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Abstract

We consider the large time step (LTS) method for hyperbolic conservation
laws, originally proposed by LeVeque in a series of papers over thirty years ago.
In particular we have designed a local multi-point LTS scheme, denoted LTS
Constant-Diffusion-k̂ (LTS CDk̂) scheme, which possesses an inherent natural
mechanism for adding numerical viscosity. With this scheme we observe non-
oscillating solutions, where other LTS schemes tend to create spurious oscillations
for high Courant numbers. The scheme is first order accurate and total variation
diminishing (TVD). Its robustness is evaluated by performing simulations for the
Euler equations. With the LTS CDk̂ scheme we successfully simulate one of the
test cases presented in [LeVeque, R. J. (1985). A large time step generalization
of Godunovs method for systems of conservation laws. SIAM Journal on Numer-
ical Analysis, 22(6):1051–1073.], which gave poor results with the LTS Godunov
scheme. The oscillations observed by LeVeque for high Courant numbers are
smeared with our diffusive LTS CDk̂ scheme. For all problems considered in
this thesis, the LTS CDk̂ scheme yields solutions without oscillations. Our LTS
CDk̂ scheme hence provides a significant improvement in robustness compared to
previously studied LTS schemes, and is a main result of this thesis.

We give a recipe for constructing higher order LTS schemes, and analyze
convergence for the LTS schemes up to third order applied to the linear advection
equation. A second order LTS CDk̂ scheme is tested for the Sod shock tube
problem, which gives very accurate results, but with some oscillations around
discontinuities. These higher order schemes are not TVD. We have performed a
von Neumann stability analysis to evaluate if they are linearly stable.

Finally we extend the LTS method to the linear constant coefficient convection-
diffusion equation, which is a parabolic partial differential evolution equation, by
matching the physical viscosity with the numerical viscosity in the modified equa-
tion for the LTS CDk̂ scheme. Also for this equation we propose a method for
constructing higher order schemes. A convergence analysis is performed for a sec-
ond order LTS CDk̂ scheme for different ratios of convection to diffusion, verifying
the expected second order convergence.
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Sammendrag

I denne master-oppgaven ser vi nærmere p̊a large time step (LTS) metoden for
hyperbolske konserverings lover, presentert av LeVeque i en rekke publikasjoner
for over tretti år siden. Mer spesifikt har vi designet et lokalt fler-punkt LTS
skjema, gitt navnet LTS Constant-Diffusion-k̂ (LTS CDk̂), som har en naturlig
mekanisme for å innføre numerisk viskositet. Med dette skjemaet observerer vi
ingen oscillasjoner i løsningen, der andre LTS skjemaer tenderer til å oscillere
for høye Courant tall. Skjemaet er av første orden og den totale variasjonen
er minkende (TVD). Robustheten evalueres ved å gjøre simuleringer p̊a Euler
ligningene. Spesielt simulerer vi ett test problem presentert i [LeVeque, R. J.
(1985). A large time step generalization of Godunovs method for systems of
conservation laws. SIAM Journal on Numerical Analysis, 22(6):1051–1073.], som
gav d̊arlige resultater for LTS Godunov skjemaet. Oscillasjoner observert av
LeVeque for høye Courant tall blir jevnet ut med v̊art diffusive LTS CDk̂ skjema.
Alle simuleringer i denne oppgaven gir løsninger som er uten oscillasjoner n̊ar vi
bruker LTS CDk̂ skjemaet. LTS CDk̂ skjemaet er derfor betydelig mer robust
sammenlignet med tidligere studerte LTS skjemaer. Skjemaet er et av hoved
resultatene i denne oppgaven.

Vi viser hvordan man kan konstruere LTS skjemaer av høyere orden, videre
utfører vi en konvergens-analyse av LTS skjemaer opp til tredje orden p̊a den
lineære adveksjons ligningen. Et andre ordens LTS CDk̂ skjema er brukt p̊a
Sod shock tube problemet, noe som gir gode approksimasjoner, men med noen
oscillasjoner rundt diskontinuitetene. Disse høyere ordens skjemaene er ikke TVD,
derfor har vi gjennomført en von Neumann analyse for å bestemme om de er
lineært stabile.

Vi utvider LTS metoden til konveksjons-diffusjons ligningen med konstante
koeffisienter, som er en parabolsk partiell differensial ligning, ved å tilpasse den
fysiske viskositeten med den numeriske viskositeten i den modifiserte ligningen
for LTS CDk̂ skjemaet. Ogs̊a for denne ligningen presenterer vi en metode for
å lage høyere ordens skjemaer. En konvergens-analyse blir utført for et andre
ordens LTS CDk̂ skjema for forskjellige forhold mellom konveksjon og diffusjon.
Som forventet observerer vi andre ordens konvergens.
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1 Introduction

1.1 Large time step method
The Large Time Step (LTS) method is characterized by increasing the time increment
∆t beyond the Courant-Friedrichs-Lewy (CFL) limit, for explicit numerical approxima-
tions. The method was originally developed for hyperbolic conservation laws. Hyper-
bolic conservation laws considered here are partial differential equations (PDEs) in the
form

∂u

∂t
+ ∂f(u)

∂x
= 0, (1)

u ∈ Rm, f : Rm → Rm, x ∈ R and t ∈ R+, with initial condition

u(x, t = 0) = u0(x). (2)

The unknown u is a vector, while f(u) is a flux function. Such equations describe
the evolution of conserved quantities, and have a broad area of application like gas
flow [2] and traffic flow [3]. In the nonlinear case, the developing solution can be
quite complex, with travelling discontinuities called shocks or contact discontinuities.
Finding an analytical solution then becomes unmanageable. This motivates us to the
development of numerical solutions of equation (1).

The hyperbolicity of the problem implies that information travels at finite speeds
in space, given by the real eigenvalues of the Jacobian matrix ∂f/∂u, denoted λi, i ∈
{1, 2, ...,m}. We use an explicit finite volume method (FVM) to solve equation (1)
numerically, and the property of finite propagation of information becomes useful. One
of the big challenges, using numerical tools on hyperbolic problems, is to approximate
the fluxes across the faces of a control volume, so that the solution converges to the
correct physical solution and no oscillations occur. When approximating the flux at a
cell face, traditional methods like upwind, Godunov and Lax-Friedrichs use adjacent
cell averages. These methods have a fundamental limitation, because the cell faces are
not allowed to be affected by cell averages further away. For these methods to be stable,
we must restrict ∆t to prevent information from other cells to interact at the face. To
guarantee this property, information can travel no further than one cell. This implies

C = ∆t
∆x max

i,j
(|λi(Uj)|) ≤ 1. (3)

Where C is the Courant number [4]. ∆x is the grid spacing and Uj the average
value of u in cell j. Information with the largest speed travels a number of cells equal
to the Courant number. The traditional way to overcome the time increment restriction
(3) has been to use implicit methods. But as the grid is refined, the matrix equation
needed to be solved grows larger and larger. Implicit methods can be unconditionally
stable. On the other hand some drawbacks are diffusive solutions and computationally
expensive algorithms. When using implicit methods, the updated cell value will depend
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on the values in the whole computational domain, in the sense that all the previous cell
values are present in the matrix equation, which is solved for each time step. In the
Large Time Step method we update the cell value with a restricted number of previous
cell values. Here we look at a local (2k + 1)-point stencil centered around the updated
cell, opposed to a 3-point stencil used by the above schemes. The stability criterion (3)
is now extended to,

C ≤ k (4)
assuming linear interactions. We see from (3) that we can increase ∆t if the grid

spacing is held constant. So the desired goal of the LTS method is obtained. As we
increase the Courant number, fewer time steps are performed, but each time step will
cost more computational time, because the flux computation becomes more involved.
The great advantage of the LTS method over implicit methods is that all cell value
updates are decoupled, and as a consequence the algorithm is easy to compute in
parallel.

1.2 Previous work
The large time step method was first studied by LeVeque in a series of papers [5, 6,
7]. LeVeque developed the LTS Godunov scheme, a generalisation of the traditional
Godunov scheme. The framework for his scheme was based on waves travelling further
than one cell without any interactions, before averaging the solution inside each cell.
his scheme was able to provide remarkably good results for scalar conservation laws,
but struggled with oscillations for systems of conservation laws. The method was taken
further by Harten [8], who constructed a scheme which made the solution more smeared
as the time step increased, avoiding oscillations. More research on large time step
methods for higher dimensions has been done in recent years by, among others, Qian
and Lee [9, 10] and Morales-Hernández et al. [11]. They have studied LTS schemes for
multidimensional problems with a dimensional splitting technique. Examples are the
multidimensional compressible Euler equations and shallow water equations.

In this thesis, we continue the work of Lindqvist et al. [1], who built an algebraic
framework for LTS schemes with a one to one correspondence to the flux difference
splitting framework. The flux-difference splitting framework originates from LeVeque’s
wave interpretation, and the coefficients are given explicitly by Bore in [12].

1.3 Outline of thesis
The three goals of this master’s thesis have been:

• Numerical analysis of LTS schemes.

• Construction of a robust LTS scheme for hyperbolic conservation laws (1).

• Designing of a LTS scheme for the convection-diffusion equation.
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More precisely, this thesis is structured as follows. After an introduction to the
finite volume method and basic LTS schemes in section 2, we move on to the numerical
analysis of a general (2k + 1)-point stencil LTS scheme in section 3. Here we perform
a von Neumann stability analysis [13] of the linear scalar advection equation, which
is a linear version of equation (1). Together with the stability analysis, we close this
section with a derivation of the modified equation up to second order for a nonlinear
LTS scheme and up to third order for a linear LTS scheme.

Further in section 4, we concentrate on building a framework for constructing new
LTS schemes with desired properties like robustness and accuracy. Goal two and three
are both present in this section, because they are highly connected, as will be clear
from the text.

In section 5 we test the numerical performance of the presented LTS schemes.
Among the test problems, when considering hyperbolic PDEs, are the inviscid Burgers’
equation and the Euler equations. For parabolic PDEs, we test the LTS schemes on
the linear convection-diffusion equation. Convergence analysis and comparison with
established LTS schemes are performed. At the end in section 6, we conclude on the
work and propose further work based on this thesis.

3



2 Large time step schemes
In this chapter we discuss some important concepts related to the discretization of
partial differential evolution equations. We will only focus on fully explicit finite volume
schemes.

