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for 
 

Stud. Techn. Michael Lubis 
 
 

Time-domain simulation of marine structures in irregular seas 
Tidsplananalyse av marine konstruksjoner i iregulær sjø   

  
For dynamically sensitive marine structures or marine structures subjected to large 
displacements the extreme response is often determined on the basis of short-term time 
domain simulation of extreme sea states using the environmental contour line method.   
A challenge with time-domain analysis is the representation of the sea spectrum. For linear 
analysis and small displacements is common to use fast Fourier transform  (FFT) of the sea 
spectrum. In order to avoid repetition of the wave history several thousand of uniformly 
spaced wave components may be needed. For nonlinear time domain simulations the 
computational requirements of FFT will become prohibitive. An alternative to FFT is to use a 
few wave components based on equal area principle. This implies that emphasis is placed on 
the energy rich parts of the wave spectrum.  The accuracy of this method must be 
demonstrated.  Using the computer program USFOS it was shown in a previous master thesis 
work that this method is quite good for floating structures with eigenperiods far away from the 
energy rich periods of the wave spectrum, but less accurate for structures with eigenperiods in 
the range of 4-5 seconds. The results depend also on whether the wave forces are mass 
dominated or drag dominated. It has been suggested that the accuracy may be improved by 
increasing the subdivision of the wave spectrum in the vicinity of the structure eigenperiod(s).  
 
In USFOS the built-in algorithm for realisation of irregular seas states is based upon linear 
wave theory and extrapolation of wave kinematics to the instantaneous sea surface (Wheeler 
stretching). Improved accuracy is obtained by using 2nd order wave theory for surface 
elevation Wheeler stretching of linear wave kinematics to the surface, and the user may 
specify the frequency components of the discretised wave spectrum in the input. Most correct 
is to base wave kinematics completely on 2nd order theory. Eivind Bækkedal implemented this 
in a previous master thesis work.  Rigorous calculation according to 2nd order theory are very 
time consuming and methods to reduce computation time are highly requested   An alternative 
to perform calculations “on the fly” is  to represent pre-calculated wave kinematics on a 
relatively coarse 3D grid and interpolation to actual structure coordinates.  The grid may be 
particularly coarse at large depth. Another alternative may be to use 2nd order theory only 
close to sea surface or for a few members. The purpose of the project and master thesis work 
is to investigate various options to save CPU consumption in time domain simulations in 
nonlinear, irregular seas. 
  
The following topics should be addressed:  
                              
1. Verify the second order simulation of the surface by comparing the empirical distribution 

of global crest heights (global crest height = largest crest between zero-up-crossings) with 
the crest height distribution suggested by Forristall (2000).  
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Validate the simulation of second order kinematics by comparing with the work of others 
in the literature. Do also compare the calculated vertical profile of the horizontal particle 
speed under wave crests by the results of Stokes 5th wave profile with the same crest 
height and wave period as the simulated wave.   
 

2. Perform static and dynamic time domain analysis of a jack-up platform. Select a severe 
sea state (for the further analysis, it is convenient if the worst sea state along the 100-year 
contour is selected) and compare the quasi-static results obtained by a full second order 
analysis with the corresponding quasi-static results obtained using a Stokes 5th profile for 
some selected waves of the simulation.  
 

3. Carry out a sufficient number of second order analyses for establishing the distribution 
function for the 3-hour maximum quasi-static responses with some confidence. Assume 
that the 100-year quasi-static responses can be estimated by the 90-95% value of the 3-
hour extreme value distribution.  
 
Estimate the 100-year crest height and the associated mean period, and estimate the 100-
year quasi-static response using the Stokes 5th profile. Compare the results with those 
obtained from second order simulation.  
 

4. Conduct a full dynamic second order analysis for the same sea state as above. Is it possible 
in practice to perform 30 full 3-hour analysis for the purpose of obtaining a reasonable 
sample of 3-hour dynamic extremes, either as full 3-hour simulations or by representing a 
3-hour simulation by six 30-minutes simulations?   
 

5. The rest of the thesis is devoted to discussing and testing various approximate ways for 
doing a second order analysis of the selected jack-up. The following approaches should be 
considered: 

 
I. 2nd order theory in upper layers - linear theory below a certain depth (which is to 

be varied) 
II.  Linear theory to some point before the worst wave groups.  

III.  Spool to extreme wave groups – the time before group maximum crest height to 
be varied. 

IV.  Use of pre-calculated wave kinematics on a grid 
 

The accuracy and time consumption shall be presented for the various methods.  
 
6. Conclusions and recommendation for further work 
 
Literature studies of specific topics relevant to the thesis work may be included. 
 
The work scope may prove to be larger than initially anticipated.  Subject to approval from the 
supervisors, topics may be deleted from the list above or may be reduced in extent if the work 
becomes more extensive than anticipated. 
 
In the thesis the candidate shall present his personal contribution to the resolution of problems 
within the scope of the thesis work. 
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Theories and conclusions should be based on mathematical derivations and/or logic reasoning 
identifying the various steps in the deduction. 
 
The candidate should utilise the existing possibilities for obtaining relevant literature. 
 
Thesis format 
The thesis should be organised in a rational manner to give a clear exposition of results, 
assessments, and conclusions.  The text should be brief and to the point, with a clear language.  
Telegraphic language should be avoided. 
 
The thesis shall contain the following elements:  A text defining the scope, preface, list of 
contents, summary, main body of thesis, conclusions with recommendations for further work, list 
of symbols and acronyms, references and (optional) appendices.  All figures, tables and 
equations shall be numerated. 
 
The supervisors may require that the candidate, in an early stage of the work, presents a written 
plan for the completion of the work.  The plan should include a budget for the use of computer 
and laboratory resources, which will be charged to the department.  Overruns shall be reported to 
the supervisors. 
 
The original contribution of the candidate and material taken from other sources shall be clearly 
defined.  Work from other sources shall be properly referenced using an acknowledged 
referencing system. 
 
The report shall be submitted in two copies: 
 - Signed by the candidate 
 - The text defining the scope included 
 - In bound volume(s) 

- Drawings and/or computer prints which cannot be bound should be organised in a separate 
folder. 

- The report shall also be submitted in pdf format along with essential input files for 
computer analysis, spreadsheets, MATLAB files etc in digital format. 

 
Ownership 
NTNU has according to the present rules the ownership of the thesis. Any use of the thesis has to be 
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Preface 

This report is the result of a master thesis work conducted at the Department of Marine 

Technology at the Norwegian University of Science and Technology. The scope of work was 

formulated by Prof. Jørgen Amdahl and Prof. Sverre Haver. 

This report deals with time domain simulation of a jack-up paltform exposed to second order 

irregular waves. The main focus is to observe the effect of second order irregular waves on jack-

up paltform and investigate the alternative methods to reduce computational time. The validity of 

second order model is checked by comparing the surface and kinematics to theoretical value and 

previous work. In this work, a Matlab program also is built to establish both surface elevation 

and particle kinematics of second order irregular waves. In addition, the sea surface and wave 

kinematics are transferred as grid file from MATLAB to USFOS to calculate the jack-up 

response.  

I would like to thank Professor Jørgen Amdahl and Professor Sverre Haver for their great help 

and guidance during the thesis work. I also would like to thank Mr. Bjørn Tore Bach for 

allowing me to use multiple computers to run the analysis.  

Trondheim, June 8, 2016 

 

                                                   

Michael Binsar Lubis 
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Abstract 

For dynamically sensitive structures or marine structure sujected to large displacements (such as 

jack-up paltform) the extreme response is often determined on the basis of short term time 

domain simulation of extreme sea states using environmental contour line method. A challenge 

with time-domain simulation is the representation of the sea spectrum. For first order wave 

(Gaussian seas), there is no big obstacle to performs a complete 3-hour simulation. However, the 

computational requirements becomes prohibitive for second order irregular waves.  The purpose 

of this report is to observe the effect of second order irregular waves on jack-up platform and 

also contribute to developement and verification of strategies on decreasing the computational 

time for time domain analysis. 

This report mainly consists of seven parts. First part consists of the review about wave theory, 

the probabilistic model of ocean waves, methods of establishing kinematics, methods for 

simulating a sea spectrum and method for calculating response of structure. In addition, some 

strategies for reducing computational time also presented.  

The second part consists of explanation about the numerical. In the third part, a verification study 

is performed. The second order model is compared with theoretical wave distribution and 5th 

Stokes wave. At the end of third part, the static analysis of second order irregular seas on single 

vertical cylinder with small diameter is performed. The four part deals with strategies to reduce 

time for calculating time for second order wave while the fourth part contains the metocean 

analysis. The last part presents the effect of second order irregular wave on jack-up platform. 

From the study, it is found that for second order wave, Wheeler method gives underestimation 

for wave horizontal velocity below the sea surface. Compared to 5th Stokes, linear extrapolation 

produces greater surface horizontal velocity though it produces smaller horizontal velocity below 

mean sea surface. For jack-up case and Ultimate Limit State purposes, the largest static 

baseshear could come from wave which has crest smaller than 100-year wave crest but has 

comparable wave length to distance between jack-up leg. However, the largest static overturning 

moment tend to occurs from wave with crest close to the 100-year wave crest. In addition, 

dynamic analysis of the observed jack-up produces 20% larger baseshear and 90% larger 

oveturning moment than static anaysis.  
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1. Introduction 

The sea surface is a random phenomenom. It is irregular and always changes in time. Finding the 

mathematical expression to represent the exact condition of sea surface is very difficult and 

cumbersome. In practice, the condition of certain sea is usually represented by a set of significant 

wave height and spectral peak period. For ultimate limit state purposes, the extreme sea 

condition and its return period can be predicted from probabilistic model by utilizing the set of 

significant wave height and spectral peak period. Knowing the extreme sea condition, the 

corresponding wave load can be calculated by a certain wave theory to find the responses of a 

marine structure. 

For quasi-static method, the static responses of structure can be determined by finding the wave 

load corresponding to the most probable highest wave in certain return period. However, in 

reality, the responses of structure are also affected by the period of load which is based on the 

wave period for wave load case. When the largest natural period of structure is located close the 

most energetic wave period, it is not enough to only analyze the static response of the structure. 

The dynamic responses of the structure should be analyzed in time-domain where the equation of 

motion is solved each time step. 

A main challenge with time-domain analysis is the representation of the sea spectrum. A sea 

spectrum is characterized by a combination of significant wave height and spectral peak period. 

