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arheidet.

Forstudierapporten er en del av oppgavebesvarelsen og skal innarheides i denne. Del samme skal
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gjennonrløri ngeii er godt dokumentert.
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Preface

rfhjs j the concluding Master’s thesis in the study program Subsea Technology
at NTNU. rfhe work was carried out between January and June 2014.

The interest for the robotics field started with the course “ Robotics” lectured by
professor Olav Egeland in the spring of 2013. The opportunity to implement
computer vision on the brand new robot lab at “ Department of Production
and Quality Engineering” was very tempting and resulted in the topic “ Vision
Based Robotic Control” for this final Master’s thesis.

Trondheim, 10-06-2014

64Z ,4 cGJte
Eirik Anfindsen Solber/
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Summary

The main objective of this project was to create a visual system for object
tracking, and implement this on the new robotic lab at the Department of
Production and Quality Engineering.

There are used two identical KUKA Agilus manipulators with six rotating axes.
The robot kinematics with the corresponding Denavit-Hartenberg representa-
tion are presented. The position based visual servoing method, used for robotic
control, is shown with control loop and relations between the different coordi-
nate bases and frames in the system.

Computer vision is a large part of this thesis. The different camera parameters
and how to obtain them are explained. The results show the importance of
accurate camera calibration, and that one should avoid the temptation to leave
out some parameters from the equation. This can cause large errors in the
measurements.

The SIFT object detection method is explained, and the performance is com-
pared with another method named SURF. The tests show that while SURF is
faster than SIFT, it is outperformed when it comes to the robustness of the
algorithm. SIFT was therefore chosen for implementation at the lab.

With the object detected, the manipulators movement needs to be calculated
in order to position the camera in the desired position, which is 300mm perpen-
dicular to the object. The algorithm calculates the rotational and translational
offset between the current camera position and the desired camera pose. A
proportional regulator is then applied to calculate the next small step on the
desired trajectory for the Agilus manipulator.

The practical setup of the robot cell is explained with each step needed in order
to have a working vision system. The information flow in the system can be
chaotic, and a graphic representation is therefore developed and show all steps
from image capturing, to robotic movement, and plotting of the trajectories.

Results are presented as plots for both distance calculations and the actual
movement of the manipulator. The visual system tracks and follows the object
successfully. There are however some issues with variations in the output from
the object detection algorithm. This cause variations in the signal used as
reference for the robot. A filter was able to reduce these variations, but not
eliminate them. Possible solutions are presented and are believed to improve
the speed and accuracy of the system if further investigated.
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Sammendrag

Hovedm̊alet ved denne oppgaven var å lage et system for objektdeteksjon ved
hjelp av datasyn. Dette skulle s̊a implementeres i den nye robotcellen ved
Institutt for Produksjons- og Kvalitetsteknikk.

Det er brukt to identiske KUKA Agilus robotmanipulatorer, hver med seks
roterende ledd. Robotkinematikken med de tilhørende Denavit-Hartenberg
parametrene er presentert. Den posisjonsbaserte metoden for visuell robot-
styring er anvendt og presentert med reguleringssløyfe og forholdet mellom de
aktuelle koordinatsystemene.

Datasyn er en stor del av denne oppgaven. De forskjellige kameraparametrene
og hvordan disse skal innhentes er forklart. Resultatene viser hvor viktig det
er med presis kamerakalibrering, og at man skal være svært forsiktig med å
utelate enkelte parametre fra likningen. Dette kan føre til store avvik.

To ulike objektdeteksjonsmetoder, SIFT og SURF, er testet og ytelsen sam-
menliknet. Resultatene viser at mens SURF er vesentlig raskere enn SIFT, er
den ikke like fleksibel i forhold til forstyrrelser og endringer. SIFT ble derfor
valgt for implementering p̊a robotene.

Etter en vellykket objektdetektering kalkuleres koordinatene som forteller hvor
manipulatoren m̊a posisjonere seg for å komme i den ønskede posisjonen, som er
en distanse p̊a 300mm vinkelrett p̊a objektet. Algoritmen kalkulerer posisjons-
og rotasjonsavvik mellom n̊aværende og ønsket kameraposisjon. En P-regulator
er benyttet for å kalkulere det neste steget av den ønskede bevegelsen for
roboten.

Oppsettet av robotcellen er presentert, og hvert element nødvendig for å oppn̊a
et fungerende system er forklart. Informasjonsflyten i dette systemet kan være
uoversiktlig, og en grafisk fremstilling av denne er derfor utformet.

Resultatene blir presentert med grafer som sammenlikner den kalkulerte po-
sisjonen med de faktiske bevegelsene til roboten. Oppsettet fungerer, og ma-
nipulatoren klarer å følge etter det aktuelle objektet ved å anvende datasyn.
Det er likevel rom for enkelte forbedringer. Algoritmen for objektdeteksjon er
ikke helt stabil, og objektets kalkulerte posisjon varierer derfor med noen mil-
limeter. Ved hjelp av et filter ble disse variasjonene redusert, men ikke fjernet
helt. Mulige løsninger er presentert og vil sannsynligvis forbedre b̊ade hastighet
og presisjon hvis de blir implementert i systemet.
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Glossary and Acronyms

cv bridge ROS package used for transforming of an image file between ROS
and OpenCV format

Denavit-Hartenberg parameters Standard convention for representation of
robotic axes and links

fps Frames per second. The rate at which a camera captures image frames

Kernel A matrix which is used in image filtering. This can be sharpening,
blurring, edge detection etc.

Keypoint An important point (pixel) in a picture used for object detection

Keypoint descriptors Neighbouring pixels to a keypoint used to recognize
this point

KR C4 controller The standard KUKA controller used for control of Agilus

Node A program that subscribes and/or publishes from/to a ROS topic

OpenCV Open Source Computer Vision Library. Computer vision library
with built in algorithms and interfaces for C++, C, Python, Java and
Matlab.

PBVS Position Based Visual Servoing

ROS The Robot Operating System

ROS package A collection of code installed as one package on the computer

ROV Remotely Operated Vehicle. Unmanned submarine used for work at
subsea locations

RSI Robot Sensor Interface used for external sensor input by KUKA robots

SIFT Scale Invariant Feature Transform. Object detection method

SIL Safety Integrity Level

SURF Speeded Up Robust Features. Object detection method

TCP Tool Center Point

Topic An address that ROS nodes can subscribe or publish to in order to
receive or distribute information

UDP User Datagram Protocol
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X-mas tree Assembly of equipment, including tubing-head adapters, valves,
tees, crosses, top connectors and chokes attached to the uppermost con-
nection of the tubing head, used to control well production [1]

XML Extensible Markup Language
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Chapter 1

Introduction

1.1 Background

The subsea industry gets more advanced by the minute, and new oil and gas
fields are developed in remote locations around the globe. Increasing water
depth makes it impossible for divers to perform work at the seabed and remotely
operated equipment takes over. ROVs are one example. They are piloted
by humans sitting on the surface. Especially during physical operations like
opening or closing a valve on a X-mas tree this can be tricky. Sea current
variations and movements complicates the work. Since the operator controls
the robotic arm movement by looking at a computer screen, his depth vision
is lost. If one can use computer vision to detect and measure the distance
between the robotic arm and the valve handle, an automatic approach path for
the arm can be programmed. This will speed up the process and the challenge
with depth vision overcome. The fact that ROVs are already equipped with
cameras, makes the implementation on existing equipment easier.
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CHAPTER 1. INTRODUCTION

1.2 Objectives

The main objectives of this Master’s thesis has been as follows:

1. Set up the Agilus robot cell at Valgrinda and test simple movement and
control.

2. Create a graphic model of the robot cell in a computer simulation system
and test simple movements for the robots in this program.

3. Create a system for computer vision which can be used for sensor control
of the robots.

4. Prepare a demo where one robot holds a moving target and the other
tracks and follows this target using computer vision. Evaluate the system
performance.

1.3 Limitations

The practical work has been performed in the lab at the Department Of Pro-
duction and Quality Engineering, NTNU. This is a dry facility and any impact
from the marine environment like visibility issues, current and pressure are
ignored. The KUKA Agilus manipulators have electrical servos while subsea
manipulators typically use hydraulic.

The implemented object detection is for planar objects. Identification of 3D
objects will require a different object detection method than those used in this
thesis.

1.4 Approach

The objectives in this project has been mostly of practical nature with robot cell
set-up, programming and testing. The main focus has therefore been on these
parts. Literature and articles has been studied in order to solve the challenge
at hand.

In connection with the purchase of the six new KUKA robots at Valgrinda, Lars
Tingelstad and the undersigned participated in the KUKA college in Göteborg
on two different occations. The basic course in November 2013 and advanced
in January 2014. This was an important introduction to the KUKA control
system and manual trajectory planning via the KR C4 controller.

2



CHAPTER 1. INTRODUCTION

Objective 1

The actual mounting of the robots was performed by the workshop employees
at Valgrinda.

The safety system used is called ProfiSafe and runs between the KR C4 con-
troller and a Siemens safety PLC on the PROFINET interface. Hard-wiring,
control cabinet set-up and ProfiSafe programming was performed in order to
get the robots ready for use. Easy robot trajectories were programmed to test
the system.

Objective 2

A graphical model has been created in ”VisualComponents”. Mounting height
and distance between the manipulators are the same as in the robot cell at
Department of Production and Quality, NTNU. Fences are not yet installed
due to problems with the delivery.

