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“
To those who do not know mathematics it is difficult to get across a

real feeling as to the beauty, the deepest beauty, of nature. . . . If you

want to learn about nature, to appreciate nature, it is necessary to

understand the language that she speaks in.

– Richard Feynman, The Character of Physical Law (1965). ”





Summary

This thesis investigates a generalized history-independent local load sharing (LLS)

fiber bundle model for two dimensional interfacial fractures. When the failure

threshold of the fibers are assigned according to the cumulative distribution

P (x) = 1− e−x+x0 ,

the model displays two distinct regimes separated by a critical transition. For sys-

tems with low cutoff x0, the damage is developing through random weakening

of the system, which resembles the equal load sharing (ELS) model. As the cut-

off is increased, the behaviour approaches invasion percolation. This localization

transition is determined to occur at the critical cutoff

xc = 0.6173± 0.0005,

with a critical exponent

β/ν = 1.5± 0.1.

The LLS model displays a local stability not seen in the ELS model. By esti-

mating the cutoffs that results in the highest positive slope in the strain curve for

a range of lattice sizes, extrapolation to the thermodynamic limit reveals a cutoff

that coincides with the critical cutoff, with a correlation length exponent

ν = 2.

This stability originates in the short-range interaction of the model, which ef-

fectively stresses the strong fibers the most. Moreover, the LLS model is shown

to be globally more stable than the ELS model when x0 . 0.5. The global sta-

bility of the LLS model vanishes around the critical transition. This is related to

a change in the distribution of bursts, i.e. the fibers that fails consecutively. For

the LLS model, the burst distribution is shown to be consistent with a power law

D(∆) ∼ ∆−τ , with burst exponent

τ = 2

around the critical transition. Analog to the criticality of the ELS model at x0 = 1,

lower cutoffs results in higher burst exponents, and cutoffs above xc gives rise to

exponential decay in the burst distribution. The distribution of fatal bursts, which

cause the entire bundle to rapture, reveals a drastic change of behaviour around

the critical transition. For cutoffs above xc, far fewer fibers may break before the

bundle would undergo catastrophic failure in a force controlled experiment.
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Sammendrag

Denne masteravhandlingen omhandler en generalisert historieuavhengig fiberbundt-

modell med lokal lastdeling (LLS) i to dimensjoner. Når fibrenes bruddstyrke er

tatt fra den kumulative fordelingen

P (x) = 1− e−x+x0 ,

viser modellen to ulike regimer. For systemer med lav avkutting x0 sprer skaden

i systemet seg tilfeldig, og oppførselen ligner det en ser i modellen for lik last-

deling (ELS). Med økende avkutting nærmer oppførselen til systemet seg det en

finner med invasjonsperkolasjon. Denne lokaliseringsovergangen finner sted ved

den kritiske avkuttingen

xc = 0.6173± 0.0005,

med en kritiske eksponent

β/ν = 1.5± 0.1.

LLS-modellen viser en stabilitet som ikke sees i ELS-modellen. Ved å estimere

avkuttingen som resulterer i det høyeste stigningstallet i stresskurven for en rekke

gitterstørrelser, gav ekstrapolering til den termodynamiske grensen en avkutting

som sammenfaller med xc, samt en korrelasjonslengdeeksponent

ν = 2.

Denne stabiliteten skyldes den korte interaksjonsrekkevidden i modellen, som

effektivt fordeler et høyere stress på de sterke fibrene. Videre er LLS-modellen vist

å være globalt mer stabil enn ELS-modellen for x0 . 0.5. LLS-modellen mister

global stabilitet etter den kritiske overgangen. Dette er forbundet med en endring i

fordelingen av etterfølgende brukne fibre. For LLS-modellen er denne fordelingen

vist å være konsekvent med en potenslov D(∆) ∼ ∆−τ med eksponent

τ = 2

rundt den kritiske avkuttingen. Analogt til den kritiske oppførselen for modellen

med lik lastdeling ved x0 = 1, gir lavere avkuttinger en høyere eksponent τ , og

for avkuttinger over xc avtar D(∆) eksponensielt. Fordelingen av etterfølgende

brukne fibre som fører til total kollaps av fiberbundten avdekker en drastisk endring

i oppførsel rundt den kritiske overgangen. For avkuttinger over xc vil vesentlig

færre fibre ryke før fiberbundten står i overhengende fare for å kollapse fullstendig

i et eksperiment der kraften er den styrende parameteren.
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Chapter 1
Introduction

One of the most important tasks in engineering is to forsee, prevent and under-

stand material failure. In the spirit of Hansen et al. (2015), let us first appreciate

that theories such as linear and non-linear elastic fracture mechanics have un-

questionably been very successful in describing material failure from a top-down

approach, cf. Lawn (1993). Furthermore, atomistic modeling is also advancing

rapidly, cf. Buehler (2008). However, as these models are highly computation-

ally demanding for complex structures, cf. Gjerden (2013), fiber bundle models

may in some applications prove to be a more viable alternative. As formulated

by Hansen et al. (2015), fiber bundle models "simplify the problems to the point

where the very powerful methods of theoretical physics, statistics and mathematics

may be fully explored". Could the fiber bundle models even reveal some general

characteristics for fracture-failures?

In the context of this model, a fiber is understood as a spring obeying Hooks’

law in one dimension until a critical extension has been reached, at which the fiber

breaks and is no longer carrying a force. A fiber bundle consists of multiple fibers

connected between two clamps. When a fiber breaks, the clamps may deform,

depending on the model, as elaborated in Chapter 2. In the local load sharing

(LLS) model this deformation is uniquely defined given the broken fibers in a

bundle, as the model is history independent, as emphasized by Sinha et al. (2015).

One does not need to know the order at which each fiber breaks to determine the

stress distribution in the bundle.

The LLS model is in many aspects a simple model. Considering the dictum

often accredited to William of Ockham, known as Ockham’s razor: "Plurality

must never be posited without necessity" Franklin (2001), this is advantageous

compared to other models. Comparable to how the Ising model captures some of

the complex behaviour of magnetic materials with a set of simplistic rules, the LLS
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Chapter 1. Introduction

model may describe important aspects of fractures in fibrous materials by only a

few basic governing equations.

Most materials are not fibrous, but then again, most materials are not contin-

uous either. With a basis in the fiber bundle model one may study phenomena

like strain hardening, creep failure and fatigue failure in a wide range of materials,

and the model could even be applied to analyze snow avalanches and landslides,

as discussed in Hansen et al. (2015). This paper however, will mainly focus on

investigation of results presented by Sinha et al. (2015).

When Jonas Kiellstadli was working on his master thesis (2015), he made the

curious discovery that in the LLS model, where the load of the fibers is not equally

distributed, there is a stability not found in the model where the force is equally

distributed amongst all the fibers, i.e. the equal load sharing (ELS) model.

"Hence, stress-enhancement at the edges of holes leads to more sta-

bility than the lack of such. Very curious indeed!"

– Hansen et al. (2015).

In physics, nothing is more interesting than curiosities that seems to contra-

dict common sense. From where does this increased stability originate? What is

the driving mechanism? Is this simply an artifact of the model, or does it have

any physical applications? This stability was investigated in the project thesis by

Bering (2016), of which this thesis is a continued development.

Deeper understanding of this stability was considered to be the major goal of

this Master’s thesis. In the project assignment it was linked to a critical transition

known as localization. This transition was identified and described, and one of the

critical exponents was found. However, the need for better statistics was of great

significance. This was solved by writing a faster simulation program.

Another goal of this work was to gain deeper understanding of the localization

transition. Dahle (2016) introduced an order parameter for the localization, and

found a value for the critical cutoff xc = 0.61 ± 0.02 with a respective critical

exponent β/ν = 1.5 ± 0.1. By studying this order parameter further, the critical

cutoff was determined with higher accuracy.

The study of bursts, i.e. consecutive failures, was devoted special attention.

Pradhan et al. (2006) and Petri et al. (1994) emphasize that when fracture-failures

in composite materials is studied experimentally, these failure avalanches typically

represent the only measurable quantity. Thus, the burst distribution may allow

for connections between the computer generated simulations and force controlled

experiments. A change in behaviour of the burst distribution may signal imminent

catastrophic failure of materials, hence this is a topic of great general interest.

This thesis is organized as follows: First the various fiber bundle models is

outlined in Chapter 2, together with some theory regarding percolation, critical

2



phase transitions and finite size scaling. The essential computational methods is

then outlined in Chapter 3, before the results is presented in Chapter 4. The results

are then discussed and interpreted in Chapter 5. Following this, conclusions is

drawn in Chapter 6, together with some directions for further research. Finally, the

appendix contains a draft to an article that will be submitted to Physical Review

upon completion.
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Chapter 2
The Fiber Bundle Models

The fiber bundle model was first introduced by Peirce (1926) to model strength of

textiles, in a form now recognized as the equal load sharing fiber bundle model.

