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Abstract
In recent years, micro-blogging on the Internet has become a popular way
of expressing your thoughts and feelings. Twitter is a social networking
service specialized on the phenomenon, with over 320 million monthly act-
ive users world wide. The vast amount of micro-blogs posted through the
service on a daily basis makes it a great data source of opinionated texts.
In the field of Sentiment Analysis or opinion mining, in which the aim is
to automatically extract the sentimental orientation of a text, there has
been a shift towards the opinionated Twitter data. This shift has led to
an entire new field of study: Twitter Sentiment Analysis.

In this Master’s thesis the fields of lexicon based Sentiment Analysis
and automatic creation of sentiment lexica have been explored. Based on
our research within the fields, both an automatic lexicon creator and a
lexicon based Sentiment Analysis system were developed.

Our lexicon based Sentiment Analysis system, utilizing our best per-
forming sentiment lexicon created by our automatic lexicon creator, pro-
duces good results almost keeping up with systems utilizing sophisticated
machine learning approaches. Regarding run-time performance, our sys-
tem significantly outperforms the other compared systems, proving its cap-
ability of real-time classification of large amounts of tweets. In a lexicon
comparison experiment, our created lexicon beats a manually annotated
lexicon, both proving the viability of automatically generated sentiment
lexica and specifically the Pointwise Mutual Information (PMI) approach.

In addition, we have discovered the importance of tailoring the classifier
to each individual sentiment lexica to utilize its full potential, and that
the quality of the sentiment lexica produced through the PMI approach
is highly dependent on the overall quality of a labeled dataset.

i



Sammendrag
I de siste årene har mikroblogging på internet blitt en populær måte å ut-
rykke egne tanker og følelser. Mikrobloggingstjenesten Twitter er ledende
innenfor dette området, med over 320 millioner aktive brukere på verdens-
basis. Den store mengden av mikroblogger som blir lagt ut via tjenesten
hver dag gjør Twitter til en god datakilde for tekster med meningsytrin-
ger. Innenfor fagområdet sentimentanalyse, som går ut på å automatisk
bestemme sentimentet i en tekst, har analyse av Twitter meldinger blitt
populært de siste årene. Dette har ført til skapelsen av det nye fagområ-
det: Twitter sentimentanalyse.

I denne Masteroppgaven utforskes fagområdene leksikon-basert senti-
mentanalyse og automatisk generering av sentiment-leksikon. Basert på
tidligere forskning innen fagområdene har både et system for automatisk
generering av sentiment-leksikon samt et system for leksikon-basert senti-
mentanalyse blitt utviklet.

Ved å benytte vårt beste automatisk genererte leksikon som sentiment-
leksikon i det leksikon-baserte sentimentanalyse systemet, oppnår vi gode
resultater sammenlignet med maskinlæringsbaserte sentimentanalysesys-
temer. Når det gjelder kjøretidsytelse, utkonkurrerer systemet alle and-
re sammenlignede systemer, og beviser dermed sin evne til å fungere
som en sanntids klassifikator av store mengder tweets på kort tid. I et
sammenligningseksperiment hvor vårt beste automatisk genererte senti-
ment leksikon sammenlignes med andre sentiment leksika, oppnår leksiko-
net vårt bedre resultater enn et manuelt annotert leksikon, noe som videre
styrker posisjonen til Pointwise Mutual Information (PMI) metoden samt
automatisk genererte— overfor manuelt annoterte —leksika.

I tillegg har vi oppdaget viktigheten av å spesialtilpasse klassifikatoren
til vært individuelle sentiment leksika, samt at kvaliteten av sentiment
leksikon laget med PMI metoden er svært avhengig av kvaliteten på det
benyttede annoterte datasettet.
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1. Introduction
As social media and the ability to express yourself and your opinions be-
comes a more integral part of the day to day life, vast amounts of data
are created. By analysing this data, valuable information of a variety of
subjects can be extracted.

One way of analysing the data is through Sentiment Analysis (SA), also
known as opinion mining. When performing SA, a text is analysed in order
to classify the emotion it conveys into one of the three classes: positive,
neutral or negative. As a result of the amounts of opinionated data made
available by social media, the research field of SA has had a burst of
activity in recent years. The potential gains of a well performing SA
system are many, for example, the popularity of a presidential candidate
or how well a newly released product is being received, can be continuously
evaluated.

1.1. Twitter Sentiment Analysis
A popular social medium providing opinionated texts is the micro-blogging
service Twitter. On Twitter, users can post textual entries of up to 140
characters, commonly called tweets. Each day, approximately 500 mil-
lion new tweets are posted; a fraction of those are made available through
Twitter’s public API. Large datasets can therefore easily be acquired, mak-
ing SA of tweets particularly popular. The popularity of SA of tweets has
paved the way for a new field of study: Twitter Sentiment Analysis (TSA).

Performing Natural Language Processing (NLP) on the informal lan-
guage used in tweets presents a series of new challenges. As a result of
the character limit per tweet, they often contain misspellings and abbre-
viations in addition to the more common Internet slang. Capitalization
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1. Introduction

and elongation of words is also common. In addition to the unconven-
tional linguistics, tweets may also include a number of special features.
These features are hashtags, mentions, retweets, emojis and emoticons. 1

Hashtags are mainly used to categorize tweets making it possible to find
them through search, but they are often also used to express feelings or
emotions. Hashtags are added to a tweet by prepending the desired tag
with a hash mark, ”#”. Mentions, a username prepended by ”@”, are used
to tag another user in a tweet, notifying the tagged person that they are
mentioned in the given tweet. Retweets are copies of previously posted
tweets and are marked with ”RT”.

1.2. Motivation and Research Focus Area
In the fall of 2015, as an initial experiment, a TSA system utilizing su-
pervised machine learning was created. The system was created for the
International Workshop on Semantic Evaluation (SemEval)-2016, where
it ended up on 11th place out of 34 competing systems. During the de-
velopment of the system two features in particular stood out: the effect
of using sentiment lexica in the classification process and the run-time
performance. The use of sentiment lexica proved to be the single most
valuable system component in terms of the overall performance of the sys-
tem. Without using sentiment lexica the performance dropped as much as
4%. The run-time performance of the system was bad, meaning the time
it took to process each tweet was too long. Based on these discoveries, the
following focus area was chosen for this Master’s Thesis.

In this thesis we explore how a Twitter specific sentiment lexicon can be
automatically created from large datasets of both labeled and unlabeled
tweets, and how a lexicon based SA system compares to machine learning
approaches. Today, most Twitter specific lexica only contain unigrams and
bigrams, that is, single words or two consecutive words. Throughout this
thesis, both when developing a lexicon creation system and a lexicon based
classifier, we explore the effect of including longer phrases in sentiment
lexica, as well as utilizing the long phrases in the classification process. In

1Throughout this thesis, emoticon refers to a sequence of ASCII characters that rep-
resent a facial expression, while emoji refers to the modern Unicode emoticons.
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1.3. Project Goals

addition, we strive to create a lexicon based SA system with a run-time
performance capable of handling real time applications.

1.3. Project Goals

G1: Research Automatic Creation of Sentiment Lexica

As sentiment lexica have become a prominent feature in SA, a lot of re-
search has been conducted within the field of automatic creation of senti-
ment lexica. That is, sentiment lexica where both the included words or
phrases and their respective sentiment values are automatically identified.

By researching the field, we will gain the knowledge required to develop
an automatic lexicon creation system ourselves.

G2: Research Lexicon Based Sentiment Analysis

Most SA systems today are based around a number of machine learning
approaches. The systems often achieve high accuracy, in terms of number
of correctly classified examples, but their run-time performance is slow.
The amount of time it takes to classify a single example is long, making
the systems unable to handle large amounts of data in a short amount of
time as necessary in real-time applications.

As the lexicon feature in most machine learning SA systems often is the
single most important feature as well as a computationally inexpensive
feature, the field of lexicon based SA will be researched. The acquired
knowledge will enable us to create a lexicon based SA system ourselves
(G4).

G3: Create a Twitter Specific Sentiment Lexicon

We aim to develop a lexicon creation system capable of creating a Twitter
specific lexicon. In order for the lexicon to be Twitter specific, the data
used by the system in the creation process will be downloaded tweets.
During development we will focus on identifying long phrases, in addition

3



1. Introduction

to the standard unigrams and bigrams popular in previously developed
Twitter specific lexica.

G4: Create a Lexicon Based Sentiment Analysis System
We also aim to develop a lexicon based SA system, utilizing the features
of the Twitter specific lexicon created (G3). When developing the system,
we will specifically focus on the systems’s run-time performance as well as
utilizing the long phrases found in the created lexicon.

1.4. Contributions
In this section we list our main contributions along with short descrip-
tions of each. In addition we describe other smaller contributions made
throughout our masters thesis work.

C1: A Twitter specific sentiment lexicon
The Twitter specific sentiment lexicon consists of approximately 3 000
entries ranging from unigrams up to n-grams of length 6, all with sen-
timent values between −5 and 5.

C2: A lexicon based Sentiment Analysis system
The lexicon based SA system created, utilizes the sentiment lexicon cre-
ated (C1), and handles both negation and intensification. Best perform-
ance is achieved when using a lexicon created with our automatic lexicon
generator (C3), but other lexica can also be used.

C3: A system for automatic creation of sentiment lexica
The sentiment lexicon (C1) was created by our system for automatic cre-
ation of sentiment lexica, which is based around the Pointwise Mutual
Information approach. The system utilizes a labeled dataset of 6.25 mil-
lion tweets and an unlabeled dataset of 103 million tweets in the creation
process.
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1.5. Thesis Structure

C4: An automatically annotated dataset of tweets
The automatically annotated dataset of tweets was produced by our lex-
icon based SA system and consists of 6.25 million tweets, of which 58.7%
are labeled as positive and the remainder as negative. The dataset was
used by our lexicon creator (C4) to create the Twitter specific sentiment
lexicon (C1).

In addition to our three main contributions, we also improved the run-time
performance of a publicly available emoji-parser2 used in both our lexicon
based SA system and our automatic sentiment lexica generator. The im-
provement resulted in an execution time 250 times faster than the original.

All main contributions listed above are available at
https://github.com/freva/Masteroppgave.

1.5. Thesis Structure
Chapter 2 describes the relevant background theory, tools and external
datasets used. Chapter 3 presents our research method as well as an over-
view of the state-of-art in TSA, automatic creation of sentiment lexica and
lexicon based SA. Our initial experiment, including its architecture and
results, is described in Chapter 4. In Chapter 5, the overall architecture of
both our lexicon based SA system and our lexicon creator system are de-
tailed. Chapter 6 includes the tests conducted on our created lexicon and
lexicon based SA system along with test results and discussions. Finally,
in Chapter 7 we will outline possible future work and evaluate to which
degree our goals have been achieved along with any conclusions drawn.

2Emoji-Java: https://github.com/vdurmont/emoji-java
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2. Tools and Methods
The theory behind Sentiment Analysis and sentiment lexicon creation in-
volves a large range of concepts within the fields of machine learning, nat-
ural language processing and statistics. The natural language processing
part of Sentiment Analysis is concerned with analysing and highlight-
ing features in text, while the machine learning part is concerned with
structuring and learning patterns from the features extracted. Statistical
methods are used as an integral part of machine learning as well as playing
a central role in the creation of sentiment lexica. In this chapter, the most
relevant concepts within the aforementioned fields are detailed, before the
different tools and datasets used throughout development are described.

2.1. Central Concepts in Sentiment Analysis
Bag-of-Words
The Bag-of-Words model is a commonly used model when classifying text
documents or sentences. The model, as indicated by its name, represents
the text as a “bag of words”. The bag contains all used words and keeps
track of the specific word frequencies without any structure or order. The
model it creates can be used directly as a feature vector in a machine
learning classifier.

n-gram
An n-gram could be a single word or character appearing in a document, or
a collection of words or characters appearing consecutively in a document.
These two types of n-grams are called Word n-grams and Character n-
grams. The n in n-gram stands for the number of consecutive words or
characters to look at. In the Bag-of-Words model presented above, Word
n-grams with n = 1 are used and the model is only looking at single

7



2. Tools and Methods

independent words. With n > 1 the same principle can be applied by
treating n consecutive tokens as if they were a single.

Part-of-Speech Tagging

Part-of-Speech (PoS) tagging is the process of tagging each word in a text
with its lexical category. The different categories are the different parts of
speech, such as noun, verb and adjective. This categorization depends on
the actual definition of the words themselves and the contexts they are in
(relationships with adjacent words or other words in the text or sentence).
Most PoS taggers are trained on treebanks in the newswire domain, where
most of the training data is formal and well written text. The performance
of these taggers commonly degrades on out-of-domain data. As stated by
Gimpel et al. [2011], data such as tweets bring additional difficulties like
misspellings, slang and a limited number of characters, and therefore a
specialized PoS tagger for tweets is needed.

Negation

Negation in natural language is used to change the sentiment polarity of a
word, a phrase or an entire sentence. Words that on their own appear to
have a positive sentiment can in fact have a negative sentiment in a neg-
ated context. For example, “I am happy” has positive sentiment, while
“I am not happy” has negative sentiment. However, negation does not
always reverse the polarity entirely, sometimes negation only changes the
magnitude of the polarity. For example, “I am very happy” has high pos-
itive sentiment, while “I am not very happy” is still positive, but not as
much.

To negate a phrase, words called negators are used. These are also
known as negation-cues or negation-signals and comprise words such as
not, won’t, can’t and doesn’t. Detecting these negators in a sentence is
fundamental when trying to say something about the overall sentiment of
a sentence.
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2.2. Measures

Sentiment Lexicon
Lexicon based approaches are based around the idea of calculating the
overall sentiment of a text as a function of the sentiment values of the
words or phrases in it. The lexicon can be created manually by assigning
a score to each word/phrase, or automatically. One example of automatic
lexicon creation is to start with some manually classified seed words and
assign a similar value to words that commonly appear together with the
seed words.

Word Clusters
The word clustering technique is an attempt to reduce the data sparsity
of natural languages. Instead of considering each misspelling, different
grammatical forms of a word or synonyms as own and unique words, words
are translated using a dictionary to a cluster ID. A common technique to
generate word clusters is to use Brown clustering, by Brown et al. [1992],
which is based on Hidden Markov Models. After the translation, the
cluster IDs can be used in a simple Bag-of-Words model.

2.2. Measures
2.2.1. Pointwise Mutual Information
Pointwise Mutual Information (PMI) is an association measure quantify-
ing the amount of information shared between two or more events. Ac-
cording to Fano [1961], given two events x and y with joint probability
P (x, y) and individual probabilities P (x) and P (y), their mutual inform-
ation I(x, y) is defined to be:

I(x, y) = log2
P (x, y)

P (x)P (y)
(2.1)

The mutual information is the comparison of the probabilities of ob-
serving the events x and y together and the probabilities of observing
them individually. If there is an association between the two events x
and y, then their joint probability will be higher than the product of the
individual probabilities, that is, P (x, y) > P (x)P (y). Then, the chance of
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observing x becomes greater if y has already been observed. If the events
are independent, the joint probability will be equal to the product of the
individual probabilities P (x, y) = P (x)P (y), which leads to I(x, y) = 0,
meaning that there are no interesting relationship between the events.

The PMI measure as apposed to the mutual information (MI) measure,
uses Equation 2.1 on single events and not on a series of possible events.
When using the PMI measure, x and y are single and specific events,
whereas x and y can take on multiple values using MI.

