
Marine Autonomous Exploration using a
Lidar

Einar Skiftestad Ueland

Marine Technology

Supervisor: Roger Skjetne, IMT
Co-supervisor: Petter Norgren, IMT

Hans-Martin Heyn, IMT
Andreas Reason Dahl, IMT

Department of Marine Technology

Submission date: June 2016

Norwegian University of Science and Technology

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Einar Skiftestad Ueland

Field of study: Marine control engineering

Thesis title (Norwegian): Marin autonom utforsking ved bruk av Lidar sensor

Thesis title (English): Marine autonomous exploration using a Lidar sensor

Background

A highly maneuverable and robust multi-purpose marine model platform, called the “C/S Saucer”, has

been developed for laboratory experiments the NTNU Marine Cybernetics Laboratory (MC-Lab). The

intended use of this multi-purpose vehicle is for students to design, implement, and test a variety of

nonlinear guidance, control, and estimation algorithms for specified experimental case studies.

The objective of this thesis is to use a Lidar sensor on the vehicle to scan the nearby unknown

environment around the vehicle. Then this shall be used to autonomously survey and map a defined

surface area for obstacles. When the entire area has been surveyed and a corresponding digital map has

been created, it is possible to find optimal routes through the area. This shall all be done autonomously

without intervention from a human operator.

Work description
1. Perform a background and literature review to provide information and relevant references on:

 2D Lidar sensors and how these have been applied to maneuvering in unknown terrains.

 Unmanned surface vessels.

 Autonomous mapping and path planning.

 MC-Lab and the C/S Saucer model.

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the

background study and project tasks.

2. Modify the control system on the C/S Saucer, so that the system can utilize the Lidar for mapping

and guidance. Develop and interface the corresponding payload system with the Lidar sensor to the

control system.

3. Develop an autonomous guidance algorithm, interfaced to the Lidar sensor, that commands the C/S

Saucer vessel to perform mapping of the terrain within defined boundaries of an area. Investigate

methods and algorithms for path planning between locations specified by the mapping system.

Provide references on the methods that are applied.

4. Develop a function that online visualizes the exploration process on the operator computer, and that

allows for interaction by letting the user toggle between autonomous exploration and path planning

to a specified location on the map.

5. Develop necessary control and observer algorithms for the C/S Saucer, that makes the vessel track

the reference path provided by the autonomous guidance system.

6. Test the implemented system in the MC-Lab to verify that the system is working. Present and

discuss the results.

 NTNU Faculty of Engineering Science and Technology

 Norwegian University of Science and Technology Department of Marine Technology

2

Tentatively:

7. Develop a simulation model of the autonomous system, and simulate the system. Present and

discuss the results.

8. Propose and implement several autonomous guidance strategies for mapping the terrain. Compare

and contrast their results.

Guidelines

The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor,

described topics may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work.

Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the

various steps in the deduction.

The report shall be organized in a logical structure to give a clear exposition of background, results,

assessments, and conclusions. The text should be brief and to the point, with a clear language. The report

shall be written in English (preferably US) and contain the following elements: Title page, abstract,

acknowledgements, thesis specification, list of symbols and acronyms, table of contents, introduction and

background, problem formulations, scope, and delimitations, main body with derivations/developments and

results, conclusions with recommendations for further work, references, and optional appendices. All

figures, tables, and equations shall be numerated. The original contribution of the candidate and material

taken from other sources shall be clearly identified. Work from other sources shall be properly

acknowledged using quotations and a Harvard citation style (e.g. natbib Latex package). The work is

expected to be conducted in an honest and ethical manner, without any sort of plagiarism and misconduct.

Such practice is taken very seriously by the university and will have consequences. NTNU can use the

results freely in research and teaching by proper referencing, unless otherwise agreed upon.

The thesis shall be submitted with a printed and electronic copy to the main supervisor, each copy signed by

the candidate. The final revised version of this thesis description must be included. The report must be

submitted according to NTNU procedures. Computer code, pictures, videos, data series, and a PDF version

of the report shall be included electronically with all submitted versions.

Start date: 15 January, 2016 Due date: As specified by the administration.

Supervisor: Roger Skjetne

Co-advisor(s): Andreas Reason Dahl

Trondheim, 10.06.2016

Roger Skjetne (Supervisor)

Marine Autonomous Exploration using a
Lidar

Einar Ueland

June 2016

MASTER THESIS
Department of Marine Technology

Norwegian University of Science and Technology

Supervisor: Prof. Roger Skjetne
Co-supervisor: Andreas Reason Dahl

Abstract

Autonomous exploration by the use of lidars on wheeled vehicles has been success-
fully performed in a number of scenarios. Yet, it is hard, if not impossible to find
similar examples where marine surface vessels perform autonomous exploration
by the use of lidars. The theory and methods developed for land-based surface
vehicles have served as an inspiration for the development of the system seen in
this thesis, where they are adapted to a marine control system.

This thesis considers the implementation of a lidar on a model-scale vessel, and
the design of a control system that makes the vessel able to perform autonomous
exploration of a small-scale marine environment. The completion of this system
has involved the development of an autonomous system that merges exploration
strategies, path planner, SLAM algorithms, motion controller, and a strategy for
generating controller setpoints.

The experimental platform utilized in this project is the CS Saucer, a model-scale
vessel built for testing in the Marine Cybernetics Laboratory at NTNU. Due to its
circular form, the vessel should be able to respond fast and flexible to commanded
control inputs, in any direction. These properties make it suited for autonomous
exploration which involves a series of relatively rapid course changes.

The resulting system is demonstrated through both simulations and experiments.
The individual elements of the system are all shown to function as desired, and in
conclusion, and the set objectives are satisfactorily completed.

Trondheim, June 30, 2016

Einar Ueland

i

Acknowledgement

I would like to thank my supervisor Prof. Roger Skjetne for introducing me to
the CS Saucer. He has provided me with feedback and support during the project
period, and it was his idea to install the lidar on the vessel.

I would also like to thank my co-supervisor Andreas Reason Dahl. He has been
supportive and provided detailed follow-up during the whole project period. This
includes assistance in the Marine Cybernetics Laboratory and numerous fruitful
discussions.

My classmate Rotem Sharoni, who has written a separate thesis on the control of
an inverted pendulum by the use of the CS Saucer (Sharoni, 2016) has also been
of great help, and should be thanked. He has in particular been involved with the
electrical wiring of components on the CS Saucer.

Andreas Viggen and Stian Sandøy, two fellow students working in the Marine
Cybernetics Laboratory also deserves a big thank. They are writing separate theses
on the implementation and subsequent utilization of a Robot Operating System
(ROS) based system on an ROV. They started their work with ROS prior to this
project and have shared their experiences on ROS. Their help proved valuable as
the ROS was implemented to the CS Saucer.

Senior engineer Torgeir Wahl, who maintains and organizes activities in the Marine
Cybernetics Laboratory has been facilitating the author’s work in the laboratory
and deserves a thank as well.

I would finally like to thank the open source community of ROS, which has pro-
vided open source algorithms and packages vital for the success of this thesis. In
particular, thanks should be offered to Mr. Stefan Kohlbrecher and his team at
Technische Universität Darmstadt, who developed the Hector-SLAM algorithm,
and published it in ROS under an open license.

ii

Summary

This thesis reviews the complete design of a control system on a marine surface ves-
sel, capable of autonomous exploration in small-scale marine environments. This
involves the development of strategies for map exploration, path planning, navi-
gation, and motion control. Further, the thesis describes how these components
are merged into one autonomous system.

The experimental platform utilized in this project is the CS Saucer, a model-scale
vessel built for testing in the Marine Cybernetics Laboratory at NTNU. The vessel
has been extensively upgraded during this project. This includes the installation of
new hardware and software, and significant improvements in the vessels capabilities
of track following.

The system is installed on the Robot Operating System, a flexible platform with
a large open-source community. This platform has made it possible to implement
tools familiar within the robotics community such as algorithms for performing
simultaneous localization and mapping.

Two strategies for exploration are considered in the thesis, where the Frontier
Based Exploration strategy is the preferred one. In this strategy the vessel always
moves to the edges between known and unknown area.

A version of the A* search algorithm has been implemented, responsible for plan-
ning paths to locations within the vessels environment. This algorithm is im-
plemented such that node connections may span more than one cell, and with a
scheme for weighting cells such that the vessel keeps a distance from walls. The
generated paths are in general found to be satisfying.

A velocity control law that generates controller setpoints for the motion controller
based on planned path and distance to nearby objects has been introduced to
the system. The software components responsible for this operation iterates much
faster than desired paths are recalculated. In this manner, the system is able to
generate a steady stream of setpoints for the motion controller.

The resulting system has been tested through simulations, and subsequently veri-
fied in experiments performed in a basin facility. The experiments are well docu-
mented and are presented in a separate chapter of the thesis. A video demonstrat-
ing the successful experiments is referenced in the main body of the thesis. An
interface where the operator can interrupt the exploration process and direct the
vessel to any position in the explored map has also been created and successfully
tested.

iii

Sammendrag

Denne avhandlingen gjennomg̊ar designet av et kontrolsystem p̊a et marint over-
flatefartøy, i stand til å gjennomføre autonom utforsking i et småskala marint
omr̊ade. Dette innebærer utvikling av strategier for utforsking, korteste vei al-
goritmer, navigasjon, og bevegelseskontroll. Videre beskriver oppgaven hvordan
disse komponentene er satt sammen til et autonomt system.

Systemet er installert p̊a Robot Operating System, en fleksibel plattform med et
stort bilbliotek av tilgjengelig åpen kildekode. Denne plattformen har gjort det
mulig å implementere kjente verktøy innenfor robotikk, slik som algoritmer for
utføring av samtidig lokalisering og kartlegging av fartøyet i sine omgivelser.

To strategier for utforskning har vært vurdert, hvor Frontier-basert utforskning er
den strategien som har blitt foretrukket. Denne strategien innebærer at fartøyet
alltid beveger seg til omr̊ader som befinner seg i overgangen mellom kjent og ukjent
omr̊ade.

En versjon av A* søkealgoritme, ansvarlig for ruteplanlegging til lokalisasjoner i
kartet er implementert til systemet. Denne algoritmen er implementert slik at in-
dividuelle noder kan forbindes med noder mer enn celle unna, og med et en strategi
for å vekte celler, slik at fartøyet holder en avstand fra hindringer i sjøen. Rutene
som blir generert med denne algoritmen virker til å være tilfredsstillende.

En hastighetskontroll lov som genererer setpunkt for bevegelseskontrolleren basert
p̊a b̊ade planlagt rute og avstand til nærliggende objekter har blitt introdusert til
systemet. Denne komponenten itererer mye raskere enn hva nye ruter blir planlagt,
og genererer dermed en jevn strøm av oppdaterte setpunkter.

Det resulterende systemet har blitt testet ved simuleringer, og senere blitt verifisert
gjennom eksperimenter utført i et basseng. Forsøkene er godt dokumentert og er
presentert i et eget kapittel i avhandlingen. En video som viser de vellykkede
forsøkene er referert i hoveddelen av oppgaven. Videre har et brukergrensesnitt,
hvor operatøren kan avbryte utforskingen, ved å dirigere fartøyet til en posisjon i
det kjente kartet har ogs̊a blitt implementert, og testet med suksess.

iv

Contents

Abstract . i
Acknowledgement . ii
Summary . iii
List of Abbreviations . viii
Nomenclature . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 3

1.2.1 Autonomous Mapping . 3
1.2.2 Map Representation . 3
1.2.3 Simultaneous Localization and Mapping 4
1.2.4 The Path Planning Problem 4
1.2.5 Exploration Strategies . 5
1.2.6 Unmanned Surface Vessels 8
1.2.7 Lidars . 9

1.3 Objectives and Problem Formulation 12
1.4 Scope and Delimitations . 13
1.5 Thesis Contributions . 14

2 Experimental Platform: CS Saucer 15
2.1 Background . 15

2.1.1 Original setup . 16
2.1.2 Environment of Operation 16

2.2 Control System Redesign . 18
2.2.1 Motivation and Background 18
2.2.2 Software Architecture . 21
2.2.3 Hardware Architecture . 22

3 Modelling and Identification 27
3.1 Reference Frames . 27

v

3.1.1 The Basin-Relative Reference Frame 27
3.1.2 Body-Fixed Reference Frame 28
3.1.3 Transformation from Hector-SLAM Reference Frame to Basin-

Relative Reference frame . 29
3.1.4 Transformation Between Vessel Reference Frames 29

3.2 Equation of Motion . 31
3.3 Mapping Actuator Input to Thrust Force 33

3.3.1 Background . 33
3.3.2 Experimental Setup . 33
3.3.3 Mapping Results . 35

4 Guidance Navigation and Control 36
4.1 Motion Control System . 37

4.1.1 PD-Controller . 37
4.1.2 Reference Model . 38
4.1.3 Thrust Allocation . 40
4.1.4 Force Saturations . 41
4.1.5 Observer Design . 42

4.2 Processing of Map . 45
4.2.1 Map Generation . 45
4.2.2 Online Map Processing . 46

4.3 Guidance And Navigation . 49
4.3.1 Exploration Strategies . 49
4.3.2 Path Planner . 55
4.3.3 Velocity Control Law . 68

4.4 Operator Interaction . 71
4.4.1 Interactive Map Window . 71
4.4.2 Parameter Setting . 73

4.5 Software Architecture, Overview . 75

5 Simulations 76
5.1 Simulated Nodes . 76

5.1.1 Mapping Simulator Node . 76
5.1.2 Vessel Simulator Node . 78

5.2 Simulations Performed . 80
5.3 Simulator Discussion . 84

5.3.1 About Simulator . 84
5.3.2 Simulator Versus Real System 84
5.3.3 Analysis of Simulation Performed 85

6 Experimental Results 86

vi

6.1 Tools for Post Processing of Data 86
6.1.1 Recording of Data . 86
6.1.2 Animation Tool . 87

6.2 Experiments . 89
6.2.1 Experiment-1 . 89
6.2.2 Experiment-2 . 90

6.3 Discussion . 94

7 Conclusions 95

8 Further work 97

Bibliography 1

Appendix A Electronic Attachments I
A.1 Parameter Generation Files . I
A.2 ROS Nodes that are Launched During Deployment II

A.2.1 Exploration Pathplanner node II
A.2.2 Path2SetPoint node . III
A.2.3 Scan2SetPointDist . III
A.2.4 Hector2VesselPos . III
A.2.5 MotionController . III
A.2.6 Arduino Code . IV
A.2.7 Hector-SLAM nodes . IV
A.2.8 RPLidar node . IV
A.2.9 ROS Serial node . IV

A.3 Simulator Nodes . V
A.3.1 Vessel Simulator node . V
A.3.2 Mapping Simulator node . V

A.4 Launch Files . V
A.5 Other . VI

A.5.1 Bag Postprocessing script VI
A.5.2 Astar animation generation file VI
A.5.3 Real time pacer . VI

A.6 Raw Data for Mapping Actuator Input To Force Vector VI

Appendix B Software Set-Up and Installation VII
B.1 Installing ROS and UBUNTU . IX

B.1.1 Ubuntu and ROS on your personal computer IX
B.1.2 Ubuntu and ROS on your single board computer (RP2) . . . IX

B.2 Getting started with ROS . X

vii

B.3 Communicating between Raspberry Pi 2 and computer XI
B.3.1 Arduino on ROS . XII

B.4 RP lidar and Hector-SLAM in ROS XII

Appendix C Launch Manual XV
C.1 Deploy vessel for autonomous exploration XV
C.2 Perform simulations . XVIII

Appendix D ROS Architecture Overview XIX

List of Figures

1.1 Gap navigation tree method . 7
1.2 Examples of Marine Surface Vessels 8
1.3 2D lidar scanning an object . 9
1.4 Example of USVs installed with 2D-lidars 10
1.5 Example on use of lidars for map generation 11

2.1 The CS Saucer . 15
2.2 Original setup of the CS Saucer . 16
2.3 The Marine Cybernetics Laboratory 17
2.4 ROS publisher/subscriber architecture 19
2.5 Signal flow on vessel in the ROS architecture 22
2.6 Signal and power flow between hardware components on the system 23

3.1 The CS Saucer and reference frames 28
3.2 Lid placement on the CS Saucer . 29
3.3 CS Saucer in the basin, rigged for actuator/force testing 34
3.4 Schematic overview of CS Saucer in the basin, rigged for actuator/-

force testing . 34
3.5 Mapping between actuator input and force 35

4.1 Control loop of the implemented system 36
4.2 Implemented reference model . 39
4.3 Behaviour of reference model for a time-series of reference positions 39
4.4 Position and orientation of the thrusters 40
4.5 Nonlinear passive observer . 43
4.6 Map Visualization . 45
4.7 Map processing and path generation stages 48
4.8 Frontier-based simulated exploration stages 50
4.9 Gap identification . 52
4.10 Examination of Gaps . 53
4.11 Gap-based simulated exploration stages 54
4.12 Heuristic value of nodes in example map 56

ix

4.13 Path planer comparison: open and closed nodes 57
4.14 A* search algorithm applied to multiple goal nodes 58
4.15 Node connections using different connecting-distances 59
4.16 Comparison of path found using different connecting-distances . . . 60
4.17 Chosen path to global exploration goal using different weigths, wd . . . 61
4.18 Planned path in the weighted grid 64
4.19 Cost of moving from one node to another in the weighted costmap. 65
4.20 Planned path using different weighting strategies 65
4.21 Screen shot of video showing implemented path planner strategies . 67
4.22 Generation of setpoint on planned path 69
4.23 Relationship between distance to setpoint and distance to objects . 70
4.24 Use of the interactive map . 72
4.25 Control Panel, Exploration Node 73
4.26 Node/topic interactions in the implemented system 75

5.1 Node/topic interactions during simulations 77
5.2 Lidar emulator . 78
5.3 Simulation-1, Frontier-Based Exploration strategy 81
5.4 Simulation-2, Gap-based exploration strategy 82
5.5 Simulation-3, Exploration toward exploration goal 83

6.1 Snapshots of animation tool . 88
6.2 Laboratory setup in Experiment-1 89
6.3 Explored map of the basin, Experiment-1 90
6.4 Snapshots from Experiment-2 . 91
6.5 Vessel speed, Experiment-2 . 92
6.6 Screenshot of video showing Experiment-2 93

C.1 Wiring diagram of the Arduino Mega XVII

D.1 ROS system architecture . XXI

List of Tables

2.1 Pin connection overview of the Arduino MEGA installed on the vessel 24

4.1 Parameters that are adjustable by operator during operations . . . 74

D.1 Nodes in the system explained . XIX
D.2 Topics in the system explained . XX

List of Abbreviations

2D/3D. 2-Dimensional/3-Dimensional.

CS: “CyberShip”. Prefix used for all the model vessels in the MC Lab.

GNC: Guidance Navigation and Control. System that process sensor data, and
controls the movement of the craft.

HIL Hardware In the Loop. Simulation technique used to test systems in real
time, where the control system is run on the same hardware as the experiments
it simulates.

NED North-East-Down. Coordinate system defined relative to the earth’s ellip-
soid.

NI: National Instruments. Producer of virtual instrumentation software and
automated test equipment.

NTNU: “Norges Tekniske og Naturvitenskaplige Universitet”, Norwegian Uni-
versity of Science and Technology.

RPM Revolutions Per Minute. A measure of the frequency of rotation.

PWM Pulse-Width Modulation. Commonly used to control the power supply
to electric motors.

ROS: Robot Operating System. Collection of software frameworks for robot
software development.

SLAM: Simultaneous Localization and Mapping. The problem of creating and
updating a map of the unknown environment, while simultaneously determining
the objects position within it

SIL: Software-In-the-Loop. Simulation technique used to simulate systems. For
software-evaluation.

USB Universal Serial Bus. Industry standard for communication protocols.