Robotic movements in VisualComponents are programmed in almost the same
way as on the KR C4 controller. This makes the tool great for testing of robot
positions and trajectories before implementation on the robot.

Objective 3

A Prosilica GC650 camera has been used for sensor input. This is a grayscale
camera with a resolution of 659 x 493 pixels. The choice of camera was mainly
done upon availability, but it proved effective and well suited for the task.

Development and implementation of the object detection and offset calculation
has been the largest and most demanding part of this project. C++ is the
programming language used in the development, with the additional OpenCV
library.

Two object detection algorithms has been tested and the performance com-
pared.

Objective 4

The visual servoing system is communicating over the KUKA RSI interface.
Two Agilus robots face each other with one holding an object and the other a
camera tracking it. The manipulator holding the object follows a predetermined
path. The vision system connected to the second manipulator calculates the

3



CHAPTER 1. INTRODUCTION

real-time offset, and moves the robot accordingly. System performance has been
evaluated in chapter 5.

Literature

Textbooks on the robotics, computer vision and programming topics has been
extensively used during the project. The main books are listed below:

• Robotics: Modelling, Planning and Control of Bruno Siciliano, Lorenzo
Sciavicco, Luigi Villani and Giuseppe Oriolo

• Robotics, Vision and Control of Peter Corke

• Practical OpenCV of Samarth Brahmbhatt

• Absolute C++ of Walter Savitch

In addition the KUKA documentation for RSI, KR C4 controller, ProfiNET
and SafeOperation has been used. Relevant scientific articles was also studied,
especially on the object detection subject.

1.5 Structure of the Report

The report focus on the experiment setup and explains how the robot kine-
matics, object detection, transformation calculation and information flow is
working in this exact experiment. Many features will also work by themself on
other systems, but the total arrangement is customized for this equipment.

• Chapter 2 presents the robot kinematics of the Agilus manipulator and
the relationships between different base frames used.

• Chapter 3 describes the computer vision with camera parameters, object
detection and transformation calculations.

• Chapter 4 shows the practical setup of the robot cell and explains the
steps needed in order to have a working visual servoing system.

• Chapter 5 presents the results from the experiments and possible methods
for improving the system performance.

• Chapter 6 summarize the work with a discussion, conclusion and recom-
mendations for future improvement and implementation.

• The most important hardware and software used is presented in the ap-
pendix. The ”object detection and coordinate calculation” source code

4



CHAPTER 1. INTRODUCTION

can be studied here as well. The Arduino Uno code is also located here.

• The digital appendix includes all source code written for this project. A
video of the working visual system is also found here.

5
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Chapter 2

Robot Kinematics

This chapter presents the forward kinematics of the KUKA Agilus robots used
in this project. The inverse kinematics was unnecessary because the commands
sent to the robot was cartesian, not joint corrections. Denavit-Hartenberg con-
vention has been applied in the representation [2]. Transformation matrices are
also extensively used. They consist of a 3x3 rotation matrix, R, and the 4x1
translation matrix, p.

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 p =


px
py
pz
1

 (2.1)

The resulting 4x4 transformation matrix will then take the form

T =


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

 (2.2)

2.1 Denavit-Hartenberg Parameters

Denavit-Hartenberg (DH) parameters for the KUKA Agilus robots have been
created and is shown in Table 2.1. They are based on the rotation direction of
the axes in Figure 2.1. KUKA robots start with the Z-axis pointing downwards.
This is not a problem, but it results in a somewhat strange DH-table where all
di translations are negative.
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Link θi[rad] di[mm] ai−1[mm] αi−1[rad]

1 θ∗1 -400 -25 −π
2

2 θ∗2 0 315 0
3 θ∗3 0 35 π

2
4 θ∗4 -365 0 −π

2
5 θ∗5 0 0 π

2
6 θ∗6 -80 0 π

Table 2.1: Denavit-Hartenberg parameters for KUKA Agilus manipulators

The DH-parameters can be used to calculate the manipulators forward kine-
matics as seen in equation 2.3. The joint variable q is denoted as θ in a revolute
joint and d in a prismatic joint. This calculation is done for every link, and
the transformation matrix from the manipulator base to end-effector, TWE , is
obtained by applying equation 2.4. The result is a 4x4 matrix that describes
position and rotation of the end-effector as a function of all six joint variables,
q1−6. [2]

Ai−1
i (qi) =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (2.3)

TWE = T 0
6 = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6 (2.4)
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Figure 2.1: Joint and axis composition of the KUKA Agilus manipulator [3]

2.2 Position Based Visual Servoing

The method Position Based Visual Servoing (PBVS) has been applied in this
project. The object pose in relation to the camera frame is used to control
the manipulator movements. The control loop is seen in Figure 2.2 and the
relationship between relative poses is shown in Figure 2.4. The different frame
locations in Figure 2.3. The reference is the transformation matrix TC

∗
O which

describes the desired pose of the camera in relation to the object. It is compared
to the real-time pose TCO, estimated by the visual system, to determine the
required motion ∆TC . In the experiment described in section 5.2, the operation
of the joint controller is executed by the KUKA KR C4 Controller. Feature
extraction, Pose estimation and PBVS control, is calculated in ROS with C++
on a Linux computer connected over Ethernet.

The ”eye-in-hand” configuration with the camera attached to the robot manip-
ulator has been applied.
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Figure 2.2: Control loop of the PBVS system [4]

Figure 2.3: World, end-effector, camera and object frame with associated trans-
formation matrices of the ”eye-in-hand” configuration applied [4]
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Figure 2.4: Relative pose network for PBVS [4]
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Chapter 3

Computer Vision

The visual sense is important in almost any activity or work being performed
by humans. Decisions are made on the background of information received by
visual input. In order for robots to perform humanoid tasks and take its own
decisions based on the surrounding environment, it is vital that it can use vision
to make the necessary adjustments.

Today there is a wide range of relative easy-to-use cameras that can be used
as visual receivers. The trick for the robot is to use this information of bits
and bytes to make the right decisions [5]. Control based on feedback of visual
measurements is termed visual servoing [2].

The computer vision methods applied are mainly based on Peter Corke’s Robotics,
Vision and Control [4] and the features of OpenCV [6].

3.1 Camera Parameters

Camera parameters defines the location, orientation and the relation between
observed objects and their position on the cameras image plane.

3.1.1 Intrinsic Parameters

The intrinsic parameters describes the physical size and relation between some
important camera specifications. These are focal length (f), pixel size (s), and
the principal point (c). In addition real cameras have some distortion due to the
lens curvature. The pixel size is usually found in the camera documentation,
while focal length, principal point and distortion is found by performing a
camera calibration.
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A =

fx 0 cx
0 fy cy
0 0 1

 =

818 0 361
0 821 225
0 0 1


Figure 3.1: Camera matrix for Prosilica GC650. Values are given in pixels

Calibration for the Prosilica GC650 was done with a ROS package named im-
age pipeline [7] which takes multiple pictures of a chessboard in various posi-
tions and orientations. It then calculates the focal lengths (fx, fy), focal center
(cx, cy) and the distortion coefficients. The focal length and focal center forms
the camera matrix and is seen in Figure 3.1.

The distortion parameters was found to be important in order to get accu-
rate measurements. There are five distortion parameters calculated for use in
OpenCV. Three for radial and two for tangential distortion. Radial distortion
is a deformation of the image along the direction from a point called the center
of distortion to the considered image point, and tangential distortion is a de-
formation perpendicular to this direction. The center of distortion is invariant
under both transformations [8].

Distortion parameters are presented as a matrix of five elements. Radial factors
are denoted with k and tangential p. Distortion matrix for the Prosilica camera
was found to be:

Distortioncoefficients =
[
k1 k2 p1 p2 k3

]
=


−0.187112

0.046056
−0.002983

0.001150
0.000000


T

(3.1)

After experiencing some distance deviation, a position measurement was per-
formed both with and without distortion parameters in order to evaluate the
importance of this calibration. The object was located at the edge of the cam-
eras field of view where the image distortion is largest. Figure 3.2 show the
object location. The position measurements for both calibrated and uncali-
brated setup is shown in Table 3.1. It is obvious that a measurement error
(only due to distortion) of almost 50% in the X-direction can be problematic.
This is further discussed in section 5.2.2.
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Figure 3.2: Object position when evaluating the importance of distortion cali-
bration

Direction Uncalibrated Calibrated

X 65mm 45mm
Y 180mm 135mm
Z 110mm 95mm

Table 3.1: The influence of image distortion coefficients. Distance to object
measured with camera calibrated and uncalibrated for distortion. Values are
taken from the TCP base frame in Figure 3.5

3.1.2 Extrinsic Parameters

The extrinsic parameters explains how the camera is oriented and located in
relation to a known coordinate system. In this project, the Tool Center Point
(TCP) has been used. This is the fixed location of the camera in relation to the
Agilus end-effector. It is also the origin of the TCP coordinate system seen in
Figure 3.5. The transformation TETCP is extracted from the KUKA controller
after calibration of the camera tool frame. TCTCP is the transformation from
the cameras coordinate system to TCP.
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TCTCP =


0 −1 0 0
0 0 −1 0
1 0 0 15
0 0 0 1


Figure 3.3: Transformation matrix from camera to TCP frame. Translations
in [mm]

TETCP =


−0.3890 0.9209 −0.0255 −38.2
−0.9212 −0.3889 0.0083 −94.7
−0.0023 0.0267 0.9996 163.8

0 0 0 1


Figure 3.4: Transformation matrix from end-effector to TCP frame. Transla-
tions in [mm]
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Figure 3.5: Relation between intrinsic, TCP and end-effector coordinate system

3.2 Object Detection

Object detection is all about finding an object or area of interest in a field of
view. The fastest way is to use a color-based algorithm. This method looks
for predefined color or grayscale intensities that will identify the object in an
image. The speed of this algorithm makes it very good for use in a controlled
environment where disturbances of objects with similar color is not present. In
a chaotic environment like an X-mas tree on the sea floor surrounded by marine
life, multiple objects and varying light conditions, it will be useless.
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Another method is to use keypoint detection. The idea here is to locate impor-
tant points from a test picture of the object to be recognized. This is done by
storing information about the neighbouring pixels called keypoint descriptors,
and match these with similar points in the incoming image stream from the
camera. This is a more comprehensive method than the color detection dis-
cussed earlier, but it is less influenced by disturbances in the environment or
object itself.