One combination of significant wave height and spectral peak period can be assumed valid for 3-

hour. Therefore, a complete 3-hour history of sea surface elevation is required to find the highest 

surface elevation. For linear representation of wave, it is common to use inverse Fast Fourier 

Transform (FFT) of the sea spectrum. In order to avoid repetition of 3-hour wave history, several 

thousand of uniformly spaced wave components may be needed. Each time step will include N 

wave components to compute the wave kinematic.  For simulations of second order sea with the 

associated kinematics, the computational time requirements become prohibitive as it needs to 

include N2 wave components in each time step.  

At previous master project by Lubis [27] and master thesis by Bækkedal [6], it is shown that by 

utilizing various alternative methods such as randomize the representation of wave frequency in 
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certain frequency interval or using equal are method can decrease the required wave components. 

As a result, the computational time reduces significantly. However, it is found that the simulation 

time is still rigorous. In his project, Lubis [27] showed that some alternatives can be applied to 

reduce the computational time in extent for single vertical cylinder case. This method should be 

tested for real structure. 

This report addresses the the static and dynamic responses of the jack-up platform when the 

second order irregular wave is applied to the structure. However, a verification study is 

performed for single vertical cylinder. The result from single vertical cylinder is compared to 

another analysis of second order wave by Evardsen [12]. In addition, a revisit and verification of 

previous work by Bækkedal [6] and Lubis [27] to reduce the required number of harmonic 

component are also performed and the tested into jack-up. The result of various alternatives to 

reduce the computational time in extent for jack-up platform is presented. In the end, 3-hour 

simulations of jack-up in second order irregular seas are performed. A MATLAB algorithm to 

calculate second order surface and kinematics in irregular sea is created and utilized in this work 

while USFOS is used to calculate the response of the jack-up platform. 



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Ocean Wave Theories  3 

 

 

2. Ocean Wave Theories 

This section reviews the existing theories for establishing the wave particle kinematics both in 

regular and irregular sea condition. In regular sea condition, the wave is modeled by a single 

harmonic component with certain amplitude and frequency while irregular sea condition means 

combination of number hamonic component with various amplitudes and frequencies. When the 

wave length is much larger than the structure dimensions, the forces can be calculated directly 

from the wave particle kinematic of undisturbed wave field. In this case, the quality of wave 

particle kinematics determines the accuracy of the applied load in the structure.  

In this section, the governing equation and method to find its solution is presented first. 

Afterwards, the linear wave theory (first order wave) in regular and irregular condition is 

presented. The next part consists of second order wave theory on regular and irregular wave 

field. The rest of this section reviews higher order wave theories and methods to find the wave 

particle kinematic from mean surface level to the exact surface. 

2.1. Governing Equations 

The seawater is assumed incompressible and inviscid. The fluid velocity vector \GH(}, ~, �, �) =1[� , [� , [�4 at time t and at coordinate x, y, and z can be described by gradient of a velocity 

potential ϕ. This means that: 

 1[� , [� , [�4 = ��x�} , �x�~ , �x�� � (2.1) 

The velocity potential is introduced because of mathematical purposes and does not have any 

physical meaning. To satisfy the irrotational condition, ∇ × VGGH is equal to zero in every location of 

the fluid. In addition, since the water is incompressible then ∇. VGGH is also equal to zero in every 

location in the fluid. As consequence, the velocity potential has to satisfy Laplace equation: 

 �. \GH = ��x�}� + ��x�~� + ��x��� = ��x = 0 (2.2) 

Where: seabed (–d) ≤ z ≤ surface elevation (2); and -∞≤ x, y ≤ ∞. 
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By introducing some boundary conditions, the velocity potential can be found. Figure 2.1 

describes the boundary condition, coordinate system and some used parameters. 

 

 

 

 

 

 

Figure 2.1 Coordinate System 

2.1.1. Bottom boundary condition (BCSB) 

To satisfy the impermeability condition of seabed, boundary condition at seabed (z = - d) states 

that the velocity normal to the boundary must be equal to zero. Therefore, �x. FGH � 0. This 

implies that for flat surface: 

 �x�� � 0;      � � �� (2.3) 

2.1.2. Dynamic free-surface boundary condition 

The water pressure at the free surface is equal to the atmospheric pressure (po), then the dynamic 

free-surface boundary conditon for two-dimentional wave: 

 =2 � �x�� � 12 ���x�}�� � ��x�~�� � ��x�� ����������������������
�J���f�D��

� IJ � IJ  ;  � � 2�}, ~, �� (2.4) 

2.1.3. Kinematic free-surface boundary condition 

Based on the fact that the particles of water on free surface have to stay on the free surface, the 

vertical particle velocity has to be equal to the rate of change of water surface elevations.  

 �2�� � [� �2�} � [� �2�~���������
�J���f�D��

� [�; � � 2�}, ~, �� (2.5) 

BCSB 

BCFS 

2 

d 

λ 

z 
y 

x 
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2.1.4. Combined free surface boundary condition (BCFS) 

The combination of dynamic and kinematic boundary condition gives [36]: 

��x��� + = [� + 12 � ��� + [� ��} + [� ��~� ��GHx�� + �[� ��x�}�� + [� ��x�~���������������������������������������J���f�D��
= 0; 

� = 2(}, ~, �) 

(2.6) 

2.2. Method of Solution 

To solve the boundary value problem, the perturbation scheme method is applied. This method 

assumes potential velocity (ϕ) and water surface elevation (2) as a convergent power series with 

small parameter (e), such as the wave steepness (( j⁄ ). In this way, the velocity potential and 

surface elevation can be expressed as [19], [36]: 

 x(}, ~, �, �; e) = x��(}, ~, �, �) e + x��(}, ~, �, �) e� + x��(}, ~, �, �) e� … �1ef��4 = x�(}, ~, �, �; e) + x�(}, ~, �, �; e) + x�(}, ~, �, �; e) … �(xf��) (2.7) 

 2(}, ~, �; e) = 2�� (}, ~, �) e + 2�� (}, ~, �) e� + 2�� (}, ~, �) e� … �1ef��4 

 = 2�(}, ~, �; e) + 2�(}, ~, �; e) + 2�(}, ~, �; e) … �(2f��) 
(2.8) 

Where λ and H are wavelength and wave height respectively. In equation 2.7 and 2.8, xf and 2f 
respectively refer to the i-th order of potential velocity and water surface elevation. Substituting 

equation 2.7 to equation 2.2 gives: 

 ∇�x = ∇�x� + ∇�x� + ∇�x� + ⋯ (2.9) 

In addition, introducing equation (2.7) to equation (2.3) gives: 

 �x��� = 0, �x��� = 0, …  ; �� � = −� (2.10) 

The combined free surface boundary condition is expressed as a Maclaurin series of the mean 

water level condition.  As the consequence, the velocity potential at free surface is expressed as 

Maclaurin series: 

 x(}, ~, 2, �) = x(}, ~, 0, �) + 2 �x(}, ~, 0, �)�� + 2�2 ��x(}, ~, 0, �)��� + ⋯ (2.11) 
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2.3. First-Order Pertubation (Linear Wave Theory) 

The parameter e in equation 2.7 and 2.8 can be related to wave steepness (( j⁄ ). When wave 

steepness is small enough, the linear wave theory is valid. In this case, the first order error of 

water surface elevation and velocity potential is neglected. The velocity potential is only 

described by the first term of its power series. In addition, the non-linear term from equation 2.4 

until 2.6 is neglected. Laplace equation, bottom boundary condition, dynamic free-surface 

boundary condition and combined free-surface boundary condition equation respectively 

becomes [36]: 

 ∇�x� = 0   ; −d ≤ � ≤ 0, ~ ≤ ∞ (2.12) 

 �x��� = 0;      � = −� (2.13) 

 =2� + �x��� = 0;       � = 0 (2.14) 

 ��x���� + = �x��� = 0;       � = 0 (2.15) 

The equations 2.12 until 2.15 are solved in regular wave condition. However, the result can be 

used to describe the irregular wave condition. 

2.3.1. First order solution for regular wave conditon 

The first order solution is acquired by assuming a horizontal sea bottom and free surface of 

infinite horizontal extent. This solution is known as linear wave theory and sometimes called 

Airy theory since it was first presented by Airy in 1841 [14]. The velocity potential is assumed as 

a product of several functions which each function only depends on one independent variable. 

The assumed velocity potential form is [19]: 

 x� = 7(�) S¢F (C(} �£S(�) + ~ S¢F(�)) − T�) (2.16) 

Where T is angular frequency [rad/s] and equal to 2π/T, k is wave number and equal to 2π/λ, and 

θ is the wave propagation direction relative to x-axis. T is the wave period. If the wave is 

assumed as two-dimentional wave which is valid for long-crested wave, and the assumed 

velocity potential is assigned into the boundary condition, the form of velocity potential that 

satisfies Laplace equation [36]: 
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 x� = = 2� �£Sℎ (C(� + �))T �£Sℎ (C�) S¢F (C} − T�) (2.17) 

2� is the amplitude of water surface elevation. The form of first order water surface elevation: 

 2 (�) =  2�� �£S (C} − T�) (2.18) 

From equation 2.16, the velocity potential oscilates with angular frequency (T). As a 

consequence, equation 2.14 can be rewritten as: 

 −T�x� + = �x�� = 0;       � = 0 (2.19) 

From equation 2.18, it is shown that there is connection between wave number (k) and angular 

frequency (T). This connection is presented in dipersion relation [14]: 

 T� = =C tanh (C�) (2.20) 

For large water depth, 6¢3§→© ��Fℎ(C�) = 1 then the dispersion relation becomes T� = = C. 
The first order particle wave kinematics can be calculated from velocity potential as mentioned 

in equation 2.1: 

 [�,� = �x��} = =C2�� �£Sℎ (C(� + �))T �£Sℎ (C�) �£S (C} − T�) (2.21) 

 [�,� = �x��� = =C2�� S¢Fℎ (C(� + �))T �£Sℎ (C�) S¢F (C} − T�) (2.22) 

 ��,� = ��x��}�� = =C2�� �£Sℎ (C(� + �))�£Sℎ (C�) S¢F (C} − T�) (2.23) 

 ��,� = ��x����� = −=C2�� S¢Fℎ (C(� + �))�£Sℎ (C�) �£S(C} − T�) (2.24) 

Where [�,�, [�,�, ��,� and ��,� are particle velocities in x and z-direction, and acceleraton in x 

and z-direction respectively. The phase different between particle velocity and aceleration in 

certain direction is π/2. Therefore, when [�,� has maximum value, ��,� is equal to zero and 

likewise. The first order hydrodynamic pressure p1 is: 
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 I� = −s �x��� = s=2�� �£Sℎ (C(� + �))�£Sℎ (C�) �£S(C} − T�) (2.25) 