USV Unmanned Surface Vessel. Surface vessels that operate on the water surface
without an operator on the vessels itself.

xii

Nomenclature

dbot Diameter of vessel at bottom of hull
dtop Diameter of vessel at top of hull
MRB Rigid body mass and inertia matrix
MA Added mass matrix
D Linear damping matrix
D(ν) Non-linear damping matrix (Contains Linear Components)
CRB Rigid body Coriolis matrix
CA(ν) Hydrodynamic Coriolis matrix
ggg(ηηη) Restoring force matrix
τττ Thrust vector representing body-fixed forces.
η Position and attitude
ν Linear velocities
∆ψrel Angle between Basin-relative and Basin-fixed reference frame.
ν Linear velocities
ψ Heading of vessel
R Rotation matrix
vvvb Vector in the Body-fixed Frame
vvvs Vector in Basin-relative frame
upwm Actuator input
ηηηd Desired position and attitude
η̂ηη Observer estimated position and attitude
ν̂νν Observer estimated velocities
ν̂νν Desired velocities
ωωω Eigenfrequency of mass-damper-spring system
Satupper Upper saturations of velocity
Satlower Lower saturations of velocity
ζ Dampening ratio
rt Radius from center of origin to thrusters
αk Angular position of the kth thruster.
fffk Local force vector of the kth thrusters
lll Position vector of individual thruster
T Thrust allocation matrix
τττ k Body-fixed forces from the kth thruster.
Kp Gain matrix for proportional term in PD controller
Kd Gain matrix for derivative term in PD controller
X Commanded force in surge
Y Commanded force in sway
Z Commanded force in yaw

xiii

Fmax Max magnitude of force vector
Tmax Max momentum
bbb Bias term
T Time constant related to bias term
Kk Tunable gain for injection terms in observer model
s Node number s
g(s) Cost of path from start node to node s
h(s) Heuristic value. Estimate on cheapest path to goal from node s
f(s) Estimate on total cost to reach goal via node s.
sf Frontier cell sf
g’(sf) Extra cost of reaching frontier cell sf .
wd Weight on distance between frontier and exploration goal
dgoal(sf) Euclidean distance from frontier to exploration goal
w(s) Weight on node s
gAB Cost of traversing the direct connection between node A and node B
dAB Euclidian distance between node A and B.
dmin Shortest distance that to an object, as recognized by the lidar.
dsf The Euclidean distance from the vessels position to the frontier-cell sf .
dobj The Euclidian distance from node s to the closest occupied cell.

xiv

Chapter 1

Introduction

1.1 Motivation

Lidars are used for mapping and surveying within a wide array of fields, such
as geology, seismology, and cartography. Within the field of robotics, the lidar
can be utilized for locating and mapping the robot and its environment. With
this information, the robot can navigate precisely relative to its environment and
autonomously perform various operations. An example of a situation where this
capability might be useful is for robots operating in disaster areas where they may
be able to find and help human beings that are trapped.

The use of wheeled robots applying lidars to explore unknown environment is well
documented. For marine surface vessels, it is hard to find projects that apply simi-
lar techniques. Thus, the apparent uniqueness of this projects is a large motivating
factor in and of itself.

As the following examples illustrate, there exist several applications where a ves-
sel’s ability to autonomously explore and locate itself within a marine environment
could be an advantage:

• The vessel could operate on a fish farm. Due to its mapping capabilities, it
would be able to transverse and maneuver between buoys and cages while
performing operations.

• The vessel could be coupled to an underwater vehicle that could use its
position for localization. The vessel could simultaneously provide a means
of communication between the underwater vessels and drones or satellites.

• Similar methods could be used for safely parking smaller vessels in crowded

1

CHAPTER 1. INTRODUCTION

harbors.

• The localization properties could be an advantage for vessels performing
operations around marine structures, and that require precise positioning
relative to nearby structures.

However, the usage of lidars on vessels operating in the open sea, cannot be ex-
pected to function as well as in the controlled laboratory environment. Challenges
such as weather protection, roll and pitch affecting the lidar scan, and objects
not being vertical, smooth walls need to be assessed before applying it to the
mentioned examples. Even so, the establishment of a marine vessel capable of
operating autonomously in the laboratory is the first step towards being able to
utilize lidars for autonomous operations at sea.

Even if the use of lidars on marine vessels today is limited, many vessels are
installed with radars, which can be seen as an analog to lidars. It is, therefore,
the authors belief that the strategies developed for navigation and path-finding in
this thesis are relevant, also on vessels operating with the use of global positioning
systems and radars.

2

1.2. Background

1.2 Background

1.2.1 Autonomous Mapping

Robots are increasingly being used to perform mapping missions in a wide array of
fields such as within seabed mapping, space exploration, underground mine explo-
ration and mapping of hazardous areas. Common to these is that the environment
is not entirely known a priory. The robots need to handle the unknown environ-
ment, obstacle avoidance and exploration strategies to fulfill their missions. Also,
global positioning systems are not always reliable, meaning that the robots need
to be able to locate themselves based on what they sense.

In order to explore and interact with the environment, it is vital that the robot
has a means of sensing the environment. Common types of sensors include radars,
sonars, lidars and vision systems based on digital cameras.

In addition to an appropriate range sensor, in order to map unknown areas au-
tonomously, the robots need to be able to perform the following four competen-
cies:

• To build a map, while simultaneously locating itself within it. This is gen-
erally described as the SLAM problem.

• To evaluate which locations it should move to in order to fulfill its mapping
objective.

• To plan obstacle-free paths to desired locations.

• To follow the planned path based on sensed data and inputs to its actuators.

1.2.2 Map Representation

The maps used in this thesis are represented as probabilistic occupancy grids, a
data structure where the area that the vessel operates in is discretized into a grid.
Each cell in the grid is represented by a probability for being occupied. The grid
is also characterized by a given grid size and resolution. Occupancy grids of this
form is a convenient form to represent detailed maps and was first introduced by
Moravec and Elfes (1985).

3

CHAPTER 1. INTRODUCTION

1.2.3 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is the problem of creating and
updating a map of the unknown environment, while simultaneously determining
the objects position within it.

There exist a wide array of algorithms that can apply data clouds from range
scanners to performs SLAM. In this thesis, an existing software package is utilized
to perform SLAM of the vessel. For this reason, the mathematical description of
the SLAM problem is not presented in further details.

For a more detailed discussion on the SLAM problem, this thesis instead refers
to the pioneering work on SLAM by Leonard and Durrant-Whyte (1991), and the
work by Mullane et al. (2011) which discuss strategies and common algorithms for
solving the problem.

1.2.4 The Path Planning Problem

The path planning problem as assessed in this thesis is the task of finding an
efficient and collision-free trajectory from a start location to a goal location in a
map. In order to map an unknown area, a robot needs to apply mapping schemes
that involve a series of steps where the robot moves strategically between loca-
tions in its environment. This means that the path planning problem needs to be
assessed.

The classic approach to solving the path planning problem is to apply graph theory.
In this approach, one applies mathematical structures to set up a network of
connections representing paths between nodes in the map. In this context, each
node represents a discrete position in the map. These mathematical structures are
usually referred to as cost maps.

The cost maps are typically built by identifying neighboring nodes that can reach
each other in an obstacle free and straight path. Each of these connections is
characterized by an estimate of the cost of traversing it.

Before cost maps can be constructed, nodes need to be generated and placed in
the map. The probabilistic roadmap planner as described by Kavraki et al. (1996)
is a popular method that generates nodes at random locations in the occupancy
grids. Geraerts and Overmars (2004) provides further discussion of this approach
and similar variants.

The strategy of letting each cell in the occupancy grid represent a node in the
graph structure used in this thesis. The connections to neighboring nodes are now

4

1.2. Background

very simple to asses. The drawback of this method is that one quickly gets a
large amount of nodes, which increases the computer processing demands on the
system.

By combining methods of constructing cost maps and shortest path search algo-
rithms that utilize these cost maps, one gets path planners that can determine
efficient paths between a starting configuration and goal of a robot.

Cormen (2009, Part VI), gives a comprehensive introduction to graph theory and
presents common algorithms for finding the shortest path the graph structures.
Popular algorithms include Dijkstra’s algorithm (Dijkstra, 1959) , the A* algorithm
(Hart et al., 1968), the Bellman-Ford algorithm (Ford, 1956), the D* algorithm
(Stentz, 1994), and the Floyd-Warshall algorithm (Floyd, 1962).

1.2.5 Exploration Strategies

In this section, the two exploration strategies that have been implemented are
introduced based on how they are described in the literature.

Aside from these, notable exploration strategies not reviewed include the Infor-
mation gain exploration strategy (Stachniss et al., 2005) and the Feature-based
exploration strategy (Newman et al., 2003).

1.2.5.1 Frontier-Based Exploration

In this approach, as proposed by Yamauchi (1997) the robot should always move
to frontiers (edges) between explored and unexplored map. The method theorizes
that by operating in this manner, the robot can map new territory rapidly.

The method is recognized for being relatively easy to implement, for its reliability,
and for being relatively efficient. Simmons et al. (2000) extend the idea of frontier-
based exploration to teams of robots working together, splitting frontiers among
each other, while at the same time minimizing search overlaps. In the literature,
it is further customary to group adjacent frontiers cells into sections where each
section is considered a separate frontier.

1.2.5.2 Gap Navigation Tree Exploration

This approach, introduced by Tovar et al. (2004), is based on the robot identify-
ing discontinuities in its field of vision. These discontinuities typically represent

5

CHAPTER 1. INTRODUCTION

corners or doorways and are in the literature labeled as gaps. The idea is that by
moving to these gaps, the robot efficiently gains new information from its environ-
ment.

The method applies the Gap navigation tree, which is a graph structure that keeps
track of discovered gaps and their properties. Specifically, the Gap navigation tree
keeps track of which gap that preceded any new gap. Thus, a children/parent
structure over identified gaps is generated. The algorithm further applies this
structure during exploration to decide in what order it should explore identified
gaps.

The algorithm applies the following main rules for maintaining and editing the
Gap navigation tree:

1. If a gap disappears while the robot is examining another gap, it is deleted.

2. If a new gap appears while investigating another gap it is added as the child
of the gap that is being investigated.

3. Two gaps that are children of the same gap and covers the same area when
investigated are deemed redundant. The two gaps are subsequently merged.

An example by Nasir and Elnagar (2015) that illustrates how a simulated robot
acts using the algorithm to explore a given map is included in Figure 1.1. The
blue area in this figure is analog to what a 360-degree lidar installed on the robot
will cover, given sufficient range of the lidar.

The example involves the following steps:

Event (a): Three discontinuities are at this point detected by the robot. This
results in the identification of three new gaps.

Event (b): Gap a is examined. At this stage, five new gaps are identified. At the
same time, the robot merges the gaps a and b because it recognizes that they are
children of the same gap and covers the same area.

Event (c): The robot investigates the first children of a. At this point gap a.1
and a.2 are merged, and the gap a.4 is completely within the explored area and is
deleted.

Event (d): The robot approaches the next unexamined children of a, namely a.3.
While examining this gap, a.5 and c are completely within the visibility range and
deleted. There are at this point no more nodes to investigate, and the mapping is
complete.

6

1.2. Background

Figure 1.1: Simulation using the Gap navigation tree method. Courtesy of Nasir and
Elnagar (2015) .

7

CHAPTER 1. INTRODUCTION

1.2.6 Unmanned Surface Vessels

Unmanned surface vessels (USV) operates on the water surface without the use
of an operator on the vessel. The vessel type has not yet had the same level
attention as unmanned crafts operating underwater, on land, or in the air (e.g.
ROVs, autonomous cars, and drones). Still, the usage of USVs is a field in de-
velopment where there currently is conducted a notable amount of research. One
such research project is MUNIN (2016), a European research project perform-
ing a feasibility study on autonomous unmanned marine systems. According to
MUNIN, expected future increase of transport volumes at sea, combined with a
trend of slower steaming speeds will increase the future potential for autonomous
vessels.

Even though the current use of USVs still is quite limited, there already exists
several successful applications. Currently, one of their most prominent areas for
use is within the field of oceanography where they are valuable for conducting
exploration missions and collecting weather information. A notable example of
such a vessel is the Wave Glider by Liquid-Robotics 2015, as seen in Figure 1.2a,
which is entirely powered by wave and solar energy.

Several military uses can also be found, where applications include mine and anti-
submarine warfare. An example of such a vehicle is the American Fleet-class
unmanned surface vessel seen in Figure 1.2b. Other applications include vessels
for surveillance or measurements and a number of experimental and academic
vessels.

Note that the term robot, as applied in this thesis refer to the general description
of autonomous crafts and thus also includes USVs.

(a) The Wave Glider USV.
Courtesy of Liquid Robotics.

(b) Fleet-class USV ,
Courtesy of Naval-technology (n.d.).

Figure 1.2: Examples of Marine Surface vessels

8

1.2. Background

1.2.7 Lidars

A lidar is a remote sensing device that measures the distance to nearby targets
by illuminating its environment with a laser, and analyzing the reflected light.
The lidar functions by emitting a laser pulse that is reflected by the object it
reaches. The returning signal is sampled by vision acquisition embedded in the
lidar. The lidar measures the time that the light uses to return to it, and applies
this information to produce a point cloud that can be utilized for mapping and
localization.

Lidars are recognized for high accuracy, allowing for fast data acquisition and for
being independent of ambient light. Figure 1.3 illustrates how the 2D lidar to be
installed on the vessel emits a laser pulse that is reflected by a wall and sampled
by vision acquisition in the lidar. This allows the system to sense its environment
in the 2D horizontal plane.

In addition to being applied to a wide array of research projects, lidars have been
applied in various consumer products such as the Neato Vacuum-Cleaner (Neato-
Robotics, n.d.).

Figure 1.3: Working principles of a 2D lidar illustrated with the RPlidar. Courtesy of
Robotshop (2015) .

9

CHAPTER 1. INTRODUCTION

(a) Courtesy of Woo et al. (2014) (b) Courtesy of Kohlbrecher
et al. (2011)

Figure 1.4: Example of USVs installed with 2D-lidars

1.2.7.1 Lidars on Marine Vessels

The implementation of lidars on marine surface vessels has been performed before,
but most often by the use of 3D lidars, such as described by Leedekerken et al.
(2014). Notable use of 2D lidar on marine vessels can be found in the international
autonomous surface vehicle contest, Maritime Robot X. One example of a USV
that participated in this contest by Woo et al. (2014), describes the vessel seen in
Figure 2.1a. Another example of the use of lidars on marine vessel is the Hector-
SLAM project (Kohlbrecher et al., 2011) which mounted a lidar on a USV as can
be seen in Figure 2.1b.

Though lidars have not been extensively used on marine vessels, it is quite common
for these vessels to be installed with radars or sonars. This equipment relies on
technologies similar to that of the lidar and can be seen as a full-scale analog to the
lidar applied in this thesis. The main difference between the three technologies lies
in what type of signal they emit and sample. Where the lidar emits and samples
light signals, the sonar, and radar apply sound and radio waves respectively.

1.2.7.2 Lidars and SLAM

An analog to the marine surface vessel studied in this thesis is ground vehicles
where 2D lidars have been utilized extensively. In particular, many sources describe
mapping by the use of lidars on wheeled robots implemented with the Robot
Operating System (ROS) and open source software.

One such popular open-source package that performs SLAM by the use of lidars

10

1.2. Background

(a) Robots used for map exploration in the Robcup 2015 (b) Corresponding map generated of
the environment

Figure 1.5: Map generation by the use of Hector-SLAM in competition. Courtesy of
Kohlbrecher et al. (2014b)

is the Hector-SLAM package. Kohlbrecher et al. (2014a) provide a short review of
the capabilities and motivation of the package.

In the Rescue Robot Leauge (Rescue-Robot-League,n.d.), a competition where
robots operate in simulated disaster zones, the Hector-SLAM package has been ap-
plied with great success. Figure 1.5a displays team Technische Universität Darm-
stadt robots during this competition and Figure 1.5b displays the generated map
in the same competition.

Other popular SLAM packages in ROS include the GMapping package (Gerkey,
2015). Unlike the Hector-SLAM package, this package requires odometry data,
meaning a measure of the distance traveled by the vessel. Odometry data can
be related to the rotations of wheels, and is thus simple to obtain for wheeled
robots. On the marine vessel used in this thesis, however, odometry data is not
available.

Since the Hector-SLAM package is popular, well tested and does not require odom-
etry data, this is the package that has been chosen to perform SLAM on the
implemented system

11

CHAPTER 1. INTRODUCTION

1.3 Objectives and Problem Formulation

The overall problem the thesis aim at answering is the following:

• Given the installation of a lidar on the unmanned surface vessel CS Saucer,
how should a guidance navigation and control system be designed, making
the vessel capable efficient and autonomous exploration?

The above problem formulation includes assessing relevant topics such as explo-
ration strategies, path planning, motion control, user interface and how to mesh
the individual components into one efficient system.

In order to provide a comprehensive answer to this problem, the following main
objectives have been formulated:

• Implement a system on the CS Saucer that makes the vessel able to au-
tonomously explore a small-scale marine environment (without operator in-
teraction). The finished vessel should be able to plan paths and navigate
within the explored map. This includes creating an interface where the user
can specify desired destinations in the generated map.

• Investigate which control system, path planners and exploration strategies
that are suitable for this kind of operation. In particular ideas and techniques
used developed for land-based exploration and should be investigated and
adapted to the marine environment.

For the purpose of accomplishing the above objectives, the sub-objectives attached
in the very top of this thesis have been formulated in cooperation with the super-
visor.

12

1.4. Scope and Delimitations

1.4 Scope and Delimitations

The thesis begins by performing a background and literature review on relevant
methods and theory. If suitable, more than one solution to a particular problem
are considered, and arguments are presented for which one that is preferred for the
system. The thesis further describes how these methods are implemented, before
the thesis finish off by reviewing the final system through both simulations and
experiments.

The thesis revolves around the experimental platform the CS Saucer, where the
system has been implemented. For this reason, considerable time is spent describ-
ing the vessel and how the system is implemented on it. The thesis attempts to
explain each topic in general before it relates it to the implementation on the CS
Saucer. The goal is both that the thesis be a contribution of interest on the inves-
tigated topics, and be designed in such a manner that future students may utilize
it to continue the work on the vessel seamlessly.

The following address some of the limitations of the resulting system:

• The performed tests (and thus results) is limited to a controlled environment
that satisfies the following properties:

– There are no waves or current present during testing

– Walls and hinders are in most cases solid and vertical.

– The performed operations is small-scale, meaning that there are always
some objects within the range of the lidar.

For this reason, it is expected that the resulting system needs to be further
developed in order for it to function at the open sea.

• In the implemented system, there is an external computer connected to the
vessel over WiFi. From this machine, the essential exploration is node run.
It is not trivial to compile this component to the onboard Rasberry Pi 2.
One can, therefore, argue that the vessel is not autonomous in and of itself.

• The mapping process is performed in a static environment. In a dynamic
environment, where objects move or drift, the system is expected to face new
problems.

13

CHAPTER 1. INTRODUCTION

1.5 Thesis Contributions

The main contributions of this thesis are as follows:

• It has been demonstrated that the implemented system is successfully able
to explore a small-scale marine environment by the use of a 2D lidar. This
form of autonomous exploration has to the author’s, best knowledge not been
performed by a marine surface vessel before.

• Existing methods for autonomous exploration on wheeled vehicles have been
successfully adapted and introduced to a marine control system.

• Suitable path-planner, exploration strategy, and control system that are
shown to function well within the marine environment have been developed
for the system based on existing methods.

• A simulation model capable of simulating exploration by a marine surface
vessel within a closed area has been developed and successfully tested.

• A velocity control law for generating controller setpoints based on both
planned path and distance to nearby objects has been developed and suc-
cessfully implemented.

In addition to the above points, the following contributions relates to the develop-
ment of the CS Saucer laboratory platform:

• Reference tracking has been significantly improved.

• A transition from LabVIEW to the Robot Operating System, which opens
up for implementation of a large number of sensors and devices has been
performed.

• Thorough documentation covering both the vessel and the utilization of the
Robot Operating System in the local laboratory has been created.

14

Chapter 2

Experimental Platform: CS
Saucer

2.1 Background

The system described in this thesis is implemented on the model-scale surface
vessel, CS Saucer. The vessel is designed to be omnidirectional, with similar
behaviors in surge and sway. It is further designed to be versatile and allows for
many payload configurations. Containing the necessary hardware to run it, the
mass of the vessel is about 3.4 kg. Its diameter is dtop= 548 mm at the top and
dbot=398 mm at the bottom. The ability of the vessel to efficiently maneuver
in both surge and sway is an advantage for this project, as it means that the
vessel’s heading does not need to be considered as a parameter in the path-planning
process.

(a) Vessel with lidar, as seen from the side (b) Vessel and hardware

Figure 2.1: The CS Saucer

15

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

Figure 2.2: Initial setup of the CS Saucer

2.1.1 Original setup

The vessel was built by Idland (2015), who designed it with a simple control
system in the spring of 2015. In this setup, the control system on the CS Saucer
was implemented on the National Instruments (NI) LabVIEW platform, where
the embedded hardware device NI myRIO operated as the main processing unit
on the vessel.

Figure 2.2 illustrates the play-load of the vessel as designed by Idland, while Figure
2.1b illustrates the payload utilized in this thesis. As is evident, the NI myRIO
unit has been removed, while a series of new devices have been installed on the
vessel.

2.1.2 Environment of Operation

The Marine Cybernetics Laboratory basin, installed with varying obstacles, con-
stitutes the environment of operation for the CS Saucer.

2.1.2.1 Marine Cybernetics Laboratory

The CS Saucer is operated in the Marine Cybernetics Laboratory (MC Lab), a
facility suited for testing of small marine vessels. The MC Lab is a small basin
equipped with a wave maker, a towing cart, and a positioning system. During
operations performed in this thesis, there are no waves, nor currents present in the
basin. An image of the basin is provided in Figure 2.3.