Because of the robustness and the fact that detection with extreme speed was
unnecessary in this project, keypoint detection has been used for object recog-
nition and tracking. There are multiple methods for keypoint detection. Two
of the most common have been tested and is presented in the following sections.
Since these algorithms detect a number of keypoints, they do not need to see
the whole object in order to make a match.

3.2.1 SIFT

SIFT is the most famous and used keypoint detection and description algorithm
today [5]. This approach was introduced by professor David G. Lowe in the
paper at the University of British Columbia, Vancouver in 2004. It is both scale
and rotation invariant, which means that it can recognize objects with different
size (often due to varying distance) and rotation than that of the test picture.
It is also to a certain degree invariant to change in illumination and some other
disturbing elements [9].

In order to extract keypoints that are scale invariant, a Gaussian kernel which
blurs the image, is ran on samples with different scales multiple times, produc-
ing a Gaussian Pyramid of each scale. Then samples of the Gaussian Pyramid
is subtracted from each other, and a Difference of Gaussian (DoG) Pyramid is
created. This is illustrated in Figure 3.6
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Figure 3.6: DoG Pyramids extracted from Gaussian Pyramids of different scales
[9]

A keypoint is selected if it has higher or lower value than all of its 26 neighbours
in the DoG pyramid. This process is seen in Figure 3.7. A control algorithm
that checks if these keypoints have sufficient contrast and are not part of an
edge is then applied.

The image orientation is now assigned by calculating the gradient of all samples
in a square region around the keypoint. These are grouped together 4x4 where
the sum of all gradients are found. This is known as the keypoint descriptor
and is seen in 3.8. This set of vectors is now normalized in order to obtain
illumination invariance [9].

After all keypoints from the image stream has been extracted, they are matched
with the test image to find the corresponding locations. If enough keypoints
are matched between the two samples, the next step is to calculate the object
pose in relation to the camera frame. This is explained in section 3.3.
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Figure 3.7: Comparison of pixels in the DoG pyramids to select keypoints [9]

Figure 3.8: Keypoint descriptor extracted from image gradients [9]

3.2.2 SURF

SURF is another keypoint detector and descriptor, first described in the arti-
cle SURF: Speeded Up Robust Features [10]. According to the same article it
approximates or even outperforms previously proposed schemes with respect to
repeatability, distinctiveness, and robustness, yet can be computed and compared
much faster.

Figure 3.9 shows the SURF algorithm that recognizes the test image in the
scenery. It is seen that this algorithm is both scale and rotation invariant

20



CHAPTER 3. COMPUTER VISION

Figure 3.9: Object highlighted in the scene image after applying SURF

from this example. The lines of different colors indicates the identified and
matched keypoints in each image. Not all keypoints match correctly, and key-
point descriptors are identified in the wrong location. This does not influence
the result since the distance towards adjacent keypoints are also compared, and
mismatches are sorted out.

3.2.3 Algorithm Performance

Both SIFT and SURF have been tested in order to find the best suited object
detection algorithm for this project. The speed and robustness of the tracking
was of special interest.

In Figure 3.10 the frequency of the SURF and SIFT algorithms is compared.
SIFT runs with about four iterations per second. SURF runs significantly faster
at between six and seven iterations per second. An improvement of over 50%.

When comparing the robustness of the algorithms it was observed that a given
object with no rotation was trackable with SURF up to 40 cm, while SIFT
recognized the object at a distance of 60 cm. Both methods performed fairly
equal with regards to rotation of the object.
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Figure 3.10: Framerate of SURF and SIFT

Varying illumination of an object is also of interest, especially when used in a
subsea environment. In Figure 3.11 the behavior of the different algorithms is
shown. Both algorithms is illumination invariant to a certain degree. This test
shows which method that is most robust on objects with lower and higher illu-
mination than the test picture. It is observed that both algorithms tracks well
in normal conditions, although SURF show some larger disturbances. SIFT
performs better when it comes to light variations as the plot clearly illustrates
larger variations in the SURF measurements in both dimmed and extra illumi-
nated objects.

These tests show that SURF is fast, but outperformed or matched by SIFT
when it comes to reliability and robustness. For use in in-homogeneous ar-
eas like subsea, SIFT will probably be the best solution given that very high
speed is not required. The SIFT algorithm was therefore used in the practical
experiments in chapter 4.

It is important to remember that these are just brief tests of the algorithm
performances. A more thorough investigation could influence the result.
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Figure 3.11: The influence of varying illumination to SIFT and SURF. SIFT
in blue and SURF in red. The y-axis is distance to object and x-axis time. At
approximately 10 seconds the light on the object is dimmed, and at 18 seconds
it returns to normal. At 30 seconds the object is illuminated and at 40 seconds
it return to normal conditions once again.

3.3 Coordinate Calculation

The coordinate calculation has been an essential part of this project. The object
pose in relation to the camera is calculated in order to find the desired camera
postion. In order to estimate the location of an object, it is vital to know the
camera parameters found in section 3.1.

3.3.1 The Central-Projection Model

The central-projection model is a popular method for transforming a point in
the 3D world to a point on the 2D image plane. In Figure 3.12 the point P is
transferred to pixel values on the image plane with equation 3.2 [8].

xc = f
X

Z
, yc = f

Y

Z
(3.2)
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Figure 3.12: The central-projection model with the image plane in front of the
camera origin [4]

3.3.2 Distance Calculation

The objective in this project was to determine the location and orientation of a
recognized object and follow this with a robot manipulator. From 3.2 it is clear
that the distance Z is needed in order to calculate X and Y coordinates of P .
The distance can be calculated if information about the size of the observed
object is known. The relation

Z = f
W

x1
(3.3)

can be applied, where f and x1 are in pixels. W and Z are in desired length
units (see Figure 3.13).

Another method, is to take a test image at a known distance from the camera.
This is compared to the captured image stream and the relation between these
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makes it possible to calculate distance. Figure 3.13 shows this method applied
on the x-axis. Distance Z2 is found in equation 3.5 after the object size is
calculated in 3.4.

The experiment in section 5.2 use this method with a built in OpenCV function
called solvePnP. This use the Levenberg-Marquardt algorithm [11] to estimate
the object pose, and returns the rotation and translation vector in relation to
the camera frame {C}.
The translation vector returned is in pixel size, and needs to be transformed
into metric units. The Z-value is dependent on the focus length. If the object
is located at the same distance as the object from the test image, the Z-value
returned from solvePNP is equal to the camera focus length. The distance to
the object is then calculated by equation 3.6.

Figure 3.13: Easy calculation of distance to object
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W

Z1
=
X1

f
⇒W = Z1

X1

f
(3.4)

Z2 = f
L

X2
(3.5)

Zmm =
Zpx
f
Ztest (3.6)

3.3.3 Camera Offset Calculation

The desired camera position, C∗, is located at a distance of 300 mm perpendic-
ular to the object. The transformation offset, ∆TC , consists of two independent
relations, ∆ptrans and ∆T rot. ∆ptrans relates to the physical offset between the
object center and the camera frame. ∆T rot is the necessary movement of the
camera in order to stay perpendicular to the object, and is related to the object
rotation. Figure 3.14 shows an overview of the positions with the rotation β
around the Y axis.

Distance to object, Z, was found in section 3.3.2 and is used in the following
calculations.

The position offset found by solvePnP needs to be converted to metric units.
The relation between X, Y and Z direction will be the same, and the metric
offset of ∆ptrans is found in equation 3.7, 3.8 and 3.9.

φ = arctan

(
Xpx

Zpx

)
∆Xtrans = Z ∗ tan(φ)

(3.7)

ψ = arctan

(
Ypx
Zpx

)
∆Ytrans = Z ∗ tan(ψ)

(3.8)

∆Ztrans = Z − Zdesired (3.9)

26



CHAPTER 3. COMPUTER VISION

A known value is β which is extracted from the solvePnP function in OpenCV.
The two angles ϕ is equal to Π−|β|

2 since they are part of the isosceles triangle
with the two sides Zdesired.

The length of ∆proty, which is the translational offset due to rotation around
the Y-axis, is found with the law of cosines.

∆p2
roty = 2Z2

desired(1− cos(β)) (3.10)

The offset in X and Z direction is now found by equation 3.11 and 3.12. The
Y-axis is pointing downwards, and a negative rotation will therefore give a
positive offset in the X-direction. If the rotation is positive, the offset will be
negative, and equation 3.11 has to be multiplied by (-1).

