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Preface

This thesis is prepared in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at the Faculty of Engineering Science and Technology,

the Norwegian University of Science and Technology (NTNU). The main work

of the PhD thesis was carried out at the Department of Production and Quality

Engineering (NTNU), but I also spent six months at the Center for Risk and

Reliability at University of Maryland College Park as part of my PhD study.

Starting a PhD is an important decision, and I am lucky to finish in three

years. PhD is a long journey, and along the way, there are ups and downs, plea-

sures and frustrations, and rewards and discouragements. But looking back, I

have never regretted that I started and held on until the very end. It has been a

unique experience in my life, and I am proud that only very few of us can actu-

ally have this experience. I do not know how useful my contributions during the

past three years will be. But does it really matter that much? Probably not. Going

through all the processes and finally reach the end is itself a big achievement.

Trondheim, Norway ————–
June 2013 Hui Jin
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Summary

Safety-instrumented systems (SISs) are among the most important and effective

safety barriers in reducing the likelihood of hazardous events and/or mitigate

their consequences to assets (humans, environment, and material assets). This

PhD thesis focuses on the reliability of SISs.

The overall objective of this PhD thesis has been to develop new methods and
new concepts for reliability assessment of safety-instrumented systems. With

the knowledge generated in this PhD project, the decision-makers are able to

make more rational decisions related to SIS reliability in design, technology

qualification, implementation, and operation, hence to achieve a better strategy

for major risk prevention.

This PhD thesis has been a theoretical exercise with the functional safety

standards (IEC 61508, IEC 61511, etc.), probability theory, and system reliabil-

ity theory as bases. SISs in the process (mainly oil and gas) industry have been

extensively used as examples and cases, but the reliability assessment methods

and models developed during this PhD are applicable to all industry sectors.

This PhD thesis investigates several important issues in SIS reliability as-

sessment, and significant achievements have been made to obtain better SIS

reliability assessment results. The main contributions of this PhD project are

documented in the form of ten articles, among which, four articles have been

published in relevant international journals, two are currently under review and

the other four have been presented in peer reviewed international conferences

and published in the conference proceedings. In addition to the articles, the re-

sults from this PhD thesis are also partly implemented in the 2013 version of

the PDS1 method handbook.

Simplified formulas are the preferred approach for SIS reliability assessment

among practitioners, but the current formulas from IEC 61508 and PDS method

1 PDS is the Norwegian acronym for “Reliability and availability of computer-based safety sys-
tems.” The PDS-method is developed by the Norwegian research institute, SINTEF, for SIS relia-
bility analysis. It is a well accepted method in the oil and gas industry.
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fail to account for some important aspects such as dangerous detected (DD) fail-

ures, non-perfect proof tests, and partial tests. In this PhD thesis, several exten-

sions are proposed such that the new formulas are able to treat the DD-failures,

non-perfect proof tests, and partial tests properly, such that the applicability of

the simplified formulas is extended. For complex SISs, advanced methods are

needed to study their reliability. This thesis points to the Markov methods and

Petri nets as promising candidates. These two methods are investigated in depth

in relation to SIS reliability assessment and their advantages are demonstrated.

Common cause failures (CCFs) have significant influences on the SIS relia-

bility. Despite the efforts made in the past decades, there are still inconsistency

between different CCF definitions and a commonly accepted definition is miss-

ing. In SIS reliability assessment, CCFs are usually modeled by the beta-factor

model and the multiple beta-factor (MBF) model without the adequacy of these

models being checked. This PhD thesis proposes to define CCF on component

and system level separately to harmonize the differences between the current

CCF definitions. Based on the new definitions, the adequacy of the beta-factor

model and multiple beta-factor (MBF) model are verified with respect to sev-

eral assumptions, and conservative models are identified for different system

configuration.

Human and organizational factors (HOFs) influence SIS reliability, but they

have not been systematically studied in the context of SIS. This PhD thesis in-

vestigates the HOF influence on the component failure rate by extending the fail-

ure rate model in MIL-HDBK-217F such that HOFs are considered. A Bayesian

approach is proposed to integrate field data and expert opinion to quantify the

HOF influences on failure rate. By using the proposed approach, the company

and local influences are considered and better SIS reliability assessment are

achieved.

Process demands are threats to the systems safety, at the same time, they also

reveal the state of a SIS. Using demands as tests and taking credits from de-

mands in SIS reliability assessment have been controversial topics. The industry

wants to use the information about the state of the SIS from an actual demand

to support decisions but fears of the possible accidents due to the demand. This

PhD thesis systematically investigates this issue, and provides a thorough dis-

cussion of the pros and cons of using such a “testing strategy”, and highlights

cautions, challenges, and conditions of use. With the material from this PhD the-

sis, the decision-makers can have a broader and better picture of using demands

as tests, and can decide whether and how to use the information from demands

in SIS-related decisions without failing to maintain the due safety level.

The functional safety standards classify SISs into low-demand, high-demand,

and continuous modes of operation based on the demand frequency, and use dif-

ferent measures to quantify the reliability of SISs working in different modes.

The classification and use of reliability measures are, however, lacking of sci-

entific basis, and the practitioners are sometimes confused. This thesis provides
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a thorough discussion of this issue, and suggests a common approach to inte-

grate demand frequency into SIS reliability assessment with Markov methods

so that the demand frequency is considered in the assessment and no classifi-

cation is needed. This thesis also proposes a common reliability measure, that

is applicable to all demand frequencies, to be used together with the common

approach.

The standpoint of this PhD thesis is that all reliability and risk analyses are

merely tools to provide inputs for better and more rational decision-making,

if there is no decision to make, a reliability or risk analysis should never be

initiated. Uncertainty plays an important role in SIS-related decisions. Without

knowing the uncertainty level of the reliability assessment results, erroneous

decisions may be made and an unacceptable risk level may result. This PhD

thesis adopts the uncertainty classification from the quantitative risk analysis in

nuclear industry, and provides a thorough discussion of each uncertainty cate-

gory in relation to SIS. It is concluded that the completeness uncertainty is the

most important to address in decisions under uncertainty, followed by model un-

certainty and parameter uncertainty. To consider the uncertainties in decision-

making, this PhD thesis proposes a simple and practical approach to quantify

the uncertainty, and hence help to reach more rational decisions.





Structure of thesis

Structure of the thesis

This PhD thesis has two main parts:

• Part I Main report: This part first presents the background, the challenges

and research questions, as well as the objectives and the scope of this PhD

thesis, and then proceeds to a discussion of the research methodology and

approach. Finally the main results are summarized and the possible areas for

future research are indicated.

• Part II Articles: This part includes six journal articles and four conference

papers published or prepared during the PhD project. These articles consist

of the main work and achievements during the PhD.

ix
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Chapter 1
Introduction

1.1 Background

Major accidents have made frequent headlines in the news around the globe

in the past years, from the Fukushima Daiichi nuclear power plant accident in

Japan [79] and the high-speed train crash in China [108], to the Deepwater hori-

zon explosion in the Gulf of Mexico [5]. The significant loss of human lives and

economic assets, as well as the damage to the environment and ecological sys-

tems have clearly shown that: While our society receives greater benefits from

technological developments, we are also more vulnerable to the risks posed by

these technologies.

Intensive use of computers has brought many changes to the systems we are

dealing with today, and also to the way safety is managed. According to Leveson

[62], today’s systems are characterized by:

• Fast pace of technological change

• Reduced ability to learn from experience

• Changing nature of accidents

• New types of hazards

• Increasing complexity and coupling

• Decreasing tolerance for single accidents

• Difficulty in selecting priorities and making tradeoffs

• More complex relationships between humans and automation

• Changing regulatory and public views on safety

With these system characteristics, accident prevention becomes difficult, if

not impossible; and it is more or less expected to have accidents–accident be-

comes normal phenomena [85]. Yet, we can still strive to reduce the likelihood

and mitigate the consequences of accidents. Various measures related to man,

organization and technology are sought to reduce accident risk. An effective and

often used measure is safety barriers [36]. A safety barrier is a physical and/or

3
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Assets

Fig. 1.1 The energy accident model.

Assets

Fig. 1.2 The Swiss cheese model, adopted from [89].

non-physical means planned to prevent, control, or mitigate undesired events

or accidents [97, 98]. The concept of safety barrier is illustrated in the energy

model [22, 27], see Fig. 1.1. Ideally, no accident would occur when there is a

barrier, but since barriers are not perfect–they may fail or not be strong enough–

the energy flow may penetrate and result in harm to the assets (human, envi-

ronment and/or material assets). Reason’s [88, 89] Swiss cheese model depicts

how accidents occur despite the use of (often more than one) safety barriers, see

Fig. 1.2. As in Swiss cheeses, there are “holes” representing the weakness of

safety barriers and likelihood of failure. To strengthen the barriers, it is impor-

tant to know where and how big the “holes” are. This brings the important issue

of reliability (integrity) of safety barriers into the spotlight. To some extent, the

reliability of a safety barrier is more important than the barrier itself, because

people would be more careful when they are aware of being unprotected than

when they believe they are protected but in fact are not.
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Fig. 1.3 Safety barrier classification, adopted from [97].

Different safety barriers are used to reduce risk, and these barriers may be

classified in several dimensions. Sklet [97, 98] distinguishes between passive

and active barrier, as well as physical, technical, and human/operational bar-

rier, and proposed a classification as shown in Fig. 1.3. This PhD thesis focuses

on one specific type of the technical active safety barriers–safety-instrumented

systems (SISs)1 [40], and more specifically, the reliability of SISs.

1.2 Reliability of safety-instrumented systems

A SIS may be functionally split into three main subsystems: An input subsystem

to detect abnormal situations, a logic solver to initiate action based on a prede-

fined logic, and a final element subsystem to respond to the detected abnormal

situation, see Fig. 1.4 for a simplified illustration. Redundant designs are often

used to improve the reliability of SISs, so each subsystem may consist of one or

more (usually but not always) identical channels. It is worth noting that a SIS

may perform more than one safety-instrumented function (SIF) [39], but the re-

liability analysis is always with respect to one specific SIF, because it is the SIF

that matters in an accident prevention context. Nevertheless, people are used to

say reliability of SIS, and we use this expression in this thesis even though what

we actually refer to is one SIF.

Why is it important to study the reliability of SIS? Our safety is more and

more taken care of by SISs. The mechanical inter-locking systems and pres-

sure safety valves in the process plants are being replaced or supplemented by

computer-based process and emergency shutdown systems. The floating oil in-

stallations in ultra-deepwater are no longer kept in position by traditional moor-

1 SIS is the name mainly used in the process industry, other sectors may use different names. A
more detailed discussion can be found in Section 1.7.
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Logic solver

stnemele laniFstnemele tupnI

Fig. 1.4 A simplified illustration of a SIS[65].

ing systems, instead dynamic positioning (DP) systems are employed. The DP

system [14] uses various sensors to measure the environmental loads and to

locate the installation, calculates the amount and direction of forces needed to

keep the installation in position, and applies multiple thrusters/propellers to pro-

vide the necessary forces from the correct directions. Modern cars are equipped

with all sorts of computer-based safety systems, ranging from the anti-lock brak-

ing system (ABS) and airbag system to the collision warning and braking system

that automatically brakes a car to avoid collision and automatic parking system

that gets rid of the trouble of parallel parking. Fire alarm and extinguishing sys-

tems are found in most office and residential buildings, they sense fire signal

and send out alarm and/or spray water to put out fire. There are many more

other SIS applications: railway signaling system, burner management system

for power generation, high integrity pressure protection system (HIPPS) used to

protect pipelines, to name a few. In fact, a 12% compounded annual growth rate

was predicted for SISs market by the ARC Advisory Group [4].

SISs are extensively used to reduce accident risk, but they may also intro-

duce new hazards. A simple example is the airbag system in an automobile. The

airbags are installed to protect the passengers from fatal accident in the occa-

sion of collision, but several accidents have occurred where the airbags have

accidentally blown up in a normal situation and resulted in fatalities. More seri-

ous issues may be found in industrial settings, the use of SIS adds to the overall

system complexity, which may lead to more unexpected and unknown inter-

actions in the system and result in new types of accidents. Despite the strict

independency requirement between SISs and the rest of the system, dependen-

cies still exit. It may not be so difficult to make SISs physically independent, but

the SISs always need to share the environmental conditions as well as human

and organizational factors with the rest of the system. It is therefore important

to be aware of the side effects of SIS, and take them into account in relevant

decisions. In addition to the possible safety hazards, the SIS may also spuri-

ously operate to disturb production and lead to losses and costs. For example,

a process shutdown due to the malfunction of an emergency shutdown system

in a chemical plant may take several days to restart, and these abnormal sys-

tem states are major sources of latent errors and accidents. To avoid costs due
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to spurious operations, some operators chose to compromise safety, and in the

extreme cases, they disconnect SISs. These decisions in turn put the system into

a high risk situation. It is therefore important to maintain SIS reliability for both

safety and economic purpose–not just perform the required functions, but also

avoid the undesired actions.

Increased use of SISs alone does not justify the importance of SIS reliabil-

ity study. Another and perhaps more important reason to study SIS reliability

is that failure of SISs to perform the required function may lead to significant

consequences, and unfortunately, SISs do fail. The three major accidents men-

tioned in Section 1.1 all involve SIS failures. Had the blowout preventer (BOP)

functioned properly, the Deepwater Horizon would not explode or sink, and 11

lives would be saved and the biggest oil spill in the history of the United States

would be avoided [5, 75]. Had the core cooling system been able to successfully

cool down the core in Fukushima [79], we would have avoided a nuclear dis-

aster in Japan, and Germany and Switzerland would not give up nuclear power

so quickly (even though we are not sure if it is a good thing). And if the signal-

ing system in the Yongtaiwen railway line did not malfunction, some 40 lives

would not be lost in China [108]. These are only a few of the consequences of

SIS failures that have made the headlines in the international newspapers, much

more can be found in the national and local news. It is therefore of paramount

importance to ensure the reliability of our SISs.

1.3 Standards and guidelines

A number of standards and guidelines have been issued to assist in designing,

implementing, and maintaining reliable SISs. The most important of these is the

international standard IEC 61508 [39], which is a generic standard that outlines

key requirements to all phases of the SIS life-cycle. Under the umbrella of IEC

61508 [39], various sector specific standards are developed, such as IEC 61511

[40] for the process industry, IEC 62425 [43] for the railway industry, ISO 26262

[46] for the automobile industry, IEC 61513 [41] for the nuclear power industry,

IEC 60601 [37] for medical devices, and IEC 62061 [42] for machinery systems.

These standards are commonly known as functional safety standards. The main

feature that distinguishes functional safety standards from other safety related

standards is that, functional safety standards are performance-based whereas

many other standards are prescriptive standards–instead of simply requiring two

safety valves to be installed as in the prescriptive standards, the functional safety

standards provide work processes, procedures, and tools for the standard user to

decide, based on the tolerable risk level, how many safety valves are needed and

how should the valves be designed, installed, operated, and maintained. By this,
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the functional safety standards can deliver directly to the ultimate goal–tolerable

risk.

A general risk reduction framework is presented in IEC 61508 to achieve

tolerable risk, see Fig. 1.5. The same framework is followed and adopted in the

sector specific standards. Risk is commonly expressed as the combination of the

frequency and consequence of the accident. An assessment of frequencies and

consequences of hazardous events is first performed to determine the initial risk

of the equipment under control (EUC), at the same time the tolerable risk of that

EUC is set. SIS and non-SIS safety barriers are designed and implemented to

bridge the gap between the initial EUC risk and the tolerable risk. More often

than not, we are not able to be so precise to have the safety barriers providing

the exact amount of necessary risk reduction. We, in this situation, need to be on

the conservative side and have an actual risk reduction greater than the necessary

one such the residual risk is under the tolerable level.

Fig. 1.5 The framework for risk reduction, adopted from [39].

There are several tasks on the way to a system with tolerable risk by ap-

plying the functional safety standards. The main tasks include: define system

scope; identify requirement; design and realize the system (possibly with sev-

eral iterations) according to the requirements; install and operate the system;

maintain, repair and modify when necessary; and eventually dispose the sys-

tem. IEC 61508 presents the requirements for each of the main tasks according

to a safety life-cycle of 16 phases, see Fig. 1.6. The same life-cycle is more or

less followed and adopted in the sector specific standards.

Two types of requirements need to be specified for SIS: the functional re-

quirement stating what the safety function is, e.g., the valve should close and

seal upon an upstream pressure over 20 Pa; and the safety integrity requirement

stating how well the SIS is required to perform, e.g., the valve should close at



1.3 Standards and guidelines 9

Fig. 1.6 IEC 61508 SIS life-cycle, adopted from [39].

least 99 out of 100 times when it is required to do so. The functional require-

ment is out of the scope of this thesis and will not be further pursued. We will

focus on the integrity requirement.

A central concept of the safety life-cycle in IEC 61508 is the safety integrity

level (SIL) [39]. The SIL requirement specifies the collective integrity require-

ments to each SIF. The standards differentiate four SIL levels with SIL 4 being

the most reliable and SIL 1 the least reliable. For a SIF to achieve a required

SIL, reliability requirements with respect to hardware safety integrity, software

safety integrity and systematic safety integrity need to be fulfilled at the same

time. This thesis addresses only the quantitative requirements, which are parts

of the hardware safety integrity requirement.

On the Norwegian continental shelf, two SIS related documents must be men-

tioned. One is the NOG 070 guideline, issued by the Norwegian Oil and Gas

Association (former Norwegian Oil Industry Association, OLF) [80], on the
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application of IEC 61508 and IEC 61511 in the Norwegian petroleum indus-

try. NOG 070 assists the use of IEC 61508 and IEC 61511 by giving system

boundaries and definitions of typical SISs in the offshore petroleum industry as

well as the minimum SIL requirements for these SISs. Another document is the

PDS method2 [31, 33, 30] developed by SINTEF Safety Research. The PDS

method presents an alternative way of calculating PFDavg and PFH. The most

important features of the PDS method include: use of the multiple beta-factor

(MBF) model instead of the beta-factor model for common cause failure (CCF)

modeling and inclusion of systematic failures in PFDavg and PFH calculations.

The PDS method is of particular importance because it has extracted and docu-

mented reliability data of typical SIS components used in the offshore petroleum

industry from the offshore reliability data project (OREDA) [84]. These two

documents do not cover all the life-cycle phases in IEC 61058. The most rele-

vant phases for NOG 070 and the PDS method are indicated in Fig. 1.6.

1.4 SIS reliability assessment

1.4.1 Stakeholders of SIS reliability

Several stakeholders play important roles in SIS reliability, including the end-

user, system integrator, component supplier and functional safety assessment

(FSA) assessor as illustrated in Fig. 1.7. These stakeholders work collabora-

tively under a common environment defined by the standards, regulations, so-

cial responsibilities and morality to develop and operate a reliable SIS. In this

collaboration, the system integrator takes the central position to coordinate the

work and interacts with the other stakeholders.

Most SIS projects are initiated by the end-user who needs to install SISs on

the plant to achieve a tolerable risk level. A risk analysis is first performed by

the end-user (or consultant hired by the end-user) to determine the risk level of

the plant (or EUC), and then a decision is made on whether or not a SIS needs

to be installed. When the need is confirmed, the next step is to determine how

reliable the SIS and each subsystem should be. Following the terminology of

functional safety standards, this process is defined as SIL allocation. SIL alloca-

tion is usually a joint task carried out by the end-user, the system integrator and

possibly consultants. At the end of SIL allocation, a safety requirement specifi-

cation (SRS) is prepared. The SRS serves as the governing document in the SIS

development, and specifies the detailed requirements for the SIS reliability.

2 PDS is the Norwegian acronym for “Reliability and availability of computer-based safety sys-
tems.” The PDS-method is developed by the Norwegian research institute, SINTEF, for SIS relia-
bility analysis. It is a well accepted method in the oil and gas industry.
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Fig. 1.7 The stake-holders of SIS reliability

Based on the SRS, the system integrator develops a SIS design and assesses

the reliability of the design to see whether or not the reliability requirements

are achieved. It is not always the case that the first design would meet all the

reliability requirements and to become financially feasible, several iterations

of SIS design and reliability assessment may be needed until a feasible design

is reached. The system integrator may obtain data such as component failure

rates from the supplier for reliability analysis, and the system integrator also

relies on the supplier to know the available and financially feasible technology,

therefore the component supplier is actively involved in the SIS design process.

When a SIS design is determined, the system integrator issues contracts to the

component suppliers with stated requirements. When the components are ready,

the system integrator can proceed to further develop and install the SIS.

To demonstrate that the reliability requirements in the SRS are fulfilled, the

system integrator needs to prepare a safety analysis report (SAR) that documents

all the evidence and arguments including reliability calculation. The FSA asses-

sor will assess the SAR independently and verify the arguments therein. Based

on the assessment, the FSA assessor decides to approve or reject the SAR. When

a SAR is rejected, the system integrator needs to revisit and modify the SIS de-

sign and reliability analysis to achieve a better system. To provide a better third

part opinion, the FSA assessor not only read the SAR but also participates in

various phases of the development and provides feedbacks to both the end-user

and system integrator.
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1.4.2 Aspects in SIS reliability

There are many important topics in SIS reliability ranging from design and

analysis, through manufacturing and installation, to operation and maintenance.

Figure 1.8 illustrates the most important SIS reliability related topics under the

framework of IEC 61508. This thesis is written from an analyst’s (system in-

tegrator) perspective and focuses on the reliability analysis, so topics such as

risk analysis, SIL allocation, SRS, SLS, and FSA are important but not further

pursued. Using SIL as the overall measure for SIS reliability (safety integrity),

three categories of safety integrity are distinguished, and each of them needs to

be assessed:

• Hardware safety integrity

• Software safety integrity

• Systematic safety integrity

In this thesis we discuss only the hardware safety integrity, systematic fail-

ures and software failures are not addressed. Attention is given to the red spots

in Fig. 1.8: random hardware failure, reliability quantification, human and orga-

nizational factor (HOF) and demand modes.

Fig. 1.8 Topics in SIS reliability
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1.4.3 Quantification of SIS reliability

Many factors influence the results of SIS reliability quantification. The mode of

operation will impact the reliability measure, the assumptions and operational

strategy will influence the selection of reliability model and method, and the

reliability data and method will determine the quality of the results. Figure 1.9

illustrates the factors that have significant impacts on SIS reliability quantifica-

tion, and they comprise a large part of the research subjects of this thesis.

Fig. 1.9 Hardware reliability quantification

IEC 61508 [39] differentiates between on demand and continuous mode of

operation. A SIS is working in continuous mode when the safety function re-

tains the EUC in a safe state as part of normal operation [39]. In the oil and gas

industry, most SISs are working in the on demand mode, where the SIS is nor-

mally in a passive state and will only be activated when a demand occurs. The

on demand mode is further classified into low-demand and high-demand mode.

When the frequency of demands for a SIS is less than once per year, the SIS

is in low-demand model, and the reliability is quantified by the average proba-

bility of failure on demand (PFDavg). The PFDavg may be interpreted either as

the average probability that the SIS is not able to successfully respond to a de-

mand or the average proportion of time where the SIS is not able to perform its

safety function. When the SIS is operated in high-demand mode, which means

the demand occurs equal to or greater than once per year, or continuous mode,

the frequency of dangerous failures per hour (PFH) 3 is used to quantify the

3 Definition changed from probability of failure per hour in the first edition of IEC 61508.
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reliability. The SIL range for PFDavg and PFH specified by IEC 61508 [39] are

given in Table 1.1.

Table 1.1 SIL requirements [39].

SIL PFDavg PFH

4 [10−5, 10−4) [10−9, 10−8)
3 [10−4, 10−3) [10−8, 10−7)
2 [10−3, 10−2) [10−7, 10−6)
1 [10−2, 10−1) [10−6, 10−5)

PFDavg and PFH are reliability measures with respect to dangerous failure–

failure that has the potential to put the SIS in hazardous or fail-to-function state.

A characteristic of SIS is that the failures are normally hidden, meaning that the

failures remain unrevealed unless some efforts are made to detect them. Proof

testing and diagnostic testing are the two main techniques applied to detect dan-

gerous failures. The proof tests are usually performed periodically with an in-

terval between several months and several years, and after a proof test the SIS

is assumed to be in an “as good as new” condition. The diagnostic tests are per-

formed more often than the proof tests, usually with an interval between seconds

and hours. The diagnostic testing can detect dangerous failure more or less im-

mediately after the failure occurred, but the “as good as new” condition cannot

be assumed because only a fraction of dangerous failures can be detected. This

fraction of dangerous failures is defined as dangerous detected (DD) failure, and

the rest failures that are only detected by proof testing are dangerous undetected

(DU) failure.

1.5 State-of-the-art

SIS reliability assessment has attracted a lot of research interests. Several groups

of researchers have made significant contributions to this topic. For the develop-

ment of SIS reliability assessment methods and models, we would like to high-

light the following groups from universities, research institutes and the industry
4.

4 In spite of the high number of companies contributing to the SIS related issues, only the two com-
panies that are engaged in the research forefront of developing SIS reliability assessment methods
and models are presented.
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1.5.1 Eindhoven University of Technology

The research group at Eindhoven University of Technology (TU/e) in the

Netherlands is one of the pioneers in the field of SIS reliability analysis. They

looked at several important aspects of SIS reliability analysis. Shortly after the

release of the first edition of IEC 61508 [38], Rouvroye and Van Den Bliek

[90] and Rouvroye and Brombacher[91] compared different safety and relia-

bility analysis techniques. The results from these studies show that different

techniques may lead to different results for SIS reliability analysis, and the en-

hance Markov method is recommended because of its comprehensive converge.

The use of Markov method in SIS reliability analysis is further investigated by

Knegtering and Brombacher [59, 58], where a micro Markov method is pro-

posed to combine the benefits of Markov method and reliability block diagram.

Goble and Brombacher [24] discuss the role of diagnostic coverage in SIS reli-

ability and develop the failure modes, effects and diagnostic analysis (FMEDA)

method.

1.5.2 NTNU/SINTEF

The Norwegian University of Since and Technology (NTNU) and its strategic

parter SINTEF have a long history of studying SIS. In the early days, the stud-

ies were concentrated on special safety systems in the offshore petroleum in-

dustry such as BOP and down-hole safety valve (DHSV). As more experiences

and knowledge were accumulated, the studies were extended and applied to

more general safety systems. The PDS project was initiated by SINTEF to study

the reliability and availability of computer-based safety systems. The products

of the PDS project are periodically updated SIS reliability assessment method

handbook [31] and reliability data handbook [33]. In addition to the handbooks,

efforts are also made to more specific topics. Hokstad and Corneliussen [34]

discuss the failure classification in IEC 61508 and suggest relevant clarifications

and improvements. In particular, they propose a multiple beta-factor (MBF) [34]

model to treat CCFs in SIS reliability analysis, and relevant defense measures

against CCFs in the oil and gas industry can be found in [66]. Lundteigen and

Rausand [67, 68] study partial stroke testing (PST) and provide a method to es-

timate the PST coverage. They [69] also provide a thorough discussion on spu-

rious activation to clarify the concepts and suggest ways for calcuation. Schön-

beck et al. [94] discuss the impact of human and organizational influence on SIS

reliability and propose a model to account for human and organizational influ-

ence in the operational phase. Janbu [47] provides perspectives on treatment of

uncertainty in SIS reliability assessment.



16 1 Introduction

1.5.3 University of Technology of Troyes

The group at University of Technology of Troyes (UTT) in France has much

activities on reliability and dependability analysis. For SIS reliability analysis,

Langeron et al. [61] study the merging rules in SIS reliability assessment. The

results confirm the needs for advanced methods for complex SISs, and they point

to Markov method. Brissaud et al. [9] propose a method to estimate failure rates

for SIS reliability analysis. The method contains qualitative and quantitative part

such that both feedback data and qualitative influence factors can be considered.

Brissaud et al. [7, 8] study the impact of partial testing and provided general

formula to quantify SIS reliability for multiple components systems subjected

to periodic or non-periodic partial testing.

1.5.4 University of Bordeaux

Together with researchers from Total, the group in University of Bordeaux ad-

dressed the issue of SIS classification. Innal et al. [45] examine different SIS op-

erational modes by analyzing their definition in IEC 61508 and IEC 61511, and

propose new criteria for classification. They also study the relationship between

PFDavg and risk reduction factor and show that following the standard way of

calculation, optimistic risk reduction factor may be used. This research group

has vast interests in SIS reliability methods. Dutuit et al. [19] apply fault tree

to assess the reliability of SIS and point to the needs of using time-dependent

reliability performance measure in addition to PFDavg. Dutuit et al. [20] apply

different methods and tools for SIS reliability assessment and conclude the ad-

vantages and disadvantages of each methods. A thorough discussion of using

Petri net for SIS reliability analysis is given in [95].