The MC Lab dimensions (Length x Width x Depth =40 m x 6.45 m x 1.5 m)
(NTNU/ime/labs, n.d.) are particularly relevant to this thesis, as they outline the
area that the vessel may explore.

16

2.1. Background

2.1.2.2 Obstacles in the Basin

To test, and demonstrate the vessels capability of autonomous exploration, varying
obstacles should be present in the basin during operations.

Some of these obstacles are constructed by objects that are regularly present in
the basin, independent of this thesis. These include camera mounts, other vessels,
and mounts on the towing tank.

As can be seen in Figure 2.3 new objects, not naturally present in the laboratory
have also been introduced to the basin. In the front of the basin, where the
image is taken from, these hinders have been organized in a simple labyrinth-like
manner. The hinders in the front are constructed by suspending PVC-blocs on
wooden planks, while a cloth hanging over the basin bridge constitutes another
obstacle.

During operations, all objects are kept static. For this reason, objects that other-
wise would drift are fastened to the basin roof via thin ropes.

Figure 2.3: The Marine Cybernetics Laboratory.

17

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

2.2 Control System Redesign

This section presents a redesign of the vessels control system that involves tran-
sitioning the software platform from the original NI LabVIEW platform to the
Robot Operation System (ROS).

The chapter explains the framework of the new system and how it is installed on
the vessel. An overview of the software components compromising the new system,
and how they are set up in a subscriber/publisher network is first presented once
the individual parts of the system have been reviewed and can be found in Section
4.5

2.2.1 Motivation and Background

2.2.1.1 Review of Original Software Platform, LabVIEW

In the early phase of this project, the feasibility of implementing the lidar to the
existing NI LabVIEW framework was reviewed. NI does not offer any official pack-
ages for interfacing lidars, but some third party contributors describe implemen-
tations of lidars to the NI environment. For example, NICommunityPostA (2016)
provides a manual for the implementation of the Hokuyo-lidar to LabVIEW, which
was successfully implemented to LabVIEW by the author. However, the method
did not offer algorithms for processing and generating maps from the imported
lidar data. In the end, it was concluded that the available resources for imple-
menting and subsequently process the lidar data to the NI LabVIEW platform
were insufficient.

2.2.1.2 The Robot Operating System

This section provides a brief introduction to ROS. The official ROS introduction
page (ROS-community, c) offers a more comprehensive introduction, while the
official tutorial by ROS (ROS-community, h) offers a detailed step-by-step tutorial
on the use of ROS.

The Robot Operating System (ROS) was released as late as in 2007 and provides
services that resemble that of operating systems, such as message parsing between
processes, and package management. The versions available as of June 2016 runs
on Unix-based platforms.

18

2.2. Control System Redesign

Topic

NodeA NodeB
Publication Subscription

Figure 2.4: ROS publisher/subscriber architecture.

A ROS system consists of a number of small independent processes, called nodes,
which perform computations. A full system is comprised of multiple nodes that
communicate with each through messages, which are routed via topics in a pub-
lisher/subscriber framework. In this context, a topic represents the identifying
name that describes the content of the messages that are passed.

Figure 2.4 illustrates the publisher/subscriber network for a simple system con-
sisting of a single topic and two nodes. In this figure, Node-A is publishing a
message to a topic, while Node-B is subscribing to the same topic. The two nodes
act independently of each other in the sense that they are only connected through
the common topic that they are publishing or subscribing on.

In general, a topic might have both several subscribers and publishers. Figure
4.26 displays the node/topic structure for the system designed in this thesis and
provides an example of a complex system architecture.

Since this thesis presents a transition of CS Saucer’s software platform from Lab-
VIEW to ROS, it is appropriate to list some of the advantages of ROS as recognized
by the ROS-community:

• Distributed computation
ROS-community (d) explains how well-written nodes should make no as-
sumptions on where in the network it runs. This means that ROS can be
divided into small stand-alone parts, which makes it suitable for communi-
cating between several computers.

• Software reuse
The primary goal of the development of ROS is to support code reuse in
robotics research and development (ROS-community, c). Smaller units of

19

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

nodes or packages are easily distributed and reused in multiple systems,
which makes it ideal for an open source community and code reuse.

• Popularity of ROS
ROS enjoy widespread support across the robotics community and in aca-
demic robotics research. In fact, O’Kane (2014) argues that ROS is becoming
a de facto standard for robot software interoperability. As a result, the latest
robotics hardware is supported by ROS and state of the art algorithms are
available in ROS, and maintained by experts.

• Rapid testing
As explained by O’Kane (2014) well designed ROS systems separate low-level
control of hardware from high-level decision-making. This means that one
can replace low-level programs and corresponding hardware with simulators
in testing. ROS also provide simple means of recording and playing back
sensor data, which is convenient when testing the system.

Based on the authors experience from this thesis, the following advantages that
relate to students working in the MC Lab are added:

• In the MC Lab, there are often several students conducting separate projects
on the same vessel. The modulated framework of nodes means that common
parts of the software systems can be easily distributed and shared between
the students. Also, the ROS framework offers opportunities for students to
expand control systems on existing vessels, and at relative ease implement
a wide array of devices. Examples of relevant devices that ROS supports
include IMU systems (ROS-community, b) and Cameras (ROS-community,
a).

• The relatively short period in which students conduct their master’s thesis
means that they don’t have time, nor should focus on developing every un-
derlying detail of a system for themselves. With ROS users do not have to
reinvent the wheel and can utilize the extensive library available, or apply
solutions that other students have implemented.

• Engineering students at NTNU are in general well educated on the use of
MATLAB. For this reason, the relative ease at which MATLAB is applied
in ROS appears to be of great advantage. Besides, by using MATLAB,
students have simple means of recording and replaying all relevant data from
experiments.

20

2.2. Control System Redesign

2.2.1.3 Review of New Software Platform, ROS

An early review on ROS revealed that interfacing lidar to the ROS framework
would offer convenient open-source resources and algorithms for the implementa-
tion and processing of lidar data. Regarding interfacing the lidar, the capabilities
of these resources appeared to far surpass the resources available in the LabVIEW
environment. Combined with the presented advantages of ROS, it was for this rea-
son, decided to transition the vessels software platform from LabVIEW to ROS,
which involved replacing the myRio unit with a combination of a Raspberry Pi 2,
Arduino and a Wireless USB Adapter.

2.2.1.4 Node Generation in ROS

Programming in the ROS framework is in general language independent, with
the most popular languages being C++ and Python. The possibility of applying
Simulink models as ROS nodes has been used a lot by the author in this project.
In the implemented system the utilized nodes are a combination of open source
packages and nodes produced by the author in either C++ or Simulink.

2.2.2 Software Architecture

Figure 2.5 schematically illustrate the signal flow between components in the new
system architecture. The figure is not specific for the application seen in this thesis
but applies to the system architecture of the CS Saucer (and other vessels set up
in this manner) in general.

In the new system, the Raspberry Pi 2 is functioning as the onboard computer,
capable of running multiple ROS nodes. The Arduino is connected to the system
as a separate ROS node and is utilized for communication with onboard actuators,
sensor, and devices. As is indicated in the figure, some devices such as the lidar
may be connected directly to the USB port of the Raspberry Pi 2.

The setup allows for computers to be connected to the ROS framework over WiFi.
These computers can in general run separate ROS nodes that are integrated to
the same publisher/subscriber network as the Raspberry Pi 2. Other equipment
in the basin such as the laboratory’s position tracking system or other ROS based
vessels may be connected to the ROS framework in the same manner.

21

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

Figure 2.5: General signal flow architecture between components on a system with the
suggested architecture, set up in the MC Lab.

2.2.3 Hardware Architecture

In order to facilitate for ROS and the operations performed in this project, sub-
stantial modifications have been made in the hardware architecture of the vessel.
This involves removing the myRio unit and replacing it with a series of new de-
vices.

Figure 2.6 illustrates the hardware architecture as installed on the vessel during
the operations performed in this thesis. It further illustrates the signal and power
flow between the various components. In this section each of the components, as
shown in the figure is reviewed.

22

2.2. Control System Redesign

Figure 2.6: Signal and power flow between hardware components on the system.

2.2.3.1 Arduino Mega Embedded Circuit Board

The Arduino boards are low-cost embedded circuit boards that enjoy a large com-
munity which provides open source codes and drivers. The Arduino board imple-
mented in this thesis is the Arduino Mega, which has a large number of available
pins from where signals can be interpreted or transmitted.

In the implemented system, the Arduino is responsible for transmitting the appro-
priate PWM signals, as calculated by the control system to the motors and servos
of the system. The PWM signals are sent from six separate pins on the Arduino
board to each actuator.

The PWM signals that are transmitted have a frequency of 50 Hz and a duty cycle
varying between 4.3 and 9.4 percent. The duty cycle that yields zero speed for the
propellers, and their desired orientation are listed in Table 2.1. From the neutral
position, the actuators are controlled by either decreasing or increasing the duty
cycle.

In addition to transmitting PWM signal to the actuators, the Arduino is mon-
itoring the rotational speed of each motor and the voltage of the battery. The
full overview of the pin connections utilized in this project can be found in Table
2.1.

23

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

Table 2.1: Pin connection overview

Pin Corrosponding Duty Cycle Type
number actuator/port at neutral position [% on]

9 Rotational Speed Motor 1 6.85 PWM (Output)
10 Rotational Speed Motor 2 6.85 PWM (Output)
11 Rotational Speed Motor 3 6.85 PWM (Output)
3 Angle Servo-1 4.726 PWM (Output)
5 Angle Servo-2 0.0836 PWM (Output)
6 Angle Servo-3 0.0642 PWM (Output)

DGND Ground Servos and motors Not applicable Ground
GND Ground Battery/H.E. Sensors Not applicable Ground
V-In Power Not applicable Power
D19 Hall Effect sensor 1 Not applicable Digital, on/off (Input)
D20 Hall Effect sensor 2 Not applicable Digital, on/off (Input)
D21 Hall Effect sensor 3 Not applicable Digital, on/off (Input)
5v Power for Hall Effect Sensors Not applicable Power
A0 Battery Not applicable Voltage sensor

The Arduino is connected to the Raspberry Pi 2 via USB and to the ROS frame-
work through the ROS package Ros-Serial (ROS-community, f).

2.2.3.2 Raspberry Pi 2 Single-board Computer

The single-board computer Raspberry Pi 2 has been installed on the vessel. The
board is the unit in which communication between the components of the system
is routed through. It is responsible for running a number of ROS nodes, and thus
for a lot of the computer processing performed on the system. It is running ROS
on Ubuntu during experiments.

The Raspberry Pi 2 is connected to the lidar and Arduino via USB and to the
local WiFi via a Wireless USB Adapter

2.2.3.3 Motors and Servos

The vessel is installed with three azimuth thrusters, each of which is driven by
a separate Torpedo 800 motor. The azimuth thrusters can all be rotated, a mo-
tion controlled by three servos of the type Graupner Schottel drive unit II. The
arrangement of the motors and servos are kept as they were in the original setup,
designed by Idland (2015).

24

2.2. Control System Redesign

2.2.3.4 RPlidar 2D Lidar Scanner

The lidar installed on the vessel is of the type RPlidar, which is a low-cost laser
scanner that performs 360 degrees, 2D scanning by the use of a rotating head.
The rotational speed of the lidar is customizable from two to ten Hz, while it has
a sampling frequency of 2000 Hz. The RPlidar has a range of 6 meters, which is
about same length as the width of the MC Lab. The lidar has the advantage of
being one of the cheapest on the market, while still being able to perform quite
well. The lidar is responsible for generating a point cloud of the horizontal plane,
corresponding to different attack angles. This data is subsequently processed and
utilized by the implemented software system.

The lidar is placed on the lid of the vessel, causing the horizontal plane that the
lidar scan to be approximately 10 cm above the water surface during operations.
The lidar is connected to the Rasberry Pi 2 over USB and is interfaced to the ROS
framework through a separate node.

2.2.3.5 Hall Effect Sensors

Three Hall effect sensors have been installed on the vessel. The purpose of these
sensors is to measure the rotational speed of the three motors and thus provide
information that can improve the control of the vessel. The rotational speed of the
motors is directly proportional rotational speed of the thrusters by a fixed gear
ratio, and can thus be used to find the revolutions per minute (RPM) speed of the
thrusters.

2.2.3.6 Battery

An 11.V, three cell 640 mAh lithium polymer battery from Traxxas, responsible
for powering all devices on the vessel, is installed on the vessel. Fully charged it
can power the vessel for a considerable amount of time (in the order of several
hours). The battery can be damaged if the voltage drops under 11.1 V. For this
reason, the voltage of the battery is monitored through the Arduino.

2.2.3.7 Laptop

A computer running ROS on Ubuntu is connected to the ROS framework during
experiments. The computer has two main purposes. Firstly, it runs the essential

25

CHAPTER 2. EXPERIMENTAL PLATFORM: CS SAUCER

exploration node from MATLAB, and secondly, it is the station in which the
operator can monitor and interface with the exploration process.

During the development of the vessel, the opportunity of running ROS nodes from
the laptop has been used extensively. As the project has developed, these nodes
have been transferred to the Rasberry Pi 2.

The exploration node responsible for generating a path for the vessel to follow
has not been adapted for C++ code generation and cannot presently be run on
the Raspberry Pi 2. Due to the node being quite computational intensive it has
proved an advantage to have a relatively powerful computer run it.

26

Chapter 3

Modelling and Identification

3.1 Reference Frames

In this section, the reference frames that are utilized in the thesis, and transfor-
mations between them are investigated.

3.1.1 The Basin-Relative Reference Frame

This is the reference frame that is applied for local control of the vessel. The
reference frame has its positive x-axis in the direction the lidar was pointing when
the Hector-SLAM nodes were initialized, while its origin is located at the position
of the vessel at initialization.

The reference frame is thus realigned relative to the basin in each new trial. This
is a result of how Hector-SLAM initializes the coordinate system it represents the
map in. The angular rotation between the Basin-relative reference relative to the
basin, as defined in Figure 3.1 frame is denoted ∆ψrel .

The heading of the vessel is defined as zero when thruster 1 is pointing along
the x-axis relative to the center of origin of the vessel. The z-axis is pointing
downwards, while the heading is defined as positive in the clockwise direction.
The vessel position and heading in the Basin-relative frame in a vectorial format
is given as follows:

ηηη =
[
x y ψ

]T
(3.1)

Figure 3.1a illustrates the vessel in the Basin-relative reference frame. In this
example, the vessel’s location at initialization was at the origin, while its current

27

CHAPTER 3. MODELLING AND IDENTIFICATION

position is ηηηp =
[
xp yp ψp

]T

3.1.2 Body-Fixed Reference Frame

For control purposes, it is convenient to use the Body-fixed reference frame that
moves along with the vessel. The axes in the Body-fixed reference frame are
denoted x′ and y′, while the velocities are denoted u along the x′ axis, v along the
y′ axis, and r for the angular velocity about the z′-axis.

Linear velocities u and v, and the angular velocity r in a vectorial format for the
Body-fixed reference are given as follows:

vvv =
[
u v r

]T
(3.2)

In Figure 3.1b the vessel is shown with the direction of the velocities indicated
relative to the Body-fixed reference frame.

(a) Basin-relative reference frame.
Borders illustrate basin edges

(b) Body-fixed reference frame.

Figure 3.1: The CS Saucer and reference frames

28

3.1. Reference Frames

3.1.3 Transformation from Hector-SLAM Reference Frame
to Basin-Relative Reference frame

In the coordinate system generated by the Hector-SLAM Package, the z-axis is
pointing upwards, whereas it is pointing downwards in the Basin-relative coordi-
nate system. The origin of the two coordinate systems is assumed to be aligned in
in x- and y- direction, but since the z-axes is pointing in opposite directions, the
positive y- axes and positive yaw are also pointing in opposite directions. In the
implemented system a separate ROS node (Hector2VesselPos-node), is responsi-
ble for converting from the Hector-SLAM generated reference frame to the Basin-
relative reference frame. This node also performs a conversion from quaternions
to Euler angles.

When placing the lid on the vessel, it is crucial to align the positive x-axis of the
lidar with that of the vessel. Markers on both the lid and the vessel indicate how
the lid should be placed on the vessel. This is illustrated in Figure 3.2.

(a) Alignment of lid on the vessel (b) Vessel coordinate system indicated

Figure 3.2: Lid placement relative to vessel coordinate system

3.1.4 Transformation Between Vessel Reference Frames

When controlling the vessel in the Basin-relative reference frame, transformations
back and forth to the Body-fixed reference frame need to be handled.

The transformation between the reference frames are given as follows:

vvvs = R(ψ)vvvb (3.3)

where vvvb is a vector in the Body-fixed reference frame, vvvs is a vector in the Basin-
relative reference frame, and the transformation matrix R(ψ) is given by,

29

CHAPTER 3. MODELLING AND IDENTIFICATION

R(ψ)R(ψ)R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.4)

In order to transform the other way, the inverse R−1 = RT is used.

30

3.2. Equation of Motion

3.2 Equation of Motion

The identification of a mathematical model describing the vessel is essential for
the simulations conducted in this thesis. This model is also used in the observer
that is implemented to the motion control system of the vessel.

The equation of motion for a vessel at sea can be described in the following form
(Fossen, 2011, Eq 6.1):

MRBν̇̇ν̇ν + CRB(ννν)ννν + MAν̇̇ν̇νr + CA(νννr)νννr + D(νννr)νννr + Dνννr + ggg(ηηη) = τττ external (3.5)

where,

- ννν =
[
u v r

]T
is the body-fixed velocities in surge, sway and yaw.

- νννr is the body-fixed velocities relative to local current in surge, sway and
yaw. (The current is set as zero in this project such that ννν=νννr)

- MRB and MA is the vessel inertia matrix for the mass and added mass
- CRB(ννν) and CA(νννr) is the vessel Coriolis centripetal matrix for the rigid

body and added mass respectively
- D(νννr) is the nonlinear damping matrix
- D is linear damping matrix
- ggg(ηηη) is the hydro-static restoring matrix

- τττ external =
[
X Y Z

]T
is the external forces acting in surge, sway, and yaw,

excluding those mentioned above.

In general rigid bodies operates in six degrees of freedom. These degrees of freedom
are the linear motions in surge, sway and heave, and the rotation about these axes.
The CS Saucer is assumed to be self-stabilizing by hydrostatic forces in heave, roll
and pitch. The rotations in pitch and roll are further considered small, such that
the movements in surge sway and yaw are not affected by the configuration in pitch
and roll. For this reason, (3.5) is solved for only the three degrees of freedom, surge,
sway, and heave.

The derivation of the equation of motion for the vessels was performed in the
pre-project (Ueland, 2015). This thesis suffices by only presenting the resulting
matrices:

M = MA + MRB =

9.51 0 0
0 9.51 0
0 0 0.116

 (3.6)

31

CHAPTER 3. MODELLING AND IDENTIFICATION

C = CRB + CA =

 0 −9.51r 0
9.51r 0 0

0 0 0

 (3.7)

D(ννν) =

7.095|u| 0 0
0 7.095|v| 0
0 0 0.7095|r|

 (3.8)

D =

1.96 0 0
0 1.96 0
0 0 0.196

 (3.9)

Note that the added mass and damping matrix, in general, depends on frequency.
However, in this thesis, it is assumed constant for all frequencies.

There are no hydrostatic restoring forces present in surge, sway, and yaw, and
thus, ggg(ηηη) = 0. Since there is no wind, current, nor waves in the basin, the
external forces τττ external consists only of the actuated thruster forces in x-direction,
y-direction and the moment. These forces are dependent on the commands that
are given from the motion control system, which further described in Section 3.1.4
and Section 4.1.3

32

3.3. Mapping Actuator Input to Thrust Force

3.3 Mapping Actuator Input to Thrust Force

3.3.1 Background

In order to achieve decent control of the vessel, it is important to establish a good
estimation of the relationship between actuator input and the resulting thrust
forces. This is especially important for the CS Saucer which does not have any
stabilizing fins and thus is more difficult to stabilize in yaw.

The actuated control input to each thruster upwm is a PMW-signal, which for the
thrusters in use has a valid range (duty-cycle) of [0.0430: 0.0940]. In the Arduino
code, a servo-library is utilized for mapping the duty-cycle to integer inputs in the
range of [1,180]. It is this integer actuator input that is mapped to corresponding
force in the forthcoming sections.

A mapping between actuator inputs and force had been performed prior to this
thesis by Idland (2015). When applying this mapping to the implemented con-
troller, only poor control of the vessel was achieved. In particular, the heading of
the vessel was difficult to control.

For this reason, it was chosen to perform a new mapping between actuator input
and thrust force.