PMI n-grams
One of the applications of the PMI measure is finding collocations and
associations between words. This is achieved by counting single word
occurrences and co-occurrences in a corpus to determine the probabilities
P (x, y) and P (x), before using Equation 2.1 on each pair of words. The
word pairs with high PMI values are the words that together form common
phrases or collocations in the chosen corpus. Using the PMI measure in
this manner was first introduced by Church and Hanks [1990] and has
since become a common method for finding meaningful word n-grams.
The PMI measure can also be used on n-grams with n > 2 using the
PMI-chain rule:

PMI(x, yz) = PMI(x, y) + PMI(x, z|y)

= log2
P (x, y)

P (x)P (y)
+ log2

P (x, z|y)
P (x|y)P (z|y)

= log2
P (x, yz)

P (x)P (yz)

(2.2)

2.2.2. Term Frequency—Inverse Document Frequency
The Term Frequency—Inverse Document Frequency (TF–IDF) is a nu-
merical statistic that provides the bag-of-words model with information
about word importance. The word importance comes in the form of a
weighting-scheme over all words where words with high weights provide
more information than words with low weights. The actual weight each
word is given is a combination of the Term Frequency (TF ), Document
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Frequency (DF ) and the Inverse Document Frequency (IDF ) as conceived
by Spärck Jones [1972]. Term Frequency is the number of times a given
term appears in a given document, Document Frequency is the number of
documents that contain a given term, and Inverse Document Frequency
is a measure of how much information a given term provides in a set of
N documents. The TF–IDF weight of a term within a document is calcu-
lated as follows, where t is a term appearing in document d:

TF-IDF (t, d) = TF (t, d) · IDF (t) (2.3)

IDF (t) = log N

DF (t)
(2.4)

As stated by Manning et al. [2008], a word will thus get a high weight
if it appears often in a small amount of documents and a lower weight if
it occurs few times in a document or many times across all documents. If
a word occurs many times across all documents, it will get the smallest
possible weight. Common words not providing much information, such as:
‘the’, ‘a’ and ‘is’, will therefore tend to get low weights.

2.2.3. Levenshtein Distance

Levenshtein distance or edit distance, is a similarity metric proposed by
Levenshtein [1966] used to measure the difference between two strings.
The edit distance is determined by how many INSERT, DELETE or SUB-
STITUTE operations that are needed to transform one string into another.
The process of calculating the distance is shown in Algorithm 1.

2.2.4. Cosine Similarity

Cosine similarity is a measure used to calculate the similarity between
two vectors, based on the cosine of the angle between them. If used in a
positive space the resulting similarity is bounded within the range [0,1].
An angle of 0° between two vectors, will yield a perfect similarity of 1,
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Algorithm 1: Levenshtein Distance Algorithm
Input: char a1..m, char b1..n

Output: Edit distance between two strings, distance ∈ N
1 di,0 = i, ∀i
2 d0,j = j, ∀j
3 for i← 1 to m do
4 for j ← 1 to n do
5 if ai = bj then
6 cost := 0
7 else
8 cost := 1
9 di,j := min(

10 di−1,j + 1, // deletion
11 di,j−1 + 1, // insertion
12 di−1,j−1 + cost) // substitution
13 return dm,n

while an angle of 90° yields a similarity of 0. The cosine similarity is
calculated as follows:

CosineSimilarity(A, B) =

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

(2.5)

where Ai and Bi represent the different dimension values of the vectors A
and B respectively.

2.2.5. Pearson’s Correlation
The Pearson’s Correlation or Pearson product-moment-correlation coeffi-
cient is a measure used to determine the correlation between two variables
and was developed by Pearson [1896]. If the two variables are perfectly
positively correlated, the measure yields a correlation value of 1, whilst
two variables that are perfectly negatively correlated gets a correlation
value of -1. For two points with no correlation, a correlation value of 0 is
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given. The correlation rxy between two vectors x and y is calculated using
the following formula:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

(2.6)

where n is the size of the vectors x and y, while x̄ and ȳ are their mean
values.

Pearson Correlation can also be used when normalizing matrices. Then
the correlation between all row and column pairs are calculated before
the values are normalized between -1 and 1. The complete normalization
process is captured in the following formula:

w
′
ab =

Twab −
∑

j waj ·
∑

i wib

(
∑

j waj · (T −
∑

j waj) ·
∑

i wib · (T −
∑

i wib))
1
2

(2.7)

where T is the sum of all elements in the matrix.

2.3. Lexicon Creation
2.3.1. PMI Lexicon
An application of the PMI measure is in creating sentiment lexica. Turney
and Littman [2002] proposed a method where the sentimental orientation
of a word could be calculated from the PMI value of a word w in a pos-
itive context PMI(w, positive) and the same word in a negative context
PMI(w, negative) using the equation:

SentimentScore(w) = PMI(w, positive)− PMI(w, negative) (2.8)

Here PMI(w, positive) and PMI(w, negative) are calculated using:

PMI(w, orientation) = log2
freq(w, orientation) ·N

freq(w) · freq(orientation)
, (2.9)
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where freq(w) is the number of times term w appears in a document,
while N is total number of terms in the document. Equation 2.8 can then
be rewritten to:

SentimentScore(w) = log2
freq(w, positive) · freq(negative)
freq(w, negative) · freq(positive)

(2.10)

Determining whether a word is in a positive or negative context can
be done in different ways. Turney and Littman use a method based on a
seed set of positive and negative words and decide the context of a word
based on whether or not the word is found in close proximity to either a
positive or negative seed word. Mohammad et al. [2013] similarly use a
seed set, but instead of containing positive and negative words, the seed
set contains positive and negative hashtags and emoticons. In addition,
complete sentences, or tweets in this case, were labeled in contrast to the
single word labeling suggested by Turney and Littman. The labeling was
based on the occurrence of a seed set hashtag or emoticon within each
tweet. Complete documents that are already labeled, such as user reviews
or hand labeled sentences, for instance, can use Equation 2.8 directly.

2.3.2. Label Propagation Algorithm

The Label Propagation Algorithm (LPA) is a graph propagation algorithm
proposed by Zhu and Ghahramani [2002] and is used to label unlabeled
entities, to detect clusters or communities within a dataset. The algorithm
can either be initialized with all nodes having an initial label or with only
a few nodes being labeled. The algorithm is iterative, where in each it-
eration the nodes are selected in random order and given the label most
common among the neighboring nodes. When no node changes label dur-
ing an iteration the algorithm finishes. When only some of the nodes are
initially labeled, those nodes commonly reset their label after each itera-
tion.

Determining which nodes are neighboring each other or the weights of
the edges between the nodes can be done in different ways. The edges
represent the similarity or another relationship between the entities, and
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depending on this relationship an appropriate measure is chosen to determ-
ine the relational strength among all of the entities. An edge is commonly
created between two nodes, making them neighboring nodes, if their rela-
tional strength is above a predefined threshold. Some of the most common
measures used to calculate relational strengths are cosine similarity, co-
occurrence statistics and PMI.

LPA Lexicon

One application of the Label Propagation Algorithm is to infer a sentiment
lexicon. This can be done by initializing nodes representing seed words
with their sentiment value, while the rest of the nodes, representing the
candidate lexicon entries, remain unlabeled. The sentiment values of the
seed words are then propagated through the graph setting the sentiment
value of each candidate entry node to the weighted sum of its neighbors
sentiment values. When convergence has been achieved the algorithm is
terminated, and each candidate entry has been given its final sentiment
value. The process is shown in Algorithm 2.

Algorithm 2: Label Propagation Algorithm
Input: G = (V, E), wij ∈ [0, 1], P , N
Output: Sentiment Lexicon, pol ∈ R|V |

1 poli = 0, ∀i
2 poli = 1.0, ∀vi ∈ P
3 poli = −1.0, ∀vi ∈ N
4 for t← 1 to T do

5 poli =
∑

(vi,vj )∈E
wij ·polj∑

(vi,vj )∈E
wij

, ∀vi ∈ V

6 poli = 1.0, ∀vi ∈ P // Reset positive seed words
7 poli = −1.0, ∀vi ∈ N // Reset negative seed words

A problem highlighted by Velikovich et al. [2010] when using LPA to
create a sentiment lexicon, is what is called the reinforcement effect. Be-
cause the sentiment value of each node is calculated as the weighted sum
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(a) Using the Label Propagation Algorithm

(b) Using the Graph Propagation Algorithm

Figure 2.1.: Comparison of propagation algorithms’ end results

of its neighbors, each node could be influenced by the same seed node
multiple times. In graphs with many dense subgraphs and occurrences of
erroneous edges, the number of paths from seed words could get very high,
resulting in an amplified flow of sentiment. This could lead to words that
are supposed to get similar sentiment values end up with very different
sentiment values. Additionally, Velikovich et al. discovered that negative
phrases appeared more densely connected, resulting in a lexicon highly
skewered towards negative entries. The effect is illustrated in Figure 2.1a.
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2.3.3. Graph Propagation Algorithm
The Graph Propagation Algorithm is an alternate version of the LPA,
specifically aimed towards sentiment lexicon creation based on graphs of
lower quality, where not all edges are trustworthy. The algorithm was pro-
posed by Velikovich et al. [2010], arguing that the approach would alleviate
the reinforcement effect of the LPA on lower quality graphs. Similarly to
the LPA, an initial graph is created based on an appropriate relation-
ship measure before all nodes representing the seed words are given an
initial sentiment value. The nodes representing seed words are then tra-
versed, propagating their sentiment value to all nodes within a distance
T . On each step away from the seed node, the sentiment value is weighted
using the edge weights between the nodes, representing their relational
strength. The further away from the seed node a node is located, the
lower the propagated sentiment value will be. Each node holds the max
path from each seed node within a distance of T . After all seed nodes have
propagated their sentiment value, the final sentiment value of each node
is calculated by subtracting the sum of the max paths from negative seed
nodes from the sum of max paths from positive seed nodes. The method
is shown in Algorithm 3.

Figure 2.1b shows the result of running the Graph Propagation Al-
gorithm on a small, dense graph. Notice how using LPA, a node received
higher sentiment value having only one edge from positive seed words
than a node having three edges from positive seed words, whereas using
the Graph Propagation Algorithm, the more connected node received a
much higher sentiment value than the single connected node.

2.4. Classification Scoring Metrics
To measure the performance of a classification system, a collection of scor-
ing metrics are needed. In Sentiment Analysis the four scoring metrics
precision, recall, F1–score and accuracy are often used. The calculation of
these depends on values called true-positives, false-positives, true-negatives
and false-negatives; tp, fp, tn and fn respectively. Here tp and tn are the
number of examples correctly classified as positive and negative, while fp
and fn are the number of examples falsely classified as positive and neg-
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Algorithm 3: Graph Propagation Algorithm
Input: G = (V, E), wij ∈ [0, 1], γ ∈ R, T ∈ N, P , N
Output: Sentiment Lexicon, pol ∈ R|V |

1 poli, pol+i , pol−i = 0, ∀i
2 pol+i = 1.0, ∀vi ∈ P
3 pol−i = 1.0, ∀vi ∈ N
4 aii = 1, aij = 0, ∀i ̸= j
5 for vi ∈ P do
6 F = {vi}
7 for t← 1 to T do
8 for (vk, vj) ∈ E such that vk ∈ F do
9 aij = max{aij , aik · wkj}

10 F = F
∪
{vj}

11 for vj ∈ V do
12 pol+j =

∑
vi∈P aij

13 Repeat steps 4-12 using N to compute pol−

14 β =
∑

i pol+i /
∑

i pol−i
15 poli = pol+i − βpol−i , ∀i
16 if |poli| < γ then poli = 0.0, ∀i

ative. This relationship can be viewed in the confusion matrix displayed
in Table 2.1.

Predicted
Positive Negative

Tr
ue Positive tp fn

Negative fp tn

Table 2.1.: Confusion matrix for possible prediction outcomes

Precision

Precision is the ratio of the number of relevant returned results to the
number of total returned results. The precision ratio describes how many
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of the returned results are relevant. Precision is defined as:

precision = tp

tp + fp

Recall

Recall is the ratio of the number of relevant results to the number of overall
relevant results. The recall ratio describes how many of the relevant results
are returned. Recall is defined as:

recall = tp

tp + fn

F1-Score

F-Score is the weighted combination of precision and recall, and in its
general form defined as:

Fβ = (1 + β) · precision · recall

(β2 · precision) + recall

The most commonly used β value is 1, this is known as F1-score, which
produces the harmonic mean of precision and recall. F1-score is thus
defined as:

F1 = 2 · precision · recall

precision + recall
= 2tp

2tp + fp + fn

Accuracy

Accuracy is the ratio of the number of true results to the number of total
cases. The accuracy ratio describes how many of the results were accur-
ately predicted as positive and negative. Accuracy is defined as:

accuracy = tp + tn

tp + fp + tn + fn
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2.5. Tools
2.5.1. Scikit-Learn
Scikit-Learn, by Pedregosa et al. [2011], is a machine learning library,
written in Python. It consists of implementations of a wide range of
state-of-the-art machine learning algorithms built for both supervised and
unsupervised medium-scale problems. It emphasises ease of use and good
documentation, and plays an important role in this project. In the fol-
lowing paragraphs the most relevant concepts and features of Scikit-Learn
are presented.

Transformer
A Transformer object in Scikit-Learn is used to extract or generate fea-
ture representations of the data. To extract different features, different
transformers must be created.

Pipeline
Scikit-Learn provides a Pipeline object, allowing pipelining of machine
learning processes. The pipeline makes it easy to perform and chain pro-
cesses such as preprocessing and feature extraction together with a ma-
chine learning algorithm in a sequential and tidy manner. In other words,
it allows sequential and parallel application of a list of estimators. An es-
timator is in this context either an object that is able to learn from data,
such as a classifier, or a Transformer object that extracts features from
raw data.

Feature Union
A Feature Union is an object included in the Pipeline framework and is
a useful tool in feature extraction. The standard Pipeline chains trans-
formers together in a sequential manner where data from one Transformer
is fed directly into the next Transformer. A Feature Union on the other
hand allows for a collection of transformers to be fed the exact same input
data. This is especially useful when wanting to extract a series of differ-
ent features from the same data. The resulting feature vectors from the
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Transformers in the Feature Union are concatenated into a final feature
matrix.

Grid Search

The Pipeline framework allows performing a Grid Search across all Trans-
former or estimator parameters. The Grid Search takes a set of possible
values for each parameter in each transformer and searches through all
possible parameter combinations, looking for the combination that yields
the best performance overall.

2.5.2. GATE TwitieTagger

The GATE TwitieTagger, by Derczynski et al. [2013], is a Part-of-Speech
(PoS) tagger specifically created for tweets. As described in Section 2.1,
the PoS tagger takes as input a sentence and returns the same sentence
where each word is replaced by its PoS tag.

Another powerful PoS tagger tailored for tweets is the TweeboParser
by Gimpel et al. [2011]. TweeboParser is very complex and is written
in several programming languages linked together with Shell and Python
scripts. Because of this, we decided to use the much simpler GATE Twiti-
eTagger which is only written in Java. In terms of performance, both
report a similarly high token accuracy values: 91% and 90% for GATE
TwitieTagger and TweeboParser, respectively.

2.5.3. VADER Sentiment Analysis

VADER (Valence Aware Dictionary and sEntiment Reasoner), by Hutto
and Gilbert [2014], is a lexicon based sentiment analysis tool specifically
tuned towards social media. VADER goes beyond the simple bag-of-words
model and takes into consideration word order and degree modifiers.
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2.5.4. Emoji-Java
Emoji-Java1 is a lightweight library that lets you convert from Unicode
emoji characters to their alphabetical, decimal and hexadecimal repres-
entations. The alphabetical representation, called alias, is a single word
describing emote; for example, ☺ is translated into ”smile”.

2.6. Datasets
In this section all external datasets used is described. In addition we down-
loaded a large Twitter dataset using the Tweet Streaming API to create
our sentiment lexicon. That dataset is described in detail in Section 5.3.

2.6.1. TweetNLP — Twitter Word Cluster
TweetNLP is a set of tools made specifically for Twitter Natural Language
Processing (NLP) tasks. A part of TweetNLP is a hierarchical Twitter
word cluster, by Owoputi et al. [2011], that was generated using Brown
clustering, based on 56 million unique tweets. We have incorporated this
clustering as a simple dictionary from word to cluster ID.

2.6.2. SemEval 2016 Twitter Sentiment Dataset
As part of the International Workshop on Semantic Evaluation (SemEval)
2016 five datasets have been made available. These comprise a training
set and a test set from SemEval 2013, and test sets from SemEval 2014,
2015 and 2016. We used the 2013 training sets for training, while the test
sets were only used to test our system. To access the datasets, they all had
to be downloaded through the Twitter API. Portions of the tweets have
been deleted since the datasets were originally created and are therefore
no longer available. Table 2.2 gives an overview of the datasets used,
comparing the sizes of the original annotated datasets to the sizes and
class distributions of the datasets actually available at the time they were
downloaded.

