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For dynamically sensitive marine structures or mastructures subjected to large
displacements the extreme response is often detedain the basis of short-term time
domain simulation of extreme sea states usingrnkiga@mental contour line method.

A challenge with time-domain analysis is the reprgation of the sea spectrum. For linear
analysis and small displacements is common toaste=burier transform (FFT) of the sea
spectrum. In order to avoid repetition of the waiatory several thousand of uniformly
spaced wave components may be needed. For nonlimeadomain simulations the
computational requirements of FFT will become pioihie. An alternative to FFT is to use a
few wave components based on equal area prindipls.implies that emphasis is placed on
the energy rich parts of the wave spectrum. Tieeracy of this method must be
demonstrated. Using the computer program USF@&stshown in a previous master thesis
work that this method is quite good for floatingustures with eigenperiods far away from the
energy rich periods of the wave spectrum, butdessirate for structures with eigenperiods in
the range of 4-5 seconds. The results depend alsdtether the wave forces are mass
dominated or drag dominated. It has been suggésa¢the accuracy may be improved by
increasing the subdivision of the wave spectrutiévicinity of the structure eigenperiod(s).

In USFOS the built-in algorithm for realisationioegular seas states is based upon linear
wave theory and extrapolation of wave kinematicth&instantaneous sea surface (Wheeler
stretching). Improved accuracy is obtained by u€tgrder wave theory for surface
elevation Wheeler stretching of linear wave kineosatio the surface, and the user may
specify the frequency components of the discretrg@ee spectrum in the input. Most correct
is to base wave kinematics completely 8hdtder theory. Eivind Baekkedal implemented this
in a previous master thesis work. Rigorous catmndaaccording to order theory are very
time consuming and methods to reduce computatma &re highly requested An alternative
to perform calculations “on the fly” is to repres@re-calculated wave kinematics on a
relatively coarse 3D grid and interpolation to attstructure coordinates. The grid may be
particularly coarse at large depth. Another altévieamay be to use"2order theory only

close to sea surface or for a few members. Theoserpf the project and master thesis work
is to investigate various options to save CPU conion in time domain simulations in
nonlinear, irregular seas.

The following topics should be addressed:
1. Verify the second order simulation of the surfagebmparing the empirical distribution

of global crest heights (global crest height = éatgcrest between zero-up-crossings) with
the crest height distribution suggested by Folti§2Q00).
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Validate the simulation of second order kinematigg€omparing with the work of others
in the literature. Do also compare the calculatedical profile of the horizontal particle
speed under wave crests by the results of Stdkesge profile with the same crest
height and wave period as the simulated wave.

2. Perform static and dynamic time domain analysia jaick-up platform. Select a severe
sea state (for the further analysis, it is convaniiethe worst sea state along the 100-year
contour is selected) and compare the quasi-segidts obtained by a full second order
analysis with the corresponding quasi-static resalitained using a Stoke® profile for
some selected waves of the simulation.

3. Carry out a sufficient number of second order asegdyfor establishing the distribution
function for the 3-hour maximum quasi-static resggswith some confidence. Assume
that the 100-year quasi-static responses can imeagstl by the 90-95% value of the 3-
hour extreme value distribution.

Estimate the 100-year crest height and the assocraean period, and estimate the 100-
year quasi-static response using the StoKgwéfile. Compare the results with those
obtained from second order simulation.

4. Conduct a full dynamic second order analysis ferdhme sea state as above. Is it possible
in practice to perform 30 full 3-hour analysis tbe purpose of obtaining a reasonable
sample of 3-hour dynamic extremes, either as fhb@r simulations or by representing a
3-hour simulation by six 30-minutes simulations?

5. The rest of the thesis is devoted to discussingesithg various approximate ways for
doing a second order analysis of the selectedyacKk-he following approaches should be
considered:

. 2" order theory in upper layers - linear theory beboeertain depth (which is to
be varied)
Il. Linear theory to some point before the worst wanaeigs.
[ll. Spool to extreme wave groups — the time beforemgmaximum crest height to
be varied.
IV. Use of pre-calculated wave kinematics on a grid

The accuracy and time consumption shall be preddateéhe various methods.
6. Conclusions and recommendation for further work
Literature studies of specific topics relevantte thesis work may be included.
The work scope may prove to be larger than injtiatiticipated. Subject to approval from the
supervisors, topics may be deleted from the lisvvalor may be reduced in extent if the work

becomes more extensive than anticipated.

In the thesis the candidate shall present his palrsontribution to the resolution of problems
within the scope of the thesis work.
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Theories and conclusions should be based on matisahterivations and/or logic reasoning
identifying the various steps in the deduction.

The candidate should utilise the existing possiedlifor obtaining relevant literature.

Thesisformat

The thesis should be organised in a rational maorgive a clear exposition of results,
assessments, and conclusions. The text shoulddb@ibd to the point, with a clear language.
Telegraphic language should be avoided.

The thesis shall contain the following elementstext defining the scope, preface, list of
contents, summary, main body of thesis, conclusiatisrecommendations for further work, list
of symbols and acronyms, references and (optiapg@ndices. All figures, tables and
equations shall be numerated.

The supervisors may require that the candidai@ iparly stage of the work, presents a written
plan for the completion of the work. The plan dtdanclude a budget for the use of computer
and laboratory resources, which will be chargeti¢cdepartment. Overruns shall be reported to
the supervisors.

The original contribution of the candidate and mak¢aken from other sources shall be clearly
defined. Work from other sources shall be properigrenced using an acknowledged
referencing system.

The report shall be submitted in two copies:

- Signed by the candidate

- The text defining the scope included

- In bound volume(s)

- Drawings and/or computer prints which cannot bendashould be organised in a separate
folder.

- The report shall also be submitted in pdf formahglwith essential input files for
computer analysis, spreadshertsiLAB files etc in digital format.

Ownership

NTNU has according to the present rules the owmgigththe thesis. Any use of the thesis has to be
approved by NTNU (or external partner when thisliagp The department has the right to use the
thesis as if the work was carried out by a NTNU kxyge, if nothing else has been agreed in
advance.

Thesissupervisors:
Prof. Jargen Amdahl
Prof. Il Sverre Haver
Deadline: June 10 2016

Trondheim, February 8th, 2016

Jargen Amdahl
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Preface

This report is the result of a master thesis wookducted at the Department of Marine
Technology at the Norwegian University of Scienoel &echnology. The scope of work was
formulated by Prof. Jargen Amdahl and Prof. Svelager.

This report deals with time domain simulation ofjaak-up paltform exposed to second order
irregular waves. The main focus is to observe ffeceof second order irregular waves on jack-
up paltform and investigate the alternative methtodeduce computational time. The validity of
second order model is checked by comparing thasai@nd kinematics to theoretical value and
previous work. In this work, a Matlab program aisduilt to establish both surface elevation
and particle kinematics of second order irregulaves. In addition, the sea surface and wave
kinematics are transferred as grid file from MATLAB USFOS to calculate the jack-up

response.

I would like to thank Professor Jargen Amdahl anoféssor Sverre Haver for their great help
and guidance during the thesis work. | also wouké ko thank Mr. Bjgrn Tore Bach for

allowing me to use multiple computers to run thalgsis.

Trondheim, June 8, 2016

Michael Binsar Lubis
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Abstract

For dynamically sensitive structures or marinecttrie sujected to large displacements (such as
jack-up paltform) the extreme response is oftererd@ned on the basis of short term time
domain simulation of extreme sea states using enwiental contour line method. A challenge
with time-domain simulation is the representatidntiee sea spectrum. For first order wave
(Gaussian seas), there is no big obstacle to pesfarcomplete 3-hour simulation. However, the
computational requirements becomes prohibitivestmond order irregular waves. The purpose
of this report is to observe the effect of secomdepirregular waves on jack-up platform and
also contribute to developement and verificatiorstategies on decreasing the computational

time for time domain analysis.

This report mainly consists of seven parts. Fiest ponsists of the review about wave theory,
the probabilistic model of ocean waves, methodsesthblishing kinematics, methods for
simulating a sea spectrum and method for calcgatasponse of structure. In addition, some

strategies for reducing computational time alss@néed.

The second part consists of explanation aboutdingenical. In the third part, a verification study
is performed. The second order model is compared thieoretical wave distribution and'5
Stokes wave. At the end of third part, the statialgsis of second order irregular seas on single
vertical cylinder with small diameter is performéthe four part deals with strategies to reduce
time for calculating time for second order wave l@tthe fourth part contains the metocean

analysis. The last part presents the effect ofrsdooder irregular wave on jack-up platform.

From the study, it is found that for second ordew& Wheeler method gives underestimation
for wave horizontal velocity below the sea surfa@empared to BStokes, linear extrapolation

produces greater surface horizontal velocity thatighoduces smaller horizontal velocity below
mean sea surface. For jack-up case and Ultimatdt LState purposes, the largest static
baseshear could come from wave which has crestleanthbn 100-year wave crest but has
comparable wave length to distance between jadegipHowever, the largest static overturning
moment tend to occurs from wave with crest closeéht 100-year wave crest. In addition,
dynamic analysis of the observed jack-up produd@% 2arger baseshear and 90% larger

oveturning moment than static anaysis.

Vi
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Nomenclature

ax1, Ay, Azq  First order particle wave acceleratiorxjry andz-direction

ay2, 4y 2, Az, Second order particle wave acceleratior, inandz-direction

B Coefficient for stream function

BCrs Free surface boundary condition

BCss Sea bottom boundary condition

Cy Added mass coefficient

Cp Drag coefficient

C Global damping matrix

c Wave crest

Cert Critical damping for eigenmode

C Largest crest (largest maximum surface elevation)

C1,Cy First and second order wave celerity

D(6) Spreading function

Ds Arbitrary reference level for stream function

d Water depth

dF Morrison force in strip element

dF, Added mass in strip element

E Modulus Young

E, Total wave energy per wave length

E[x] Expected value of x

erfc() Complimentary error function

Fxz0m(X) Cumulative distribution of 20-minute largest value

Fxsu(X) Cumulative distribution of 3-hour largest value

Fc(C) Cumulative distribution of wave crest

Fe,, () Cumulative distribution function of 3-hour crest

Fy(H) Cumulative distribution of wave height

Fy, (hs) Cumulative distribution function of significant waheight

Fx, Cumulative distribution of largest maxima out ohimber of maxima
Fe (4,,) Cumulative distribution function of maximum suréaglevation
F ((lm) Cumulative distribution function of largest maximwsurface elevation
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1. Introduction

The sea surface is a random phenomenom. It isuiaegnd always changes in time. Finding the
mathematical expression to represent the exactittmmdf sea surface is very difficult and
cumbersome. In practice, the condition of certa@mis usually represented by a set of significant
wave height and spectral peak period. For ultimatet state purposes, the extreme sea
condition and its return period can be predictemnfiprobabilistic model by utilizing the set of
significant wave height and spectral peak periodowing the extreme sea condition, the
corresponding wave load can be calculated by aioewave theory to find the responses of a

marine structure.

For quasi-static method, the static responsesra€tste can be determined by finding the wave
load corresponding to the most probable highestewavcertain return period. However, in

reality, the responses of structure are also &tebly the period of load which is based on the
wave period for wave load case. When the largdsiralgperiod of structure is located close the
most energetic wave period, it is not enough ty @mlalyze the static response of the structure.
The dynamic responses of the structure should akyzed in time-domain where the equation of

motion is solved each time step.

A main challenge with time-domain analysis is teeresentation of the sea spectrum. A sea
spectrum is characterized by a combination of Smant wave height and spectral peak period.
One combination of significant wave height and sépeak period can be assumed valid for 3-
hour. Therefore, a complete 3-hour history of sgéase elevation is required to find the highest
surface elevation. For linear representation ofayalvis common to use invers@ast Fourier
Transform(FFT) of the sea spectrum. In order to avoid riépatof 3-hour wave history, several
thousand of uniformly spaced wave components mayeeeled. Each time step will inclutle
wave components to compute the wave kinematic. sioulations of second order sea with the
associated kinematics, the computational time requents become prohibitive as it needs to

includeN? wave components in each time step.

At previous master project by Lubis [27] and masitesis by Baekkedal [6], it is shown that by

utilizing various alternative methods such as ranmide the representation of wave frequency in
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certain frequency interval or using equal are mettemn decrease the required wave components.
As a result, the computational time reduces sigaifily. However, it is found that the simulation
time is still rigorous. In his project, Lubis [28howed that some alternatives can be applied to
reduce the computational time in extent for singdetical cylinder case. This method should be
tested for real structure.

This report addresses the the static and dynamsonses of the jack-up platform when the
second order irregular wave is applied to the simec However, a verification study is
performed for single vertical cylinder. The resiim single vertical cylinder is compared to
another analysis of second order wave by Evards2in |n addition, a revisit and verification of
previous work by Beaekkedal [6] and Lubis [27] to wed the required number of harmonic
component are also performed and the tested ioteyp. The result of various alternatives to
reduce the computational time in extent for jackplgtform is presented. In the end, 3-hour
simulations of jack-up in second order irregulaassare performed. MATLAB algorithm to
calculate second order surface and kinematicgegutar sea is created and utilized in this work
while USFOSIs used to calculate the response of the jackiaffopm.
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2. 0cean Wave Theories

This section reviews the existing theories for ldgthing the wave particle kinematics both in
regular and irregular sea condition. In regular seadition, the wave is modeled by a single
harmonic component with certain amplitude and fezgpy while irregular sea condition means
combination of number hamonic component with vasiamplitudes and frequencies. When the
wave length is much larger than the structure dsmers, the forces can be calculated directly
from the wave particle kinematic of undisturbed wdield. In this case, the quality of wave

particle kinematics determines the accuracy offh@ied load in the structure.

In this section, the governing equation and methodind its solution is presented first.
Afterwards, the linear wave theory (first order waun regular and irregular condition is
presented. The next part consists of second or@ee \theory on regular and irregular wave
field. The rest of this section reviews higher ordave theories and methods to find the wave

particle kinematic from mean surface level to tkaot surface.

2.1. Governing Equations
The seawater is assumed incompressible and invigtie fluid velocity vectoW (x,y, z, t) =

(ux, uy,uz) at timet and at coordinat®, y, andz can be described by gradient of a velocity
potentialg. This means that:

(ux, uy,uz) = (Z—f,g—i,i—f) (2.1)
The velocity potential is introduced because ofheatatical purposes and does not have any
physical meaning. To satisfy the irrotational caiot, V x V is equal to zero in every location of
the fluid. In addition, since the water is incongsile therv.V is also equal to zero in every

location in the fluid. As consequence, the velopityential has to satisfy Laplace equation:

% 0%¢p 0%¢

V.V =
dx? + dy? + 0z?

=72¢p =0 (2.2)

Where: seabed @ < z < surface elevation(; and eo< x, y< oo.
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By introducing some boundary conditions, the velogotential can be found. Figure 2.1

describes the boundary condition, coordinate systednsome used parameters.

y

BCSB

— SIS

Figure 2.1 Coordinate System

2.1.1. Bottom boundary condition (BCsg)
To satisfy the impermeability condition of seabkdyundary condition at seabed £ - d) states
that the velocity normal to the boundary must beatdo zero. Therefor&g.n = 0. This

implies that for flat surface:
0
9z

2.1.2. Dynamic free-surface boundary condition

0; 7z =—d (23)

The water pressure at the free surface is equbktatmospheric pressugg), then the dynamic

free-surface boundary conditon for two-dimentionale:

R (R M) R

non-linear

2.1.3. Kinematic free-surface boundary condition
Based on the fact that the particles of water er Burface have to stay on the free surface, the

vertical particle velocity has to be equal to taeerof change of water surface elevations.

o, KK t
ot TGy Tl gy T W2 =Y (2.5)

non-linear
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2.1.4. Combined free surface boundary condition (BCFYS)
The combination of dynamic and kinematic boundanydition gives [36]:

0% +1(a+ 0, a>|‘7 2, %9 0%\ _ .
gz ey T gy ) VoI e giar W gy5¢ ) = 0

(2.6)

non-linear

z={(x,y,t)

2.2. Method of Solution
To solve the boundary value problem, the pertuobasicheme method is applied. This method
assumes potential velocity)(and water surface elevatiof) @s a convergent power series with
small parameteref, such as the wave steepn@$gl). In this way, the velocity potential and
surface elevation can be expressed as [19], [36]:
d(x,y,z,t€) = (x,v,z,t) € + P, (x,y,2,t) € + 3 (x,y,2,t) €3 ... 0(6i+1)
=¢:1(x,y,2,6€) + pa(x,y,2,6,€) + P3(x, y, 2, 85 €) ... O(Pi41)

2.7)

(yt;e) =Gy, t) e+ Gx,y,t) €2 + Glx,y,t) €2 .. 0(e*?)

= (1(96, y, tl 6) + EZ(XJ y; tr 6) + (3(.7(, y; tr 6) O((i+1)
Where) andH are wavelength and wave height respectively. lraggn 2.7 and 2.8p; and(;

(2.8)

respectively refer to thieth order of potential velocity and water surfatevation. Substituting

equation 2.7 to equation 2.2 gives:

V2¢ = V2¢1 + V2¢2 + V2¢3 + .- (29)
In addition, introducing equation (2.7) to equat{@rB) gives:

9 9
91 _0%%2_ 4 ais=—d (2.10)
0z 0z

The combined free surface boundary condition igesged as a Maclaurin series of the mean
water level condition. As the consequence, theorsl potential at free surface is expressed as
Maclaurin series:

0p(ry,0.) (.08 (2.11)

d)(x,y,f,t) =¢>(x,y,0,t)+{ dz 2 972
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2.3. First-Order Pertubation (Linear Wave Theory)

The parametee in equation 2.7 and 2.8 can be related to wavepsesgH/1). When wave
steepness is small enough, the linear wave theowglid. In this case, the first order error of
water surface elevation and velocity potential eglacted. The velocity potential is only
described by the first term of its power seriesadidition, the non-linear term from equation 2.4
until 2.6 is neglected. Laplace equation, bottonuraary condition, dynamic free-surface
boundary condition and combined free-surface bogndaondition equation respectively

becomes [36]:

V2, =0 ;—-d<z<0,y< oo (2.12)
9
91 _ o, 2=-d (2.13)
0z
9
gé: + —;il =0; z=0 (2.14)
¢, 09,
0P1 _ . = 2.15
7 T95—=0 z=0 (2.15)

The equations 2.12 until 2.15 are solved in regulave condition. However, the result can be

used to describe the irregular wave condition.

2.3.1. First order solution for regular wave conditon

The first order solution is acquired by assumingoaizontal sea bottom and free surface of
infinite horizontal extent. This solution is knovas linear wave theory and sometimes called
Airy theory since it was first presented by AiryiB841 [14]. The velocity potential is assumed as
a product of several functions which each funcooy depends on one independent variable.

The assumed velocity potential form is [19]:

¢1 = f(2) sin (k(x cos(8) + y sin(0)) — wt) (2.16)

Wherew is angular frequency [rad/s] and equal4dT, k is wave number and equal te/2, and

0 is the wave propagation direction relative to isaX is the wave period. If the wave is
assumed as two-dimentional wave which is valid lforg-crested wave, and the assumed
velocity potential is assigned into the boundarpdition, the form of velocity potential that

satisfies Laplace equation [36]:
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cosh (k(z + d))
w cosh (kd)

b1=910, sin (kx — wt) (2.17)

{, Is the amplitude of water surface elevation. Tovenfof first order water surface elevation:
¢ (t) = {4 cos (kx — wt) (2.18)
From equation 2.16, the velocity potential oscgateith angular frequencyw(). As a

consequence, equation 2.14 can be rewritten as:

d
—w?p, + ga—f =0; z=0 (2.19)

From equation 2.18, it is shown that there is cotioe between wave numbds) @nd angular

frequency ). This connection is presented in dipersion refafil4]:

w? = gk tanh (kd) (2.20)

For large water deptHjmg,_,., tanh(kd) = 1 then the dispersion relation become$= g k.
The first order particle wave kinematics can bewaled from velocity potential as mentioned
in equation 2.1:

04 cosh (k(z + d))
_ 991 _ _ 2.21
ux,l ax gk(al W COSh (kd) cos (kx (l)t) ( )
0, sinh (k(z + d)) .
_ 0% _ _ 2.22
et = 5, = I = e tkay S (kx — w0) (2.22)
0%¢, cosh (k(z + d))
_07 i (kx — 2.23
Gt = gxdr ~ I sk (k) S (kx — wt) (2.23)
92 inh (k(z + d
¢ _ sinh Kz + ) < tex — wt) (2.24)

921 = Gzdr ~ I T o5 (kd)

Whereu, 1, u,,,a,, anda,, are particle velocities im andz-direction, and acceleraton i
and z-direction respectively. The phase different betwgarticle velocity and aceleration in
certain direction ist/2. Therefore, whent, ; has maximum valueg, ; is equal to zero and

likewise. The first order hydrodynamic presspyés:
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_ 0¢y cosh (k(z + d))
PL= 7P =PI T o (k)

For three-dimention wave which is valid for shagsted wave, the first order particle kinematic

cos(kx — wt) (2.25)

becomes:
Ugy = % = gkcos(68) L CO;}ZS)';}(IZ(Z d”;)) cos(k(x cos(8) + y sin(8)) — wt) (2.26)
U1 = "’% = gk cos(0) o, Co(ihcg;(lz(z d‘;)) cos(k(x cos(8) +y sin(8)) — wt) (2.27)
Uy = % = gk{yy Sizhcng (JI: d”;)) sin(k(x cos(8) + y sin(6)) —wt)  (2.28)
4y = az‘;’; = gk cos(8) { Cosz)g’;l((zk;)d)) sin(k(x cos(0) + y sin(8)) — wt) (2.29)
ay, = a;(si = gk cos(8) (s Cosz)gi((zkz)d)) sin(k(x cos(8) + y sin(8)) — wt) (2.30)
02, sink (k(z + d))

= = — i - 2.31
az, Sodt gkl cosh (kd) cos(k(x cos(0) + ysin(6)) — wt) ( )

2.3.2. First order solution for irregular wave conditon

In reality, the shape of wave is irregular. Sirtee first order solution for regular wave is a linea
system then the solution for irregular wave canfdaend by superpositioning regular wave
solution. The superposition start by introducingagd angle §) for each regular wave
component. Therefore, the velocity potential andase elevation for two-dimension linear

irregeular wave [36]:
N
P1=P11+ P12+ P13+ = Z b1 (2.32)
i

N N
) =81+ 8+ 43+ = Z (1,0 = Z {ar,icos (kix — w;t + &) (2.33)

Wherei is the number of first order regular wave compang&achd;; has its own amplitude
(¢a1,1), wave numberk), wave frequencyd;) and phase angle;). Similar to velocity potential,
the particle kinematics for linear irregular wave also expressed as superposition of regular

linear potential velocity. For two-dimension wave:
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N

N
0y, Z cosh (ki(z + d))
= E o X — wit + & 2.34

ax . gklzal,l wlCOSh (kld) cos (kl‘x wlt + El) ( )

0y, Z sinh (k;(z + d)) .
X — W; ; 2.35
uz,l Z g i all wi COSh (kld) sin (klx (‘-)Lt + 51) ( )

2d, . — h (ki(z + d)
b1i cosh (k;(z ) .
= iSa1,i St

X — W; ; 2.36
cosh (k) n (k;x — w;t + &) ( )

i i

5020, sinh (ky(z + d))
- = —Z iCan,i cos (kix — w;t + €) (2.37)

921 = /920t cosh (k;d)

i i

A wave spectrum represents the irregular wave tiomdiThe linear wave components can be
calculated from wave spectrum. The method of catouy linear wave component from
spectrum is presented in section 4.2. For threeedlion wave, the linear irregular wave
kinematics:

N
gk cos(6;) (g1 cosh(ki(z + d))
w; cosh(k;d)

Uy =

cos(k;(x cos(8;) + y sin(6;)) — w;t + &) (2.38)

gk; sin(6;) (a1, cosh(kl-(z + d))
w; cosh(k;d)

Uyq = cos(k;(x cos(6;) + ysin(6;)) — w;t + &) (2.39)

i
gk Sang sink (k;(z + )
Uz1 = Z w; cosh(k;d)

sin(k;(x cos(6;) + ysin(6;)) — w;t + &) (2.40)

i

N
Ay = Z gki €os(60) Sar,i COSh(ki(Z * d)) sin(k;(x cos(0;) + y sin(6;)) — w;t + &) (2.41)

l cosh(k;d)
N
k; 0; h(k; d
Ay1 = Z gki sin( )c((j;;z(c:ii)( iz +d) sin(k;(x cos(6;) + ysin(6,)) — w;t + ;) (2.42)
N
k; ; sinh(k; d
a1 =— gkt Sar sinh(ki(z + ) cos(k;(x cos(8;) + ysin(6,)) — w;t + &) (2.43)

cosh(k;d)

When realizing linear wave component from wave spet there is an issue to determine first
order kinematics above mean water surface. Johs@eng23] shows that unless the amplitudes

of harmonic component in the upper part decay egpoally, the horizontal velocity from first
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order component is not defined above mean wategl.ldu this case, some approximation

method is used. The approximation method is preslantsection 2.5.

2.4. Second Order Perturbation

Equation 2.4, 2.5 and 2.6 contain non-linear tdfirst order pertubation scheme neglects these
terms with assumption that the wave stepness i#l étin@ surface elevation is smaller than the
wavelength). When the wave stepness is sufficidatiye, the second order pertubation scheme
should be used. In this scheme, to find the velquitential and surface elevation, the non-linear
term in equation 2.4, 2.5 and 2.6 has to be incdut#oreover, the second order term in velocity
potential power series have to be included. That®ol of second order perturbation problem
becomes the correction term of first order perttioparesult. The second order perturbation

problem is presented as [36]:

V2, =0; —-d<z<0,y<o (2.44)
9
%2 _0. =g (2.45)
0z
2
g<z+ﬂ+ [Pl + == T z=0 (2.46)
0*¢; 9%z 0*¢y | 0¢s
Tl_o, 2= 2.47
ez 9%, |V¢’1| {16 Tz 199,70 270 (2:47)

Similar to first order perturbation, the solutioh second order pertubation can be solved in

regular and irregular sea.

2.4.1. Second order solution in regular wave condition

In 1847, Stokes presented a theoretical formuldifsr and second order perturbation problem
specifically for a single (regular) wave. This thes commonly referred as Stokes second order
theory. The solution for velocity potentiakp & ¢; + ¢,) and water surface elevation

(¢ = ¢4 + ¢,) contain first order and second order solution [6].

3 — tanh?(kd a
{(t) = (413 cos(kx —wt) + k{yy 41::2;113(]{(61) ) cos 2kx —wt)) p+ O ((21) ) (2.48

linear

second—order
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_ glaicosh(k(z +d)) ) . 3cosh(2k(z + d))
P wcosh(kd) &(Kw_wt) thta—ga s Sn(2tka - wn)
sum—frequency (2.49

1 Ca1
~ k) S ey T +0 (( p ) )

mean—drift

From equation 2.49, it can be observed that thereneéan-drift term. This term is linearly
dependent on time. In this case, the mean of paselocity and acceleration changes with time.
For large water depth, sindem,_, sinh (2kd) = , the mean drift term can be neglected.
Beside mean-drift, the sum-frequency term appeatsd formula. This term shows that there is
another oscilation frequency which is higher thexgfiency of linear component. This is very
crucial for structure with low eigenperiod (higlgenfrequency) such as heave, pitch and roll
eigenperiod of of TLP [14] where large dynamic @sge can be excited by the sum-frequency
term. Nevertheless, similar to mean-drift term, lemge water depth, the sum-frequency can be
neglected. The other term is different-frequenceyntenhich is contained in the third order part.
The different-frequency term is critical for strut with high eigenperiod (low eigenfrequency)
such as eigenperiod of moored barge [14]. Equ&id8 and 2.49 show that there is no phase
different between linear and second order terms iridicates that the regularity in wave shape is
maintained. The second order dispersion relatiayisal to first order dispersion relation, which
implies that the phase speed of second order coempas equal to phase speed of first order
component. Equation 2.50 shows the equation of \phase speed:
/12 W, 20)1

C2 TZ = kz Zkl C1 (2.50)

Wherec, andc; are second first order phase speed respectivelylaFge water depth, second
order surface elevation term convergeg(te’/2. Therefore, the only correction on second order
wave theory for infinite water depth is the correctof water surface elevation while the
kinematics value is same as first order particieeRiatics. Figure 2.2 illustrates the surface

elevation from second order stokes theorydfer500 m,{, =10 m, T =12 s.
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Second order Stokes surface; ¢, = 10m, T =12s, d = 500m
15 \

10

¢ (m)

First Order
Second Order
Resulting Surface

0 2 4 6 8 10 12
t(s)
Figure 2.2 Second Order Stokes Water Surface

By utilizing the second order stokes velocity petEnfor finite depth, the second order

correction of particle kinematics for two-dimensabwave [6]:

_ 09, 3g(kg1)? ) cosh (k(z + d))\ (cosh (2k(z + d))
W2 =5y T 8w ( cosh (kd) )( sinh?(kd)

dp, 39(kia1)? <sinh (k(z + d)) + 3sinh (3k(z + d))

>cos 2(kx — wt)) (2.51)

)sin 2(kx — wt)) (2.52)

22 =5, 77 8w 2 cosh(kd) sinh? (kd)
_0%¢,  3g(kis1)? [ cosh (k(z+d))\ (cosh 2k(z +d))\ .

D2 = gxdt T 8 (4 cosh (kd) )( sinh? (kd) )S‘" (2(kex —w0)) (2:53)
_0%¢,  3g(kiq1)? (sinh(k(z + d)) + 3sinh (3k(z + d))

2= 9zat ~ 8 < 2cos h(kd) sinh3 (kd) >C°S (2(kx — 1) (2:54)

Equations 2.51 to 2.54 are correction term to fster problem and should be added to first
order solution presented in equation 2.21 to 2e8pectively. Similar to first order velocity

potential, second order velocity potential is alsdid only up to mean water surface level.
Therefore, an approximation method (explained etige 2.5) should be used to find kinematics

at free surface. The, correction term for hydroayitgpressure):

_ 9% _ k{,,° __ 1
P2 = 7P 5y = PI%ar 5 cinh (2kd)

cosh (k(z+ d))\ 3cosh (2k(z + d))
( cosh (kd) ) 8sinh3 (kd)

(2.55)

cos(2(kx — wt))
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2.4.2. Second order solution inirregular wave condition

In 1981, Sharma and Dean [36] proposed a methadltwlate the water surface elevation and
particle kinematics for nonlinear wave in irregulsea. The formulation is based on the
pertubation scheme and also accounts the streawtidonthat is demonstrated by Dean
(presented in section 2.6.2). Similar to stoke®sdorder, the method utilizes the solution of
first order perturbation scheme,() then includes the second order correction tepg).(The
second order term considers the interaction betveaeh wave component. As a consequence,
the formulation contains the diferent-frequencyrtend sum-frequency term. The second order

correction term for velocity potential of irregulavo-dimention wave is [36]:

dif ferent—frequency

10 §201,0ar; C05h (ki (z+d)) D

ij .
~2 sin(y; — ¥;
v 4 L4 W;W;j cosh(k.—.d) W;—W; ! (wl lp})
. ] ) ] (2.56)
N N .
+lz Z 9%Sar.iSar; 05" (k;f(z * d)) Dij sin (Y; + 1))
4 e Y cosh(k;;.d) w;+w; RS

sum—frequency

Where:

lpi = kl-x - (l.)l't + &
Ri = kitanh (kld)

o= — WR —JR)VR (e — RD) — JRi(k} — RY)] + 2(J/Ri - JR) (kik; + RiR;)
’ (VR = E))’ = kij tanh(kd)

oo R+ RIRIE — RD) + VRi(k? ~ RP)] + 2(/Ri + JR)) (kiky — RiR))

v (VR + JR))" — ki tanh(k};d)

It should be noticed that;; andk;;- is the magnitude of difference-frequency and stepincy

wave number. In three dimention (short wave appnation),k;; andki*j refer to the magnitude

of difference-frequency and sum-frequency wave renmector,m— E| and |E +E|. The

second order contribution to the water surfaceatien:

Ocean Wave Theories 13



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

dif ferent—frequency

N N

Dj; — (kik; + RiR;)
ZZ Zall{alj + (Ri + Rj) COS(lpi - lp}) +
i=1 j=i \ RiRj

N N
Z;;(au(au ,—RiRj + (R; + R)) | cos(¥; + ¢;)

sum-frequency

-l>|r—k

(2.57)

This equation is valid for small and large watepttie with assumption there is no wave break
phenomenom. However, when it comes to large waspthd lim,_,, tanh(kd) =1 and

cosh(k(z+d))

. _ kZ + . . . _
limg_e coshd) =€ - As a resultD;; is equal to zero indicating that the sum-frequency
term can be negelcted for large water depth. Thergkorder correction term can be simplified

into equation 2.58 and 2.59 [23]:

N N
> D Garibarrexp (ki — kp)2)sin (e — ) (2.58)

i=1 j=i+1

N
(= %Z a1’ kicos(2;) +
=1 (2.59)

2, 2. Ganidons (ks +lg)eos( ) = (=l eos (s =)

This expression is valid to use for continous speet From equation 2.56 and 2.57, to calculate
the correction term of surface elevation and véjopbtential, N> wave components should be
included. Because of that, the computational time @&so the required memory are significantly

increased since the velocity potential and surédeeation are updated on each time step.

The interaction between wave components with véfgrént frequency produces another issue.
The derivatives of velocity potential and surfadevation are not defined if the spectrum is
summed up to high frequency. To resolve this prbla cut-off frequency can be used [23].
With cut-off frequency, the highest frequency ire thpectrum is limited. The other way to
account for this problem is by limiting the intetiao between waves with very different

frequency.
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Similar to first order regular wave problem, thetjée kinematics is not defined above the mean

surface level. Therefore an approximation methadikhbe used.

2.5. Approximation of Particles Kinematics above Mean Surface
The first order and second order pertubation adgedoat mean water surface elevation.
Therefore, if the particle kinematics at true scefavants to be established, some approximation

schemes must be utilized.

2.5.1. Constant stretching (extrapolation of Airy theory)

This method utilitizes the result from Airy waveetry, which is a solution for first order
pertubation scheme. Therefore, this method shoaldided only for first order wave. In this
method, the wave particle kinematics is calculatedo the surface elevation in wave trough by
Airy wave theory. At wave crest, the wave partikleematics is calculated until mean water
surface elevationz(= 0) then it is assumed uniform for< z < ¢, wherez = 0 refers to mean

water surface elevation. Figure 2.3 illutrates thithod.

Figure 2.3 Extrapolation of Airy theory

2.5.2. Wheder stretching

The popular approximation method to calculate wpasdicle kinematics at real surface is the
method proposed by Wheeler. In this method, theemstirface (the second order or the first
order water surface) is assumed as Gaussian priegsthe linear theory (first order solution) is
applied to calculate the wave particle kinemati®yg.applying this approach, it is observed that

the calculated wave particle kinematicszaD refer to the measured free surface kinematics.
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Therefore, the vertical coordinate-doordinate) is stretched such that the wave partic
kinematics at free surface after stretching areabtpu wave particle kinematics atO before
stretching process. The new vertical coordinatg,,( follows equation 2.60. Figure 2.4

describes the wheeler stretching method.

Pnew = T 7 (2.60)

Figure 2.4 Wheeler Stretching

For irregular sea, there is an issue regarding frigdluency components. For steep wave case,
the wavenumber of high frequency component frometision relation is higher than the actual
wavenumber. In reality, steep wave with high fregryecomponents contain significant bound
wave which has lower frequency. As a result, thet firder wave overestimates the contribution
of short wave component for particle wave kinengatithis issue is discussed by Johannessen
[23]. To avoid this issue, a cut-off frequenay_{;) is intoduced where the suggested value

IS Weye = 4wp.

