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Abstract 

This master thesis examines the modelling and solution of the allocation effect an external, 

correlated cashflow has on a two asset portfolio with liquidity constraints. This is interesting 

because research shows that a constant proportion portfolio normally has a good risk/return 

trade-off at 50/50 or 60/40. In practical portfolio management this is a popular allocation 

policy, e.g. in the Norwegian Government Pension Fund Global. If an external cashflow to and 

from the portfolio calls for another allocation to attain an optimum under CVaR risk control, 

the self-financing portfolio theory used in practical portfolio management would consequently 

be suboptimal under these conditions. In this thesis the optimal allocations are tested for four 

types of cashflow conditions; correlated, none, negative and positive, under full and low 

liquidity for identical scenarios. The objective function minimizes CVaR at a given expected 

return level for all cases by allocating between equity and fixed income securities in a 5-stage 

stochastic linear programming with recourse using Matlab. The optimization scenarios is 

modeled by means of a BEKK multivariate GARCH(1,0,1) model, adopted to provide 

characteristics of conditional variance in the price processes. The procedure used to incorporate 

liquidity and cashflow constraints are discussed in detail. Numerical results show that cashflow 

is actually irrelevant both in full and low liquidity conditions for all types of cashflow. 

 

Keywords: Portfolio allocation, CVaR, Multistage Stochastic Linear Programming with 

recourse, BEKK MGARCH, liquidity, external cashflow. 

 

  



 
 

Sammendrag 

Denne masteroppgaven modellerer og undersøker løsningen en ekstern, korrelert kontantstrøm 

har på en portføljes allokering med to aktiva under likviditetsrestriksjoner. Dette er interessant 

fordi forskning viser at en portefølje med konstant andelsmessig eksponering mot aktivaene 

har best risiko/avkastningsforhold med 50/50- eller 60/40-vekter. I praktisk 

porteføljeforvaltning er dette ofte en populær allokeringsregel, f.eks. i Statens Pensjonsfond 

Utland. Dersom en ekstern kontantstrøm fremtvinger en annen allokering for å nå et optimum 

under CvaR risikokontroll, så vil det si at en allokering i henhold til selv-finansierende 

porteføljeteori i samme tilfellet ville være suboptimalt. Denne oppgaven tester optimale 

allokeringer for fire typer kontantstrømmer: korrelert, ingen, negativ og positiv, under komplett 

og lav likviditet i identiske scenarioer. Målfunksjonen minimerer CvaR for et gitt forventet 

avkastningsnivå i alle tilfeller ved å allokere mellom aksjer og obligasjoner i en 5-periodisk 

stokastisk lineærprogrammering med rekursjon i Matlab. Scenarioene i optimeringen er 

modellert ved hjelp av en BEKK multivariat GARCH modell, som er anvendt på grunn av sin 

evne til å modellere betinget varians i prisprosessene. Metoden for å implementere likviditets- 

og kontantstrømsrestriksjoner er diskutert i detalj. Resultatene viser at kontantstrømmen 

faktisk er irrelevant med både komplett og lav likviditet for alle typer kontantstrømmer. 

 

Nøkkelord: Portføljeallokering, CVaR, multiperiodisk stokastisk lineærprogrammering med 

rekursjon, BEKK MGARCH, likviditet, ekstern kontantstrøm. 
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1 Introduction 

Since 2010 the target weights of the Norwegian Government Pension Fund Global (GPFG) has 

been 60 % equity, 35 % fixed income securities and 5 % real estate. A constant proportion 

portfolio allocation policy as such is meant to maintain a constant exposure of stocks 

proportional to the current portfolio wealth. This means selling off equity on rising stock prices, 

and buying equity on declining stock prices: A sort of “buy cheap, sell expensive”-policy. This 

is thoroughly studied in the field of finance and the 60/40-allocation has proven to be good 

risk/return allocation for self-financing portfolios. But, contrary with the self-financing 

portfolio, the GPFG has an external cashflow transferred to the portfolio several times a year, 

which originates from the petroleum activites in the North Sea. Also, it has a withdrawal once 

a year to cover the government fiscal budget spending. Additionally, 2016 is the first year in 

the GPFG’s 26 year long history where the petroleum related cashflow is negative, indicating 

a possible change in the Norwegian prospects. This said Øystein Olsen in his Norges Bank 

Governor’s yearly speech for 2016, and highlighting how the end of the prosperous oil income 

for the Norwegian government may be near. Further, he said that the Norwegian nation must 

prepare for persistently low oil prices and lower spending in years to come1.  

 

Certainly, such prospects should demand a sober strategy in order to reduce the risk of large 

losses, give a reasonable return and secure the wealth for future generations. Therefore, I wish 

to study whether or not the optimal allocation weights in a standard two asset portfolio is 

influenced by the introduction of a withdrawing or transferring cashflow from and to the 

portfolio. The assets are equity and bonds, whereas the cashflow is petroleum related. I employ 

an optimization method where the objective is to minimize risk (measured as conditional value-

at-risk) at a given expected return level. This involves a BEKK-MGARCH model for 

conditional covariances in the scenario generations and portfolio optimization with 5-stage 

stochastic linear programming. The model includes recursion, which allows for intermediate 

rebalancings of the portfolio, that way creating an environment where one can study the 

constant proportion portfolio for different cashflow types. I have chosen this model because of 

its flexibility and ability to account for stochasticity. Such models base decisions on long term 

benefits and avoiding myopic short term choices, which in the long run could prove to be 

suboptimal. I have segmented the portfolios into a 1) portfolio with a correlated cashflow, 2) 

                                                           
1 For more on the GPFG see appendix. 
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no cashflow (which serves as the self-financing portfolio), 3) negative cashflow and 4) positive 

cashflow. Additionally, I study the portfolio allocations of 1) to 4) in both a fully liquid and a 

low liquid market. Liquidity risk is a well studied phenomenon, and the introduction of 

illiquidity creates restrictions on the allocation possibilities due to the reduced ability to invest 

or divest in a certain asset. Within certain limits I expect that the portfolio can be allocated in 

a way that offsets the liquidity restrictions, still reaching the same risk/return as the full 

liquidity case. As a result, a consistent weight spread between the self-financing portfolio, and 

the positive and negative cashflow portfolios should emerge. If this is proves to be the case, a 

self-financing portfolio allocation would be suboptimal for cashflow portfolios. Then it is 

interesting to see how this affects the portfolio with a correlated cashflow (e.g. oil income 

correlated with equities), which should also be allocated differently as well. 

 

Hypothesis 𝐻1: Under the assumption of a perfect, fully liquid market a financial portfolio with 

cash in- and outflow will generally have the same average risk/return-optimal allocation 

weights as the theoretical self-financing portfolio. 

 

Hypothesis 𝐻2: Under the assumption of a low-liquid market, the average allocation of a 

financial portfolio with a strictly positive or negative cashflow will differ from the theoretical 

self-financing portfolio. Thus, a portfolio with cash in- and outflow that is correlated with 

equity will also differ in average optimal allocation compared to the theoretical self-financing 

portfolio. 

 

Section 2 presents relevant theory, section 3; the method used to solve the problem, Section 4; 

the data used in the numerical results in section 5, and concluding remarks is given in section 

6. 

 

Apart from references stating otherwise, the content of this thesis is the result of the work, and 

therefore the sole responsibility, of the author. 
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2 Theory 

2.1 Interdependent markets 

In accord with advancing globalization and international markets, the price movements in 

economic factors and commodities has become increasingly more interdependent and 

correlated. In his ground breaking work on the subject, Hamilton J.D. (1983) studies the 

relationship between oil shocks and macroeconomic factors after the second World War. He 

discovered that oil prices to some degree altered the timing, magnitude and duration in a 

number of macroeconomic recessions in the period. After this study a vast amount of research 

has been done on the evolving interrelationships between oil prices impact and macroeconomic 

factors. E.g. Jones C. and Kaul G. (1996) was some of the first to test whether the reaction of 

international stock markets to oil shocks can be justified by current and future changes in real 

cash flows and/or changes in expected returns. They succeed to explain a rational reaction to 

oil price change in the U.S. and Canadian stock market, but were unable to fully model the 

same phenomenon in the Japanese and U.K. stock market, even though still indicating some 

relationship. 

 

2.2 Crude oil and stock markets 

In later years, an equivalent relationship between oil prices and asset classes has been 

investigated. The common findings so far is that there exist some sort of cross asset and cross 

commodity relationship, which exhibits dynamic, volatile and time varying correlation patterns 

(see i.e. Malik F. and Hammoudeh S. (2007), Filis G. Degiannakis S. and Floros C. (2011), 

Turhan M. I. et. al. (2014) and the references therein). Malik F. and Hammoudeh S. (2007) 

study the volatility and shock transmission mechanisms between U.S. equity, global market 

and three middle eastern countries by means of a multivariate BEKK-GARCH model. A 

thorough elaboration of this model will be conducted later in this thesis. Their findings show 

significant variance transmission in the US equity and global oil markets, and a spillover effect 

to other equity markets as well. Ewing and Thompsons (2007) found that crude oil prices are 

pro-cyclical and lag stock prices by 6 months (in Filis G. Degiannakis S. and Floros C. 2011). 

Filis G. Degiannakis S. and Floros C. (2011) further investigate the dynamic correlation with 

multivariate GARCH models, and find that time-varying correlations occur according to phases 

in the global business cycle and periods of world turmoil. Turhan M. I. et. al. (2014) reveal a 

trend in the period after the global 2008 financial crisis by means of Markov switching 

regressions. They find that there is an increasing positive correlation in both the stock-oil and 



4 
 

bond-oil pairs, which previously has been oscillating around zero. They continue explaining 

this phenomenon by the shift in oil price mechanisms: Earlier it had been a mere result of 

supply and demand, but as financial markets has evolved, financial products written on oil have 

been used more for taking positions or speculating.  

 

2.3 Crude oil and bond markets 

A less studied subject is the relationship between oil and bond markets. It is anticipated that 

the connection in this case is channeled through inflationary expectations instead of traded 

financial derivatives (see e.g. Kilian and Lewis (2011) in Ciner C. Constantin G. and Lucey B. 

M. (2013)). Oppositely, Nicolau (2011, in Turhan M. I. et. al. 2014) studies cross-asset 

correlations between 1991 and 2009, and claims that there exists a negative correlation between 

bond and crude oil prices. Also, Ciner C. Constantin G. and Lucey B. M. (2013) examines the 

long-run dynamic relationship between crude oil futures traded on NYMEX, future prices of 

Brent oil and 10 year US and UK government bond prices, and the hedgeability of these in a 

financial portfolio. They find that there is a low correlation between oil and bond prices, with 

certain extraordinary breaks connected to world turmoil incidents.  

 

2.4 Portfolio 

The choice of an optimal portfolio of assets has been subject to substantial research over the 

last 60 years. The Markovitz (1952) mean-variance portfolio theory proposed the idea to 

allocate risky portfolio assets in such a way that return is maximized at a given risk-level along 

a portfolio frontier, implying a trade-off between risk and return. But, as time goes, the 

fluctuations due to market movements changes the allocations, and alters the initial risk-return 

profile. Perold A. F. and Sharpe W. F. (1988) examines a set of dynamic strategies dealing with 

the nesseccary response to trending and mean reverting markets. They find that dynamic 

constant-mix strategies, which maintains a constant exposure of stocks proportional to wealth, 

performes better than passive buy-and-hold strategies in reverting markets, but worse in 

upward trending markets. Oppositely, constant-proportion strategies buys stocks as they rise, 

and sell off as they decline, thus creating a floor, performing better than buy-and-hold strategies 

in upward trending markets, and worse in reverting markets. Many studies (Perold A. F. and 

Sharpe W. F. 1988, Harjoto M. A. and Jones F. J. 2006, Tokat Y. and Wicas N. 2007) use the 

60-40 allocation as base. Jones and Wilson (2003) in Harjoto M. A. and Jones F. J. (2006) 

argue that investors, independent of their risk profile, should at least invest 40 % of their 
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portfolio in equity, and further show that a 50-50 portfolio in stock and bonds has higher return 

and less risk compared to 100 % bonds. 

 

2.5 Optimization 

As future uncertainty is introduced into the portfolio decision, an optimization problem quickly 

becomes more complicated than the single stage problem. Stochastic linear programs (SLP) is 

a powerful toolbox in financial scenario modelling, first introduced by Dantzig G. B. (1955) 

and Beale E. M. L (1955). Ever since the early work of Mossin J. (1968), Merton R. C. (1969) 

and Samuelson P.A. (1969), being some of the first to successfully describe the multiperiod 

analysis of a portfolio, portfolio optimization has evolved far from the original single stage 

mean-variance optimization. They show how a sequence of portfolio decisions rely on the 

outcomes of the previous actions, at the same time accounting for the information of the future 

probability distribution. One of the increasingly more popular objectives in portfolio decision 

theory is to minimize risk defined as conditional Value-at-Risk at a given level (𝛽-CVaR, 

hereby called CVaR), which was proposed by Rockafellar R.T. and Uryasev S. (2000). They 

show how this measure is superior in computational simplicity and shortfall risk controll 

compared to the simpler variance and Value-at-Risk (see e.g. Markovitz (1952) and Jorion P.H. 