In this model all the fibers in the bundle experience the same force. This may

be illustrated as a bundle of fibers stretched between two infinitely stiff clamps,

as in Figure 2.1a. Under these conditions one may describe the behaviour of the

fiber bundle in great detail analytically, and the reader is strongly encouraged to

study the recent book by Hansen et al. (2015), where the fiber bundle models are

discussed extensively.

When the clamps are not infinitely behaviour, deformations in the clamps occur

each time a fiber breaks. For the sake of simplicity, one may assume that one clamp

is infinitely behaviour, as this gives rise to the same physical behaviour, cf. Hansen

et al. (2015). In the soft clamp model illustrated in Figure 2.1b, the other clamp

is assigned a finite elasitic constant, so that the force on the intact fibers depends

on the elastic response of the soft clamp, Sinha et al. (2015). Intact fibers adjacent

to broken fibers now experience an increased load, and the next fiber to break is

determined by the ratio of stress to failure threshold of the fiber. The implication

of this is that fibers may break either due to having a low failure threshold or due

to being highly stressed.

In the soft clamp model, the deformations of the clamps may be calculated

by a set of Green functions, as conducted by Gjerden (2013) and Stormo (2013).

This model is highly complex both mathematically and computationally. The local

load sharing model introduced by Harlow and Phoenix (1978) represents a major

simplification of the soft clamp model that may serve as a preferable alternative

for many applications as it appear to capture important aspects of the soft clamp

model at a fraction of the computational cost.
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Chapter 2. The Fiber Bundle Models

x

Infinitely stiff clampInfinitely stiff clamp

Failed fiber

(a) The equal load sharing fiber bundle model.

x

Soft clampInfinitely stiff clamp

(b) The soft clamp fiber bundle model.

x

Infinitely stiff clamp Hard/Soft clamp

(c) The local load sharing fiber bundle model.

Figure 2.1: Illustration of various fiber bundle models, from Hansen et al. (2015). Note

the definition of x, representing the extension of the fiber bundle without deformations.
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2.1 Force redistribution rule

2.1 Force redistribution rule

In the LLS model all the load of the broken fibers is distributed evenly among the

nearest intact fibers, such that the force on the bundle remains F = κNx when

one or more fibers break, where x is defined as the distance between the clamps

without deformation, as illustrated in Figure 2.1c. The average force per fiber is

then

σ =
F

N
= κx (2.1)

at all times. In one dimension this rule for redistribution of forces summarizes to

σi = κ
[

1 +
1

2
(hl + hr)

]

x, (2.2)

where hl and hr is the number of broken fibers adjacent to the intact fiber count-

ing to the left and right respectively. The broken fibers form clusters or holes,

i.e. collections of broken fibers in direct connection with each other. The load of

the broken fibers is evenly distributed between the two intact fibers adjacent to the

cluster, as illustrated in Figure 2.1c. In two dimensions, the geometry of the clus-

ters is more complex. The load of the cluster is evenly distributed among the intact

fibers along the perimeter of the of the cluster, i.e. all the nearest intact fibers.

Accordingly, the force redistribution rule reads

σi = κ
[

1 +
∑

j

hj
sj

]

x, (2.3)

where the summation is over all the clusters of broken fibers that are nearest neigh-

bour to fiber i. Further, hj denotes the number of broken fibers in the neighbour-

ing cluster j, and sj denotes the intact fibers in the perimeter of the corresponding

cluster.

2.2 Breaking criteria

To determine which fiber will break next, we apply quasistatic loading. After a

fiber breaks, the extension of the fiber bundle is reduced to zero, and then increased

until another fiber breaks. With this approach only one fiber breaks for each time

step. The first fiber to break will be the one that first reaches

σi = κx = κxi. (2.4)

Here xi is the failure threshold of the fiber, and x is the extension of the bundle.

With the observation σi(x = 1) = σ(1) = κ, a general breaking rule may be
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Chapter 2. The Fiber Bundle Models

expressed as

max
i

(

σi(1)

xi

)

=
κ

x
(2.5)

which is applicable for all the subsequent breaking fibers. We note that this is

the inverse of the extension at which a fiber breaks. The quantity xi/σi(1) will

be referred to as the effective threshold. As the model assumes the fibers behave

as Hookean springs until they break, this rule is valid also for x < 1. In the

following, the spring constant κ is set equal to one. The LLS model is completely

defined by the force redistribution rule from Equation (2.3) and the breaking rule

from Equation (2.5), cf. Hansen et al. (2015). Note that with κ = 1, the stress and

the strain of the fiber bundle model is the same quantity. The curve for the stress

is typically denoted as the strain curve.

2.3 Strain curve

The strength of the fibers are assigned from a statistical distribution, and hence

there will be fluctuations around the average values. These fluctuations are essen-

tial for the breakdown process in the fiber bundle model, and for studying fractures

in materials in general. First it is useful to study some average properties. In the

ELS model the average force per fiber in a strain-controlled experiment will simply

be

σ(x) = x[1− P (x)], (2.6)

asN(1−P (x)) fibers are expected to have a failure threshold above x. Hence, the

strain curve σ = σ(k/N) may be derived by order statistics as shown by Hansen

et al. (2015), to obtain the least force per fiber required to break the next fiber. In

the simulations presented here, the failure thresholds of the fibers are distributed

according to the exponential distribution with cutoff x0, with the cumulative dis-

tribution function

P (x) = 1− e−x+x0 , x ∈ [x0,∞). (2.7)

This is the continuous equivalent of the geometric distribution, and is the only

memoryless random distribution there is1. In the ELS model, this gives a force-

elongation curve as seen in Figure 2.2. The corresponding strain curve is given by

the expression

σ = κ

(

1−
k

N

)(

x0 − log

(

1−
k

N

))

, (2.8)

1http://mathworld.wolfram.com/ExponentialDistribution.html
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0 2 4 6 8 10
xi

0.0

0.2

0.4

0.6

0.8

1.0

σ
x0 = 0.0

x0 = 0.1

x0 = 0.2

x0 = 0.3

x0 = 0.4

x0 = 0.5

x0 = 0.6

x0 = 0.7

x0 = 0.8

x0 = 0.9

x0 = 1.0

Figure 2.2: Force against bundle elongation for the ELS model: The strain on the bundle is

shown as a function of the extension of the fiber that breaks for various cutoffs x0 ∈ [0, 1]
in the exponential probability distribution for the failure thresholds of the fibers.

and is shown in Figure 2.3 for various cutoffs x0 in the probability distribution.

The strain curve for the LLS model follows directly from the breaking criteria in

Equation (2.5).

2.4 Bursts

To compare these quasistatic strain controlled simulations with force controlled

experiments it might be useful to study the avalanches of fibers that fails simulta-

neously. A burst of size ∆ is defined to occure when ∆ fibers break consecutively

which all require a lower force to break than the force initiating the burst2. The

distribution of bursts D(∆) is studied as the bundle is loaded until breakdown.

This distribution typically follows a power law

D(∆) ∼ ∆−τ , (2.9)

2This is called an exclusive burst, as opposed to an inclusive burst which which only counts

the fibers that break with a lower effective threshold than the previous fiber. The latter was not

investigated in this thesis.
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0.0 0.2 0.4 0.6 0.8 1.0
k/N

0.0

0.2

0.4

0.6

0.8

1.0
σ

Figure 2.3: Strain curve for the ELS model for various cutoffs x0 ∈ [0, 1]. Legend as in

Figure 2.2.

and Hemmer and Hansen (1992) found that the burst distribution for the ELS

model follows a universal asymptotic power law with τ = 5/2 for large bursts.

This is independent of the threshold distribution of the fibers; the only criteria is

that the average macroscopic force 〈F (x)〉 has a single parabolic maximum, and

that the systems are sufficiently large. Note that with the probability distribution

from Equation (2.7), the corresponding strain curve shown in Figure 2.3 does not

have a parabolic maximum for x0 ≥ 1. The burst exponent τ may change near

complete breakdown. For the ELS model, bursts near the strain curve maximum

follow a power law with τ = 3/2. This indicates a loss of stability. Pradhan et al.

(2006) describes the crossover from τ = 3/2 to τ = 5/2 in great detail. For the

threshold distribution from Equation (2.7), the shift in burst exponent occur for

bursts of size

∆c =
2

(1− x0)2
. (2.10)

By sampling the burst distribution within a finite window, the 3/2 power law will

occur when the interval is close to the breaking point. A crossover in the burst

exponent is typically strongly related to the catastrophic failure of the material.

2.5 Critical phase transitions

The theory of critical phase transitions and finite size scaling is used interdisci-

plinary. The critical temperature in the Ising model is a famous example of such

10



2.5 Critical phase transitions

a transition, solved analytically by Onsager (1944). The following brief theory

regarding percolation, critical exponents and finite size scaling originates from

Stauffer and Aharony (1993) and Stanley (1987), which the interested reader is

highly recommended to read.