Wheeler streching can be applied directly for fiostler wave, either in regular or irregular
condition. However, for second order wave, watafage elevation from combination of first

order surface and second order correction shoulthearized. The linearization can be done by
assuming the second order irregular surface asd@augrocess. By using Fourier transform, the
combination of first and second order wave surfacespresented by a new set of harmonic
component. Utilizing these new component set, thgeaparticle kinematics can be calculated

by first order wave theory. As a consequence, ithelation will based otN wave component or
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at least significantly less tha¥ component. In this way, the memory and computatidime

can be decreased.

Wheeler stretching is relatively good if appliedsecond order surface than first order surface
(for first order surface, Wheeler stretching undéneate the wave particle kinematics). However

there is an issue regarding the underestimated pavele kinematics below free surface level.

25.3. Linear extrapolation

Linear extrapolation can be used to determine theewparticle kinematics far > Q. In this
method, the wave particle kinematics are calculategd mean surfacez(= 0) then extrapolated

by MacLaurin series up to the free surface. Vejopatential forz > 0 can be written as:

¢(x,z,t) = ¢p,(x,0,t) + ¢p,(x,0,t) + z% (x,0,t) (2.61)

Removing the second order velocity potentig)( equation 2.61 represents linear interpolation
for first order wave. By its definition, the patdcwave kinematics are exponential from seabed
to mean water surface but linear above the meaerwatface. The wave particle kinematics for

z > 0becomes:

0 d 0?2
u(x,z,t) = ﬂ(x, 0,t) + &(x, 0,t) +z ¢1 (x,0,t); z> 0 (2.62)
0x 0x 0z0x
0 d 0?2
u,(x,z,t) = ﬂ(x, 0,t) + ﬂ(x, 0,t) +z 2‘1’1 (x,0,t); z> 0 (2.63)
0z 0z 0%z
0% 0° 03
a,(x,z,t) = ax‘gi (x,0,0) + ax‘gi (x,0,t) + z azafél?t (x,0,0); z> 0 (2.64)
RN 0%, AN
= —_ . 2.65
a,(x,z,t) 370t (x,0,t) + 370t (x,O,t)+zaZZat(x,0,t), z> 0 ( )

To apply equations 2.62 until 2.65 into a contimgpectrum (for irregular wave condition), a
cut-off frequency is introduced. Stansberg [39]gmges that the cut-off frequency is equal to:

2
Wy = Fg (2.66)
S
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This cut-off frequency is discussed further in sBt®.3.2. Since the profile of wave particle
kinematics above mean water level is linear, itgimelly underestimates the surface velocity at
crest when compared to experiment result [40]. lirrear extrapolation method is illustrated by

figure 2.5.

Figure 2.5 Linear Extrapolation

2.6. Others Regular Wave Theory
When dealing with regular wave condition, it is gibte to solve perturbation scheme in higher
order than second order, for example tie Sokes wave theory. In addition, the particle

kinematics can be calculated from stream functistelad of potential velocity.

2.6.1. Stokeswave

It is presented before that Stokes wave theoryscére pertubation scheme up to second order
term. In general, Stokes wave theory can be usedlt@ pertubation scheme up to higher order
term. The Stokes wave theory basically is sumatibpotential velocity from different order.

The formulation of Stokes wave theory up to N-ttesr

N
¢ = Z ¢picoshik(z + d)}cos(wt — kx) (2.67)
i=1
N . .
7= Z o sm(z(w; — kx)) (2.68)
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¢;and(; are the coefficient of potential velocity and sweg elevation ofth order, respectively.
These coefficients are determined from iterationcpss and proportional to wave stepness
(H/A). Since the potensial is a product of summatiarcess, then the particle kinematics are
[37]:

¢p;coshik(z + d)}sin(wt — kx) (2.69)

= e

N
u =a—¢=2i
X Ox —

u, = a—f = i%(f){sinh{k(z + d)}cos(wt — kx) (2.70)
2%¢ : @
O = o = Zl: l?d){cosh{k(z + d)}cos(wt — kx) (2.71)
0%¢ Sl .
A =5 =" Z 7¢>{sznh{k(z + d)}sin(wt — kx) (2.72)

Stokes & wave is able to represent more accurate wave shapedition, it is able to produce
more accureate particle wave kinematics which meawse accurate load and response.
However, this theory is relatively complex to do.dddition, wave will break whe2y, /A less
than 1/7 and Stokes wave theory is not valid feaking wave. Nevertheless, for design wave

method (presented in section 3.4), StoKesvave is normally used.

2.6.2. Stream function (Dean stream function)

In shallow water, the pertubation scheme will faihe shape contains many local maxima and
does not represent the ocean wave. Therefore, entiieory should be applied. Dean [9]
presented another approach than pertubation shterdefine the velocity potential. Instead
from potential velocity, the particle kinematics fisund from stream functions. The stream

function @s):

0y 0
. _ 2.73
X Yz 5 7 T (2.73)

If (x, 2 is fixed frame referenceX( 2 is frame reference which moves with the waveshaise

speedc. In this casex = X + ct, t = time and z = Z. The fluid is still assumed astational and

incompressible, similar to pertubation scheme. §theam function also should fulfill [9], [16]:
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. 0%, 9%
Laplace equation: 5 S — 2.74
P q 7+ 577 =0 (2.74)
Bottom boundary condition: Ps(X,0) =0 (2.75)
Kinematic free surface condition: Us(X,¢(X0) = —0Q, (2.76)
1[/0y\>  [0Yg\°
Dynamic free surface condition: 5[( aXS) + ( (’)ZS> l +9{(X)=Rs; Z=0((X) (2.77)

Where Q is the volume flow per unit span under the wavéXnZ) frame andRs is positive

constant [16]. The equation 2.74 and 2.75 arefetiby a stream function [35]:

sinh (jk Z)

N
Yo (X,2) = BoZ + ) B,
j=1
Wherek is the wave number ard is the order of stream functiod, is arbritrary reference
level. B; andk are determined in such way that equation 2.73fsgiequation 2.75 and 2.76. In
addition, it should be noted that all equation his tparticular section is based on normalized

parameter. Further explanation can be found atedR&ar and Fenton’s paper [35].

High number ofN will improve the accuracy of solution. For deeptevaN=3 is satisfactory
while for shallow wateN can be up to 30. The stream function theory do¢seed truncation
as pertubation scheme. In addition, when the warghlt/depth is less than 0.5, the difference

between 5 order Stokes and stream function is neglegible.

2.7. Breaking Waves
For particular water depth, there is an upper liofitvave height. When the wave steepness is
high enough, the wave become unstable and breakwglve height limit ) is expressed as

function of wave lengthA) depth @). For shallow water, the wave height limit is eagsed as
[8]:
H, = 0.142 A tanh (kd) (2.79)

Figure 2.6 shows the normalized wave height liH}f/&) as function of normalized water depth

(d/2). It can be observed, when the water depth icigufily depth enough, thé, /A converges
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to 0.142. Therefore, for depth water (wham h(kd) — 1), the wave height limit can be

determined by:

H, =0.142 2 (2.80)

0.16

0.14 -

0.12

0.1

0.08

Hb/)\

0.06

0.04

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d/A

Figure 2.6 Wave Height Limit for Breaking Wave
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3. Ocean Wave Statistics

Ocean wave is a random process which continousingds with time. Because of that, it is
convenient to fit a probabilistic model into pauiigr ocean location for further analysis. The
problem is how to determine the parameters of tiebabilistic model of ocean wave as they
also changes in time. However, these parametensgehslower than the ocen surface itself.
Therefore, the ocean wave can be observed foriceltaation where the process is assumed as
a stationary process. The typical duration is 3drk [30]. This analysis is known as short-term
analysis of sea surface. To analyze the wave dondior longer duration, e.g. for 100 year

duration, the long-term analyze is applied.

3.1. Method of Moment

The parameters of certain probabilistic model can decquired by method of moment or
maximum likelihood method. Since method of momentdlatively simpler compared to the
other method, method of moment is the only apprdhahis described and used in this report.
The method of moment based on principle that tledadilistic model moment is equal to the
sample moment.The statistical moment and centrainemd of probability model for x as

variable are [26]:

Moment: u = J X" fx(x) dx (3.1)

Central moment ﬁ)((”) = f (x — )™ fx(x) dx (3.2)

—00

Wherepy = ,u)((l). These moment and central moment are fitted toniment from sample.

3.1.1. Expected value

The expected value is equal to the first moment:

Blx = =" = [ x /G0 dx (3.3)

For standard Gaussian distributiadfifx] is equal to zero. The expected value from sample

(my = m{") is:
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=|

N
1
myg = m)((l) = X; (3.4)
i=1

N is the number of sample x.

3.1.2. Variance
The variance is equal to second central moment:

o’ = Varls] = i = Bl = B = | 6= ) G0 dx (3.5)

If uy is equal to zero, the variance is equal to secoathent. The standard deviatiosy] is

equal to square root of variance. The variancaofe 6) is:

N
1
S = ) (5 = my)? (3.6)
i=1

3.1.3. Skewness

Skewness of a distribution function can be deteedhiirom the third and second central
moment. The skewness describes the symetry of lsolensity function. For symetry
probability density function, skewness coefficisequal to zero. Skewness is represented by a

skewness coefficieny{) which is:

—(3 —(3
i

= (ﬁ)({z))s/z e (3.7)

Since standard Gaussian model is a symetry protyatbénsity functiony; is equal to zero. In

reality, sea surface have slightly positive skewnghich imply it contains of higher peak than

through. For the measurement, the skewness caetfimesample §,) is:

1

(3.8)
yl SX3

3.1.4. Kurtosis
Kurtosis, also known as flatness coefficient, diéssr the peakedness of the distribution. It is

calculated from:
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—(4) ~(4)
i I
Vo= ——g = (3.9)

(wy

For standard Gaussian distributign,is equal to 3. The kurtosis of sample is:

1

Syt

P, = (3.10)

3.2. Short Term Analysis of Sea Surface

As mentioned before, the sea surface (ocean warepe assumed as a stationary process for
certain duration (3-4 hours). In this conditiong tmean and standard deviation are assumed
independent of time which means they are consfidmg. sea surfac€) can be assumed as a
Gaussian process. Therefore, Gauss probability itgerfisnction is used to express the
distribution of sea surface. The formula for Ga(ssrmal) probability density function [26]

with ¢ as parameter:

1 RV}
Q) = mJ"”( 2( - )) (3.11)

Whereu, andg, are mean and standard deviation of sea surfapeatgely. It is possible to set
the mean of sea surface equal to zero which giyés the only unknown parameter and can be

calculated from second central moment (presentegtjuation 4.20) or by method of moment

(utilizing equation 3.6).

3.2.1. Distribution of maximum for linear surface elevation

A local maximum for water surface elevation is defl bya¢/at = 0 anda?¢/at? < 0. In the other
hand, global maximum is the maximum of water swafatevation from a zero crossing wave.
The magnitude of local maximum could be less theno fmean sea surface elevation) while the
the global maximum is always positive. In genetlag ocean surface is a broadband process,
where the number for local maximum is larger (dgfe) than global maximum. For narrowband
process, number of local maxima is close or simdarumber of global maxima. In addition, the
period of each zero croessing wave component &ively constant while it is not constant in
broadband process. The narrowband and broadbandgsrof sea surface is illustrated in figure
3.1
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< =local maximum

® = global maximum

Figure 3.1 lllustration of narrowband and broadband process
Up: Narrowbad; Down: Broadband

3.2.1.1. Rayleigh distribution for narrowband sea surface

If the sea surface is assumed as narrowband anssfaayrocess, the distribution of sea surface
maximum (,,,) follows Rayleigh distribution. The probability dgty function (PDF) and
cummulative distribution function (CDF) of Rayleiglstribution is presented in equation 3.12
and 3.13 respectively [26].

2
fe, ) = c—";exp <—1<<_m> > (3.12)
" 0-{ 2 O'z

1 2
F(m((m) =1—exp <—§<i—’:> ) (3.13)

3.2.1.2. Ricedistribution for broadband sea surface
For broadband process and assuming the sea susfaxeGaussian process, the probability

density functionf, (n) and cumulative distribution functiaf,(n) of normalized maximunny,

accounting both local and global maxima, is forrtedain Rice distribution [7].

hon ==t e (-5 (D) )+ T=Fem (37) o (WT=F)  Gaa)
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1 1
F,(m) =1 —Eerfc (%) —J1—¢&2exp <—§n2>q§ (ﬂ\/l — €2> (3.15)

$

¢ m3
O'{ momy

0<¢&E<1; erfclx) = %fooexp(—ﬂ)dt
T Jx

n is a standardized variable of Rice distributignis a bandwith parameter that contains
information about the condition of number of peaksne zero-crosing wave. §f= 0, the Rice
distribution becomes Rayleigh distribution (equati®.12 and 3.13) while whef= 1, Rice
distribution becomes Gauss distributi@nis the standard Gauss cumulative distributiogis
the n-th moment of the wave spectrum which is presenteshjimtion 4.20. Mean and variance

of n is expressed in equation 3.16.

= 3a-; o2 =1-(3-1)a-¢ (3.16)

3.2.1.3. Distribution of largest maximum
To find the largest maximuify, ), each maximum is assumed statistically independadit
identically distributed. This assumption is slighitonservative but acceptable for practical

purpose. The cumulative distribution of largest maxfromN maxima:

Ry (30) = (PG <30)) = (R, () (3.17)

For broadband process, the number of maxiipi¢ equal toT: /Tmos When N2, the
distribution of largest maxima asymptotically gaesGumbel distribution [26].The expected

value, standard deviation and the mode for thesktrgnaxima for broadbanded process [7]:

mode = JZ In (N 1- EZ) (3.18)
#lm=\/5/ In (NJ1-¢2)+ Ye (3.19)
' \\/ ( ) 2\/m(1v,/1 — £2)
s 1
Tim

(3.20)

V6 J2m(vyT=E)
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Wherey, is Euler constant and aprroximately equadi772 The error of expectation value of

largest maxima is in the Ordel((ln(N,/l - 52))_3/2).

For narrowbanded process (Rayleigh distributidmg, éxpectation value, standard deviation and
the mode of largest maxima can be found from eqnadil8 until 3.20 by setting = 0 and

multiply the result witho;. The result is presented in equation 3.21 to 3.23.

mode = a¢+/2 In (N) (3.21)

=02 < In (N) + # T)> (3.22)

T 1
0, =0;——=————
fin = 6 2 In(W)

Number of maximaN) in narrowbanded process is equalT«dTmo2 Due to its simplicity,

(3.23)

Rayleigh model is more commonly used than Riceridigion. The short term distribution of

extreme surface elevation dependddg@ndT, when the process is assumed Gaussian.

3.2.1.4. Distribution of wave height
To find the distribution of wave heightl], first it is assumed thaét = 2¢,. It assumed that the
wave height also follows the Rayleigh distributidien the cummulative distribution of wave

heightFy(H) is expresed in equation 3.24.

Fy(H) =1—exp (—%(%) > (3.24)

Furthermore, the expected value of largest wavghtigi,; = 2pg, . IN reality, the wave height

is not necessarily twice the peak of surface elemadtom mean water level (as it is shown in
figure 2.2 at section 2.4.1). By including the set@rder term, the crest will be higher than
through for regular wave case. Therefore, this @gpration is also conservative. The others
distribution function should be used, especiallyewhaccounting the nonlinearity in water

surface elevation.
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3.2.2. Distribution of maxima for higher order surface elevation

In reality, the distance between crest and meaiacaitevel is larger than the distance between
trough and mean surface level. This implies that water surface elevation does not exactly
follow Gaussian distribution as well as water scefamaxima does not follow Rayleigh
distribution. Since the largest magnitude of waegtiple velocity is located at the crest, it is
important to determine the accurate value of cfiéstrefore, another distribution which includes
the nonlinearity is used.

3.2.2.1. Forristall Distribution
Forristall distribution agrees well with the secamder process of surface elevation. The model
is a 2-parameter weibull for particulats and Tno. The cumulative distribution functions of

wave heightlfl) and wave crest), respectively, are [17], [18]:

2\ 2126

Fy(H) =1—exp (—2.263 (H_> > (3.25)
c \¥

Fe(c)=1—exp (— <ast> > (3.26)

Forristall wave height distribution (equation 3.258) actually fitted to data of 116-hours
huricane-generated waves in Gulf Mexico. Therefitris, more appropriate to call equation 3.25
as an empirical distribution of wave height insteafd distibution of higher order surface
elevation. On the other hand, equation 3.26 isdasesecond order wave model which makes it
is appropriate to call it as distibution of higleeder surface elevatioy andfy are found from
fitting the distribution function to experiment t#ts. The fits are forced to match the Rayleigh
distribution witha, = 1//8 andpy = 2 when stepnesss{) and Ursell number) are equal to
zero. For 2-dimensional wave, the best fit comesm[i8]:

ar = 0.3536 + 0.2892 5; + 0.1060 U,

(3.27)
Br = 2 —2.1597 S; + 0.0968 U?

In the other hand, the best fit for 3-dimensionale/ simulation are [18]:
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a; = 0.3536 + 0.2568 S; + 0.0800 U,
(3.28)
Br =2 —1.7912 S, + 0.5302 U, + 0.284 U?

The wave steepness parameg&) and Ursell number;) with assumption large water depth:

_2m Hy H,

= U=
! 9 Trmor” " dPkk,,

(3.29)

kmno1 IS the wave number from mean peridgd;, described in section 4.1.2) adds the water

depth. Forisstall distribution is larger crest li¢ithan the result from Rayleigh or Rice. It can be
concluded that the Rayleigh and Rice is not cordem regarding the wave crest. There is no
Forisstall distribution for wave trough but it cdre assumed that Rayleigh and Rice give
overestimate value of wave trough. The mode ofi§tatrcrest distribution (wave crest which is

only exceeded once in certain duration) can beddaynequation 3.30.

o \r 1 1/8y
Fe(c)=1—exp| — o 1, =1 -y~ a= H, af(ln(N)) (3.30)
Similar to Rayleigh and Rice, Forisstall distrilmutialso converges to Gumbel distribution for
very largeN. Therefore, the the mean and standar deviatiothitargest crest from Forisstall
distribution can be expressed as mean and stardn@tion of Gumbel distribution with

Weibull as its initial distribution [26]. This isxpressed in equation 3.31 and 3.32 [6].

ey = apHs | ()" 4 s (3.31)
Br (i) *r-
T arH;
Oa = 2= F 1 (3.32)

N fro1
B, (In(N)) *r

3.2.2.2. Modified Rayleigh

Another way to present the distribution of higed@rsurface elevation is by modifying Rayleigh
distribution. This method is presented by Stansi8Bj. The modification is based on the
increased steepness. The correction term is detedmby considering second order regular

wave. The expected largest crest (largest maximaértain duration from Rayleigh model
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is He, - This value is modified as presented in equati®8.3, is first order wavenumber of

spectral peak periodf).

1
luCl = l,[glm (1 + W) (3-33)

3.2.3. Gumbel Distribution

As presented in previous sections, the extremaeilglision of any distribution with exponential
type (including Rayleigh, Rice and Forristall) cenges to Gumbel distribution whéh>w. The
cummulative distribution of Gumbel for largest valof x out of N-number of x (x) as

parameter:

Fx,(xy) = exp <—exp (— (X’Vﬁ_—%)»
G (3.34)
Oy V6

T

ag = Hxy — 0.5772B¢; B =
Where uy, andoy, are expected value and standard deviatiomyaEspectively. Moreover,

Gumbel distribution is usually used for extremeueabf sample when the distribution model is
still unknown. From sample, after the sample igesbffrom the smallest to the highest, the

cumulative distribution can be found by:

F;, = N1 i=1,23,..,N; N = total number of sample (3.35)

To check if the sample follows Gumbel distributmnnot, the Gumbell paper can be used. If the
sample cummulative distribution tends to conststicight line, then it can be concluded that the

sample follows Gumbel model.

3.3. Long Term Analysis of Sea Surface

In structural analysis, it is important to find thetreme value (e.g. extreme crest) for duration
more than 3-4 hours, e.g. for 100 or 10000 yeathigicase, the assumption that sea surface is a
stationary process is not valid anymore. Sincecth@ition of short-term analysis is depend on
certainHs andT, (Hsand T, are assumed constant in short-term analysis),ahation ofHs and

Tp should be considered for long-term analysis.
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3.3.1. Full long-term of sea surface
In full long-term method, the wave crest is modelbgy joint probability function of wave crest
short-term distribution of and seastatds (and T,) long-term variation. The full long-term

cummulative distribution for 3-hour wave crestxpressed in equation 3.35 [20].

Fey(€) = J f Fegpitst, (€Hs, Ty) fuyr, (s, Tp) dhs dty (3.36)
Hs Tp Short—term variation in
distribution Hsand Tp

st_Tp(HS, T,) is the joint probability density function af; andT, and determined empirically

from the scatter diagram @&f andT,,. It is considered that:

fHS'Tp(HS' Tp) = st(Hs) prle(Tles) (337)

Where fy (H,) is the marginal distribution oHs while fr, 5 (T,|Hs) is the conditional
distribution of T, for givenHs. A 3-paremeter Weibull distribution can be useqja¢H;). The

cummulative distribution for 3-parameter WeibullRf (H) [21]:

Hg — 2,\P*
Fy (H) =1—exp —( ) i hg =4y, (3.38)
S aw
Wherel,,, a,,, andp,, are the location, scale and shape parameter afé@yeter Weibull model

respectively. These parameters can be determinadeltyod of moment. The final realtionships

between model parameters and sample moment aenpedsrom equation 3.39 to 3.41 [21].

=4 _ 3.39
neear(107) o
S = a? [d”%)‘rz (1+%)] (3.40)
r(t+)-sr(1+5)r(1+0)+2r3(1+4)
n= ) . Y * (3.41)
[F(1+%)—r2(1+$)] 2

me, Sy?, andp, are respectively mean, variance and kurtosis afsseface sample which is

presented in section 3.L( ) is gamma function.
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There is a limitation for this model sinég > A,,. The model is not good for smail where it is
usually important for fatigue analysis. Howeven &xtreme analysis, 3-parameter Weibull is
adequate to use. Another distribution fgr(H,) is a hybrid model wherg, (H;) is modelled as
log-normal distribution below a particular valuedaas 2-parameter Weibull at the upper tail.
This model gives no limitation for smatl; though it is more complicated than 3-parameter
Weibull model.

frpin, (Tp|Hs)can be modelled by log-normal model. The log-norprabability density function

and cumulative distribution function @f is presented from equation 3.42 to 3.43 [21].

1 1((Ty) = tun s |Hs) 2
7 |H) = 2t P 3.42
prle( pl ) Tpm O (1 1) exp 2( O in (Ty|Hs) ( :
n(T,) — s
Frpin, (To|Hs) = (p( ifz (1 :H()Tle )> o
n (Tp|Hs

@( ) indicates the Gauss (normal) cumulative distribatufunction. u,,, (Tp|Hs)and Tin (1, |Hy)

are mean and standard deviationirofT, ) for particularHs These parameter can be determined

from mean QTM u,) and standard deviationm u,) of spectral peak period for particuldg value

by equation (3.44) and (3.45) [26].

.qu|H52
Hin (1y|Hs) = In » - (3.44)
\/.L‘Tp|HS + 0Ty |Hy
2 2
Ut " t OT,|H,
O-ln (TleS)Z = ln( L I . Zp ) (345)
plils

In addition, the largest wave crest with returnigeny, year (y-year wave crest) corresponds to
probability:

3
X 365 X 24

1- Fc3h(C) = n (346)

y
This analysis also can be applied for wave heighec
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3.3.2. Contour line method

In some cases, the short-term distribution funct®hard to define. For example is when the
relation of the structure response and water seiridevation is nonlinear. Finding a proper
short-term distribution can be a time consumingcess. To save time, the contour line method
can be used.

In contour line method, the contours of environrabmparameter (in this cadés and Tp) for
specific extreme fractiles are determined. Thesetatos are independent of the structure
behaviour. In this casé{; andT, are transformed to standard Gaussian variabtgs?(; and

T, ?U>) by Rosenblatt transformation [20]. The Rosenlifatisformation states that:
Hy = Fg}(@(UD); T, = Frln,(2(U2) (3.47)

Where® is a Gauss (normal) cummulative distribution fumet Then the contour line can be

created by calculating; andU, along a circle with radius, = \/U? + UZ. For environmental

contour line refers ta,, year return periods, can be determined by equation 3.48.

3
= 1(1- 3.48

b < 365><24><ny> (3.48)
The contour is representing the combinationHefand T, that gives the same probability of
excedence. One can chose the most critical conidimnas an input to short-term extreme value
distribution.

3.4. Design Wave Method

It is important to analyze the structure resporis@s the extreme wave condition with certain
return period. By performing the longterm analy$ig extreme wave crest can be determined.
Assigning this value to proper wave theory, thetipiar kinematics of the wave can be
calculated. It is common to us& Stokes wave for suficiently deep water or deagastr for
shallow water. From particle kinematics, the loaahf wave is determined and the structure

responses are calculated.

The value that is assigned in wave theory, €'gStokes, should be the wave crest and period.

For ultimate limit state analysis, the worst wavest in 100 year and its period should be
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utilized. It will be shown in section 9.4 that agsihng 100 year wave height (for example the
100-year wave height from Forristall distributioh wave height) to 8 Stokes wave gives
smaller wave crest than 100-year wave crest (1dhse the 100-year wave crest from Forristall
distribution of wave crest). To determine the waegiod (T), the 90% band (range Bf when
Frpn,(Ty|Hs,,,) In the range of 0.05 and 0.95) @ for 100-yearHs (Hj,,,) should be
calculated utilizing equation 3.43 then the ranf&goshould be multiplied with 0.9. This means
T=0.9 T,. Another way to determine wave period is by usN@RSOKsugestion [33]. In this
case, the range of wave period is determined fr@®-year wave height. The relation is

presented in equation 3.48.

V6.5 Hyo1 < Typs < /11 Hy g (3.49)

Design wave method is only applicable to analyzediinucture statically. By this consideration,
it is assumed that the highest load occurs at igfieebt crest. Therefore, a quasistatic analysis is
performed. Moreover, to assign the limited dynarb&haviour of the structure, equivalent
dynamic amplification factor (EDAF) must be estabéd. The equivalent dynamic amplification
factor is found from the ratio between dynamic oese and static response from extreme
response distribution. In this case, the dynamiotrdaution on the structure response is

considered as an equivalent acceleration field.

This method is not suitable enough for structurthvarge dynamic response. Moereover, for
mass-dominated structure, the maximum load is ootired at largest crest which indicates this
method is questionable to use for mass-dominatedtate. In addition, the period of wave also
affecting the response of structure and the matstadrwave period is not always happen when
the most extreme crest (or wave height) occursd@al with these issues, the time domain
simulation can be utilized. Therefore, it is reediito interpret the wave spectrum into a time-set

of water surface elevation.
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4. Simulation of Irregular Wave

For dynamically sensitive marine structures or maristructures subjected to large
displacements, the extreme response is often dietednon the basis of short term time-domain
simulation. The sea state of short term analydisafid T,) can be determined by utilizing the
contour line method. The time-domain simulation bandone by physical model simulation or
numerical simulation. Both methods are performedshynming up a number of harmonic

components with various frequency, amplitude arasplangle.

4.1. Wave Spectrum

The sea surface can be assumed as a Gaussiansprbioessaussian model is based on central
limit theorem. The considered physical variableexpressed as a sum of variables [26]. This
agrees with the formulation for first order watenface elevation in irregular sea condition
which is expressed in equation 2.33 where the waieiace elevation as function of time is
established from sumation of a number of wave corapbwith various amplitude, frequency
and phase angle. The mean and standard deviatmmeoiave component (regular wavex=i

for a period can be determined by:

T
1
U = ?f (g1 cos (wt)dt =0 (4.1)
0

T

T
1 a 2 1.1 a :
;% = ?f((al cos(wt) — )’ dt = 5; f (5 + ECOS(Zwt)) dt = 621 (4.2)
0 0

Therefore, the variance of water surface elevatownrregular condition can be calculated as

sumation of one wave component variance:

2 N 2 N {al,iz 43
O'( =Zi=10'(_i =Zi=1 > ( . )

Instead expressed in time-domain, the water suréé®eation can be expressed in frequency-

domain by utilizing the Fourier transform. In tluase, the sea surface is assumed as periodic

process with certain duratiod| which also known as fundamental period. This rsete
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process will repeat aftd@k. For numerical purposes, the transformation ofssetace from time

domain ¢(t)) to frequency domairf_((a)k)) can be done by discrete Fourier transform:

N
_ At 21
{(mAw) = T_Z {(nAt) exp(—i mAw nAt) ;Aw = T—; m=12,.,M;i=v—-1 (4.4)

f& f
M is the number of frequency component &hdas the number of time discrete points in sea
surface record. From equation (4.4), it can beuwmed that the magnitude of frequency interval
is affected by fundamental period. Transfering b&iokn frequency domain to time domain by
discrete Fourier transform theoretically shoulddal equation 4.5 [10].

i
2At

{(nAt) = z {(m Aw) exp(i mAw nAt) ; i=+vV-1 (4.5)

_Tf
T 2At

If equation (4.5) is applied wittn=1,2,3,..T//At, the same result will be produced. This shows
that if m is started from componentT;/2At, {(m Aw) only has physiscal definition until

For instance, a Fourier transform is performedsta surface on Draupner location (the record is
taken around 1995 and known as Draupner Wave or Xeav's Wave where the freak wave

occured). The time series of the sea surface tteplat figure 4.1.

Time Series
20 T

15— —

& (m)
&
|

10 \ \ \ \ |
0 200 400 600 800 1000 1200

time (s)

Figure 4.1 Draupner Wave Time Series
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By utilizing equation 4.4, the result of discreteufier transform (DFT) is presented in figure

4.2. The range of frequency is set betwAanand%Aa).

DFT result DFT result
T T T T

. 0.5 : .
— real
E " E " i
— L a "
w7 8
4 0.4+ 4
-0.5 1 1 1 1 | 1 -0.5 L L L L 1 L
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
w« [rad/s] w« [rad/s]

Figure 4.2 Result of Draupner Wave DFT
(Left: Real Part; Right: Imaginary Part)

Theoretically, as presented in equation (4.5), rdmege of frequency should be set between

;—ZAa) and% Aw. The result of this configuration is presentefigare 4.3.

DFT result

DFT result
T

0.5 T T 0.5 T T
0.4+ b 0.4+ q
0.3+ - 0.3F i
0.2+ - 0.2+ i
0.1+ - 0.1F i
E 0 1 E oF il
© ©
v v
-0.1F Bl 0.1+ i
-0.2 B 0.2+ i
-0.3F - 0.3+ i
-0.4+ - 0.4+ i
05 L L L L I 05 L L I I
-8 -6 -4 -2 0 6 8 -8 0 2 4 6 g
w [rad/s] w [rad/s]

Figure 4.3 Result of Draupner Wave
DFT (Left: Real part; Left: Imaginary part)

The real part of discrete Fourier transformatiosuteis an even function (behaves similar to

cosine function) while the imaginary part is an odehction (behaves similar to the sine
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function). Therefore, the information from frequgnoetweenAw and %Aw Is adequate to

represent the time series. The largest requirgpliénecy is knwon as nyquist frequenay, ;).

T, Tr 2n 2m m
Law=-L"=—= (4.6)

Wnyq = 5= Aw = =-—=—
20t 20t T, 2At At

Since the sea surface is a random process, tiemitre convenient to describes the sea surface
with a power spectrum. The power spectrum is singielined by the Fourier transformation of
the correlation function of a random process [32jr sea surface, it is more appropriate to
calculate the power spectrum from Fourier transfainthe autocorrelation function, as in
context the components of the spectrum are thesgwh the wave amplitude at each frequency.
Since a sea surface can be assumed as a statwoeegs for certain duration, the autocorelation

function of water surface elevation depends on tiifferent R (z) ).

R(7) = E[¢(t) {(t + )] (4.7)

R(t) converges to zero far>w. The water surface elevation as function of fremyew) [10],
[32]:

1 (Tr _
s2(@) =] eTR@ dr = 1{(w)|? (4.8)
fJo
R(r) = R(~7) = Re f it s, (@) dw]; >0 (4.9)

To create a continuous power spectryfifw)|? should be divided witidw assuming that the
energy in intervalAw is represented by the power spectrsyfw). The notation2 for power
spectrum in equations 4.8 and 4.9 indicates thatr#sult of the autocorrelation function
transformation is a two-sided spectrum. This canobserved by calculating the continuous
power spectrum of Draupner time series fow,,; < w < Wwy,,, Which is presented in figure

4.4,
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Two-side spectrum
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Figure 4.4 Two-sided Continuous Power Spetrum

However, one-sided spectrum is preferable to useesit does not include any negative

frequencies which makes it more intuitive. The tiefa between one-sided and two-sided

continous power spectrum is given by equation (4.10

2|{(w)|?
s1(w) = 2s,(w) = L = s(w) (4.10)
Aw
One-side spectrum
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90+
801
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Figure 4.5 One-sided Continuous Power Spectrum
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s(w) is the wave spectrum. The one-sided continous p®pectrum (wave spectrum) from
Draupner time series is presented in figure 4.5cé&ithe calculation is only based on single
measurement of sea surface, the shape of the \acawsm in figure 4.5 is irregular. Methods to
make the wave spectrum smoother are not discussedblat in general the methods are based

on averaging a number of wave spectrum which tefeeveral sea surface mesurements.

From equation 4.7, it can be observed thg%t= R(0) whenu, = 0. Therefore, combining

equation 4.7 with equation 4.9 and utilizing thiesrmation from equation 4.10 gives:

[oe]

o> =R(0) = f s(w) dw (4.11)

0

If water surface elevation is expressed as sumatidd wave component, the combination of

equation 4.3 and 4.11 with discretization for nuicampuposes gives:

2 N

i=1

If each wave component is observed, it is foundt tha

(a1 =/ 2 s(wy)Aw (4.13)

Furthermore, the connection between wave spectruth wave total energy (potential +
kinematic) can be determined. The wave energy pérlength for certain wave component
(Eyn,;) is defined by [19]:

2
_ P9 (4.14)

nt —

2
The total wave energy is calculated by summing venergy from each wave component:
N 2 N

E Coti

ot 2l 2 s(wpbe (4.15)

: 2 :
=1 =1

Since it is found that there is a general behavimuvarious wave spectrums, then the

standardisation is made. By utilizing siginificamave Hs) and spectral peak periodyj, the
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wave spectrum for certain location can be estimaBmine standardised wave spectrums are

summarized here.

4.1.1. PM (Pierson-M oskowitz)

The PM spectrum is valid for fully developed sea and aeefer condition. The wave spectrum
is steep for low frequency and has exponentiallyagieate for high frequency. The basic form
of PM spectrum [31]:

s(w) = %exp (;—f) (4.16)

A andB are determined by dimensional analysis utilizthgandT,. The modified PM spectrum
which is recommended by ISSC (International Shig @ffshore Structure Congress) which is

also recomended by #3TTC (International Towing Tank Conference) [6]4]:

)_o.osHssz 2m \° 5( 2m\"*
s(w) = 21 wT, exp 4 wT,

(4.17)
14

4.1.2. JONSWAP (Joint North Sea Wave Project)

This spectrum based on measurement in North SesareBalt shows that the measured spectrum
is more peaked than allowable peak of PM wave sp@ctTherefore, a modification is made for
PM wave spectrum. In addition, this spectrum camsed for sea condition with limited fetch.
The B term from PM spectrum is kept while tlheterm is modified and depend on specific
consideration of the location [37]. The formulat@nJONWAP spectrum [22]:

2 5 4
s(w) = w(l —0.287 In(y)) y© <2_”> exp [_§<2_”> ]
w T,

2T w Tp 4

2
C=exp|—05 2% T =2_ﬂ
p ' oW,y P T,

Where o = 0.07 for w < w, ando =0.09 for w > w,. y is peaked parameter. Therefore,

(4.18)

JONSWAP spectrum is determined by three parametegsificant wave heightHy), spectral
peak periodTp) and peaked coefficieny). Haver and Torsethaugen (2004) proposed a formula

to calculatey [43]:

Simulation of Irregular Wave 41



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

(4.19)

JONSWAP and PM spectrum are single peak spectrumaas usually used for wave that
generated by local wind. In open seas, there wleffect of swell (waves generated from far
away, outside the local location) and single pgacsum is not fully accurate to define the sea
condition. To describe the sea condition wherecséi by swell, Torsethaugen spectrum [43]
which is a double peaks spectrum can be used. ONSWAP and PM spectrum féts = 12 m
andT, = 14 second is described by figure 4.6
H =12;T =14

60 : : : :

Pierson-Moskowitz

JONSWAP
50 - .