(1996) respectively). CVaR is also known as mean excess loss or mean shortfall, stating for a 

given time horizon the mean expected shortfall under given confidence level. A rational 

investor would prefer low CVaR for high return, and in the specific case of SLP, CVaR is 

defined as the portfolio’s worst outcome on average among all possible scenarios at the end of 

the horizon. Rockafellar R.T. and Uryasev S. (2002) show how VaR-centered problems in 

optimization is unstable entities while CVaR-centered problems is not, and further how CVaR 

can be formulated into an objective or constraint, or both. Also, optimizing CVaR means 

optimizing VaR because CVaR is always greater or equal to VaR (Rockafellar R.T. and 

Uryasev S. 2000, Uryasev S. 2000). Topaloglou N. Vladimirou H. and Zenios S. (2005) among 

others have developed elaborate multistage financial models using this objective under 

expected return constraints. Sakar C. T. and Köksalan M. (2013) found some interesting 

properties on the efficient frontiers with different CVaR probabilities (beta): There is a trade-

off between CVaRs and returns. On one extreme with probability levels close to 100 %, the 

expected return levels will be close to maximum, whereas on the other extreme with probability 

levels close to 0 %, the expected return and CVaR are identical. Thus, with decreasing 

probability levels (betas), there is a positive correlation between risk and return. 
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2.6 Illiquidity in assets, correlation and portfolio choice 

The portfolio choice litterature has over the years grown to a vast range of research. In their 

work on portfolio choice with illiquid assets, Ang A. Papanikolau D. and Westerfield M. (2013) 

present a model of optimal allocation to liquid and illiquid assets. They define illiquidity as 

“the difficulty in finding a counterparty with whom to trade, i.e. increasing bid-ask spread, 

where a transaction cannot be performed without suffering penalty through substantially lower 

asset price”. They show that illiquidity leads to increased and state-dependent risk aversion, 

and reduces the allocation to both liquid and illiquid assets. Also, they show that annualized 

turnover varies heavily between assets classes. Public equity has over 100 % turnover annually, 

while OTC (Pinksheet) equities  ~35 % (Ang, Shtauber and Tetlock 2012), corporate bonds 

25 − 35 % (Bao, Pan and Wang (2011)) and municipal bonds < 10 % (Ang and Green (2011)) 

(all references in Ang A. Papanikolau D. and Westerfield M. 2013). A rational investor should 

prefer a high liquidity portfolio over a low one. In portfolio optimization under liquidity- and 

Conditional Value-at-Risk-constraints, Sakar C. T. and Köksalan M. (2013) employ a multi-

period Stochastic Linear Programming on data from the Istanbul Stock Exchange. They 

demonstrate how the portfolio characteristics change at different levels of liquidity, CVaR and 

expected return. For low levels of liquidity the expected return is high, while the CVaR is low. 

They observe regions of efficient sollutions in the three criteria environment, and liquidity is 

considered as the factor that forces expected return and CVaR to their worst values. This means 

that a rational investor should be willing to sacrifice expected return and/or CVaR for good 

liquidity. 

 

2.7 Multivariate dynamics 

Also, understanding the comovements of financial returns in the portfolio is of great 

importance in order to successfully generate scenarios that represent the asset’s price processes 

realistically. The SLP is not any better than it’s input. It is therefore necessary to develop a 

model with the right statistical properties for the input in the scenario generation. This subject 

has therefore received a lot of attention in financial litterature (see e.g. Kaut (2003) for moment 

matching and otherwise Zivot E. (2008) for scenario generation with the references therein). 

Buraschi A. Porchia P. and Trojani F. (2010) study the importance of modeling the multivariate 

nature of second moments (variance/covariance) in optimal portfolio allocation, and say it is 

necessary to extend the portfolio scenario generation to model the volatility processes. The 

orgininal groundwork for this conditional variance modelling was orginially developed by 
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Engle R. F. (1982) in the famous ARCH model, and later the generalized ARCH (GARCH) 

model by Bollerslev T. (1986). They find that conditional covariances varies over time, and 

therefore is a significant determinant of the time-varying risk premia. As a result, the variance 

depends on the history of returns up to the estimation point, constantly changing at every point 

in time. So, the available information of past returns up to and including 𝑡 − 1 is non-stochastic, 

whereas the future outcomes is indeed stochastic. Also, the portfolio returns and diversification 

has been shown to depend on the covariance of the assets returns in a portfolio, meaning that 

some assets are positively or negatively correlated, while others are not. For this reason it is 

not only necessary to model the price processes depending on their own historic volatility, but 

also the covariance in the portfolio. Bollerslev, Engle, and Wooldridge (1998) in Silvennoinen 

A. and Teräsvirta T. (2009) demonstrate the multivariate VEC GARCH model, which allows 

both the variance and covariance to depend on the (historic) information set (e.g. in a return 

vector). A difficulty with these models is the estimation of a growing number of parameters. 

This often leads to infeasible sollutions, forcing simplifications and restrictions. Further 

development has been done to formulate more parsimonious models e.g. imposing positive 

definiteness like e.g. in the BEKK MGARCH case (Silvennoinen A. and Teräsvirta T. 2009). 

Chen (2005) captures the time-varying moments and conditional heteroskedasticity by 

implementing such a multivariate GARCH (MGARCH) framework in his study on multiperiod 

consumption and portfolio decision. By implementing the conditional variance-covariance 

matrix attained in the MGARCH model, it is possible to model the dynamics between several 

assets as time progresses. 

 

3 Method 

In accord with the above discussion, I formulate a multi-period portfolio allocation problem 

with asset correlated cash in- and outflow, which is methodologically solved with multi-period 

stochastic linear programming with recourse (MSLPR). It is modeled at a strategic level, where 

capital is allocated amongst two aggregated asset classes, stocks and bonds, and a cash flow in 

and out of the portfolio in the form of transfers or withdrawals under full and low liquidity. It 

models a discrete investment environment where the returns of the portfolio assets over time 

is generated in scenarios, and an outcome at any given state is contingent on the preceding 

outcomes before it. The objective is to minimize CVaR risk at a given return level in identical 

scenarios by allocating capital exclusively between equities and bonds after substracting or 

adding the external cashflow. The model is implemented in Matlab R2015b with the fconmin-
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function and Sheppard K. (2013) MFE Toolbox for the BEKK-MGARCH model on a Intel 

Core i5-4210U 1,7 GHz, 1 GB RAM computer running Windows 10. Total calculation time is 

approximately 70 seconds. For relevant Matlab code and schematic representation of the 

optimization model, see appendix 8.1 to 8.3. 

 

3.1 Stochastic Programming Problem 

3.1.1 Price process 

The logarithmic return is defined as ln (
𝑦𝑡

𝑦𝑡−1
) where 𝑦 is the asset price at any given moment 

𝑡. The object is to model this return process for the scenario generation. In line with Bauwens 

L. Laurent S. and Rombouts J. (2006) a vector stochastic process 𝑟𝑡 ∈ ℝ𝑚 (e.g. return of asset) 

of dimension 𝑁 × 1 has a vector of past information (see sigma field/filtered information), 

which can be denoted 𝐼𝑡−1. This means that only past information is available, and the future 

outcome is uncertain (stochastic). Hence, the return process for a given asset can be written as: 

 

 𝑟𝑡 = 𝜇𝑡(𝜃) + 𝜀𝑡 (1) 

 

Where 𝜃 is defined as a finite, unknown parameter vector, 𝜇𝑡(𝜃) is the conditional mean vector, 

and 𝜀𝑡 the stochastic error term/conditional variance vector. The conditional covariance is 

modeled the following way: 

 
𝜀𝑡 = 𝐻𝑡

1
2(𝜃)𝑧𝑡 

(2) 

 

Where 𝐻
1

2(𝜃) is a 𝑁 × 𝑁 positive definite matrix, and 𝑧𝑡 is a 𝑁 × 1 normal distributed random 

vector assumed to have first two moments: 

 

𝐸(𝑧𝑡) = 0 

 𝑉𝑎𝑟(𝑧𝑡) = 𝐼𝑁 (3) 

 

Where the 𝐼𝑁 is the identity matrix of order 𝑁 (not to be confused with 𝐼𝑡−1 – sigma 

field/filtered information), while 𝐻𝑡

1

2 is a positive definite matrix, obtained by the Cholesky 

fatorization of 𝐻𝑡. Further, 𝐻𝑡 is in turn the conditional variance matrix of 𝑟𝑡. As stated, 𝐻𝑡 is 
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dependent on the unknown parameter vector 𝜃. Given past information, the conditional 

variance matrix of 𝑟𝑡 is calculated as follows:  

 

 𝑉𝑎𝑟(𝑟𝑡|𝐼𝑡−1) = 𝑉𝑎𝑟𝑡−1(𝑟𝑡) = 𝑉𝑎𝑟𝑡−1(𝜀𝑡) 

= 𝐻𝑡

1
2𝑉𝑎𝑟𝑡−1(𝑧𝑡)(𝐻𝑡

1
2)′ 

= 𝐻𝑡 

(4) 

Hence, 𝐻𝑡

1

2 is independent of 𝜇(𝜃). Therefore for simplicity it is assumed that 𝜇 equals zero, 

which is a reasonable assumtion given my primary interest in the asset covariance, which here 

can be obtained through the error term alone. Consequently, 𝑟𝑡 = 𝜀𝑡. 

 

3.1.2 BEKK-MGARCH 

A general formulation of 𝐻𝑡 was originally proposed in the VEC-MGARCH model by 

Bollerslev T. Engle R.F. Wooldridge J.M. (1988). Even though it is very flexible, it has 

disadvantages and is computationally very demanding (Silvennoinen A. and Teräsvirta T. 

2009). It also demands the positivity of 𝐻𝑡, which is hard to guarrantee in the VEC-model. An 

attractive property of the Baba-Engle-Kraft-Kroner (BEKK) MGARCH, which is a restrictive 

version of the VEC model, is that it has positive definite conditional covariance matrices by 

construction, thus obtaining a solution without imposing strong restrictions on the parameters 

(Bauwens L. Laurent S. and Rombouts J. 2006). Additionally, it makes for an easy 

incorporation into the scenario generation algorithms, as will be shown further down. The 

𝐵𝐸𝐾𝐾(1,1) model is defined as: 

 

𝐻𝑡 = 𝐶∗′𝐶∗ + ∑ 𝐴𝑘
∗ ′

𝐾

𝑘=1

𝜀𝑡−1𝜀′𝑡−1𝐴𝑘
∗ + ∑ 𝐵𝑘

∗′

𝐾

𝑘=1

𝐻𝑡−1𝐵𝑘
∗ (5) 

 

Or as a linear algebraic expression: 

 Ht=C
'
C+A

'εt-1εt-1
' A+B

'
Ht-1B (6) 

 

Where 𝐶, 𝐴 and 𝐵 are 𝑁 × 𝑁 matrices and 𝐶 is lower triangular. The parameters in the BEKK 

model does not represent the impact of the lagged terms on the elements of 𝐻𝑡 directly, so 

interpretation of the mentioned parameters is therefore difficult. Because numerical difficulties 

are so common in the estimation of BEKK models, it is typically assumed that the model is 

𝐵𝐸𝐾𝐾(𝑝, 𝐾, 𝑞), where 𝑝 = 𝐾 = 𝑞 = 1  (Bauwens L. Laurent S. and Rombouts J. 2006). Here, 
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𝑝 is a positive, scalar integer representing the number of symmetric innovations, 𝐾 is non-

negative, scalar integer representing the number of asymmetric innovations, and 𝑞 is a non-

negative, scalar integer representing the number of conditional variance lags (Sheppard K. 

2013). I further simplify by excluding the assumption of assymmetric returns, setting  𝐾 = 0 

and 𝐵𝐸𝐾𝐾(1,0,1). Consequently, the number of parameters to be estimated in the full 

𝐵𝐸𝐾𝐾(1,0,1) model is 3𝑁2 − ∑ (𝑁𝑖 − 1)𝑁
𝑖=1 . The solution is maximized through a maximum 

likelihood function assuming a normally distributed error term: 

 

𝐿(𝜃) = −𝑇𝑙𝑛(2𝜋) −
1

2
∑(ln|𝐻𝑡−1| + 𝜀𝑡−1

𝑇 𝐻𝑡−1
−1 𝜀𝑡−1 

𝑇

𝑡=1

 (7) 

 

Where 𝜃 is the estimated parameter vector and 𝑇 is the number of observations. The starting 

value 𝐻1 is estimated as the mean 𝐻𝑡 for a simulated path for all returns over a 20 year period 

chosen to meet the requirements of no residual autoregression or heteroskedasticity. 

 

3.1.3 Scenario tree 

An optimizing model involving some random parameters can be modelled as a stochastic 

programming problem. According to Sen S. and Higle J. (1999) a multistage stochastic linear 

programming model gives the opportunity for multistage decision-making, thus avoiding 

myopic choices. The random variables depend on the values that precede them. Thus, the 

multitude of successive stochastic outcomes can easily be depicted as a scenario “tree”. In the 

figure below, a binomial scenario tree in 4 stages with 8 scenarios is depicted for illustrative 

purposes. The scenario tree consists of nodes 𝑛 ∈ 𝑃 ∀ 𝑡 ∈ 𝑇 and branches 𝑏 ∈ {1,2} where each 

node 𝑝 ∈ 𝑃 ∀ 𝑡 ∈ 𝑇 − 1 represent points in which a decision 𝑥𝑛 ∈ 𝑋 is possible, and branches 

relating the nodes with a probability 𝑝𝑟𝑜𝑏 ∈ (0,1) in a consecutive manner. I have chosen a 

equiprobable non-recombining scenario model, meaning a single branch has a 50 % probability 

of occurring and an endnode will have 0,50𝑇−1 probability of occurring. Stage 𝑡 = 1 in node 

𝑛 = 1 is a startoff point from where every scenario originates. Each complete path from the 

first node to an end node is refered to as a scenario 𝐽(𝑛) ⊂ P, and each vertical set of nodes 

(i.e. 1 and 2, 3 to 7, 8 to 15 etc.) lies within a descrete time step 𝑡. Also for every parentnode 𝑝 

in 𝑡 < 𝑇 there is two consective childnodes 𝜏 reliant on parentnode 𝑝. For example 𝑝3 in 𝑛3 

governs 𝜏3,1 in node 𝑛6 and 𝜏3,2 in node 𝑛7 (see figure 3). Scenario 𝐽(10) is highlighted for its 

only possible path (𝑛 = 𝑝 = 1 → 2 →  5 →  10). In a 4 stage equiprobable binomial scenario 

tree the probability is 0.50 for a single branch and 𝑝𝑟𝑜𝑏𝐽(10)0,503 = 0.125 for an endnode. 
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Figure 1: Depiction of how events may unfold through the binomial scenario tree in 4 stages 

(𝑇 = 4) and 8 scenarios. 