2.1 The finite volume method
Considering a control volume Ω, the change of the conserved quantity u inside the
control volume must equal the net flux of u crossing the boundary ∂Ω. For an arbitrary
control volume in 3D we have

d
dt

∫
Ω
udV +

∫
∂Ω
f(u) · n̂dA = 0, (5)

where n̂ is the outward pointing unit normal on ∂Ω. We derive the finite volume
method for a one dimensional domain Ω = [xleft, xright]

d
dt

∫
Ω
u(x, t)dx+ f(u(xright, t))− f(u(xleft, t)) = 0. (6)

Integrating (6) from tn to tn+1 = tn + ∆t gives∫ tn+∆t

tn

d
dt

∫
Ω
u(x, t)dxdt+

∫ tn+∆t

tn
f(u(xright, t))− f(u(xleft, t))dt = 0. (7)

Next we define the average value of u in the domain at time t

U(t) ≡ 1
L

∫
Ω
u(x, t)dx. (8)

L = xright − xleft is the length of the domain. The fundamental theorem of calculus
yields ∫ tn+∆t

tn

d
dtLU(t)dt = L(U(tn+1)− U(tn)). (9)

Finally we define the average flux over the left and right boundaries during ∆t

Fleft ≡
1

∆t

∫ tn+∆t

tn
f(u(xleft, t))dt (10)

Fright ≡
1

∆t

∫ tn+∆t

tn
f(u(xright, t))dt (11)

Equation (7) can now be written as

Un+1 = Un − ∆t
L

(Fright − Fleft), (12)

4



where the superscript n represents tn. Let Ω be divided into j subdomains denoted
Ωj ⊆ Ω, which represent the spatial discretization. xj is the point in the middle of each
domain, xj−1/2 and xj+1/2 are the points at the endpoints of each domain. Since (5)
holds for any domain, we use it for each subdomain Ωj and (12) becomes

Un+1
j = Un

j −
∆t
∆x(Fj+1/2 − Fj−1/2) ∀j, (13)

where ∆x = xj+1/2 − xj−1/2 and Fj±1/2 are the numerical fluxes at xj±1/2. For a
standard 3-point scheme, the average flux Fj±1/2 depends on the adjacent cell averages
Uj and Uj±1. Their dependence on Uj and Uj±1 is what differs in these numerical
schemes. We write the numerical fluxes as

Fj+1/2 = 1
2(f(Uj+1) + f(Uj))−

∆x
2∆tQ

0
j+1/2(Uj+1 − Uj), (14)

determined by a dimensionless parameter Q0
j+1/2. Equation (13) is in a conserva-

tive form, and the fluxes (14) are written in a consistent manner. In the way that
Fj+1/2(Uj = u, Uj+1 = u) = f(u) for all values of Q0

j+1/2. The flux conservative form
can be rewritten into something called flux-difference splitting form, which is noncon-
servative

Un+1
j = Un

j − (A0+
j−1/2∆Uj−1/2 +A0−

j+1/2∆Uj+1/2), (15)

∆Uj+1/2 = Uj+1 − Uj. (16)
Here A±0

j∓1/2 are coefficients for how much ∆Uj∓1/2 influences the updated cell aver-
age. We will use both formulations in the further analysis.

The averaging operator (8) on the function u(x, tn) transform u(x, tn) to a discrete
step function

U(x, tn) =
jmax∑
j=1

Un
j χΩj(x) (17)

where

χΩj(x) =

1 if x ∈ Ωj

0 if x /∈ Ωj

(18)

Here jmax is the number of partitions of Ω.

2.2 The Riemann problem
The 1D Riemann problem can be stated mathematically as

∂u

∂t
+ ∂f(u)

∂x
= 0 (19)

5



with initial condition

u(x, t = 0) =

uL x < 0
uR x > 0

(20)

The initial condition consists of piecewise constant values with one single disconti-
nuity at x = 0. This problem can be solved exactly in the scalar case, and a simple
closed form expression is given by Osher [14]

u(x, t) = u(x/t) = u(ζ) =


d
dζ

(
max

v∈[uL,uR]
[ζv − f(v)]

)
uL < uR

d
dζ

(
min

v∈[uR,uL]
[ζv − f(v)]

)
uL > uR

(21)

The step function (17) can be thought of as a series of independent Riemann prob-
lems, where the discontinuities are located at the cell faces. We can now solve the
individual Riemann problems, either exactly or approximately, and use the results to
obtain a value for u at the cell faces. Finding the numerical fluxes from the exact
solution of the Riemann problems is called the Godunov method. The Roe and the
Lax-Friedrichs methods are examples for approximate Riemann solvers. As long as
C ≤ 1

2 , there are no interactions between the Riemann problems. When the Courant
number increases, there is a possibility that the evolution of one discontinuity may
influence the evolution of a neighbouring discontinuity. In this thesis we simplify such
interactions by treating each discontinuity separately and superpose the result.

2.3 First order large time step schemes
A (2k + 1)-point stencil is the basis for our LTS schemes. A direct extension of (14)
and (15) gives a general large time step scheme, in both the conservative form and the
flux-difference splitting formulation;

• Numerical flux in conservative form

Fj+1/2 = 1
2(f(Uj+1) + f(Uj))−

∆x
2∆tQ

0
j+1/2(Uj+1 − Uj)

− ∆x
∆t

k−1∑
i=1

(Qi−
j+1/2−i∆Uj+1/2−i +Qi+

j+1/2+i∆Uj+1/2+i).
(22)

• Flux-difference splitting formulation

Un+1
j = Un

j −
k−1∑
i=0

(Ai+j−1/2−i∆Uj−1/2−i +Ai−j+1/2+i∆Uj+1/2+i), (23)
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where Qi±
j+1/2∓i and Ai±j∓1/2∓i are the flux conservative coefficients and the flux-

difference splitting coefficients respectively. The indices specify the position of a dis-
continuity relative to cell j. Due to the first order approximation of the time derivative,
the scheme is only first order accurate in time, except for some special cases where the
choice of the A’s or Q’s cancel the O(∆t) term and the scheme is second order accurate.
We will in this thesis consider a class of schemes which is total variation diminishing
(TVD) when applied to scalar conservation laws. This is also a property of the original
problem in integral form. Total variation is defined by

TV (u(t)) =
∫

Ω

∣∣∣∣∣∂u∂x
∣∣∣∣∣ dx (24)

in the continuous case and

TV (Un) =
∑
j

|Un
j+1 − Un

j | (25)

in the discrete case. The total variation must decrease or rather not increase

TV (Un+1) ≤ TV (Un) (26)

in order for the schemes to be TVD. Inserting (23) into (25) gives, by the application
of the triangle inequality, the generalization of Harten’s theorem [12]. The result gives
restrictions on the coefficients in the form of inequalities

A(k−1)+
j+1/2 ≥ 0 (27)

Ai+j+1/2 ≥ A
(i+1)+
j+1/2 (28)

1−A0+
j+1/2 +A0−

j+1/2 ≥ 0 (29)

A(i+1)−
j+1/2 ≥ A

i−
j+1/2 (30)

0 ≥ A(k−1)−
j+1/2 (31)

The coefficients Ai±j∓1/2∓i = Ai±(Cj∓1/2∓i) are functions of the local Courant number
C

Cj+1/2 =


∆t
∆x ·

f(Uj+1)−f(Uj)
Uj+1−Uj if ∆Uj+1/2 6= 0

∆t
∆xf

′(Uj) if ∆Uj+1/2 = 0
(32)

The local Courant number at face j + 1/2 is the translated distance of the local
discontinuity measured in number of cells. The discontinuity travels with speed s called
the shock speed.
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C = ∆t
∆xs (33)

s =


f(Uj+1)−f(Uj)

Uj+1−Uj if ∆Uj+1/2 6= 0
f ′(Uj) if ∆Uj+1/2 = 0

(34)

This coincides with the exact solution of the Riemann problem, if the physical
solution is a shock. Shock formation will depend on the initial values of the Riemann
problem and the nature of the flux function f(u).

2.3.1 The LTS Roe scheme

The first scheme presented treats all the Riemann problems as travelling shocks, even
when this is not the nature of the solution. The scheme is denoted as the LTS Roe
scheme, and the coefficients are explicitly given as

Ai+j−1/2−i(Cj−1/2−i) = max(0,min(Cj−1/2−i − i, 1)) (35)

Ai−j+1/2+i(Cj+1/2+i) = min(0,max(Cj+1/2+i + i,−1)) (36)
The scheme is sharp, in the way that it gives a good approximation of evolving shock

waves, but it is prone to entropy violations for rarefaction waves. Entropy violations are
generated when the Lax entropy condition, i.e, f ′(UL) > s > f ′(UR), is violated. Thus
the solution will not converge to the correct physical solution. Some of the problems
can be avoided using an entropy fix [15]. Another approach is to change the Courant
number by a random amount, so that the Riemann problem never lingers at a cell face.
This method was proposed by Lindqvist [16].

2.3.2 The LTS Lax-Friedrichs scheme

Another scheme is the LTS Lax-Friedrichs scheme [12], which defines

Ai±j∓1/2∓i(Cj∓1/2∓i) = 1
2k (Cj∓1/2∓i ± k). (37)

The coefficients in the LTS Roe scheme vary with i, because it tries to mimic the
exact solution. The LTS Lax-Friedrichs scheme on the other hand gives a very rough
distribution, so that basically all cells are affected by the propagating Riemann problem.
Coefficients on the left side Ai− have equal value and the same applies for the right side
Ai+. The values on the left and on the right side are weighted according to the value
of C. The scheme causes the solution to get smeared over a larger interval.

Both the LTS Roe and the LTS Lax-Friedrichs schemes are TVD. They also rep-
resent the boundaries of the entire spectrum of TVD LTS schemes [1]. The LTS Roe
scheme is the least diffusive scheme, and the LTS Lax-Friedrichs scheme the most dif-
fusive one.
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2.3.3 The LTS Godunov scheme

The coefficients for the LTS Godunov scheme are obtained by tracking the exact solution
of each Riemann problem, but in general there is no explicit formula. The closed form
expression for the LTS Godunov coefficients in the scalar case is presented in [1, 17]. It
is also shown that the LTS Godunov scheme is more or equally diffusive than the LTS
Roe scheme and lesser diffusive than the LTS Lax-Friedrichs scheme. The coefficients
are given by

Un+1
j =

k−1∑
i=−(k−1)

(
∆t
∆xMj+1/2−i

(
f(u)− (i− 1)∆x

∆t u
)

−∆t
∆xMj+1/2−i

(
f(u)− i∆x∆t u

)
− Un

i

)
,

(38)

where

Mj+1/2−i(w(u)) =


min

u∈[Uj ,Uj+1]
w(u) if Uj < Uj+1

min
u∈[Uj ,Uj+1]

w(u) if Uj ≥ Uj+1
(39)
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3 Numerical analysis of LTS methods

3.1 Von Neumann stability analysis
When we use numerical tools to solve a PDE, we want a solution where the error does
not grow unbounded in finite time. The stability analysis determines the behaviour of
the solution, and how the error grows. There are many different stability criteria, but we
start with the traditional von Neumann analysis, which applies to linear equations with
constant coefficients and periodic boundary conditions. In the von Neumann analysis
we look at how the error, due to finite arithmetic precision in computers, affects the
solution. The error εj is defined as

εj = Nj − Uj, (40)

where Nj is the finite precision solution to the discretized equation, and Uj the
exact. The error is also a solution to the discretized equation [13], and we therefore
evolve this error distribution to see how it develops in time. Since the discrete equations
for Uj and εj are the same, the stability analysis can equivalently be performed for Uj
instead of εj.

3.1.1 5-point scheme

We start our von Neumann stability analysis for a general 5-point stencil LTS scheme
given in the flux conservative framework.