∆Xroty = sin(ϕ)∆proty

∆Xroty = sin(ϕ)
√

2Z2
desired(1− cos(β))

(3.11)

∆Zroty = cos(ϕ)∆proty

∆Zroty = cos(ϕ)
√

2Z2
desired(1− cos(β))

(3.12)
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Figure 3.14: Calculation of camera offset when object is rotated with β around
the Y-axis

Translational offset due to rotation around the X-axis, ∆protx, is calculated by
the same method. Equation 3.13 has to be multiplied by (-1) if the rotation,
γ, around the X-axis is positive. Φ is the equivalent angle to ϕ in Figure 3.14,
but related to the γ rotation around the X-axis.

∆Yrotx = sin(Φ)∆proty

∆Yrotx = sin(Φ)
√

2Z2
desired(1− cos(γ))

(3.13)

∆Zrotx = cos(Φ)∆proty

∆Zrotx = cos(Φ)
√

2Z2
desired(1− cos(γ))

(3.14)
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The total position offset is found by adding the two vectors ∆ptrans and ∆prot.

∆pc = ∆ptrans + ∆prot =

∆Xtrans

∆Ytrans
∆Ztrans

+

 ∆Xroty

∆Yrotx
∆Zrotx + ∆Zroty

 (3.15)

Rotational offset is extracted directly from the solvePnP function. These are
Roll-Pitch-Yaw Euler angles and are converted to rotation matrix with equation
3.16 [2].

∆RC(φ) = Rz(α)Ry(β)Rx(γ) =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


(3.16)

The total camera transformation matrix, ∆TC is found by combining ∆pc and
the rotation matrix ∆RC .

∆TC =

[
∆RC ∆pc

0 1

]
(3.17)

It is important to be aware of which base frame you are working in. These
coordinates are in the camera frame and have to be converted into the TCP-
frame before the commands are sent to the KR C4 controller.

29



CHAPTER 3. COMPUTER VISION

30



Chapter 4

Practical Setup

This chapter gives an overview of the steps needed in order to get a working
system. The different software and hardware applied in this project is presented
in Appendix A.

4.1 Robot Cell

The KUKA Agilus robot cell consists of two identical six axis robots. Both
equipped with a KUKA KR C4 controller. This is connected to a Siemens
safety PLC over ProfiNET. Safety features like emergency stop and door-switch
connects to the safety PLC.

The model in Figure 4.1 shows the layout of the robot cell and is created using
VisualComponents.
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Figure 4.1: Graphic model of the KUKA Agilus robot cell at Department Of
Production and Quality Engineering, NTNU

4.2 Information Flow

ROS distributes data in a quite clever way. The system is built up by nodes
and topics. The node is a program written in C++ or Python. This is where
the different algorithms and calculations are executed. These nodes can pub-
lish and/or subscribe to topics, which essentially is an address carrying the
distributed data. Figure 4.2 gives an overview of the information flow in the
system. The blue box contains the vision system with nodes in rectangles and
topics in ovals. The X’, Y’, Z’, A’, B’, C’ values passed on to the kuka driver
is the desired translations and rotations of the manipulator. These are small
steps of the total transformation ∆TC . All movements are executed in the
tool-frame which is calibrated with its origin in front of the camera lens.
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Figure 4.2: Information flow of the visual servoing system

4.2.1 Image Capturing

The image is captured using a Prosilica camera (subsection A). The image
stream is published on the ROS topic /camera/image raw using the ”cam-
era aravis” ROS package as driver. This needs to be converted from ROS image
type to OpenCV image type with the help of the cv bridge interface before the
OpenCV library can be taken advantage of.

4.2.2 Object Detection and Calculations

Object detection and the desired movement of the manipulator was programmed
as a ROS node with C++. The many features of the OpenCV library has also
been utilized in this work.

The algorithm publish the total offset between camera pose and desired camera
pose, ∆TC , and the next trajectory point for the manipulator, which is a small
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fraction of this transformation. This fraction is calculated with the P-regulator
described in section 5.2.1.

4.2.3 UDP Connection

PhD candidate Lars Tingelstad has created a Python UDP router for joint
angle communication between the Linux computer and KUKA controller. This
has been modified for cartesian commands and used in this project. Its task is
to set up the RSI connection with the KUKA KR C4 controller and distribute
messages between this and the kuka driver ROS node.

The kuka driver is a ROS node and UDP client. It subscribes to the carte-
sian commands calculated by the visual system, and publish these to the UDP
router. It also receives the actual cartesian manipulator positions and distribute
these on the ROS topic ”/cartesianStates”.

4.2.4 Robot Sensor Interface

The KUKA Robot Sensor Interface (RSI) is a program for passing of informa-
tion between the KR C4 controller and a sensor-system, such as a computer.
This information is passed in an XML file over an Ethernet connection. To
control the manipulator, there are two main methods used, joint and cartesian
correction.

Joint correction sends the next point for each joint on the manipulator. For
the Agilus robot used here, there are six joint values with a small step for each
package sent. When using cartesian correction the next position is sent in the
form of coordinates. These can be in relation to the world, end-effector or tool
base.

The cartesian correction has been used in this project since the coordinates
calculated in the object detection algorithm is cartesian as well. This saves
the extra coding of inverse kinematics and minimize the error sources. The
commands are sent to KR C4 in the tool-frame with the origin in the cameras
TCP. Transformation matrix is shown earlier in Figure 3.5.

The setup for RSI on the KR C4 consist of four files describing the send/receive
parameters, IP configuration, and different safety settings such as maximum
stepwise correction, safety speed limits etc. These can be seen in the ”RSI”
folder on the digital appendix.

34



CHAPTER 4. PRACTICAL SETUP

4.2.5 World-pose to TCP-pose

The actual cartesian states published by the KR C4 controller are referenced to
the world frame, while the calculated trajectory references to the moving TCP
frame. The actual cartesian coordinates are therefore sent to the ROS node
actual state transform. This transforms the coordinates so they are referenced
to the starting position of the TCP frame. This made it easier to compare the
desired and acutal manipulator positions during the step tests in chapter 5.
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Chapter 5

Results

There has been performed two different visual servoing experiments. Both
use the same camera, object and control algorithms to measure the necessary
movements. The first test was performed with a stepper-motor only capable of
1D translation. The second test was done on the KUKA Agilus robots with six
axes and can operate in 3D space.

5.1 Stepper-motor

The setup in Figure 5.1 was used for real-life testing of the coordinate out-
puts from the object detection algorithms. The main objective was to test the
coordinate calculator algorithm on a simpler system than the Agilus robot.

A stepper-motor was controlled with a Arduino Uno card, which receives the
distance to the tracked object from ROS. This micro-controller then calculates
the necessary movement in order to stay in the right position according to the
object (in this instance 300 mm).
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Figure 5.1: Setup for 1D tracking with Arduino Uno and stepper-motor

Figure 5.2: Stepper motor responsiveness to distance calculation algorithm

Figure 5.2 shows the responsiveness of the stepper-motor when the distance
between camera and object is changed. It is observed that the reference distance
of 300 mm is restored after approximately a second when the step is 80 mm.

The Arduino code is found in appendix B and in the digital appendix.

38



CHAPTER 5. RESULTS

5.2 KUKA Agilus

This section evaluates the performance of the implemented visual servoing sys-
tem. One robot is holding a target, while the other, equipped with a camera,
is tracking and following this moving object. A number of graphs is presented,
showing the relation between desired pose of the robot based on the calculations
of the visual system, and the real position feed back from the KUKA KR C4
controller. All values and plots are referenced to the TCP frame from Figure
3.5.

5.2.1 Regulator Adjustment

Six proportional regulators are used in the control loop (PBVS control in Figure
2.2). One for each translational and one for each roatational command. Ziegler-
Nichols method for regulator adjustment [12] is applied and shown in Table 5.1.

Control Type Kp Ti Td

P 0.5 ∗Kc

PD 0.65 ∗Kc 0.12 ∗ Tc
PI 0.45 ∗Kc 0.85 ∗ Tc
PID 0.65 ∗Kc 0.5 ∗ Tc 0.12 ∗ Tc

Table 5.1: Ziegler-Nichols table for adjustment of regulators.

Kc - critical gain
Tc - period time with critical gain
Kp - proportional gain
Ti - integration time
Td - derivation time

Critical gain was found to be approximately 0.01 for both the translational
and rotational response. After running tests with different Kp values around
0.5 ∗Kc, the best results was found at Kp = 0.005 for position and Kp = 0.004
for rotation. Response of the manipulators actual position with Kp = Kc = 0.01
is shown in Figure 5.3.
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Figure 5.3: Manipulator position feedback with Kp = Kc = 0.01

The KR C4 controller also have internal regulators for the joint servos with
current, velocity and position control.

5.2.2 System Performance

The manipulators response has been analyzed for a series of step-tests, both
translational and rotational. The graphs named ”/desiredMovement/desired pos-
ition[X/Y/Z/A/B/C]” is the offset calculated by the object detection algo-
rithms, and show the real time ∆T c. Graphs named ”/transformed cartState/pos-
ition[X/Y/Z/A/B/C], is the manipulators actual position in relation to the
starting position of the TCP base. The y-axis of the plots are in mm for trans-
lations and degrees for rotations. The x-axis shows the elapsed time in seconds.