 

As shown above, 𝐻𝑡>1 in 𝑟𝑡 relies on the two preceding variables 𝐻𝑡−1 and 𝜀𝑡−1. In the scenario 

generation I have stated this as the following algorithm, which connects children nodes to their 

preceding parent nodes: 

 𝐻𝜏𝑛,𝑏
= 𝐶′𝐶 + 𝐴′ε𝑝𝑛

𝜀𝑝𝑛
′ 𝐴 + 𝐵′𝐻𝑝𝑛

𝐵 (8) 

 

In order to obtain the scenario generated returns, (1) and (2) is then applied. The generation 

of a scenario tree quickly becomes problematic due to the exponential growth in 

dimensionality. For a binomial scenario tree, every node has two branches, which gives 2𝑇 − 1 

nodes and 2𝑇−1 scenarios. It will be shown later that this can result in very large optimization 

programs for higher 𝑇’s. 

 

3.1.4 A Multistage SLP in general 

According to Ruszczyński A. and Shapiro A. (2003) a general multistage SLP model with 

recourse can be stated as the following nested formulation (For the SLP-model I abuse notation, 

so it does not correspond to the MGARCH-model stated above): 

 

min
𝐴11𝑥1=𝑏1

𝑥1≥0

𝑐1
𝑇𝑥1 + E

[
 
 
 
 

min
𝐴21𝑥1+𝐴22𝑥2=𝑏2

𝑥2≥0

𝑐2
𝑇𝑥2 + E

[
 
 
 
…+ E [ min

𝐴𝑇,𝑇−1𝑥𝑇−1+𝐴𝑇𝑇𝑥𝑇
=𝑏𝑇

𝑥𝑇≥0

𝑐𝑇
𝑇𝑥𝑇]

]
 
 
 

]
 
 
 
 

 (9) 
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Where the information structure is denoted in stages 𝑡 = 1,… , 𝑇, where the minimization 

thorugh the corresponding decision vectors 𝑥1, … , 𝑥𝑇 as a function of 𝜉[1,𝑡] = (𝜉1, … , 𝜉𝑡) →

𝑥𝑡 = 𝑥𝑡(𝜉[1,𝑡]) is performed, representing a certain portfolio at time 𝑡. The vectors 𝑐1, 𝐴1 and 

𝑏1 are known, while some or all of the cost vectors 𝑐2, … , 𝑐𝑇, matrices 𝐴𝑡,𝑡−1 and 𝐴𝑡𝑡, 𝑡 =

2, … , 𝑇 and right hand side vectors 𝑏2, … , 𝑏𝑇 are random. Thus the sequence of actions is as 

follows: 

 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥1) 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝜉2 ≔ (𝑐2, 𝐴21, 𝐴22, 𝑏2) 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥2) 

⋮ 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝜉𝑇 ≔ (𝑐𝑇 , 𝐴𝑇,𝑇−1, 𝐴𝑇,𝑇 , 𝑏𝑇) 

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥𝑇) 

 

In particular 𝜉[1,𝑡] represents the information available up to time 𝑡. The important point is that 

every decision relies on the available information and the expectation of the following 

outcome, and not the outcome itself. In the first stage the problem is the following simple linear 

programming problem: 

 

min
𝑥1

𝑐1
𝑇𝑥1 +  E[Q2(𝑥1, 𝜉2)] 

𝑠. 𝑡.  𝐴11𝑥1 = 𝑏1, 

𝑥𝑡 ≥ 0. 

 

Where the optimal value, called the “cost-go-function”, is denoted 𝑄𝑡(𝑥𝑡−1, 𝜉[1,𝑡]). For the 

follwowing general stages 𝑡 = 2,… , 𝑇 − 1, the problem is stated: 

 

min
𝑥𝑡

𝑐𝑡
𝑇𝑥𝑡 +  E [Qt+1(𝑥𝑡, 𝜉[1,𝑡+1]|𝜉[1,𝑡])] 

𝑠. 𝑡. 𝐴𝑡,𝑡−1𝑥𝑡−1 + 𝐴𝑡,𝑡𝑥𝑡 = 𝑏𝑡, 

𝑥𝑡 ≥ 0. 
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For the last time period 𝑇 the values of all problem data 𝜉[1,𝑇] are allready known, and the 

values of earlier vectors 𝑥1, … , 𝑥𝑇−1 have been decided.  As a linear expression the last stage 

problem is therefore: 

min
𝑥𝑇

𝑐𝑇
𝑇𝑥𝑇  

𝑠. 𝑡. 𝐴𝑇,𝑇−1𝑥𝑇−1 + 𝐴𝑇𝑇𝑥𝑇 = 𝑏𝑇 , 

𝑥𝑇 ≥ 0. 

 

3.1.5 The CVaR minimizing model 

Next presented is the specific optimization model used in this thesis. As stated in Rockafellar 

R.T. and Uryasev S. (2000), let 𝑓(𝑥, 𝑟) be the loss associated with the decision vector 𝑥 

(subscripts is left out for notational ease). The underlying distribution of 𝑟 is assumed to have 

the probability density 𝑝(𝑦). The probability of 𝑓(𝑥, 𝑟) not exceeding a threshold 𝛼 is then 

given by: 

 
𝜓(𝑥, 𝛼) = ∫ 𝑝(𝑟)𝑑𝑟

𝑓(𝑥,𝑟)≤𝛼

 
(10) 

 

Where 𝜓 is the cumulative distribution function for the loss associated with 𝑥. Any specified 

probability level 𝛽 in (0,1) will be denoted by 𝛼𝛽(𝑥) and ∅𝛽(𝑥) (VaR and CVaR respectively):  

 

 𝛼𝛽(𝑥) = min{𝛼 ∈ ℝ:𝜓(𝑥, 𝛼) ≥ 𝛽} (11) 

and 

 
 ∅𝛽(𝑥) = (1 − 𝛽)−1 ∫ 𝑓(𝑥, 𝑟)𝑝(𝑟)𝑑𝑟

𝑓(𝑥,𝑟)≤𝛼𝛽(𝑥)

 
(12) 

Hence, CVaR equals the cummulative losses 𝑓(𝑥, 𝑟), greater or equal to the VaR (𝛼𝛽(𝑥)) 

divided by the confidence level (1 − 𝛽). The major contribution by Rockafellar R.T. and 

Uryasev S. (2000) was the reformulation that circumvented the demand for explicit calculation 

of VaR in the previous expression, thus yielding a profound simplification of the optimization 

calulation. So, a continous, nondecreasing expression for the conditional expectation of the loss 

associated with 𝑥 relative to a loss being 𝛼𝛽(𝑥) or greater, is stated as follows: 

 
𝐹𝛽(𝑥, 𝛼) = 𝛼 + (1 − 𝛽)−1 ∫ [𝑓(𝑥, 𝑟) − 𝛼]+𝑝(𝑟)𝑑𝑟,

𝑟∈ℝ𝑚

 
(13) 

Where 
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[𝑡]+ = {
𝑡 𝑤ℎ𝑒𝑛 𝑡 > 0,
0 𝑤ℎ𝑒𝑛 𝑡 ≤ 0.

 

 

Consequently, they show that minimizing the CVaR (∅𝛽(𝑥)) over 𝑥 is equivalent to 

minimizing 𝐹𝛽(𝑥, 𝛼) over 𝑥, thus giving the opportunity for application of stochastic 

programming approaches to the minimization of CVaR. Minimizing the CVaR of the loss 

associated with 𝑥 ∈ 𝑋 is equivalent to minimizing 𝐹𝛽: 

 

 min
𝑥∈𝑋

∅𝛽(𝑥) = min
(𝑥,𝛼)∈𝑋×ℝ

𝐹𝛽(𝑥, 𝛼) (14) 

 

By implementing this framework, it is not only the decision variable 𝑥 which is optimized, but 

also the the quantile level 𝛼 - Rockafellar R.T. and Uryasev S. (2000) prove how optimizing 

the CVaR expression also optimizes VaR, showing how a portfolio with low CVaR, must also 

have a low VaR as well. In order to solve the expression practically, they further formulate an 

approximation, which in turn can be directly implemented into stochastic programming: 

 

𝐹̃𝛽(𝑥, 𝛼) = 𝛼 + [𝐽(1 − 𝛽)]−1 ∑[−𝑥𝑇

𝐽

𝑗=1

𝑟𝑘 − 𝛼]+ (15) 

Where 𝑗 ∈ 𝐽 denotes the number of scenarios. Further I assume the vector 𝑥𝑖 to be the weights 

for assets 𝑘 ∈ 𝐾 in the portfolio, and constraining their sum to one, therefore not allowing for 

short-positions: 

 𝑥 ≥ 0 with 𝑥𝑇𝐼 = 1 (16) 

 

Where 𝑥 is larger than zero and sums to one (𝐼 is an 𝑁 × 1 unity vector). The portfolio return 

is the returns of each asset weighted by the portfolio decisions 𝑥. Since the CVaR is a loss 

function, it is nessecary to specify this in the following negative manner: 

 

 𝑓(𝑥, 𝑟𝑘) = −𝑥𝑇𝑟𝑘 (17) 

 

3.1.6 Linearization of the optimization problem 

Because the max function [−𝑥𝑡𝑟𝑘 + 𝛼]+ in (10) is not a linear expression, it is nessecary to 

rewrite the problem in order to optimize the problem with a linear solver e.g. with the fconmin–

function in Matlab. Rockafellar R.T. and Uryasev S. (2000) introduces auxiliary variables 𝑢𝑗  
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for  𝑗 = 1,… , 𝐽 in order to linearize the problem, showing that this is equivalent to minimizing 

(12): 

 

Min
(𝑥,𝛼)

𝐹̃𝛽(𝑥, 𝛼) = 𝛼 + 𝐽(1 − 𝛽)−1 ∑𝑢𝑗

𝐽

𝑗=1

, (18) 

s.t. the linear constraints                    𝑥 ≥ 0 with 𝑥𝑇𝐼 = 1  

 𝜇(𝑥) ≤ −𝑅 (19) 

𝑢𝑗 ≥ 0, 

𝑥𝑇𝑟𝑗 + 𝛼 + 𝑢𝑗 ≥ 0, 

for 𝑗 = 1,… , 𝐽 

 

This states that when the loss is smaller than VaR: 𝑥𝑇𝑟𝑗 + 𝛼 ≥ 0 − 𝑥𝑇𝑟𝑗 − 𝛼 ≤ 0, and 

𝑢𝑗 = [−𝑥𝑇𝑟𝑗 − 𝛼]
+

= 0. When the loss is greater than or equal to VaR: 𝑥𝑇𝑟𝑗 + 𝛼 ≤ 0  −

𝑥𝑇𝑟𝑗 − 𝛼 ≥ 0 and therefore 𝑢𝑘 = [−𝑥𝑇𝑟𝑗 − 𝛼]
+

= −𝑥𝑇𝑟𝑗 − 𝛼. Further, 𝜇(𝑥) =  −𝑥𝑇𝒎 

denotes the mean loss 𝒎 associated with portfolio 𝑥 for the end nodes in 𝑡 = 𝑇, which imposes 

the requirement that the aggregated expected return on all admitted portfolios should at least 

be 𝑅, take the feasible set of portfolios ∀𝑥 ∈ 𝑋 satisfying (12) and (14), and thus make set 𝑋 

convex (Rockafellar R.T. and Uryasev S. 2000).  