2.5.1 Percolation

When the fibers that break are nearest neighbours to other broken fibers, they form

clusters. The evolution of such clusters on a lattice is described generally by per-

colation theory. In percolation theory one usually considers the occupation proba-

bility p, and in terms of the fiber bundle this corresponds to the density of broken

fibers k/N . All percolation systems undergo a percolation transition when the

system has a finite non-zero probability of containing a spanning cluster of oc-

cupied sites, connecting the top and the bottom of the lattice so that an infinite

network would occur if the lattice had been infinitely large.

2.5.2 Critical exponents

Critical phase transitions of second order or higher may in general be described by

critical exponents, cf. Stanley (1987). From this, the properties of the transition-

ing system may be approximated by a power law behaviour. Close to the critical

points, there is a single length scale that determines the range of interaction, as em-

phasized by Stauffer and Aharony (1993). This is the correlation length, denoted

by ξ. Let pc be the percolation threshold. Near the critical point the correlation

length behaves like

ξ ∼ |p− pc|
−ν , (2.11)

such that ξ diverges when p approaches pc. Here ν is the correlation length expo-

nent, and for percolation this is one of the universal exponents. They are valid for

all percolating systems described by the same percolation model. Another univer-

sal exponent is the order parameter exponent β, defined by the relation

ψ ∼ |p− pc|
β (2.12)

where ψ is the order parameter. These are parameters that are characteristic for

the transitioning system, and the order parameter is typically zero ahead of the

critical point and nonzero after. The percolation transition is described by multiple

order parameter. One is the percolation strength, defined as the fraction of occu-

pied sites belonging to the largest cluster in the system, and another is the mean

cluster size. Order parameters is used in a wide range of fields to describe critical

behaviour. One example is the critical phase transition in the Ising model, where

the magnetization is the order parameter.

11



Chapter 2. The Fiber Bundle Models

Close to the transition, the universal exponents obey the hyperscaling relation

d− 2 + η = 2β/ν, (2.13)

where d is the dimensionality and η represents a correction to the scaling dimen-

sion, and goes by the name anomalous dimension. This however, is not a major

topic of this text.

2.5.3 Finite size scaling

All numerical simulations on a finite size lattice is subject to finite size effects.

The field of finite size scaling theory was introduced by Fisher and Barber (1972).

Quantities obtained from lattices of finite length need to be extrapolated to deter-

mine the behaviour in the thermodynamic limit. The scaling laws from Subsec-

tion 2.5.2 are not only valid for the occupation probability. One may be interested

in other quantities related to the particular transition phenomena. Let the quantity

of interest be denoted by q. Introduce the notation qf for the critical value of this

parameter for a finite sized lattice, and let the critical value for an infinitely large

lattice be denoted by qc. For a system of finite size L, the correlation length is

equal to the system length sufficiently close to the critical transition. The effective

critical threshold qf then relates to the asymptotic value qc as

qf − qc ∝ L−1/ν (2.14)

such that ν and qc may be found by calculating

qf = qc + C1L
−1/ν (2.15)

for various trial values of ν. One then selects the value for ν which gives the best

straight line for large system sizes. If a corresponding order parameter ψ is found

for the critical transition, this will scale like

ψ ∝ L−β/ν (2.16)

very close to the critical point, cf. Stanley (1987). This originates from the postu-

late of ξ being the only length scale of interest. When two of the critical exponents

are known, e.g. ν and β, all other critical exponents follow by the hyperscaling

relation.

2.5.4 Localization

In the LLS fiber bundle model, fibers that are nearest neighbours to clusters of

broken fibers experience an increased load. Moreover, as the load of the broken

12



2.5 Critical phase transitions

fibers in the cluster is evenly distributed at the perimeter, at some point all the fibers

that break will be located along the perimeter of the largest cluster. Thus the fiber

in the perimeter of the hole with the the lowest threshold is broken in each time

step. In the LLS fiber bundle model a single growing cluster defines the onset of

localization. This breaking process is identical to the invasion percolation model

with nearest neighbour interaction, a model originating from the study of drainage

in porous media, see e.g. Hansen et al. (2015). The localization transition should

not be confused with the former mentioned percolation transition.

As suggested by Dahle (2016) a suitable order parameter associated with the

localization transition in the LLS fiber bundle model is the average of the inverse

of the highest number of separate clusters that occur during the failure process

ψ =

〈

1

maxk{nc(k)}

〉

, (2.17)

where nc is the total number of clusters in the system.
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Chapter 3
Computation

This chapter presents some of the central algorithms used and a few specifics re-

garding the simulations. As mentioned in Chapter 1, the need for better statistics

was of great significance. This was solved by writing a faster program. This al-

lowed for highly improved statistics. The most essential aspects of this program

is the force redistribution and the breaking criteria, and hence this is outlined in

Subsection 3.1.1. Moreover, Subsection 3.1.2 gives a short description of how the

information is stored during the simulation.

3.1 Algorithms and simulations

The main concept is to follow the intact fibers along the perimeters of the clusters

of broken fibers. As opposed to the conventional methods of following the bro-

ken fibers, this limits the computational effort considerably. The complete bundle

state is known for all time steps, and only the minimal necessary updates is done

throughout the simulation. The main program is written in C++ and utilizes the

xorshift1024* random number generator1 which has a period of about 21024, more

than sufficient for these simulations. The seed of each simulation was stored to

allow for reproducibility of the data. Numerous programs was written in Python to

produce plots, and a Python program handles organization and merging of simu-

lation files. All computationally demanding calculations was run on the computer

cluster at the Departement of Physics at NTNU. At www.daim.idi.ntnu.no,

the main simulation program is uploaded together with this paper.

1Documentation: http://xorshift.di.unimi.it/
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3.1.1 Finding the fiber with lowest effective threshold

The intact fibers are divided in three categories:

• Fibers that are not nearest neighbour to any broken fibers

• Fibers that are included at least one perimeter

• Fibers included in at least one additional perimeter

By sorting all the fibers by the threshold, the first mentioned category is trivial. The

intact fibers that is neighbouring broken fibers is organized by sorting the fibers in

each perimeter by the failure threshold of the fibers. Furthermore, by sorting the

perimeters by the effective threshold of the weakest fibers in each perimeter, the

fiber with the highest effective threshold is easily accessible. With this structure,

only a handful of updates is necessary for each time step. However, the fibers

included in multiple perimeters requires to be studied separately. When a fiber

breaks, all the fibers in the growing perimeter included in more than one perimeter

must be revised. This constitute the dominant bottle neck in the program. How-

ever, as explained below, by switching the data structures for these fibers during

the simulation the running time is reduced.

3.1.2 Data structures

Each perimeter is structured as a AVL tree, with fiber threshold as key. AVL trees

(Georgy Adelson-Velsky and Evgenii Landis’ tree) are self balancing binary search

trees which guarantees insertion and deletion to scale as log(N), see e.g. Mehlhorn

and Sanders (1999). All the perimeters are structured in another AVL tree, where

the key is the effective threshold of the weakest fibers in each perimeter. Finally, all

the fibers included in more than one perimeter are sorted by effective threshold in a

separate data structure. Moreover, each perimeter is associated with a linked list of

fibers that are included in both this perimeter and at least one additional perimeter.

This allows for updating only the necessary fibers in multiple perimeters.

In the beginning of the breaking process, the fibers in multiple perimeters are

also stored in an AVL tree. However, the updates necessary for each time step in-

crease as more fibers break and the perimeters increase. At some point it becomes

more effective to store all the fibers in multiple perimeters in a vector. This vector

is not sorted, which demands all the elements to be evaluated for each time step.

Figure 3.1 display how the running time for the simulation program is varying with

cutoff and the time step k/N at which the fibers in multiple perimeters is stored in

vectors instead of AVL trees.
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3.2 Visualization

However, the standard associative container std::set in C++ might be a

better alternative. This is implemented as red-black trees, which has faster deletion

and insertion, at the cost of slower look-up, cf. Cormen et al. (2001).

The web page http://kukuruku.co/hub/cpp/avl-trees was very

helpful in the understanding of AVL trees, and the AVL data structure was imple-

mented with a basis in this. The web page was written by Nikolai Ershov at the

Russian Academy of Sciences in 2008.

3.2 Visualization

Application of the OpenGL2 library GLFW3 allowed for real time visualization of

the bundle state during the simulations, which also eased the debugging. Figure 3.2

displays how the state of the bundle could be visualized during the simulation.

Black squares indicate broken fibers, and the fibers along the perimeter of each

cluster is marked with colored circles. Although barely visible in this Figure,

fibers in multiple perimeters is marked with a green dot. Figure 3.3 and Figure 3.4

display the visualization of the AVL data structures with GLFW, where the colors

are similar to the respective perimeters seen in Figure 3.2.

2An open source cross-language programming interface for developing high-efficiency cross-

platform graphics applications. Documentation: https://www.opengl.org
3Documentation: www.glfw.org/
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Figure 3.1: Running time in seconds as a function of cutoff x0 and the time step k/N at

which the data structure for the fibers in many perimeters is changed.

