

2πi

N
(3.20)

The equation above, with the center point and the current radius makes up the in-
dividual score for each point along the circle. The actual TDF value, is the largest
average dot product between all the sampled points. The average will continue to
increase as long as the gradients continue to increase in length. When this does not
occur, the circle has met the border, and the largest previous value calculated will be
the TDF output. This requires a step-wise approach to at what radius each average
is calculated at, in the implementation used in this thesis that step is 0.5. The circle
expansion is also limited by how large it is allowed to grow (maxRadius), this is
to ensure that vessel structures outside of the range we are looking for are avoided
in in the ridge traversal algorithm. As mentioned earlier, the average dot product
between all the sampled points, as well as their inward normal, makes up the TDF
score for the current radius. The complete formula to calculate the average for each
radius achieved is below:
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Figure 3.8: Circle Fitting illustration

T (~v, r,N) =
1

N

N−1∑
i=0

~V (~v + r~di) · (−~di) (3.21)

In FAST this is implemented to be calculated on a GPU, where each voxel position
is processed individually. Below is pseudo code for the implementation in FAST,
given voxel ~v:

Algorithm 3: Circle Fitting TDF
Calculate ~e1 , ~e2 , ~e3 at position ~v;
maxSum← 0;
for r from minRadius to maxRadius do

sum← 0;
for i from 0 to N-1 do

~di ← ~e2 sin
2πi
N

+ ~e3 cos
2πi
N

;
sum← sum+ ~V (~v r~di) · (−~di);

end
if sum > maxSum then

maxSum← sum;
else

break;
end

end
return maxSum
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3.3 Ridge traversal

3.3 Ridge traversal

While the TDF output could be used as a centerline, deciding where to place the
threshold for which TDF responses to include, and sorting away responses that are
not relevant for the current problem is difficult. Both TDFs also return unreliable
results for vessel junctions and vessels with irregular shape, that can to some extend
be counteracted by a ridge traversal algorithm. Using a ridge traversal algorithm
is possible when the TDF have a medialness property. Medialness scribes how ”in
the center” a point is of a tubular structure. Both Frangi’s vesselness filter[19] and
Krissians Circle Fitting TDF[27] has this property. The largest TDF responses, from
both TDFs will be in the center of the structure in question, as points close to any
of the edges will have a lower TDF output score.

The ridge traversal algorithm presented by Bauer et al[6, 5] involves two steps.
The first step is to locate valid starting points for the traversal. This is done by
considering all the TDF outputs (from both TDF runs) and choosing the points that
are both over a given threshold (tHigh) and have the highest TDF value among it’s
26 neighbours. The points that qualify are placed into a list, sorted with focus on
TDF score.

When all the possible TDF points has been considered, the ridge traversal algorithm
takes the top point (the point with the current highest TDF score) and uses it as a
start point for traversal. From this start point x0 we use the lowest eigenvector ~e1
to determine the general direction of the tube. Then, starting from x0 the traversal
is performed independently for both directions t0 and −t0. The next point in the
traversal is chosen based on the direction from the current point to the candidate
point, and the TDF score of the candidate point. The directional restrictions are
calculated based on a threshold to avoid large angle changes in this way: ~xi ~xni · ti >
0. All the candidate points that fulfil the directional requirement are considered, and
the one with the largest TDF value is chosen. The direction is then updated based
on this new point ti+1 = sign(~xi ~xi+1 · ti+1)ti+1, to maintain the direction for the
next step in the traversal. This is repeated until one of the following events occur:
the TDF values of all the candidate points are below a given threshold (tLow), the
traversal hits an existing centerline or the traversal hits its own centerline and creates
a loop.
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In the event that the traversal terminates because it hit an existing centerline, the
current centerline is included in the centerline that was hit, and the ridge traversal
starts over with the next point from the priority list. Below is pseudo code for
the candidate point selection (algorithm 4) and for the ridge traversal algorithm
(algorithm 5).