40} .

30+ .

S [mzs
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Figure 4.6 PM and JONSWAP Wave Spectrum
(H=14m; T,=12 s)

n™ moment of wave spectrum can be determined by iEquét20.

m, = jmw” s(w) dw (4.20)
0
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If the sea surface is assumed as Gaussian preoess,parameter have relation [14].

« Hy=4/mg = 40;

* Ty =Tpor =2mme/my

o T, =Thos = ZnW ; this is the mean zero-crossing period and ugefghlculate
total number of global maxima for observed timeinal

*  Tpaa = 2m/my/m, ; this is the mean period between maxima and earused to
determined wheter the spectrum is narrow bandedroad banded spectrum by
comparingl,,24 Wtih T, If the different is significant, then the speatris considered
as broad banded.

* For PM spectrumT; = 1.086T, andT,= 1.408T

* For JONSWAP spectrunTy = 0.834T, = 1.073%

4.2. Simulation of First Order Irregular Wave

The wave spectrum contains information about thergyn from certain location. Therefore,
single wave spectrum may produce different reabnat of sea surface. For first order (linear)
sea surface, the process is assumed as Gausst@s jprad sea surface is expressed sumation of

linear components (similar to equation 2.33).

N
() = Al]im Z {q1ic0s (kix — wit + &) (4.21)
i

{q1,i Is first order amplitude which is determined fravave spectrum. The first order amplitude
can be calculated from equation 4.13 while thetimrlabetweenk; and w; is expressed by

dispersion relation in equation 2.20. The phasdea(y) is determined by random number
which is uniformly distributed between 0 and. Different realizations of sea surface can be

produced by changing tlee for each simulation.

When modeling the sea surface, a finite numbeoaiponentsy) are used. As a consequence,
the model is not perfectly Gaussian process andrépetition occurs. Nevetheless, the sea
surface model still can be assumed as Gaussiaegwdor certain duration where the repetition
does still not occur. Theoretically, to achievefpetly Gaussian proccess with no duration

limitation, the lowest frequency in wave spectrum,;,, = 0 while the largest frequency
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Wmax — . For finite number of component,,,;,, is set equal to frequency intervala{) and
nyqusit frequencyd,,q) is taken asu,,,,. In addition, some considerations should be made
when determiningw,,,, Since it affects the behaviour of velocity potehtierivation. Some
alternatives to calculate the harmonic componentlifeear component are presented in this

section.

4.2.1. InverseFourier Transform (Equidistance Frequency Interval)

The popular way to interpret wave spectrum as harencomponents is by transforming back
the spectrum into time series of sea surface udisgete inverse Fourier transform. In this
method, the frequency span is set as constantdistpnce frequency interval). The number of

wave componentN) to model the sea surface is affected by the sydrequency d,,,) and

the frquency interval{w).

n=lwa_ Iy, 2Ty =2 4.22
T Aw T 2At 7 ™I 2At T At Ty (4.22)

As a consequence, the number of component is dieednby the duration of simulatiofTy)

and the time intervalAt). For example, to perfrom complete 3-hour simolatof sea surface
with time interval 0.5 seconds, at least 10,80Qughbe used. In this case, the sea surface profile
repeats after 3-hour as explained in section 4.lesk number of component is used, the sea
surface repeats before 3-hour. Therefore, carelglimumade when determining the number of
component and the range of frequency so the repetibes not occur within the considered sea

state duration. Furthermore, there are some shcemdstermine the amplitude, frequency and

phase of the harmonic component with equidistaremency.

4.2.1.1. Deterministic amplitude scheme (random phase scheme)
In random phase shceme, the harmonic compondetésmined by:

Wy i
(ari = 2f s(w) dw (4.23)
Wi
w; = w (4.24)
g = rand[0,2m] (4.25)
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Wherew,; andw,,; is the lower limit and upper limit of frequencynsponenti. The largest
harmonic amplitude will be located at componentshwirequency next to spectrum peak
frequency (rich energy part of the spectrum). Thestration of inverse Fourier transform with
random phase scheme for JONSWAP wave spectrumtyitii2 m T, = 14 s Tr = 100s and
At = 1s is presented in figure 4.7.

60 ‘

JONSWAP
Inverse Fourier Transform

o |

S [mzs]

30 -

20

Il

0 0.5 1 1.5 2 25 3 35
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Figure 4.7 Inverse Fourier Transform with Deterministic Amplitude Scheme

4.2.1.2. Random amplitude scheme

The standardized wave spectrum is a result of gireggrocess (smoothing process) of multiple
wave spectrums. As a result, it has a regular shidpeever, the real shape of spectrum from
measurement has an irregular shape as preserfigdrm4.5. Furthermore, when a standardized
spectrum is transformed into time series of sefasarby deterministic amplitude scheme and
then the sea surface is transformed back agairaisfgectrum, the same shape of spectrum (the
regular shape spectrum) is produced even if thegoares are repeated several times. This
means deterministic amplitude scheme eradicates samdomness in the spectrum which

causes the realization is not fully Gaussian pradesequation 4.13, the shape of wave spectrum
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is determined by the amplitude of harmonic companEBmerefore, the set of amplitudes must be

modified to restore the lost randomness.

Tucker et al. [45] presented that to create a sdace based on Gaussian process correctly, the
amplitude of particular harmonic component shoutddetermined randomly instead of using
equation 4.23. It can be assumed that the waveitapifollows Rayleigh distribution (equation
3.13) with root mean square value of compomnet,,;; = V2 o;; = y/2s(w;)Aw. The phasesf)

is determined similar to deterministic amplitudéame (equation 4.25). Figure 4.8 shows the
initial JONSWAP spectrum and two possible spectrimos random amplitude scheme fidg

=12 m Ty, =14 s Ty = 1200s andAt = 1s.

Inverse Fourier Transform
400 ‘ ‘

JONSWAP og = 9.04

350+

Random Amplitude og =8.43
2
4

Random Amplitude g2 = 10.40 ||

300 -

250 - .

200+ .

S [mzs]

150 + .

100 -

50 -

1 15 2 25 3 35
w [rad/s]

Figure 4.8 Inverse Fourier Transform with Random Amplitide

It can be observed that spectrum of random amgigaheme amplitude has an irregular shape.
However, there is a deviation in the variance @& $pectrum. The first realization of random

amplitude giveso;*> = 10.26 and the second realization produees = 6.96 while the actual

variance is 9.04. The change in variance is random.
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The standardized wave spectrum is an average araesingle measured wave spectrum.
Therefore, if random amplitude scheme is able toectly represent this behaviour, the average
of several realizations of wave spectrum from randonplitude scheme should converge to its
standardized spectrum (the variance and shapa)red=#g9 shows this behaviour the averaging

of 500 wave spectrums witts =12 m T, = 14 § Ty = 1200s andAt = 1s.
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50 - Random Amplitude - 0§=9.03 i
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Figure 4.9 Averaging 500 Random Amplitude Wave Spectrum

It is stated before that there is lost of randorarfesm using deterministic amplitude scheme.
Since in each realization the variance of a seastathe same, the variance of variance is
underestimated (this also indicates that the veeiaf extreme is underestimated since variance

of extreme is connected to variance of sea surf&iaye the varianag? = m,; then variance

of variance [44]:

2w

Ome. =— | s?(w)dw (4.26)
Ty Jo

Elgar [13] shows that this error can be neglectédwthe number of component N1000.

However, for slightly peaked wave spectrum (spestiuhere the rich energy part located in
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relatively small frequency interval), the randompdimde scheme is suggested. In addition,
Baeekaedal [6] suggested using random amplitudarseii@ low harmonic component since it

is more conservative than deterministic amplitudadom phase scheme).

4.2.2. Alternativesto reduce number of component

For inverse Fourier transform metohd, at leastd® should be used to perfrom complete 3-hour
simulation of sea surface with time interval 0.&2@els without any repetition. There is no

significant trouble to simulate first order seaface and the wave particle kinematics regarding
computational time and required memory for numénracess. However, to simulate second
order wave, the computational time and required orgrbecome prohibitive since the number

of component increased to 10,8000 tackle this problem, some methods to reducehsu of

harmonic component are required.

The main reason for a 3-hour simulation requierdiganumber of components is to avoid
repetition before the 3-hour simulation complet€he repetition is occured because every
frequency components synchronizes to the lowesjuéecy. This means every component of
frequency is a multiplication of an integer numfm) to the smallest frequency (which is equal
to the frequency intervaljw). Because of that, the repetition occurs aftervitage component

with the lowest frequency (the largest period) ctatgs. Figure 4.10 shows this case exactly.

In figure 4.10, five wave component with differeamplitudes Im, 2m, 3m, 4mand 5m
respectively) and frequenciek iz, 0.8Hz, 0.6 Hz, 0.4 Hz, 0.2)Hze combined. The phases are
set equal to zero so the repetition is easy torgbs@vhen the phases are included, the same
repetition alsco occurs). The combination of fivawe components is presented in last plot.
Since the lowest frequency@s2 Hz(period 5 second), the repetion occurs after drsgsince

all frequencies are synchronizeddt@ Hz
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Figure 4.10 Combination of Harmonic Components

Therefore, to manipulate the repetition, the syoolmation of wave frequency should

destroyed. Figure 4.11 shows an example whereefhedition is manipulated.
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Figure 4.11 Combination of Harmonic Components
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In figure 4.11, four wave components are combin&t diferent frequencies (0.2 Hz, 0.45 Hz,
0.7 Hz, and 0.95 Hz). All component has the sanas@hin this case, the lowest frequency (0.2
Hz) is not equal to frequency interval (0.25 HzecBuse of that, though the lowest wave
frequency is 0.2 Hz (period 5 seconds), the rapatis not occurs after 5 second. In general,
there are no exact repetition that occurs duringddbnds. This is because the synchronization
of frequency is destroyed. However, if it is obsehfurthermore, there is a repetition of shape
after 4 seconds though the magnitude is not exaepgated. This indicates that there is still
frequency synchronization which caused by the espaidce frequency interval. Therefore, to
completely destroy the synchronization, the freqyeimterval should be totally manipulated.
When the frequency synchronization is destroyedn tiB-hour simulation requires less

component than 10,800. There are several methaatshteve this.

4.2.2.1. Random frequency scheme

Faltinzen and Zhao [15] presented that if the fesopy of wave component is randomly

distributed between the component frequency lirthe problem of repeating sea surface
realization can be avoided since the frequencyiserpressed in preceeding value anymore. In
this case, the frequency synchronization is desttoyherefore, by using this shceme, fewer
components can be used for longer simulation tiee.there is an issue when small magnitude
of N is used.

Tucker et.al. [45] showed that using determinisimplitude (random phase shceme), the
variance of variance of sea surface is underestanahen N is set as 100. However, combining
the random phase scheme and random phase amphtréases the variance of sample since
the randomness from amplitude and frequency paeciy affect the sample variance. As a
consequence, the extreme value of sea surfacesastmndard deviation can be smaller or higher
than theoretical value.

4.2.2.2. Equal area method

The basic idea for equal area method is that tble energy part of spectrum is the most
important part of the spectrum to define an irraguideastate. Therefore, more components
should be placed in this part. The wave frequescset which gives the same energy for each

component. As result, the frequency sp@w) is no longer constant and the frequency
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synchronization is broken. The wave frequncy cartdken as the middle value of frequency
span in each block similar to equation 4.24. Onatier hand, the amplitude is set as a constant

value and determined by:

2 ffﬂ-ix s(w) dw (4.27)
{al,i = N '

Since the frequency component is no longer constepetition of sea surface history can be
avoided. This implies that smaller number of harmonomponents can be used than
equidistance frequency. Figure 4.12 describes tbwatization of wave spetrum by equal area
method for 20 harmonic components whith=12 m T, = 14 s T = 1200s andAt = 1s.

60 ‘
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Figure 4.12 Equal Area Method

In general, the structure is designed with eigepfeacy far from the spectrum rich energy patrt.
Therefore, there is a drawback from equal energihoak Biner [5] shows that using equal area
method for structure with eigenfrequency far fraolmrenergy part of the spectrum underpredicts

the responses since it does not account propexlgythamic behaviour of the structure.

Simulation of Irregular Wave 51



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

Using equal are method can decrease the numbéredfuired component. Therefore, similar to
random phase scheme, care should be made when sumalier of component is used. By
combining equal area method and random amplitutkerse, there is a possibility that the
variance of sea surface is changed which lead amgds in variance of extreme. Figure 4.13
shows the possible changes of sea surface varfesroecombination of equal area method and
random amplitude scheme for JONSWAP wave spectritmhiy =12 m T, = 14 5 T; = 1200s

andAt = 1s utilizing 50 components.
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Figure 4.13 Equal Area Method + Random Amplitude Scheme

Therefore, it is also important to determine thémal number of component to model the sea
surface when using combination of equal area metwdl random amplitude scheme. The
average of several spectrum realizations from coatlin of equal area method and random
amplitude scheme converges to its standardizedrspesimilar to the explanation in section

4.2.1.2.
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In addition, Elgar et al.[13] stated that the adexyuof representing Gaussian condition depends
on the effectiveness of placing component in ricérgy part, not due to the number of harmonic

component. Therefore, equal area method will beebet representing a Gaussian process than
inverse Forier transform (equidistance frequendgriral). This is also shown by Baeekaedal in

his work [6].

4.2.2.3. Peaked equal area method

Since the natural frequency of the sturcture isaligdocated not in rich energy part of the
spectrum, a modification should be made for equed anethod. Binner [5] suggests that finer
component mesh should be applied close to the alaftegeuncy of the structure. This
modification can solve the problem regarding theklan component around the natural
frequency of structure causing more correct loadl aesponses of the structure. This

modification is called peaked equal area method.

The first step in this method is dividing comporseimito two groupsNea (humber of equal area
method component) ami,eax (NUMber of peaked component around natural frezuen the

structure). The total harmonic componéx} is [6]:
N = Ngg + Npear = N(1 — pgap) + Npgap (4.28)

Where pg4p IS @ parameter describing the density of compohecdated neared the natural
frequency of the structure. The process of pealedlerea method is [6]:
1. Ngais determined by equal area method
2. The block that containing the eigenfrequency asdwb-neigbouring block are removed.
If the eigenfrequency located at the end of thectspm, (either low frequency end or
high frequency end) only one or none neobouringksi@re removed.
3. The frequency range that does not contain any caerge (due to the removal in point
2) is split intoNpeak + 1,2,3,40r 5 components. It is conditioned such as the freguenc
span for these components is decreasing towardsah&tequency from both sides. One

example of function than can be used [6]:

Nigw —1+1

T Niowt1\ 4.29
Nlow (Nl +1) ( )

2

Aw; = (wn, — Wiow)
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Equation 4.29 is acounted for frequency lower thatural frequency of the structure
(wy,) Wherew,,,, is the low limit of freqeuncy range that contantscomponent anij,

is number of component lower than structure eigenfency. It can be shown that:

Niow
Npw — i+ 1
W =1 (430)
= Niow (2257)
For frequncy larger than natural frequency:
Nhigh - l + 1
Awi = (whigh - (J)n) Npigh+1 (431)
high ( 2 )

WhereNnigh are number of components larger than structurenéigquency andy,;,, is
the upper limit of freqeuncy range that containscomponents. Value dfow andNpign
should be balanced depends on where the eqigeefieguocated. In addition, the
sumation oMNjow + Nhigh= Npeak

4. The new frecuencyq(;) is the middle frequency on each span. The angditcan be

determined either by deterministic amplitude (egumed.23) or by random amplitude.

Figure 4.13 shows the dicretization using peakedak@rea method for JONSWAP wave
spectrum withHs =12 m T, = 14 s T = 1200s andAt = 1s. pgsp is equal to 30%. For
presentation purposes, the applied natural frequdng) is set as 0.7 rad/s though the
magnitude ofw, is usually larger than 0.7 rad/s for Jack-up platf and located in greatly

coarse component mesh.

When peaked equal area method is combining wittdalein amplitude scheme, there is
significant change in variance (same problem asalegtea method). Moreover, since less
component located in rich energy part of spectipeaked equal area method is less accurate to
model Gaussian sea surface than equal area methothé same value oN. However
Baeekaedal [6] reported that when the eigenfrequehsyructure lays on the rich energy part of
the wave spectrum, peaked equal area method & loesimulating sea surface for low number

of component than the non-peaked equal area method.
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Figure 4.14 Peaked Equal Area Method

4.2.2.4. Partition of timeseries

Another way to avoid repetition in simulation afeigular wave is by splitting the time series into
shorter duration. For example, the 3-hour sea saréamulation is splitted into nine 20-minute
simulations. The amplitude for 20-minute simulatican be determined by deterministic or
random amplitude scheme while the frequency isbésteed using equidistance frequency
interval. However, for each 20-minute simulationpew set of phaseg( is introduced. As a
result, nine different sea surface realizations ge@erated and combining these different

realizations produces 3-hour simulation.

The idea behind this alternative is that largegdiency interval is acquired by decreasing the
duration of simulationT(-). As a consequence, with same nyquist frequeriey,number of
components decrease significantly. For equidistainequency interval method either with
deterministic or random amplitude scheme, a 3-tsnnulation with time interval 0.5 second
requires at least 10,800 components while a 204misimulation only needs 1,200 components.
Therefore, utilizing 20-minutes simulation to reggat 3-hour simulation gives a big advantage.
However, there are no limitation how small the 3shsimulation may be split. Due to number of
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component which is still considered suifficient,-2hute simulation is assumed adequate to

simulate 3-hour simulations in this study.

This method does not require to destroy the frequesynchronization when using inverse
Fourier transform. In addition, this method does a@ate continous time series of surface
elevation. However, the probabilistic model onlguiges extreme or largest extreme value of
time series. Because of that, this method is demed a good option for genrating probabilistic

model.

4.3. Simulation of Second Order Irregular Wave

In order to simulate the second order irregular eyathe first order irregular wave must be
simulated first. The energy information from waepstrum is converted to a set of regular wave
components by several methods and scheme thakjglegred in the previous section. Then the
surface elevation can be obtained by superposigtimciple. However, to account the second
order component, the correction terms which areresged by equation 2.57 should be
calculated and added to the first order sea surfacehis case, the number of harmonic

component is significantly increased fra\rio N°.

The same case is applied for calculating the kiniesaf second order irregular wave. The wave
kinematics from first order irregular wave is cditad then the second order correction term,
which is gained by deriving the velocity potengajpressed in equation 2.56, is added to the first
order irregular wave kinematics. The wave partldleematics are calculated in a grid system
which means it is calculated point to point. Hentlee computational time is increased
significantly. This condition makes the second ordeegular wave simulation becomes

unattractive.

A wave spectrum contains energy not only fromdister wave but also second and bigger order
wave. However, the first order irregular wave comgrds are determined by utilizing total

energy from wave spectrum. Adding second orderection term means adding more variance
to sea surface time series which means introdutiegecond order term correction violates the
amount of energy in the wave spectrum. Therefoteenna second order wave is wanted to be
introduced, a wave spectrum should be linearizext iefore calculating first order wave. Some

approaches to linearized the spectrum are sumndanze.
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4.3.1. Iteration tolinearize spectrum

In this method, every block in wave spectrum isckleel. An iteration process is performed to
find the right linear amplitudel{,) that will give right magnitude of the wave speatrin each
block when the second order correction is introdu&nce the number of component could be
large, the iteration process could be time consgmMoreover, the iteration is complicated
because one block in wave spectrum is affected rythar block through second order

correction (through sum and difference term).

4.3.2. Cut-off frequency

Another way to maintain the energy in the wave spet when the second order correction is
applied is by introducing a cut-off frequenay.(;). This method was presented by Stansberg
[39]. The components with frequency higher thar), are assumed as bound waves. Therefore,
the energy associate to second-order correctimonsidered come from the part of the wave
spectrum with frequency higher than.,;. As a consequence, the first order sea surface is
determined only from part of the wave spectrum Wiih< w < w.,;. Figure 4.15 shows a cut-
off frequency for JONSWAP spectrum with with =12 m T, = 14 s Tr = 1200s andAt = 1s.
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Figure 4.15 Cut-Off Frequency
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This method is relatively simple since the itematiorocess is not required. Futhermore, this
method can decrease the required number of compdoersea surface simlation. As an
example, 3-hour simulation needs 10,800 compornfentdt = 0.5s. By introducingw,4, =
Weyt, the required component reduced 2198HgrE12 m Therefore, combining the cut-off with
the methods to reduce number of component will entde second-order wave simulation

becomes feasible.

4.4. Directional Spectrum
To represent a 3-dimensional sea surface (shast w@ve), a directional spectrum is introduced.
The directional spectruns(w, #)) is a multiplication of wave spectrum(v) as introduced in

section 4.1) and a spreading functi®(4)).
s(w,0) = s(w)D(6) (4.32)

In general, the spreading function is not necessaigpendent of frequency. In the other word,
the form of spreading function could B€6, w). However, for simplicity, it is assumed that the
spreading function is independent of frequency.nf@ntain the energy in the spectrubi(6)

should satisfy:

21 2T 21
s(w) = f s(w,0) do = f s(w)D(O) do —>f D()do =1 (4.33)
0 0 0

There are various spreading functions that are geeg [8].The common spreading function
which is used [31]:

i i
K, cos?(0), —ise SE

D(O) = { (4.34)

0, else
v is an integer numbef. = 0 is the main propagation direction of the wakgis the normalized
coefficient that insurance the satisfaction of eipmas4.33. Thereforek,, can be determined by

equation 4.35. Figure 4.16 shows the shape(6éf) for variousv.

@G .
fozn cos?(6) do R rw) '

v:
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Figure 4.16 Spreading Function

From the directional spectrum, the first order a@tage for componenj is determined by:

Carij = V2 s(wi, 0)AwAB = \/ 2 s(w)D(6;) AwAb (4.36)

Then, the first order sea surface can be deterntiged

N M

{(x,y,t) = Z Z {a1,ij COS (ki (x cos(ej) +y sin(Qj)) —w;t+ sij) (4.37)
i j

The particle kinematics can be calculated from 8qna2.38 until 2.43 by separating the

frequency i) and direction componenj)(as done in equation 4.37. The number of harmonic

component becomed/ x M. Hence, applying the spreading function into waspectrum

significantly increases the number of required congmt for simulation of first order sea surface

and wave particle kinematic. Furthermore, the sdcorder wave simulation became greatly

prohibitive. Therefore, an alternative method stdie used to represent the spreading function.

Another way to express a 3-dimentional wave is bgigning only one direction to each
frequency component. In this way, the required comept is still equal tdN. The direction of
each frequency component is randomly determineds Hssumed that the direction of each

componentd;) follows Gauss (normal) distribution. Therefofig can be determined by:

6, = o1 (UI—G) (4.38)
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og is the standard deviation of the direction in aadi® = 0 is the main direction of wave
propagation. Long-crest wave is achieved wbgrs set as small numbdris a random number
which is uniformly distributed between zero and .ofeis the standard Gauss cumulative
distribution. Because of that, this method is chlilandom direction. Figure 4.17 shows the
probability density function ob as a Gauss distribution with varioag. To simplify, og is

presented in degree though in calculatigris conversed to radian.
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Figure 4.17 Probability Density gunction of Wave Direction
The magnitude of probability density function coblellarger than one as long the area under the
curve is equal to one. When random direction isl weéh oy > 7 /5, there is a possibility tha
is larger thant/2. This contradicts the condition of spreading fiorctwhich is described in
figure 4.16. Therefore, the wave could propagateshe opposite direction since there is a
possibility that adequate number of components ltanextion larger tham/2. To avoid this

issue, it is suggested to use< m/5.

For random direction, the first order sea surfaceatermined by modifying equation 4.37. In
this case, to maintain the energy in the spectmdta satisfy the condition in equation in 4.33,

D(ej)Ae is not applied to the formula since each frequasmyponent only has one direction.

N
{(x,y,t) = z V2 s(w;) Aw cos(k;(x cos(8) +y sin(6;)) — wit + &) (4.39)
i Ca1,i
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The connection between random direction and comspogading functio® (0) is expressed by

the relation oy andD (6):
Mg.2D(6;
op = ZJMJ# (4.40)
2 D(6))

Figure 4.18 shows the comparissonddf) and probability density function &f for various v.
To calculate the second order directional termsfa surface, equation 2.57 can be used with

aplying the wave number as a vector. This is lyieRplained in section 2.4.2.

4.5. Strategy to Decrease Computational Time in Extetnt

To calculate the load and responses on the stejctbe wave particle kinematics could be
calculated first on grid system then apply to thricgure. This is feasible for small volume
structure such as Jack-Up or Jacket platform witbee particle kinematics is assumed
undistrurbed. Eventhough the number of requiredpmrents have been reduced, to calculate
wave perticle kinematics in grid system still coldd very time consuming. Therefore some
strategies to reduce the computational time aresidered. In this section, some strategies to
reduce the computational time of wave particle kiagics are introduced.

45.1. Calculating wave kinematics at coarser grid

The wave particle kinematics is first calculated@arser grid. To find the load at the structure,
the wave particle kinematics at structure coordinate interpolated from adjacent grid
coordinates. Therefore, a sensitivity analysis étednine how coarse a grid system that still
produces acceptable result is required.

45.2. Second order wave at upper layer

Since the wave kineamtics decay exponentially wetiical coordinate both for first order wave
and second order wave, then it can be assumeththdtfference between second order and first
order wave kinematics is negligible at particutzzdtion which is close to seabed. Therefore, to
decrease the computational time, the second ordee Winematics are only applied close to sea
surface (upper layer) while the first order waveeknatics are established at the rest of the depth
(lower layer). By this strategy, number of calcidatpoint for second order wave kinematics can

be decreased significantly. Therefore, much fasterputational time is gained.
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wave
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Figure 4.19 lllustration Second Order at Upper Layer Method

This second order at upper layer is illustratedfigyre 4.6 for horizontal velocity case. This
strategy is useful either for static and dynamialgsis of structure response. From previous
project by Lubis [27], it shows that this methodilcbsave the computational time significantly

for single vertical cylinder case.

4.5.3. Spool-to-extreme wave method

For ultimate limit state analysis, the main intéres the extreme response. In general, the
extreme response occurs at extreme load condiiondrag dominated load, which is greatly
affected by the wave patrticle velocity, the extrdoel is assumed occurs at the extreme water
surface elevation within certain duration. Since ttomputational time for simulating second
order sea surface is relatively faster than foosdarder wave kinematics, then it is possible to
locate when the extreme surface elevation hapgeasceforth, the wave particle kinematics,
load and responses are determined only around Xtrenee surface elevation. For dynamic
analysis, the response at certain time instarég@n response at previous time instant (this is
presented in section 5.3.2). Thefore, there isewrio calculate wave kinematics from the start
of sea surface simulation until the extreme of wateface elevation occurs. The wave particle
kinematics then are calculated at a certain tinterval before the extreme surface elevation
occurs to accomodate the transient effect of thetstre. This method is called spool-to-extreme
wave and useful for dynamic analysis of structesponse. Figure 4.20 illustrates this method.

The first plot in figure 4.20 describes the complsecond order sea surface while the second
plot shows the sea surface for spool-to-extremehotetThere is no specific condition about

how long the time interval should be consideredtgethe peak since the transient effect of a
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certain structure could be various in irregular. deaaddition, for some cases the maximum
response could happen not at the extreme of watdace elevation (for instance for mass
dominated structure).

Complete Second Order
20— ‘

Second Order

%

10—

Z[m

il
-10 ‘ L
(¢}

L L L L
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t [seconds]

Spool-to-Extreme
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Figure 4.20 lllustration of Spool-to-Extreme Method

45.4. Linear theory before maximum (linear-to-extreme)

A further modification is made for spool-to-extremethod. Since the computational time of
first order wave kinematics is relatively fasteanhthe second order wave kinematics then on
dynamic analysis of structure responses, the logidré the extreme surface elevation is
calculated from first order wave kinematics to aodothe structure transient responses. The
second order wave is start to apply for a shoetrirdtl time before the extreme surface elevation.
By applying this scheme, it is expected that theatlon of calculation can be decreased in
extent. This method also does not have specifigirepent for how long the load can be applied
before the extreme surface elevation. Figure 4l@dtiates this method.
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Figure 4.21 lllustration of Linear-to-Extreme Method
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5. Structure Model, Loads and Response

In the previous project by Lubis [27], the secondep wave is tested on a single vertical
cylinder. In this work, the analysis is extended #me second order wave is applied into a jack-
up platform. Jack-up is choosen since the jacksugtill categorized as small volume structure
and have considerable dynamic behaviour. Themiggection, the description about the jack-

up and the method to calculate the load and reggare presented.

5.1. Structure Model
The jack-up model which is used in this work is ZJbhe model was designed by engineering
company GustoMSC and classified by DNV GL. CJ62 igree legs, cantilever type drilling

jack-up patform which is deisgned to opera

in moderate to harsh environment. The jac
up is designed to operate with water depth
to 130 meters. The radius of the
approximately is 35.8 meters with distanc
between leg center equal to 62 meters.
legs are triangular with x-braces, open tr
system. The finite element model is built i
USFOS. In the finite element model, the le
are modelled with detail finite elemen
Figure 5.1 shows the finite element model
CJ62 jack-up.

Using the detail finite element model give

more accurate responses, such as d

displacement, baseshear and overturn
moment. Eventhough this work is more foc
on the difference between effect of first ord
and second order wave model on the jack-i

the detail finite element model is also usel Figure 5.1 CJ62 Finite Element Model
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in push-over and damage analysis. On the other, lgrtbrming analysis with the detail finite
element model leads to longer computational timeartler to save time, an approach to perform
several simulations simultaneously is considerdds Bpproach is explained in chapter 6. In

addition, the water depth is set to 100 metershisrwork.

When determining the response of the structurentiminear behaviour could be too significant

to neglect. The nonlinearity on structure behavimam be caused by [29]:

» Geometrical condition (large displacement)
» Material condition (nonlinearity on stress-stragtationship, e.g. plasticity)

* Bondary condition (contact between structure)

In the previous project, the nonlinearity o
structure behaviour is avoided. The cylinder
modelled with very high modulus elasticity c
material to avoid the plasticity. Moreover, b
introducing very high modulus elasticity, th
cylinder stiffness is also increased significantl
which restricts the cylinder from large
displacement. As the result, nonlinearity fro

geomtric condition is avoided.

In this work, the structure is not represented a

linear model anymore. The geometrical at
material nonlinearity in the structure ar

considered in the finite element model. Tt

material of the legs (both the column and tl

truss) is modelled with elasto-plastic material.

figure 5.2, the purple colour indicates the pafts
the structure which have the elasto-plas

material. The rest of the structure are modellen

Figure 5.2 Open Truss Model of Leg

with elastic material. In general, the jack-up moc

part can be categorized to four groups:
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* Three sets of leg
* Three sets of support footing
* One Deckbox

» Jack Houses (part of the structure for transfeloags from the deckbox to the legs)

The materials for all part of the structure are swarized in table 5.1. For deckbox, support
footings and connecting columns, the yield strasadglected as the parts are represent with
elastic material. In addition, the density of demkbsupport footings and connecting columns are

represented by very small number since the matgesé parts is modelled by nodal mass.

Table 5.1 Material Parameter of Jack-up Model

No Part Elastic Modulus | Poisson Ration | Yield Stress| Density

1 Legs 210 Gpa 0.3 690 Mpa | 7,850 kg/i
2 | Support Footing 2,100 Gpa 0.3 - -

3 Deckbox 420 Gpa 0.3 - -

4 Jack House 210 Gpa 0.3 - -

Moreover, the stiffness, damping, mass and eigelevahalysis of the model are explained in

this section.

511 Stiffness

Since geometry nonlinearity is accounted, the BtphiLivesley) function [3] is utilized to
represent the beam stiffness. In this case, tldeeffect on element level is included when
deriving the stiffness of the beam. The Rffect is caused by the axial force on cylinddre T
matrix stiffness of the beam is acquired by finditige exact solution of beam moment

equilibrium. Figure 5.3 illustrates the beam eletrnveith end forces.

For figure 5.3, the internal momen¥y{) and external momeni,) at any sectiork = x are

presented respectively in equation (5.1) and (5.2).

M; = —E [ Wy (5.1)
Me = MA+QAX_NX(W_WA) (52)
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Figure 5.3 Beam Element with End Forces [3]

E andI is the elastic modulus and moment inertia respelgtiM, andQ, are moment and shear
force at point A whileVy is the axial forcew(x) is the lateral displacement of the beam at point

X.w, andw,, are the first and secomxederivative ofw. Therefore, to satisfy the equilibrium:

My =M, > —Elwy =My+ QX — Ny(w—wy)

5 1 , Ny (5.3)
wxx+ks W:ﬁ(MA-l_QAx-l_NXWA) ; kS =

1

The differential equation in equation 5.3 is thamemoment equlibrium. The exact solution for

equation 5.3 is represented by combination of ha@nogs ;) and particularyp) solution:

1
w(x) = wy + wp = C; sin(ksx) + C, cos(ksx) + N—(MA + QX + Nywy)

X

(5.4)

In order to find the coefficien€; and C,, the boundary conditions should be satisfied. The
boundary conditions are:

w(0) =w, ; W,x(O) =—6, ; w(ll)=wp ; W,x(L) = —0p (5.9)

Combining the bondary condition and equilibrium d@ition, the relationship between force (or
moment) and displacement (or rotation) is presemedyuation 5.6 [3].
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(Qa\ [12E1 6EI 12E1 6EI 1 (WA
Td’s Iz (0P —L—3¢>5 —L—2¢>z
M, 4E] 6EI 2E1 0,
{ r = < ,
12E1 6EI (5.6)
Qp I3 OF 2 P2 Wpg
4E]
LMBJ . L 3 = kHB)

Stiffness Matrix [ke]

Theg; can be determined by:

Compression : Tension :

b, = B b, = B
1™ tan(B) ' tanh(B)
_1L B _L B

P2 =30 %2230, - D

_1 3 _1 3

¢3—Z¢1 +Z¢2 ¢3—Z¢1 +Z¢2

1, 3 1, 3

¢4——§¢1+5¢z ¢4——§¢1+§¢z
b5 = P19, b5 = P10,
| Ny N _mEl
ﬁ_f N, ¢ VE=Tp

This stiffness matrix is applied in USFOS. The globtiffness matrix of the structur&)(is

established by assembling all element stiffnessicest (.). Nz is Euler buckling force.

51.2. Mass

In order to analyze the dynamic response of thecttre, the mass matrix of element has to be
defined. In this work, it is choosen to use comesisinass to calculate the mass of the element.
Consistent mass means that the mass is based sartteinterpolation function as the stiffness
matrix. However, in USFOS, the mass is based onntieepolation function of linear 3D beam
[37] instead of the nonlinear interpolation funatiavhich is described in equation (5.6).
Therefore, the mass is not truly consistent wite #tiffness matrix but is still considered
adequately accurate. For beam element without strehaxial deformation, the mass matrix can
be established by [24]:
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1 r L
mez.f PeNg stdEF ; S=w,0
-1

1 1 (5.7)
Nw, = Z(Z =3+ &) ; Ng, = Z(l — G-+

1 1
Nwp =7 (2436 =5%) 5 No, = 7(-1 =& + & +5°)

156 -22L 54  13L
pel|-22L 412 —13L 312

e = 420[ 54 —13L 156 22LJ (5:8)
13L  —312 221  4I2

WhereN; is the shape function for diplacemem) (or rotation §), p. is mass per length (kg/m).
The global mass matrix of the structutd)(is established by assembling all element mass
matrices fn.). Moreover, the contribution of added mass frondrbgynamic force should be

accounted in in mass matrix. Explanation about dadass is presented in section 5.2.