Figure 3.2: Bundle state with perimeters as visualized with GLFW.

18



3.2 Visualization

Figure 3.3: The AVL trees of the perimeters as visualized with GLFW.

Figure 3.4: AVL tree for the fibers in many perimeters as visualized with GLFW.
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Chapter 4
Results

This chapter presents the results from simulations of the ELS and LLS model de-

scribed in Chapter 2. When the failure thresholds of the fibers are distributed ac-

cording to the cumulative exponential distribution P (x) = 1− e−x+x0 with cutoff

x0, the LLS model is shown to undergo a phase transition at some critical cutoff

xc. Systems of various sizes have been studied to account for finite size effects.

First, Section 4.1 is meant to give a qualitative understanding of the behaviour of

the model during this transition, before the transition is investigated qualitatively

by means of the order parameter ψ from Equation (2.17). After this, the strain

curve and the associated stability mentioned in Chapter 1 is studied in Section 4.3.

As for the burst distribution, this is first studied for the ELS model in Section 4.4.

With a basis in this, the burst distribution was then investigated for the LLS model

in Section 4.5.

4.1 Two phases

The damage spreading in the LLS model for various cutoffs can be seen in Fig-

ure 4.1, where the system state is visualized at time step k/N = 0.2. The systems

with cutoffs x0 = 0 and x0 = 1 yields an disordered and an ordered phase respec-

tively, and the model appear to change behaviour around x0 = 0.617. In Figure 4.2

the system state is shown at k/N = 0.58. The difference is less obvious, however

still noticeable. In the figure for x0 = 0 there are 801 perimeters, and 4554 fibers

are in more than one perimeter. For x0 = 0.617, there are 40 perimeters, and

70 fibers are in more than one perimeter. In the figure shown for x0 = 1 all the

broken fibers belong to the same cluster. This suggests that the two phases may be

differentiated by the amount of clusters that is growing during the failure process.
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(a) x0 = 0 (b) x0 = 0.617 (c) x0 = 1

Figure 4.1: Damage spreading in the LLS model for various cutoffs in the probability

distribution for the failure thresholds of the fibers. The systems have size N = 2562,

and the figures shows the broken fibers in the fiber bundle at time step k/N = 0.2. The

perimeter of each cluster has different colors.

(a) x0 = 0 (b) x0 = 0.617 (c) x0 = 1

Figure 4.2: Damage spreading in the LLS model for various cutoffs in the probability

distribution for the failure thresholds of the fibers. The systems have size N = 2562, and

the figures shows the broken fibers in the fiber bundle at time step k/N = 0.58. The

perimeter of each cluster has different colors.
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Figure 4.3: The order parameter: for systems of size N = 322 and N = 5122 with

cutoffs x0 ∈ [0, 2.5]. The data is averaged over 230/N samples. Close to the transition,

where the frequency of points is higher, the number of samples is doubled.

4.2 The order parameter

In Figure 4.3 the order parameter ψ is shown for a range of cutoffs. The localiza-

tion transition is easily recognizable. This is a reproduction of results from Dahle

(2016). The systems in Figure 4.3 have sizes N = 322 and N = 5122 and the data

is averaged over 230/N samples, except close to the transition where the sample

frequency is higher and the number of samples is doubled.

The order parameter was calculated for systems in the range between N = 42

and N = 81922, and in Figure 4.4-4.7 the order parameter for cutoffs x0 ∈
[0.616 − 0.618] are shown as a function of the system lengths. The dashed line

shows a function proportional with L−1.5. The data is averaged over 231/N sam-

ples.

4.2.1 The next weakest fiber

In the LLS model, the fiber with the lowest failure threshold is always the first to

break. In Figure 4.8 the time step k/N at which the next weakest fiber breaks is

shown for systems of size N = 322 and N = 5122. The data is averaged over

230/N samples.
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Figure 4.4: The order parameter is shown for x0 = 0.6160 for systems of size N = 42 to

N = 81922. The data is averaged over 231/N samples.
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Figure 4.5: The order parameter is shown for x0 = 0.6170 for systems of size N = 42 to

N = 81922. The data is averaged over 231/N samples.
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Figure 4.6: The order parameter is shown for x0 = 0.6175 for systems of size N = 42 to

N = 81922. The data is averaged over 231/N samples.
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Figure 4.7: The order parameter is shown for x0 = 0.6180 for systems of size N = 42 to

N = 81922. The data is averaged over 231/N samples.
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Figure 4.8: The next weakest fiber: The time step k/N at which the next weakest fiber in

the bundle breaks for systems of size N = 322 and N = 5122. The data is averaged over

230/N samples.

4.3 The strain curve

In Figure 4.9 the strain curve for the LLS model is shown for cutoffs between 0 and

1 for systems of size N = 5122. The data is averaged over 212 samples. Note that

the curve for x0 = 0.6 stands out the most. As opposed to the strain curves for the

ELS model with the same threshold distribution seen in Figure 2.3, the LLS model

gives rise to a positive slope in the strain curve for 0.4 . k/N . 0.6. This feature

appear to be most distinct for x0 = 0.6. In Figure 4.10 a region of the strain curve

for x0 = 0.617 is shown for systems of size N = 642 to N = 20482. The data

is averaged over 230/N samples. The slope is more pronounced for larger system

sizes. For comparison with the ELS model, Figure 4.11 displays the strain curve

for the LLS system with x0 = 0.617 and size N = 5122 with the analytical strain

curve for the ELS model. The standard deviation of the strain curve in the LLS

model is shown with a dual axis in red. To illustrate the high fluctuations further,

Figure 4.12 display the strain in a single sample compared to the average of 212

samples with x0 = 0.5.

This behaviour is examined more closely in Figure 4.13, where the slope at

the inflection point, max(dσ/dk), is estimated for cutoffs x0 ∈ [0, 1] for systems

of size N = 1282 to N = 5122. Each point originates from strain curves with

230/N samples, and close to the maxima, where the frequency of points is higher,

the number of samples is doubled. The estimated values originates from fourth
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Figure 4.9: Strain curve for the LLS model for cutoffs x0 ∈ [0, 1]. The system have size

N = 5122 and the data is averaged over 212 samples.

order polynomial fitting of the strain curves with numpy.polyfit(...)1 in

the range 0.4 ≤ k/N ≤ 0.7.

Cutoffs x0 ∈ [0.6, 0.7] was studied in more detail, this can be seen in Fig-

ure 4.14. By preforming second order polynomial fitting of the data close to the

maximum values, the respective finite size critical cutoffs xf was estimated. These

curve fitting functions are shown as dashed lines. Interpolation to infinite lattice

size is shown in Figure 4.15, which resulted in a critical cutoff xc = 0.616± 0.01.

In Figure 4.16 the stress is shown as a function of the extension of the fiber

that breaks for cutoffs x0 ∈ [0, 1]. In Figure 4.17 this is shown for cutoffs x0 ∈
[1.1, 2.5]. In Figure 4.18 the force elongation curves for cutoffs x0 ∈ {0, 0.617, 1}
is shown with colors according to the time step at which each fiber breaks.

1Documentation: http://docs.scipy.org/doc/numpy-1.10.0/reference/

generated/numpy.polyfit.html
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Figure 4.10: Strain curve for the LLS model for cutoff x0 = 0.617 for systems of size

N = 642 to N = 20482. The curves are averaged over 230/N samples.
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Figure 4.11: Strain curve for the ELS and LLS model for cutoff x0 = 0.617. The LLS

system has size N = 5122 and is averaged over 213 samples, with corresponding standard

deviation shown in red. The analytical strain curve for the ELS model is shown as a dashed

line.
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Figure 4.12: Strain curve for the ELS and LLS model for cutoff x0 = 0.5. The LLS

system has size N = 5122. The green dots display the strain in a single sample, and the

black dots are averaged over 212. The analytical strain curve for the ELS model is shown

as a dashed line.
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Figure 4.13: The slope of the strain curve for various cutoffs x0 ∈ [0, 1] for system of size

N = 1282 to N = 5122. Each point originates from strain curves with 230/N samples,

and close to the maxima, where the frequency of points is higher, the number of samples

is doubled.