Algorithm 4: Candidate point selection
input: TDF output T(x) with directions t(x);
input: threshold tHigh;
queue M;
for each voxel x in T do

if T (x) > tHigh and T (x) ≥ maxy∈Adj26(x)T (y) then
M.add(x);

end
end

3.4 Grouping and linking

Grouping and linking is an additional method presented by Bauer et al[6, 5]. The
purpose of this addition is to counteract some of the common problems with TDFs
and ridge traversal. There may be brakes in the centerlines produced by the ridge
traversal because of noise, or vessel junctions, or irregular vessel shapes. The group-
ing and linking approach presented by Bauer et al[6, 5] is a bio-mechanical geomet-
ric approach, where each centerline’s endpoints are considered. Endpoints are the
final point added to the traversal in both directions. The endpoint of a centerline
that terminated because it hit an already existing centerline, or it self, is not con-
sidered for grouping and linking. The grouping and linking approach presented by
Bauer et al[6, 5] is part of a larger, more general approach, but for coronary arteries
specifically some parts of the general approach is not used.

The method works by identifying and selecting the endpoint of single centerlines.
For each endpoint xs a search outward in the tangent-direction ts of the centerline
is performed for potential connections to other centerlines. If a candidate point is
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Algorithm 5: Ridge Traversal
input: TDF output T(x) with directions t(x);
input: threshold tLow;
input: queue M ;

set CL← () //Set of centerlines;
image C(x)← false //image indicating centerline positions;

while M 6= () do
x0 ← pop(M);
if C(x0) = false then

list cl //centerline for point x0;
point x← x0;
direction t← t(x0);
while T (x) > tLow and C(x) = False do

cl← pushFront(cl,x);
C(x)← True;
point xn = argmaxy∈Adj26(x)T (y)sign( ~xy · t);
direction tn = t(xn)sign( ~xxn · t(xn));
x← xn;
t← tn;

end
cl← popBack(cl) //to avoid duplicates of x0;
point x← x0;
direction t← −t(x0);
while T (x) > tLow and C(x) = False do

cl← pushBack(cl,x);
C(x)← True;
point xn = argmaxy∈Adj26(x)T (y)sign( ~xy · t);
direction tn = t(xn)sign( ~xxn · t(xn));
x← xn;
t← tn;

end
CL.add(cl);

end
end
return CL

found within some distance limit (dHigh), then a connection cost calculation is
performed. If the difference in gray value (from the original input image) between
the candidate point and the endpoint is to high |I(xs) − I(xe)| > gMax the can-
didate is rejected. If the gray value difference is within the limit a connection cost
C(xs, ts, xe) is calculated.
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The connection cost is meant to generate a cost that represent a trade of between
distance between the two points, xS and xe and the angle between the existing cen-
terline and the target centerline as seen in the function below.

C(xs, ts, xe) =
||xs − xe||

exp(−∠( ~xs ~xe,ts
2p2

))
(3.22)

An opening angle variable p is introduced to allow for a variable input, in this case
p is set to 0.30. Potential connections with too large cost cMax are discarded.
Finally, if a candidate has fulfilled all the requirements, a shortest path traversal is
performed between the endpoint and the candidate point, and the now connected
centerline is added to the candidate centerline.

3.5 Inverse gradient flow tracking

Inverse gradient flow tracking was not used by Bauer et al[6, 5] in correlation with
their work on coronary arteries. Yet it was used by them in other similar projects
(segmentations of vessels in the liver,brain etc). The inverse gradient flow tracking
algorithm presented by Bauer et al[6, 5] is also optimised to utilize both the cen-
terlines produced by the ridge traversal, and the gradient vectors produced by the
gradient vector flow algorithm. It works in an serial manner, and is therefore imple-
mented to use a CPU in FAST.