Fj+1/2 = 1
2(fj + fj+1)− 1

2Q
0 ∆x

∆t (εj+1 − εj)

−Q1−∆x
∆t (εj − εj−1)

−Q1+ ∆x
∆t (εj+2 − εj+1)

(41)

Since the stability analysis only covers linear equations, a linear flux function is
considered fj = aεj, where a is the constant advection velocity. The local Courant
number is given by

C = ∆x
∆t f

′(u) = ∆x
∆t a (42)

The updated cell value is given by

εn+1
j = εnj −

∆t
∆x(F n

j+1/2 − F n
j−1/2) (43)

We insert equation (41) into (43) and get
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εn+1
j = εnj −

a∆t
2∆x(εnj+1 − εnj−1)

+ 1
2Q

0(εnj+1 − 2εnj + εnj−1)

+Q1−(εnj − 2εnj−1 + εnj−2)
+Q1+(εnj+2 − 2εnj+1 + εnj )

(44)

The error function εj(xj, t) can be expressed as a finite Fourier series determined
by the number of nodal points in the computational length L, with wave numbers
k̄m = 2πm, m ∈ {0, 1, 2, ...,M − 1}, M = L/∆x, assuming periodic boundary
conditions

εj(xj, t) =
M−1∑
m=0

ε̂m(t)eik̄mxj . (45)

Inserting the error function εj into the discrete scheme (44) and using that the
vectors [eik̄mx0 , ..., eik̄mxM−1 ]T , k̄m ∈ {0, 2π, ..., 2π(M − 1)} are linearly independent,
we get the Fourier coefficient ε̂m at the next time level

ε̂n+1
m = g(k̄m∆x)ε̂nm. (46)

Here g(k̄m∆x) is the amplification factor, a measure of how much the amplitude of
the mth Fourier mode of the error is amplified from time tn to tn+1. The von Neumann
condition requires that the amplification factor satisfy |g(k̄m∆x)| ≤ 1 for all values of
k̄m∆x. It is therefore enough to consider only one Fourier mode in the analysis.

We find the amplification factor for the 5-point scheme by replacing the following

• εnj = ε̂nme
ik̄mxj

• εn+1
j = ε̂n+1

m eik̄mxj

• εnj+l = ε̂nme
ik̄mxj+l , l ∈ {−2,−1, 1, 2}

Equation (44) then becomes upon dividing by ε̂nmeik̄mxj

g(k̄m∆x) = 1− C

2 (eik̄m∆x − e−ik̄m∆x)

+ 1
2Q

0(eik̄m∆x − 2 + e−ik̄m∆x)

+Q1−(1− 2e−ik̄m∆x + e−2ik̄m∆x)
+Q1+(e2ik̄m∆x − 2eik̄m∆x + 1).

(47)
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The amplification factor is generally a complex number, so we take the modulus
of equation (47) squared. We introduce the real variable z = cos(k̄m∆x), which is
bounded by z = −1 and z = 1, and get

|g(z)|2 = 1− (1− z)(2Q0 + 4z(Q1− +Q1+)
+ (z − 1)(Q0 + 2z(Q1− +Q1+))2

− (z + 1)(C + 2(z − 1)(Q1− −Q1+))2).
(48)

Given a set of coefficients Q0, Q1− and Q1+, linear stability for a 5-point stencil
is achieved if the inequality |g(z)|2 ≤ 1 is satisfied for all allowable values of z. Let
Q1−, Q1+ = 0 and |C| ≤ 1, then the expression reduces to the standard 3-point stencil.
We can easily verify that the limits for linear stability in this case are bounded by the
Lax-Wendroff and the Lax-Friedrichs fluxes, with Q0 = C2 and Q0 = 1 respectively.
For the 5-point stencil such analytical boundaries for the linear stability region are not
that straightforward to obtain, as we will show next. As a first step, we simplify the
above expression with the constraint Q1+ = 0, assuming a ≥ 0

|g(z)|2 = 1− (1− z)((1− z)(Q0 − 2Q1−)(1− (Q0 − 2Q1−))
+ (z + 1)(Q0 + 2Q1− − C2 + 4Q1−(1− z)(C −Q0))).

(49)

The expression can be rearranged as a polynomial function of w = 1− z, w ∈ [0, 2].

|g(z)|2 = 1− wA(w) (50)
where

A(w) = a2w
2 + a1w + a0 (51)

is a quadratic polynomial and the coefficients are given by

1. a2 = 4Q1−(Q0 − C)

2. a1 = C2 − (Q0 + 2Q1−)2 + 4Q1−(2C − 1)

3. a0 = 2(Q0 + 2Q1− − C2) = 2σ

For stability the function A(w) must be positive in its domain. Immediately we see
that a necessary condition for linear stability is positive or zero diffusion coefficient,
σ ≥ 0. From the modified equation for a general (2k+1)-point scheme we define the
diffusion coefficient to be σ = Q0 + 2∑i(Qi− + Qi+) − C2 [1], the modified equation
is discussed further in section 3.2. Suppose the diffusion coefficient were negative,
then an arbitrary value w+ close to the right of w = 0 would, by continuity, lead to
a negative value of A(w+), and hence an unstable scheme. Stability only occurs for
negative diffusion when w = 0, but this is only a special case and does not cover all
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the possible wave numbers. We find other conditions using properties of a quadratic
function. First we consider the Courant number in the interval 0 ≤ C ≤ 1, and divide
into four sub cases.

1. Q0 < C and Q1− > 0
In this case a2 is negative and A(w) becomes a concave function. If A(0) ≥ 0 and
A(2) ≥ 0, we can guarantee that A(w) ≥ 0 for w ∈ [0, 2]. This follows from a
property for concave functions. A(0) ≥ 0 ⇐⇒ σ ≥ 0 and A(2) ≥ 0 ⇐⇒ 0 ≤
Q0 − 2Q1− ≤ 1 together with Q0 < C and Q1− > 0 defines the region of linear
stability in this case. A(0) ≥ 0 and A(2) ≥ 0 are necessary conditions and are
assumed in all the other cases as a lower bound.

2. Q0 < C and Q1− < 0
The sign of a2 switches to positive, and the only possible unstable configuration
is when the extrema of A(w) are located in the domain. We show that this is not
the case. The extreme point is located at w = − a1

2a2
. w is outside the domain if

we can prove that a1 > 0.

a1 = C2 − (Q0)2 − 4Q0Q1− − 4(Q1−)2 + 8Q1−C − 4Q1−

= (C2 − (Q0)2)− 4Q1−(Q0 +Q1− − 2C + 1).
(52)

From A(0) ≥ 0, we use that Q0 ≥ C2 − 2Q1−. This gives

a1 ≥ (C2 − (Q0)2)− 4Q1−(C2 −Q1− − 2C + 1)
= (C2 − (Q0)2)− 4Q1−((C − 1)2 −Q1−).
≥ 0

(53)

3. Q0 > C and Q1− < 0
Again a2 is negative and the only requirements are A(0) ≥ 0 and A(2) ≥ 0.

4. Q0 > C and Q1− > 0
Here a2 is positive and A(w) becomes a convex function. The position of the
global extrema can in this case lie in the interval [0, 2], because (53) no longer
holds. Therefore we look at two cases. Either the global minimum is positive or
negative.

(a) a0 − a2
1

4a2
> 0

This condition gives a linearly stable configuration together with the convex
property.

(b) a0 − a2
1

4a2
< 0

We need an extra restriction in addition so that the minimum should not lie
in the interval [0,2]: − a1

2a2
/∈ [0, 2].
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All the cases sum up to the region of linear stability when 0 ≤ C ≤ 1. Exploring
further with a Courant number in the interval 1 ≤ C ≤ 2 eliminates the cases when
Q1− is negative and only cases 1 and 4 are present. In figure 1 and 2 we show the
linear stability maps composed of the various cases for Courant numbers 0.5 and 1.5. If
the coefficients (Q1−, Q0) are not in the dark blue region in figures 1 and 2, the 5-point
stencil LTS scheme (13) with the flux function (41) is stable for the linear advection
equation with a > 0.
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Figure 1: Linear stability map for C = 0.5 and Q1+ = 0.

1. Dark blue→ Outside linear stability

2. Green → Case 1.

3. Light blue→ Case 2.

4. Turquoise→ Case 3.

5. Yellow→ Case 4. (a)

6. Orange→ Case 4. (b)
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Figure 2: Linear stability map for C = 1.5 and Q1+ = 0.

1. Dark blue→ Outside linear stability

2. Green → Case 1.

3. Yellow→ Case 4. (a)

4. Orange→ Case 4. (b)
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We continue with the more general expression (48), when Q1+ 6= 0 to see if there
are some easy manipulations not yet discovered. The amplification factor is expressed
in the same way

|g(z)|2 = 1− wA(w), (54)

but this time A(w) is a cubic polynomial

A(w) = a3w
3 + a2w

2 + a1w + a0, (55)

and the coefficients are:

1. a3 = 4q2
1 − 4q2

2

2. a2 = 4q1(Q0 + 2q1)− 4q2(C + 2q2)

3. a1 = C2 − (Q0 + 2q1)2 + 4(2Cq2 − q1)

4. a0 = 2(Q0 + 2q1 − C2) = 2σ

For simplicity we have written

q1 = Q1− +Q1+ (56)

q2 = Q1− −Q1+ (57)

The case Q1+ = 0 implies q1 = q2, and (55) reduces to (51). When Q1+ 6= 0 we can
see that positive diffusion is required for linear stability, since A(0) must be positive
or zero. Both for the 3-point stencil and 5-point stencil we have shown that positive
diffusion is a necessary condition for linear stability. We believe that this is also true
for a general (2k+1)-point stencil, and one of the motivations for extending the von
Neumann analysis to a general (2k+1)-point stencil is to give an algebraic proof of the
conjecture.

3.1.2 (2k+1)-point scheme

The fluxes in the conservative formulation are expanded to cover a (2k+1)-point scheme

fj+1/2 = 1
2(fj + fj+1)− ∆x

2∆tQ
0(εj+1 − εj)

− ∆x
∆t

k−1∑
i=1

(Qi−(εj−i+1 − εj−i) +Qi+(εj+i+1 − εj+i)).
(58)

The same procedure as for the 5-point stencil gives us the updated cell error value
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εn+1
j = εnj −

a∆t
2∆x(εnj+1 − εnj−1)

+ 1
2Q

0(εnj+1 − 2εnj + εnj−1)

+Q1−(εnj − 2εnj−1 + εnj−2)
+Q1+(εnj+2 − 2εnj+1 + εnj )
.

.

.

+Q(k−1)−(εnj−(k−1)+1 − 2εnj−(k−1) + εnj−(k−1)−1)
+Q(k−1)+(εnj+(k−1)+1 − 2εnj+(k−1) + εnj+(k−1)−1)

(59)

and the amplification factor

g(k̄m∆x) = 1− C

2 (eik̄m∆x − e−ik̄m∆x)

+ 1
2Q

0(eik̄m∆x − 2 + e−ik̄m∆x)

+Q1−(eik̄m∆x − 2 + e−ik̄m∆x)e−ik̄m∆x

+Q1+(eik̄m∆x − 2 + e−ik̄m∆x)eik̄m∆x

.

.

.

+Q(k−1)−(eik̄m∆x − 2 + e−ik̄m∆x)e−(k−1)ik̄m∆x

+Q(k−1)+(eik̄m∆x − 2 + e−ik̄m∆x)e(k−1)ik̄m∆x.

(60)

For simplicity we let z = cos(k̄m∆x) and y = sin(k̄m∆x)

g(y, z) = 1− Ciy
+Q0(z − 1)
+ 2Q1−(z − 1)(z − iy)
+ 2Q1+(z − 1)(z + iy)
.

.

.

+ 2Q(k−1)−(z − 1)(z − iy)(k−1)

+ 2Q(k−1)+(z − 1)(z + iy)(k−1).