5.1.3. Damping

Damping is the ability of the structure to dissgkinetic energy energy. Source of damping can
be various and modelling them can be complicatenlwaver, damping for structureC) is
normally assumed as proportional to stiffness aradrir of the structure [24] which can be

expressed by:

This damping system is known as Rayleigh dampingah be shown that the global mass and
stiffness matrices have orthogonality behavioureréfore, since the Rayleigh damping is
proportional to mass and stiffness, it also hasothegonality behaviour. In addition, damping
can also be determined as a ratio of structuracaritdamping for certain eigenmodes
(explanation about eigenmodes is presented inosebtil4). The structure critical damping for

eigenmodae (¢p;) can be expresed as:

Corn = 2k, 5 M=, M ; k., =K (5.10)

Then, the damping of the structure can be detehfioen eqigenmode

C=ileiTor i’ (5.11)
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Ac; 1s the damping ratio for eigenmodesSince the structure has several eigenmodes, the
damping ratio also has several values. In additieach eigenmode refers to certain

eigenfrequency. Therefore, the damping ratt)) (can be expressed as a function of

eigenfrequencyd,):

1l/a
de=3 (w_:l + aza)n) (5.12)

When a; =0, 4, is proportional taw, then a, damps high frequency oscillation modes
(egigenmodes). With the same consideratigndamps low eigenfrequency oscillation modes. If
two damping ratiosA; ; andA.,) at two structure eigenfrequencies,( andw, ;) are known,

a; anda, can be calculated by:

2wy 1 Wy o
a1 = w 271_ O: 2 (Ac,lwn,z + Aczwn,l) (5.13)
n,2 n,1
2
@y = ——5—— (Ac2@nz — Ac10n1) (5.14)

Wp 2" — Wnp1

For jack-up case, there are three sources of dangpirthe structure. They are strutural damping,
soil damping and hydrodynamic damping. Structueahging is produced by the material of the
jack-up. Soil damping is introduced by the founalatsystem. The hydrodynamic damping is
determined by the velocity of structure relativetythe wave particle velocity. In this case, the
hydrodynamic damping is a non-linear damping andwkn as viscous damping. DNV [11]

recommends that the range of structural dampirgi®een 1-3%. For soil damping, the range
is recommended between 0-2% while for hydrodynataimping is between 2-4%. Furthermore,

DNV recommends that the total damping for stormdition should be in the range of 6-9%.

Table 5.2 Assumed Damping Ratio

No Damping Ratio  Eigenfrequency
(Ae) wy [rad/s] | fn [HZ]

1 | 3% 0.62 0.1

2 | 2% 62.83 10

In USFOS, the hydrodynamic damping is directly gkted from structure relative velocity. The
soil damping is neglected in this case. Moreovee structural damping determined by

specifying two different damping ratios for twoféifent egigenfrequencies. Table 5.2 shows the
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assumed damping ratios for two different eigenfesmies. In addition, figure 5.4 shows the
damping ratio for different eigenfrequencies basmed the assumed damping ratio. The

eigenfrequencies are presented in Hz instead ¢4.rad

Damping Ratio
Assumed Damping Ratio

O

0.3+

0.25+ B

0.15+ B
0.1 B

0.05 B

L

0 | | ;
0 5 10 15
i [Hz]

Figure 5.4 Damping Ratio of The Structure

5.1.4. Eigenvalueanalysis
For undamped free vibration system, the equatianaifon can be written as:
Mi +Kr =0 (5.15)
By assuming- = ¢psin (w,t), then equation 5.15 can be rewritten as:
(K — w,M)¢p =0 (5.16)

¢ is the vector of eigenmodes ang is the eigenfrequency. This is an eigenvalue bl
where ¢ is the eigenvector and, is the eigenvalue. The untrivial solution is fouhg
calculating the determinant ofK — w,,M) that gives zero value. Solving this, the set of

eigenfrequency (eigenvalue) and its correspondiggnenodes are obtained [24].

In order to solve eigenvalue problem for finitenent of structure, shifted-inverse itteration
method can be used [24]. However, in this workdinecture eigenfrequencies are determined by
USFOS. The eigenperiods of jack-up model are ptedén table 5.3.
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Table 5.3 Structure Eigenfrequency

Eigenperiod T,) Eigenfrequency

No Mode

[s] wp [rad/s] | fn [Hz]
1 | I X-Bending 5.91 1.06 0.17
2 | 1 Y-Bending 5.91 1.06 0.17
3 Rotational 541 1.16 0.18
4 | 2% X-Bending 0.55 11.4 1.82
5 | 2% Y-Bending 0.55 11.4 1.82

5.2. Loads

For jack-up platform, the dimension of membersegsl truss system are smaller than the wave
length. Because of that, the wave load on jack-egs Ican be determined directly from
undisturbed wave particle kinematics. In this cabe, wave load is calculated by utilizing

Morison equation.

5.21. Morrison Equation
It is assumed that the strip theory is valid fotedmining load on jack-up leg. As a consequence,
the Morrison equation can be combined with stripotly. The Morrison equation for a strip

element of cylinder is expressed by:

nD? 1
dF = p—=Cuax dz + 5p Cp D uxluy| dz (5.17)

Inertia Term Drag Term

Where Cy is addedmass coefficient a@h is drag coefficient. For regular wave, as it can be
observed from equation 2.21, and 2.23,has maximum magnitude at wave crest whilas
equal to zero. At the mean water lewg], has maximum value while, is equal to zero. For
irregular wave condition, since it contains a setregular wave component with different
amplitudes, frequencies and phases, the inertiaienot totally zero at wave crest and the drag
term is not totally zero at the mean water level. $ingle vertical cylinder case, wh&n> 10 D
andA > 5D, the drag load (viscous forces) dominates. In¢hseH, 4 andD are wave height,

wave length and cylinder diameter respectivelysTsillustrated in figure 5.5.
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Figure 5.5 Relative Importance of Wave Load [14]

According to NORSOK [33], for slender structuf@, = 1.05 andCy = 1.2 for rough member
andCp = 0.65 andCy, = 1.6 for smooth member. The roughness of meméerdetermined by
considering the existence of marine growth at tiek-lip leg. NORSOK [33] suggest that the
marine growth can be considered exist up to tweemeatbove the mean water level. Therefore,
Cp = 0.65 andCy = 1.6 for z > 2m while ¢, = 1.05 andCy = 1.2 for z < 2m. In this case, sea
surface and wave kinematics should be modelledebygral order or higher order wave model.
On the other hand, when the sea surface is modaieGaussian sea (sea surface and wave
particle kinematic is determined by first order rahdthe hydrodynamic coefficient should be
modified to give reasonable load levé], is kept as previous model whilg = 1.15 for all z
coordinate. Figure 5.6 illustrates the applied bggnamic coeffien for second order (or higher)
wave model and first order model.

CM CD CM cD

/I\ 1.6 TO.GS 1.6

1.15
1.2 1.05 1.2

Second Order Model First Order Model

Figure 5.6 Applied Hydrodynamic Coefficient along z-Coordinate
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5.2.2. Added Mass
In the potential theory, the inertia force presdnie equation 5.17 is a combination of two

sources of force. These sources of force are:

* Force comes from diffraction problem. In diffractiproblem, the wave comes and hits
the structure while the structure is restrained.

* Force comes from radiation problem. In radiationbtem, the structure is forced to
move and create waves. There is no incident wauhigncase, i.e. the generated wave

from the motion of structure is the only wave exist

The diffraction and radiation problems are illusghby figure 5.4 [14]:

DIFFRACTION TOTAL
PROBLEM PROBLEM CONDITION

Figure 5.7 lllustration about Diffraction and Radiation Problem [14]

By solving radiation problem, another load termssexThey are added mass, hydrodynamic
damping and restoring. For jack-up system, the dggitamic restoring term can be neglected
since the magnitude is small compared to stiffeésylinder. The hydrodynamic damping from

potential theory can also be neglected sincedinaller than viscous damping (viscous damping
is determined from velocity of the structure relatto the wave particle velocity). However, the

added mass force should be considered.

When the structure is oscillating, the added meass for each strip element of cylinder can be
calculated by [25]:

nD? .
dFa = —pT(CM - l)dZ r (518)

added mass=Aq

The added mass is calculated for each cylindetefisiement and added to mass term of the

structure (as presented in section 5.1.2).
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5.3. Response

The response of structure can be analyzed by tifereint approaches. The first way is by static

analysis. In this method, the contribution from gémy and mass is neglected. The second way
is dynamic analysis. In this case, the contribufram mass and damping is accounted. In this
section, the displacement of the jack-up is talereaponse.

5.3.1. Static Analysis
For static analysis, the dynamic behaviour of theicture is assumed can be neglected.
Therefore, the displacememnt) (can be analyzed by:

Kr=R (5.19)

Similar to stiffness matrix, the force matriR)(is also needed to assembly before it is included
equation 5.19. The response from static analysts dot depend on previous response. Hence, it
is possible to calculate the extreme response lyalrserving the condtion of sea surface where
the extreme load possible to occur. In this waycutation is relatively simple and fast. To
account for the dynamic behaviour of the structuhe, static analysis can be extended by
utilizing equivalent dynamic amplification factde[@AF). EDAF is the ratio between dynamic

and static response of the structure.

5.3.2. Dynamic Analysis
In dynamic analysis, the displacement is calculégdolving equation of motion. The equation

of motion is:

Mi + Ci- + Kr = R(t) (5.20)

¥, 7 and r respectively are structure acceleration, velocityg displacement. The equation of
motion in time domain is solved by utilizing nuneaii integration. There are several schemes of
numerical integration for solving the equation obtian, e.g. constant acceleration method,
linear acceleration method and Newmark'damily [24]. In this study, the HH®- (Hilber,
Hughes and Taylor alpha-dissipation) method, théhatewhich is used in USFOS, is utilized.
This method averages the damping, stiffness anckftgrm bya-parameter. In general, the
lower modes (modes with low eigenfrequency) govbenoscillation of structure. Then, usiag
method will be advantageous since it introducesia@al damping for higher order modes of
vibration.
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The equation of motion for HH&-method is expressed as:
Mi = [(1+ @Ry — aR] — [(1 + a)Ciryyy — aCry + (1 + @)Ky, — aKry]
. At? 3 )
Tiv1=1; +Atr; + 7(1 — 2B)¥; + At?Biiq (5.21)
Figr =T + At (1L —y)F + Aty ¥4
y andp are the parameter in Newmatknethod. The stability of the integration is detierenby

a,  andy. The unconditional stability is achived when:

1 1 1
_§<a<0;y:z(l_za);ﬁzz(l_a)z (5.22)

Whena is equal to zero, HH&-becomes constant average method. In this woik,set as -0.1.

The incremental equations are obtained by substgpttte solution at timer1 with solution ai.

M@y — 7)) + (1 + a)(CTyyy — CT) + (1 + a)(KTiyq — K1) =

(5.23)
(1 + a)(RHl - Rl) + Ri - MTL - Crl - KTi
. " " 1 . 1.
AYip g =T — 1 = mAri+1 - mri - ﬁri (5.24)
. . . 14 V. |4 ..
Ari_,_l =Ty —T; = HATH_:L - Eri — At (ﬁ - 1) r; (525)

Then Ar;,, will be the only unknown when equation (5.23) @nbined with equation (5.24)
and (5.25). Therefore, equation (5.23) can be tewas:

1
(1+a)K+(1+a)#C+At2ﬁ

M] Arip1 = (1 +a)(Riy1 — R) +R; —

1+ a) (%ri + At (% - 1))] 7

By knowing Ar;, 4, displacement, velocity and acceleration of threcstire can be calculated

(5.26)

. . 1 . 1.,
Mrl’ - Crl' - Krl' + Mri —ﬁri]M +

from:
Ty =1+ A7, (5.27)
. Y VY. Y .
Yiy1 = ﬁATH_l + (1 - E) r; — At (ﬁ - 1) L (528)
. 1 1 . 1.
riy1 = mArH-l - Mri + (1 - ﬁ) r; (529)
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6. Numerical Model

In this work, all the calculation and simulationperformed numerically. The works covers the
metocean analysis, sea surface simulation, wavicleakinematics calculation and structure
response analysis of the jack-up. In addition, esincbig number of simulation is needed to
perform, a particular scheme should be establisbedb the numerical simulation efficiently.

This section presents the explanation and coregiderof the numerical model in this work.

6.1. Flowchart of Simulation
The simulations in this work can be categorized fite main groups, which are:
» Metocean analysis to find the significant wave heignd spectral peak period for 100
year return period
« Simulation of sea surface utilizing the significavve height and spectral peak period
from metocean analysis
» Calculation of the wave particle kinematics forteaarface evelation

e Calculation of jack-up static and dynamic responses

The first three groups are performed in MATLAB wehihe last one is performed in USFOS.

The works can be presented in a flowchart. FigutesBows the flowchart of the work.

Measurement Metocean Worst Seastate
Data (Hs,Tp) | Analysis (Hs, Tp)

Amplitude (A)

Wave Particle 3-Hour Sea Surface
Frequency (W)
Kinematics Simulation
Phase (&)

Dynamic Response Static Response

Change Random Seeds

Figure 6.1 Flowchart of Simulation
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The parallelogram indicates an input/output whdetangular indicates a process (simulation or
calculation). Several three hour simulations of seaface, wave particle kinematics and
responses are acquired by generating new randaifs sdech means generating new amplitude,
frequency and phase of harmonic component (depamdise choosen scheme). The blue colour
are indicates the process which are performedzmigi USFOS while the rest of work are
performed in MATLAB (red colour).

After certain number of simulations is performele tdistribution of jack-up responses are
calculated. In this case, the calculated responmsddSFOS are baseshear and overturning
moment reaction at the bottom of jack-up. The nundfeperformed simulation is determined
differently depends on the focus of analysis. Sit@esimulation is performed repeatedly, then
the best method to do repetition in MATLAB and USH{3 observed.

6.2. Looping in MATLAB

In general, the calculation and simulation in MATRAequires repetitive process. Choosing the
appropriate technique can speed up the calculaBeoause of that, several looping techniques
are compared. The option which are discussed femnly valid in MATLAB since other
computation tools has different environment andali. In this section, four techniques of
looping in MATLAB are compared:

1) For-loop : the simplest looping method in MATLABa&h component of looping is
analyzed one-by-one then the result is saved intesalt matrix. The result matrix is
updated for each looping since the size of resattimchanges in each looping.

2) For-loop with preallocating memory : when the fisa&e of result matrix is known, the
final result matrix can be created first. Hencesutefrom every calculation is assigned
into the final result matrix. In this way, the ulessary computational time for updating
result matrix can be avoided.

3) Vectorization : MATLAB uses processor-optimzed faatrix and vector computation.
Therefore, a matrix operations could be signifigafdaster than simple looping process.
Therefore, the for-loop process is converted intseti of matrix (or vector) then the
matrix operations are performed. In this case, tamfdil vectorization proccess is needed
to perform and for some cases the required memamybe larger than simple for-loop

process. Moreover, the for-loop process can neebtrized in several cases.
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4) Parallel for-lop : when the for-loop can not beteeized, pararller for-loop can be used
as an aternative technique to speed up the catwulathis technique distributes the
looping processes into sevemabrkers and some processes are executed at the same
moment. However, this process depends on the nurobeavailable workers in

MATLAB which is affected by number of computer cere

To observe the required computational time fromr falifferent techniques, a looping is
performed to calculate the third power of ma#ixvhich is a matrix with size 5000 x 5000. The
computational time is measured and summarizedhle &.1. In addition, figure 6.2 shows the
result as percentage of simple for-loop computafiotime. It should be noted that the
computational time is also affected by computercpssor and memory which gives different
computational time in different computer for thengatechnique. For instance, the pararel for-
loop is not very efficient method for computer waimall memory and less processor. Therefore,
result in table 6.1 and figure 6.2 should be cogrgd as a trend instead of absolute difference.

The MATLAB script for comparing different looping¢hnique is presented in appendix 1.

Table 6.1 Computational Time of Different Looping Technique

: Computational Per centage
No Technique Tliome [s] (%] 9
1 | For-loop 69.29 100
2 | For-loop with preallocating memory 6.13 8.85
3 | Vectorization 0.59 0.85
4 | Pararel for-loop 44.79 64.64
5 | Pararel for-loop with preallocating memory 3.18 S5A

100

90 [

80 [

70

60 -

50

Percentage [%)]

41

30 [

20

10

0

Method Number

Figure 6.2 Computational Time for Different Looping Technique
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From table 6.1, vectorization technique shows tselst calculation process. Therefore, the
MATLAB codes in this work are built based on veaation technique. A 20-minutes second
order-sea surface simulation with time intervalsOrgquires at least 12booping process.
Calculating wave particle kinematics in grid systesith size 100m x 100m x 100mx,{ andz
coordinate) and interval 1m for 20 minutes meaasttie looping should be done:

20 x 60

Number of looping = 1200% x 100 x 100 x 100 x ( ) =3.456 x 10>  (6.1)

Even when the wave can be assumed as long crest whikch makes the grid system yn

coordinate can be represented by sitygteordinate for eack andz-coordinate, the process still
requires3.456 x 1013 looping proccess. In this case, the vectorizatian not be done due to
memory problem. Therefore, a combination of veetiion and pararel for-loop is utilized. All
in all, choosing a right looping technique couldnove the effiency of calculation in MATLAB.

In this work, several MATLAB scripts and functiohas been built. Evethough the arragenment
differs which depends on the focus of analysishdaactions and script has its own purposes.

The input, output and purpose of the function iglaxed in the appendix 2.

6.3. USFOS

The responses of jack-up, both static and dynaesipanses, are calculated by USFOS. USFOS
is a computer program which is built to calculdte nhonlinear ultimate strength and anlayze
progressive collapse of a frame structure. Badgit#5FOS is designed to analyze the collapse
of structure like tubular jacket but trough devetgmt USFOS is able to analyze other various
effects. The installed USFOS package consistsydraemoduls. Three main modules which is
used in this work isisfos, dynresandXact. Usfosis the main modul of USFOS which performs
all numerical numerical calculation and generaktesresultsDynresis modul which is used in
time domain analysidDynres converts the time domain result (which is dtyn format) from
usfosmodul into.plo format which is usable for further analysis (foample the post analysis in
MATLAB). Xactor Graphical User Interface (GUIgan be used for model setup, execution and
post processoiXact can be used to verify the finite element modebtigh graphs. Moreover,
Xactis really useful modul since it can produce seiMenportant graphs to describe the result of

analysis.
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6.3.1. Input

There are several ways to input model in USFOS. @tiegem is by usingtactmodul. The input
model can be distributed into thrdemfiles, which are head/control file, load file antbdel
file. The head/control file contains the controrgraeters. The model file contains the finite
element model such as nodes, elements, materiads,ma@ss description. The load on the

structure can be included either in head or matiebf can be given in separate file as load file.

In this work, all the calculation of sea surfacal amave particle kinematics are performed in
MATLAB. Therefore, the result of MATLAB calculatioshall be transfered into USFOS. The
sea surface and wave particle kinematics is trarsfento USFOS asv132file format which is
the format of gridwave file. Theavedatacommand in USFOS (generally is written in heagl)fil
is modified by changing the type ingpid. This command tells USFOS to utilize the trangférr
gridwave file as the wave data for calculating lasdthe structure. In this case, tefosmodul

is processed first fronXact modul thenusfosasks for the gridwave file. Hence the name of

gridwave file is given then the simulation can batmued.

6.3.2. Simulation
The loads in USFOS is determined by utilizing Monissquation. For time domain simulation,
the load is introduced as a time series. USFOSiepfiie wave load only for wet part of the

model. Beacause of that, the wet elements are eddudfore the load applied.

There are two different ways to account the buoydomce in USFOS. The first way, which is

also the default option in USFOS, is by using senfifchimedes calculation. In this case, the
displacement of structure is calculated and theydioy force is determined using Archimedes
formula. The other way to account the buoyancydascby integrating the pressure (static and
dynamic) along the strucre. This method leads toeraccurate result with longer computational
time as the consequence. In this work, the fipioo is considered enough to perform in the

simulation.

The commanaonsimasgs used to activate the consistent mass optidiSROS. The comment
CINIDEF introduces an imperfection in the structure foclkdimg analysis purposes. The drag
coefficients along z-coordinate are determinedH¥DRO_Cdcommand whileHYDRO_cm

introduces the addedmass coefficients along z-aoatel of the structure.
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In USFOS, the responses are determined by staticdgnamic time domain analysis. To
perform either static and dynamic time domain asialya time history should be set first in
USFOS by using comman@IMEHIST. For wave load, theswitch should be choosen as
timehistory type. However, before the wave loadgplied (both in dynamic and static analysis),
the weight and buoyancy force should be accountsd In this case, the weight and buoyancy
force is applied as load combination. To avoid ttsinterpretation of load as an impact, the
combination of weight and buoyancy force is applggddually for one second with static

analysis. The time history with ty Curves chosen in this case.

Another issue which is needed to consider for tidmenain simulation in USFOS is the
maximum time step. The default maximum timestep)8FOS is 512 step. Usi@MAXSTEP
command, the maximum time step is increased topad complete 20-minute simulation. In
addition, the transient effect of the structurellsba accounted too. Therefore, the responses of

structure for certain interval is neglected fortfier analysis in MATLAB.

USFOS applies the updated Lagrange method to esdctihe responses in time domain. For
each time instance, the load is applied in steps. stiffness is updated in each load steps then
the displacement of the structure is determinederAtach displacement calculation, the
structure configuration is updated (nodal coordinalement force and possible plastic hinge).
Therefore, the displacement calculation based rogati analysis which depends on the updated

configuration.

DynRes_&ommand produces the global responses of time daosaulation. In this work, the
base shear and overturning moment reaction aresohas the observed responses. In addition,

DynRes_GQs also used to verify the surface elevation &edwave load.

6.3.3. Multiplesimulationsin USFOS

The computational time for complete 20-minutes $amon of structure responses in USFOS
could be more than 10 minutes (this depends orspkeification of the computer). In addition,
the result for certain time interval in the begmiof simulation is neglected to avoid transient
response. Therefore, to do complete 3-hour sinaratt least ten 20-minutes simulation needs

to perform. Moreover, this work requires at leadt dmulations of structure response for
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statistical purposes. Therefore, performing simomatsequently is very time consuming. To

avoid this issues, a parallel computing is perfatnmethe simulation.

USFOS is based on UNIX operating system. Back ih320range [41] presented a tool to
perform parallel computing in UNIX operating systehhis tool is called GNU Parallel and still
being continuosly developed until now. Since alvreomputers utilize multicore processors, the
concept of GNU Parallel is to optimize the usagéhefprocessors to do parallel computing. The
easiest way to perform parallel computing is bytisgl the number ofobs equally into some
workerswithout considering the weight of eajcibs On the other hand, GNU Plot optimizes the
parallel computing by spawning a ngeb immediately after gob finish in particularworker
[42]. Figure 6.3 illustrates the comparisson of these different methods where 3@bs are
distributed into 4vorkers

By utilizing the GNU Parallel, several number ofpenses simulations by USFOS can be
performed simultaneously. In this case, a UNIXds built to combine the USFOS with GNU
Parallel. As a consequence, the computational temeeduced drastically not to mention the
convenience which is achived by performing the ¢aton automatically. In addition,
CYGWIN is utilized to run an UNIX script in windows

Figure 6.3 lllustration of Parallel Computation
(Left: Simple parallel computing, Right: GNU Parallel scheme) [42]
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7. Comparisson and Verification of Model

Before applied to jack-up model, the sea surfacdehis verified first. The distribution of sea
surface model is compared to theoretical distrdutiThe second order wave particle kinematics
are compared to"5Stokes wave which is the popular wave theory foasitstatic analysis.
Some comparissons are also performed between atffetretching methods, and schemes to
determine the harmonic components. In additiongwfigation of transfering sea surface and
wave particle kinematics from MATLAB to USFOS isrfiemed. All the simulation in this
chapter is performed witH; = 14.9 m, andT,, = 15.8s which are the parameters used in previous

work by Evardsen [12]. In addition, the water deigteet as 100 m and = 0.5s.

7.1. Bootstrapping

When fitting a set of data into a particular distition, there is a question about the number of
data that should be included to produce a fittedtriution with good confidence level. In this
case, boostrapping method can be used to shownttestainty level regarding the number of
data (N) which are included in the fitting process. Thegadure of bootstraping is quite simple

and fast to perform.

For example, the largest maximum first order sw@fatevation {,,) is assumed follows
Rayleigh distribution raised to the powerNfFor bootstraping purposg,, is determined by:

fom =0 J ~21n(1- (Feu@m) ) 3T =077 Tp (7.1)

o7 = H,/4 for JONSWAP spectrunty,, ({;,,) is determined by random number which is uniformly
distributed between zero and one. After calculagnget of¢,,, the empirical distribution is
produced. Repeating the procedures for severaktghews the deviation for certain CDF value.
Figure 7.1 shows bootstraping result b= 30, 50, 100 and 500. The procedures are repeated
500 times

In figure 7.1, largeN makes the fitted model converges to the theoletnzalel. This means,
using small number of data gives significant uraiaty which is an epistemic uncertainty.

Therefore, the deviation in the model shall be aoted when using small number of data.
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Figure 7.1 Bootstrapping Comparisson
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7.2. Verification of Sea Surface Model

To verify the model, the CDF of maximum surfacevat®n (,,) from the model is compared
with theoretical distribution. Furthermore, the CBfthe largest maximum surface elevation
(¢;m) is also observed. In this case, 3-hour simulatbrsea surface is performed. Various

schemes to determine the amplitude, frequency hadepof harmonic components are tested.

7.2.1. Distribution of maximum first order sea surface

The Rayleigh distribution is compared to distribatiof zero-crossing maximum of surface
elevation while the Rice distribution is comparedlistribution of surface local maxima. Figure
7.2 shows the sea surface xat0 for 200s time window with its local and zero-criogs

maximums.

15 T

Z
® |ocal Maximum

10— ® Zero Crossing Maximum H

200 420 440 460 480 500 520 540 560 580 600
t[s]

Figure 7.2 Surface Elevation and Maximum Surface Elevation
Figure 7.3 shows the comparisson between empiaicdl theoretical CDF from two different
realizations from equidistance frequency intervahwleterministic amplitude (two pictures up)
and random amplitude (two pictures down). Moreiza#ibns are presented in appendix 3 for
deterministic amplitude and appendix 4 for randompltude. From the realizations, Rice
distribution tends to underestimate the distributad local maxima at the lower tail. Based on
this fact, the model is not totally broadbandedcpss as it is assumed in Rice distribution. For
some cases, the Rice distribution underestimagedigtribution of local maxima at the upper tail
though it overestimates the distribution for thénest cases. This is due to the epistemic
uncertainty in the model. In addition, introducingndom amplitude sligthly increases the
uncertainty. The uncertainty can be shown by thetdtiapping method as it is shown in section
7.1. Despite all of that, it can be concluded tthat local maximum distribution follows Rice

distribution.
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Figure 7.3 Comparisson of Maximum Surface CDF
Up: Deterministic Amplitude; Down: Random Amplitude
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The uncertainty of the shape is also observed e upper tail of maximum zero-crossing
distribution. This uncertainty is also can be prowbg bootstraping the Rayleigh CDF. However,
the empirical model does not follows the Rayleigétrbution at lower tail. At lower tail, the

Rayleigh distribution always overestimates the mmaxn surface elevation. This due to the
effect of high frequency harmonic components andicates that the surface is not totally

narowbanded.

When the sea surface is assumed as narrowbandegspyohe period between crest is assumed
equal to the zero-crossing period. Moreover, theo-zeossing period is assumed not
significantly varies. However, real sea surfacgrisatly irregular and not totally narrowbanded
where the period is not concentrated only in aatentange of period. Therefore, when a wave
spectrum is converted into time series of surfdegagion, high frequency components (which
has smaller amplitude) occurs more intense tharerofrequency. As a result, when the
empirical CDF is constructuted, significant numb&maximum surface elevation which refers
to the high frequency components will dominateldveer tail of the CDF and shifted the lower
tail of empirical CDF to left side of Rayleigh distution. This means Rayleigh distribution will

always overestimates the distribution of maximumiesie at the lower tail.

From figure 7.3, Rayleigh distribution gives higheraximum surface elevation than Rice
distribution. For ultimate limit state analysisetmain concern of analysis is the upper tail of
CDF. Because of that, the Rayleigh distributiomassidered as a good distribution for design.

All'in all, figure 7.3 shows that the surface monehgree well with the theoretical model.

7.2.2. Distribution of largest maximum of first order sea surface

The theoretical CDF of largest maximum is expresbgdequation 3.17. To produce the

empirical distribution, 100 3-hour simulations ofst order sea surface are performed. The
largest maximum from each simulation is gathered aprted to produce the empirical

distribution. Figure 7.4 shows one possible retitireof largest maximum empirical distribution

of first order sea surface with equidistance fregyeinterval and deterministic amplitude.

Another realization is presented in appendix 7.

In addition, the bootstrapping is performed to gpalthe deviation as consequence of using 900
data. The procedure of bootstrapping is repeat€dtibfes. The smallest and largest value for
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each CDF level are plotted as dash line in figure t6 show the lower and upper limit of
bootstraping. Hence, it is easy to determine wettheempirical distribution is acceptable or not
by considering the deviation from boostrapping.urég7.4 shows that the empirical distribution

agrees well with the theoretical distribution siitds located inside the bootstrapping limit.

Distribution of 3-Hour Largest Maximum
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Figure 7.4 CDF of Largest Maximum for for Deterministic Amplitude

Figure 7.5 shows one possible realization of 3-Hawgest maximum sea surface distribution
with random amplitude scheme. It is explained ictise 4.2.1.2 that introducing random
amplitude changes the variance of surface elavditoom the deterministic amplitude variance.
However, figure 7.5 shows that the empirical CDénfrrandom amplitude scheme is located
inside the limit of bootstrapping. Therefore, itasnlculed that introducing random amplitude
into 3-hour surface elevation still gives good agnent between empirical and theoretical
distribution. More distributionsof sea surface largest maxima for random amplitude are

presented in appendix 8.
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Distribution of 3-Hour Largest Maximum
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Figure 7.5 CDF of Largest Maximum for for Random Amplitude

7.2.3. Methods of reducing number of component

Generating the distribution of largest maximum ef surface (or the distribution of largest
response of structure) requires more than onelation. For first order sea, there is no great
problem with the computational time. However, thegess could be time consuming for second

order sea surface. Therefore, methods to reducéeof harmonic component is utilized.

7.2.3.1. Partition of time series

In this case, the partition of time series (exm@dinn section 4.2.2.4) is performed. The three
hour simulation is splited into 9 different 20-mias simulation. To achieve 100 3-hour
simulation, 900 20-minute of first order simulatoare performed. Each largest maximum
surface from each simulation is gathered and sdagatoduce empirical distribution of largest
maxima. Figure 7.6 shows the distribution of latgesximum of first order sea surface for
deterministic amplitude utilizing 900 samples. Arert20-minutes largest maximum distribution

is presented in appendix 5.
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Distribution of 20-Minutes Largest Maximum
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Figure 7.6 CDF of Largest Maximum for Deterministic Amplitude

From the graph, it can be observed that the limliamtstapping is really close to the Rayleigh
CDF. This means the uncertainty in producing ero@irCDF is significantly decreased by using
900 samples. The upper tail empirical CDF shows@ggreement with theoretical CDF since
it still locates inside the bootstraping limit. ElBough the lower tail of empirical distribution is
slightly out of the bootstraping limit, it is comded that the empirical CDF agrees with
Rayleigh.

To construct the distribution of 3-hour largest maxm, the largest maximums of 20-minute
simulation are gathered. Without sorting the vatbe,900 20-minutes largest maximum samples
are separated into 100 groups where each groupst®$ 9 samples. Since the sample are not
sorted, the randomness of the data is maintainedeifhfter, the largest maximum of each

group is collected and sorted to establish the soapidistribution.

Figure 7.7 shows the distribution of 3-hour largasiximum for the first order sea surface with
deterministic amplitude (up) and ramdom amplitudewn). From both figure, it is concluded
that partition of time series method produces adgmodel based on fact the the empirical CDF

agrees well with the theoretical CDF and locatesidie the bootstraping limit. In addition, for
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first order sea surface, the partition of time egmnethod requires only 30% of complete 3-hour
computational time to create single 3-hour simalatiof sea surface. More empirical

distributions from utilizing partition of time ses presented in the appendix.
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Figure 7.7 CDF of Largest Maximum for for Time Series Partition
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7.2.3.2. Random frequency

Figure 7.8 shows the empirical distribution of w@simandom frequency scheme with
deterministic amplitude. In this case, the same bamof harmonic component as complete 3-
hour analysis is used. It shows that the randomuiacy scheme shows a good agreement
between its empirical CDF and theoretical CDF. €fae, the analysis is continued by reducing

number of component.
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Figure 7.8 CDF of Largest Maximum for Random Frequency

In this case, the minimum frequency is se2@agl; = 2r/10800 while the maximum frequency
is equal to2mr/At = 2m/0.5. The frequency intervalAw) is adjusted to give the desired number
of harmonic component. To perform complete 3-haqualygsis whereAt = 0.5s, at least 10800
harmonic components shall be used. Therefore, ag/sis observes the effect of six different
number of harmonic components to the empiricalribistion, which are 100, 200, 500, 1000,
2000, and 5000. From the simulation, it is founalt thven by using 500 harmonic components,
the empirical distribution is still in the rangelwdotstraping limit. When the simulation uses 100
and 200 harmonic component, the empirical distidoufalls out of the bootstrapping limit.
Hence, it is concludex that in this case, at &} harmonic component should be used to
simulate 3-hour sea surface when the random freyuand deterministic amplitude method is
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performed. However, the effect on structure resesns still questionable. Figure 7.9 shows the

distribution of 3-hour sea surface largest maxima.
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Figure 7.9 CDF of Largest Maximum for Random Frequency with Deterministic Amplitude
number of component = 500

Distribution of 3-Hour Largest Maximum
Number of Component = 1000
o '.o’; L4 77 —
g

0.9+ 4
0.7+

0.6+

0.5+

F(¢,)

0.4+

e  First Order

0.2 110800/Tz

~ Rayleig
Lower Limit of Boostrapping
—— - Upper Limit of Boostrapping

16 18 20 22 24
ZIm

10

Figure 7.10 CDF of Largest Maximum for Random Frequency with Random Amplitude
number of component = 1000
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Introducing random amplitude, empirical distributiof largest maximum by using random
frequency is already fall out from bootstrapingitimvhen 500 harmonic components are used.
Moreover, from different realizations, the loweil @ empirical distribution generally deviate
from theoretical distribution. It indicates thatnabining random amplitude and frequency
increasing the uncertainty in the empirical disttion. Figure 7.8 shows the distribution of 3-
hour largest maximum sea surface from random frequend random amplitude with 1000
components. It seems that even by using 1000 coempenthe empirical distribution shows

guestionable result. More distributions are preseg:m appendix 13.