The inverse gradient segmentation algorithm works by growing the segmentation
from the centerline produced by the previous steps. It does this by growing from
the centerline in the inverse direction of the gradients produced by the gradient vec-
tor flow. As long as the length of the next gradient vector is larger than the previous
length it will keep growing. As mentioned earlier, the change in intensity should be
largest at the edge of the tubular structure, therefore the gradient magnitude at the
edge should also be at its largest point at the edge.

To make the algorithm more robust, and to make up for potential errors produced in
the previous steps, the segmentation algorithm dilate the centerline slightly before
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the actual segmentation is performed. This is to avoid false termination, if the cen-
terline is not exactly in the center. Then, each voxel in the centerline is added to a
queue, and processed individually. If a neighbouring voxel is not already a part of
the segmentation, and if the gradient magnitude is larger then the previous (current)
voxel, then it is added to the segmentation. Below is pseudo code for the inverse
gradient flow segmentation algorithm.

Algorithm 6: Inverse Gradient Flow Segmentation
input: dilated centerline C;
input: gradient field ~V ;

queue Q← C;
set S← C while Q 6= () do

~x← Q.pop;
for each voxel ~y ∈ Adj(~x) do

if ~y /∈ S and |~V (~y)| and argmax~z∈Adj26(~y)
(~z−~y)·~V (~y)

|(~z−~y)||~V (~y)|
== ~x then

S.add(~x);
Q.push(~y);

end
end

end
return S;

3.6 Avoidance of false positives

There are multiple vessels and tubular structures in a CTA of the chest region. Bauer
et al[6, 5] discusses a few methods to remove some of the vessels that are not a part
of the coronary arteries. Some of the false positives are removed by the threshold-
ing described earlier (chapter 3.1.1). Bauer et al[6, 5] then selects the two largest,
connected centerlines. The two largest centerlines with the thresholding is in most
cases the coronary arteries, but the method is vulnerable to excluding some of the
coronary arteries in the event that some of the vessels are not connected.
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3.7 Parameters used

Bauer et al[6, 5] presents the parameters they used for testing. Some of those are
compatible with our implementation here, while others are not. The reason that
some of the parameters are not compatible is processing time optimization. Our
Hounsfield units are scaled from 0 to 1, which is not the case in for Bauer et al[6, 5]
implementation. The scaling of the Hounsfield units makes a significant difference,
as the processing of normalized floats is very quick on a GPU. We have also in-
troduced a few additional parameters, like the searchDistance, this is to limit the
range the grouping and linking part of our implementation can search in. This range
is to make sure that the algorithm does not search to many unnecessary points, as
the candidate requirements will prohibit all the points outside a relative range.
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Parameters used in Pre-processing

Symbol Description Value
HUmax Maximum HU value 500
HUmin Minimum HU value 0
Gmax Gradient scaling parameter 0.2
µ GVF regularization value 0.05
Gi GVF iterations 500

Table 3.2: Table of Pre-processing Parameters

De-noising when used

Symbol Description Value
σ Standard deviation of Gaussian Smoothing 0, 0.4, 1.2

Wsize Window radius of Non-Local Means 24
Gsize Group radius of Non-Local Means 3
NLMs Strength of Non-Local Means 0.3

Table 3.3: Table of Noise reduction Parameters

Vesselness filter and Circle Fitting TDF

Symbol Description Value
a Ra weight of Vesselness Filter 0.5
b Rb weight of Vesselness Filter 0.5
c S weight of Vesselness Filter 100

Rmin Starting radius for Circle Fitting 0.5
Rmax Max radius for Circle Fitting 5
Rstep Radius growth in Circle Fitting 0.5

Table 3.4: Table of TDF parameters

Ridge Traversal and Grouping and Linking

Symbol Description Value
Dmin Min centerline length 10
Thigh Threshold for candidate 0.8
Tlow Threshold for low TDF value in centerline 0.3
Cmax Connection max for Linking 20
Gmax Grayvalue difference max for linking candidate 50
Dhigh Max distance to search for linking 20
p Angle restriction for linking 0.3

Table 3.5: Table of Ridge Traversal and Grouping and Linking Parameters

55



Chapter 3. Methodology

56



Chapter 4
Results

For testing and verification of our method St.Olavs Hospital and SINTEF Medical
Technology provided two anonymized CT data-sets of the heart. In addition to these
two, the Rotterdam Coronary Artery Algorithm Evaluation Framework(see chapter
4.1) was utilized for verification of the centerline extraction. The verification results
will be included for each of the methods tested below, and the produced images of
each method will be from the two anonymized CT data-sets. The segmentations
produced is illustrated by the Marching Cubes[50] algorithm included in FAST and
OpenGL.