31



Chapter 4. Results

0.60 0.62 0.64 0.66 0.68 0.70
x0

0.49

0.50

0.51

0.52

0.53

m
ax
(d
σ

d
k
)

N = 20482

−15.4x2 + 19.3x− 5.5

(a) N = 20482

0.62 0.64 0.66 0.68 0.70
x0

0.49

0.50

0.51

0.52

m
ax
(d
σ

d
k
)

N = 10242

−18.7x2 + 23.6x− 6.9

(b) N = 10242

0.60 0.62 0.64 0.66 0.68 0.70
x0

0.48

0.49

0.50

0.51

m
ax
(d
σ

d
k
)

N = 5122

−25.2x2 + 32.2x− 9.8

(c) N = 5122

0.60 0.62 0.64 0.66 0.68 0.70
x0

0.46

0.47

0.48

0.49
m
ax
(d
σ

d
k
)

N = 2562

−11.2x2 + 14.5x− 4.2

(d) N = 2562

0.60 0.62 0.64 0.66 0.68 0.70
x0

0.42

0.43

0.44

0.45

m
ax
(d
σ

d
k
)

N = 1282

−7.6x2 + 10.1x− 2.9

(e) N = 1282

0.60 0.62 0.64 0.66 0.68 0.70
x0

0.35

0.36

0.37

0.38

m
ax
(d
σ

d
k
)

N = 642

−4.3x2 + 5.8x− 1.6

(f) N = 642

Figure 4.14: The slope of the strain curve for various cutoffs x0 for systems of size N =
642 to N = 20482. Each point originates from strain curves with 230/N samples, and

close to the maxima, where the frequency of points is higher, the number of samples is

doubled. The dashed line shows a second order polynomial fit from which the respective

xf was estimated at the maxima. The length of the interval on the y-axis is equal for all

the figures.
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Figure 4.15: Extrapolation to infinite lattice size: The critical cutoff xc was estimated to

0.616± 0.01 from the critical finite size cutoffs.
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Figure 4.16: Force against bundle elongation: The strain on the bundle is shown as a

function of the extension of the fiber that breaks for various cutoffs x0 ∈ [0, 1]. The

systems have size N = 2562 and is averaged over 214 samples.
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Figure 4.17: Force against bundle elongation: The strain on the bundle is shown as a

function of the extension of the fiber that breaks for various cutoffs x0 ∈ [1.1, 2.5]. The

systems have size N = 2562 and are averaged over 214 samples.

34



4.3 The strain curve

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k/N

0 2 4 6 8 10
xi

0.0

0.1

0.2

0.3

0.4

σ

(a) x0 = 0

0 2 4 6 8 10
xi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ

(b) x0 = 0.617

35



Chapter 4. Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k/N

0.95 1.00 1.05 1.10 1.15 1.20
xi

0.41

0.42

0.43

0.44

0.45

0.46

σ

(c) x0 = 0.617, details

3 4 5 6 7 8 9 10
xi

0.0

0.5

1.0

1.5

2.0

2.5

σ

(d) x0 = 2.5

Figure 4.18: Force against bundle elongation with time: The strain on the bundle is shown

as a function of the extension of the fiber that breaks for cutoffs x0 ∈ {0, 0.617, 2.5}. The

systems have size N = 2562 and are averaged over 214 samples. The color bar gives the

time step for each data point.
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4.4 Burst distribution in the ELS model

The burst distribution in the ELS model was analyzed for various cutoffs. In Fig-

ure 4.19 the burst distribution for systems of sizeN = 5122 is averaged over 2·106

samples. By rescaling the y axis with a factor of ∆5/2 and ∆3/2 in Figure 4.19b

and Figure 4.19c respectively, the two power law regimes are confirmed. The

crossover between these regimes from Equation (2.10) is shown as dashed vertical

lines.

The fatal bursts, which break the rest of the bundle, is observed to the lower

right in Figure 4.19a. These are shown more clearly in Figure 4.19d. The fatal

bursts are expected to be of size ∆fatal ≈ N − kmax = N/e1−x0 , shown as

dotted lines in Figure 4.19d. The non-fatal bursts are included in the normaliza-

tion. In Figure 4.20 the cumulative probability of a fatal burst occuring is shown.

This emphasizes the criticality occurring when x0 = 1, for which the strain curve

is monotonically decreasing. With this cutoff about 1.5% of the fatal bursts are

initiated by the first fiber that breaks.

To illustrate the burst distribution above criticality, Figure 4.21 shows the burst

distribution for the ELS model with x0 ∈ [1.1, 2].
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(b) The ELS burst distribution scaled with a factor ∆2.50. Vertical lines shows ∆c.
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(d) Fatal bursts in the ELS model. Dotted vertical lines shows burst of size ∆ = N/e1−x0 .

Figure 4.19: Burst distribution for the ELS model for cutoffs x0 ∈ [0, 1]. The results are

averaged over 2 · 106 samples of systems with size N = 5122.
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Figure 4.20: Fatal bursts in the ELS model: The cumulative probability of a fatal burst in

the ELS model is shown for x0 ∈ [0, 1] for systems of size N = 5122.
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(b) The ELS burst distribution scaled with a factor ∆1.50.

Figure 4.21: Burst distribution for the ELS model for cutoffs x0 ∈ [1.1, 2]. The results are

averaged over 2 · 106 samples of systems with size N = 5122.
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4.5 Burst distribution in the LLS model

In Figure 4.22-4.25 the burst distribution for the LLS model is shown for cutoffs

between 0 and 1 for systems of size N = 5122. The systems with x0 ∈ [0, 0.5]
are averaged over 212 samples, and the systems with x0 ∈ [0.6, 1] are averaged

over 216 samples. This difference is due to the fact that the occurrences of nonfatal

burst decrease as the cutoff is increased. Moreover, the simulation program is

significantly faster for cutoffs above xc. To avoid data collapse, the curves are

divided into several figures. The systems with cutoffs in the interval x0 ∈ [0, 0.2]
seen in Figure 4.23b does not match well with a power law of τ = 2. As the cutoff

is increased, the fit is moderately better. Note that the power law fit is best for

cutoffs around the critical transition. From Figure 4.25b it appears as though the

burst distribution falls off faster as the cutoff approaches x0 = 1. In Figure 4.26,

the burst distribution for x0 = 0.617 is calculated for systems of size N = 642 to

N = 40962. Large systems provides results that are consistent with τ = 2.0, while

smaller systems appear have a slightly smaller exponent. This may be compared

to the behaviour for x0 = 0, as shown in Figure 4.27. To investigate the power

law behaviour with no cutoff, the burst distribution is scaled to fit a power law

D(∆) ∼ ∆τ , with τ = 2.37 and τ = 2.37 in Figure 4.27c and 4.27b respectively.

The size of the interval on the y-axis is equal to that of Figure 4.26b to simplify

the comparison.

4.5.1 Fatal bursts in the LLS model

In Figure 4.28 the cumulative probability of a fatal burst to occur during the failure

process, P∆fatal
, is seen for x0 ∈ [0, 1] for systems of size N = 5122. The data

is averaged over 230/N samples. For x0 = 0 the mean onset of a fatal burst is at

about k/N = 0.65. For comparison, the strain curve forN = 5122 with x = 0 has

a global maximum around k/N = 0.687. For x0 = 1 more than 30% of the fatal

bursts are initiated by the first fiber that breaks. The finite size effects is elaborated

in Figure 4.29, which shows P∆fatal
for systems of size N = 642 to N = 20482

with x0 = 0.617. The data is averaged over 231/N samples.
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Figure 4.22: Burst distribution for the LLS model for cutoffs x0 ∈ [0, 1] for systems of

size N = 5122. The systems with x0 ∈ [0, 0.5] are averaged over 212 samples, and the

systems with x0 ∈ [0.6, 1] are averaged over 216 samples.
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(b) The LLS burst distribution scaled with a factor ∆2.00.

Figure 4.23: Burst distribution for the LLS model for cutoffs x0 ∈ [0, 0.2] for systems of

size N = 5122. The data is averaged over 212 samples.
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Figure 4.24: Burst distribution for the LLS model for cutoffs x0 ∈ [0.3, 0.5] for systems

of size N = 5122. The data is averaged over 212 samples.
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Figure 4.25: Burst distribution for the LLS model for cutoffs x0 ∈ [0.6, 1] for systems of

size N = 5122. The data is averaged over 216 samples.
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Figure 4.26: The burst distribution for the LLS model for x0 = 0.617 for systems of size

N = 642 to N = 40962. The data is averaged over 230/N samples.
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(b) The LLS burst distribution scaled with a factor ∆2.5.
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(c) The LLS burst distribution scaled with a factor ∆2.37.

Figure 4.27: The burst distribution for the LLS model for x0 = 0 for systems of size

N = 642 to N = 10242. The data is averaged over 230/N samples.
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Figure 4.28: Fatal bursts in the LLS model: The cumulative probability of a fatal burst

in the LLS model is shown for x0 ∈ [0, 1] for systems of size N = 5122. The systems

with x0 ∈ [0, 0.5] are averaged over 212 samples, and the systems with x0 ∈ [0.6, 1] are

averaged over 216 samples.
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Figure 4.29: Fatal bursts in the LLS model: The cumulative probability of a fatal burst in

the LLS model is shown for x0 = 0.617 systems of size N = 642 to N = 20482. The

data is averaged over 231/N samples.
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This section discuss and interpret the implications and validity of the results pre-

sented in Chapter 4. By analyzing the impact of the cutoff x0 in the exponential

distribution P (x) = 1 − e−x+x0 for the failure thresholds of the fibers, a critical

phase transition is identified and investigated. This is linked to a local stability

in the LLS model which is not present in the ELS model. A system is here said

to be locally stable in the region where the averaged strain curve has a positive

derivative. The burst distribution is discussed for both models, and the LLS model

is shown to undergo a drastic loss of global stability around the localization tran-

sition, in the sense that far fewer fibers may break before catastrophic failure is to

be expected in a force controlled experiment.