For three-dimention wave which is valid for short crested wave, the first order particle kinematic 

becomes: 

 [�,� = �x��} = =C �£S(�) 2�� �£Sℎ (C(� + �))T �£Sℎ (C�) �£S(C(} �£S(�) + ~ S¢F(�)) − T�) (2.26) 

 [�,� = �x��~ = =C �£S(�) 2�� �£Sℎ (C(� + �))T �£Sℎ (C�) �£S(C(} �£S(�) + ~ S¢F(�)) − T�) (2.27) 

 [�,� = �x��� = =C2�� S¢Fℎ (C(� + �))T �£Sℎ (C�) S¢F(C(} �£S(�) + ~ S¢F(�)) − T�) (2.28) 

 ��,� = ��x��}�� = =C �£S(�) 2�� �£Sℎ (C(� + �))�£Sℎ (C�) S¢F(C(} �£S(�) + ~ S¢F(�)) − T�) (2.29) 

 ��,� = ��x��~�� = =C �£S(�) 2�� �£Sℎ (C(� + �))�£Sℎ (C�) S¢F(C(} �£S(�) + ~ S¢F(�)) − T�) (2.30) 

 ��,� = ��x����� = −=C2�� S¢Fℎ (C(� + �))�£Sℎ (C�) �£S(C(} �£S(�) + ~ S¢F(�)) − T�) (2.31) 

2.3.2. First order solution for irregular wave conditon 

In reality, the shape of wave is irregular. Since the first order solution for regular wave is a linear 

system then the solution for irregular wave can be found by superpositioning regular wave 

solution. The superposition start by introducing phase angle (ª) for each regular wave 

component. Therefore, the velocity potential and surface elevation for two-dimension linear 

irregeular wave [36]: 

 x� = x�,� + x�,� + x�,� + ⋯ = « x�,f
¬
f  (2.32) 

 2�(�) = 2�,� + 2�,� + 2�,� + ⋯ = « 2�,f
¬
f =  « 2��,fcos (Cf} − Tf� + ªf)¬

f  (2.33) 

Where i is the number of first order regular wave component. Each 2�,f has its own amplitude 

(2��,f), wave number (ki), wave frequency (Tf) and phase angle (εi). Similar to velocity potential, 

the particle kinematics for linear irregular wave are also expressed as superposition of regular 

linear potential velocity. For two-dimension wave: 
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 [�,� = « �x�,f�}¬
f = « =Cf2��,f �£Sℎ (Cf(� + �))Tf�£Sℎ (Cf�) �£S (Cf} − Tf� + ªf)¬

f  (2.34) 

 [�,� = « �x�,f��¬
f = « =Cf2��,f S¢Fℎ (Cf(� + �))Tf  �£Sℎ (Cf�) S¢F (Cf} − Tf� + ªf)¬

f  (2.35) 

 ��,� = « ��x�,f�}��¬
f = « =Cf2��,f �£Sℎ (Cf(� + �))�£Sℎ (Cf�) S¢F (Cf} − Tf� + ªf)¬

f  (2.36) 

 ��,� = « ��x�,f����¬
f = − « =Cf2��,f S¢Fℎ (Cf(� + �))�£Sℎ (Cf�) �£S  (Cf} − Tf� + ªf)¬

f  (2.37) 

A wave spectrum represents the irregular wave condition. The linear wave components can be 

calculated from wave spectrum. The method of calculating linear wave component from 

spectrum is presented in section 4.2. For three dimension wave, the linear irregular wave 

kinematics: 

[�,� = « =Cf �£S(�f) 2��,f  �£Sℎ1Cf(� + �)4Tf �£Sℎ(Cf�) �£S(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.38) 

[�,� = « =Cf S¢F(�f) 2��,f  �£Sℎ1Cf(� + �)4Tf �£Sℎ(Cf�) �£S(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.39) 

[�,� = « =Cf  2��,f  S¢Fℎ °C±(� + �)²Tf �£Sℎ(Cf�) S¢F(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.40) 

��,� = « =Cf �£S(�f) 2��,f  �£Sℎ1Cf(� + �)4�£Sℎ(Cf�) S¢F(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.41) 

��,� = « =Cf S¢F(�f) 2��,f  �£Sℎ1Cf(� + �)4�£Sℎ(Cf�) S¢F(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.42) 

��,� = − « =Cf  2��,f  S¢Fℎ1Cf(� + �)4�£Sℎ(Cf�) �£S(Cf(} �£S(�f) + ~ S¢F(�f)) − Tf� +¬
f ªf) (2.43) 

When realizing linear wave component from wave spectrum, there is an issue to determine first 

order kinematics above mean water surface. Johannessen [23] shows that unless the amplitudes 

of harmonic component in the upper part decay exponentially, the horizontal velocity from first 
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order component is not defined above mean water level. In this case, some approximation 

method is used. The approximation method is presented in section 2.5. 

2.4. Second Order Perturbation 

Equation 2.4, 2.5 and 2.6 contain non-linear term. First order pertubation scheme neglects these 

terms with assumption that the wave stepness is small (the surface elevation is smaller than the 

wavelength). When the wave stepness is sufficiently large, the second order pertubation scheme 

should be used. In this scheme, to find the velocity potential and surface elevation, the non-linear 

term in equation 2.4, 2.5 and 2.6 has to be included. Moreover, the second order term in velocity 

potential power series have to be included. The solution of second order perturbation problem 

becomes the correction term of first order perturbation result. The second order perturbation 

problem is presented as [36]: 

 ��x� = 0;       −� ≤ � ≤ 0, ~ ≤ ∞ (2.44) 

 �x��� = 0;      � = −� (2.45) 

 =2� + �x��� + 12 ��GHx��� + 2� ��x����� = 0;       � = 0 (2.46) 

 ��x���� + = �x��� + ��� ��GHx��� + 2� ��� ³��x���� + = �x��� ´ = 0;       � = 0 (2.47) 

Similar to first order perturbation, the solution of second order pertubation can be solved in 

regular and irregular sea. 

2.4.1. Second order solution in regular wave condition 

In 1847, Stokes presented a theoretical formula for first and second order perturbation problem 

specifically for a single (regular) wave. This theory is commonly referred as Stokes second order 

theory. The solution for velocity potential (x = x� + x�) and water surface elevation  

(2 = 2� + 2�) contain first order and second order solution [6]. 

2 (�) =  2�� µ�£S(C} − T�)����������f�D�� + C2�� 3 − ��Fℎ�(C�)4��Fℎ�(C�) �£S (2(C} − T�))�������������������������,D
J�§�J�§D�
¸ +  � ��2��j ��� (2.48)
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x = =2���£Sℎ1C(� + �)4T �£Sℎ(C�) µS¢F(C} − T�)����������f�D�� + C2�� 3 �£Sℎ12C(� + �)48S¢Fℎ�(C�) S¢F12(C} − T�)4���������������������������,zY�U�D|zD�
�
¸

− (C2��)� 12S¢Fℎ (2C�) =�C���������������YD���§�fU{
+ � ��2��j ��� 

(2.49)

From equation 2.49, it can be observed that there is mean-drift term. This term is linearly 

dependent on time. In this case, the mean of particle velocity and acceleration changes with time. 

For large water depth, since 6¢3§→© S¢Fℎ (2C�) = ∞, the mean drift term can be neglected. 

Beside mean-drift, the sum-frequency term appears in the formula. This term shows that there is 

another oscilation frequency which is higher than frequency of linear component. This is very 

crucial for structure with low eigenperiod (high eigenfrequency) such as heave, pitch and roll 

eigenperiod of of TLP [14] where large dynamic response can be excited by the sum-frequency 

term. Nevertheless, similar to mean-drift term, for large water depth, the sum-frequency can be 

neglected. The other term is different-frequency term, which is contained in the third order part. 

The different-frequency term is critical for structure with high eigenperiod (low eigenfrequency) 

such as eigenperiod of moored barge [14]. Equation 2.48 and 2.49 show that there is no phase 

different between linear and second order term. This indicates that the regularity in wave shape is 

maintained. The second order dispersion relation is equal to first order dispersion relation, which 

implies that the phase speed of second order component is equal to phase speed of first order 

component. Equation 2.50 shows the equation of wave phase speed: 

 �� = j�;� = T�C� = 2T�2C� = �� (2.50) 

Where c2 and c1 are second first order phase speed respectively. For large water depth, second 

order surface elevation term converges to C2��� 2⁄ . Therefore, the only correction on second order 

wave theory for infinite water depth is the correction of water surface elevation while the 

kinematics value is same as first order particle kinematics. Figure 2.2 illustrates the surface 

elevation from second order stokes theory for d = 500 m, 2� = 10 m, T = 12 s. 
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Figure 2.2 Second Order Stokes Water Surface 

By utilizing the second order stokes velocity potential for finite depth, the second order 

correction of particle kinematics for two-dimensional wave [6]: 

[�,� = �x��} = 3=(C2��)�8T �2 �£Sℎ (C(� + �))�£Sℎ (C�) � ��£Sℎ (2C(� + �))S¢Fℎ�(C�) � �£S (2(C} − T�)) (2.51) 

[�,� = �x��� = 3=(C2��)�8T �S¢Fℎ (C(� + �)) + 3S¢Fℎ (3C(� + �))2 cosh(C�) S¢Fℎ� (C�) � S¢F (2(C} − T�)) (2.52) 

��,� = ��x��}�� = 3=(C2��)�8 �4 �£Sℎ (C(� + �))�£Sℎ (C�) � ��£Sℎ (2C(� + �))S¢Fℎ�(C�) � S¢F (2(C} − T�)) (2.53) 

��,� = ��x����� = − 3=(C2��)�8 �S¢Fℎ(C(� + �)) + 3S¢Fℎ (3C(� + �))2�£S ℎ(C�) S¢Fℎ�(C�) � cos (2(C} − T�)) (2.54) 

Equations 2.51 to 2.54 are correction term to first order problem and should be added to first 

order solution presented in equation 2.21 to 2.24 respectively. Similar to first order velocity 

potential, second order velocity potential is also valid only up to mean water surface level. 