Figure 5.4 shows a step-test for a 3D translation. The visual system measures
an offset of approximately 140, -70 and 120 mm in X, Y and Z direction.
When the manipulator is activated after 5.5 seconds, the actual positions move
towards the reference given by the visual system, and stabilizes after about 2.5
seconds. The position stabilize around the desired offset which is zero, even
though only a P-regulator is used as position regulator. There is no need to
introduce an integral part in the regulator.

A derivative part would probably speed up the correction process of the robot.
The noise on the offset values calculated would however create problems for
a PD-regulator. With a properly filtered signal this would be an interesting
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system to implement.

When comparing the initial offset given by the robotic vision, and the resulting
stable position of the manipulator, there is a small deviation. All three mea-
surements are off by 10-20 mm. There can be a number of reasons for this error,
like inaccurate measurement of object test image or calculation error. The most
likely is however inaccurate camera calibration. The step-test is taken with the
object’s starting position in the edge of the cameras field of view. This is where
the image is most distorted due to the lens curvature, and in order to correct
for it, accurate calibration is important. This process was possibly not given
enough attention in the experiment set-up.

The initial position error does not seem to affect the manipulators movement
to any extent. When the camera moves closer to the desired position, and the
object is centered in the image, the distortion error diminishes [13]. The relative
accurate positioning of the system is verified by a manual distance measurement
after a step-test has been conducted. This is shown in Figure 5.5.

Figure 5.6 show the manipulators response to a 15deg rotation around the X
axis and 9deg rotation around the Y-axis. The plotted graphs are named with
the KUKA convention of A being rotation around the Z-axis, B around Y -
axis, and C around the X-axis. The actual manipulator position stabilize very
close to the reference point. This shows the good estimation of the coordinate
calculator in relation to rotations. It is important to have in mind that this
rotational test was done with the object centered in the image. Image distortion
is therefore minimal.
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Figure 5.4: Manipulator response on a three dimensional position step

Figure 5.5: Manual measurement of distance to object after visual servoing
translation
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Figure 5.6: Manipulator response to a rotational step around axis X and Y

5.2.3 Reference Filter

The offset calculations based on the SIFT and SURF algorithms show some
variations on the output used as signal for the manipulator trajectory. In Fig-
ure 5.7 the variations on the SIFT calculation has an amplitude of up to 12mm.
This is not a problem when tracking the moving object, but when the manip-
ulator approach the reference point it fluctuates around it. The impact on the
positioning is one aspect that needs to be considered if a similar system is to
be used in real operations. Another consideration is that this unnecessary posi-
tioning around the reference wears on the servos and brakes of the manipulator.
For both these reasons it is desirable to avoid these fluctuations.

A ”moving-average filter” was implemented on the visual servoing system after
the model in equation 5.1 [14]. N∗ is the number of past values to average over.

yF (k) =
1

N∗

k∑
i=k−N∗+1

yi (5.1)
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Figure 5.7: Unfiltered XYZ reference points from sensor system

Figure 5.8: Filtered XYZ reference points from sensor system

Figure 5.7 and 5.8 show the position calculated by the coordinate calculator
with unfiltered and filtered signal. Average is taken over the last two values.
The variations after filtering are as seen considerably smaller than the raw sig-
nal. An interesting observation is that the X-value is almost stable while there
are large variations in the Y and Z direction. This points to the interpretation
that it is the offset due to rotation that cause the largest sensor disturbance.
This makes sense, since at a distance of 300mm a small rotation error will lead
to considerably larger offsets in the camera frame (as explained in section 3.3.3).
This has not been investigated thoroughly and a definite conclusion can not be
drawn.
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Figure 5.9: XYZ step-test on unfiltered system

Figure 5.10: XYZ step-test on filtered system

In Figure 5.9 and 5.10 a position step response is plotted with unfiltered and
filtered reference signals. It is clear that the filter slows down the process con-
siderably even when averaging over only the two last values. The fluctuations
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around setpoint is smaller, but the process use twice the time to stabilize. This
is due to the low frequency of the tracking algorithms. The extra time delay in-
troduced by the filter has a large effect. The overshoot is also larger due to the
added time delay, and the Kp value of the filtered process needs adjustment.
Kp = 0.004 for the position regulators was found to give good results. Since
a larger amount of averaging values would improve the filter, it is desirable to
speed up the tracking process. Some possible solutions are listed below.

• A powerful computer would speed up the the tracking algorithm and
improve the results without any further adjustments.

• One could also downsize the image resolution, but this could in turn effect
the reliability and precision of the tracker.

• The most elegant solution is to use a state predictor for the movement
of the object in order to shrink the image area being matched with
SIFT/SURF. Only searching for keypoints in the predicted location of
the object would increase the speed of the program.

5.2.4 Position Lock

To prevent the unnecessary movement around setpoint, a position lock mech-
anism was introduced. It monitors the transformation offset and triggers the
”position lock” flag when the offset is lower than 5mm for position AND 2deg
for rotation. This locks the manipulator by sending out ∆TC = 0 until the
position offset exceeds 10mm OR the rotation offset is larger than 4deg.

Figure 5.11 show the step response with filtering and position lock enabled. It is
clear that the fluctuations around the setpoint are gone. This is a good method
for positioning of the manipulator if small deviations do not cause problems
for the specific task at hand. It is not recommended when tracking a moving
object due to the extra delay it introduces. Every time the position change,
the tracked object will have a 10mm lead. With the already substantial time
delays in the system, it is not optimal to add another.
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Figure 5.11: XYZ step-test on filtered system with position lock. Kp = 0.005

5.2.5 SURF Test

A final test was performed with the same setup as in figure 5.11, only now SURF
was used for object detection. The starting position actually had to be modified
by a few centimeters because the SURF algorithm was unable to find the object
in the same location as used earlier with SIFT. This observation strengthens
the results from section 3.2.3. It is also clear that the larger fluctuations in the
signal input results in manipulator movement in what should have been the
stable area, even with the ”position lock” function enabled.
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Figure 5.12: XYZ step-test on filtered system with position lock. Kp = 0.005.
SURF used for object detection

5.2.6 Maximum Correction

As a safety precaution the RSI interface was programmed with a maximum
total and stepwise correction for the motion commands received from the sensor
system. As an extra safety barrier there was also put a maximum correction
limit to the commands sent from the coordinate calculator programmed in
ROS. This was done in order to have a safe working environment and avoid any
damage to personnel or equipment. This limited the maximum speed of the
tracking system, and faster transformation correction could have been possible
without it.

5.2.7 Video

A video of the object tracking has been produced and placed in the digital
appendix. The manipulator holding the object moves in a predefined path,
while the one with camera tracks the object and relocates in order to stay
300mm perpendicular to it. The computer screens show the visual tracking of
the object with a green rectangle around it, and graphs of actual and desired
position.
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Concluding Remarks

6.1 Discussion

The road towards this main objective has been all other than paved, and what
were initially thought to be small obstacles has often turned out to need more
attention and effort than planned.

Starting out with two unused robot manipulators in an empty robot cell and
end up with a working visual servoing system, has been an interesting journey.
The objective of creating a working system was always the main focus, and has
taken up most of the time. The lack of background knowledge in necessary
software like Linux, ROS, OpenCV, Python and VisualComponents has been a
challenge from the start-up. The first part of the project was almost exclusively
spent getting to know the software and programming interfaces.

The comprehensive practical part has seized most of the available time. The
theory section has consequently been limited to explaining the work performed
and some background information on key algorithms applied.

The object tracking show some time delay that affects the system response.
Solutions have been proposed, and with the adequate time it would be very
interesting to implement these for higher tracking speed. With a faster system
it is possible to improve the reference filter and test if a PD-regulator would
speed up the process.

As an addition to the objectives, a comparison between the SIFT and SURF
tracking algorithm was performed. With all the initial problem formulations
fulfilled, the undersigned feel that the project is successfully completed.
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6.2 Conclusion

The focus of this project has always been to create a working visual servoing
system for the new Agilus robot cell. This has been achieved with one manip-
ulator holding a moving target, and the other using computer vision to track
this target and follow its motions. The system can follow both translational
and rotational movements.

The results show small variations in the reference signal created by the object
detection and coordinate calculation algorithm. This results in fluctuations
around setpoint when the tracked object is not moving. A solution introducing
a ”position lock” mechanism that triggers when the robot is positioned inside
a threshold, was proved relative efficient. If this is a good solution will differ
from operation to operation, and depend on the precision needed for the specific
task.

The speed of the tracking is not very high, but it is believed to be more than
adequate for use in a valve operation with an ROV. It is possible to improve
the speed, and potential solutions have been proposed.
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6.3 Recommendations for Further Work

The visual servoing system for the KUKA Agilus robot cell is now working. As
seen in chapter 5, there are several improvements that can be implemented in
the future.

In order to improve the system frequency without updating the hardware, it
is necessary to minimize the object detection area. An estimator, such as a
Kalman filter, can be used to scale down this area. If only the area believed
to contain the object is searched, it will increase the speed. With SIFT and
SURF it is not even necessary that the whole object is in this area as long as
enough matches can be made from the visible part.

The object detection used in this project can only detect planar objects. If
visual servoing is to be used for localization and approach of 3D objects, a
different detection method is needed. The article From Contours to 3D object
Detection and Pose Estimation [15] can be useful in this work.