5.1 The existence of a phase transition

Figure 4.1 gives a qualitative summary of how the fiber bundle systems change

behaviour for different cutoffs. The system with x0 = 0 represents the disordered

phase, and resembles the ELS model. The cutoff sets a lower limit for the failure

threshold of the fibers. When the cutoff is increased, the ratio between the weak

and the strong fibers decrease. Localization occurs when the effective thresholds

for the fibers neighbouring a cluster is lower than the failure threshold of the weak

fibers in the bundle. With sufficiently high cutoff, all the broken fibers belong to

the same cluster. This represents the ordered phase, and is illustrated with x0 = 1
in Figure 4.1c. Between these regimes, the LLS model appear to undergo a critical

transition, studied more in depth in Section 5.2. The bundle state at time step

k/N = 0.2 for x0 = 0.617, as shown in Figure 4.1b, indicates that the system is

in the vicinity of a critical transition.
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5.2 The order parameter

From Figure 4.1 it is obvious that the number of clusters in the simulation is a

quantity that is strongly related to the degree of localization. By introducing the

order parameter ψ from Equation (2.17), defined as the inverse maximum of the

amount of clusters in the simulation, the phase transition may be investigated in

more detail. In Figure 4.3 the order parameter is shown for cutoffs in the range

between 0 and 2.5 for systems of size N = 322 and N = 5122. From the sharp

transition around x0 ≈ 0.6 it is evident that the LLS model has a critical transition

around this value.

Dahle (2016) estimated the critical cutoff by locating the steepest slope in the

curves for the order parameter plottet against x0 for each system size. Alterna-

tively, one may exploit the relation from Equation (2.16), i.e. the fact that the

order parameter scales as the inverse system length to the power of the critical ex-

ponent β/ν very close to the critical point. From this both the critical point and

the critical exponent was found.

The order parameter was calculated for systems of size N = 42 to N = 81922

for various cutoffs, this is shown in Figure 4.4-4.7. The order parameter for

x0 = 0.616 appears to fall off faster than a power law for large system sizes.

The opposite is seen in Figure 4.7, where x0 = 0.618 seems to give rise to an

upward curvature in the logarithmic plot. The order parameter x0 = 0.617 and

x0 = 0.6175 appear to have the best fit to a power law with respect to the in-

verse system length, suggesting that xc is closer to 0.6173. From this the critical

exponent was estimated to β/ν = 1.5 ± 0.1. This is in accordance with Dahle

(2016). The result may be compared with the exponents for percolation, where

β/ν = 5/48 ≈ 0.11, cf. Sykes et al. (1974) and Lorenz and Ziff (1998). From

this it is clear that the LLS model belongs to a different universality class than

percolation. With percolation, there is no interaction between occupied and unoc-

cupied lattice sites, however this is not the case for the LLS fiber bundle model.

With this in mind, the different universality classes is perhaps less alarming.

A critical transition may be described by multiple order parameters. By aver-

aging the time steps at which the next weakest fiber in the bundle breaks, this might

also suffice as an order parameter. Without cutoff, the next weakest fiber is always

the second fiber to break. For higher cutoff, the distribution of fiber strength is

no longer strong enough to compete with the stress-enhancement due to local load

sharing. As seen in Figure 4.8, the behaviour of this quantity is similar to ψ. The

fluctuations do however appear to be more significant. Moreover, large systems

need about the same amount of samples as smaller systems, and hence ψ was the

preferred order parameter.
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5.3 Local stability

Consider a system at the localization transition. When the external load on the

bundle is increased, the weak fibers throughout the bundle break. This induces

separate fractures which grow throughout the bundle. Figure 4.1b displays the

system state around the percolation transition, when the largest cluster is spanning

the entire system. The fractal nature of the growing cluster is obvious. Similar

to how a river erodes its way through the landscape, the largest cluster branches

out in the direction that offers the least resistance. This leave collections of intact

fibers encapsulated by walls of fibers with higher failure threshold. As more fibers

break, the intact fibers have the appearance of islands in an ocean of broken fibers,

as seen in Figure 4.2b.

When the growing cluster has no new areas to spread to, it is forced to tear

down the walls of strong fibers. This expose the collections of intact fibers with

lower failure threshold, that typically collapse at once upon interaction with the

growing cluster. This process gives rise to high fluctuations, and causes the aver-

age external load on the bundle to increase. This also explains the maximum in

the curve for the standard deviation of the strain curve seen in Figure 4.11. As

the cluster grows, an increasing proportion of the intact fibers is included in the

perimeter. When k/N ≈ 0.8, almost all the intact fibers are located along the

perimeter of the largest cluster, and the behaviour resembles the ELS model. This

final stage of the failure process is identical for all cutoff values.

In the ELS model, all the fibers experience an increased load as more fibers

break. When the load of the broken fibers are distributed locally among the near-

est intact neighbours, only the strong fibers in the perimeter remain intact. The

strong fibers thus adopt a greater load than the weak fibers, resulting in a model

with higher local stability. This effective shielding of weak fibers is in excellent

agreement with the qualitative explanation presented by Kjellstadli in the early

stages of this assignment.

With no cutoff, the difference in fiber strength is small compared to the stress-

enhancement near the clusters due to local load sharing. However, as the clusters

grow, the stress in the perimeters increase, and cause the same effect as outlined

above, though the stable region is less pronounced. When the cutoff is sufficiently

high, the failure process is localized from the beginning. As there are no weak

fibers, the bundle is able to withstand a greater external force before breaking

down. The stable region is completely absent, as the load from the broken fibers

are completely dominating over the difference in fiber strength.

In Figure 4.16 the strain on the bundle is shown as a function of the extension

of the fiber that breaks for a range of cutoffs. As the cutoff is increased, a dis-

continuity is emerging in this force-elongation curve. However, the abrupt change
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seen around xi ≈ 1 in Figure 4.16 might be misleading. As revealed by Fig-

ure 4.18, about 30% of the failure process is condensed within this small region

of the curve. The onset of the local stability appear to succeed the occurrence of a

spanning cluster, and originates from the same mechanism as outlined above. The

following stability disappear for sufficiently high cutoff, as seen in Figure 4.17.

This stability is also apparent from the strain curve. The slope of the strain

curve is studied exhaustively in Figure 4.13-4.15.

By investigating the slope of the strain curve for various system sizes, this pro-

vides evidence for the critical transition to coincide with the cutoff that results in

the steepest slope in the strain curve. From this, finite size extrapolation gave a

critical cutoff xc = 0.616± 0.01 with a correlation length exponent ν = 2, which

is in agreement with the results obtained by means of the order parameter. This is

a reproduction of results from the project assignment by Bering (2016), now with

better statistics and larger system sizes. With regard to Figure 4.15 in particular

it is apparent that better statistics are needed. The estimated xf for N = 2562

in particular is completely off. Closer examination of the curve indicates that the

polynomial fit is not matching the data very accurately near the maximum. How-

ever, for the sake of consistency, this point was not adjusted any further. Moreover,

this connection was not given high priority, as the critical phase transition of the

LLS model not is the main topic of this work.

Notice that the global maximum in the strain curve for the LLS model is

reached later than in the ELS model for low cutoff values, i.e. x0 . 0.5. Thus,

one would perhaps expect the LLS model to undergo complete breakdown later in

the failure process than the ELS model. In this sense, the LLS model even appear

to have a higher degree of global stability in this region.

The strain curve for the LLS model reach ultimate stress at the first fiber that

breaks for x0 & 0.5, as barely visible in Figure 4.9. Nonetheless the local maxima

in the strain curves for the LLS model are reached later than the maxima in the

strain curves for the ELS model for 0.5 . x0 < 1. This is seen clearly for x0 =
0.617 and x0 = 0.5 in Figure 4.11 and 4.12 respectively. In this sense the LLS

model has a higher degree of local stability than the ELS model for x < 1.

However, the strain curve does not tell the complete story. To investigate the

global stability of the model, the formerly mentioned stable region ought to be

viewed in conjunction with the burst distribution, and the fatal bursts in particular.

This topic will first be discussed for the ELS model.

5.4 Burst distribution in the ELS model

As mentioned in Section 2.4, the burst distribution for the ELS model is known

to obey a power law τ = 5/2 for large bursts, when the strain curve has a single
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parabolic maximum. For the exponential distribution with cutoff, small bursts is

known to follow a power law with burst exponent τ = 3/2, with a crossover at ∆c

given by Equation (2.10). This is validated in Figure 4.19. The crossover occurs

at the breaking point, when the bundle is undergoing catastrophic failure. With

increased cutoff, the unstable region is increasing. For x0 = 1, the strain curve

has a maximum for k = 1, and is monotonically decreasing, as seen in Figure 2.3.