 

3.1.7 Extensions 

As an extension to this I have incorporated the cash in- and outflow of the portfolio by 

customizing (18). This represents the total wealth to be allocated in the portfolio with the 

return orginating from development in asset prices on the left side, and the cashflow in or out 

on the right side. This means a relative increase or reduction in the total portfolio size by 𝑐𝑓 ∗

100 % through a cashflow. I formulate this in the following expression: 

 

 𝑥 ≥ 0 with 𝑥𝑇𝐼 = 1 + 𝑐𝑓 (20) 

 

Where 𝑐𝑓 for 𝑓 ∈ {1,2,3,4}: 𝑐1 = 𝑟𝑡,𝑜𝑖 is the asset correlated cashflow (subscript: oil), 𝑐2 = 0 

is no cashflow (self-financing portfolio), 𝑐3 = 𝑟𝑛𝑒𝑔 negative, constant cashflow, and 𝑐4 = 𝑟𝑝𝑜𝑠 

positive, constant cashflow. If for example 𝑐𝑓 = 0,10 the portfolio will have a relative cash 

inflow of 10 % in a given state, whereas 𝑐𝑓 = −0,10 results in a 10 % cash outflow in a given 

state all else being equal. Consequently, if 𝑟𝑡,𝑒𝑞 and 𝑟𝑡,𝑜𝑖 is perfectly correlated (𝜌 = 1,0 and 
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𝑟𝑡,𝑏𝑜 = 0), 5 % in both will give a portfolio wealth growth of 10 %, and oppositely 10 % wealth 

decrease if both is -5 %. The development of portfolio wealth 𝑊𝑡 for this model is stated as the 

following:  

𝑊𝑡−1(1 + 𝑟𝑡,𝑊) = 𝑊𝑡 

where 𝑟𝑡,𝑊 = 𝑟𝑡,𝑒𝑞𝑥𝑡−1,𝑒𝑞 + 𝑟𝑡,𝑏𝑜𝑥𝑡−1,𝑏𝑜 

 

𝑟𝑡,𝑊 is the aggregated portfolio return between two stages, and subscript 𝑒𝑞 is equity and 

subscript 𝑏𝑜 is bonds. In (18) the original restriction in a self-financing portfolio is: 

 

𝑥𝑡,𝑒𝑞 + 𝑥𝑡,𝑏𝑜 = 1 

 

Expressed in total wealth 𝑊𝑡, this is obviously: 

 

 𝑊𝑡(𝑥𝑡,𝑒𝑞 + 𝑥𝑡,𝑏𝑜) = 𝑊𝑡 (21) 

 

(In the following I exclude subscript 𝑡 for simplicity). If cashflow is introduced in the self-

financing portfolio, and 𝑐𝑓 is proportional to 𝑊, the restriction in (21) would become: 

 

𝑊(𝑥𝑒𝑞 + 𝑥𝑏𝑜 + 𝑐𝑓) = 𝑊 + 𝑊𝑐𝑓 → 

𝑥𝑒𝑞 + 𝑥𝑏𝑜 + 𝑐𝑓 = 1 + 𝑐𝑓 

 

Where 𝑐𝑓 is allocated between 𝑥𝑒𝑞 and 𝑥𝑏𝑜 in the following manner, giving the relative weights 

𝑥∗: 

 𝑥𝑒𝑞(1 + 𝑐𝑓) + 𝑥𝑏𝑜(1 + 𝑐𝑓) = 1 + 𝑐𝑓 → 

𝑥𝑒𝑞
∗ + 𝑥𝑏𝑜

∗ = 1 (22) 

And 

𝑥∗ ≥ 0 with (𝑥∗)𝑇𝐼 = 1 

 

Relative weights is the allocation weights relative to whatever total size the portfolio has at any 

time2. Under hypothesis 𝐻1, the optimal portfolio weights 𝑥𝑐𝑓∈{1,3,4}
∗  should equal the optimal 

                                                           
2 Cashflow corrected portfolio weights makes it possible to compare allocations (a 10 % cashflow would give 

e.g. 66/44 allocation to a 60/40 allocated portfolio. The relative weights are still 60/40 (=
66

66+44
= 60 %). 
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self-financing portfolio weights 𝑥𝑐𝑓=2
∗  because the cashflow will be distributed as not to disturb 

the pre-cashflow allocation weights (a 60/40 portfolio will thus distribute cashflow 60/40 as 

well). This is because the optimal allocation is optimal regardless of the portfolio size, and 

given no other restrictions and all else equal, any amount of assets can be bought and sold so 

the cashflow will only increase or decrease the total portfolio size. In other terms:  

 

𝑥𝑐𝑓∈{1,3,4}
∗ = 𝑥𝑐𝑓=2

∗ ,𝑊 ∈ ℝ 

 

For the second case under hypothesis 𝐻2 liquidity restrictions is introduced in order to ensure 

less liquid bond assets. As mentioned earlier, bonds generally have lower liquidity than equity, 

which will consequently lead to allocation of some or all of the cash in- and outflow to equity, 

depending on the liquidity rate 𝛾. Inspired by the eariler work mentioned, I define a simple, 

deterministic turnover restriction where only a percentage 𝛾 of the bonds can be traded in any 

given stage. This is a liquidity restriction on the percentage of assets transacted, in opposition 

to e.g. Sakar C. T. and Köksalan M. (2013)s “number of transaction” restriction. Thus, bonds 

cannot be bought at a higher rate than 𝛾𝑈 and sold at a higher rate than 𝛾𝐿, 0 < 𝛾𝑈 < 1 and 

−1 < 𝛾𝑈 < 0 relative to the portfolio size. This allows for a slower allocation rate than what 

would else be optimal, and should therefore shift allocations. I express the liquidity restriction 

as follows: 

 

 𝑥𝑝𝑛,𝑏𝑜
𝑇 − 𝑥𝜏,𝑏𝑜

𝑇 ≤ 𝛾𝑈 (23) 

 𝑥𝑝𝑛,𝑏𝑜
𝑇 − 𝑥𝜏,𝑏𝑜

𝑇 ≥ 𝛾𝐿 (24) 

 

Where 𝑥𝑝𝑛,𝑏𝑜
𝑇  is the relative allocation weight in bonds for the parent node, and 𝑥𝜏,𝑏𝑜

𝑇  is the 

same for the corresponding child node. If 𝛾𝑈 = 𝛾𝐿 = |1|; the bonds are fully liquid, while if 

𝛾𝑈 = 𝛾𝐿 = 0; no capital can be allocated to or from bonds. For example if liquidity is 0,20, this 

would mean a maximum of 20 %-point turnover per allocation and thus take the bond 

allocations 5 periods to fully turn. If the liquidity is zero, this would result in a drifting portfolio 

where capital is initially allocated, but not rebalanced for 𝑡 > 0. Under this restriction 

hypothesis 𝐻2 expects the allocation between the portfolios with cashflow 𝑐𝑓∈{1,3,4} to differ 

from the self-financing portfolio (cashflow 𝑐𝑓=2 = 0). In general when it is lower liquidity in 

the bonds than what the cashflow withdrawal demands (over one or several stages), an 
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applicable proportion of capital must be readily available in equity. Hence, I expect the 

portfolio allocation means for 𝑐𝑓∈{3,4} to be higher or lower, than the self-financing portfolio. 

 

The size of this stichastic linear program depends on the number of stages, branches per node, 

number of assets and the restricions which the optimization problem is subject to. In this case 

the size of the decision vector 𝑥 is 𝑀 = 1 × 𝑁 = 3(2𝑇 − 1), the matrix 𝐴 from (9) is 𝑀[=

3(2𝑇 − 1)] × 𝑁[= 7 ∗ 2𝑇 − 10] and 𝑏 from (9) is 𝑀[= 6(2𝑇 − 1) − 3] × 𝑁[= 1]. I have 

tried a different number of stages, but optimizations failed for 𝑇 > 5. This may be due to the 

problem of dimensionality, which can be solved with a decomposition method. For example if 

𝑇 = 4 (recall the scenario tree) matrix 𝐴 will be 𝑀 = 45 and 𝑁 = 102. If 𝑇 = 12 the size of 

the optimization program will have grown to a staggering 𝑀 = 12285 × 𝑁 = 28662! For 

more branches than two, the problem would grow even faster, making the use of scenario 

reduction techniques and decomposition methods unavoidable. Because of limitations in 

capacity and time, I have chosen to not forego such methods and rather restrict the SLP model 

to only binomial branches over 5 stages. With this choice the risk is that I model an incorrect 

distribution and lose statistical precision in the outcomes at each state. Additionally, more 

stages would serve as a larger foundation to draw the conclusion on. Even though a larger 

program would give a better foundation, a smaller program should still be able to show the 

expected patterns if they are present. 

 

3.2 One-Way ANOVA 

The output of the optimization model consists of four separate populations of allocation 

decisions (cashflow, none, negative and positive) between equity and bonds for two liquidity 

cases, so 31 decision points in 8 portfolios. Under hypothesis 1 the mean allocations in these 

are assumed to be similar, whereas for hypothesis 2 it assumed that an optimally allocated 

portfolio with one of the four cashflow types will have a systematic and significantly different 

allocation mean compared to a self-financing portfolio (e.g. the negative cashflow portfolio 

should on average be allocated higher/lower than the self- financing portfolio and similar for 

the positive portfolio). In other words: This means that at least two of the four portfolios should 

on average have a significantly unequal mean from the self-financing portfolio. Under the 

assumption of homogeneity in variances, the One-Way analysis of variance (ANOVA) is 

therefore a well suited test to measure the distance between means. If the ANOVA test supports 

hypothesis 2, that one or more means are unequal from the other, it would in turn be necessary 
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to study the effect of how the correlated cashflow portfolio dictates the optimal allocation as 

well. It is assumed that: 

 

𝐸 (𝑥𝑐𝑓
∗ ) = 𝜇𝐶𝐹 and 𝑉𝑎𝑟 (𝑥𝑐𝑓

∗ ) = 𝜎2 

 

Where 𝑥𝑐𝑓
∗  is the relative allocation weights in a decision point, 𝜇𝐶𝐹 is the mean of relative 

allocations for the portfolio and 𝜎2 is the variance of the portfolio. All allocation distributions 

are tested with Levene’s test for equal variances. The ANOVA-test is performed once for the 

full liquidity case, and once for the low liquidity case, under the hypothesis: 

 

𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 and 𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑢𝑛𝑒𝑞𝑢𝑎𝑙 

 

At significance level 𝑎 = 0,05. The testobservator used to measure the within and between 

groups variance is given as: 

𝐹 =
𝑛

∑(𝜇𝐶𝐹 − 𝑥̿)2

𝑎 − 1

∑∑(𝑥𝑐𝑓
∗ − 𝜇𝐶𝐹)

2

𝑎(𝑛 − 1)

 

Where 𝑛
∑(𝜇𝐶𝐹−𝑥̿)2

𝑎−1
 is the variance between groups and ∑(𝜇𝐶𝐹 − 𝑥̿)2 is the sum of squares (𝑆𝑆), 

∑∑(𝑥𝑐𝑓
∗ −𝜇𝐶𝐹)

2

𝑎(𝑛−1)
 is variance is within groups and ∑∑(𝑥𝑐𝑓

∗ − 𝜇𝐶𝐹)
2

 is the mean of squares (𝑀𝑆). 

𝑎 − 1 and 𝑎(𝑛 − 1) is the degrees of freedom for the two variances, respectively, and 𝑎 is the 

number of factors, while 𝑛 is the number of instances (nodes) in the population. 𝑥̿ is the group 

mean. If 𝐹 ≥ 𝐹𝛼
𝑎−1,𝑎(𝑛−1)

; then the null hypothesis is rejected (Wonnacott T. and Wonnacott 

R. 1990). 

 

4 Data 

In order to model equity, the MSCI World Index is used as a proxy. This index captures large 

and mid cap representation across 23 “developed market” countries, with 1649 constistuents 

covering approximately 85 % of the free float-adjusted markets capitalization in each country. 

The four largest sector weights is financials (19 %), information technology (14 %), consumer 

discretionary (13 %) and health care (13 %) in United States (59 %), Japan (9 %), UK (7 %), 
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France (4 %), Switzerland (3 %) and other (18 %). As a correlated cashflow, the ICE Brent 

crude oil index (oil) is applied as a proxy. It represents the average price of trading in the BFOE 

(Brent-Forties-Oseberg-Ekofisk fields located in the North sea) (Intercontinental Exchange 

2016). The Brent oil price index is widely used as a reference for measuring crude oil price 

levels (MSCI Inc. 2016). As a proxy for bond investments, the Datastream US benchmark 10 

year government bond index is used. This bond index was picked based on data availability. 

All indices is orginally stated in USD and daily observations, which is afterwards compunded 

into logarithmic monthly returns over a 20 year period between 11.03.96 – 11.03.16. 

 

Table 1: Descpritive statistics for monthly data, 1996-20163 

  Oil Equity Bond 

Mean -0,139 % 0,269 % -0,085 % 

Standard Error 0,00449 0,00199 0,00091 

Median 0,00690 0,00664 0,00030 

Standard Deviation 0,06969 0,03093 0,01418 

Sample Variance 0,00486 0,00096 0,00020 

Excess kurtosis 3,20450 4,23243 1,30666 

Skewness -0,98054 -1,05617 -0,09425 

Minimum -0,32708 -0,17195 -0,04721 

Maximum 0,19215 0,08740 0,04506 

Jarque-Bera 141,73 224,69 17,50 

𝑄 13,3070** 16,0153** 10,8658** 

𝑄2 19,2471** 8,4836** 25,7585** 

A.Dickey Fuller -12.1651** -11.8066** -12.4244** 

Count 241 241 241 

Oil 1   

Equity 0,30** 1  

 (61,3 %)   

Bond -0,27** -0,40** 1 

  (34,8 %) (30,4 %)  

 

Top: Descriptive statistics for monthly observations of ICE Brent crude oil index (Oil), MSCI 

World Index (Equity) and Datastream US benchmark 10 year government bond index (Bond) 

over a 20 year period between 11.03.96 – 11.03.2016. Bottom: In bold: 20 year period 

correlation for oil, equity and bond. Significance on a α=0,01 level (**: p≤0,01). In parenthesis: 

Percentage of incidents where asset pairs are positively correlated in 12 month trailing 

correlation for the same period. As expected the oil and bond has on average had a negative 

                                                           
3 See appendix for various graphical representation of data. 
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development during the sample peroid, whereas the stock market has had a positive trend. Oil 

is highly volatile (0,07) and stocks twice as volatile as bonds (0,031 vs. 0,014), all leptokurtic 

(> 0) and negatively skewed. This is also obvious in the minimum/maximum values, where 

the biggest monthly shifts for oil has been -33 % and +19 %, against -17/+9 and -5/+5 for 

stocks and bonds, respectively. The Jarque-Bera test4 shows non-normal distrubutions (𝐽𝐵 >

5,99) for all time series over the 241 month period. In the Ljung-Box test the 𝑄-statistics with 

1 lag show significant autocorrelation, which indicate that historic returns have a considerable 

impact on future returns. The 𝑄2-statistics of the McLeod A. I. and Li W. K. (1983) Ljung-

Box test for heteroscedasticity with 1 lag and critical value 𝑄2 = 3,8415 indicates significant 

ARCH effects in the residuals of the returns for all three assets. The Augmented Dickey Fuller 

test for unit root rejects the null hypothesis (𝐴𝐷𝐹 < −1.9421) in all three cases, indicating 

stationarity in the asset returns. The total 20-year correlation (𝜌) between oil and equity is as 

expected significantly positive (0,30). The equity/bond correlation is significantly negative (-

0,40), and negatively correlated oil/bond-pair (-0,27) as well. As expected, the descriptive 

statistics strongly motivates the MGARCH model for conditional variance. 