3.3.2 Experimental Setup

The mapping was performed using a laboratory set-up where the vessel was fixed
to strain gauges and linear springs. The setup in the lab is provided in Figure 3.3
while a schematic overview of the same setup can be seen in Figure 3.4

When the vessel is fixed in the setup, the springs have a pretension that is trans-
ferred to the strain gauges. By keeping the forces small, relative to the stiffness of
the springs, the change of force on the strain gauges is expected to reflect the forces
that the thrusters are acting on the vessel. These forces are measured through
wires connected to the strain gauges. Since the vessel is fixed with pretension, the
gauges can measure both positive and negative forces.

33

CHAPTER 3. MODELLING AND IDENTIFICATION

Figure 3.3: The vessel in the basin rigged for actuator/force testing.

Figure 3.4: Schematic overview of the vessel rigged for actuator/force testing.

The test differs from the setup of Idland (2015), by having two suspensions points
in x-direction instead of one. The idea is that the two suspensions will take up all
moment, and by that make sure that there are no coupling between the total force
in x- or y- direction and the moment.

In theory, x- and y- forces and moment can be calculated with this setup, but
due to lack of sensitivity in the sensors, it was chosen to align all thrusters in
x-direction and only measure total force in this direction.

34

3.3. Mapping Actuator Input to Thrust Force

3.3.3 Mapping Results

During testing, the rotational speed of each motor, battery voltage, force in each
strain gauge and input PWM signal was logged. This section only presents the
resulting mapping between actuator input and force. The raw data from the
experiments can be found in the electronic appendix.

The resulting mapping between actuator input and force can be seen in Figure 3.5.
Note that thruster 3 has its propeller blades flipped, which is causing the force to
act in the opposite direction. It is evident that the resulting mapping resembles
that of a second order function (If starting at the center and either increasing or
decreasing actuator input). As seen in the figure, there is a relatively large dead
band in the actuator input range of 72-88 were one do not thrust forces.

The data provided in Figure 3.5 is imported as vectors to the control system,
where it is used to generate the appropriate mapping between actuator input and
thrust force. In the control system, the desired force is mapped to actuator input
through first-order interpolation on this dataset.

As a result of the described remapping, the availability of RPM data, and a re-
design and tuning the vessels control system, the vessels performance in reference
tracking has been significantly improved. Even so, the control of the vessel in yaw
is still somewhat problematic, and during operations, the vessels heading typically
oscillates around the desired heading.

40 50 60 70 80 90 100 110 120

Actuator command sent to Arduino

-3

-2

-1

0

1

2

3

M
ea

su
re

d
fo

rc
e

[N
]

Thruster1
Thruster2
Thruster3

Figure 3.5: Resulting mapping between actuator input and thrust forces

35

36 CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Chapter 4

Guidance Navigation and
Control

Guidance navigation and control (GNC) refers to the system that processes infor-
mation from its environment and subsequently controls the movement of a craft.
In the work by Fossen (2011), common strategies and algorithms for marine GNC
systems are comprehensively reviewed.

Figure 4.1 display the control loop of the implemented system and what messages
the individual components communicate with each other through. The gray and
blue blocks constitute the GNC system of the vessel that is responsible for making
the vessel achieve its control objective. The individual components of the system
are reviewed in this chapter.

Figure 4.1: Control loop of the implemented system.

4.1. Motion Control System

4.1 Motion Control System

The goal of the implemented motion controller is to make the vessel able to follow
a reference track. The gray boxes in Figure 4.1 represent the motion control
system of the vessel. In the implemented software the motion control system is
implemented as separate node (MotionControl-node).

The reference model and observer are included in the motion control system on a
basis of being implemented to the same ROS node. In other works, these blocks are
often considered as a part of the guidance and navigation system respectively.

The equations as shown in Section 3.2 define the idealized state space of the
system, and thus define the approximate state space one wants to control. Due to
the rotation matrix, Coriolis matrix, and the nonlinear damping, this is a nonlinear
state-space.

4.1.1 PD-Controller

A PD controller has been implemented on the vessel. In addition to being a
popular and recognized controller, the PD controller is quite robust when the full
dynamics of the system are unknown. There are still some uncertainties in the
dynamical model of the vessel, and the PD controller, therefore, appears to be
an adequate choice. The PD controller has one term that is proportional to the
error between actual and desired position, and one term that is proportional to
the speed of the vessel.

Since the vessel is rapidly re-planning and changing its course during operations, it
is not desirable to have an integral term that builds up in between unpredictable
course changes. A small integral term, limited by an anti-windup could have
avoided this issue. However, the term was not deemed necessary.

The thrust allocation logic requires a body-fixed thrust τττ as input. To find this
thrust, the controller first calculates the generalized force in the Basin-relative
reference frame, then transforms it to the Body-fixed reference frame through the
transformation matrix R(ψ).

The control law that determines the desired forces in the body-frame is as fol-
lows:

τττ = R(ψ)T (Kp)(ηηηd − η̂ηη)−Kdν̂νν (4.1)

where, τττ is commanded thrust in the body-frame, ηηηd is the desired position, η̂̂η̂η is
the observer estimated position in the Basin-relative frame, and ν̂̂ν̂ν is the observer-
estimated velocities in the Body-fixed frame.

37

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

The gains of the PD controller are diagonal. Initial values were found by tuning
the model in simulations, and subsequently adjusted during testing in the lab.
This resulted in the following gains for the PD controller.

KKKp =

3 0 0
0 3 0
0 0 0.75

 KKKd =

2.1 0 0
0 2.1 0
0 0 0.15

 (4.2)

4.1.2 Reference Model

The controller should, in general, be able to handle any desired reference track
in a smooth manner. Therefore, the desired position that the motion controller
receives is filtered before it is sent to the PD block. The goal of this filter is to
keep the reference signal the PD block receives both smooth, and within the limits
of the vessel’s capabilities.

More specifically the filter should ensure that the desired position ηηηd is within the
limits of what the vessel can follow over time. This in turns smoothens and limits
the PD terms and thus improves overall performance in path following.

A popular way to implement such a filter is to use a third order reference system
with a low-pass filter in cascade with a mass-damper-spring system (Fossen, 2011,
Ch 10.2.1).

This type of cascaded reference filter can be described by the following transfer
function.

Reference position

Desired position
=
ηηηr(i)
ηηηd(i)

=
ω2
i

(1 + (s/ωi)) (s2 + 2ζiωi + ω2
i)

(4.3)

for (i=1,2,3) representing position in surge, sway and yaw respectively. The refer-
ence position is the setpoint that the PD block receives and the desired position is
the setpoint that the motion controller receives from the guidance system.

By also including saturations elements in the filter, the maximum speed and accel-
eration of the reference signal can be limited. In the implemented reference model
this type of saturation is applied on the speed of the reference signal.

The resulting reference model, as implemented to the vessel can be seen in Figure
4.2. The parameters in the filter are tuned to suit the capabilities of the vessel. The
chosen values are shown in (4.4), while Figure 4.3 displays how a given time-series
of desired position is handled by the filter.

38

4.1. Motion Control System

ωωω =

ω1

ω2

ω3

 =

 0.9
0.9
1.05

 Satupper =

0.56
0.56
1.12

 Satlower =

−0.56
−0.56
−1.12

 ζ = 0.8 (4.4)

Figure 4.2: Implemented reference model

.

Figure 4.3: Behaviour of reference model for a time-series of reference positions .

39

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Figure 4.4: Position and orientation of the thrusters .

4.1.3 Thrust Allocation

The vessel is equipped with three thrusters, all placed tangentially to a circle about
the center of origin with a radius of rt= 0.138 m. The three thrusters are placed
symmetrically on this circle with a spacing of 120 degrees.

Since the thrusters can be rotated, the vessel is over-actuated. In this thesis
however, only fixed thruster angles are considered, resulting in a fully actuated
system. A review on the use of flexible thruster angles was performed in the
pre-project (Ueland, 2015).

Figure 4.4 presents the thruster orientations in their fixed position, where the
black arrows that extends from the thrusters illustrate the positive force direction.
Relative to the x’ axis of the body-frame the three thrusters have the following
orientations:

α1 = 90◦

α2 = −30◦

α3 = −150◦
(4.5)

The decomposed position vector, relative to the vessel’s center of origin

lllk =
[
lkx lky

]T
for the kth thruster is given as follows:

lll1 =

[
rt
0

]
lll2 =

[
rt cos(2/3π)
rt sin(2/3π)

]
lll3 =

[
rt cos(4/3π)
rt sin(4/3π)

]
(4.6)

The decomposes of force vector fffk =
[
fkx fky

]T
for the kth thruster is given as

follows:

fffk =

[
fk cos(αk)
fk sin(αk)

]
(4.7)

40

4.1. Motion Control System

where, fk and αk represent the force magnitude and angle of the of the kth thruster
respectively.

The corresponding thrust loads for the kth thrusters are thus:

τττ k =

[
fffk

lllk × fffk

]
=

 fkx
fky

lkxfky − lkyfkx

 (4.8)

where τττ is the thrust force in the body-frame of the vessel.

By inserting the values for fffk and lllk, and by simplifying the resulting expression
by the use of trigonometric relations, the formulas for the thrusts reduce to:

τ1τ1τ1 =

f1 cos(α1)
f1 sin(α1)
f1rt

 xτ2τ2τ2 =

f2 cos(α2)
f2 sin(α2)
f2rt

 τ3τ3τ3 =

f3 cos(α3)
f3 sin(α3)
f3rt

 (4.9)

With the generalized force vector τττ =
[
X Y Z

]T
, and the individual thrust

force vector fff =
[
X Y Z

]T
one now gets the following relationship between

local thrust force and body-fixed forces on the vessel.

τττ = Tfff (4.10)

where the thrust allocation matrix T for fixed thruster angels is given as:

T =

0 sin(2π/3) sin(4π/3)
1 cos(2π/3) cos(4π/3)
rt rt rt

 (4.11)

The desired forces on each thruster can now be determined from the desired body-
fixed forces by applying the inverse of the thrust allocation matrix.

fff = TTT−1τττ (4.12)

The resulting local thrust force vector fff is finally mapped to appropriate actuator
inputs as described in Section 3.3.

4.1.4 Force Saturations

The reference model described in Section 4.1.2 should limit the forces acting on the
vessel, such that the vessel is always able to follow the given reference signal. Even
so, for safety measures, a saturation logic that limits the thruster forces acting on
the body has been implemented according to the following logics:

41

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Fmax = 1N Tmax = 0.3 Nm ck=
Fmax√
(X2+Y 2)

Xsat =

{
ckX, for ck < 1

X, for ck ≥ 1

Ysat =

{
ckY, for ck < 1

Y, for ck ≥ 1

Zsat =

{
sign(Z)Tmax, for |Z| ≥ Tmax

Z, for |Z| < Tmax

(4.13)

where, [X,Y,Z] is commanded force in surge, sway and yaw

This logic ensures that the forces acting on the vessel are evenly saturated and
that the saturation does not alter the orientation of the applied force vector.

4.1.5 Observer Design

An observer responsible for filtering out noisy data, and for estimating the body-
fixed velocities of the vessel is implemented to the motion controller. This observer
is a version of the nonlinear passive observer described by Fossen (2011, Ch 11.4).
In addition to reconstructing and estimating the position and velocities, this ob-
server can perform dead reckoning. However, the implemented system does not
detect loss of signal, and the observer can thus not be expected to perform dead
reckoning in its current form.

The observer suggested by Fossen is shown in Figure 4.5. As opposed to this
version, the partition of frequencies into wave dependent and wave independent
frequencies has not been performed in this project. This is for the simple reason
that there are no waves in the basin during operations.

42

4.1. Motion Control System

Figure 4.5: General block description of the nonlinear passive observer. Courtesy of
Fossen (2011)

For appropriate choice of gains, the nonlinear passive observer guarantees global
convergence of all estimation errors (including the bias term). The term passivity
implies that the phase of the error dynamics is limited by 90 degrees, which yield
good stability properties. The stability of the observer dynamics could be proved
using Lyapunov stability theory (Fossen, 2011, Ch 11.3).

The observer is based on a simplified design model, where unmodeled dynamics is
accounted for by the bias term bbb:

η̇̇η̇η = R(ψ)ννν (4.14a)

ḃ̇ḃb = -T−1bbb (4.14b)

Mν̇νν = −Dννν + RT (ψ)bbb+ τττ (4.14c)

yyy = ηηη (4.14d)

where,

• Equation (4.14a) is the rotation between body-fixed and basin-relative ve-
locities
• Equation (4.14b) is the bias model which accounts for slowly varying forces

and moments due to second order wave loads, currents and winds. This
term also account for unmodeled dynamics. Tb is a diagonal time constant
matrix.

43

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

• Equation (4.14c) is the body-fixed equation of maneuvering.
• Equation (4.14d) is the vessel response.

Now defining the error dynamics as η̃ηη = ηηη−η̂ηη, b̃bb = bbb−b̂bb , ν̃νν = ννν−ν̂νν and ỹyy = yyy−ŷyy and
applying injections terms, one gets the model implemented in Figure 4.5 (excluding
the wave dynamics)

η̇̇η̇η = R(ψ)ν̂̂ν̂ν + K2ỹ̃ỹy (4.15a)

˙̂b̂̇b̂̇b = −T−1b̂̂b̂b+ K3ỹ̃ỹy (4.15b)

M˙̂ννν = −Dν̂νν + RT (ψ)̂b̂b̂b+ τττ + RT (y3)K4ỹ̃ỹy (4.15c)

ŷ̂ŷy = η̂̂η̂η (4.15d)

Note how K1 is skipped in these equations. This is done in order to keep the
syntax equal to that of Fossen (2011), where K1 is reserved for the wave dependent
dynamics.

The parameters T, K2, K3 and K4 are diagonal structured matrices. Through the
guidelines presented by Sørensen (2013, Ch 8.2) and tuning, the following values
have been found:

T = diag(0.1, 0.1, 0.1) (4.16a)

K2 = diag(0.25, 0.25, 0.2) (4.16b)

K3 = diag(0.2, 0.2, 0.15) (4.16c)

K4 = diag(5, 5, 0.5) (4.16d)

As an alternative to the nonlinear passive observer, the Extended Kalman fil-
ter could have been implemented. One advantage of using the nonlinear passive
observer as opposed to the Extended Kalman filter is that there are far fewer pa-
rameters to tune. The Extended Kalman filter on marine systems is presented in
the work by (Sørensen, 2013, Ch 8). Chapter 6 of the same work, further presents
the general purposes of an observer on a marine control system.

In the implemented observer in, the choice has been made to include the nonlinear
dynamics C(ν̂νν)ν̂νν and D(ν̂νν)ν̂νν to the equation of maneuvering (4.15c).

44

4.2. Processing of Map

4.2 Processing of Map

4.2.1 Map Generation

The applied Hector-SLAM package produces both an occupancy grid and the
vessel’s position within it. By adjusting parameters in the Hector-SLAM launch
file, one may choose both arbitrary grid size and resolution of the occupancy grid.
In general, larger grid sizes are more computationally expensive and demand more
of the operator computer.

In the trials performed in this thesis, the resolution is set to either 0.1m or 0.2m,
while the grid-size is set to either (128x128) or (256x256).

Once the Hector-SLAM package has generated the map, it is sent to the MATLAB
node, where each cell in the occupancy grid is interpreted as either free, occupied
or unexplored. This is performed by using the following threshold function:

Cell status =


Explored and occupied, for: cell value > 50

Explored and free, for: 0 ≤ cell value ≤ 50

Unexplored, for: cell value = −1

(4.17)

In Figure 4.6 the operator view of the map in the native ROS tool rviz is compared
to the map as represented in MATLAB.

(a) Hector-SLAM (b) MATLAB

Figure 4.6: Map Visualization

45

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

4.2.2 Online Map Processing

In the implemented code, the map is processed online through four steps, before
the path algorithms are applied. In this section, each of these steps is explained
by the help of the example provided in Figure 4.7.

In addition to the four steps discussed in this section, Figure 4.7 visualizes the
subsequent generation of a path by the path planner (which is explained in Section
4.3.2). Thus, the figure displays all the main steps the system applies during one
iteration of path generation.

1. Import Map from Hector-SLAM to MATLAB
The first step is to import the map to MATLAB using the ROS subscriber/pub-
lisher architecture. Here the threshold function described in Section 4.2.1 is
introduced, and the data representation of the map is converted from vector
to matrix format. The example map imported to MATLAB is provided in
Figure 4.7a.

2. Inflate Map
The vessel is represented by an x- and y- coordinate corresponding to its
position in the occupancy grid. In order not to collide, all neighboring cells
within the area that the vessel extends over to need to be free. In addition,
cells within a safety distance around the vessel should be free, such that it
has room to maneuver. The safety distance does not need to be particularly
large, as the implemented path planner prefer paths that keep a distance to
nearby objects (see Section 4.3.2.4).

To ensure that the vessel has room to maneuver with some safety distance,
all cells that have a distance less than a predefined inflation radius to an
occupied cell are considered inaccessible and thus labelled as occupied. This
process is called inflating the map, where the inflation radius is a parameter
that can be adjusted by the operator, that by default is set to 0.4 m.

The example map, after objects are inflated can be seen in Figure 4.7b.

3. Reduce Map to Reachable Cells
Not all grid cells in the occupancy are in reality accessible by the vessel.
There are two sources of this. The first is that the occupancy grid may have
inconsistencies. This can be seen in the example map, where some rays are
extending through identified obstacles in the upper left part of Figure 4.7a.
The second reason is that the inflation process may close passages to cells
that previously were within the reachable space of the vessel.

The example map reduced to only reachable cells is shown in Figure 4.7c.

46

4.2. Processing of Map

4. Assume Non-Visible Cells Within a Distance of 3m as Explored
and Free
As pointed out by Grabowski et al. (2003), due to specular reflection, emitted
rays from the lidar that strike an adjacent object with a shallow angle, can
be reflected away from the lidar. The effect of this is that the lidar does not
always receive the reflected rays, even if they have hit an object. The lidar
cannot decipher between this event (and other erroneous events) and the case
where there are no obstacles within the maximum range of the lidar. For this
reason, the Hector-SLAM algorithms do not update the map in directions
where no reflected lidar rays are detected.

In the experiments performed in the basin, this effect is evident in sections
where the lidar scan extends towards the length direction of the basin. In
Figure 4.7 the effect can be seen to the right of the indicated vessel position.

Implemented to the MATLAB code is, therefore, a lidar emulator that tem-
porary updates the map in the directions where no reflected rays have been
detected. This update is performed by assigning cells within these sections
as free out to a range of 3 meters.

If there are objects in the vessel’s environment that the lidar has problems
recognizing, the method is likely to increase the likelihood of collisions. In
the controlled lab, however, the lidar is able to efficiently scan most obstacles,
and the implementation did not cause any collisions. It does, however, make
the vessel able to explore the basin more efficiently and faster. If the vessel
is operating in environments that contain objects that are more difficult for
the lidar to scan, it should be reconsidered if this particular operation should
be performed. Figure 4.7d display how the described procedure alters the
example map.

47

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) Map as imported from Hector-SLAM (b) Inflated map

(c) Map reduced to reachable cells (d) Non-visible cells within a distance
of 3 m assumed explored and free

(e) Heuristic value for pathfinder (f) Weight of cells for pathfinder

(g) Frontiers indicated (h) Chosen path

Figure 4.7: Map processing and path generation stages

48

4.3. Guidance And Navigation

4.3 Guidance And Navigation

4.3.1 Exploration Strategies

This section investigates how the exploration strategies introduced in Section 1.2.5
is implemented to the system. The performance of both methods are further
reviewed in subsequent chapters. Which exploration strategy the vessel shall use
during operations can be altered online by a parameter shift.

4.3.1.1 Frontier-Based Exploration

The following steps summarize the implemented Frontier-based exploration algo-
rithm:

Implemented Frontier-based exploration algorithm

1. Identify frontiers in the occupancy grid. In this step each explored cell
that has an unexplored neighbour cell is considered a separate frontier

2. Plan path to the closest frontier

3. Allow for the vessel to start following the path and repeat the process

Figure 4.8 illustrate how the simulated vessel explores a scenario. In this example,
a low resolution was used on a relatively small map. This was done to so that
individual frontier-cells are easy to see and to perform the full exploration in
relative few moves. As is evident from the figure, the vessel efficiently moves
towards the closest frontiers until the whole map is explored, whence it returns to
its initial position.

49

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) (b)

(c) (d)

(e) (f)

(g)

Explored cell: Occupied
Explored cell: Free
Unexplored cell
Frontier Cell
Traversed path
Vessel Position
Lidar Range
Goal
Path

(h) Chosen path

Figure 4.8: Frontier-based simulated exploration stages

50

4.3. Guidance And Navigation

4.3.1.2 Gap-Based Exploration

The exploration strategy explained in this section is better described as a one based
on the identification of discontinuities in the lidars environment, than a one that
tries to replicate the Gap navigation tree exploration strategy as it is described in
Section 1.2.5.2.

