
 Aquatic Procedia   4  ( 2015 )  308 – 316 

ScienceDirect

2214-241X  © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of ICWRCOE 2015
doi: 10.1016/j.aqpro.2015.02.042 

INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN 
ENGINEERING (ICWRCOE 2015) 

CFD Simulations of Wave Propagation and Shoaling over a 
Submerged Bar 

Arun Kamatha*, Hans Bihsa, Mayilvahanan Alagan Chellaa,Øivind A. Arntsena 
aDepartment of Civil and Transport Engineering, NTNU, Trondheim 7491, Norway 

Abstract 

The wave propagation over a submerged bar is simulated using the open source CFD model REEF3D and the numerical results 
are compared to the experimental data. The transformation of the wave resulting in higher harmonics in the wave train is 
observed as the wave propagates over the crest of the bar. The difference between the wave transformation processes for two 
different incident wave heights is studied. The higher incident wave height shows more shoaling than the lower incident wave 
height. The numerical results show a good agreement with the experimental data. 
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1. Introduction 

Waves propagating from deep water to coastal shallow water are affected by the bottom topography, resulting in 
wave refraction, shoaling and breaking.The study of these processes is important in coastal engineering due to their 
significant impact on wave forces, wave run up and sediment transport, which influence the design of coastal 
structures. Wave transformation and breaking in shallow waters is investigated through the study of wave 
propagation over submerged structures and varying bottom topography to obtain a better understanding of the 
physical processes involved. Several studies have dealt with wave propagation and transformation over a submerged 
object through experimental investigations [Beji and Battjes (1993), Chang et al. (2001), Blenkinsopp and Chaplin 
(2008)],using Boussinesq-type equations [(Brocchini et al. 1992),Beji and Battjes (1994)] and shallow water 
equations(Kobayashi et al. 1987).  
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The numerical models based on Boussinesq and shallow water equations can be only used to calculate the wave 
deformation due to shoaling but cannot be applied to directly model wave breaking(Christensen 1998). Wave 
breaking involves complex hydrodynamics involving the interaction of air and water in the evolution of the free 
surface, effects of fluid viscosity and turbulence. These effects cannot be represented using models based on 
potential theory, Boussinesq equations or single-phase numerical models. The application of Computational Fluid 
Dynamics (CFD) models solving the flow problem for both air and water phases can provide a detailed description 
of the deformation of the free surface during shoaling and breaking of waves.Jacobsen et al. (2011) presented the 
application of CFD to model spilling breaking wavesusing a wave toolbox in OpenFOAM and obtained a good 
agreement with the experimental results. Alagan Chella et al. (2015)validated the open source CFD model REEF3D 
for spilling breakers over a slope using experimental data from Ting and Kirby (1996) and investigated the influence 
of water depth, wave steepness and bottom slope on the geometric properties and characteristics of spilling breakers. 
Thus, the use of CFD modeling to investigate wave transformation and breaking in shallow water is a highly relevant 
application in the field of coastal engineering. 

The objective of this study is to numerically investigate the wave transformation during over a submerged bar 
based on the experiments carried out byBeji and Battjes (1993).The experiments investigated the transformation of a 
periodic regular wave over a bar, involving transfer of wave energy among its higher harmonics. The numerical 
results are compared to the experimental data and the transformation of the free surface for different incident wave 
heights is examined to obtain more insight into the wave transformation process. 
Nomenclature 

ui,uj,uk velocity components along the x-, y- and z-axis  
ρ density 
p pressure 
ν kinematic viscosity 
νt eddy viscosity 
g acceleration due to gravity 
ϕ level set function 
Γ relaxation function 
η free surface elevation 
u horizontal water particle velocity 
w vertical water particle velocity 
L incident wavelength 
k incident wave number 
H incident wave height 
T incident wave period 
dx grid size 
d water depth 

 

2. Numerical Model: REEF3D 

The incompressible Reynolds Averaged Navier Stokes (RANS) equations are used to solve the fluid flow 
problem: 

0i

i

u
x

 (1) 