Therefore, an approximation method (explained at section 2.5) should be used to find kinematics 

at free surface. The, correction term for hydrodynamic pressure (p2): 

I� = −s �x��� = s=C2��� ³ 12S¢Fℎ (2C�)
+ 2 ��£Sℎ (C(� + �))�£Sℎ (C�) � 3�£Sℎ (2C(� + �))8S¢Fℎ� (C�) �£S(2(C} − T�))´ (2.55) 
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2.4.2. Second order solution in irregular wave condition 

In 1981, Sharma and Dean [36] proposed a method to calculate the water surface elevation and 

particle kinematics for nonlinear wave in irregular sea. The formulation is based on the 

pertubation scheme and also accounts the stream function that is demonstrated by Dean 

(presented in section 2.6.2). Similar to stokes second order, the method utilizes the solution of 

first order perturbation scheme (x�) then includes the second order correction term (x�). The 

second order term considers the interaction between each wave component. As a consequence, 

the formulation contains the diferent-frequency term and sum-frequency term. The second order 

correction term for velocity potential of irregular two-dimention wave is [36]: 

 

x� = 14 « «  =�2��,f2��,±TfT±
�£Sℎ °Cf±�(� + �)²�£Sℎ1Cf±��4 �f±�Tf−T± sin1yf − y±4¬

±»�
¬

f»�
¼½½½½½½½½½½½½½½½½½½¾½½½½½½½½½½½½½½½½½½¿§fUUD�D�{�U�D|zD�
�

 
+ 14 « «  =�2��,f2��,±TfT±

�£Sℎ °Cf±�(� + �)²�£Sℎ1Cf±��4 �f±�Tf+T± S¢F (yf + y±)¬
±»�

¬
f»����������������������������������������,zY�U�D|zD�
�

 

(2.56) 

Where: Cf±� =  |Cf − C±|  Cf±� =  |Cf + C±|  yf =  Cf} −  Tf� +  ªf Mf =  Cf��Fℎ (Cf�) 

�f±� = 1ÀMf − ÀM±4ÁÀM±(Cf� − Mf�) − ÀMf1C±� − M±�4Â + 21ÀMf − ÀM±4�1CfC± + MfM±41ÀMf − ÀM±4� − Cf±� ��Fℎ1Cf±��4  

�f±� = 1ÀMf + ÀM±4ÁÀM±(Cf� − Mf�) + ÀMf1C±� − M±�4Â + 21ÀMf + ÀM±4�1CfC± − MfM±41ÀMf + ÀM±4� − Cf±� ��Fℎ1Cf±��4  

It should be noticed that Cf±� and Cf±� is the magnitude of difference-frequency and sum-frequncy 

wave number. In three dimention (short wave approximation), Cf±� and Cf±�  refer to the magnitude 

of difference-frequency and sum-frequency wave number vector, �C�GGGH −  CÃGGGH� and |C�GGGH + CÃGGGH|. The 

second order contribution to the water surface elevation: 
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2� = 14 « « 2��,f2��,± Ä�f±� − 1CfC± + MfM±4ÀMfM± + 1Mf + M±4Å �£S1yf − y±4¬
±»f

¬
f»�

¼½½½½½½½½½½½½½½½½½½½½½¾½½½½½½½½½½½½½½½½½½½½½¿§fUUD�D�{�U�D|zD�
�
+ 

14 « « 2��,f2��,± Ä�f±� − 1CfC± − MfM±4ÀMfM± + 1Mf + M±4Å¬
±»f �£S1yf + y±4¬

f»����������������������������������������������,zY�U�D|zD�
�
 

(2.57) 

This equation is valid for small and large water depth, with assumption there is no wave break 

phenomenom. However, when it comes to large water depth, 6¢3§→© ��Fℎ(C�) = 1 and 

6¢3§→© �£Sℎ1C(�+�)4�£Sℎ(C�) = ÆÇ�. As a result, �f±� is equal to zero indicating that the sum-frequency 

term can be negelcted for large water depth. The second order correction term can be simplified 

into equation 2.58 and 2.59 [23]: 

 x� = − « « 2��,f2��,±
¬

±»f�� TfÆ}I ((Cf − C±)�)S¢F (yf − y±)¬
f»�  (2.58) 

2� = 12 « 2��,f�Cf�£S(2yf)¬
f»� + 

12 « « 2��,f2��,±
¬

±»f�� °1Cf + C±4�£S1yf + y±4 − 1Cf − C±4�£S1yf − y±4²¬
f»�  

(2.59) 

This expression is valid to use for continous spectrum. From equation 2.56 and 2.57, to calculate 

the correction term of surface elevation and velocity potential, N2 wave components should be 

included. Because of that, the computational time and also the required memory are significantly 

increased since the velocity potential and surface elevation are updated on each time step.  

The interaction between wave components with very different frequency produces another issue. 

The derivatives of velocity potential and surface elevation are not defined if the spectrum is 

summed up to high frequency. To resolve this problem, a cut-off frequency can be used [23]. 

With cut-off frequency, the highest frequency in the spectrum is limited. The other way to 

account for this problem is by limiting the interaction between waves with very different 

frequency. 
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Similar to first order regular wave problem, the particle kinematics is not defined above the mean 

surface level. Therefore an approximation method should be used. 

2.5. Approximation of Particles Kinematics above Mean Surface 

The first order and second order pertubation are solved at mean water surface elevation. 

Therefore, if the particle kinematics at true surface wants to be established, some approximation 

schemes must be utilized. 

2.5.1. Constant stretching (extrapolation of Airy theory) 

This method utilitizes the result from Airy wave theory, which is a solution for first order 

pertubation scheme. Therefore, this method should be used only for first order wave. In this 

method, the wave particle kinematics is calculated up to the surface elevation in wave trough by 

Airy wave theory. At wave crest, the wave particle kinematics is calculated until mean water 

surface elevation (z = 0) then it is assumed uniform for 0   �   2, where � � 0 refers to mean 

water surface elevation. Figure 2.3 illutrates this method. 

 

 

 

 

 

 

Figure 2.3 Extrapolation of Airy theory  

2.5.2. Wheeler stretching 

The popular approximation method to calculate wave particle kinematics at real surface is the 

method proposed by Wheeler. In this method, the water surface (the second order or the first 

order water surface) is assumed as Gaussian process then the linear theory (first order solution) is 

applied to calculate the wave particle kinematics. By applying this approach, it is observed that 

the calculated wave particle kinematics at z=0 refer to the measured free surface kinematics. 
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Therefore, the vertical coordinate (z-coordinate) is stretched such that the wave particle 

kinematics at free surface after stretching are equal to wave particle kinematics at z=0 before 

stretching process. The new vertical coordinate (��D^) follows equation 2.60. Figure 2.4 

describes the wheeler stretching method. 

 ��D^ = �J�§ − 2
1 � È

§
 (2.60) 

 

 

 

 
 

 

 

 

 

Figure 2.4 Wheeler Stretching 

For irregular sea, there is an issue regarding high frequency components. For steep wave case, 

the wavenumber of high frequency component from dispersion relation is higher than the actual 

wavenumber. In reality, steep wave with high frequency components contain significant bound 

wave which has lower frequency. As a result, the first order wave overestimates the contribution 

of short wave component for particle wave kinematics. This issue is discussed by Johannessen 

[23]. To avoid this issue, a cut-off frequency (T
z{) is intoduced where the suggested value 

is T
z{ � 4T<. 

Wheeler streching can be applied directly for first order wave, either in regular or irregular 

condition. However, for second order wave, water surface elevation from combination of first 

order surface and second order correction should be linearized. The linearization can be done by 

assuming the second order irregular surface as Gaussian process. By using Fourier transform, the 

combination of first and second order wave surface is represented by a new set of harmonic 

component. Utilizing these new component set, the wave particle kinematics can be calculated 

by first order wave theory. As a consequence, the simulation will based on N wave component or 
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at least significantly less than N2 component. In this way, the memory and computational time 

can be decreased. 

Wheeler stretching is relatively good if applied to second order surface than first order surface 

(for first order surface, Wheeler stretching underestimate the wave particle kinematics). However 

there is an issue regarding the underestimated wave particle kinematics below free surface level.  

2.5.3. Linear extrapolation 

Linear extrapolation can be used to determine the wave particle kinematics for z > 0. In this 

method, the wave particle kinematics are calculated until mean surface (z = 0) then extrapolated 

by MacLaurin series up to the free surface. Velocity potential for z > 0 can be written as: 

 x(}, �, �) = x�(}, 0, �) + x�(}, 0, �) + � �x��� (}, 0, �) (2.61) 

Removing the second order velocity potential (x�), equation 2.61 represents linear interpolation 

for first order wave. By its definition, the particle wave kinematics are exponential from seabed 

to mean water surface but linear above the mean water surface. The wave particle kinematics for 

z > 0 becomes: 

 [�(}, �, �) = �x��} (}, 0, �) + �x��} (}, 0, �) + � ��x����} (}, 0, �) ;    z >  0 (2.62) 

 [�(}, �, �) = �x��� (}, 0, �) + �x��� (}, 0, �) + � ��x���� (}, 0, �) ;    z >  0 (2.63) 

 ��(}, �, �) = ��x��}�� (}, 0, �) + ��x��}�� (}, 0, �) + � ��x����}�� (}, 0, �) ;    z >  0 (2.64) 

 ��(}, �, �) = ��x����� (}, 0, �) + ��x����� (}, 0, �) + � ��x������ (}, 0, �) ;    z >  0 (2.65) 

To apply equations 2.62 until 2.65 into a continuous spectrum (for irregular wave condition), a 

cut-off frequency is introduced. Stansberg [39] proposes that the cut-off frequency is equal to: 

 T
z{ = Ë2=(,  (2.66) 
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This cut-off frequency is discussed further in section 4.3.2. Since the profile of wave particle 

kinematics above mean water level is linear, it marginally underestimates the surface velocity at 

crest when compared to experiment result [40]. The linear extrapolation method is illustrated by 

figure 2.5. 

 

 

 

 

 

 

 

Figure 2.5 Linear Extrapolation 

2.6. Others Regular Wave Theory  

When dealing with regular wave condition, it is possible to solve perturbation scheme in higher 

order than second order, for example the 5th Stokes wave theory. In addition, the particle 

kinematics can be calculated from stream function instead of potential velocity. 

2.6.1. Stokes wave 

It is presented before that Stokes wave theory can solve pertubation scheme up to second order 

term. In general, Stokes wave theory can be used to solve pertubation scheme up to higher order 

term. The Stokes wave theory basically is sumation of potential velocity from different order. 

The formulation of Stokes wave theory up to N-th order: 

 x = « xfg�£SℎÌC(� + �)Í�£S(T� − C})¬
f»�  (2.67) 

 2 = « 2fg S¢F1¢(T� − C})4C¬
f»�  (2.68) 
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xfgand 2fg are the coefficient of potential velocity and surface elevation of i-th order, respectively. 

