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Introduction

This Ph.d. thesis consists of three papers:

(1) Benedikte Grimeland and Karin M. Jacobsen. Abelian quotients of triangulated
categories. Journal of Algebra 439 (2015), 110–133.

(2) Benedikte Grimeland and Karin M. Jacobsen. Realizing orbit categories as stable
module categories - a complete classification. Preprint, arXiv: 1508:02970v1.

(3) Karin M. Jacobsen. Modules of finite projective dimension over a cluster-tilted
algebra. Manuscript.

All three papers concern the interaction between abelian and triangulated categories. We
use triangulated categories to better understand the structure of module categories.

1. Background

Let A be an abelian category, and let Db(A) be the bounded derived category as
defined by Verdier in [29]. We know that Db(A) is triangulated [21], with suspension
functor equal to the shift functor on complexes X 7→ X[1].

1.1. Orbit categories. In the last decade, some very interesting results have come
from studying smaller categories obtained from the derived category. Given an automor-
phism on Db(A), we can define an orbit category:

Definition 1. Let be C an additive category and F : C → C an automorphism.
The orbit category C/F has the same objects as C, and its morphisms are given by
HomC/F (X, Y ) =

⊕
n∈Z HomC(X,F

nY ).

The orbit category is not necessarily triangulated. However, we know of a large class
of functors that do give triangulated orbit categories:

Theorem 2 ([22]). Suppose that A is an hereditary abelian k-category. Let F be an
autoequivalence on Db(A) that fulfills the following properties:

(1) For each indecomposable object X ∈ Db(A), there are only finitely many i ∈ Z
such that F i ∈ A.

(2) There exist an integer N ≥ 0 such that each F -orbit of each indecomposable object
of Db(A) contains an object U [n] where U is indecomposable in A.

Then Db(A)/F is naturally a triangulated category and the functor Db(A) → Db(A)/F
is a triangle functor. We call F an admissible functor.

Let τ be the AR-translation. Then the functor F = τ−1[1] is admissible. We call
the category CA = Db(A)/F the cluster category of A [13]. If A = mod Λ, we write
Db(Λ) := Db(A) and CΛ := CA. The cluster categories on this form yield a categorification
of the acyclic cluster algebras[15], but they also turn out to be interesting in its own right.
It should be noted that in the cluster category we have X[1] = τX by construction. Amiot
has defined the cluster category for algebras of global dimension 2, and for quivers with
potential [1].
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iv INTRODUCTION

1.2. Quotient categories and cluster-tilting objects. While the various triangu-
lated categories are interesting to study, they are rather useless for our purposes without
a way of getting back to the module category. One option is the Hom-functor: If X is
an object in the triangulated category C, then Γ = EndC(X) is a ring. Moreover, for any
object Y ∈ C, the object HomC(X, Y ) is a Γ-module, so HomC(X,−) is a functor to an
abelian category.

We will also use the construction of a quotient category:

Definition 3. Let C be a category. An ideal I in C is a non-empty collection of
morphisms such that for any composition of morphisms fg where f ∈ I or g ∈ I, we have
fg ∈ I. We set

I(X, Y ) = Hom(X, Y ) ∩ I.
The quotient category C/I has the same objects as C, and has morphisms given by

HomC/I(X, Y ) = HomC(X, Y )/I(X, Y ).

The natural functor π : C/I is called the quotient functor. It is universal with respect
to sending the morphisms of I to zero.

The quotient functor is always full and dense. By universality we can show that any
full and dense functor can be described as a quotient functor. For an object T , we define
IT to be the collection of morphisms factoring through T . We then write C/T for the
quotient category.

The quotient category is particularly interesting when used in conjunction with cluster-
tilting objects. We call T ∈ C a cluster-tilting object if it has no self-extensions, and is
maximal with respect to that property:

Definition 4 ([13]). An object T ∈ C is called a cluster-tilting object if the following
holds:

addT = {X ∈ C|ExtC(T,X) = 0} = {Y ∈ C|ExtC(Y, T ) = 0}

We call Γ = EndC(T )op a cluster-tilted algebra. Buan, Marsh and Reiten showed in [11]
that in the cluster category, the functor Hom(T,−) induces an equivalence mod Γ ∼= C/τT .

Let Λ be a hereditary path algebra over an acyclic quiver Q. We say that the cluster-
tilted algebra Λ̃ = EndCΛ(T ) is cluster-tilted of type Q.

Keller and Reiten generalised the results of [11] to 2-Calabi-Yau triangulated categories
[23]. In particular, they show that the cluster-tilted algebra is Gorenstein.

Furthermore, in [26] Koenig and Zhu generalise the results of [11] to all triangulated
categories, using cluster-tilting subcategories. These are subcategories T such that

T = {X ∈ C|ExtC(T,X) = 0} = {Y ∈ C|ExtC(Y, T ) = 0}.
If C is a triangulated category and T is a cluster-tilting subcategory of C, then C/T is
abelian. Note that if T is a cluster-tilting object, then addT is a cluster-tilting subcate-
gory.

1.3. Surface algebras. Let Λ be a gentle algebra [5], where the relations are from 3-
cycles with radical square zero (this technical condition means that we are dealing with a
quiver with potential, hence we can use Amiot cluster categories [1]). The cluster category
CΛ can be represented geometrically [10]. We give the construction for path algebras of of
Dynkin type A, first described in [14], but it holds in larger generality as shown in [10].

Let S be a disc and let M be a set of at least four marked points on the boundary
∂S of S. We call (S,M) a marked surface. Consider the set of arcs between the marked
points, up to homotopy. The arcs that are not homomorphic to arcs in ∂S \M are in
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Figure 1. On the left: an AR-quiver for CΛ of type A3 with the summands
of a cluster-tilting object marked. On the right: the marked surface repre-
sentation of the same cluster category, with the same cluster-tilting object
bolded.

bijection to the indecomposable objects of CΛ. Together with a definition of irreducible
morphisms, composition and mesh relations, this gives us a complete description of the
cluster-category.

A maximal set of non-intersecting arcs in (S,M) is called a triangulation. When arcs
intersect, the corresponding objects have non-trivial extensions. Hence a triangulation
of (S,M) corresponds to a maximal object without self-extensions, or a cluster-tilting
object. In [10] this correspondence is shown to be a bijection.

Let T be a cluster-tilting object and ∆ its corresponding triangulation. The quotient
CΛ/T is equivalent to the module category of a cluster-tilted algebra Λ̃ ∼= EndC Λ(T ).
If we set the arcs in ∆ to correspond to zero objects, the marked surface gives us a
representation of mod Λ̃ [6][14].

2. Abelian quotients of triangulated categories.

Our first paper [16] concerns a simple question: When is a quotient category of a trian-
gulated category abelian? As discussed in Section 1.2, we know sufficient conditions for a
quotient categories to be abelian. We wanted to find necessary and sufficient conditions.
We assume throughout this section that C is a Hom-finite, Krull-Schmidt triangulated
category.

We start by considering C and an ideal I. We show that if C/I is abelian with a
projective generator and the quotient functor is cohomological, then the quotient functor
is representable.

Then the natural question is: When is a functor of the form HomC(T,−) equivalent to
a quotient functor? Before we give the theorem, we note that a right minimal morphism
is a morphism f such that if fg = f , then g is an isomorphism.

Theorem 5 ([16, Thm. 17]). Fix some object T ∈ C. Then HomC(X,−) is a quotient
functor, i. e. full and dense, if and only if the following two conditions are satisfied.

a: For all right minimal morphisms T1 → T0 with T0, T1 ∈ addT , all triangles

T1 → T0 → X
h−→ T1[1]

satisfy HomC(T, h) = 0.
b: For any object X ∈ C with HomC(T,X) 6= 0 there exists a triangle

T1 → T0 → X
h−→ T1[1]

such that T1, T0 ∈ addT , and HomC(T, h) = 0.



vi INTRODUCTION

We also show that the AR-structure of the category is preserved under cohomological
quotient functors.

It turns out that the objects that give full and dense functors are closely related to
cluster-tilting objects:

Theorem 6 ([16, Thm. 25]). An object T ∈ C is a cluster-tilting object if and only if
the following conditions are satisfied.

a: For all right minimal morphisms T1 → T0 with T0, T1 ∈ addT , all triangles

T1 → T0 → X
h−→ T1[1]

satisfy HomC(T, h) = 0.
b*: For any object X ∈ C there exists a triangle

T1 → T0 → X
h−→ T1[1]

c: If T ′ is a indecomposable summand of T , then T [1] /∈ addT .

In particular, in the cluster category it is in practice only the cluster-tilting objects
that give full and dense functors.

Theorem 7 ([16, Thm. 27]). Let C be the cluster category, and let T be an object in
C such that HomC(T,−) : C → mod End(T )op is full and dense. Then either End(T ) = k
or T is a cluster-tilting object.

3. Realizing orbit categories as stable module categories

It is well known that the stable module categories over self-injective algebras are
triangulated, see e. g [18]. Holm and Jørgensen showed a triangulated equivalence between
certain categories of higher cluster type and the stable module categories of certain self-
injective algebras [19]. We extend their results in the second paper of the thesis.

By work of Riedtmann [27][28] and Bretcher, Läser and Riedtmann [9], we have a
complete classification of the Auslander-Reiten-quivers (henceforth called AR-quivers) of
representation-finite connected self-injective algebras. These AR-quivers are stable trans-
lation quivers of Dynkin tree type. Asashiba extended their work, by giving a classification
of the representation-finite self-injective algebras up to derived equivalence. He assigns
to each algebra a derived invariant called the type which is determined by the AR-quiver
[3][4]. Asashiba also give representative algebras for each type.

Consider the orbit category Db(Λ)/F , where Λ is a path algebra over a Dynkin quiver.
Provided that F is reasonably nice, the AR-quiver of Db(Λ)/F is a stable translation
quiver of Dynkin tree type. We find algebras Λ and admissible functors F so that we can
match the AR-quiver of any stable module category of a representation-finite self-injective
algebra. If the AR-quivers of two categories are identical, there is an additive equivalence
between the categories. Building on that, we want to prove that the equivalence is a
triangulated equivalence.

We use a theorem by Amiot [2] which helps us reduce the problem to showing equiv-
alence of AR-quivers. We give the following corollary to the theorem, specializing it to
our situation:

Corollary 8 ([17, Cor. 8]). Let Λ be a representation-finite, self-injective, basic
algebra such that modΛ is of standard type. Let ∆ be a Dynkin diagram, and let Φ :
Db(mod k∆)→ Db(mod k∆) be a functor such that Db(mod k∆)/Φ is triangulated.

If the AR-quivers of modΛ and Db(mod k∆)/Φ are equivalent as translation quivers,
then modΛ and Db(mod k∆)/Φ are equivalent as triangulated categories.
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Using this corollary, we match up Asashiba’s types with suitable functors for orbit
categories. We give a full list of which orbit categories correspond to stable module
categories over self-injective algebras.

4. Modules of finite projective dimension over a cluster-tilted algebra

In the final paper, we return to the subject of cluster categories and cluster-tilted
algebras. Let Λ be a hereditary path algebra of Dynkin type, and let Λ̃ = EndCΛ(T ) be a
cluster-tilted algebra of the same type as Λ.

We study the full subcategory P≤1 of mod Λ̃ whose objects are the modules of projec-
tive dimension at most one. Reiten and Keller showed that cluster-tilted algebras have
Gorenstein dimension one [23], so P≤1 contains all modules of finite projective dimension.

By Auslander and Smalø, the category P≤1 has AR-structure [7]. We can calculate
the AR-translate τ≤1 in P≤1 using right approximations. We call f : r≤1X → X a right
minimal P≤1-approximation of X if f is right minimal, r≤1X ∈ P≤1 and any morphism
from P≤1 to X factors through f . If X is not projective then Kleiner and Perez showed
that r≤1τX = I ⊕ τ≤1X, where I is an injective object [24][25].

The modules of infinite projective dimension have been given a very nice description
by Beaudet, Brustle and Todorov in [8]. It turns out that an indecomposable module X
has infinite projective dimension if and only if there is an endomorphism of T in CΛ that
factors through the preimage of X.

For type A, we show that the description translates easily to the geometric represen-
tation:

Theorem 9 ([20, Thm. 13]). Let (S,M) be a marked surface, where S is a disc and
|M | ≥ 4. Let ∆ be a triangulation of (S,M), and let A(∆) be the cluster-tilted algebra
corresponding to ∆. Let γ be an arc in (S,M) which is not in ∆, and let N(γ) be the
indecomposable module corresponding to γ. The following are equivalent:

(1) The A(∆)-module N(γ) has infinite projective dimension.
(2) There is an internal triangle αβδ of ∆, where α is a predecessor to γ and γ is

a predecessor to β with respect to clockwise rotation at γ(0). We say that γ is
trapped by a triangle.

The idea is illustrated in Figure 2.

×

×

×

×

×

×

×

×

Figure 2. An indecomposable object of infinite projective dimension is
represented by an arc (dashed lines) ”trapped” by the triangulation (bold
lines)
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Using this description, we show that the number of non-isomorphic indecomposables
in P≤1 is dependent only the number of nodes n and the number of directed three-cycles
t in the quiver corresponding to Λ.

Theorem 10 ([20, Thm. 16]). Let Λ be a cluster-tilted algebra of type An. Let t be the
number of three-cycles in the corresponding quiver. Then the number of indecomposable
objects in P≤1 is

|P≤1| =
n(n+ 1)

2
− nt+

t(t− 1)

2

Since the pair (n, t) is a derived invariant [12], this means that |P≤1| is also a derived
invariant.

We show how to calculate the right approximations from P≤1:

Theorem 11 ([20, Thm. 18]). Let Z ∈ mod Λ be indecomposable. Then

r≤1Z =


Z if pdZ ≤ 1

Y if pdZ =∞,∃ irreducible Y → Z, pdY ≤ 1

τZ otherwise,

where Y is unique up to isomorphism if it exists.

It follows that the approximation r≤1τX = I⊕ τ≤1X is either indecomposable or zero.
In either case I = 0 and we get that

τ≤1X = r≤1τX =


τX if pd τX ≤ 1

Y if pd τX =∞, ∃ irred. Y → τX, pdY ≤ 1

τ 2X otherwise

where Y is unique up to isomorphism if it exists.
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1. INTRODUCTION 3

ABELIAN QUOTIENTS OF TRIANGULATED
CATEGORIES

BENEDIKTE GRIMELAND AND KARIN M. JACOBSEN

Abstract. We study abelian quotient categories A = T /J , where
T is a triangulated category and J is an ideal of T . Under the as-
sumption that the quotient functor is cohomological we show that it
is representable and give an explicit description of the functor. We
give technical criteria for when a representable functor is a quotient
functor, and a criterion for when J gives rise to a cluster-tilting
subcategory of T . We show that the quotient functor preserves
the AR-structure. As an application we show that if T is a fi-
nite 2-Calabi-Yau category, then with very few exceptions J is a
cluster-tilting subcategory of T .

1. Introduction

In the literature there are several known methods for forming a triangulated category
given an abelian category. Given an abelian category A one can form the homotopy
category K(A) and the derived category D(A), both of which are triangulated, along
with their bounded versions. Orbit categories Db(A)/F are known [10] to be triangulated
when A is hereditary and F is a suitable autoequivalence. The stable module category of
a selfinjective algebra is also triangulated.

With the introduction of cluster algebras [7] and cluster-tilting theory [5], cluster-
tilting subcategories (or maximal 1-orthogonal subcategories) have been defined, see [8].
In [11], Koenig and Zhu show that the quotient of any triangulated category by a cluster-
tilting subcategory is abelian. However not all triangulated categories contain a cluster-
tilting subcategory, but they may still admit an abelian quotient (for an example, see
[11]). It is also known that for the cluster categories of coherent sheaves on weighted
projective lines it is possible to obtain an abelian quotient by factoring out morphisms,
without any objects being sent to zero [3] .

Consider the orbit category Db(kQ)/Σ, where Q is a Dynkin diagram and Σ is the
suspension functor. This category has the same (finite) number of isomorphism classes of
indecomposable objects as mod kQ, but has a greater number of irreducible morphisms.
This motivates us to find out if we can factor out an ideal to obtain an abelian category,
possibly without sending any non-zero objects to zero. Both of the examples mentioned
will be revisited in detail in Section 4.

Factoring out an ideal from the cluster category of a hereditary algebra has been
studied [4]. All known abelian quotients of these cluster categories arise from factoring
out cluster-tilting subcategories. We show that in the finite case these are in fact all
possible abelian quotient categories.

In Section 2 we define some notation and show that in the finite case, if an abelian
quotient category exists, it has enough projectives.
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In Section 3 we study a quotient functor from a triangulated category to an abelian
category with projective generator. We show that it is representable and naturally equiv-
alent to an explicitly described functor.