 

 

Figure 2: 12 month trailing correlation and absolute spread 

 

Figure 4 shows a 12 month trailing correlation for oil/equity (dark) and oil/bond (light) in the 

20 year period. The absolute spread (black line) indicates periods where equity and bond has 

similar correlation (spread ≅ 0) or dissimilar correlation (spread > 0). The oil/equity 

correlation is positive 61 % of the time, whereas for bond/oil and bond/equity it is only positive 

                                                           
4 For expressions of the statistical tests Jarque-Bera for normality, Ljung-Box Q for autocorrelation and ARCH-

effects, and Augmented Dickey Fuller for unit root, see appendix. 
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around a third of the time (35 % and 30 %, respectively). Figure 4 display a 12 month trailing 

correlation for the oil/equity (dark) and oil/bond (light) pairs over 230 months, feb 1997-march 

2016. I have chosen a 12 month window because it provides a clearer, smoothened presentation 

of the correlation dynamics, compared to the more detailed 6 month window proposed by Filis 

G. Degiannakis S. and Floros C. (2011). Additionally the spread 𝑠 = |𝜌𝑜𝑖𝑙/𝑒𝑞𝑖𝑡𝑦 − 𝜌𝑜𝑖𝑙/𝑏𝑜𝑛𝑑𝑠| 

is the absolute value of the distance between the correlation pairs in every point, indicating 

events of large shifts in the correlations. When the spread is large, the correlations is at two 

extremes, while when the spread is close to zero, both equity and bonds have similar correlation 

with oil. This is interesting because it indicates instances where the correlations move against 

one another in large shifts. Some important patterns arise: A sudden stabilizing in correlations 

after 2008 is obvious and as found in Turhan M. I. et. al. (2014). Both correlation pairs has 

fluctuated between negative and positive from 1996 to 2008 and then suddenly stabilizes in the 

period after 2008. In line with the findings of the authors the oil/equity correlation here is 

positive after 2008, but seems to be opposite (negative) of the findings for the oil/bond 

correlation after 2008, stabilizing below zero. In the period prior to the 2008 financial crisis, 

the oil/equity correlation is positive 35 %, while in the post-period, the oil/equity correlation is 

positive (𝜌 > 0) 96 % of the time. Not only is it positive, but highly correlated (𝜌 ≥ 0,60) in 

50 % of the time. The oil/bond the correlation is positive in 47 % of the cases pre-2008, against 

only 9 % post-2008 (with 𝜌 > 0,1 zero percent of the time). 

 

5 Numerical results 

The results from the model described in section 3 will be presented in the following. I report 

two groups of empirical results: Optimal portfolio allocation in a perfectly liquid and a low 

liquid market for the four types of cashflow described earlier. The first group shows the CVaR 

optimal allocations in accordance with the cashflow types under the assumption that all assets 

can be fully bought and sold in one period, whereas the other group enforce a different and 

slower turnover rates for the same bond assets compared to the full liquidity case. All portfolios 

is modeled on the same generated scenarios. To test if the portfolio allocation means are 

significantly different from one another, an ANOVA test is performed for both liquidity 

conditions. 
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5.1 Scenario generation  

The scenario tree returns is generated so that the child node return and conditional covariance 

matrix is reliant on the previous parent node output. The start-off point parameters for the 

(1,1)-order, trivariate, full, symmetric conditional covariance matrix at 𝑡 = 0 is estimated as 

the mean of all simulated covariances from the 3 × 3 × 241 conditional covariance matrix 𝐻 

obtained from estimating the BEKK(1,0,1) MGARCH-model5. The estimated 𝐴, 𝐵 and 𝐶-

vector has the following parameters:  

 

𝐴 = [
0,5742 0,0007 −0,0005
0,0001 0,5742 0,0003

−0,0003 −0,0002 0,5738
] , 𝐵 = [

0,3178 0,0005 0,0002
−0,0003 0,318 0,0002
0,0009 −0,0001 0,3174

],  

𝐶 = [
0,0525 0 0
0,0069 0,0223 0

−0,0029 −0,0036 0,0096
] 

 

The log likelihood at the optimum is 𝐿 = 1568,4. I consider a 𝑇 = 5 period problem with five 

decision stages in 𝑛 = 31 nodes and 𝐽 = 16 scenarios. The scenario tree is selected so that the 

correlation 𝜌 is ≥ 0,15, ≤ −0,15 and ≤ 0 for the oil/equity-, equity/bond- and oil/bond-pairs, 

respectively. This is to ensure that the overall correlation is similar to the dataset’s correlation 

characteristics described in section 4. For the scenarios generated, the complete tree by nodes 

and returns 𝑟𝑡,𝑜𝑖, 𝑟𝑡,𝑒𝑞 and 𝑟𝑡,𝑏𝑜, respectively is presented in figure 5. The same return data is 

presented nodewise in table 2, along with a visual representation of the cummulative returns in 

figure 6. Lastly, the descriptive statistics for the scenario generated returns is shown in table 3. 

The optimization in all 8 cases has this scenario tree as a basis. 

                                                           
5 See the BEKK-model under “Method”. Local optimum found within the default limits. 
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Figure 3: Taxonomic scenario tree with return for oil, equity and bonds per node. See table 2 

for return data. 
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Table 2: Generated return data for 𝑟𝑡,𝑜𝑖, 𝑟𝑡,𝑒𝑞 

and 𝑟𝑡,𝑏𝑜 from node 1 to 31: 

 Oil Equity Bonds 

1 0 0 0 
2 -0,019 -0,0208 0,0093 
3 0,0402 0,0285 -0,0229 
4 0,0354 -0,011 -0,0061 
5 -0,0247 0,0036 0,0027 
6 -0,0049 0,0008 -0,0127 
7 0,045 0,0167 -0,0021 

8 0,0502 -0,0233 -0,0005 
9 0,0032 0,0128 -0,0055 
10 -0,0002 -0,0106 -0,0108 
11 -0,0646 -0,0192 0,0114 
12 -0,0384 -0,0133 0,0173 
13 0,0512 0,0099 -0,0077 
14 0,0484 0,0119 -0,0104 
15 -0,0865 -0,0102 0,0053 
16 0,0152 -0,0226 0,0042 
17 0,1046 0,0002 0,0129 
18 0,0111 -0,0282 -0,0026 

19 -0,0419 -0,0289 0,0112 
20 0,0299 -0,0121 0,0004 
21 0,0096 -0,0045 -0,011 
22 -0,0548 -0,0263 0,0075 
23 -0,0276 -0,0028 -0,0045 
24 0,0089 0,0176 0,0051 
25 -0,0753 -0,0277 0,004 
26 0,13 0,021 -0,0151 
27 -0,0344 -0,0283 -0,0063 
28 0,0866 0,0236 -0,0132 
29 0,1004 -0,0381 -0,0078 

30 0,0886 -0,0047 -0,0037 
31 0,1116 0,0169 -0,0167 

 

 

 

Figure 4: Binomial scenario generated 

cummulative returns over 𝑇 = 5 stages for 

three assets: oil, equity and bonds. Total 

percentage along the vertical axis and stages 

𝑇 along the horisontal axis.  
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The generated returns in every child node is reliant on the preceding parent node, giving 

endnode scenarios:  

 

𝐽(15) = {1,2,4,8,16}, 𝐽(16) = {1,2,4,8,17}, … , 𝐽(31) = {1,3,7,15,31}. 

 

From figure 5 it is apparent that oil has the largest delvelopment with max/min total return over 

the five stage period between 1,25 and 0,85, while equity and bonds have 1,08/0,925, and 

1,03/0,943, respectively. The expected cummulative return in stage 5 is 5,11 % for oil, -0,75 

% for equity and -1,35 % for bonds. Further, the 90 %-CVaR is 13,94 % for oil, 6,71 % for 

equity and 5,21 % for bonds6.  See appendix 8.16 for corresponding tables. 

 

Table 3: Desciptive statistics for scenario generated returns for 𝑟𝑡,𝑜𝑖, 𝑟𝑡,𝑒𝑞 and 𝑟𝑡,𝑏𝑜. 

 Oil Equity Bonds 

Mean 1,606 % -0,545 % -0,220 % 
Standard Error 0,01027 0,00329 0,00173 
Median 0,00960 -0,00470 -0,00260 
Standard Deviation 0,05717 0,01834 0,00965 

Sample Variance 0,00327 0,00034 0,00009 
Excess kurtosis -0,63976 -1,06626 -0,50764 
Skewness 0,21412 0,13417 0,03004 
Minimum -0,08650 -0,03810 -0,02290 
Maximum 0,13000 0,02850 0,01730 

Count 31 31 31 

Oil 1   

Equity 0,459** 1  

Bond -0,525** -0,519** 1 
Top: Descriptive statistics for scenario generated returns for oil, equity 

and bonds over five stages (31 nodes and 16 scenarios). Bottom: Overall 

correlation for oil, equity and bond. Significance on a 𝛼 = 0,01 level (**: 

𝑝 ≤ 0,01). 

 

In table 3, the mean and standard deviation is 0,016/0,057 for oil, -0,005/0,018 for equity and 

-0,002/0,01 for bonds. All is leptokurtic and positively skewed. Oil is positively correlated with 

equity (𝜌 = 0,46) and negatively correlated with bonds (𝜌 = −0,52). Naturally, equity is 

                                                           
6 Here 10 %-linear interpolation has been applied between the two lowest cummulative outcomes of the 16 

scenarios within each asset class (representing a cummulative probability outcome of 6,25 % and 12,50 % 

respectively). 
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negatively correlated with bonds (𝜌 = −0,53). Compared to the original data, the scenarios 

generated in the model shows similar first three moments and correlation, but less extreme 

shortfall due to the normal distribution assumption and they are not negatively skewed. This 

can be partly explained by the low number of branches in the scenario tree, which can fail to 

give a good approximation of the underlying distribution of the simulated return processes. 

Further, it could be argued that the scenarios should be modeled to also account for extreme 

values and negative 4. moments, which would give a better understanding of the specific cases 

for oil, equity and bond dynamics. But for the sake of optimal allocation between the different 

portfolio types with cashflow and liquidity restrictions, the model should in any case yield the 

same conclusion, regardless of these differences in statistical attributes and distributions.  

 

5.2 Optimal portfolio allocations 

In this section the optimal allocations for the different portfolios is presented. The expected 

return for all scenarios over the 5 stage period is arbitrarily set to 𝑅 = 2,15 %7. The CVaR beta 

is set to 𝛽 = 0,90, meaning the objective is to minimize the 10 % worst shortfall cases in the 

endnode scenarios. This is also equal to a 90 % likelihood that the return will stay above a 

certain cut off point, i.e. Value-at-Risk, which is implicitly calculated in the linear program 

(recall Rockafellar R.T. and Uryasev S. (2000) and Rockafellar R.T. and Uryasev S. (2002)). 

The process of optimal allocation is in the following termed “the investor” for the sake of 

intuitive description: The optimization process is naïve and without expectations, meaning “the 

investor” allocates optimally for all future stages without knowing for certain the outcome in 

the stages ahead. Further, the portfolio contains two assets where “the investor” freely 

determines the allocation of wealth according to given restrictions. Also, the portfolio 

consumption and investments is exogenous, meaning “the investor” must withdraw or transfer 

a given amount at any point in time and simultaneously allocate the portfolio optimally for 

future outcomes (except in the first node 1 where only the optimal allocation is performed). No 

cash holdings is allowed, so between stages, the whole portfolio is invested in either equity or 

bonds. The portfolios has four individual cases of cashflows: 1) a cashflow which is positively 

correlated with equity, 2) no cashflow, 3) a constant -10 % negative cashflow and 4) a constant 

+10 % cashflow. These cashflows results in an increase, decrease or no change in the total 

portfolio wealth size at every stage, beginning in the first node. The second hypothesis expects 

                                                           
7 This is an expected return level where the SLP-model obtained a local minimum with all constraints satisfied 

for all 8 portfolios simultaneously. Generally one or more failed to obtain a minimum for other return levels. 
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that liquidity restrictions on the bond assets should result in larger allocation differences 

between the portfolios to reach the same risk/return profile as in the full liquidity case (the 

minimum CVaR at the given expected return 𝑅). The decision vector 𝑥 in table 4 and 7 has 62 

points where an allocation decision is made (allocation to either equity or bond over 31 nodes), 

where the last 32 is endnodes. The VaR, in the 63rd position in the decision vector is calculated 

as part of the optimization, and the auxiliary real variables 𝑢 in the last 30 positions of the 

decision vector serve as slack variables which should be close to zero in an optimal point. In 

all cases the 2nd no-cashflow case serves as the theoretical self-financing portfolio, and thus the 

theoretical optimal allocation. 

 

5.2.1 Full liquitity 

Setting 𝛾𝑈 = 𝛾𝐿 = |1| results in the bonds being fully liquid and can be 100 % transacted at 

any stage. The output in table 4 shows that in general the optimal allocation for all cases is a 

50% equity and 50% bonds-allocation in accord with Jones and Wilson (2003) in Harjoto M. 