(61)
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A general formula for a complex power is given in Abramowitz and Stegun [18]

(z + iy)l =
[
zl −

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

+ i

[(
l

1

)
zl−1y −

(
l

3

)
zl−3y3 + ...

]

=
[
zl −

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

+ iy

[(
l

1

)
zl−1 −

(
l

3

)
zl−3y2 + ...

]
= gl(y, z) + iyhl(y, z)

(62)

(z − iy)l =
[
zl −

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

− i
[(
l

1

)
zl−1y −

(
l

3

)
zl−3y3 + ...

]

=
[
zl −

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

− iy
[(
l

1

)
zl−1 −

(
l

3

)
zl−3y2 + ...

]
= gl(y, z)− iyhl(y, z),

(63)

where l ∈ {1, 2, 3, ..., (k − 1)}. Inserting equation (62) and (63) into (61) gives

g(y, z) = 1 +Q0(z − 1)

+ 2(z − 1)
k−1∑
l=1

(Ql− +Ql+)gl(y, z)

− 2(z − 1)iy
k−1∑
l=1

(Ql− −Ql+)hl(y, z)

− Cyi

=
[
1 + (z − 1)

(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)]

− iy
[
C + 2(z − 1)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
]

(64)

For stability we need |g| ≤ 1. The amplification factor is in general a complex
number, so we take the modulus of g squared.
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|g|2 =
[
1 + (z − 1)

(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)]2

+ y2
[
C + 2(z − 1)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
]2

= 1− (1− z)
[
2
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)

− (1− z)
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)2

−(1 + z)
(
C + 2(z − 1)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

= 1− (1− z)
[
2
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)

− (1− z)
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)2

+ (1− z)
(
C − 2(1− z)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

−2
(
C − 2(1− z)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

(65)

We want to write the equation in the form

|g|2 = 1− wA(w) (66)

Where w = 1− z, w ∈ [0, 2] and A(w) is a polynomial

A(w) = a0 + a1w + a2w
2 + a3w

3 + ... (67)

If we can show that a0 is proportional to the numerical diffusion σ, then we have
proved that positive diffusion is a necessary condition for linear stability. To show this
we need to take a further look at the term

Q0 + 2
k−1∑
l=1

(Ql− +Ql+)gl(y, z), (68)

and rewrite gl(y, z) as a product of the factor (1− z)
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gl(y, z) =
[
zl −

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

=
[
zl − 1 + 1−

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]

=
[
−(1− z)(zl−1 + zl−2 + ...z2 + z + 1) + 1−

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]
.

(69)

The remaining terms involving y will always be an even power of y. This allows us
to factorise y2 = 1 − z2 = (1 − z)(1 + z). All the terms are now a factor of (1 − z)
except for a constant term equal to 1.

gl(y, z) =
[
−(1− z)(zl−1 + zl−2 + ...z2 + z + 1) + 1−

(
l

2

)
zl−2y2 +

(
l

4

)
zl−4y4 − ...

]
= 1 + (1− z)ĝl(y, z)

(70)

where

ĝl(y, z) = −(zl−1 + zl−2 + ...z2 + z + 1)−
(
l

2

)
zl−2(1 + z) +

(
l

4

)
zl−4y2(1 + z)− ... (71)

We return to the amplification factor (65) and use the above factorisation of gl(y, z).
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|g|2 = 1− (1− z)
[
2
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+) + 2(1− z)
k−1∑
l=1

(Ql− +Ql+)ĝl(y, z)
)

− (1− z)
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)2

+ (1− z)
(
C − 2(1− z)

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

−2C2 − 2(1− z)
−4C

k−1∑
l=1

(Ql− −Ql+)hl(y, z) + 4(1− z)
(
k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

= 1− w
[
2σ + 4w

k−1∑
l=1

(Ql− +Ql+)ĝl(y, z)

− w
(
Q0 + 2

k−1∑
l=1

(Ql− +Ql+)gl(y, z)
)2

+ w

(
C − 2w

k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

−2w
−4C

k−1∑
l=1

(Ql− −Ql+)hl(y, z) + 4w
(
k−1∑
l=1

(Ql− −Ql+)hl(y, z)
)2

= 1− wA(w)
(72)

Since w = 1 − z, w ∈ [0, 2], a necessary condition is A(w+) > 0 =⇒ σ ≥ 0, by
the arguments of continuity. We have in this section shown that linear stability implies
positive or zero diffusion, with an algebraic poof. In practical implementation of a
(2k + 1)-point LTS scheme we can use equation (61) to check for linear stability. In
the next section we also want to connect the nonlinear TVD stability region (27)-(31),
presented in section 2.3, with the linear stability region. In particular we want to
confirm the statement:

• Non linear stability (TVD) implies linear stability for a (2k + 1)-point LTS scheme.

3.1.3 TVD implies linear stability

To prove the statement we use equation (61), but exchange the real variable z with the
real variable x
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g = 1− Ciy
+Q0(x− 1)
+ 2Q1−(x− 1)(x− iy)
+ 2Q1+(x− 1)(x+ iy)
.

.

.

+ 2Q(k−1)−(x− 1)(x− iy)(k−1)

+ 2Q(k−1)+(x− 1)(x+ iy)(k−1),

(73)

where x = cos(k̄m∆x) and y = sin(k̄m∆x). Define the complex number z to be
z = x+ iy. In our case we have the following properties

1. |z| =
√
x2 + y2 = 1

2. z̄ = z−1|z|2 = z−1

3. |z̄| =
√
x2 + (−y)2 = 1

4. x = <(z) = z+z̄
2 = z+z−1

2

5. y = =(z) = z−z̄
2i = z−z−1

2i

Rearranging equation (73) with the complex variable z

g = 1− C

2 (z − z−1) + Q0

2 (z + z−1 − 2) +Q1−(z + z−1 − 2)z−1 +Q1+(z + z−1 − 2)z

+Q2−(z + z−1 − 2)z−2 +Q2+(z + z−1 − 2)z2 +
k−1∑
j=3

(z + z−1 − 2)(Qj−z−j +Qj+zj)

= 1−Q0 +Q1− +Q1+ + 1
2(Q0 − 4Q1− + 2Q2− + C)z−1 + 1

2(Q0 − 4Q1+ + 2Q2+ − C)z

+
k−1∑
j=1

(Qj− − 2Q(j+1)− +Q(j+2)−)z−(j+1) +
k−1∑
j=1

(Qj+ − 2Q(j+1)+ +Q(j+2)+)zj+1

(74)
Applying the triangle inequality on the amplification factor gives

|g| ≤
∣∣∣1−Q0 +Q1− +Q1+

∣∣∣+ ∣∣∣∣12(Q0 − 4Q1− + 2Q2− + C)z−1
∣∣∣∣+ ∣∣∣∣12(Q0 − 4Q1+ + 2Q2+ − C)z

∣∣∣∣
+

k−1∑
j=1

∣∣∣(Qj− − 2Q(j+1)− +Q(j+2)−)z−(j+1)
∣∣∣+ k−1∑

j=1

∣∣∣(Qj+ − 2Q(j+1)+ +Q(j+2)+)zj+1
∣∣∣
(75)
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Since
∣∣∣zl∣∣∣ = 1 ∀l we can cancel all powers of z.

|g| ≤
∣∣∣1−Q0 +Q1− +Q1+

∣∣∣+ ∣∣∣∣12(Q0 − 4Q1− + 2Q2− + C)
∣∣∣∣+ ∣∣∣∣12(Q0 − 4Q1+ + 2Q2+ − C)

∣∣∣∣
+

k−1∑
j=1

∣∣∣(Qj− − 2Q(j+1)− +Q(j+2)−)
∣∣∣+ k−1∑

j=1

∣∣∣(Qj+ − 2Q(j+1)+ +Q(j+2)+)
∣∣∣

(76)

We are now left with a number of expressions inside absolute value signs. From [1]
we state the TVD conditions (27)-(31) in conservative form

1−Q0 +Q1− +Q1+ ≥ 0 (77)

Q0 − 4Q1± + 2Q2± ∓ C ≥ 0 (78)

Qi± − 2Q(i+1)± +Q(i+2)± ≥ 0 ∀i ≥ 1 (79)

If we say that every expression in (76) is greater or equal to zero, which would be
equivalent to imposing the TVD conditions (77)-(79), we can remove the absolute value
sign, and the complete expression nicely reduces to

|g| ≤ 1. (80)

We conclude that TVD stability implies linear stability! Another way to interpret
the proof is purely geometrical, since all the powers of the complex variable z live on
the unit circle in the complex plane. Connecting the points with straight lines gives
an inscribed convex polygon within the unit circle, so any convex combination of the
powers results in a point inside this polygon. When we impose the TVD restriction
(77)-(79), the coefficients in equation (74) create a convex combination of the powers
of z, because the coefficients are positive and sum to 1. The convex combination gives
a complex number with absolute value less than or equal 1, which completes the proof.

3.2 Modified equation
The modified equation is the PDE which our discretized scheme is solving. We find
the modified equation by Taylor expanding all the terms of a smooth function U(x, t)
inserted into the discrete equation around (xj, tn) up to desired order. The LTS schemes
can be designed with higher order accuracy, if we carefully adjust the coefficients, in
a way that leads to cancellation of terms in the modified equation. If our numerical
schemes are consistent and stable, they will converge to the original PDE. First we
find the modified equation for a linear (2k+1)-point large time step scheme up to third
order. The coefficients Ai±j∓1/2∓i are constant in this case.
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3.2.1 Linear equation

A general Large time step scheme in the flux difference splitting formulation is given
by

Un+1
j = Un

j −
k−1∑
i=0

(
Ai+j−1/2−i∆j−1/2−i +Ai−j+1/2+i∆j+1/2+i

)
(81)

where

∆j+1/2 = Un
j+1 − Un

j (82)
Taylor expanding U(xj, tn+1) and U(xj+i, tn), where i ∈ {−k, ...,−2,−1, 1, 2, ..., k}

around (xj, tn) gives the following

Un+1
j = U + ∆tUt + ∆t2

2 Utt + ∆t3
3! Uttt +O(∆t4) (83)

Uj−i = Uj − i∆xUx + (i∆x)2

2 Uxx −
(i∆x)3

3! Uxxx +O(∆x4) (84)

Uj−(i+1) = Uj − (i+ 1)∆xUx + ((i+ 1)∆x)2

2 Uxx −
((i+ 1)∆x)3

3! Uxxx +O(∆x4) (85)

∆j−1/2−i =Un
j−i − Un

j−(i+1)

=∆xUx −
∆x2

2 (2i+ 1)Uxx + ∆x3

3! (3i2 + 3i+ 1)Uxxx +O(∆x4)
(86)

∆j+1/2+i =Un
j+i+1 − Un

j+i

=∆xUx + ∆x2

2 (2i+ 1)Uxx + ∆x3

3! (3i2 + 3i+ 1)Uxxx +O(∆x4)
(87)

Insert (83),(86) and (87) into (81) gives to third order

Ut + ∆x
∆t

k−1∑
i=0

(
Ai+ +Ai−

)
Ux =∆x2

2∆t

k−1∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
Uxx

− ∆x3

3!∆t

k−1∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
Uxxx

− ∆t
2 Utt −

∆t2
3! Uttt +O(∆x3,∆t3)

(88)

Next we want to change the higher order time derivatives to space derivatives.
We take the following partial derivatives ∂