These coefficients are determined from iteration process and proportional to wave stepness 

(( j⁄ ). Since the potensial is a product of summation process, then the particle kinematics are 

[37]: 

 [� = �x�} = « ¢ TC xfg�£SℎÌC(� + �)ÍS¢F(T� − C})¬
f»�  (2.69) 

 [� = �x�� = « TC xfgS¢FℎÌC(� + �)Í�£S(T� − C})¬
f»�  (2.70) 

 �� = ��x�}�� = « ¢ T�C xfg�£SℎÌC(� + �)Í�£S(T� − C})¬
f»�  (2.71) 

 �� = ��x���� = − « T�C xfgS¢FℎÌC(� + �)ÍS¢F(T� − C})¬
f»�  (2.72) 

Stokes 5th wave is able to represent more accurate wave shape. In addition, it is able to produce 

more accureate particle wave kinematics which means more accurate load and response. 

However, this theory is relatively complex to do. In addition, wave will break when 22�/j less 

than 1/7 and Stokes wave theory is not valid for breaking wave. Nevertheless, for design wave 

method (presented in section 3.4), Stokes 5th wave is normally used. 

2.6.2. Stream function (Dean stream function) 

In shallow water, the pertubation scheme will fail. The shape contains many local maxima and 

does not represent the ocean wave. Therefore, another theory should be applied. Dean [9] 

presented another approach than pertubation shceme to define the velocity potential. Instead 

from potential velocity, the particle kinematics is found from stream functions. The stream 

function (y,): 

 �y,�" = −[�   ;   �y,�Ï = [� (2.73) 

If (x, z) is fixed frame reference, (X, Z) is frame reference which moves with the waves at phase 

speed c. In this case, x = X + ct, t = time and z = Z. The fluid is still assumed as irrotational and 

incompressible, similar to pertubation scheme. The stream function also should fulfill [9], [16]: 
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Laplace equation: 
��y,�"� +  ��y,�Ï� = 0 (2.74) 

Bottom boundary condition: y,(", 0) = 0 (2.75) 

Kinematic free surface condition: y,1", 2(")4 = −ÐÑ (2.76) 

Dynamic free surface condition: 
12 ³��y,�" �� + ��y,�Ï ��´ + = 2(") = M,;  Ï = 2(") (2.77) 

Where Qv is the volume flow per unit span under the wave in (X, Z) frame and Rs is positive 

constant [16]. The equation 2.74 and 2.75 are satisfied by a stream function [35]: 

 y,(", Ï) = Ò?Ï + « Ò± S¢Fℎ (Ó C Ï)�£Sℎ (Ó C �,) �£S (Ó C ")¬
±»�  (2.78) 

Where k is the wave number and N is the order of stream function. �, is arbritrary reference 

level. Bj and k are determined in such way that equation 2.73 satisfies equation 2.75 and 2.76. In 

addition, it should be noted that all equation in this particular section is based on normalized 

parameter. Further explanation can be found at Reinecker and Fenton’s paper [35]. 

High number of N will improve the accuracy of solution. For deep water, N=3 is satisfactory 

while for shallow water N can be up to 30. The stream function theory does not need truncation 

as pertubation scheme. In addition, when the wave height/depth is less than 0.5, the difference 

between 5th order Stokes and stream function is neglegible. 

2.7. Breaking Waves 

For particular water depth, there is an upper limit of wave height. When the wave steepness is 

high enough, the wave become unstable and break. The wave height limit ((>) is expressed as 

function of wave length (j) depth (�). For shallow water, the wave height limit is expressed as 

[8]: 

 (> = 0.142 j ��Fℎ (C�) (2.79) 

Figure 2.6 shows the normalized wave height limit ((>/j) as function of normalized water depth 

(�/j). It can be observed, when the water depth is suficiently depth enough, the (>/j converges 
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to 0.142. Therefore, for depth water (when ��F ℎ(C�) → 1), the wave height limit can be 

determined by: 

 (> = 0.142 j  (2.80) 

 

Figure 2.6 Wave Height Limit for Breaking Wave 
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3. Ocean Wave Statistics 

Ocean wave is a random process which continously changes with time. Because of that, it is 

convenient to fit a probabilistic model into particular ocean location for further analysis. The 

problem is how to determine the parameters of the probabilistic model of ocean wave as they 

also changes in time. However, these parameters change slower than the ocen surface itself. 

Therefore, the ocean wave can be observed for certain duration where the process is assumed as 

a stationary process. The typical duration is 3-4 hours [30]. This analysis is known as short-term 

analysis of sea surface. To analyze the wave condition for longer duration, e.g. for 100 year 

duration, the long-term analyze is applied. 

3.1. Method of Moment 

The parameters of certain probabilistic model can be acquired by method of moment or 

maximum likelihood method. Since method of moment is relatively simpler compared to the 

other method, method of moment is the only approach that is described and used in this report. 

The method of moment based on principle that the probabilistic model moment is equal to the 

sample moment.The statistical moment and central moment of probability model for x as 

variable are [26]: 

Moment: kÔ(�) = Õ x� 7Ö(x) �}©
�©  (3.1) 

Central moment k̅Ô(�) = Õ (x − kÔ)� 7Ö(x) �}©
�©  (3.2) 

Where kX = kÔ(�). These moment and central moment are fitted to the moment from sample. 

3.1.1. Expected value 

The expected value is equal to the first moment: 

 ��x� = kÔ = kÔ(�) = Õ  x 7Ö(x) �x©
�©  (3.3) 

For standard Gaussian distribution, ��x� is equal to zero. The expected value from sample 

(3- = 3-(�)) is: 
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 3Ô = 3Ô(�) = 1× « xf
¬

f»�  (3.4) 

N is the number of sample x. 

3.1.2. Variance 

The variance is equal to second central moment: 

 tÔ� = \�Ø�x� = k̅Ô(�) = ��(x − ��x�)�� = Õ (x − kÔ)� 7Ö(x) �x©
�©  (3.5) 

If k" is equal to zero, the variance is equal to second moment. The standard deviation (t-) is 

equal to square root of variance. The variance of sample (SX
2) is: 

 R-� = 1× − 1 «(xf − 3-)�¬
f»�  (3.6) 

3.1.3. Skewness 

Skewness of a distribution function can be determined from the third and second central 

moment. The skewness describes the symetry of probality density function. For symetry 

probability density function, skewness coefficient is equal to zero. Skewness is represented by a 

skewness coefficient (a�) which is: 

 a� = k̅-(�)
°k̅-(�)²�/� = k̅-(�)t-�  (3.7) 

Since standard Gaussian model is a symetry probability density function, a� is equal to zero. In 

reality, sea surface have slightly positive skewness which imply it contains of higher peak than 

through. For the measurement, the skewness coefficeint of sample (ab�) is: 

 ab� = �¬ ∑ (xf − 3-)�¬f»� R-�  (3.8) 

3.1.4. Kurtosis 

Kurtosis, also known as flatness coefficient, describes the peakedness of the distribution. It is 

calculated from: 
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 a� = k̅-(Z)
°k̅-(�)²� = k̅-(Z)t-Z  (3.9) 

For standard Gaussian distribution, a� is equal to 3. The kurtosis of sample is: 

 ab� = �¬ ∑ (xf − 3-)Z¬f»� R-Z  (3.10) 

3.2. Short Term Analysis of Sea Surface 

As mentioned before, the sea surface (ocean wave) can be assumed as a stationary process for 

certain duration (3-4 hours). In this condition, the mean and standard deviation are assumed 

independent of time which means they are constant. The sea surface (2) can be assumed as a 

Gaussian process. Therefore, Gauss probability density function is used to express the 

distribution of sea surface.  The formula for Gauss (normal) probability density function [26] 

with 2 as parameter: 

 7(2) = 1√2Û tÈ Æ}I Ü− 12 �2 − kÈtÈ ��Ý (3.11) 

Where k2 and t2 are mean and standard deviation of sea surface respectively. It is possible to set 

the mean of sea surface equal to zero which gives t2 is the only unknown parameter and can be 

calculated from second central moment (presented in equation 4.20) or by method of moment 

(utilizing equation 3.6).  

3.2.1. Distribution of maximum for linear surface elevation 

A local maximum for water surface elevation is defined by �2 ��⁄ = 0 and ��2 ���⁄ < 0. In the other 

hand, global maximum is the maximum of water surface elevation from a zero crossing wave. 

The magnitude of local maximum could be less than zero (mean sea surface elevation) while the 

the global maximum is always positive. In general, the ocean surface is a broadband process, 

where the number for local maximum is larger (different) than global maximum. For narrowband 

process, number of local maxima is close or similar to number of global maxima. In addition, the 

period of each zero croessing wave component is relatively constant while it is not constant in 

broadband process. The narrowband and broadband process of sea surface is illustrated in figure 

3.1. 
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Figure 3.1 Illustration of narrowband and broadband process 

Up: Narrowbad; Down: Broadband 

3.2.1.1. Rayleigh distribution for narrowband sea surface 

If the sea surface is assumed as narrowband and Gaussian process, the distribution of sea surface 

maximum (2Y) follows Rayleigh distribution. The probability density function (PDF) and 

cummulative distribution function (CDF) of Rayleigh distribution is presented in equation 3.12 

and 3.13 respectively [26]. 

 7/0(23) = 23t22 Æ}I Ü� 12 �23t2 ��Ý (3.12) 

 �/01234 � 1 � Æ}I Ü� 12 �23t2 ��Ý (3.13) 

3.2.1.2. Rice distribution for broadband sea surface 

For broadband process and assuming the sea surface is a Gaussian process, the probability 

density function 7ß�i� and cumulative distribution function �ß�i� of normalized maximum (i), 

accounting both local and global maxima, is formulated in Rice distribution [7]. 