The testing was done on a system with an Intel i5-4460 (3.2GHz) processor, with
an NVIDIA Geforce GTX 970 GPU.

4.1 Rotterdam Coronary Artery Algorithm Evalua-
tion Framework

The purpose of the Rotterdam Coronary Artery Algorithm Evaluation Framework[7,
17, 18] is to provide a quantitative evaluation and comparison of methods for coro-
nary artery centerline extraction algorithms. It comes with two sets of data, a train-
ing set and a testing set. The training data-set consists of 8 CTA images where the
manually extracted centerlines are included. The testing data-set consists of 24 CTA
images where the manual centerlines are undisclosed.

The evaluation frameworks measures the performance of an algorithm by three per-
centage grades:

57



Chapter 4. Results

OF: Overlap until first error, measures the continuous centerline length produced
without producing a centerline voxel outside the error range.
OT: Overlap with clinically relevant parts of the vessels. Vessel parts with a diam-
eter above 1.5mm.
OV: Overall overlap within the error range.

These measures operate with an error range, where a centerline point doesn’t have
to be at exactly the same position as the reference centerline. A centerline point is
given a graded score based on how far away the point is, where a centerline point
is better the closer it is to the centerline point reference. The average distance is
reflected in a forth performance measure AI, which gives an average distance in
millimeters between the centerlines produced, and the reference centerlines.

4.2 Run-times

Dataset Size Runtime
Dataset 1 424x412x396 10min 48sec
Dataset 2 416x456x412 11min 34sec

Table 4.1: Table of total Run-times

Component Time average
I/O 4sec

Non-local Means 5sec
Gaussian 1sec

Gradient vector field <1sec
Gradient vector flow 8min 31sec

Vesselness Filter 4sec
Circle Fitting 7sec

Ridge Traversal 1min 3sec
Grouping and Linking 1min 9sec

Segmentation 6sec

Table 4.2: Table of Component Run-times
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4.3 Centerline extraction and Segmentation

In this section the centerline extraction results produced by the methods described in
chapter 3 will be presented. Both the results produced by Frangi’s Vesselness Filter

and Circle Fitting, combined with Non-Local Means and Gaussian smoothing de-
noising is presented here.

Case TDF GS-L GS-H NLM OV OF OT AI
1 Central No No No 86.3% 64.4% 90.1% 0.6

2 Central Yes No No 87.4% 65.0% 90.2% 0.6

3 Central No Yes No 89.7% 64.1% 92.9% 0.5

4 Central No No Yes 86.0% 64.8% 91.3% 0.6

5 Central Yes No Yes 87.6% 63.9% 90.4% 0.5

6 Central No Yes Yes 85.9% 65.3% 87.7% 0.6

Table 4.3: Table of testing results with Vesselness Filter

Case TDF GS-L GS-H NLM OV OF OT AI
1 Circle No No No 63.1% 31.9% 70.0% 0.8

2 Circle Yes No No 62.5% 29.4% 66.9% 0.7

3 Circle No Yes No 61.1% 27.9% 66.3% 0.8

4 Circle No No Yes 63.3% 33.2% 70.2% 0.7

5 Circle Yes No Yes 62.3% 32.0% 69.1% 0.8

6 Circle No Yes Yes 60.1% 29.9% 67.0% 0.8

Table 4.4: Table of testing results with Circle Fitting TDF
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Figure 4.1: Centerline extraction with Vesselness Filter, no-denoising, dataset 1