A. and Jones F. J. (2006). The 90 % CVaR for the given scenarios are 1) 2,95 %, 2) 2,87 %, 3) 

2,58 % and 4) 3,15 %  (which are all larger than VaR, as expected). Further, 𝐶𝑉𝑎𝑅3 <

𝐶𝑉𝑎𝑅2 < 𝐶𝑉𝑎𝑅1 < 𝐶𝑉𝑎𝑅4. All auxiliary variables 𝑢 equals zero, except 𝑢19 which is slightly 

violated. Notice how all the portfolios (i.e. x1 eq + x1 bo) sums to one when corrected for their 

respective positive or negative cashflow. The exception is portfolio 2 (no cashflow), which 

sums to one directly due to the absence of cashflow, and serve as the theoretical self-financing 

portfolio.  

 

Table 4: Output: Optimal allocation (decision vector), full liquidity, four cashflow cases. The 

portfolios sum to one when corrected for the respective cashflow. See figure 7, 8 and appendix 

8.14 for the relative allocation to equity. 

Decision 
variable 
(x) 

1.Corr. CF 2.No CF 3.Neg. CF 4.Pos. CF 

CVaR 0,0295 0,0287 0,0258 0,0315 

x1 eq 0,50 0,50 0,50 0,50 
x1 bo 0,50 0,50 0,50 0,50 
x2 eq 0,49 0,50 0,45 0,55 
x2 bo 0,49 0,50 0,45 0,55 
x3 eq 0,52 0,50 0,45 0,55 
x3 bo 0,52 0,50 0,45 0,55 
x4 eq 0,52 0,50 0,45 0,55 
x4 bo 0,52 0,50 0,45 0,55 
x5 eq 0,23 0,14 0,15 0,05 
x5 bo 0,75 0,86 0,75 1,05 



29 
 

x6 eq 0,50 0,50 0,45 0,55 
x6 bo 0,50 0,50 0,45 0,55 
x7 eq 0,10 0,12 0,10 0,13 
x7 bo 0,95 0,88 0,80 0,97 
x8 eq 0,53 0,50 0,45 0,55 
x8 bo 0,53 0,50 0,45 0,55 
x9 eq 0,00 0,00 0,00 0,00 
x9 bo 1,00 1,00 0,90 1,10 
x10 eq 0,50 0,50 0,45 0,55 
x10 bo 0,50 0,50 0,45 0,55 
x11 eq 0,13 0,07 0,06 0,08 
x11 bo 0,81 0,93 0,84 1,02 
x12 eq 0,00 0,01 0,00 0,00 
x12 bo 0,96 0,99 0,90 1,10 
x13 eq 0,00 0,00 0,00 0,00 
x13 bo 1,05 1,00 0,90 1,10 
x14 eq 0,52 0,50 0,45 0,55 
x14 bo 0,52 0,50 0,45 0,55 
x15 eq 0,46 0,50 0,45 0,55 
x15 bo 0,46 0,50 0,45 0,55 
x16 eq 0,51 0,50 0,45 0,55 
x16 bo 0,51 0,50 0,45 0,55 
x17 eq 0,55 0,50 0,45 0,55 
x17 bo 0,55 0,50 0,45 0,55 
x18 eq 0,51 0,50 0,45 0,55 
x18 bo 0,51 0,50 0,45 0,55 
x19 eq 0,48 0,50 0,45 0,55 
x19 bo 0,48 0,50 0,45 0,55 
x20 eq 0,51 0,50 0,45 0,55 
x20 bo 0,51 0,50 0,45 0,55 
x21 eq 0,50 0,50 0,45 0,55 
x21 bo 0,50 0,50 0,45 0,55 
x22 eq 0,47 0,50 0,45 0,55 
x22 bo 0,47 0,50 0,45 0,55 
x23 eq 0,49 0,50 0,45 0,55 
x23 bo 0,49 0,50 0,45 0,55 
x24 eq 0,50 0,50 0,45 0,55 
x24 bo 0,50 0,50 0,45 0,55 
x25 eq 0,46 0,50 0,45 0,55 
x25 bo 0,46 0,50 0,45 0,55 
x26 eq 0,57 0,50 0,45 0,55 
x26 bo 0,57 0,50 0,45 0,55 
x27 eq 0,48 0,50 0,45 0,55 
x27 bo 0,48 0,50 0,45 0,55 
x28 eq 0,54 0,50 0,45 0,55 
x28 bo 0,54 0,50 0,45 0,55 
x29 eq 0,55 0,50 0,45 0,55 
x29 bo 0,55 0,50 0,45 0,55 
x30 eq 0,54 0,50 0,45 0,55 
x30 bo 0,54 0,50 0,45 0,55 
x31 eq 0,56 0,50 0,45 0,55 
x31 bo 0,56 0,50 0,45 0,55 
VaR 0,0290 0,0283 0,0255 0,0311 
u2-31 0,0000 0,0000 0,0000 0,0000 
u19 0,0000 0,0006 0,0005 0,0007 
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In figure 7 and 8 the allocations in table 4 is corrected for cashflow and show the relative 

allocation to equity for all four cases8. Since all allocation in both figures seems close to 

identical, this gives an indication that the cashflow is generally irrelevant for the allocation 

policy under a fully liquid market. Mostly the optimal allocation is 50/50, except in node 5, 7, 

9, 11 and 13 where the majority part of the capital is in bonds. A special case is in node 5 and 

11, which is the only two points where the allocation differs between the four portfolios. In 

node 5 the allocation in equity is highest for the correlated cashflow portfolio (23 %), followed 

by the no cashflow/negative cashflow portfolio in the middle (15 % and 13 %, respectively), 

and the positive cashflow portfolio with the lowest allocation to equity (5 %). In node 11 the 

correlated portfolio is allocated 14 % in equity, compared to 6-8 % in the three other cases. 

 

 

Figure 5: Cashflow corrected allocation weights (v.axis) in equity for four cashflow types per 

nodes (h.axis). Except for node 5 and 11 allocation policy is not affected by cashflow type 

under full liquidity. 

                                                           
8 See appendix for corresponding table. 
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Correlated cashflow portfolio 

 

No cashflow 

 

Negative cashflow 

 

Positive cashflow 

 

Figure 6: Cashflow corrected allocation weights (v.axis) in equity for four cashflow types after 

scenarios (h.axis), full liquidity. 

 

5.2.2 Results from One-Way ANOVA9 

The mean allocation for the four cashflow portfolios lie in the interval 1) 41,48 % to 4) 41,06 

%, which the ANOVA test shows is unsignificantly different. The 𝐹-value (0,009) is below the 

critical level (2,68) and the p-value (0,999) is larger than the critical significance level 0,05. 

Therefore hypothesis 𝐻1 is not rejected. Cashflow is irrelevant for the optimal allocation policy 

under a fully liquid market. 

 

                                                           
9 Levene’s test show equal variance in populations: 𝑝 = 0,98 > 0,05. It is therefore appropriate to proceed with 

ANOVA. 
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Table 5: Relative allocation means computed from cashflow corrected decision outputs, full 

liquidity. 

 
1. Corr. 

CF 
2. No 

CF 
3. Neg. 

CF 
4. Pos. 

CF 

Mean allocation 41,81% 41,43% 41,42% 41,06% 
 

Table 6: One-Way ANOVA for full liquidity case. 

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0,000864 3 0,000288 0,008864 0,998849 2,680168 
Within Groups 3,899777 120 0,032498    

Total 3,900641 123         

 

5.2.3 Low liquitity 

On the other hand, setting 𝛾𝑈 = 𝛾𝐿 = |0,20| results in the bonds being low liquid and thus 

cannot be fully sold before after five periods. That CVaR and VaR here is equal to the fully 

liquid case shows that the optimal scenarios are obtainable with different allocation weights. 

Again all portfolios within a respective node sums to one, corrected for the cashflow type. 

Interestingly the start-off-point for the low liquid case is not the 50/50 allocation seen under 

full liquidity above. Here, only the negative cashflow portfolio starts out at 50/50, while the no 

cashflow starts out at 47/53 and the positive cashflow portfolio at 22/78. Notice how every 

change in bond allocation is below 20 %-points, i.e. scenario 𝐽(16) = {1,2,4,8,16} has 

𝑥{1,2,4,8,16},𝐶𝐹=2 = {53%, 0,73%, 91%, 71%, 53%}. Similarily to the fully liquid output, the 𝑢 

is slightly violated in node 19 and also in node 27. 

 

Table 7: Outout: Optimal allocation (decision vector), low liquidity, four cashflow cases. The 

portfolios sum to one when corrected for the respective cashflow. See figure 9, 10 and appendix 

8.15 for the relative allocation to equity. 

Decision 
variable (x) 1.Corr. CF 2.No CF 3.Neg CF 4.Pos CF 

CVaR 0,0295 0,0287 0,0258 0,0315 

x1 eq 0,43 0,47 0,50 0,22 
x1 bo 0,57 0,53 0,50 0,78 
x2 eq 0,21 0,27 0,26 0,22 
x2 bo 0,77 0,73 0,64 0,88 
x3 eq 0,37 0,34 0,37 0,12 
x3 bo 0,67 0,66 0,53 0,98 
x4 eq 0,19 0,09 0,07 0,09 
x4 bo 0,85 0,91 0,83 1,01 
x5 eq 0,22 0,09 0,14 0,07 
x5 bo 0,76 0,91 0,76 1,03 
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x6 eq 0,12 0,16 0,20 0,20 
x6 bo 0,87 0,84 0,70 0,90 
x7 eq 0,21 0,20 0,20 0,16 
x7 bo 0,84 0,80 0,70 0,94 
x8 eq 0,33 0,29 0,21 0,29 
x8 bo 0,72 0,71 0,69 0,81 
x9 eq 0,00 0,00 0,00 0,00 
x9 bo 1,00 1,00 0,90 1,10 
x10 eq 0,42 0,29 0,34 0,25 
x10 bo 0,58 0,71 0,56 0,85 
x11 eq 0,15 0,07 0,00 0,08 
x11 bo 0,78 0,93 0,90 1,02 
x12 eq 0,00 0,01 0,01 0,01 
x12 bo 0,96 0,99 0,89 1,09 
x13 eq 0,00 0,00 0,00 0,00 
x13 bo 1,05 1,00 0,90 1,10 
x14 eq 0,31 0,38 0,38 0,36 
x14 bo 0,74 0,62 0,52 0,74 
x15 eq 0,19 0,38 0,38 0,36 
x15 bo 0,72 0,62 0,52 0,74 
x16 eq 0,47 0,48 0,41 0,49 
x16 bo 0,54 0,53 0,49 0,61 
x17 eq 0,55 0,48 0,41 0,49 
x17 bo 0,55 0,53 0,49 0,61 
x18 eq 0,00 0,05 0,01 0,00 
x18 bo 1,01 0,95 0,89 1,10 
x19 eq 0,15 0,05 0,01 0,00 
x19 bo 0,81 0,95 0,89 1,10 
x20 eq 0,51 0,49 0,45 0,44 
x20 bo 0,51 0,51 0,45 0,66 
x21 eq 0,50 0,49 0,45 0,44 
x21 bo 0,50 0,51 0,45 0,66 
x22 eq 0,30 0,27 0,09 0,28 
x22 bo 0,64 0,73 0,81 0,82 
x23 eq 0,31 0,27 0,09 0,28 
x23 bo 0,66 0,73 0,81 0,82 
x24 eq 0,12 0,08 0,15 0,11 
x24 bo 0,89 0,92 0,75 0,99 
x25 eq 0,05 0,08 0,15 0,11 
x25 bo 0,87 0,92 0,75 0,99 
x26 eq 0,28 0,20 0,19 0,20 
x26 bo 0,85 0,80 0,71 0,90 
x27 eq 0,11 0,20 0,19 0,20 
x27 bo 0,85 0,80 0,71 0,90 
x28 eq 0,54 0,50 0,45 0,52 
x28 bo 0,54 0,50 0,45 0,58 
x29 eq 0,55 0,50 0,45 0,52 
x29 bo 0,55 0,50 0,45 0,58 
x30 eq 0,54 0,50 0,45 0,52 
x30 bo 0,54 0,50 0,45 0,58 
x31 eq 0,56 0,50 0,45 0,52 
x31 bo 0,56 0,50 0,45 0,58 
VaR 0,0290 0,0283 0,0255 0,0311 
u2-u31 0,0000 0,0000 0,0000 0,0000 
u19 0,0000 0,0006 0,0005 0,0007 
u27 0,0008 0,0000 0,0000 0,0000 
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As expected, figure 9 and 10 reveal a difference in allocations from the fully liquid case. But 

it does not seem to be a consistent pattern between the negative-, positive- and no cashflow 

portfolios. 𝐻2 expects one of the cashflow portfolios to be consistently above, and the other 

consistently below the self-financing portfolio. Instead, they vary above or below without any 

apparent orderliness. In figure 9 one can see that the optimal allocation goes from below the 

50/50 allocation to lower levels between the startnode and endnodes, but as the uncertainty 

deteriorates, it moves back toward the 50/50-allocation. This is the same pattern as in the fully 

liquid case, but which had the luxury of allocating instantly instead of incrementally toward 

the optimal allocation. 

 

Figure 7: Cashflow corrected allocation weights (v.axis) in equity for four cashflow types after 

nodes (h.axis), low liquidity. 

 

Correlated cashflow portfolio 

 

No cashflow 
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Negative cashflow 

 

Positive cashflow 

 

 

Figure 8: Cashflow corrected allocation weights (v.axis) in equity for four cashflow types after 

scenarios (h.axis), low liquidity. 