310   Arun Kamath et al.  /  Aquatic Procedia   4  ( 2015 )  308 – 316 

1 ( ) ji i i
j t i

j i j j i

uu u upu g
t x x x x x

  (2) 

where ui is the time averaged velocity, ρ is the density of water, p is the pressure, ν is the kinematic viscosity, νt is 
the eddy viscosity, t is time and g is the acceleration due to gravity. The pressure is treated using Chorin’s projection 
method (Chorin 1968)and the resulting Poisson pressure equation is solved using a preconditioned BiCGStab solver 
(van der Vorst 1992). Turbulence modeling is carried out using the two-equation k-ω model proposed by Wilcox 
(1994). Eddy viscosity, νt, is bounded to avoid unphysical overproduction of turbulence in strained flow by using a 
stress limiter in the definition of eddy viscosity(Bradshaw et al. 1967) as shown by Durbin (2009). The large 
difference in density of air and water in a two-phase model leads to an overproduction of turbulence at the interface 
due to the large strain. Free surface turbulence damping as shown by Naot and Rodi (1982)is carried out to avoid the 
unphysical over production of turbulence at the interface. The damping is carried out only around the interface using 
the Dirac delta function.  
The fifth-order conservative finite difference Weighted Essentially Non-Oscillatory (WENO) scheme proposed by 
Jiang and Shu (1996) is used for the discretization of convective terms for the velocity ui, the level set functionϕ, 
turbulent kinetic energy k and the specific turbulent dissipation rate ω. A TVD third-order Runge-Kutta explicit time 
scheme developed byShu and Osher (1988)is employed for time discretization in the model. This is a three-step 
scheme and involves the calculation of the spatial derivatives three times per time step. This scheme is used for the 
time advancement of the level set function and the re-initialization equation. An adaptive time stepping approach is 
used to maintain the time step in accordance with the Courant-Frederich-Lewy (CFL) criterion for numerical 
stability.The computational efficiency of the program is increased by parallelizing the code using MPI (Message 
Passing Interface). Here the domain is decomposed into smaller pieces and each assigned to a processor. So the 
program runs separately on each processor and the values between the processes are communicated using the MPI 
library. 

The free surface is obtained using the level set method where the zero level set of a signed distance functionis 
used to represent the interface between air and water(Osher and Sethian 1988). Moving away from the interface, the 
level set function gives the closest distance of the point from the interface. The sign of the function represents the 
two fluids across the interface as shown in Eq. (3). 

 

(3) 

The velocity field in the simulation moves the level set function using the convection equation shown in Eq. (4): 
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The signed distance property of the function is lost on convection and it is re-initialized after every iteration using 
a partial differential equation (PDE) based re-initialization procedure presented by presented by Peng et al. (1999),to 
retain its signed distance property after convection. 

 A uniform Cartesian grid is used in the numerical model for spatial discretization. The Immersed Boundary 
Method (IBM) is used to incorporate the boundary conditions for complex geometries. In the current study, a local 
directional ghost cell IBM presented by Berthelsen and Faltinsen (2008)is implemented using object oriented 
programming techniques, where the ghost cell values can be updated from multiple directions Bihs (2011). The 
ghost cells store multiple values and return a particular value when called from the respective direction.  

The relaxation method(Mayer et al. 1998) is used for wave generation and absorption in the numerical wave tank. 
This method uses a wave generation zone and a wave absorption zone to moderate the computational values and the 
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analytical values given by wave theory. The relaxation function proposed by Jacobsen et al. (2011)presented in Eq. 
(5) is used in this study.  