∂t
, ∂2

∂t2
, ∂2

∂t∂x
, ∂
∂x

and ∂2

∂x2 of equation (88)
Ut + āUx = b̄Uxx + c̄Uxxx + d̄Utt + ēUttt +O(∆x3,∆t3), with the following constants
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• ā = ∆x
∆t
∑k−1
i=0 (Ai+ +Ai−)

• b̄ = ∆x2

2∆t
∑k−1
i=0 (2i+ 1) (Ai+ −Ai−)

• c̄ = −∆x3

3!∆t
∑k−1
i=0 (3i2 + 3i+ 1) (Ai+ +Ai−)

• d̄ = −∆t
2

• ē = −∆t2
3!

leads to

• ∂
∂t

: Utt + āUxt = b̄Uxxt + d̄Uttt +O(∆x2,∆t2)

• ∂2

∂t2
: Uttt + āUxtt = O(∆x,∆t)

• ∂2

∂t∂x
: Uttx + āUxxt = +O(∆x,∆t)

• ∂
∂x

: Utx + āUxx = b̄Uxxx + d̄Uttx +O(∆x2,∆t2)

• ∂2

∂x2 : Utxx + āUxxx = +O(∆x,∆t)

Bringing all together into the modified equation gives

Ut + āUx = (b̄+ ā2d̄)Uxx + (c̄− 2āb̄d̄− 2ā3d̄2 − ā3ē)Uxxx +O(∆x3,∆t3), (89)

∆t behaves as ∆x due to the constant Courant number, and we writeO(∆x3,∆t3) =
O(∆x3). Finally we write out the complete expression

Ut + ∆x
∆t

k−1∑
i=0

(
Ai+ +Ai−

)
Ux = ∆x2

2∆t

(
k−1∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2

)
Uxx

+ ∆x3

6∆t

(
3C

k−1∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
−

k−1∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
− 2C3

)
Uxxx +O(∆x3).

(90)
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3.2.2 Nonlinear equation

The difference for the non linear modified equation is that the coefficientsAi±j∓1/2∓i

(
Ci±
j∓1/2∓i

)
now depend on the local cell face Courant number. So this must be taken into account
when we do Taylor expansion. A complete derivation is given in [12] up to second order,
here we just state the result

Ut + ∆x
∆t

k−1∑
i=0

(
Ai+ +Ai−

)
Ux = ∆x2

2∆t ∂x
(
k−1∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2

)
Ux +O(∆x2).

(91)
This is equivalent to the linear modified equation up to second order. But this shows

that it is also applicable to nonlinear advection equations

∂u

∂t
+ f ′(u)∂u

∂x
= 0. (92)
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4 Construction of new LTS schemes
There are two goals we want to reach throughout this chapter. First we would like to
create a robust oscillation-free LTS scheme for hyperbolic systems of conservation laws,
not caring too much about accuracy. Second we explore the possibility of expanding the
LTS method to include parabolic partial differential equations by carefully manipulating
terms in the modified equation.

4.1 Design framework for LTS schemes
A motivation for introducing an alternative formulation for the LTS coefficients is a
more practical way to design new numerical schemes with desired properties. The
LTS Roe and the LTS Lax-Friedrichs schemes were constructed as TVD schemes with
minimum and maximum numerical diffusion respectively. A convex combination of the
two schemes creates a new TVD scheme, with the ability of containing an amount of
numerical diffusion spanned by the two extreme cases. The scheme is referred to as the
LTS β scheme. The coefficients of the flux-difference splitting form (23) are defined
by

Ai± = βAi±LF + (1− β)Ai±Roe, (93)

where Ai±LF and Ai±Roe are the coefficients defined in (37) and (35)-(36), respectively. The
parameter β ∈ [0, 1] gives the LTS Roe scheme when β = 0 and the LTS Lax-Friedrichs
scheme when β = 1. Even though all possible values of diffusion in the TVD range can
be reproduced by the LTS β scheme, it does not span the entire domain of TVD LTS
schemes. LTS schemes with a given amount of numerical diffusion are not necessarily
unique.

We introduce a new function a(i, C), which is used to determine the LTS coefficients
Ai± in the flux-difference splitting formulation. The function is an approximate solution
to the cell interface Riemann problem scaled with ∆t/∆x. C = ∆t

∆xf
′(u) is the local

Courant number. We find the coefficients Ai± by integrating over the corresponding
cell

Ai+ =
∫ i+1

i
a(ζ, C)dζ (94)

Ai− =
∫ −i
−(i+1)

a(ζ, C)dζ − 1 (95)

Notice that we subtract the integral by 1 in equation (95). With this convention
we avoid a jump in the function a(i, C) at i = 0. We can interpret the coefficients
Ai± as a finite volume representation of the continuous function a(i, C) and a(i, C)− 1
respectively. Ai± are a set of discrete numbers. Immediately we see that a(i, C) does not
uniquely determine Ai±, because we can always change the function so that the integral
stays the same. The function is graphed for a 11-point stencil in figure 3. A sufficient
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Figure 3: The function a(i, C) graphed for a 11-point stencil

condition for TVD is for the function a(i, C) to lie in the interval 0 ≤ a(i, C) ≤ 1 and
at the same time a(i, C) is a nonincreasing function. The condition follows from the
TVD conditions (27)-(31).

Next we show how the function a(i, C) relates to the familiar LTS Roe, Lax-
Friedrichs and β schemes, and give explicit formulas for them. We construct functions
that obey the condition for TVD. For the LTS Roe scheme we give the function

a(i, C) =
{

1 if i < C
0 if i > C

(96)

This function reflects the nature of LTS Roe in the way that it is the ”sharpest” TVD
scheme. By ”sharpest” we mean that everything behind the propagating discontinuity
is fully affected and nothing ahead, except inside the cell corresponding to the local
Courant number.

Figure 4: The function a(i, C) representing the LTS Roe scheme for a 9-point stencil
with C = 1.5

For the LTS Lax-Friedrichs scheme we have a constant a(i, C) function

a(i, C) = 1
2k (k + C). (97)

The number k determines the stencil width according to the (2k+1)-point stencil
formula. Changing C within the allowed interval −k ≤ C ≤ k moves the constant
function a(i, C) between 0 and 1. In the extreme cases C = ±k, the LTS Lax-Friedrichs
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scheme is equal to the LTS Roe scheme. An example is shown in figure 5. We choose
C = 1.5 for a 9-point stencil, then the constant a(i, C) = 1

8(1.5 + 4) = 11
16 .

Figure 5: The function a(i, C) representing the LTS Lax-Friedrichs scheme for a 9-point
stencil with C = 1.5

From the two above schemes we can now define an a(i, C) function for the LTS β
scheme.

a(i, C) = (1− β)a(i, C)LTS Roe + βa(i, C)LTS LxF (98)

An illustration is provided in figure 6. Also this time we let C = 1.5 and k = 4.
The parameter 1− β quantifies the jump in the a(i, C) function.

Figure 6: The function a(i, C) representing the LTS β scheme for a 9-point stencil with
C = 1.5 and β = 0.1

4.1.1 The a(i, C) function

The a(i, C) function is an approximate solution to the cell interface Riemann problem
scaled with ∆t/∆x. With the LTS Roe the a-function is the original discontinuity only
translated a distance equal to the local Courant number, and can be interpreted as
pure convection with no loss of information, except when we hit inside a cell C /∈ Z and
average the function with the operator (94) or (95). Then the discrete distribution no
longer corresponds to the continuous distribution, and we have a diffusive effect with
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loss of information. Only for Courant numbers C ∈ Z, the discrete distribution matches
the continuous distribution, and no diffusion is introduced.

Say we split the discontinuity into two and send the lower part to the right end of
the stencil and the upper part to the left end of the stencil, then we have the LTS Lax-
Friedrich a-function, see figure 7. The dividing point is obtained from (97). Information
is thus scattered all over the computational domain and yields a very diffusive scheme.

In the same way we think of the LTS β scheme as a discontinuity divided into
three parts, where the lower and upper part are propagated to the right and left end
of the stencil, respectively. The middle part is convected corresponding to the Courant
number, see figure 8. The dividing points are now determined by (98). In this numerical
scheme the parameter β tunes how much information that is convected exactly and how
much information is scattered.

Figure 7: Interpretation of the function a(i, C) for the LTS Lax-Friedrichs scheme.

Figure 8: Interpretation of the function a(i, C) for the LTS β scheme.

4.2 The LTS CDk̂ schemes
We will now use this framework to design new LTS schemes by constructing a convenient
function a(i, C). A first thought is to minimize the jump in the LTS Roe function.
This is also a consequence of the introduction of the LTS β scheme, but since it is
a linear combination of the LTS Roe scheme and the LTS Lax-Friedrichs scheme it
will change all the cells in a stencil. We want to affect the neighbouring cells around
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the cell corresponding to the local Courant number C and at the same time reduce
the jump. As a first step we smear the discontinuity symmetrically over an interval of
i ∈ [C−1, C+1]. The smearing is represented by a linear function over the interval. We
denote the scheme as LTS Constant-Diffusion-1 (LTS CD1). A central property
of the scheme is that the diffusion coefficient σ(C), apparent in the modified equation
given by Bore [12], is independent of the Courant number. A formula for the a(i, C)
function in this case is

a(i, C) =


1 if i < C − 1

1
2(C − i) + 1

2 if C − 1 < i < C + 1
0 if i > C + 1

(99)

For this scheme we need to extend our stencil by 1, hence the number 1 in the name,
because of the symmetrical smearing. The function will always distort cells exactly one
cell ahead of the Courant number. We use (94) and (95) to compute the coefficients,
and insert them into the formula for the diffusion coefficient.

σ(C) =
k∑
i=0

(2i+ 1)(Ai+ −Ai−)− C2 = 1
2 (100)

Figure 9: The function a(i, C) representing the LTS CD1 scheme for a 9-point stencil
with C = 1.5

This reveals an interesting property of the scheme. The diffusion coefficient is now
dependent on another parameter, the smearing interval, not the local Courant number.
To see this we expand the idea and extend the interval to i ∈ [C−2, C+2]. The scheme
is now referred to as the LTS CD2. The a(i, C) function then becomes

a(i, C) =


1 if i < C − 2

1
4(C − i) + 1

2 if C − 2 < i < C + 2
0 if i > C + 2

(101)

and the stencil is increased by 2 compared to the original scheme with the same
Courant number. In the same way we compute the numerical diffusion coefficient
σ(C) = 3

2 and observe the same constant behavior. Inspired by the results we try to
find a relationship between the numerical diffusion coefficient and the smearing interval.
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Figure 10: The function a(i, C) representing the LTS CDk̂ scheme for a (2(k+ k̂) + 1)-
point stencil with C = k.

We look at a general LTS CDk̂ scheme, k̂ ∈ {1, 2, 3, ...}, for which the function a(i, C)
is illustrated in figure 10. The smearing interval is now i ∈ [C − k̂, C + k̂], and we need
an equivalent length of the numerical stencil (2(k+k̂)+1). The a(i, C) function is given
by

a(i, C) =


1 if i < C − k̂

1
2k̂ (C − i) + 1

2 if C − k̂ < i < C + k̂

0 if i > C + k̂

(102)

The diffusion coefficient is now computed to be

σ(C) =
k−1+k̂∑
i=0

(2i+ 1)(Ai+ −Ai−)− C2 = 2k̂2 + 1
6 . (103)

We do a quick sanity check to validate the formula, setting k̂ equal to 1 and 2,
and the formula gives the correct values corresponding to the introducing cases. The
diffusion coefficient is a quadratic function of the smearing interval k̂. This family of
TVD LTS schemes exhibits a robust way of adding numerical diffusion to the problem
at hand. But for now the schemes only have discrete values for the diffusion coefficients.
Some values are given in table 1. Observe that the diffusion coefficient increases with
k̂, which increases the smearing of the solution. We desire a continuous spectrum of
numerical diffusion, therefore in the next section we will expand this method further to
improve on this point.