 7ß�i� � 1
√2Û p Æ}I �� 12 �ip��� � iÀ1 � p� Æ}I �� 12 i��  v �ip À1 � p�� (3.14) 

= local maximum 

= global maximum 

z 

t 

z 

t 
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 �ß(i) = 1 − 12 ÆØ7� � i√2 p� − À1 − p� Æ}I �− 12 i�� v �ip À1 − p�� (3.15) 

 i = 23t2 ;   p� = 1 − 3��3?3Z , 0 ≤  p ≤ 1   ;    ÆØ7�(}) = 2√Û Õ Æ}I(−��)��©
�   

i is a standardized variable of Rice distribution. p is a bandwith parameter that contains 

information about the condition of number of peaks in one zero-crosing wave. If p = 0, the Rice 

distribution becomes Rayleigh distribution (equation 3.12 and 3.13) while when p = 1, Rice 

distribution becomes Gauss distribution. v is the standard Gauss cumulative distribution. mn is 

the n-th moment of the wave spectrum which is presented in equation 4.20. Mean and variance 

of i is expressed in equation 3.16. 

 kà = áÛ2 (1 − p�)  ;   tà� = 1 − °Û2 − 1² (1 − p�) (3.16) 

3.2.1.3. Distribution of largest maximum 

To find the largest maximum 12634, each maximum is assumed statistically independent and 

identically distributed. This assumption is slighlty conservative but acceptable for practical 

purpose. The cumulative distribution of largest maxima from N maxima: 

 �/5012634 = °â123,¢ ≤ 2634²¬ = °�/012634²¬
 (3.17) 

For broadband process, the number of maxima (N) is equal to Tf /Tm24. When N�∞, the 

distribution of largest maxima asymptotically goes to Gumbel distribution [26].The expected 

value, standard deviation and the mode for the largest maxima for broadbanded process [7]: 

 3£�Æ = á2 6F °×À1 − p�² (3.18) 

 kà63 = √2 ã
äá6F °×À1 − p�² + aD2á6F1×À1 − p�4å

æ (3.19) 

 tà63 = Û√6 1á2 6F1×À1 − p�4 
(3.20) 
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Where aD is Euler constant and aprroximately equal to 0.5772. The error of expectation value of 

largest maxima is in the order � �°6F1×À1 − p�4²��/��.  

For narrowbanded process (Rayleigh distribution), the expectation value, standard deviation and 

the mode of largest maxima can be found from equation 3.18 until 3.20 by setting p = 0 and 

multiply the result with tÈ. The result is presented in equation 3.21 to 3.23. 

 3£�Æ = tÈÀ2 6F (×) (3.21) 

 k263 = tÈ√2 �À6F (×) + aD2À6F(×)� (3.22) 

 t263 = tÈ Û√6 1À2 6F(×) (3.23) 

Number of maxima (N) in narrowbanded process is equal to Tf /Tm02. Due to its simplicity, 

Rayleigh model is more commonly used than Rice distribution. The short term distribution of 

extreme surface elevation depends on Hs and Tp when the process is assumed Gaussian. 

3.2.1.4. Distribution of wave height 

To find the distribution of wave height (H), first it is assumed that ( =  22Y. It assumed that the 

wave height also follows the Rayleigh distribution. Then the cummulative distribution of wave 

height �$(() is expresed in equation 3.24. 

 �$(() = 1 − Æ}I Ü− 18 � (t2��Ý (3.24) 

Furthermore, the expected value of largest wave height, k)W = 2k263. In reality, the wave height 

is not necessarily twice the peak of surface elevation from mean water level (as it is shown in 

figure 2.2 at section 2.4.1). By including the second order term, the crest will be higher than 

through for regular wave case. Therefore, this approximation is also conservative. The others 

distribution function should be used, especially when accounting the nonlinearity in water 

surface elevation. 
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3.2.2. Distribution of maxima for higher order surface elevation 

In reality, the distance between crest and mean surface level is larger than the distance between 

trough and mean surface level. This implies that the water surface elevation does not exactly 

follow Gaussian distribution as well as water surface maxima does not follow Rayleigh 

distribution. Since the largest magnitude of wave particle velocity is located at the crest, it is 

important to determine the accurate value of crest. Therefore, another distribution which includes 

the nonlinearity is used. 

3.2.2.1. Forristall Distribution 

Forristall distribution agrees well with the second order process of surface elevation. The model 

is a 2-parameter weibull for particular Hs and Tm01. The cumulative distribution functions of 

wave height (H) and wave crest (c), respectively, are [17], [18]: 

 �$(() = 1 − Æ}I Ü−2.263 �(�(, ��.��èÝ (3.25) 

 ��(�) = 1 − Æ}I Ü− � �]U(,�éêÝ (3.26) 

Forristall wave height distribution (equation 3.25) is actually fitted to data of 116-hours 

huricane-generated waves in Gulf Mexico. Therefore, it is more appropriate to call equation 3.25 

as an empirical distribution of wave height instead of distibution of higher order surface 

elevation. On the other hand, equation 3.26 is based on second order wave model which makes it 

is appropriate to call it as distibution of higher order surface elevation. ]U and _U are found from 

fitting the distribution function to experiment results.  The fits are forced to match the Rayleigh 

distribution with ]U = 1/√8 and _U = 2 when stepness (S1) and Ursell number (Ur) are equal to 

zero. For 2-dimensional wave, the best fit comes when [18]: 

 ]U = 0.3536 + 0.2892 R� + 0.1060 í�  _U = 2 − 2.1597 R� + 0.0968 í�� 
(3.27) 

In the other hand, the best fit for 3-dimensional wave simulation are [18]: 
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 ]U = 0.3536 + 0.2568 R� + 0.0800 í�  _U = 2 − 1.7912 R� + 0.5302 í� + 0.284 í�� 
(3.28) 

The wave steepness parameter (S1) and Ursell number (Ur) with assumption large water depth: 

 R� = 2Û= (,;YJ�� ;       í� = (,��CYJ��  (3.29) 

kmo1 is the wave number from mean period (Tm01, described in section 4.1.2) and d is the water 

depth. Forisstall distribution is larger crest height than the result from Rayleigh or Rice. It can be 

concluded that the Rayleigh and Rice is not conservative regarding the wave crest. There is no 

Forisstall distribution for wave trough but it can be assumed that Rayleigh and Rice give 

overestimate value of wave trough. The mode of Forristal crest distribution (wave crest which is 

only exceeded once in certain duration) can be found by equation 3.30. 

 ��(�) = 1 − Æ}I Ü− � ��]U(,�éêÝ = 1 − 1×   →   �� = (, ]U16F(×)4�/éê (3.30) 

Similar to Rayleigh and Rice, Forisstall distribution also converges to Gumbel distribution for 

very large N. Therefore, the the mean and standar deviation for the largest crest from Forisstall 

distribution can be expressed as mean and standard deviation of Gumbel distribution with 

Weibull as its initial distribution [26]. This is expressed in equation 3.31 and 3.32 [6]. 

 k
ï = ]U(S ð16F(×)4�/éê + aD
_U16F(×)4ñê ò óñê

ô (3.31) 

 t
ï = Û√6 ]7(,
_716F(×)4_7 − 1_7

 
(3.32) 

3.2.2.2. Modified Rayleigh 

Another way to present the distribution of higer order surface elevation is by modifying Rayleigh 

distribution. This method is presented by Stansberg [38]. The modification is based on the 

increased steepness. The correction term is determined by considering second order regular 

wave. The expected largest crest (largest maxima) for certain duration from Rayleigh model 
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is k263. This value is modified as presented in equation 3.33. kp is first order wavenumber of 

spectral peak period (Tp). 

 k
ï = kÈïõ �1 + 12 CIkÈïõ� (3.33) 

3.2.3. Gumbel Distribution 

As presented in previous sections, the extreme distribution of any distribution with exponential 

type (including Rayleigh, Rice and Forristall) converges to Gumbel distribution when N�∞. The 

cummulative distribution of Gumbel for largest value of x out of N-number of x (xN) as 

parameter: 

 ��ö(x¬) = Æ}I �−Æ}I �− (x¬ − ]÷)_÷ �� 
]÷ = k�. − 0.5772_÷;     _÷ = tø.√6Û  

(3.34) 

Where k-.  and t-. are expected value and standard deviation of xN respectively. Moreover, 

Gumbel distribution is usually used for extreme value of sample when the distribution model is 

still unknown. From sample, after the sample is sorted from the smallest to the highest, the 

cumulative distribution can be found by: 

 �f = ¢× + 1 ;     ¢ = 1,2,3, … , ×;   × = �£��6 F[3ùÆØ £7 S�3I6Æ  (3.35) 

To check if the sample follows Gumbel distribution or not, the Gumbell paper can be used. If the 

sample cummulative distribution tends to construct straight line, then it can be concluded that the 

sample follows Gumbel model. 

3.3. Long Term Analysis of Sea Surface 

In structural analysis, it is important to find the extreme value (e.g. extreme crest) for duration 

more than 3-4 hours, e.g. for 100 or 10000 year. In this case, the assumption that sea surface is a 

stationary process is not valid anymore. Since the condition of short-term analysis is depend on 

certain Hs and Tp (Hs and Tp are assumed constant in short-term analysis), the variation of Hs and 

TP should be considered for long-term analysis.  
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3.3.1. Full long-term of sea surface 

In full long-term method, the wave crest is modelled by joint probability function of wave crest 

short-term distribution of and seastate (Hs and Tp) long-term variation. The full long-term 

cummulative distribution for 3-hour wave crest is expressed in equation 3.35 [20]. 

 ��#ú(�) = Õ Õ ��#ú|$8,9:(�|(,, ;<)�������������XûJ�{�{D�Y §f,{�f>z{fJ�
7$8 ,9:1(,, ;<4���������Ñ��f�{fJ� f� )*��§ lm

 �ℎ, ��<lm)*
 (3.36) 

7$8,9:1(,, ;<4 is the joint probability density function of (, and ;< and determined empirically 

from the scatter diagram of (, and ;<. It is considered that: 

 7$8,9:1(,, ;<4 =  7$8((,) 79:|$8(;<|(,) (3.37) 

Where 7$8((,) is the marginal distribution of Hs while 79ü|$8(;<|(,) is the conditional 

distribution of Tp for given Hs. A 3-paremeter Weibull distribution can be used as 7$8((,).  The 

cummulative distribution for 3-parameter Weibull of �)*((,) [21]: 

 �$8((,) = 1 − Æ}I �− �(, − j^]^ �éý� ;       ℎ, ≥ j^ (3.38) 

Where j^, ]^, and _^ are the location, scale and shape parameter of 3-parameter Weibull model 

respectively. These parameters can be determined by method of moment. The final realtionships 

between model parameters and sample moment are presented from equation 3.39 to 3.41 [21]. 

 3È = j^ + ]^  � �1 + 1_^� (3.39) 

 R-� = ]^� �� �1 + 2_^� − �� �1 + 1_^�� (3.40) 

 ab� = � °1 + �éý² − 3� °1 + �éý²� °1 + �éý² + 2�� °1 + �éý²
�� °1 + �éý² − �� °1 + �éý²�� ��  (3.41) 

3È , R-�, and ab� are respectively mean, variance and kurtosis of sea surface sample which is 

presented in section 3.1. �( ) is gamma function. 
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There is a limitation for this model since (, ≥ j^. The model is not good for small (, where it is 

usually important for fatigue analysis. However, for extreme analysis, 3-parameter Weibull is 

adequate to use. Another distribution for 7$8((,) is a hybrid model where 7$8((,) is modelled as 

log-normal distribution below a particular value and as 2-parameter Weibull at the upper tail. 