One of the distinct ways that the implemented method differs from the referenced
literature is that it does not utilize the Gap navigation tree, where each the gap
is set into a structure with children and parents. As opposed to investigating
gaps in an orderly manner according to the logic of the Gap navigation tree, the
implemented method always navigates to the nearest unexplored gap. For this
reason, the thesis refrains from classifying the implemented method as a Gap
navigation tree exploration. Instead, the implemented method is referred to as
Gap-based exploration.

The following steps summarize the implemented Gap-based exploration algorithm:

Gap-based exploration algorithm

1. Identify new gaps based on the lidar scan.

2. Mark gaps that do not have any unexplored cells in their vicinity as
explored

3. Plan path to the closest gap

4. Allow for the vessel to start following the path and repeat the process

In the implemented method, the identification and assessment of gaps are per-
formed in each new iteration that the exploration node performs. As a result, a
large number of gaps are quickly identified, many of which represents the same
discontinuities in the map. Though this does not cause any immediate problems,
it would be more convenient to work with fewer gaps. One possible development
of the code may, therefore, be to group neighboring gaps together.

In the current implementation, due to the nonideal maps and limited lidar range,
it cannot be guaranteed that the vessel will explore all accessible areas. However,
since the identification of gaps are performed in each new iteration, a complete
exploration it is deemed likely.

The implemented rules for maintaining and editing gaps are as follows:

• Gap Identification
New gaps should be identified where there is a discontinuity in the map. This

51

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) Lidar rays emulated from lidar position (b) New gaps identified

Figure 4.9: Visualization of gap identification. (In the actual code the angular increment
between rays is smaller)

is performed by sending out rays from the vessel’s position in the map, as can
be seen in Figure 4.9a. Figure 4.9b display how eight new gaps are identified
based on the emulated rays. The rules at which new gaps are placed are as
follows:

– If the perceived length between two adjacent rays differs in length by
more than a predefined distance, a gap is identified. The gap is now
placed between the two endpoints. In Figure 4.9b the gaps 3-6 are
identified in this manner.

– In sections where the rays do not hit any objects within its range, a gap
is placed in the middle of the section. In Figure 4.9b the gaps 1, 2, 7
and 8 are identified based on this rule

– For a new gap to be placed it must have unexplored area its vicinity.

• Marking Gaps as Explored
The gaps are marked as explored once there is no longer any unexplored
areas in their vicinity. This operation is demonstrated in Figure 4.10. In
this figure, the left gap is in the vicinity of only explored cells and can be
marked as checked. The right gap is in the vicinity of unexplored cells and
needs to be investigated further.

Figure 4.11 visually shows how the simulated Gap-based exploration strategy func-
tions. The only difference between this simulation and the one illustrated in Figure
4.8 is that a different exploration strategy is applied. Comparing the two simu-
lations it evident that both methods were able to explore the scenario efficiently
and it is not evident from these examples which that performs best.

52

4.3. Guidance And Navigation

(a) Two Gap candidates marked for investigation (b) Gaps are Examined

Figure 4.10: Examination of Gaps

4.3.1.3 Condition for Updating Path

In both of the described exploration strategies the path is replanned each time
the exploration node has performed an iteration. However, the computation time
causes a delay, where the vessel’s position is shifted at the end of an iteration from
what it was at the start of it.

In order to avoid the situation where this delay causes the vessel to oscillate be-
tween goal positions in opposite directions the following logic has been imple-
mented:

Condition for updating path logic
-If the cell corresponding to the goal position or previous gap is not yet explored
or examined:

-Then, the produced path is only updated if the difference in orientation
between rnew and rold is less than 90 degrees, where rnew and rold is the
orientation of the first segment of the new and old path respectively,

4.3.1.4 Finishing Procedure

Unless otherwise specified, at the time that no more frontiers or gaps are accessible
the vessel returns to its initial position where it will await further instruction from
the operator.

53

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) (b)

(c) (d)

(e) (f)

(g)

Explored cell: Occupied
Explored cell: Free Occupied
Unexplored cell
GAP Cell
Traversed path
Vessel Position
Lidar Range
Goal
Pat
Identidifed GAP
Explored GAP

(h)

Figure 4.11: Gap-based simulated exploration stages

54

4.3. Guidance And Navigation

4.3.2 Path Planner

The A* search algorithm is an algorithm that is relatively simple to implement,
recognized as efficient, and one that enjoys great popularity within the robotics
community. For these reasons it this is the algorithm that is utilized for planning
paths between locations in the area where the vessel operates. When applying the
algorithm to the occupancy grid used in this thesis, the center of each grid cell is
considered as a separate node that the path can cross.

The A* search algorithm applies two sets of lists for keeping track of data during a
search. These lists are the Open list that keeps track of nodes that are candidates
for further examination, and the Closed list that keeps track of examined nodes.
Both the Open and Closed list contain information about the cost of reaching a
node and its preceding node.

When the algorithm chooses a new node for examination, it selects the node in
the Open list that appears to be the most promising, which is equivalent with the
node that has the lowest f-value. The f-value is defined as follows:

f(s) = g(s) + h(s) (4.18)

where g(s) is the cost the pathfinder has used to reach Open node s from the start,
and h(s) is the Heuristic cost, which is an estimate of the cost to reach the goal
from node s.

In grid-based graphs that represent the geometry of the map graphs, it is suitable
to set the Heuristic value equal to the Euclidean distance from start to the goal
node. Note that this never over-predicts the actual cost of reaching the goal from a
particular node. This is important since the A* search algorithm is guaranteed to
find the shortest path in the graph if the Heuristic does not over-predict the cost
of getting to the goal. If all h-values are set to zero, the method reduces to that of
the Dijkstra’s algorithm, which is a special case of the A* search algorithm.

Figure 4.12 illustrates how the Heuristic value is automatically generated for a
given the goal, which is marked red. As many other figures this chapter it has
been generated by using data from the trials in the basin. The resulting values of
the Heuristic can in this figure, thus be directly be related to the distances in the
basin.

The A* search algorithm is complete, meaning that if there exists a path to the
goal node it will find it. The method is further admissible (finds a best path) if
the Heuristic does not over-predict the actual minimum cost of reaching the goal.
Since the method solves the problem by investigating the most promising nodes
first, it is classified as a best-first-search algorithm.

55

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

The following operations describe how the algorithm find a the path, step by
step:

A* Search Algorithm

1. Pop the node in the Open list that has the lowest f-value. This node now
becomes a part of the Closed list.

2. If the node is a destination node, retrace the path backwards to find the
path from start to goal.

3. Examine the neighbouring nodes that are not Closed.

4. If the node has not yet received a g-value, or the new g-value is lower
than the old, then update it. When updating a g-value, record the parent
node. Update at the same time the f-values.

5. Add the neighbouring and non-blocked nodes to the Open list. Add the
examined node to the Closed list. Repeat.

0

10

20

30

H
e

u
ri
s
ti
c
 v

a
lu

e
Goal

Figure 4.12: Heuristic value of nodes in example map.

56

4.3. Guidance And Navigation

Figure 4.13a illustrates which nodes that have been investigated to find the shortest
path from start to goal in a given map by the use of the A* search algorithm.
For comparison, the same result using the Dijkstra search algorithm (where the
Heuristic is set to zero) is included in Figure 4.13b. Although the resulting path
differs, the length of the generated paths are identical, and thus both methods have
found a shortest path. Due to the best-first strategy of the A* search algorithm,
it opened much fewer nodes to perform the operation.

Occupied cell
Unexamined cells
Closed List
Open List
Vessel position
Goal
 Chosen Path

(a) A* search algorithm

Occupied cell
Unexamined cells
Closed List
Open List
Vessel position
Goal
 Chosen Path

(b) Dijkstra search algorithm

Figure 4.13: Path planer comparison: open and closed nodes

4.3.2.1 Multiple Goal Nodes

The exploration methods applied can yield multiple goal candidates, which the
search algorithm should be able to handle. The pathfinder should therefore find
the shortest path to any of the potential goal candidates. In the implemented
algorithm this is realized by adjusting the Heuristic h(s) such that it equals the
Euclidean distance from cell s to the nearest goal node. The first goal candidate
the method opens during a search is now identified as the closest goal node, from
where the path is retraced back to start.

Figures 4.14a and 4.14b illustrate how the Heuristic is generated with multiple
goal nodes, while Figure 4.14c illustrates how nodes subsequently are opened to
find the shortest path to a goal node.

57

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) Goal nodes indicated
(b) Heuristic value of nodes (c) Node status when path is

found

Figure 4.14: A* search algorithm applied to multiple goal nodes

4.3.2.2 Node Connection Distance

In the standard A* search in occupancy grids, only the eight neighboring tiles are
investigated when expanding paths from a node. This restricts the orientation
of the planned path to eight directions, in increments of 45 degrees, which again
leads to suboptimal paths.

A way to circumvent the restriction is to allow each node to connect to nodes
that are more than one tile away. Figure 4.15 illustrate which nodes that are
investigated when expanding the path, for connecting-distances between 1 and 4.
Each connecting line in this figure represents a possible heading that the final path
can take. As is evident from the figure, increasing the connecting-distance quickly
increases the number of possible directions. A connecting-distance of two yields 16
possible orientations, while three and four yields 32 and 54 possible orientations
respectively.

Figure 4.16 illustrate how the calculated paths differ when using a connecting-
distance of one and four. As expected, the calculated path using a connecting-
distance of four is both shorter and smoother than when the connecting-distance
is one.

While larger connecting-distances increase the number of possible orientations,
and in general lead to better and shorter paths, it quickly increases the complexity
of calculations and thus also computation times. In the implemented system, the
connecting-distance is an integer parameter that may be changed by the operator

58

4.3. Guidance And Navigation

during operations. The default value for the parameter is set to four, which is a
value found to yield suitable paths, within reasonable computation time.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4
Connecting distance=1

(a)

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
Connecting distance=2

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4
Connecting distance=3

(c)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4
Connecting distance=4

(d)

Figure 4.15: Node connections using different connecting-distances

59

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Goal
Path, Connection distance=1
Vessel position
Path, Connection distance=4

Figure 4.16: Comparison of path found using a connecting-distance of one and of four.

4.3.2.3 Focussing Exploration Toward Unexplored Destination

In some cases, it is preferable to focus the exploration towards a destination outside
of the explored area. This is not necessarily the same as desiring to reach a point
as fast as possible, as it also keeps some of the rapid exploration properties.

If the only goal was to reach the unexplored point as quickly as possible, a more
direct method would be to apply the A* search algorithm to the full map, not
considering whether cells are explored or unexplored. Then whichever frontier the
resulting path is passing through, is the goal which the vessel should maneuver
to.

The implemented method considers both the cost of reaching a frontier and the
Euclidean distance from the chosen frontier to the set exploration goal. No cells
outside of the explored map are assessed. This is implemented by adding a cost of
reaching a frontier-cell that relates to the Euclidean distance between the frontier
and the goal cell, denoted g’(sf).

The weight on the distance between frontier and exploration goal, wd is now in-
troduced, which regulates how to weight the importance of the cost g’(sf). A large
value of wd means that it is important that the chosen frontier is close to the

60

4.3. Guidance And Navigation

exploration goal, while a low value, means that it is more important that the path
from start to the particular frontier is short.

The extra cost g’(sf) of travelling to the frontier-cell sf is now given as:

g’(sf) = wd dgoal(sf) (4.19)

Where dgoal is the Euclidian distance from the frontier-cell to the exploration
goal.

(a) wd = 0.15 (b) wd = 1

(c) wd = 1.5 (d)

Figure 4.17: Chosen path to global exploration goal using different weigths, wd

61

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Now that the cost of reaching the goal has changed, so should the Heuristic. This
is performed by setting the Heuristic of each cell equal to the lowest value found
when combining the cost traveling to a frontier with the extra cost of reaching
that frontier. The Heuristic value of node s can thus be expressed as follow:

h(s) = min(dsf + g′(sf)), For all frontier-cells sf (4.20)

where s is the investigated cell, sf represent a frontier-cells, g′(sf) is the extra cost
of reaching the frontier-cell, and dsf is the Euclidean distance from the vessel’s
position to the considered frontier-cell.

Figure 4.17 displays how the implemented A* search algorithm performs using
different weights on wd. The value of wd needs to be tuned according to the
operator’s preferences. Testing performed in this thesis revealed that a value of
wd between one and two seems reasonable.

The operator can set a global exploration goal during operations by interacting
with the map window. This is further reviewed in Section 4.4.

4.3.2.4 Weighting of the Cost-map

Thus far, the cost of passing from one node to another using the A* search al-
gorithm has been assumed identical to the Euclidian distance between the two
nodes. In the following section, a weighting of the nodes based on their distance
to nearby objects is introduced.

The weighting is implemented such that the closer a cell is to an occupied cell,
the higher the cost of passing it. There are several reasons why this is convenient,
one of which is that the vessel now maneuvers further away from objects, which
decrease the chance of collision. Also, due to the lidar being a further away from
walls, it can scan a wider portion of the walls. Finally, since the path now does
not take the shortest route around corners, the resulting paths are smoother and
contains less sharp turns.

The weight w(s) on node s is set according to the following formula:

w(s) = 1 +
5

0.1 + dobj

(4.21)

where dobj is the Euclidian distance from the node to the closest occupied cell.
Note how the weight is always larger than 1, which ensures that the Heuristic
value still never overestimate the true cost of moving to the goal, and thus still
is admissible. Figure 4.18 illustrates the weight of the cells in the occupancy grid
using this formula for a scenario in the basin.

62

4.3. Guidance And Navigation

A simple way of implementing the weight of the cost of travelling between two
nodes that demands few operations is to only account for the weight in the two
connected nodes. With this approach, the cost of moving between the two directly
connected nodes A and B is given by the following formula

gAB =
w(B)+w(A)

2
dAB (4.22)

where w(A), w(B), dAB are the weight of the two nodes and the distance between
them respectively.

As can be seen from the formula, only the first and the last node are assessed
to calculate the cost of moving from one node to another. When the connecting-
distance is larger than one, this means that some of the cells that are passed are
not evaluated. For this reason, an approach that accounts for the cost of each node
in the connection has been implemented. In this approach the cost of moving from
node A to B is as follows:

gAB =
k∑

s=1

d(s)w(s) (4.23)

where d is the distance the path traverse over node s, and k is the number of nodes
that the connection passes. The formula is exemplified for a connection passing
six cells in Figure 4.19

In the implemented code, the length segments that the path covers in a connection
are automatically generated each time a new connection is assessed, which is quite
computationally expensive. To reduce the computational demands, it would be
more advantageous apply a pre-generated table that contains these distances as a
function of vertical and horizontal movement in the connection.

Both of the two mentioned approaches for calculating the cost in the weighted
map have been implemented to the system, where the method of only evaluating
the first and last node is significantly faster. The two methods of calculating cost
can be toggled online.

63

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

2

3

4

5

6

7

8

W
e

ig
h

t
o

f
p

a
s
s
in

g
 n

o
d

e

Figure 4.18: Planned path in the weighted grid.

Figure 4.20 compares how the generated path differs using the two methods of
incorporating the weight. A path is calculated both using a connecting-distance
of four and ten, and for comparison, the calculated path using no weighting is
included. For a connecting-distance of ten it is clear that the resulting path when
weighing only the first and last cell in a connection is closer to the wall than
desired. However, based on these figures (and other testing performed by the
author) it appears that the simple method of calculating weights are sufficient for
a connecting-distance of four. If computation speed is no issue, it is still advised
to use the method that accounts for all weights along a connection.

64

4.3. Guidance And Navigation

1 2 3 4

1

2

3

4

d(5)

Node 3

d(4)d(3)

g
16

=d(1)w(1)+d(2)w(2)+d(3)w(3)+d(4)w(4)+d(5)w(5)+d(6)w(6)

d(1)

d(2)

Node 6

d(6)

Node 2Node 1

Node 4

Node 5

Figure 4.19: Cost of moving from one node to another in the weighted costmap. d(s)
and w(s) represent the distance and weight on each node respectively.

2

3

4

5

6

7

8

W
ei

gh
t o

f c
el

l

Weighting only connection cells
Weighting all passed cells
No weigthing of cells

(a) Connecting-distance 4

2

3

4

5

6

7

8

W
ei

gh
t o

f c
el

l

Weighting only connection cells
Weighting all passed cells
No weigthing of cells

(b) Connecting-distance 10

Figure 4.20: Planned path using different weighting strategies

.

65

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

4.3.2.5 Reuse of Data Between Iterations

In the implemented path planner, the path is recalculated from scratch in each
iteration. It would be more advantageous if the method was able to reuse the
information obtained in previous iterations, which more sophisticated algorithms
indeed can do.

One algorithm that can perform this is the D* search algorithm, which is an ex-
tension of the A* search algorithm that is able to reuse information it has obtained
in previous iterations. In this method, only the nodes that are affected by changes
in the map or pose of the vessel, and their descendants are reassessed in each
new iteration. Since only the map in the vicinity of the vessel thus needs to be
updated, it is convenient to start from the goal node and calculate the backward
when applying the D* method. In this way as few nodes as possible need to be
updated.

When only a relatively small area around the vessel’s position needs to be updated,
the D* method is recognized being much faster than the A* search algorithm
(Stentz et al., 1995). In the current system, however, several nodes are set as
possible goal nodes, which somewhat complicates the use of the D* algorithm.
The idea of reusing information from previous iterations should still be possible to
apply, for instance by locking onto goal nodes once they are identified.

The idea of reusing information from previous iterations also applies to the gen-
eration of the weighted map, and the Heuristic, which in the implemented system
do not reuse information obtained in prior iterations.

66

4.3. Guidance And Navigation

4.3.2.6 Video Demonstration of Pathplanner

The author has created a video demonstrating the search algorithms discussed in
this section. The video is appended in the electronic attachment. Besides, it is
available online (Ueland, 2016b)

Figure 4.21: Screen shot of video showing implemented path planner strategies.

67

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

4.3.3 Velocity Control Law

The velocity of the vessel is controlled by adjusting the setpoint that the motion
controller receives. This procedure is in this thesis labeled as a velocity control
law and is discussed in this section.

4.3.3.1 Setpoint Generation

A list consisting of the first 128 discrete positions in the planned path are after each
iteration sent from the exploration node to the ROS-framework. Based on this list,
a separate ROS node generates set points for the controller. The ROS node that
performs this operation is running independently on the exploration node, which
allows the commanded setpoints to be updated with a frequency of 20 Hz, even if
the path planner only updates the chosen path every few second. The implemented
node (Path2Setpoint-node) designated for this procedure performs the following
three operations:

1. Rediscretizing Path
The imported vector that represents the optimal path has a relatively large
distance between each point. Also, the distance between each discrete point
is not uniform. The optimal path is, therefore, rediscretized to a new step-
size, which by default is set to 0.01m. Figure 4.22a and 4.22b illustrate how
the discrete vector representing the path is represented before and after this
operation. Note that in the rediscretized version the points are so close that
they appear to constitute a solid, thick line.

2. Identify Closest Point on Chosen Path
Due to the dynamics of the vessel, one cannot expect its position to be aligned
with that of the planned path. The discrete point on the path that is closest
to the vessel, therefore, needs to be identified. This operation is performed
by comparing the current position of the vessel with the re-discretized path.
In Figure 4.22b the closest point is identified as indicated by a yellow point.

3. Find Setpoint on the Chosen Path
The point identified as the closest to the vessel’s position is now used as a
reference point from where to calculate the new setpoint. The setpoint is
found by iterating n discrete points forward in the path from the identified
closest position. Where,

n = round
(Setpoint distance

Stepsize

)
. (4.24)

68

4.3. Guidance And Navigation

Path
Discrete points on path
Vessel position

(a) Descretized path as generated by the
exploration and pathfinder node

Path
Vessel Position
Chosen setpoint
Closest point on path
Discretized path

(b) Rediscretized path. Closest path point and chosen
setpoint indicated

Figure 4.22: Generation of setpoint

If there are less than n points left in the path vector, the last point in the
vector is chosen.

For the example displayed in Figure 4.22b the stepsize is 0.01 and the setpoint
distance is 1m. As a result, the indicated setpoint is the 100th consecutive
point after the yellow one.

4.3.3.2 Adapting Setpoint Distance

The setpoint distance is automatically adjusted based on the distance from the
vessel’s position to the nearest object. The nearer the objects, the lower value
of the parameter. This scheme has several advantageous effects on the vessel’s
behavior. Firstly it ensures that the proportional term of the PD controller, which
is directly related to the vessel’s distance to the setpoint is low when the vessel
is near objects, while it is high when there are no nearby objects. At the same
time, the derivative term is not directly affected by the change of setpoint. This
means that the vessel is able to adapt its speed quickly as the setpoint distance
changes.

Another advantageous effect is that when there are no nearby objects, the vessel
does not need to aligning itself on the path. Instead, it aims at a position further
ahead in the path which results in both smoother and shorter trajectories.