Section 4 contains the main result:

Theorem 1. HomT (T,−) is a quotient functor from a triangulated category T if and
only if the following two criteria are satisfied

a: For all right minimal morphisms T1 → T0, where T0, T1 ∈ addT , all triangles

T1 → T0 → X
h−→ ΣT1 satisfy HomT (T, h) = 0.

b: For all indecomposable T -supported objects X there exists a triangle T1 → T0 →
X

h−→ ΣT1 with T1, T0 ∈ addT and HomT (T, h) = 0.

In Section 5 we show that if it exists, the AR-structure is preserved by the quotient
functor.

In Section 6 we discuss the special case of triangulated categories with Calabi-Yau
dimension 2. We show

Theorem 2. Let T be a 2-CY connected triangulated category with finitely many iso-
morphism classes of indecomposable objects. If T is an object in T such that HomT (T,−) :
T →mod Γ is full and dense, then T is either Schurian or a 2-cluster-tilting object in T .

We would like to thank Professor Steffen Oppermann for many helpful discussions
during the work on this paper.

2. Background

Setup. k is a field and T is a Hom-finite Krull-Schmidt triangulated k-category. Σ
is the suspension functor of T .

By J we denote an ideal of T . The quotient category T /J has the same objects as
T , and has morphisms HomT /J (X, Y ) = HomT (X, Y )/J (X, Y ).

By construction the projection functor π : T → T /J is full and dense. We also
assume it to be cohomological.

Note that the properties of being Hom-finite and a k-category carries over from T to
the quotient T /J . The property of being a Krull-Schmidt category is also inherited by
the quotient category. The proof is a slightly adapted version of the proof found in [9],
taking into account we do not assume that the ideal J always contains objects.

Lemma 3. Let T be a triangulated Krull-Schmidt k-category, and let J be an ideal in
T . Then the quotient category T /J is also a Krull-Schmidt category.

Proof. Let X be an indecomposable non-zero object of T /J . Then the preimage X
in T can be decomposed into a finite direct sum of indecomposable objects: X = ⊕ni=1Xi.

Let ei : X
ρi−→ Xi

ιi−→ X be the canonical morphisms in T for i ∈ {1, . . . , n}, and denote
by ei the image of ei in T /J .

Since X is indecomposable, all except one of the ei has to be such that ei = 0.
Therefore we may assume that e1 6= 0 and ei = 0 for i ∈ {2, . . . , n}. Note that ρi is an
epimorphism, since ρi ◦ ιi = 1Xi

so that ρi ◦ ιi = ρi ◦ ιi = 1Xi
= 1Xi

. Therefore ιi ◦ ρi = 0
means that ιi ∈ J . However, since ιi ∈ J and ιi ◦ ρi = 0 this means that we also have
ρi ∈ J . Then 1Xi

= 0 and so Xi = 0. Looking at the endomorphism ring of X we then
have that

EndT /J (X) = EndT /J (Xi)

which is a local ring. �
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For more details we refer the reader to [9], Section 2 and 3.
Let A be an abelian Hom-finite Krull-Schmidt k-category with finitely many isomor-

phism classes of indecomposable objects. We call a projective object P in A a projective
generator if for any object X in A there is an epimorphism P n � X for some n ∈ N.

Our first aim is to establish that A has a projective generator. We need this when
we study abelian quotients A = T /J in later sections. The existence of the projective
generator was shown for the case when all objects of A has finite length by Deligne in [6].
We do not know that we have finite length yet, but we do know that A is a Krull-Schmidt
category. Therefore we give a different proof. We will use the Harada-Sai lemma for the
proof, so we need to recall the standard definition of length in a category.

Definition 4. An object X in an abelian category A has finite length if there exists
a finite chain of subobjects

0 = X0 ( X1 ( . . . ( Xn−1 ( Xn = X

such that each quotient Xi+1/Xi is a simple object.

We also define a different measure on the indecomposable objects of A. This will help
us show that every object in A has finite length. By IndA we denote the set isomorphism
classes of indecomposable objects in A.

Definition 5. Let X be an indecomposable object in A. We define

l̂(X) =
∑

I∈IndA

dimk HomA(I,X).

Since A is Hom-finite and there are finitely many isomorphism classes of indecompos-
ables, l̂(X) must be a finite number.

Lemma 6. Let X and Y be objects in A. If there exists a proper monomorphism
i : X → Y then l̂(X) < l̂(Y ).

Proof. Assume that i : X → Y is a proper monomorphism. For any I, the induced
morphism HomA(I,X) → HomA(I, Y ) is an inclusion. Therefore dim HomA(I,X) ≤
dim HomA(I, Y ) for all I, and l̂(X) ≤ l̂(Y ).

The identity 1Y cannot factor through i, as i is assumed not to split. Therefore there
is at least one indecomposable summand Y ′ of Y such that 1Y ′ : Y ′ ↪→ Y does not factor
through i : X → Y . Therefore dim HomA(Y ′, X) < dim HomA(Y ′, Y ), and we must have

l̂(X) < l̂(Y ). �

Theorem 7. Let X be an object in an abelian Krull-Schmidt Hom-finite k-category
with finitely many indecomposable objects. Then X has finite length.

Proof. Consider a finite chain of subobjects of X

0 = X0 ( X1 ( . . . ( Xn−1 ( Xn = X

where not all quotients Xi+1/Xi are necessarily simple objects. Choose a non-simple
quotient Xj+1/Xj. Let Z be a nonzero, proper subobject of Xj+1/Xj. Consider the
following commutative diagram with short exact rows.

Xj Xj+1 Xj+1/Xj

Xj Y Z
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The object Y is the pullback of Z → Xj+1/Xj and Xj+1 → Xj+1/Xj. We see that Y
is such that Xj ⊆ Y ⊆ Xj+1. We now need to show the inclusions to be proper inclusions.

If Xj = Y , then Z → Xj+1/Xj is an epimorphism, contradicting the choice of Z. If
Y = Xj+1, the exact sequence in the top row of the diagram would force Z = 0, which
again contradicts the choice of Z.

Hence we find a refined finite chain

0 = X0 ( X1 ( . . . ( Xj ( Y ( Xj+1 ( . . . ( Xn−1 ( Xn = X.

If the quotients of this chain are still not simple, the process can be repeated. However,
since l̂(X) is finite and l̂(Xi) < l̂(Xi+1), we can only do a finite number of iterations of
the process before reaching a chain where all the quotients are simple. Thus any object
has a finite composition series and also finite length. �

Our aim now is to show that there are enough projectives in the category A. In order
to achieve this the following lemma will be useful:

Lemma 8. (Harada-Sai)
Consider a chain of length 2n of non-isomorphisms fi between indecomposable objects

of maximal length n:

X1
f1→ X2

f2→ · · ·X2n−1
f2n→ X2n .

Then the composition f2nf2n−1 · · · f2f1 is zero.

A proof of this lemma, which is also valid in abelian categories can for example be
found in [16].

For each indecomposable object X of A we will show that there is a projective object
with an epimorphism to X by iterating a certain process, which will build a tree with X
as the root-node. Let N be the maximal length of any indecomposable object of A. Then
by the Harada-Sai lemma, any chain of 2N non-isomorphisms in A is zero.

Theorem 9. An abelian category A with finitely many isomorphism classes of inde-
composable objects has enough projectives.

Proof. Let X be an indecomposable, non-zero object of A which is not projective.
Let X+ be an object in A with an epimorphism f+ to X which is not split. If X+ is
projective, we are done. If X+ is not projective, decompose X+ into a finite sum of
indecomposable objects:

X+ =
m⊕
i=1

Xi

with morphisms fi : Xi → X. Note that each morphism fi ∈ Rad(Xi, X).
Now, consider each summand Xi. If Xi is projective, we take no further action.

Otherwise, we can again find an object X+
i of A with a non-split epimorphism f+

i : X+
i →

Xi. The objects X+
i can be decomposed into finite sums of indecomposable objects again,

and we iterate the process.
This iteration process builds a directed tree, where each node is an indecomposable

object of A, and each edge is a radical morphisms. We continue the iteration process until
all leaf nodes of the tree are either projective indecomposable objects, or at a branch of
length 2N . The sum of the compositions of morphisms along all paths from the leaf nodes
to the root nodes is an epimorphism by construction. Consider this morphism:⊕

leaf nodes

Xleaf
g−→ X.
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If there are no projective leaf nodes in the tree, g is a composition of 2N radical morphisms,
and thus zero. Since it is an epimorphism, X = 0, which is a contradiction of the initial
assumptions.

Let P be the sum of all projective leaf nodes occurring in the tree, we now know
P 6= 0. Consider the inclusion i from P to the sum of the leaf nodes. It is easy to see
that g ◦ i is an epimorphism from a projective object to X. �

3. The quotient functor is representable

In the remaining sections we assume that T /J is an abelian category denoted by A.
As established in the previous section A has a projective generator when it is a finite
category. For the rest of the article, neither A nor T are required to be finite. However,
we require A to have a projective generator P .

In this section we define T as the minimal preimage of P in T . We first show that the
functor HomT (T,−) takes the ideal J to zero in the module category mod EndT (T )

op
.

Second, we show that the k-algebras Γ := EndT (T )
op

and Λ := EndA(P )
op

are isomorphic.
Finally, the main result of the section is proved, namely that the quotient functor π is
naturally isomorphic to HomT (T,−).

Definition 10. Let T be a triangulated category and J an ideal in T such that
A = T /J is an abelian category with a basic projective generator P . Let π be the quotient
functor from T to A, and assume π is cohomological. We define the minimal preimage
of P in T to be the basic object T ∈ T such that:

• π(T ) = P
• for all indecomposable summands T ′ of T we have π(T ′) 6= 0.

The following lemma will prove useful in the remaining sections.

Lemma 11. Let f : X → Y be a morphism in T . Then

(1) if Y is indecomposable and π(Y ) 6= 0, then f is a split epimorphism if and only
if π(f) is a split epimorphism.

(2) if X is indecomposable and π(X) 6= 0, then f is a split monomorphism if and
only if π(f) is a split monomorphism.

Proof. We only prove the first statement, as the second is dual.
If f is a split epimorphism, then there exists a morphism g : Y → X such that

fg = 1Y . But then π(f)π(g) = π(1Y ) = 1π(Y ), so π(f) is a split epimorphism.
If π(f) is a split epimorphism, there exists a morphism g′ : π(Y ) → π(X) such that

π(f)g′ = 1π(Y ). Since π is a full functor, there exists a morphism g : Y → X with
π(g) = g′. Since fg ∈ EndT (Y ), which is a local ring, fg is either nilpotent or an
isomorphism. As π(fg) = π(f)g′ = 1π(Y ), it clearly cannot be nilpotent. Hence fg is an
isomorphism, and thus f is split epimorphism. �

For the rest of this section we fix P as the projective generator of A, and we fix T to
be the minimal preimage of P in T . From now on we will denote a morphism HomT (T, f)
by f .

Lemma 12. Let f ∈ J . Then HomT (T, f) = f̄ = 0.

Proof. Assume that we have f̄ 6= 0, where f : X → Y . For at least one indecom-
posable T ′ ∈ addT , there exists at least one map g : T ′ → X such that the composition

T ′
g−→ X

f−→ Y is non-zero. Since f ∈ J , we also have that fg ∈ J . The morphism

T ′
fg−→ Y can be completed to the triangle Z

h−→ T ′
fg−→ Y → ΣZ.
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Since π is cohomological, we get the following exact sequence in A:

π(Z)
π(h)−−→ π(T ′)

π(fg)=0−−−−→ π(Y ).

Since fg ∈ J we have π(fg) = 0 in A, so π(h) is an epimorphism. Since T ′ is an
indecomposable summand of T we have that π(T ′) is an indecomposable projective in A,
and hence π(h) is split epi. By Lemma 11, h is split epi, giving a morphism u such that
1T ′ = hu.

From the distinguished triangle Z
h→ T ′

fg→ Y → ΣZ we see that the composition
fgh = 0. By composing with u, we get that 0 = fghu = fg, which is a contradiction.
Hence f̄ = 0. �

Lemma 13. Let Γ = EndT (T )op and Λ = EndA(P )op. Then Γ and Λ are isomorphic
as k-algebras.

Proof. We know that π is a full and dense k-functor between T and A. Hence it
induces an algebra epimorphism

π : Γ→ EndA(π(T ))op = Λ.

It remains to show that π is a monomorphism as well.
Let f ∈ Γ = EndT (T )op be such that π̃(f) = 0 in A. Then f is in the ideal J , and

hence HomT (T, f) = 0 by Lemma 12. This means that for any g ∈ Γ we must have
gf = 0. In particular, f = 1Tf = 0. Hence ker(π̃) = 0 and Γ ∼= Λ as k-algebras. �

From [13] it is known that since A has a projective generator P , there is an equiv-
alence of categories A ∼= mod Λ = mod EndA(P )

op
. From the previous result we now

know that mod Γ ∼= mod Λ. That is, we have two functors π and HomT (T,−) such
that π,HomT (T,−) : T → mod Γ. Next we show that these two functors are naturally
isomorphic.

Theorem 14. Let π : T → A be a quotient functor from a triangulated category to
an abelian category. Let P be the projective generator of A, and let T be its minimal
preimage in T .

Then π is naturally isomorphic to HomT (T,−).

Proof. By [13], the equivalence of categories between A and mod Λ is given by
HomA(P,−).

Let X be an object in T . Consider the map

η : HomT (T,X)→ HomA(P, π(X))

induced by π (recall that P = π(T )). This is an epimorphism, since π is a full functor.
Let g ∈ HomT (T,X). If π(g) = 0, then g ∈ J , so HomT (T, g) = 0. Hence g = 0, and η
is an isomorphism.

For any object X in T we thus know that

π(X) ∼= HomA(P, π(X)) ∼= HomC(T,X).

We will show that this is a natural transformation.
Let f : X → Y be a morphism in T . Consider the following diagram:
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HomT (T,X)HomA(P, π(X))π(X)

HomT (T, Y )HomA(P, π(Y ))π(Y )

π(f) HomA(P, π(f)) HomT (T, f)

HomA(P,−)

HomA(P,−)

∼=

∼=

The first square commutes because HomA(P, π(f)) = HomA(P,−) ◦ π(f). The second
square commutes by the functoriality of π. Hence we have defined a natural transforma-
tion. Since the map for each object is an isomorphism, it is also a natural isomorphism.

�

4. When is HomT (T,−) a quotient functor?

In the previous section, we showed that the quotient functor is representable. This
poses the question of when representable functors are quotient functors.

In this section we give our main result. It concerns technical conditions on an object
T that are equivalent to HomT (T,−) being a quotient functor (i.e. full and dense).

We start by giving two useful lemmas. The first is well known, and the proof in [2,
ch. II. 2] extends our case. For more details see e.g. [12]. Recall that Γ = EndT (T )op.

Lemma 15. Let T be an arbitrary object in T . HomT (T,−) induces an equivalence

addT ∼= proj Γ

The second lemma is an extension of the first. Recall that we write HomT (T, f) = f .

Lemma 16. Let T be an arbitrary object in T . Let T0 ∈ addT , let X, Y ∈ T and let

T0
f−→ X, T0

g−→ Y and X
h−→ Y be morphisms.

If g = h ◦ f , then g = hf .

Proof. We have assumed that T is Krull-Schmidt. Let

T0 =
n⊕
j=0

T j0

be the decomposition of T0 where the T j0 are all indecomposable. We rewrite f = [f0 · · · fn]
and g = [g0 · · · gn] with respect to this composition. Note that if for each j we have
gj = hfj, then g = hf , so fix one j.

Since g = hf , and HomT (T,−) distributes over direct sums, we know that gj = hf j.

Since T j0 is an indecomposable element in addT , T j0 must be a summand of T . Let
i : T j0 → T and p : T → T j0 be the direct sum injection and projection respectively. We
then construct the following commutative diagram:

HomT (T, T j0 )

HomT (T j0 , T
j
0 )

HomT (T,X)

HomT (T j0 , X)

HomT (T, Y )

HomT (T j0 , Y )

f j h

HomT (T j0 , fj) HomT (T j0 , h)

HomT (i, T0) HomT (i,X) HomT (i, Y )
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We know that p ∈ HomT (T, T j0 ). By chasing p through the diagram, we get that

gj = gjpi

= [HomT (i, Y )gj](p) = [HomT (i, Y )hf j](p)

= [HomT (T j0 , h) HomT (T j0 , fi) HomT (i, T0)](p)

= hfjpi = hfj

�

An object X is called T -supported if HomT (T,X) 6= 0.
We are now ready to prove one of our main theorems.

Theorem 17. HomT (T,−) is a quotient functor, i.e. full and dense, if and only if
the following two conditions are satisfied

a: For all right minimal morphisms T1 → T0, where T0, T1 ∈ addT , all triangles

T1 → T0 → X
h−→ ΣT1 satisfy HomT (T, h) = 0.

b: For all indecomposable, T -supported objects X there exists a triangle T1 → T0 →
X

h−→ ΣT1 with T1, T0 ∈ addT and HomT (T, h) = 0.