1.5.5 Tsinghua University

The group at Tsinghua University in China present simple reliability block dia-

gram for SIS reliability verification [25] and make efforts to automatically create

Markov models for SIS reliability analysis [26]. Xu et al. [109] investigate the

optimal replacement policy for multiple state SIS components where interac-

tions between SIS and EUC are considered. In addition, Xu et al. [109] intro-

duce the concept of safety-related uncertainty to measure the effect of parameter

uncertainty on safety and provided four ways to assess this uncertainty.
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1.5.6 Tokyo University of Marine Science and Technology

At the Tokyo University of Marine Science and Technology in Japan, Misumi

and Sato [72] apply fault tree to model SIS performance, where demand fre-

quency, demand duration and spurious operations are considered. They derive

genetic algorithm from the fault tree to calculate the hazardous event frequency,

which is used as a basis for SIL allocation. Zhang et al. [112] apply Markov

method to study SIS reliability and derive expressions for equivalent mean

downtimes (EMDTs). These EMDTs are different from the ones suggested in

IEC 61508 even though the two groups of EMDTs lead to similar PFDavg for

1oo2, 1oo2D and 2oo3 system. Consequently, Zhang et al. [112] suggest to use

EMDTs derived from Markov model. Yoshimura and Sato [110] investigate the

impact of safe failure fraction (SFF) and discuss the necessity of having SFF as

a constraints for SIL. Their study claims that SFF have non-negative effect on

safety and recommended to apply SFF.

1.5.7 Villanova University

Bukowski [13, 10, 11, 12] from Villanova University and her collaborators ap-

ply mainly Markov method to study SIS reliability and investigate the CCF

contribution. Bukowski and Lele [13] conduct case study to investigate the CCF

impacts from different architectures. Bukowski and Goble simulate the stress-

strength failure model to verify the CCF reduction rules. Bukowski [11, 12]

apply Markov method to incorporate demand frequency into SIS reliability anal-

ysis and demonstrate that using exponentially distributed repair time does not

have non-negligible impact on the SIS reliability.

1.5.8 SIS-tech

Started as a Houston based consultancy providing services for SIS related is-

sues, SIS-tech has now expanded into a full range of instrumentation and con-

trol services to cover all aspects of the Safety Life-cycle. On their website

(http://sis-tech.com/), various SIS related information including train-

ing courses, conferences and softwares, can been found. In addition, they also

publish scientific articles [102, 100, 99, 101] to provide their perspectives and

research results on SIS related issues such as CCF, systematic failures, SIL al-

location, partial stroke testing. These articles look at SIS reliability from the

practitioner’s perspectives, which give a good supplement to the more theoreti-

cal literature written by academics.
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1.5.9 Exida

Exida is another major consulting firm on SIS reliability, with global business

operation. They provide certification, training and consulting services beside

publishing books and software for the industry. Similar as SIS-tech, various SIS

related information can be found on their website (http://www.exida.com/).
In addition to the more formal articles and reports, Exida also runs a blog with

its employees contributing their stories, opinions and refections on SIS related

issues.

1.5.10 Others

Many other groups or individuals have interests on SIS reliability and have made

contributions to various aspects. Duijm and Goossens [17] develop, through the

Accidental Risk Assessment Methodology for IndustrieS (ARAMIS) project, a

method to quantify organizational influence on safety barriers. Sallak et al. [92]

study the uncertainty in SIS reliability and applied fuzzy probabilistic approach

for determining safety integrity level. Oliverira and Abramovitch [83] extend

the PFDavg formula to koon systems. Torres-Echeverria et al. [103, 104] study

the optimal SIS reliability design and suggest approximation to calculate PFDavg

for parallel systems.

1.6 What is a reliability measure?

Before proceeding to the research questions that are further investigated in the

articles, we take one step back and discuss the meaning of a quantitative SIS

reliability measure. A SIS reliability measure, be it PFDavg or PFH, is a proba-

bilistic statement about the system performance in a future time (interval). Since

probability is used, the ontological question of what is probability is inevitably

inherited to the SIS reliability measure. It has been debated for hundreds of

years whether probability is an objective property of an event or it is merely a

subjective “degree of belief” existing in our minds. Three main approaches to

probability can be identified [86]:

(i) The classical approach, which derives probability from a set of equally

likely outcomes of an experiment and defines Pr(A) as the number of a favorable

outcome A, nA, divided by the total number of possible outcomes, n.

Pr(A) =
nA

n
(1.1)
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(ii) The frequentist approach, which looks at inherently repeatable experi-

ments and defines Pr(A) as the ratio between the number of favorable outcomes

A, nA, and the total number of experiments, n, when n is approaching infinite.

Pr(A) = lim
n→∞

nA

n
(1.2)

(iii) The Bayesian approach, which objects to the objective existence of prob-

ability and defines Pr(A) as a numerical value in the interval [0, 1] representing

an individual’s degree of belief about whether or not event A will occur.

Whereas the Bayesian school disagrees with the classical and frequentist

school’s interpretation that probability is an objective property, all three schools

follow the Kolmogorov axioms of probability in calculation. This means that

whether we believe PFDavg (PFH) is a property of a SIS or a “degree of belief”

will not affect the reliability calculation and will lead to the same result. It is

only the SIS decision, based on or informed by the reliability measure, will be

influenced. Therefore, the ontological meaning of PFDavg (PFH) is not impor-

tant in reliability quantification. On the other hand, the PFDavg (PFH) value used

in decision-making is always an estimate, and we believe a completely objec-

tive estimation of PFDavg (PFH) is impossible. The reliability estimate always

involves more or less the subjective degree of believe from the analyst. There-

fore the SIS decision is not based on a property but a degree of belief.

Another issue with reliability measure is that a comparison between the pre-

dicted system performance and the actual performance is difficult even when

the concerned system has been operation for a long time or after the system

life time. SISs are very reliable systems, we normally do not have enough data

to achieve a confident validation of the PFDavg (PFH) estimated in the design

phase. Because direct validation of the reliability methods and models is diffi-

cult, we have to use other approach to validate our research results, see Section

3.3 for more discussion on validation.

It is also worth mentioning that, according to IEC 61508, PFDavg is the aver-

age probability of failure on demand. It is easy to interpret PFDavg wrongly as a

conditional probability with the condition being a demand. The PFDavg is actu-

ally an average unavailability which does not condition on demand or anything

else. This means that the demand does not influence the PFDavg as a reliability

measure as such. It is possible to argue that the demand should be taken into con-

sideration in PFDavg calculation, but when the calculation is done, the PFDavg

is still an average unavailability that does not condition on demands. The PFH

is the average frequency of a dangerous failure, and it is essentially the same as

the average rate of occurrence of failures (ROCOF) over a time interval.
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1.7 Terms for safety systems

SIS is the name used in the process industry for the kind of safety systems we are

dealing with in this thesis, due especially to the influence of IEC 61511. Other

industries are using different names for the same kind of safety systems, for ex-

ample, IEC 61508 uses electrical/electronic/programmable electronic (E/E/PE)

safety related system, ISO 26262 uses electrical and/or electronic (E/E) safety

related system in the automobile industry, IEC 62061 uses safety related elec-

trical, electronic and programmable electronic control systems (SRECS) for

machinery systems, ISO 13849 uses safety related parts of control systems

(SRP/CS) for machinery systems, IEC 61513 uses instrumentation and control

(I&C) system in nuclear power plants, and IEC 62425 uses safety related rail-

way signaling systems/sub-system/equipment in the railway industry.

The diversity of terms for safety systems in different industries and standards

may, to a large extent, be due to the traditions in these industries and the back-

grounds of those people behind each standard. It is our opinion that these names

do not have non-negligible influence on the reliability analysis of safety sys-

tem, especially not the core issue of this thesis–reliability quantification. For the

convenience of presentation, it is decided to use SIS as a general name. SIS is

selected for two reasons: (1) it is widely used in the process industry, which is

the sector that had and still have the most active research on functional safety,

and (2) SIS is much simpler than other names such as E/E/PE safety related sys-

tem. In the rest of this thesis, we will use SIS for all relevant safety systems. This

also means that the results of this thesis are applicable not only to the process

industry, but also to other sectors.



Chapter 2
Research questions and objectives

2.1 Research questions

Reliability estimates (PFDavg or PFH) serve as a basis for many decisions in

SIS design and operation. The accuracy of a reliability estimate is important in

the sense that an incorrect PFDavg or PFH contributes to the acceptance of an

insufficiently reliable design or the rejection of a sufficiently reliable design. The

former leads to a SIS with inadequate risk reduction, whereas the later results in

unnecessary investment.

All SIS reliability analysis approaches [10, 19, 20, 25, 34, 44, 61, 70, 90] are

based on certain assumptions, e.g., the system is assumed to be “as good as new”

after a proof test. These assumptions are not valid in all cases and represent

significant weaknesses. If the assumptions are used when they should not be,

incorrect reliability estimates or significant uncertainty may result, and wrong

decisions will follow. Calculation of the reliability when the assumptions are not

valid is a challenge in SIS reliability analysis. When the assumptions are valid,

reliability analysis may also suffer from various uncertainties [47, 105, 81, 92]

with respect to the input data, the model, and the completeness. These uncer-

tainties may not at all be explicitly quantified, so another challenge is how to

consider these uncertainties in decision-making. The current SIS classification

and reliability measures lacking a scientific foundation, therefore lead to con-

fusions and reluctances among practitioners. Other challenges in SIS reliability

analysis include how CCFs [35] can be better account for, issues related to hu-

man and organizational factor [93, 94]. Based on a thorough literature survey,

the following specific challenges are identified.

21
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2.1.1 Testing strategies

Proof testing is the primary method to detect failures and ensure SIS reliabil-

ity. But other testing methods are also used in order to meet the increasingly

demanding reliability requirements. These testing methods include diagnostic

testing, partial testing, and the more recently emerged idea of using demands as

tests.

Dangerous detected failures

When calculating PFDavg and PFH according to the formulas in IEC 61508, the

DD-failures need to be combined with the DU-failures to calculate the MEDT.

An issue with this approach is that as the system expands, more MEDTs need

to be calculated. IEC 61508 only provides formulas for up to three components,

reliability of systems with more components cannot be calculated. Rausand and

Høyland [87] present PFDavg formulas for koon systems with the assumption

that the contribution of DD-failure is negligible. Both the PDS method [31] and

Oliverira and Abramovitch [83] take one step further and developed PFDavg

formulas that are able to account for DD-failure for koon systems. For PFH

calculation, it has been more problematic. The PDS method [31] is the only

attempt to develop PFH formulas for koon systems, but it failed to properly

account for the DD-failures.

Non-perfect proof testing

Most PFDavg and PFH formulas assume that the proof testing is perfect, and thus

consider only one proof test interval in the calculation, but there are also a lot of

cases where the proof testing cannot detect all failures or the “as good as new”

assumption is not valid. In order not to overestimate the SIS reliability [23, 31],

the effect of non-perfect proof testing needs to be accounted for. IEC 61508 [39]

propose o use proof test converge (PTC) in the calculation of MEDTs, but it is

subjected to the main drawback of using MEDTs–cannot be generalized to koon
systems.

Partial testing

Partial testing is similar to the non-perfect proof testing. They both detect part

of the DU-failures. A slight difference is that partial testing is normally used

in combination with proof testing, whereas non-perfect proof testing may or

may not be combined with overhaul (overhauls restore the system to “as good
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as new”). An often used partial testing technique is the partial stroke testing

(PST) [2, 3, 68, 99]. Formulas to account for the effect of partial testing are

presented for 1oo1 in [68, 67, 99], and numerical approach is employed to solve

1oo2 system in Torres-Echeverra et al. [103]. More recently general formulas

are derived in [7, 8] for systems with koon configurations. The general formulas

can take care of both periodical and non-periodical partial testing, but it failed

to account for CCFs.

Demands as tests

When the demands for a SIF become frequent, the influence of demands on

SIS reliability cannot be neglected any more. Since the demand is able to verify

the functionality of the SIS, several attempts have been made to use demands

as proof tests in SIS reliability analysis [10, 72, 64, 111]. However, a demand

is different from a proof test in many respects. A demand comes randomly,

whereas a test is pre-scheduled. A test is a proactive approach to detect failure,

but a demand may lead to an accident. The test coverages are also different

between a proof test and a demand. A demand is able to verify the system level

functionality but not the channel level, whereas a proof test carefully examines

each channel and verifies their functionality. To use demands as proof tests, not

only formulas need to be established, measures to avoid possible abuse are also

needed because it may be manipulated to avoid costly proof tests.

It is a challenge to establish formulas to properly account for different test-

ing strategies. Having a general formula that takes care of all testing strategies

may not be feasible. A more relevant topic would be to identify possible test-

ing strategies and establish formulas accordingly. Based on a thorough literature

review, the following research questions are identified.

• How do we calculate the reliability of koon systems when DD-failures and/or

non-perfect proof tests cannot be ignored?

• How do we calculate the reliability of koon systems subject to proof testing

and periodical or non-periodical partial testing?

• How do we account for the effect of using demands as proof tests?

2.1.2 Common cause failures

Common cause failure is a main contributor to SIS unavailability [35, 66]. The

accurate modeling of CCFs serves a critical role in decisions based on or in-

formed by SIS reliability. Since the introduction of CCF in the 1960s [35, 86],

a high number of CCF models have been proposed, and several initiatives have

been taken to collect CCF data, but these efforts have mainly been limited to the
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nuclear power industry [77, 96]. For SIS reliability, the industry is, most of the

time, satisfied with the beta-factor model [21] and MBF [31] model because of

their simplicity together with the fact that CCF data is limited.

It is absolutely fine to use simple models, yet models should not be used just

because they are simple. The model must, at the same time, make sense and pro-

duce reasonable results. For SIS reliability in particular, if errors are inevitable,

they should be on the conservative side with respect to safety. The practition-

ers have been using the beta-factor model and MBF model without questioning

their adequacy, while it is indeed important to ensure that the models are ad-

equate, and for SIS in particular, conservative. To assess whether or not the

beta-factor model and MBF model are adequate, a common and precise CCF

definition is important. Unfortunately, despite the considerable efforts in CCF

studies, a generally accepted CCF definition is still missing. Based on the liter-

ature review, it is observed that the primary disagreements in the current CCF

definitions [66, 76, 78, 39] are related to the following two questions:

• Must multiple failures occur simultaneously to be a CCF or can the failures

be spread out in time?

• Should a CCF always lead to system failure?

Our research questions related to CCFs are therefore:

• What is the proper CCF definition that removes the aforementioned inconsis-

tencies?

• Is it adequate to use beta-factor model and MBF for SIS reliability analysis?

2.1.3 Human and organizational factors

Human and organizational factor (HOF) has significant influences on SIS reli-

ability [6, 17, 94], but systematic studies addressing HOFs have not been seen.

HOF influences exist in many phases of the SIS life-cycle. The most significant

HOF influence occurs in SIS manufacturing, installation, and operation, where

humans have most interactions with the system and is susceptible to commit er-

rors (or omit tasks). A common feature of the HOF influences in these phases is

that they are all after the completion of SIS design, where some of the most im-

portant decisions are made. It is important to predict the HOF influences in the

reliability analysis carried out in design phase. This is particularly challenging

because very limited or no data related to HOF in manufacturing, installation,

and operation are available in the design phase, nor are HOF models for this

purpose. We need to use more “generic” HOF data to estimate SIS reliability. In

this regard, the relevant research questions on this issue are.

• What are the useful “generic” HOF data for SIS reliability analysis?

• How can the SIS reliability analysis benefit from the identified HOF data?
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2.1.4 SIS classification

Functional safety started out mainly from the process industry, where most SISs

are working under infrequent demands, therefore most research has concen-

trated on PFDavg with the presumption that the systems are in low-demand

mode. As the concept of functional safety is getting more popular and spread-

ing out to other sectors, it is more and more frequent that we encounter systems

working in high-demand or at the boundary of low- and high-demand. If the

IEC 61508 standard is strictly followed, we may run into situations where a

system is SIL 2 when it is demanded once per 11 months (high-demand) but

is SIL 1 when it is demanded once per 13 months (low-demand), this causes

trouble among the practitioners and risks the possibility of abuse. It is important

to clarify the SIS classification and reliability measures or propose alternatives.

One particular challenge in SIS classification is that IEC 61508 gives the

boundary one demand per year for low- and high-demand mode without any

further explanation. On the one hand, it has been realized that there are always

problems to use demand frequency as the only criterion since the demand fre-

quency is a continuous parameter. The one demand per year criterion is used

pragmatically and scientific arguments are difficult, if not impossible, to find.

On the other hand, the standard is explicit about the boundary, so sub-optimal

decisions may need to be made to comply with the standards. A possible so-

lution is to remove the SIS classification and to take into account the demand

frequency in SIS reliability analysis. Several attempts have been made in this

direction with Markov method [11, 45, 72, 64, 111]. The questions emerged in

this line of research are:

• How should we classify different SIS operational modes?

• What reliability measure do we use? PFDavg? PFH? or something else?

2.1.5 State-based reliability methods

Simplified formulas [31, 39, 87] are the most popular SIS reliability calculation

method, especially among the practitioners, due to their simplicity. Structural

models, such as fault tree (FT) [45, 70, 72, 39] and reliability block diagram

(RBD) [87, 39], are also commonly used for slightly more complex SISs. When

the complexity increases further, the simplified formulas and structure models

found themselves struggling, this is especially true when the dynamic (time-

dependent) system behaviors, e.g., the change of PFD as a function of time, is

important.

State-based methods are able to capture the time-dependent behaviors of a

system. In IEC 61508, Markov method [39, 26, 45] and Petri net [18, 45, 95]

are the two recommended state-based methods for complex SIS. Compared to
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simplified formulas and structure models, the state-based methods are more so-

phisticated and flexible. For instance, the demand frequency can easily be inte-

grated into the reliability analysis by using Markov method, and the complicated

testing strategies can be readily handled by Petri net. The state-based methods

are more abstract and difficult to understand. More competence is required to

perform SIS reliability analysis with Markov method or Petri net.

Among the practitioners, there is a general reluctance to apply the state-based

methods in projects even though they would yield better results. One important

reason of the reluctance may be psychosocial: the practitioners feel the state-

based methods are so complicated that they are not able to learn or it does

not worth the time to learn when the potential gain is not certain or insignifi-

cant. The challenge is to come up with standard ways of applying state-based

methods in SIS reliability analysis and demonstrate the advantages and benefits

of these methods. In addition, there are also challenges related to the methods

themselves, for example, Markov method suffers from state-explosion when the

number of components increases and solving a general stochastic Petri net is

demanding.

The research questions related to state-based reliability methods are:

• How the state-based methods are used to address issues such as integrating

demands into SIS reliability analysis?

• What are the benefits of applying state-based methods?

• How to address the internal issues of state-based methods in the context of

SIS reliability analysis?

2.1.6 Uncertainty and decision-making

Reliability analyses are based on simplifications and assumptions about the sys-

tem and its operating context, SIS is not an exception. Various assumptions

about failures, repairs, operating conditions, testings and so on are made in SIS

reliability analysis, the resulting PFDavg or PFH is therefore subject to uncer-

tainty. Without knowing the level of uncertainty in the reliability estimate, the

SIS suppliers and end-users may make erroneous decisions regarding system

configurations, component selections, testings as well as maintenance strate-

gies. Therefore, the uncertainty of SIS reliability estimates need to be aware of,

analyzed, managed and considered in decision-making.

Uncertainty is a long discussed topic, a lot of literature is available on this

topic [1, 81, 16, 107, 73]. In the nuclear industry [81], three sources of uncer-

tainty are distinguished: completeness uncertainty, model uncertainty, and pa-

rameter uncertainty. Until recently, the research in SIS reliability has been lim-

ited to parameter uncertainty [6, 106, 92]. Completeness uncertainty and model
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uncertainty have not been studied in relation to SIS, even though they may pose

significant influences on the reliability estimates.

A few requirements regarding uncertainty are given in IEC 61508 and IEC 61-

511. The standards require that the failure rates data should have a confidence

level of at least 70% [39, 40] to be conservative. To meet this requirement, it

is necessary to consider the failure rate as a random variable with a probabil-

ity distribution that describes our knowledge/belief about the failure rate [28].

IEC 61508 also requires that a confidence level of at least 90% shall be demon-

strated on the reliability estimates, in the selection of hardware architectures for

the so-called route “2H” [39]. The PDS method considers factors that are often

left out in the SIS reliability calculations: (i) Test independent failures (TIF)

that may remain unrevealed due to limitations of the proof testing, and (ii) in-

clusion of systematic failures in the failure rates. By this, they aim to reduce the

uncertainty. In addition, there are suppliers who use “best estimates”, but add

conservatism by making the SIL requirement more strict, such that compliance

with, for example, SIL 3, is only claimed when PFDavg ≤ 0.7 · 10−3. These at-

tempts try to control the uncertainty of SIS reliability estimates, but the scope

is rather limited and they do not give any explicit information about the level of

uncertainty. Systematic consideration of uncertainty of SIS reliability estimates

in decisions seems to be lacking. This poses the research questions:

• What are the uncertainties in the context of SIS, and how do they influence

the decisions?

• How should the uncertainty be analyzed, represented, and used in decision-

making?

2.2 Research objectives

The overall objective of this PhD thesis is to develop new methods and new con-
cepts for reliability assessment of safety-instrumented systems. The knowledge

generated in the PhD project, should give rise to more rational decision-making

related to SIS reliability in design, technology qualification, implementation,

and operation, hence contribute to the overall strategy for major risk prevention.

There are many aspects where SIS reliability related new methods and con-

cepts can be developed, to avoid being too general or losing focus, more specific

objectives are defined based on the research questions. They are presented in

three categories.
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2.2.1 Reliability method and models

• Objective 1: Develop simplified formulas for SIS reliability analysis. The

new formulas shall be able to account for issues such as DD-failures, non-

perfect proof testing and partial testing in a better way, so the analysis result

will be more accurate.

• Objective 2: Identify and assess the pros and cons of using demands as proof

tests in SIS reliability analysis. Propose possible ways to include the reliabil-

ity contribution from demands.

• Objective 3: Develop a method to quantify human and organizational influ-

ence on SIS reliability when the HOF data directly related to SIS is limited.

• Objective 4: Propose a new CCF definition to clarify confusions and incon-

sistencies in the existing CCF definitions, and assess the adequacy of the

beta-factor model and MBF model in light of the new definition.

• Objective 5: Apply and develop state-based reliability methods in SIS relia-

bility analysis, demonstrate to the practitioners the advantages of state-based

method and how they can be implemented.

2.2.2 Classification and reliability measure

• Objective 6: Further develop and refine a common reliability analysis ap-

proach for both low- and high-demand modes by using Markov analysis to

integrate the demand frequency.

• Objective 7: Propose a common reliability measure which applies to both

low- and high-demand modes, and investigate its properties.

2.2.3 Uncertainty and decision-making

• Objective 8: Clarify the concept of uncertainty in the context of SIS reliability

analysis and highlight the issues related to the three categories: completeness

uncertainty, model uncertainty, and parameter uncertainty.

• Objective 9: Propose a holistic approach to analyze uncertainty in SIS so that

more structured inputs are obtained for decision-making.
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2.3 Delimitations

This PhD project is limited to quantification of SIS random hardware failures.

Other SIS related topics, such as control and management of systematic failures,

architecture constraint, and software reliability, are important but not explicitly

addressed. This PhD thesis is centered on developing new methods and con-

cepts for better reliability quantification, discussions on issues related to data

collection and the physical system are, therefore, kept minimal.

The research during this PhD project is to a large extent theoretical. Most

of the examples are not extensive and involve certain levels of abstractions and

simplifications. The main results are documented in terms of scientific articles,

therefore certain repetitions between different articles should be expected. The

methods and models in this thesis are developed for subsystems of SIS with

the independent assumption between subsystems. Extension to the whole SIS is

straightforward under the framework of IEC 61508.

There is one thing we have to point out and apologize to the readers. For two

concepts, we have used different terms in different articles and are not able to

change since they are already published.These are proof test and functional test,

and PFDavg and PFD. We prefer proof test and PFDavg to functional test and

PFD.





Chapter 3
Research methodology and approach

The purpose of PhD education is multi-fold. Beside the quest for new knowl-

edge, it is equally or even more important to provide PhD students with training

in research skills. After PhD, the student should become an independent re-

searcher and be able to conduct scientific research alone. This chapter discusses

my understanding of research methodology and research approach in general,

and those applied in this PhD project in particular.

3.1 What is research?

Research is defined, in Merriam-Webster on-line dictionary [74], as: “a studious

inquiry or examination; especially: investigation or experimentation aimed at

the discovery and interpretation of facts, revision of accepted theories or laws

in the light of new facts, or practical application of such new or revised theo-

ries or laws.” The essence of this definition is: search for novelty, either new

facts, or new theories, or new applications. The manner of this search is usually

not casual but often well organized and systematic, as Creswell [15] stated: “re-

search is a process of steps used to collect and analyze information to increase

our understanding of a topic or issue.”

The purpose of research is to discover new “things” through the application

of scientific procedures. Yet words like “things” and “novelty” are too general

to be practically usable. Whereas in the very early days, research may be per-

formed for the sake of researching, almost all research projects today are pur-

poseful, aiming at a specific phenomenon, theory or problem. The new “things”

or “novelty” in research is usually specified in the research objectives, which

are established to answer the research questions.

The motivation for researching a certain topic may be divided into two levels.

What is the motivation of doing research in general? and why on the specific

topic? The answers may be much diversified from different people. For me, I

31
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started the PhD project with the desire to experience more intellectual chal-

lenges and to find out whether or not research is the “thing” I wish to pursue in

my life. As for the question of why research on reliability of SIS. The reasons

are more of practical consideration. Reliability of SIS is an important topic. It is

directly related to the safety of human, environment and material asset, and there

are still many SIS related issues waiting to be tackled. At the time I was about

to finish my master, there was a scholarship on SIS reliability, which happens to

be the topic of my master thesis, so why not?

3.2 Classification of research

Research may be classified in different ways depending on the criteria. Based

on the intended use, OECD [82] distinguish and define: (1) basic research as ex-

perimental or theoretical work undertaken primarily to acquire new knowledge

of the underlying foundations of phenomena and observable facts, without any

particular application or use in view; and (2) applied research as original inves-

tigation undertaken in order to acquire new knowledge. It is, however, directed

primarily towards a specific practical aim or objective. The basic research is fur-

ther divided into: (1a) pure basic research–Research carried out for the advance-

ment of knowledge, without working for long-term economic or social benefits

and with no efforts being made to apply the results to practical problems or to

transfer the results to sectors responsible for its application; and (1b) oriented

basic research–Research carried out with the expectation that it will produce a

broad base of knowledge likely to form the background to the solution of recog-

nized or expected current or future problems or possibilities. This PhD project

aims to develop new methods and new concepts (which will add to the general

knowledge base) for reliability analysis of SIS (which is the recognized problem

area). It falls into the category of oriented basic research.

Based on the way research is performed, we may differentiate between de-

scriptive and analytical research [60]. Descriptive research usually uses survey

and other fact-finding methods to collect existing data and information. The

main characteristic of descriptive research is that the variables are not under the

control of the researchers. The results of descriptive research are more informa-

tion about a subject that can be used to generate hypotheses. Analytical research

conducts experiments with controlled variables to test the hypotheses, or studies

the existing knowledge and findings to develop new methods or models based

on logical reasoning. This PhD project is based on the IEC 61508 framework

and probability theory, and uses logical reasoning to derive new methods, and is

therefore more into the category of analytical research.

We may also differentiate between exploratory and confirmatory (also called

conclusive) research, quantitative and qualitative research, as well as conceptual
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and empirical research. A summary of the research types of this PhD project is

given in Table 3.1.

Table 3.1 Research types of this PhD project.

Research types PhD project

Applied
Pure basic
Oriented basic

√
Descriptive
Analytical

√
Exploratory

√
Confirmatory

Quantitative
√

Qualitative

Conceptual
√

Empirical

3.3 Scientific method

Research is an organized and systematic activity. In most research projects, the

procedures and steps of the scientific method are followed.

• We start with observations about something that is unknown, unexplained or

new, and then to investigate relevant theory for the “something” we observe;

• Based on the investigation, we formulate hypothesis to explain our observa-

tions;

• Then, we design and perform experiment, data collection or case study to test

the hypothesis;

• The hypothesis is accepted or rejected based on the analysis of the test result.

If the hypothesis is rejected, we may choose to modify the hypothesis and

test again, or proceed to the next step;

• When the actual research is done, the results are documented and reported to

our peer and others.

The main objective of this PhD project is to develop new concepts and meth-

ods for SIS reliability quantification. To achieve this objective, we address dif-

ferent facets of this issue. As shown in Fig. 3.1, it is like building a house, the

roof (main objective) resets on pillars representing solutions to various aspects

or factors in SIS reliability analysis. For the topic of each pillar, the scientific

method is more or less followed.

There are, however, two places where the current PhD project deviates from

the scientific method. First, we do not have the hypotheses in the traditional
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Fig. 3.1 The pillars of the PhD objective.

sense. Instead, we deduct new methods from the reliability and probability the-

ory by careful investigation and sound reasoning. These new methods become

our “non-traditional” hypotheses.