Figure 4.2: Centerline extraction with Vesselness Filter, no-denoising dataset 2

Figure 4.3: Segmentation with Vesselness Filter, no-denoising dataset 1
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Figure 4.4: Segmentation with Vesselness Filter, no-denoising dataset 2

Figure 4.5: Centerline extraction with Circle Fitting, no-denoising, dataset 1

Figure 4.6: Centerline extraction with Circle Fitting, no-denoising dataset 2

61



Chapter 4. Results

Figure 4.7: Segmentation with Circle Fitting, no-denoising dataset 1

Figure 4.8: Segmentation with Circle Fitting, no-denoising dataset 2

Figure 4.9: Centerline extraction with Vesselness Filter, Gaussian Smoothing Low Param-
eters dataset 1
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Figure 4.10: Centerline extraction with Vesselness Filter, Gaussian Smoothing Low Pa-
rameters dataset 2

Figure 4.11: Segmentation with Vesselness Filter, Gaussian Smoothing Low Parameters
dataset 1

Figure 4.12: Segmentation with Vesselness Filter, Gaussian Smoothing Low Parameters
dataset 2
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Figure 4.13: Centerline extraction with Circle Fitting, Gaussian Smoothing Low Parame-
ters dataset 1

Figure 4.14: Centerline extraction with Circle Fitting, Gaussian Smoothing Low Parame-
ters dataset 2

Figure 4.15: Segmentation with Circle Fitting, Gaussian Smoothing Low Parameters
dataset 1
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Figure 4.16: Segmentation with Circle Fitting, Gaussian Smoothing Low Parameters
dataset 2

Figure 4.17: Centerline extraction with Vesselness Filter, Gaussian Smoothing High Pa-
rameters dataset 1

Figure 4.18: Centerline extraction with Vesselness Filter, Gaussian Smoothing High Pa-
rameters dataset 2
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Figure 4.19: Segmentation with Vesselness Filter, Gaussian Smoothing High Parameters
dataset 1

Figure 4.20: Segmentation with Vesselness Filter, Gaussian Smoothing High Parameters
dataset 2
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Figure 4.21: Centerline extraction with Circle Fitting, Gaussian Smoothing High Parame-
ters dataset 1

Figure 4.22: Centerline extraction with Circle Fitting, Gaussian Smoothing High Parame-
ters dataset 2

Figure 4.23: Segmentation with Circle Fitting, Gaussian Smoothing High Parameters
dataset 1
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Figure 4.24: Segmentation with Circle Fitting, Gaussian Smoothing High Parameters
dataset 2

Figure 4.25: Centerline extraction with Vesselness Filter, Gaussian Smoothing Low Pa-
rameters and Non-local Means dataset 1

Figure 4.26: Centerline extraction with Vesselness Filter, Gaussian Smoothing Low Pa-
rameters and Non-local Means dataset 2
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4.3 Centerline extraction and Segmentation

Figure 4.27: Segmentation with Vesselness Filter, Gaussian Smoothing Low Parameters
and Non-local Means dataset 1

Figure 4.28: Segmentation with Vesselness Filter, Gaussian Smoothing Low Parameters
and Non-local Means dataset 2
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Figure 4.29: Centerline extraction with Circle Fitting, Gaussian Smoothing Low Parame-
ters and Non-local Means dataset 1

Figure 4.30: Centerline extraction with Circle Fitting, Gaussian Smoothing Low Parame-
ters and Non-local Means dataset 2

Figure 4.31: Segmentation with Circle Fitting, Gaussian Smoothing Low Parameters and
Non-local Means dataset 1
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4.3 Centerline extraction and Segmentation

Figure 4.32: Segmentation with Circle Fitting, Gaussian Smoothing Low Parameters and
Non-local Means dataset 2

Figure 4.33: Centerline extraction with Vesselness Filter, Gaussian Smoothing High Pa-
rameters and Non-local Means dataset 1