Proof. Assume first that a and b hold. We will first show that this means that
HomT (T,−) is dense, and then that it is full.

a implies dense: Let X be an arbitrary object in mod Γ. We need to find an object Y
in T such that HomT (T, Y ) ∼= X. We have the following minimal projective presentation
of X

HomT (T, T1)
f−→ HomT (T, T0)

g−→ X → 0,

where T1, T0 ∈ addT , by the equivalence proj Γ ∼= addT .
Here, f is the composition of the monomorphism Ker g → HomT (T, T0) and the

projective cover HomT (T, T1) → Ker g. The former is right minimal because it is a
monomorphism. The latter is right minimal because it is a projective cover (see e.g. [2,
thm I.4.1]). Hence f is right minimal.

The morphism f : T1 → T0 in T is right minimal by virtue of the equivalence proj Γ ∼=
addT . We can complete f to an distinguished triangle

T1
f−→ T0 → Y → ΣT1.

Applying HomT (T,−) and using a we get the following exact sequence:

HomT (T, T1)
f−→ HomT (T, T0)→ HomT (T, Y )→ 0.

It follows from the uniqueness of cokernels that X ∼= HomT (T, Y ), and thus HomT (T,−)
is dense.

b implies full: LetX and Y be two objects in T . Let f : HomT (T,X)→ HomT (T, Y )
be an arbitrary morphism in mod Γ. We need to find a morphism f ′ : X → Y in T such
that f ′ = f . Since the functor HomT (T,−) distributes over direct sums, we assume
without loss of generality that X and Y are indecomposable.

If X or Y is not T -supported, then obviously f = 0, so 0 : X → Y maps to f . In the
following we therefore assume HomT (T,X) 6= 0 and HomT (T, Y ) 6= 0

Using property b, we define the following exact triangles:

T1 T0

T ′1 T ′0

X

Y

ΣT1

ΣT ′1

g

g′
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By applying the functor HomT (T,−) and using the comparison theorem for projective
resolutions, we get the following diagram in mod Γ with exact rows:

HomT (T, T1) HomT (T, T0)

HomT (T, T ′1) HomT (T, T ′0)

HomT (T,X)

HomT (T, Y )

0

0

f

g

g′
u

By the equivalence between addT and the projective objects in mod Γ, we can lift the
left commutative square in the diagram back to T . The commutative square in T can be
completed to a morphism of triangles.

T1 T0

T ′1 T ′0

X

Y

ΣT1

ΣT ′1

g

g′
u f ′

Applying HomT (T,−) once again, we get the following diagram:

HomT (T, T1) HomT (T, T0)

HomT (T, T ′1) HomT (T, T ′0)

HomT (T,X)

HomT (T, Y )

0

0

f ′

g

g′
u

Since

fg = g′u = f ′g

and g is an epimorphism, it follows that f = f ′, and we have shown HomT (T,−) to be
dense, thus finishing the first implication.

Next, assume that HomT (T,−) is a full and dense functor.
Full and dense implies a: Let f : T1 → T0 be a right minimal morphism between

objects in addT . Complete the morphism to the following triangle:

T1
f−→ T0

g−→ X
h−→ ΣT1

We want to show that HomT (T, h) = 0. Use HomT (T,−) on this triangle to obtain the
diagram

HomT (T, T1) HomT (T, T0) HomT (T,X) HomT (T,ΣT1)

HomT (T, Y )

f g h

u v

where HomT (T, Y ) = Im ḡ. The image and the maps all have preimages in T , since
HomT (T,−) is full and dense. We assume (without loss of generality) that all summands
of Y are T -supported. We want to show that Y is a direct summand of X, and we start
by showing that HomT (T, Y ) is a summand of HomT (T,X).

By u ◦ f = 0 and Lemma 16, we get that uf = 0.
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Using HomT (−, Y ) on the triangle, we get the exact sequence

HomT (X, Y )
HomT (g,Y )−−−−−−→ HomT (T0, Y )

HomT (f,Y )−−−−−−→ HomT (T1, Y )

Starting with u ∈ HomT (T0, Y ) we get that HomT (f, Y )(u) = uf = 0, so u must be in
the image of HomT (g, Y ). Thus there exists some w ∈ HomT (X, Y ) with wg = u.

Since
w ◦ v ◦ u = w ◦ g = u,

and u is an epimorphism, we must have

w ◦ v = 1HomT (T,Y ).

Thus HomT (T, Y ) is a direct summand of HomT (T,X).
In order to show that Y is a direct summand of X, we first show that u is a left

minimal morphism. Use the functor HomT (−, Y ) to obtain

HomT (Y, Y )
HomT (u,Y )−−−−−−→ HomT (T0, Y )

in mod EndT Y . By [2, thm I.2.2], there exists a decomposition

HomT (Y, Y ) ∼= HomT (Y1, Y )⊕ HomT (Y2, Y )

such that u∗ = HomT (u, Y )|HomT (Y1,Y ) is a right minimal morphism and
HomT (u, Y )|HomT (Y2,Y ) = 0. The preimages in T exist by the equivalence between addY
and proj EndT Y .

By the dual of Lemma 15, there exists a preimage u1 of u∗ such that u1 = u|Y1 ,
and u = ( u1

0 ). Suppose that for a morphism x : Y1 → Y1, we have xu1 = u1. Then
HomT (u1, Y ) HomT (x, Y ) = HomT (u1, Y ). We have that u∗ = HomT (u1, Y ) is right
minimal; thus HomT (x, Y ) is an isomorphism. By (the dual of) Lemma 15, x is also an
isomorphism. Consequently, u1 is left minimal.

We know that u = ( u1
0 ). Since u is an epimorphism, Y2 cannot be T -supported. By

choice of Y we have Y2 = 0. Therefore u = u1 is left minimal.
We have wvu=wg=u. Thus wv is an isomorphism and Y is a direct summand of X.
We rewrite the original triangle to

(1) T1
f−→ T0

(u0 )
−−→ Y ⊕R (hY hR )−−−−−→ ΣT1

where hY = h|Y and hR = h|R. The next step is to show that R is a direct summand of
ΣT1. Using HomT (−, R) on the triangle, we get the following exact sequence:

HomT (ΣT1,R)
HomT ((hY hR ),R)−−−−−−−−−−−→HomT (Y ⊕R,R)

HomT ((u0 ),R)
−−−−−−−−−→HomT (T0,R)

The projection pR : Y ⊕ R → R is contained in HomT (Y ⊕ R,R). It is obviously in the
kernel of HomT (( u0 ) , R), so it must be in the image of HomT (( hY hR ) , R). Thus hR is a
split monomorphism, and we have ΣT1 = R ⊕ S. The one-sided inverse of hR we denote
as z.

Let y ∈ EndT (ΣT1) be such that (Σf) ◦ y = Σf . Since Σ is an autoequivalence we
have f ◦Σy = f . Since f is right minimal, Σy is an isomorphism. But that means that y
is an isomorphism as well. Thus Σf is right minimal, and so is Σf .

Now consider

Σf = Σf ◦ 1HomT (T,ΣT )

= Σf ◦
(
hR ◦ z 0

0 1HomT (T,S)

)
= Σf ◦

(
0 0
0 1HomT (T,S)

)
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Consequently
( 0 0

0 1HomT (T,S)

)
is an isomorphism. Thus R is not T -supported.

It follows that h = 0, and a holds.
Full and dense implies b: Let X be a T -supported indecomposable object in T .

Consider its minimal projective presentation in mod Γ:

HomT (T, T1)
f−→ HomT (T, T0)

g
−−� HomT (T,X)

We know that f is right minimal, and by Lemma 15, so is f . Complete T1
f−→ T0 to a

triangle in T
T1

f−→ T0
u−→ Y

v−→ ΣT1,

where v = 0 by condition a.
We use HomT (T,−) on the triangle to obtain the following commutative diagram with

exact rows:

HomT (T, T1) HomT (T, T0) HomT (T, Y ) HomT (T,ΣT1)

HomT (T, T1) HomT (T, T0) HomT (T,X) 0

f u v = 0

f g 0

By uniqueness of cokernels we must have HomT (T,X) ∼= HomT (T, Y ). Thus there are
maps x : X → Y and y : Y → X such that

x ◦ y = 1HomT (T,Y ) and y ◦ x = 1HomT (T,X).

Once again, the preimages of the isomorphisms exist due to HomT (T,−) being full.
We have that yx ∈ EndT (X), which is a local ring since X was assumed to be inde-

composable. Since yx is an isomorphism, yx clearly cannot be nilpotent, so it must be an
isomorphism. Thus X is a direct summand of Y , and we write Y = X ⊕R.

We are now in the same situation as diagram (1), and we can use the same argument
to show that ΣT1 = R⊕ S. By [14, Lemma 1.2.4],

T1
f−→ T0 → X → ΣT1

is a distinguished triangle. It fulfills the requirements of b. �

Example 18. We revisit the last example presented in [11]. This is an example of
an abelian quotient of a triangulated category with no cluster-tilting subcategories, hence
not covered by the theory developed in [11]. Let A = kQ/I be the self-injective algebra
given by the quiver

Q : a b
α

β

and the relations αβα, βαβ.
The AR-quiver of modA is

b
a
b

a
b
a

b
a
b

b
a

a
b

a b a
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where the first and the last columns are identified. The stable module category modA is
triangulated with suspension functor Ω−1, the cozysygy. Its AR-quiver is:

b
a

a
b

a b a

As explained in detail in [11] this triangulated category does not have any cluster-
tilting subcategories. An abelian quotient can be formed, by factoring out add(a). This
abelian category has the following AR-quiver:

b
a

a
b

b

The projective generator of this category is b
a ⊕ b. The preimage of the projective

generator is b
a ⊕b considered as an object in modA. The functor HommodA( ba ⊕b,−) gives

rise to the an abelian category with the same AR-quiver as modA/ add(a).
There is only one right minimal morphism between indecomposable objects of add( ba⊕ b),

namely b
a → b. The triangle

b
a → b→ a

b → Ω−1 b
a

shows that condition a is fulfilled.
The triangle also shows that condition b is fulfilled for a

b . For b
a and b, condition b

is fulfilled by the completion of the identity morphism to a triangle. Hence Theorem 17
implies that HommodA( ba ⊕ b,−) is full and dense.

Example 19. We revisit the class of examples mentioned in the introduction. We
will study Db(kQ)/Σ where kQ is a Dynkin diagram. Specifically we consider the quiver
A3 with orientation 1→ 2→ 3. The AR-quiver of mod kA3 is:

3 2 1

3
2

2
1

3
2
1

The AR-quiver of the triangulated category T = Db(kA3)/Σ is:

3 2 1

3
2

2
1

3
2
1

3

3
2

3
2
1

where we include some objects twice to indicate which objects are identified.
This category does not have any cluster-tilting subcategories, so it is not possible

to attain an abelian quotient by the method used in [11]. However it is in some sense
already close to being an abelian category; the difference is just two irreducible maps! We

let T =
3
2
1
⊕ 3

2 ⊕ 3. Applying the functor HomT (
3
2
1
⊕ 3

2 ⊕ 3,−) we return to an abelian

category equivalent to the module category. The functor is easily seen to be full and dense
directly.
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There are two right minimal morphisms between indecomposable summands of T ,

namely 3→ 3
2 and 3

2 →
3
2
1
. Thus the triangles

3→ 3
2 → 2→ 3

and
3
2 →

3
2
1
→ 1→ 3

2

show that part a of Theorem 17 is satisfied.

The objects 3, 3
2 and

3
2
1

are in addT , so the completions of the identity maps on these

objects fulfills condition b of Theorem 17. The above triangles fulfill condition b for the
objects 1 and 2. The only object that remains is 2

1 , and in this case the triangle

3→ 3
2
1
→ 2

1 → 3

satisfies condition b. Hence by Theorem 17 the functor HomT (
3
2
1
⊕ 3

2 ⊕ 3,−) is full and

dense.

5. AR-structure in the abelian quotient

In this section we show that the AR-structure of T is preserved as much as one can
hope for in the abelian quotient. Let

∆ : τX
f−→ Y

g−→ X
h−→ ΣτX

be an AR-triangle in T . Assume that none of the objects in ∆ are sent to zero, that τX
is not sent to an injective and that X is not sent to a projective. Then we show that ∆
is sent to an AR-sequence in A.

Before proceeding we need to define two new notions. We call a category T locally
finite if for each indecomposable object X of T there are only finitely many isomorphism
classes of indecomposable objects Y such that HomT (X, Y ) 6= 0. A Serre functor S is an
autoequivalence S : T → T such that for each object X in T there is an isomorphism

DHomT (X,−) ∼= HomT (−,SX)

where D is the duality Homk(−, k).
The following theorem is due to [15].

Theorem 20. Let T be a Hom-finite Krull-Schmidt k-category. Then T has AR-
triangles if and only if T has a Serre functor S.

Many triangulated categories have a Serre functor. For example Amiot showed in [1]
that any locally finite Krull-Schmidt triangulated k-category has a Serre functor.

We assume in the following that T has AR-triangles, and we proceed to study the
AR-structure in the abelian quotient category. As before we let T ∈ T be an object such
that HomT (T,−) : T → mod Γ is full and dense, where Γ = End(T )op.

Lemma 21. Let

∆ : τX
f−→ Y

g−→ X
h−→ ΣτX

be an AR-triangle in T . Then h = 0 if and only if X /∈ addT

Proof. Assume first that h = 0. Then g is an epimorphism. If X ∈ addT , Then
HomT (T,X) is projective, and the epimorphism g is split. By Lemma 11, g is also a
split epimorphism. However this leads to h = 0 which is a contradiction to ∆ being an
AR-triangle, hence X /∈ addT .
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Now assume that X /∈ addT . Then HomT (T,X) is not projective. If X is not T -
supported then clearly h = 0. If on the other hand X is T -supported then there exists a
non-split epimorphism

HomT (T,A)
u−→ HomT (T,X),

giving rise to a morphism A
u→ X which is not a split epimorphism. Since g is an almost

split morphism, there exists a morphism v : A→ Y such that u = g◦v. We have u = g◦v,
where u is an epimorphism. Hence g is an epimorphism and so h = 0.

�

Lemma 22. If Σ−1X ∈ addT then HomT (T, τX) is injective and nonzero.

Proof. We have

HomT (T, τX) ∼= HomT (T,SΣ−1X) ∼= DHomT (Σ−1X,T ).

Hence if Σ−1X∈addT then HomT (Σ−1X,T )∈proj Γop. It follows that DHomT (Σ−1X,T )
is injective in mod Γ. �

Lemma 23. Let ∆ be the AR-triangle

∆ : τX
f−→ Y

g−→ X
h−→ ΣτX.

Assume that X and τX are both T -supported, with Σ−1X /∈ addT , and X /∈ addT . Then
the functor HomT (T,−) takes the AR-triangle ∆ to the following AR-sequence in mod Γ:

(2) 0→ HomT (T, τX)
f−→ HomT (T, Y )

g−→ HomT (T,X)→ 0

Proof. From Lemma 21 it is clear that HomT (T,−) takes ∆ to the short exact
sequence (2). Note that HomT (T, τX) and HomT (T,X) are indecomposable since X and
τX are indecomposable. Since HomT (T, τX) is indecomposable it its enough to show
that g is right almost split [2, thm V.1.14].

If g is a split epimorphism then by Lemma 11 we have that g is a split epimorphism,
which contradicts the fact that ∆ is an AR-triangle. Hence g is not a split epimorphism.

Assume that u : W → X is a morphism such that u is not a split epimorphism. By
Lemma 11, u is not a split epimorphism.

Since u is not a split epimorphism and g is right almost split, there is a morphism
v : A→ Y such that u = g ◦ v. Applying HomT (T,−) to this we obtain exactly what we
want, which is a morphism v : HomT (T,A)→ HomT (T, Y ) such that u = g ◦ v. �

6. Cluster-tilting objects and the 2-Calabi-Yau case

In this section we will work under the additional assumption that T is a 2-Calabi-Yau
category. We give two notable results. First we show for which objects T applying the
functor HomT (T,−) coincides with the cluster-tilting case studied in [11]. Then we apply
this result, to show that in many finite categories the only possible way to obtain an
abelian quotient is with the previously known method from [11].

We start by defining a cluster-tilting object.

Definition 24. An object T in a triangulated category T is called a cluster-tilting
object if

add(T ) = {X|HomT (T,ΣX) = 0} = {X|HomT (X,ΣT ) = 0}.
Cluster-tilting objects turn out to be very closely related to the objects where T is such

that HomT (T,−) is a full and dense functor. In Section 4 we showed that HomT (T,−) is
full and dense if and only if condition a and b were satisfied. We consider the following,
stronger, version of condition b:
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b*: For all indecomposable objects X there exists a triangle

T1 → T0 → X
h−→ ΣT1

with T1, T0 ∈ addT and HomT (T, h) = 0.

The difference from b is that we require existence of such a triangle not only for objects
X that are T -supported, but for all objects.