It is important that new methods are validated before being accepted for the

intended purpose. Due to the nature of our problem, we have our second devia-

tion from the scientific method. In the scientific method, the validation is usually

achieved by conducting experiments or case studies. For new methods of SIS

reliability analysis, this way of validation has been difficult in a PhD project,

because SISs are very reliable system, it takes far more than four years before

we can have adequate data to draw a conclusion. We have to use an alternative

approach, where the validation is partly achieved by investigating the validity

of the our reasoning. It may be difficult to prove that our reasoning is correct,

but if any errors in the assumptions or in the reasoning logic are found, we can

conclude that the new methods are inappropriate or wrong. In this PhD project,

the investigation of reasoning is achieved by subjecting our methods to various

peer reviews in group meetings, international conferences and journals. In addi-

tion, even if real case studies have been difficult, we may perform pseudo-case

studies, where the results from the new methods are compared not with real

data, but with results from other exiting methods. By this, we can increase the

confidence of the new methods. Pseudo-case studies have been extensively used

in the articles.
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3.4 Research approach

A research project is a series of activities aiming to create general knowledge or

provide solutions to specific problems. It usually begins with the definition of

research basis and research questions, and concludes with documentation of the

results (sometimes also products). Different approaches may be used along the

way to achieve the research results. But whatever research approach is taken, a

research project that aims at developing new methods should always include the

following main steps (quoted from [57, 65]):

• Identification of research contexts and perspectives

• Discussion of relevant research “gap”, and the associated research questions

• Identification of main assumptions

• Description of theoretical basis

• Description of new methods and models

• Discussion of method/model application areas and constraints

This PhD project takes a quantitative, more specifically quantitative inferen-

tial, approach rather than the often used experimental approach. This research

approach is similar to the one used in mathematics, where we start from the

basic theory (in our case probability and reliability theory), with consideration

of relevant assumptions and the nature of the problem, and deduct new methods

or formulas by logical reasoning. The deducted new methods and formulas are

expected to either take into account factors that are not previously considered in

SIS reliability analysis or give more accurate results.

This PhD project is completed with three main stages, which represent the

three main activities: (1) identification of research questions and objectives; (2)

development of new concepts and methods for the identified questions; (3) sum-

marization of the PhD project and conclusion. The detailed activities and mile-

stones in each stage are illustrated in Fig. 3.2.

The first stage of the PhD project is to identify research questions and estab-

lish research objectives. The main activities in this stage are extensive literature

study and discussions with advisors. Through literature review, research gaps

are identified, and consequently the research questions. It is not possible to ad-

dress all the research questions in one PhD project, therefore a choice must

be made. Based on the literature review, discussions with advisors and own re-

search interest, the initial research objectives are formulated. And the milestone,

which indicates the end of the first stage, a PhD project plan is prepared.

With the identified research questions and objectives, new methods and mod-

els are proposed after critical investigation of the literature, extensive discus-

sions with advisors and colleagues, and rigorous logical reasoning. The initial

proposals are barely good enough. To improve and refine the proposals, we ex-

pose the new methods and models to the scrutiny of different groups of experts

through various channels, such as internal and external seminars, conference
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Fig. 3.2 The research activities and milestones.

presentations as well as journal peer reviews. The feedback from these external

parties are used to refine the methods and models. The final product of this stage

is articles published in conference proceedings and international journals. It is

worth mentioning that a PhD project is an iterative process. When new insights

are gained in stage 2, it is not uncommon that we go back to the first stage to

modify our research questions and objectives.

The third and last stage of the PhD project is to report the findings in terms

of a PhD thesis. The thesis includes two parts, a main report documenting the

research basis, questions, objectives, approaches and the main contributions,

and a list of articles written for the PhD project. At this stage, I summarize and

reflect on the PhD project.

Research is no longer (if it ever were) a one man’s job, collaboration plays

a critical role in the success of any research project. This PhD project is not an

exception, we have had various types of collaborations throughout the project,

and all have benefited this thesis. All the articles written in this PhD project are

product of direct collaboration. The co-authors including advisors, colleagues,

and professors from foreign university. They together represent a wide range

of expertises and provide constructive inputs and insightful critics. Conferences

and seminars are important arenas to get comments and inspirations. Participa-

tion in industrial project provides a different perspective on the research topic.

Last but not least, the importance of indirect collaborations in forms of reading
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literature and having manuscripts reviewed by peers should never be underesti-

mated.

3.5 Whole equals to sum?

In the field of system reliability, the unwritten assumption that system perfor-

mance is determined by the sum of subsystem and component performance is

almost always used, in other words we assume that the performance of the whole

system is the sum of the performance of the comprising components. The two

classic reliability methods, RBD and FT, are the best representation of this un-

written assumption. Both methods obtain the system performance by decompos-

ing the system to the bottom level and combining the bottom level component

performance with logical operation.

System safety has a close relationship with system reliability since the day it

was born, and has extensively used methods and tools from system reliability.

Inevitability, system safety also inherited the whole equal to sum assumption.

But recently, a group of researchers, represented by Nancy Leveson [62], started

to question the validity of the whole equal to sum assumption in system safety.

They argue that safety is an emergent property of a system, and it is impossible

to understand the system safety performance solely by studying the component

performance.

In this PhD project, we realize that SIS reliability is intertwined with the

field of system safety, but it is indeed a system reliability topic. We believe that

SIS reliability performance can be analyzed by studying the SIS subsystems

and components. The whole equal to sum assumption is made in this thesis,

but in the meantime, we appreciate and are aware of the concerns of using this

assumption.
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Main results and future research

4.1 Main results

The main results of this PhD project are documented in the form of ten articles,

among which, four articles have been published in relevant international jour-

nals, two are currently under review and the other four have been presented in

peer reviewed international conferences and published in the conference pro-

ceedings. These articles are written to address the research questions identified

in Section 2.1. With the ten articles, we aim to achieve the nine research objec-

tives stated in Section 2.2.

In addition to the articles, I also participated in the preparation of the PDS

method handbook 2013 [29] during my PhD. This document is not included

in the this PhD thesis, but can be purchased through SINTEF safety research

(http://www.sintef.no/pds).
In this chapter, we summarize the main results and contributions of this PhD

project with respect to each objective, such that we are able to evaluate how

and to what extent the objectives are met. An overall relationship between the

research objectives and the articles are illustrated in Fig. 4.1. The more detailed

contributions to each objective are discussed in the following sections.

4.1.1 Contributions to reliability methods and models

Developing new methods and models for SIS reliability quantification has been

the main focus of this PhD project. Contributions to the five objectives on this

topic are presented in this section.
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Fig. 4.1 The relationship between research objectives and articles.

Objective 1

The first objective addresses the need for more accurate and comprehensive

simplified formulas for PFDavg and PFH calculation, where issues such as DD-

failure, non-perfect proof testing and partial testing are important to take into

account. The contributions from this PhD project to objective 1 are found in

Article 1 [53] and 2 [55], together with the relevant research questions:

• We developed a set of formulas to calculate the PFDavg for koon systems

when both partial testing and full testing are applied

– To handle both periodical and non-periodical partial testing;

– To take into account CCFs and to accommodate the need of using different

β-factors for different failure modes;

– To select cost-effective partial testing strategies.

• We developed a set of formulas to calculate PFH for koon systems
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– To take into account both DD- and DU-failures;

– To consider the non-perfect proof testing so the result is more accurate.

Simplified formulas are the most popular technique among the practitioners

of SIS reliability analysis. Our new formulas are able to systematically address

issues such as DD-failure, non-perfect proof testing and partial testing, which

can significantly extend the applicability of the simplified formulas and achieve

more accurate results. The new formulas are not intended to replace, but to sup-

plement, the existing formulas. The users need to determine what are the impor-

tant factors to consider in his or her SIS, and decide which formula to use for

the particular case.

Both the non-perfect proof testing and the partial testing have been problems

of applying simplified formulas to SIS reliability analysis, especially when the

system has multiple redundancy and is subject to CCFs. With the contributions

in this PhD project, we can easily calculate the SIS reliability in these com-

plicated situations and support related decisions in design and operation, we,

therefore, claim that the first objective is, to a large extent, achieved.

Objective 2

The second objective addresses the need of clarification about whether or not we

should make use of the information from demands in SIS reliability analysis,

and the need of new methods to calculate reliability if we decide to use this

information and take demands as some kind of tests. The contributions from

this PhD project to objective 2 are found in Article 4 [49], 5 [54] and 7 [48],

together with the relevant research questions:

• We identified SIS operation modes where using demands as tests is relevant.

• We compared the characteristics between demands and proof tests to form

the basis of using or not using demands as tests.

• We developed formulas to take credits from non-critical demands in PFD

calculation.

• We extended and refined the Markov method to take credits from demands in

SIS reliability analysis.

Taking credits from demands in SIS reliability analysis has been a controver-

sial topic. The industry wants to use the information about the SIS state from

an actual demand to support decisions but is feared of the possible accidents

due to the demand. We systematically investigated this issue, and provided a

thorough discussion of the pros and cons of using such a “testing strategy”,

and highlighted cautions, challenges, and conditions of use. By introducing the

“medium demand mode”, we proposed PFD formulas to take credits from the

non-critical demands. With the material from this PhD thesis, especially article
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7 [48], the decision-makers should have a bigger and better picture of using de-

mands as tests in SIS reliability analysis, and decide whether and how to use the

information from demands in SIS related decisions without failing to maintain

the due safety level.

Objective 3

The third objective addresses the need to quantify human and organizational

influences on the reliability of SIS in the design phase when data are limited.

The contributions from this PhD project to objective 3 are found in Article 8

[56], together with the relevant research questions:

• We extended the failure rate model in MIL-HDBK-217F [71] to include hu-

man and organizational influences.

• We developed a Bayesian approach to quantify the human and organizational

influence on the failure rate, and hence the influence on the SIS reliability.

In SIS reliability design, the component failure rate is usually from the

generic database such as offshore reliability data (OREDA) or provided by man-

ufacturers. This kind of failure rate does not reflect the specific influence from

the organization, under which the component is operated. On the other hand, for

an organization with a database recording the reliability data of its components,

the organizational influence on the failure rate is reflected on these organiza-

tional specific failure rates (OFR). Even if the OFR of each component, indi-

vidually, fails to provide enough information for drawing a conclusion of the

organization’s influence on failure rate, the OFRs, collectively, are adequate for

estimating the organization’s influence factor on failure rate. By combining the

organization’s influence factor and the generic or manufacturer provided failure

rate, we are able to obtain the OFR of new components in the design phase.

The contribution of this PhD thesis is to provide an approach to extract orga-

nizational influence on failure rate from the organization’s reliability database

and estimate an OFR in the design phase. It addresses a small aspect of the re-

search field of human and organizational factor, but an important one in the SIS

design phase.

Objective 4

The forth objective addresses the need to clarify confusions and to remove in-

consistencies in the existing CCF definitions, and the need to assess the ade-

quacy of the current CCF models used in SIS reliability analysis. The contribu-

tions from this PhD project to objective 4 are found in Article 9 [51], together

with the relevant research questions:
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• We proposed a two level CCF definition.

• With the new definition, we clarified the confusions and removed the incon-

sistencies in the existing CCF definitions.

• We assessed the current CCF models, and concluded that they are adequate

with respect to the assumption of simultaneous failures in SIS reliability anal-

ysis.

• We compared beta-factor model and MBF model from a practitioners’ per-

spective and identified the conservative models for different system configu-

rations.

Common cause failure is a much discussed topic in SIS reliability analy-

sis because of its significant impact on the results. Several CCF definitions are

available and they disagree with each other when it comes to whether or not in-

dividual component failures in a CCF need to occur simultaneously and whether

it is required to have a system failure for CCF. We proposed a two level CCF

definition to resolve these disagreements.

On the component level, we define CCF as an event where (i) a component

is failed due to certain cause, and (ii) the same cause has the potential to fail

other redundant components. The component level CCF does not have the issue

of simultaneous failure or system failure, it suits for data collection which aims

at gathering as much CCF information as possible.

On the system level, CCF is defined as an event where (i) multiple redundant

component failures are due to a shared cause, and (ii) the multiple component

failures lead to a system failure. The system level CCF definition is targeting at

CCF models used in reliability analysis, where system failure is concerned. For

the issue of simultaneous failures, we do not have this as a condition, instead we

have assessed the consequence of using the simultaneous failures assumption

in PFDavg calculation, it is shown that, with the virtual component model, the

PFDavg will be on the conservative side for most of the SIS configurations.

The beta-factor model and MBF model are commonly used in SIS reliability

analysis. We compared these two models from a practitioner’s perspective, and

presented a table showing the conservative model to use for SISs with different

system configurations.

With the contributions in this PhD thesis, the practitioners can have a better

picture of CCF modeling in SIS reliability analysis and ensure the result is on

the conservative side if error must occur, and the researchers are provided with

ideas for further investigation in an area which has been thought of as a mature

field by many.

Objective 5

The fifth objective addresses the need of more modeling power to capture more

characteristics of SIS reliability behavior, such as dynamics. It is also related
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to implementing state-based reliability methods in SIS reliability analysis. The

contributions from this PhD project to objective 5 are found in Article 3 [63], 4

[49] and 5 [54] together with the relevant research questions:

• We applied Markov method to two case studies, to exemplify how the SIS

reliability analysis may be performed with Markov method and how to obtain

time-dependent results.

• We investigated Petri net in the context of SIS reliability analysis, developed

Petri net routines to model various aspects of the SIS reliability behavior, and

applied Petri net to a case study.

Markov method and Petri net are proved to be useful in modeling special as-

pects of complex SISs or complex SIS operation strategies in reliability analysis,

for example the DD-failure induced proof test and degraded operation. Through

the case studies, we showed how the state-based methods can be applied in prac-

tical SIS reliability analysis and demonstrated the advantages of these methods.

4.1.2 Contributions to classification and reliability measure

The classification of SIS operation modes has been a controversial topic. On

the one hand, using the demand frequency (one demand per year) to distinguish

between high- and low-demand is well established thanks to the IEC 61508

standard. On the other hand, such a clear-cut criterion leads to difficulties when

the SIS is operated at the boundary of two modes and provides opportunity for

abusing. Based on the investigations of this PhD project, we realized that us-

ing any specific demand frequency to differentiate high- and low-demand mode

would be problematic, since the demand frequency is a continuous parameter.

Therefore the focus of this PhD project has been directed to integrating the de-

mand frequency into SIS reliability analysis, hence no classification is needed.

A common reliability analysis approach and a common reliability measure can

be used throughout the demand frequency spectrum.

Objective 6

The sixth objective addresses the need for a common approach that is capable of

integrating the demand frequency into SIS reliability analysis, so that low- and

high-demand are harmonized and differentiation is no longer necessary. The

main contributions from this PhD project to objective 6 are found in Article 4

[49] and 5 [54] together with the relevant research questions:

• We gave a thorough discussion of the most important issues related to SIS

classification.
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• We extended and refined the Markov method as a common approach to inte-

grate demand frequency into SIS reliability analysis.

• We applied the common approach to case studies and verified the results with

analytical formulas.

• By comparing results of the common approach and the traditional approach,

advantages of the common approach were demonstrated.

The common approach integrates demand frequency into SIS reliability anal-

ysis, based on the assumptions that the demand verifies the state of the SIS,

the demand duration and repair time are exponentially distributed. Even though

these assumptions are not fully satisfied, e.g., it is more reasonable to use log-

normal distribution for repair time, it is shown that using the exponential distri-

bution does not lead to non-negligible results [12, 49].

The contribution of this PhD thesis represents a scientific discussion of al-

ternative ways to quantify the risk reduction from SISs. It may be used as a

supplement for companies to better understand and manage their risk profiles,

but is far from replacing the well accepted and widely used IEC 61508 frame-

work. Objective 6 is therefore partial achieved, more work needs to be done to

solve the demand mode classification issue.

Objective 7

The seventh objective addresses the need for a new and common reliability mea-

sure to replace PFDavg and PFH when the demand rate is integrated in the com-

mon reliability analysis approach. This objective is closely linked to the sixth

objective, and our main contributions are found in article 4 [49] and 5 [54],

which are the same for objective 6:

• We proposed a common SIS reliability measure PFD∗, which can be used for

SIS working in both low- and high-demand mode of operation.

The new reliability measure PFD∗ is proposed in relation to the common ap-

proach. The PFD∗ can be considered as an extension of PFDavg, with accounting

of the demand frequency. When the demand frequency is low, PFD∗ and PFDavg

are almost identical, when the demand frequency increases, they start to differ

to represent the impact of demands.

PFD∗ is easy to understand by the practitioners because of the sister measure

PFDavg. It is a practical measure with high likelihood of being implemented with

a common approach (not necessarily the one proposed in this thesis). The new

reliability measure also represents an attempt to integrate the common approach

to the IEC 61508 framework with possibility of using SIL level.
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4.1.3 Contributions to uncertainty and decision-making

It is our standpoint that all reliability and risk analyses are merely tools to pro-

vide inputs for better and more rational decision-making, if there is no decision

to make, a reliability or risk analysis should never be initiated. In the context

of this PhD project, the SIS reliability analysis is used to support SIS related

decisions in design, manufacturing and operation. This naturally brings the last

two objectives of this PhD project to the issue of SIS related decision-making

under uncertainty.

Objective 8

The eighth objective addresses the need to clarify the the concept of uncertainty

assessment in SIS reliability estimates, by adopting the uncertainty categoriza-

tion used in the nuclear industry and pointing to the source of uncertainty for SIS

analysts and decision-makers. The main contributions from this PhD project to

objective 8 are found in Article 6 [52] together with the relevant research ques-

tions:

• We adopted the three categories classification of uncertainty from the nuclear

industry into SIS reliability analysis.

• We identified and discussed sources of the completeness, model, and param-

eter uncertainty in SIS reliability estimate.

• We argued that the three categories classification of uncertainty is useful to

treat uncertainties in SIS reliability estimate and provided a thorough discus-

sion, which may frame future development of methods and models.

In this PhD thesis, we have not come up with novel ideas about uncertainty,

instead, we used the existing concepts and arguments and applied them to our

problem–SIS reliability assessment. By discussing each uncertainty category,

we concluded that the completeness uncertainty is the most important to address

in decisions under uncertainty, followed by model uncertainty and parameter

uncertainty.

We also highlighted the importance of communication of the uncertainty in

SIS reliability estimate to the decision-maker and emphasized the dependency

on the analyst in determining the uncertainty level. With the contributions in this

thesis, the uncertainty issue in SIS reliability estimate should be better under-

stood, and direction of effort is pointed out.
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Objective 9

The last objective addresses the need for a holistic approach to uncertainty

assessment of SIS reliability estimates, with such an approach, the decision-

makers can have an overall picture of the uncertainties and make better deci-

sions. The main contributions from this PhD project to objective 9 are found in

Article 6 [52] and 10 [50] together with the relevant research questions:

• We developed an approach to determine the level of uncertainty in SIS re-

liability estimates by systematically considering completeness, model, and

parameter uncertainty.

• We suggested an approach to take into consideration the uncertainty level in

SIS related decisions.

• The application of the proposed approaches are illustrated by a case study,

and the impacts are demonstrated.

The contributions made to objective 9 are mainly for practitioners. The pro-

posed uncertainty determination approach is simple and practical, but also prag-

matic. A solid scientific foundation is missing, significant subjective judgments

based on experiences are needed. It represents the first attempt to establish a

holistic approach to treat uncertainty in SIS and provide suggestion for decision-

making, which can be further developed and adjusted according to individual

projects.

Uncertainty is a controversial and much debated topic. People with different

backgrounds, e.g., engineering, psychology, statistics, sociology and etc. may

have very different opinions. We addressed the uncertainty in SIS from an engi-

neers’ perspective. With the proposed approach, we can systematically account

for the identified uncertainties and make decisions accordingly. In this sense, we

have achieved objective 9.

4.2 Future research

This PhD thesis focuses on the reliability quantification of SIS hardware, but all

related topics are not discussed. Several important areas for future research are

identified and given in this section1.

The current SIS reliability quantification, including this thesis, looks primar-

ily at the random failures and CCFs. Systematic failures other than CCFs are

not included in the reliability quantification. The IEC standards give require-

ments to qualitatively control systematic failures, but it is worth the effort to

investigate whether or not and how we should quantify systematic failure. The

1 Only future research areas closely related to the quantification of SIS are given, more general
future research areas are not provided.
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PDS method [31] proposed a new classification for random failure and system-

atic failure, as well as an approach to quantify the systematic failure. This can

serve as a starting point for future research. Human and organizational factors

are usually blamed as a significant source of systematic failure, in this thesis,

we proposed an implicit approach to model HOF influence on failure rate, fu-

ture research may use a more traditional approach to explicitly consider HOF

influence on SIS reliability.

Software failures are not at all discussed in this thesis, it is an important topic,

especially in software-intensive SISs such as those in aviation and automobile.

Similar to systematic failures, the standards focus on qualitative approach to

ensure the software reliability. It is our opinion that quantification of software

reliability is an important topic for future research, since more and more SIL re-

quirements are allocated with quantitative and semi-quantitative approaches that

do not distinguish hardware and software in the reliability allocation process.

Safe failure fraction (SFF) is another reliability measure besides PFDavg and

PFH, and is used in relation to verify the architect constraints. In the second

edition of IEC 61508 [39], the definition of safe failure is changed to exclude

those failures that neither lead to a dangerous failure nor to a spurious operation.

Some equipment suppliers start to have problems to meet the SFF requirement

based on the new definition. A future research area is therefore to investigate

SFF calculation and discuss the rationale of architect constraints and SFF.

Spurious operation is another area of further research for those who are inter-

ested in SIS reliability quantification. Spurious operation may, on the one hand,

serve as some kind of successful proof tests that verifies the functional state of

SIS and increases the SIS reliability. On the other hand, for certain component or

SIS, e.g., valves, the spurious operation may introduce extra stresses and wear,

hence negatively affect the reliability. Spurious operation needs to be avoid also

because the possible risk it may pose, e.g., premature activation of airbags may

injure or even kill the passengers. Efforts to define and clarify the concept of

spurious operation are made in [69], future research may use the results in [69]

as a basis and quantitatively integrate spurious operations into SIS reliability

analysis.

The methods and concepts developed in this PhD project are applicable to

all relevant phases of the SIS life cycle. We tried to keep the whole life cycle in

mind when we developed these methods and concepts, yet we were nevertheless

biased to a perspective where less attention is paid to the operational phase, due

to the fact that most efforts of SIS reliability analysis are in the design phase.

The need of updating SIS reliability analyses in the operational phase to better

manage risk is evident. Some initiatives have been taken in the Norwegian oil

and gas industry to collect operational data and update the proof test interval

[32]. However, SIS reliability analysis in operation is still a premature area and

more research is needed.



Chapter 5
Acronyms and abbreviations

ABS Anti-lock breaking system

BOP Blowout preventer

CCF Common cause failure

DD Dangerous detected

DHSV Down hole safety valve

DP Dynamic positioning

DU Dangerous undetected

E/E/PE Electrical, electronic, programmable electronic

E/E/PES Electrical, electronic, programmable electronic system

EUC Equipment under control

FMEDA Failure modes, effects and diagnostic analysis

FSA Functional safety assessment

FTA Fault tree analysis

HFT Hardware fault tolerance

HIPPS High integrity pressure protection system

HOF Human and organizational factors

ICDE International Common Cause Data Exchange

IEC International Electrotechnical Committee

IEEE Institute of Electrical and Electronic Engineers

ISO International Organization for Standardization

MBF Multiple Beta factor

MEDT Mean equivalent downtime

NTNU Norwegian University of Science and Technology

NOG Norwegian oil and gas association

OFR Organization specific failure rate

OLF Oljeindustriens landsforening (Eng: The Norwegian Oil Industry

Association)

OREDA Offshore Reliability Data

PFDavg Probability of failure on demand

PFH Probability of a dangerous failure per hour
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PST Partial stroke testing

PTC Proof test coverage

RAMS Reliability, availability, maintainability, and safety

RBD Reliability block diagram

ROCOF Rate of occurrence of failures

SFF Safe failure fraction

SIF Safety instrumented function

SIL Safety integrity level

SINTEF Foundation of Science and Technology at the Norwegian Institute

of Technology

SIS Safety-instrumented system

SRCS Safety-related electrical control system

SRS Safety requirement specification (may also mean safety-related

system)

TIF Test independent failure

TU/e Eindhoven University of Technology

UTT University of Technology of Troyes
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Simplified formulas are popular for reliability analysis of safety instrumented systems (SISs). Both the

IEC 61508 standard and the PDS-method provide such formulas for calculation of the average frequency

of dangerous failures per hour (PFH). These formulas give reasonably accurate values for the PFH, but

both of them also have significant weaknesses. The IEC-formulas can only be applied to systems with

up to three elements while the PDS-formulas do not properly account for dangerous detected failures

and are not able to include the effects of non-perfect proof-testing. This article presents new PFH-

formulas for general k-out-of-n-systems, that take into account both dangerous detected and dangerous

undetected failures and also allow for non-perfect proof-testing. The proposed PFH-formulas are

compared with the IEC-formulas and the PDS-formulas for some selected systems in a case study,

which shows that the new formulas represent an improvement compared to the IEC- and PDS-formulas.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

IEC 61508 [12] classifies safety instrumented systems (SISs) into
low-demand, high-demand, and continuous modes of operation,
according to how often the systems are demanded. When the
demand rate is less than once per year, the SIS is said to operate in
low-demand mode; if not, the SIS is said to operate in high-demand
mode. Continuous mode of operation refers to the situation where
the SIS function is part of normal operation and is used continuously.

Different reliability measures are used for the three opera-
tional modes. The average frequency of dangerous failures per
hour (PFH) is used for a SIS operating in high-demand and
continuous mode, and the average probability of failure on
demand (PFD) is used in low-demand mode [12]. Extensive
research has been carried out related to modeling and calculation
of the PFD [2,4,7,8,13,16,18,22], while modeling and calculation of
the PFH have received much less attention.

The PFH may be calculated based on the simplified formulas
[8,12], fault tree analysis [12,13], Markov models [12], and Petri
nets [12–14]. Some researchers prefer not to distinguish the SIS
operational modes and use a common reliability measure with
basis in Markov modeling [3,13–15,17,19,23]. Despite the limita-
tions in modeling capacity, the simplified formulas are still
preferred by most practitioners, due to their simplicity.

Simplified PFH-formulas are presented in IEC 61508 [12] and
in the PDS1-method handbook [8]. These formulas are referred to

as the IEC-formulas and the PDS-formulas, respectively, in the
rest of this article. The two sets of formulas give reasonably
accurate values for the PFH, but improvements may still be made.
The IEC-formulas can only be applied to SIS subsystems with at
most three elements, and a generalization to subsystems with
more elements is lacking. The PDS-formulas can be used for a
general subsystem, but dangerous detected (DD) failures and
non-perfect proof-testing are not sufficiently accounted for.

The objective of this article is to develop new PFH-formulas for
general k-out-of-n (koon):F SIS subsystems (i.e., subsystems that
fail when at least k of its n elements fail), where DD-failures and
non-perfect proof-testing are taken into account. The PFH-
formulas propose a new quantification approach for the contribu-
tion from independent failures to the PFH, while the contribution
from common cause failures (CCFs) is, as in the PDS-formulas,
based on the multiple beta-factor (MBF) model [20]. In the
proposed PFH-formulas, the possibility to reveal dangerous fail-
ures of redundant elements during a demand is disregarded.

The rest of the article is organized as follows. Various model
considerations and assumptions are presented in Section 2.
Section 3 gives a brief introduction to the IEC-formulas. In
Section 4, the PDS-formulas for PFH-calculation are presented.
Based on the PDS-formulas, new PFH-formulas including DD-
failures and non-perfect proof-testing are proposed in Section 5.
Section 6 compares the proposed new formulas with the
IEC-formulas and the PDS-formulas. Concluding remarks are
given in Section 7.

Contents lists available at SciVerse ScienceDirect
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2. Model considerations

2.1. System and subsystem

Reliability is not calculated for a SIS as such, but for a safety
instrumented function (SIF) that is performed by a SIS. A SIS may
perform one or more SIFs. The part of a SIS that performs a
specified SIF may be split into three main subsystems: (1) input
elements, such as sensors and transmitters, (2) logic solver(s), and
(3) final elements, such as valves and circuit breakers. A sub-
system often comprises the same type of elements,2 but diverse
elements are also used. A SIF for overpressure protection may
require, for example, pressure transmitters, a programmable logic
controller (PLC), and shutdown valves. In this article, formulas are
presented for a single subsystem of identical elements, but it is
straightforward to extend the calculation to the whole SIF.

2.2. k-out-of-n system

Redundancy is often used to improve the SIS reliability. For a
subsystem with n elements, all elements do not necessarily need
to function for the subsystem to function. A koon:F-subsystem
fails (F) if at least k of its n elements fail. Similarly, a koon:
G-subsystem is functioning (i.e., is ‘‘good,’’ G) if at least k of its n

elements are functioning. A koon:F-subsystem is seen to be the
same as ðn�kþ1Þ oon:G-subsystem. In this article, the koon:
F-subsystem is used to simplify the notation, but conversion to
koon:G terminology can be easily achieved.