69

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

The distance to the nearest object is extracted directly from the lidar data-cloud
in a separate node (Scan2SetPointDist-node) and not from the generated map.
This means that objects that have not yet been incorporated into the map, which
is typically the case for dynamical objects, are taken into consideration. The effect
is a decreased probability of collision.

Figure 4.23 shows how the node changes the setpoint distance according to distance
to nearby objects. This mapping is tuned according to the capabilities of the
vessel. As evident the function is truncated at a distance to objects of 0.1 m and
3 m. Mathematically the chosen relationship can be expressed by the following
formula:

Setpoint distance =


0.1 ,for dmin ≤ 0.3

dmin − 0.2 ,for 0.3 < dmin < 1

2dmin − 1.2 ,for 1 ≤ dmin < 2.1

3 ,for dmin ≥ 3

(4.25)

where dmin is the shortest distance that to an object, as recognized by the li-
dar.

Figure 4.23: The setpoint distance, as a function of the minimal distance registered by
lidar.

70

4.4. Operator Interaction

4.4 Operator Interaction

During operations, the operator has several means of interfacing with the system,
as is explained in this section.

4.4.1 Interactive Map Window

Once the exploration node is run in MATLAB, an interactive window automat-
ically appears. This window contains a figure that visually displays the map,
vessel position, chosen path and path destination. During operation, the window
is updated each time the exploration node has performed one iteration.

The user can interact with this window and by left-clicking, the following explo-
ration modes can be chosen:

• Focussing Exploration Toward Unexplored Destination
If the operator clicks on a position in the unexplored map, the vessel focus
exploration towards a global setpoint (as described in Section 4.3.2.3).

• Autonomous Exploration
If the operator clicks on the top left corner of the map, the vessel returns to
autonomously explore the basin according to the chosen exploration strategy.

• Navigate to Known Location
If the operator clicks on an already explored position, the system computes
a path to this location, and subsequently navigates to it.

Figure 4.24 displays the user interface on the operator computer. In Figure 4.24a,
the operator has clicked on an explored position, while Figure 4.24b displays how
the system responds by planning a path to the chosen position.

71

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

(a) Operator has clicked on a known location on the map. X and y refer to cell placement
in the grid of the identified click

(b) The path-planner has found a path to the desired position

Figure 4.24: Example of user interaction in the map.

72

4.4. Operator Interaction

Figure 4.25: Simulink-Control Panel, Extracted from Exploration Node.

4.4.2 Parameter Setting

The exploration node running in Simulink has several parameters that may be
adjusted by the operator. The setting of these parameters can be performed online
via the Simulink control panel of the exploration node, as seen in Figure 4.25.

An overview over all parameters that are adjustable during operations and their
function can be found in Table D.2.

73

CHAPTER 4. GUIDANCE NAVIGATION AND CONTROL

Table 4.1: Parameters adjustable by operator during operations

Parameter Explanation Valid Range

Exploration
Method

Switching strategy for explo-
ration.
(See Section 4.3.1)

0=Gap-Based
1=Frontier-Based

Connecting-
Distance

Max connecting-distance between
neighbouring nodes in the A*
search algorithm.
(See Section 4.3.2.2)

Integers (Should be kept
low for reasonable com-
putation times)

Weighting
of nodes

Weighting the distance to the
closest object as part of the cost
of visiting each node.
(See Section 4.3.2.4)

0=No Weighting
1=Weight first and last
node in connection
2=Weight all nodes in
connection

Exploration
mode

Autonomous guidance or control
to a specific point on the map
(See Section 4.4.1)

Clicking in the map in-
terface

Inflation Radius Radius around a grid-cell that
need to be free for the cell to be
deemed accessible
(See Section 4.2.2)

Reasonably set a little
larger then the extent of
the vessel

Controller gains Tuning of motion controller gains.
Can only be tuned in the
Simulink version of the motion
control node

Tune to suit vessel char-
acteristics

Motor on off Switching thruster power on or
off. Used if the C++ com-
piled version of the MotionCon-
trol node is used

0=Off
1=Neutral Position

74

4.5. Software Architecture, Overview

4.5 Software Architecture, Overview

In the implemented ROS architecture there is a number of nodes that perform
different tasks. In addition to the nodes reviewed in this chapter, these nodes
include a lidar driver, Hector-SLAM nodes, and an Arduino node.

An overview the network of nodes and topics in the ROS architecture can be seen
in Figure 4.26. This figure also displays the physical units each node is run on.
Only the topics that are vital for the control of the vessel are included in the figure.
Thus, topics that are responsible for parameter-setting or monitoring the system
are not included. A full overview of all nodes and topics present in the system,
and their function can be found in Appendix D.

It should be noted that during most of the experiments it was chosen to run the
MotionController node in Simulink on a second operator computer instead of using
the C++ compiled version. This was done in order to easily make adjustments
in the code, adjust controller gains and for toggling individual motors on and
off.

Figure 4.26: Node/topic interactions in the implemented system.

•

75

Chapter 5

Simulations

5.1 Simulated Nodes

The architecture of ROS makes it relatively easy to replace real hardware with sim-
ulated nodes, that interface with the system through the same type of messages
that the physical device it replaces would. In the implemented model, two simula-
tor nodes are applied. One node is the mapping simulator node (MappingSimulator-
node), where the lidar and subsequent map generation process is simulated. The
other node is the vessel simulator node (VesselSimulator-node) that simulates the
vessels dynamics.

Figure 5.1 schematically shows the simulated system in the ROS subscriber/pub-
lisher architecture. Comparing this system to non-simulated architecture seen in
Figure 4.26, gives an overview of what parts of the system that is simulated.

In the Figure 5.1, the red and blue boxes represent nodes and topics that are run in
the same manner in the simulations as they are in real experiments. Using many of
the same software components makes the simulations more similar to the physical
tests and makes it easier to filter out bugs in the overall system. Besides it means
that the user interface on the operator computer is identical in both cases.

5.1.1 Mapping Simulator Node

The mapping simulator node is responsible for simulating the map generation
process. It contains logic for simulating the lidar, together with a structure for
storing and updating a map of the vessel’s environment. This means that both the

76

5.1. Simulated Nodes

Figure 5.1: Node/topic interactions during simulations

lidar node (RPlidar-node), and the subsequent mapping performed by the Hector-
SLAM nodes are simulated through this node. In addition, the node simulates the
logic for finding setpoints distances (Scan2SetPointDist-node).

The node applies two mapping arrays during simulations, both of which represents
occupancy grids. One is the constant pre-generated Reference-map that represents
the environment that the vessel operates in. The other is the dynamic Explored-
map array that represents how much of the Reference-map that the vessel has
explored.

The node has the position and heading of the vessel as input, and is implemented
with a separate lidar emulator that emits rays from the vessel’s position relative to
the Reference-map. This emulator evaluates which cells in the vessel’s vicinity that
should be updated, a process which is illustrated in Figure 5.2. The Explored-map
array is continuously updated as the lidar emulator explores new areas. Also, the
lidar emulator recognizes the distance to the nearest objects in the map and uses
the logic presented in Section 4.3.3.2 to generate the SetPointDist parameter.

Two versions of the mapping simulator node have been designed. One version that
does not update cells in sections where the lidar emulated rays does not hit any
objects within the lidar range, and one that updates cells in these sections.

The first method is in line with how the Hector-SLAM algorithms update the map

77

CHAPTER 5. SIMULATIONS

-3.6 -2 -0.4 1.2 2.8

X Position [m]

-5.2

-3.6

-2

Y
 P

os
iti

on
 [m

]
Lidar Position
Emitted rays
Scanned Obstacle

(a) The lidar emulator sending out rays
that hit objects in the Reference-map

-3.6 -2 -0.4 1.2 2.8

X-Position [m]

0.4

-1.2

-2.8

-4.4

-6

Y
-P

os
iti

on
 [m

]

Lidar Position
Scanned cell:Occupied
Scanned cell: Free

(b) Updated Explored-map

Figure 5.2: Lidar emulator

in physical experiments, as explained in Section 4.2.2. It is this method that is
used in this section. An example of the use of the second version, that updates
the map in areas where the lidar rays do not hit any objects can be seen in Figure
4.8 and 4.11.

5.1.2 Vessel Simulator Node

The vessel simulator node simulates the dynamics of the vessel, and how it responds
to actuated inputs on the motors. It does so by solving the equation of motion
(3.5) for ν̇̇ν̇ν as follows:

ν̇̇ν̇ν = M−1(−C(ννν)ννν −D(ννν)ννν −Dννν + τττ) (5.1)

Where the body-fixed input force τττ is found by first interpolating actuator input
to local thrust force, using the relationship obtained in Section 3.3, and then by
multiplying with the thrust allocation matrix found in Section 4.1.3 .

To obtain the position vector ηηη in the Basin-relative reference frame, the resulting
integrated velocity vector ννν is multiplied with the rotation matrix and integrated
once again. The following equation shows this transformation:

ηηη = ηηη0 +

∫ t

t0

R(ψ)νννdt (5.2)

where ηηη and ηηη0 is the vessel position at time t and t0 in the Basin-relative reference
frame.

78

5.1. Simulated Nodes

In effect, the vessel simulator node replaces the physical vessel and the Arduino
node. Besides, the node generates the position of the vessel, which otherwise would
have been obtained through the Hector-SLAM nodes.

79

80 CHAPTER 5. SIMULATIONS

5.2 Simulations Performed

In simulations performed in this section, the Reference-map that is used is an occu-
pancy grid that has been generated through physical operations in the basin. The
map used has a grid size of (256x256), and a resolution is 0.2m. The simulations
are carried out in soft real time, meaning that time elapsed in simulations follows
computer time.

In this section, the following three simulations are presented;

• Simulation-1, Autonomous Exploration of Basin by the use of the
Frontier-Based Exploration Strategy
In this simulation, the vessel autonomously explores the map using the
Frontier-based exploration strategy. Snapshots from the simulation are shown
in Figure 5.3. The exploration is straightforward and appears to be quite
efficient. The vessel starts off by exploring frontiers in the left half of the
basin until it is fully explored. It subsequently investigates the right half of
the basin. After exploring the whole map it returns to its initial position.

• Simulation-2, Autonomous Exploration of Basin by use of the Gap-
Based Exploration Strategy
In this simulation, the vessel autonomously explores the map using the Gap-
based exploration strategy. Snapshots from the simulation are shown in
Figure 5.4. The behavior of the vessel during exploration is very similar
to that of the Frontier-based exploration strategy; The vessel starts off by
exploring the left side of the basin, before exploring the right side and finally
returning to its initial position.

• Simulation-3, Focussing Exploration Toward Unexplored Destina-
tion
In this simulation, the vessel starts off in its default autonomous exploration
mode. This is shown in Figure 5.5a. Prior to Figure 5.5b, the operator has
utilized the interactive map and clicked the location where the green marker
has appeared. Since this location is unexplored, the system starts to focus
exploration towards it, as explained in Section 4.4.1. In Figure 5.5d the vessel
has reached the operator setpoint, where it awaits further instructions.

5.2. Simulations Performed

5.2.0.1 Simulation-1

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Simulation-1 is demonstrating the Frontier-based exploration strategy

81

82 CHAPTER 5. SIMULATIONS

5.2.0.2 Simulation-2

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Simulation-2 is demonstrating the Gap-based exploration strategy

5.2. SIMULATIONS PERFORMED 83

5.2.0.3 Simulation-3

(a) The vessel starts of in its default autonomous
exploration mode

(b) An exploration goal (green) has been set by the
operator

(c) (d)

(e) (f)

Figure 5.5: Simulation-3 is demonstrating exploration towards a userdefined explo-
ration goal

.

CHAPTER 5. SIMULATIONS

5.3 Simulator Discussion

5.3.1 About Simulator

During development of the system, the simulator has been used a lot. This has
involved using it to test algorithms and to identify bugs. Without the availability
of the simulator, it is unlikely that a system with the same level of capabilities
could have been designed in the same period of time, especially considering that
the availability of the MC Lab was limited.

The simulations performed in this thesis can be classified as software-in-the-loop
(SIL) simulations. Since the system is divided into loosely connected nodes, trans-
forming it into a Hardware-in-the-loop simulator (HIL), which has stricter require-
ments does not require many steps. HIL testing would involve running the vessel
simulator node on an independent platform that ensures real time, and should
include the Raspberry Pi 2 and Arduino in the loop.

By changing the dynamics of the vessel simulator node, the simulator can be
adapted to fit the dynamics of other vessels. It is therefore, the author’s belief that
the simulator can be useful for other applications than the exploration objective
seen in this thesis. One example where it can be useful is for the simulation of
two vessels approaching each other in a small corridor. In this case, one could
investigate how the two vessels should interact and behave when passing each
other. In this example, separate ROS-nodes should represent the GNC system of
each vessel.

5.3.2 Simulator Versus Real System

Although most of the message parsing, several nodes, and the operator interface
is identical in both cases, the simulator cannot be expected to fully replicate the
physical system. In this regard, this section reviews some of the most important
shortcomings of the simulator.

Due to only being approximations, both the dynamics of the simulated vessel and
the thruster responses to actuator inputs are expected to deviate from the physical
system, which is a result of imperfect modeling, noise, and biases. The effect is
that the simulated vessel is more stable in reference tracking than the physical
vessel.

Another noticeable difference is the quality of the lidar scan. Unlike in the physical
system, the Mapping simulator node never experiences imperfections and sees new

84

5.3. Simulator Discussion

objects immediately when they come within range of the lidar. The effect is that
the vessel never needs to investigate objects closer in order to identify them. It
can thus perform exploration more efficiently than the real system.

The ability of the vessel to follow calculated paths in the environment is verified
in the next chapter. This means that strategies functioning in the simulator can
be expected to also work in the basin, as long as they generate reasonable paths
for the system to follow. This is true even if the vessel is considerably less stable
in path-following in the physical experiments than what it is in the simulations.
This observation means that the simulator efficiently can be used to test new
exploration strategies.

5.3.3 Analysis of Simulation Performed

The simulations performed in thesis all proved successfully and were able to demon-
strate that the two methods of exploration functioned as desired. In addition, the
implementation of the method for focusing exploration towards a desired location
proved successful.

Comparing the two methods, it is clear that they behave quite similar, and it is
difficult to conclude which one is the better. Since the gaps are only spawned
in the vicinity of frontiers, it can, in fact, be argued that the implemented Gap-
based exploration scheme is a version of the Frontier-based exploration strategy.
In order to adequately judge which method is the better, further testing should be
performed in more complex environments. In addition they both methods should
be tested through physical experiments.

Although both methods appeared to function well, it is the Frontier-based ex-
ploration strategy that has been chosen as the preferred one, and that is in focus
during the experiments performed. This is due to its simplicity and it guaranteeing
complete exploration.

85

Chapter 6

Experimental Results

6.1 Tools for Post Processing of Data

6.1.1 Recording of Data

The following means of recording data were utilized during experiments:

• Filming
The operations performed in this chapter were filmed with either one or two
cameras, while at the same time, the operator computer had enabled screen
recording. In addition to providing a convenient method of presenting the
results, the generated videos facilitate for analysis the vessel’s behaviour.
This analysis can, for instance, involve a comparison of the video from the
operator screen and the video of the vessel.

• RosBag Recording

During experiments, the ROS tool RosBag (ROS-community, e) is utilized
for recording of data. By running the RosBag tool during an operation, all
messages, that any topic receives is saved with a timestamp. In the imple-
mented system, all information about the system that is deemed relevant
for post-processing is routed through topics and is thus readily available for
analysis after experiments.

The generated RosBag-files can be played back in the ROS environment,
however, it has been chosen to import the files to MATLAB for post pro-
cessing. In MATLAB, the value of characteristic parameters such as vessel
speed and thruster inputs are available as the vessel is traversing the map.

86

6.1. Tools for Post Processing of Data

• Online Saving Data of Exploration Node

The exploration node run in MATLAB saves the input variables that its
main script receives in each iteration. After the exploration node has been
stopped, the main script for exploration can be run with the stored input
variables from previous iterations. By analysing how the scripts process this
data, unexpected behaviour and bugs can be identified and fixed.

6.1.2 Animation Tool

A script has been created in MATLAB (RosbagReplay.m), that reads RosBag data
and automatically generates a video file that animates the exploration process.
Specifically, this animation shows the setpoint of the vessel, planned path, path-
goal, thruster input, vessel position and heading of the vessel as it traverses through
the map.

In the production of the animation, a new frame is generated for every tenth
message that has been processed. Since most topics are publishing approximately
20 messages per second, the animation is both more detailed, and is updated
at a much higher frequency than the interactive window displayed online during
operations.

Due to the amount of data, the generation of an animation file is quite time-
extensive. As an example, the video file produced from Experiment-2 was gener-
ated by processing 250.158 messages and took few hours to produce.

Figure 6.1 presents some snapshots of an animation produced by processing the
data of Experiment-2. Note that the black lines which represent the thrust, are
directly proportional to the actuated input signal and thus gives an overview over
how the three thrusters interact with the system during operations.

It is concluded that the animations give useful insight to the exploration process
and that it, in general, is helpful for analyzing the experiments. The visualization
of the setpoint is especially helpful as it tells where the motion controller is aiming
at any time.

87

CHAPTER 6. EXPERIMENTAL RESULTS

(a) (b)

(c) (d) Zoomed in, focus on the vessel

Figure 6.1: Snapshots of the animation generated from Experiment-2

88

6.2. Experiments

6.2 Experiments

The following section will present relevant results from the experiments performed
in the Marine Cybernetics Laboratory. Due to limited availability of the labora-
tory, only two full experiments, both using the Frontier-based exploration strategy
were well documented. In both scenarios, static objects were introduced, as de-
scribed in Section 2.1.2.2.

The experimental setup in the two experiments is quite similar, but not equal. In
Experiment-1, the vessel starts in the middle of the basin and explores the full
basin, while in Experiment-2 the vessel starts in the labyrinth-like section and
explores towards the center. The obstacles in the basin are also set up slightly
differently.

6.2.1 Experiment-1

Frontier-Based Exploration, Exploring the Whole Basin
In this experiment, the whole basin was successfully explored. The vessel mostly
behaved as expected, but a few incremental adjustments were still performed in the
algorithms prior to the next experiment. This involved adjustments the algorithms
that decide where the setpoint should be placed.

The experiment was performed using an occupancy grid size of (256x256) and a
resolution of 0.2 m. Images of the basin as set up in the experiment can be seen
in Figure 6.2, while the fully explored basin from the trial can be seen in Figure
6.3.

(a) Labyrinth section (b) Middle section

Figure 6.2: Laboratory setup in Experiment-1

89

CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3: Explored map of the basin, Experiment-1

.

6.2.2 Experiment-2

Frontier-Based Exploration, Exploring of a Section of the Basin
This is the final experiment that was performed with the vessel in this project,
and the one that was best documented. The experiment yielded very satisfying
results, with the vessel exploring the scenario without problems.

The experiment was performed using an occupancy grid size of (256x256) and a
resolution of 0.1 m. Figure 6.4 illustrates how the vessel explored the scenario.
The two first rows show the operator interface and the vessel in the laboratory
respectively. The last row shows snapshots from the animation produced by post-
processing the data.

6.2.2.1 Speed Analysis

During Experiment-2, the vessel adapted its setpoint, and thus also its speed
according to the distance to hinders. This helped to ensure that the vessel never
came close to crashing, while at the same time efficiently exploring the basin.

The speed of the vessel is plotted in Figure 6.5. Although the speed also varies
as a natural result of the vessel changing directions, it is clear that the vessel is
adjusting its speed according to the distance to nearby objects. In particular, this
is evident when the vessel passes the last narrow passage. In this section, the

90

6.2. Experiments

(a) Computer interface, step
A

(b) Computer interface, step B (c) Computer interface, step C

(d) Image of
operation, step A

(e) Image of
operation, step B

(f) Image of
operation, step C

(g) Post produced animation,
step A

(h) Post produced animation,
step B

(i) Post produced animation,
step C

Figure 6.4: Snapshots from Experiment-2.

91

CHAPTER 6. EXPERIMENTAL RESULTS

0.05

0.1

0.15

0.2

0.25

V
es

se
l s

pe
ed

 [m
/s

]

Figure 6.5: Vessel speed as estimated by the observer, Experiment-2.

vessel slows down to about 0.07 m/s. Once the vessel has passed it and gets into
an open area it quickly speeds up to about 0.25 m/s.

6.2.2.2 Video

A video displaying the vessel operating in the basin during Experiment-2 is ap-
pended to the electronic attachment. This video is also available online (Ueland,
2016a)

The video is produced by merging the film from two cameras and the film generated
by the enabled screen recording the operator computer. At the end of the video,
the exploration process is reviewed through an animation, produced as described
in Section 6.1.2.

92

6.2. Experiments

Figure 6.6: Screenshot of video showing Experiment-2, as posted on Youtube.

93

CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Discussion

In summary, the experiments proved successful, and the vessel was able to explore
the basin autonomously. The speed regulation of the vessel also proved efficient.
As is evident in the generated video, the operator was able to successfully utilize
the explored map for path-planning to destinations within it.