Theorem 25. An object T in T is a cluster-tilting object if and only if a from Theorem
17 and b* are satisfied and furthermore:

c: if T ′ is an indecomposable summand of T , then ΣT ′ /∈ addT

Proof. Suppose a, b* and c holds, we need to show that T is cluster-tilting.
Assume T ′ ∈ addT is indecomposable. We need to show that ΣT ′ is not T -supported,

i.e HomT (T,ΣT ′) = 0. By b* a distinguished triangle

T1 → T0 → ΣT ′
f−→ ΣT1

exists, where T1, T0 ∈ addT and f = 0. We have that f 6= 0 by c. Since T ′ is indecom-
posable, Σ−1f : T ′ → T1 is right minimal. By rotating the above triangle, we get the
distinguished triangle

T ′
Σ−1f−−−→ T1 → T0

g−→ ΣT ′

where g = 0 by a. This means that the following sequence is exact:

HomT (T, T0)
g=0−−→ HomT (T,ΣT ′)

f=0−−→ HomT (T,ΣT1).

Consequently HomT (T,ΣT ′) = 0.
Conversely, suppose X is such that HomT (T,ΣX) = 0. We need to show that X is in

addT . By b* there exists T0, T1 ∈ addT such that following triangle is distinguished:

T1 → T0
0−→ ΣX → ΣT1.

The zero follows from the assumption on X.
Using the axioms for triangulated categories we see that the following triangle is also

distinguished:

X → T1 → T0
0−→ ΣX.

By [14], this is a split triangle; thus T1
∼= X ⊕ T0 and X ∈ addT .

We now have shown that addT = {X|HomT (T,ΣX) = 0}; the other equality in
definition 24 can be shown similarly. Thus T must be cluster-tilting. Suppose now
instead that T is a cluster-tilting object; we show a, b* and c in order.

Let T1 → T0 be a right minimal morphism between objects in addT , and complete
this morphism to a triangle:

T1 → T0 → Y
g−→ ΣT1.

Since HomT (T,ΣT1) = 0, we must also have g = 0, and a holds.
Note that addT is a functorially finite subcategory; this is well known and not depen-

dent on T being a cluster-tilting object. In particular addT is contravariantly finite. We
now follow [11, thm 3.2] to show that condition b* holds.

Let X be an arbitrary object of T . Let f : T0 → X be a right addT -approximation
of X. We complete this to the triangle

Y → T0
f−→ X

g−→ ΣY.
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Applying HomT (T,−) we get the long exact sequence

· · · →HomT (T, T0)
f−→HomT (T,X)

g−→HomT (T,ΣY )→HomT (T,ΣT0)→ · · ·

We have HomT (T,ΣY ) = 0, since f is surjective and HomT (T,ΣT0) = 0. Consequently,
Y ∈ addT , and condition b* holds.

To show condition c, assume that T ′ is an indecomposable summand of T with ΣT ′ ∈
addT . As HomT (T,ΣT ) = 0, we must have HomT (T,ΣT ′) = 0. Since ΣT ′ ∈ addT , this
means that ΣT ′ = 0. Hence T ′ = 0. �

A triangulated category T with a Serre functor S is said to be d-Calabi-Yau if S = Σd,
and d is the smallest positive integer for which this holds. In particular 2-Calabi-Yau
categories have been studied quite extensively. Examples of such categories include the
classical cluster categories, Db(H)/τ−Σ where H is an hereditary algebra [5].

We will show that in finite 2-Calabi-Yau categories if HomT (T,−) is full and dense,
then in most cases T must be a cluster-tilting object. To do this we first need to study
the structure of finite 2-Calabi-Yau categories.

Lemma 26. Let T be a connected 2-Calabi-Yau category with finitely many isomor-
phism classes of indecomposable objects. Let T ∈ Ob T be a non-zero object such that
condition b is satisfied. Then

Ind T = {X ∈ Ind T |HomT (T,X) 6= 0} ∪ {X ∈ Ind T |X ∈ add ΣT}.

Proof. Let D = {X ∈ Ind T |HomT (T,X) 6= 0} ∪ {X ∈ Ind T |X ∈ add ΣT}. Note
that D is non-empty, as all indecomposable summands of T are in D.

We will show that for any object X ∈ D we can find a triangle

T1 → T0 → X
h−→ ΣT1

such that T1, T0 ∈ addT and HomT (T, h) = 0. If X is T -supported, this follows immedi-
ately from condition b. If not, then X ∈ add ΣT , so Σ−1X ∈ addT . The following split
triangle fulfills the conditions.

Σ−1X → 0→ X → X

Assume that X ∈ D and Y ∈ Ind T . Let f : X → Y be a non-zero morphism. We
will show that Y ∈ D. By the above we can form the following diagram:

T1 T0 X ΣT1

Y

g

f

h

If gf 6= 0, then Y is T -supported. Hence Y ∈ D, and we are done.
If gf = 0, then by the weak cokernel property of triangulated categories, there exists

a morphism f ′ : ΣT1 → Y such that f ′h = f . Hence Σ−1Y is T -supported. By condition
b we can form a distinguished triangle

T ′1 → T ′0 → Σ−1Y → ΣT ′1,

with T ′1, T0 ∈ addT . Hence the triangle

ΣT ′1 → ΣT ′0 → Y
h′−→ Σ2T ′1

is distinguished. If h′ = 0, then the triangle splits, and Y is a summand of ΣT ′0. Hence
Y ∈ add ΣT .
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If h′ 6= 0, then

0 6= HomT (Y,Σ2T ) = HomT (Y, ST ) ∼= DHomT (T, Y ).

Hence Y is T -supported.
In [1], the author shows that any connected triangulated category with finitely many

indecomposables has an AR-quiver of the form Z∆/G, where ∆ is a Dynkin diagram and
G is a group of weakly admissible automorphisms of Z∆. By Corollary 6.3.3 in [1] T is
an orbit category. Since, by the above, any τ -orbit of the AR-quiver of T contains an
element of D, we see that Ind T = D. �

A consequence of this lemma is that for the connected 2-Calabi-Yau case b* is implied
by b. We are now ready to prove the final theorem. Recall that an object X in a
triangulated category T such that EndT (X)

op ∼= k is called a Schurian object.

Theorem 27. Let T be a 2-CY connected triangulated category with finitely many iso-
morphism classes of indecomposable objects. If T is an object in T such that HomT (T,−) :
T → mod Γ is full and dense, then T is either Schurian or a 2-cluster-tilting object in T .

Proof. Condition a is satisfied, since HomT (T,−) is full and dense. By the above,
so is condition b*. If T satisfies c, then by Lemma 25 T is a cluster-tilting object.

Assume that T does not satisfy condition c. We will show that mod Γ = mod k.
Let T ′ be an indecomposable summand of T such that T ′,ΣT ′ ∈ addT . Since T

is a 2-CY triangulated category, we have ΣT ′ ∼= τT ′. Therefore we have the following
AR-triangle

∆ : τT ′
f−→ E

g−→ T ′
h−→ ΣτT ′.

Applying HomT (T,−) to the above AR-triangle yields the following long exact sequence:

. . .→ HomT (T, τT ′)
f−→ HomT (T,E)

g−→ HomT (T, T ′)→ . . .

where by the proof of Lemma 23 the map g is right almost split.
Since T ′ in addT , we have that HomT (T, T ′) is projective. Hence there exists a right

almost split monomorphism r : RadΓ Hom(T, T ′)→ HomT (T, T ′). Since g and r are both
right almost split, there are morphisms

a : RadΓ(T, T ′)→ HomT (T,E) and a′ : HomT (T,E)→ RadΓ(T, T ′)

such that ga = r and ra′ = g. Hence

ra′a = ga = r.

Since r is a monomorphism, a′a = 1RadΓ(T,T ′). Thus RadΓ(T, T ′) must be a direct summand
of HomT (T,E). We rewrite in terms of this direct summand:

HomT (T,E) = RadΓ(T, T ′)⊕ HomT (T, U)

for some object U in T . We rewrite the morphism g = ( r u )
We have

( r u ) = ( r u ) ◦ a ◦ a′ = ( r 0 ) .

Hence u = 0.
Let R ∈T be the preimage of RadΓ(T, T ′), i.e. HomT (T,R) = RadΓ(T, T ′). Let g′ be

the preimage of r, so that r = g′. Since HomT (T,R) is a summand of HomT (T,E) it is
clear that R is a summand of E, that is E = R ⊕ V where HomT (T, V ) = HomT (T, U).
Hence ∆ can be written as

τT ′

(
fR
fV

)
−−−→ R⊕ V ( g′ 0 )−−−→ T ′ → ΣτT ′
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which, by applying HomT (T,−), is sent to the long exact sequence

· · · → HomT (T, τT ′)

(
fR
fV

)
−−−−→

HomT (T,R)
⊕

HomT (T, V )

( g′ 0 )
−−−−→ HomT (T, T ′)→ · · ·

We know that g′ is a monomorphism. Exactness of the sequence gives us that
g′ ◦ HomT (T, fR) = 0 and hence HomT (T, fR) = 0. Due to Lemma 16 we also have
fR = 0.

We have (
0 0
0 1V

)(
0
fV

)
=

(
0
fV

)
.

Since f =
(

0
fV

)
is left minimal,

(
0 0
0 1V

)
must be an automorphism on R ⊕ V , so R = 0.

Then Rad HomT (T, T ′) = HomT (T,R) = 0, and HomT (T, T ′) is a simple projective.
Consider ∆ under HomT (T,−):

HomT (T,Σ−1T ′)→ HomT (T, τT )→ HomT (T,E)
0−→ HomT (T, T ′)

The first morphism cannot be zero, as τT � E. By Lemma 21, we must have
Σ−1T ′ ∈ addT . By induction, for any n ∈ N, we have Σ−nT ′ ∈ addT . In particu-
lar Σ−2T ′ = Σ−1τ−T ′ ∈ addT . Hence, by Lemma 22, HomT (T, T ′) is injective. Thus
HomT (T, T ′) is simple, projective and injective as a EndT (T )

op
-module.

We assumed T , and thus also mod Γ, to be a connected category. However, if
HomT (T, T ′) is a simple, projective and injective module, it must be the only indecom-
posable object in its connected component. It follows that mod Γ = mod k. �
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REALIZING ORBIT CATEGORIES AS STABLE
MODULE CATEGORIES - A COMPLETE

CLASSIFICATION

BENEDIKTE GRIMELAND AND KARIN M. JACOBSEN

Abstract. We classify all triangulated orbit categories of path-
algebras of Dynkin diagrams that are triangle equivalent to a stable
module category of a representation-finite self-injective standard
algebra. For each triangulated orbit category T we give an explicit
description of a representation-finite self-injective standard algebra
with stable module category triangle equivalent to T .

1. Introduction

Let k be an algebraically closed field. In this paper we will focus on two types of
triangulated categories with finitely many isomorphism classes of indecomposable objects:
triangulated orbit categories of path algebras of Dynkin quivers of type A,D and E, and
stable module categories of representation-finite self-injective algebras of Dynkin tree type.

It is well-known that the stable module category of a self-injective algebra is a tri-
angulated category. Riedtmann showed in [15] that all connected stable components of
the AR-quiver of a representation-finite algebra are of Dynkin tree type. In two subse-
quent papers by Riedtmann [16] and Bretschner, Läser and Riedtmann [5], a complete
classification of all representation-finite self-injective algebras of Dynkin type is given in
terms of their quivers with relations. Continuing their work, Asashiba gives an invariant
under derived equivalence for representation-finite self-injective algebras, based on the
shape of the AR-quiver [2][3], called the type of the algebra. Algebras of one type are
stably equivalent, as well as derived equivalent. He also determines which types contain
standard algebras.

Triangulated orbit categories have been well studied, see e.g. [6], [7] and [13]. The
orbit category of a triangulated category is not necessarily triangulated itself. However
Keller showed that the orbit category Db(H)/F is triangulated for H a hereditary algebra
and with certain restrictions on the functor F [13]. In the case where F = τ−1[m − 1]
for m ∈ N, the orbit category Db(H)/F is known as the m-cluster category Cm(H). The
Calabi-Yau dimension of Cm(H) is m.

Keller and Reiten proved in [14] that any algebraic triangulated category of Calabi-
Yau dimension m that contains an (m − 1)-cluster-tilting object T with a hereditary
endomorphism algebra H such that Hom(T,Σ−iT ) = 0 for i = 0, . . . ,m − 2 is triangle
equivalent to the m-cluster category Cm(H).

More recently in [8], Dugas was able to determine the Calabi-Yau dimension to some
of the stable module categories of representation-finite self-injective algebras.

The theorem of Keller and Reiten, combined with the Calabi-Yau dimensions calcu-
lated by Dugas, was used by Holm and Jørgensen [11] to classify which stable module
categories of self-injective algebras are triangle equivalent to an m-cluster category.

We classify all triangulated orbit categories of path-algebras of Dynkin diagrams that
are triangle equivalent to the stable module category of a representation-finite standard
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self-injective algebra. This is done by showing that all self-injective algebras of standard
type are triangle equivalent to orbit-categories (but not necessarily m-cluster categories),
using a theorem by Amiot [1, thm 7.0.5]. Amiot’s theorem reduces the problem from
finding triangle equivalences to finding isomorphisms between translation quivers. In the
last section we sum up the results, giving a complete overview of all the orbit categories
that are possible to realize as a stable module category.

The following theorem sums up our results.

Theorem 1. Let ∆ be a Dynkin diagram and let Φ be an autoequivalence such
that Db(k∆)/Φ is triangulated. Let Λ be a self-injective algebra. The orbit category
C = Db(k∆)/Φ is triangle equivalent to modΛ precisely in the cases described in Table 1.

2. Translation quivers and Automorphism groups

Translation quivers can be seen as an abstraction of the properties of AR-quivers.
They are central in Riedtmann’s classification of all self-injective algebra of Dynkin type
A, D and E. Background on translation quivers can be found in [10], [4].

Definition 2. We define a quiver Q = (Q0, Q1, s, t) to consist of a set of vertices Q0,
a set of arrows Q1, a source map s and a tail/sink map t.

x− and x+: For a vertex x ∈ Q0 we denote by x− the set of direct predecessors of
x in Q, and by x+ the set of direct successors of x in Q.

Locally finite quiver: A quiver Q is called locally finite if for each x ∈ Q0 the
sets x− and x+ are finite.

Translation quiver: Let θ be an injective map from a subset of Q0 to Q0. The
pair (Q, θ) is called a translation quiver if the following is satisfied:

1. Q has no loops and no multiple arrows
2. For x ∈ Q0 such that θ(x) is defined, we have that x− = θ(x)+

The map θ is called the translation of the translation quiver (Q, θ).
Stable translation quiver: A translation quiver (Q,θ) is called stable if θ :Q0→ Q0

is a bijection.

Table 1. The cases, up to triangulated equivalence, where C = Db(k∆)/Φ
is triangle equivalent to modΛ

C Λ Sec.
Db(Ar)/τw r ≥ 1, w ≥ 1 Nakayama alg. Nw,r+1 6.1

Db(Ar)/τwφ
r = 2l + 1, l ≥ 1

w = rv, r ≥ 1
Möbius alg. Ml,v 6.2

Db(Dr)/τw r ≥ 4, w = s(2r − 3), s ≥ 1 Dn,s,1 7.1
Db(Dr)/τwφ r ≥ 4, w = s(2r − 3), s ≥ 1 Dn,s,2 7.2
Db(D4)/τ 5wρ w ≥ 1 D4,s,3 7.3

Db(Dr)/τw
r = 3m,m ≥ 2

w = s(2r − 3)/3, s ≥ 1, 3 - s D3m, s
3
,1 7.4

Db(Er)/τw
r = 6 and w = 11s

r = 7 and w = 17s s ≥ 1

r = 8 and w = 29s

Er,s,1 8.1

Db(E6)/τwφ w = 11s, s ≥ 1 E6,s,2 8.2
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(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(−2, r) (−1, r) (0, r) (1, r) (2, r)

· · ·

· · ·

(ZAr, θ)
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(−2, r − 2) (−1, r − 2) (0, r − 2) (1, r − 2) (2, r − 2)

(−2, r)

(−2, r − 1)

(−1, r)

(−1, r − 1)

(0, r)

(0, r − 1)

(1, r)

(1, r − 1)

· · ·

· · ·

(ZDr, θ)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(−1, 3) (0, 3) (1, 3) (2, 3) (3, 3)

(−1, 4) (0, 4) (1, 4) (2, 4)

(−2, 5) (−1, 5) (0, 5) (1, 5) (2, 5)

(−1, 6) (0, 6) (1, 6) (2, 6)

· · ·

· · ·

(ZE6, θ)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(−1, 3) (0, 3) (1, 3) (2, 3) (3, 3)

(−1, 4) (0, 4) (1, 4) (2, 4)

(−2, 5) (−1, 5) (0, 5) (1, 5) (2, 5)

(−2, 6) (−1, 6) (0, 6) (1, 6)

(−1, 7) (0, 7) (1, 7) (2, 7)

· · ·

· · ·

(ZE7, θ)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(−1, 3) (0, 3) (1, 3) (2, 3) (3, 3)

(−1, 4) (0, 4) (1, 4) (2, 4)

(−2, 5) (−1, 5) (0, 5) (1, 5) (2, 5)

(−2, 6) (−1, 6) (0, 6) (1, 6)

(−3, 7) (−2, 7) (−1, 7) (0, 7) (1, 7)

(−1, 8) (0, 8) (1, 8) (2, 8)

· · ·

· · ·

(ZE8, θ)

Figure 1. Translation quivers of Dynkin diagrams

Morphism of translation quivers: Given two translation quivers (Q, θ) and
(Q
′
, θ
′
), a morphism f : (Q, θ) → (Q

′
, θ
′
) is a pair of maps f0 : Q0 → Q

′
0

and f1 : Q1 → Q
′
1 such that

• if α ∈ Q1, and α : x→ y then f1(α) ∈ Q′1 is the arrow f1(α) : f0(x)→ f0(y).
• for all vertices x ∈ Q where θ is defined we have f0(θ(x)) = θ

′
(f0(x)).