2.3. Testing strategy

SISs are exposed to two main types of failures; those that
prevent the execution of the SIF and those that do not. The first
type is referred to as dangerous failure, and the latter is called safe
failure [12]. PFH (and PFD) is a reliability measure with respect to
dangerous failures, therefore safe failures are not further dis-
cussed. Dangerous failures can be split into DD-failures and DU
(dangerous undetected)-failures. The DD-failures are detected by
diagnostic testing, and the DU-failures are mainly revealed by
manual and periodic proof-testing.

Diagnostic testing is able to detect some of the dangerous
failures without fully executing the main function. For example,
the diagnostic testing may reveal drifting in the signal conversion
of a pressure transmitter without activating the transmitter. The
interval between consecutive diagnostic tests is called diagnostic
test interval and is denoted by t1 [12]. This interval is usually
short ranging from milliseconds to hours (in extreme cases). The
fraction of dangerous failures that can be detected by diagnostic
tests is called diagnostic coverage [12].

The diagnostic testing cannot detect all dangerous failures, so
proof-tests are performed to reveal the rest of the failures.
A proof-test usually disturbs the process to some extent and is
associated with certain costs. The frequency of such tests is much
lower than for diagnostic tests. The proof-test interval, t, may
vary from months up to a couple of years.

In many reliability analyses, the proof-test is assumed to
reveal all failures. This is, in practice, difficult to achieve even
for a moderately complex SIS. There may be certain failures that
remain hidden until a major overhaul, a real demand, or the end
of the SIS lifetime. An overhaul is a thorough examination and
renewal of the system, and after an overhaul, the system is

assumed to be ‘‘as good as new.’’ Overhauls are usually performed
less frequent than proof-tests due to the significant cost. A typical
overhaul interval, t2, is in the order of years.

The role of proof-tests for improving the SIS reliability is
evident in low-demand mode, but when the demand rate
increases, the value of proof-tests is reduced, as the possibility
of revealing a failure before a demand is reduced. For some high-
demand systems, proof-testing is not performed at all.

2.4. Common cause failures

CCFs may contribute significantly to the PFH. Several CCF-
models may be used in SIS reliability analyses. The standard beta-
factor model [5] is by far the most popular model due to its
simplicity, but it only differentiates between failures of single
elements and failures of all elements, and uses the same relative
proportion b of CCFs, for systems with different degrees of
redundancy. While this is adequate for systems with two ele-
ments, it may be insufficient for systems with three or more
elements.

Several extensions have been made to account for the limita-
tions of the standard beta-factor model. Among others, the
multiple beta-factor (MBF) model is recommended in both the
IEC 61508 [12] and the PDS-method [8]. The MBF-model intro-
duces a correction factor to b in the reliability quantification for
each koon:F-subsystem (presented for koon:G-subsystem in
[8,12]). The MBF-model is used in this article. For details of the
MBF-model, readers are referred to [10,11], or [20].

2.5. Model assumptions

The following assumptions are made as a basis for developing
new PFH-formulas:

� The elements considered are identical and have the same
constant failure rates.

� DD-failures and DU-failures are mutually exclusive, such that
an element can have a DD-failure or a DU-failure, but the
presence of both a DD-failure and a DU-failure of the same
element is not possible.

� When a DD-failure is revealed, the equipment under control
(EUC) is immediately brought to a safe state.

� The MBF-model is used for CCF-modeling.
� A common factor b is, for simplicity, used for DD- and DU-

CCFs, but the formulas can easily be extended to accommodate
different b-factors.

� The rate of independent (ID) failures is approximated by the
total failure rate, such that lDU instead of ð1�bÞ � lDU is used for
independent DU-failures. The result of this approximation is
conservative.

� Combinations of CCFs and ID-failures that lead to subsystem
failure are neglected for subsystems with three or more
elements.

� Redundant element failures that are revealed in a demand and
subsequently repaired are not taken into account in the
following PFH-formulas.

3. IEC-formulas

IEC 61508 [12] presents PFH-formulas for some commonly
used systems: 1oo1:F, 1oo2:F, 2oo2:F, 2oo2D:F, 2oo3:F and
3oo3:F (note that the formulas in IEC 61508 are presented using
the koon:G terminology). These formulas calculate the PFH by
using the channel-equivalent mean downtime, tCE and/or the voted

group-equivalent mean downtime, tGE. DD-failures and non-perfect

2 IEC61508 [12] distinguishes between the terms element and channel. A

channel performs a separate function and can comprise one or more elements. In

this article, we use the term element with the same meaning as channel.
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proof-testing are both considered in the calculation of tCE and tGE.
The IEC-formulas are not presented in this article, and readers are
referred to part 6 of [12]. The IEC-formulas are available only for
subsystems with up to three elements. This is largely due to the
use of equivalent mean downtimes. For more complex subsys-
tems, other equivalent mean downtimes beside tCE and tGE need
to be calculated. This is rather complicated and a formula for a
general koon:F-subsystem is therefore difficult to obtain.

4. PDS-formulas

The PDS-method [8] presents PFH-formulas for general
koon:F-subsystems. The PFH contributions from CCFs and ID-
failures are treated independently, and the PFH is calculated as

PFH¼ PFHCCFþPFHID ð1Þ
For a 1oon:F-subsystem, any element failure leads to subsystem
failure. It is therefore not necessary to consider CCFs, and the PFH
is equal to the sum of the failure rates of all elements. Since all
elements are assumed to be identical, we have

PFH¼ n � lDU ð2Þ
where lDU is the DU-failure rate of an element.

For a koon:F-subsystem, where k41, the CCF-contribution to
PFH is accounted for by using the MBF model and is expressed as

PFHCCF ¼ Cðn�kþ1Þoon � b � lDU ð3Þ
where b is the conditional probability of the failure of at least one
more element, when we know that one element has failed, and
Cðn�kþ1Þoon is a correction factor for b in a koon:F-subsystem. The
correction factor is a special feature of the MBF model, and
recommended values are given in [8,12].

Proof-testing is performed with intervals of length t and it is
assumed that the tests are perfect such that all failures are
revealed and corrected in every proof-test. To calculate the PFH,
we therefore need to consider only one proof-test interval. Since
the n elements are identical and independent, the number of
element with DU-failures, K IDðtÞ, in a test interval is binomially
distributed for the koon:F-subsystem:

PrðK IDðtÞ ¼ iÞ ¼ n

i

� �
ð1�e�lDUtÞiðe�lDUtÞn�i for i¼ 0,1, . . . ,n ð4Þ

The probability that the subsystem fails due to independent DU-
failures in a test interval is

PrðK IDðtÞZkÞ ¼
Xn
i ¼ k

PrðK IDðtÞ ¼ iÞ ð5Þ

In all realistic applications, lDUt is small (e.g., lDUto0:01), such
that we can use the approximations 1�e�lDUt � lDUt and
e�lDUt � 1. The probability (4) can hence be approximated by

PrðK IDðtÞ ¼ iÞ � n

i

� �
ðlDUtÞi ¼

n!

ðn�iÞ! �
ðlDUtÞi

i!
ð6Þ

We observe that

PrðK IDðtÞ ¼ kþ1Þ � n!

ðn�ðkþ1ÞÞ! �
ðlDUtÞkþ1

ðkþ1Þ!
¼ n�k

kþ1
� lDUt � PrðK IDðtÞ ¼ kÞ ð7Þ

For all realistic applications, the factor ðn�k=kþ1Þ � lDUt is a very
small number (the factor is more insignificant when we consider
kþ2 or more failures), and we may therefore approximate (5) by

PrðK IDðtÞZkÞ � PrðK IDðtÞ ¼ kÞ ð8Þ
Let MIDðtÞ be the number of subsystem failures due to indepen-
dent DU-failures in the proof-test interval ð0,tÞ. Since DU-failures

are only revealed at time t, MIDðtÞ can only take the values 0 and 1,
and the expected number of MIDðtÞ is EðMIDðtÞÞ ¼ PrðK IDðtÞZkÞ �
PrðK IDðtÞ ¼ kÞ. The average frequency of subsystem failures due to
independent DU-failures per hour, PFHID, is hence

PFHID ¼ EðMIDðtÞÞ
t

� n!

ðn�kÞ! �
ðlDUtÞk
k!t

ð9Þ

The total PDS-formula for PFH of a koon:F-subsystem, where k41,
becomes

PFH¼ PFHCCFþPFHID

� Cðn�kþ1Þoon � b � lDUþ
n!

ðn�kÞ! �
ðlDUtÞk
k!t ð10Þ

5. New PFH-formulas

5.1. Dangerous detected failures

DD-failures are often ignored in SIS reliability analyses since it
is assumed that when a DD-failure occurs, the EUC that is
protected by the SIF, is immediately brought to a safe state. This
assumption is not always fulfilled. First, the diagnostic test
interval is not always negligible, meaning that a DD-failure is
not detected immediately after its occurrence. Second, switching
to a safe state immediately after a revealed DD-failure may not be
possible or practicable. Sometimes, the operational philosophy
may also allow the SIS to operate in a degraded mode.

5.1.1. PDS-method

The PDS-method [8] accounts for DD-failures by treating them
as mutually exclusive from DU-failures and adding their contri-
bution to (10).

For a 1oon:F-subsystem, the total PFH becomes

PFH¼ n � ðlDUþlDDÞ ð11Þ
where lDD is the rate of DD-failures.

Following the same arguments as for (10), the PFH-formula for
a koon:F-subsystem, where k41, can be expressed as

PFH� Cðn�kþ1Þoon � b � ðlDUþlDDÞ

þ n!

ðn�kÞ! �
ðlDUtÞk
k!t þ ðlDDt1Þk

k!t1

 !
ð12Þ

where t1 is the diagnostic test interval. The other parameters are
as above.

When multiple elements need to fail to give subsystem failure
(k41), the PDS-formulas consider situations where all failures
are either DU-failures or DD-failures. Combinations of DU-failures
and DD-failures leading to a subsystem failure are not considered.

5.1.2. New PFH-formulas covering DD-failures

The PFH-formulas of the PDS-method can be extended to cover
the situation where a combination of DU-failures and DD-failures
leads to a dangerous subsystem failure. We will first illustrate the
approach by studying a 2oo2:F-subsystem.

2oo2:F-subsystem. This subsystem is a parallel system of two
identical and independent elements, and the subsystem fails only
when both elements fail. Two combinations of dangerous failures
will give a dangerous subsystem failure in the proof-test interval
ð0,tÞ:

(a) First a DU-failure occurs on one element at some time t in
ð0,tÞ, and then a dangerous failure (DU or DD) occurs on the
other element in the remaining part of the interval, i.e., in ðt,tÞ.
The rate of dangerous (D) failures is lD ¼ lDUþlDD. The
element to fail first with a DU-failure can be one out of two.
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When the first failure has occurred, there is only one option
for the second failure. We can therefore express the prob-
ability of this option as:

PrðOption aÞ ¼ 2

Z t

0
ð1�e�lD�ðt�tÞÞ � lDUe�lDUt dt

� ðlDUt2ÞþlDU � lDDt2 ð13Þ
To obtain the result in (13), we have used the approximation
1�e�x � x�x2=2 when x is small.

(b) First a DD-failure occurs on one element at some time t in
ð0,tÞ, and then a D-failure occurs on the other element before
the DD-failure is restored. We have assumed that the EUC
immediately will be brought to a safe state when a DD-failure
is revealed. We have further assumed that the diagnostic
testing is done with intervals of length t1. The first DD-
failure will hence occur in such a diagnostic test interval and
will not be revealed until the end of this interval. If a D-failure
occurs in the remaining part of the diagnostic test interval, the
subsystem will fail. When we know that a DD-failure has
occurred in a diagnostic test interval, the time U it occurred in
the interval will be uniformly distributed with probability
density function fUðuÞ ¼ 1=t1 for all u in this particular
diagnostic test interval [21]. The probability of a D-failure
after a DD-failure has occurred will be the same for all
diagnostic test intervals, and we therefore consider the first
interval ð0,t1Þ, to simplify the notation.
Similar as for option (a), the element to fail first can be one out
of two and the probability of the second option can therefore
be expressed as

PrðOption bÞ ¼ 2

Z t

0

Z t1

0
ð1�e�lDðt1�uÞÞ � 1t1

du

� �
� lDDe�lDDt dt

� lDDlDt1t ð14Þ

In these calculations, we have disregarded the possibility of
more than one dangerous subsystem failure in the same proof-
test interval. For a realistic SIF, the probability of two or more
dangerous failures in the same proof-test interval will be
negligible.

The two options are mutually exclusive and the probability of
a dangerous subsystem failure is

PrðOption aÞþPrðOption bÞ

The probability of a dangerous subsystem failure in ð0,tÞ can be
written as

PrðSystem fails inð0,tÞÞ � ðlDUtÞ2þðlDUtÞðlDDtÞþðlDDtÞðlDt1Þ

The PFHID of the 2oo2:F-system in ð0,tÞ is therefore

PFHID � ðlDUtÞ2
t

þ ðlDUtÞðlDDtÞ
t

þ ðlDDtÞðlDt1Þ
t

ð15Þ

2oon:F-subsystem. The PFH in ð0,tÞ for this system can be found in
the same way as for the 2oo2:F-subsystem. The two elements that
will fail can be selected among the n elements in ðn2Þ different
ways. The rest of the calculation is the same as for the 2oo2:
F-subsystem and the PFH for the 2oon:F-subsystem in ð0,tÞ
becomes

PFHID � n

2
� ðlDUtÞ2

t
þ ðlDUtÞðlDDtÞ

t
þ ðlDDtÞðlDt1Þ

t

" #
ð16Þ

Again, we note that when lDD ¼ 0, we get the same results as in
Section 4.

We want to generalize the result and will therefore rewrite
(16) slightly as

PFHID � n!

ðn�2Þ!
ðlDUtÞ2
2!t þ ðlDUtÞðlDDtÞ

2!t þ ðlDDtÞðlDt1Þ
2!t

" #
ð17Þ

Compared with the PDS-formulas, two extra terms
ðlDUtÞðlDDtÞ=2!t and ðlDDtÞðlDUtÞ=2!t (note: lD ¼ lDDþlDUÞ are
added in (17). Since t is significantly longer than t1, and lDU and
lDD are in the same order of magnitude, ðlDUtÞ2=2!t and
ðlDUtÞðlDDtÞ=2!t are the dominating terms in equation (17).

koon:F-subsystem. By using the same arguments as above, we
can show that the PFH of a koon:F-subsystem due to independent
failures can be written as

PFHID � n!

ðn�kÞ! �
ðlDUtÞk
k!t

þlDD �
Xk
j ¼ 1

ðlDUtÞk�jðlDt1Þj�1

ðk�jþ1Þ!j!

0
@

1
A ð18Þ

The derivation of (18) is based on the same approach as above,
but rather tedious and is not included here.

The PFH-formula for koon:F-subsystem, for k41, is therefore

PFH� Cðn�kþ1Þoon � b � lD

þ n!

ðn�kÞ! �
ðlDUtÞk
k!t þlDD �

Xk
j ¼ 1

ðlDUtÞk�jðlDt1Þj�1

ðk�jþ1Þ!j!

0
@

1
A ð19Þ

Remark: The assumption in Section 2.5 that the EUC is immedi-
ately brought to a safe state when a DD-failure is revealed is not
always realistic. The switching to a safe state may take rather long
time for some systems. Then, given a DD-failure, the time
allowing more failures to occur needs to be adjusted to reflect
this problem, and hence (18) and (19) need to be adjusted.
Fortunately, as shown later, extending this time does not have
any significant influence on the PFH-value.

5.1.3. New approximation formula for PFH

Since tbt1, the terms containing t1 in the sum in (19) will be
significantly smaller than the term without t1. We may therefore
use the following approximation formula for PFH:

PFH� Cðn�kþ1Þoon � b � lDþ
n!

ðn�kÞ! �
ðlDUtÞk
k!t þ lDDl

k�1
DU tk

k!t

 !

¼ lD
lDU

� Cðn�kþ1Þoon � b � lDUþ
n!

ðn�kÞ! �
ðlDUtÞk
k!t

 !
ð20Þ

i.e., only the term for j¼1 in the sum in (19) is included. It is noted
that when lDD is disregarded, such that lD ¼ lDU, the new
approximation formula (20) is identical to (19) as well as (10)
in Section 4.

5.2. Non-perfect proof-testing

In many SIS reliability studies, the proof-test is assumed to
have perfect coverage, such that all elements are ‘‘as good as new’’
after the test. A proof-test is, however, seldom perfect, and
failures may remain unrevealed after the test. Proof-tests of
pressure transmitters are, for example, performed after the
transmitters are isolated from the process. This is because
pressurizing a pipeline/vessel to the trip pressure may, itself, lead
to an unsafe situation. When such a proof-test is performed, some
DU-failures, for example caused by contamination in the
pressure-sensing lines, may remain hidden after the test. Non-
perfect proof-testing is discussed by [1,12,6] for low-demand
systems, but similar studies for high-demand systems are miss-
ing. This section extends the PDS-formulas for PFH to cover non-
perfect proof-testing.
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5.2.1. Proof-test coverage

DU-failures that are detected neither by diagnostic testing nor
by proof-testing may be revealed during an overhaul, or will
remain unrevealed until the end of the system’s life/mission. The
fraction of DU-failures that are revealed by proof-tests is called
the proof-test coverage (PTC) [12]. The PTC is also called func-
tional test coverage in some references, e.g., [15]. The fraction of
DU-failures that are not revealed by proof-tests is then (1� PTC).

5.2.2. Proof-test and diagnostic coverage

After an overhaul, it is realistic to assume that the SIS is ‘‘as
good as new.’’ It is hence necessary only to consider one overhaul
interval when calculating the PFH. If overhaul is not carried out,
some DU-failures may remain unrevealed until the end of the life
of the SIS. The time interval to be considered when calculating the
PFH will then be the lifetime of the SIS. Both time intervals are
here denoted t2.

To calculate the PFH, consider the following two cases:

(a) Both diagnostic testing and proof-testing are applied. The
diagnostic tests have a coverage less than 100% and the proof-
tests have a coverage equal to 100% (i.e., perfect proof-
testing). This means that no overhaul is needed. The overall
PFH-value can be calculated by (20) and the PFHID by (18).

(b) In this case, we only consider DU-failures. Both proof-testing
and overhaul are applied. The proof-tests have a coverage less
than 100%, but the overhaul reveals all failures. The PFH-
formula for this situation is what we want to develop in this
section.

Comparing the two cases (a) and (b), analogies can be drawn.
The role of proof-testing in situation (b) is analogous to the role of
diagnostic testing in case (a). Both of them are performed with a
certain interval and can only reveal a fraction of failures. The role
of proof-testing in the PFH-formula in case (b) is equivalent to the
role of diagnostic testing in the PFH-formula in case (a). The
corresponding parameters are listed in Table 1.

The role of overhaul in situation (b) is analogous to the role of
proof-testing in situation (a). Both of them are performed with a
much longer interval (than the counterpart in their respective
situations) and are assumed to reveal all failures. The role of
overhaul in PFH-formula for situation (b) is equivalent to the role
of proof-testing in PFH-formula for situation (a). The correspond-
ing parameters are listed in Table 2.

5.2.3. New PFH-formula with PTC

The PFH-formula with PTC (situation (b)) can be derived from
(18). By replacing lDU, lDD, lD, t, and t1 in (14) with (1-PTC)�lDU,
PTC �lDU, lDU, t2 and t, respectively, the formula PFHID with PTC
for a koon:F-subsystem, where k41, becomes

PFHID � n!

ðn�kÞ! �
½ð1�PTCÞ � lDUt2�k

k!t2

 

þPTC � lDU �
Xk
j ¼ 1

½ð1�PTCÞ � lDUt2�k�jðlDUtÞj�1

ðk�jþ1Þ!j!

1
A ð21Þ

In (21), DD-failures are not accounted for. The same way of
including DD-failures in (20) can be used to add DD-failures into
(21), i.e., adding the factor: lD=lDU. Together with the CCF-
contribution, PFH with PTC for a koon:F-subsystem, where k41,
can be calculated by

PFH� lD
lDU

� Cðn�kþ1Þoon � b � lDUþ
n!

ðn�kÞ! �
½ð1�PTCÞ � lDUt2�k

k!t2

" 

þPTC � lDU �
Xk
j ¼ 1

½ð1�PTCÞ � lDUt2�k�jðlDUtÞj�1

ðk�jþ1Þ!j!

3
5
1
A ð22Þ

Observe that when PTC ¼ 100%, (21) is the same as (9) and (22) is
the same as (20).

6. Case study

A simple case study is carried out to compare the results
obtained by the proposed PFH-formulas with results obtained by
the IEC- and PDS-formulas. The comparison is made only for ID-
failures. This is (1) because we want to highlight the improve-
ment in the calculation of ID-failures, and (2) because the IEC-
and PDS-formulas are based on different CCF models. However,
the readers should be aware that if the contribution from CCF had
been included, it would in most cases have a dominating effect.

In the case study, we consider a subsystem of a SIS comprising
n pressure transmitters of the same type. The relevant parameters
for a pressure transmitter are given in Table 3. The failure data are
from [9] while the test intervals are assumed. The diagnostic test
interval in Table 3 is significantly longer than for most SISs. This is
done to show that even with such a long diagnostic test interval,
the two proposed formulas give rather close results. Such a long
diagnostic test interval may, however, be relevant in extreme
cases. The mean repair time, MRT, is assumed to be negligible (i.e.,
0 h) to have the same basis when comparing IEC-formulas and
other formulas, but it can be shown that the results are not
significantly changed when a typical MRT, such as 8 h, is used.

6.1. New PFH-formulas with DD-failures

Assuming perfect proof-testing, the PFHID (i.e., restricted to
independent failures) for the transmitters is calculated for some
common koon:F-subsystems in Table 4 based on the IEC-formulas,
the PDS-formulas, and the two new formulas (19) and (20). Table 4
shows that the PDS-formulas give more conservative results than
the IEC-formulas. This is, to a large extent, because the CCF-fraction
is not subtracted when considering independent failures in the
PDS-formulas (i.e., the reduction factor ð1�bÞ is not used for the
independent failure rate). The same applies for formulas (19) and
(20)). The PFH-values obtained by the new formulas are even more

Table 1
Proof-testing in situation (b) compared to diagnostic testing in situation (a).

Parameters Proof-testing

in situation (b)

Diagnostic testing

in situation (a)

Coverage PTC lDD=lD
Test interval t t1
Failure rate (total) lDU lD
Failure rate

(undetected)
(1-PTC) �lDU lDU

Failure rate

(detected)
PTC �lDU lDD

Table 2
Overhaul in situation (b) compared to proof-testing in situation (a).

Parameters Overhaul in

situation (b)

Proof-testing

in situation (a)

Coverage 100% 100%

Test interval t2 t
Failure rate (total) lDU lD
Failure rate (undetected) 0 0

Failure rate (detected) lDU lD
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conservative than the results from the PDS-formulas, because
combinations of DD- and DU-failures leading to subsystem failure
are taken into consideration in the new formulas.

The diagnostic test interval is not part of the formula (20), but
the PFH-values obtained by this formula are seen to be very close
to those obtained by (19), even for an unusually long diagnostic
test interval (the shorter the diagnostic test interval, the less
likely a failure will occur before the DD-failure is repaired). In
most cases, it is therefore adequate to use the approximation
formula (20). Moreover, this also confirms that the assumption of
achieving a safe state immediately after a revealed DD-failure has
insignificant influence on the PFH-value. Hence the concern about
assumptions in (19) is alleviated.

Diagnostic coverage is an important parameter in the SIS
reliability analysis. Fig. 1 shows the PFHID as a function of the
diagnostic coverage for a 2oo3:F-subsystem calculated by the IEC-,
the PDS-, and the proposed formulas, respectively. The PFHID-
values obtained by the approximation formula (20) are not
included since they are almost identical to the proposed formula
(19). In Fig. 1, the dangerous failure rate lD is kept constant and as
given in Table 3. The DD- and DU-failure rates vary with the
diagnostic test coverage. The rest of the data are as given in Table 3.

Fig. 1 shows that the proposed PFH-formulas give higher
PFHID-values than the IEC- and PDS-formulas. When the diag-
nostic coverage is 0, which is the same as no diagnostic testing,
the proposed formulas and the PDS-formulas give the same PFHID,
and higher than the PFH-value obtained by the IEC-formulas. This
is because the CCF-fraction is not subtracted when considering
independent failures in the proposed formulas and the PDS-
formulas. Fig. 1 also shows that the relationship between the
diagnostic coverage and the PFH-value is linear when using the
proposed formula, while the IEC- and the PDS-formulas suggest a
non-linear relationship. Fig. 1 illustrates the benefit of improving
the diagnostic coverage.

When the CCF-fraction b is subtracted for independent failures
in the PDS-formulas and in the proposed new formulas (19) and
(20), the results are shown in Table 5. The IEC-formulas and the
PDS-formulas now give close results. The proposed new formulas
give, however, more accurate PFH-values.

Remark: Given the parameters in this case study, it is calcu-
lated that the PFH contribution from CCF is in the order of 10�8

per hour. Compared to PFH contribution from the ID-failures in
Tables 4 and 5, the PFH contribution from CCF is dominant. If the

CCF is included in the case study, the results from different
formulas will be rather similar.

6.2. New PFH-formulas with PTC

In order to include the effect of non-perfect proof-testing, both
the IEC-formulas and the proposed formulas use the PTC and an
overhaul interval in the PFH calculation. Comparisons between
results from the IEC-formulas and the proposed new formulas are
made for different PTC-values when the overhaul interval t2 is
5 years and 10 years, respectively. The results are given in Table 6.

Table 6 shows that the proposed formula (22) gives more
conservative results than the IEC-formulas. This is because cases
where the last failure is a DD-failure, are not considered in the IEC-
formulas for PFH, and also because the CCF-fraction is not subtracted
when calculating PFHID. The proposed formula can also be used to
calculate the PFH for a general koon:F-subsystem, which is not
possible with the IEC-formulas. The results indicate that the PTC has
a significant influence on the PFHID. This influence increases when
the overhaul interval increases. For a 3oo4:F-subsystem, the PFHID

can increase by a factor of 10–20 times from 100% PTC to 80% PTC.
Tables 4 and 6 show that (20) and (22) give identical results

when PTC is 100%. This result is obvious since overhaul is not
necessary when the proof-tests are perfect. In practice, however,
proof-tests are seldom perfect and overhauls are necessary.

Fig. 2 shows the PFHID as a function of the proof-test coverage,
for a 2oo3:F-subsystem. The data in Table 3 are used, and the
overhaul interval is 5 years. The figure shows that the proposed
formula gives more conservative results than the IEC-formulas,
and when the PTC is reduced, the difference between the two
formulas is more significant.

7. Concluding remarks

Simplified formulas are popular in SIS reliability analysis,
especially among practitioners. IEC 61508 and the PDS-method
provide different version of PFH-formulas. The PFH-values
obtained by these formulas are reasonably accurate, but both
approaches have weaknesses. The IEC-formulas can only handle
subsystems with up to three elements, and the PDS-formulas do

Table 4

PFHID-values obtained by various formulas [ð1�bÞ-factor is ignored].

Subsystem IEC [12] PDS [8] Proposal (19) Approx. (20)

2oo2: F 3.60E�10 4.26E�10 3.06E�9 3.02E�9

2oo3: F 1.08E�9 1.28E�9 9.18E�9 9.07E�9

3oo3: F 4.58E�13 5.18E�13 4.04E�12 3.97E�12

3oo4: F N/A 2.07E�12 1.62E�11 1.59E�11
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Fig. 1. PFHID for different diagnostic coverages, for a 2oo3:F-subsystem.

Table 5

PFHID-values obtained by various formulas [ð1�bÞ-factor is included].

Subsystem IEC [12] PDS [8] Proposal (19) Approx. (20)

2oo2: F 3.60E�10 3.85E�10 2.76E�9 2.73E�9

2oo3: F 1.08E�9 1.15E�9 8.28E�9 8.18E�9

3oo3: F 4.58E�13 4.45E�13 3.47E�12 3.40E�12

3oo4: F N/A 1.78E�12 1.39E�11 1.36E�11

Table 3
Data used in PFH-calculation for pressure transmitters.

Parameters Value

DU failure rate (lDU) 0.3E�6 per hour

DD failure rate (lDD) 2.0E�6 per hour

Dangerous failure rate (lD) 2.3E�6 per hour

Proof-test interval (t) 4380 h

Beta factor for DU and DD (b) 0.05

Diagnostic test interval (t1) 8 h

Mean repair time, MRT 0 h
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not adequately account for DD-failures and non-perfect proof-
testing.