The breaking process is unstable from the beginning, and the power law τ = 3/2
is valid for the entire breakdown process. For cutoffs above 1 the regime with

τ = 3/2 narrows, and the burst distribution falls off faster than a power law. This

exponential decay is clearly visible in Figure 4.21.

The bursts that cause the entire bundle to rupture is in this thesis denoted as

fatal. As pointed out by Kjellstadli (2015), in the ELS model one would expect

these bursts to be of size ∆fatal ≈ N−kmax, where kmax is the time step at which

the averaged strain curve has a maximum. For the exponential distribution with

cutoff, the strain curve of the ELS model has a maximum at kmax = (1− 1
e1−x0

)N .

This is in accordance with the results presented in Figure 4.19d.

5.5 Burst distribution in the LLS model

Estimating the burst exponent is not a trivial task. A burst distribution may have

different regimes with different burst exponents, or it may not follow a power

law at all. On top of this the statistical variations complicate matters even more.

Similar to the ELS model, the burst distribution in the LLS model depends on the

cutoff in the probability distribution for the thresholds.

The burst distribution with no cutoff is shown in Figure 4.27 for systems of

size N = 642 to N = 10242. The burst distribution is scaled to fit the power law

D(∆) ∼ ∆τ with burst exponents τ = 5/2 and τ = 2.37 respectively. These

figures reveal a behaviour that resembles a power law, however the curvatures

suggests a more complicated dependency than a pure power law.

As the cutoff is increased, small bursts occur less frequently and large bursts

occur more frequently. This tendency can be seen for x0 . 0.5 in Figure 4.23-4.24.

With a basis in Figure 4.25, the burst distribution in LLS model with x0 = 0.6
appear to be consistent with a power law exponent τ = 2. Figure 4.26 reveal that

the fit is better for x0 = 0.617, and even more so for large systems. Moreover, the

finite size effects are far more pronounced than for x0 = 0.

Notice the similarities between the LLS burst distribution for x0 ∈ [0.6, 1] seen

in Figure 4.25 and the burst distribution for the ELS model with x0 ∈ [1.1, 2] seen

in Figure 4.21. Analog to the behaviour of the burst distribution in the ELS model,

the burst distribution in the LLS model is consistent with a power law around

the critical state. For higher cutoffs the power law regime narrows, and the burst
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distribution falls off exponentially as the cutoff is increased beyond criticality.

On a side note, the fuse model introduced by de Arcangelis et al. (1985), is also

characterized by a burst exponent τ = 2 near criticality, that is, when the failure

thresholds of the fibers are uniformly distributed, cf. Hansen et al. (2015). More-

over, this power law character is consistent with the form of the Gutenberg-Richter

law of Gutenberg and Richter (1954), which relates the number of earthquakes Ω
to the energy release rate by the power law Ω ∝ E−b, where b typically is in the

range 0.8− 1.2, cf. Hansen et al. (2015). However, this possible connection is not

investigated further.

5.6 Global stability

To relate the bursts to the global stability, it may be useful to study the cumulative

probability of a fatal burst occurring during the failure process, P (∆fatal). How

many of the fibers in the bundle may break before the bundle is in imminent danger

of catastrophic failure? For the ELS model, Figure 4.20 reveals that the system

gradually approaches a critical state as the cutoff is increased from zero to one.

Note that the inflection points in P (∆fatal) coincides with the maxima in the strain

curves, as should be expected.

The onset of the fatal bursts in the LLS model is also directly related to the

global maximum of the strain curve for x0 . 0.5. However, closer examination

provides evidence for the expectancy values for the onset of fatal bursts to slightly

precede the time step at which the maxima occurs in the averaged strain curves.

This originates from the high fluctuations in the strain curve before the local max-

imum, discussed in Section 5.3.

In Section 5.3 it was also pointed out that the global maximum in the strain

curve for the LLS model is reached later than in the ELS model for x0 . 0.5.

Closer examination of Figure 4.20 and Figure 4.28 does indeed reveal that more

fibers may break in the LLS model than in the ELS model before a fatal burst is

to be expected when the cutoff is in this region. In this sense, the LLS model is

globally more stable than the ELS model in this region.

The particular cutoff x0 = 0.5 needs to be studied in some more detail. For this

cutoff value, the average stress for is highest for the first fiber that breaks. With a

basis in this averaged strain curve, one would might expect the onset of fatal bursts

to occur either early in the breaking process or perhaps around the local maximum.

However, according to Figure 4.28 the bundle is expected to rapture shortly after

k/N = 0.4, and hence the LLS model is still marginally more globally stable than

the ELS model, for which kmax ≈ 0.39. On top of this, the onset of the fatal

bursts even appear to coincide with the local minimum in the strain curve for this

particular cutoff. This might give the impression of a contradiction, however the
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comparison of the averaged strain curve with the strain curve of a single sample in

Figure 4.12 provides clarification on this subject. Notice that the maximum value

of the single sample is preceding the maximum value of the averaged curve. The

fatal bursts represent an average of the extremal values, which follows a completely

different distribution than the average of all values.

Kjellstadli (2015) discusses how the LLS model approach the ELS model when

the dimensionality increases. In this thesis the averaged strain curves are compared

with the strain curve for a single sample for 1-5 dimensions, displaying a reduc-

tion of fluctuations with higher dimensionality. This is explained by the fact that

the number of nearest neighbours of each fiber increase with the dimensionality,

reducing the shielding effect discussed in Section 5.3.

The distribution of fatal bursts in Figure 4.28 reveals a drastic change of be-

haviour around the critical transition, interpreted as a loss of global stability. For

cutoffs above xc far fewer fibers may break before the bundle is expected to col-

lapse in a force controlled experiment. This sharp transition is not seen in the ELS

model, which is no longer globally stable when x0 ≥ 1.

The fatal bursts are expected to occur long before the local stability discussed

in Section 5.3 are of any significance. The conclusion is that the shielding of

weak fibers due to the short-range interaction of the model would not be enough

to prevent the system from collapsing in a force controlled experiment.

It is curious that the loss of global stability appear to coincide with the cutoff

that results in the highest local stability. Comparison of Figure 4.28 with the sim-

ulations of the bundle state indicate that one would expect the bundle to rapture

once the failure process has become localized.

One a final note, one should perhaps emphasize that stability could be defined

differently. The ELS model will always be able to withstand a load greater or equal

to the LLS model before the bundle would collapse completely.
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When the failure thresholds of the fibers are distributed as P (x) = 1 − e−x+x0 ,

the LLS model displays a local stability not seen in the ELS model, in the sense

that the strain curve has a positive slope. By investigating the slope of the strain

curve for various system sizes, this indicates that the local stability is highest at the

localization transition. From this hypothesis, the critical cutoff was estimated to

xc = 0.616±0.01, with a correlation length exponent ν = 2. This is in accordance

with the calculations of the order parameter, determining xc = 0.6173 ± 0.0005
with a critical exponent β/ν = 1.5± 0.1.

This local stability originates from the following: When the load of the broken

fibers is shared by the nearest intact neighbours, only the strong fibers survive in

the perimeter of the cluster. Contrary to the ELS model, where all the fibers ex-

perience an increased load as more fibers break, the LLS model thus effectively

stresses strong fibers more. Moreover, the LLS model is globally more stable than

the ELS model with x0 . 0.5, in the sense that more fibers may break before the

bundle would collapse completely in a force controlled experiment. The distribu-

tion of these fatal bursts reveals a drastic loss of global stability around the critical

transition. For cutoffs above xc the local stability of the LLS model also lessens,

as the distribution of fiber strength is no longer strong enough to compete with

the stress-enhancement due to local load sharing. For x0 & 2.5 the local stability

vanishes completely.

Loss of global stability is related to a change in behaviour of the bursts. For

the LLS model, the burst distribution is shown to be consistent with a power law

D(∆) ∼ ∆−τ with burst exponent τ = 2.0 around the critical transition. Ana-

log to the criticality of the ELS model at x0 = 1, lower cutoffs results in higher

burst exponents, and cutoffs above xc give rise to exponential fall off in the burst

distribution.
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6.1 Further research

This thesis leaves multiple questions unanswered. What is the implications of the

local stability? Why does the stability appear to be most pronounced around the

localization transition, when the system lose global stability? It would be of great

interest to relate this to some physical phenomena.

The LLS model has been investigated with failure thresholds assigned accord-

ing to the cumulative probability distribution P (x) = 1 − e−x+x0 . Could the

phenomenas discussed here be general for all probability distributions with cut-

offs?

The critical exponent ν needs higher precision. This may be found by calcu-

lating the order parameter ψ for a range of cutoff values, and estimating the value

for x0 at the half maximum of the derivative dψ
dx0

. By repeating this for a range of

system sizes, these values may be extrapolated to infinite lattice size to reveal xc
and ν, similar to the procedure in Figure 4.15.