Table 1: The first five values for the diffusion coefficient corresponding to the LTS CDk̂
scheme.

k̂ 1 2 3 4 5
σ 1

2 = 0.50 3
2 = 1.50 19

6 = 3.17 11
2 = 5.50 17

2 = 8.50
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4.3 Extending the LTS CDk̂ schemes
We pursue the same way of reasoning, when we extend our LTS CDk̂ schemes, intro-
ducing a new parameter φ which gives an extra degree of freedom. The parameter φ is
the slope of the a(i, C) function located in the smearing interval. To ensure that the
method is consistent [12]

k−1+k̂∑
i=0

(Ai+ +Ai−) = C, (104)

the a(i, C) function must be given by

a(i, C) =


1 if i < C − k̂

φ(C − i) + 1
2 if C − k̂ < i < C + k̂

0 if i > C + k̂

(105)

In the introduction we gave a sufficient condition for the a(i, C) function to be TVD.
The parameter φ lying in the interval 0 ≤ φ ≤ 1

2k̂ will satisfy this TVD condition. With
this restriction on φ, the range of a(C − k̂, C) is [0.5, 1] and the range of a(C + k̂, C) is
[0, 0.5]. The interval i ∈ [C− k̂, C+ k̂] is connected by a linear function with a negative
slope, thus the function a(i, C) satisfies the TVD condition. We do the same analysis
on these schemes as we did for the LTS CDk̂ schemes and call them LTS CDk̂ − φ
schemes. We start off with the simplest cases when k̂ = 1 and k̂ = 2, and then move
on to the general case. Figure 11 shows the function a(i, C) for the LTS CD1-φ with
φ > 1

2 . Calculating the numerical diffusion coefficient results in

σ(C) =
k∑
i=0

(2i+ 1)(Ai+ −Ai−)− C2 = 2
(
φ− 1

2

)(
α2 − α− 1

2

)
+ 1

2 , (106)

where α = ceil(C)−C, α ∈ [0, 1] and the ceil function computes the nearest integer
rounded up. As expected the expression reduces to the diffusion coefficient for the LTS
CD1 scheme when φ = 1

2 . But now the expression also depends on the local Courant
number C. To achieve a constant diffusion we can use the one parameter freedom to
adjust for the α dependence. Say that we want a diffusion coefficient σ(C) = σ0, and
then solve for the slope φ

φ =
1
4 −

σ0
2

1
2 + α− α2 + 1

2 . (107)

Imposing the TVD condition

0 ≤ φ ≤ 1
2 , (108)

leads to an allowable diffusion interval for the LTS CD1-φ scheme
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1
2 ≤ σ0 ≤

5
4 (109)

Figure 11: The function a(i, C) representing the LTS CD1-φ scheme for a 9-point stencil
with C = 1.5.

We continue with the case k̂ = 2 and do the same analysis. Figure 12 shows the
function a(i, C) for the LTS CD2− φ scheme with φ > 1

4 . Results are given below.

σ(C) =
k+1∑
i=0

(2i+ 1)(Ai+ −Ai−)− C2 = 2
(
φ− 1

4

) (
2α2 − 2α− 5

)
+ 3

2 . (110)

Solving for φ with a given diffusion coefficient σ0 yields

φ =
3
4 −

σ0
2

5 + 2α− α2 + 1
4 . (111)

Imposing the TVD condition

0 ≤ φ ≤ 1
4 , (112)

leads to an allowable diffusion interval for the LTS CD2-φ scheme

3
2 ≤ σ0 ≤

17
4 . (113)

We observe from the range of the allowable diffusion, assuming TVD, that there
exists a gap between the diffusion intervals. The maximum amount of diffusion for
the LTS CD1-φ scheme is 5

4 and the minimum amount of diffusion for the LTS CD2-φ
scheme is 3

2 , leading to an interval of diffusion [5
4 ,

3
2 ] not covered. For robustness, we

would like a numerical scheme able to span the entire domain of possible diffusion.
When we move on to the general case, we will see if there are such gaps between all the
discrete values of k̂.

The function a(i, C) for the LTS CDk̂−φ scheme is illustrated in figure 13, and the
general formula for the diffusion coefficient is given by
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Figure 12: The function a(i, C) representing the LTS CD2-φ scheme for a 9-point stencil
with C = 2.5.

σ(C) = 2
(
φ− 1

2k̂

)α2 − α + 1− 4k̂2

6

 k̂ + 2k̂2 + 1
6 . (114)

Solving for φ

φ =
σ0
2 −

2k̂2+1
12

k̂
(
α2 − α + 1−4k̂2

6

) + 1
2k̂
, (115)

and imposing the TVD conditions

0 ≤ φ ≤ 1
2k̂
, (116)

leads to an allowable diffusion interval for the LTS CDk̂ − φ scheme

2k̂2 + 1
6 ≤ σ0 ≤

4k̂2 + 1
4 . (117)

Figure 13: The function a(i, C) representing the LTS CDk̂-φ scheme for a (2(k+ k̂)+1)-
point stencil with C = k − 1

2 .

Now let us compare the maximum allowable diffusion of the LTS CDk̂− φ with the
minimum allowable diffusion of the LTS CD(k̂ + 1) − φ scheme. We want to find the
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lowest k̂, which closes the gaps between the discrete schemes. Consider the quadratic
inequality

4k̂2 + 1
4 >

2(k̂ + 1)2 + 1
6 , (118)

which is true when k̂ <
1−
√

5
2

2 or k̂ > 1+
√

5
2

2 . Only positive values of k̂ are relevant
for our analysis, so the LTS CDk̂ − φ TVD schemes with a k̂ ≥ 2 spans a continuous
range of numerical diffusion coefficients starting from 3

2 .

4.4 Second order LTS CDk̂ − φ schemes
In the previous section we considered LTS CDk̂ − φ schemes, which fulfilled the TVD
condition. The schemes where only first order accurate because of numerical diffusion.
A violation of the TVD condition allows us to increase the slope φ above φ = 1

2k̂ ,
pushing the diffusion coefficient σ0 to σ0 = 0, and achieving a second order accurate
LTS scheme, denoted LTS CDk̂ − φ− 2. Even though the LTS CDk̂ − φ− 2 schemes
no longer satisfy the strict nonlinear TVD stability criterion, they can still be linearly
stable. A von Neumann analysis will tell, if they are linearly stable or not. Since we do
not have a set of inequalities to describe the region of linear stability for a (2(k+ k̂)+1)-
point stencil, we must check each scheme with a combination of k and k̂, by plugging
the coefficients into the expression for the amplification factor given by (61).

4.5 Higher order LTS schemes
We propose a method for designing higher order LTS schemes, based on the second
order scheme. Within the same interval i ∈ [C− k̂, C+ k̂] we replace the linear function
in figure 13 by a (p− 1)th order polynomial, which results in a pth order LTS scheme,
if the polynomial coefficients are chosen properly. We determine the coefficients of the
polynomial in such a way that the error terms in the modified equation cancel

Ut + a1Ux =
p∑
l=2

al
∂lU

∂xl
+O(∆xp), (119)

where a1 = f ′(u) and al = 0, l = 2, ..., p. This leads to solving a system of p linear
algebraic equations. The first equation is for consistency, while the others equations
remove numerical errors up to pth order. A numerical convergence analysis is performed
in chapter 5, for a third order LTS scheme applied on the linear advection equation,
with coefficients computed from the modified equation (90) derived in section 3.2.1

∆x
∆t

k−1+k̂∑
i=0

(
Ai+ +Ai−

)
= a1 (120)
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∆x2

2∆t

k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2

 = 0 (121)

∆x3

6∆t

3C
k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
−

k−1∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
− 2C3

 = 0

(122)

4.6 Convection-diffusion equation
In this section we expand our idea of large time step methods to parabolic PDEs. We
start with the simplest equation, the 1-dimensional convection-diffusion equation with
constants coefficients

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2 , (123)

where a is the advection velocity and ν the viscosity. We would like to solve the
problem with the LTS CDk̂−φ schemes, originally developed for the advection equation.
The LTS CDk̂−φ schemes are consistent with the advection equation, and can therefore
not be used directly. From the modified equation, we find that the fraction ∆x2

∆t → 0,
and the second order spatial derivative vanishes in the limit. A consistent numerical
scheme for the convection-diffusion equation needs consistency between the numerical
and physical diffusion. The numerical diffusion is the coefficient in front of the spatial
second derivative in the modified equation (90)

∆x2

2∆t

k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2

 = ∆x2

2∆t σ = ν (124)

To fulfill this constraint we use a time step ∆t of order O(∆x2) so that the fraction
does not vanish in the limit. As a consequence, the Courant number C is of order
O(∆x). Solving equation (124) for σ and imposing the upper bound on σ according to
the LTS CDk̂ − φ schemes gives the following inequality

σ = 2ν∆t
∆x2 ≤ k̂2 + 1

4 =⇒ ∆t ≤
∆x2

(
k̂2 + 1

4

)
2ν (125)

A traditional 3-point explicit numerical scheme for diffusion problems has a stability
time step restriction equal ∆t ≤ ∆x2

2ν , which closely coincides with our relaxed time step
restrictions when k̂ = 1. The relaxed time step increases with order O(k̂2), and at the
same time the computational stencil increases with order O(k̂). So with fewer time
steps more computational work is required in each time step. But this is exactly the
motivation for LTS methods, because then parallel computing is much more efficient.
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4.6.1 Higher order LTS schemes for the convection-diffusion equation

A similar approach, as for the higher order advection LTS schemes, is used to obtain
higher order LTS schemes for the linear convection-diffusion equation. The difference
is related to the term in front of the second derivative, which needs to be consistent
with the physical viscosity. In this case we write the modified equation as

Ut + a1Ux = a2Uxx +
p+1∑
l=3

al
∂lU

∂xl
+O(∆xp), (126)

From the modified equation (126) we must have a1 = a, a2 = ν and al = 0, l =
3, .., p + 1 to achieve a pth order LTS scheme for the advection-diffusion equation.
Observe that one more equation needs to be solved to obtain the pth order LTS scheme,
therefore we must use a pth order polynomial in this case.