Our focus will be on translation quivers of the form (Z∆, θ) for ∆ of Dynkin type A,D
and E. We use the following orientation on the Dynkin diagrams:

Ar: 1 2 · · · r − 1 r

Dr:
r

1 2 · · · r − 2

r − 1

Er:
r

1 2 3 · · · r − 2 r − 1

The corresponding stable translation quivers (ZAr, θ), (ZDr, θ), (ZE6, θ) (ZE7, θ) and
(ZE8, θ) with θ(p, q) = (p− 1, q) are shown in Figure 1.
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Table 2. The definition of the automorphism S in translation quivers of
Dynkin type

Translation quiver Automorphism S

(ZAn, θ) S(p, q) = (p+ q, n+ 1− q)

(ZDn, θ) n even S = θ−(n+1)

(ZDn, θ) n odd

S = θ−(n+1)φ, where φ is the automorphism
on (ZDn, θ) which exchanges the vertices
(x, r) and (x, r − 1) for x ∈ Z

(ZE6, θ)

S = φθ−6, where φ is the automorphism on
(ZE6, θ) exchanging (x, 5) with (x+2, 1) and
(y, 4) with (y + 1, 2) for x, y ∈ Z

(ZE7, θ) S = θ−9

(ZE8, θ) S = θ−15

The set of automorphisms on a translation quiver (Q, θ) forms a group A. A group of
automorphisms of (Q, θ) is a subgroup of A.

Definition 3. Let G be a group of automorphisms of a translation quiver (Q, θ). The
group G is called admissible if each orbit of G intersects the set {x} ∪ x+ in at most one
point, and intersects the set {x} ∪ x− in at most one point for each x ∈ Q0.

Given a (stable) translation quiver (Q, θ) and an admissible group G of automorphisms
of (Q, θ), one can form the (stable) translation quiver (Q, θ)/G, where (Q/G)0 = Q0/G
and (Q/G)1 = Q1/G. The maps s, t and θ are induced by the corresponding maps of
(Q, θ) [15]. For the stable translation quivers given by Z∆, where ∆ is a Dynkin diagram,
all admissible automorphism groups are known [15][1].

Some examples of automorphisms on (Z∆, θ) are given in Table 2. The action of S as
given in the table is the same as that of the suspension functor on Db(k∆); see also [1,
sec. 2].

3. Orbit Categories

Throughout the rest of this paper we will assume k to be an algebraically closed field.

Definition 4. Given an additive category A and an automorphism F : A → A, the
orbit category A/F is given as the category with the same objects as A and morphisms
given by HomA/F (X, Y ) =

⊕
n∈Z HomA(X,F nY ).

Certain orbit categories of triangulated categories were shown by Keller in [13] to be
triangulated:

Theorem 5 ([13]). Let H be a hereditary abelian k-category such that there is a
triangle equivalence

Db(mod k∆) ∼= Db(H).

If F is an autoequivalence on Db(H) such that

• for each indecomposable object U of H there are only finitely many objects F iU
that lie in H for i ∈ Z.
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• there exist some integer N ≥ 0 such that the F -orbit of each indecomposable object
of Db(H) contains an object U [n] for some 0 ≤ n ≤ N and some indecomposable
object U of H.

Then the orbit category OF (H) := Db(H)/F is naturally a triangulated category, and the
projection functor π : Db(H)→ OF (H) is a triangle functor.

We now let ∆ be a Dynkin diagram, and consider the category Db(k∆). The AR-
translation τ and the suspension functor [1] satisfies the requirements on F . In many
cases, as we will see, so will the composition τm [n].

The AR-quiver of Db(k∆) is equivalent as a translation quiver to (Z∆, θ). The action
of τ and [1] on the AR-quiver of Db(k∆) are equivalent to the action of respectively θ
and S on (Z∆, θ). Hence, if τm [n] satisfies the requirements on F , the AR-quiver of
Db(∆)/τm [n] is isomorphic as a translation quiver to (Z∆, θ)/(θmSn).

In Db(k∆) we know that [2] = τ−h where h is the Coxeter number of ∆ see [9][12].
The Coxeter number is known to be n+ 1 for An, 2n− 2 for Dn, 12 for E6, 18 for E7 and
30 for E8.

4. Amiot’s theorem

A very important tool we will use is a theorem by Amiot [1, theorem 7.0.5]. We first
need to give a definition of two special classes of triangulated categories.

Definition 6. A triangulated category T is called

algebraic: if it is triangle equivalent to the stable category of a Frobenius category.
standard: if it equivalent as a k-linear category to the mesh category kΓ where Γ

is the AR-quiver of T
Theorem 7. [1, p. 7.0.5] Let T be a finite triangulated category which is algebraic

and standard. Then there exists a Dynkin diagram ∆ of type A, D or E, and an auto-
equivalence Φ on Db(mod k∆) such that T is triangle equivalent to the orbit category
Db(mod k∆)/Φ.

We specialize the theorem to deal with the cases we will use:

Corollary 8. Let Λ be a representation-finite, self-injective, basic algebra such that
modΛ is of standard type. Let ∆ be a Dynkin diagram, and let Φ : Db(mod k∆) →
Db(mod k∆) be a functor such that Db(mod k∆)/Φ is triangulated.

If the AR-quivers of modΛ and Db(mod k∆)/Φ are equivalent as translation quivers,
then modΛ and Db(mod k∆)/Φ are equivalent as triangulated categories.

Proof. Obviously, modΛ is a finite standard triangulated category. It is algebraic,
because Λ is self-injective and basic, and hence Frobenius. By the proof of Theorem 7 in
[1], the equivalence follows. �

5. Self-injective Representation-finite Algebras

Our aim is to use Claire Amiot’s theorem to show that many orbit categories of
hereditary algebras (more than known before) are actually realizable as stable module
categories of self-injective algebras. In order to apply the theorem on the stable module
categories of self-injective algebras, we need to know that the categories are algebraic
and standard. It is clear that they are algebraic, as any representation-finite self-injective
algebra is Frobenius.

Asashiba has in his paper [3] defined an invariant under derived and stable equivalence,
called the type of the representation-finite self-injective algebra. Furthermore, he shows
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that any two standard (resp. non-standard) representation-finite self-injective algebras
have the same type if and only if they are derived equivalent, and also if and only if they
are stably equivalent. In the appendix to [2] a list of algebras, in terms of quivers with
relations, is given for each type defined in [3]. In Sections 6, 7 and 8, we make use of the
explicit representatives for each type, and give the details of equivalent orbit categories
and stable module categories of self-injective algebras.

We give a brief summary of the classification of Asashiba.

Definition 9. [3] Let ∆ be a Dynkin diagram type A,D,E6,E7 or E8. We define the
type of a representation-finite self-injective algebra Λ to be the triple (∆(Λ), f(Λ), t(Λ)).
The parameters are defined as follows:

∆(Λ): the tree type of Λ (for this definition, we write ∆ = ∆(Λ)).

Let m∆ be the Loewy length of the mesh category kZ∆. From [5] we know that mAn = n,
mDn = 2n − 3, mE6 = 11, mE7 = 17 and mE8 = 29. The AR-quiver of the stable module
category of Λ is known [15] to be of the form Z∆/〈φτ−r〉 for some automorphism φ with
a fixed vertex.

f(Λ): the frequency of Λ is given by f(Λ) := r/m∆.
t(Λ): the torsion order t(Λ) is the order of φ.

Using this notation, Asashiba gives a list of all the possible types for a standard
representation-finite self-injective algebra.

Theorem 10. [3] The set of types of standard representation-finite self-injective al-
gebras is the disjoint union of the following sets:

•
{

(An, sn , 1)|n, s ∈ N
}

• {(A2p+1, s, 2)|p, s ∈ N}
• {(Dn, s, 1)|n, s ∈ N, n ≥ 4}
•
{

(D3m,
s
3
, 1)|m, s ∈ N,m ≥ 2, 3 - s

}
• {(Dn, s, 2)|n, s ∈ N, n ≥ 4}
• {(D4, s, 3)|s ∈ N}
• {(En, s, 1)|n = 6, 7, 8, s ∈ N}
• {(E6, s, 2)|s ∈ N}

6. Type A

There are two standard types of representation-finite self-injective algebras that have
AR-quivers of the form ZAn/G, up to stable equivalence. The representatives given for
these two standard types by [2] and also by [16] are the Nakayama algebras, with AR-
quivers of cylindrical shape, and the Möbius algebras, which have AR-quivers shaped like
a Möbius band.

For the Nakayama algebras, the stable module categories will be equivalent to or-
bit categories using functors that are some power of the AR-translation τ . For Möbius
algebras we need a ”flip functor” to get the Möbius shape of the quiver:

Definition 11. Let n = 2l + 1 with l ∈ N. The flip functor ϕ on Db(An) is given by
ϕ = τ l+1[1].

6.1. Self-injective Nakayama algebras.

Definition 12. A self-injective Nakayama algebra is a path algebra Nv,r = Qv/Ir, for
v ≥ 1, r ≥ 2, where Qv is the quiver in Figure 2 and Ir is the ideal generated by paths of
length r.
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1

2v

α1αv

Figure 2. Quiver of a self-injective Nakayama algebra Nv,r

M1
v M1

v−1 M1
v−2 M1

1 M1
v

M2
v M2

v−1 M2
v−2 M2

1 M2
v

M r−1
v M r−1

v−1 M r−1
v−2 M r−1

1 M r−1
v

Figure 3. AR-quiver of modNv,r. The leftmost and rightmost diagonal
are identified.

These algebras are self-injective, and the stable module category modNv,r is trian-
gulated. The AR-quiver of modNv,r has been described by Riedtmann in [16]. As a
translation quiver it is of the form ZAr−1/(θ

v). In the notation of Asashiba this is of type
(An,

v
r
, 1).

If we denote the indecomposable modules over Nv,r by M l
n, where n is the socle of the

module, and l is the (Loewy) length of the module, the AR-quiver of modNv,r is shown
in Figure 3.

Proposition 13. The categories modNv,r and Db(Ar−1)/τ v are triangle equivalent
for r ≥ 2 and v ∈ N \ {0}.

Proof. For v 6= 0, the functor τ v fulfils the conditions in Theorem 5, so Db(Ar−1)/τ v

is triangulated. The algebra Nv,r is a representation-finite, self-injective, basic algebra,
whose stable module category is standard by Theorem 10. The conclusion follows from
Corollary 8. �

6.2. Möbius algebras.

Definition 14. Let l, v ≥ 1. The Möbius algebra Ml,v is the path algebra kQ/I, where
Q is the quiver in Figure 4 and I is generated by the relations:

(1) αil · · ·αi0 = βil · · · βi0 for i ∈ {1, . . . , v}
(2) βi+1

0 αil = 0 and αi+1
0 βil = 0 for i ∈ {1, . . . , v − 1}

(3) α1
0α

v
l = 0 and β1

0β
v
l = 0

(4) paths of length l + 2 are equal to zero



32 2. REALIZING ORBIT CATEGORIES AS STABLE MODULE CATEGORIES

Example 15. Let l = 1 and v = 2. The algebra M1,2 is given by the quiver in Figure
5 with relations

α0
1α

0
0 = β0

1β
0
1 α1

1α
1
0 = β1

1β
1
1

β1
0α

0
1 = 0 α1

0β
0
1 = 0

α0
0α

1
1 = 0 β0

0β
1
1 = 0.

The AR-quiver of this algebra is shown in Figure 6. We see that modM1,2 is triangle
equivalent to DbA3/φτ

6.

Riedtmann[16] showed that in general the AR-quiver of the stable module category of

a Möbius algebra Ml,v is of the form ZA2l+1/(θ
(2l+1)vφ), where φ = θ

2l+2
2 S and S is as in

Table 2. It is the asymmetry of relations (2) and (3) in I that gives rise to the ”Möbius”
twist.

In Asashiba’s notation these algebras are of type (A2l+1, v, 2).

Proposition 16. Let l, v ≥ 1 and let n = 2l + 1. The categories modMl,v and
Db(An)/τnvϕ are equivalent as triangulated categories.

Proof. Since nv ≥ 1, we know that τnvϕ fulfils the requirements on F in Theorem
5. Hence Db(A2l+1)/τnvϕ is triangulated. The algebra Ml,v is a representation-finite, self-
injective, basic algebra, whose stable module category is standard by Theorem 10. The
conclusion follows from Corollary 8. �

7. Type D

We will now look in detail at the classes of self-injective algebras that have AR-quivers
of the form ZDn/G. For this purpose we will make use of the detailed list of representa-
tives of the standard types of representation-finite self-injective algebras provided as an

◦ ◦

◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦◦

◦◦

α1
0

β1
0

α1
1

β1
1

α1
l−1

β1
l−1

α1
l

β1
l

α2
0
β2
0

α2
1 β2

1

αv−1
l−1

βv−1
l−1

αv−1
l

βv−1
l

αv
0βv

0

αv
1βv

1

αv
l−1βv

l−1

αv
lβv

l

Figure 4. Quiver of the Möbuis algebra Ml,v
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1

2

3

4

5

6

β0
0 β0

1

α0
0 α0

1

α1
0α1

1

β1
0β1

1

Figure 5. The quiver of M1,2

P6 P2

P3

P1 P4

P5

◦

◦

Figure 6. The AR-quiver of the algebra M1,2. The identical objects on
either side are identified.

appendix to [2]. There are, as indicated by Theorem 10, four cases to consider that are
standard. Three of these share the same quiver but have different sets of relations, the
last type has an entirely different quiver.

We will now define some functors that will be useful in later subsections.

Definition 17. We call an indecomposable object X in Db(Dn) an α-object if X is
a summand of the middle term in exactly one AR-triangle, and the middle term of this
AR-triangle has 3 indecomposable summands. All objects that are not α-objects are called
β-objects.

◦

◦

◦ ◦ ◦

γs−1
1

γ00

γ01 γ10 γ
1
1

γ20

◦

◦

β0
0

β0
1

β1
0 β1

1

β0
2

βs−1
1

◦

◦

◦ ◦

◦

◦

α0
n−2

α0
n−3

α0
2

α0
1

α1
n−2

α1
n−3 α1

2

α1
1

α2
n−2

α2
n−3

αs−1
2

αs−1
1

Figure 7. (Dn, s)
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Definition 18. We define the flip functor ϕ : Db(Dn) → Db(Dn) for n > 4, in the
following way :

ϕ(X) =


X if X is a β-object

the other α-object in the middle term containing X

if X is an α-object.

For n = 4 choose two of the τ -orbits containing α-objects in Db(D4). We define the
objects of these two τ -orbits to be α∗. We then define ϕ by:

ϕ(X) =


X if X is not an α∗-object

the other α∗-object in the middle term containing X

if X is an α∗-object.

Definition 19. We define the rotation functor ρ : Db(D4)→ Db(D4). Enumerate the
τ -orbits containing α-objects in Db(D4) by 1, 2 and 3. Let σ be a permutation of order 3
on the set {1, 2, 3}. We then define

ρ(X) =


X if X is a β-object

the α-object in τ -orbit σ(i), in the middle term containing X

if X is an α-object in τ -orbit nr i.

7.1. Type (Dn, s, 1).

Definition 20. The representative of self-injective algebras of type (Dn, s, 1) is given
by the path algebra Dn,s,1 := kQ/I where Q is the quiver of Figure 7 and the ideal I is
generated by the following set of relations:

(1) αi1α
i
2 · · ·αin−2 = βi1β

i
0 = γi1γ

i
0 for all i ∈ {0, . . . , s− 1}

(2) For all i ∈ {0, . . . , s− 1} = Z/〈s〉,

βi+1
0 αi1 = 0, γi+1

0 αi1 = 0,

αi+1
n−2β

i
1 = 0, αi+1

n−2γ
i
1 = 0,

γi+1
0 βi1 = 0, βi+1

0 γi1 = 0;

(3) αi+1
j−n+2 · · ·αij = 0 for all i ∈ {0, . . . , s−1} = Z/〈s〉 and for all j ∈ {1, . . . , n−2} =
Z/〈n− 2〉.

1 2 3 4

γ0

γ1

β0

β1

α2

α1

Figure 8. The quiver of algebras D4,1,1, D4,1,2 and D4,1,3.