Figure 4.34: Centerline extraction with Vesselness Filter, Gaussian Smoothing High Pa-
rameters and Non-local Means dataset 2
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Figure 4.35: Segmentation with Vesselness Filter, Gaussian Smoothing High Parameters
and Non-local Means dataset 1

Figure 4.36: Segmentation with Vesselness Filter, Gaussian Smoothing High Parameters
and Non-local Means dataset 2

Figure 4.37: Centerline extraction with Circle Fitting, Gaussian Smoothing High Parame-
ters and Non-local Means dataset 1
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4.3 Centerline extraction and Segmentation

Figure 4.38: Centerline extraction with Circle Fitting, Gaussian Smoothing High Parame-
ters and Non-local Means dataset 2

Figure 4.39: Segmentation with Circle Fitting, Gaussian Smoothing High Parameters and
Non-local Means dataset 1

Figure 4.40: Segmentation with Circle Fitting, Gaussian Smoothing High Parameters and
Non-local Means dataset 2
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Chapter 5
Discussion

In this chapter we will discuss the produced results in chapter 4, with focus on the
two TDFs, the effect of the noise filters, the produced centerlines and segmentations
and the overall processing time.

5.1 Rotterdam Coronary Artery Algorithm Evalua-
tion Framework

While this framework has been very beneficial and useful for verification of our im-
plementation, it does have some downsides. It performs well in matching, detecting
and grading of the centerline points that are relatively close to the reference center-
line. But the framework, and the grades it produces does not intuitively provide a
grade for how much of the produced centerline is wrong. If every single vessel and
tubular structure in the CTA was detected and included in the produced centerline,
the grades for both OT and OV would be very good. This is an obvious weakness
with the testing framework, as it means that additional, wrong or false centerlines
are not very punishing for the grades achieved.

The method that produced the best results was a segmentation and centerline ex-
traction run with the Vesselness filter, and Gaussian smoothing with a σ of 1.2. The
results produced by this method in the testing framework are slightly lower to the
results reported by Bauer et al[6, 5]. The reason for this could be inaccuracy in the
selection of points, as the AI is consistently slightly worse than the results reported
by Bauer et al[5, 6].
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5.2 Tube Detection Filters

5.2.1 Circle Fitting

The Circle Fitting TDF performs fairly well in terms of run-time, only slightly
longer then the less complex Vesselness Filter. It seems like it has no problems de-
tecting larger parts of the coronary arteries, but the smaller sections (<3mm) goes
undetected, or is only sporadically detected. This seems to be because of the nature
of the Circle Fitting TDF, as the smaller vessels often has less tubular shapes than
the larger vessels in the CTA datasets. As explained in chapter 3.2 and 3.2.3 the
Circle Fitting TDF expands the radius of a circle stepwise. This means that if the
tubular structure is not perfectly circular, the TDF will terminate before the actual
edge is reached.

5.2.2 Vesselness Filter

The Vesselness Filter performs well in terms of run-time. It seems to have no prob-
lems detecting both small and large tubular structures. Compared to the Circle
Fitting TDF it produces both better and more consistent results. One down side
of the Vesselness Filter is that it produces a large amount of false positives. If the
incorrect centerlines produced are not sorted out before the segmentation, many of
the vessels in the lungs will be included. The amount of candidate points produced
can also be very high, so the threshold for candidate points for the ridge traversal
needs to be set high.

5.3 Noise Filters

5.3.1 Gaussian Smoothing

The Gaussian Smoothing filter performs very well in terms of run-time. It’s effect
on the extracted centerlines seems largely positive when a high σ is used, but less so
with a lower σ. This could indicate that more iterations of the GVF could be used
to achieve similar results. It is also a risk to use to much smoothing, as the Gaussian
smoothing is not feature preserving, and can hide important image information.
Mild smoothing (low σ) also has a minor positive impact on the grades from the
testing framework.