A very interesting thought in a longer perspective is to use completely au-
tonomous ROVs to perform valve operations on subsea X-mas trees. If a viable
3D detection is implemented, a library of different valves and handles can be
created. An ROV can then approach the X-mas tree, and search for the specific
pattern of valves, handles and other recognizable features used on this construc-
tion. When a match is made, it can perform a preprogrammed task, such as a
valve operation.
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Appendix A

Equipment and Software

Hardware

Figure A.1 shows the control cabinet for the two KUKA Agilus robots. From
top to bottom is the Siemens safety PLC, a network switch, two KR C4 KUKA
controllers and computers used for object detection and coordinate calculation.

Figure A.1: The installed control cabinet for the Agilus robot cell
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KUKA Agilus Robot

There is used two identical ”KUKA Agilus: KR 6 R900 sixx” manipulators.
These have six rotating axes. Denavit-Hartenberg convention is used and
showed in Table 2.1.

Figure A.2: KUKA Agilus KR 6 R900 sixx dimensions [3]

Siemens PLC

A Siemens safety PLC controls the hard-wired safety system, such as emergency
stop. According to the IEC standard of Functional Safety [16] this PLC meets
all the requirements for use in applications up to SIL3.

Prosilica Camera

The camera used for image input is Prosilica GC650. This is a small grayscale
camera with Gigabit Ethernet interface. The resolution is 659 x 493 pixels, and
it can capture up to 90 fps.
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Figure A.3: Prosilica GC650 used for sensor input

Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328. It has
14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog
inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP
header, and a reset button [17].

The amount of inputs/outputs makes it very versatile and suited for use with
smaller components. It is easily programmed with the Arduino software.

Figure A.4: The Arduino Uno board
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Software

ROS - The Robot Operating System

ROS was used for programming and sending of information between camera,
computer and robots. It is available as experimental versions in multiple operat-
ing systems, but the recommended use is with Ubuntu Linux. The programming
itself can be done with Python or C++.

It offers solutions for integration of 3rd party software and libraries like Arduino
and OpenCV, which has been taken advantage of in this project.

The Robot Operating System is a flexible framework for writing robot software.
It is a collection of tools, libraries, and conventions that aim to simplify the task
of creating complex and robust robot behavior across a wide variety of robotic
platforms [18].

OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library [6]. The library has over 2500
algorithms, that are free to use. It is also nicely integrated into ROS, and these
tools together makes a good platform for the object detection algorithms.

VisualComponents

VisualComponents is a 3D simulation tool for work cells and robots. This is a
easy-to-use software with an extensive robot manipulator library, included the
KUKA Agilus used in this project. It is here used for creating a model of the
Agilus robot cell, and testing paths and movements to be programmed in the
demo for Objective 4.

KUKA WorkVisual

WorkVisual is a program used for online configuration or monitoring of the
KUKA controllers and robots. It was used to set-up names and IP-configuration
for the two Agilus robots.
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Source Code
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1 /** 
2 Object detection and coordinate calculation code. SIFT applied
3 Author: Eirik Anfindsen Solberg. 
4 NTNU 2014
5 */
6
7 #include <ros/ros.h>
8 #include <image_transport/image_transport.h>
9 #include <cv_bridge/cv_bridge.h>

10 #include <sensor_msgs/image_encodings.h>
11 #include <opencv2/imgproc/imgproc.hpp>
12 #include <opencv2/highgui/highgui.hpp>
13 #include <opencv2/opencv.hpp>
14 #include <opencv2/nonfree/features2d.hpp>
15 #include <opencv2/features2d/features2d.hpp>
16
17 #include "opencv2/calib3d/calib3d.hpp"
18 #include "opencv2/core/core.hpp"
19 #include <stdio.h>
20 #include <iostream>
21
22 #include <stdlib.h>
23 #include "std_msgs/Float32MultiArray.h"
24
25 #include "eirik_vision/CartTrajectory.h"
26
27
28 using namespace cv;
29 using namespace std;
30
31
32 // Global values
33 float Kp_pos = 0.004, Kp_rot = 0.004;
34 float k_m1[6], k[6]; 
35 double pi = 3.14159;
36 vector< Point2f > scene_corners(4);
37 //trajectory_msgs::JointTrajectoryPoint desired_movement;
38 eirik_vision::CartTrajectory desired_movement;
39
40
41 class ImageConverter
42 {
43   ros::NodeHandle nh_;
44   image_transport::ImageTransport it_;
45   image_transport::Subscriber image_sub_;
46   
47    
48   public:
49   ImageConverter() 
50     : it_(nh_)
51   {
52     // Subscribe to input video feed
53     image_sub_ = it_.subscribe("/camera/image_raw", 1, 
54       &ImageConverter::imageCb, this);
55     
56   }
57   
58  Mat calcMovement(Mat R, Mat tvec, Mat rvec)
59   {
60 //-- calculates translation vector in mm. Currently in number of pixels --
61 Mat p_co(3, 1, CV_64FC1); // CV_8UC3 // tvec in millimeters. vector from camera frame to 

object center
62
63 // z-direction of vector
64 // if z_relation == 1 then dist = 300mm. 820 is focal length. Test object at 300 

mm distance
65 double z_relation = tvec.at<double>(0, 2)/820; 
66 p_co.at<double>(2, 0) = 300 * z_relation;
67
68 // Movement in x-direction with regards to offset between object and camera
69 double phi = atan(tvec.at<double>(0,0) / (tvec.at<double>(0,2))); // angle of 

offset in x-direction
70 p_co.at<double>(0, 0) = p_co.at<double>(2, 0) * tan(phi);
71



72 // Movement in y-direction with regards to offset between object and camera
73 double tetha = atan((tvec.at<double>(0,1)) / (tvec.at<double>(0, 2)));
74 p_co.at<double>(1, 0) = p_co.at<double>(2, 0) * tan(tetha);
75 // ---------------------------------------------------------------------
76
77
78 // Desired position of camera in relation to object
79 Mat p_cxo(3, 1, CV_64FC1);
80 p_cxo.at<double>(0,0) = 0;
81 p_cxo.at<double>(1,0) = 0;
82 p_cxo.at<double>(2,0) = 300;
83
84 // Subtract desired position to get reference point at zero
85 Mat delta_p_c(3, 1, CV_64FC1);
86 delta_p_c.at<double>(0,0) = p_co.at<double>(0,0) - p_cxo.at<double>(0,0);
87 delta_p_c.at<double>(1,0) = p_co.at<double>(1,0) - p_cxo.at<double>(1,0);
88 delta_p_c.at<double>(2,0) = p_co.at<double>(2,0) - p_cxo.at<double>(2,0);
89
90 // Calculate rotation contribution to the translation and find total offset
91 double beta = rvec.at<double>(1,0);
92 double psi;
93
94 // offset x-direction
95 if(rvec.at<double>(1,0) < 0) // If negative beta
96 psi = (pi+beta)/2;
97
98 if(rvec.at<double>(1,0) >= 0) // If positive beta
99 psi = (pi-beta)/2;

100
101 if(rvec.at<double>(1,0) >= 0)
102 delta_p_c.at<double>(0,0) = -sin(psi)*sqrt((2*p_cxo.at<double>(2,0)*p_cxo.at<double>

(2,0))*(1-cos(beta)))+delta_p_c.at<double>(0,0);
103
104 if(rvec.at<double>(1,0) <= 0)
105 delta_p_c.at<double>(0,0) = sin(psi)*sqrt((2*p_cxo.at<double>(2,0)*p_cxo.at<double>

(2,0))*(1-cos(beta)))+delta_p_c.at<double>(0,0);
106
107 // offset y-direction
108 double gamma, fi;
109 gamma = rvec.at<double>(0,0);
110 if(gamma < 0) // If negative beta
111 fi = (pi+gamma)/2;
112
113 if(gamma >= 0) // If positive beta
114 fi = (pi-gamma)/2;
115
116 if(gamma >= 0)
117 delta_p_c.at<double>(1,0) = sin(fi)*sqrt((2*p_cxo.at<double>(2,0)*p_cxo.at<double>(2,0))*

(1-cos(gamma)))+delta_p_c.at<double>(1,0);
118
119 if(gamma <= 0)
120 delta_p_c.at<double>(1,0) = -sin(fi)*sqrt((2*p_cxo.at<double>(2,0)*p_cxo.at<double>