 
3.5exp ( ) 1( ) 1 [0;1]

exp (1) 1
xx for x      (5) 

where x is the coordinate along the x-axis scaled to the length of the relaxation zone. In the wave generation zone, 
the values for the free surface elevation and the velocity given by wave theory are prescribed to the computational 
values using the relaxation function Γ(x) as shown in Eq. (6) and the generated waves are released into the working 
zone of the wave tank. In the wave absorption zone, the relaxation function is operated as Γ(1-x). The computational 
values of velocity and free surface from the working zone are reduced to zero and the wave energy is smoothly 
removed from the computational domain.  
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Linear waves are produced in the numerical wave tank using the relaxation method by prescribing the values for the 
free surface η, thehorizontal particle velocityu and the vertical particle velocity w as shown in Eq. (7), (8) and (9) 
respectively. 

a cos( t k x) (7)  

coshk( z d )u a sin( t kx )
sinhkd

   (8) 

sinhk( z d )w a cos( t kx )
sinhkd

 (9) 

where a is the wave amplitude, ωis the angular wave frequency, d is the water depth, k=2π/L is the wave number. 
Similarly, higher order waves are generated in the wave tank using the appropriate relations for the free surface and 
the water particle velocity. 

3. Results and Discussion 

A grid convergence study is carried out to verify good wave generation and propagation. A 2D numerical wave 
tank 38m long and 0.8m high is used to generate second-order Stokes waves of wave height H=0.022m and wave 
periodT=2.525sin a water depth of d=0.4m on grid sizes dx=0.05m, 0.025m, 0.01m.It is seen from the results in Fig. 
1 that the wave height converges to the desired waveform from a grid size of dx=0.025m. In order to capture the 
wave transformation in the simulations with good accuracy, a finer grid size of dx=0.01m is chosen for the 
simulations. 
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Fig. 1. Grid convergence study in the numerical wave tank with T=2.525s and H=0.022m in a water depth d=0.4m 

 

 
Fig. 2. Schematic diagram of the numerical wave tank setup used to simulate wave propagation over a submerged bar 
 
Simulations are carried out in a 2D numerical wave tank 38m long and 0.8m high with a grid resolution of 

dx=0.01m resulting in a total of 304000 cells. A submerged trapezoidal bar is placed at a distance of 6.0m from the 
wave generation zone with a crest height of 0.3m in a water depth d=0.4m. The bar has a seaward slope of 1:20 and 
a leeward slope of 1:10. The maximum water depth over the crest of the bar is 0.1m. Wave gages are placed in the 
numerical wave tank at 6.0m, 11.0m, 12.0m, 13.0m, 14.0m, 15.0m, 16.0m and 17.0m from the end of the wave 
generation zone as shown in Fig. 2. 

 



313 Arun Kamath et al.  /  Aquatic Procedia   4  ( 2015 )  308 – 316 

 
Fig. 3. Wave transformation for H=0.022m: (a) WP 1: 6m; (b) WP 2: 11m; (c) WP 3: 12m; (d) WP 4: 13m; (e) WP 5: 14m; (f) WP 6: 15m; 
(g) WP 7:16m; (h) WP 8: 17m. 

 
Second-order Stokes waves of period T=2.525s and height H=0.022m are generated. The transformation of the 

wave as it propagates over the bar is computed using the wave gages placed in the numerical wave tank and the 
results are compared with the experimental data in Fig. 3. The free surface measured at the base of the submerged 
bar (WP 1) in Fig. 3a is considered to be the incident wave on the submerged bar. The horizontal asymmetry in the 
wave profile of the incident waves is seen with the crest height being slightly higher than the trough depth. The 
wave is deformed due to shoaling on a reducing water depth as it propagates up the seaward slope. The increase in 
the free surface elevation at WP 2 is seen in Fig. 3b. The wave reaches the crest of the bar and propagates over the 
flat bottom with a water depth of d=0.1m and Fig. 3c shows the vertical asymmetry in the waveform at WP 3. The 
decomposition of the wave begins at WP 4 in Fig. 3d resulting in the appearance of a secondary crest after the 
primary wave crest. In Fig. 3e, the waveform with the transformed incident wave and a clearly developed secondary  
crest is seen at WP 5, at the end of the bar crest. From this point onwards, the leeward slope of the bar begins and 
the water depth increases along the direction of wave propagation. The amplitudes of the waves begin to reduce in 
an effect opposite to shoaling, as the waves propagate from shallower water to deeper water. The development of a 
tertiary crest is seen in Fig. 3f along with the developed secondary crest at WP 6. As the wave propagates further 
along the leeward slope of the bar, the well developed secondary and tertiary crests are clearly seen in Figs. 3g and 
3h at WP 7 and WP 8 respectively. A good agreement is seen between the numerical results and the experimental 
data and the numerical model provides a good representation of the phase and amplitude of the transformed wave.   
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Fig. 4. Wave transformation for H=0.044m: (a) WP 1: 6m; (b) WP 2: 11m; (c) WP 3: 12m; (d) WP 4: 13m; (e) WP 5: 14m; (f) WP 6: 15m; 

(g) WP 7: 16m; (h) WP 8: 17m. 
 