Gaussian Smoothing can also to a degree be used to aid the GVF algorithm. Bauer
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et al[6, 5] recommends 500 iterations of GVF. While this produces good results, it
also takes a long time to execute. With the presence of Gaussian Smoothing, the
amount of iterations required to achieve solid results seem to diminish.

5.3.2 Non-Local Means

The Non-Local Means algorithm is fairly slow. It does not have a positive impact
on either of the TDFs performance. This result is somewhat surprising. Alone the
effect of the NLM noise reduction seems to be negative. If both NLM and Gaussian
is run it seems to have a very minor impact on the results. But this minor impact in
the testing framework might be nullified in newer and more accurate CTA images.

5.4 Extracted Centerlines

5.4.1 Ridge Traversal

The ridge traversal algorithm is very dependent on the performance of the TDFs.
If the TDF produce many and accurate centerline candidates, only a small amount
of them has to be utilized as candidate points for the actual tracking. A definite
weakness with the traversal is its reliance on long, continuous centerlines. This
could be improved with some other selection method for detecting which centerlines
belong in the coronary arteries and which centerlines that are false positives (more
on this in chapter 6.2).

5.4.2 Grouping and Linking

The grouping and linking approach can be very beneficial to deal with gaps in the
centerlines produced by the ridge traversal, but it can also produce false positives.
Since the grouping and linking is based on direction and distance between centerline
endpoints alone, some of the linking performed could connect vessels that are not
actually connected. Detecting these false positives can be very challenging, as they
usually occur with very small vessels (< 1mm) that are only partially detected. The
testing framework will not detect these either for the reasons stated in chapter 5.1.

5.5 Segmentation Results

The quality of the segmentation depends on the quality of the extracted centerline,
and the gradients produced by the and gradient vector flow. If the GVF contains
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a high degree of noise, or ”variations” within a small area, the segmentation result
will contain edges and other abnormalities that are not vessel-like. This can be
partially solved by applying smoothing to the GVF, or by running a high number of
iterations in the GVF.

If a centerline produced either by the ridge traversal, or the grouping and linking, or
both, for some reason is outside a vessel, or in a position where no vessel is detected,
the segmentation can contain holes/gaps. This can also happen if the centerline is
to far off-center. The off-center problem can be partially solved by applying more
initial dilation. But that might result in over segmenting some of the smaller vessels.
The holes can also be fixed by applying some sort of post-processing patching.

5.6 Run-times

The most significant factor affecting the total run-time is the gradient vector flow.
With 500 iterations they require a significant amount of time (≈ 9min) to compute.
While the total run time is around 11min depending on the size of the initial CTA
image. The second most significant part of our implementation in terms of run-
time performance is the ridge traversal, candidate point detection and grouping and
linking. The ridge traversal is very much dependent on the amount of candidate
points it has to process, while the candidate detection is dependent on the amount
of points it needs to detect. In our implementation most CTA images both from the
testing framework, and from the St.Olavs datasets where run with ≈ 500 candidate
points. The linking and grouping process can be time consuming if there are a lot
of vessels with potential connections.

Our testing PC has an NVIDIA GPU. NVIDIA, as stated earlier, does not support
writing to 3D textures. This probably has a great impact on the run-time, as writing
to 3D textures is considered to be significantly faster. AMD GPUs does support
writing to 3D structures, but unfortunately we did not have an AMD GPU to test
this on.
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6.1 Goal Achievement

The purpose of this project was to implement a program for coronary artery cen-
terline extraction and segmentation that utilizes the computational power of GPUs.
To select an appropriate method we conducted a wide background study to identify
methods that fit the requirements for this project. We chose one of the most promis-
ing methods, and implemented it in FAST, using OpenCL and C++. We have tested
our implementation and shown that it able to extract large parts of the coronary
arteries.

6.2 Future Work

In the previous chapter we discussed several weaknesses and problems with our
implementation. The potential for incorrect linking and grouping, the lack of ro-
bustness for the ridge traversal, and the potential for partial, or broken centerline
production because of noise or low TDF responses are some of the main issues.