Example 21. Let n = 4 and s = 1. The algebra D4,1,1 is given by the quiver in Figure
8 with relations:

α1α2 = β1β0 = γ1γ0
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P1 P2

P3

P4

Figure 9. D4,1,1

α2β1 = 0 , β0α1 = 0 , γ0α1 = 0,

α2γ1 = 0 , β0γ1 = 0 , γ0β1 = 0,

and all paths of length 3 are 0. Note that the relations in point 2 makes it impossible to
compose arrows from different loops, this leads to an AR-quiver which has cylinder shape.
The AR-quiver of this algebra is shown in Figure 9. In this case modD4,1,1 is triangle
equivalent to Db(D4)/τ 5.

In general the AR-quiver of the stable module category of algebras of type (Dn, s, 1)
is of the form ZDn/θs(h−1), where h is the Coxeter number for Dn.

Proposition 22. Let n≥4 and n, s∈N. The categories modDn,s,1 and Db(Dn)/τ s(h−1)

are equivalent as triangulated categories.

Proof. Since s(h− 1) > 0 the functor τ s(h−1) satisfies the conditions of Theorem 5,
hence the category Db(Dn)/τ s(h−1) is triangulated. The algebra Dn,s,1 is a representation-
finite, self-injective, basic algebra, whose stable module category is standard by Theorem
10. The conclusion follows from Corollary 8. �

7.2. Type (Dn, s, 2).

Definition 23. The representative of self-injective algebras of type (Dn, s, 2) is given
by the path algebra Dn,s,2 := kQ/I where Q is the quiver of Figure 7 and the ideal I is
generated by the following set of relations:

(1) αi1α
i
2 · · ·αin−2 = βi1β

i
0 = γi1γ

i
0 for all i ∈ {0, . . . , s− 1}

(2) for all i ∈ {0, . . . , s− 1} = Z/〈s〉,
βi+1

0 αi1 = 0 γi+1
0 αi1 = 0,

αi+1
n−2β

i
1 = 0 αi+1

n−2γ
i
1 = 0,

and for all i ∈ {0, . . . , s− 2},
γi+1

0 βi1 = 0 βi+1
0 γi1 = 0,

β0
0β

s−1
1 = 0, γ0

0γ
s−1
1 = 0;

(3) α-paths of length n− 1 are zero, and for all i ∈ {0, . . . , s− 2},
βi+1

0 βi1β
i
0 = 0, γi+1

0 γi1γ
i
0 = 0,

βi+1
1 βi+1

0 βi1 = 0, γi+1
1 γi+1

0 γi1 = 0, and

γ0
0β

s−1
1 βs−1

0 = 0, β0
0γ

s−1
1 γs−1

0 = 0,

γ0
1γ

0
0β

s−1
1 = 0, β0

1β
0
0γ

s−1
1 = 0.
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P1 P2

P3

P4

?

?◦

◦

Figure 10. modD4,1,2. The quiver is glued together by identifying the
matching symbols on either side.

Example 24. Let n = 4 and s = 1. The algebra D4,1,2 is given by the quiver in Figure
8 with relations:

α1α2 = β1β0 = γ1γ0

α2β1 = 0 , β0α1 = 0 , γ0α1 = 0,

α2γ1 = 0 , β0β1 = 0 , γ0γ1 = 0,

and all paths of length 3 are 0. The AR-quiver of this algebra is shown in Figure 10. This
time the zero relations in point 2 glues together two of the τ -orbits of ZD4. In this case
modD4,1,2 is triangle equivalent to Db(D4)/τ 5ϕ.

In general the AR-quiver of the stable module category of algebras of type (Dn, s, 2)
is of the form ZDn/θs(h−1)φ, where h is the Coxeter number for Dn, and φ is the auto-
morphism described in Table 2 for n > 4 and for n = 4 it is an automorphism of order
2.

Proposition 25. Let n≤4 and s,n∈N. The categories modDn,s,2 and Db(Dn)/τ s(h−1)ϕ
are equivalent as triangulated categories.

Proof. Since s(h − 1) > 0 the functor τ s(h−1)ϕ satisfies the conditions given in
Theorem 5. Hence the category Db(Dn)/τ s(h−1)ϕ is triangulated. The algebra Dn,s,2

is a representation-finite, self-injective, basic algebra, whose stable module category is
standard by Theorem 10. The conclusion follows from Corollary 8. �

7.3. Type (D4, s, 3).

Definition 26. The representative of self-injective algebras of type (D4, s, 3) is given
by the path algebra D4,s,3 := kQ/I where Q is the quiver of Figure 7 and the ideal I is
generated by the following set of relations:

(1) The same relations as for (D4, s, 1), part 1.
(2) For all i ∈ {0, . . . , s− 2}

βi+1
0 αi1 = 0, γi+1

0 αi1 = 0,

αi+1
0 βi1 = 0, γi+1

0 βi1 = 0,

αi+1
0 γi1 = 0, βi+1

0 γi1 = 0, and

α0
0α

s−1
1 = 0, γ0

0α
s−1
1 = 0,

α0
0β

s−1
1 = 0, β0

0β
s−1
1 = 0,

β0
0γ

s−1
1 = 0, γ0

0γ
s−1
1 = 0;
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P1 P2

P3

P4

?

?◦

◦

Figure 11. modD4,1,3. The quiver is glued together by identifying the
matching symbols on either side.

(3) all paths of length 3 are zero.

Example 27. Let n = 4 and s = 1. The algebra D4,1,3 is given by the quiver in Figure
8 with relations:

α1α2 = β1β0 = γ1γ0

α0α1 = 0 , α0β1 = 0 , β0γ1 = 0,

γ0α1 = 0 , β0β1 = 0 , γ0γ1 = 0,

and all paths of length 3 are 0. The AR-quiver of this algebra is shown in Figure 11. As
the figure shows, three of the τ -orbits of ZD4 are glued together, this is due to the zero
relations of length two. In this case modD4,1,3 is triangle equivalent to Db(D4)/τ 5ρ.

In general the AR-quiver of the stable module category of algebras of type (D4, s, 3)
is of the form ZDn/θ5sφ, where φ is the automorphism of order 3 described in Table 2.

Proposition 28. Let n = 4 and s ∈ N. The categories modD4,s,3 and Db(D4)/τ 5sρ
are equivalent as triangulated categories.

Proof. Since 5s > 0, the functor τ 5sρ satisfies the conditions given in Theorem 5.
Hence the category Db(D4)/τ 5sρ is triangulated. The algebra Dn,s,3 is a representation-
finite, self-injective, basic algebra, whose stable module category is standard by Theorem
10. The conclusion follows from Corollary 8. �

7.4. Type (D3m,
s
3
, 1). This is the only type of tree type D where the frequency is

not an integer. If 3|s, then the type is already described, in Section 7.1; hence we require
that s is not divisible by 3.

Definition 29. Let m ≥ 2 and s ≥ 1 with 3 - s. The representative of self-injective
algebras of type (D3m,

s
3
, 1) is given by the path algebra D3m, s

3
,1 := kQ/I where Q is the

quiver of Figure 12 and the ideal I is generated by the following set of relations:

(1) αim · · ·αi2αi1 = βi+1βi for all i ∈ {1, . . . , s} = Z/〈s〉;
(2) αi+2

1 αim = 0 for all i ∈ {1, . . . , s} = Z/〈s〉;
(3) αi+3

j · · ·αi+3
1 βi+2α

i
m · · ·αij =0 for all i∈{1, . . . , s}=Z/〈s〉 and for all j∈ {1, . . . ,m}

Example 30. Let m = 2 and s = 1. The algebra D6, 1
3
,1 is given by the quiver in

Figure 13 with relations:

β2 = α2α1 α1α2 = 0

α1βα2α1 = 0 α2α1βα2 = 0.
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◦

◦

◦

◦

◦

◦

β1

β2

β3

β4 β5

β6

βs−1

βs

◦
◦

◦
◦

◦
◦

◦
◦ ◦

◦

◦
◦

α1
1

αs
m

α2
1

α1
m

α3
1

α2
m

α4
1

α3
m α5

1

α4
m

α6
1

αs−2
m

αs
1

αs−1
m

α1
2

α1
m−1

α2
2

α2
m−1

α3
2

α3
m−1

α4
2

α4
m−1

α5
2

α6
2

αs
m−1 αs

2

αs−1
m−1

αs−2
m−1

Figure 12. (D3m,
s
3
)

The AR-quiver of this algebra is shown in Figure 14. In this case modD6, 1
3
,1 is triangle

equivalent to Db(D6)/τ 3.

In general the AR-quiver of the stable module category of algebras of type (D3m,
s
3
, 1)

is of the form ZD3m/θ
s(h−1)/3, where h is the Coxeter number for D3m, and φ is the

automorphism described in Table 2. (Note that since h − 1 = 2n − 3 = 6m − 3 we have
that s(h− 1)/3 is a natural number).

Proposition 31. Let m ≥ 2 and s ≥ 1 with 3 - s. The categories modD3m, s
3
,1 and

Db(D3m)/τ s(h−1)/3 are equivalent as triangulated categories.

Proof. Since s(h − 1)/3 > 0, the functor τ s(h−1)/3 satisfies the conditions of The-
orem 5, hence the category Db(D3m)/τ s(h−1)/3 is triangulated. The algebra D3m, s

3
,1 is a

representation-finite, self-injective, basic algebra, whose stable module category is stan-
dard by Theorem 10. The conclusion follows from Corollary 8. �

1 2

α2

α1

β

Figure 13. Quiver of the path algebra D6, 1
3
,1
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P1

P2

Figure 14. D6, 1
3
,1

◦

◦

◦ ◦ ◦

γ02

γ01
γ12 γ11

γ22

γs−1
1

◦

◦

◦ ◦

◦

β0
3

β0
2

β0
1

β1
3

β1
2

β1
1

β2
3

βs−1
1

◦

◦

◦ ◦

◦

◦

α0
n−3

α0
n−4

α0
2

α0
1

α1
n−3

α1
n−4 α1

2

α1
1

α2
n−3

α2
n−4

αs−1
2

αs−1
1

Figure 15. Type (En, s)

8. Type E

We now look at self-injective algebras with AR-quivers of the form ZEn/G. These
algebras are all standard [3], and they are divided into two main groups; those with a
cylindrical AR-quiver, and those with a Möbius-shaped AR-quiver. In Asashiba’s nota-
tion, the former are of type (En, s, 1), while the latter are of type (E6, s, 2), see [3]. For
the first group, the stable module categories will be equivalent to orbit categories using
functors that are some power of the AR-translation τ . For the latter, however, we need a
”flip functor” to get the Möbius shape of the quiver.

Definition 32. The flip functor ϕ on Db(E6) is given by ϕ = τ 6[1].

We follow the classification due to Asashiba for the rest of the section. Note that the
representative algebras all share the quiver given in Figure 15; however the relations are
different.

8.1. Type (En, s, 1).
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Definition 33. The representative of self-injective algebras of type (En, s, 1) is given
by the path algebra En,s,1 := kQ/I where Q is the quiver of Figure 15 and the ideal I is
generated by the following set of relations:

(1) αi1α
i
2 · · ·αin−3 = βi1β

i
2β

i
3 = γi1γ

i
2 for all i ∈ {0, . . . , s− 1};

(2) For all i ∈ {0, . . . , s− 1} = Z/〈s〉,
βi+1

3 αi1 = 0, γi+1
2 αi1 = 0,

αi+1
n−3β

i
1 = 0, γi+1

2 βi1 = 0,

αi+1
n−3γ

i
1 = 0, βi+1

3 γi1 = 0, and

(3) α-paths of length n − 2 are equal to 0, β-paths of length 4 are equal to 0 and
γ-paths of length 3 are equal to 0.

Example 34. Let n = 6 and s = 1. The algebra E6,1,1 is given by the quiver in Figure
16, together with the relations

α1α2α3 = β1β2β3 = γ1γ2

α3β1 =0 α3γ1 = 0 β3α1 = 0

β3γ1 =0 γ2α1 = 0 γ2β1 = 0

α2α3α1α2 =0 β2β3β1β2 = 0.

The AR-quiver of the module category over this algebra is given in Figure 17. It turns
out that modE6,1,1 is triangulated equivalent to Db(kE6)/τ 11.

In general, the AR-quiver of the stable module categories of self-injective algebras of
type (En, s, 1) is isomorphic to ZEn/θtns, where t6 = 11, t7 = 17 and t8 = 29.

Proposition 35. Let n=6, 7, 8 and s≥1. The categories modEn,s,1 and Db(kEn)/τ tns

are triangle equivalent.

Proof. Since tns > 0, the functor τ tns satisfies the conditions of Theorem 5, hence
Db(kEn)/τ tns is a triangulated category. The algebra En,s,1 is a representation-finite, self-
injective, basic algebra, whose stable module category is standard by Theorem 10. The
conclusion follows from Corollary 8. �

8.2. Type (E6, s, 2).

Definition 36. The representative of self-injective algebras of type (E6, s, 2) is given
by the path algebra E6,s,2 := kQ/I where Q is the quiver of Figure 15 and the ideal I is
generated by the following set of relations:

(1) αi1α
i
2 · · ·αin−3 = βi1β

i
2β

i
3 = γi1γ

i
2 for all i ∈ {0, . . . , s− 1};

1

2

3

4

5

6

α3

α2

α1

β3

β2

β1

γ2

γ1

Figure 16. Quiver of E6,1,n for n = 1, 2
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P1

P2P3

P4P5

P6

? ?

◦ ◦

Figure 17. AR-quiver of modE6,1,1. The quiver is glued together by iden-
tifying the matching symbols on either side.

(2) For all i ∈ {0, . . . , s− 1} = Z/〈s〉,

αi+1
3 γi1 = 0, βi+1

3 γi1 = 0,

γi+1
2 αi1 = 0, γi+1

2 βi1 = 0,

and for all i ∈ {0, . . . , s− 2},

βi+1
3 αi1 =0, αi+1

3 βi1 = 0,

α0
3α

s−1
1 =0, β0

3β
s−1
1 = 0, and

(3) γ-paths of length 3 are equal to 0, and for all i ∈ {0, . . . , s − 2} and for all
j ∈ {1, 2, 3} = Z/〈3〉,

αi+1
j−3 · · ·αij = 0, βi+1

j−3 · · · βij = 0,

β0
j−3 · · · β0

3α
s−1
1 · · ·αs−1

j = 0, α0
j−3 · · ·α0

3β
s−1
1 · · · βs−1

j = 0.

Example 37. Let n = 6 and s = 1. The algebra E6,1,2 is given by the quiver in Figure
16, together with the relations

α1α2α3 = β1β2β3 = γ1γ2

α3α1 =0 α3γ1 = 0 β3β1 = 0

β3γ1 =0 γ2α1 = 0 γ2β1 = 0

α2α3β1β2 =0 β2β3α1α2 = 0

The AR-quiver of the module category over this algebra is given in Figure 18. It turns
out that modE6,1,2 is triangulated equivalent to Db(kE6)/τ 11ϕ.

In general, the AR-quiver of the stable module categories of self-injective algebras of
type (E6, s, 2) is isomorphic to ZE6/θ

11sφ, where φ is described in Table 2.

Proposition 38. Let s ≥ 1. The categories modE6,s,2 and Db(kE6)/τ 11sϕ are triangle
equivalent.

Proof. Since 11s > 0, the functor τ 11sϕ satisfies the conditions of Theorem 5, hence
Db(kE6)/τ 11sϕ is a triangulated category. The algebra E6,s,2 is a representation-finite,
self-injective, basic algebra, whose stable module category is standard by Theorem 10.
The conclusion follows from Corollary 8. �
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9. Summary

From the results of Section 6, 7 and 8 it is clear that all but one of the representation-
finite self-injective standard algebras are stably triangle equivalent to an orbit category
of the form Db(k∆r)/τ

wϕi where i ∈ {0, 1} and ϕ is the functor described in Definition
11 for type A, Definition 18 and 19 for D and Definition 32 for type E6. However not all
triangulated orbit categories of the form Db(k∆r)/F are equivalent to a stable module
category of a representation finite self-injective algebra. We therefore sum up our findings
in a table below, aiming at a way to easily look up if a certain orbit category is in fact
equivalent or not to a stable module category of a self-injective algebra.

Recall that given a functor of the form F = τm[n] on Db(k∆r), it can be expressed on
the form F = τwϕi using the Coxeter relation for ∆r, and the above-mentioned definitions
of ϕ.

The following theorem sums up our results.

Theorem 39. Let ∆ be a Dynkin diagram and let Φ be an autoequivalence such
that Db(k∆)/Φ is triangulated. Let Λ be a self-injective algebra. The orbit category
C = Db(k∆)/Φ is triangle equivalent to modΛ precisely in the cases described in Table 3.

P1

P2P3

P4P5

P6

?

?◦

◦

Figure 18. AR-quiver of modE6,1,2. The quiver is glued together by iden-
tifying the matching symbols on either side.