 

5.2.4 Results from One-Way ANOVA10 

In the low liquidity case, the allocation means for the four cashflow portfolios is lower that the 

fully liquid case, and show larger spreads between the means: 27,21 % for correlated cashflow, 

26,38 % for the self-financing portfolio, 26,53 % for the negative cashflow and 22,27 % for 

the positive cashflow portfolio. The 𝐹-value (0,495) is below the critical level (2,68) and the 

p-value (0,686) is larger than the critical significance level 0,05. Therefore hypothesis 𝐻2 is 

rejected. Hence, the mean spreads is not sufficiently large, and therefore also the cashflow in 

the low liquidity case is irrelevant for the optimal allocation policy. 

 

Table 8: Relative allocation mean computed from cashflow corrected decision outputs, low 

liquidity. 

 
1. Corr. 

CF 
2. No 

CF 
3. Neg. 

CF 
4. Pos. 

CF 

Mean allocation 27,21% 26,38% 26,53% 22,27% 
 

Table 9: One-Way ANOVA for low liquidity case. 

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0,047048 3 0,015683 0,495005 0,686426 2,680168 
Within Groups 3,801823 120 0,031682    

                                                           
10 Levene’s test show equal variance in populations: 𝑝 = 0,54 > 0,05. It is therefore appropriate to proceed 

with ANOVA. 
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Total 3,848871 123         

 

6 Conclusion 

This article studies whether or not a positive or negative cashflow has an impact on the optimal 

allocation policy for a two asset portfolio under the restrictions of full and low liquid bonds 

compared to a self-financing portfolio. Cashflow here is defined as the transfer or withdrawal 

of capital to or from the portfolio, which therefore increase or reduce the total portfolio size. 

The optimal allocation is generated as a scenario tree with 16 scenarios over 5 stages through 

BEKK MGARCH conditional variance modelling and 5-stage stochastic linear programming 

with recourse. The optimal allocations is defined as the percentage portfolio weights in a given 

portfolio type for every decision point in time that reduces the downside risk over the period. 

In other words: The objective is to minimize shortfall risk defined as conditional value-at-risk 

(CVaR) for the whole scenariotree at a given expected return level through optimal allocation 

between equity and bonds exclusively (no cash holdings). Earlier studies have shown that 

allocating correctly gives a risk/return relationship which is optimal for a given portfolio. Thus, 

there is a tradeoff between expected return and CVaR. Also, studies have shown that liquidity 

will introduce a third element which should to be considered in the optimal allocation policy 

of a portfolio. The optimizations show that optimal allocation in the fully liquid case is for most 

cases a 50 % equity and 50 % bonds arrangement, whereas in the low liquid case a substantially 

lower equity allocation and with higher variability. As expected, the ANOVA test for the first 

case of fully liquid bond assets supports the hypothesis that cashflow is irrelevant for optimal 

allocation (be it correlated, negative or positive cashflow). Moreover, in the second case of low 

liquidity, the conclusion is the same as in the first case: Cashflow is also here irrelevant for the 

optimal allocation. The ANOVA test shows that there are larger differences between the means 

in the second case, but not enough to be significant. Allocating according to the optimal self- 

financing portfolio will therefore not be suboptimal when cashflows are introduced into the 

portfolio. 

 

Further work should include scenario reduction techniques and decomposition of the main 

optimization problem into smaller subproblems. This will lead to a model which will have 

better statistical precision in scenario generation and the possibility to include more stages. 

Also, inclusion of allocation thresholds (which demands allocation only after a certain 

divergence from the target allocation), transaction costs and taxation could yield further insight. 
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Under these conditions it would be interesting to investigate the efficient frontier for different 

cashflows over a range of returns, restrictions and liquidities to uncover any effect on the self-

financing portfolio allocation. 
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8 Appendix 

8.1 Matlab code for binomial scenario tree generation with BEKK MGARCH from 

MFE Toolbox 

%BEKK MGARCH(1,0,1) parameter estimation 

[PARAMETERS,LL,HT,VCV,SCORES]=bekk(r,[],1,0,1,'full',[],[]); 

 

%Correlation criteria 

correl=zeros(3,3); 

while correl(2,1)<=0.15||correl(2,3)>=-0.15||correl(3,1)>=0 

 

%Parent matrix generator 

nodes=2^T-1;                %node count 

endnodes=nodes-(2^(T-1)-1) 

    counta=1; 

        for cp=1:nodes-endnodes 

                ps(2*cp:2*cp+1)=counta; 

                counta=counta+1; 

        end 

 

[rowp colp]=size(ps); 

 

%Tree values 

r_t=[0 0 0]; 

y_t(:,:,1)=[1 1 1]; 

[C,A,G,B] = bekk_parameter_transform(PARAMETERS,1,0,1,3,'full'); 

 

%HT=zeros(3,3,nodes); 

HT(:,:,1)=[mean(HT(1,1,:)) mean(HT(1,2,:)) mean(HT(1,3,:)); 

           mean(HT(2,1,:)) mean(HT(2,2,:)) mean(HT(2,3,:)); 

           mean(HT(3,1,:)) mean(HT(3,2,:)) mean(HT(3,3,:))]; 

varepsilon=zeros(3,1,nodes); 

for k=2:nodes 

    

HT(:,:,k)=C+A'*varepsilon(:,:,ps(k))*varepsilon(:,:,ps(k))'*A+B'*HT(:,:,ps(k))*B; 

    varepsilon(:,:,k)=chol(HT(:,:,k))*normrnd(0,1,1,3)'; 

    r_t(k,:)=varepsilon(:,:,k)'; 

    y_t(:,:,k)=y_t(:,:,ps(k)).*(1+r_t(k,:)); 

end 

correl=corr(r_t); 

end 

 

HT=HT(:,:,1:31); 
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8.2 Matlab code for MSLPR model with liquidity and cashflow contraints 

CF=1;    %1=corrCF 2=noCF 3=negCF 4=posCF 

beta=0.90; 

assets=2; 

nodes=2^T-1; 

endnodes=nodes-(2^(T-1)-1); 

decision=nodes*(assets+1); 

sizeAb=nodes*(2+assets)-1+2*(nodes-1); 

firstu=assets*nodes+2; 

numberofu=assets*(nodes-endnodes); 

var=firstu-1; 

 

Aeq=zeros(nodes,decision); 

beq=zeros(nodes,1);         %Cashflow entry/exit 

A=zeros(sizeAb,decision); 

b=zeros(sizeAb,1); 

lb=zeros(1,decision); 

ub=inf(1,decision); 

p=1/endnodes; 

 

y1=r_t(:,1:2); %sim.input 

y2=zeros(numberofu+1,2); %var+u_k 

y=[y1; y2]; 

 

%Aeq_________________________________________________________________ 

%(11) Sum x to 1 

g=0; 

for i=1:nodes 

   Aeq(i,i+g:i+g+1)=1; 

   g=g+1; 

end 

 

%beq (external portfolio cashflow)___________________________________ 

beq(:,1)=1+r_t(:,1); 

beq(:,2)=ones(nodes,1);  %zero cashflow 

beq(1,3)=1; 

beq(2:nodes,3)=0.9;  %nocorr neg CF 

beq(1,4)=1; 

beq(2:nodes,4)=1.1;  %nocorr pos CF 

beq=beq(:,CF); 

 

%A___________________________________________________________________ 

%(15) mu(x)<= -R 

    g=numberofu; 

    for i=1:endnodes 

        A(1,i+g:i+g+1)=y(i+nodes-endnodes,1:2)*p; 

        g=g+1; 

    end 

 

%u_k >= 0 

    A(2:nodes,firstu:decision)=diag(-ones(numberofu,1)); 

 

%x^Ty+a+u_k >= 0 

g=0; 
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for i=1:nodes-endnodes 

        xy(i+g,2*i-1)=-y(i+g+1,1); 

        xy(i+g,2*i)=-y(i+g+1,2); 

 

        xy(i+g+1,2*i-1)=-y(i+g+2,1); 

        xy(i+g+1,2*i)=-y(i+g+2,2); 

        g=g+1; 

end 

 

start=numberofu+2; 

endst=start+assets*(nodes-endnodes)-1; 

    A(start:endst,1:assets*(nodes-endnodes))=xy; 

    A(start:endst,var)=-1; 

    A(start:endst,firstu:decision)=diag(-ones(numberofu,1)); 

 

%lower/upper bound x>=0 

start=endst+1; 

endst=start+assets*nodes-1; 

    A(start:endst,1:assets*nodes)=-diag(ones(1,assets*nodes)); 

 

%lbub liquidity_________________________________________________________ 

start=endst+1; 

lbub=zeros(2*nodes-2,decision); 

for i=1:nodes 

    even(i)=2*i; 

end 

 

h=0; 

en=1; 

for g=1:2 

    if h==1 

        en=-1; 

    end 

 

    for i=2:nodes 

    lbub(i-1+(nodes-1)*h,even(ps(i)))=en; 

    end 

 

    for i=2:nodes 

    lbub(i-1+(nodes-1)*h,even(i))=-en; 

    end 

    h=1; 

end 

 

start=endst+1; 

A(start:sizeAb,1:decision)=lbub; 

 

%b_____________________________________________________________________ 

    b=zeros(sizeAb,1); 

    R=0.0215; 

    b(1,1)=-R; 

    b(start:sizeAb-nodes,1)=1; 

    b(sizeAb-nodes+1:sizeAb,1)=1; 
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%objective function____________________________________________________ 

f = @(w)w(var)+1/(endnodes*(1-beta))*sum(w(firstu:decision)) 

 

options = 

optimset('Display','iter','MaxIter',5000,'MaxFunEvals',20000,'TolFun',1.0e-

08,'TolX',1.0e-08,'TolCon',0.4e-01,'Algorithm','sqp'); 

 

%solver____________________________________ 

w0=zeros(1,decision); 

[w(CF,:), fval(CF)] = fmincon(f,w0,A,b,Aeq,beq,[],[],[],options); 

  



46 
 

8.3 Explicit (schematic) 3 stage stochastic linear program with liquidity and cashflow 

constraints 
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8.4 Price index for assets ICE Brent (oil), MSWORLD (equity) and 10YRGB (bond) 

 

 

8.5 Absolute price development  

 

Prices from march 1996 to march 2016 for ICE Brent crude oil index (Oil), Datastream US 

benchmark 10 year government bond index (Bond)  (thin grey) – left axis, and MSCI World 

Index (Equity)  (thick grey) – right axis . 
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8.6 Daily returns for for assets ICE Brent (oil), MSWORLD (equity) and 10YRGB 

(bond) 

 

 

8.7  12 month trailing Oil/Equity correlation 

 

 

8.8 12 month trailing Equity/Bond correlation 
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8.9 12 month trailing Oil/Bond correlation 

 

 

8.10 Jarque-Bera test for normality  

As a goodness-of-fit test for normality, the Jarque-Bera is widely used and has gained great 

acceptance among econometricians. It is a function of the measures of skewness 𝑆 and excess 

kurtosis 𝐾 computed from a sample of residuals. Under normality 𝑆 = 0 and 𝐾 = 3, 

respectively (Thadewald T and Büning H. 2007). The JB test is defined as follows: 

 

 
𝐽𝐵 =

𝑛

6
(𝑆2 +

(𝐾 − 3)2

4
) (25) 

 

Where 𝐽𝐵 is asymptotically chi-squared distributed with two degrees of freedom. Thus, the 

hypothesis 𝐻0 of normality is rejected at level 𝛼 if 𝐽𝐵 ≥ 𝜒1−𝛼,2
2 . At level 𝛼 = 0,05 the critical 

point 𝜒0,95,2
2 = 5,99. 

  

8.11 Ljung-Box 𝑸-test for autocorrelation and heteroscedasticity 

The Ljung-Box 𝑄-test has a null hypothesis saying residuals shows no autocorrelations for 

a fixed number of lags 𝐿 versus autocorrelated residuals for the same number of lags, i.e. 

autocorrelation coefficient 𝜌(𝑘), 𝑘 = 1,… , 𝐿, is nonzero. Under the null hypothesis the 

asymptotic distribution of the Q-statistics is 𝜒𝑙
2 with 𝐿 degrees of freedom. 

 

𝑄 = 𝑁(𝑁 + 2) ∑ (
𝜌̂𝑘

2(𝜀𝑡)

𝑁 − 𝑘
)

𝐿

𝑘=1
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Where 𝑁 is the size of the samle, 𝐿 is the number of autocorrelation lags, and 𝜌(𝑘) is the 

null hypothesis (Box G. E. P Jenkins G. M. and Reinsel G. C. 2008, The MathWorks Inc. 

2016 a).  

 

Similarily McLeod A. I. and Li W. K. (1983) proposed a formal test for heteroscedasticity 

based on the Ljung-Box test, checking for ARCH-effects. In this case the test operator is 

simply the residuals squared (McLeod A. I. and Li W. K. 1983, Wang W. et. al. 2005, The 

MathWorks Inc. 2016 a): 

 

𝑄2 = 𝑁(𝑁 + 2) ∑ (
𝜌̂𝑘

2(𝜀𝑡
2)

𝑁 − 𝑘
)

𝐿

𝑘=1

 

 

Where 𝜌̂𝑘
2 is the squared sample autocorrelations of the residual series 𝜀𝑡 = 𝑦 − 𝑦̂ for model 

estimates or 𝜀𝑡 = 𝑦 − 𝑦̅ for sample average at lag 𝑘. 