(2,0))*(1-cos(gamma)))+delta_p_c.at<double>(1,0);
121
122 // offset z-direction
123 delta_p_c.at<double>(2,0) = p_cxo.at<double>(2, 0) - p_cxo.at<double>(2, 0)*cos(beta) + 

p_cxo.at<double>(2, 0) - p_cxo.at<double>(2, 0)*cos(gamma) + delta_p_c.at<double>(2,0);
124
125
126
127 // Moves rotation and position matrix into one common matrix with two columns
128 Mat transformation(3, 2, CV_64FC1);
129 transformation.at<double>(0,0) = rvec.at<double>(0,0);
130 transformation.at<double>(1,0) = rvec.at<double>(1,0);
131 transformation.at<double>(2,0) = rvec.at<double>(2,0);
132 transformation.at<double>(0,1) = delta_p_c.at<double>(0,0);
133 transformation.at<double>(1,1) = delta_p_c.at<double>(1,0);
134 transformation.at<double>(2,1) = delta_p_c.at<double>(2,0);
135
136 cout << "camera frame = " << transformation << endl << endl << "psi" << psi << "beta"<< 

beta <<"pi"<<pi<<endl;
137
138 return transformation;
139   }  



140   
141   
142   void calcStepwiseMovement(Mat transformation)
143   {
144 std_msgs::Float32MultiArray delta_Tc, test_location;
145 delta_Tc.data.clear();
146
147 // Move coordinates into data type for sending over ROS
148 // The axis are shifted according to the transformation matrix from
149 // camera to TCP. More info under "extrinsic parameters" in the report.
150 // The variables are also grouped according to the KUKA convention which
151 // is (X, Y, Z, A, B, C) where A, B and C is rotation around axis Z, Y and X.
152 delta_Tc.data.push_back(transformation.at<double>(2,1)); // X = Z
153 delta_Tc.data.push_back(-transformation.at<double>(0,1)); // Y = -X
154 delta_Tc.data.push_back(-transformation.at<double>(1,1)); // Z = -Y
155 delta_Tc.data.push_back(-transformation.at<double>(1,0)); // A (rotz) = -roty_cam
156 delta_Tc.data.push_back(-transformation.at<double>(0,0)); // B (roty) = -rotx_cam
157 delta_Tc.data.push_back(transformation.at<double>(2,0)); // C (rotx) = rotz_cam
158
159 //cout << endl << delta_Tc << endl; // Print unfiltered values
160
161 //--------------------------- Moving average filter ------------------
162 float filtered[6];
163 for(int i=0; i<=5; i++)
164 {
165 k[i] = delta_Tc.data[i];
166 filtered[i] = (k[i]+k_m1[i])/2;
167 delta_Tc.data[i] = filtered[i];
168 k_m1[i]=k[i];
169 }
170
171 // -------------------------------------------------------------------
172
173
174
175 //cout << endl << delta_Tc << endl; // Print filtered values
176
177 // Change rotations form radians to degrees
178 for (int i = 3; i <= 5; i++)
179 delta_Tc.data[i] = (delta_Tc.data[i]/(3.14159))*180;
180
181
182 // Find direction and rotation with highest offset
183 desired_movement.max_offset_pos.clear();
184 desired_movement.max_offset_pos.push_back(0);
185 desired_movement.max_offset_rot.clear();
186 desired_movement.max_offset_rot.push_back(0);
187 for (int i = 0; i <= 5; i++)
188 {
189 if (i < 3)
190 {
191 if (abs(delta_Tc.data[i]) > desired_movement.max_offset_pos[0])
192 {
193 desired_movement.max_offset_pos.clear();
194 desired_movement.max_offset_pos.push_back(abs(delta_Tc.data[i]));
195 }
196 }
197
198 if (i >= 3)
199 {
200 if (abs(delta_Tc.data[i]) > desired_movement.max_offset_rot[0])
201 {
202 desired_movement.max_offset_rot.clear();
203 desired_movement.max_offset_rot.push_back(abs(delta_Tc.data[i]));
204 }
205 }
206 }
207
208
209 // P-regulator. Kp values are set on top of script
210 desired_movement.next_point.clear();
211 desired_movement.desired_position.clear();
212 for (int i = 0; i <= 5; i++)
213 {



214 if (i <= 2) // Translation regulator
215 desired_movement.next_point.push_back(delta_Tc.data[i]*Kp_pos);  
216
217 if (i > 2) // Rotation regulator
218 desired_movement.next_point.push_back(delta_Tc.data[i]*Kp_rot);
219
220 desired_movement.desired_position.push_back(delta_Tc.data[i]);
221 }
222
223   }
224   
225   void Publish()
226   {
227 ros::NodeHandle n;
228 ros::Publisher pub = n.advertise<eirik_vision::CartTrajectory>("objectDetection/

desiredMovement", 1);
229 pub.publish(desired_movement);
230 ROS_INFO("PUBLISHING CAMERA MOVEMENT ON TOPIC 'objectDetection/objectLocation' ");
231 ros::spinOnce();
232   }
233
234   
235   Mat calcTransformMatrix()
236   {
237 Mat rvec, tvec, R;
238
239 bool useExtrinsicGuess = false;
240 int flags=P3P;
241
242 vector<Point3d> objectPoints;
243 vector<Point2d> imagePoints;
244
245 Mat cameraMatrix =(Mat_<float>(3, 3) << 820, 0, 361, 0, 823, 225, 0, 0, 1); //From 

camera calibration. Values in pixels
246
247 // Set tracking point to object center
248 objectPoints.push_back (Point3d (-120, -70, 0));
249 objectPoints.push_back (Point3d (120, -70, 0));
250 objectPoints.push_back (Point3d (120, 70, 0)); // corner points on 

object. x, y, z on original picture
251 objectPoints.push_back (Point3d (-120, 70, 0));
252
253 imagePoints.push_back (Point2d (scene_corners[0].x, scene_corners[0].y)); // 

corners from captured image. x, y
254 imagePoints.push_back (Point2d (scene_corners[1].x, scene_corners[1].y));
255 imagePoints.push_back (Point2d (scene_corners[2].x, scene_corners[2].y));
256 imagePoints.push_back (Point2d (scene_corners[3].x, scene_corners[3].y));
257
258
259 Mat distCoeffs(4,1,cv::DataType<double>::type);
260 distCoeffs.at<double>(0) = -0.187112;
261 distCoeffs.at<double>(1) = 0.046056;
262 distCoeffs.at<double>(2) = -0.002983;
263 distCoeffs.at<double>(3) = 0.001150;
264 //distCoeffs.at<double>(4) = 0;
265
266 solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, false, 

CV_ITERATIVE);//, false, CV_P3P);
267
268
269
270 cout << "RVEC: " << rvec << endl << "TVEC: " << tvec << endl;
271
272 // Convert from rotation vector to rotation matrix with "Rodriques"
273 // "R" is the rotation matrix of the object in relation to camera
274 Rodrigues(rvec, R);
275
276 Mat transformation = calcMovement(R, tvec, rvec);
277 return transformation;
278   }
279   
280   
281   // imageCb is called every time a new message is received over ROS
282   void imageCb(const sensor_msgs::ImageConstPtr& msg) 



283   {
284     cv_bridge::CvImagePtr cv_ptr;
285     try
286     { // Convert image from ROS format into OpenCV format
287       cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
288     }
289     catch (cv_bridge::Exception& e)
290     {
291       ROS_ERROR("cv_bridge exception: %s", e.what());
292       return;
293     }
294
295     // ---------------------------- SIFT -------------------------------------
296     // Example from http://docs.opencv.org/doc/tutorials/features2d/feature_homography/

feature_homography.html#feature-homography used 
297     Mat img_show;
298     float nndrRatio = 0.7;
299     double t0 = getTickCount();
300     
301     
302     Mat objectMat = imread("/home/eirikaso/catkin_ws/src/eirik_vision/te.jpg");  // Grayscale. 

If color -> convert to grayscale
303     Mat sceneMat = cv_ptr->image;  //imread("te.jpg");
304     
305     
306     vector< KeyPoint > keypointsO;
307     vector< KeyPoint > keypointsS;
308         
309     // Step 1: Extract keypoints from object and scene 
310     SiftFeatureDetector detector(2000); 
311     detector.detect(objectMat, keypointsO);
312     detector.detect(sceneMat, keypointsS);
313       
314     Mat descriptors_object, descriptors_scene;
315     SiftDescriptorExtractor extractor;
316     extractor.compute( sceneMat, keypointsS, descriptors_scene);
317     extractor.compute( objectMat, keypointsO, descriptors_object);    
318     
319     // Step 3: Match descriptors
320     // Declaring matcher. Choose between FlannBased or BruteForce
321     FlannBasedMatcher matcher; // Flann based
322     //BFMatcher matcher(NORM_L2); // Brute force. Option NORM_L1 or NORM_L2
323     descriptors_scene.size(), keypointsO.size(), keypointsS.size(); 
324     // Match pictures
325     vector< vector< DMatch > > matches;
326     matcher.knnMatch(descriptors_object, descriptors_scene, matches, 2); // Matching two nearest 

neighbors
327     
328     
329     // Filter only good matches
330     vector< DMatch > good_matches;
331     good_matches.reserve(matches.size());
332     
333     
334     for (size_t i = 0; i < matches.size(); ++i)
335     {
336         if (matches[i].size() < 2)
337             continue;
338         
339         const DMatch &m1 = matches[i][0];
340         const DMatch &m2 = matches[i][1];
341         
342         if (m1.distance <= nndrRatio * m2.distance)
343             {good_matches.push_back(m1);}
344     }
345     
346     cout << endl << endl << "MATCHES: " << matches.size();
347     cout << endl << "GOOD MATCHES: " << good_matches.size() << endl;
348     
349      //------------------------------------ SIFT END -------------------------------
350         
351         if ((good_matches.size() >= 7)) // Object found if more than seven good matches
352         {
353             cout << "OBJECT FOUND!" << endl;