7.2.3.3. Equal Area

Similar to the analysis which is performed in ramdivequency, the minimum frequency is set as
2m /Ty = 2m/10800 while the maximum frequency is equal 2@/At = 2z/0.5. The frequency
interval (Aw) is adjusted to give the desired number of harm@omponent. Seven different
numbers of component are observed, which are 31,201, 500, 1000, 2000, 5000. In addition,
the deterministic amplitude is used. It is foundttven by using 50 harmonic components, the
empirical CDF still match correctly with the thetical CDF. Figure 7.11 shows this result. The
other empirical distributions, which corespondhe bther number of component, are presented

in appendix 14.
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Figure 7.11 CDF of Largest Maximum for Equal Area with Deterministic Amplitude
number of component = 50
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When utilizing random amplitude, performing equedaawith 50 harmonic components still
produces an empirical CDF that agrees well withotbtcal distribution at the upper tail.
However, there is a possibility that the empiriC&IF underestimates the value at the lower tail.
Figure 7.12 shows distribution of 3-hour largestximaum of sea surface for equal area and
random amplitude utilizing 50 harmonic componefiserefore it can be concluded that the
equal area method could simulate 3-hour sea surf@besmaller number of component than
random frequency and partition of time series mathHowever, similar to the random

frequency, the effect on structure response isgstéstionable.
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Figure 7.12 CDF of Largest Maximum for Equal Area with Random Amplitude
number of component = 50

7.2.4. Effect of cut-off frequency

In section 2.5, for second order wave simulati@me cut-off frequencies are introduced for
kinematic calculation purposes. In this sectiom, éffect of introducing cut-off frequency ;)

on first order sea surface is observed. The 3-time series of first order surface is produced
from equidistance frequency interval method withedministic amplitude. Figure 7.13 shows
the effect of introducing different cut-off frequees to distribution of maximum sea surface

(¢im) While table 7.1 shows the change in varianceeafsurfaced;) coresponds to the cut-off

freuquencyo, = 13.95 when thew,,,, iS not introduced.
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Figure 7.13 Effect of Cut-off Frequency in Maximum Surface CDF

Table 7.1 Variance after Introducing Cut-off Frequency

No | Cut-Off Frequencyd ;) | Spectrum Variancen,) | Time-Series Variancer(,)
1 4w, 13.90 13.90
2 3w, 13.79 13.79
3 2w, 13.19 13.19
4 \/M 13.77 13.77

It can be observed that by introducieg,;, the lower tail of empirical distribution shiftader to

the Rayleigh distribution. This behaviour is morpparent in second order sea surface
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distribution. Therefore, it is confirmed that hiflequency components is the reason why the

lower tail of empirical distribution does not foloRayleigh distribution as it is explained in
section 7.2.1. In addition, introducing stansbargaff (w.,; = +/29/H,) still gives acceptable

variance of sea surface. The loss of variance véllcovered up by introducing second order

corection.

7.2.5. Second Order Sea Surface

The second orer sea surface is generated by ngjlezguation 2.57. To save time and the usage
of CPU memory, the 3-hour simulation is performgdgartition of time series where the 9
different 20-minutes simulations are performed.uFég7.14 shows the time series of the second

order sea surface aroung the largest maximum vhdubis case, the random amplitude is used.
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Figure 7.14 Time Series of Second Order Sea Surface

In figure 7.14, the shape of second order surfaggends on the first order surface and the
correction terms. The correction term consistswaf parts, which are sum and difference term. It
seems that at the largest maximum second ordescgyrthe sum term has its maximum value
(the crest of sum term). However, at the same tims&ance, the difference term does not has its
minimum value (the trough of difference term). ksal [18] illustrated the same behaviour in

his second order model. Therefore, it is concluidhed the difference term is not always has the

minimum value at the largest maximum second orddase elevation.
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7.2.6. Distribution of maximum second order sea surface

For second order sea surface, the distribution akimum is assumed follows Forristal
distribution of wave crest which is expressed inampn 3.26. Therefore, to verify the model of
second order sea surface, the empirical CDF is aomapto Forristall CDF. Figure 7.15 shows
the comparisson between empirical CDF and the $talriCDF for determinisitic amplitude case

without the cut-off frequency. More empirical CD&® presented in appendix 16.
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Figure 7.15 CDF of Maximum Sea Surface for Deterministic Amplitude

In figure 7.15, the theoretical distribution is qaaned to empirical distribution of zero-crossing
and positive local maxima. The empirical distrilbatiof zero-crossing maximum shows good
agreement with theoretical distribution though énepirical CDF of positive local maxima tends
to underestimate the Forristall distribution. Thieans the Forristal distribution is valid for
narrowbanded process. Moreover, the lower tailesbxrossing maxima CDF does not follow
the Forristal distribution. Similar to the firstd@mr sea surface, this behaviour is caused by the
high frequency components, as it is explained atige 7.2.4. Introducing cut-off frequency will

force the lower tail of zero-crossing CDF to folléwrisstall distribution.
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Figure 7.15 shows a realization where the spectsumot linearized. Though the egmpirical
distribution follows theoretical distribution wellthe variance of surface elevation which
corresponds to second order correction is calallfateee. To maintain the varince, the spectrum
should be linearized by iteration process or intodg a cut-off frequency (explained in section
4.3). In this case, a cut-off frequenay,{; = \/M) is introduced. Previously, it is explained
that introducing the Stansberg cut-off frequena@uéng surface elevation variance from 13.95
to 13.77. However, second order correction terndpces additional variance with magnitude
0.12 which means the total variance of surface atlen after introducing second order
correction term is equal to 13.89. Though thigtiis snaller than the actual variance from wave

spectrum, the difference is negligible.

As explained in section 4.3.2, usiag,; reduces the number of harmonic component. A 20-
minutes simulation withAt = 0.5s requires at least 1200 harmonic component for esfaigce
frequency interval. By introducing.,;, the number of component is reduced to 244. As a
consequence, the simulation save 99% of computdtiome. Figure 7.16 shows the CDF of

maximum sea surface when the cut-off freqeuncytreduced.
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Figure 7.16 CDF of Maximum Sea Surface for Deterministic Amplitude
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Introducing cut-off frequency changes the sea searfeondition from broadbanded process to
narrowbanded. This is proven by the empirical distron of zero-crossing and positive local
maxima which almost coincide. Furthermore, the lotaé of zero-crossing CDF is close to the
Forisstall distribution though there is still sltgtheviation. Therefore, it is verified that the lig
frequency components are the reason why the loakeot zero-crossing CDF deviates from
theoretical distribution. All in all, the agreemdmgtween empirical and theoretical distribution
indicates that the model of second order sea siitaeerified for partition of time series and

determiniestic amplitude.

Figure 7.17 shows the comparisson between thealeticd empirical CDF when random
amplitude is introduced. In figure 7.17, empiri€2DF of positive local maximum seems also
underestimates the Forisstall CDF. Therefore, itascluded that the Forisstall distribution
seems to represent the distribution of zero-crgssmaximum which refers to narrowbanded
process. In addition, the second order sea surniemeel is also verified when the random

amplitude is introduced.
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Figure 7.17 CDF of Maximum Sea Surface for Deterministic Amplitude
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7.2.7. Distribution of largest maximum second order sea surface

Similar to the first order process, the largest mmaxn distribution for second order sea surface
is expressed as equation 3.17 Whgl€(,,) is equal to Forisstall CDF. 100 3-hour simulatidn o
second order sea surface is performed. Figuresh@®s the comparisson between the empirical
CDF and theoretical CDF for second order surfacevelbkas its first order surface component.
Equidistance frequency interval with determeniatiplitude method is executed to simulate the
surface. The left figure shows the first order pahile the right figure coresponds to second
order surface. More empirical distributions arespreged in appendix 20. Eventhough the shape
of empirical CDF does not perfectly follows the dhetical CDF, both first and second order
empirical CDF shows good result since they aret&mtanside the bootstraping limit. It is
concluded that 100 samples is the main reasondaation on the shape of empirical CDF. All
in all, the second order model with time partiteomd deterministic amplitude is verified.
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Figure 7.18 Distribution of Largest Maxima for Deterministic Amplitude
Left: First Order; Right: Second Order

CDFs when utilizing the random amplitude are pmésgin appendix 21. In general, the CDF of
second order surface utilizing random amplitudewsh@ good agreement with theoretical

distribution. Therefore, the time partition withncdlom amplitude is considered good enough to
simulate 3-hour second order surface.
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7.3. Verification of Wave Particle Kinematic
In this case, 20-minute sea surface is performdxd Wave particle kinematics along the z-
coordinates is observed. In this case, only hotaovrelocity and acceleration that is analyzed

since the forces on the jack-up are mainly affebiethese particle kinematics.

7.3.1. First order wave particle kinematics

Three stretching methods for first order kinematios compared. They are Wheeler stretching,
linear extraploation and constant stretching, whacé explained at section 2.5. A 20-minute
simulation of first order sea surface is performiéidure 7.24 shows the horizontal velocity and
acceleration along the z-coordinate when the largeximum sea surface occurs. The points
along z-coordinate is set be concentrated nexhéosea surface. The left figure shows the

horizontal velocity while the horizontal acceleoatis presented in right figure.

t=585 t=585
20 T T 20 T T
..‘A ..‘. .. )
.‘. "l"-
rd
‘.I p
or B o B
20+ B 20 / B
/
— d — A
£ of ¢ . E aof " .
N / N
g ¢
> '
’
60/ ‘ 4 60F 4 4
% ?
I J
|
-80 - < B 80 ¢ B
| |
\ —e— Wheeler “ —e— Wheeler
| ——+— Linear Extrapolation | ——*— Linear Extrapolation
Constant Stretching Constant Stretching
-100 L I I I -100 L I I I
0 2 4 6 8 10 -0.1 0 0.1 0.2 0.3 0.4
u, [m/s] a, [m/s]

Figure 7.19 Wave Particle Kinematics at L argest Maximum of Sea Surface

In figure 7.19, the linear extrapolation overestisathe surface horizontal velocity while it

underestimates the surface horizontal acceleraliba.Wheeler stretching is commonly used in
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practice while the constant stretching is the sieg method which is proposed when the Airy
theory was presented. Therefore, assuming that Mhead constant strectching gives the
correct value of surface particle kinematics, i@ suggested to use linear extrapolation fot firs
order sea surface. Wheeler stretching mainly presiigmaller wave particle kinematics than
constant strectching which will cause smaller tstw=ar and overturning moment. Therefore, the

usage of Wheeler stretching is questionable fgelarest or trough.

From the same simulation, it is found that lardestizontal acceleration exist at the mean sea
surface. Figure 7.20 shows the particle kinematiben the horrizontal acceleration occurs. In

this case, the particle kinematics from all methozlcoincided.
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Figure 7.20 Wave Particle Kinematics at L argest Maximum of Sea Surface

For regular wave, larger crest height produceslangrizontal surface velocity while the largest
horizontal surface acceleration always occursettban surface. However, for irregular sea, the
largest horizontal velocity may occur not at thegést maximum surface elevation. This is

illustrated by figure 7.21 where the time instanEenaximum value is indicated by dash line.
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Figure 7.21 First Order Sea Surface, Horizontal Velocity and Horizontal Acceeration

In figure 7.21, the maximum horizontal velocity doeot occurs at the same time instant as

largest sea surface maximum. In addition, the Krgerizontal acceleration does not occur at

the mean sea surface. Figure 7.22 shows the gakiokmatics when the largest horizontal

acceleration occurs. In this case, Wheeler stnetchakes the horizontal acceleration at mean

surface as the horizontal acceleration at trueasarf As a result, Wheeler stretching

overestimates the horizontal acceleration at toufase.
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Figure 7.22 Particle Kinematics When Largest Horizontal Surface Acceleration Occurs
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7.3.2. Second order wave particle kinematics

For second order wave case, the Wheeler and lendaapolation method is used to find the
wave particle kinematics along the z-coordinate.efXplained in section 2.5.2, to perform the
Wheeler stretching, the second order sea surfageldibe linearized first. In this case, the
second order surface is determined first by utiizequation 2.57. By using discrete Fourier
transform, which is expressed in equation 4.4)ew set of harmonic component is determined.
Combining equation 4.10 and 4.13, the new amplitfdearmonic componerit({,;;') can be

determined by:
a1 = 2|8(w))] (7.2)

In this study, the phase is determined by comlonatf two MATLAB functions which are
angle( )andunwrap(). anglg ) is used to determine the phase angle of commlenxber while
unwrap() corrects the phase angle. The wave particlenkaties are determined from first order
kinematics utilizing the new set of harmonic comgam In this study, the fast Fourier transform

is used where the number of harmonic componengaressed as a power of 2.
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Figure 7.23 Second Order Horizontal Velocity at Largest Sea Surface Maximum

Comparisson and Verification of Model 107



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

Figure 7.23 shows the comparisson of horizontabaigl along the z-coordinate from linear
extrapolation, ‘right-way’ Wheeler stretching (lam&zed Wheeler) and ‘wrong-way’ Wheeler
stretching. In figure 7.23, the appropirate wayusfng Wheeler stretching produces surface
horizontal velocity which is similar to linear eapolation result. Performing Wheeler
inappropritely (where the second order kinematgglirectly stretched without linearization)
greatly underestimates the surface kinematics.dtiitian, the Wheeler stretching gives lower

magnitude of horizontal velocity than linear extigtion along the z-coordinate.

Figure 7.24 shows the condition of wave particleaeknatics when the largest horizontal
acceleration from linear extrapolation occurs. Fifggure 7.25, it can be observed that the linear
extrapolation shows lower value than Wheeler dtiatg for horizontal acceleration. However,

there is a disagreement between horizontal velopigfile from Wheeler and linear

extrapolation.
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Figure 7.24 Second Order Horizontal Velocity at Largest Horizontal Acceleration
As explained at section 2.5, the cut-off frequerfoy second order Wheeler and linear
extrapolation is different. The suggested cut-tétifjeuncy for Wheeler stretchingdi®,, which

is higher than linear extrapolation cut-off freqoerw.,,; = +/29/Hs). AS a consequence, range
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of the included fregeuncy is broader for Wheeletshing than linear extrapolation. In addition,

the range of difference frequency is also increadeds suspected that the second order
difference term on the rich energy part of the sp@c is the main reason for the difference in
figure 7.24. This is because the behaviour of ifferént between the two methods is more close
to the behaviour of high frequency component whias faster decay rate than the lower
frequency. However, only difference term that isali@d on the rich energy part of the spectrum
that has adequate amplitude and frequency to ggreéfisant different between Wheeler and

linear extrapolation kinematics.

Since the linear extrapolation calculates the ntagei of second order kinematics correctly up
to the mean sea surface, using Wheeler stretchingeicond order wave will underestimate the
total drag load along the cylinder. Therefore, gdinear extrapolation for second order sea is
considered better than Wheeler stretching. Thisidenation is supported with the comparisson

of wave load in section 7.4.

7.3.3. Comparisson between second order model and 5" Stokes wave

To verify the particle wave kinematics calculatithe second order model is compared fo 5
Stokes. In design,"5Stokes wave is the common theory to determinepétcle kinematics at
the largest crest. The"5Stokes does not produce the exact particle kiriemaround the
extreme crest though it shows a good agreementthattexact value. Therefore, if the second
order model is good enough, the particle kinematsot significantly deviate fronf"sStokes

wave.

The 8" Stokes wave is generated by using the softwarehisibuilt by Fenton [16]. First, the
effect of wave period and height on the particleeknatics of 8 Stokes wave is observed. Three
different combinations of wave height and wave qutiére presented. In addition, it is checked

that the combinations are still inside the waveakireg limit. The water depth is 100 m.

Table 7.2 Combination of Wave Height and Period

No | WaveHeight (s) | Wave Period (s) | Upper limit of Wave Height (m)
1 28 13 36.3
2 28 16 49.4
3 31 13 36.3
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Table 7.2 shows the combination of wave height peidod including its upper limit of wave
height for wave breaking. The upper limit of waadht is determined by using equation 2.79.
It is confirmed that all the wave height is beldveit upper limit. Therefore, three differerit 5
Stokes waves are established and compared. Fig2sesiiows the sea surface, the maximum
horizontal velocity and maximum horizontal acceiera It seems the maximum horizontal
velocity always occurs at wave crest while the mmaxn horizontal acceleration does not occur

at mean surface level as predicted by Airy theory.
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Figure 7.25 5™ Stokes from Three Different H and T Combination
Up: Surface; Down Left: Max Horizontal Velocity; Down Right: Max Horizontal Acceleration
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Some observations are made and summarized.
1) Increasing wave height increases the wave crest
2) Increasing wave height increases the horizontalcitgl and acceleration both at the sea
bottom and sea surface
3) Increasing wave period decreases the wave crest
4) Increasing wave period increases both horizontédcity and acceleration at the sea
bottom but decreases them at the sea surface.

As briefly explained in section 2.6.1, the ampliudf surface elevation for"5Stokes wave
component is found from iteration process whichpisportional to wave stepnes#/qQ).
Therefore, point 1) and 3) is acceptable. In addlitwrizontal velocity and acceleration is also
proportional to wave height which verify the poit)t For Stokes wave, both horizontal velocity
and acceleration contattash(k(z + d)) term. Increasing wave length (decreasing wave ngmbe
will decrease the decay rate@fkh () term. Therefore, the behaviour on observation 4psed

on this reason.

In the nextstep, comparisson is made between ttendeorder model and thd' Btokes. 100 3-
hour simulations of second order surface are padrutilizing partition of time series method
with deterministic amplitude. The largest surfacgxmum from each simulation is gathered and

sorted then the horizontal velocity is establisfeedeach result by utilizing linear extrapolation.

For second order model, the largest surface maxiroahits two adjacent troughs are assumed
as a single wave. The wave period is determinettheasime interval between the two adjacent
trough. In addition, the wave height is assumedhasdistance between the largest surface
maximum and the lowest value between the two neighibg troughs. For'™Stokes wave, the
wave height is iterated in order to produce theesanest as the largest surface maximum of
second order simulation while the period is eqaaecond order model period.

Figure 7.26 shows an example of fitting"a Stokes wave into the second order model. In this
case, the period of 5Stokes is set to be equal to the period of secoder model (time interval
between two red point). However, to produce theesarast, the ' Stokes should has a larger
wave height than the second order model. The hatatovelocity when the crest occurs is
presented in figure 7.27.
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Figure 7.27 Horizontal Velocity: Second Order Model vs 5" Stokes

The Stansberg term refers to linear extrapolagomt(since the linear extrapolation method was
7.27, at sea surface, the second order horizoertatity has smaller magnitude thafl Stokes.

However, ' order Stokes gives larger result than second andetel below the mean surface.

presented by Stansberg previously) to avoid coofusiith linear (first order) term. In figure

112
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When it is compared to linear (first order) horinvelocity, the ¥ Stokes gives small
deviation below certain z coordinate (in this casdpw -20m). On the other hand, the second
order horizontal velocity produces smaller magrettigshn first order horizontal velocity. This is
explained by the existance of difference termeérss that for second order wave, the magnitude
of difference term is significant to reduce thestfiorder horizontal velocity along the z
coordinate. Moreover, the magnitude of sum termoisadequate to give an important effect to

the second order horizontal velocity.

In figure 7.27, it is also obvious why the diffecerand sum term above the mean sea surface are
set equal as the magnitude on mean sea surfasew@si indicated by the Stansberg difference
and sum term) for linear extrapolation method.hié difference term is not set equal to the
magnitude of difference term at mean sea surfdee,second order horizontal velocity will
greatly be reduced which makes the second ordemiatic amiss. As the consequence, the
exponential behaviour above the mean surface isdoge the increment of wave particle

kinematics only depends on the derivative term.

From the 100 3-hour simulations, to establish #umeswave crest, thé"Stokes wave height
does not always has larger magnitude than secated arodel wave height. Figure 7.28 shows
an example of B Stokes wave which has smaller wave height thaorstorder model to

produce the same wave crest.
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Figure 7.28 Second Order Surface Model vs 5" Stokes Wave
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The horizontal velocity at wave crest is presemtefigure 7.29. From figure 7.29 and and 7.27,
it can be observed that either when tHeSBokes wave height is smaller or larger than sg:con
order model wave height, th& Btokes tends to produce larger horizontal veldsityow mean
sea surface and smaller velocity at the sea surtdoeever, there is a possibility that this
behaviour does not occur.
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Figure 7.29 Horizontal Velocity: Second Order Model vs 5" Stokes

For linear extrapolation, the magnitude of secomdeo horizontal velocity along the z-
coordinate is affected by the first order, sumfedénce and derivative term. The sum term
contribution to the second order is smaller thandther term. For wave crest, the sum term and
linear term exhibits a positive exponential behawlmng the z-coordinate while the derivative
term follows a positive linear function. However,special attention should be made on the
difference term. For 2-D wave, the difference teofmhorizontal velocity ¢, ;) can be
simplified as:
N
u; = ZAu;J- cosh(ki_(z + d)) cos (ki x —wjt+¢) (7.3)
=1

1
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Ayzi ki, w;, andg; respectively are the amplitude, wave number, veagular frequency and
phase of difference term componéntt can be proven that,-; andcosh(k; (z + d)) always

have positive value. However, the signcof (k;x — w; t + &) depends on parameterandt.

To analyze the horizontal velocity along the z-choate, the equation 7.3 can be simplified as:

Uy = Z Ayz, cosh(kl-' (z+ d)) (7.4)

N
=1
At the wave crest4,-, commonly has a negative value. In this case, tifieréince term profile
along the z-coordinate is similar as shown in fgidr27 and 7.29. However, for particular case,
A,-, may have positive value for high frequency comptsem this case, component with
positive 4,-, has faster decay rate but larger magnitude abovannsea surface. As a

consequence, a turning point exists on the horatorelocity profile along the z-coordinate at
the largest surface maximum. Figure 7.30 shows ssible case of this behaviour. More

comparisson betwen second order a&®kes horizontal velocity is presented in theesmplix.
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Figure 7.30 Horizontal Velocity: Second Order Model vs 5™ Stokes
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In this case, there is a possibility th&t Stokes produces larger surface horizontal velatitje
surface. In addition, for some cases, it is fourat the 8 Stokes wave could produces smaller
horizontal velocity than second order model atdba bottom. Therefore, it is concluded that the
magnitude of second order model is irregular thoiiglends to produce larger magnitude at
surface and smaller magnitude at sea bottom tHaBtdkes wave. In addition, th& Stokes has
zero horizontal accelearation along z-coordinateglaare crest while the second order model has
certain magnitude. Therefore, usirftStokes on non-drag dominated structure is questtien

Table 7.3 shows the comparisson of wave heightédmt second order model anfl Stokes
wave for 15 different largest surface maximumsadidition, the horizontal velocity is applied to
a cylinder with diameter) 1m withCp =0.65 andCy =1.6 forz > 2m andCp =1.05 and and
Cwu =1.2 for z < 2m. The comparisson of static baseshear and overtumimgent (which is
calculated in MATLAB) between second order moded &f Stokes is also presented in table
7.3. In general, the"5Stokes wave gives larger baseshear and overtumarmgent. The same

behaviour is also presented by Evardsen [12], i[2B]s work.

Table 7.3 Second Order Model vs 5 Stokes

Stokes second Stokes Second Stokes Second Order
Order Wave Order .
No W%ave Wave Period Crest Base Base Overturning Modell
Height Height 5] [m] Shear Shear Moment Overturning
[m] (] [kN] [kN] [kNm] Moment (kNm]
1 | 31.279 28.604 13.500 | 18.835 | 1.176 1.016 105.261 95.459
2 | 30.356 30.720 12.500 | 18.481 | 1.123 1.050 104.174 99.237
3 | 30.378 31.065 13.000 | 18.334 | 1.102 1.063 100.006 96.728
4 | 28.950 30.798 11.500 | 17.878 | 1.060 1.043 101.647 95.843
5 | 29.434 30.152 12.500 | 17.805 | 1.038 0.939 95.734 87.287
6 | 29.565 28.495 13.500 | 17.635 | 1.018 0.904 90.070 85.007
7 | 29.434 28.848 14.000 | 17.433 | 0.999 0.872 86.485 81.623
8 | 28.291 27.878 11.500 | 17.376 | 0.992 0.919 94.664 87.784
9 | 28.357 28.891 12.000 | 17.228 | 0.971 0.905 90.846 82.363
10 | 28.994 28.449 13.500 | 17.227 | 0.974 0.883 85.841 83.957
11 | 28.489 27.018 12.500 | 17.149 | 0.957 0.839 87.761 78.349
12 | 28.247 28.427 12.000 | 17.146 | 0.961 0.834 89.803 79.166
13 | 28.467 29.219 12.500 | 17.136 | 0.956 0.862 87.606 81.377
14 | 28.401 28.777 12.500 | 17.072 | 0.949 0.743 86.972 68.824
15 | 27.522 28.706 11.000 | 17.055 | 0.970 0.865 94.023 83.280
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Furthermore, from the 100 3-hour second order stian, the empirical CDF of static baseshear
and overturning moment at largest surface elevationylinder with diameter 1m is established.
The same hydrodynamic coefficient from previous lgsis is used The baseshear and
overturning moment are calculated in MATLAB. Figut81 shows, the comparisson of static
base shear and overturning moment empirical CDBdoond order wave andf Stokes model.

It can be observed thal’Stokes gives larger static base shear and overtumomment than
second order model. Therefore, it is concluded fivasingle drag dominaed cylinder case, the
5" Stokes gives a conservative static base sheap\ardurning moment. More empirical CDFs
of static base shear and overturning moment froffierdnt method of determining harmonic
component are presented in the appendix. For Cileq 0.95, the ratio betweeff Stokes
baseshear and second order model is 1.08 whileviturning moment is 1.03. This means for
CDF equal to 0.95, the™5Stokes gives 8% larger static base shear and 3@erlastatic

overturning moment than second order model.
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Figure 7.31 Empirical CDF of Base Shear and Over Turning Moment

7.4. Comparisson of Wave Load

For jack-up platform, the wave load is determingdMorrison equation which is expressed in
equation 5.17. The hydrodynamic coefficients fostforder and second order sea are described
in section 5.2.1. In this section, the comparrigbndrag load and inertia load along the z-
coordinate is presented. Since the jack-up is thg dominated structure, the comparisson is

concentrated in the event where the largest drad) docurs.
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Previously, it is shown that the maximum drag lasdurs at the wave crest (maximum sea
surface). Therefore, the comparisson of drag Isatbcused on the wave crest. Figure 7.32
shows the horizontal velocity along z-coordinatedd Stokes wave, first order and second order
model. Moreover, the horizontal velocity above thean sea surface is determined by various

stretching method.
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Figure 7.32 Horizontal Velocity along z-Coordinate

First order wheeler and first order linear respatyi refer to Wheeler and linear extrapolation of
first order horizontal velocity while second ord&heeler and second order linear respectively
refer to Wheeler and linear extrapolation of secorakr horizontal velocity. Constant refers to
constant stretching of first order horizontal véipcin addition, the second order correction

terms (derivative, difference and sum term) are aisluded in the graph.
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It can be observed that both first order Wheelat annstant stretching give smaller surface
horizontal velocity than second order model (eitbezond order Wheeler or second order linear
extrapolation ) and"5Stokes wave. It is also explained before tHaS$okes tends to produce
smaller surface horizontal velocity than secondepmiodel. At mean sea surface, the constant
stretching produces the largest horizontal veloditygeneral, either for first order or second
order model, the Wheeler streching underestiméedorizontal velocity around the mean sea
surface. In addition, it is explained before thaedér extrapolation on first order sea will

overestimates the surface horizontal velocity amslmot reccomended to be used.

In section 5.2.1, it is explained that for secondeo or higher order wave modély = 0.65 for
z > 2m andCp =1.05 forz < 2m. A modification is made to drag coefficient whenatdating
the load from first order wave whe@ =1.15 for all z-coordinate. Therefore, a compamsef
drag load is made based on these drag coeffici€igare 7.33 shows the drag load along z-

coordinate for single vertical cylinder with diareeim.

20~

-20

-40

z [m]

-60

—— 5t Stokes

——e— Second Order Linear

—e— First Order Wheeler

80 j ——=— First Order Linear

—*— First Order Constant
Second Order Wheeler

-100 | | | | | | | | | |
0

Drag Load [N]

Figure 7.33 Drag Load Along the z-Coordinate
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In figure 7.33, there is a jump in second ordergdi@ad profile since two different drag
coefficients are used along the z-coordinate. st dérder drag load, the profile is continous. It
can be observed from figure 7.33 that there isa@mreement between the first order Wheeler
(red line) and second order linear extrapolaticedg line) drag load profile except the jump in
the second order linear extrapolation. Though tiag tbad at the surface is smaller, majority 5
Stokes produces larger drag load than second dimear extrapolation. That is why the
empirical CDF of static baseshear and overturnirmgnent of &' Stokes wave (presented in
fugure 7.31) are more conservative than second @rdar extrapolation. In addition, first order
linear extrapolation greatly overestimates the doegl and is not suggested to be used. The
linear extrapolation can be used if only the dragfficient is modified forz-coordinate above
the mean surface though this makes the calculatione complicated not to mention the
unensured quality of the result. All in all, secamder wheeler seems to underestimate the drag
load while constant stretching gives the most camdize result.
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Figure 7.34 Horizontal Velocity along z-Coordinate

-80

The inertia load depends on the horizontal acciteraTherefore, the horizontal acceleration at
the wave crest is observed. Figure 7.34 shows dhigdntal acceleration along tlzecoordinate
at the same time instance as the drag load analysis
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In figure 7.34, & Stokes shows zero horizontal acceleration alorey dbordinate. This is
because 8 Stokes wave is a regular wave. As explained itige@.3.1 with first order wave as
an example, for regular wave, horizontal accelenais equal to zero at wave crest while the
horizontal velocity has its maximum value. Thereaidifference regarding the location of
maximum horizontal acceleration betwedhSBokes and first order wave as indicated in section
7.3.3. However, the main focus in this analysisnsthe wave crest and not at the location of

maximum horizontal acceleration.

On the other hand, since both first order and samder model in this work are irregular

waves, the horizontal acceleration is not totalyozat the wave crest though the magnitude is
small compared to the horizontal velocity. In to&se, the horizontal acceleration is irregular
along the z-coordinate. It seems that the horizomtaeleration from some components has
already have negative value while some high frequeomponent (which has faster decay rate)
still has positive horizontal acceleration. As ansequence, the magnitude of horizontal

acceleration at the surface is smaller than atrtban water surface.
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Figure 7.35 Inertia Load Along the z-coordinate
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For both first order and second order wa®g,= 1.6 for z > 2m andCy =1.2 forz < 2m. The
inertia load along the z-coordinate is presentedigare 7.35. There is a different in the
behaviour of second order Wheeler stretching (yellae in figure 7.35) then the other method.
This is suspected as the consequence of the diffets-off frequency which is used by second
order Wheeler stretching method. As an effectséeond order Wheeler could overestimates the
magnitude of inertia load. However, the profile lafrizontal acceleration at wave crest is
different between various method. Figure 7.36 shawm®ther realization of horrizontal
acceleration and inertia load at wave crest. It stin be observed that second order Wheeler
stretching overestimates the horizontal accelarnatio
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Figure 7.36 Horizontal Acceleration and Inertia Load

For further analysis, the static base shear andwwing moment from 100 3-hour simulation
with various stretching method is compared. Thdyaimis focused on the largest maximum
surface elevation from each simulation. Table hdws 20 different realizations of static base
shear and overturning moment from the 20 large$ase maximum. The'5Stokes wave height

is iterated to give the same crest height as tloerse order model. Figure 7.37 shows the
empirical CDF of static baseshear and overturniognent at the largest wave crest from various
stretching method. From table 7.4, first orderdinextrapolation greatly overestimates the static
base shear and overturning moment. In additionsélcend order Wheeler gives the lowest static
base shear and overturning momefitSfokes and Second Order Linear extrapolatioroisecto
each other.
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Table 7.4 Comparisson of Static Base Shear and Overturning Moment

second Static Base Shear [kN] Static Overturning Moment [kNm]

SJV‘;';eeS I(\:I’Il;)ddet:l Wave | et Second : First ; ;
o | | Ve | P08 | | s | e | ot orer | contane | SS9 s | S0 | ot | A0 o | S

[m] H([eE]ht Stokes LI:xT." Wheeler LI;:" Stretching Wheeler Stokes Extrapolation | Wheeler | Extrapolation Stretching Wheeler
1| 34.55 | 33.34 | 11.50 | 22.15 1.73 1.53 1.29 | 3.06 2.17 1.06 | 173.04 154.48 | 118.16 302.16 202.19 | 105.63
2 | 32.25 | 29.02 | 13.50 | 19.54 1.27 1.15 1.04 | 2.39 1.72 0.85 | 114.36 112.31 93.87 233.64 158.73 81.36
3| 31.49 | 30.79 | 13.00 | 19.13 1.21 1.07 0.95 | 2.19 1.58 0.77 | 110.42 105.00 86.65 214.97 146.92 74.58
4| 3095 | 29.99 | 13.50 | 18.60 1.14 0.98 0.93 | 1.88 1.45 0.74 | 102.04 93.77 82.13 178.94 131.38 69.72
5] 30.63 | 30.93 | 15.50 | 18.09 1.12 1.01 1.01 | 1.58 1.38 0.86 91.99 89.59 83.23 139.54 116.74 74.53
6 | 29.86 | 30.04 | 13.50 | 17.83 1.05 0.96 0.88 | 1.80 1.39 0.74 92.67 90.83 78.18 171.36 125.56 68.67
7 | 29.96 | 30.62 | 15.00 | 17.66 1.05 0.97 0.99 | 1.52 1.33 0.85 87.57 85.11 81.15 132.62 112.19 72.52
8 | 29.38 | 28.12 | 13.50 | 17.50 1.00 0.91 0.85 | 1.67 1.31 0.71 88.41 85.00 74.76 157.98 118.18 65.89
9| 29.10 | 29.05 | 13.50 | 17.30 0.98 0.90 0.83 | 1.47 1.22 0.71 85.98 82.66 71.74 135.53 108.02 65.12
10 | 29.10 | 30.76 | 13.50 | 17.29 0.98 0.90 0.80 | 1.48 1.20 0.68 85.98 85.55 70.41 138.23 107.44 62.75
11 | 28.66 | 28.92 | 13.00 | 17.12 0.96 0.89 0.82 | 1.48 1.22 0.72 85.82 82.61 71.83 136.94 108.57 65.67
12 | 28.80 | 27.86 | 14.00 | 17.00 0.95 0.88 0.86 | 1.39 1.19 0.74 82.03 77.66 70.73 122.99 100.66 63.97
13 | 28.36 | 29.47 | 13.00 | 16.91 0.93 0.88 0.88 | 1.32 1.18 0.75 83.26 77.61 72.80 115.16 99.48 64.64
14 | 27.59 | 28.88 | 11.50 | 16.87 0.93 0.92 0.83 | 1.30 1.16 0.74 88.56 84.72 71.55 116.74 101.45 67.33
15 | 28.84 | 30.18 | 15.50 | 16.86 0.96 0.85 0.90 | 1.49 1.25 0.75 78.42 73.94 73.54 133.16 105.81 64.25
16 | 28.38 | 28.91 | 13.50 | 16.81 0.92 0.83 0.78 | 1.35 1.13 0.67 80.74 75.59 67.01 123.16 99.20 60.12
17 | 28.38 | 27.50 | 13.50 | 16.80 0.92 0.82 0.77 | 1.39 1.15 0.65 80.74 76.63 67.38 129.13 102.45 59.75
18 | 28.26 | 28.19 | 13.50 | 16.72 0.91 0.85 0.79 | 1.33 1.14 0.69 79.79 78.20 68.10 121.36 100.13 62.55
19 | 27.89 | 26.51 | 12.50 | 16.72 0.90 0.84 0.72 | 1.50 1.17 0.63 82.46 81.14 65.78 144.60 107.42 59.96
20 | 27.05 | 30.01 | 11.00 | 16.71 0.92 0.90 0.71 | 1.44 1.13 0.64 89.13 86.78 64.04 137.33 103.25 60.69
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7.5. Verification of Transfering Data to USFOS

The sea surface and wave particle kinematics aresferred to USFOS trough wavegrid file
since the response of jack-up platform is calcdlay using USFOS. Therefore, a brief
verification is performed to insure that the dat&ransfered corretly from MATLAB to USFOS.
In this case, a single vertical cylinder with diderelm is set as the object of comparisson. A 20-
minute first order sea simulation utilizing equa¢a method and random amplitude with 220
components is performed. The Wheeler stretchingséxl to determined the particle kinematics
along the z-coordinate. In additio@p =1.15 andCy =1.6 along the z coordinate. It should be
noted that the focus on this particular verificatstudy is the comparisson of load. Therefore,
any methods can be used to simulate the sea swafaceave particle kinematics. Utilizing the
result of simulation, the static baseshear andton@ng moment on the cylinder from USFOS
and MATLAB are compared. Figure 7.39 shows the canspon of static baseshear and
overturning moment between USFOS and MATLAB.
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Figure 7.38 Comparisson of Load between USFOS and MATLAB

From figure 7.38, it can be observed that bothicstaiseshear and overturning moment from
USFOS and MATLAB model show a good agreement. Thezet is concluded that the transfer

of surface elevation and particle kinematics froMTLAB to USFOS is insured.
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8. Reducing Computational Time in Grid System

Eventhough the required harmonic components camdhgced by various method, to calculate
3-hour simulations in a grid system is still pratike due to the the large computational time
and required memory. To solve this problem, soragegtes to reduce the computational time
(also the required memory) are introduced. Explanagbout the strategies is presented in
section 4.5. In this chapter, the effects of apgyihese strategies to responses calculation of

jack-up platform is presented.