Table 3. The cases, up to triangulated equivalence, where C = Db(k∆)/Φ
is triangle equivalent to modΛ.

C Λ Sec.
Db(Ar)/τw r ≥ 1, w ≥ 1 Nakayama alg. Nw,r+1 6.1

Db(Ar)/τwφ
r = 2l + 1, l ≥ 1

w = rv, r ≥ 1
Möbius alg. Ml,v 6.2

Db(Dr)/τw r ≥ 4, w = s(2r − 3), s ≥ 1 Dn,s,1 7.1
Db(Dr)/τwφ r ≥ 4, w = s(2r − 3), s ≥ 1 Dn,s,2 7.2
Db(D4)/τ 5wρ w ≥ 1 D4,s,3 7.3

Db(Dr)/τw
r = 3m,m ≥ 2

w = s(2r − 3)/3, s ≥ 1, 3 - s D3m, s
3
,1 7.4

Db(Er)/τw
r = 6 and w = 11s

r = 7 and w = 17s s ≥ 1

r = 8 and w = 29s

Er,s,1 8.1

Db(E6)/τwφ w = 11s, s ≥ 1 E6,s,2 8.2
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ment. Math. Helv. 55.2 (1980), pp. 199–224.

[16] C. Riedtmann. “Representation-finite self-injective algebras of class An”. In: Represen-
tation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979).
Vol. 832. 1980, pp. 449–520.





PAPER 3

Modules of finite projective dimension over a cluster-tilted
algebra

Karin M. Jacobsen

Manuscript

45





1. INTRODUCTION 47

MODULES OF FINITE PROJECTIVE DIMENSION
OVER A CLUSTER-TILTED ALGEBRA

KARIN M. JACOBSEN

Abstract. We study the category of modules of finite projective
dimension P≤1 over a gentle cluster-tilted algebra using triangula-
tions of marked surfaces. For Dynkin type A, we give the number
of irreducible objects in P≤1 and calculate the AR-translation.

1. Introduction

Let Λ be a finite dimensional algebra, and let Db(Λ) be the bounded derived category
over mod Λ. The cluster category, as introduced in [9] by Buan, Marsh, Reineke, Reiten
and Todorov, has been widely studied the last decade. It is given by the orbit category
C = Db(Λ)/τ−1[1], where Λ is a hereditary algebra.

In particular, the class of cluster-tilted algebras [7] is very interesting. These are the
algebras of the form End(T )

op
, where T is a cluster-tilting (i.e. maximal rigid) object

in the cluster category. Cluster-tilted algebras are not necessarily hereditary but their
module categories still have the nice structure of the original, hereditary algebra.

The technique of using marked surfaces as way to represent the cluster category of type
A was introduced in [10]. Marked surfaces were used by Assem, Brüstle, Charbonneau-
Jodoin and Plamondon to represent module categories of gentle algebras, including cluster-
tilted algebras of type A, in [3]. For algebras of finite type, the geometric descriptions
give complete descriptions of the cluster category and the module category.

In this paper we let Λ be a cluster-tilted algebra, and consider the full subcategory P≤1

of mod Λ containing all modules of projective dimension at most one. It was shown in [12]
that cluster-tilted algebras have Gorenstein dimension one, so in the cases we study, the
category P≤1 contains all modules of finite projective dimension. In Section 2 we recount
results by Auslander and Smalø given in [4] that shows that for any finitely generated
Artin algebra, the subcategory P≤1 has AR-structure. We state additional results by
Kleiner and Perez that calculates the AR-translation explicitly.

In Section 3, we give some results by Keller and Reiten on the structure of P≤1. We
also recount a very useful theorem given in [5] by Beaudet, Brüstle and Todorov, which
describes all modules of infinite projective dimension.

We state the basic facts about surface algebras in Section 4, including a conjecture on
the proper translation of the theorem in [5] to the world of surface algebras. In Section 5
we show that the conjecture holds for Dynkin type A and use it to give an invariant for
type A. We also calculate the AR-translation in P≤1 for type A.

1.1. Notation. k is an algebraically closed field. We assume all algebras are k-
algebras and that all categories are k-categories.

For a category C, we let |C| denote the number of isomorphism classes of indecompos-
able objects.

Let U be a subcategory C, and let X be an object in C. A minimal right U -

approximation of X is a right minimal morphism rUX
g−→ X with rUX ∈ U , such that any
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morphism from an object in U to X factors through g. Dually, we denote by X → lUX a
minimal left U -approximation of X.

For a Λ-module X, we let pdX and idX denote the projective and injective dimension
of X respectively.

For T a cluster-tilting object, we let ΛT = End(T )op = kQT/IT .

2. Almost split sequences in subcategories

In [4], Auslander and Smalø studied the existence of almost split sequences (or AR-
sequences ) in subcategories of the module category. For convenience we state some central
results. First we define the analogues to projectives and injectives for a subcategory.

Definition 1 ([4]). Let U be a subcategory, and let X be an object in U .
X is called Ext-projective if Ext1

U(X,U) = 0 for all U ∈ U .
X is called Ext-injective if Ext1

U(U,X) = 0 for all U ∈ U .

We give the definition of almost split sequences in subcategories.

Definition 2 ([4]). Let Λ be a k-algebra. Let U be a subcategory of mod Λ that is
closed under extensions. We say that U has almost split sequences if

(1) For every indecomposable object U ∈ U , there exists a right almost split morphism
V → U and a left almost split morphism U → W in U .

(2) For each indecomposable non-Ext-projective object W ∈ U there exists an exact

sequence 0 → U
f−→ V

g−→ W → 0 such that f is left almost split and g is right
almost split in U .

(3) For each indecomposable non-Ext-injective object U ∈ U there exists an exact

sequence 0 → U
f−→ V

g−→ W → 0 such that f is left almost split and g is right
almost split in U .

They also give an existence theorem for the almost split sequences.

Theorem 3 ([4, Thm. 2.4]). Any functorially finite subcategory of mod Λ which is
closed under extensions has almost split sequences.

In this paper, we will study the following full subcategory of mod Λ:

P≤1 := {M ∈ mod Λ | pdM ≤ 1}.

Corollary 4. If Λ has Gorenstein dimension 1, then P≤1 has almost split sequences.

Proof. If Λ has Gorenstein dimension 1, then the injective envelope of Λ has pro-
jective dimension 1. In [11], the authors showed that this means that P≤1 is functorially
finite. It is closed under extensions by the horseshoe lemma. �

Kleiner [13], and later Kleiner and Perez [14] gave a method for calculating the AR-
translation in subcategories with almost split sequences.

Theorem 5 ([14]). Let U be a functorially finite subcategory of mod Λ. Let

0→ U
f−→ V

g−→ W → 0

be an almost split sequence in U . Let τ be the AR-translation in mod Λ. Then rUτW ∼= U⊕I,
where I is Ext-injective.
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3. P≤1 for cluster-tilted algebras

Let C be a cluster category as defined in [9], and let T be a cluster-tilting object in C.
We denote by τC the Auslander-Reiten translation on C. Let Λ be given by Λ = End(T )op;
we call Λ a cluster-tilted algebra. As we will study the subcategory P≤1 of Λ-modules of
finite projective dimension, we first give a description of the projectives and injectives in
mod Λ.

Lemma 6 ([7]). Let X be an object in mod Λ.
X is projective if and only if X ∼= HomC(T, T

′) for some T ′ ∈ addT ⊆ C.
X is injective if and only if X ∼= HomC(T, τ

2
CT
′) for some T ′ ∈ addT ⊆ C.

We will need the following statements, which were shown in [12], though not all stated
explicitly. Statement (3) was also shown in [15]. We include the proofs for the convenience
of the reader.

Lemma 7 ([12]). Let X be an object in mod Λ, where Λ is a cluster-tilted algebra.
Then the following holds:

(1) if X is injective, then pdX ≤ 1;
(1∗) if X is projective, then idX ≤ 1;
(2) if pdX <∞, then idX ≤ 1;

(2∗) if idX <∞, then pdX ≤ 1;
(3) either pdX = idX =∞, or pdX ≤ 1 and idX ≤ 1;
(4) the Gorenstein dimension of Λ is 1.

Proof.

(1) Suppose X is injective. Choose a minimal projective presentation of X, say
P1 → P0 → X → 0. Using Lemma 6, we see rewrite this as

HomC(T, T1)→ HomC(T, T0)→ HomC(T, τ
2T ′),

where T1, T0 and T ′ are in addT .
Using the correspondence addT ∼= proj Λ, together with the knowledge that

HomC(T,−) is full and dense, we see that there is a distinguished triangle

τT ′
f−→ T1 → T0 → τ 2T ′.

We apply HomC(T,−) to this triangle and then use that HomC(T, τT ) =
Ext1(T, T ) = 0. We get that

0→ P1 → P0 → X → 0

is an exact sequence, hence pdX ≤ 1.
(1∗) Dual of (1).
(2) Denote by ΩX the kernel of some epimorphism P1 → X, where P1 is projective.

Let Ωm+1(X) = Ω(Ωm(X)). Suppose that pdX = n < ∞. Then Ωn(X) must
be projective, and hence of injective dimension at most one. We will show that
idX ≤ 1 by induction on p. Consider the short exact sequence

0→ Ωn−pX → Pn−p → Ωn−(p−1)X → 0,
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where we assume that idΩn−pX≤1 and that Pn−p is projective, so that idPn−p≤1.
For an arbitrary object A ∈ mod Λ, we get the long exact sequence

0→ Hom(A,Ωn−pX)→ Hom(A,Pn−p)→ Hom(A,Ωn−p−1X)→
→ Ext1(A,Ωn−pX)→ Ext1(A,Pn−p)→ Ext1(A,Ωn−p−1X)→
→ Ext2(A,Ωn−pX)→ Ext2(A,Pn−p)→ Ext2(A,Ωn−p−1X)→ · · ·

Since Exti+1(A,Ωn−pX) = 0 = Exti(A,Pn−p) for i > 1 it follows that we have
Exti(A,Ωn−p−1X) = 0 for i > 1. Hence id Ωn−p−1X ≤ 1. By induction, we get
that idX ≤ 1.

(2∗) Dual of (2).
(3) Follows from (2) and (2∗).
(4) Restatement of (3).

�

As we start investigating the AR-structure of P≤1, we need to know its Ext-projectives
and -injectives.

Lemma 8. Let X be an object in P≤1.
X is Ext-projective in P≤1 if and only if X is projective in mod Λ.
X is Ext-injective in P≤1 if and only if X is injective in mod Λ.

Proof. IfX is projective (injective) in mod Λ, then X is Ext-projective (Ext-injective)
in mod Λ and also in P≤1.

Suppose that X is an element in P≤1. Then there exists an exact sequence

0→ P1 → P0 → X → 0.

If X is not projective, the sequence does not split. Both P1 and P0 are nonzero
elements in P≤1, and hence ExtP≤1

(X,P1) 6= 0, so X cannot be Ext-projective.
Assume that X ∈ P≤1 is not injective. Then idX = 1 by Lemma 7. There exists a

non-split short exact sequence

0→ X → I0 → I1 → 0,

which is also non-split in P≤1. Hence X is not Ext-injective. �

We now describe the objects of C that HomT (T,−) send to P≤1.

Theorem 9 ([5, Theorem 1.1]). Let X ∈ C. Then HomC(T,X) has infinite projective
dimension if and only if there exists a non-zero morphism τT → τT factoring through X.

Example 10. Let C be the cluster category over A5, and let T be the cluster-tilting
object that is the direct sums of the objects marked with � in the below figure.

◦

◦
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We shade the summands of τT dark grey. The objects X such that
pd Hom(T,X) =∞ are shaded light grey.

◦

◦

The AR-quiver of P≤1 is:

∗

•

•

•

•

•

◦

∗

•

•

•

◦

The nodes marked ∗ and ◦ are identified.

4. Surface algebras

As shown in [3], surface algebras are useful when we study cluster-tilted algebras. In
particular, they give a description of the AR-structure of the module category and cluster
category of a gentle algebra [6]. In this section we recall the most relevant definitions and
results from the two papers.

Let S be an oriented surface with boundary ∂S. Let M be a finite, nonempty set of
points on ∂S such that there is at least one point from each connected component of ∂S
in M . We call the pair (S,M) a marked surface (without punctures).

A curve in (S,M) is a continuous function γ : [0, 1]→ S such that γ(0), γ(1) ∈M . It
is closed if γ(0) = γ(1). Its inverse curve is γ−1 given by γ−1(t) = γ(1− t).

An arc in (S,M) is a homotopy class of non-contractible curves in (S,M), subject to
the equivalence relation γ ∼ γ−1. By abuse of notation we will denote the arc containing
a curve γ simply by γ. If γ is homotopic to an arc on ∂S which only intersects M in its
endpoints, we call it a boundary arc. Otherwise, we call it an internal arc.

A triangulation ∆ of (S,M) is a maximal collection of non-intersecting arcs. A triangle
in ∆ is called an internal triangle if all the edges of the triangle are internal arcs. If α, β
and γ are internal arcs forming a triangle, that triangle is denoted αβγ.

The quiver Q∆ associated to a triangulation ∆ is given as follows.

Vertices: For each internal arc in ∆ we associate one vertex in Q∆.
Arrows: For each triangle in ∆ containing two internal arcs α and β, there is an

arrow in Q∆ between the corresponding vertices α → β if α is a predecessor to
β with respect to a clockwise rotation at their joint end point in M .

The algebra associated to ∆ is A(∆) = kQ∆/I∆, where I∆ is generated by all paths of
length two which are part of a 3-cycle in Q∆. We call A(∆) a surface algebra.

Surface algebras are gentle and finite-dimensional. Let Λ be a gentle path algebra
where all the relations are from oriented 3-cycles with radical square zero. Then there
exists a marked surface (S,M) with a triangulation ∆ such that Λ ∼= A(∆). In particular,
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let Λ be a cluster-tilted algebra of Dynkin type An, then we know that S is a disc and M
contains |M | = n+ 3 points [3].

We can also associate a cluster category to (S,M). Let ∆ be a triangulation of (S,M).
Let C∆ be the Amiot cluster category (see [1]) over (Q∆,W ), where W is the potential
corresponding to I∆ above. We can show that the category C∆ is independent of the choice
of triangulation ∆; hence we simply denote it by C(S,M). The indecomposable objects of
C(S,M) are contained in two classes:

String objects: correspond to the internal arcs in (S,M). We set the boundary
arcs to correspond to the zero object. For the arc γ we denote the corresponding
string object by C(γ)

Band objects: indexed by k∗×
∏∗

1(S,M)/∼, where k∗ = k\{0} and
∏∗

1(S,M)/∼
is given by the nonzero elements of the fundamental group of (S,M) subject to
the equivalence relation α ∼ α−1. We set (λ, b0) to be equal to the zero object.

If Γ is a finite set of arcs, we set C(Γ) =
⊕

γ∈ΓC(γ).
The irreducible morphisms of C(S,M) are most easily given by first defining two types

of immediate successor objects:

• For any string object C(γ), let sC(γ) and C(γ)e be the arcs obtained by moving
respectively the start or end point of γ one step. Such a move is also called a
elementary pivoting move. See Figure 1 for an illustration.

× ×× ×
γ

γe

sγ

Figure 1. Elementary pivoting moves

• If (λ, bn) is a band object, set (λ, bn)e = (λ, bn−1) and s(λ, b
n) = (λ, bn+1).

Consider an indecomposable object X ∈ C(S,M).

• If Xe is non-zero, there is an irreducible morphism X → Xe.
• If sX is non-zero, there is an irreducible morphism X → sX.

All irreducible morphisms are of this form.
We see that e(Xs) = (eX)s = eXs. The following commutativity relation holds on the

irreducible morphisms:

X → Xe → sXe = X → sX → sXe

If either Xe or sX is zero, this means that the other composition is zero.
The cluster category C(S,M) is a triangulated category. The suspension functor is most

easily described by its inverse: X[−1] = sXe. Moreover, the category C(S,M) is 2-Calabi-
Yau, and has AR-triangles:

X → Xe ⊕ sX → sXe → X[1].

We can show that if S is a disc and |M | ≥ 4, then C(S,M) is equivalent to the cluster
category of type A|M |−3.
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The triangulations ∆ of (S,M) correspond to cluster-tilting objects in C(S,M). For
convenience, we let C(∆) = τT∆, where T∆ is a cluster-tilting object. Mutation on a Q∆

corresponds to switching out an arc in ∆.
We know that the quotient category C/τT∆ is equivalent to mod End(T )op [7]. If we

set the arcs of a triangulation ∆ to correspond to zero objects, we obtain a description
of the module category of A(∆). Hence, from the geometric description of C(S,M), we get
a geometric description of modA(∆), including a description of the AR-translation. For
an internal arc γ which is not in ∆, we let N(γ) denote the module corresponding to the
arc γ. We see that N(γ) ∼= HomC(S,M)

(T∆, C(γ)).
We propose the following version of Theorem 9:

Conjecture 11. Let (S,M) be a marked surface, and let ∆ be a triangulation of
(S,M). Let γ be an arc in (S,M) which is not in ∆. The following are equivalent:

(1) The A(∆)-module N(γ) has infinite projective dimension.
(2) There is an internal triangle αβδ in ∆ where α is a predecessor to γ and γ is

a predecessor to β with respect to clockwise rotation at γ(0). We say that γ is
trapped by a triangle.