This article has proposed a set of new PFH-formulas for general
koon:F-subsystems. The proposed formulas are more flexible than
the IEC-formulas [12] and can be used for subsystems with more
complex configurations. Compared to the PDS-formulas [8], the
proposed formulas account for DD-failures in a more appropriate
way, and non-perfect proof-testing can be included.

A case study of pressure transmitters is given in this article.
Comparing the results from the proposed formulas with those
from the IEC-formulas and the PDS-formulas shows that the
proposed formulas give more conservative results. This is as
expected since combinations of DD- and DU-failures leading to
subsystem failure are considered. The results also show that non-
perfect proof-testing has a significant influence on the PFH-values.

It is, therefore, important to examine the perfect proof-test
assumption. If it is not fulfilled, the PTC must be included in the
PFH calculation and overhaul of SIS may need to be exercised.
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Fig. 2. PFHID for different proof-test coverages, for a 2oo3:F-subsystem.

Table 6
PFHID-values obtained by the IEC-formulas and the proposed formulas with PTC.

Subsystem PTC (%) Overhaul every 5 years Overhaul every 10 years

IEC [12] Proposal (22) IEC [12] Proposal (22)

2oo2: F 100 3.60E�10 3.02E�9 3.60E�10 3.02E�9

95 5.20E�10 4.38E�9 6.98E�10 5.89E�9

90 6.80E�10 5.74E�9 10.36E�10 8.76E�9

85 8.40E�10 7.10E�9 13.74E�10 11.64E�9

80 10.00E�10 8.46E�9 17.12E�10 14.51E�9

2oo3: F 100 1.08E�9 9.07E�9 1.08E�9 9.07E�9

95 1.56E�9 13.15E�9 2.09E�9 17.68E�9

90 2.04E�9 17.23E�9 3.11E�9 26.29E�9

85 2.52E�9 21.32E�9 4.12E�9 34.91E�9

80 3.00E�9 25.39E�9 5.14E�9 43.52E�9

3oo3: F 100 4.58E�13 3.97E�12 4.58E�13 3.97E�12

95 9.53E�13 7.59E�12 1.72E�12 13.40E�12

90 16.29E�13 12.91E�12 3.77E�12 30.18E�12

85 24.84E�13 19.91E�12 6.63E�12 54.31E�12

80 35.20E�13 28.59E�12 10.30E�12 85.78E�12

3oo4: F 100 N/A 1.59E�11 N/A 1.59E�11

95 N/A 3.04E�11 N/A 5.36E�11

90 N/A 5.16E�11 N/A 12.07E�11

85 N/A 7.96E�11 N/A 21.72E�11

80 N/A 11.44E�11 N/A 34.31E�11
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Abstract

Partial testing is sometimes used as a supplement to proof testing to improve the reliability of

safety-instrumented systems (SISs) in low-demand mode of operation. This article studies the

effect of partial testing on SIS reliability. Simplified formulas are developed to include both par-

tial and proof testing in the calculation of the average probability of failure on demand (PFDavg).

The proposed formulas can handle situations where partial testing is performed periodically and

non-periodically. Common-cause failures (CCFs) are treated by using the beta-factor model, and

different β-factors can be included for different failure modes. The proposed formulas are com-

pared with existing results for partial verification. A case study is presented to demonstrate the

applicability. The proposed formulas can serve as a valuable tool for selecting a cost-effective

strategy for partial testing.

Keywords: Safety-instrumented systems, partial tests, proof tests, PFDavg, common-cause

failures

1. Introduction

Reliability analysis of safety-instrumented systems (SISs) has attracted a lot of attention in the

recent years and significant contributions have been made to improve the analyses. Requirements

for SIS reliability analyses are given in IEC 61508 [8] and several application-specific standards,
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such as IEC 61511 [9] for the process industry. This article is limited to SISs operating in low-

demand mode, meaning that the SIS is normally in a passive state and will only be activated

when a demand occurs. The frequency of demands is assumed to be less than once per year

[8]. An emergency shutdown system in a process plant is an example of such a low-demand SIS.

The reliability of a low-demand SIS is quantified as the average probability of failure on demand

(PFDavg)1. This means that if a demand occurs, the SIS will, on average, fail to carry out its

required safety-instrumented function (SIF) with probability PFDavg.

To reduce the PFDavg, we may increase the component reliability, increase the redundancy

level, perform more frequent proof tests, and/or improve the system’s protection against common-

cause failures (CCFs). The component reliability has been improved to such a level that further

improvement is difficult and may not be cost-effective; more redundancy will lead to higher cost,

a more complex system, and often more spurious trips. In some applications, the space is limited,

and high redundancy may not be feasible. The positive effect of increased redundancy may also

be lost due to CCFs. Increased frequency of proof testing may therefore be the preferred strategy

if the SIS reliability has to be improved, especially for existing SISs where modification of the

hardware is expensive.

Reliability improvement by more frequent proof tests does not come without a cost. Proof test-

ing requires resources in the form of man-hours, equipment, and coordination. More importantly,

proof testing often disturbs the production and leads to production downtime. To avoid the loss of

production, alternative test methods have been proposed to replace some of the proof tests. One

such proposal is the use of partial stroke testing (PST) for safety valves. Compared with a proof

test where all the dangerous failure modes of the valve are tested, only some few failure modes

are tested in a PST. A PST of a shutdown valve, for example, can partly detect the failure mode

“fail to close on command”, but is not able to detect the failure mode “leakage in closed position.”

In some companies, the SIS elements are partly operated in-between proof tests without any care-

ful examination of all failure modes. By this procedure, the companies are able to detect certain

failure modes without proof testing, and the PFDavg may be reduced without changing the proof

1PFDavg is the average unavailability of the safety function, the word “reliability” is used in a general sense to

describe the reliability performance of SIS.
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test frequency, or the PFDavg is maintained with less frequent proof tests. This type of partial test-

ing will hereafter be called Δ-testing, and may often be performed without any extra production

disturbances during planned or unplanned production stops.

Methods for PFDavg calculation have been heavily investigated [3, 4, 10, 11, 12, 14, 16], but

the effect of Δ-testing is not systematically accounted for. Summers and Zachary [17] present an

approximation formula for a single item subject to Δ-testing. This formula is elaborated in [13]

and is widely accepted. Torres-Echeverria et al. [18] propose analytical expressions for the PFDavg

of parallel systems, solved by numerical methods. A common limitation is that these methods

are based on the assumption of periodic Δ-tests. The work by Brissaud et al. [1] is important in

this respect since it proposes formulas that can calculate the PFDavg for general k-out-of-n (koon)

systems subject to non-periodic Δ-testing. However, the formulas do not account for CCFs, which

is a main contributor to the PFDavg [7].

The objective of this article is to develop PFDavg formulas for koon systems that take into ac-

count the effect of both non-periodic Δ-testing and CCFs. The proposed formulas should give

similar results as the widely accepted formulas for special cases such as single items (i.e., 1oo1

systems) with periodic Δ-testing, and koon systems without Δ-testing. When CCFs are not consid-

ered, the proposed formulas should also give similar results as Brissaud et al. [1] for koon systems

with Δ-testing, even if the two sets of formulas are developed in completely different ways.

The rest of this article is organized as follows. A brief account of failure classification is

given in section 2. Section 3 presents PFDavg formulas considering only independent failures;

verifications are given through special cases and a numerical example. In section 4, CCFs are

included in PFDavg formulas for SISs subject to Δ-testing. A case study of shutdown valves is

presented in section 5, and concluding remarks are given in section 6.

2. Failure classification

Failures of SISs may be classified as dangerous (D) and safe (S) failures. A failure is dangerous

if the SIF is prohibited by the failure, and safe otherwise. S-failures are assumed to have negligible

effect on the PFDavg, since PFDavg is a reliability measure with respect to D-failure and the repair
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of S-failures is usually completed in a short time and a controlled environment possibly with ad-

ditional safety measure implemented. D-failures can be further split into dangerous detected (DD)

and dangerous undetected (DU) failures. DD-failures are failures detected by diagnostic testing

and DU-failures are failures only detected by proof testing and partly by Δ-testing. Diagnostic

tests are performed rather frequently, often more frequent than once per minute. If a DD-failure is

repaired immediately after it is detected and the repair time is negligible, or the equipment under

control (EUC) is immediately brought to a safe state when a DD-failure is revealed, the PFDavg

contribution from DD-failures will be negligible. In the following, we therefore consider only

DU-failures.

When both proof testing and Δ-testing are used, the DU-failures may be further split into two

categories: (a) DU-failures that can be detected by both proof testing and Δ-testing, and (b) DU-

failures that are detected by proof testing but not by Δ-testing.

We define the Δ-test coverage (ΔTC) as the fraction θ of the DU-failures that can be detected

by Δ-testing.

θ =
λa

λ

where λ is the total DU-failure rate and λa is the rate of type a failures. The rate of type b failures

is then λb = (1 − θ)λ.
CCFs deserve special attention, due to their significant impact on PFDavg. A CCF is defined

as a failure that is the result of one or more events, causing concurrent failures of two or more

components, leading to a system failure [8]. Several models, such as the beta-factor model [2]

and the multiple beta-factor model [4], may be used to quantify the effect of CCFs on the SIS

reliability. The beta-factor model is by far the most commonly used CCF model in SIS reliability

analyses, mainly due to its simplicity.

3. PFDavg formulas with Δ-testing

We first consider only independent DU-failures and develop PFDavg formulas for a SIS subsys-

tem subject to both proof testing and Δ-testing. CCFs are included into the formulas in Section 4.

The subsystem under consideration is a koon system, i.e., the subsystem is functioning when k or
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t1t0=0 t2 t3 t4=τ time

A(t)
Proof-test

Figure 1: Safety unavailability with Δ-testing and proof test at time τ = t4.

more of the n channels are functioning. Both proof testing and Δ-testing are used to detect DU-

failures. When a DU-failure is detected in a proof test, a repair action is carried out to restore the

subsystem to an “as good as new” state. We may therefore consider only one proof test interval

to determine the PFDavg. Δ-tests are performed within the proof test interval and are only able

to detect type a failures. An as good-as-new-state can therefore not be claimed after a Δ-test, as

illustrated in Fig. 1, when Δ-tests are performed at time t1, t2, and t3.

3.1. Model assumptions

To calculate the PFDavg, several assumptions need to be made:

• The channels in the koon system are identical and have the same constant DU-failure rate

λ. The ΔTC is θ. The rate of type a failures is λa = θλ, and the rate of type b failures is

λb = (1 − θ)λ.

• All channels are in a fully functioning state at time t = 0.

• In a proof test interval τ, m tests are performed. The first m−1 tests are Δ-tests with intervals:

t1, t2, . . . , tm−1; and the m-th test is a proof test (see Fig.1).

• All the tests are performed simultaneously for all the n channels.

• All DU-failure modes are revealed in a proof test, and repair is initiated immediately after

the test. An as-good-as-new state is assumed after a proof test (or after the repair action

following a proof test).

• Only type a failures are revealed in a Δ-test, and these failures are repaired immediately.

After a Δ-test, no type a failure exist, but there may be type b failures.
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Figure 2: Reliability block diagram for a koon system subject to Δ-testing

• A type b failure is not at all affected by Δ-tests, i.e., neither Δ-tests nor the following repair

would detect and repair type b failures.

• The test and repair time are negligible and the effect of DD-failures is not considered.

• The effect from a real demand functioning as a test is not considered.

• We assume that a CCF takes down all channels of the subsystem, and use the beta-factor

model for CCF modeling.

• When a type a or a type b failure occurs, the channel is in a dangerously failed state.

3.2. Formulas for independent DU-failures

When all DU-failures are independent, the reliability of a koon system, subject to both Δ-

testing and proof testing, with type a and type b failures, may be modeled by a reliability block

diagram as shown in Fig. 2.

The PFDavg in the interval [0, τ] is equal to the average safety unavailability in this interval

PFDavg =
1

τ

∫ τ

0

Ā(t)dt =
1

τ

m∑
i=1

∫ ti

ti−1

Ā(t)dt (1)

where ti is the time of the i-th Δ-test for i = 1, . . . ,m − 1, tmis the time of a proof test, t0 = 0, and

Ā(t) is the safety unavailability function of the subsystem at time t.

In the first interval [t0, t1], the subsystem is assumed to be fully functioning at time t0 = 0, and
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the safety unavailability function is equal to the unreliability function of a koon system

Ā(t) = Fkoon(t)

where Fkoon(t) is the unreliability (i.e., cumulative distribution) function of a koon system at time

t.

In the interval (ti−1, ti] for i = 2, 3, . . . ,m, the subsystem may or may not be in a fully function-

ing state at the beginning of the interval. The safety unavailability function is therefore not equal

to the unreliability function of a koon system. At time ti−1, a Δ-test has just been completed and

no type a failure can exist. But the subsystem may have a random number of type b failures at ti−1.

This random number is denoted Nb and takes value in i = 2, 3, . . . , n. The safety unavailability

function Ā(t) in (ti−1, ti] can be conditioned on the number of type b failures at ti−1

Ā(t) =
n∑

j=0

Pr(Nb = j | ti−1)Ā(t | Nb = j, ti−1)

where Pr(Nb = j | ti−1) is the probability of having j type b failures at ti−1, and Ā(t | Nb = j, ti−1) is

the safety unavailability function of a koon system in the interval (ti−1, ti], i = 2, 3, . . . ,m, given j

type b failures ( j channels have DU-failure) at ti−1.

Since all the channels are independent and identical, the probability of having j type b failures

at ti−1 follows a binomial distribution. Since the channels have constant failure rate, the probability

is [15]

Pr(Nb = j | ti−1) =

(
n
j

) (
1 − e−λbti−1

) j (
e−λbti−1

)n− j

When there are j type b failures at ti−1 and j > n− k, the koon system is failed (unavailable) in

the interval (ti−1, ti] for i = 2, 3, . . . ,m.

Ā(t | Nb = j, ti−1) = 1 for j > n − k

Otherwise, if j ≤ n − k, the koon system is degraded to a koo(n − j) system. This means that

n− j channels can fail in the interval (ti−1, ti], i = 2, 3, . . . ,m. When more than n− j−k of them fail,
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the subsystem is failed. The unavailability function of this subsystem is equal to the unreliability

function of a koo(n − j) system.

Ā(t | Nb = j, ti−1) = Fkoo(n− j)(t | ti−1) for j ≤ n − k

where Fkoo(n− j)(t | ti−1) is the unreliability function of a koo(n − j) at time t, given it has survived

to time ti−1.

The PFDavg in the interval (ti−1, ti] is then

PFDavgi =
1

τi

∫ ti

ti−1

Ā(t)dt =
1

τi

∫ ti

ti−1

n∑
j=0

Pr(Nb = j | ti−1)Ā(t | Nb = j, ti−1)dt

=
1

τi

∫ ti

ti−1

⎛⎜⎜⎜⎜⎜⎜⎝
n−k∑
j=0

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− jFkoo(n− j)(t | ti−1) +

n∑
j=n−k+1

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j

⎞⎟⎟⎟⎟⎟⎟⎠ dt

=

n−k∑
j=0

(
n
j

)
1

τi

∫ ti

ti−1

(1 − e−λbti−1) j(e−λbti−1)n− jFkoo(n− j)(t | ti−1)dt

+

n∑
j=n−k+1

(
n
j

)
1

τi

∫ ti

ti−1

(1 − e−λbti−1) j(e−λbti−1)n− jdt

Given that the i-th Δ-test interval is τi = ti − ti−1 and given the memoryless property of compo-

nents with constant failure rate [15], we have

PFDavgi =

n−k∑
j=0

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j 1

τi

∫ τi

0

Fkoo(n− j)(t)dt +
n∑

j=n−k+1

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j

(2)

For a koon system with no test in the interval (ti−1, ti], if the subsystem is fully functioning at

ti−1, the PFDavg (PFDavg
koon
i,basic) in (ti−1, ti] is calculated, according to [4], by

PFDavg
koon
i,basic =

1

τi

∫ ti

ti−1

Fkoon(t | ti−1)dt =
1

τi

∫ τi

0

Fkoon(t)dt ≈ n!(λτi)
n−k+1

(n − k + 2)!(k − 1)!
(3)
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Inserting (3) for a koo(n − j) system into (2), we have

PFDavgi =

n−k∑
j=0

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− jPFDavg

koo(n− j)
i,basic +

n∑
j=n−k+1

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j

≈
n−k∑
j=0

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j (n − j)!(λτi)

n− j−k+1

(n − j − k + 2)!(k − 1)!

+

n∑
j=n−k+1

(
n
j

)
(1 − e−λbti−1) j(e−λbti−1)n− j (4)

The PFDavg in the interval [0, τ] is then

PFDavg =
1

τ

m∑
i=1

∫ ti

ti−1

Ā(t)dt =
1

τ

m∑
i=1

τiPFDavgi

≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n
j

)
τi(1 − e−λbti−1) j(e−λbti−1)n− j (n − j)!(λτi)

n− j−k+1

(n − j − k + 2)!(k − 1)!

+
1

τ

m∑
i=1

n∑
j=n−k+1

(
n
j

)
τi(1 − e−λbti−1) j(e−λbti−1)n− j (5)

When λτi and λbτ are small (i.e., less than 0.01), the approximations, 1-e−λτi ≈ λτi, 1-e−λbti−1 ≈
λbti−1 and (e−λbti−1)n− j ≈ 1 can be used. Then (4) and (5) become

PFDavgi ≈
n−k∑
j=0

(
n
j

)
(λbti−1) j (n − j)!(λτi)

n− j−k+1

(n − j − k + 2)!(k − 1)!
+

n∑
j=n−k+1

(
n
j

)
(λbti−1) j (6)

PFDavg ≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n
j

)
τi(λbti−1) j (n − j)!(λτi)

n− j−k+1

(n − j − k + 2)!(k − 1)!
+

1

τ

m∑
i=1

n∑
j=n−k+1

(
n
j

)
τi(λbti−1) j (7)

Moreover, when the Δ-tests are performed periodically with interval τ̃, i.e.,τi = τ̃ for all i,

ti = i · τ̃ and τ̃ = τ
m ; the PFDavg formula is simplified to

PFDavg ≈ 1

m

m∑
i=1

n−k∑
j=0

(
n
j

)
((i − 1)λbτ̃)

j (n − j)!(λτ̃)n− j−k+1

(n − j − k + 2)!(k − 1)!
+

1

m

m∑
i=1

n∑
j=n−k+1

(
n
j

)
((i − 1)λbτ̃)

j (8)
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3.3. Partial verification

This section verifies the proposed formulas by: (1) Comparing the formulas for special cases

with widely accepted formulas and (2) comparing, for an example, numerical results with the

existing results.

3.3.1. Without Δ-tests

When there is no Δ-test, the only test is the proof test at time τ (i.e., m=1 and τ1=τ); and j=0

since it is assumed there is no failure at time 0. The PFDavg in the interval [0, τ] by (7) becomes

PFDavg ≈ n!(λτ)n−k+1

(n − k + 2)!(k − 1)!
(9)

This is identical to the PFDavg formula in Rausand and Høyland [15] for a koon system with

proof test interval τ.

3.3.2. Periodic Δ-tests for 1oo1 systems

For a subsystem, where m − 1 periodic Δ-tests are conducted with interval τ̃ in each periodic

proof test interval τ, τ = mτ̃. For a 1oo1 system, inserting k=1 and n=1 into (8), we obtain

PFDavg ≈ 1

m

m∑
i=1

(
λτ̃

2
+ λb(i − 1)τ̃

)
=

(λa + λb)τ̃

2
− λbτ̃ +

1

m

m∑
i=1

λbiτ̃

=
λaτ̃

2
− λbτ̃

2
+
λbτ̃(m + 1)

2
=
λaτ̃

2
+
λbmτ̃

2
=
λaτ̃

2
+
λbτ

2

=
θλτ̃

2
+

(1 − θ)λτ
2

(10)

The result in (10) corresponds to the formulas in Lundteigen and Rausand [13] and Summers

and Zachary [17] for 1oo1 systems with Δ-test interval τ̃ and proof test interval τ.

3.3.3. Numerical example

A set of PFDavg formulas are given for koon systems subject to Δ-tests without CCFs in Bris-

saud et al. [1]; and a case example is presented. We apply the proposed formulas (5&7) to the

same case, and compare the result with the one in Brissaud et al. [1]. The subsystem configuration
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Table 1: Parameters for the numerical example–adopted from Brissaud et al. [1]

Property Parameter Value

Configuration koon 2oo5

Failure rate λ 10−5 per hour

ΔTC θ 0.5

Δ-test interval τ̃ 2190 hours

proof test interval τ 8760 hours

Table 2: PFDavg results from different formulas.

ΔTC Brissaud et al. [1] Proposal (5) Proposal (7)

θ=0.5 6.61·10−6 6.73·10−6 7.44·10−6

and relevant data are from Brissaud et al. [1] and given in Table 1. PFDavg results from different

formulas are given in Table 2. It can be seen that (5) gives a result rather close to Brissaud et al.

[1], whereas the result from (7) is overly conservative. This shows that the approximation in (7)

is not suitable, because in the current example, λτ̃ ≈ 0.02 and λbτ ≈ 0.09, using approximations

1-e−λτi ≈ λτi, 1-e−λbti−1 ≈ λbti−1 and (e−λbτi−1)n− j ≈ 1 will give a conservative result.

4. Formulas including CCFs

The CCFs are included in the PFDavg by the beta-factor model, and the CCFs are included as a

virtual component in series with the independent subsystem in Fig. 1. The two failure modes (type

a and b) may have different β-factors, e.g., for valves, type a failure may be failure to close (FTC)

and type b failure may be leak in closed position (LCP), the β of FTC is usually different from the

β of LCP. In order not to lose generality, βa and βb are used to differentiate the CCF of type a and

b failures. The reliability block diagram of the koon system is now as shown in Fig. 3. The total

PFDavg can be calculated by

PFDavg,total ≈ PFDavg + PFDCCF
avg,a + PFDCCF

avg,b

where PFDavg is the independent failure contribution–calculated by (5) for the koon system, and

PFDCCF
avg,a and PFDCCF

avg,b are the respective CCF contributions from type a and b failures,calculated

11



Figure 3: Reliability block diagram of a koon system subject to Δ-test and CCFs.

by (5) for a 1oo1 system.

Replacing λ and λb in (5) with βaλa and 0, respectively, for a 1oo1 system, the CCF contribution

from type a failures is obtained

PFDCCF
avg,a ≈

1

τ

m∑
i=1

βaλaτ
2
i

2

Replacing both λ and λb in (5) with βbλb for a 1oo1 system, the CCF contribution from type b

failures is obtained

PFDCCF
avg,b ≈

1

τ

m∑
i=1

(
βbλbτ

2
i e−βbλbti−1

2
+ (1 − e−βbλbti−1)τi

)

Therefore, the formula for total PFDavg in interval [0, τ] is

PFDavg,total ≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n
j

)
τi(1 − e−(1−βb)λbti−1) j(e−(1−βb)λbti−1)n− j (n − j)!

[
((1 − βa)λa + (1 − βb)λb)τi

]n− j−k+1

(n − j − k + 2)!(k − 1)!

+
1

τ

m∑
i=1

n∑
j=n−k+1

(
n
j

)
τi(1 − e−(1−βb)λbti−1) j(e−(1−βb)λbti−1)n− j

+
1

τ

m∑
i=1

βaλaτ
2
i

2
+

1

τ

m∑
i=1

(
βbλbτ

2
i e−βbλbti−1

2
+ (1 − e−βbλbti−1)τi

)
(11)

When βbλbti−1 is small, the approximations, 1-e−βbλbti−1 ≈ βbλbti−1 and e−βbλbti−1 ≈ 1 can be used,

and PFDCCF
avg,b becomes

PFDCCF
avg,b ≈

1

τ

m∑
i=1

(
βbλbτ

2
i

2
+ βbλbti−1τi

)
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Together with the conditions that (1 − βb)λbτi and (1 − βb)λti−1 are small, the formula for total

PFDavg becomes

PFDavg,total ≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n
j

)
τi((1 − βb)λbti−1) j (n − j)!

[
((1 − βa)λa + (1 − βb)λb)τi

]n− j−k+1

(n − j − k + 2)!(k − 1)!

+
1

τ

m∑
i=1

n∑
j=n−k+1

(
n
j

)
τi
[
(1 − βb)λbti−1

] j

+
1

τ

m∑
i=1

βaλaτ
2
i

2
+

1

τ

m∑
i=1

(
βbλbτ

2
i

2
+ βbλbti−1τi

)
(12)

When the β-s for type a and b failures are identical, i.e., βa=βb=β, the total PFDavg is simplified

to

PFDavg,total ≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n
j

)
τi((1 − β)λbti−1) j (n − j)!((1 − β)λτi)

n− j−k+1

(n − j − k + 2)!(k − 1)!

+
1

τ

m∑
i=1

n∑
j=n−k+1

(
n
j

)
τi((1 − β)λbti−1) j

+
1

τ

m∑
i=1

(
βλτ2

i

2
+ βλbti−1τi

)
(13)

5. Case study

Shutdown systems are among the most used SISs in the process industry. Experience has

shown that about 50% of the shutdown system failures are due to the failure of final elements –

the shutdown valves [6]. It is therefore important to improve the reliability (availability) of these

valves. PST is sometimes implemented to fulfill this purpose. The main DU-failure modes for a

shutdown valve are FTC and LCP [6]. A PST may detected FTC failures but not LCP failures,

whereas a proof test can detected both failure modes. Therefore, an FTC failure is a type a failure,

and an LCP failure is a type b failure. To calculate the PFDavg of the shutdown valves, the formulas

proposed in this article can be used.

We consider valves connected in a 1oo2 configuration. The relevant parameters are given

13



Table 3: Parameters for shutdown valves.

Property Parameter Value

Configuration koon 1oo2

Failure rate λ 0.8·10−6 per hour

CCF of type a failure βa 0.05

CCF of type b failure βb 0.1

ΔTC θ 0.65

proof test interval τ 8760 hours

Table 4: PFDavg of valves with different PST strategies.

PST strategy Proposal (11) Proposal (12)

Monthly PST 1.44 ·10−4 1.44 ·10−4

Quarterly PST 1.54 ·10−4 1.54 ·10−4

Biannually PST 1.86 ·10−4 1.86 ·10−4

Without PST 3.64 ·10−4 3.64 ·10−4

in Table 3. The total failure rate is from the PDS data handbook [5]. The ΔTC is adopted from

Lundteigen and Rausand [13]. Different failure modes are due to different causes and mechanisms,

thus different β-factors are assumed for type a and b failures. The proof test interval is set to be a

year.

PFDavg of shutdown valves subject to different PST strategies are calculated by using (11) and

(12) and given in Table 4. It is seen that formula (12) gives approximately the same result as (11).

We also observe that the PFDavg is significantly reduced (by 50%) with a biannual PST, whereas

further increased PST frequency brings less significant PFDavg reduction. It is therefore important

to select a cost-effective PST strategy; the proposed formulas may be an adequate tool for this

purpose.

6. Concluding remarks

In this article, we have studied the reliability of a low-demand SIS subject to both proof testing

and intermediate partial testing called Δ-testing. Simplified formulas are developed to calculate

the PFDavg for koon systems with identical channels. Both periodic and non-periodic Δ-testing are

covered and special attention is given to including CCFs. The proposed formulas are compared

14



with existing formulas for specific cases, and give similar results. A case study of shutdown valves

is presented. CCFs are modeled by the beta-factor model and it is shown that different beta-factors

for different failure modes are well taken care of by the proposed formulas. Decision-making

related to Δ-testing strategies can benefit from the proposed formulas.

The proposed formulas are presented for a situation where Δ-testing and proof testing are

applied to detect failures. The formulas can also be used to calculate PFDavg for a koon system

in a more general situation, where a fixed period of time (after which the subsystem is renewed)

is considered and a non-perfect testing technique is applied (periodically or non-periodically) to

detect the DU-failure. For example, a subsystem subject to non-perfect proof testing and periodic

overhaul.
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a b s t r a c t

Safety instrumented systems (SISs) are usually divided into two modes of operation, low-demand and

high-demand. Unfortunately, this classification is not easy to justify and the available formulas that are

used to quantify the reliability performance in these two modes of operation are unable to capture

combined effects of functional testing, spurious activations, and successful responses to demands. This

article discusses some important modeling issues for SIS reliability performance quantification, and

demonstrates their implementation in a Markov model. The accuracy of the Markov model for a simple

case study of a pressure transmitter is verified through comparison with a scenario-based formula, and it

is shown that theMarkov approach gives a sufficiently accurate result for all demand rates, covering both

low- and high-demand modes of operation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Safety instrumented systems (SISs) are widely used to prevent
hazardous events, and to mitigate their consequences to humans,
the environment, and material and financial assets. A SIS generally
consists of one ormore input elements (e.g., sensors, transmitters),
one or more logic solvers (e.g., programmable logic controllers
[PLC], relay logic systems), and one or more final elements (e.g.,
safety valves, circuit breakers). The main elements of a SIS are
illustrated in Fig. 1.