This model gives no limitation for small (, though it is more complicated than 3-parameter 

Weibull model.  

79:|$81;<�(,4can be modelled by log-normal model. The log-normal probability density function  

and cumulative distribution function of Tp is presented from equation 3.42 to 3.43 [21]. 

 79:|$81;<�(,4 = 1;<√2Û t�� 1lm�)*4 Æ}I Ä− 12 Ü6F1;<4 −  k�� 1lm�)*4t�� 1lm�)*4 Ý�Å (3.42) 

 �9:|$81;<�(,4 = v Ü6F1;<4 − k�� 1lm�)*4t�� 1lm�)*4 Ý (3.43) 

v( ) indicates the Gauss (normal) cumulative distributution function. k�� 1lm�)*4and t�� 1lm�)*4 
are mean and standard deviation of 6F 1;<4 for particular Hs. These parameter can be determined 

from mean (klm|)*) and standard deviation (tlm|)*) of spectral peak period for particular Hs value 

by equation (3.44) and (3.45) [26]. 

 k�� 1lm�)*4 = 6F ã
ä klm|)* �

áklm|)* � + tlm|)* �å
æ (3.44) 

 t�� 1lm�)*4� = 6F �klm|)* � + tlm|)* �klm|)* � � (3.45) 

In addition, the largest wave crest with return period ny year (ny-year wave crest) corresponds to 

probability: 

 1 − ��#ú(�) = 3F�  ×  365 × 24 (3.46) 

This analysis also can be applied for wave height case. 
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3.3.2. Contour line method 

In some cases, the short-term distribution function is hard to define. For example is when the 

relation of the structure response and water surface elevation is nonlinear. Finding a proper 

short-term distribution can be a time consuming process. To save time, the contour line method 

can be used. 

In contour line method, the contours of environmental parameter (in this case Hs and Tp) for 

specific extreme fractiles are determined. These contours are independent of the structure 

behaviour. In this case, (, and ;< are transformed to standard Gaussian variables, ((,�U1 and ;<�U2) by Rosenblatt transformation [20]. The Rosenblatt transformation states that: 

 (, = �$8��1v(í�)4;     ;< = �9:|$8�� 1v(í�)4 (3.47) 

Where v is a Gauss (normal) cummulative distribution function. Then the contour line can be 

created by calculating U1 and U2 along a circle with radius _� = Àí�� + í��. For environmental 

contour line refers to F� year return period, _� can be determined by equation 3.48. 

 _� = v�� �1 − 3365 × 24 × F�� (3.48) 

The contour is representing the combination of (, and ;< that gives the same probability of 

excedence. One can chose the most critical combination as an input to short-term extreme value 

distribution. 

3.4. Design Wave Method 

It is important to analyze the structure responses from the extreme wave condition with certain 

return period. By performing the longterm analysis, the extreme wave crest can be determined. 

Assigning this value to proper wave theory, the particle kinematics of the wave can be 

calculated. It is common to use 5th Stokes wave for suficiently deep water or dean stream for 

shallow water. From particle kinematics, the load from wave is determined and the structure 

responses are calculated. 

The value that is assigned in wave theory, e.g. 5th Stokes, should be the wave crest and period. 

For ultimate limit state analysis, the worst wave crest in 100 year and its period should be 
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utilized. It will be shown in section 9.4 that assigning 100 year wave height (for example the 

100-year wave height from Forristall distribution of wave height) to 5th Stokes wave gives 

smaller wave crest than 100-year wave crest (in this case the 100-year wave crest from Forristall 

distribution of wave crest). To determine the wave period (T), the 90% band (range of Tp when �9:|$81;<�(,?.?�4 in the range of 0.05 and 0.95) of Tp for 100-year Hs ((,?.?�) should be 

calculated utilizing equation 3.43 then the range of Tp should be multiplied with 0.9. This means 

T=0.9 Tp. Another way to determine wave period is by using NORSOK sugestion [33]. In this 

case, the range of wave period is determined from 100-year wave height. The relation is 

presented in equation 3.48. 

 À6.5 (?.?� ≤ ;VWX ≤ À11 (?.?� (3.49) 

Design wave method is only applicable to analyze the structure statically. By this consideration, 

it is assumed that the highest load occurs at the highest crest. Therefore, a quasistatic analysis is 

performed. Moreover, to assign the limited dynamic behaviour of the structure, equivalent 

dynamic amplification factor (EDAF) must be established. The equivalent dynamic amplification 

factor is found from the ratio between dynamic response and static response from extreme 

response distribution. In this case, the dynamic contribution on the structure response is 

considered as an equivalent acceleration field. 

This method is not suitable enough for structure with large dynamic response. Moereover, for 

mass-dominated structure, the maximum load is not occured at largest crest which indicates this 

method is questionable to use for mass-dominated structure. In addition, the period of wave also 

affecting the response of structure and the most critical wave period is not always happen when 

the most extreme crest (or wave height) occurs. To deal with these issues, the time domain 

simulation can be utilized. Therefore, it is required to interpret the wave spectrum into a time-set 

of water surface elevation. 
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4. Simulation of Irregular Wave 

For dynamically sensitive marine structures or marine structures subjected to large 

displacements, the extreme response is often determined on the basis of short term time-domain 

simulation. The sea state of short term analysis (Hs and Tp) can be determined by utilizing the 

contour line method. The time-domain simulation can be done by physical model simulation or 

numerical simulation. Both methods are performed by summing up a number of harmonic 

components with various frequency, amplitude and phase angle. 

4.1. Wave Spectrum 

The sea surface can be assumed as a Gaussian process. The Gaussian model is based on central 

limit theorem. The considered physical variable is expressed as a sum of variables [26]. This 

agrees with the formulation for first order water surface elevation in irregular sea condition 

which is expressed in equation 2.33 where the water surface elevation as function of time is 

established from sumation of a number of wave component with various amplitude, frequency 

and phase angle. The mean and standard deviation of one wave component (regular wave) at x=0 

for a period can be determined by: 

 kÈ = 1; Õ 2�� �£S (T�)l
? �� = 0 (4.1) 

 tÈ� = 1; Õ12�� �£S(T�) − kÈ4�l
? �� = 2���; Õ �12 + 12 �£S(2T�)�l

? �� = 2���2  (4.2) 

Therefore, the variance of water surface elevation for irregular condition can be calculated as 

sumation of one wave component variance: 

 tÈ� = « tÈ,f �¬
f»� = « 2��,f�2¬

f»�  (4.3) 

Instead expressed in time-domain, the water surface elevation can be expressed in frequency-

domain by utilizing the Fourier transform. In this case, the sea surface is assumed as periodic 

process with certain duration (Tf) which also known as fundamental period. This means the 
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process will repeat after Tf. For numerical purposes, the transformation of sea surface from time 

domain (2(�)) to frequency domain (2(̅TÇ)) can be done by discrete Fourier transform: 

2(̅3ΔT) = Δ�;U « 2(FΔ�) Æ}I(−¢ 3ΔT FΔ�)¬
�»�  ; ΔT = 2Û;U ;   3 = 1,2, … ,� ;  ¢ = √−1 (4.4) 

M is the number of frequency component and N is the number of time discrete points in sea 

surface record. From equation (4.4), it can be conluded that the magnitude of frequency  interval 

is affected by fundamental period. Transfering back from frequency domain to time domain by 

discrete Fourier transform theoretically should follow equation 4.5 [10]. 

 2(FΔ�) = « 2(̅3 ΔT) Æ}I(¢ 3ΔT FΔ�)
�ê	
�

Y » ò�ê	
�
  ;   ¢ = √−1 (4.5) 

If equation (4.5) is applied with m=1,2,3,... ;7 Δ�⁄ , the same result will be produced. This shows 

that if m is started from component −;U 2Δ�⁄ , 2(̅3 ΔT) only has physiscal definition until 3 = ;U 2Δ�⁄ .  

For instance, a Fourier transform is performed for sea surface on Draupner location (the record is 

taken around 1995 and known as Draupner Wave or New Year’s Wave where the freak wave 

occured). The time series of the sea surface is plotted at figure 4.1. 

 

Figure 4.1 Draupner Wave Time Series 
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By utilizing equation 4.4, the result of discrete Fourier transform (DFT) is presented in figure 

4.2. The range of frequency is set between ΔT and 
lê�{ ΔT. 

  

Figure 4.2 Result of Draupner Wave DFT  

(Left: Real Part; Right: Imaginary Part) 

Theoretically, as presented in equation (4.5), the range of frequency should be set between �lê��{ ΔT and 
lê��{ ΔT. The result of this configuration is presented in figure 4.3. 

  

Figure 4.3 Result of Draupner Wave  
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function). Therefore, the information from frequency between ΔT and  
lê��{ ΔT is adequate to 

represent the time series. The largest required frequency is knwon as nyquist frequency (T��|). 

 T��| = ;U2Δ� ΔT = ;U2Δ� 2Û;U = 2Û2Δ� = ÛΔ� (4.6) 

Since the sea surface is a random process, then it is more convenient to describes the sea surface 

with a power spectrum. The power spectrum is simply defined by the Fourier transformation of 

the correlation function of a random process [32]. For sea surface, it is more appropriate to 

calculate the power spectrum from Fourier transform of the autocorrelation function, as in 

context the components of the spectrum are the squares of the wave amplitude at each frequency. 

Since a sea surface can be assumed as a stationary process for certain duration, the autocorelation 

function of water surface elevation depends on time different (M(N) ). 

 M(N) = ��2(�)  2(� + N)� (4.7) 

M(N) converges to zero for t�∞. The water surface elevation as function of frequency (T) [10], 

[32]: 

 S�(T) = 1;U Õ Æ�f
� M(N) �Nlê
? = |2�̅T�|� (4.8) 

 M�N� � M��N� � MÆ �Õ Æf
� S�(T) �TT���
�T���

� ;       N ≥ 0 (4.9) 

To create a continuous power spectrum, |2�̅T�|� should be divided with ΔT assuming that the 

energy in interval ΔT is represented by the power spectrum S�(T). The notation 2 for power 

spectrum in equations 4.8 and 4.9 indicates that the result of the autocorrelation function 

transformation is a two-sided spectrum. This can be observed by calculating the continuous 

power spectrum of Draupner time series for −T��| ≤ T ≤ T��| which is presented in figure 

4.4. 
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Figure 4.4 Two-sided Continuous Power Spetrum 

However, one-sided spectrum is preferable to use since it does not include any negative 

frequencies which makes it more intuitive. The relation between one-sided and two-sided 

continous power spectrum is given by equation (4.10). 