4.6.2 Consistency

We do a consistency analysis for the LTS CDk̂ − φ schemes applied to the linear
convection-diffusion equation. Our (2(k + k̂) + 1)-point stencil schemes are given by

Un+1
j = Un

j −
k−1+k̂∑
i=0

(
Ai+j−1/2−i∆j−1/2−i +Ai−j+1/2+i∆j+1/2+i

)
, (127)

where
∆j+1/2 = Uj+1 − Uj (128)

We rewrite (127)

Un+1
j − Un

j

∆t + 1
∆t

k−1+k̂∑
i=0

(
Ai+j−1/2−i∆j−1/2−i +Ai−j+1/2+i∆j+1/2+i

)
= 0, (129)

and define the discrete operator T∆t,∆x acting on the approximation of u(xj, tn) to
be

T∆t,∆xU =
Un+1
j − Un

j

∆t + 1
∆t

k−1+k̂∑
i=0

(
Ai+j−1/2−i∆j−1/2−i +Ai−j+1/2+i∆j+1/2+i

)
. (130)

Next we apply the operator T∆t,∆x to the exact solution u(xj, tn)

T∆t,∆xu =
un+1
j − unj

∆t + 1
∆t

k−1+k̂∑
i=0

(
Ai+j−1/2−i∆j−1/2−i +Ai−j+1/2+i∆j+1/2+i

)
. (131)

Further we Taylor expand the following terms un+1
j , ∆j−1/2−i and ∆j+1/2+i:
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un+1
j = unj + ∆tut + ∆t2

2 utt +O(∆t3) (132)

∆j−1/2−i = ∆xux −
∆x2

2 (2i+ 1)uxx + ∆x3

3! (3i2 + 3i+ 1)Uxxx +O(∆x4) (133)

∆j+1/2+i = ∆xux + ∆x2

2 (2i+ 1)uxx + ∆x3

3! (3i2 + 3i+ 1)Uxxx +O(∆x4) (134)

Inserting the equations (132), (133) and (134) into (131), and using the condition
that ∆t behaves as ∆x2, we get

T∆t,∆xu = ut + ∆x
∆t

k−1+k̂∑
i=0

(
Ai+ +Ai−

)
ux −

∆x2

2∆t

k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
uxx

+ ∆x3

3!∆t

k−1+k̂∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
uxxx +O(∆x2)

(135)

By construction of the LTS CDk̂ schemes we have

k−1+k̂∑
i=0

(
Ai+ +Ai−

)
= C (136)

and

k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2 = σ, (137)

then equation (135) becomes

T∆t,∆xu =ut + ∆x
∆t Cux −

∆x2

2∆t σuxx

+ ∆x3

3!∆t

k−1+k̂∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
uxxx +O(∆x2)

(138)

Now let us look at the difference between the differential operator T = ∂
∂t

+a ∂
∂x
−ν ∂2

∂x2

and the discrete operator T∆t,∆x, acting on the function u(x, t)

T∆t,∆xu− Tu = ∆x3

3!∆t

k−1+k̂∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
uxxx +O(∆x2) (139)
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given that ∆x
∆tC = a and ∆x2

2∆t σ = ν. The method is consistent because the discrete
operator converges to the differential operator when we refine the grid, T∆t,∆xu−Tu→
0 when ∆x → 0. The LTS CDk̂ − φ schemes are only first order accurate due to
the truncation error of order O(∆x). For higher order methods we use the procedure
described in section 4.6.1. Given a and ν in (123), the second order LTS coefficients
are defined by

∆x
∆t

k−1+k̂∑
i=0

(
Ai+ +Ai−

)
= a, (140)

∆x2

2∆t

k−1+k̂∑
i=0

(2i+ 1)
(
Ai+ −Ai−

)
− C2

 = ν (141)

and

∆x3

3!∆t

k−1+k̂∑
i=0

(3i2 + 3i+ 1)
(
Ai+ +Ai−

)
= 0. (142)

Ai± are given by (94) and (95). In this case the function a(i, C) is a quadratic
polynomial and the polynomial coefficients are found by solving the system of equations
(140)-(142). The stability condition is

∆t ≤
∆x2

(
k̂2 + 1

4

)
2ν . (143)
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5 Numerical simulations
Now it is time to test the proposed numerical schemes, and evaluate their robustness
and accuracy. We divide this chapter into hyperbolic and parabolic problems, mainly
focusing on hyperbolic scalar equations and systems of conservation laws. We will cover
the linear advection equation, the inviscid Burgers’ equation and the Euler equations
in the hyperbolic case, and the linear convection-diffusion equation for the parabolic
case.

When we do a convergence study we measure the error in the L1 norm

ε(∆x, tn) = ||unumerical − uexact||1 = ∆x
∑
i

|Un
i − u(xi, tn)|, (144)

where ε is the error at tn = n∆t. We find the order of convergence p with the
formula

p = log(ε(∆x1)/ε(∆x2))
log(∆x1/∆x2) , (145)

where ∆x1 and ∆x2 are two different grid spacings.

5.1 Hyperbolic problems
5.1.1 The linear advection equation

A convergence analysis is performed for the first, second and third order accurate fam-
ilies of LTS CDk̂ schemes applied to the linear advection equation to confirm the accu-
racy.

∂u

∂t
+ a

∂u

∂x
= 0, (146)

with a continuous initial condition

u(x, t = 0) = sin(2πx). (147)

Periodic boundary conditions are implemented and we run the simulation for one
period. Then the exact solution is equal to the initial condition sin(2πx). The rates of
convergence are listed in tables 2, 4 and 6. As expected the convergence rates are
approaching the order of the schemes when the grid is refined. The errors are listed in
tables 3, 5 and 7. We observe that the error decreases when the Courant number
increases for all the LTS schemes in this analysis. This makes sense, because we are
performing fewer iterations. The errors increase when k̂ increases. This is probably due
to a less accurate approximation of the Riemann problem.

42



Table 2: Order of convergence p for the first order LTS CDk̂ scheme applied to the
linear advection equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x1/∆x2 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3

2.00e-02/1.00e-02 0.95 0.83 0.65 1.00 0.93 0.83 0.99 0.96 0.91
1.00e-02/5.00e-03 0.97 0.91 0.81 1.00 0.97 0.92 1.03 1.01 0.98
5.00e-03/2.50e-03 0.98 0.95 0.90 0.99 0.98 0.95 1.01 1.01 0.99
2.50e-03/1.25e-03 0.99 0.98 0.95 1.00 0.99 0.98 1.01 1.00 1.00

Table 3: Error ε for the first order LTS CDk̂ scheme applied to the linear advection
equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3

2.00e-02 1.1e-1 2.7e-1 4.4e-1 5.5e-2 1.5e-1 2.8e-1 2.7e-2 7.8e-2 1.5e-1
1.00e-02 5.5e-2 1.5e-1 2.8e-1 2.8e-2 8.0e-2 1.6e-1 1.4e-2 4.0e-2 8.2e-2
5.00e-03 2.8e-2 8.0e-2 1.6e-1 1.4e-2 4.1e-2 8.3e-2 6.7e-3 2.0e-2 4.1e-2
2.50e-03 1.4e-2 4.2e-2 8.4e-2 7.0e-3 2.1e-2 4.3e-2 3.3e-3 1.0e-2 2.1e-2
1.25e-03 7.1e-3 2.1e-2 4.4e-2 3.5e-3 1.0e-2 2.1e-2 1.7e-3 5.0e-3 1.0e-2

Table 4: Order of convergence p for the second order LTS CDk̂ scheme applied to the
linear advection equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x1/∆x2 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3

2.00e-02/1.00e-02 2.00 2.38 2.95 2.00 2.40 2.95 2.00 2.41 2.93
1.00e-02/5.00e-03 2.00 2.13 2.78 2.00 2.14 2.75 1.93 2.09 2.76
5.00e-03/2.50e-03 1.99 2.03 2.49 2.00 2.04 2.43 2.00 2.04 2.44
2.50e-03/1.25e-03 1.99 2.00 2.19 1.98 1.99 2.15 2.00 2.01 2.16

Table 5: Error ε for the second order LTS CDk̂ scheme applied to the linear advection
equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 1 k̂ = 2 k̂ = 3

2.00e-02 1.2e-3 1.4e-3 5.1e-3 6.9e-4 8.7e-4 2.9e-3 3.1e-4 4.1e-4 1.4e-3
1.00e-02 3.0e-4 2.7e-4 6.6e-4 1.7e-4 1.6e-4 3.7e-4 7.9e-5 7.6e-5 1.8e-4
5.00e-03 7.6e-5 6.0e-5 9.5e-5 4.3e-5 3.8e-5 5.5e-5 2.1e-5 1.8e-5 2.7e-5
2.50e-03 1.9e-5 1.5e-5 1.7e-5 1.1e-5 9.2e-6 1.0e-5 5.2e-6 4.4e-6 4.9e-6
1.25e-03 4.8e-6 3.7e-6 3.7e-6 2.7e-6 2.3e-6 2.3e-6 1.3e-6 1.1e-6 1.1e-6
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Table 6: Order of convergence p for the third order LTS CDk̂ scheme applied to the
linear advection equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x1/∆x2 k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 2 k̂ = 3 k̂ = 4

2.00e-02/1.00e-02 3.01 3.01 2.99 3.05 3.03 3.02 3.01 3.00 2.99
1.00e-02/5.00e-03 2.99 3.00 2.99 3.01 3.01 3.01 3.03 3.03 3.03
5.00e-03/2.50e-03 3.00 3.00 3.00 2.99 3.00 3.00 3.03 3.02 3.02
2.50e-03/1.25e-03 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.01

Table 7: Error ε for the third order LTS CDk̂ scheme applied to the linear advection
equation with a continuous initial condition and a = 1.

C = 1.1 C = 2.25 C = 4.75
∆x k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 2 k̂ = 3 k̂ = 4

2.00e-02 1.0e-3 5.0e-3 1.5e-2 6.5e-4 2.8e-3 8.3e-3 3.1e-4 1.3e-3 4.0e-3
1.00e-02 1.3e-4 6.2e-4 1.9e-3 7.9e-5 3.4e-4 1.0e-3 3.9e-5 1.7e-4 5.0e-4
5.00e-03 1.6e-5 7.7e-5 2.4e-4 9.8e-6 4.3e-5 1.3e-4 4.6e-6 2.1e-5 6.1e-5
2.50e-03 2.0e-6 9.7e-6 3.0e-5 1.2e-6 5.3e-6 1.6e-5 5.8e-7 2.5e-6 7.6e-6
1.25e-03 2.5e-7 1.2e-6 3.8e-6 1.5e-7 6.7e-7 2.0e-6 7.3e-8 3.2e-7 9.4e-7

5.1.2 The inviscid Burgers’ equation

To see how the LTS CDk̂ schemes behave compared to the LTS Roe, the LTS Lax-
Friedrichs and the LTS β schemes, we do some numerical simulations on nonlinear
PDEs. First we consider a nonlinear scalar equation, then in the next section we
move on to a system of nonlinear conservation laws. Here we want to solve the one-
dimensional inviscid Burgers’ equation

∂u

∂t
+ 1

2
∂u2

∂x
= 0, (148)

with a square pulse as initial condition

u(x, t = 0) =

1 0.3 < x < 0.6
0 else

(149)

and periodic boundary conditions. We look at the solution after t = 2s and use a
grid spacing ∆x = 0.01. The simulation is computed with a Courant number C = 5,
a relatively high Courant number, see figure 14. The LTS CD1 scheme clearly gives
better results in this case than the other schemes. There is no sign of entropy violation
from the rarefaction wave and the result is nice and smooth.