 

8.12 Augmented Dickey Fuller test for unit root 

The Augmented Dickey Fuller test for unit root controlling for a unknown order 

𝐴𝑅𝑀𝐴(𝑝, 𝑞)-model. The ADF tests the null hypothesis 𝜌 = 1 that a sample 𝑦𝑡 is 𝐼(1) (unit 

root of one) against the alternative hypothesis 𝜌 = 0, 𝐼(0) (unit root of zero). The following 

model is considered:  

 

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝜀𝑡 

𝜀𝑡 = 𝛼𝜀𝑡−1 + 𝑒𝑡 + 𝛽𝑒𝑡−1 

 

Where it is assumed that |𝛼| < 1, |𝛽| < 1 and 𝑦0 = 0 and 𝑒𝑡 is a sequence of normal i.i.d 

random variables (Said E. S. and Dickey D. A. 1984). 
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8.13 Correlations for scenario generated returns per nodes (oil/eq, oil/bonds and 

eq/bonds, respectively) 
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8.14 Relavtive equity allocation for full liquidity case (100 %) 

Corr. CF No CF Neg. CF Pos. CF 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,23 0,14 0,16 0,04 

0,50 0,50 0,50 0,50 

0,09 0,12 0,11 0,11 

0,50 0,50 0,50 0,50 

0,00 0,00 0,00 0,00 

0,50 0,50 0,50 0,50 

0,13 0,07 0,07 0,07 

0,00 0,01 0,00 0,00 

0,00 0,00 0,00 0,00 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 

0,50 0,50 0,50 0,50 
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8.15 Relavtive equity allocation for low liquidity case (20 %) 

Corr CF No CF Neg CF Pos CF 

0,43 0,47 0,50 0,22 

0,22 0,27 0,29 0,20 

0,35 0,34 0,41 0,11 

0,18 0,09 0,08 0,08 

0,22 0,09 0,16 0,07 

0,12 0,16 0,22 0,18 

0,20 0,20 0,22 0,15 

0,32 0,29 0,23 0,27 

0,00 0,00 0,00 0,00 

0,42 0,29 0,38 0,23 

0,16 0,07 0,00 0,07 

0,00 0,01 0,01 0,01 

0,00 0,00 0,00 0,00 

0,30 0,38 0,43 0,33 

0,21 0,38 0,43 0,33 

0,47 0,48 0,46 0,45 

0,50 0,48 0,46 0,45 

0,00 0,05 0,01 0,00 

0,15 0,05 0,01 0,00 

0,50 0,49 0,50 0,40 

0,50 0,49 0,50 0,40 

0,32 0,27 0,10 0,25 

0,32 0,27 0,10 0,25 

0,12 0,08 0,17 0,10 

0,06 0,08 0,17 0,10 

0,25 0,20 0,21 0,18 

0,12 0,20 0,21 0,18 

0,50 0,50 0,50 0,48 

0,50 0,50 0,50 0,48 

0,50 0,50 0,50 0,48 

0,50 0,50 0,50 0,48 
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8.16 Cummulative return for oil, equity and bonds for 𝑻 = 𝟓. 

Scenario (oil)     

1 1 0,981 1,0157 1,0667 1,0829 

2 1 0,981 1,0157 1,0667 1,1782 

3 1 0,981 1,0157 1,0189 1,0302 

4 1 0,981 1,0157 1,0189 0,9763 

5 1 0,981 0,9568 0,9566 0,9851 

6 1 0,981 0,9568 0,9566 0,9657 

7 1 0,981 0,9568 0,895 0,846 

8 1 0,981 0,9568 0,895 0,8703 

9 1 1,0402 1,0351 0,9954 1,0043 

10 1 1,0402 1,0351 0,9954 0,9205 

11 1 1,0402 1,0351 1,0881 1,2296 

12 1 1,0402 1,0351 1,0881 1,0506 

13 1 1,0402 1,0871 1,1397 1,2384 

14 1 1,0402 1,0871 1,1397 1,2541 

15 1 1,0402 1,0871 0,9931 1,0811 

16 1 1,0402 1,0871 0,9931 1,1039 

 

Scenario (equity)     

1 1 0,9792 0,9685 0,9459 0,9245 

2 1 0,9792 0,9685 0,9459 0,9461 

3 1 0,9792 0,9685 0,9808 0,9532 

4 1 0,9792 0,9685 0,9808 0,9525 

5 1 0,9792 0,9827 0,9724 0,9606 

6 1 0,9792 0,9827 0,9724 0,968 

7 1 0,9792 0,9827 0,9639 0,9385 

8 1 0,9792 0,9827 0,9639 0,9612 

9 1 1,0285 1,0293 1,0157 1,0335 

10 1 1,0285 1,0293 1,0157 0,9876 

11 1 1,0285 1,0293 1,0395 1,0613 

12 1 1,0285 1,0293 1,0395 1,0101 
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13 1 1,0285 1,0457 1,0581 1,083 

14 1 1,0285 1,0457 1,0581 1,0178 

15 1 1,0285 1,0457 1,035 1,0301 

16 1 1,0285 1,0457 1,035 1,0525 

 

Scenario (bonds)     

1 1 1,0093 1,0032 1,0026 1,0068 

2 1 1,0093 1,0032 1,0026 1,0155 

3 1 1,0093 1,0032 0,9977 0,9951 

4 1 1,0093 1,0032 0,9977 1,0088 

5 1 1,0093 1,012 1,001 1,0014 

6 1 1,0093 1,012 1,001 0,99 

7 1 1,0093 1,012 1,0235 1,0312 

8 1 1,0093 1,012 1,0235 1,019 

9 1 0,9771 0,9647 0,9813 0,9864 

10 1 0,9771 0,9647 0,9813 0,9853 

11 1 0,9771 0,9647 0,9573 0,9428 

12 1 0,9771 0,9647 0,9573 0,9513 

13 1 0,9771 0,975 0,9649 0,9522 

14 1 0,9771 0,975 0,9649 0,9574 

15 1 0,9771 0,975 0,9801 0,9765 

16 1 0,9771 0,975 0,9801 0,9638 
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8.17 Inspiration: The Government Pension Fund Global 

The Norwegian economy has for nearly three decades had prominent wealth increase due to 

the petroleum driven boom. The establishment of the Government Pension Fund Global 

(hereby-called GPFG) in 1990 was the political intent to support long term sustainable 

spending of the Norwegian government’s petroleum income, as well as preserving the 

expenditures for the present and future Norwegian nation. The «pension» part of the name is 

actually quite misleading, as it holds no obligation to future pension payments, so the name 

itself is politically motivated, and not actual. The formal GPFG management responsibility lies 

with the Department of Finance, but the operative management is delegated to the Central Bank 

of Norway (hereby called Norges Bank). The daily operations responsibility is further 

delegated to the Norwegian Bank Investment Management (NBIM). The entire GPFG is 

invested in foreign currency to avoid destabilizing the Norwegian economy. During the spring 

of 2001 the fiscal rule for government fiscal budget spending was set to 4 % of the GPFG 

capital, which was assumed to represent expected real return of the fund (Norwegian Bank 

Investment Management 2010). In 2015, one ninth over the fiscal budget will come from the 

GPFG (Norwegian Petroleum Directorate and Norwegian Ministry of Petroleum and Energy 

2016). 

 

Transfers to the GPFG 

Capital is normally transferred to the fund monthly with the exception of December, where the 

Ministry of Finance informs Norges Bank of how much is to be transferred. Thereafter the 

portfolio managers are informed of the inflow and decide which securities they wish to 

purchase. A central trading team executes the transactions (Norwegian Bank Investment 

Management 2010). 

 

The petroleum related income is a combination of petroleum activity taxation, the 

governmental ownership in Statoil, and the State’s Direct Financial Interest (SDFI), providing 

the government the opportunity for direct ownership in the Norwegian continental shelf (Store 

norske leksikon 2016). As shown in the figure below, in the 1970’s the majority income was 

taxes from operations, and the Norwegian government only had ownership interests in 

production licenses through Statoil. In 1985, SDFI system was established to increase 

petroleum related income from the Norwegian continental shelf, thus yielding an important 

income source in the years to come  (Norwegian Petroleum Directorate and Norwegian 

Ministry of Petroleum and Energy 2016). 
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Figure: The net government cash flow from petroleum activities, 1973-2014. Source: 

(Norwegian Petroleum Directorate and Norwegian Ministry of Petroleum and Energy 2016) 

 

The history of a rebalancing regime 

The rebalancing history of the GPFG starts in the year of 1998 upon the introduction of equities 

as a complementary asset class in the fund. Until that moment, the transfers from petroleum 

activity had been part of the Norges Bank FXs reserves that was in its entirety invested in 

government bonds. For the period 1998 to 2001, the fund, in conjunctions with contribution 

transfers from petroleum activities, was rebalanced back every quarter to six strategic weights, 

and regional allocations to 50 % European, 30 % American and 20 % Asian. The performance 

of the GPFG is measured against a benchmark portfolio with the intended strategic attributes. 

In order to bring the actual index closer to the strategic weights, it was in 2001 decided to 

allocate on a monthly basis (Norwegian Bank Investment Management 2012).  

 

In a letter to the Department of Finance from the then Norges Bank Governor Svein Gjedrem, 

dated 10. February 2006, it is argued by the GPFG’s very long-term investment horizon, the 

fund should accept higher risk in order to increase return through a 50 or 60 % allocation to the 

equity portfolio. The argument is based on a comparison of the return the fund would have 

achieved had it allocated 40, 50 and 60 % over a 15-year period. Also an allocation comparison 

of the largest global pension funds was used to show that 60 % bonds is almost a 50 % higher 

allocation share than what these funds practice, even though they probably had shorter duration 

and a more well defined liability than the GPFG (Norwegian Bank Investment Management 

2006). In 2007-2009 the equity portfolio was increased from 40 to 60 %  (Norwegian Bank 

Investment Management 2012).  
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Around 65 % of petroleum related transfers to GPFG in 1996-2010 was allocated to the equity 

portfolio, while the remainder was channeled to the fixed income portfolio. The chart below 

shows the yearly inflow allocation to the equity and fixed income portfolio not adjusted for 

inflation. In the first years, the transfers was mostly allocated to the fixed income portfolio, 

while for 2007 and onwards the parts of the fixed income portfolio was reallocated to equity in 

order to meet the 20 % increase in the equity portfolio (Norwegian Bank Investment 

Management 2010). 

 

 

Figure: Annual inflows into the fund by asset class (BNOK), 1996-2009. Source: (Norwegian 

Bank Investment Management 2010) 

 

In 2010 the fund announced that it intended to acquire 25 % of the Regent Street in London, 

England, thus including real estate as a another factor for diversification of risk in the GPFG 

portfolio. In the years to come, the CPFG acquired real estate property in Paris, Berlin, 

München, Frankfurt, Washington D.C., New York, Boston, San Fransisco and several other 

cities in Europe and United States, in various types from prime yield office buildings, to retail 

and storage facilites and many more (Norwegian Bank Investment Management a 2016).  

 

The mandate 

Today the investment strategy is to invest in a wide range of countries, companies and assets. 

In september 2015 the portfolio allocation weights consisted of 59,7 % equity investments, 

37,3 % fixed-income investments and in 3,0 % real estate investments (Norwegian Bank 

Investment Management a 2016). The “Management Mandate” given to Norges Bank by the 

Ministry of Finance is the official guidelines, which the GPFG must act accordingly to. On 

investment of capital and the management objective includes statements like: “The Bank shall 
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seek to achieve the highest possible return after costs measured in the investment portfolio’s 

currency basket”. Further, the strategic benchmark portfolio shall consist of 60 % equity, 40 % 

fixed income subtracted by the amount invested in real estate with a long term goal of 5 %. If 

the equity share in the actual benchmark portfolio deviates more than 4 % from the strategic 

benchmark portfolio, rebalancing back to strategic weights is enforced.  The responsible 

management principles is that investments should have a long term horizon, involve good 

corporate and sustainable environmental, economical and social considerations. The equity 

portfolio may be invested in listed companies on regulated and recognised market places, or 

unlisted companies with the intention to become listed, whereas the bond portfolio may be 

invested in tradable bonds, depository receipts, and other tradable debt instruments, and the 

real estate portfolio in most kinds of real estate vehicles concerning land and/or the building 

on top of it. The portfolio may not be invested in Norwegian securities denominated in NOK 

or enterprises with head office in Norway, fixed income in countries under UN sanctions or 

similar, and real estate in the form of infrastructure (Norwegian Bank Investment Management 

c 2016).  

 

Dark prospects 

Since the establishment, the GPFG has been transferred NOK 3,5 trillion almost doubling the 

portfolio capital, which at the time of writing amounts to a total of NOK 6,9 trillion. Looking 

ahead, it is likely that the GPFG will further reduce its allocation to bonds, and increase its 

allocation to equity in order to position itself as a long-term investor (The Central Bank of 

Norway a 2016). 

 

In the Norges Bank Governor’s yearly speech for 2016, Øystein Olsen stated that the end of 

the prosperous oil income for the Norwegian government may be near. The Norwegian nation 

must prepare for persistently low oil prices and lower spending in years to come. He said that 

already at the time of presentation for the 2015 government budget plan, the prospects were 

that net savings from oil related income and spending would become negative. With the current 

oil price, the Norges Bank estimates the present value of the future oil related income to around 

a quarter of the current size of the GPFG. As shown in the figure below for most part of the 

first decade of 2000, net contributions have been highly positive, but with a NOK 200 billion 

downturn during the financial crisis 2008-2009. From 2012 and forward the net contributions 

have decreased, ending with the historically first negative net transaction in 2016. Thus 2015, 
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he says, may be the last year of positive contributions to the GPFG (The Central Bank of 

Norway a 2016). 

 

 

Figure: Net yearly contribution in billions of cash flow in GPFG, 1996-2016. Source: (The 

Central Bank of Norway b 2016) 

 

In billions of NOK 