1Emoji-Java: https://github.com/vdurmont/emoji-java
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Size Class distribution
Name Original Downloaded Positive Neutral Negative
2013-train 9684 8748 3283 4175 1290
2013-test 3813 3087 1258 1367 462
2014-test 1853 1509 794 564 151
2015-test ? 2390 1038 987 365
2016-test ? 20632 7059 10342 3231

Table 2.2.: Overview of SemEval datasets used in the project
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In this chapter, an overview of the state-of-the-art within Twitter Sen-
timent Analysis (TSA) is presented, before common approaches within
lexicon based Sentiment Analysis (SA) systems and automatic creation of
sentiment lexica are described in more detail. The overview of the state-of-
the-art within TSA will act as an introduction to TSA, introducing central
aspects and concepts within the field, whereas the in-depth descriptions of
the common approaches within lexicon based SA and automatic creation
of sentiment lexica forms the basis for the systems developed in the thesis.
In addition the highly relevant International Workshop on Semantic Eval-
uation (SemEval) is described, being at the forefront of research within
the field of TSA.

3.1. Literature Review Method
Based on the goals presented in Section 1.3, there were three main areas
we wanted to research: state-of-the-art TSA, lexicon based SA and auto-
matic creation of sentiment lexicon.

The research conducted when constructing the state-of-the-art within
TSA was mainly based on the top performing TSA systems participating
in SemEval, over the last few years. The reason for focusing primarily
on TSA systems participating in SemEval is that it is the main arena for
TSA systems, with new and better systems developed each year.

Regarding the fields of lexicon based SA and automatic creation of sen-
timent lexicon, which are the main focus areas of the thesis, an in depth
literature review was conducted. First a series of candidate papers were
collected within both fields using the search engine Google Scholar. After
all candidate papers had been collected, each paper was reviewed and
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scored based on the relevance towards the specific field. The papers we
found most relevant were then used to identify the most common ap-
proaches within each of the two fields.

3.2. The International Workshop on Semantic
Evaluation

The International Workshop on Semantic Evaluation (SemEval) is a work-
shop where several computational semantic language analysis systems are
developed to solve a series of shared tasks. The overall process of the
workshop consists of three steps: receive relevant training data, develop
the system and evaluate the system. In recent years the workshop has
been hosted annually, where some of the shared tasks have carried over
from one year to the next. Among these is a collection of tasks centered
around TSA. As being a part of SemEval each year since 2013, the TSA
tasks have yielded significant improvements to the state-of-the-art in the
field, as will be discussed in the following section.

3.3. State-of-the-Art in Sentiment Analysis

Based on the development in recent years within TSA, a typical approach
has been identified. The approach uses a supervised machine learning
system, consisting of three main steps: preprocessing, feature extraction
and classification. Preprocessing is used in order to remove noise and
standardize the tweet format, by for example replacing or removing URLs.
Desired features of the tweets are then extracted, such as sentiment scores
using specific sentiment lexica or the occurrence of different emoticons.
Finally, a classification is performed using the extracted features.

3.3.1. Preprocessing

The preprocessing of tweets in SA commonly consists of a series of tasks in
order to normalize the tweet format and prepare it for feature extraction.
The main tasks in preprocessing commonly revolve around text filtering
and negation detection.
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Text Filtering

Text filtering often includes removing items providing minimal information
regarding the actual classification task. Items such as user mentions and
URLs are therefore often substituted with tags as done by Go et al. [2009],
where the tag “USER” is used for user mentions and the tag “URL” for
URLs. Another common approach is to remove the URLs and user men-
tions completely.

The use of retweets1 is also often handled as a text filtering task during
preprocessing. The retweets are detected by the tag ‘RT’, which indicates
that the following segment of the tweet is a repost of someone else’s tweet.
This is commonly handled by simply removing the retweet tag ‘RT’ from
the tweet, because the ‘RT’ tag by itself carries no information. A retweet
can be about how someone agrees or disagrees about the original quote
and analysis of the text itself is needed to determine which one it is.

Elongated words are common in tweets. Elongated words are words
spelled with extra characters, such as “booooring” or “coool”. These words
are often modified by reducing the surplus of equal consecutive characters.
The words are then either reduced down to the actual correct spelling of
the word, “booooring” becomes “boring”, or down to a maximum num-
ber of consecutive equal characters. With a maximum of 2 consecutive
equal characters, “booooring” becomes “booring”. The reduction is done
to be able to group various elongations of the same word under one entry,
the aggregated approach helps determine the overall sentiment more ac-
curately. A reason for not removing all of the extra characters is that
elongation can be a form of expressing the sentiment, and can therefore
be useful in the analysis.

1Until early 2015 retweeting was not an official Twitter feature and users used to tweet
with ‘RT’ at the beginning of a tweet to indicate that the tweet was a re-post of
someone else’s content.
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Negation Detection
Detecting negation (Section 2.1) in tweets has become an integral part of
most TSA systems. This is commonly done by looking for negation cues
such as ”not”, ”wouldn’t” and ”ain’t” in the tweets, before determining
the potential scope of the negation. To determine the scope, the collec-
tion of words affected by the negation cue, a simple method proposed by
Das et al. [2001] is often used. The simple approach consists of selecting
the n consecutive words appearing after the negation cue, and marking
them as negated. Another common approach is to mark all consecutive
words appearing after the negation cue until reaching the next punctu-
ation mark as negated. As to how much each individual word is affected,
there are two main approaches. The first approach being simply reversing
the sentiment value of the word, and the other being a slight adjustment of
the sentiment value of the word towards the opposite polarity. Using the
second approach, the unigram ”great” with a sentiment value of 3 should
in a negated context get a less positive value of, for instance, 0.5. A word
with low positive initial sentiment value should with this approach end up
with a negative sentiment value.

3.3.2. Feature Extraction
In order to predict or say anything about the overall sentiment of a tweet,
the features of the tweet need to be identified and evaluated. This process
is commonly called feature extraction. In our review of the participating
TSA systems in SemEval (2013-2015), a state-of-the-art feature set has
been identified. The state-of-the-art feature set consist of the features most
commonly used by the top ranked systems, first introduced by Mohammad
et al. [2013] in SemEval-2013. The state-of-the-art feature set includes the
following features:

• Word n-grams: Collecting and weighting of words or collections of
consecutive words.

• Char n-grams: Collecting and weighting of characters or collections
of consecutive characters.

• Word clusters: Determining which cluster each word in a tweet be-
longs to.
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• Prior Polarity Sentiment Lexica: Collecting the sentiment value of
the individual words in a tweet, by looking up the words in special-
ized prior polarity sentiment lexica, and extracting features based
on the values.

• Part-of-Speech tagging: Utilizing specialized Twitter Part-of-Speech
taggers to tag each word and count the occurrences of each tag.

• Punctuation: The number of consecutive punctuation marks and
whether the last character of a tweet is an exclamation mark or a
question mark.

• Emoticons: The number of positive and negative emoticons.

• Negation: The marked negation scopes are utilized using prior po-
larity lexica able to handle words in negated contexts. The negation
marking also has an effect in Word n-grams, Char n-grams and Prior
Polarity Sentiment Lexica.

3.3.3. Classification
By using the feature representation of tweets, created in the feature ex-
traction step, a supervised machine learning algorithm called a classifier is
commonly used to perform the classification task. Among the supervised
machine learning algorithms, the most popular within TSA are Support
Vector Machine (SVM), Logistic Regression, Stochastic Gradient Descent
and Naïve Bayes. In Table 3.1 the top ten submissions of SemEval-2015
are listed together with the machine learning algorithm used. We see that
the SVM is the most used algorithm, which by Kiritchenko et al. [2014] is
considered to be the state-of-the-art algorithm within TSA.

One-Step vs. Two-Step Classification
The most common classification approach in TSA is a one-step process,
where a single machine learning algorithm classifies the tweets into three
different classes; positive, negative and neutral. Most of the top ranked
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Rank Name Classifier
1 Webis Ensemble of four classifiers, averaging results
2 unitn Deep Convolutional neural network (CNN)
3 lsislif Logistic regression
4 INESC-ID Stochastic Gradient Descent
5 Splusplus Two stage classifier. SVM and CNN
6 wxiaoac SVM
7 IOA SVM with RBF kernel
8 Swiss-Chocolate SVM, Logistic regression and random forest
9 CLaC-SentiPipe Linear SVM and Logistic regression
10 TwitterHawk Linear SVM

Table 3.1.: Overview of top 10 submissions for SemEval 2015

submissions in SemEval-2014 and SemEval-2015 used this approach.

There are, however, other approaches. One of these is the two-step
classification approach, consisting of two consecutive steps: subjectivity
classification and polarity classification. In the subjectivity classification
step, tweets will either be classified as subjective or objective/neutral. The
tweets classified as subjective will then proceed to the polarity classifier,
where they are classified as either positive or negative.

In SemEval 2015, the top ranked TSA system by Hagen et al. [2015] used
yet an other approach, by utilizing an ensemble of four classifiers. In the
ensemble approach, classification is commonly done through a vote among
the classifiers, where each classifier votes for the class it has predicted.
Hagen et al. let each classifier present its calculated probability for each
class, and the class with highest average probability is chosen.

3.4. Automatic Creation of Sentiment Lexica

Manual annotation of large amounts of data is costly. This also applies
to the task of annotating sentiment lexica, where each n-gram in a large
collection of n-grams should be assigned a sentiment value. Not only
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should the annotator decide whether or not the n-gram is positive or
negative, but also the sentimental strength of the n-gram. For example,
the unigram ”great” should get a positive sentiment score that is higher
than the unigram ”good”, because ”great” is more positive. To overcome
these hurdles, a lot of research has been done within the field of automatic
creation of sentiment lexica, where n-grams should both be collected and
annotated automatically. As a result of the research, a series of different
approaches has been proposed on the subject over the past 20 years.

3.4.1. Collecting data

Before beginning the annotation process, the n-grams to include in the
lexicon should be collected. The most common approach is to extract
these from a large corpus of text documents capturing the language fea-
tures the lexicon is aimed at. For example, a lexicon aimed at user reviews
should probably use a large corpus of user reviews, while a lexicon aimed
at tweets should probably use a large corpus of tweets. Candidate entries
are commonly selected based on a frequency analysis over the complete
corpus where the most frequent n-grams are selected. Mohammad et al.
[2013] selected all unigrams and bigrams as candidate entries, while Ve-
likovich et al. [2010] selected all n-grams up to length 10 before filtering
out n-grams based on their frequency and mutual information. In the
latter approach, only the n-grams are kept where the co-occurrence of the
included words forms common phrases or sayings. At this stage, stop-
words are often filtered out using a predefined list of stopwords. That is,
the most common words in a language, e.g., the, is, at and a are removed.
These words will appear frequently in both positive and negative contexts
and should therefore on their own not be given a sentiment value.

3.4.2. Annotating candidate n-grams

The common methods for annotating the selected candidate n-grams can
be divided into two main types. One, where the documents from which
the candidate n-grams were selected are labeled, and another where the
documents are unlabeled. Labeled documents can for instance be reviews
or tweets that are labeled as positive or negative.
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Annotating using labeled documents

When using a corpus of labeled documents to annotate candidate n-grams,
the association measure Pointwise Mutual Information (PMI) is commonly
used. The PMI value for n-grams in a positive context and in a negat-
ive context are calculated separately and the final sentiment score of an
n-gram is calculated by subtracting the PMI for the n-gram in a negative
context from the PMI in a positive context, as described in Section 2.3.1.
Using the aforementioned method and two different Twitter corpora, Mo-
hammad et al. [2013] created the Sentiment140 and HashtagSentiment
lexica. The labeled tweets used to create the two were collected using
seed sets of positive and negative emoticons and hashtags. If a tweet con-
tained a positive emoticon or hashtag the tweet was labeled as positive,
and if a tweet contained a negative emoticon or hashtag it was labeled as
negative. Both the Sentiment140 lexicon and the HashtagSentiment lex-
icon are often used as lexica in the sentiment lexicon feature in machine
learning TSA systems. Examples of this are the winning TSA system of
Task 10 subtask B in SemEval 2015, Hagen et al. [2015], and the fifth best
system competing on the same task by Dong et al. [2015].

Annotating using unlabeled documents

The PMI measure can also be used when annotating using a corpus of un-
labeled documents. Turney and Littman [2002] proposed a method where
a seed set containing positive and negative words based on opposing pairs,
e.g. good/bad, excellent/poor was used. Each candidate word got its sen-
timent value by subtracting the PMI for negative context from the PMI
for positive context. A candidate word is in a negative context if one of
the negative seed words is within a window of 10 words to the left or to
the right of the candidate word. The same applies to the positive context.

Another approach using unlabeled documents is the graph approach.
For the graph approach two different variants have been proposed. For
both variants the similarity between all candidate n-grams, and between
the candidate n-grams and a seed set of positive and negative words are
calculated before each n-gram is initialized as a node in a graph. The
edges between the nodes are weighted according to the similarity between
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them. If the similarity is below a set threshold, the edge will not be
created. Similarity can be calculated in a number of different ways: Ve-
likovich et al. [2010] determined the edge weights by calculating the cosine
similarity between constructed context vectors of the n-grams, while Zhu
and Ghahramani [2002] sat the edge weights to be the Euclidean distance
between the n-grams.

In the graph propagation variant, described in Section 2.3.3, proposed
by Velikovich et al. [2010], the nodes representing the seed set should be
initialized with a sentiment score according to its orientation (negative or
positive), before propagating their sentiment value to the nodes laying on
a path of length k away from them. The sentiment value of an n-gram
is then calculated by adding the sum of negative sentiment scores to the
sum of positive sentiment scores that has been propagated to the node
representing the n-gram.

The second variant proposed by Zhu and Ghahramani [2002], the label
propagation approach, is quite similar to the graph propagation approach
outlined above. The main difference between the two is how the sentiment
values are calculated. Where the graph propagation variant calculates the
sentiment value to be the sum of the max paths from seed words to a given
n-gram, the label propagation variant calculates the sentiment value as
the weighted average of the n-grams neighbors. Whereas each node in the
graph propagation variant only holds the max path from a seed word, the
nodes in the label propagation variant can possibly hold multiple paths to
a specific seed word.

Velikovich et al. argued that with a high quality graph where each path
is trustworthy the label propagation variant will work as intended. Words
close to a positive seed word, for instance, will get a higher score than
words further away. However, with a lower quality graph, which often
may the case with Twitter data, what is called the reinforcement effect
described in Section 2.3.2, may occur, resulting in undesired behavior.
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3.5. Lexicon Based Sentiment Analysis
Lexicon based SA is the task of performing SA solely based on one or
multiple sentiment lexica. The overall performance of a lexicon based SA
system is therefore closely related to the quality of the sentiment lexicon
used, but also how the sentiment lexicon information is used. In recent
years, most SA systems use a machine learning approach, with sentiment
lexica as a feature among a series of other features. The number of new
lexicon based SA systems that have appeared in recent years is therefore
few. Although the task of classification differs between a lexicon based SA
system and a machine learning SA system, the sentiment lexica features
in machine learning systems are based around the same ideas used by
lexicon based SA systems. The common approach consists of two main
steps: sentence analysis and sentiment calculation.

3.5.1. Sentence Analysis
Before the n-grams in a sentence are looked up in a sentiment lexicon
and given a sentiment value, the sentence itself is analysed in search of
specific features. These features are used to adjust the raw sentiment
values collected from the sentiment lexica.

Negation
Similarly to the machine learning approaches to SA, the detection of nega-
tion is also an important feature in lexicon based SA, using the approaches
described in Section 3.3.

Intensification
In systems such as by Hutto and Gilbert [2014] and Taboada et al. [2011],
intensifiers are used in the classification process. In addition to detecting
negation, words working as intensifiers or degree adverbs are detected.
Degree adverbs are words such as ”very”, ”completely” and ”hardly”, and
affect the following word by either boosting or dampening its sentiment
value. The main idea is that in the sentence ”that was good”, for instance,
the word ”good” should get a lower sentiment value than in the sentence
”that was very good”, because of the booster word ”very”. While in the
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sentence ”that was kind of good”, on the other hand, the word ”good”
should get a lower sentiment value because of the dampener ”kind of”.
There are two common approaches to how the intensifiers should affect
the following word. Polanyi and Zaenen [2006] used a fixed intensifica-
tion method, where a fixed amount is added to or subtracted from the
sentiment value of the affected word. Taboada et al. [2011] on the other
hand used a percentage intensification method, where the sentiment val-
ues of the affected words are multiplied by a value x > 1 for boosters and
0 < x < 1 for dampeners.