Further, a simulation is carried out with an incident wave height of H=0.044m, period T=2.525s. The effect of the 
increased incident wave height on the wave deformation over the submerged bar is investigated. The comparison of 
the numerical results with the experimental data is presented in Fig. 4. Due to the increased incident wave 
amplitude, the corresponding shoaling effect is also higher at WP 3 as the wave reaches the crest of the bar. The 
pattern of wave transformation in Fig. 3 for H=0.022m and in Fig. 4 for H=0.044m are similar but with a few 
differences in the transformed waveform. The saw tooth asymmetry in the wave form is seen to develop earlier at 
WP 2, as the wave propagates on the upward slope in this case. The formation of sharp crests is seen in Fig. WP 3 as 
the wave reaches the bar crest. A similar wave profile is seen in the previous case with a lower incident wave height, 
after the wave has reached the bar crest at WP 4 in Fig. 3. The formation of a distinct secondary crest is seen at WP 
4 in Fig. 4d. The transfer of wave energy to the higher harmonics and formation of clear secondary and tertiary wave 
crests is slower in this case and the wave profiles at WP 4 and WP 5 are similar. The appearance of a distinct 
secondary crest and smaller tertiary crests is seen at WP 6, as the wave propagates on the leeward slope of the bar. It 
is noticed that the secondary peaks are much lower than the primary peaks in this case. Figure WP 7 shows the 
evolution of the transformed waveform with three distinct crests of different amplitudes. This transformation is 
already apparent at an earlier location at WP 6 in Fig. 3, in the case of the lower incident wave height. At the end of 
the leeward slope, in WP 8, the secondary and tertiary crests are seen to have similar amplitudes which are much 
lower than the primary crest. Although the shoaling of the higher amplitude waves is seen at an earlier location 
compared to the lower amplitude waves, the wave decomposition over the bar crest and the leeward slope is seen at 
later locations. This is because the higher amplitude waves propagate faster over the bar crest than the lower 
amplitude waves, resulting in lesser interaction time between the wave and the flat bottom. It is seen that the 
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numerical model is able to accurately represent the phase information of the deformed wave though slight deviations 
are seen wave crest heights due to the complex wave transformation processes involved. 

The simulations with wave transformation over a submerged bar show that the amount of shoaling depends on 
the incident wave height. A wave with a higher incident amplitude shows more shoaling on the upward slope of the 
submerged bar. The incident wave profile transforms into an asymmetrical wave with form sharp wave crests and 
shallow troughs in both the cases. A higher asymmetry with sharp crests can lead to waveinstability, resulting 
inwave breaking. As seen in Figs. 3 and 4, the numerical results show a good match to the experimental data andthe 
model is able to provide a good representation of the wave propagation and transformation. 

Conclusion 

The open source CFD model REEF3D is used to simulate the wave propagation and transformation over a 
submerged bar. The numerical results are compared to the experimental data and a good agreement is seen. The 
wave transformation is clearly observed with the formation of an asymmetrical wave profile with sharper crests and 
shallower troughs as the wave propagates over the upward slope of the submerged bar. The evolution of higher 
harmonics during the wave propagation is seen for both cases of incident wave heights simulated. The appearance of 
the higher harmonics in the wave train is slightly delayed for higher incident waves and the higher harmonics are 
seen have similar crest heights that are lower than the primary wave crest. Thus, the wave transformation depends 
on the incident wave height. The higher incident waves show more shoaling as they propagate on the upward slope. 
Further studies can be carried out to investigate the transition of the waves into a wave breaking regime, on further 
increasing the incident wave height. 
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