354                 
355             vector< Point2f > obj;
356             vector< Point2f > scene;
357             
358             for (int i = 0; i < good_matches.size(); i++) 
359             {
360                 obj.push_back( keypointsO[ good_matches [i].queryIdx ].pt);
361                 scene.push_back( keypointsS[ good_matches [i].trainIdx ].pt);
362             }
363         
364             // Find homography between matched keypoints
365             Mat H = findHomography( obj, scene, CV_LMEDS); //CV_RANSAC also an option
366                   
367             // Get corners from object image
368             vector< Point2f > obj_corners(4);
369             obj_corners[0] = cvPoint(0, 0);
370             obj_corners[1] = cvPoint(objectMat.cols, 0);
371             obj_corners[2] = cvPoint(objectMat.cols, objectMat.rows);
372             obj_corners[3] = cvPoint(0, objectMat.rows);
373     
374             perspectiveTransform( obj_corners, scene_corners, H );
375     
376              // Display image and draw lines around detected object
377             img_show = sceneMat;           
378             line( img_show, scene_corners[0] , scene_corners[1], Scalar(0, 255, 0), 2 );
379             line( img_show, scene_corners[1] , scene_corners[2], Scalar(0, 255, 0), 2 );
380             line( img_show, scene_corners[2] , scene_corners[3], Scalar(0, 255, 0), 2 );
381             line( img_show, scene_corners[3] , scene_corners[0], Scalar(0, 255, 0), 2 );
382
383
384             imshow("Matches", img_show);//img_show
385             cv::waitKey(3);
386
387             cout << "Frame rate = " << getTickFrequency() / (getTickCount() - t0) << 

endl;
388             
389
390         Mat transformation = calcTransformMatrix();
391         
392         //cout << endl << "delta_Tc " << transformation << endl;
393         
394         calcStepwiseMovement(transformation);
395         
396         
397         // Set max speed
398         float max_pos_correction = 0.7, max_rot_correction = 0.5;
399         float steps[6] = {0,0,0,0,0,0};
400         for (int i = 0; i <= 5; i++)
401         {
402         if (i < 3)
403         {
404         if (desired_movement.next_point[i] > max_pos_correction)
405         {
406         steps[i] = abs(desired_movement.next_point[i]/

max_pos_correction);
407         }
408         }
409         if (i>=3)
410         {
411         if (desired_movement.next_point[i] > max_rot_correction)
412         steps[i] = abs(desired_movement.next_point[i]/

max_rot_correction);
413         }
414         }
415         
416         // Find largest step
417         float temp = 0;
418         for (int i = 0; i <= 5; i++)
419         {
420         if (steps[i] > temp)
421         temp = steps[i];
422         } 
423         
424         // Divide all motions by largest step



425         if(temp > 0)
426         {
427         for (int i = 0; i <= 5; i++)
428         desired_movement.next_point[i] = desired_movement.next_point[i]/

temp; 
429         }     
430         
431         
432         //-------------- Position lock command -----------------
433         
434      /**   bool position_lock = false;
435         if(desired_movement.max_offset_pos[0] < 5)
436         {
437         if(desired_movement.max_offset_rot[0]  < 2)
438         position_lock = true;
439         }
440         
441         if((desired_movement.max_offset_pos[0] > 10)
442         || (desired_movement.max_offset_rot[0]  > 4))
443         position_lock = false;
444         
445         if(position_lock == true)
446         {
447         desired_movement.next_point.clear();
448         for(int i = 0; i <= 5; i++)
449         desired_movement.next_point.push_back(0);
450         }*/
451         
452         // -----------------------------------------------------
453         
454
455 Publish();
456         }
457         else
458         {
459          imshow("Matches", sceneMat);
460             cv::waitKey(3);
461            // Publish empty desired position if no object is found       

    
462             desired_movement.next_point.clear();
463            for (int i = 0; i<=5; i++)
464             {desired_movement.next_point.push_back(0);}   
465             cout << "OBJECT NOT FOUND!" << endl;
466             Publish();
467     
468         }
469     } 
470 };
471
472
473
474 int main(int argc, char** argv)
475 {
476   ros::init(argc, argv, "objectDetection");
477   ImageConverter ic;
478   ros::spin();
479   return 0;
480 }



1 /** 
2 Arduino source code
3 Receives distance to object over ROS and moves stepper motor into position*/
4
5 #include <ros.h>
6 #include "std_msgs/Float32MultiArray.h"
7 #include <Stepper.h>
8
9

10
11 // create a variable stepper
12 Stepper stepper(200 ,10 ,11 ,12 ,13);
13
14 // create ROS node for Arduino
15 ros::NodeHandle nh_ar;
16
17
18 std_msgs::Float32MultiArray test;
19
20 // Receives distance from ROS
21 void messageCb( const std_msgs::Float32MultiArray& msg){
22   test = msg;
23   
24   digitalWrite(13, HIGH-digitalRead(13));   // blink the led
25   
26   int distance = (int)test.data[5];
27   
28   int steps = (distance-300)*1.25; // Set the referance distance to 300 mm and 
29      // Kp = 1.25 of P-regulator
30
31   moveMotor(steps);
32 }
33
34 // Create subscriber to ROS topic "objectDetection/objectLocation"
35 ros::Subscriber<std_msgs::Float32MultiArray> s("objectDetection/objectLocation", &messageCb);
36
37
38 void setup()
39 {
40   // Code : set up communication with the PC
41   Serial.begin(9600);
42   // Code : set the RPM of the stepper to 60
43   stepper.setSpeed(60);
44    
45   pinMode(13, OUTPUT);
46   nh_ar.initNode();
47   nh_ar.subscribe(s);
48 }
49
50
51 void moveMotor(int steps) 
52 {
53   int direction = steps/abs(steps);
54   for (int i = 0; i <= abs(steps); i++)
55   {
56     stepper.step(direction);
57   }
58 }
59
60
61 void loop()
62 {
63   nh_ar.spinOnce();
64   delay(10);
65 }
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Appendix C

Digital Appendix

A .zip file is included as digital appendix. This contains:

• The video agilus visual servoing.avi of the object tracking in the KUKA
Agilus robot cell at Department Of Production and Quality Engineering.

• The two ROS packages eirik vision and kuka driver used for object detec-
tion, calculation and communication with the KR C4 KUKA controller.
A README.txt file with instructions is found in the eirik vision package.

• Source code for the Arduino stepper motor.

• RSI files configured for cartesian commands. These have to be located in
the folder ”C:\KRC\ROBOTER\Config\User\Common \SensorInterface”
on the the KUKA KR C4 controller for the RSI interface to work.

• The KUKA controller program RSI Ethernet.src, that is run on the Agilus
during tracking.

• Siemens PLC configuration for the ProfiSAFE system.

• Files for the VisualComponents robot cell layout.
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Chapter 1

Introduction

This is a pre-study report used to define the work ahead, and to set the objectives for my
master thesis in Subsea Technology at NTNU. The project will be concluded in June 2014 with
a finishing thesis.

1.1 Background

Remote operations is an important part of most subsea operations. The fact that the industry
has grown more concerned with decompression sickness and other hazardous events a diver
might be subjected to, has led to a decrease of acceptable diving depth. At the same time, oil
companies are operating at deeper water than ever before. This leads to a higher demand for
remotely operated equipment, and one type is the ROV (Remotely Operated Vehicle).

The main tool of an ROV is the robotic manipulator(s). These are manually controlled by
an operator from the surface. This setup can be challenging with regards to the depth vision
and as a result often two ROVs is needed for certain operations. A system that can recognize
certain objects and automatically move into position to perform an operation would make this
work easier for the operator.

1.2 Objectives

The main objectives of this Master’s project are

1. Set up the Agilus robots and test simple control features.

2. Create a model of the robotic cell in a graphic simulation system, and test simple move-
ments in this.

3. Set up a robotic vision system for one of the robots.

4. Set up a demonstration demo were one robot holds a moving target and the other one
follows the movements.

1.3 Limitations

The work will be performed in the lab at the Department of Production and Quality at Val-
grinda. This is a dry facility and all the experiments will be conducted with no water present.

2



The result will still be relevant for subsea operation, as marinisation of the equipment is seen
as a separate development step.
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Chapter 2

Method

The work in this project will be a combination of theory, programming and experimental work.
The different phases are; selection of vision techniques and algorithms, assembly and setup of
robots, testing, computer simulation and programming. In the end there will be a test setup
of the different functions and a project report written to document the work.

PhD candidate Lars Tingelstad is working on a project in a larger robotic cell next to the one
I am using. We will cooperate on some of the matters, especially in the setup phase. There
are also other people working with robotic vision in close proximity to my work station. It
is believed that they can answer some of the questions I will have when working with the
programming.

ROS (The Robot Operating System) will be used for sensor input such as camera. The
programming will also be done with this system. I will need to spend time doing tutorials and
getting familiar with the program environment.

2.1 Literature

My project report from TPK-4510 Robotisert sveising for undervannssystemer written in the
fall 2013 contains work on robotic vision. In addition to the experience I have from this work
I will need other sources to gather information. This includes:

• Robotics - Modelling, Planning and Control used in the course TPK-4170

• Robotics, Vision and Control by Peter Corke

• Absolute C++ by Walter Savitch

• Relevant scientific articles

2.2 Project management

A Gantt diagram has been created, showing the planned progress of the project. The main
purpose of this is to investigate if there will be sufficient time to finish each part. Some
phases of the work can run simultaneously while others are dependent on the completion of an
earlier phase. The programming of the robot will start when the robot assembly and testing
is finished.
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I am participating in a course at Svalbard the week before Easter. There will therefore not
be done any work in this period, as seen in the Gantt diagram. This will be compensated by
increased activity in the rest of the period.

2.3 Milestones

The following milestones will have great significance for the outcome of the project.

• Hand in pre-study report (04. February)

• Finish setup and testing of robots (14. February)

• Implement communication between camera, ROS (Robot Operating System) and KUKA
Agilus robots (28. February)

• Create a demo for vision based robotic control (20. May)

• Finish and hand in master thesis (06. June)
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Gantt diagram
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