The required functionality and reliability of a SIS are usually
deduced from overall hazard and risk analyses. Without proper
design, construction, and follow-up, the SIS may fail to provide the
necessary risk reduction and a number of standards and guidelines
have be developed to assist in designing and implementing SISs.
One such standard is IEC 61508 [6], that outlines key requirements
to all phases of the SIS life cycle. The principles introduced in this
generic standard, are also reflected in application specific stan-
dards, such as IEC 61511 [7] for the process industry, IEC 62425 [8]
for the railway industry, and ISO/DIS 26262 [11] for the automobile
industry.

IEC 61508 differentiates between two modes of SIS operation:
low-demand and high-demand. The classification of operational
modes is based on two criteria: (1) How often the SIS is expected to
operate in response to demands? (2) The expected time that a
failure may remain unrevealed, taking into account the functional

test frequency. According to IEC 61508, a SIS is operating in the
high-demand mode if the demand rate is greater than once per
year, or greater than twice the frequency of functional tests. If the
demands occur close to continuously, the mode of operation is
sometimes referred to as continuous, rather than high-demand. In
the rest of this article, high-demand also covers the continuous
mode of operation, unless otherwise stated.When the demand rate
is less than once per year, and less than twice the functional test
frequency, the SIS is operating in low-demandmode. Typical high-
demand SISs are dynamic positioning (DP) systems for ships and
offshore platforms, anti-lock braking systems (ABS) for automo-
biles, and railway signaling systems, whereas typical low-demand
SISs include emergency shutdown systems (ESD), fire and gas
detection systems, process shutdown systems (PSD), and airbag
systems in automobiles.

A SIS may perform one or more safety instrumented functions
(SIFs) to achieve or maintain a safe state for the system the SIS is
protecting, with respect to a specific process demand [15].
A railway signaling system may, for example, set a green (go)
signal if the following rail section is free, and a red signal if this rail
section is occupied. According to IEC 61508, a safety integrity level
(SIL) should be allocated to each SIF. The standard defines four SILs,
where SIL 4 gives the highest and SIL 1 the lowest requirements. In
order to claim that a SIF has a certain SIL, it is necessary to achieve a
certain reliability. IEC 61508 defines two reliability measures for
this purpose: (i) the average probability of failure on demand (PFD)
and (ii) the probability of failure per hour (PFH), and suggests using
PFD as a reliability measure for low-demand SISs and PFH for high-
demand SISs. The SIL ranges for PFD and PFH specified by IEC 61508
are given in Table 1.
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It is generally accepted that PFD is a meaningful reliability
measure for a low-demand SIS, but there are different opinions
about the adequacy of the PFH for a high-demand SIS [1,14].

Despite the presumably clear split between the low-demand
and the high-demandmode of operation, there are still some issues
that cause confusion and problems in the quantification of SIS
reliability performance. First, the rationale behind using once per
year or twice the frequency of functional tests as the borderline is
not well explained in IEC 61508, or anywhere else [10]. Second, for
some SIFs, the various elements have different demand rates. Parts
of the logic solver may, for example, be operated more often than
the input and final elements, making it difficult to define the mode
of operation. Third, the classification disregards the aspect of the
demand duration. Even for rare demands, the demand, once it
occurs, may give ‘‘sub-demands’’ during an extended period of
time. The SIS may therefore be in the low-demand mode between
demands, and in the high-demand mode while responding to the
demand. A typical example is a blow-out preventer (BOP) that is
used to stop uncontrolled flow from oil wells during drilling.
Situations that call for full closure of the BOP are rare, but when the
BOP has been activated, it must be able to withstand the well
pressure for hours and even weeks. Neither the classification nor
the proposed reliability performance measure for high demand
systems, the PFH, are able to treat these issues.

Instead of drawing a clear borderline between low-demand
mode and high-demand mode of operation, some authors suggest
to incorporate the rate of demands into the analysis by using
Markovmodeling [1,14,10]. The interpretationof PFH is questioned
by the sameauthors, and a commonmeasure for usewithboth low-
demand and high-demand mode is suggested [1,14]. Bukowski [1]
calculates the probability of being in a state ‘‘of fail dangerous and
process requires shutdown’’ (PFDPRS) based on a Markov model,
while Misumi and Sato [14] use fault tree analysis to develop
analytical formulas forwhat they call the ‘‘average hazardous event
frequency’’. These proposals are promising for the quantification of
SIS reliability performance in general, but need further develop-
ment to reflect all relevant modeling aspects.

The objectives of this article are to (i) clarify important modeling
aspects for low-demand and high-demand SISs, (ii) summarize and
discuss some of the key limitations related to measures like PFD and
PFH, and (iii) suggest and verify a Markov model for quantification of
SIS reliability performance that caters for modeling considerations in
both low-demand and high-demand mode of operation.

The rest of the article is organized as follows. Section 2 discusses
a number of important modeling issues and Section 3 highlights
some of the weaknesses of PFD and PFH, in light of the modeling
issues that are addressed in Section 2. Themodel, which is based on
aMarkov transition diagram, is presented in Section 4. In Section 5,
a scenario-based model for SIS reliability performance assessment
is developed and the applicability of the Markov model is demon-
strated through a simple case study of a pressure transmitter, and
by comparison with the scenario-based model. Finally, concluding
remarks are given in Section 6.

2. Modeling considerations

The starting point of a reliability performance analysis of a SIS is
always to acquire knowledge about the system, under which
modes and conditions it will operate, and how the system should
respond to system failures and other foreseeable events. In this
article, the system comprises both the SIS and the system to be
protected, which is sometimes referred to as the equipment under
control (EUC) [6]. Important issues to address are, for example, the
nature of the demands, the desired states for the various operating
modes, such as start-up, normal operation, shutdowns, and fore-
seeable abnormal events.

The following list of questions should be addressed in the
quantification of the SIS reliability performance:

� What is the safe state, i.e., the desired state of the EUC in
response to a hazardous event or a SIS failure?

� Where in the sequence of protection layers is the SIS placed?
� What type of hazardous events may occur if the SIS, and

subsequent protection layers, fail to perform on demand?
� What is the testing strategy for the SIS?
� What are the potential consequences of spurious activations, on

the EUC and on the SIS components?
� What are the demand rate and the demand duration?

In addition, it is important to identify themain properties of the SIS,
by reviewing the component functions and their interrelationship,
such as architecture and voting.

2.1. Definition of safe state

The SIS must be designed to take the EUC to a safe state in
response to a demand. Unfortunately, it is not always straightfor-
ward to define the safe state, and the EUC may have different safe
states during normal operation, compared to start-up, shutdown,
and so on. In some cases, the safe state is to maintain the state
before the demand occurred, while in other cases, it means to stop
the EUC. When the safe state is defined, the SIS design must also
consider ‘‘fail-safe’’ operation, meaning that the SIS automatically
takes the EUC to a safe state in response to foreseeable SIS failures,
such as loss of power supply and loss of signal.

Some SISs, like the ones we mentioned above as examples of
high-demand systems, return the EUC to the normal operating
state after the demand. This is, for example, the case for aDP system
where external forces (e.g., wave forces) are acting on one side of an
offshore platform, and the DP system is required to maintain its
positionby imposing compensating thrust force on the other side of
the platform. When the external forces disappear, the DP system
returns to a state where it is ready to respond to other external
forces. A railway signaling system is always ready to respond to a
new request when the previous train has left the rail section.

For the SISs that wementioned as typical low-demand systems,
it is common that the EUC remains in the safe state after the SIS has
responded to a demand. The SIS is only reset when a decision has

Logic solver

Final elementsInput elements

Fig. 1. The main SIS elements.

Table 1
SIL requirements [6].

SIL PFD PFH

4 Z10�5 to o10�4 Z10�9 to o10�8

3 Z10�4 to o10�3 Z10�8 to o10�7

2 Z10�3 to o10�2 Z10�7 to o10�6

1 Z10�2 to o10�1 Z10�6 to o10�5
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been taken to restart the EUC. In the event of a gas leakage, the ESD
system stops the process by closing dedicated ESD valves. The ESD
system maintains this state, until the leakage point has been
repaired and the operators have decided to restart the EUC. The
automatic train protection (ATP) system operates in the sameway;
if a train has been stopped by the ATP, it is not possible to continue
driving unless a decision has been made to suspend the ATP signal
and restart the train.

2.2. Sequence of protection layers

Several independent protection layers are often used for the
same EUC, to ensure that the desired risk reduction is achieved. ATP
and railway signaling systems are examples of two independent
protection layers used to avoid train accidents. Protection layers
may also be implemented by physical barriers, pure mechanical
systems, and administrative procedures.

The ‘‘onion model’’ in Fig. 2 is sometimes used to illustrate the
sequence of protection layers [3,7]. The sequence starts from the
center and proceeds outwards, first with frequency reducing layers
and then with consequence reducing layers. The purpose of the
frequency reducing protection layers is to prevent a hazardous
event from occurring, for example a gas leakage, while the
consequence reducing measures aim to stop the development into
accidents (e.g., explosion, fires) involving harm to humans, the
environment, or material and financial assets. High-demand SISs
are often of the first category, and low-demand of the latter.

In the reliability performance quantification, it is important to
take the activation sequence into account. Does the SIS perform a
SIF as the last protection layer, or is the function performed as an
intermediate layer? If the SIS is used to mitigate the consequences
of a hazardous event, and it appears as the last in line, a SIS failure
may directly lead to an accident.

2.3. Definition of hazardous event

A hazardous event is sometimes defined as the first significant
deviation from the normal situation that may, if not controlled,
develop into an accident [15]. As argued above, a high-demand SISs
often contributes to reduce the likelihood of such events. For
consequence reducing SISs (usually low-demand SISs), it is the
accident frequency, and not the hazardous event frequency that is
reduced. For simplicity, the approach to reliability performance
quantification of SISs, presented in this article, uses the term
hazardous event frequency (HEF) for both modes of operation, but
the reader should be aware of the differences in the interpretation.

Youshiamura and Sato [16] propose three categories of hazardous
events, which we adopt in this article: (1) Repeatable-hazardous event,
where the hazardous event does not necessarily have severe con-
sequences, even if the SIS fails. As an example, consider a car that starts
to slide on an icy road. Even if the ABS brakes fail, the car may stay on
the road if the driver manages to keep control. The hazardous event
may reoccur as long as the hazard (i.e., the icy road) is present.
(2) Renewable fatal hazardous events, where the consequence of the
hazardous event is fatal to the EUC (and the SIS), but not in a way that
prevents the systems from being restored within reasonable time. An
example is a minor gas leakage that has occurred due to a leaking
flange, and where the normal operating state of the production line
(and the SIS) is restored after having performed necessary repair,
replacements, and overhauls. (3)Non-renewable fatal hazardous events,
where the damage is extensive, and no recovery is possible. The
accident with Deepwater Horizon in the Gulf of Mexico in 2010 is an
example of an event of this category.

2.4. Testing strategies

The SIS components are exposed to two main types of failures,
safe failures and dangerous failures [6,7]. Safe failures are failures
that do not have any effect on the ability of the SIS to perform its
functions, or alternatively, that the component goes to its fail-safe
state. The latter example is often referred to as a spurious trip or
spurious activation [12]. Dangerous failures are failures that may
prevent the SIS from performing on demand. The dangerous
failures may be further split into two sub-categories: Dangerous
detected (DD) failures, that are detected by online diagnostics, and
dangerous undetected (DU) failures, that remain hidden until the
SIS function is fully operated during a functional test, in a real
demand situation, or (in some cases) during a spurious activation.

Functional tests are in many cases performed at regular inter-
vals to reveal and correct DU-failures before a demand occurs. For a
low-demand SIS, it is important to perform functional testing to
avoid that a DU-failure remains hidden for a long time. The
necessity of functional testing for high-demand SISs is not always
evident, an issue that is further discussed later in the article.

Diagnostic testing is a feature that is sometimes provided for
programmable electronic components. A diagnostic test is able to
reveal certain types of failures, such as run-time errors and signal
transmission errors, without fully operating the main functions of
the component. The diagnostics of a pressure transmitter may
reveal drifting in the signal conversion, without the pressure
transmitter responding to a high pressure signal.

2.4.1. Effect of functional tests

DU-failures are themain contributors to SIS unreliability, i.e., its
inability to perform on demand. In the reliability performance
quantification it is important to address the following issues:

� To what extent is the functional test able to reveal all

DU-failures?
It is not always practicable or safe to perform a fully realistic
functional test of a SIS. To pressurize a pipeline to the trip
pressure of a pressure transmitter may, for example, be unsafe,
and most pressure transmitters are therefore tested after they
have been isolated from the process. Some causes of DU-failures
may therefore remain hidden, such as contamination in the
pressure sensing lines. The fraction of failures that may be
revealed by a functional test is sometimes referred to as the
functional test coverage.

� To what extent is the functional test necessary?
A high-demand SISmay experience demandsmore often than it
is practical to perform functional tests. It may therefore not be

EUC

(Inherently safe) Process design

Basic control system

Frequency reducing systems*

Consequence reducing systems*

* SIS, mechanical systems, manual intervention, and so on

Fig. 2. Protection layers.
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possible to use functional testing to reveal and correct
DU-failures before the next demand. This is not the same as
saying that regular functional tests are not necessary for high-
demand systems. For a SIS that has redundant components, or
where the SIS components receive signals from other systems
than the SIS, it is not always possible to confirm that all, and not
only some, of the components were functioning as intended. In
this situation, it may be important to perform regular testing, to
avoid that the SIS is operating with reduced fault tolerance.

� What other events have similar effect as functional testing?
Functional testing is usually performed to reveal DU-failures at
the component level. A successful response to a demand is also a
type of test. Themain differences are that a demand is a random
event and that the confirmation from successful response is on
the system level, rather than the component level—depending
on the ability to verify correct reliability performance of each
individual component during the demand. A spurious activation
of a SIS is also a random event andmay verify the function of SIS
components. A spurious signal fromapressure transmittermay,
for example, cause one or more valves to operate. A spurious
activation may not necessarily reveal DU-failures, without
careful attention by the operators. Manual checks may be
required to verify that all components that should have been
affected by the spurious activation, were in fact operated.

2.4.2. Diagnostic testing

Diagnostic testing aims at revealing failures without interrupt-
ing the EUC. The fraction of dangerous failures that is revealed by
diagnostic testing is often referred to as the diagnostic coverage

[6,7].
A diagnostic test is run frequently, typically every few seconds,

minutes, or few hours. The time delay between the occurrence and
the detection of a DD-failure is normally negligible. For a low-
demand SIS, this means that there will usually be sufficient time to
perform repair and restore the function before the next demand
occurs—if the repair is started immediately and completedwithin a
few hours. For a high-demand SIS, the demand rate and the
diagnostic test frequency may be of the same order of magnitude,
and the validity of this assumption may need to be re-examined.

The effect of diagnostic testing should be carefully considered in
light of the demand rate, the diagnostic test coverage, the diag-
nostic test interval, and the time that is needed to repair the failure.

2.5. Spurious activations

The SIS should be designed to avoid spurious activations, and if a
spurious activation occurs, it should bring the EUC to a safe state.
This is not always possible and spurious activations may some-
times lead to hazardous events. This is, for example, the case when
the airbag system is spuriously activated while driving on a
motorway. Another problem is that a spurious activation may give
very high stresses and thus deteriorate both the SIS and the EUC. An
example of this is a downhole safety valve in an oil well. During
normal testing, the flow is stopped before the valve is closed and
tested. A spurious activation of the valve will be a so-called slam-
shut operationwhere the valve is closed against a flowingwell. This
operation gives very high stresses to the valve and the valve may
not survive more that a few such operations.

Spurious activation of a SISwill normally lead to lost production
or low availability of the EUC [12]. Follow-up of spurious activa-
tions further takes time and attention from operators and main-
tenance personnel and human errors may occur during restart
of the EUC.

From a reliability perspective, it is noticeable that measures
introduced to improve the reliability of a SIS, for example by adding
redundancy, will almost inevitably lead to more spurious activa-
tions [13].

On the positive side, a spurious activation may serve as a
functional test and a confirmation that the SIS was working as
intended during a demand-like event. The positive as well as the
negative effects should be considered in SIS design and in reliability
performance assessments.

2.6. Demand characteristics

All demands have some duration, but the duration may be so
short that it can be neglected in the reliability performance
analyses. As a result, it is sometimes distinguished between two
types of demands: instantaneous demands, with negligible dura-
tion, and demands with some duration [14]. Several methods for
reliability analysis, such as reliability block diagram and fault tree
analysis, are mainly applicable for instantaneous demands.

In reliability performance analyses, it is important to determine
if a SIS needs to respond to a demand with duration, as mentioned
in the example with the DP system on offshore platforms.

3. HEF versus PFD and PFH

A SIS is used to reduce risk, and IEC 61508 requires that it is
demonstrated that the SIS reliability performance is adequate to
meet stated risk acceptance criteria. The acceptance criteria are
often stated in terms of amaximum tolerable HEF, fromwhich a SIL
requirement, and eventually, a PFD or PFH requirement may be
deduced [6,7].

3.1. Relationship between HEF and PFD

For a low-demand SIS, HEF is the product of the demand rate,
lde, for the SIS and the conditional probability that the SIS fails to
function, PFD, given a demand, such that, HEF¼ lde � PFD [15]. Note
that PFD here should, in principle, cover both the instantaneous
activation of the SIS and the successful performance of the SIS
during the demand period. An example is a fire pump system that
has to start and topumpwater as long as it is demanded. In practice,
most calculation approaches fail to account for the possibility of
having a failure during the demand period.

The PFD is well suited as input parameter to many methods for
risk analysis, such as fault tree analysis, event tree analysis, and
LOPA [3].

3.2. Relationship between HEF and PFH

Unlike PFD, it is not straightforward touse PFH in traditional risk
analysis methods like fault tree analysis, event tree analysis,
and LOPA.

For a high-demand SIS, the relationship betweenHEF and PFH is
vague, with the result that several authors give their own inter-
pretations and definitions [9,10,4].

For a SIS operating under (close to) continuous demands, the
conditional probability that a demand occurs, given a SIS failure, is
very close to 100%. In this case, the HEF is equal to the frequency of
dangerous SIS failures, which is PFH. For a SIS operating in high, but
not continuous demand mode, it is not easy to calculate the HEF
without using aMarkov or a similar state model. Intuitively, it may
be argued that theHEF in this case is always less than PFH, such that
PFH is always a conservative approximation of the HEF, regardless
of the demand rate. When the demand rate is close to the border-
line between low-demand and high-demand, the approximation
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may be too conservative. The relationship between PFH and HEF is
further complicated when the duration of the demand is
significant.

The consequence of having different interpretations of PFH
becomes evident in risk analyses. An overall acceptance criterion
for aHEFmay be broken down to acceptance criteria for the various
protection layers. Assume that the acceptance criterion for SIFj is
expressed by using HEFj, for j¼ 1,2, . . . : A requirement to HEFj
must then be expressed by PFHj where:

� For a SIS operating under (close to) continuous demands:
PFHj �HEFj.

� For a SIS operating with less frequent demands, for example,
close to theborderline between low-demandandhigh-demand:
PFHj4HEFj.

Remark. IEC 61508 relates each SIL to a fixed range for the PFH. In
light of the discussions above, the approach may be questioned
since the same PFHmay give quite different HEF, depending on the
demand rate and the demand duration.

4. A common approach to SISs reliability performance

It is difficult to argue why PFH, and not PFD, should be used as
reliability performance measure when the SIS is exposed to
demands in the borderline between what IEC 61508 defines as
low-demand and high-demand. Why is, for example, the PFD an
adequatemeasure when the demand rate is once every 13months,
but not for once every 11 months? Even for higher demand rates,
the PFD may be a well suited measure, but current analytical
formulas in, for example, IEC 61508, do not reflect the combined
effects of demand rates, demand duration, and functional testing.
Some authors propose using a Markov model, which does not
distinguish between low- and high-demandmode of operation, for
reliability performance quantification of a SIS. This model is well
suited formanyof the issuesmentioned in Section2 [1,10,16] and is
further studied in this article.

4.1. System under consideration

The main difference between a Markov model and the SIS
reliability performance quantificationmethods that are used in IEC
61508 and associated standards and guidelines, is that the demand
rate and the demand duration are modeled. To study the main
effects of the demand rate and the demand duration, it is sufficient
to consider a single SIS component. The state of the EUC is either a
non-demand state or a on-demand state. The component under
consideration is a single element in a SIS that acts as the last
protection layer. The component is subject to functional as well as
diagnostic testing. It is assumed that the hazardous event is of the
type renewable fatal hazardous event, and that a repair action is
needed to return the EUC and the SIS to the normal operating state.

The SISmaybe subject to spurious activations. It is assumed that
the safe state is when the EUC is stopped. It is further assumed that
a spurious activation can only occur if no other failures are present.
This assumptionmay be illustrated for a valve: a valve that is stuck
in open position cannot spuriously close at the same time. The
possibility of having a demand and a spurious activation at the
same time is neglected.

4.2. Markov model

A Markov transition diagram for the system is illustrated in
Fig. 3, for the system states in Table 2.

The model has six system states, 0,1, . . . ,5, where state 5 is the
initial state and state 0 represents the hazardous event/state. If the
SIS is not the last protection layer, the hazardous event is a demand
for the next barrier.

It is assumed that the system satisfies theMarkov property [15],
and that all transition rates are constant in time. The failure rates
may in practice be different in the various operating states, but this
is not accounted for in this article, where the same failure rates are
used in on-demand and non-demand states.

The repair rates are also constant, meaning that the DD and DU
repair times are exponentially distributed. In reality, the rates are
often not constant, but according to Bukkowski [2], this simplifica-
tion gives reasonable accuracy.

4.2.1. Definition of system states, including safe state

The system includes both the EUC and the SIS. The system state
is therefore the combined effect of the SIS state and the demand
situation. A SIS has the state ‘‘available’’ when it is able to function if
a demand occurs. In this state, the SIS is free from DD- or
DU-failures and has not been spuriously activated. The SIS is
defined as ‘‘functioning’’ when it is responding to a demand. ‘‘Safe
state’’ means that the EUC is in a state where it is safe no matter
whether there is a demand, or not.

Amore specific interpretation of the system states is as follows:
State 5 is the normal operating state, where the SIS is available and
there is no demand for the activation of the SIS. State 4 represents
the safe state,where no hazardous event can happen. The statemay

4

53 2

1

0
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μDD

λDDμDU
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λde

μd

λde

λD λde

Fig. 3. Markov transition diagram.

Table 2
System states.

System state SIS state Demand

5 Available Non-demand

4 Safe state N/A

3 Functioning On-demand

2 DD-failure Non-demand

1 DU-failure Non-demand

0 Dangerous failure On-demand

(DU or DD)
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be achieved after a spurious activation. State 3 is the state where
the SIS is responding to ademand. In state 2, the SIS has aDD-failure
while there is no demand for the SIS. State 1 is similar to state 2, but
the SIS has aDU- rather than aDD-failure. State 0 is the (renewable)
hazardous event, where the SIS has a DU- or DD-failure and there is
a demand for the activation of the SIS.

The transition rates and their descriptions are given in Table 3. It
is assumed that state 5 is the initial state. The transitions between
state 5 and state 4 are due to safe failure and the restoration. The
restoration rate ms from state 4 to state 5 is calculated as 1/MTTRs,
where MTTRs is the mean restoration time.

4.3. Inclusion of testing strategies

The system is subject to diagnostic testing as well as functional
testing. The functional tests are carried out after regular time
intervals of length t.

For DD-failures, it is assumed that a repair action is initiated
immediately, such that the downtime due to a DD-failure is limited
to the actual repair time. The DD repair rate, mDD, is therefore
calculated from the mean time to repair (MTTRDD) as

mDD ¼ 1

MTTRDD
ð1Þ

The downtime due to a DU-failure may be split into an unknown
part and a known part. The unknown part is when the DU-failure
has not yet been revealed by a test (or demand). If a functional test
has identified a DU-failure, the average downtime is equal to t=2
(e.g., see [15, p. 433]). The mean known downtime is the time to
perform a functional test (which is often negligible) and the mean
repair time of the DU-failure, MTTRDU. Of the two contributors to
the downtime, the unknown part is usually dominating. The DU
repair rate, mDU is therefore calculated as

mDU ¼ 1

t=2þMTTRDU
ð2Þ

4.4. Inclusions of demand and hazard event characteristics

The demands are assumed to occur according to a homogeneous
Poisson process (HPP) with rate lde, such that the time between
two consecutive demands is exponentially distributed with para-
meter lde. The duration of each demand is also assumed to be
exponentially distributed with rate mde. The mean demand dura-
tion is therefore 1=mde. It is further assumed that the SIS is ‘‘as good
as new’’ after a successful response to a demand.

When a hazardous event occurs (state 0), we assume that the
system is restored/renewed to the normal state 5. The renewal time
is assumed to be exponentially distributed with rate m.

4.5. Calculations

The Markov model in Fig. 3 is used to calculate the steady state
probabilities and visit frequencies for each state. The state transi-
tion matrix A¼ faijg is based on the non-zero entries aij for ia j in
Fig. 3 and aii ¼�P5

j ¼ 0 aij, ja i for i¼ 0,1, . . . ,5.
The Kolmogorov forward equations [15] give

PðtÞ � A¼ _PðtÞ ð3Þ
where PðtÞ ¼ ½P0ðtÞ,P1ðtÞ, . . . ,P5ðtÞ�, Pi(t) is the probability that the
system is in state i at time t, and _P ðtÞ is the time derivative of PðtÞ.

For an irreducible Markov process, it can be shown that

lim
t-1

PiðtÞ ¼ Pi ¼ constant for i¼ 0,1, . . . ,5 ð4Þ

and

lim
t-1

_PiðtÞ ¼ 0 for i¼ 0,1, . . . ,5 ð5Þ

The steady state probabilities can be calculated from (3)–(5) and
the fact that the sum of the steady state probabilities is always
equal to 1,

X5
i ¼ 0

Pi ¼ 1 ð6Þ

The steady state probability for state i, Pi, is the long-runprobability
that the system is in state i. Pi can also be interpreted as the mean
proportion of time the system is in state i.

The HEF at time t is equal to the visit frequency to state 0, from
any other state at time t [15].

HEFðtÞ ¼
X5
i ¼ 1

PiðtÞ � ai0 ð7Þ

This means that the HEF for the model in Fig. 3 is equal to

HEFðtÞ ¼ P1ðtÞ � ldeþP2ðtÞ � ldeþP3ðtÞ � lD ð8Þ

5. Applicability of the proposed model

This section demonstrates the applicability of the proposed
reliability performance model for low-demand as well as high-
demand mode of operation. First a scenario-based approach is
introduced to calculate the HEF. The accuracy of the HEF calculated
by using this scenario-based formula is investigated by comparing
it with standard formulas [6] for PFD (for low-demand SIS) and PFH
(for high-demand SIS). Thereafter, the HEF calculated by the
scenario-based formula is used as the benchmark to demonstrate
the applicability and accuracy of the Markov model. This is
illustrated through a case study of a pressure transmitter. The
transmitter is assumed to be an input subsystem of a SIS.

The relevant data is given in Table 4. The failure rates are from
the PDS data handbook [5]. Other parameters, such as repair and
restoration rates, are based on the authors’ judgment.

5.1. Calculation of the HEF by the scenario-based formula

For a single component (a 1oo1 configuration) the HEF can be
calculated from a scenario-based formula. Assume that no more
than one hazardous event can take place during a functional test
interval. For this simple system, we can exhaust the most likely
hazardous event scenarios. Three scenarios that may result in a
hazardous event are identified.

Assume that the system it put into operation at time t¼ 0. Let
the time until a DU-failure be denoted by TDU, the time until a
DD-failure by TDD, and the time until a demand by Tde. Further, let

Table 3
Markov transition rates.

Transition rate Description

ls Transition rate to safe state

ms Restoration rate

lde Demand rate

mde Demand duration rate

lDD DD-failure rate

mDD DD repair rate

lDU DU-failure rate

mDU DU repair time

lDð ¼ lDUþlDDÞ Dangerous failure rate

m Renewal rate
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~T de denote the demand duration and ~TDD the repair time of a
DD-failure.