It is always preferable to have a faster simulation program, and the optimiza-

tion process is never completed. By replacing the AVL data structures mentioned

in Subsection 3.1.2 with std::set, the program might speed up. Moreover, this

would probably increase the readability of the program considerably.

The burst distribution is probably the quantity that is most readily related to

physical experiments, and hence this should be studied in more detail. By investi-

gating the burst distribution in a window of a single sample of large system size, it

would perhaps be possible to foresee the fatal bursts by a change in burst exponent

prior to the collapse. From this it might be possible to draw some connections to

more applied topics, such as forecasting of earthquakes and collapsing mines.

The draft to an article seen in the Appendix demands further development

before it is ready for publication. Moreover, an article concerning the localization

transition is also in the process of writing.
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Appendix

This appendix contains a draft to an article that will be developed further in col-

laboration with Magnus H-S Dahle, Jonas T. Kjellstadli, Alex Hansen and Santanu

Sinha. The article will be submitted to Physical Review upon completion.
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On the stability of the local load sharing fiber bundle model
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We here consider the stability of the local load sharing (LLS) fiber bundle model in two dimensions.
When the failure threshold of the fibers are distributed according to P (x) = 1− e−x+x0 , the model
display two distinct regimes of behaviour separated by a critical transition. This critical transition
is associated with a local stability not seen in the equal load sharing (ELS) model. This stability
originates in the short-range interaction of the model, which effectively stresses the strong fibers the
most. With x0 . 0.5 the LLS model is also globally more stable than the ELS model. The LLS
model is shown to lose global stability around the critical transition.

PACS numbers: 46.50.+a 62.20.M- 81.40.Np

The fiber bundle models describes systems of N
Hookean springs — fibers — with spring constant κ and
failure thresholds xi which are placed between two par-
allel clamps. The form introduced by Peirce 1926 is to-
day known as the equal load sharing (ELS) fiber bundle
model, and may be described as fibers separated by in-
finite stiff clamps [1]. When the bundle is extended a
length x, the average force per fiber in a strain-controlled
experiment will simply be

σ(x) = x[1− P (x)] (1)

as N(1−P (x)) fibers is expected to have a failure thresh-
old above x. With failure thresholds distributed accord-
ing to

P (x) = 1− e−x+x0 , x ∈ [x0,∞), (2)

the strain curve σ = σ(x = 1) may be derived by order
statistics [2] to obtain the least force per fiber required
to break the next fiber throughout the failure process

σ = κ

(

1−
k

N

)(

x0 − log

(

1−
k

N

))

, (3)

where k is the number of broken fibers. The local load

sharing (LLS) fiber bundle model was introduced as a one
dimensional model by Harlow and Phoenix [3, 4]. In this
model, the load of the broken fibers is evenly distributed
among the nearest intact fibers. Accordingly, the force
redistribution rule reads

σi = κ
[

1 +
∑

j

hj
sj

]

x (4)

where the summation is over all clusters of broken fibers
that are nearest neighbour to fiber i. hj denotes the num-
ber of broken fibers in cluster j, and sj denotes the intact
fibers in the perimeter of cluster j, and x is the distance
between the clamps if all fibers were intact [2]. This ex-
pression is independent of dimensionality. Moreover, this
choice of force redistribution is history independent, the

outcome does not depend on the order in which the fibers
have broken.
To determine which fiber will break next, we apply

quasistatic loading. After a fiber breaks, the extension of
the fiber bundle x is reduced to zero, and then increased
until another fiber breaks. With this approach only one
fiber breaks for each time step. The first fiber to break
will be the one that reaches

σi = κx = κxi (5)

first. With the observation σi(x = 1) = σ(1) = κ, a
general breaking rule may be expressed as

max
i

(

σi(1)

xi

)

=
κ

x
(6)

which is applicable for all the subsequent breaking fibers
[2]. For simplicity, we set κ = 1 in the following.

Where the ELS fiber bundle model is extreme in the
sense that it redistributes the force carried by the failed
fibers equally among all surviving fibers wherever they
are placed, the LLS fiber bundle model is extreme in
the opposite sense: only the nearest survivors, pick up
the force carried by the failed fibers. There are multiple
models that are intermediate between the two extreme
models, e.g. the γ model of Hidalgo et al. [5] and the
soft clamp model [6–9].
When the failure threshold of the fibers are distributed

according to Eq. (2), the LLS model display two distinct
regimes of behaviour separated by a critical transition
[10]. Systems with low cutoffs resembles the ELS model,
whereas systems with high cutoffs are dominated by in-
vasion percolation. These regimes are separated by a
critical phase transition known as the the localization
transition, described with the order parameter

ψ =

〈

1

maxk{n(k)}

〉

(7)

where n is the total number of clusters in the system.
Localization occur at the critical cutoff x0 = xc =
0.6173± 0.0005 [11].
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FIG. 1. (Color online) The strain curve for the LLS and
ELS model for x0 = 0, 1 and 2. The LLS curves originate
from systems with size N = 5122 and is averaged over 212

samples, compared with the analytical ELS strain curve.

Sinha, Kjellstadli and Hansen [12, 13] found that the
LLS model displays a local stability not seen in the ELS
model. Notice that the strain curve for x0 = 1 in Fig. 1
has a positive slope in a region where the strain in the
ELS model is decreasing. This gives the impression that
in a force controlled experiment, one would have to in-
crease the external load for the breaking process to con-
tinue. This stable region vanishes for high cutoffs. By
estimating the slope in the strain curve in the region
0.4 < k/N < 0.7 for x0 ∈ [0, 1], Fig. 3 provides evidence
for the stability to be highest around the critical transi-
tion, and this is more pronounced for larger system sizes.
From this hypothesis, the finite size critical cutoffs xf
may be estimated from the maxima of these curves. By
calculating xf for systems of size N = 642 to N = 2048,
the critical cutoff was estimated to xc = 0.616± 0.01 by
extrapolation to the thermodynamical limit. All maxi-
mum values are approximated by second order polyno-
mial fitting.

This local stability originates from the following:
When the load of the broken fibers is shared by the near-
est intact neighbours, only the strong fibers survive in
the perimeter of the cluster. This leave collections of
intact fibers encapsulated by walls of fibers with higher
failure threshold. When the growing cluster has no new
areas to spread to, it is forced to tear down the walls of
strong fibers. This expose the collections of intact fibers
with lower failure threshold, that typically collapse at
once upon interaction with the growing cluster. This
process gives rise to high fluctuations, and causes the av-
erage external load on the bundle to increase. This also
explains the maximum in the curve for the standard de-
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FIG. 2. (Color online) The strain curve for the LLS and
ELS model for x0 = 0.617. The LLS curves originate from
systems with size N = 5122 and is averaged over 213 samples,
with standard deviation as red dual axis. This is compared
with the analytical ELS strain curves shown as stapled lines.

viation of the strain curve seen in Fig. 2. Contrary to the
ELS model, where all the fibers experience an increased
load as more fibers break, the LLS model thus effectively
stresses strong fibers more.

To investigate the global stability of the model, the for-
merly mentioned stable region may be viewed in conjunc-
tion with the cumulative probability of a fatal burst oc-
curring during the failure process, P (∆fatal). How many
of the fibers in the bundle may break before the bundle
is in imminent danger of catastrophic failure? For the
ELS model, Fig. 5 reveals that the system gradually ap-
proaches a critical state as the cutoff is increased from
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FIG. 3. (Color online) The maximum slope of the strain

curve for the LLS model is estimated for systems with size
N = 1282 to N = 5122 with x0 ∈ [0, 1]. The data is averaged
over 230/N samples, and close to the maxima where the fre-
quency of points is higher, the number of samples is doubled.
xf is estimated at the maxima.
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FIG. 4. (Color online) Extrapolation to the thermodynamical

limit of the finite size critical cutoffs from the systems with
the highest positive derivative in the strain curve, for system
of size N = 642 to N = 20482. The data is averaged over
231/N samples.

zero to one. Moreover, the inflection points in P (∆fatal)
coincides with the maxima in the strain curves.

The onset of the fatal bursts in the LLS model is also
directly related to the global maximum of the strain curve
for x0 . 0.5. However, closer examination provides ev-
idence for the expectancy values for the onset of fatal
bursts to slightly precede the time step at which the max-
ima occurs in the averaged strain curves. This originates
from the high fluctuations in the strain curve before the
local maximum. It is important to stress that the fatal
bursts represent an average of the extremal values, which
follows a completely different distribution than the aver-
age of all values.

Ref. [13] discusses how the LLS model approach the
ELS model when the dimensionality increases. The av-
eraged strain curved are compared with the strain curve
for a single sample for 1-5 dimensions, displaying a re-
duction of fluctuations with higher dimensionality. This
is explained by the fact that the number of nearest neigh-
bours of each fiber increase with the dimensionality, re-
ducing the former mentioned shielding effect.
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