3.5.2. Sentiment Calculation
The common approach to calculate the final sentiment value of a sen-
tence is to sum up the sentiment values of each n-gram in the sentence.
Depending on whether or not negation and intensification were detected
during the analysis step, the sentiment values of the affected n-grams are
adjusted accordingly. In order to classify the sentence based on its fi-
nal sentiment value, thresholds for positive and negative sentiment scores
must be decided upon. With a final sentiment value above the threshold
for positive sentences, the sentence is classified as positive. If the value
is below the threshold for negative sentences, the sentence is classified as
negative. With a final sentiment value between the two thresholds the
sentence is classified as neutral.
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In the fall of 2015, we developed a state-of-the-art Twitter Sentiment Ana-
lysis (TSA) system based on the most common approaches within the
field, outlined in Section 3.3. The system was created for the Interna-
tional Workshop on Semantic Evaluation (SemEval) 2016 and its TSA
specific task: ”Message Polarity Classification”.1 The development of the
system acted as both an introduction to the field of TSA and as inspira-
tion for the project goals listed in Section 1.3. In this chapter the overall
system architecture is described, followed by test results and results from
our participation in SemEval 2016. Shorter versions of this system descrip-
tion previously appeared in Jahren et al. [2016] and Jahren and Fredriksen
[2015].

4.1. Sentiment Classifier Architecture
To solve the three-class classification problem, a general multi-class classi-
fier, named BaseClassifier, was created. By following a general interface,
several BaseClassifiers could be combined sequentially to create a multi-
step classifier, or in parallel to create an ensemble classifier.

4.2. BaseClassifier
The Sentiment Analysis system created was developed using the Python
programming language and the Scikit-Learn machine learning framework
described in Section 2.5.1. The BaseClassifier consists of a three step
process: preprocessing, feature extraction, and classification or training.
The three consecutive steps are handled by the Pipeline also described

1SemEval 2016 Task 4a, Message Polarity Classification: Given a tweet, predict
whether the tweet is of positive, negative, or neutral sentiment.
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Figure 4.1.: Architecture of the Initial Experiment

in Section 2.5.1. Each Transformer (feature extractor) is presented with
preprocessed data. The preprocessing methods used are dependent on the
different Transformers and the features they aim to extract. The differ-
ent Transformers and the range of preprocessors used are described later
in this section. Figure 4.1 illustrates the overall architecture of the system.

The BaseClassifier is very general. When creating a BaseClassifier
instance, it takes in a dictionary that specifies all of its parameters. The
parameter dictionary includes the classifier algorithm, such as SVM, Naïve
Bayes or MaxEnt, options for each of the transformers, for example n value
for the character and word n-gram transformers, or which preprocessing
functions to use.

4.2.1. Preprocessing
The preprocessing step of the system modifies the raw tweets before they
are passed to feature extraction, and is a necessary stage to improve
the overall performance of the system. In this stage simple methods are
chained together to modify raw tweets using regular expressions. Limiting
each preprocessor to perform only one simple task allows for easy manage-
ment of the preprocessing used by the different transformers. Table 4.1
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Filter Description
tokenize Performs tweet tokenization using tokenizer by Potts

[2011]
lower_case Transforms all uppercase characters to lowercase
no_emotes Replaces various emoticons with empty string
no_user Replaces all username mentions with empty string
no_rt_tag Replaces all RT tags with empty string
no_url Replaces all URLs with empty string
no_hashsign Replaces all hash marks (#) with empty string
no_hashtag Replaces all hash marks along with the following tag

with empty string
limit_chars Removes all non alphabetic or space characters
limit_repeat Limits maximum repeating of a single character to three

Table 4.1.: List of preprocessors used in the Initial Experiment

lists all the basic preprocessors.

Negation Detection

A subset of the transformers perform better when negation is identified
in the tweets. Negation detection is therefore an important tweet pre-
processing step performed on all tweets before being sent to negation-
dependent transformers.

To perform negation detection, the system uses a simple approach,
where n words appearing after a negation cue are marked as negated
by attaching “_NEG” to the end of each word. If a punctuation mark
is encountered before reaching the n–th word, the negation marking is
stopped. By setting n = −1, negation marking is extended until the next
punctuation or the end of the tweet. To detect the negation cues, all
words in a tweet are checked against a list of negation cues. All negation
cues used in our system are listed in Table 4.2. The negation cues were
adopted from Councill et al. [2010], additionally we added common mis-
spellings and other closely related words by looking up each negation cue
in TweetNLP’s word cluster, described in Section 2.6.1.
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Negation Cues
ain’t aint anit can’t cannot cant couldn’t
couldnt didn’t didnt dnt does’nt doesn’t doesnt
don’t dont hadn’t hasn’t hasnt haven’t havent
havn’t havnt isn’t isnt lack lacking lacks
no nor not shouldn’t shouldnt wasn’t wasnt
won’t wont wouldn’t wouldnt

Table 4.2.: List of negation cues used in the Initial Experiment

4.2.2. Feature Extraction
In our system the feature extraction set is implemented as a Scikit-Learn
Feature Union, which is a collection of independent transformers (feature
extractors), that builds a feature matrix for the classifier. Each feature
we want to extract is represented by a Transformer. Table 4.3 gives an
overview of all the feature extractors used in the system.

TF–IDF Transformer
Both Word n-grams and Character n-grams are realized using a Term
Frequency—Inverse Document Frequency (TF–IDF) vectorizer that uses
the bag of words model outlined in Section 2.1. Our implementation
extends Scikit-Learn’s default TfidfVectorizer.

Lexicon Transformer
The sentiment lexicon feature is represented by a single transformer us-
ing multiple different prior polarity sentiment lexica. The lexica used are
a combination of automatic and manually annotated lexica, where some
also contain sentiment scores for words in negated contexts.

The automatically annotated lexica used are the Sentiment140 and the
HashtagSentiment by Mohammad et al. [2013], and contain sentiment
scores for both unigrams and bigrams, where some are in a negated con-
text. The unigrams and bigrams in a negated context are listed with a
“_NEG” attachment to differentiate between the two types of sentiment
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Features Description
Word n-grams Extracts TF–IDF values for combination of sequential words

as described in Section 2.2.2
Char n-grams Extracts TF–IDF values for combination of sequential char-

acters
Lexicon Extracts a few values that are calculated as a function of

the sentiment value of words in the tweet
Word Clusters Extracts a Bag-of-Words model of cluster IDs for each token

in the tweet
Part-of-Speech Extracts a Bag-of-Words model of part-of-speech tags for

each token in the tweet
Emoticons Extracts number of positive and negative emoticons found

in the tweet
Punctuation Extracts number of repeated alphabetical and grammatical

signs
VADER Extracts results from VADER sentiment analysis

Table 4.3.: List of feature extractors used in the Initial Experiment

scores.

The features extracted for each tweet from these two lexica are adopted
from Mohammad et al. [2013] and comprise:

• The number of unigrams or bigrams with sentiment score ̸= 0.

• The sum of all sentiment scores.

• The highest sentiment score.

• The sentiment score of the last unigram or bigram.

The manually annotated lexica we used are the MPQA by Wilson et al.
[2005], the BingLiu by Hu and Liu [2004], the AFINN by Årup Nielsen
[2011], and the NRC Emoticon lexicon by Mohammad et al. [2013]. The
MPQA and the BingLiu lexica do not list sentiment scores for words, but
instead whether a word contains positive or negative sentiment. After
checking a word of a tweet against these lexica, the word is either given
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the score −1 or +1, for a negative or positive word sentiment, respect-
ively. The AFINN and the NRC Emoticon lexica are similar to the two
automatically annotated lexica described above, where each word for the
AFINN lexicon and each emoticon for the NRC Emoticon lexicon is given
a sentiment score.

Also for the manually annotated lexica, four features were extracted.
The four features are as above, adopted from Mohammad et al. [2013]
and comprise:

• The sum of positive scores for words not in a negated context.

• The sum of negative scores for words not in a negated context.

• The sum of positive scores for words in a negated context.

• The sum of negative scores for words in a negated context.

Word Cluster Transformer

The word cluster transformer extracts the word cluster feature by counting
the occurrences of the different cluster IDs in each tweet. That is, if a
word in a tweet exists in a cluster, a counter for that specific cluster ID is
incremented by one. The word cluster used is described in Section 2.6.1.

Part-of-Speech Transformer

Uses the GATE TwitieTagger to assign part-of-speech tags to every token
in the text, the tag occurrences are then counted and returned.

Punctuation Transformer

The occurrences of continuous use of punctuation marks and characters
are detected by the punctuation transformer. The feature it extracts is
the number of these occurrences.
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Emoticon Transformer
Similarly to the punctuation transformer, the emoticon transformer also
searches for specific occurrences of characters that make up an emoticon
in a tweet. For the emoticon transformer this is the use of happy and sad
emoticons. The features it extracts are therefore the number of happy
emoticons and the number of sad emoticons.

VADER Transformer
The VADER transformer is very simple, it simply runs the VADER sen-
timent analysis tool, described in Section 2.5.3, and extracts the output
from it.

4.2.3. Classification
After all desired features have been extracted, our system uses the Support
Vector Machine (SVM) algorithm to classify the data into one of the three
classes: positive, neutral or negative. The SVM algorithm was chosen for
being a state-of-the-art text classification algorithm as discussed in Sec-
tion 3.3.

Support Vector Machine
The current standard incarnation of the SVM classification algorithm was
proposed and formally described by Cortes and Vapnik [1995]. The al-
gorithm takes a set of data points located in a feature space and attempts
to split the feature space into optimal class segments. The attempt to
split the feature space into optimal class segments is often referred to as
training the machine. When presented with a new unclassified data point,
the data point is assigned the class of the class segment it is located in.

The spatial location of a data point is determined by the numerical
value of its features. In a two dimensional scenario, a data point consists
of two features; x and y. If the data point is a representation of a sen-
tence, x could be the number of words in the sentence and y the number
of uppercase letters. Of course in real SA systems, the number of features
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(a) Non maximized margin separation (b) SVM maximized margin separation

Figure 4.2.: Two possible results of linear binary classification

will be much higher.

In a simplified form, the algorithm solves a binary classification prob-
lem where the data is linearly separable. In that case the feature space
is divided into two class segments. The class segments are separated by
a hyperplane with the largest possible margin between the two segments
— this concept is called margin maximization. The data points closest to
the hyperplane for each class, laying on a vector parallel to it, are called
support vectors. Hence the name of the algorithm: Support Vector Ma-
chine.

Figure 4.2 illustrates two different ways of splitting the data into two
classes. Figure 4.2a shows a non-maximized margin split, while Figure 4.2b
follows the SVM algorithm of finding the support vectors that result in
the largest margin between the two segments.

The algorithm can also be used if linear separation of the training data is
impossible. This could either be achieved by allowing misclassified points
and introducing a slack variable, or by using the kernel trick. In the first
approach the misclassified points are assigned a penalty related to the
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(a) Before application of kernel trick (b) After application of kernel trick

Figure 4.3.: Kernel trick applied to a non-linearly separable dataset

distance away from the support vector of their class segment. The longer
the distance, the higher the penalty. The penalty comes in the form of a
positive slack variable, which governs the trade-off between misclassified
points and the margin.

By using the kernel trick, the data is mapped onto a higher dimensional
space where it becomes linearly separable. This is done by applying a ker-
nel function to the data. The most popular kernel functions are the Radial
Basis, the Polynomial and Sigmoidal kernels. The in-depth explanation
of SVM by Fletcher [2009] states that finding the right kernel function is
more of an art than an exact science. It often comes down to trial and
error.

Figure 4.3a shows a dataset with a clear pattern which is not linearly
separable. Figure 4.3b shows the same dataset after being transformed
by a kernel function to 3-dimensional space. The items occupy the same
positions on the xy-plane, but are separable along the z-axis.

The SVM algorithm can also be applied to classification problems with
more than two classes. To solve the multi-class classification problem, two
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Figure 4.4.: Data flow in the two-step classifier

methods, One-vs-All and One-vs-One, are commonly used. Both methods
use a set of binary SVM classifiers and are thoroughly explained by Hsu
and Lin [2002]. Popular implementations of the SVM algorithm includes
solving quadratic programming problems using a sequential minimal op-
timization algorithm invented by Platt [1998].

Realization of the Classifier

The classifier was realized using the Scikit-Learn framework which includes
a series of SVM implementations. We chose the SVC variant, also known
as C-Support SVM classifier, which is based around the idea of setting a
constant C that will be used to penalize incorrectly classified instances.
High C values will create a narrower margin, which will be able to classify
more training elements correctly, but may also lead to overfitting. There-
fore, it is desirable to perform some kind of parameter optimization to
find the optimal C value. For multi-class classification, Scikit-Learn uses
the One-vs-One method, with a run time complexity quadratic to number
of elements. However, this will not be a problem for the relatively small
(under 10 000 elements) SemEval datasets.
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4.3. Combining BaseClassifiers

4.3.1. Multi-Step Classifier

A single BaseClassifier acts as a one-step classifier, but by chaining Base-
Classifiers sequentially, we can create a multi-step classifier. Each clas-
sifier can be trained independently on different data thereby learning a
different classification function. Figure 4.4 illustrates how chaining of two
BaseClassifiers can create a two-step classifier. The first BaseClassifier is
trained only on data labeled as subjective or objective, while the second
BaseClassifier trains only on subjective data, labeled positive or negative.
When classifying, if the first BaseClassifier classifies an instance as sub-
jective, the instance is forwarded to the second BaseClassifier to determine
if the instance is positive or negative. The results from both classifiers are
then combined together and the final classifications are returned.

4.3.2. Ensemble Classifier

By combining the BaseClassifiers in parallel, we can create an ensemble
of classifiers. Each of the classifiers is independent of the others and all
classify the same instances. At the end, the classifiers take a vote to de-
cide on the final classification of the instance. Because the BaseClassifiers
are so general, it is possible to create BaseClassifiers that extract dif-
ferent features, do different preprocessing and use different classification
algorithms; we could combine them to create an ensemble system.

4.4. Results

4.4.1. Test Results

In order to thoroughly test our system and its components, two main tests
were conducted. A performance test of our final system with optimal para-
meters on all datasets, comparing the performance of our system against
previous Norwegian University of Science and Technology (NTNU) de-
veloped TSA systems, and an ablation study to identify the importance
of the different features used in our system.
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System Precision Recall F1-Score Time
20

13
Brevik and Selmer 0.6787 0.6644 0.6482 0.36
Faret and Reitan 0.731 0.697 0.688 ~180

Initial Experiment 0.7209 0.7120 0.7073 74.01

20
14

Brevik and Selmer 0.7071 0.6667 0.6614 0.17
Faret and Reitan 0.738 0.684 0.684 ~93

Initial Experiment 0.7091 0.6832 0.6847 41.38

Table 4.4.: Initial Experiment performance comparison

Classifier Performance

Our TSA system was trained on the SemEval 2013-train training set, us-
ing the optimal parameters identified through a grid search, and tested on
the SemEval 2013-test and the SemEval 2014-test test sets before being
scored using the scoring metrics described in Section 2.4. The results are
shown in Table 4.4 together with the results of the systems we aimed to
improve.

The performance of our system, compared to the previously NTNU de-
veloped TSA systems of [Faret and Reitan, 2015, Reitan et al., 2015] and
[Brevik and Selmer, 2013, Selmer et al., 2013] is very good. On the 2013-
test set, we can see that our system performs better than Faret and Reitan
and a lot better than Brevik and Selmer. On the 2014-test set our system
performs identical to Faret and Reitan, while still performing better than
Brevik and Selmer. However, an important aspect to notice is the execu-
tion time. Although we were not able to replicate the results of Faret and
Reitan by running their system, we got a rough estimate of their execution
time. On the 2013-test set their execution time was 180 seconds against
our 74, and on the 2014-test set their time was 93 against our 41. Even
though these execution time estimates are unofficial, they still indicate
a reduction in execution time from their system to ours. Compared to
the execution time of Brevik and Selmer [2013] our system is still quite
slow, but the simplicity of their system also leads to a significantly lower
performance.
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Features 2013-test 2014-test
All 0.7073 0.6847
All - Word n-grams 0.7050 0.6833
All - Character n-grams 0.6992 0.6812
All - Both n-grams 0.6948 0.6784
All - Automatic Lexica 0.7031 0.6888
All - Manual Lexica 0.7005 0.6905
All - All Sentiment Lexica 0.6862 0.6818
All - Word Clusters 0.7072 0.6825
All - Part-of-Speech tag counts 0.7080 0.6879
All - Punctuation counts 0.7128 0.6946
All - Emoticons counts 0.7028 0.6826
All - All counts 0.7069 0.6787
All - VADER Sentiment 0.6960 0.6796

Table 4.5.: Ablation study results. All - F means all features except for
F. All values are F1-scores.