� Scenario1: A DU-failure occurs at time t. The demand occurs
after the DU-failure, but before the next scheduled functional
test at time t. In this case, the probability of having a hazardous
event with scenario 1 (s1) is

Ps1 ¼ PrðTDUoTdertÞ ¼
Z t

0
lDUe�lDUtð1�e�ldeðt�tÞÞ dt ð9Þ

� Scenario2: A DD-failure occurs at time t. A demand occurs after
the DD-failure and before the failure is repaired. In this case,
the probability of having a hazardous event with scenario 2
(s2) becomes

Ps2 ¼ PrðTDDoTdeoTDDþ ~TDDrtÞ
¼
Z t

0
lDDe�lDDtPrðtoTdeotþ ~TDDrtÞ dt ð10Þ

where

PrðtoTdeotþ ~TDDrtÞ ¼
Z t�t

0
ð1�e�ldeuÞe�mDDu du ð11Þ

When the repair time is short, the mean time to repair a
DD-failure, tDD, can be used to calculate the approximate prob-
ability of having a demand when repairing a DD-failure, then

PrðtoTdeotþ ~TDDrtÞ � 1�e�ldetDD ð12Þ
� Scenario3: A demand occurs at time t. A dangerous failure

occurs during the demand, but before the end of demand. In
this case, the probability of having a hazardous event with
scenario 3 (s3) becomes

Ps3 ¼ PrðTdeoTDoTdeþ ~T dertÞ ¼
Z t

0
ldee�ldetPrðtoTDotþ ~T dertÞ dt

ð13Þ

where

PrðtoTDotþ ~T dertÞ ¼
Z t�t

0
ð1�e�lDuÞe�mdeu du ð14Þ

When the demand duration is short, the mean demand duration,
tde, can beused to calculate the approximate probability of having
a dangerous failure during a demand, then

PrðtoTDotþ ~T dertÞ � 1�e�lDtde ð15Þ

Since two or more of the three scenarios cannot occur at the
same time, they are disjoint, and the HEF can be calculated as:

HEF¼ Ps1þPs2þPs3
t ð16Þ

Remark. For scenario 3, there is no strict ‘‘upper limit’’ t if a
demand state is present at time t. If a demand state is present at
time t, the functional test has to be postponed. This approach is
slightly conservative due to the reason thatDU- andDD-failures are
treated independently.

5.2. The accuracy of the scenario-based formula

In the scenario-based approach, all possible scenarios are, in
principle, included, and theHEF calculated by (16) should therefore
be close to accurate.

The accuracy of the scenario-based formula is further verifiedby
comparing the result with the HEF calculated by standard formulas
for the PFD (in low-demand mode) and PFH (in very high-
demand mode).

5.2.1. Low-demand situation

When the demand rate is low, the HEF can be approximated by
the product of the PFD and the demand rate [10]. The PFD for a
single component is [6]

PFD¼ 1�e�lDtCE ð17Þ

where tCE is the average downtime after a dangerous failure, which
is given by

tCE ¼
lDU
lD

t
2
þMTTRDU

� �
þ lDD

lD
MTTRDD ð18Þ

For the demand rate once per ten years, the HEFs calculated from
the scenario-based formula and the standard PFD formula are given
in Table 5. It can be seen that the two approaches give almost the
same result, which indicates that the accuracy of the scenario-
based formula is acceptable for a low-demand SIS. More general
evidence of the accuracy of the scenario-based formula in the low-
demand mode can be found in Fig. 4, where the HEFs calculated
from the scenario-based formula and the PFD for demand rates up
to one demand per 1000 h are given. Fig. 4 shows that the HEF is
almost the same as the product of the PFD and the demand rate for
low demand rates, but when the demands become more frequent,
the difference starts to increase.

Table 4
System specifications.

Notation Value

lDD 3�10�7 per hour

lDU 5�10�7 per hour

lD 8�10�7 per hour

ls 5�10�7 per hour

t 6 months

Mean repair time (DU and DD) 8 h

Mean restoration time 1 day

Mean renewal time 7 days

Mean demand duration 12 min

Table 5
HEF calculated from the scenario-based formula and from a standard PFD formula

for one demand per ten years.

HEFPFD 1.2566�10�8 per hour

HEFscenario-based 1.2314�10�8 per hour
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Fig. 4. HEF as a function of the demand rate in low-demand mode.
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5.2.2. High-demand situation

When the demand rate is very high, the HEF can be approxi-
mated by the PFH, which for a single component is equal to the
dangerous failure rate. For a demand rate of one demand per hour,
the HEFs calculated from the scenario-based formula and from the
standard PFH formula [6] are given in Table 6. The two approaches
give similar results, which verifies the accuracy of the scenario-
based formula for very high demand rates. More general evidence
of the accuracy of the scenario-based formula in high demand
situation can be found in Fig. 5, where the HEFs calculated from the
scenario-based formula and the PFH for demand rates up to one
demand per hour are given. Fig. 5 shows that the HEF calculated by
the scenario-based formula is approaching the PFH as the demands
tends to be continuous, as discussed in the introduction.

The scenario-based formula gives accurate HEF estimation
when the demand rates are low and very high. The HEF calculated
by the scenario-based formula increaseswith the demand rate, this
is in accordance with what is expected. So, we may claim that it is
adequate to use the scenario-based formula as the benchmark to
assess the applicability and accuracy of the Markov model.

5.3. HEFs calculated by using the Markov model and the scenario-

based formula

For demand rates from one demand every 10 years to one
demand per hour, the HEF calculated by using the Markov model
and the HEF calculated by the scenario-based formula are pre-
sented in Fig. 6. The HEF from the Markov model is obtained by
solving Eqs. (3) and (8) in Matlab.

Fig. 6 shows that theMarkovmodel gives a good approximation
to the ‘‘scenario-based’’ HEF through the whole range of demand
rates considered. The ‘‘error’’ slightly increases as the demand rate
increases. however, the ‘‘error’’ is generally small throughout the
whole range with a maximum error less than 10�7 per hour. For
very high demand rates, the ‘‘error’’ starts to decrease. The HEFs
from the two approaches tend to converge at the end. On this basis,
the Markov model is claimed to give accurate results for demand
rates ranging from one demanded per 10 years to one demand of
per hour.

One concern may be that the Markov model gives ‘‘non-
conservative’’ results when the result from the scenario-based
formula is used as the benchmark. However, the scenario-based
approach gives a slightly conservative result itself, therefore one
cannot conclude that the Markov model gives non-conservative
results, but rather to conclude that themethod gives a result which
is fairly close to and at the non-conservative side of a good
conservative approximation—and the error is in the order of
10�7 per hour, which is rather small.

6. Concluding remarks

This article has given a thorough discussion of a number of
important modeling issues related to quantification of SIS relia-
bility performance, both for low-demand and high-demand SISs.
Issues like demand duration and verification of functionality by
functional testing, successful response to demands and spurious
activation are highlighted. The borderline between low-demand
and high-demand mode of operation is discussed.

A Markov model for a SIS element including the demand rate is
developed. Themodel can be used to calculate the hazardous event
frequency (HEF) for general demand rates, covering both low-
demand and high-demand mode of operation.

A scenario-based formula for theHEF is developed. The accuracy
of this formula is verified through comparison with the standard
formulas for PFD and PFH in IEC 61508. Thereafter the scenario-
based formula is used to check the applicability and accuracy of the
results obtained by using the Markov model.

It is concluded that the Markov model gives very accurate
results for a simple case study of a single pressure transmitter, both
for low-demand and high-demand mode. All the modeling issues
mentioned above can be illustrated by this simple case study, and
all the main results will also be applicable for a more complex
multi-component SIS. The detailed analysis of a multi-component
system will be more complex from a computational point of view,
and the main features of the analysis may easily disappear in the
computational details. At the same time, it would be of great
interest to study the effects of diagnostic testing, functional testing,
and correct response to demands for a more complex system. This
is therefore a topic for further research.
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Table 6
HEF calculated from the scenario-based formula and from a standard PFH formula

for one demand per hour.

HEFPFH 8�10�7 per hour

HEFscenario-based 7.9821�10�7 per hour
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Fig. 5. HEF as a function of the demand rate in high-demand mode.
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Abstract
Reliability estimates play a crucial role in decision making related to the design and operation of safety-instrumented sys-
tems. A safety-instrumented system is often a complex system whose performance is seldom fully understood. The
safety-instrumented system reliability estimation is influenced by several simplifications and assumptions, both about the
safety-instrumented system and its operating context, and therefore subject to uncertainty. If the decision makers are
not aware of the level of uncertainty, they may misinterpret the results and select a safety-instrumented system design
that is either too complex or too simple, or with an inadequate testing strategy, to provide the required risk reduction.
This article elucidates the uncertainties related to safety-instrumented system reliability estimation. The article is limited
to safety-instrumented systems that are operated in a low-demand mode, for which the probability of failure on demand
is the standard reliability measure. The uncertainty of the probability of failure on demand estimate is classified as com-
pleteness uncertainty, model uncertainty, and parameter uncertainty and each category is thoroughly discussed. It is
argued that the completeness uncertainty is the most important for safety-instrumented system reliability analyses, fol-
lowed by parameter and model uncertainty. It is further argued that uncertainty assessment should be an integrated part
of any safety-instrumented system reliability analysis, and that the analyst should communicate her judgment about the
uncertainty to the decision-makers as part of the analysis results.
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Introduction

Safety-instrumented systems (SISs) are used in many
industrial sectors to detect hazardous events and pre-
vent them from developing into accidents. Reliability
requirements for the safety-instrumented functions
(SIFs), that are performed by a SIS, shall, according to
IEC61508, be deduced from hazard and risk analyses.

A SIS generally consists of one or more input ele-
ments, one or more logic units, and one or more final
elements. A very simple SIS configuration is shown in
Figure 1. It should, however, be realized that the con-
figurations used in practical applications are often far
more complicated. A SIS is installed to protect a sys-
tem, which we will refer to as the equipment under con-
trol (EUC). The design, construction, implementation,
and operation of a SIS are subject to the requirements
in the generic standard IEC615081 and in application-
specific standards, such as IEC615112 for the process
industry, IEC615133 for the nuclear industry,

ISO262624 for the automobile industry, IEC622785 for
the railway industry, and IEC620616 for machinery
systems. The standards require that the SIS reliability
is calculated and give guidance on how this can be
done.

SIS reliability calculations are based on simplifica-
tions and assumptions about the system and its operat-
ing context, and the reliability values are therefore
subject to uncertainty. Without being aware of the level
of uncertainty, decision makers, such as SIS suppliers
and end-users, may make improper decisions regarding

Department of Production and Quality Engineering, Norwegian

University of Science and Technology, Trondheim, Norway

Corresponding author:

Marvin Rausand, Department of Production and Quality Engineering,

Norwegian University of Science and Technology, S.P. Andersens veg 5,

Trondheim, NO 7491, Norway.

Email: marvin.rausand@ntnu.no



system configuration, component selection, and testing
and maintenance strategies.

SIFs are classified according to how often they are
demanded and IEC615081 distinguish between low-
demand and high-demand SIFs. A low-demand SIF is
demanded less often than once per year and remains
dormant until it is activated. The first edition of
IEC61508 also referred to the proof test frequency in
the classification into high-demand and low-demand.
This requirement has been removed in the second edi-
tion, but the scientific community is still debating this
matter. Failures may occur and remain undetected until
a proof test is carried out. The reliability of a low-
demand SIF is measured by the average probability of
failure on demand (PFDavg) and this measure is used to
express the reliability requirement to the SIF. In this
article, reliability is used as a general term that is
synonymous to the term dependability.7 The reliability
of a system can, for example, be measured by its avail-
ability. The PFDavg is here a measure of the system’s
unavailability. It should be noted that several SIFs may
be implemented by the same SIS.

The IEC standards classify the reliability require-
ments into four safety integrity levels (SILs), as shown
in Table 1. To meet the reliability requirement of SIL
3, for example, the SIF must, on average, not fail more
than once per 1000 demands.

In addition to the quantitative requirements in
Table 1, the SIS must also meet several qualitative
requirements related to architectural constraints, safety
management, and so on. These requirements are not
discussed in this article; neither are reliability require-
ments to high-demand SIFs discussed.

Many authors8–11 discuss uncertainty in risk and
reliability analysis, but very few discuss aspects related
directly to SIS reliability, and these are mainly limited
to the uncertainty of input parameters.12–14 Other types

of uncertainty have not been addressed, even though
they may have a significant influence on the reliability
estimates. Janbu15 and Jin et al.16 are two of the few
who investigate the uncertainty related to SIF reliabil-
ity estimates from an overall perspective.

IEC 61508 and IEC 61511 give few requirements
that address uncertainty in decision making. The
standards add some conservatism to the reliability
estimation, by requiring that the failure rates data
used should have a confidence level of at least
70%.1,2 To meet this requirement, it is necessary to
consider the failure rate as a random variable L with
a probability distribution that describes our knowl-
edge/belief about the failure rate.17 The value lu that
is used in the calculations, must fulfill
Pr (L4lu)50:70, to have a 70% confidence level.
IEC 61508 also requires that a confidence level of at
least 90% shall be demonstrated on the reliability
estimates, in the selection of hardware architectures
for the so-called route ‘‘2H’’.

1 Some suppliers use
‘‘best estimates’’, but add conservatism by making
the SIL requirement more strict, such that compli-
ance with, for example, SIL 3, is only claimed when
PFDavg 40:7 � 10�3.

The PDS-method18 (PDS is the Norwegian abbrevia-
tion for ‘‘Reliability of computer-based safety systems’’
For more information, see http://www.sintef.no/PDS.)
extends the formulas in IEC61508 by introducing addi-
tional measures to account for factors that are often left
out in the SIF reliability calculations: (i) test indepen-
dent failures (TIFs) that may remain unrevealed owing
to limitations of the proof testing, and (ii) inclusion of
systematic failures in the failure rate estimates.

These efforts attempt to reduce/compensate the
uncertainty of SIS reliability estimates, but the scope is
rather limited. A thorough uncertainty assessment
approach for SIS reliability estimates seems to be
lacking.

Our point of departure is that we do not believe that
it is possible to quantify the uncertainty of a PFDavg

estimate in any objective way. The person most capable
of making judgments about the uncertainty is the ana-
lyst and they should communicate to the decision-mak-
ers their ‘‘degree of belief’’ about the uncertainty,
together with the results from the SIS reliability
analysis.

The objectives of this article are to elucidate the con-
cept of uncertainty in SIS reliability analysis and to
highlight problematic issues related to the three cate-
gories: completeness uncertainty, model uncertainty,
and parameter uncertainty. After having read the arti-
cle, we hope that the analyst will be in a better position
to judge and present their judgment about the uncer-
tainty of a PFDavg estimate.

The rest of this article is organized as follows.
‘Reliability calculation’ presents the various categories
of failures that may occur in a SIS, outlines the SIS
reliability analysis process, and lists the main simplifi-
cations and assumptions that are made. A brief

Table 1. SIL requirements for low-demand SIFs1

SIL PFDavg

1 510�2 to \ 10�1

2 510�3 to \ 10�2

3 510�4 to \ 10�3

4 510�5 to \ 10�4

PDFavg: average probability of failure on demand; SIL: safety integrity

level.

Figure 1. The main SIS elements.
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overview of the most common methods for SIS reliabil-
ity analysis is also given. ‘What is uncertainty?’ intro-
duces the concept of uncertainty and discusses the
classification of uncertainty with respect to SIS reliabil-
ity estimation. ‘Completeness uncertainty’ presents and
discusses main issues related to completeness uncer-
tainty. This is followed by ‘Model uncertainty’ and
‘Parameter Uncertainty’. Finally, concluding remarks
are given.

Reliability calculation

Reliability calculations are based on a number of
assumptions and simplifications, affecting the scope of
the analysis and the ability to represent physical and
operational properties of the components and the system.
One important assumption is that reliability is best calcu-
lated by the use of statistical models, rather than physics-
of-failure models. Statistical models express component
and system performance by the use of time-to-failure (or
repair) distributions. Parameters of the models need to
be assigned, and system reliability theory is used to
aggregate the information from these models into an
overall reliability estimate, such as the PFDavg.

Component failures

Failures of SIS elements may be classified as dangerous
and safe failures. Dangerous failures can be further split
into dangerous detected (DD) failures and dangerous
undetected (DU) failures. DD failures are revealed (almost
immediately) by diagnostic testing, while DU failures are
only revealed by proof testing or in real demands.

Many of the formulas used for SIS reliability calcula-
tion cover only DU failures, under the assumption that
DD failures have a negligible impact on the PFDavg.
This assumption may be realistic if the diagnostic test
interval is negligible and the EUC enters a safe state
while the DD failure is repaired. Omitting DD failures
when these assumptions are not fulfilled will lead to a
biased PFDavg value.

A safe failure is a failure that does not prevent the
execution of a SIF or leads to an unsafe state of the
EUC. A spurious failure of a SIS element, such as a
false alarm or a spurious valve closure, often takes the
EUC to a safe state, owing to ‘‘fail-safe’’ design princi-
ples. Still, safe failures may have some undesired effects,
such as downtime of the (production) system and exces-
sive stresses to SIS elements.

Failures of SIS elements, be it dangerous or safe, can
further be split into random hardware failures and sys-
tematic failures.

� A random hardware failure is a failure, occurring at
a random time, which results from one or more of
the possible degradation mechanisms in the
hardware.1

� A systematic failure is a failure, related in a deter-
ministic way to a certain cause, which can only be

eliminated by a modification of the design or of the
manufacturing process, operational procedures,
documentation, or other relevant factors.1

An example of a random hardware failures is a valve
that leaks owing to wear of the valve seat. An example
of a systematic failure is a gas detector that is installed
in an inappropriate location, for example close to a
fan, such that it is not able to detect a gas release. The
systematic failure is not easily detected during normal
operation or regular proof testing and diagnostic test-
ing. The probability of such failures is often very diffi-
cult to estimate.

A systematic failure is also called a functional failure,
i.e. a failure where the item is still able to operate, but
does not perform its specified function. A systematic
failure is not caused by physical degradation and is
therefore sometimes called a non-physical failure.

IEC 615081 requires only random hardware failures
to be considered in PFDavg calculations, while systema-
tic failures should be controlled and managed by a dedi-
cated safety management program. The main argument
for this approach is that systematic failures do not fol-
low the same failure processes as random hardware fail-
ures. In principle, a systematic failure is a non-recurring
event if the cause of failure is successfully identified and
corrected. The standard1 gives a number of require-
ments that shall reduce (or ideally prevent) the occur-
rence of systematic failures.

Several data collection exercises19,20 have indicated
that many SIS failures are systematic rather than ran-
dom hardware failures. Based on such data collections,
it is sometimes argued that also systematic failures,
when studied en bloc, can be considered as random
events as they tend to repeat themselves. Even if a sys-
tematic failure is corrected, similar types of failure seem
to reoccur. One example is that even if a calibration pro-
cedure is improved to avoid a particular type of failure,
the personnel may have established work habits that
does not prevent the failure to reoccur. Consequently,
two factors associated with the treatment of random
and systematic failures are of interest in the discussion
of uncertainty: (i) should or should not systematic fail-
ures be included in the SIS reliability estimation, and (ii)
if systematic failures are included, to what extent is the
assumption about their randomness adequate?

It may be remarked that the IEC 61508 approach will,
because of the exclusion of systematic failures, inevitably,
give a too-low and non-conservative value for the PFDavg.
Some of the systematic failures, however, are manifested
as common-cause failures (CCFs) and TIFs, which are
partly accounted for in the PFDavg calculation.

CCFs

A CCF is a failure, which is the result of one or more
events, causing concurrent failures of two or more sepa-
rate channels in a multiple channel system, leading to
system failure.1 CCFs may occur because redundant
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channels have components of the same type, or because
they have the same type of design deficiency or inade-
quate maintenance, or are located in the same area (and
therefore subject to the same exposure). In a SIS, where
redundancy is often introduced to enhance reliability, it
is important to cater for such failures and this is also a
well established practice. Related factors that create
uncertainty are linked to the modeling of CCFs and the
sparse access to data to support the models.

Test-independent failures

Proof testing is not always fully realistic, since a realis-
tic test may be dangerous or give excessive stresses to
the equipment. It is, for example, not relevant to fill a
production room with toxic gas to test a gas detector.
Instead a small amount of non-toxic gas is injected
directly into the detector through a test-pipe. Such a
test will reveal most DU failures, but some DU failures
may also pass the test and remain undetected. Such
failures are called TIF and were introduced as part of
the PDS-method.18 When a TIF is present, the system
will not be as-good-as-new after a proof test.

Analysis process

In most cases, a SIS is modeled as a series system of
three independent subsystems.

1. Input elements.
2. Logic solver.
3. Final elements.

Each subsystem is then analyzed separately.
Two different types of models are required:

Component models and system models. Component
models build on time-to-failure distributions and input
parameters, such as failure rate, test interval, mean test-
time, mean time to repair (MTTR), diagnostic coverage,
and proof test coverage. System models describe the
interactions between the various SIS elements within a
subsystem. Some models are static (e.g. reliability block
diagrams and fault trees), while others can describe
dynamic features (e.g. Markov models and Petri nets).
The models must again be supplemented by a suitable
CCF model (e.g. beta-factor or multiple beta-factor
model). A range of input parameters are required.

Assumptions and simplifications

All the models are subject to a number of assumptions
and simplifications. Typical basic assumptions are given
below (the assumptions may be slightly different for
individual cases). The impact of these assumptions on
the uncertainty need to be studied case by case.

� All elements have constant failure rates (l).
� All elements are proof tested at the same time at

regular proof test intervals (t).
� All failures are revealed by the test.

� The test time is negligible.
� The repair time of a failure revealed by a proof test

is negligible.
� After a test/repair, all elements are as-good-as-new.
� Common-cause failures can be adequately modeled

by the standard beta-factor model (b).
� No other types of dependency between elements are

relevant.
� DD failures are revealed immediately and a repair

action is immediately initiated.
� The system (EUC) is in a safe state when a DD fail-

ure is repaired.
� Safe failures are not considered.
� Systematic failures are not considered (but partly

included in the estimate of the b-factor).
� Human and organizational errors are not considered.
� Maintenance errors are disregarded.
� The SIS is not influenced by any factors outside

(rather limited) physical boundaries of the SIS.

Conflicting objectives

A supplier may sign a contract with an end-user (e.g.
an oil company) about a SIS for which a certain num-
ber of SIFs and associated SIL-requirements (e.g. SIL
3) have been specified with a basis in standards, such as
IEC61508. The supplier sometimes considers the job to
be accomplished when the PFDavg estimate is within
the constraints of the SIL requirement and the other
requirements in relation to SIL, such as architectural
constraints, have been met. The approximation formu-
las in IEC61508 disregard systematic failures, but
include the contribution from CCFs. This simplistic
approach fulfills the requirements in IEC61508, but
may not give a realistic PFDavg estimate (i.e. the
PFDavg that is later to be experienced in the opera-
tional phase). It can be argued that the avoidance of
systematic failures is mainly in the hands of the end-
user, since the end-user is often to ‘‘blame’’ for over-
looking key requirements (that would have impacted
the SIS design) and for introducing failures or not
revealing failures during operation and maintenance.
The supplier seldom aims towards a status as ‘‘world
champion’’ in PFDavg calculations, and from the sup-
plier’s perspective, it is of interest to fulfill the end-
user’s requirements as fast and cheap as possible.

On the other hand, the end-user is responsible for
the safety of the installation and should base decisions
on a realistic (and usually conservative) estimate of the
PFDavg. This will then require more realistic models
and a more careful examination of the SIFs and their
operating and environmental conditions.

What is uncertainty?

What do we mean by uncertainty?

Uncertainty is a common word in our daily parlance,
but is used with different meanings in different contexts.
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Related to reliability and risk assessments, the interpre-
tation of uncertainty is still debated.21,22 According to
our view, probabilities in risk and reliability assessment
must be interpreted as subjective probabilities. This also
applies for the PFDavg. We use the knowledge available
to select appropriate models and input parameters,
calculate a value for PFDavg, and call this value our
PFDavg estimate. In this process, we are aware that we
make a lot of simplifications and approximations
that will influence the PFDavg estimate and make our
estimate uncertain. As part of the SIS reliability analy-
sis, we should assess this uncertainty and communicate
our assessment to the decision maker. The objective of
the remaining part of this article is to give guidance to
analysts on issues to be aware of when assessing the
uncertainty of the PFDavg estimate.

Uncertainty may stem from two main causes, natural
variation and the lack of knowledge about the system or
process. These categories of uncertainty are referred to
as aleatory and epistemic uncertainty, respectively.10,23

� Aleatory uncertainty: uncertainty arising from or
associated with, the inherent, irreducible, and natu-
ral randomness of a system or process.

� Epistemic uncertainty: uncertainty owing to lack of
knowledge about the performance of a system or
process.

The epistemic uncertainty will be reduced when new
knowledge becomes available, while the aleatory uncer-
tainty cannot, in principle, be reduced.24 However, sev-
eral types of uncertainty that in the past were classified
as aleatory, are now considered to be epistemic, indi-
cating that the uncertainty classification is not fixed,
but may vary as fundamental understanding of natural
phenomena increases.25 Some authors therefore take
the stand that all uncertainty is epistemic.21,26 Despite
its limitations, the classification gives a conceptual allo-
cation of uncertainties into controllable and not so eas-
ily controllable categories.

How do we assess uncertainty?

Statistical models are used as a basis for estimating risk
and reliability parameters, for example, to determine the
frequency of accident scenarios in a probabilistic risk
assessment (PRA) and the reliability of a SIS. By using
statistical models for this purpose, we acknowledge the
existence of uncertainty.10 Epistemic uncertainty as a
source of uncertainty is related to how well our models
and data are able to assess the behavior of the system.
This uncertainty may be addressed by an additional pro-
cess, i.e. uncertainty assessment. In this article, we use
uncertainty assessment to account for the epistemic
uncertainty of SIS reliability.

Complexity

New generations of SISs are generally more complex
than previous generations. This is especially related to

the programmable parts (i.e. logic solvers and smart
sensors), the number of components involved, and the
interaction with other systems. The complexity makes it
difficult for the analyst to fully understand the behavior
of the system (both technical and operational), to iden-
tify all failure modes, and to establish adequate models.
This issue is addressed in IEC615081 where it is distin-
guished between type A and type B subsystems, where
type B subsystems are more complex and therefore need
more careful considerations.

Johansen and Rausand27 list a set of complexity
attributes related to (a) the physical system, and (b) the
operation of the system. These attributes can be used
to indicate the complexity and be a guide to the aware-
ness we should have related to complexity.

Uncertainty classification

The nuclear industry10 distinguishes between three
sources of epistemic uncertainty: completeness uncer-
tainty, model uncertainty, and parameter uncertainty.
The same categories are adopted in this article and each
of them is discussed in the following.

There is no clear cut borderline between the three
categories of uncertainty, and attempts to reduce
the uncertainty within one category may influence the
uncertainty in another category. For example, the
choice of a multi-parameter distribution instead of an
exponential distribution may reduce the model uncer-
tainty, but more parameter uncertainty may be intro-
duced. This is also the case with advanced CCF models.
The categorization is therefore pragmatic.

Completeness uncertainty

Completeness uncertainty is about factors that are not
properly included in the analysis. Failing to include all
relevant factors in the analysis will give an incorrect
estimate of the reliability, even if the data and model
selection is ‘‘perfect’’. We may distinguish between the
following.10

1. Known completeness uncertainty, which is owing to
factors that are known, but deliberately not
included. Reasons for exclusion may be lack of
understanding the limitations of the system in its
operating context, time or cost constraints, lack of
models, lack of data to support the models, or lack
of competence in using the models. The known
completeness uncertainty reflects assumptions and
simplifications that have been made in a trade-off
of costs, available resources, competence of ana-
lysts, and the state of knowledge about the system
and its operating environment. The number of
exclusions and their impacts (need to be assessed)
may be a measure of the level of uncertainty in a
SIS reliability estimate.

2. Unknown completeness uncertainty, which is owing
to factors that are not known or not identified.
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The factors are truly unknown, and are therefore
difficult to account for or make judgments about.
The unknown completeness is problematic, as its
contribution is invisible. However, indirect factors,
i.e. factors that may impact to what extent ‘‘we
don’t know’’, may give an indication of contribu-
tion. The use of new technology, or the use of
existing technology in new application areas may
suggest that the contribution from unknown com-
pleteness uncertainty is high compared with when
proven technology is used. The classification in
Table 2 of the newness of technology may here be
useful. In Table 2,28 the newness is classified in
four categories, ranging from 1 to 4, where 4 repre-
sents the most new and unfamiliar technology. The
SIS technology is developing fast, and new and
more advanced logic solvers and smart sensors are
launched and implemented at high pace.

Additional factors/issues that may influence the
(known and unknown) completeness uncertainty
include the following.

� Interactions with external systems: a SIS is inte-
grated in a bigger system (e.g. the process) and may
interact with the EUC and with other safety and
control systems. These interactions may influence
(enhance or reduce) the SIS reliability.

� Failure mechanisms that are not known and/or not
catered for: such failure mechanisms may be related
to stresses during operation and maintenance, and
to environmental conditions. Failure mechanisms
may also be forgotten owing to inadequate failure
analysis, e.g. as part of a FMECA.

� Side-effects of diagnostic testing: diagnostic testing is a
means to timely reveal dangerous failures, and thereby
increase the SIS reliability. Whether or not such a test-
ing leads to side-effects is seldom evaluated.

� Placement of input elements (e.g. sensors, transmit-
ters): installing input elements at places other than
where they should may expose the components to
different environmental stresses, and hence the
components may get a different reliability behavior.

� Testing and maintenance strategies: complex testing
and maintenance strategies are difficult to model in
SIS reliability analyses and are therefore simplified
in the calculations. This may increase the complete-
ness uncertainty.