6.2.1 Pre-processing

As mentioned earlier, NVIDIA GPUs does not support writing to 3D textures through
OpenCL. This has a major impact on the time required to process some parts of our
implementation. The run-time of GVF would benefit significantly if the GPU uti-
lized for the processing is an AMD GPU. The gradient vector field, both TDFs,
and both Gaussian smoothing and Non-local Means would also benefit from using
a AMD GPU, but not as much as the GVF would.

79



Chapter 6. Conclusion

More noise reduction could also benefit the results produced. Less noise would re-
sult in a more stable and reliable result, even if that could mean that the run-time
is increased. In some cases it can be difficult to determine the quality of both the
centerline and the segmentation produced without manually looking at the CTA and
the centerlines and segmentation. So if a more intelligent approach to noise reduc-
tion could result in a more reliable centerline/segmentation it could be worth it.
There are several methods that could provide this, a anisotropic filter presented by
Bauer[5], a Bayesian filter by Snaches et al[40], a hybrid diffusion filter by Mendrik
A.M et al[32], and many more could be suited for this task.

6.2.2 TDFs and Grouping and Linking

Both the TDFs used in our implementation has the weakness that they return low,
or negative response in junctions or in vessels with a very irregular shape. This
definitely is a much more significant problem with the Circle Fitting TDF, but the
Vesselness Filter does have a slight problem with this as well. The grouping and
linking approach implemented here reduces the significance of this problem, but as
discussed in chapter 5.4.2 it could lead to incorrect connections between vessels, or
inaccurate centerlines. A possible solution to this could be to utilize a third TDF
for detection of junctions and irregular vessels, and use this TDF in addition to the
Vesselness filter in the ridge traversal. Then the grouping and linking approach
could be utilized to connect some of the smaller vessels if needed.

6.2.3 Ridge Traversal

The ridge traversal relies on the TDF responses. If the TDF response is low, or
wrong, the ridge traversal might just stop or produce an inaccurate centerline. De-
tecting when the ridge traversal does this without providing manual aid is a difficult
task. The approach to deal with this by Bauer et al[6, 5] is to simply use many
candidate points, and in that way produce as many centerlines as possible, and then
use linking and grouping to connect them if needed. This can solve the problem
where the ridge traversal terminates to early, but it does not solve the potential for
inaccurate centerlines.

A possible solution could be to include one of the methods discussed in the back-
ground study, or to simply replace the ridge traversal approach. Many of the meth-
ods discussed in the background study utilizes candidate points in their extraction
of centerlines, and the TDFs could be used to generate them. The region growing
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approach presented by Krissian et al[28], or the the refined Vesselness approach by
Yang et al[53] could be good alternative methods, or complimentary methods to
create a more reliable centerline extraction.

6.2.4 Centerline Selection

The centerline selection method used in our implementation is fairly primitive with
a significant weakness. The weakness (as mentioned in chapter 5.4.1) is that is
selects the longest, or the top 3-4 longest centerlines produced. If the ridge traversal
and grouping and linking produces several disconnected centerlines, the result of
the selection might return vessels other than the coronary arteries. Zheng et al[54]
utilizes an limitation approach where they locate the heart in the CTA image, and
select the centerlines that are close to the heart location. This approach seems to be
far more robust then relying on the length of the centerlines.

6.2.5 Segmentation

The inverse gradient tracking segmentation is reliant on the quality and correct-
ness of the centerlines produced. It is also susceptible to noise, if the noise affects
the gradients produced by GVF. But if the centerline is good, the method works
fairly well. An alternative solution could be a region growing approach (Krissian et
al[28]), but if this approach produces better segmentations then the approach pre-
sented here, is uncertain. A more parallel approach would also benefit the overall
run-time, as the inverse gradient tracking algorithm is executed serially. But the
time required to perform the segmentation compared to the time GVF and the cen-
terline extraction uses is very low.
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