∂S

∂S

∂S

α

δ

βγ

Figure 2. An arc γ trapped by an internal triangle αβδ.

Suppose condition (2) holds. There must be an arrow between the vertices correspond-
ing to α and β in Q∆. The arrow corresponds to a non-zero morphism C(α) → C(β) in
the cluster category. That morphism factors through C(γ), see Figure 2. By Theorem 9,
the module N(γ) has infinite projective dimension. Thus, condition (2) implies condition
(1).

In Section 5 we show that the reverse implication, and thus the whole conjecture,
holds in Dynkin type A.

5. P≤1 in type A

We will show that Conjecture 11 holds in type A. Thus we have a very nice description
of the modules of infinite projective dimension: they are the ones corresponding to arcs
trapped by some internal triangle of ∆. In this section we assume that S is a disc and
|M | ≥ 4. Hence C(S,M) will be the cluster category of type An, where n = |M | − 3.

The derived category of an algebra of type An is isomorphic as a translation quiver to
ZAn. Let φ be the graph automorphism on ZAn corresponding to the functor τ−1[1]. The
AR-quiver of the cluster category is equivalent to the stable translation quiver ZAn/φ.
This quiver has a Möbius band shape [9], see Figure 3.

For an indecomposable object X in the cluster category C, the Hom-hammock of X
is the set of objects Y such that HomC(X, Y ) 6= 0. Similarly, the Ext-hammock is the set
of objects Y such that ExtC(X, Y ) 6= 0.
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•
•
∗

•
•
•

•
•
•

•
•
•

•
•
•

•
•
∗

•
•
•

•
•
•

Figure 3. The AR-quiver of the cluster category of an algebra of type
An. The first row and the last row are identified, with the ∗ indicating
the identification of nodes. The Hom-hammock of ∗ is shaded with vertical
lines. The Ext-hammock of ∗ is shaded with horisontal lines.

Let T1 and T2 be two indecomposable summands of a cluster-tilting object T , and
suppose there is a non-zero morphism T1 → T2. Then T2 must lie in the Hom-hammock
of T1. However it cannot lie in the Ext-hammock of T1, as they are both part of a cluster-
tilting object. As we see in Figure 3 we are left with very few options for where in the
AR-quiver T2 may lie with respect to T1.

We have an analogous result for triangulations on (S,M):

Lemma 12. Let α and β be internal arcs in the triangulation ∆ in (S,M). If there is
a non-zero morphism f : C(α)→ C(β), then α and β share a vertex, and f corresponds
to rotation about this vertex.

Proof. Assume that α and β do not share a vertex. Since ∆ is a triangulation, the
arcs α and β cannot intersect. We are in the situation of Figure 4. We number the points
of M anti-clockwise along ∂S by 1 to |M |. Let the a1 and a2 denote the vertices of α,
and let b1 and b2 denote the vertices of β.

αβ

a1

a2

a1 + 1

a2 + 1

b1

b2

Figure 4. The situation in the proof of Lemma 12 if α and β do not share
a vertex. The dashed arcs show the irreducible morphisms (elementary
pivoting moves) from α.

We assume without loss of generality that f is a composition of finitely many irre-
ducible maps [2, Cor. 5.5], corresponding to a sequence of elementary pivoting moves on
α. We need to move the two vertices of α to the vertices of β without going through a
boundary component. Due to the mesh relations, we can assume that we do all moves
for a1, and then all the moves for a2, see Figure 5. In the figure we also see that since
f is non-zero, we can assume without loss of generality that we first map a1 to b2, and
then a2 to a1. However, this map also factors through (for example) the arc from a1 to
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a1 + 1, which is a boundary arc. Boundary arcs represent the zero object, so f must be
zero, giving us a contradiction.

It follows that α and β must share at least one vertex. By a similar argument, we
see that f actually must correspond to a series of elementary pivoting moves about this
vertex. �

αβ

1

2

a1

a2

b1

b2

αβ

a1

a2

a1 + 1

b1

b2

1

2

3

4

Figure 5. The two decompositions of f : C(α) → C(β) discussed in
Lemma 12 as seen on the marked surface.

We are now ready to prove Conjecture 11 in type A.

Theorem 13. Let (S,M) be a marked surface, where S is a disc and |M | ≥ 4. Let ∆
be a triangulation of (S,M). Let γ be an arc in (S,M) which is not in ∆. The following
are equivalent:

(1) The A(∆)-module N(γ) has infinite projective dimension.
(2) There is an internal triangle αβδ of ∆, where α is a predecessor to γ and γ is

a predecessor to β with respect to clockwise rotation at γ(0). We say that γ is
trapped by a triangle.

Proof. As we discussed after stating Conjecture 11, if γ is trapped by the triangle
αβδ, then there is a non-zero morphism C(α) → C(β) which factors through C(γ). By
Theorem 9, the module N(γ) has infinite projective dimension.

Suppose C(γ) has infinite projective dimension. We use Theorem 9 and the corre-
spondence between the cluster category and arcs on the surface. We find that there are
arcs α and β in ∆, and a non-zero morphism f : C(α) → C(β) which factors through
C(γ). By Lemma 12, the arcs α and β share a vertex x, and f corresponds to a rotation
of α about x.

By [2, Cor. 5.5] we can assume without loss of generality that any non-isomorphism is
a finite composition of irreducible morphisms. In the case of f it corresponds to a series
of elementary pivoting moves about x.

Let g : C(α) → C(γ) and h : C(γ) → C(β) be such that f = hg. The maps g and h
can also be assumed to be a finite composition of irreducible morphisms. Suppose that
the corresponding elementary pivoting move of one of the morphisms is not a move about
x. By applying the commutativity relation on C(S,M) a finite number of times, we get that
f factors through τ−1C(α) = sC(α)e; see Figure 6.

This means τ−1C(α) has infinite projective dimension, but it is supposed to be pro-
jective in the module category. Hence we reach a contradiction.

It follows that g and h must be composed of irreducible morphisms corresponding to
elementary pivoting moves about x. Hence γ, α and β share x as a vertex, and moving
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β

α

x

τ−1α

f

Figure 6. Let g be a composition of irreducible morphisms, starting in
C(α). If at least one elementary pivoting move of g is not about x, then g
factors through τ−1α.

anticlockwise about x we can go from α to γ and then to β. That α and β must be part
of an internal triangle αβδ follows from maximality of the triangulation. �

5.1. Number of indecomposables. For a cluster-tilted algebra Λ of Dynkin type
A, we want to investigate |P≤1|, the number of indecomposable objects in P≤1 up to
isomorphism.

Let Q be a quiver with n vertices. In [8], Buan and Vatne showed that Q is the quiver
of a cluster-tilted algebra of type An if and only if the following are satisfied:

• All non-trivial cycles are of length three.
• Any vertex has at most four neighbours.
• If a vertex has four neighbours, then two of the arrows belong to one three-cycle

and the two other arrows belong to another three-cycle.
• If a vertex has three neighbours, then two of the arrows belong to a three-cycle,

and the last arrow does not belong to a three-cycle.

They also showed that that two cluster-tilted algebras of type An are derived equivalent
if and only if their quivers have the same number of three-cycles.

We will show that |P≤1| depends only on the number of vertices and three-cycles in
the quiver of Λ; this means that |P≤1| is invariant under derived equivalence.

Let CAn be the cluster category of type An. Then |CAn| = 1
2
n(n + 3), as seen in [9].

If we factor out a cluster-tilting object T , then we factor out n non-isomorphic objects;
hence |mod Λ| = 1

2
n(n + 1). We denote by S the full subcategory of objects of infinite

projective dimension. Cluster-tilted algebras have Gorenstein dimension one. Thus an
object is either in P≤1 or it has infinite projective dimension, so |S|+ |P≤1| = |mod Λ|.

By Theorem 13, finding |S| reduces to finding the number of arcs trapped by a triangle.
Remember that when representing an algebra of type An by a marked surface (S,M), we
let S be a disc and |M | = n+ 3.

Lemma 14. Let (S,M) be a marked surface, where S is a disc. Let ∆ be a triangulation
of (S,M). One internal triangle of ∆ traps exactly |M | − 3 arcs.

Proof. Each vertex x of the internal triangle will trap arcs from x to the vertices
that lie between the other two vertices of the triangle. So for each marked point which
is not a vertex in the triangle, one arc is trapped by the triangle. Thus |M | − 3 arcs are
trapped by the triangle. Figure 7 gives a visualisation of the proof. �

Naively, we might then conclude that if ∆ contains t triangles, then |S|= t(|M |−3)= tn.
However, we may have counted some arcs more than once, as one arc can be trapped by
two internal triangles (one at each vertex). Obviously, an arc cannot be trapped by more
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Figure 7. Arcs trapped by a triangle

(a) no shared vertices (b) 1 shared vertex (c) 2 shared vertices

Figure 8. The three cases in the proof of Lemma 15. The dashed line
represents the trapped arc.

than two triangles, nor can it be trapped twice by one triangle, so if we find out how
many arcs one pair of triangles can trap, we know how many arcs we have counted twice.

Lemma 15. For each pair of ∆-triangles, exactly one arc is trapped by both ∆-triangles.

Proof. Consider a pair of internal triangles. As seen in Figure 8, the two triangles
can share 0, 1 or 2 vertices. In all cases, it is obvious that only one arc can be trapped
by both triangles. �

Theorem 16. Let Λ be a cluster-tilted algebra of type An. Let t be the number of
three-cycles in the corresponding quiver. Then the number of indecomposable objects in
P≤1 is

|P≤1| =
n(n+ 1)

2
− nt+

t(t− 1)

2

Proof. As we mentioned before, the number of indecomposable modules in mod Λ is
1
2
n(n + 1). Each of the t triangles traps n arcs. Each pair of triangles trap one common

arc, and t triangles form 1
2
t(t− 1) distinct pairs of triangles. Hence |S| = nt− 1

2
t(t− 1),

and the result follows. �

Example 17. We consider the cluster-tilting object T given in Example 10. We
consider it as a triangulation of (S,M) with |M | = 8; see Figure 9.

With reference to the notation in Theorem 16 we have n = 5 and t = 1, hence the size
of P≤1 is 10, as we also saw in Example 10.

5.2. AR-translation. Let τ≤1 denote the AR-translation in P≤1, and let r≤1X → X
be the minimal right P≤1-approximation of X.

From by Theorem 5 we know that r≤1τX = τ≤1X ⊕ I, where I is Ext-injective. This
means that if we can calculate the right P≤1-approximation, then we can calculate the
AR-translation. For the sake of completeness, we also show how to compute the minimal
left P≤1-approximation X → l≤1X.

Theorem 18. Let X ∈ mod Λ be indecomposable. Then
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1

2

3

4

5

1

2

3 4 5

Figure 9. A cluster-tilting object T in C(A5) considered as a triangula-
tion of (S,M). The dashed arcs correspond to indecomposables of infinite
projective dimension in mod End(T )op. On the right, the quiver QT corre-
sponding to T .

r≤1X =


X if pdX ≤ 1

Y if pdX =∞, ∃ irreducible Y → X, pdY ≤ 1

τX otherwise,

where Y is unique up to isomorphism if it exists. Dually,

l≤1X =


X if pdX ≤ 1

Z if pdX =∞,∃ irreducible X → Z, pdZ ≤ 1

τ−1X otherwise,

where Z is unique up to isomorphism if it exists.

Proof. Let γ be the arc corresponding to X (so that N(γ) = X) and let α and β
be its immediate predecessors. We illustrate the setup in Figure 10. Furthermore, let T
be the cluster-tilting object such that End(T )

op
= Λ and let ∆ be the triangulation of

(S,M) corresponding to T .
If X has finite projective dimension, it is obviously its own right P≤1-approximation,

and we are done.
If X has infinite projective dimension, then γ is trapped by a triangle. As we see from

Figure 10, at least one of α or β must either be trapped by that same triangle, or be an
arc in the triangle. In other words, there are three possibilities:

∂S ∂S

×

× ×

×

γ

α

β
τγ

∆

Figure 10. Illustration for the proof of Theorem 18; at least one of α or
β must be trapped by or part of the triangle trapping γ.

Case 1: pdN(α) ≤ 1 and pdN(β) =∞.
Case 2: pdN(α) =∞ and pdN(β) ≤ 1.
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Case 3: pdN(α) = pdN(β) =∞.

In Case 1 we see that α is not trapped by or part of a triangle, but β is. We will
show that N(α) → N(γ) is the minimal right approximation of X. Minimality follows
from irreducibility. It remains to show that an arbitrary morphism f : N(ψ) → N(γ)
with N(ψ) ∈ P≤1 factor through N(α). If f is zero, we are done, so we assume that f is
non-zero. We also assume without loss of generality that it is a composition of irreducible
morphisms.

Consider the arcs ψ and α. Either the arcs intersect in the interior of the disc S, or
they do not.

Suppose that ψ and γ have no intersections except possibly on their end points. Then
the set {γ, ψ} can be extended to a triangulation ∆′ of (S,M). Since f is non-zero,
we have by Lemma 12, that ψ shares a vertex with γ, and lie before γ with respect to
anti-clockwise rotation about this vertex. Thus it must also share a vertex with α or β.

γα

β

c

ψ

(a) Predecessor to α

γα

β

c

ψ

(b) Predecessor to β

γα

β ψ

a

c

d
b

(c) Crossing γ

Figure 11. Three possible placements of ψ used in the proof of Theorem
18, Case 1.

If ψ shares a vertex with α, then f clearly factors through N(α), as illustrated in
Figure 11a.

Suppose ψ shares a vertex with β. Let δ be the arc in the triangle trapping β and γ
which lies before β going anti-clockwise about their shared vertex; see Figure 11b. Then
the morphism C(ψ) → C(γ), which is the preimage of f in the cluster category, factors
through C(δ). Hence f = 0 which is a contradiction.

On the other hand, suppose ψ and γ do intersect in the interior of S. Let a, c be the
vertices that γ share with α and β respectively. Let b, d be the vertices of ψ, labelled
such that when moving anti-clockwise around ∂S we encounter the vertices in the order
a, b, c, d; see Figure 11c. Then f corresponds, up to mesh relation, to first a rotation
about b, and then a rotation about a. Hence f factors through N(α).

It follows that for Case 1 the right minimal P≤1-approximation of N(γ) = X is
N(α)→ X.

In Case 2, we can use a symmetric proof to the one for Case 1 to show that the right
minimal P≤1-approximation of N(γ) = X is N(β)→ X.

In Case 3, both α and β are trapped by or part of some triangle. We cannot have
that τγ ∈ ∆, as in that case N(γ) is projective, and thus has finite projective dimension.

Let δ ∈ ∆ be an arc in the triangle trapping γ on the vertex shared with α, such
that δ lies after γ when going anticlockwise about the vertex; see Figure 12. Any arc
following τγ when going anticlockwise about the vertex shared with β must cross δ.
Hence τγ cannot be trapped by a triangle on the vertex shared with β. Symmetrically,
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∂S ∂S

×

× ×

×

γ

α

β
τγ

δ

Figure 12. Illustration for the proof of Theorem 18. If both α and β are
trapped by or part of the triangle, then τγ is not trapped by or part of the
triangle.

it cannot be trapped by a triangle on the vertex shared with α. It follows that N(τγ)
has finite projective dimension. We will show that N(τγ) → N(γ) is the right minimal
P≤1-approximation of N(γ) = X.

Let N(ψ) be a module of finite projective dimension, and let f : N(ψ) → N(γ) be
a morphism. We will show that this morphism factors through N(τγ). By repeating
the proof for Case 1 we see that f factors through both N(α) and N(β). By the mesh
relations this means that it factors through N(τγ) as well. It follows that in Case 3 the
right minimal P≤1-approximation of N(γ) = X is N(τγ)→ N(γ).

The calculation of the left approximation is dual. �

Corollary 19.

τ≤1X = r≤1τX =


τX if pd τX ≤ 1

Y if pd τX =∞,∃ irred. Y → τX, pdY ≤ 1

τ 2X otherwise

where Y is unique up to isomorphism if it exists.

Proof. We know from Theorem 5 that r≤1τX = τ≤1X ⊕ I, where I is injective.
Theorem 18 shows that right P≤1-approximations of indecomposables are again indecom-
posable. Hence I = 0, and the corollary follows. �

Example 20. We still consider the cluster-tilting object T given in Example 10. We
consider it as a triangulation of a marked surface as in Example 17. Let γ be the arc
marked in Figure 13. Then we see that τN(γ) = N(τγ) has infinite projective dimension.
Using Corollary 19, we first look at the immediate predecessors of τγ, denoted α and β.
We see that α is trapped by a triangle, but β is not. Hence τ≤1N(γ) = N(β).
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