� Human and organizational factors: several studies
have indicated that human and organizational fac-
tors are strongly influencing the SIS reliability,29,30

but such factors are usually not included in the
analyses.

Including these factors generally leads to a higher
PFDavg estimate, but the amount of PFDavg increases
the need to be assessed case by case.

Model uncertainty

Model uncertainty arises from the fact that any model,
conceptual or mathematical, will inevitably be a simpli-
fication of the reality it is designed to represent.22,24

Several authors have discussed the choice of models for
SIS reliability analysis and given recommendations.
One of the first articles with this purpose is Rouvroye
and Brombacher.31

Component models

Almost all SIS reliability analyses assume that the ele-
ments have constant failure rates. This assumption
implies that the elements do not show any deterioration
and that they are as-good-as-new as long as they are
functioning. This assumption may be adequate for elec-
tronic and some electrical items, and for mechanical
items that are regularly maintained and upgraded/
replaced if deterioration is revealed.

In some applications, such as in subsea oil and gas
production systems, the items are left alone for a long
time (e.g. 8 years) without any type of preventive main-
tenance. Some of these are mechanical items that are
exposed to sea water, high pressure, and a corrosive
environment. This indicates that the items will deterio-
rate with time and that the constant failure rate
assumption is not adequate. If, for example, the life dis-
tribution of a component is Weibull distributed with a
shape parameter that is greater than one, and we use a
constant failure rate model, we will over-estimate the
probability of failure (i.e. be conservative) in the first
part of the item’s life and under-estimate the probabil-
ity of failure in the last part of the item’s life. A dete-
riorating item will not be as-good-as-new after a
successful proof test.32 This problem is very seldom
catered for in SIS reliability analyses.

Component models must also take into consider-
ation issues related to testing and maintenance, such as

Table 2. The degree of newness of technology.28

Level of technology maturity

Experience with the operating condition Proven Limited field history or not used by company/user New or unproven

Previous experience 1 2 3
No experience by company/user 2 3 4
No industry experience 3 4 4
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the coverage of diagnostic tests, the coverage of proof
tests, the possible use of partial stroke testing of shut-
down valves,33 and several more.

System models and methods

Several methods are used to model the interactions
between SIS elements, and calculate PFDavg. The most
common are:

(a) simple approximation formulas;34

(b) IEC61508 approximation formulas;1

(c) the PDS method;18

(d) reliability block diagrams;
(e) fault tree analysis;
(f) Markov methods;
(g) Petri nets.35

These methods can be used to analyze both low-
demand and high-demand SIFs. The sequence in which
the methods are listed indicates their applicability to an
increasing system complexity. The first five methods
consider the SIS to be a static system without any
dynamic properties, while Markov methods and Petri
nets can incorporate some dynamic effects owing to
testing and maintenance.

It is often claimed36 that CCFs are more crucial for
the SIS reliability than independent element failures. It
is therefore important how CCFs are incorporated into
the methods. In some methods, we may choose among
various implicit CCF models,37 while other methods
come with a dedicated CCF model (the PDS method).
Some methods are mainly based on explicit modeling of
CCFs, rather than implicit. To choose the ‘‘best’’ CCF
model is a difficult task and the SIS analysts therefore
too often select the simplest possible model—the beta-
factor model. The beta-factor model is listed as an ade-
quate CCF model in IEC615081 and the choice of this
model is therefore compatible with the standard; and in
most cases, leads to conservative PFDavg estimates.

In most cases, other dependencies than CCFs are
not covered in the SIS reliability analyses. Among such
dependencies are cascading failures and negative depen-
dencies. A special challenge is related to modeling
dependencies that are partly within and partly between
SIS channels and modules. As discussed by Lundteigen
and Rausand,36 these dependencies can be an impor-
tant source of model uncertainty.

Dynamic effects may be related to phased mission,
the effect of DD failures and safe failures, and testing
procedures. An example of such a testing procedure is
to carry out a full proof test of similar channels each
time a DD failure is restored—either in addition to the
planned proof test or by postponing the planned proof
test.38 Another example is to supplement the proof test-
ing with regular inspections (e.g. once a week) where
some failure possibilities may be partly examined. The
inspection may, for example, involve moving a valve
slightly to check that it is not stuck.

Model selection

The most adequate model/method is determined by the
assumptions and simplifications. As long as the analyst
is competent and familiar with the different methods, it
does not matter very much if they choose the most sim-
ple method that fits the assumptions or they choose a
more advanced method. Liu et al.38 analyze the same
SIS with different methods and find that the reliability
estimates are similar. The approximation formulas give
the most conservative estimates and the conservative-
ness decreases with increasing method complexity—
which is expected since the complex methods are based
on more detailed modeling. Too few and simple sys-
tems are, however, analyzed to give any firm and gen-
eral conclusions. Rouvroye and Brombacher31 and
Rouvroye and van den Bliek39 find that different meth-
ods may result in different SILs. Their findings are in
conflict with the conclusion in Liu et al.38 and may be
caused by the differences in the level of complexity of
the systems that were studied.

The causes (assumptions and simplifications) of
model uncertainty are the same as for known complete-
ness uncertainty. It is, therefore, not obvious that
uncertainties can uniquely be classified as model uncer-
tainty or known completeness uncertainty. Some
sources, such as the PDS method,18 do not differentiate
between completeness uncertainty and model uncer-
tainty, but use the term model uncertainty to represent
both.

Model uncertainty has been studied by several
authors. Among these are Zio and Apostolakis40 and
Droguett and Mosleh.41 The model uncertainty issue is
not significant in SIS reliability analysis, as we account
for the uncertainty by the assumptions and simplifica-
tions (the main causes of model uncertainty) as part of
known completeness uncertainty.

Parameter uncertainty

Parameter uncertainty is related to uncertainty of the
parameter values used in the quantification.10 In the
current context, these parameters comprise component
failure rates, mean repair times, common-cause beta-
factors, test coverage factors, and so on. Failure rates
are available in data sources, such as OREDA19 and
Hauge and Onshus.20 (A survey of reliability data
sources is given on http://www.ntnu.edu/ross/info/
data.) Estimates of some of the other parameters may
be found in Hauge and Onshus,20 partly based on
expert judgment.

Several uncertainties are related to the provision of
input parameters, and we discuss some of these.

Failure rates

A SIS is often a vital safety barrier and is designed to
be highly reliable. Few failures are, therefore, expected
to occur even during a long operating period, and the
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failure rate estimates based on experience data become
rather uncertain. Another problem is that the failure
rates we find, for example, in OREDA,19 are based on
data from components that were installed several years
(often 10–15 years) before the data collection exercise
was terminated. Owing to the rapid technological devel-
opment of, for example, smart sensors, the failure rate
estimates may not at all represent the technology that
will be used in the new SIS.

The operational and environmental conditions of the
elements used in a new SIS are sometimes very different
from the conditions under which the data were col-
lected. For electronic components, this issue is handled
by the approach outlined in MIL-HDBK-217F.42 For
more complicated equipment, such as SIS elements, the
approach in MIL-HDBK-217F is too simple and we
have to use more advanced approaches, such as the one
described by Brissaud et al.43

OREDA19 and Hauge and Onshus20 are both based
on recorded maintenance actions. These data sources
will, therefore, not contain all safe failures, since some
of these can be reset without any formal maintenance
action.

Common cause failure rates

Very few data sources are available for CCF rates. The
only exception is for the nuclear power industry44 that
has established the International Common-Cause Data
Exchange database.45 The authors are not aware of
any similar initiative for any non-nuclear sector. CCF
rates are highly dependent on the physical conditions
and the operational and environmental conditions and
it is therefore difficult to claim that a CCF rate in one
installation will be similar to the CCF rate in another
installation.

IEC615081 has, therefore, chosen another approach
where the factor b of the beta-factor model is deter-
mined by a checklist in Part 6 of the standard. The
checklist is based on around 40 questions, is generic,
and is intended for all types of SIS. An immediate
observation is that the number of questions related to
human and organizational factors is low compared with
the importance of these factors. This issue is further dis-
cussed by Rahimi et al.29 Several other approaches may
be used to determine the b-factor. Among these is the
unified partial method (UPM) that has been extended
by using influence diagrams.46

Test coverage

Several authors33,47–49 have discussed possible
approaches to determine the test coverage—mainly
based on expert judgment. These efforts are, however,
limited and little guidance is available on how to esti-
mate the test coverage factor, both for diagnostic and
proof testing, and the values used in many SIS reliabil-
ity analyses are therefore, at best, guesstimates.

Uncertainty propagation

Parameter uncertainty is the most studied type of uncer-
tainty22,24,50 and is usually analyzed by Monte Carlo
simulation. An uncertainty distribution—sometimes
expressed by an error factor—is given for the main
parameters, a value from each distribution is chosen at
random and an output value is generated. This is
repeated a high number of times and we say that the
uncertainty is propagated through the model to give an
uncertainty distribution of the output measure of inter-
est (in our case the PFDavg).

51 Such a simulation mod-
ule is a separate module of many computer programs
for reliability analysis, such as fault tree analysis. Some
authors also use an approach based on fuzzy number
arithmetic52 and Dempster-Shafer theory53 to propa-
gate the uncertainty of the parameters.

Concluding remarks

This article has discussed a number of issues related to
the uncertainty of the PFDavg estimate of a SIS operat-
ing in low-demand mode. The authors believe that this
type of discussion is important, as it may frame future
development of methods and models for treating uncer-
tainty in reliability analyses. It is argued that the three
perspectives of uncertainty contributions, the complete-
ness, model, and parameter uncertainty, are very useful
for this purpose and a thorough discussion about the
possible ways to treat them in the analyses have been
made for each category. It is argued that uncertainty
assessment is an important part of a SIS reliability
analysis and that the uncertainty should be communi-
cated to the relevant decision makers together with the
PFDavg estimate.

The persons who are best capable of assessing the
uncertainty is the analyst who knows how the various
attributes of the SIS are implemented in the models and
in the analyses. The authors do not believe that it is
possible to present any objective estimate of the uncer-
tainty, so the analyst has to judge the different contri-
butors to the uncertainty and present their best ‘‘degree
of belief’’.

Of the three categories, completeness uncertainty is
judged to be the most important. We realize that para-
meter uncertainty may lead to different SIL ratings,
but the decision maker normally has a good picture of
this category of uncertainty. It is those we do not know
that we fail to consider in decision making. This com-
pleteness category is split into two sub-categories;
known and unknown completeness uncertainty. For
the known completeness uncertainty, the analyst is
aware of the relevant issues and has deliberately
excluded them from the analysis. This type of simplifi-
cations can, in some cases, be compensated for by using
conservative approximations. For the unknown com-
pleteness uncertainty, the analyst does not know what
they do not know and does not include. This uncer-
tainty is most prevalent for new technology and partly
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known technology in new areas of application. The
analyst may be warned about the possible uncertainty
by using the classification of newness proposed by Det
Norske Veritas (DNV).28

Model uncertainty is linked to the completeness
uncertainty. The choice of model/method is strongly
dependent on the assumptions and simplifications
made. If the analyst is competent and familiar with the
limitations of the various methods, it is not very impor-
tant which method they choose, as long as the method
fits to the assumptions made.

As for parameter uncertainty, the technological
development in the SIS area is running fast, and the
failure rate estimates in data sources may, therefore, be
outdated. Another issue is that the failure rate esti-
mates may not fit to the current operational context
and we may need to extrapolate the estimates from the
known to the new application, this is also discussed in
Sallak et al.12 An approach for this purpose is outlined
by Brissaud et al.43

An important area of further research is to develop
new frameworks and methods that integrate uncertainty
assessment with SIS reliability analyses. Current
approaches that focus primarily on the treatment of
parameter uncertainty are not sufficient, as they do not
include other, and sometimes more important, sources of
uncertainty. In fact, current approaches in the literature
may be a false comfort and give inappropriate guidance
in the decision making about SIS design and risk man-
agement of facilities in which the SIS is installed.
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Abstract –This paper studies the organizational influences on 
failure rates. The failure rate model in MIL-HDBK-217F is 
extended to include organizational factors, and a Bayesian 
approach is proposed to quantify the organizational influ-
ences. In contrast to most explicit organizational models, this 
paper focuses on extracting information from failure rate 
data. The proposed Bayesian approach, however, can be 
combined with the explicit models by using their results as 
prior information, hence obtain more rigorous result. A 
numerical example is included to illustrate the model and 
approach. 

 
Keywords – Bayesian, organizational influences, failure 

rate, quantification 
 

I. INTRODUCTION 
 
 Reliability plays an important role in system design 
and development, especially for safety-related systems 
whose failure may lead to harm to human, the environ-
ment, and material and financial assets. A central concept 
in reliability-related activities is the failure rate (function) 
that describes the “proneness to failure” of an item1 [1]. 
 The failure rate of an item is determined by the inher-
ent reliability of the item and its operating conditions. The 
operating conditions may be further divided into the envi-
ronmental/physical (E/P) conditions and organizational 
conditions. The E/P conditions cover the “hard” factors 
such as temperature, humidity, and pressure that influence 
the failure rate. The organizational conditions (also called 
organizational factors) cover the “soft” factors that influ-
ence the failure rate. The organizational influences may 
be direct or indirect through meta-level factors such as 
maintenance strategy, personnel training, and working 
practice. In this paper, we consider the overall organiza-
tional influences, therefore, these meta-level factors are 
not explicitly treated, instead they are implicitly included 
as part of the organizational factors. 
 In reliability design, a recurring problem is the lack of 
quality data for failure rate estimation. The failure data 
obtained from laboratory tests are valid only for the labor-
atory testing E/P conditions and contain no information 
about the organizational influences. Models have been 
proposed to include the plant-specific E/P conditions to 
the laboratory failure data, and then estimate the plant-
specific failure rate [15], but these models do not account 
for the organizational influences. Failure data from actual 

                                                           
1 Item is used to denote any component, subsystem, or system that can 
be considered as an entity. 

operation of the items (i.e., field data) cover both the 
plant-specific E/P conditions and the organizational influ-
ences, but the amount of data is usually too limited to 
draw direct relationships between the organizational fac-
tors and the failure rate. Instead, failure rates for industry 
average E/P conditions and organizational influences are 
usually provided, i.e., generic failure rates (GFRs) found 
in databases such as the offshore reliability database 
OREDA [2]. 
 Many authors have investigated organizational influ-
ences on system performance and accidents. These studies 
range from qualitative accident investigation to quantita-
tive methods to include human and organizational factors 
into probabilistic safety assessment. Some of the well-
known qualitative models are the Swiss cheese model [3], 
the risk management framework proposed by Rasmussen 
[4] and the STAMP model [5]. Several models have been 
proposed to quantify organizational influences. Early 
examples are MACHINE [6], WPAM [7], the SAM [8] 
framework and the -factor model [9]. In the Accidental 
Risk Assessment Methodology for IndustrieS (ARAMIS) 
[10] project, methodology was developed to quantify 
organizational influences on reliability of safety barriers. 
Øien [11] used a risk influence diagram to quantify organ-
izational influences on leak events on offshore installa-
tions and suggested using indicators to monitor these 
influences. This line of research is followed by BORA 
[12] and the Risk OMT [13] project. For a more extensive 
review on organizational factors, the readers are referred 
to [14]. 
 Despite the research efforts related to organizational 
factors, no quantification model has received wide popu-
larity and acceptance. Most of the models focus on incor-
porating organizational influences to the risk analysis; few 
have directly considered the organizational influences on 
the failure rates. At the same time, it is argued that the 
failure rate of the same item varies significantly between 
organizations [14]. Therefore quantification of organiza-
tional influences on failure rates is a field that calls for 
more research. 
 A pertinent question is: Does an organization have 
the same influences on the failure rates of different items? 
Since the organization culture, the management style, and 
the operating philosophy for an organization are not likely 
to be significantly different for different items, it is rea-
sonable to assume that an organization has similar influ-
ences on the failure rate of different items [9]. 
 Many industries collect field data and estimate GFRs 
for relevant items. One example is the offshore oil and gas 
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industry that provides GFRs through the OREDA project 
[2]. On the other hand, organizations that have been in 
business for a while usually have their own failure data-
bases containing organization-specific failure rates 
(OFRs). When these organizations design new systems, 
they prefer the OFRs to the GFRs, since the OFRs are 
more relevant to their organizations. These organizations 
may have problems when using items that they have no or 
little experience with, because the OFRs are either una-
vailable or have a big uncertainty due to the limited expe-
rience. In these cases the GFRs are usually resorted to. 
 A relevant question is now whether it is possible to 
combine the assessed organizational factors and the GFR 
to obtain an OFR for an item that the organization does 
not have much experience with. 
 The objective of this paper is to develop an approach 
to extract information from those items that an organiza-
tion has experience with, and use this information to as-
sess the organizational influences on failure rates. The 
assessment result is used to account for the organizational 
influences on failure rates of items that the organization 
has no or limited experience with. Therefore, the organi-
zation can use OFR even when the items are new to it. 
 The rest of this paper is organized as follows: Section 
II extends the failure rate model in MIL-HDBK-217F to 
include organizational factors. In section III, A Bayesian 
approach is proposed to estimate parameters in the model 
presented in section II. An example is given in section IV 
to illustrate the proposed approach. And this leads to the 
final discussion and conclusions in section V. 
 

II. FAILURE RATE MODEL 
 
 MIL-HDBK-217F [15] has been the main reliability 
data source for electronic components. In MIL-HDBK-
217F it is assumed that the failure rate ij  of item i  is 
constant and can be specified as: 

ij i j j j j j j j
b T A R S C Q E  (1) 

where i
b  is the baseline failure rate of item i , under a set 

of standard conditions and the actual conditions j  are 
taken into account as  factors that modify the baseline 
failure rate. For further details about this model, see [15]. 

 In the MIL-HDBK-217F model, most of the  fac-
tors are related to the E/P conditions and little or no atten-
tion is given to the organizational factors. To account for 
the organizational influences on the failure rate, extension 
is proposed based on the following assumptions: 

 The organizational influences on the failure rate 
do not change with the item or the E/P conditions. 

 The organization’s E/P conditions are the same 
as the industry average, but the E/P conditions 
for different items do not need to be the same. 

 Constant failure rate is assumed for the item and 
the organizational factor influences the failure 
rate in a linear way. 

 The main E/P conditions are beyond the control 
of the specific organizational. A possible influ-
ence of organization factors on E/P conditions is 
not considered in the model. 

 For an item i , operated by organization A, under E/P 
conditions j , the failure rate can be written as 

ij i j A
A b EP o  (2) 

where j
EP  is a (combined) modification factor represent-

ing the actual E/P conditions, and A
o  is a modification 

factor representing the actual organizational factors. 
 When item i  is operated under industry average E/P 
conditions by organization A, the failure rate i

A  can be 
derived from (2) 

i i A
A b EP o  (3) 

where EP represents influences from the industry aver-
age E/P conditions. 
 Considering organization B hands over the operation 
of item i  to organization A without changing the E/P 
conditions (i.e., only the organizational factors are 
changed), we may define the relative organizational influ-
ence factor between A and B as 

A
o

AB B
o

r  (4) 

 By combining (2) and (3), the following relationships 
can be derived 

i j A i Aij i
b EP o b EP oA A

AB i j B ij i B i
b EP o B b EP o B

r  (5) 

 When ABr  and i
B  ( ij

B ) are known, i
A  ( ij

A ) can be 
calculated. 
 We now assume that a specific organization is operat-
ing an item i  under industry average E/P conditions. 
Based on (5), the GFR ( i

G ) and OFR ( i
A ) for the item 

have the following relationship 

i
A

A i
G

r  (6) 

 Since the organizational influences on the failure rate 
do not change with the item or the E/P conditions, Ar is 
the same for all (most) of the items in the organization. 
An organization normally has a high number of items, 
thus a significant amount of data can be used to estimate 
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Ar . The factor Ar  is assumed to be a random variable 
with a probability distribution. 
 

III. BAYESIAN QUANTIFICATION APPROACH 
 
 In this section, a Bayesian approach is used to quanti-
fy the organizational influences on the failure rate. This 
approach makes use of the GFRs from a generic data 
source, such as OREDA, and the OFRs from the organiza-
tion in question. Details about Bayesian reliability are not 
given, and readers may consult [16] for more information. 
The general format of the approach is as follows. 

( | ) ( )
( | )

( | ) ( )
A

A A
A

A A A
dr

L E r rr E
L E r r dr

 (7) 

where ( )Ar  is the prior distribution of Ar , ( | )AL E r is 
the likelihood of the evidence (i.e., observed data) E
when Ar  is given, ( | )Ar E  is the posterior distribution of 

Ar  given the evidence E . 
 
A. Data 
 Two types of data are needed in the proposed ap-
proach: 

 The OFRs of the n  items that are operated by 

organization A, i
A , 1,2,...,i n . 

 The GFRs of the items corresponding to the 

OFRs, i.e., i
G , 1,2,...,i n . 

 The OFRs and GFRs are estimates of their true val-
ues, such that applying (6) to the OFRs and GFRs results 
in a set of i

Ar -s instead of the true values ( Ar ). The i
Ar -s 

are evidences that can be used to estimate Ar . 
 Remark: There may be cases where an item is so 
specific to the organization and no GRF for this item is 
available, or the organization average E/P conditions for 
an item is different from the industry average E/P condi-
tions. In either case, the information contained in the OFR 
of that item cannot be used in the estimation of Ar . 
 
B. Prior distribution 
 The estimation of Ar  may be based on statistical 
failure rate data or explicit modeling of how an organiza-
tion influences the failure rate. The Bayesian approach 
may combine both. The failure rate data are used as evi-
dences and the results from explicit modeling can serve as 
prior information. For example, in the -factor model, 
an approach to quantify organizational influences is pro-
posed. With this approach, the -factor can be estimated. 
By simple re-parameterization, the -factor can be con-
verted to Ar  and used as prior for Bayesian updating. For 
details of the -factor model, see [9]. 

 There is no restriction on the form of the prior distri-
bution and both nonparametric and parametric distribu-
tions can be used. The parametric distributions are nor-
mally easier to handle in calculation. To simplify the 
matter, in this paper a lognormal distribution is used as 
the prior: 0 0( , )Ar LN 0( ,0LN( ,0 . 

2
0

2
0

(ln ln )
21

0 0 0( ) ( | , ) ( 2 )
Ar

A A Ar r r e  (8) 

where 0 50( )Ar  and 
2

0
2

0Ar e  are the medium and 
mean of the prior distribution, respectively. The variance 
for Ar is 

2
02 1var( ) ( )A Ar r e . 

 
C. Likelihood function and posterior distribution 
 To obtain the posterior distribution, an important step 
is to determine the likelihood function. The evidences are

1 2[ , ,..., ]n
A A AE r r r . We follow an approach proposed by 

Mosleh and Apostolakis [17]. Assuming that the different 
pieces of evidence are independent, we get 

1 2

1 2

1

( | ) ( , ,..., | )

( | ) ( | )... ( | ) ( | )

n
A A A A A

n
n i

A A A A A A A A
i

L E r L r r r r

L r r L r r L r r L r r
 (9) 

 Using the multiplicative error model of [17], the like-
lihood of observing i

Ar , given Ar  is the true value, follows 
a lognormal distribution. 

2

2
(ln ln )

1 2( | ) ( | ) ( 2 )
i
A Ar r

i i
A A A A AL r r LN r r r e  (10) 

where  is the strength of or the confidence in the evi-
dences, and should be specified by the analysts. 
 Inserting (10) into (9), and then (8) and (9) into (7) 
yields 

2

2

2
0

2
0

(ln ln )
1 2

1

(ln ln )
21

0

1( | ) ( ( 2 ) )

( 2 )

i
A A

A

r rn

A A
i

r

A

r E r e
k

r e

 (11) 

where k  is the normalization factor 
2

2

2
0

2
0

(ln ln )
1 2

1

(ln ln )
21

0

( ( 2 ) )

( 2 )

i
A A

A

A

r rn

A
ir

r

A A

k r e

r e dr

 

 When the lognormal prior paired with a lognormal 
likelihood function, the posterior is also a lognormal dis-
tribution. In the case of one piece of evidence, i.e., 1n , 
we have 

1 2
1

2
1

(ln ln )
21

1 1 1( | ) ( | , ) ( 2 )
Ar

A A Ar E LN r r e  (12) 
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where: 1
1 0 ( )a b

Ar , 
2

2 2
0

a ,
2

0
2 2

0
b

 

, 

and 1
2 21

1 1( )
a

. 

 Equation (12) can be easily generalized to accommo-
date n  pieces of evidence by using the equation iterative-
ly. 
 Given the prior distribution parameters 0 , 0  and 
the confidence in the evidences , the posterior distribu-
tion of Ar can be obtained. Thus, the OFR distribution can 
be estimated by combining Ar  and the GFR of the item of 
interests according to (6). It is worth to notice that the 
resulting OFR is a failure rate based on industry average 
E/P conditions, for the plant-specific failure rate, the OFR 
needs to be further modified according to the plant-
specific E/P conditions. 
 

IV. NUMERICAL EXAMPLE 
 
 An example using hypothetical data is presented in 
this section to illustrate the proposed model and approach. 
Ten item samples are assumed for this example.  
 

TABLE I. 

GFR, OFR AND i
Ar  FOR THE EXAMPLE. 

i  1 2 3 4 5 
i
G

610  166.07 354.71 20.52 72.61 13.64 
i
A

610  64.77 258.94 8.41 30.50 15.96 
i
Ar  0.39 0.73 0.41 0.42 1.17 

 
i  6 7 8 9 10 

i
G

610  24.450 113.47 0.970 6.790 2.810 

i
A

610  33.25 103.26 5.22 5.02 1.24 

i
Ar  1.36 0.91 5.38 0.74 0.44 

 
 The GFRs, see the second row of Table I, are from 
OREDA [2] for 10 random items. The OFRs of organiza-
tion A for the same items are assumed and listed in the 
third row of Table 1. The i

Ar -s are calculated according to 
(6) and given in the fourth row of Table 1. Further assume 
a lognormal prior, 0 0( , )Ar LN 0( ,0LN( ,,0  with 0 1, 0 0.6 . 

 is set to 5 to represent a relatively low confidence in 
the evidences. 
 Suppose organization A does not have experience 
with one type of pressure transmitter, we show how to 
estimate failure rate of this type of pressure transmitter 
when it is operated by A. Suppose the GFR of the pres-
sure transmitter has a lognormal distribution [18] with a 
median equal to 73 10  per hour and an error factor 
equal to 2. We have 7(3 10 ,0.421)PT

G LN(3 1LN (see [1] for 
equations to convert error factor to lognormal parameter). 

 Applying (12) 10 iterations for the data in Table 1 
yields posterior distribution, (0.9608,0.9478)Ar LN(0.96LN . 
The prior and posterior distributions are plotted in Fig. 1. 
 The PT

A  can be calculated using (6). Since both PT
G  

and Ar are given as probability distribution, the distribu-

tion of PT
A is calculated using Monte Carlo simulation. 

The results are shown in Fig. 2. The median OFR of the 
pressure transmitter, when operated by A, is 72.88 10
per hour, with a standard deviation 76.88 10 . 

 
Fig. 1. Prior and posterior distribution of Ar . 

 
Fig. 2. Organization A specific failure rate of the pressure transmitter. 

 
V. DISCUSSION AND CONCLUSIONS 

 
 In this paper, the MIL-HDBK-217F failure rate mod-
el is extended to include the organizational factors and a 
Bayesian approach is proposed to quantify the organiza-
tional influences on failure rate. Compared with most 
studies that attempt to explicitly model organizational 
influences, our approach is to extract information from the 
failure rate data. At the same time, the results from other 
explicit models can be included as prior information in the 
proposed approach. Hence, the proposed approach can be 
combined with other models to make maximum use of the 
available information for failure rate estimation. 
 It is worth pointing out that when designing a new 
system, the available data are usually GFRs, and using the 
proposed model will lead to OFRs. Both GFRs and OFRs 
are based on the industry average E/P conditions. To 
obtain the plant specific failure rate, the OFRs need to be 
further modified by considering the specific E/P condi-
tions.  
 In addition, it is assumed that organizational influ-
ences on failure rate do not change with the items within 
the organization. This may not always be true. The main 
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organizational influences affect failure rates through op-
eration and maintenance, so items frequent operated and 
maintained are less influenced by the organizational factor 
than those that are not. To cope with this issue, we may 
categorize items according to the organizational influ-
ences, and estimate separate factors for each category. 
 The model and approach in this paper are proposed 
for individual organizations. In some industries significant 
differences in terms of failure rates exist among sub-
organizations within a big organization. Take offshore 
petroleum industry as an example, different failure rates 
may be observed for the same item in different offshore 
installations within an oil company. This is because instal-
lations have their local cultures, work practices and opera-
tion philosophy etc. This issue can be accommodated by 
extending the proposed model to sub-organizations: Using 
sub-OFRs and OFRs to replace OFRs and GFRs in the 
original model, respectively. The only requirement is that 
the sub-organizations and the organization have the same 
average E/P conditions. And it is noticed that at the sub-
organization level less failure rate data are available. 
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