Ablation Study

In order to detect the overall importance or impact each feature has on
our TSA system, we conducted a simple ablation study. This was done
by removing each feature in turn and checking how the performance of
the system was affected. The results of the ablation study are shown in
Table 4.5.

As we can see, the single most important feature is the Sentiment Lex-
ica. On the 2013-test set the accuracy of the system is reduced from
0.7073 to 0.6862 when the feature is removed. The effect of removing the
Sentiment Lexica feature when tested on the 2014-test set is not as ap-
parent. A possible cause of the difference in performance impact may be
that most of the Sentiment Lexica used were created at the same time as
the 2013-test set, and could possibly better reflect the language in that
period of time. For the 2014-test it is less clear which feature is the best,
collectively n-grams and all counts perform better, but VADER Sentiment
is the single most important feature, reducing the accuracy from 0.6847
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to 0.6796 when being removed. On the 2013-test set on the other hand,
the VADER Sentiment feature does not have the same impact, but is still
the second most important single feature. As VADER Sentiment was cre-
ated in 2014, the cause of this difference may also be a change in how the
language is used and that VADER Sentiment better reflects the language
in 2014.

The second most important features are the n-gram features. The re-
moval of both character n-grams and word n-grams leads to a significant
degradation in performance on both datasets.

Another interesting result is the impact of the features: Part-of-Speech
counts and Punctuation counts. On both the 2013-test and the 2014-test
sets, removal of those features causes slight improvement in performance,
but when removed together with the Emoticon counts, the degradation in
performance is larger than the performance degradation caused by only
removing the Emoticon counts feature. A possible cause for this is that the
classifier finds a pattern between all three of the counts that disappears
when one of them is removed.

4.4.2. SemEval 2016 Results
We participated with the Initial Experiment system in SemEval 2016
subtask 4a: ”Message Polarity Classification” under the team name NT-
NUSentEval and ended up on the 11th place out of 34 competing systems,
as shown in Table B.1.

Our system was ranked as number 1 on the SMS dataset and as num-
ber 3 on the Live-Journal dataset. On the remaining datasets containing
tweets, the system was ranked between 10th-13th place. The reason why
our system performed so well on SMS and Live-Journal messages is un-
clear. A possible explanation may be that our system was only trained on
the 2013-train dataset, while more than half the teams participating in
SemEval 2016 also used large external tweet datasets, which could improve
their performance on Twitter data, but also lead to worse performance on
out-of-domain data.
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5. Architecture
To create a system for automatic creation of a sentiment lexicon, two
different approaches have been developed based on the graph propaga-
tion approach and the Pointwise Mutual Information (PMI) approach,
outlined in Section 3.4. In addition, a lexicon based classifier has been
developed, utilizing the features of the lexicon created. In this chapter the
three systems are described individually in addition to two core system
components: tweet preprocessor and vocabulary tokenization, used in all
three systems. After initial tests of the two lexicon creation approaches,
the PMI approach outperformed the graph propagation approach and be-
came our main focus of the two. This is specifically reflected in a more
sophisticated n-gram creation process.

5.1. Tweet Preprocessor

Our system implements preprocessing as a set of simple functions, each
taking in a string, performing a simple operation, and returning the res-
ulting string. This simple design allows chaining several preprocessors one
after another achieving complex results, while remaining easily reusable
because of the simplicity of each single preprocessor. Additionally, we im-
plement two ways of chaining the preprocessors: by text or by word. A
set of preprocessors chained together by text will perform the filter opera-
tion on the entire text, while preprocessors chained together by word will
perform the operation at word level and will ignore words marked as ”pro-
tected”.1 This is particularly important with emoticons, as we often want
to remove non-alphanumeric signs from the text, and most emoticons con-
tain non-alphanumerical signs. With this approach we can first identify
all the emoticons, mark them as ”protected”, and then apply the remove

1In our implementation a word is marked as protected if it begins and ends with ”||”.
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Figure 5.1.: Effect of different preprocessors on a tweet

non-alphanumerical signs preprocessor at word level. This will remove all
non-alphanumerical signs except the ones that are part of an emoticon.

Figure 5.1 illustrates a series of text-level and word-level preprocessors
chained one after another. Notice how hashtags are still intact and upper-
cased after the removeNonAlphaNumeric and toLowerCase preprocessors
because they were marked as ”protected” and therefore ignored.
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Filter Description
normalizeForm Normalizes letters to Latin alphabet if possible,

for example ”Déjà vu” becomes ”Deja vu”
unicodeEmojisToAlias Translates Unicode emoji characters to their alias

as given by emoji-java library
removeUnicodeEmojis Removes all Unicode emoji characters
protectEmoticons Marks all ASCII emoticons as ”protected”
removeEmoticons Removes all ASCII emoticons
removeUsername Removes all username mentions
removeEMail Removes all e-mail addresses
removeHashtag Removes all hashtags
protectHashtag Marks hashtags as ”protected”
removeRTTag Removes RT tags
removeURL Removes URLs
removeNonSyntact Removes all non alphabetic or punctuation char-

acters
removeNonAlphanum Removes all non alphanumerical characters
toLowerCase Transforms all letters to lower case

Table 5.1.: List of preprocessors used in our system

Elongation Correction

To handle elongation, described in Section 3.3.1, a correction process util-
izing the Levenshtein distance algorithm (Section 2.2.3) and the condensed
form of words, is applied to all words. The process consists of two parts:
a four step dictionary creation part inspired by Brody and Diakopoulos
[2011], shown in Figure 5.2, and a word correction part using the cre-
ated dictionary. In order to correct a word, the word is first reduced to
its condensed form, before being looked up in the dictionary. If found,
the dictionary returns the most likely spellings of the initial word. Then
the Levenshtein distance is calculated between the initial word and each of
the returned words, before correcting the initial word to the closest match.
This way, with a dictionary containing both ”good” and ”god”, the word
”goddd” is 2 removals away from ”god” or 2 removals and 1 addition from
”good”, and will therefore be reduced to ”god”.
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1. For every word in the vocabulary, extract the condensed form, where
sequences of a repeated letter are replaced with a single instance of
that letter.
E.g., niiiice → nice, realllly → realy, ...

2. Create sets of words sharing the same condensed form.
E.g., {nice, niiice, niccccceee, ...}, {realy, really, realllly, ...}

3. Remove sets which contain 5 or less unique variations.
E.g., {committee, committe, commitee}

4. From each set, remove words with distribution less than 5% among
the words that are condensed to the same form.
E.g., {god: 15%, good: 80%, goood: 2%, godd: 1%, goood: 1%,
gooood: 1%, ...} → {god: 15%, good: 80%}

Figure 5.2.: Steps in the creation of a condensed form dictionary

5.2. Vocabulary Tokenization

In both our lexicon based classifier and our PMI lexicon approach the
process of tokenization is used. The process consists of splitting sentences
into what we call ”optimal” tokens, which are the longest non-overlapping
n-grams also found in a given vocabulary. The n-grams that were not
found in the provided vocabulary are tokenized as unigrams. The vocab-
ularies used should contain the most relevant n-grams within the given
context. The longest n-grams are preferred based on the assumption that
the longer n-grams provide more precise information than the shorter n-
grams. Goodman [2001] argues that there is little to gain with n-grams
longer than n = 5, stating that the performance, in terms of perplexity
and entropy of the language model, plateaus between n-grams of length
5-7. Goodman further states that building a model based on n-grams
of lengths up to n = 5 appears to give a good tradeoff between computa-
tional resources, in terms of runtime and memory usage, and performance.
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Figure 5.3.: The tokenization process shown step by step

Figure 5.4.: Datasets created using Twitter Streaming API

Figure 5.3 illustrates the process of vocabulary tokenization of a tweet.
The different stages of tokenization of a tweet are shown on the left, while
the relevant phrases in the vocabulary are shown on the right. The first
stage of vocabulary tokenization is to find all n-grams in the tweet that
are also present in the vocabulary. Then, we select the longest n-gram
found and remove all the n-grams that overlap with it. The final stage is
to tokenize the remaining words in the tweet as unigrams. The reason for
keeping the words not present in the vocabulary is that these words may be
intensifiers or negators, which are excluded from our lexicon. Additionally,
keeping these words is important for negation, since it affects the x next
words.

5.3. Tweet Streaming API Dataset
Raw Tweets
To be able to create a sentiment lexicon based on raw tweets, a large
corpus of tweets was needed. We downloaded about 400 million tweets
using the Twitter Streaming API.2 The tweets were gathered in the period

2https://dev.twitter.com/streaming/reference/post/statuses/filter
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18/12/2015-19/03/2016 (92 days), with about 4 million tweets downloaded
each day.

Filtered Dataset
After that, we filtered the entire raw tweets dataset, removing all tweets
considered to be noise. A tweet was considered to be noise if:

• Contained ”RT @”
– Nearly half of all downloaded tweets were retweets, most of

the retweets are of few original tweets, failing to remove these
would make some phrases over-represented.

• Contained a URL
– Tweets containing a URL were usually response to, opinion of

or simply the first 100 characters of a news story. These tweets
are generally unhelpful to analyze without also analyzing the
contents of page linked to itself.

• Contained ◦ symbol
– There is a surprising amount of automated weather and GPS

services connected to Twitter that regularly tweet current weather
or location, this simple rule excludes most of them.

• Ended with a number
– Spammers often tweet the same message over and over with an

incrementing number attached to the end of the tweet, this is
probably to combat Twitter’s own automatic spam detection.

The resulting dataset contained about 103 million tweets and is used to
generate the n-grams.

Labeled Dataset
To be able to use the PMI approach when creating a sentiment lexicon, a
large dataset of labeled documents — or in our case labeled tweets — was
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needed. For the approach to produce good and reliable results, the amount
of labeled tweets we needed was much higher than the manually annot-
ated tweets made available through International Workshop on Semantic
Evaluation (SemEval), which in turn meant that we needed a method for
labeling tweets ourselves.

The approach we came up with was to label tweets using our lexicon
based sentiment analysis system, described in Section 5.5 with the manu-
ally annotated sentiment lexicon AFINN by Årup Nielsen [2011]. For the
labeling to be as accurate as possible, only tweets with absolute sentiment
score above a certain value were labeled and extracted. The value chosen
was found using grid search and is a trade-off between precision and recall.
Low values will give higher recall as we will be able to classify more tweets,
but it will also lower precision.

Based on the Filtered dataset, with 103 million unlabeled tweets, the
labeling process yielded a labeled dataset containing 6.25 million tweets,
of which 58.7% were labeled as positive and the remainder as negative.

5.4. Automatic Lexicon Creation
In order to achieve the goal of automatic creation of a sentiment lex-
icon, two different approaches, both identified during our literature review
presented in Section 3.4, have been developed. The developed approaches
are based on the graph propagation lexicon described in Section 2.3.3 and
the PMI lexicon described in Section 2.2.1.

5.4.1. Graph Propagation Lexicon
Our implementation of the graph propagation approach consists of four
steps. A vocabulary identification step, a context-vector creation step, a
graph creation step and finally a sentiment propagation step.

Vocabulary Identification
During the vocabulary identification step a set of candidate n-grams are
identified and selected, forming a context vocabulary. Each tweet is pro-
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cessed into all possible n-grams with length up to n = 5, where candidate
n-grams are selected based on their occurrence frequency in the large un-
labeled Filtered dataset. All n-grams below a frequency threshold, in
addition to all n-grams ending on one of the stopwords in Table A.1 or
containing one of the intensifiers in Table A.3 are filtered out. Infre-
quent n-grams are filtered out, because the context vector to be created
in the subsequent step is too unreliable on infrequent n-grams. In con-
trast to Mohammad et al. [2013], where all n-grams containing stopwords
are removed, we only remove n-grams ending on a stopword. This is be-
cause we believe that the ending stopword does not provide the n-gram
with any additional information, but n-grams starting with or containing
a stopword may change the n-grams sentiment or reverse it completely.
For example, ”the best” is more positive than just ”best”, and the phrase
”the shit”, which is a positive phrase, is captured in addition to the word
”shit”, which on its own is negative. N -grams containing intensifiers were
removed due to the fact that the automatic lexicon creator was developed
in parallel to our lexicon based classifier. The classifier namely detects
and uses intensifiers in the classification process as described in detail in
Section 5.5. The resulting context vocabulary forms a collection of all
candidate entries for the sentiment lexicon to be created in the following
steps.

Context Vector Creation
To be able to compare the candidate n-grams against each other, a context
vector is created for all of them. This is achieved by following the COALS
method presented by Rohde et al. [2006]. The context vector of an n-gram
is created by summing up the word frequencies of the x number of words
occurring to the left and x number of words to the right of the n-gram
over all mentions of the n-gram in the dataset. For the context vectors,
representing the context of the n-gram, to be as accurate as possible, the
context vector word frequencies are weighted according to the distance
away from the n-gram. This is done using a ramped window of size 6. A
word appearing right next to the n-gram on either side will increase the
frequency of that word in the context vector by 6 for that side, while a
word appearing six words away will increase the frequency by 1 for that
side, as shown in Figure 5.5.
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1 2 3 4 5 6 0 6 5 4 3 2 1

Figure 5.5.: Ramped window of size 6. The square represents an occur-
rence of an n-gram in a sentence. The numbers on either side
represents the weights of the surrounding words.

After all initial context vectors have been created, a matrix containing
all n-grams is created. In the matrix each row contains the context vectors
of all selected n-grams and each column contains the occurrence frequency
of a single word occurring in the different vectors. When the matrix has
been initialized, the values are normalized using Pearson Correlation as
described in Section 2.2.5. Finally, all negative values are set to 0, while
all positive values are squared, resulting in our final context vectors.

Graph Creation
When all candidate entries have been selected and their respective context
vectors have been calculated, the graph is created. The graph consists of
nodes, representing the candidate entries, and edges with weights, rep-
resenting the similarity between the nodes. In order to create the edges,
the similarity between all pairs of n-grams, represented by their context
vectors, is calculated using the cosine similarity measure as described in
Section 2.2.4. Following the approach suggested by Velikovich et al. [2010],
an edge is created between two nodes if their cosine similarity is greater
then a predefined threshold. The edge weights of the created edges are set
to the calculated cosine similarity.

Sentiment Propagation
Using the Graph Propagation algorithm outlined in Section 2.3.3, the seed
nodes propagate their sentiment values through the finished graph. In our
implementation, each seed node can affect nodes that are connected to
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Figure 5.6.: Architecture of the PMI lexicon creation system

it via two or less other nodes. When all seed nodes have propagated
their sentiment value, the final sentiment value of each node is calculated
by subtracting the sum of all negative max paths from the sum of all
positive max paths. The negative and positive max paths to a node,
are the maximum sentiment values each connected seed node affects the
node with. A node with more paths to positive than negative seed nodes,
will most likely get a positive sentiment value. Nodes with few paths to
seed nodes, or an approximately equal number of paths to both positive
and negative seed nodes are likely to get a sentiment value close to zero.
Finally, the lexicon is created by extracting all the n-grams and their
sentiment values.

5.4.2. PMI Lexicon

Similarly to our implementation of the Graph Propagation approach, our
PMI lexicon approach is divided into a series of steps consisting of vocabu-
lary identification, counting vocabulary occurrences in a polarized dataset
and sentiment calculation, as illustrated in Figure 5.6.
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Figure 5.7.: Segment of a n-gram trie

Vocabulary Identification

Similarly to the vocabulary identification step in Section 5.4.1, the PMI
lexicon vocabulary identification step also extracts and selects candidate
n-grams for a context vocabulary based on the large unlabeled Filtered
dataset. However, the process of selection is quite different. Whereas the
selection process in our graph propagation approach is strictly based on
n-gram frequency, the selection process in our PMI lexicon implementa-
tion uses the PMI n-grams, method described in Section 2.2.1. For an
n-gram with n > 1 to be selected, the PMI of the included words needs
to be higher than a predefined threshold. This way only n-grams con-
taining words that together mean something or form a common phrase
are selected. In addition, n-grams ending on a stopword or containing
intensifiers are filtered out the same way as described in Section 5.4.1.
Unigrams are not selected as candidate entries for the context vocabulary
in this process, but are introduced to the system in the following two steps.