In this case, the long crest wave is assumed anavétve is propagates along the x coordinate.
The wave patrticle kinematics on the grid is detegdiby only oberving a single line on the grid.

This is illustrated by figure 8.1.
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Figure 8.1 lllustration of Grid System

The round shapes shows particular coordinatesargtiu system. The red shapes incicates the
coordinates where the calculation of sea surfageerformed. This coordinates is called the
calculation points. Then, all points that has sgreeordinates as the calculation points is set to
have the same magnitude of surface elevation ané particle kinematics as calculation points.
As a consequnce, the sea surface which is presentiggire 8.2 is established. All simulation in
this chapter is performed utilizing equidistancegfrency interval with random amplitude. The
time interval is set as 0.5 s. In additigh,= 13m and T, = 15.9s. These value is estbalished

from metocean analysis which is presented in ch&pte
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Figure 8.2 Long Crest Surface Elevation

8.1. Calculating Wave Kinematics at Coarser Grid

Calculating wave kinematics at coarser grid de@gdlse computational time since the number
of calculation point is decreased. The sea surfauk wave particle kinematics between the
calculated points are achieved by USFOS utiliziagtipular interpolation scheme. Since the
wave is assumed as 2-D (long crest) wave, the waisen are only performed for x-coordinate
and z-coordinate. In this case, the strategy toedse the number of calculation points along z-
coordinate is different than the one which is agplto x-coordinate. In order to verify the
accuracy and measure the computational time, 2Q4mifirst order sea with wheeler streetching
and 20-minute second order sea with linear extedjpml simulation are perfomed. It shall be
noted that the presented baseshear and overtumorgent is the reaction baseshear and
overturing moment which indicates the negative @alacurs when the direction of load on the

jack-up is equal to the direction of wave propawgati

8.1.1. Coarser grid for z-coordinate

Since the magnitude of wave particle kinematics sagmificantly larger around the surface,
concentrating the calculation points close to timase could decrease the number of calculation
point along the z-coordinate. To verify this, falifferent cases of calculation point distribution
along the z-coordinate are observed. The intervat@ordinate is set as equidistance interval

with magnitude 0.5, 1, and 2m for first, second #nd case respectively. For the fourth case,
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the interval of z-coordinate is decreased gragidaim sea bottom to the sea surface. In this
case, the interval of z-coordinate is set equalm forz < —80m, 10m forz < —60m, 5m for

z < —30m and 1m forz < surface elevation. The z-coordinate in grid systerdefined up to
30m to accomodate high wave crest. For all casejnterval of x-coordinate is set as 5m to
reduce the computational time and memory usage.

Table 8.1 Number of Calculation Point along z-Coordinate and Computational Time

Computational Time [second]
Number of Kinematic
Case | Calculation (Matlab) Response (USFOS)
Points First | Second First Order Second Order

Order | Order | Static | Dynamic | Static | Dynamic
1 261 | 1658 | 33943 | 1873 1593 | 1594 1829
2 131 840 | 16671 | 1440 1728 | 1700 1689
3 66 428 8494 | 1745 1701 | 1908 1606
4 70 363 9369 | 1447 1479 | 1698 1522

Table 8.1 shows the number of calculation poinbe@lthe z-coordinate and the computational
time for each case. The computational of responsdysis in USFOS does not have general
trend. The possible reason is the pararel compytnogess. In pararel computing process,
several jobs are submited into USFOS simultaneously. Thereftihe, computational time

depends on how many actiyjebs and the available space of CPU memory. Therefore,
computational time in USFOS can not be taken asoblpf comparisson in this case. The

comparisson of computational time is focused omikiatic computational time.

From table 8.1, it can be observed that the caseh8re z-interval is set as 2m, shows the
smallest number of calculation points along theardinate between the compared cases. As a
consequence, the case 3 requires the smallest tatiopal time for second order kinematics.
For first order wave, the kinematic computationalet for the case 4 is smaller than case 3
though case 4 has more calculation points. Thdues to the performed numerical scheme in
MATLAB. For first order wave, the kinematics on thalculation points above sea surface is
directly set as zero. In this case, the unnecessalyplication process in MATLAB is avoided.

It seems that the fourth case has more calculgbants above the sea surface than the third case.
As a consequence, the fourth case executes théasimnufaster than the third case. This implies
that by distributing the calculation points wisetiqe computational time could be reduced.

However, in order to perform vectorization, the damatics are calculated on all calculation
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points including the calculation points above tlea surface for second order kinematic case.
Therefore, in the built MATLAB script, the numericacheme to calculate second order
kinematics is not sensitive to number of calculaoints above the sea surface. That is why for
second order kinematics, case 4, which has mowraulesibn points, has larger computational
time than case 3.In addition, the case 4 cut 78&tpatational time for first order wave and 72%

computational time for second order wave when ¢bimipared to case 1.

In order to verify the accuracy, the mean and stethdleviation of baseshear and overturning
moment are observed. Table 8.2 presents the mebasakshear and overturning moment for
each case while table 8.3 shows the standard dmviat

Table 8.2 Mean of Baseshear and Overturning Moment

Mean of Baseshear [kN] Mean of Overturning Moment[kNm]

Case First Order Second Order First Order Second Order
Static | Dynamic | Static | Dynamic | Static | Dynamic | Static | Dynamic
1 0.0 0.0 -0.1 -0.1| 30.9 54.1| 19.8 44.4
2 0.0 0.0 -0.1 -0.1| 30.8 53.1| 21.0 45.0
3 0.0 0.0 -0.1 -0.1| 30.8 542 | 21.5 45.0
4 0.0 0.0 -0.1 -0.1| 31.0 53.4 | 21.0 44.8

Table 8.3 Standard Deviation of Baseshear and Overturing Moment

Std. of Baseshear [kN] Std. of Overturning Moment[kNm]

Case First Order Second Order First Order Second Order
Static | Dynamic | Static | Dynamic | Static | Dynamic | Static | Dynamic
1 0.9 1.1 0.8 1.0 | 160.9 177.8 | 157.1 173.2
2 0.9 1.1 0.8 1.0 | 160.8 176.8 | 157.7 172.6
3 0.9 1.1 0.8 1.0 | 160.7 175.5 | 158.0 172.4
4 0.9 1.1 0.8 1.0 | 160.8 176.7 | 157.7 172.7

It is assumed that the case 1 gives the most aectesault since its z-coordinate grid is denser
than the other cases. In table 8.2 and 8.3, casa&dy produces larger deviation when the mean
and standard deviation are compared to the casd ih all, the deviations from each case are
mainly less than 5% (except for static second omarturning moment of case 3) which
indicates case 2, 3 and 4 gives acceptable reBudt.analysis is continued by observing the
maximum baseshear and overturning moment. TableBidble 8.7 respectively shows the
positive maximum baseshear, positive maximum oweirtg moment, negative maximum

baseshear and negative maximum overturning moment.

Reducing Computational Time in Grid System 129



NTNU
Norwegian University of Science and Technology

Michael Binsar Lubis

Table 8.4 Positive Maximum Baseshear

Maximum Baseshear
First Order Second Order
Static Dynamic Static Dynamic
Case | Mag. [kN] | t[s] Mag. [kN] | t[s] Mag. [kN] | t[s] Mag. [kN] | t[s]
1 3.7 | 296.5 4.1 297.0 3.0 | 296.5 3.2 |297.0
2 3.7 | 296.5 4.0 | 297.0 3.0 | 296.5 3.31297.0
3 3.7 | 296.5 4.0 | 297.0 3.1 296.5 3.4 297.0
4 3.7 | 296.5 4.0 | 297.0 3.0 | 296.5 3.3 1297.0
Table 8.5 Positive Maximum Overturning Moment
Maximum Overturning Moment
Case First Order Second Order
Static Dynamic Static Dynamic
Mag. [kNm] | t[s] Mag. [kNm] | t[s] Mag. [kNm] | t[s] Mag. [kNm] | t[s]
1 397.5 | 296.5 516.8 | 297.5 337.3 | 296.5 479.4 | 601.0
2 397.6 | 296.5 508.8 | 297.5 341.6 | 296.5 470.3 | 601.0
3 397.8 | 296.5 508.2 | 297.5 344.6 | 296.5 469.2 | 601.0
4 397.8 | 296.5 509.2 | 297.5 341.8 | 296.5 470.5 | 601.0
Table 8.6 Negative Maximum Baseshear
Maximum Baseshear
Case First Order Second Order
Static Dynamic Static Dynamic
Mag.[kN] | t[s] Mag. [kN] | t[s] Mag. [kN] | t[s] Mag. [kN] | t[s]
1 -4.5 | 607.5 -5.0 | 609.0 -4.2 | 607.0 -4.9 | 609.0
2 -4.5 | 607.5 -5.0 | 609.0 -4.2 | 607.5 -4.8 | 609.0
3 -4.5 | 607.5 -5.0 | 609.0 -4.1 | 607.0 -4.8 | 608.5
4 -4.5 | 607.5 -5.0 | 609.0 -4.2 | 607.5 -4.8 | 609.0
Table 8.7 Negative Maximum Overturning Moment
Maximum Overturning Moment [kNm]
Case First Order Second Order
Static Dynamic Static Dynamic
Mag. [kNm] | t[s] Mag. [kNm] | t[s] Mag. [kNm] | t[s] Mag. [kNm] | t[s]
1 -178.6 | 584.5 -298.6 | 609.5 -176.3 | 584.5 -282.7 | 609.0
2 -178.7 | 584.5 -293.9 | 609.5 -176.4 | 584.5 -290.6 | 609.0
3 -179.6 | 314.0 -296.5 | 609.5 -176.5 | 584.5 -287.3 | 609.0
4 -178.7 | 584.5 -294.1 | 609.5 -176.4 | 584.5 -290.7 | 609.0

From table 8.4 to table 8.7, compared to case€elcéise 3 generally produces larger deviation

then the other cases. It seems the first ordertiveganaximum overtuning moment of case 3

occurs at different time instance than the otheesahough it is checked that in the same time
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instance as other cases, case 3 does not proguegcsint deviation on the negative overturning
moment. Despite all of that, case 2, 3 and 4 ld@weation which is less than 5%. This indicates
that all cases give acceptable result. Howeverfdhgh case is the most appealing method to
apply since it has the smaller computational timntcase 1 and 2 but creates smaller deviation
than case 3. Therefore, for further ananlysis, @age used to define the z-coordinate in grid

system.

8.1.2. Coarser grid for x-coordinate

Eight different intervals of x-coordinate are oh&er which are 1m, 2m, 3m, 5m, 7m, 10m, 13m
and 15. The interval of z-coordinate gradually dase from the sea bottom to the sea surface
which is similar to case 4 in previous section. Theinterval is assumed gives the most correct
result between the other cases. Therefore, thenfierval is made as a reference. In addition, the
static and dynamic analysis of structure respoaseperformed. Table 8.8 shows the number of

calculation point along the x-coordinate and thenpotational time for each observed case.

Table 8.8 Number of Calculation Point along z-Coordinate and Computational Time

Computational Time [second]
Interval Number of Kinematic Response (USFOS)
Case [m] Calculation (Matlab)
Points First | Second First Order Second Order

Order | Order | Static | Dynamic | Static | Dynamic
1 1 101 | 1493 | 40176 769 1611 | 1253 1662
2 2 51 756 | 20365 651 1644 | 2070 1400
3 3 34 499 | 13670 606 1833 | 1956 1331
4 5 21 311 8975 573 1315 | 1631 1372
5 7 15 221 6075 553 1282 | 1605 1265
6 10 11 162 4567 934 1257 | 1500 1328
7 13 8 127 3227 780 1409 | 1713 1271
8 15 7 105 2784 835 1237 | 1860 1272

Since multiple calculation in USFOS is performed bilizing pararellel computing, the
calculation speed depends on the available menmatypeocessor when executing foe. As a
consequence, the comparisson of USFOS computatioma is not reliable to perform.
Logically, USFOS spends longer duration when exeguhe grid system with smaller x interval
since it requires bigger memory due to the greatember of calculation point. This can be
observed by comparing case 1 and case 8 whereaiee8cexecutes the simulation faster than

case 1.
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The observation is focused on the computationak tiwh wave particle kinematics and sea
surface at MATLAB. By setting 1m interval as refece, it is observed that utilizing 5m as
interval of x-coordinate cuts the computationaldiop to 78% for both first order and second
order sea. In this case, one simulation of 20-nesigecond order sea spends 2.5 hours to be
completed. Furthermore, using x-coordinate inteegual to 15 m cuts the 93% computational

time of first and second order.

Table, 8.9 shows the mean of baseshear and oviegusile figure 8.3 presents the percentage
of mean for each x-interval when they are comp#oedinterval = 1m. The percentage of mean

in figure 8.3 is determined by:

Table 8.9 Mean of Baseshear and Overturning Moment

Interval Mean of Baseshear [kN] Mean of Overturning Moment[kNm]
Case [m] First Order Second Order First Order Second Order

Static | Dynamic | Static | Dynamic | Static | Dynamic | Static | Dynamic

1 1 0.0 0.0 -0.1 -0.1| 26.2 68.6 | 16.7 53.3
2 2 0.0 0.0 -0.1 -0.1| 26.7 68.3 16.9 52.5
3 3 0.0 0.0 -0.1 -0.1| 26.8 66.8 | 17.1 51.8
4 5 0.0 0.0 -0.1 -0.1| 26.4 65.6 | 16.9 50.0
5 7 0.0 0.0 -0.1 -0.1| 265 63.1| 17.1 46.8
6 10 0.0 0.0 -0.1 -0.1| 26.9 582 | 17.3 42.9
7 13 0.0 0.0 -0.1 -0.1| 26.1 47.7 | 16.8 34.3
8 15 0.0 0.0 -0.1 -0.1| 26.7 48.3 17.5 36.4

From table 8.9, it can be observed that the medraséshear is equal to zero for first order sea
and -0.1 for second order sea even when the intefwacoordinate is set as 15m. This is logical
since the second order sea has higher crest (@eduegative baseshear) and lower trough
(produces positive baseshear). For overturning moniecan be observed that the deviation
tends to increase when increasing the x-interviaé deviation of mean of overturning moment
could be larger than 5% when x-interval is gre#it@an 5m. Furthermore, for dynamic second
order overturning moment, the deviation of meargsal to 12% when the x-interval is set as
7m. Therefore, assuming the acceptable mean dawvi#ti5%, the 5m x-interval produces the

fastest computational time with acceptable result.

Table 8.10 shows the standard deviation of basestr&hoverturning moment. Observing the
standard deviation in table 8.10, for static basasltase from first order sea, it seems all

deviation of standard deviation is less than 5%uwelcer, for first order dynamic baseshear case
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the deviation of standard deviation could be latban 5% when the x-interval is set larger than
10m. For overturning moment, all deviation of s@mddeviation is less than 5%. Therefore,
based on standard deviation, interval 10m prodtloesastest simulation with acceptable result

if 5% is set as the largest acceptable deviation.

Table 8.10 Standard Deviation of Baseshear and Overturning Moment

Interval Baseshear [kN] Overturning Moment[kNm]
Case [m] First Order Second Order First Order Second Order

Static | Dynamic | Static | Dynamic | Static | Dynamic | Static | Dynamic
1 1 0.8 1.0 0.7 1.0 | 160.9 177.2 | 157.9 173.6
2 2 0.8 1.0 0.7 1.0 | 160.9 177.0 | 158.0 173.5
3 3 0.8 1.0 0.7 1.0 | 161.0 176.7 | 158.0 173.0
4 5 0.8 1.0 0.8 1.0| 161.2 176.0 | 158.2 172.9
5 7 0.8 1.0 0.8 0.9 | 161.3 174.3 | 158.2 171.8
6 10 0.8 1.0 0.8 0.9 | 161.4 172.9 | 158.5 171.2
7 13 0.8 0.9 0.8 0.9 | 161.5 170.2 | 158.6 169.3
8 15 0.8 1.0 0.8 0.9 | 161.7 171.2 | 158.8 170.1

The positive maximum (when the jack-up at the wawagh) and negative maximum (when the
jack-up at wave crest) of base shear and overtymmament from static and dynamic analysis
are presented in table 8.13 and 8.14 respectivelyan be observed that even when the x-
interval larger than 1m, the positive maximum ofael order dynamic baseshear could occurs
at different time instance than x-interval equallto. In addition, the deviation of positive and
negative maximum value from all cases could beelatban 5% when the x-interval is larger
than 5m. For ultimate limit state, the main focsgsthe negative maximum baseshear and
overturning moment where the wave crest occursrdégss of the time instance. Therefore, it is
concluded that based on the maximum baseshear \a@rtliming moment, 5m is the largest

interval with acceptable result.

From comparisson of mean, standard deviation andnmuan, it is observed that increasing x-
interval will not always increase the deviationrekult. When x-interval > 5m, it seems the
increment in the deviation becomes uncertain wthie increment is still predictable for x-
interval < 5m. Therefore, it is concluded that too coarsd gould produce uncertainty in the
interpolation result. In addition, based on comgmon of mean, standard deviation and
maximum value, interval 5m is the largest interwéth acceptable result. Therefore, for further

analysis, the grid system is established with grivdl equal to 5m.
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Table 8.11 Positive Maximum Response

Baseshear Overturning Moment [kNm]
First Order Second Order First Order Second Order
Interval : - . - - . " -
[m] Static Dynamic Static Dynamic Static Dynamic Static Dynamic
Mag. Mag. Mag. Mag. Mag. Mag. Mag. Mag.

1 3.2 | 216.5 3.3 16740 2.8 | 216.5 3.1 | 416.5|332.5|962.5|4825| 416.5|304.2 | 216.5 | 493.0 | 416.5
2 3.2 | 216.5 3.2 | 674.0 2.9 216.5 3.1 | 215.0 | 333.3 | 962.5 | 483.4 | 416.5| 307.2 | 216.5 | 496.6 | 416.5
3 3.3 | 216.5 3.2 | 674.0 2.9 216.5 3.2 | 215.0|336.0 | 216.5|489.5| 416.5| 308.9 | 216.5 | 502.0 | 416.5
5
7

3.3 | 216.5 3.2 | 674.0 2.9 216.5 3.3 | 215.0 | 343.3 | 216.5 | 487.8 | 416.5| 312.7 | 216.5 | 513.6 | 416.5
3.3 | 216.5 3.2 | 2155 3.0 | 216.5 3.3 | 215.0 | 342.4 | 216.5|473.8| 416.5| 315.0 | 216.5 | 501.1 | 416.5

10 3.4 | 216.5 3.3 | 2155 3.0 | 216.5 3.5| 215.0|351.7 | 216.5|471.5| 416.5| 318.8 | 216.5 | 506.8 | 416.5
13 3.4 | 216.0 3.6 | 216.0 3.0 | 216.5 3.7 | 215.0 | 354.0 | 216.0 | 436.6 | 416.5 | 319.0 | 216.5 | 483.0 | 215.0
15 3.5 216.5 3.6 | 215.5 3.0 | 216.5 3.8 | 215.5|364.8 | 216.5|450.0 | 416.5|324.9 | 216.5 | 488.1 | 215.0

Table 8.12 Negative Maximum Response

Baseshear Overturning Moment [kNm]

Interval First Order Second Order First Order Second Order
[m] Static Dynamic Static Dynamic Static Dynamic Static Dynamic

o |09 || o [ o [ o | e | e e | [ e | o
1 -3.8 | 1410.0 -5.2 | 1410.5 -3.7 | 1410.0 5.3 | 14105 | -1775 | 221.0 -345.2 | 1410.5 -175.0 38.5 | -378.3 | 14105
2 -3.8 | 1410.0 -5.2 | 1410.5 -3.7 | 1410.0 5.3 | 14105 | -183.8 | 221.0 -343.3 | 14105 -174.7 38.5 | -378.0 | 14105
3 -3.8 | 1410.0 -5.2 | 14105 -3.7 | 1410.0 5.3 | 1410.5 | -188.5 | 14205 -344.1 | 14105 -174.5 | 4380 | -377.2 | 14105
5 -3.9 | 1410.0 -5.2 | 14105 -3.7 | 1410.0 5.3 | 14105 | -187.2 | 2205 -341.4 | 14105 -174.4 | 4380 | -374.0 | 14105
7 -3.9 | 1410.0 -5.2 | 1410.5 -3.8 | 1410.0 -5.3 | 14105 | -185.1 | 2205 -335.8 | 1410.5 -177.3 | 3925 | -364.7 | 14105
10 -3.9 | 1410.0 -5.2 | 14105 -3.8 | 1410.0 5.2 | 14105 | -181.7 | 2205 -328.0 | 1410.5 -176.1 | 3925 | -354.8 | 1411.0
13 -4.0 | 1410.0 -5.1 | 1410.5 -3.8 | 1410.0 5.0 | 14105 | -178.8 | 3925 -304.0 | 1410.5 -174.0 | 3925 | -334.1 | 1411.0
15 -4.1 | 1410.0 -5.1 | 1410.5 -3.8 | 1410.0 5.0 | 14105 | -178.0 | 3925 -303.8 | 1410.5 -173.1 | 3925 | -334.8 | 1411.0
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8.2. Second Order Wave at Upper Layer

As explained in section 4.5.2, applying the secorder wave particle kinematics only at the
calculation points which are close to sea surfamgldc decrease the computational time. A
comparisson study is performed to find how deepstend order wave particle kinematics can
be applied with acceptable result. In the previpugect about second order wave force on
single vertical cylinder by Lubis [27], applyingcsad order surface only at 10% of depth (10m
out of 100m) can cut the computational time up &%68with small deviation on the maximum,
mean and standard deviation of responses. In addifie equidistance interval of z-coordinate
is utilized in his work. However, it is explainad $section 8.1.1 that concentrating the calculation
points close to the sea surface gives significahta@the computational time. Therefore, instead
of applying equidistance z-interval, gradually agesed z-interval is established when observing
the effect of applying second order kinematics atlgalculation points that are close to the sea
surface. The profiles of horizontal velocity at xO=when the largest wave crest occurs are
presented in figure 8.3.
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Figure 8.3 Horizontal Particle Velocity Profile

In figure 8.3, the second order kinematics is agaplip to three different depths (@hich refer

to the depth of second order kinematics) whichfame 25m and 50m. It can be observed that
there is significant jump in the kinematic profiden the dis set as 5m. In this case, the wave
load is expected larger than the wave load frompteta second order kinematics along z-
coordinate. On the other hand, largeptbduces smaller deviation in the profile.
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In this case, the analysis is focused on the maximagative (when the crest hit the structure)
baseshear and overturning moment. In addition, dbparisson of computational time is
concentrated in computational time of kinematicécudation time in MATLAB since the

number of calculation points in grid is similar feach observed cases. Table 8.13 presents the

observed cases, the kinematics computational tdelee maximum responses.

Table 8.13 Combination of First and Second Order Kinematics along Z-Coordinate

Depth of . Maximum Negative Response
Computational -
Second Time Baseshear Overturning Moment [kNm]
Order Static Dynamic Static Dynamic
(d2) [s] % | Value[kN] | Dev.[%] | Value[kN] | Dev.[%] | Value[kNm] | Dev.[%] | Value[kNm] | Dev.[%]
Comp. 10298 | Ref. -3.7 | Ref. -0.6 | Ref. -174.4 | Ref. -374.0 | Ref.
5m 4147 40 -4.1 10.8 -0.5 -5.0 -177.4 1.7 -399.0 6.7
10 m 4965 48 -4.1 10.9 -0.5 -6.4 -177.7 1.9 -396.1 5.9
15m 5616 55 -4.1 10.3 -0.5 -5.8 -177.7 1.9 -394.9 5.6
20m 6142 60 -4.1 9.3 -0.5 -5.2 -177.8 1.9 -391.9 4.8
25m 6987 68 -4.1 8.8 -0.5 -4.9 -177.9 2.0 -390.3 4.3
30m 7415 72 -4.0 7.5 -0.5 -3.9 -178.0 2.0 -386.1 3.2
40m 7908 77 -4.0 6.0 -0.5 -2.9 -178.1 2.1 -381.7 2.0
50 m 8335 81 -3.9 4.9 -0.5 -2.2 -178.2 2.2 -379.0 1.3

Comp. refers to complete second order kinematingatbe z-coordinate and is set as reference
result to measure the deviation of the observe@.c@be percentages of deviation and the
percentage of computational time from observed aas@resented (indicated by %). From table
8.13, it is observed that by applying second otdeematics up to 40m depth still produces
deviation of static baseshear larger than 5%. Asented in figure 8.3, applying second order
kinematics only for small depth overestimates tlaavioad. This is also supported by result in
table 8.3, which g = 5m produces larger magnitude of maximum negah&seshear. For
overturning moment, the deviation depends on kiresarofile around the mean sea surface on
each leg. Therefore, wheny & small (which means there is significant jumpkafematics
profile close to sea surface), the reduction ofriavaing moment from wave load close to sea
surface equalize the overestimation the overturmogent from wave load close to sea bottom.
However, there is an exception for dynamic overhgmmoment, where the overturning moment
is affected by the structure configuration in poad time instance. In addition;=bOm only
save 20% computational time. This is different tti@result from previous work [27] where the
cut of computational time is up to 65% for &30m. Since the calculation points are
concentrated close to sea surface, it seems theoth@roduces smaller cut of computational

time than equidistance z-interval.
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8.3. Spool-to-Extreme and Linear-to-Extreme

To apply spool-to-extreme and linear-to-extreme hoef the surface elevation at x=0 is
observed. The time instance when the maximum seidssvation occurs is assumed as the time
instance for maximum responses. The duration bef@renaximum surface elevation is varied
to observed the effect of spool-to-extreme andalifte-extreme method on maximum response.
Spoll-to-extreme and linear to extreme is usedeuce the computational time of dynamic
analysis. However, the static response is obsdikgdsince it is easier to explain the deviation

in static analysis than in dynamic analysis.

Surface Elevation Complete Second Order

T T T Spool-to-Extreme
10+ Linear-to-Extreme
E , MWM | ]
e
-10 | | | | : | |
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@
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time [s]

Figure 8.4 Surface elevation and Static Baseshear

Figure 8.4 shows the surface elevation and stase&hear reaction time series. From figure 8.4,
it can be observed that the maximum surface ocaudsfferent time instance than maximum
negative static baseshear. Therefore, assuminigutest negative static baseshear occurs at the
largest surface elevation is not fully correct.isTis based on the fact that the largest wave load
does not always occur at the largest surface etevéas presented in section 7.31). In addition,
when the largest negative baseshear occurs, the eragt does not located at x=0. Figure 8.5
shows the surface elevation profile when the largegative static baseshear occurs. It can be
observed that the wave crest is located closedalttuble leg of jack-up platform (in this case
the wave is propagating in Xx-direction). Therefoitejs more complicated to predict the
occurence of maximum baseshear and overturning miofreen surface elevation though it can

be assumed the wave crest occurs around the dieghlecation.
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Figure 8.5 Surface Elevation Profile at Largest Negative Static Baseshear

In figure 8.4, though the largest baseshear doéoemur at the largest surface elevation, the
largest baseshear is still in the range of secoddrasimulation for spool-to-extreme method. In
this case the, second order simulation is star@®@ seconds before the largest surface time
instance which is also the smallest observed durdtr spool-to-extreme method. However, for
linear-to-extreme method in figure 8.4, the surfa@vation is spooled until 100 seconds before
the largest maximum and then the first order wa/@drformed until 10 seconds before the
largest surface elevation. As a consequence, thedabase shear is located in the range of first
order simulation and the largest baseshear is astierated. Therefore, due to random
occurence of the largest baseshear, spool-to-egtragthod is more appealing to be used than
linear-to-exteme since it still can cover the maxmimstatic baseshear that occurs around the
largest surface elevation. However, when the larigaseshear occurs far away from the largest
surface elevation, both spool-to-extreme and fiteaxtreme becomes questionable to be used.
To tackle this problem, the observation can begoeréd not only at single largest surface
elevation in 20-minutes but also at second and dbéx largest surface elevation. As a
consequence, the reduction of computational tineredeses significantly, especially when the

duration of spool is large.

Table 8.14 presents the maximum baseshear anduovieg moment. Spool-up-to refers to the
duration before largest surface elevation for sygoa@xtreme method while linear-up-to refers to
duration before the largest surface elevation whbee second order wave is applied. The
complete refers to complete second order and entals reference. Since the occurence of the

largest baseshear is located around the largdsiceyispool-to-extreme method produces small
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deviation for static baseshear and overturning nmbrfoe all observed spool duration. However,
for linear-to-extreme method, setting the lineartop< 70s produces large deviation for static
baseshear. The deviation is larger than 25%. Homveeoe static overturning moment, the
deviation less than 2% for all observed casesdipamic baseshear, except when spool-up-to =
100s, all observed spool-to-extreme cases proddesgtion less than 5%. For dynamic
baseshear from linear-to-extreme, the deviatidess than 5% only when linear-up-to = 70s and
Spoo-up-to> 200s. A weird result comes from negative dynamvierturning moment. All the
spool-to-extreme result gives large deviation. tdifon, only when spool-up-to=100s and
linear-up-to < 70s produces small deviation. TBisi0t an expected result. Since duration of
second order simulation of linear-to-extreme is I§nitas suspected that somehow the transient
overturning moment from linear-to-extreme is conade with the maximum dynamic
overturning moment. All in all, based on maximuratist baseshear, dynamic baseshear and
static overturning moment, spool-to-extreme camuged with spool-up-ta 200s while linear-
to-extreme can be used when linear-up-f@s. In addition, none of the observed casesfygatis

the requirement for dynamic overturning moment.

Table 8.14 Maximum Baseshear and Overturning Moment

Negative Static Baseshear [kN] Negative Dynamic Baseshear [kN]
Complete ‘ -3,5 Linear-up-to [s] Complete ‘ -4,1 Linear-up-to [s]
Spool-up-to [s] 10 30 50 70 Spool-up-to [s] 10 30 50 70
100 -3,5 -4,4 | -4,4 | 44 | -3,5 100 -3,7 -50 | -5,0 | -5,0 | -3,7
200 -3,5 -44 | -4,4 | 44 | -35 200 -3,9 -52 | -52 | -5,2 | -4,2
300 -3,5 -4,4 | -4,4 | 44 | -3,5 300 -3,9 51| -51 | -51 | 41
400 -3,5 -4,4 -4,4 -4,4 -3,5 400 -3,9 -5,1 -5,1 -5,1 -4,2
500 -3,5 -44 | -4,4 | 44 | -35 500 -3,9 51| -51 | -5,1 | -4,2
600 -3,5 -44 | -4,4 | 44 | -35 600 -3,9 51| -51 | -5,1 | -4,2
Negative Static Overturning Moment [kNm] Negative Dynamic Overturning Moment [kNm]
Complete ‘ -181,8 Linear-up-to [s] Complete ‘ -272,4 Linear-up-to [s]
Spool-up-to [s] 10 30 50 70 Spool-up-to [s] 10 30 50 70
100 -180,8 | -183,8 | -183,8 | -183,8 | -180,8 100 -204,6 | -271,2 | -271,2 | -271,2 | -204,7
200 -180,7 | -183,9 | -183,9 | -183,9 | -180,7 200 -234,7 | -308,9 | -308,9 | -308,9 | -240,4
300 -180,7 | -183,9 | -183,9 | -183,9 | -180,7 300 -230,9 | -306,8 | -306,8 | -306,8 | -238,2
400 -180,6 | -184,0 | -184,0 | -184,0 | -180,6 400 -233,4 | -305,7 | -305,7 | -305,7 | -243,3
500 -180,6 | -184,0 | -184,0 | -184,0 | -180,6 500 -233,5 | -305,8 | -305,8 | -305,8 | -243,3
600 -180,5 | -184,1 | -184,1 | -184,1 | -180,5 600 -233,4 | -305,9 | -305,9 | -305,9 | -243,1
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However, different than coarser grid method and lwoation of first order and second order
along z-coordinate, the spool-to-extreme and |uteaxtreme can not be based only on one
simulation. The analysis requires several simutatifmr comparisson purposes. However, due to
time limitation, the comparisson is not continugldwever, the kinematics computational time is
summarized in table 8.15 as an estimation for tBet work. The left table presents the
computational time in seconds while the right tablesents the computaitional time in
percentage of complete second order computatiomad. tFrom table 8.15, using spool-to-
extreme with spool-up-to=600s can save 42% of cdatjomal time. In addition, applying
second order wave only on the last 70 seconds obldp-extreme while the rest 530s is
established by first order wave could save 80% adatnal time. This indicates the linear-to-

exteme could be an appealing method if the codheration of spool is utilized.

Table 8.15 Kinematic Computational Time from Spool-to-Extreme and Linear-to-Extreme

Computational Time [s] Computational Time [% of Complete Analysis]
Complete ‘ 8975 Linear-up-to [s Complete | 100 Linear-up-to [s]

Spool-up-to [s] 10 30 50 70 Spool-up-to [s] 10| 30| 50| 70
100 | 2291 | 1626 | 1769 | 1930 | 2094 100 22 16 17 19 20

200 | 3065 | 1636 | 1806 | 1932 | 2120 200 30 16 18 19 21

300 | 3870 | 1620 | 1777 | 1910 | 2107 300 38 16 17 19 20

400 | 4627 | 1651 | 1782 | 1918 | 2125 400 45 16 17 19 21

500 | 5371 | 1641 | 1794 | 1940 | 2104 500 52 16 17 19 20

600 | 6103 | 1623 | 1776 | 1937 | 2080 600 59 16 17 19 20

8.4. Summary

Observing different x-interval for grid system,ig found that x-interval=5m is the largest
interval with the fastest computational time andegtable result. In addition, applying gradually
decreased interval along z-coordinate gives extitat@ computational time. Performing the
second order kinematics only up to 50m depth ceale 20% computational time for gradually
decreased z-interval whiler the spool-to-extremed dmear-to-extreme can save the
computational time up to 80%. However, from all @ved case, both spool-to-extreme and
linear-to-extreme gives large deviation of dynamnverturning moment. In addition, due to the
random occurence of largest baseshear and overgumdment, one simulation is not adequate
for comparisson study. In the next chapter, thetgrval is set as 5m and gradually decreased z-

interval is utilized.
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9. Metocean Analysis

The jack-up is designed to withstand the envirortaldoad of the location where the jack-up is

planned to be installed. The environmental loaekisblish from meteorology and oceanography
(metocean) analysis. Basically the metocean amab@vers the analysis of wind, current and
wave. However, since this work is focused on theenaad, the performed metocean analysis is
specified into analysis of wave. In this case, Wave record is observed to find the seastate

which produces the extreme jack-up responses.