Although the SLAM algorithms are able to recognize most objects successfully, it
had some issues in recognizing the wall in the very left of the basin. This wall
is a part of the basin’s wave generator that has a smooth, non-vertical surface.
The effect can be seen in Figure 6.4, where after halfway crossing the width of the
basin, the vessel takes a detour and gets quite close to the wall, before it identifies
it as an obstacle and moves on. Although it did not cause any problems in this
experiment, it indicates that the vessel may have challenges in scanning certain
types of objects.

Even though considerable effort has been made on improving it, the vessels stability
and performance in reference tracking is still relatively poor. For this reason, the
gains of the controller have been kept relatively low, resulting in slow operating
speeds ranging from 0 to 0.3 m/s. It is the author’s view that the vessels relatively
poor performance in reference tracking currently are the biggest bottleneck in the
overall exploring process. With better control of the vessel, the gains could have
been set higher and the basin could have been explored faster.

A known challenge using SLAM algorithms is the localization of crafts in corridors
where there are no features it can use as a reference. For this reason, it was
expected that the algorithms could face problems in the sections of the basin
where there are few hinders. As can be seen in right side of Figure 6.3, this was
not the case, and the vessel explored well, also in these areas.

It is important to note that the successful exploration is partly a result of having
a controlled environment in the basin. If there, for example, were waves present in
the experiments, the lidar would be tilted up and down, in which case the SLAM
algorithms is expected to face problems.

94

Chapter 7

Conclusions

The experimental platform, the CS Saucer, has been extensively upgraded during
this thesis. This has involved changing the software platform to LabVIEW to ROS,
which included replacing the NI myRIO unit with a Raspberry Pi 2, Wireless WiFi
adapter and an Arduino. The implementation of ROS on the vessel makes the
vessel much more versatile and is believed to be of advantage for future academic
projects performed on the vessel.

The ability of the vessel to follow reference tracks has also been significantly im-
proved. This is a result of a remapping of the thrust/force relationship, installation
of RPM sensors, and a redesign of the control system including tuning of gains.
Even with these improvements, the heading of the vessel still oscillates during op-
erations. This is particularly the case when the commanded forces are large.

The use of ROS with a combination of nodes written in C++, nodes run in
Simulink and C++ nodes generated from Simulink proved efficient. Indeed, the
thesis has verified that the utilization of MATLAB and Simulink together with
ROS functions well, and in particular it showed the advantage of being able to
run a relatively advanced ROS node from MATLAB on the operator computer.
This setup is believed to be of great advantage for future students in the MC Lab,
where students, in general, are well educated in the use of MATLAB.

The A* search algorithm has been implemented for pathfinding. This algorithm
is implemented in an efficient manner and is more advanced than its basic form in
that it allows for longer connecting-distances between nodes and applies a weighted
map. The paths generated are in general of a satisfying character and both and
avoids sharp turns and keep a distance to walls if possible.

Two methods of exploration have been implemented to the system, namely the

95

CHAPTER 7. CONCLUSIONS

Frontier-based exploration strategy and the Gap-based exploration strategy. Sim-
ulations showed that they were quite similar in performance, but due to the sim-
plicity and it guaranteeing complete exploration, the Fronter-based exploration
strategy was the preferred one, which was documented through experiments.

The exploration node, responsible for generating paths for the system to follow
may use up to a few seconds to perform an iteration. Separate nodes that iterate
with a much higher frequency are responsible for generating setpoints based on
the calculated path. This scheme results in a steady stream of updated setpoints
and is in general found to be successful.

The simulation model developed proved crucial for rapid development and trou-
bleshooting of the system. In fact, given the limited time available in the labo-
ratory, it is hard to conceive how the system could be created the with the same
level of performance without it. The simulation model is believed to be useful also
for other projects involving path planning for vessels.

The performed experiments were successful, and the vessel explored the basin
efficiently, without significant problems. The vessel was able to regulate its speed
according to the distance to nearby objects. In the performed experiment the
vessel speed varied from around 0.05 m/s in the narrowest passages to above 0.25
m/s in the open area. The reason that the velocities are not even higher is that
the gains of the motion controller had to be limited due to a relatively poor control
of the vessel.

The utilized Hector-SLAM algorithms yielded precise localization and mapping of
the vessel in its environment. The lidar was able to scan all objects present in the
basin successfully, even if not all objects were recognized instantly. The range of
the lidar, which was approximately equal the width of the basin appeared to be
sufficient for the tested scenarios.

Summarized, the implemented system merge suitable exploration strategies, SLAM
algorithms, a path planning strategy, motion controller, and a velocity control law
to a well-functioning guidance, navigation, and control system. The system is
able to perform the objectives that this thesis set out to solve. An additional
benefit of the generated system is that it is constructed by the use of low-cost
components.

96

Chapter 8

Further work

As of now the system has only been tested in a static environment. It is a future
goal that the system should handle dynamic objects. The biggest challenge in
this regard is believed to be assessing how the SLAM algorithms should handle
dynamical objects. The SLAM algorithms are using their knowledge of the map
for localization, and if considerable parts of the environment in the vicinity of the
vessel changes, it will face problems of localizing the vessel.

Ideas for overcoming this challenge involve making sure that dynamical objects
are recognized, making sure that only relatively small parts of the map changes,
or to identify static features in the map that can be used as a reference for posi-
tioning.

The author would advise implementing the tracking system available in the labo-
ratory to the system. The position data from this system could be implemented as
odometry data to the SLAM algorithms, and thus, hopefully, making sure that the
system can identify the vessel’s position, even in dynamical environments. An ac-
curate position estimate from the tracking system would also be useful for analysis
of the SLAM algorithm’s performance.

If the map generation, and in particular the localization of the vessel when facing
dynamical objects are handled, deflection strategies for avoiding objects should
be implemented. By using the lidar scan directly, dynamical objects within the
vicinity of the vessel can be identified. Subsequently, a node that deflects the
path around identified objects, before later merging it to the global path could be
implemented.

It would be interesting if the vessel was fully autonomous without the need of the
operator computer. If this is to be performed, the author’s advice is to implement

97

CHAPTER 8. FURTHER WORK

the exploration node in C++ or Python from scratch. The script in MATLAB do
not use any advanced built-in functions, and it can, therefore, with some effort, be
implemented to C++ in a similar manner. If this were the case, a Simulink node
could still be used as an interface with the operator, while the vessel itself could
explore the basin fully autonomously independent on the operator computer.

Schemes, where algorithms are able to reuse information from previous iterations
could probably increase the computational efficiency of the system. At the current
stage, however, the operator computer is able to compute all path within reason-
able times, and there does not appear to be a need for these kinds of improvements.
However, if the exploration node is implemented on the Raspberry Pi 2, which has
much less computational power, the implementation of these schemes should be
considered.

The author recommends making an effort of further improving the vessels perfor-
mance in reference-tracking. This could, for example, involve applying the RPM
data for low-level control of the actuators. In this case, a scheme for reducing the
noise of the RPM data need to be implemented. Another tactic that can be con-
sidered is to utilize the vessels ability to rotate its thrusters, which could facilitate
for more advanced motion control schemes.

As a final note, the author advises setting up a system in the ROS-tool Rrt-Gui
for simple control of parameters and gains in the system.

98

Bibliography

Cormen, T. H. (2009). Introduction to algorithms. MIT press.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271.

Ferguson, M. Rplidar, source code. Retrieved 10th of March 2016, from: http:

//wiki.ros.org/rplidar.

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM,
5(6):345.

Ford, L. R. (1956). Network flow theory.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley & Sons, Ltd.

Geraerts, R. and Overmars, M. H. (2004). A comparative study of probabilistic
roadmap planners. In Algorithmic Foundations of Robotics V, pages 43–57.
Springer.

Gerkey, B. (2015). gmapping. Online accessed 10th of December 2015 from http:

//wiki.ros.org/gmapping.

Grabowski, R., Khosla, P., and Choset, H. (2003). Autonomous exploration via re-
gions of interest. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on, volume 2, pages 1691–1696.
IEEE.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107.

Idland, T. K. (2015). Design, construction, and control of marine cybership
”c/s saucer”. Master’s thesis, Norwegian University of Science and Technol-
ogy, Trondheim, Norway.

1

http://wiki.ros.org/rplidar
http://wiki.ros.org/rplidar
http://wiki.ros.org/gmapping
http://wiki.ros.org/gmapping

BIBLIOGRAPHY

Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on, 12(4):566–580.

Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., and von Stryk,
O. (2014a). Hector open source modules for autonomous mapping and navi-
gation with rescue robots. In RoboCup 2013: Robot World Cup XVII, pages
624–631. Springer.

Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., von Stryk, O., and Klin-
gauf, U. (2014b). Robocuprescue 2014-robot league team hector darmstadt
(germany). Technical report, tech. rep., Technische Universität Darmstadt.

Kohlbrecher, S., Von Stryk, O., Meyer, J., and Klingauf, U. (2011). A flexible
and scalable slam system with full 3d motion estimation. In Safety, Security,
and Rescue Robotics (SSRR), 2011 IEEE International Symposium on, pages
155–160. IEEE.

Kohlbrecher S, M. J. (2015). hector slam. Online accessed 10th of December 2015
from http://wiki.ros.org/hector_slam.

Leedekerken, J. C., Fallon, M. F., and Leonard, J. J. (2014). Mapping complex
marine environments with autonomous surface craft. In Experimental Robotics,
pages 525–539. Springer.

Leonard, J. J. and Durrant-Whyte, H. F. (1991). Simultaneous map building and
localization for an autonomous mobile robot. In Intelligent Robots and Systems’
91.’Intelligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ In-
ternational Workshop on, pages 1442–1447. Ieee.

Liquid-Robotics (2015). The wave glider. Retrieved 16th of May 2016, from:
http://www.liquid-robotics.com.

Moravec, H. P. and Elfes, A. (1985). High resolution maps from wide angle sonar.
In Robotics and Automation. Proceedings. 1985 IEEE International Conference
on, volume 2, pages 116–121. IEEE.

Mullane, J., Vo, B.-N., Adams, M. D., and Vo, B.-T. (2011). A random-finite-set
approach to bayesian slam. Robotics, IEEE Transactions on, 27(2):268–282.

MUNIN (2016). Munin unmanned ship web page. Retrieved 10th of May 2016,
from: http://www.unmanned-ship.org/munin/.

Nasir, R. and Elnagar, A. (2015). Gap navigation trees for discovering unknown
environments. Intelligent Control and Automation, 6(4):229.

2

http://wiki.ros.org/hector_slam
http://www.liquid-robotics.com
http://www.unmanned-ship.org/munin/

Bibliography

Naval-technology (n.d). fleet-class-common-unmanned-surface-vessel. Retrieved
10th of May 2016, from: http://www.naval-technology.com/projects/

fleet-class-common-unmanned-surface-vessel-cusv/.

Neato-Robotics (n.d.). Neato-robotics-vacuum-cleaner. Retrieved 10th of May
2016, from: https://www.neatorobotics.com/.

Newman, P., Bosse, M., and Leonard, J. (2003). Autonomous feature-based ex-
ploration. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE In-
ternational Conference on, volume 1, pages 1234–1240. IEEE.

NICommunityPostA (2016). Controlling a usb lidar using myrio and the ’classy’
state machine. Retrieved 13th of March 2016, from, https://decibel.ni.com/
content/docs/DOC-35698.

NTNU/ime/labs (n.d). Marine-cybernetics-lab, ntnu. Retrieved 10th of May 2016,
from: https://www.ntnu.edu/amos/mclab.

O’Kane, J. M. (2014). A gentle introduction to ros.

Rescue-Robot-League. Rescue-robot-league. Online accessed 10th of March 2016
from https://www.robocupgermanopen.de/en/major/rescue.

Robotshop (2015). Rp-lidar. Retrieved 10th of December 2015, from http://www.

robotshop.com/en/rplidar-360-laser-scanner.html.

ROS-community. Camera tools. Retrieved 10th of March 2016, from: http://

wiki.ros.org/Sensors/Cameras.

ROS-community. Imu tools source code. Retrieved 10th of March 2016, from::
http://wiki.ros.org/imu_tools.

ROS-community. Introduction to ros. Retrieved 10th of March 2016, from: http:
//wiki.ros.org/ROS/Introduction.

ROS-community. Multiple-machines-ros. Retrieved 10th of March 2016, from:
http://wiki.ros.org/ROS/Tutorials/MultipleMachines.

ROS-community. Ros-community, rosbag. Retrieved 10th of March 2016, from:
http://wiki.ros.org/rosbag.

ROS-community. Ros-community, rosserial source code. Retrieved 10th of March
2016, from: http://wiki.ros.org/rosserial.

ROS-community. Ros-community, tf. Retrieved 10th of March 2016, from: http:

//wiki.ros.org/navigation/Tutorials/RobotSetup/TF.

3

http://www.naval-technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/
http://www.naval-technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/
https://www.neatorobotics.com/
https://decibel.ni.com/content/docs/DOC-35698
https://decibel.ni.com/content/docs/DOC-35698
https://www.ntnu.edu/amos/mclab
https://www.robocupgermanopen.de/en/major/rescue
http://www.robotshop.com/en/rplidar-360-laser-scanner.html
http://www.robotshop.com/en/rplidar-360-laser-scanner.html
http://wiki.ros.org/Sensors/Cameras
http://wiki.ros.org/Sensors/Cameras
http://wiki.ros.org/imu_tools
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosserial
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

BIBLIOGRAPHY

ROS-community. Ros tutorials. Retrieved 10th of March 2016, from: http://

wiki.ros.org/ROS/Tutorials.

Sharoni, R. (2016). Marine inverted pendulum. Unpublished master’s thesis,
Norwegian University of Science and Technology, Trondheim, Norway.

Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., and
Younes, H. (2000). Coordination for multi-robot exploration and mapping. In
AAAI/IAAI, pages 852–858.

Sørensen, A. J. (2013). Marine Control Systems. Propulsion and Motion Control
of Ships and Ocean Structures. Department of Marine Technology, Norwegian
University of Science and Technology, Trondheim, Norway, 3 edition.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). Information gain-based explo-
ration using rao-blackwellized particle filters. In Robotics: Science and Systems,
volume 2, pages 65–72.

Stentz, A. (1994). Optimal and efficient path planning for partially-known envi-
ronments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE Inter-
national Conference on, pages 3310–3317. IEEE.

Stentz, A. et al. (1995). The focussed d* algorithm for real-time replanning. In
IJCAI, volume 95, pages 1652–1659.

Tovar, B., Guilamo, L., and LaValle, S. M. (2004). Gap navigation trees: Minimal
representation for visibility-based tasks. In Algorithmic Foundations of Robotics
VI, pages 425–440. Springer.

Ueland (2016a). Autonomous exploration by the use of lidar on a marine surface
vessel. Online accessed 30th of June 2016 from: https://www.youtube.com/

watch?v=BUihBGbhfDA.

Ueland (2016b). Frontier based exploraiton and the a* search algorithm (astar).
Online accessed 30th of June 2016 from https://www.youtube.com/watch?v=

AKwn3y9LC-g.

Ueland, E. (2015). Preparing the thruster and control systems on the cs saucer for
autonomous tasks. Project thesis, Norwegian University of Science and Tech-
nology, Trondheim, Norway.

Vallabha, G. . (2010). Real time pacer for simulink. Retrieved Decem-
ber, 2015 from MATLAB Central File Exchange http://www.mathworks.com/

matlabcentral/fileexchange/29107-real-time-pacer-for-simulink.

4

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Tutorials
https://www.youtube.com/watch?v=BUihBGbhfDA
https://www.youtube.com/watch?v=BUihBGbhfDA
https://www.youtube.com/watch?v=AKwn3y9LC-g
https://www.youtube.com/watch?v=AKwn3y9LC-g
http://www.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
http://www.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink

Bibliography

Woo, J., Seo, I., Lee, J., Park, J., Park, A., Kim, M., Jung, Y., Park, J., You, R.,
Choi, H., et al. (2014). Autonomous surface vehicle: Macs.

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In
Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Pro-
ceedings., 1997 IEEE International Symposium on, pages 146–151. IEEE.

5

Appendix A

Electronic Attachments

The files in this appendix are included in electronically submitted versions. The
software components that are utilized during deployment or simulations is also
publicly available on GitHub through the following repository:
https://github.com/NTNU-MCS/CS_Saucer_ROS

A.1 Parameter Generation Files

VesselParametersSet.m
MATLAB script for setting parameters for both the motioncontroller.slx Simulink
model and the Vessel simulator.slx Simulink model.

ParameterSet256.m
MATLAB script for setting parameters prior to running simulations.

Mmp256.mat/map128.mat/map40
Files containing stored MATLAB workpaces. For simple setting the dimensions of
the Simulink nodes.

Posedata.mat
Files containing stored MATLAB workpaces. For initializing of simulations.

I

https://github.com/NTNU-MCS/CS_Saucer_ROS

APPENDIX A. ELECTRONIC ATTACHMENTS

A.2 ROS Nodes that are Launched During De-

ployment

A.2.1 Exploration Pathplanner node

Exploration pathplanner.slx
Simulink model Responsible for running the exploration node. Utilizes a series
of subscripts. Subscribes to position and map, and publishes a path to the ROS
architecture. To be run on operator computer.

A.2.1.1 Exploration pathplanner scripts

• ExplorationMain.m
Main script for exploration and pathplanning. Responsible for generating
paths according to implemented guidance and exploration strategy.

• Inflatemap.m
Responsible for inflating (expanding) objects according to the preset inflation
radius.

• PoppOut.m
Responsible for reducing the map to reachable cells.

• LidarUpdate.m
Assumes that there are no objects in direction where the lidar rays are not
reflected.

• PathAstar.m
Generates a path in the occupancy grid to goal nodes according to the imple-
mented A* search algorithm.

• AtarFindCost.m
Find the cost of travelling between two connected nodes. Only used when all
nodes in a connection are weighted.

• LidarFindGap.m
Identifies gaps in the map. Only used if the Gap-based exploration strategy
is applied.

• InvestigateGap.m
Examines whether a gap can be marked as explored or not. Only used if the
Gap-based exploration strategy is applied.

II

A.2. ROS Nodes that are Launched During Deployment

A.2.2 Path2SetPoint node

Path2SetPoint.slx
Simulink model used to generate the node in C++.
Generates appropriate setpoint on the planned path.

Path2SetPoint node folder
To be run as a regular ROS node.

A.2.3 Scan2SetPointDist

Scan2SetPointDist.slx
Simulink model used to generate the node in C++.
Finds the closest object based on lidar scan. Contains logic for finding setpoint
distance.

Scan2SetPointDist node folder
To be run as a regular ROS node.

A.2.4 Hector2VesselPos

Hector2VesselPos.slx
Simulink model used to generate the node in C++.
Transforms position vector from lidar coordinate system to that of the vessel. In-
cludes a quaternion transformation.

Hector2VesselPos node folder
To be run as a regular ROS node.

A.2.5 MotionController

Motion Controller.slx
The control system of the vessel, responsible for controlling the vessel to the desired
setpoint. This is performed by publishing appropriate signals to the actuators. It
is adviced to use the Simulink motion controller rather than the C++ compiled
version of this node.

III

APPENDIX A. ELECTRONIC ATTACHMENTS

Motion Controllercompile.slx
Simulink model used to generate the node in C++.

MotionControllercompile node folder
To be run as a regular ROS node.

A.2.6 Arduino Code

CS SaucerThrustRPMVoltage.inu
Arduino code responsible for publishing PWM signals to actuators and for moni-
toring revolution speeds and voltage of battery. Code is written in C++ and utilizes
Arduino/ROS libraries.

CS SaucerSimple.inu
Simpler version that only publish to signals to actuators. Does not monitor RPM
signals nor, voltage of battery.

A.2.7 Hector-SLAM nodes

Open source nodes that are used for SLAM.
See http://wiki.ros.org/hector_SLAM

A.2.8 RPLidar node

Open source nodes that are used as driver for the RP-lidar.
See http://wiki.ros.org/RPLidar.

A.2.9 ROS Serial node

Open source package for the Arduino. See http://wiki.ros.org/rosserial

IV

http://wiki.ros.org/hector_SLAM
http://wiki.ros.org/RPLidar.
http://wiki.ros.org/rosserial

A.3. Simulator Nodes

A.3 Simulator Nodes

A.3.1 Vessel Simulator node

VesselSimulator.slx
Simulink model used to generate the node
in C++. Node that simulate the dynamics of the vessel.

Vessel Simulator node folder
To be run as a regular ROS node.

A.3.2 Mapping Simulator node

MappingSimulator.slx
Simulink model used to generate the node in C++.
Node that simulates map generation. Sections where lidar rays are not refleceted
is not updated in this version. The reference map and grid size needs to be defined
in Simulink before code generation.