Figure 5.7 illustrates the process of identifying the vocabulary. Our
implementation uses the trie data structure to count the number of occur-
rences of n-grams. The second line in each node is the number of times the
n-gram has occurred in the dataset, while the third line is the n-gram’s
PMI value. The n-gram ”of me” is more frequent than ”of course”, but ”of
course” has much higher PMI value. By setting two thresholds, one for
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frequency and one for PMI, we can extract only the meaningful n-grams.

Vocabulary Occurrences in Polarized Dataset

In order to calculate sentiment values of n-grams in our context vocab-
ulary, the Labeled dataset is used. For each entry in the dataset the
tokenization process, described in Section 5.2, is applied, splitting the
entries into ”optimal” tokens. The ”optimal” tokens are the longest pos-
sible non-overlapping n-grams found in the context vocabulary created in
the previous step. Each individual token holds counters for occurrences in
positive and negative contexts. The positive context counter for a token
is incremented by 1 for each time the token appears in an entry labeled as
positive and the same applies for the negative context counter for tokens
appearing in negative entries. The counting process utilizes the same trie
data structure used when identifying the vocabulary in the previous step.

Sentiment Calculation

For each n-gram in the context vocabulary, a sentiment value is calculated.
This is achieved by using the number of times each n-gram occurs in pos-
itive tweets and in negative tweets found in the previous step and apply
Equation 2.10 as described in Section 2.2.1. N -grams occurring more fre-
quently in negative tweets than in positive will get a negative score, while
n-grams occurring more frequently in positive tweets will get a positive
score. N -grams occurring just as frequent in positive tweets as in negative
tweets will get a score close to zero. Finally, the lexicon is created by
adding all n-grams with absolute sentiment value above a defined senti-
ment value threshold and an occurrence frequency in the Labeled dataset
above a set frequency.

Adjective and Adverb Addition

With the created lexicon from the previous step, all unigrams are run
through an adjective and adverb addition algorithm, adding all missing
adjective and adverb forms of the unigram to increase the coverage of the
lexicon. The missing adverbs and adjective forms are derived based on
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Figure 5.8.: Architecture of the lexicon classifier system

a set of rules3 and are added to the lexicon only if they were previously
encountered in the above tokenization process. The newly added adverbs
and adjectives are assigned the same sentiment value as their related n-
gram, based on the assumption that most adverbs and adjective forms
of an adjective convey approximately the same sentiment. The resulting
lexicon forms the final PMI lexicon.

5.5. Lexicon Based Sentiment Analysis system
The lexicon based Sentiment Analysis system accepts single tweets or a set
of tweets and outputs a predicted classification per tweet. The predicted
classification is determined by running each tweet through three main
stages: preprocessing, analysis and classification, as shown in Figure 5.8.

Analysis

After a tweet has been preprocessed, as described in Section 5.1, the res-
ulting preprocessed tweet is analysed. The analysis consists of detecting
negation cues, intensifier words as well as the use of punctuation marks
such as: ”!” and ”?”, and assigning sentiment values. This is done by first

3Forming Comparative and Superlative Adjectives:
http://www.eflnet.com/tutorials/adjcompsup.php
and Forming Adverbs from Adjectives:
http://www.edufind.com/english-grammar/forming-adverbs-adjectives/
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applying the tokenization process (Section 5.2), splitting the preprocessed
tweet into optimal tokens using the provided sentiment lexicon as vocab-
ulary. Then the optimal tokens are looked up in the provided sentiment
lexicon and assigned the lexicon value given its existence. Tokens are then
marked, that is, each token is checked against a list of negation cues and
intensifier words. If a token matches one of the negation ques, the fol-
lowing x tokens are marked as negated. If a token matches an intensifier
word, the next token is marked as intensified. Finally, a sentence ending
in ”!” or ”?” will mark all the tokens in the sentence as intensified.

Classification

Based on the information retrieved in the analysis step, the tweet is clas-
sified. The tokens are traversed and a classification value is calculated as
a sum of the sentiment values of the individual tokens. The individual
token’s sentiment value depends on three variables: lexicon sentiment
value of the token, whether or not the token was marked as in a negated
context, and whether or not the token was marked as being intensified.
If a token does not exist in the lexicon, its sentiment value is zero. The
sentiment value of each token found in the lexicon is calculated as follows:

TokenSentimentV alue(token) = (L · I)−N (5.1)

where L is the lexicon value of the token, I is the intensification value of
the token and N is the negation value. When a token is not intensified
I = 1. When a token is not negated N = 0.

The value of I for a token is dependent on what intensifier word or
punctuation mark it is affected by. Some intensifier words such as ”kind
of” or ”hardly” will work as a dampeners with I-values between 0 and
1. Words like ”incredibly” or ”extremely” will on the other hand work as
boosters with I-values above 1. A token can be intensified by both an
intensifier and a punctuation mark. In such case, I is the product of the
intensification constant of the intensifier and the intensification constant
of the punctuation mark. The I-values of ”!” and ”?” and the N value
along with their influence ranges are determined through the grid search.
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The final sentiment score of a tweet is then calculated based on the
sentiment values of the tokens:

TweetSentimentV alue =
n∑

i=1
TokenSentimentV alue(n) (5.2)

Finally, a tweet is classified as either positive, negative or neutral by
comparing the TweetSentimentV alue against two thresholds, if the value
is lower than LowerNeutralThreshold, the tweet is classified as negative,
if the value is higher than HigherNeutralThreshold, the tweet is classified
as positive, otherwise the tweet is classified as neutral. The thresholds are
also determined through the grid search.
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In order to thoroughly test our lexicon based classifier and our PMI lex-
icon, a series of experiments were conducted. Both to determine how well
our classifier, utilizing the PMI lexicon, fared against other more complex
classifiers, and to check the effect of using our classifier as a feature in
a machine learning classifier. We also experimented with lexica of differ-
ent sizes, and compared our system to the competing systems of SemEval
2016. Finally, we performed an ablation study to determine the most im-
portant features of both our lexicon creation process and our classification
process.

6.1. Transition from Graph to PMI
Through the initial phases of this thesis work, the graph propagation ap-
proach was our main and only lexicon creation approach. However, we
encountered several problems with the graph approach:

• Creating the seed set: Since the value of all words in the lexicon
are decided by their similarity to the words in the seed set, it is cru-
cial to get the seed set right. A small seed often produced smaller
lexica with weaker sentiment values since fewer words were propagat-
ing the values, while a large seed set often had problems with setting
good starting sentiment values. For example, ”good”, ”great”, and
”outstanding” are all positive words, but their sentimental strength
is different.

• Creating the context vector: The similarity between n-grams
is calculated as similarity between their context vectors, described
in Section 5.4.1. While this approach may work for unigrams, the
relationship between mutli-grams and their neighboring words is less
clear.
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System 2013 2014 2015 2016
Graph approach 0.4942 0.4844 0.4571 0.4744
PMI approach 0.6130 0.6170 0.5711 0.5685

Table 6.1.: Early test results of graph approach vs. PMI approach tested
on the 2013-2016 SemEval datasets.

• Computational complexity of similarity measure: Our imple-
mentation relied on calculating the cosine similarity for each word
with every other word. This means that the overall computational
complexity was exponential. In practice, we could not create any
lexica with more than 8 000 elements.

• Context similarity vs. Sentiment similarity: Finally, context
similarity is not always correlated with sentiment similarity. For ex-
ample, the word ”good” and the word ”bad” are often used in similar
contexts, ”the weather is good/bad”, ”I’m good/bad at reading”.

After approximately two months of development without satisfactory
results, we decided to try out the PMI approach identified through our
research. After only a couple of days of development, the PMI approach
outperformed our graph propagation approach, as shown in Table 6.1,
which in turn led us to changing our main lexicon creation approach over
to the PMI approach. Throughout the remainder of this chapter, only
the lexica created through our PMI approach are tested in addition to the
lexicon based classifier.

6.2. Grid Search
For our system to perform as well as possible, we needed to find the optimal
parameters. That included finding the optimal parameters for both our
lexicon creator and our classifier, listed in Table 6.2 and Table 6.3. Because
optimal classifier parameters depend on the particular lexicon being used,
which again depends on the lexicon creator parameters, we needed to
create our own grid search method for our thesis system. The method we
ended up with was not a complete grid search where all combinations of
parameter values are explored, but instead a simpler, iterative parameter
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Parameter Description
maxNGramLength Longest n-gram to include in vocabulary
minNGramFreq Minimum n-gram occurrence frequency to include in

vocabulary
minNGramPMI Minimum n-gram PMI value to include in vocabulary
minOccurrence Minimum n-gram occurrence in polarized dataset to

include in lexicon
minSentiment Minimum n-gram absolute sentiment value to include

in lexicon

Table 6.2.: List of lexicon creator parameters

search. The search consisted of a series of iterative steps, where we in each
step tested all predefined values of a single parameter, while keeping all
the other variables constant, in search of the value that provided the best
result. When we were not able to improve the result by changing any of
the parameter values, the search was done. Because we were not testing
all possible combinations of values, the parameters found may be a local
maximum, but the trade-off was necessary since testing each combination
took 3 minutes on average.

6.3. Quality of SemEval Datasets
Through system tests performed during development, the SemEval 2016
results and the final system tests described in the following section, our
scepticism towards the overall quality of the SemEval datasets of 2015 and
2016 in particular, was sparked. As discovered in the following section as
well as through the SemEval 2016 results, the performance of all the clas-
sifiers drops drastically from the tests on the 2013 dataset to the 2016
dataset. This in turn led us to perform a few experiments on the datasets
to see if we could back up our suspicions of a lower quality of the 2015
and 2016 SemEval datasets. We started our experiments by finding the
number of duplicate tweets in the four datasets. For the datasets with du-
plicate tweets we checked whether or not the duplicate tweets were given
the same classification label and counted the number of duplicates with
different labels.
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Parameter Description
negationValue The negation constant N in Equation 5.1
exclamationIntensifier Intensification constant for tokens inside sentence end-

ing with an exclamation mark
questionIntensifier Intensification constant for tokens inside sentence end-

ing with a question mark
negationLength Number of tokens after a negation cue that are con-

sidered negated
classThreshLower Threshold between the negative and the neutral senti-

ment classification
classThreshHigher Threshold between the neutral and the positive senti-

ment classification

Table 6.3.: List of lexicon classifier parameters

Dataset Duplicates Different Classification
2013-test 1.62 0.32
2014-test 0.00 0.00
2015-test 6.94 2.09
2016-test 3.88 1.36

Table 6.4.: SemEval dataset experiments, all values are per thousand
tweets

As we can see from Table 6.4 there are only 1.62 duplicated tweets per
thousand tweets in the 2013 dataset and none in the 2014 dataset. In
addition only 0.32 tweets per thousand found in the 2013 dataset had dif-
ferent classification label. For the two other datasets on other hand, we
found significantly more duplicates that were classified differently. How-
ever, the amount of duplicated tweets with different classification is in
comparison to the dataset size relatively small, and will on its own not
impact the results noticeably. More importantly the numbers point to a
possible preference difference among the used annotators, when it comes to
what they assume is a polarized tweet (positive or negative) and what is a
neutral tweet. The method of collecting and annotating tweets, described
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by Nakov et al. [2016], has stayed the same since 2013, where Amazons
Mechanical Turk1 is used for annotating. Among the duplicate tweets
identified, there were no tweets classified as both negative and positive.

6.4. System Performance
To test the overall performance of our system, five main experiments were
conducted: a system comparison experiment, a system feature experi-
ment, lexicon comparison experiment, lexicon classifier in SemEval 2016
experiment and lexicon size comparison experiment.

6.4.1. System Comparison
The system comparison experiment consisted of a series of tests where our
lexicon based classifier, utilizing our PMI lexicon, was compared against
other previously developed NTNU systems along with our Initial Exper-
iment system (see Section 4) and a lexicon based system VADER Senti-
ment, introduced in Section 2.5.3. The comparison was done based on the
systems’ test results across four different datasets as shown in Table 6.5.

All systems except our lexicon classifier utilize a Support Vector Ma-
chine (SVM) in the classification process. Although the VADER Sentiment
is a lexicon based system, and the most similar system to our lexicon based
classifier, its output include several numerical values and not a sentiment
class, therefore an additional classification step using SVM is required.

On the 2013 dataset our lexicon classifier is only beaten, regarding preci-
sion, recall and F1-score, by our Initial Experiment system and the system
by Faret and Reitan, which by far are the most sophisticated systems of
the five compared systems. More importantly our lexicon classifier beats
both the system of Brevik and Selmer and the VADER Sentiment system,
both of which also use machine learning approaches, against our simple
lexicon approach. On the 2014 and 2016 datasets our lexicon classifier
is also narrowly beaten by Brevik and Selmer, while on the 2015 dataset

1A tool that enables outsourcing of tasks to Internet workers. Given a task and a
selling price, Internet workers perform the task and are subsequently paid for it.
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System Precision Recall F1-Score Time
20

13
Brevik and Selmer 0.6787 0.6644 0.6482 0.36
Faret and Reitan 0.731 0.697 0.688 ~180
VADER Sentiment 0.6540 0.6573 0.6508 1.29
Initial Experiment 0.7209 0.7120 0.7073 74.01
Lexicon Classifier 0.6866 0.6803 0.6748 0.04

20
14

Brevik and Selmer 0.7071 0.6667 0.6614 0.17
Faret and Reitan 0.738 0.684 0.684 ~93
VADER Sentiment 0.6536 0.6421 0.6441 0.63
Initial Experiment 0.7091 0.6832 0.6847 41.38
Lexicon Classifier 0.6818 0.6554 0.6578 0.02

20
15

Brevik and Selmer 0.6615 0.6305 0.6155 0.26
VADER Sentiment 0.6310 0.6201 0.6197 0.99
Initial Experiment 0.6862 0.6548 0.6527 64.80
Lexicon Classifier 0.6483 0.6213 0.6201 0.03

20
16

Brevik and Selmer 0.6101 0.6184 0.6093 2.39
VADER Sentiment 0.5939 0.5919 0.5928 8.63
Initial Experiment 0.6461 0.6434 0.6431 538.88
Lexicon Classifier 0.6085 0.6028 0.6032 0.19

Table 6.5.: Performance results of Sentiment classifiers tested on the 2013-
2016 SemEval datasets.

our classifier achieves a higher F1-score. The VADER Sentiment system
scores below our classifier across all performance measures on all of the
four datasets.

In addition to our system achieving scores relatively close to the more
sophisticated machine learning based systems, our system significantly
outperforms all of the other systems when it comes to the run-time. Even
on the smallest dataset, our system executes approximately 8.5 times
faster than the second fastest system and approximately 2 000 times faster
than our Initial Experiment, being the slowest. With an execution time
of 0.19 seconds on the 2016 dataset, our classifier classifies tweets with a
speed of 108 600 tweets per second, against the speed of our Initial Exper-
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System 2013 2014 2015 2016
Initial Experiment 0.7073 0.6847 0.6527 0.6431
Initial Experiment + Lexicon Classifier 0.7216 0.6911 0.6586 0.6356

Table 6.6.: Results of Initial Experiment with PMI lexicon tested on 2013-
2016 SemEval datasets.

iment system with 38 tweets per second.

As mentioned in Section 6.3 the performance across all compared sys-
tems drops significantly from the 2013 and 2014 datasets to the 2015 and
2016 datasets. Although one can argue that the results might be an ef-
fect of using a training dataset from 2013 to train the classification model
of the SVM systems or using the AFINN lexicon by Årup Nielsen [2011]
to create the Labeled dataset for our lexicon creator, much points in the
direction of a degradation of quality of the SemEval datasets.

6.4.2. Classifier as a Feature

From the ablation study conducted in our Initial Experiment, described in
Section 4.4.1, we found that the sentiment lexica feature and the VADER
Sentiment feature, which also is a lexicon based feature, were the two
single most important features of the system. Based on that knowledge
we wanted to see whether or not our lexicon based classifier, used as a
feature in our Initial Experiment system, could improve the system per-
formance further. Therefore, we first ran our Initial Experiment system
on the same four datasets as earlier, before running the same tests on the
system with our lexicon based classifier as a feature.

From Table 6.6 we can see a clear increase in performance in terms
of F1 score, increasing the F1 score from 0.7073 to 0.7216 on the 2013
dataset when adding our lexicon based classifier as a feature. There is
also an increase in F1 score on the 2014 and 2015 datasets, although not
as apparent. On the 2016 dataset on the other hand, the performance in
terms of F1 actually drops below the F1 score of our Initial Experiment
system. As far as we can tell, there is no obvious reason for this drop in
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Lexicon 2013 2014 2015 2016
Sentiment140 0.5260 0.5415 0.4788 0.5186
AFINN 0.6259 0.6009 0.5801 0.5882
PMI Lexicon 0.6748 0.6578 0.6201 0.6032

Table 6.7.: Performance comparison of different lexica with our classifier
after being tested on the 2013-2016 SemEval datasets.

performance on the 2016 dataset.