9.1. Site Location

Danmark
Denmark

United
Kingdom

i\
© Lr sleiof Man

Figure 9.1 Location of HindcasT Data ( www.maps.google.com )

In this work, the typical location of jack-up plati is observed. It is assumed that the jack-up
located at the southern part of North sea. The ceato analysis is based on hindcast wave data
at latitude 53.61N and longitude 3.41E. Figure 9.1 shows the location of the hindcagad
from Google map. Comparing the location with mapNeith Sea from Norwegian Petroleum
Directorate (NPD), this coordinate is found arotiebfisk field. This was shown in figure 9.2.
The WAM10 wave model [46] is used to hindcast tlevevdata. The hindcast data is presented
in file “NS south_ WAM10_5361N_0341E.twthich contains the wind speed, wind direction,
and wave parameters (significant wave height aedtsa peak period) for each 3 hour frofh 1
September 1957 to 3Qlune 2014. In this study, only significant wavégheand spectral peak

period from total sea is considered.

Metocean Analysis 141



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

M."TJ.B oz'.fE—j (Krabbe) ;- I,’I. 3 / )
Cod, | \ 7 f ’, ! IIIF
(LA

\ e North) L,llia rf ".1 10 {1
i / { f
{/ 810-4'S (Buten) / / !/

05 Ivar Tambar | f
Blane “g ﬁnLar ﬂst / / /
Z1Dsdmond) | / f

i f : ‘Gyda A

)f 35 4204 31" > 23 T ‘_/_h fff
Albuskjell—_24-22 Sfégam%yt 2 s/ liaric) { T ,-j
Flyndrey\%f,zm Siﬂlvel' 5. ‘” ek ’,f / e 5 s
Vebl Ekclfrﬁs(b é!ﬁ 3 [Samst Tor) f 3 lf 4 f'r__ M
Tommeliten Garnma( a '\ e JJ,.,\ / {
1/9-1 Tnmrneii!enAlpﬁq'_l / ‘\Edda Eknﬁshl'( / /
— Eldfisk ;’ /e
7 s ¢ —Embla / Tym o
/. Hoa | @emise
) 2612.4—
/bﬁalner o 100

-:n:—:Km
4°E &E

Figure 9.2 Location of Hindcast Data ( www.npd.com, [34] )

9.2. Scatter Diagram
Table 9.1 illustrates the data inside the hindfikestFrom the hindcast file, the significant wave
height Hs) and spectral peak period,) from total sea are processed. They are marketeby

red line in table 9.1.

Table 9.1 lllustration of the Hindcast Data

vEAR | MonTH | DAY | HOUR WIND TOTAL SEA WIND SEA SWELL SEA
WsP [ DIR | HS | TP | T™M | DIRP | DIRM | HS | TP | DIRP | HS | TP | DIRP
1957 9 1 6 44 |222.109 (52|44 | 212. | 226. | 02|29 | 227. | 09 | 52| 212.
1957 9 1 9 49 |214. |08 |52 | 44 | 212. | 218. |03 | 3.2 | 212. | 0.8 | 5.2 | 212.
1957 9 1 12 43 [223.108 |52 44| 212. | 218. |02 |29 | 227. | 08 |52 | 212.
1957 9 1 15 21 | 300.| 08 |52]46|212. | 224. |01 |00 | 220. |08]52] 212.
1957 9 1 18 44 |350. 108 (52|48 | 212. | 229. |01 |27 | 347. | 0.8 | 52| 212.
1957 9 1 21 56 [336.|07 5248 | 212.| 235 |01|36| 2. |07]|52] 212
1957 9 2 0 78 [323.|08 52|38 | 272. | 262. | 05|27 | 287. | 07|52 | 257.
2014 63 0 12 90 |320.| 16|69 49 | 347. | 340. |12 |63 |332. |10| 76| 2
2014 63 0 15 88 [323.|16|69|49 | 347. | 339. |13 |63 |332.|11|76]| 2
2014 63 0 18 84 |322. |16 |69 |50 347. | 340. |12 |63 |332. |11|76]| 2

Figure 9.3 shows the scatter plotkdf and Tp. From figure 9.3, it can be observed that rather
than randomT, seems to be grouped. This is due to the limitadioW/AM10 model. In order to

save memory, WAM10 uses discrete logarithmic sgpeihen saves th&, for each 3-hour [1].
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In this case, WAM10 model only stores two digittleé In(T,). For instanceT, with magnitude
14.31s (In(14.3)=2.66) and 15.6s (n(15.6)=2.74) are saved into memory as as 2.7. As a

consequence, there are only 24 different possibignitudes ofl, between 2 and 20 s.

Scatter of Hs and Tp Scatter of Hs and Tp
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Figure 9.3 The Scatter Plot of H; and T,
Left: Without Randomiztaion; Right: With Randomization

The randomness dfy can be recovered by using equation (9.1) [4].

T, = 3.244 0.09525 dl1 In(T,'/3.244) 0.5 d (9.1)
p =3 exp |0. roun +W — 0.5+ ran .

In this caseT,’ is the spectral peak period from measurement while the final spectral period
for further analysis. In addition, round means up/down the value inside the bracket into the
closest integer while rand indicates a random nunaldech is uniformly distributed between
zero and one. Figure 9.4 shows the scatteHgofand T, after the randomization. After
randomizing theTp,, each combination dfis and T, is classed. In this work, the interval ldf

class is 0.5 m while the interval ©f class is 1s.

9.3. Joint Distribution of Hs and T,

In section 3.1.1, it is explained that to accotmetlbng-term variation, the joint distribution l6§
and T, should be established. The joint PDF 4§ and T, is expressed by equation 3.37.
Therefore, the marginal distribution d¢is and conditional distribution off, should be
determined first. This section presents the sumragprocess to determine the joint distribution
of Hs andT,.
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9.3.1. Marginal distribution of Hs
In section 3.3.1, it is explained that 3-param®teibull can be used as the marginal distribution
of significant wave heightff_(H,)). The location{,,), scale &,,) , and shapeg(,) parameter are

determined using method of moment. Figure 9.4 stibevéitted weibull CDF.

Cumulative Distribution Function of HS
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0.2+

. Data
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O | | | | | |
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H [m]

0.1r

Figure 9.4 Fitted 3-Parameter Weibull

From method of moment, it is found thgt = 0.38, «a,, = 1.64 andp,, = 1.24. It should be
noted that the mean, variance and skewness cafii¢ds should be calculated directly from
measurement (beforéls is classed) since determining the mean, variano® skewnwss
coefficient from scatter diagram leads to some atexn between the empirical CDF £ (blue

dot) and the fitted 3-parameter Weibull.

9.3.2. Conditional Distribution of T,

The distribution ofT, is conditional since it depends &t (frpn, (Ty|Hs)). It is assumed that
frpiu,(Tp|Hy) follows log-normal distribution which is given irgeation 3.42 frp, g, (T, |Hs) is
determined for each classidf To established a log-normal distribution, the maad variance
of In(T,) should be found first. Therefore, since the disttion of T, depends ofds, mean and
variance ofin(T,) should be analyzed from each clas$igfFigure 9.5 shows the fitted function

of mean ofin(Tp) with Hs as the variable.
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Mean of In (Tp) vs Hs
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Figure 9.5 Fitted Function of Mean In (T,)

The mean ofn(T,) can be determined from data by using equation. A4 relation between

mean ofin(T,) andHs is assumed follows equation 9.2:
Hin (1,|15) = €1 + €2 Hs® 9.2)

From fitting process, it is found that = 1.18, ¢, = 0.69, andc; = 0.33. For variance oln(T), it

is assumed that:
Ot (1yl5)° = A3 + dy exp(—dy H) (9.3)

The variance oln(Tp) can be established from the data using equatidn B fitting equation
9.3 to the data, it is found thad{ = 0.2, d, = 0.76 andd; = 0.007. It is possible foel; to have
negative value which gives a negative variancé@f,) for largeHs. Therefore,d; should be
restricted from having a negative value. In thisky@venthoughl; has a positive value from
fitting process, it is considered to observe tHeatfof various values af; on the variance of
In(Tp). Figure 9.6 shows the fitted function of variaro€l,) whend; is not restrictedd; =
0.007) and wheni; is set as 0.005 and 0.
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Variance of In (Tp) vs Hs
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Figure 9.6 Fitted Function of Variance In (T,)

In figure 9.6, it can be observed that lardgrgives increases the variancelfT,) at largeHs.
As a consequence, the variabilityQfis also increased at certaiywhen largerd; is utilized.
This can be proven by checking the 90% bandl,dfange betweef, with CDF 5% and 95%).
Figure 9.7 shows the 90% bandTgfon the scatter plot dis andT,.
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Figure 9.7 90% Band of T,
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In figure 9.7, it can be observed thit= 0.007 produces larger 90% band Bf than the other

two values ofd;. The dynamic analysis of jack-up platform not odgpends on the wave height
but also the wave period. Because of that, lar§e&6 Band ofT,, is considered better for dynamic
analysis of the jack-up platform since it coversduter range of, Therefore, it is decided that

d; = 0.007 for further analysis.

9.4. Full Long-Term Analysis of Sea Surface

For design wave method, it is assumed that theemedrresponses of drag dominated structure,
such as jack-up platform, occurs at the largestimam surface elevation (the largest crest).

Therefore, by performing full long-term analysibgetlargest crest for certain return period is

determined. The full long-term analysis CDF of 3tharest is expressed by equation 3.36. In
this case, the integration of equation 3.36 isqraréd numerically where the discretization is

introduced in the integration process. Therefogea¢ion 3.36 can be rewritten as:

Fo(© = D Feyi,, (€1Hs, Ty) fi, (H frpim, (Ty [ Hs) AHSAT,

Tp Hs Short—term variation in
distribution Hsand Ty

(9.4)

In this caseAH; and AT, are assumed constant. However, since the 3-houe wast CDF
increases significantly, using constai; and AT,, could lead to numerical error. Therefore a
slight modification is made into equation 9.4 fammerical purposes. Instead of using PDF, the
marginal distribution ofHs and the conditional distribution of, are expressed by CDF.

Therefore, equation 9.4 can be rewritten as:

Fo(© = D" Feypt, 1, (€1Hs, Ty) Fig,(H Frpi, (T 1Hy)

Tp Hs Short—term variation in
distribution Hgand Ty

(9.5)

In this case, the usage of constamt; and AT, can be neglected then it is assumed that the
numerical integration gives result with better aecy. In addition, theoretically the total
sumation offy_(H,)Frpn, (T, |Hs) is equal to one. However, due to numerical limitatithe total
summation of"y_(H,)Frpn, (T, |Hs) is not perfectly one. This could create an uppeitifor the
3-hour wave crest CDF. Because of that, the 3-ln@we crest with 100-year return period could

not be found since its CDF magnitude could be grehtan the introduced upper limit.
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To tackle this limitation, the joint distributiors inormalized. Therefore, the equation 9.5 is

rewritten as:

ZTp EHS FC3h|Hs_Tp(C|HS’ Tp) FHS(HS) FTp|HS (Tles)
ETp ZHS FHS (Hs) FTp|HS (Tles)

Fc3h(C) = (96)
The Forisstall wave crest distribution, which aespectively expressed by equation 3.26, is

intorduced adc,,m, 1, (C1Hs, Tp). I addition, the long-term analysis is also perfed to find

the largest wave height with 100-year return periodthis case, the Forisstall wave height
(equation 3.25) is taken as the short term digion. The result of long term analysis is
summarized in table 9.2.

Table 9.2 Result of Long-Term Analysis

Return Period Wave Height Wave Crest _ Wave Period (7) [s] _
[m] [m] Lower Limit Mean Upper Limit
100-year 24.8 15.5 12.7 14.6 16.5

The lower limit and upper limit of wave period istdrmined by using equation 3.49. The mean
wave period is taken as the average between ther g lower limit of wave period. It is
checked that the breaking wave height limit for Z=5 is 34m and T=16.5 is 51.3 m. Therefore,
it is concluded that the wave does not break fonlwoation of wave height/crest and wave
period from table 9.2.

Another approach to determine the wave period islyzing the 90% band a}, at Hs with
100-year return period. The wave period is deteeahias 0.9,. Table 9.5 shows thiEs with
100-year return period, its 90% band gfand its range of wave period)( It can be observed
that the presented wave periods in table 9.3 argecthe presented wave period in table 9.2
though table 9.3 shows slightly larger wave petlwgh table 9.2. As presented in section 7.3.3,
for 5" Stokes, smaller wave period produces slightlydangave crest which is considered as

conservative result. Therefore, the result on tat?as used for further analysis.
Table 9.3 100-year H,, 90% Band of Tp and Range of T

Hs [m] 13.1m
Lower Limit | Mean | Upper Limit

Tp [s] 14.2 16.3 18.6
T[s] 12.8 14.7 16.7
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Figure 9.8 5™ Stokes Model for 100-year Wave Hight and Wave Crest

Furthermore, the ™ Stokes model is established using combination @feaperiod and wave
height/crest from table 9.2. It is found that tfeSokes wave which uses 100-year wave height
produces smaller wave crest than 100-year wavé. drks is illustrated by figure 9.8 by taken
mean value as the wave period. Therefore, th&tékes wave height is iterated to produce the
100-year wave crest. Table 9.3 shows theSfokes wave height to produce the same 100-year

wave crest for each period.

Table 9.4 5™ Stokes Wave Height which Produces 100-year Wave Crest

Wave Period [s] | 12.7| 14.6| 16.5
WaveHeight [m] | 26.2| 26.7 | 26.8

The responses of jack-up are analyzed when hihbysf Stokes wave with parameters from
table 9.2. As explained in section 5.2.1, hydrodyigecoefficient for second order model is used
to determine the responses of jack-up when thé&tekes wave is used. Table 9.8 shows the
maximum reaction of static baseshear and overtgrmoment of the jack-up platform. Since

table 9.8 shows the reaction, negative maximumrgoshen the wave crest hit the jack-up.

Table 9.5 Static Baseshear and Overturning Moment of 100-year Wave Height and Crest

Response Wave Height =24.8m Wave Crest = 15.5m
T=12.7s | T=14.6s | T=16.5 | T=12.7s | T=14.6s | T=16.5
Baseshear [kN] -7.10 -7.84 -8.72 -8.65 -9.85 -11.00
Overturning Moment [kNm] | -397.06 | -388.903 | -415.45 | -541.75 | -568.95 | -602.87
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From table 9.3, it can be observed the fittil Stokes to 100-year wave crest gives greater
magnitude than 100-year wave height. In additioavevperiod equal to the upper limit16.5)
produces the most conservative result. Howeveatedided to use result from mean period to

compare with the result of second order analyste@mext chapter.

9.5. Contour Line Method

Beside full long-term analysis of sea surface, eontine method is the other approach to
determine the worst responses of jack-up. For atentiimit stateHs and T, with 100-year return
period is analyzed. Therefore, the contour lineHgfand T, with return period 100 year is
established. In section 3.3.2, it is explained thatcontour line is established by transforming
Hs and T, to standard Gaussian variables @hd ). In standard Gaussian space, the contour
line is established by creating a circle with radg). For 100-year return periods, is
determined by equation 9.7. Figure 9.8 shows theaotw line for 100-year return period in
Gaussian space.
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Figure 9.9 100-Year Contour Line in Gaussian Space

The contour line in Gaussian space is transfornatk boHs and T, by utilizing the CDF ofHs

andT, which are presented in previous section. FigudesBows the result of contour line when
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it is transformed back. In addition, it is also ggeted the 100-year contour line whén= 0
andd; = 0.05.

Contour Line for 100-year Return Period

14~

12+

10+

Hs

0 5 10 15 20 25 30
Tp

Figure 9.10 100-Year Contour Line with From Various d; Coefficient
From figure 9.9, it can be observed that usigg= 0 produces a contour line with too narrow
head. It is considered not conservative when amajythe worst sea state using the contour line
with d; = 0. Similar to the discussions regarding 90% ban@,ptontour line withd; = 0.007

is considered the most conservative contour line/den the other values.

The quality of the contour line is assessed by togrthe number of points that are located
outside the contour line. Theoretically, the numiifgpoint outside the contour lindl{outsiad can

be determined as:

1
Np,outside = Np total €XP (_ Eﬁrz) (9.8)

In this caseN, otq; refers to total number of data from measuremegtusing equation 9.8,

N.

poutsize = 2. Observing the data in the Gaussian space ancateg the data which has

Hs < 4, it is found that number of data outside the contne is 11 which is significatnly

greater than the theoretical result. Thereforegtiadity of countour line is questionable.
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In figure 9.10, it can be observed that points Wwtace outside the contour line are mainly in the
Hs range of 3-6m. In addition, these points are kedat the right side curve of contour line. The
shape of concour line for this specific locatiopeieds on the magnitude of parametgandd,

in equation 9.3. Therefore, to reduce the numbemnufSide points in these location, the
magnitude ofl, should be increased dy should be decreased. However, this work focuken t
extreme condition oHs and T, which is commonly located at the head of contane.|Since
there are no significant difference for number offstde points at the head part of contour line, it
Is considered that the current contour line is gendugh and modification of contour line is

neglected.

9.6. Worst Sea State

A sea state is characterized by combinatioHoandT,. The worst sea state is the sea state that
produces the extreme responses of the jack upitiBsing the contour line, the worst sea state
can be determined. The worst sea state can betosgdate a wave spectrum or to establish a
probability model of maximum sea surface elevati@here are various considerations to

determine the worst sea state in this study whietpeesented in this section.

9.6.1. Based on thelargest maximum surface elevation

For static analysis of drag dominated structures &ssumed that the largest responses occurs at
the largest maximum surface elevation. Therefdre,worst sea state is determined as the sea
state which gives the largest of largest maximurfase elevation.

Forisstall Crest CDF for Various Sea Sate along the 100-year Contour Line
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Figure 9.11 Determining Worst Seastate from Largest Surface Elevation

Metocean Analysis 152



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

To find this particular sea state, all combinatafrHs and T, are utilized to establish Forisstall
crest CDF. For particular level of CDF (in this eaghen CDF = 0.9), the sea state that gives the
largest wave crest is taken as the worst sea Jtate.was illustrated by figure 9.11. The worst
sea state is presented in table 9.6.

Table 9.6 Worst Sea State Based on the Largest Surface Elevation

Worst Seastate
Hs[m] | Ty [9]
13 15.9

In this sea state, it is found that the result@®-Year wave crest from full long-term analysis is
located at CDF = 0.86. NORSOK [33] suggests that1f@0-year return period, the annual
exceedence perobability of wave crest is taken.&s. 0This is close to the full long-term result
though the result of full long-term gives slightesgstimation. Therefore, it is concluded that the

presented result in table 9.6 is valid.

9.6.2. Based on theresponses from 5™ Stokes Wave

The analysis of worst sea state can be extendditting the largest wave crest/wave height on
5" Stokes model and simulate the responses of jacitaform. In this case, the Forisstall
distribution of wave height/wave crest is estaldishfor several seastates and the wave
height/crest with fractile 0.9 is taken to be fitte 5" Stokes wave.

—e— 100-year Contour Line
——e— Choosen Seastates

14 -

12

10

Hs [m]

T 1 |

20 25 30

Tp [s]
Figure 9.12 Choosen Seastate from Contour Line
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Simulating the responses of jack-up platform withSokes wave can not be performed for all
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seastates on the contour line since it is time woisg. Therefore, the analysis focus on several
seastates. From previous section, it is foundtti@tvorst seastate is located around the head of
contour line. Therefore, the analysis is conceattan this area. It is decided that only seastates
with Hs larger than 12 m are taken for further analysigufé 9.12 shows the location of the
choosen seastates. Furthermore, table 9.7 shows thved T, for the choosen seastates and its
largest surface elevation, positive and negativgimam static baseshear reaction and positive
and negative maximum overturning moment reactiogurié 9.13 and 9.14 respectively presents
the positive and negative static baseshear reaatidrpositive and negative overturning moment

reaction from each combination idf andT, which are presented in table 9.7.

Table 9.7 Maximum Baseshear and Overturning moment of The Choosen Seastate

Baseshear [kN] Overturningmoment [kKNm]
No | Hs[m] | Tp[s] | TIs] | HIm] | C[m] ::t[t::; Positive Negative Positive Negative
Crest | Height | Crest | Height Crest Height Crest Height
1 12.16 18.22 | 16.40 | 22.82 | 13.82 | 24.20 4.64 4.22 -8.25 -7.31 382.72 | 368.32 | -385.24 | -322.50
2 12.34 18.11 | 16.30 | 23.18 | 14.06 | 24.58 4.74 4.27 -8.47 -7.50 388.24 | 369.08 | -401.85 | -337.12
3 12.53 1796 | 16.17 | 23.54 | 1432 | 24.95 4.82 4.32 -8.68 -7.69 392.72 | 370.56 | -417.64 | -351.72
4 12.72 17.76 | 15.98 | 23.91 | 1459 | 25.36 4.88 4.40 -9.26 -7.84 396.36 | 372.44 | -483.13 | -364.88
5 12.91 17.44 | 15.70 | 24.29 | 14.88 | 25.80 4.90 4.41 -9.80 -8.00 399.01 | 373.92 | -537.85 | -379.54
6 13.09 16.55 | 14.89 | 24.70 | 15.29 | 26.36 4.62 4.17 -9.69 -7.92 387.83 | 367.27 | -550.12 | -388.27
7 12.90 15.42 | 13.88 | 24.43 | 15.32 | 26.25 4.04 3.61 -9.12 -7.15 363.84 | 340.64 | -534.64 | -351.44
8 12.71 1490 | 13.41 | 24.11 | 15.21 | 25.97 3.71 3.29 -8.74 -6.71 346.40 | 331.07 | -521.33 | -329.90
9 12.52 14.50 | 13.05 | 23.79 | 15.08 | 25.69 3.43 3.03 -8.43 -6.41 333.55 | 321.52 | -508.86 | -315.67
10 12.33 1414 | 12.73 | 23.47 | 1493 | 25.39 3.19 2.90 -7.99 -6.11 324.46 | 315.65 | -479.26 | -302.07
11 12.14 13.83 | 12.45 | 23.14 | 14.78 | 25.06 2.95 2.75 -7.64 -5.88 313.83 | 309.69 | -460.58 | -290.98
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Figure 9.13 Positive and Negative Maximum Baseshear and Overturning Moment
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The maximum value of baseshear, overturning moraedtwave crest are shaded in table 9.7.
The negative maximum baseshear and overturning moraters to the maximum baseshear and
overturning moment when wave crest hit the jackwipen the wave load has the same direction
as the wave propagation). In table 9.7, it is pnoagain that fitting 8 Stokes to the wave crest
produces conservative result than fittifyStokes to the wave height. It can be observedsteat
state withHs = 12.91 m andl, = 17.44s, which is located slight to the right ¢heside of the
highest point in contour line, gives the largestdshear (either positive or negative base shear).
While the possitive maximum overturning moment atgeurs in this seastate, the negative
maximum overturning moment occurs at different sgaswhich is seastate wik = 13.09 m
andT, = 16.55s. This seastate is also the the highést mathe contour line.

In the previous section, the worst sea state refelrs = 13.0 m and, = 15.9 which is located
slightly in the left side of the highest point iontour line. This seastate is not included when
calculating the responses of jack-up froffi Stokes wave. However, it is found that from the
presented 11 sea states on table 9.7, seastatesiywt 12.9 m andl, = 15.4s produces the
largest wave crest which is close to the seastate previous section.

9.6.3. Based on theresponsesfrom irregular sea simulation

The 8" Stokes is only useful when determining the stegponse of structure. Therefore, to
account the dynamic behaviour of the structure wihetermining the worst seastate along the
contour line, the responses of the jack-up aredday simulating an irregular sea. The irregular
sea surface is determined fraarwave spectrum. To create a wave spectidsrand T, from
each seastates is utilized. In this case, 100 atiounk of irregular sea are performed for each
seastate. The largest responses from each simiatogathered and sorted to create an empirical
CDF of responses. Furthermore, the comparissoreitoned at the empirical CDF=0.9 to

determine the worst sea state.

Simulating 100 3-hour second order irregular sela dach seastate is prohibitive due to
computational time. Therefore, 100 20-minute fosder irregular sea are established for each
seastae. The equidistance frequency with randoniitani is used to determine the harmonic
component while the Wheeler stretching is utilitedestablish the wave particle kinematics. In
this case, as explained in section 5.2.1, the tdyav@mic coefficient which refers to first order

model hydrodynamic coefficient is used. To avoid thansient effect, the first five minutes of
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response time series is neglected. To recover aaithe duration of simulation, additional 5
minutes is included in simulation which makes tatafation of simulation equal to 25 minutes.
The repetition of sea surface occurs at 20 minoteeer this does not affect the analysis of
responses. In addition, the choosen seastatehaseastates which are presented in table 9.7.
Table 9.8 presents the the magnitude of positive egative maximum of baseshear and

overturning moment at fractile 90% while figure @illustrates the result in table 9.8.

Table 9.8 Maximum Baseshear and Overturning Moment at 90% Fractile

90%-Baseshear [kN] 90%-0Overturningmoment [kNm]
No | Hs [m] | Tp [s] Positive Negative Positive Negative
Static | Dynamic | Static | Dynamic | Static | Dynamic | Static Dynamic
1| 12.16| 18.22 | 4.84 5.18 | -5.60 -6.51 | 426.66 569.50 | -221.90 | -391.55
2| 12.34| 18.11| 5.18 5.48 | -6.07 -6.74 | 433.46 598.47 | -239.87 | -449.36
3| 1253|1796 | 5.02 5.37 | -6.18 -6.74 | 437.84 606.71 | -253.46 | -423.90
4| 12,72 |17.76 | 5.31 5.74 | -6.18 -7.31 | 437.96 612.36 | -263.80 | -475.39
5| 1291 | 17.44 | 5.23 540 | -5.71 -7.03 | 438.49 635.18 | -255.02 | -480.30
6| 13.09 | 16.55 | 5.56 6.00 | -6.44 -7.29 | 467.07 661.63 | -279.74 | -490.94
7| 1290 | 15.42 | 4.45 5.67 | -5.33 -6.95 | 417.55 655.69 | -210.06 | -480.10
8| 12.71 | 1490 | 4.81 598 | -5.41 -6.38 | 437.65 722.32 | -228.44 | -460.39
9| 12.52|14.50| 4.60 5.57 | -4.85 -6.13 | 452.45 695.80 | -194.54 | -450.42
10 | 12.33 | 14.14 | 3.98 5.05 | -4.40 -5.80 | 403.33 706.39 | -189.70 | -445.24
11| 12.14|13.83 | 3.71 4.80 | -4.27 -6.08 | 386.06 688.85 | -190.37 | -465.81
x 10° x 10° .
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Figure 9.14 Maximum Baseshear and Overturning Moment at 90% Fractile
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In table 9.8, it seems that seastate number 6renHge= 13.09m andl, = 16.55s mainly

produces the largest maximum response. For maximegative dynamic baseshear, seastate
number 4 gives the largest value though the diffebetween its value and seastate number 6
result is small. In addition, seastate number &lpces the largest maximum positive dynamic

overturning moment.

The positive baseshear and overturning moment gnacdurs when the jack-up hit by the wave
trough. In this case, the Wheeler stretching otenases the load on the jack-up since it set the
kinematics on the surface (z&F equal to the kinematics on mean surface (z =Tbgrefore,
instead considering the maximum positive resulis imore convincing to determine the worst
seastate based on maximum negative baseshear artdromg moment. As a consequence,
seastate witls = 13.09m and, = 16.55s is defined as the worst seastate.

9.6.4. Comparisson of result from three methods

The results of worst seastate from 3 presented adesine summarized in table 9.9. From all
methods, it seems thds is located around 13m while the spectral peakopeviaries. Due to
time limitation, seastate withls =13m andT, =15.9s is not included into the analysis 8f 5
Stokes and irregular sea. However, the spectrdt pegiods from ¥ Stokes and irregular sea
consideration are mainly close to the spectral peaiod from surface elevation consideration. It
is assumed that when seastate With=13m andT, =15.9s is included in the analysis df 5
Stokes and irregular sea, it will produce the maxmresponses with comparable magnitude as
the worst reponses fron!'Btokes and irregular sea consideration. Thereibiconcluded that
the worst sea state along the 100-year contouriditiee seastate witHs =13m andT, =15.9s.

This seastate will be utilized for further analysis

Table 9.9 Summary of The Worst Seastate

Seastate
Based on Hs[m] | Tp [
Surface Elevation 13 15.9
th Baseshear 12.9 17.4
5" StokesWave Overturning Moment | 13.1 16.5
Irreqular Sea Baseshear 13.1 16.5
9 Overturning Moment | 13.1 16.5
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10. Second Order Wave Effect on Jack-Up Platfrom

To analyze the responses of jack-up platform, s¢@mulations of second order model are
performed. Performing complete and continous 3-fs&eond order analysis is prohibitve since
it needs at least 10,80Marmonic component fost = 0.5s. Therefore, the partition of time
series method is utilized where a 3-hour seconérasda is divided into 9 different 20-minute
simulations. It was shown in chapter 7 that sir@leminute simulation for first order wave
requires at least around 220 harmonic componemteduoidistance frequency interval method
with introducing a cut-off frequency. For secondiar process, 220harmonic component is
utilized. In addition, to avoid the transient effe€ the jack-up, the first five minutes in the @m
series is neglected. To recover the five minutas, ladditional five minutes is introduced. The
repetition of wave surface will occur after 20-ntmbut it is acceptable since the first five

minutes in the time series are neglected.

To save memory and computational time, the x-irdtlels set as 5m and the calculation point is
concentrated close to the sea surface (the accaradtythe computational time is presented in
section 8.1). The second order model hydrodynamefficient, which is described in section
5.2.1 is used. In this case, the worst sea staiehvidrdetermined in chapter 11 is used. Hés

set equal to 13m whil€,=15.9s. Various comparissons are performed aneépted here.

10.1. 20-Minute Simulation

To establish 30 3-hour of second order simulatiah wartition of time series method, at least
270 20-minute of second order simulations shoulgdx@ormed. In this work, it is decided to
perform 369 20-minute simulations. It is observieal tinear extrapolation method takes around
2.5 hours to perform single 20-minute simulatiore§ented in section 8.1.2). Therefore, due to
time and CPU memory limitations, the 369 simulasi@ne distributed equally into 6 computers
which are operated simultaneously. Figure 10.1 shine empirical CDF of maximum negative
baseshear for 20-minutes simulation. From figurd 1@ is observed that there are repetitions in
the maximum baseshear. When the data is checksdfoind that there are several 20-minutes
simulation that occurs more than once. Howeversdheepetitions occur not on the same
computer. Moreover, the repetitions occur not ideor For example, 20-minute case 4 in the

first computer is similar to 20-minute case 39ha second computer. Therefore, it is concluded
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that the repetition is random. It is suspected that method to generate random number in
MATLAB is the source of repetition in the simulat® where running several simulations on 6

computers simultaneously could creates similar datareen the computers.
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Figure 10.1 Empirical CDF of Maximum Second Order Baseshear

To avoid the repetitions, the data is filtered. Tineque maximum negative baseshears (which
come from unique surface and kinematics time sedes gathered and sorted. It is found that
from the performed 369 20-minutes simulation, thare 124 unique maximum negative
baseshears. Therefore, the empirical CDF is esteddi based on these 124 values. Figure 10.2
shows the empirical CDF of maximum negative secmd@r baseshear and overturning moment

from linear extrapolation method after neglectihg tepetitions.
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Figure 10.2 Empirical CDF of Maximum Second Order Baseshear and Overturning Moment
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In figure 10.3, the empirical CDF of maximum ovenimg moment seems to have two gradients
when it is plotted into Gumbel paper. For statiemwrning moment, it seems the sample is
mainly located around 1.8 kNm and and create adnadient of the CDF. The gradient of CDF

is changed when the overturning moment is largen thkNm for static analysis and 2.9kNm for

dynamic analysis. The shift of gradient on the efogi CDF indicating a bad behaving system.
One possible reason for this jump is because thenkatics in 3 legs of jack-up occurs at the
same phase which creates a larger overturning mofba change of gradient does not occurs

at the empirical CDF of baseshear.

The EDAF is determined by calculating the rationsstn dynamic and static result for CDF =
0.9. It is found that for baseshear, the EDAF iga¢do 1.25 while EDAF is 1.94 for overturning
moment. The analysis is continued by comparingXbé& of baseshear and overturning moment
from first order and second order sea and utiliziagous stretching method. Utilizing various
stretching methods, the computational time of @ri2f)-minutes simulation of first order sea is
around 20 seconds which is greatly faster than rskcarder sea simulation. In addition,
performing Wheeler stretching into single 20-mirsutgecond order sea only requires 400
seconds approximately. The empirical CDF of lar¢pasteshear and overturning moment for 20-

minutes simulation and various model are presentégure 10.3.

Six methods are compared in figure 10.3. First ordéers to first order sea and second order
refers to second order sea. Linear extrapolationstant and Wheeler indicate the performed
stretching method to calculate the kinematics altmg z-coordinate. In section 5.2.1, it is
explained about the hydrodynamic coefficients whacé used for first order and second order
sea. However, for single cylinder case, which igpl&xed in section 7.4, using the
hydrodynamic coefficient of first order model (cdgfon kinematics from first order linear
extrapolation greatly overestimates the wave laadl responses. As explained in section 5.2.1,
the coef. 1 is a modification of drag and addedswwaefficient to produce load from first order
sea with comparable magnitude as the load formngkooder sea. This modification is mainly
used for first order Wheeler stretching. That isywising coef. 1 on first order linear
extrapolation (or on constant stretching) will pumods conservative result. Therefore, it is
decided to test the hydrodynamic coefficient ofosecorder model (coef.2) to the first order

linear extrapolation.
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In figure 10.4, similar to single cylinder casectsen 7.4), the Wheeler stretching on second
order sea produces the lowest baseshear and ewegunoment while the linear extrapolation
on first order sea with coef.1 greatly overestimates response. The constant stretcing on first
order sea also overestimates the response. It segngscoef.2 to first order linear extrapolation
still produces greater result than linear extrajpmhaon second order sea. Moreover, there is a
good agreement between first order Wheeler andhslecer linear extrapolation which is also
experienced for single cylinder case in sectiontligugh first order Wheeler stretching gives
slighly smaller value for cylinder case. This iraties that instead of using linear extrapolation on
second order sea which is time onsuming, the ite@gsea can be simulated by performing
Wheeler stretching on first order sea with modifiegdrodynamic coefficient. However,

Wheeler streching gives great overestimation ofanlaad at the wave trough.

10.2. 3-Hour Simulation

The largest responses of each 9 20-minute simoktwe gathered and sorted to produces an
empirical CDF of 3-hour simulation. In addition,etrempirical CDF is fitted into Gumbel
distribution. The magnitude at 90% fractile is @m@®d in table 10.1. In addition, the EDAF,

which is taken as ratio between dynamic and staiponses at 0.9 freactile, is also presented.

Table 10.1 Maximum Baseshear and Overturning Moment at 0.9 Fractile

Negative
Method Baseshear [kN] Overturning Moment [kNm]
Static | Dynamic | EDAF | Static | Dynamic EDAF
First Order Linear Extrapolation (Coeff.1) | 14.2 17.5 1.2 | 793.2 1592.5 2.0
First Order Linear Extrapolation (Coeff.2) | 10.9 12.9 1.2 | 672.0 945.8 1.4
First Order Constant 12.1 14.3 1.2 | 763.0 1260.4 1.7
First Order Wheeler 9.2 10.4 1.1 | 522.0 790.7 1.5
Second Order Linear Extrapolation 8.3 10.0 12| 4713 817.8 1.7
Second Order Wheeler 4.5 6.7 1.5 | 310.6 418.6 1.3

In addition, table 10.2 shows th8 Stokes static responses for 100-year crest witidimiwave

period (T=14.6s) which is presented in section 9.4.

Table 10.2 5" Stokes Static Responses for 100-year Return Period

th R Wave Crest = 15.5m
5" Stokes Static Responses T=14.65
Baseshear [kN] 9.85
Overturning Moment [kNm] 568.95
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From single cylinder case, the linear extrapolatarsecond order wave produces comparable 3-
hour static baseshear to the result froth Stokes. Therefore, for jack-up cases, the static
baseshear of'5Stokes wave utilizing longterm analysis of wavestiis compared to the 3-hour
static baseshear from linear extrapolation on stcmder wave. It should be noted that the
comparisson betweer'Stokes and irregular wave for cylinder case itam the same wave
occurence (the"™5Stokes is fitted to produce the same wave cregresar wave simulation).
However, for jack-up case, the wave profile frSokes is different than the second order wave

profile since the 8Stokes wave is based on wave crest from longteatysis.