For now we have only tried the LTS CD1 scheme. The next step is to compare the
LTS CDk̂ schemes against each other. Our next simulation has the same conditions as
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the one before, but now we compare k̂ = 1, k̂ = 2, k̂ = 3 and k̂ = 4. As expected the
solution is more smeared when we increase k̂, see figure 15.
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Figure 14: The 1 dimensional inviscid Burgers’ equation acting on a square initial pulse,
solved with various LTS schemes with 100 cells after t = 0.2s. For the LTS β scheme,
β = 0.05. All cases are computed with a Courant number C = 5.
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Figure 15: The 1 dimensional inviscid Burgers’ equation acting on a square initial pulse,
solved with LTS CDk̂ (k̂ ∈ 1, 2, 3, 4) schemes with 100 cells after t = 0.2s. All schemes
are computed with a Courant number C = 5.
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5.1.3 The Euler equations

For the nonlinear system of hyperbolic conservation laws we consider the Euler equa-
tions for 1-dimensional gas flow

∂u

∂t
+ ∂f(u)

∂x
= 0, (150)

with

u =

 ρ
ρv
E

 , f(u) =

 ρv
ρv2 + p
v(E + p)

 (151)

Here ρ is density, ρv the momentum density, E the density of total energy and p
the pressure. We assume an ideal gas, which yields the relation

p = (γ − 1)
(
E − 1

2ρv
2
)
, (152)

where γ is the ratio of specific heat, equal 1.4 for air. As initial condition for our
simulation, we will start with constant values for U separated by a single jump in the
centre of our computational domain. Let our left and right starting values be ρL

pL
vL

 =

 1
1
0

 ,
 ρR
pR
vR

 =

 0.125
0.1
0

 . (153)

This is referred to as the Sod shock tube problem [19]. The evolution of the density
for this problem consists of a left going rarefaction and right going contact and shock
discontinuity. The nonlinear Euler equations are linearized through the Roe matrix
[20]. One of the challenges in solving the problem numerically with LTS schemes is
avoiding entropy violation in the left going rarefaction wave as is observed in the LTS
Roe scheme for high Courant numbers. The LTS β scheme helps to smear the solution.
Spurious oscillations around the contact discontinuity and shock are also problems for
both the LTS Roe and LTS β schemes for very large Courant numbers. For the Sod
shock tube problem we compare the numerical and the exact density solution for the
schemes discussed this far. The solution is found after t = 0.25s for a Courant number
of 8 and 200 computational grid cells, see figure 16. We estimate the optimal β for this
problem to behave as β = min(1, 30∆x/L) [1], where L is the length of the domain.
The LTS Roe and LTS Lax-Friedrichs schemes give very poor results for such a high
Courant number. The other two LTS schemes have different ways of adding numerical
diffusion, and they are reflected in the simulation. While the LTS CD3 scheme is very
smooth, the LTS β scheme shows some tendency to oscillate.

In the next simulation we double the Courant number to C = 16, see figure 17, and
observe how this affects the schemes. We have in this simulation changed from the LTS
CD3 scheme to the LTS CD6 scheme, since more diffusion is needed because of fewer
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time steps. From this picture it is even more clear that the LTS β scheme starts to
generate wiggles for very high Courant numbers. The LTS CD6 scheme is able to give
a smooth solution for this simulation.

In figure 18 we do a grid refinement for the two schemes; the LTS CD6 and the LTS
β schemes. We want to see, if oscillations are created for the LTS CD6 scheme, and if
the wiggles of the LTS β scheme disappear. Computational domains of 400, 800 1600
cells are tested.

We continue the analysis on the LTS CDk̂ schemes, and run simulations of the Euler
equations for several Courant numbers with different amounts of numerical diffusion.
See figure 19 for results. We find that too little numerical diffusion creates a spike just
before the contact discontinuity, and to much numerical diffusion leads to an inaccurate
solution. With a visual inspection of the graphs we estimate the ratio k

k̂
= 3 to give a

good trade-off between accuracy and smooth solution.
Finally we see how far it is reasonable to increase the Courant number. We perform

the simulations with the above approximation of the stencil width. The results are
visualized in figure 20. First we note that there are no indication of spurious oscillations,
despite the extremely high Courant numbers. It looks like the method gives smooth
solutions for this problem no matter how high we push the Courant number. The
simulations are performed on both coarse and refined grids. The solutions are on
the other hand very inaccurate, and give more averaged results. The grid spacing
decreases for the highest Courant numbers, because the time step becomes larger than
the simulation time.

A new simulation is performed with the second order LTS CDk̂−φ−2 scheme where
the ratio k/k̂ = 1 for Courant numbers 1,2,3 and 10, see figure 21. A general trend for
the scheme, like other second order schemes, is oscillations near discontinuities. But
we observe with grid refinement that oscillations around the rarefaction and contact
discontinuity are damped, for the shock discontinuity they are not damped.

To check the robustness of the LTS CDk̂ schemes, we use a test case provided by
LeVeque in his paper [7]. This was a double Riemann problem for which the LTS
Godunov scheme created spurious oscillations, and might have been one of the reasons
why LeVeque did not continue with the LTS method. The initial condition consists of
three states UL, UM and UR divided at the points x = 0.6 and x = 0.65. The states are
given by

 ρL
pL
vL

 =

 0.265574
0.303130
0.927453

 ,
 ρM
pM
vM

 =

 0.125
0.1
0

 ,
 ρR
pR
vR

 =

 0.516633
1.27472
−2.66908

 .
(154)

We show results in figure 22 and 23. The point with this simulation is to give
indications that our scheme gives nonoscillating solutions not sacrificing accuracy, for
high Courant numbers. The ”exact” solution in this case is computed with the Roe
scheme with a Courant number C = 0.875 and 10000 cells. It is evident that our LTS
CDk̂ scheme also in this case smears the solution with no oscillations, but there is a
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lack of accuracy. With grid refinement we observe convergence to the ”exact” solution.
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Figure 16: The Sod shock tube problem solved with the LTS CD3, the LTS Roe, the
LTS Lax-Friedrichs and the LTS β schemes. The computational domain consists of 200
cells and β = min(1, 30∆x/L), and all schemes are computed with a Courant number
C = 8.
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Figure 17: The Sod shock tube problem solved with the LTS CD6, the LTS Roe, the
LTS Lax-Friedrichs and the LTS β schemes. The computational domain consists of 200
cells and β = min(1, 30∆x/L), and all schemes are computed with a Courant number
C = 16.
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Figure 18: The Sod shock tube problem solved with the LTS CD6 and the LTS β
schemes. The computational domain consists of 400, 800 and 1600 cells ranked from
top to bottom. β = min(1, 30∆x/L), and all simulations are computed with a Courant
number C = 16.
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Figure 19: The Sod shock tube problem solved for Courant numbers 6, 9, 12 and 15 with
different amounts of added numerical diffusion. The computational domain consists of
200 cells.
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Figure 20: The Sod shock tube problem solved for Courant numbers 30, 60, 90 and 120
with a LTS CDk̂ scheme corresponding to the ratio k

k̂
= 3. The computational domains

consist of both a course grid and a fine grid.
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Figure 21: The Sod shock tube problem solved for Courant numbers 1, 2, 3 and 10
with the second order LTS CDk̂− φ− 2 scheme corresponding to the ratio k

k̂
= 1. The

computational domain consists of 200 cells.
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Figure 22: LeVeques test case solved for Courant numbers 3.5, 7, 10.5 and 14 with 400
cells and an appropriate LTS CDk̂ scheme where k̂ = 2, 4, 6, 8, respectively.
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Figure 23: LeVeques test case solved for Courant numbers 3.5, 7, 10.5 and 14 with 2000
cells and an appropriate LTS CDk̂ scheme where k̂ = 2, 4, 6, 8, respectively.
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5.2 Parabolic problem
5.2.1 The convection-diffusion equation

Simulations are performed on a Gauss function as initial condition, which is the funda-
mental solution of the diffusion equation

∂u

∂t
= ν

∂2u

∂x2 , (155)

given by

u(x, t) = 2√
4πνt

e−
x2
4νt (156)

The linear convective term a∂u
∂x

only contributes by translating the solution in space.
Thus the fundamental solution to the linear convection-diffusion equation is

u(x, t) = 2√
4πνt

e−
(x−at)2

4νt (157)

In equation (157) we have a singularity for t = 0, therefore we let our initial condition
for (123) be

u(x, t1) = 2√
4πνt1

e
− x2

4νt1 , (158)

starting at time t = t1, with an exact solution after tmax

u(x, tmax) = 2√
4πν(t1 + tmax)

e
− (x−atmax)2

4ν(t1+tmax) . (159)
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Table 8: Order of convergence p for a second order LTS CDk̂ scheme applied to the linear
convection-diffusion equation with a Gauss function as initial condition, for different
ratios r and k̂. The advection speed is a = 1 and the simulation runs for tmax = 0.025.
The length of the domain L is 20.

k̂ = 2 k̂ = 20 k̂ = 20 k̂ = 10
∆x1/∆x2 r = 5 r = 10 r = 20 r = 0.1 r = 0.5 r = 1

2.00e-02/1.00e-02 2.01 2.11 2.09 2.11 2.43 2.13
1.00e-02/5.00e-03 2.01 2.00 2.03 1.99 1.99 2.07
5.00e-03/2.50e-03 2.00 2.00 2.02 2.01 2.00 2.02

We do a convergence analysis of a second order LTS CDk̂ scheme modified for
convection-diffusion problems, see section 4.6. Rates of convergence values p are given
in table 8 for different ratios r = a/ν = Re/L and for different k̂. Re is the Reynolds
number and L is the length of the domain. Notice that a high ratio is evaluated with
a small stencil extension (k̂ = 2) and a low ratio with a larger stencil extension. The
reason is that the Riemann problem becomes more smeared with more diffusion. Then
a larger k̂ gives a better approximation of the Riemann Problem. This is the most
efficient way to do it, because the stencil becomes unnecessary wide if large k̂ is used
for convection dominated flow.
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6 Conclusions and further work
We have designed a family of LTS schemes with a robust way of adding numerical vis-
cosity to hyperbolic conservation laws for high Courant numbers. We have introduced
a parameter k̂ which increases the numerical viscosity. If oscillations occur in the solu-
tion, we smear them by increasing k̂. Several simulations on the Euler equations with
different initial conditions are performed and the scheme gives oscillation-free solutions
for appropriate choices of k̂. A further study on optimal choices of k̂ would be advan-
tageous for practical implementation. Maybe there exists some kind of relationships
between k̂, the Courant number and physical parameters.

Higher order LTS schemes are constructed and applied to both linear and nonlinear
PDEs, with promising results. A second order LTS scheme, used to solve the Sod
shock tube problem, has remarkably good accuracy and is a good candidate for further
analyses. In particular a problem with oscillations around discontinuities needs to be
improved. A first thought is to degrade the scheme to a first order non oscillating
scheme in the vicinity of a discontinuity [8, 12].

A von Neumann stability analysis for a local (2k + 1)-point scheme is carried out
and can be used to verify linear stability for the schemes (61). We have in addition
given algebraic proofs that any (2k+ 1)-point TVD scheme is also linearly stable in the
sense of von Neumann and further that a (2k + 1)-point linearly stable scheme implies
positive or zero numerical viscosity.

The LTS method is extended to parabolic PDEs through a natural extension of
the LTS CDk̂ scheme. First simulations with the constant coefficient time dependent
convection-diffusion equation on a Gauss function have been successful. The method
applies to all ratios of convection to diffusion, and can be extended to higher order.
The constant coefficient case is the simplest case, but the method has potential to work
on more complicated problems, like the viscous Burgers’ equation with a coordinate
dependent diffusion coefficient, i.e. ν = ν(x).
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