6.4.3. Lexicon Comparison

Because a large part of our thesis revolves around the creation of a sen-
timent lexicon, we found it relevant to compare our PMI lexicon against
other previously created sentiment lexica. Since the sentiment lexicon
Sentiment140 was also created using a PMI approach, it became an ob-
vious choice for comparison in addition the AFINN lexicon used in the
creation of our Labeled dataset. The comparison was done by running
our lexicon based classifier on the four SemEval datasets as done in the
previous tests, using the Sentiment140, AFINN and our PMI lexicon as
lexicon, respectively.

As we can see from Table 6.7 our PMI lexicon outperforms the other
two sentiment lexica, in terms of F1 score. AFINN is the closest, with
the smallest difference of approximately 0.015 on the 2016 dataset. Even
though the difference between AFINN and our PMI lexicon is quite signi-
ficant, the difference is even greater between Sentiment140 and our PMI
lexicon with the smallest difference of approximately 0.085 on the 2016
dataset.

Although the results seem to point to the conclusion that our lexicon
is the best of the three, there are multiple reasons why this might not
be the case. During development of our lexicon creator and our lexicon
based classifier, we always focused on the fact that they were going to
be used together. The PMI lexicon was therefore specifically tailored to
work well with our classifier. Negators and intensifiers were for example
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left out of our lexicon because we knew we were going to handle negation
and intensification in our classifier, and both the lexicon creator and the
classifier utilizes the same preprocessing method.

For the AFINN lexicon, we believe the results are not heavily affected
by our specialized classifier. The AFINN lexicon only contains words
without special characters and has a single sentiment value per lexicon
entry similarly to our PMI lexicon. By looking at the contents of the
Sentiment140 lexicon on the other hand, it becomes apparent that we
were not able to utilize all of the features the lexicon provides with our
classifier. The two main reasons for this are the use of a different pre-
processing method and having two values per lexicon entry, one for non-
negated context and one for negated context. Since our preprocessing
method removes all non-alphanumerical characters except for characters
forming an emoticon, there are many entries in the Sentiment140 lexicon
our classifier would never be able to use. In addition, all of the negated
context values in Sentiment140 would also never be used by our classifier
because of negation being handled differently. We therefore believe that
given the combination of the aforementioned features our classifier were
unable to utilize, no accurate conclusion can be drawn based on the results
in Table 6.7 for the Sentiment140 lexicon. We do, however, believe that
our method of creating a labeled dataset for the lexicon creator is slightly
better than the hashtag and emoticon approach used in the creation of
the Sentiment140 lexicon, and that the use of n-grams larger than just
unigrams and bigrams benefits our lexicon.

Because the comparison of our PMI lexicon and the AFINN lexicon
is the most reasonable comparison among the three lexica in Table 6.7
a figure visualizing the differences has been created. In Figure 6.1 two
graphs depicting the distribution of positive, negative and neutral tweets
given their sentiment values predicted by our classifier, are shown. In
Figure 6.1a we can see a clear distinction between the classes. For negative
sentiment values, most tweets were negative, second most neutral and least
positive. On the other hand, for positive sentiment values, most tweets
were positive, second most neutral and least negative. For sentiment values
close to zero, neutral tweets are the most common. In Figure 6.1b, showing
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(a) Histogram for PMI lexicon (b) AFINN lexicon

Figure 6.1.: Sentiment value histogram of PMI vs. AFINN Lexicon

the distribution for the AFINN lexicon, we can immediately identify a
clear difference from the distribution graph of our PMI lexicon. Where
the classes are distinctly separated in the distribution graph for our PMI
lexicon, the classes are much closer and overlapping in the distribution
graph for the AFINN lexicon. One can for the most part identify the
same order of classes on both the negative and the positive side, but the
distance between them is generally much closer in the distribution graph
for the AFINN lexicon. The zig-zagged pattern in Figure 6.1b is due to
AFINN lexicon only using integer sentiment values. The separability of
the different classes displayed in the graphs shows why our PMI lexicon
will generally classify more positive, negative and neutral tweets correctly.

6.4.4. Lexicon Classifier in SemEval 2016

After participating in SemEval 2016 with our Initial Experiment system,
we wanted to explore how our lexicon based classifier would affect the
final result used as a feature, as well as how it would perform on its own
compared to the other participants.
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F1-Score Accur.
2013 2014 2015 2016 2016

System Tweet SMS Tweet Tweet Live- Tweet Tweet Tweet
sarca. Jour.

NTNUSentEval 0.62311 0.6411 0.65110 0.42713 0.7193 0.59913 0.58311 0.6432
w/ Lexicon Classifier 0.6489 0.6591 0.6678 0.43812 0.7073 0.60911 0.58311 0.6364
Lexicon Classifier 0.59717 0.56514 0.61418 0.28434 0.59021 0.55420 0.54119 0.6039

Table 6.8.: Alternative F1-scores and accuracy results for SemEval 2016 if
we had submitted different systems instead. Ordered by F1-
scores on the 2016 dataset.

As shown in Table 6.8, using our lexicon based classifier as a feature in
our Initial Experiment system NTNUSentEval, the F1-score on the 2016
dataset is the same as the score of NTNUSentEval. However, on all other
datasets except for the Live-Journal dataset, the F1 score is increased, and
our placement improved. The performance of our lexicon based classifier
on its own is significantly lower, but would still have ended up on 19th
place out of the competing 34 systems.

6.4.5. Lexicon Size Comparison
Another interesting aspect we wanted to explore was how the size of the
created sentiment lexicon affected the performance. In order to explore
that, eight sentiment lexica of sizes ranging from 500 to 200 000 entries
were created and tested on the four SemEval datasets.

As we can see from Table 6.9, as long as the lexicon size is above a cer-
tain threshold, the overall performance remain acceptable. We do, how-
ever, see a continuous drop in performance when the lexicon size passes
10 000 entries.

The best performing lexicon from the above test, has 3 000 entries, which
is quite interesting looking at the Sentiment140 lexicon with approxim-
ately 300 000 entries in comparison. More words and phrases do not neces-
sary lead to better results. Although that statement is valid for our lexicon
creation approach, no general conclusion can be drawn. Our lexicon cre-
ation process as described in Section 5.4.2, only includes vocabulary entries
also found in the Labeled dataset containing 6.25 million labeled tweets.
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Lexicon Size 2013 2014 2015 2016
500 0.3387 0.2736 0.3029 0.3936

1 500 0.6533 0.6343 0.6049 0.6016
3 000 0.6748 0.6578 0.6201 0.6032
10 000 0.6674 0.6507 0.6201 0.6038
25 000 0.6328 0.6203 0.6020 0.6011
50 000 0.6052 0.6092 0.5650 0.5976

100 000 0.6040 0.6090 0.5648 0.5851
200 000 0.5965 0.6020 0.5626 0.5938

Table 6.9.: Comparison of different sized PMI lexica after being tested on
the 2013-2016 SemEval datasets.

Although the size of the Labeled dataset is large enough, and its contents
are mostly classified correctly, many relevant words and phrases might
not have been included. Since the Labeled dataset is created, as described
in Section 5.3, using the AFINN lexicon and an inclusion threshold of ab-
solute sentiment value, both tweets with few positive and negative words,
and positive and negative tweets with only a few words found in AFINN
are left out. A better method of creating a labeled dataset might therefore
be the solution to create larger lexica with better performance.

In addition to the F1-score of the different sized lexica, we also wanted
to see the difference in coverage between them. In terms of coverage, four
different measures were used:

• NZS (Tweets with Non-Zero Sentiment): Ratio of tweets where final
predicted sentiment value was ̸= 0.

• TwM (Tweets with Multi-grams): Ratio of tweets that included at
least one multi-gram from the lexicon.

• WiL (Words in Lexicon): Ratio of words in tweets found in the
lexicon.

• FWiL (Frequent Words in Lexicon): Ratio of top 1 000 most com-
mon, non-stop-word words found in the lexicon.
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Lexicon Size NZS TwM WiL FWiL
500 0.0435 0.0066 0.3567 0.0081

1 500 0.3902 0.0086 0.3793 0.0655
3 000 0.4726 0.0412 0.3632 0.0826
10 000 0.4922 0.0702 0.3647 0.0846
25 000 0.8421 0.1788 0.4012 0.1712
50 000 0.9968 0.3322 0.5229 0.4371

100 000 0.9992 0.4703 0.6122 0.7019
200 000 0.9996 0.6012 0.6692 0.9889

Table 6.10.: Lexicon coverage overview

From Table 6.10 the results of our coverage experiment are shown. In-
terestingly the best performing lexicon with a size of 3 000 only contains
words found in 47% of the tweets. That means, that almost half of the
tweets end up with a sentiment score of zero and are classified as neut-
ral. In addition only approximately 4% of the tweets contain multi-grams
(n-grams with n > 2) found in the lexicon, which in turn means that
parts of our lexicon are never used. Although the scores for the different
coverage measures increase with the lexicon size, meaning larger lexicon
lead to higher coverage, it does not look like higher coverage means bet-
ter classification performance. As discussed previously in this section, we
also believe this is caused by our Labeled dataset, that would both need to
be larger and include a more varied language with more words and phrases.

Figure 6.2 shows the distribution of positive, negative and neutral tweets
given their sentiment value predicted by our classifier on a PMI lexicon of
size 1 500 and of size 200 000. In comparison to Figure 6.1a, showing the
same distribution for our best PMI lexicon, the difference in performance
is even further visualized. Compared to the distribution of our best PMI
lexicon, the distribution of the 200 000 lexicon, shown in Figure 6.2b is
almost an uniform distribution, the large spike around 0 is gone, but
the differences between classes are smaller. The other extreme is the
distribution of the small lexicon, shown in Figure 6.2a. It classifies some
of the positive and negative tweets well, but most tweets are left with a
score of 0.
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(a) Histogram for PMI lexicon, size 1 500 (b) Histogram for PMI lexicon, size 200 000

Figure 6.2.: Sentiment value histogram of small vs. large PMI Lexicon

6.5. Best Performing PMI Lexicon

After identifying our best performing PMI lexicon, a few statistics were
gather in order to see whether or not the resulting lexicon contained the
features we expected. It also provides a general insight into the lexicon
created.

From Table 6.11, where the top 10 positive and negative lexicon entries
are listed, we can clearly identify all of the top 10 positive as actual posit-
ive phrases and the top 10 negative as negative phrases. In addition we do
not see any unigrams, meaning that our attempt of scoring longer n-grams
higher/lower than shorter n-grams seems to be working.

Just like positive and negative phrases were separated with opposite
sentiment values, the detected emojis were treated the same way, as seen
in Table 6.12. All emojis listed as positive are commonly used to further
express positive sentiment in positive sentences, while all of the emojis
listed as negative are commonly used in negative sentences.

As mentioned earlier in this section, we wanted to create a lexicon where
a long n-gram containing a polarized word should get a higher absolute
sentiment value than a shorter n-gram containing the same word. In
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Positive Negative
n-gram Value n-gram Value
you have a great day 5.00 a bad bitch -5.00
you have an amazing day 4.48 bitch ass nigga -4.95
hope its a good one 4.33 dumb ass -4.82
happy birthday i hope 4.21 fuck that bitch -4.75
you had a great day 4.10 fuck a bitch -4.75
you have a good day 4.08 bad right now -4.73
you have a wonderful day 4.02 weak ass -4.72
hope you have a great 4.01 fuck this shit -4.68
you have a good one 3.99 fuck fuck fuck -4.66
i love love love 3.96 fool me twice -4.63

Table 6.11.: The top 10 positive and negative entries in our best perform-
ing lexicon

Table 6.13 this feature is identified through the four listed phrases con-
taining the polarized word ”great”.

6.6. Labeled Dataset Size Comparison

To better understand the relationship between the size of the labeled data-
set and the performance of the resulting lexicon, we performed an exper-
iment where we created lexica using different sized subsets of our Labeled
dataset.

Table 6.14 shows the result of the experiment. The size of the labeled
dataset seems to matter a lot at the beginning, but it quickly reaches a
state where additional tweets provide almost no new information. This
could be an artifact of the labeled dataset set creation method, since it
includes only tweets containing words found in the AFINN lexicon.
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Positive Negative
Emoji Alias Value Emoji Alias Value

Birthday Cake 2.76 Pouting Face -2.64
Wrapped Present 2.60 Parking Sign -2.41
Balloon 2.51 Angry Face -2.41
Confetti Ball 2.47 Triumph Face -2.40
Party Popper 2.46 Litterbox -2.34

Table 6.12.: The top 5 positive and negative emojis in our best performing
lexicon

n-gram Value
you have a great day 5.00
have a great day 3.54
a great day 2.16
great 2.04

Table 6.13.: The effect of n-gram length on sentiment value

6.7. Ablation Study
To detect the impact each feature of both our lexicon creator and classifier
impose on the performance, an ablation study was conducted. This was
done by removing each feature in turn to see how the removal affected the
system performance. Since our system, a lexicon based classifier using a
PMI lexicon, is affected both by features used in the classification process
and by features used in the creation process, the ablation study involved
removing features from both processes.

As we can see from Table 6.15, the impact each feature imposes on the
performance of our classifier is very subtle, with the single most important
feature being the adjective and adverb addition which increases the F1-
score on the 2013 dataset by 0.01. This means that the performance of our
classifier almost entirely relies on the quality of our PMI lexicon, with the
additional features only contributing a small amount. The second most
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Labeled Size 2013 2014 2015 2016
50 000 0.6002 0.5897 0.5584 0.5635

100 000 0.6262 0.6136 0.5830 0.5722
500 000 0.6601 0.6447 0.6142 0.5984

1 000 000 0.6686 0.6541 0.6130 0.6046
3 000 000 0.6677 0.6512 0.6153 0.6052

6 250 000 0.6748 0.6578 0.6201 0.6032

Table 6.14.: Comparison of different sized labeled dataset after being
tested on the 2013-2016 SemEval datasets.

Features 2013 2014 2015 2016
All 0.6748 0.6578 0.6201 0.6032
All - Adjectives/Adverbs 0.6653 0.6525 0.6127 0.6032
All - Negation 0.6732 0.6561 0.6180 0.6030
All - Intensification 0.6733 0.6548 0.6193 0.6036
All - PMI n-grams 0.6714 0.6503 0.6161 0.6010

Table 6.15.: Ablation study results. All - F means all features except for F.
All values are F1-scores. The datasets used are the 2013-2016
SemEval datasets.

important feature is our PMI n-grams used in the lexicon creation pro-
cess. When replacing the PMI n-grams with frequency n-grams, n-grams
selected solely based on their frequency, the F1-score drops by 0.0075 on
the 2014 dataset. Although we do see an improvement when using PMI
n-grams over frequency n-grams, the small impact it has surprised us. By
looking at the resulting lexica using the two n-gram approaches, the lex-
icon created with PMI n-grams looks far more promising than the lexicon
created with frequency n-grams.

The small impact of negation and intensification is also somewhat sur-
prising. While our lexicon excludes any n-gram containing intensifiers,
negators are allowed. This is to better deal with common phrases con-
taining negation, for example ”glad im not the only one” is an actual
phrase included in one of our lexica, and its sentiment value is positive.
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Therefore some of the common negated phrases are already included in
the lexicon and simply turning off the negation detection inside the clas-
sifier will only have an effect on less common phrases. The small effect
of intensifiers is due to their low frequency, less than 1% of the tweets
contained any intensifiers.
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In this chapter we evaluate our accomplishments, draw conclusions based
on the conducted experiments and suggest possible future work.

7.1. Evaluation
During the initial phase of this Master’s Thesis work, four goals were
formulated and described in Section 1.3. In this section we evaluate to
which degree each goal has been accomplished and discuss the overall
quality of the developed systems.

G1: Research Automatic Creation of Sentiment Lexica

The field of automatic creation of sentiment lexica has been explored,
in search of the most commonly used and best performing approaches.
The research resulted in the identification of two main approaches: a
graph approach and a Pointwise Mutual Information (PMI) approach.
The information gathered and the knowledge gained in the field formed
the basis for our work with our third goal (G3).