By comparing result from table 10.1 and 10.2, #orof static baseshear betweédh Stokes
and second order linear extrapolation is aroun8.IThis implies that the Stokes wave produces
conservative result. However, the empirical CDB-tfour jack-up responses is merely based on
13 data. As a consequence, the epistemic uncegrtanthe CDF shape is great. The epistemic
uncertainty can be illustrated by performing baajgping to the fitted CDF. Left figure in figure
10.4 shows the fitted CDF (Gumbell distribution) lseshear and its bootstrapping limit for

second order linear extrapolation case.
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3r Sr °
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Figure 10.4 Maximum Static Baseshear Empirical CDF for Second Order Linear Ext.
(Left: 3-hour Static Baseshear; Right: 20-Minute Static Baseshear)

From figure 10 left side, it can be observed thest tange of deviation at 90% percentile is
around 10kN. This indicates that the quality of@#hstatic baseshear CDF is bad. Therefore,

another approach to extablish the empirical CDB-bbur static baseshear is performed. For 20-
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minute simulation, 124 data exists. Therefore,@uenbel distribution is fitted into 20-minutes
static baseshear data and presented as right iguale fin figure 10.4. By assuming that the
maximum of static baseshear is statistical indepeh@nd identical distributed, the Gumbel

distribution of 3-hour static baseshear can bebésteed by:

Fysy(X) = (FXZOM(X))g (10.1)

Therefore, the new Gumbel distribution and its btagping limit is presented in figure 10.5.
Table 10.3 shows the 90% fractile value of 3-hdatis responses from second order linear
extrapolation including its lower and upper boatsing limit. From table 10.3, the 90% fractile
of 3-hour static baseshear is 7.9 kN which is sendlan previous result. However, the range of
deviation at 90% level is 1.7kN indicating the nbaseshear CDF has better quality than the
previous baseshear CDF. Ratio betweBrStokes and 90% fractile of 3-hour static basesisear
1.2. Utilizing the upper limit of bootstaping, tatio between 8 Stokes and 3-hour static
baseshear is 1.1 which is close to the ratio froe €ylinder case (1.08).

Table 10.3 3-Hour StaticResponse from Second Order Linear Extrapolation

90% | Bootstrapping Limit

Static Responses

Value | Lower Upper
Baseshear [KN] 7.9 7.2 8.9
Overturning Moment [KNm]| 404.2  367.9 462.48
5 Negative Largest Static Baseshear Negative Largest Static Overturning Moment
5,
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P
3+ 3t '
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S o
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Figure 10.5 3-Hour Maximum Static Baseshear Empirical CDF
(Using linear extrapolation on second order wave)
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For static overturning moment, the ratio betweBrSfokesand 90% value of second order linear
extrapolation result is 1.4. In addition, the rditween B Stokes and upper bootstrapping limit

of 90% value is 1.2. The analysis is continued bgeoving the CDF of wave crest (maximum
surface elevation). In this case, the largest waest at x=0 is observed from 124 20-minute
simulations. Left side figure in figure 10.6 shotke CDF of largest wave crest for 20-minute
simulation. Furthermore, the CDF of largest wawsstfor 3-hour simulation is established from
CDF of largest wave crest for 20-minute simulatignutilizing equation 10.1. Right side figure

in figure 10.6 shows the CDF of largest wave ci@sB-hour simulation.

20-Minute Surface Distribution 3-Hour Surface Distribution
4 4l s
- e
3t e 3
5 2 ool S
Q e
i 1! Fitted Gumbel 5 1l Fitted Gumbel
= — — Lower Limit = —— — Lower Limit
ol —— — Upper Limit ol —— — Upper Limit
Forisstal1200/T2 —— — 90% Value
1t ‘ e Data Ak Forisstal10800/Tz
10 15 20 25 15 20 25
Z,[m] Z [m]

Figure 10.6 Distribution of Largest Wave Crest
(Left: 20-Minutes Largest Crest; Right: 3-Hour Largest Crest)

As explained in section 3.2.3, Gumbell distributisran asymptotic extreme distribution which
is a good distribution wheN—w. Therefore, it can be observed in figure 10.6 that fitted
Gumbell distribution gives larger wave crest thamigstall crest distribution. In addition, for
high fractile, the data is closer to Forisstalltalmition than the fitted Gumbell. However, the
difference between Gumbell and Forisstall cresd@® percentile can be tolerated. The 90%
value of wave crest from Gumbell and Forisstalluding the bootstraping limit of Gumbell

distribution is presented in table 10.3.

Table 10.4 90% Wave Crest

Forisstall 90% crestfm] | Gumbell 90% Crest | Lower Limit | Upper Limit
15.5m 15.9m 15.1m 17.1m
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However, for jack-up, the largest baseshear andwwveng moment does not only depend on the
crest magnitude. In addtion, the crest tends téobated close to the leg location than at x=0
when largest baseshear and overturning moment fac€herefore, the surface and kinematic

profile when the largest baseshear and overtummioignent occur are observed.

10.3. Surface and Wave Kinematic Profile at Jack-Up leg

The observation is focused on horizontal partigdeity since it greatly affects the wave load
for jack-up leg. In addition, the observation isicentrated to second order linear extrapolation
method. There is no data that perfectly coincidel @0% responses value which are presented
in table 10.3. Therefore, the the observation ifopmed with data which has the closest
responses to the result in table 10.3. The obsdrasdshear and overturning moment is smaller
than result in table 10.3. In addition, the kineissaand surface profile when the largest observed
responses occurs from second order model is alsenadd. Figure 10.7 shows the illustration of
surface elevation profile from event close to 90%iis baseshear (left figure) and overturning
moment (middle left figure). The middle right figushows the largest observed responses from
second order model while the right figure shows HfieStokes wave profile which gives the
largest static baseshear and overturning momeriiguine 10.7, the surface elevation it coarser

than the real data. The exact surface profile @afobnd in appendix 29.
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Figure 10.7 Surface Elevation Profile at Largest Responses
(Left: 90% Baseshear; Middle-Left: 90% Overturning Moment; Midle-Right: Largest Observed Response;Right: 5t Stokes)

From figure 10.7, it can be observed that whenntlagimum static baseshear and overturning

moment occurs, the"5Stokes wave crest is located at the location efdkbuble leg of the jack-
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up. The same surface elevation profile is obsefoethe 90% overturning moment from second
order sea. However, for 90% baseshear, it seemslthack-up legs are located at two adjacent
wave crests. In addition, the magnitude of wavetda the 90% baseshear is smaller than the
100-year wave crest and the magnitude of wave &weshe largest overturning moment. Table
10.5 shows the magnitude of wave crest from the dbserved cases.

Table 10.5 Wave Crests from The Four Observed Cases

57 Stokes | 90% Baseshear | 90% Overtur ning Moment | Largest Response
15.5m 13.4m 15.0m 17.3m

In table 10.4, the wave crest of 90% basesheamaller than ¥ Stokes wave crest. This is
because the observed case that represents 90%é@msdees not really produces the 90% value
of static baseshear. However, this indicates thattd the spacial effect, the largest response in
irregular seas could be smaller than 100-year waest. Therefore, it is concluded that for
irregular wave, the largest value could come ftarm adjacent waves with magnitude of crest

smaller than 100-year wave crest.

Figure 10.8 shows the kinematic profile along zrdawate at the double and single leg of jack-
up when the largest baseshear and the largestuavied moment occurs, both from second
order wave and "5 Stokes wave. In addition, the largest observedomse from second order

model is also presented.
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Figure 10.8 Kinematic Profile along z-coordinate at Jack-Up Leg
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Based on the kinematic profile at figure 10.7, whwenlargest baseshear occuf® Sokes tends
to have larger wave crest and larger magnitudeoafdntal velocity than second order wave
model at the double leg location. However, at tihgls leg location, second order wave model
has larger wave crest and larger magnitude of biotiz velocity than 8 Stokes. Since the drag
load depends on square of horizontal velocityeénss the difference on double leg location is
the source of overestimation off Stokes baseshear. The difference betwé@rstokes and

second order model in each leg is measured byatieeaf drag load normalized by leg diameter.

(2156 Cp wlu,l dz
[ZL%P Cp U |ty dZ]

At the double leg location, the ratio of normaliz#rdg load is around 1.5 while the ratio in the

5th stokes (102)

Ratio of Normalized Drag Load =

Second Order

single leg location is around 0.6. This means, &oX' produces 50% larger drag load then
second order model at double leg location whilgraduces 40% smaller drag load at single leg
location. In total, the ratio of normalized dragdobetween' Stokes and second order model is

1.3 which explain the ratio of static baseshegrevious section.

For overturning moment, it seems that the largedties is more affected by the horizontal
velocity around the surface. In figure 10.8, laty®izontal velocity are located around sea
surface at double leg location for 90% overturmmgment configuration which produces larger
overturning moment that 90% baseshear configurafidre ratio of normalized overturning
moment in double leg is 1.3 while the ratio is in8ingle leg. This means"Stokes gives 30%
larger overturning moment from drag load than sdcorder model in double leg location. In
addition, the overturning moment in double leg tamraseems dominating the total overturning
moment since the ratio of total normalized overitugnmoment is 1.4 though™5Stokes wave

produces almost 8 times larger overturning montegm second order model.

10.4. EDAF for Jack-Up

Table 10.1 presents the EDAF for every observed.ddewever, it is explained before that the
EDAF is merely based on 13 data. Thefore, as tieE@AF is established by fitting a Gumbel
distribution to 20-minutes responses and raiséaltthe power 9. Table 10.4 shows the new 90%

fractile value and its EDAF.
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Table 10.6 Maximum Baseshear and Overturning Moment at 0.9 Fractile

Negative
Method Baseshear [kN] Overturning Moment [kNm]
Static | Dynamic | EDAF | Static | Dynamic EDAF
First Order Linear Extrapolation (Coeff.1) | 13.0 16.3 1.3 | 918.6 1516.2 1.7
First Order Linear Extrapolation (Coeff.2) | 10.1 12.3 1.2 | 592.1 1030.4 1.7
First Order Constant 11.2 13.7 1.2 | 699.6 1197.5 1.7
First Order Wheeler 8.5 10.0 1.2 | 4213 747.5 1.8
Second Order Linear Extrapolation 7.9 9.7 1.2 | 404.3 768.8 1.9
Second Order Wheeler 5.4 6.6 12| 266.4 440.4 1.7

In table 10.1, it seems by including the dynamibhawour of the structure, the baseshear
increases around 20-30% while overturning momeatemses around 70-90%. This indicates
that the dynamic behaviour is crucial when analyamerturning moment reaction. In addition,
performing Wheeler stretching on first order seaibiyzing first order hydrodynamic coefficient

produces comparable result to second order lingaamolation. Since it spends only 0.1%
second order linear extrapolation computationaletint is recommended to use first order

Wheeler for analyzing the ultimate limit state afk-up on irregular seas.

10.5. Summary

Similar to cylinder case, performing Wheeler stnetg on second order sea significantly
underestimates the wave load on jack-up. Howewfopming Wheeler stretching on first order
sea and using the modified hydrodynamic coeffigd(fitst order hydrodynamic coefficients)

produces comparable result to linear extrapolativsecond order sea.

By utilizing linear extrapolation on second ordeasthe responses (reaction baseshear and
overturning moment) from second order iregular isesmaller than responses froffi Stokes
wave. This indicates that utilizind"5tokes is a conservative approach to measurespenses

of jack-up. Moreover, responses from iregular ssaa random process which requires big
number of data to establish result with high coerfick level. In this work, the 3-hour extreme
distribution is predicted from 20-minute extremetdbution. However, it is more reliable to

established 3-hour distribution directly from 3-hasumulation.

The extreme baseshear is possible coming from watle smaller crest that 100-year wave
crest. In this case, the extreme baseshear islygedégcted by the wave length. However, the

extreme overturning moment is greatly affectedigykinematic profile around the surface.
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11. Conclusion and Recomendation for Future Work

11.1. Conclusion

This thesis work deal with the time domain simwatdf structure responses on irregular seas.
The main focuses are the effects of second ordegutar sea on jack-up paltform and the

alternative methods to reduce the computationad.tim the begining, the verification of second

order wave model is performed by comparing theibistion of second order crest with Forisstal

crest distribution. The analysis in continued byewing the effect of second order on single

vertical cylinder with diameter 1m before testedack-up platform.

The first approach to reduce computational timebysreducing the number of harmonic
component. Dividing 3-hour analysis into 9 20-m&stmulations could significantly decreases
the number of component from 10,800 components200lcomponents (when time interval is
0.5 seconds) since smaller duration of simulatiaa greater frequency interval. In addition, a
cut-off frequency is utilized to maintain the enean the wave spectrum when the second order
correction is introduced. When introducing the dfit-frequency, the required harmonic
component is reduced from 1,200 to around 220 coemts (depend on the significant wave
height) which gives additional cut to the computasil time. In addition, cut-off frequency
changes the surface elevation process from brodeéblgorocess to narrowbanded process. All in
all, the crest distribution from second order stefanodel shows a good agreement with

Forisstall distribution which verifies the qualiby second order surface model.

Various extrapolation methods to define the kineérsatlong vertical coordinated are observed.
Utilizing Wheeler stretching on second order waieeg comparable surface horizontal velocity
to surface horizontal velocity of linear extrap@at on second order wave. However, Wheeler
stretching on second order wave underestimate$idhizontal velocity below the surface. To
verify the wave particle kineatics, the horizonpalticle velocity from linear extrapolation on
second order wave model is compared to horizoraeigte velocity from & Stokes wave. In
this case, the second order wave model tends ttupes larger surface horizontal velocity than
5" Stokes wave though the second order model prodsmedier horizontal velocity than™s

Stokes below mean surface.
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In single vertical cylinder tests, the Wheeler tstneng on second order wave greatly
underestimates the static response of the cylif@ethe other hand, linear extrapolation method
on second order wave produces comparable respofsies structure to the responses froth 5
Stokes wave. In addition, performing Wheeler stnetg on first order wave (Gaussian sea) with
utilizing the modified hydrodynamic coefficientsopluces comparable static baseshear to the

static baseshear fronf'Btokes wave though it underestimates the stagctorning moment.

For jack-up case, various altervatives to reduceprdational time in grid system are observed.
It is found that utilizing grid system with x-intexl = 5m and gradually decrease z-interval
produces the smallest computational time with aatape deviation of static and dynamic

response. By applying the second order kinematitg wp to 50m (where the depth is 100m)
can decrease the computational time up to 20% agtieptable deviation of responses. In this
case, the cut on computational depends on thehbdison of calculation points along the z-

coordinate. In addition, only applying the secomdeo kinematics at location close to water

surface increases the magnitude of static and dgnasponses.

It is found that the maximum baseshear and respados®t always occur at the largest surface
elevation. Therefore, the assumption which is miadspool-to-extreme and linear-to-extreme

method is not fully correct. As a consequnce, tegation of extreme responses may be great
and the actual extreme response on the time seagsbe not observed. However, the analysis
for spool-to-extreme and linear-to-extreme meth®anly based on one simulation. Since the
occurence of largest response is a random proeessysis based on statistical comparisson

should be performed.

For jack-up case, the responses from irregular seasompared with the responses from
longterm analysis of the wave. In this case, the&Stokes wave is fitted to wave with 100-year
return period. Similar to the result from singldilegter case, in jack-up case, Wheeler stretching
on second order wave greatly underestimates tlie sésponses while linear extrapolation on
second order wave gives comparable static respdnst®e static responses frorl Stokes
wave. In addition, in irregular seas, the largéatics baseshear could occurs when the jack-up hit
by the wave with smaller crest than 100-year waestdout comparable length to the distance
between jack-up leg. On the other hand, the largidic overturning moment tends to occurs

from wave with crest close to 100-year wave crestesthe static overturning moment is greatly
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affected by length of moment arm and the kinematidile along the surface. Furthermore, from
the observed jack-up, dynamic analysis produces 28fger baseshear and 90% larger
overturning moment than static analysis. This iatlis that performing quasistatic analysis
without including the EDAF could greatly underesites the baseshear and overturning moment
of jack-up in irregular seas.

11.2. Recommendations for Future Work

In this work, to analyze the jack-up responsesteur simulation is divided into 9 differents
20-minute simulation to decrease the harmonic corapb The analysis can be continued to
observed the effect of utilizing equal area andkpdaequal area method to the jack-up
responses. In addition, the effect second ordegular wave on various jack-up natural periods
should be observed. The jack-up natural periodlmarchanged by adjusting the mass on the

jack-up.

It is found from this study that using small z-im& at location close to sea surface and large z-
interval around the sea bottom can decrease thewational time. Therefore, another analysis
can be performed by only using small x-intervaluama the jack-up leg. In addition, several 3-
hour simulation should be performed to verify thealiy of spool-to-extreme and linear-to-

extreme method since the verificantion is baseg onlone simulation in this study.

Due to time limitation and repetition in data, ordl$ 3-hour simulation exists. Therefore, the
distribution of 3-hour extreme response is prediddy raising the distribution of 20-minute
extreme response to the power of 9. The distributdd 20-minute extreme response is
determined by fit a Gumbell distribution to the alaSince the Gumbell distribution is a
asymptotic distribution of extreme, it overestingatbe extreme response at high percentile.
Therefore, raising the distribution of 20-minutetreme response to the power of 9 could
increase the overestimation in the Gumbell. Theegftor future work, it is important to check
distribution of 3-hour extreme response by diretityhg the Gumbell distribution to adequate
number of 3-hour simulation. In addition, it is@isteresting to check the effect of second order
irregular wave on jack-up for short crest sea. Adation of the approach to simulate second
order irregular wave with small number of harmoo@mnponent which is presented in section

4.4 should be performed.
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APPENDIX 1-MATLAB Script for Computational Time Comparisson
close all

clearvars

clc

A=rand(5000);
%matlabpool('open’,4)

%% SIMPLE FOR-LOOP
tic
for i=1:5000
for j=1:5000
B1(i,))=A(i,)"3;
end
end
durl=toc;

%% FOR-LOOP WITH PREALLOCATING MEMORY
tic
B2=zeros(5000);
for i=1:5000
for j=1:5000
B2(i,j)=A(i,)"3;
end
end
dur2=toc;

%% VECTORIZATION
tic

B3=A."3;

dur3=toc;

%% PARALLEL FOR LOOP
tic
parfor i=1:5000
for j=1:5000
B4(i.)=A(.)"3;
end
end
durd=toc;

%% PARALLEL FOR-LOOP WITH PREALLOCATING MEMORY
tic
B5=zeros(5000);
parfor i=1:5000
for j=1:5000
B5(i,j)=Ai.))"3;
end
end
dur5=toc;
%matlabpool('close")

Appendix 178



NTNU
B Norwegian University of Science and Technology Michael Binsar Lubis

APPENDIX 2-Built Matlab Function

Function()/Script.m | Input — Output — Usage

apf() amplitude, frequency, frequency limit, method (1,2,3 or 4)

amplitude, frequency, phase

Determine the amplitude, frequency and phase of harmonic component from choosen
method: 1. Random phase; 2. Random amplitude; 3. Random frequency; 4. All random

BOOTSTRAPING.m Performing bootstrapping for Rayleigh and Forristall crest distribution then taking the lower
and upper limit. numelBOT refer to the number of repetition

bsovtm() horizontal particle velocity, horizontal particle acceleration, z-coordinate, depth, diameter,
condition (1 or 2)

Baseshear, Overturning moment

Calculating baseshear and overturning moment for a single vertical cylinder. The drag and
added mass coefficient is determined by the condition: 1. Linear wave consideration; 2.
Second or higher order consideration

cdfHs() scatter data, significant wave height from data, spectral peak period from data
c-coefficients,d-coefficients,location parameter (M), scale parameter (a), shape parameter
(B),alternative 1 d-coefficient, alternative 2 d-coefficient

Fitting Significant wave height data to 3-parameter weibull distribution (represented by A, a
and B). In addition, fitting a function to find relationship between mean of In (Tp) and Hs
(represented by c-coefficients); and between variance of In (Tp) and Hs (represented by d-
coefficients). Another d-coefficients is presented when d; = 0 and d; = 0.005. In the end, th
90% band of Tp is ploted

constantstretch() wavenumber, wavefreqeuncy, phase, x-coordinate, time instance, velocity potential
amplitude, horizontal particle velocity amplitude, vertical particle velocity amplitude,
horizontal particle acceleration amplitude, vertical particle acceleration amplitude
potential velocity, horizontal particle velocity, vertical particle velocity, horizontal particle
acceleration, vertical particle acceleration

Performing constant stretching to establish kinematics along z-coordinate

contourg() set of significnat wave height, set of spectral peak period, annual probability,c-coefficients,
d-coefficients, location parameter (A), scale parameter (a), shape parameter (B),
Theoreticel probability of point outside the contour line, number of actual data outside the
contour line, set of seastate along the contour line

Creating the environmental contour line based on the desired annual probability then
counting the point outside the contour line

EAP() type of spectrum (‘PM’ or JONSWAP’), significant wave height, spectral peak period, option
for plot (‘yes’ or ‘no’), number of harmonic component, minimum frequency, maximum
frequency, gamma (only used for JONSWAP spectrum)

amplitude, frequency, frequency limit

Performing equal area method to determine the amplitude and frequency from the chosen
spectrum (PM or JONSWAP)

EAPP() type of spectrum (‘PM’ or JONSWAP’), significant wave height, spectral peak period, option
for plot (‘yes’ or ‘no’), natural frequency of structure, number of harmonic component,
density of peaked component, minimum frequency, maximum frequency, gamma (only
used for JONSWAP spectrum)

amplitude, frequency, frequency limit

Performing peaked equal area method for given structure natural frequency to determine
the amplitude and frequency from the chosen spectrum (PM or JONSWAP)

FFT() type of spectrum (‘PM’ or JONSWAP’), significant wave height, spectral peak period, option
for plot (‘yes’ or ‘no’), frequency interval, minimum frequency, maximum frequency, gamma
(only used for JONSWAP spectrum)
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Amplitude, frequency, frequency limit

Performing peaked equidistance frequency method (inverse discrete Fourier transform) to
determine the amplitude and frequency from the chosen spectrum (PM or JONSWAP)

fiitingstokes()

wave height, wave crest, wave period, water depth

wave height

Adjusting the 5™ Stokes wave weight to produce the desired wave crest for certain wave
period and water depth using Fenton’s software

gridwave()

name of girdwave file, x-coordinate, y-coordinate, z-coordinate, time instance, surface
elevation, x-horizontal particle velocity, y-horizontal particle velocity, vertical particle
velocity, x-horizontal particle acceleration, y-horizontal particle acceleration, vertical
particle acceleration

gridwave file

Creating a gridwave file for further analysis is USFOS

HC3H()

annual probability, water depth, c-coefficients, d-coefficients,location parameter (A), scale
parameter (a), shape parameter (B)

number of iteration for wave height, number of iteration for wave crest, wave height, CDF
for wave height result, CDF for wave crest result, summation of joint probability PDF

Determining the 3-hour extreme wave crest and wave height from full long-term analysis

Hcin()

annual probability, water depth, c-coefficients, d-coefficients,location parameter (A), scale
parameter (a), shape parameter (B)

number of iteration for wave height, number of iteration for wave crest, wave height, CDF
for wave height result, CDF for wave crest result, mean of zero-crossing frequency,
summation of joint probability PDF, summation of joint probability PDF x zero-crossing
frequency

Determining the individual wave crest and wave height from full long-term analysis

HsTp()

name of measurement data

significant wave height, spectral peak period without randomization, spectral peak period
with randomization

Extracting the significant wave and spectral peak period (with and without randomization)
from WAM10 data

JONSWAP()

significant wave height, spectral peak period, minimum frequency, maximum frequency,
frequency interval, gamma parameter

. th st
spectrum for given wave frequency, wave frequency, 0" spectral moment, 1" spectral
nd rd th
moment,2" spectral moment, 3 spectral moment, 4™ spectral moment

Establishing JONSWAP spectrum and its n-th spectral moment

kinematictest.m

Extracting the horizontal velocity from Fenton’s software result and compare it with
irregular sea model. In addition, the baseshear and overturning moment are determined

linkinematic()

amplitude, frequency, phase, surface elevation, x-coordinate, time instance, number of z-
coordinate (considered to be revised), depth, method (1,2 or 3)

horizontal particle velocity, vertical particle velocity, horiznontal particle acceleration,
vertical particle acceleration, z-coordinate, potential velocity

Determining the kinematics of first order sea based on the choosen method: 1.Wheeler
stretching; 2. Linear extrapolation; 3. Constant stretching

linsurface() amplitude, frequency, phase, x-coordinate, time instance, water depth
surface elevation
Establishing the first order surface elevation
metocean.m Main script for performing metocean analysis
perex() water depth, seastate along the contour line, wave crest from long-term analysis, wave

height from long-term ananlysis

percentile of long-term analysis on the worst seastate CDF, worst seastate based on wave
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height, worst seastate based on wave crest, 90% wave crest on the worst sea state, 90%
wave height on the worst sea state
Determining the worst seastate along the contour line including the 90% value on the worst

sea state
plotfenton.m Plot the surface elevation and horizontal particle velocity of Fenton’s software
PM() significant wave height, spectral peak period, minimum frequency, maximum frequency,

frequency interval

spectrum for given wave frequency, wave frequency, o spectral moment, 1% spectral
moment,2nd spectral moment, 3™ spectral moment, 4" spectral moment

Establishing PM spectrum and its n-th spectral moment

gprob() annual probability, c-coefficients, d-coefficients,

significant wave height for desired annual probability, mean spectral peak period of
significant wave height for desired annual probability, 5% spectral peak period of significant
wave height for desired annual probability, 95% spectral peak period of significant wave
height for desired annual probability

Determining the significant wave height for the desired annual probability and its mean, 5%
and 95% spectral peak period

scatdiag() set of significant wave height, set of spectral peak period
scatter diagram
Creating a scatter diagram

seckinematic() amplitude of first order wave, amplitude of second order wave, wave frequency, wave
number, phase, second order surface, Dmin, Dplus, wave number of difference term, wave
number of sum term, wave frequency of difference term, wave frequency of sum term, x-
coordinate, number of z-coordinate (considered to be revised), time instance, water depth,
lower point of z-coordinate, method (1 or 2), spectral peak frequency, multiplication of
wave frequency, PSImin, PSlplus, plot option (1 or 0)

horizontal particle velocity, vertical particle velocity, horiznontal particle acceleration,
vertical particle acceleration, z-coordinate, potential velocity

Determining the kinematics of second order sea based on the choosen method: 1.Wheeler
stretching; 2. Linear extrapolation

secspect() amplitude, frequency, frequency limit, water depth

spectrum for given wave frequency for difference term, spectrum for given wave frequency
for sum term, o™ spectral moment

Determining the second order spectrum from second order correction term

secstansberg() wave number, wave frequency, phase, x-coordinate, time instance, PSImin, PSiplus,
amplitude of surface difference term, amplitude of surface sum term, amplitude of
horizontal velocity difference term, amplitude of horizontal velocity sum term, amplitude of
vertical velocity difference term, amplitude of vertical velocity sum term, amplitude of
horizontal acceleration difference term, amplitude of horizontal acceleration sum term,
amplitude of vertical acceleration difference term, amplitude of vertical acceleration sum
term, amplitude of first order velocity potential, amplitude of first order horizontal velocity,
amplitude of first order vertical velocity, amplitude of first order horizontal acceleration,
amplitude of first order vertical acceleration, amplitude of horizontal velocity derivative
term, amplitude of horizontal acceleration derivative term, amplitude of potential velocity
difference term, amplitude of vertical velocity derivative term, amplitude of vertical
acceleration derivative term

second order velocity potential, second order horizontal velocity, second order vertical
velocity, second order horizontal acceleration, second order vertical acceleration, horizontal
velocity difference term, horizontal velocity sum term, horizontal velocity derivative term,
horizontal acceleration difference term, horizontal acceleration sum term, horizontal
acceleration derivative term
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Performing linear extrapolation (presented by Stansberg) for second order wave kinematics

secsurface()

wave amplitude, frequency, frequency limit, phase, water depth, lower point for kinematics
calculation, x-coordinate, number of z-coordinate (considered to be revised), time instance,
method (1 or 2), spectral peak frequency, velocity condition (1 or 0), plot option (1 or 0),
first order surface

second order surface, second order surface correction, second order horizontal velocity,
second order vertical velocity, second order horizontal acceleration, second order vertical
acceleration, z-coordinate, second order potential velocity, surface correction difference
term, surface corretion sum term

Calculating second order surface and its wave kinematics based on the choosen method:
1.Wheeler stretching; 2. Linear extrapolation. When velocity condition is set as 0, the
second order kinematics is not calculated. Lower point of kinematic is used when
performing combination of first and second order kinematic along z-coordinate

stansberg()

wave number, wave frequency, phase, x-coordinate, time instance, amplitude of first order
velocity potential, amplitude of first order horizontal velocity, amplitude of first order
vertical velocity, amplitude of first order horizontal acceleration, amplitude of first order
vertical acceleration, amplitude of horizontal velocity derivative term, amplitude of
horizontal acceleration derivative term, amplitude of potential velocity difference term,
amplitude of vertical velocity derivative term, amplitude of vertical acceleration derivative
term

First order velocity potential, first order horizontal velocity, first order vertical velocity, first
order horizontal acceleration, first order vertical accelaration

Performing linear extrapolation (presented by Stansberg) for first order wave

statwave()

time instance, surface elevation

time of maximum surface elevation, positive maximum surface elevation, sorted maximum
surface elevation, CDF of positive maximum surface elevation

Determining the positive maximum surface elevation from time series

stokesresult.m

Extracting largest surface elevation from time series of surface elevation, fitting the 5
Stokes wave to produce the same wave crest, comparing the kinematics and then
calculating the baseshear and overturning moment

surfacekin()

kinematic

surface kinematic

Extracting the kinematic on surface elevation from kinematics along z-coordinate

theorydist.m

Establishing Rayleigh and Forristall crest distribution

wavefreq()

wave number, water depth

wave frequency, number of iteration

Establishing wave frequency from given wave number

wavenum()

wave frequency, water depth

wave humber

Establishing wave number from given wave frequency

wheeler()

amplitude, wave number, wave frequency, phase, surface elevation, x-coordinate, z-
coordinate, time instance, water depth

velocity potential, horizontal velocity, vertical velocity, horizontal acceleration, vertical
acceleration, pressure

Performing wheeler stretching to determine the kinematics along z-coordinate

zerocross()

time instance, surface elevation

time of maximum zero-crossing surface elevation, maximum zero-crossing surface
elevation, sorted maximum zero-crossing surface elevation, CDF of positive maximum zero-
crossing surface elevation

Determining the maximum zero-crossing surface elevation from time series
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APPENDIX 3-CDF of First Order Surface Maxima

Equidistance Frequency, Determinisitic Amplitude
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APPENDIX 4-CDF of First Order Surface Maxima
Equidistance Frequency, Random Amplitude
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APPENDIX 5-CDF of 20-Minute Largest First Order Surface Maxima :
Equidistance Frequency, Deterministic Amplitude

Distribution of 20-Minutes Largest Maximum
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APPENDIX 6-CDF of 20-Minute Largest First Order Surface Maxima :
Equidistance Frequency, Random Amplitude

Distribution of 20-Minutes Largest Maximum
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APPENDIX 7- CDF of 3-Hour Largest First Order Surface Maxima :
Equidistance Frequency, Deterministic Amplitude

Distribution of 3-Hour Largest Maximum
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APPENDIX 8-CDF of 3-Hour Largest First Order Surface Maxima
Equidistance Frequency, Random Amplitude
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APPENDIX 9-CDF of 3-Hour Largest First Order Surface Maxima
Random Frequency, Deterministic Amplitude (Number of component = 10800)
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APPENDIX 10-CDF of 3-Hour Largest First Order Surface Maxima

Time Series Partition, deterministic Amplitude

Distribution of 3-Hour Largest Maximum
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APPENDIX 11-CDF of 3-Hour Largest First Order Surface Maxima

Partition of Time Series, Random Amplitude
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APPENDIX 12-CDF of 3-Hour Largest First Order Surface Maxima
Random Frequency, Deterministic Amplitude (Reducing Number of Component)
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APPENDIX 13-CDF of 3-Hour Largest First Order Surface Maxima

Random Frequency, Random Amplitude
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Distribution of 3-Hour Largest Maximum Distribution of 3-Hour Largest Maximum
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APPENDIX 14-CDF of 3-Hour Largest First Order Surface Maxima

Equal Area, Deterministic Amplitude
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APPENDIX 15-CDF of 3-Hour Largest First Order Surface Maxima
Equal Area, Random Amplitude

Distribution of 3-Hour Largest Maximum
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APPENDIX 16-CDF of 3-Hour Second Order Surface Largest Maxima

Partition of Time Series , Deterministic Amplitude without Cut-Off frequency
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APPENDIX 17-CDF of 3-Hour Second Order Surface Largest Maxima
Partition of Time Series, Random Amplitude without Cut-Off frequency
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APPENDIX 18-CDF of 3-Hour Second Order Surface Largest Maxima
Partition of Time Series, Deterministic Amplitude with Cut-Off frequency
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APPENDIX 19-CDF of Second Order Surface Maxima

Partition Time Series, Random Amplitude with Cut-off Frequency
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APPENDIX 20-Distribution of Second Order Largest Maxima
Equidistance Frequency, Deterministic Amplitude
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3-Hour Largest First Order Maximum 3-Hour Largest Second Order Maximum
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3-Hour Largest First Order Maximum 3-Hour Largest Second Order Maximum
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APPENDIX 21-Distribution of Second Order Largest Maxima
Partition of Time Series, Random Amplitude
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3-Hour Largest First Order Maximum 3-Hour Largest Second Order Maximum
1 ‘ 1 ‘ - Y
=
0.9+ B 0.9+ B
0.8+ B 0.8+ B
0.7+ B 0.7+ B
0.6 B 0.6 B
£ 05) 1 £ 05) 1
r g
0.4+ g 0.4} 4
0.3+ B 0.3+ B
0.2l e  First Order 0.2l e  Second Order
. — Rayleigh(9%1200/T2) ' Forisstall(9x1200/T2)
0.1} —— Lower Limit Bootstrapping | 0.1} —— Lower Limit Bootstrapping |
—— Upper Limit Bootstrapping ) —— Upper Limit Bootstrapping
0 = I I I 0 Ll I I I I
10 16 18 20 22 10 12 18 20 22 24 26 28
ZIm ZIm
3-Hour Largest First Order Maximum 3-Hour Largest Second Order Maximum
1 T — 1 T T - T
R
0.9- B 0.9- B
0.8- b 0.8- b
0.7r B 0.7r B
0.6 B 0.6 B
& 05f 1 & 05f 1
g g
0.4r B 0.4F 4
0.3r B 0.3r B
0.2k e First Order i 0.2k e Second Order i
— Raylei gh(9x1200/Tz) Forisstall(9x1200/T2)
0.1r —— Lower Limit Bootstrapping H 0.1r —— Lower Limit Bootstrapping H
— Upper Limit Bootstrapping — Upper Limit Bootstrapping
0 L Il L Il 0 L L L
10 16 18 20 22 24 10 20 22 24 26
ZIm ZIm

Appendix 205



NTNU

Norwegian University of Science and Technology Michael Binsar Lubis
3-Hour Largest First Order Maximum 3-Hour Largest Second Order Maximum
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APPENDIX 22- Horizontal Velocity
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APPENDIX 27- Single Cyllinder Static Base Shear CDF

Partition of Time Series, Random Amplitude
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APPENDIX 28- Single Cyllinder Static Overturning Moment CDF

Partition of Time Series, Random Amplitude
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