MappingSimulatorUpdateAll.slx
Version of the mapping simulator where map is updated also in sections where lidar
rays are not reflected

Mapping Simulator node folder
To be run as a regular ROS node.

A.4 Launch Files

Res01.launch
Launches RPLidar and Hector SLAM nodes for mapping with a resolution of 0.1m,
and a gridsize (256x256)

Res02.launch
Launches RPLidar and Hector SLAM nodes for mapping with a resolution of 0.2m
and a gridsize of (256x256)

Simulation.launch
Launches simulator nodes

V

APPENDIX A. ELECTRONIC ATTACHMENTS

LaunchNoLidar.launch
Launches nodes for deployment of vessel, excluding the RPLidar and Hector-SLAM
nodes

A.5 Other

A.5.1 Bag Postprocessing script

bag replay.m
Script that read data from the Bag files. Generates an animation video

A.5.2 Astar animation generation file

Animate AStar.m
Script that generates a path in the map, , while at the same time generating a
animation file that show how it investigates the map. Generates video of the type
as seen in the start of the video referenced in 4.3.2.6

A.5.3 Real time pacer

Open source Simulink block for slowing simulations down to real-time. (Vallabha,
2010)

A.6 Raw Data for Mapping Actuator Input To

Force Vector

FORCETHRUSTERMAPPING folder.
Contains the raw data and scripts used to perform the mapping from actuator input
to force. (See section 3.3)

VI

Appendix B

Software Set-Up and
Installation

This manual is intended for use at NTNU, and especially for students that want
to use ROS as their software framework for projects in the Marine Cybernetics
Laboratory at NTNU. Though specifically intended for students working in the
Marine Cybernetics Laboratory, it is hoped that it might also be useful for other
readers.

The goal of the manual is to describe the steps needed to set up the ROS framework
such that users with as little effort as possible can set up their ROS-framework for
use in the MC Lab. This is particularly relevant for future master’s students at
NTNU, which by utilizing this manual can use more time to focus on their own
thesis.

The manual is split into two parts. The first part explains how to set up the system
architecture with ROS on an with Raspberry Pi 2, computer and an Arduino. This
part is not specific for the CS-Saucer platform and is intended for persons wishing
set up similar ROS-frameworks on their own systems.

The second part goes into detail on the interfacing of ROS for this particular
project and explain step by step how the codes have been generated and how to
apply, edit and reuse the generated software.

The manual will not go in depth on how to use ROS beyond what’s needed in
order to achieve the desired setup, and a more thorough investigation of ROS may
be needed for students setting up their own system.

The author of this manual has used countless hours to implement the software
system. Issues that in retrospect has simple solutions have often taken a lot of

VII

APPENDIX B. SOFTWARE SET-UP AND INSTALLATION

time to solve. It is hoped that the next user does not use the same amount of time
on the same issues.

Note that due to the high level of development of ROS and the robotics community,
the manual will probably need to be adapted to future versions. For example,
Raspberry Pi 3 arrived in March 2016, while ROS 2.0 is under development.

Please note the following:

• In the manual, the dollar sign $ indicate a line of text that should be written
in the Ubuntu-terminal window.

• In the manual Gedit is used as the text editor. This can be replaced with
the readers favourite text editor.

• The manual is written and tested for ROS-Indigo.

VIII

B.1. Installing ROS and UBUNTU

B.1 Installing ROS and UBUNTU

For this section you will need the following:

• Single Board Computer (Tested in this manual: RaspberryPi-2)

• Laptop/computer for installment of Ubuntu

• Micro-SD card (recommended storage of 16 GB), and means of connecting
it to the computer (Micro-SD/SD adapter or Micro-SD/USB adapter

• Hardware for interfacing the RP2 (monitor, ethernet-cable or WiFi adapter,
HDMI-cable, mouse and keyboard).

B.1.1 Ubuntu and ROS on your personal computer

Use your favorite method to install UBUNTU 14.04-lts on your personal com-
puter. This might be installed through via Oracle Virtual Box, or as its own
partition.

Now install ROS indigo. [http://wiki.ros.org/indigo/Installation/Ubuntu]

B.1.2 Ubuntu and ROS on your single board computer
(RP2)

Follow the instructions given in the link , which in detail explain how to install
Ubuntu 14.04 on Raspberry Pi 2. [https://wiki.ubuntu.com/ARM/RaspberryPi]

The key steps for performing this operation is summarized below:

• Download the Ubuntu 14.04 Trusty image on your personal computer.

• Install image on microSD-card through this manual (Windows):
[www.raspberrypi.org/documentation/installation/installing-images/windows.md]

• Insert micro-SD card to RP2 and connect the RP2 to internet, monitor,
mouse and keyboard.

• Now install Ubuntu according to manual given in the link above. For refer-
ence this video is good (excluding the overclocking part):
https://www.youtube.com/watch?v=UGSQ7nzVCs4

You now want to install ROS-Indigo on RP2. Use the on the following instructions:
[http://wiki.ros.org/indigo/Installation/UbuntuARM]

IX

https://www.youtube.com/watch?v=UGSQ7nzVCs4

APPENDIX B. SOFTWARE SET-UP AND INSTALLATION

B.2 Getting started with ROS

The following commands generate a personal workspace on ROS. (Do this both
on RP2 and the laptop)

Create the workspace:

1 $ mkdir −p ∼/catkin ws/src
2 $ cd ∼/catkin ws/src$
3 $ catkin init workspace

Now you want to source the worskspace each time you open a new terminal.
Therefore open the bashrc-file through the following command:

1 $sudo gedit ∼/.bashrc

And add the following line at the bottom of the bashrc-file:

1 $ source gedit ∼/catkin ws/build/setup.bash

Now ROS should be installed. To learn more on ROS, check out the following
tutorials;

-http://wiki.ros.org/ROS/Tutorials
-https://cse.sc.edu/~jokane/agitr

X

http://wiki.ros.org/ROS/Tutorials
https://cse.sc.edu/~jokane/agitr

B.3. Communicating between Raspberry Pi 2 and computer

B.3 Communicating between Raspberry Pi 2 and

computer

Getting WiFi on RP2
You need a WiFi USB adapter in order to communicate to the RP2 over WiFi.
(Raspberry 3 will have WiFi built in). In this project, the following adapter was
used: (TP-LINK TL-WN725N). The WiFi driver was installed on the RP2 using
the following manual.
http://askubuntu.com/questions/381574/drivers-for-tp-link-tl-wn725n-nano-usb-wireless-n-adapter.

Note: If you are using Virtual Box on the laptop, then use the bridged WiFi
settings.

Now connect both Raspberry Pi 2 and Laptop to the MC Lab network and note
their IP addresses. You can find the IPs by the command:

1 $ ifconfig

In the following example the IP and username of the laptop and RP2 is as fol-
lows:

Unit Username IP
RP2 ubuntu 192.168.132

Laptop einar 192.168.232

Now edit the hosts file

1 $ sudo gedit /etc/hosts

Add the following line on the hosts file on both the laptop and RP2 host file:

1 192.168.0.132 ubuntu
2 192.168.0.232 einar

Now edit the bashrc file

1 $ sudo gedit ∼/.bashrc

Add the following lines in the hosts file on both the laptop and RP2 host file:

1 export ROS MASTER URI=http://ubuntu:11311

Where ”ubuntu” refer to the username of the computer that will be the rosmaster.
You need to comment out this line again if you no longer wich to have RP2 as the
ROS master.

XI

http://askubuntu.com/questions/381574/drivers-for-tp-link-tl-wn725n-nano-usb-wireless-n-adapter

APPENDIX B. SOFTWARE SET-UP AND INSTALLATION

You should now check that you can both SSH and send ROS messages back and
forth between RP2 and laptop over WiFi. This can be checked this by doing step
1 in the following manual
http://wiki.ros.org/ROS/NetworkSetup

In the particular setup used in this thesis, the RP2 did not receive enough power
when all components were connected. For this reason, the current limit was
changed on the RP2. This was performed by adding the following line to /boot/-
config.txt

1 max usb current=1

B.3.1 Arduino on ROS

In order to get the Arduino to ROS one should install Arduino IDE and the Rosse-
rial package to the RP2 unit. Arduino IDE is a software for writing and uploading
code to the Arduino, while the Rosserial package is a protocol for transmitting
standard ROS messages.

Run the following commands on the RP2:

1 $ sudo apt−get install arduino
2 $ sudo apt−get install ros−indigo−rosserial

(For convenience, you may want to install these on your laptop as well).

You can now create and upload code to the Arduino. Enter into the Arduino IDE
from the operator computer as follows:

1 $ ssh −X ubuntu@ubuntu
2 $ arduino

For the motor controllers, the built in ROS-Servo example is good. See tutorial
on this source:
http://wiki.ros.org/rosserial_arduino/Tutorials/Servo

B.4 RP lidar and Hector-SLAM in ROS

Install the RPLidar drivar through the following commands:

XII

http://wiki.ros.org/ROS/NetworkSetup
http://wiki.ros.org/rosserial_arduino/Tutorials/Servo

B.4. RP lidar and Hector-SLAM in ROS

1 $ cd ∼/catkin ws/src
2 $ git clone https://github.com/robopeak/rplidar ros
3 $ cd ∼/catkin ws
4 $ catkin make

If you are using Virtual-Machine you should at this point make sure that you have
forwarded the USB-port to the virtual Machine.

Now test the RPLidar node.

1 $ roslaunch rplidar ros view rplidar.launch

The Rviz visualization tool should now pop up, where red dotted datapoints rep-
resents observed data.

If problems occur you at this stage you might try:

1 $ sudo gpasswd −−add ${USER} dialout

Or check out either one of these sources:
http://blog.zhaw.ch/icclab/rplidar/

http://wiki.ros.org/rplidar]

Get the Hector-Slam and TF package

1 $ sudo apt−get install ros−indigo−hector−slam
2 $sudo apt−get install ros−indigo−tf

Now locate the Hector mapping launch file

1 $ roscd hector\ mapping
2 $ cd launch
3 $ gedit mapping default

Add the following line (which is the same as assuming that the lidar is placed at
the vessels center of origin)

1 <node pkg=”tf” type=”static transform publisher” name=”
base to laser broadcaster” args=”0 0 0 0 0 0 /base link /laser 100”
/>

Also adjust parameters names of the launch file as explained in http://wiki.

ros.org/hector_slam/Tutorials/SettingUpForYourRobot

XIII

 http://blog.zhaw.ch/icclab/rplidar/
 http://wiki.ros.org/rplidar]
http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot
http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot

APPENDIX B. SOFTWARE SET-UP AND INSTALLATION

Now test if Hector SLAM is able to process the Lidar data by running the rp lidar
and Hector SLAM nodes.

1 $ roslaunch rplidar node rplidar.launch
2 $ roslaunch roslaunch hector slam launch tutorial.launch

XIV

Appendix C

Launch Manual

C.1 Deploy vessel for autonomous exploration

This section describes how to deploy the vessel for the operations seen in this
thesis. It will be to the point, and assumes that components in the system are set
up as they were when the project was terminated.

1. Make sure that the Arduino is connected as instructed in Table 2.1. Also,
see Figure C.1 for a coupling diagram of the Arduino.

2. Connect the battery to the system and the lidar to the Raspberry Pi 2. Place
the lid as instructed in Section 3.1.3.

3. Connect to the MC Lab network on the operator computer.

4. SSH into the RP2 and launch the RP2 nodes (the mapping nodes are launched
later).

1 $ ssh ubuntu@ubuntu
2 $ cd catkin ws/src
3 $ roslaunch LaunchNoLidar.launch

If not already performed, place the vessel on the water.

5. SSH into the RP2 and launch the mapping file according to desired resolution

1 $ ssh ubuntu@ubuntu
2 $ cd catkin ws/src
3 $ roslaunch res01.launch

XV

APPENDIX C. LAUNCH MANUAL

6. Launch of MATLAB node. The gridsize that is loaded prior to running this
node should match that of the Hector-SLAM algorithms.

1 rosinit(’ubuntu’) (workspace commando)
2 load Frontier256.mat (workspace commando)
3 run Exploration pathplanner.slx

7. Run the motion controller node. The motor should be set in neutral before
this node is launched.

Option a: Connect a second computer to the system. From this the Simulink
motion controller will be run. This yield more flexibility and more safety in
case of unexpected behaviours or errors than the C++ compiled version of
the motion controller yields.

1 rosinit(’ubuntu’)
2 run VesselParametersSet.m
3 run motioncontroll.slx

Option b SSH into the RP2 and run the motion controller node

1 $ ssh ubuntu@ubuntu
2 $ cd catkin ws/src
3 $ rosrun motioncontroller compiled motioncontroller compiled node

Of these two options, Option a is by far the advised method and the one
that has been applied the most in this thesis. There should be extra available
computers in the MC Lab

8. Turn the motors on and monitor exploration

TroubleShooting

-Check that you can ping the RP2 from the operator computer

-Make sure that you can SSH both back and forth between the RP2 and the
operator computer. If not, there might either be a problem with the internet
connection or the hosts file. Also, make sure that open-ssh is installed, and
if your using Virtual Box, that you use Bridged Network.

-The IP addresses can change. Check the hosts file on both RP2 and operator
computer is up to date.

-Check if you can echo on ROS signal sent from RP2 on the operator com-
puter (and the opposite direction).

XVI

C.1. Deploy vessel for autonomous exploration

-Check that the bashrc file contains the following line:
export ROS MASTER URI=http://ubuntu:11311
where ubuntu is the corresponding name to the RP2 IP as set in the hosts
files.

-Check the voltage of the battery.

-Check that all pins are connected

-If one of the motors has stopped, check the lights on the motor-controller.
They may signal an error as described in the following:
http://www.mtroniks.net/download.asp?ResourceID=1973

Figure C.1: Wiring diagram of the Arduino Mega. Courtesy of Sharoni (2016).

XVII

http://www.mtroniks.net/download.asp?ResourceID=1973

APPENDIX C. LAUNCH MANUAL

C.2 Perform simulations

In this manual, it is assumed that all nodes are run on operator computer, but
some nodes could just as easily be run on the RP2. The mapping simulator has
only been generated in C++ for a given Reference-map and a gridsize 256. For
other Reference-maps and gridsized, the Simulink version of the mapping simulator
should be used. In that case, nodes should be launched individually and not by
the use of a launch file.

-First, make sure that the line in the bashrc file that exports the ROS master is
uncommented.

-Now perform the following:

1 rosinit (MATLAB WORKSPACE)
2 $ cd catkin ws/src
3 $ roslaunch simulator.launch
4 rosinit (MATLAB workspace)
5 Setstuff256 (running script from MATLAB workspace)
6 run Exploration pathplanner.slx

XVIII

XIX

Appendix D

ROS Architecture Overview

Table D.1: Nodes in the system explained

Node
name

Node
function

Topics
Subscribed to

Topics
Published to

Described in

base to laser broadcaster Coordinate transformation between base-
link of the robot and lidar position.

- tf ROS-community
(g)

Exploration pathplanner Responsible for generating path according to
implemented guidance and exploration strat-
egy

map
Position

Motor On Off
Path
GAPS
UNFGAPS

Section 4.4, 4.3.2
and 4.3.1.

Hector2VesselPos Transformation of position vector from
Hector-SLAM to vessel coordinates. Includes
a quaternion transformation

Poseupdate Position Section 3.1.3

Hector SLAM nodes Collection of nodes from the Hector-SLAM
package. Responsible for performing SLAM
based on the lidar data stream

scan
tf

pose Kohlbrecher S
(2015)

motioncontroller Responsible for controlling the vessel to the
desired setpoint. This is performed by pub-
lishing appropriate signals to the actuators.

Setpoint
Position
Motor on off

VesselSpeed
nu
Thrust1,Thrust2
Thrust3
a1,a2,a3

Section 4.1

Path2SetPoint Generates an appropriate setpoint on the
planned path

SetPointDist
Path

SetPoint Section 4.3.3.1

rplidarNode Driver for the lidar. Generates range data in
the 2D plane as registered by the lidar scann

none scan Ferguson(n.d.)

Scan2SetPointDist Find the closest object based on lidar scan.
Contains logic for finding setpoint distance

Scan SetPointDist
ScanDist

Section 4.3.3.2

serial node Node providing ROS communication proto-
cols for the Arduino. Responsible for sending
PWM signal to actuators, and for monitoring
voltage level of battery and rotational speed
of motors

Thrust1,
Thrust2,
Thrust3
a1 a2 a3

diagnostics
BatterEncoderThrustRPM

ROS-community
(f)

APPENDIX D. ROS ARCHITECTURE OVERVIEW

Table D.2: Topics in the system explained (Excluding topics of open source packages
that are not directly utilized

Topic Topic Explained

a1 a2 a3 Actuator input for angle of thrusters, interpreted and transmitted by the Arduino

BatterEncoderThrustRPM Measured revolution signal from each motor and measured voltage of battery. In-
terpreted by the Arduino.

GAPS List containing gaps that are candidates for investigation.

map Occupancy grid represented as a vector. Also contains properties such as the reso-
lution. The occupancy grid represents the environment that the lidar has explored.

Motor on off Toggle motor status between on and neutral. Only used on the C++ compiled
version of the motion controller node

nu Body-fixed speed in surge, sway and yaw, as estimated by the observer

Path Vector of length 256 that represents discrete points in the planned path. Index 1:128
is represent x positions, index 129:256 represent y positions.

PoseUpdate Position/Attitude of lidar as estimated by the Hector SLAM package.

Position Positions of vessel in surge, sway and yaw

scan Data cloud representing intensities and ranges to objects in the vicinity of the vessel,
as scanned by the lidar

ScanDistance The shortest distance registered in the lidar data cloud.

SetPoint Setpoint of vessel in surge, sway and yaw

SetPointDist Distance for setpoint ahead in the path from the point on the path that is closest
to the vessel.

Thrust1, Thrust2, Thrust3 Actuator input for thrusters. Interpreted and transmitted by the Arduino

UNFGAPS List containing gaps that have been examined.

VesselSpeed Speed of the vessel in the direction it is travelling, as estimated by the observer

XX

XXI

Figure D.1: Overview over topics and nodes in the system as generated by running the
native rqt graph tool in ROS during operation.

	Abstract
	Acknowledgement
	Summary
	List of Abbreviations
	Nomenclature
	Introduction
	Motivation
	Background
	Autonomous Mapping
	Map Representation
	Simultaneous Localization and Mapping
	The Path Planning Problem
	Exploration Strategies
	Unmanned Surface Vessels
	Lidars

	Objectives and Problem Formulation
	Scope and Delimitations
	Thesis Contributions

	Experimental Platform: CS Saucer
	Background
	Original setup
	Environment of Operation

	Control System Redesign
	Motivation and Background
	Software Architecture
	Hardware Architecture

	Modelling and Identification
	Reference Frames
	The Basin-Relative Reference Frame
	Body-Fixed Reference Frame
	Transformation from Hector-SLAM Reference Frame to Basin-Relative Reference frame
	Transformation Between Vessel Reference Frames

	Equation of Motion
	Mapping Actuator Input to Thrust Force
	Background
	Experimental Setup
	Mapping Results

	Guidance Navigation and Control
	Motion Control System
	PD-Controller
	Reference Model
	Thrust Allocation
	Force Saturations
	Observer Design

	Processing of Map
	Map Generation
	Online Map Processing

	Guidance And Navigation
	Exploration Strategies
	Path Planner
	Velocity Control Law

	Operator Interaction
	Interactive Map Window
	Parameter Setting

	Software Architecture, Overview

	Simulations
	Simulated Nodes
	Mapping Simulator Node
	Vessel Simulator Node

	Simulations Performed
	Simulator Discussion
	About Simulator
	Simulator Versus Real System
	Analysis of Simulation Performed

	Experimental Results
	Tools for Post Processing of Data
	Recording of Data
	Animation Tool

	Experiments
	Experiment-1
	Experiment-2

	Discussion

	Conclusions
	Further work
	Bibliography
	Appendix Electronic Attachments
	Parameter Generation Files
	ROS Nodes that are Launched During Deployment
	Exploration_Pathplanner node
	Path2SetPoint node
	Scan2SetPointDist
	Hector2VesselPos
	MotionController
	Arduino Code
	Hector-SLAM nodes
	RPLidar node
	ROS_Serial node

	Simulator Nodes
	Vessel Simulator node
	Mapping Simulator node

	Launch Files
	Other
	Bag Postprocessing script
	Astar animation generation file
	Real time pacer

	Raw Data for Mapping Actuator Input To Force Vector

	Appendix Software Set-Up and Installation
	Installing ROS and UBUNTU
	Ubuntu and ROS on your personal computer
	Ubuntu and ROS on your single board computer (RP2)

	Getting started with ROS
	Communicating between Raspberry Pi 2 and computer
	Arduino on ROS

	RP lidar and Hector-SLAM in ROS

	Appendix Launch Manual
	Deploy vessel for autonomous exploration
	Perform simulations

	Appendix ROS Architecture Overview