G2: Research Lexicon Based Sentiment Analysis

In addition to the research done to reach our first goal, we also studied
the field of lexicon based Sentiment Analysis (SA). Although the use of
sentiment lexica is widespread within the field of SA, we found that most
SA systems only use sentiment lexica as a feature among a series of features
instead of basing the system around them which was what we wanted to
explore. We were, however, able to identify interesting ideas and methods
from the few lexicon based SA systems we discovered. In addition to the
more common uses of sentiment lexica within SA, the ideas and methods
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from the lexicon based systems acted as a basis for the work on our fourth
goal (G4).

G3: Create a Twitter Specific Sentiment Lexicon

By developing a sentiment lexica creator utilizing the core PMI approach
discovered in our research, a Twitter specific sentiment lexicon was success-
fully created. After two months of experimenting with a graph propaga-
tion approach without satisfactory results, we decided to try out the PMI
approach which instantly yielded better results, as described in Section 6.1
and shown in Table 6.1. From that point on, the lexicon creator utilizing
the PMI approach became our main focus regarding the task of sentiment
lexica creation.

The best performing sentiment lexicon we were able to create with our
sentiment lexica creator, was a lexicon with 3 000 entries consisting of
n-grams with n ≤ 5 selected based on their PMI score and occurrence
frequency. Compared to the previously created sentiment lexica, Senti-
ment140 and AFINN, our lexicon seemingly outperforms the other two,
as shown in Table 6.7. However, as described in Section 6.4.3, because
our system is unable to utilize all features of the Sentiment140 lexicon no
clear conclusion can be drawn based on the results. The performance of
our lexicon against the AFINN lexicon on the other hand is a more valid
comparison. The fact that our lexicon outperforms the AFINN lexicon,
which is a commonly used manually annotated sentiment lexicon within
SA, shows that the overall quality of our lexicon is high.

G4: Create a Lexicon Based Sentiment Analysis System

A lexicon based sentiment analysis system/lexicon based classifier has
been created. The classifier was developed in parallel with our lexicon
creator, and is therefore specifically tailored to work well with our sen-
timent lexicon. Through the results of the performance tests described
in Section 6.4, we can see that the classifier utilizing our best performing
sentiment lexicon almost keeps up with the two best performing compar-
ison systems, the system by Faret and Reitan and the Initial Experiment,
both utilizing Support Vector Machine (SVM) in the classification pro-
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cess. While achieving such good results, regarding F1-score, recall and
precision our lexicon classifier completely outperforms the other systems
in terms of run-time performance which along with the other performance
measures has been a focus area throughout the development process.

When utilized as a feature in our Initial Experiment system we see a
significant boost in performance. The classifier proves that its able to
provide the SVM in our Initial Experiment system with additional and
relevant information, further verifying its overall quality. As discovered
in the ablation study described in Section 6.7, the performance of the
classifier is highly dependent on the quality of the lexicon it uses, and not
so much on its different features. Good results for our classifier therefore
also point to a high quality sentiment lexica.

7.2. Conclusion

Through the various experiments described in Section 6.4 we have dis-
covered that the PMI lexicon creation approach works well, but that the
quality of the created lexicon is highly dependent on the quality of the
large labeled tweet dataset. Acquiring a large labeled dataset of high
quality, that is, a diverse dataset capturing as many aspects of the lan-
guage as possible, is a difficult task. From our experiment of comparing
different sized labeled datasets, described in Section 6.6, we see that once
the dataset reaches a certain size, the performance of the resulting lexicon
reaches its maximum only limited by the quality of the dataset. By using
the AFINN lexicon, the labeled dataset is limited to contain tweets with
words and phrases found in the lexicon. Possible new and interesting lex-
icon words or phrases will only be found if they happen to also be part of
a tweet containing enough words in AFINN.

Another interesting result further supporting the PMI lexicon creation
approach and the quality of our lexicon and lexicon classifier, is the lexicon
comparison results described in Section 6.4.3. Our fully automatically cre-
ated PMI lexicon actually beats the manually annotated AFINN lexicon
on all datasets across all performance measures, which is both an import-
ant result and a noticeable feat. In addition to verifying the quality of
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our lexicon it also proves that creating sentiment lexica automatically is
a highly viable sentiment lexicon creation method.

Throughout the development process of our lexicon creation system and
our lexicon based classifier, as well as through the various experiments con-
ducted in Chapter 6, the tight connection between the sentiment lexicon
and the system utilizing the lexicon has become apparent. For a classifier
to utilize a sentiment lexicon’s full potential, the classifier must be spe-
cifically tailored to work with that specific lexicon. This is a consequence
of the different sentiment lexica creation methods, where the creators of
the different available lexica apply different features to their lexicon spe-
cifically meant to work well in another system or classifier. That is, there
is no standardized format for automatically created sentiment lexica.

Based on our initial research within the field of automatic creation of
sentiment lexica, we assumed that one of the feats of automatically cre-
ated sentiment lexica would be that their size and word coverage would
benefit their performance compared to manually annotated lexica. How-
ever, after our experiments of comparing lexica of various sizes, described
in Section 6.4.5, our assumption was not verified. Larger lexica did lead to
a better coverage as shown in Table 6.10, but their classification perform-
ance was not improved accordingly. Although our results point to that
larger lexica with high coverage would not perform better than relatively
small lexica with medium coverage, no definite conclusions can be drawn.
The fact that larger lexica created with our lexicon creator did not lead
to better performance might also be caused by the quality of the labeled
dataset used, described earlier in this section.

Regarding the run-time performance of lexicon based SA systems com-
pared to more sophisticated SA systems, our results clearly suggest that
lexicon based systems are the most viable SA systems to use in real-time
classification applications. With our lexicon based classifier, we achieve a
classification speed of 108 600 tweets per second, meaning that our system
could have classified all of the 500 million tweets posted on Twitter each
day in real-time 19 times over. With this result it would be possible to add
more advanced features to our classifier, trading off run-time performance
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for better classification performance and still classify fast enough to be a
real-time classifier.

7.3. Future Work

Throughout the work on this Master’s Thesis, a series of possible improve-
ments for our developed systems along with other future work have been
discovered.

7.3.1. Multidimensional Lexicon

The source of most of our misclassifications are the tweets with sentiment
value of 0. In our current implementation, all these tweets are classified
as neutral by default. We think it should be possible to extract several
other values for each n-gram to the lexicon that can actually help classify
a tweet as neutral instead of classifying all tweets with sentiment value
of 0 as neutral. For example, each word could have a sentiment score
and an objectivity score. The sentiment score would be calculated as it is
today, while the objectivity score would be calculated also using the PMI
approach, but on a dataset labeled as subjective/objective.

7.3.2. PMI approach

When counting the positive and negative contexts for an n-gram in our
PMI approach to lexicon creation, negation is not handled. That is, if a
tweet as a whole is labeled as positive, but there exists negated n-grams
within the tweet, we still increment the positive context counter of the
n-grams. However, we believe that the performance of the final lexicon
might benefit from handling the negated n-grams differently in this count-
ing process. This can be done by, for example, incrementing the opposite
context counter or perhaps by incrementing the context counter by a smal-
ler amount if the n-gram is negated.
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7.3.3. Graph Approach
Because our main focus changed from the graph propagation approach to
the PMI approach for lexicon creation, some of the more advanced fea-
tures or improvements of the PMI lexicon were never incorporated into
the graph propagation approach. It would therefore be interesting to see
how and if PMI n-grams, as opposed to the occurrence frequency n-grams
we used, affect the overall performance of the graph propagation approach.

Another, perhaps more important improvement is how the similarity
between the different context vectors is calculated. In our approach, the
similarity measure cosine similarity is used. However, the similarity meas-
ure we believe would work best is the Pearson Correlation similarity meas-
ure, which is the fourth and final step in the COALS method where we
only follow the first three.

7.3.4. Combined Approach
Where the PMI lexicon creation approach is only concerned with finding
the sentiment values of n-grams, the graph propagation approach is most
concerned with the relationship between the different n-grams. The graph
propagation approach namely strives to find similar n-grams. That is, n-
grams used in similar contexts. Because one of the problems of the graph
propagation approach is to find a good seed set with appropriate weights,
it could be interesting to explore a lexicon creation system combining the
PMI approach and the graph propagation approach. The PMI-approach
could be used to identify a seed set with sentiment values, while the graph
propagation approach could be used to find n-grams similar to the ones
already present in the seed set. With more appropriate seed set values,
the most similar n-grams found during graph propagation would hopefully
be assigned more appropriate sentiment values themselves.

7.3.5. Lexicon Extension
Another interesting possible improvement is to extend the adjective and
adverb addition. In addition to deriving the adverb and the missing forms
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7.3. Future Work

of an adjective, one can explore the possibilities of adding the different
forms of verbs. The verb love for example, has the forms loves, loved and
loving, which could possibly be added to a lexicon if not already present.
Exploring how to set the sentiment values of the missing verb forms would
then also need to be done. One possible approach would be to set the sen-
timent value of a missing word to the initial word already found in the
lexicon, but only add words if the initial word has an absolute sentiment
value above a set threshold.

A different approach entirely could be to use a synonym dictionary.
That way, synonyms of words already found in the lexicon could be added
to expand and hopefully improve the overall coverage of the lexicon. The
synonyms found could be given the same sentiment value as their related
n-gram. This approach in combination with the aforementioned approach
could be especially interesting.

7.3.6. Lexicon Based Classifier
Regarding our lexicon based classifier, there are three features in particu-
lar we believe would be interesting to explore further: capitalized words,
elongated words and more special weights on non-letter characters. In our
classifier all tweets are transformed into lower-case, disregarding all cap-
italized words. Exploring how one can utilize the use of capitalized words
in a lexicon based classifier would therefore be interesting.

Although almost all elongated words are corrected, the fact that a word
indeed was elongated is not utilized in the classification process. Similarly
to the capitalized words, elongated words are also often used to boost sen-
timent value. A possible approach to utilizing the use of elongation could
be to multiply the sentiment value of the corrected elongated word as a
function of excess repeated characters in the word.

Almost all non-letter characters except ”!” and ”?” are removed in our
system. Looking into such as the use of quotation and repeated use of the
punctuation character ”.” and how they might affect the overall sentiment
could also be particularly valuable.
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A. Special Words

A. Special Words
A.1. Stopwords

Stopwords
a about above after again against all
am an and any are arent as
at be because been before being below
between both but by cant cannot could
couldnt did didnt do does doesnt doing
dont down during each few for from
further had hadnt has hasnt have havent
having he hed hell hes her here
heres hers herself him himself his how
hows i id ill im ive if
in into is isnt it its its
itself lets me more most mustnt my
myself no nor not of off on
once only or other ought our ours
ourselves out over own same shant she
shed shell shes should shouldnt so some
such than that thats the their theirs
them themselves then there theres these they
theyd theyll theyre theyve this those through
to too u under until up ur
ure very was wasnt we wed well
were weve were werent what whats when
whens where wheres which while who whos
whom why whys with wont would wouldnt
you youd youll youre youve your yours
yourself yourselves

Table A.1.: List of all stopwords used in our lexicon creators and lex-
icon based classifier. Consists of stopwords collected from
http://www.ranks.nl/stopwords.
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A.2. Negation cues

A.2. Negation cues

Negation Cues
aint anit cant cannot couldnt didnt dnt
doesnt dont dont hadnt hasnt havent havnt
isnt lack lacking lacks never no nor
not shouldnt wasnt wont wouldnt

Table A.2.: List of all negation cues used in our lexicon based system

A.3. Intensifiers

Modifier Weight Modifier Weight Modifier Weight
most 2.00 very 1.25 kinda 0.80
incredibly 1.80 completely 1.20 sort of 0.80
extremely 1.70 hella 1.20 sorta 0.80
absolutely 1.50 more 1.20 somewhat 0.70
fucking 1.40 particularly 1.20 hardly 0.70
totally 1.30 so 1.20 barely 0.60
greatly 1.25 quite 1.10 slightly 0.50
highly 1.25 pretty 0.90
really 1.25 kind of 0.80

Table A.3.: List of all intensifiers used in our lexicon creators and lexicon
based classifier. Consists of a subset of intensifiers used in the
VADER Sentiment system by Hutto and Gilbert [2014]
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B. SemEval 2016 Results

B. SemEval 2016 Results
F1-Score Accur.

2013 2014 2015 2016 2016
System Tweet SMS Tweet Tweet Live- Tweet Tweet Tweet

sarca. Jour.
SwissCheese 0.7004 0.6372 0.7164 0.5661 0.6957 0.6711 0.6331 0.6461
SENSEI-LIF 0.7063 0.6343 0.7441 0.4678 0.7411 0.6622 0.6302 0.6177
unimelb 0.6876 0.5939 0.7066 0.44911 0.6839 0.6514 0.6173 0.6168
INESC-ID 0.7231 0.6096 0.7272 0.5542 0.7024 0.6573 0.6104 0.60010
aueb.twitter.sent.. 0.6667 0.6185 0.7085 0.41017 0.6957 0.6237 0.6055 0.6296
SentiSys 0.7142 0.6334 0.7233 0.5154 0.7262 0.6445 0.5986 0.6099
I2RNTU 0.6935 0.5977 0.6807 0.4696 0.6966 0.6386 0.5967 0.59312
INSIGHT-1 0.60216 0.58212 0.64415 0.39123 0.55923 0.59516 0.5938 0.6355
twise 0.61015 0.54016 0.64513 0.45010 0.64913 0.6218 0.5869 0.52824
ECNU 0.6439 0.5939 0.6628 0.42514 0.66310 0.60611 0.58510 0.57116
NTNUSentEval 0.62311 0.6411 0.65110 0.42713 0.7193 0.59913 0.58311 0.6432
MDSENT 0.58919 0.50920 0.58720 0.38624 0.60618 0.59317 0.58012 0.54520
CUFE 0.64210 0.5968 0.6628 0.4669 0.6975 0.59814 0.58012 0.6374
THUIR 0.61612 0.57514 0.64811 0.39920 0.64015 0.61710 0.57614 0.59611
PUT 0.56521 0.51119 0.61419 0.36027 0.64814 0.59715 0.57614 0.58414
LYS 0.6508 0.57913 0.64712 0.40718 0.65511 0.60312 0.57516 0.58513
IIP 0.59817 0.46523 0.64513 0.40519 0.64015 0.6199 0.57417 0.53723
UniPI 0.59218 0.58511 0.62717 0.38125 0.65412 0.58618 0.57118 0.6393
DIEGOLab16 0.61114 0.50621 0.61818 0.4975 0.59420 0.58419 0.55419 0.54919
GTI 0.61213 0.52417 0.63916 0.4687 0.62317 0.58419 0.53920 0.51826
OPAL 0.56720 0.56215 0.55623 0.39521 0.59321 0.53121 0.50521 0.54122
DSIC-ELIRF 0.49425 0.40426 0.54626 0.34229 0.51724 0.53121 0.50222 0.51327
UofL 0.49026 0.44324 0.54725 0.37226 0.57422 0.50225 0.49923 0.57215
ELiRF 0.46228 0.40825 0.51428 0.31033 0.49325 0.49326 0.49923 0.54321
ISTI-CNR 0.53822 0.49222 0.57221 0.32730 0.59819 0.50824 0.49425 0.56717
SteM 0.51823 0.31529 0.57122 0.32032 0.40528 0.51723 0.47826 0.45231
Tweester 0.50624 0.34028 0.52927 0.5403 0.37929 0.47928 0.45527 0.52325
Minions 0.48927 0.52118 0.55424 0.42016 0.47526 0.48127 0.41528 0.55618
aicyber 0.41829 0.36127 0.45729 0.32631 0.44027 0.43229 0.40229 0.50628
mib 0.39430 0.31030 0.41531 0.35228 0.35931 0.41331 0.40130 0.48029
VCU-TSA 0.38331 0.30731 0.44430 0.42514 0.33632 0.41630 0.37231 0.38232
SentimentalITists 0.33933 0.23833 0.39332 0.28834 0.32334 0.34333 0.33932 0.48029
WR 0.35532 0.28432 0.39332 0.43012 0.36630 0.37732 0.33033 0.29834
CICBUAPnlp 0.19334 0.19334 0.33534 0.39322 0.32633 0.30334 0.30334 0.37433

Table B.1.: F1-scores and accuracy results from SemEval 2016 published
by Nakov et al. [2016]. Ordered by F1-scores on the 2016
dataset.
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