 S�(T) = 2S�(T) = 2|2�̅T�|�
ΔT � S�T� (4.10) 

 
Figure 4.5 One-sided Continuous Power Spectrum 
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S(T) is the wave spectrum. The one-sided continous power spectrum (wave spectrum) from 

Draupner time series is presented in figure 4.5. Since the calculation is only based on single 

measurement of sea surface, the shape of the wave spectrum in figure 4.5 is irregular. Methods to 

make the wave spectrum smoother are not discussed here but in general the methods are based 

on averaging a number of wave spectrum which refer to several sea surface mesurements. 

From equation 4.7, it can be observed that t2� = M(0) when kÈ = 0. Therefore, combining 

equation 4.7 with equation 4.9 and utilizing the information from equation 4.10 gives: 

 t2� = M(0) = Õ S(T) �T©
?  (4.11) 

If water surface elevation is expressed as sumation of N wave component, the combination of 

equation 4.3 and 4.11 with discretization for numerical puposes gives: 

 t2� = « 2�1,¢22¬
f»� = « S(Tf)ΔT¬

f»�  (4.12) 

If each wave component is observed, it is found that: 

 2��,f = À2 S(Tf)ΔT (4.13) 

Furthermore, the connection between wave spectrum with wave total energy (potential + 

kinematic) can be determined. The wave energy per unit length for certain wave component 

(��,f) is defined by [19]: 

 ��,f = s=2�1,¢2
2  (4.14) 

The total wave energy is calculated by summing wave energy from each wave component: 

 ��s= = « 2�1,¢2
2 = « S(Tf)ΔT¬

f»�
¬

f»�  (4.15) 

Since it is found that there is a general behaviour in various wave spectrums, then the 

standardisation is made. By utilizing siginificant wave (Hs) and spectral peak period (Tp), the 
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wave spectrum for certain location can be estimated. Some standardised wave spectrums are 

summarized here. 

4.1.1. PM (Pierson-Moskowitz) 

The PM spectrum is valid for fully developed sea and deep-water condition. The wave spectrum 

is steep for low frequency and has exponentially decay rate for high frequency. The basic form 

of PM spectrum [31]: 

 S(T) = �T� Æ}I �−ÒTZ � (4.16) 

A and B are determined by dimensional analysis utilizing Hs and Tp. The modified PM spectrum 

which is recommended by ISSC (International Ship and Offshore Structure Congress) which is 

also recomended by 15th ITTC (International Towing Tank Conference) [6], [14]: 

 S(T) = 0.05(,�;<2Û � 2ÛT ;<�� Æ}I �− 54 � 2ÛT ;<�Z� (4.17) 

4.1.2. JONSWAP (Joint North Sea Wave Project) 

This spectrum based on measurement in North Sea. The result shows that the measured spectrum 

is more peaked than allowable peak of PM wave spectrum. Therefore, a modification is made for 

PM wave spectrum. In addition, this spectrum can be used for sea condition with limited fetch. 

The B term from PM spectrum is kept while the A term is modified and depend on specific 

consideration of the location [37]. The formulation of JONWAP spectrum [22]: 

 S(T) = 0.05(,�;<2Û (1 − 0.287 6F(a)) a% � 2ÛT ;<�� Æ}I �− 54 � 2ÛT ;<�Z� 
� = Æ} I Ü−0.5 �T − T<tT< ��Ý   ;     T< = 2Û ;< 

(4.18) 

Where t = 0.07 for T ≤ T<  and t = 0.09 for T > T<. a is peaked parameter. Therefore, 

JONSWAP spectrum is determined by three parameters: significant wave height (Hs), spectral 

peak period (Tp) and peaked coefficient (a). Haver and Torsethaugen (2004) proposed a formula 

to calculate a [43]: 
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 a = 42.2 �2Û(,=;<� �è ��
 (4.19) 

JONSWAP and PM spectrum are single peak spectrum and are usually used for wave that 

generated by local wind. In open seas, there will be effect of swell (waves generated from far 

away, outside the local location) and single peak spectrum is not fully accurate to define the sea 

condition. To describe the sea condition where affected by swell, Torsethaugen spectrum [43] 

which is a double peaks spectrum can be used. The JONSWAP and PM spectrum for Hs = 12 m 

and Tp = 14 second is described by figure 4.6 

 
Figure 4.6 PM and JONSWAP Wave Spectrum 

(Hs=14m; Tp=12 s) 

nth moment of wave spectrum can be determined by equation 4.20. 

 3� = Õ T� S(T) �T©
?  (4.20) 
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If the sea surface is assumed as Gaussian process, some parameter have relation [14]. 

• (, = 4À3? = 4t2 
• ;� = ;Y?� = 2Û3?/3� 

• ;� = ;Y?� = 2ÛÀ3?/3� ; this is the mean zero-crossing period and useful to calculate 

total number of global maxima for observed time interval 

• ;Y�Z = 2ÛÀ3�/3Z ; this is the mean period between maxima and can be used to 

determined wheter the spectrum is narrow banded or broad banded spectrum by 

comparing ;Y�Z wtih ;Y?�. If the different is significant, then the spectrum is considered 

as broad banded. 

• For PM spectrum: T1 = 1.086T2 and Tp= 1.408T2 

• For JONSWAP spectrum: T1 = 0.834Tp = 1.073T2 

4.2. Simulation of First Order Irregular Wave 

The wave spectrum contains information about the energy from certain location. Therefore, 

single wave spectrum may produce different realizations of sea surface. For first order (linear) 

sea surface, the process is assumed as Gaussian proces and sea surface is expressed sumation of 

linear components (similar to equation 2.33). 

 2 (�) =  6¢3¬→© « 2��,f�£S (Cf} − Tf� + ªf)¬
f  (4.21) 

2��,f is first order amplitude which is determined from wave spectrum. The first order amplitude 

can be calculated from equation 4.13 while the relation between Cf and Tf is expressed by 

dispersion relation in equation 2.20. The phase angle (ªf) is determined by random number 

which is uniformly distributed between 0 and 2π. Different realizations of sea surface can be 

produced by changing the ªf for each simulation. 

When modeling the sea surface, a finite number of components (N) are used. As a consequence, 

the model is not perfectly Gaussian process and the repetition occurs. Nevetheless, the sea 

surface model still can be assumed as Gaussian process for certain duration where the repetition 

does still not occur. Theoretically, to achieve perfectly Gaussian proccess with no duration 

limitation, the lowest frequency in wave spectrum TYf� → 0 while the largest frequency 
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TY�� → ∞. For finite number of component, TYf� is set equal to frequency interval (ΔT) and 

nyqusit frequency (T��|) is taken as TY��. In addition, some considerations should be made 

when determining TY�� since it affects the behaviour of velocity potential derivation. Some 

alternatives to calculate the harmonic component for linear component are presented in this 

section. 

4.2.1. Inverse Fourier Transform (Equidistance Frequency Interval) 

The popular way to interpret wave spectrum as harmonic components is by transforming back 

the spectrum into time series of sea surface using discrete inverse Fourier transform. In this 

method, the frequency span is set as constant (equidistance frequency interval). The number of 

wave component (N) to model the sea surface is affected by the nyquist frequency (T��|) and 

the frquency interval (ΔT). 

 × = T��|ΔT =  ;U2Δ�  ;    T��| = 2Û2Δ� = ÛΔ�    ;    ΔT = 2Û;U  (4.22) 

As a consequence, the number of component is determined by the duration of simulation (;U) 

and the time interval (Δ�). For example, to perfrom complete 3-hour simulation of sea surface 

with time interval 0.5 seconds, at least 10,800 should be used. In this case, the sea surface profile 

repeats after 3-hour as explained in section 4.1. If less number of component is used, the sea 

surface repeats before 3-hour. Therefore, care should be made when determining the number of 

component and the range of frequency so the repetition does not occur within the considered sea 

state duration. Furthermore, there are some shcemes to determine the amplitude, frequency and 

phase of the harmonic component with equidistance frequency. 

4.2.1.1. Deterministic amplitude scheme (random phase scheme) 

 In random phase shceme, the harmonic component is determined by: 

 2��,f = Ë2 Õ  S(T) �T
�.�

ï,�  (4.23) 

 Tf = T�,f + Tz,f2  (4.24) 

 ªf = Ø�F��0,2Û� (4.25) 
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Where T�,f and Tz.f is the lower limit and upper limit of frequency component i. The largest 

harmonic amplitude will be located at components with frequency next to spectrum peak 

frequency (rich energy part of the spectrum). The illustration of inverse Fourier transform with 

random phase scheme for JONSWAP wave spectrum with Hs =12 m, Tp = 14 s, ;U = 100S and Δ� = 1S is presented in figure 4.7. 

 
Figure 4.7 Inverse Fourier Transform with Deterministic Amplitude Scheme 

4.2.1.2. Random amplitude scheme 

The standardized wave spectrum is a result of averaging process (smoothing process) of multiple 

wave spectrums. As a result, it has a regular shape. However, the real shape of spectrum from 

measurement has an irregular shape as presented in figure 4.5. Furthermore, when a standardized 

spectrum is transformed into time series of sea surface by deterministic amplitude scheme and 

then the sea surface is transformed back again into a spectrum, the same shape of spectrum (the 

regular shape spectrum) is produced even if the procedures are repeated several times. This 

means deterministic amplitude scheme eradicates some randomness in the spectrum which 
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is determined by the amplitude of harmonic component. Therefore, the set of amplitudes must be 

modified to restore the lost randomness. 

Tucker et al. [45] presented that to create a sea surface based on Gaussian process correctly, the 

amplitude of particular harmonic component should be determined randomly instead of using 

equation 4.23. It can be assumed that the wave amplitude follows Rayleigh distribution (equation 

3.13) with root mean square value of component i : 2�Y,,f = √2 tÈ,f = À2S(T¢)ΔT. The phase (ªf) 
is determined similar to deterministic amplitude scheme (equation 4.25). Figure 4.8 shows the 

initial JONSWAP spectrum and two possible spectrums from random amplitude scheme for Hs 

=12 m, Tp = 14 s, ;U = 1200S and Δ� = 1S.  

 
Figure 4.8 Inverse Fourier Transform with Random Amplitide 
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The standardized wave spectrum is an average of several single measured wave spectrum. 

Therefore, if random amplitude scheme is able to correctly represent this behaviour, the average 

of several realizations of wave spectrum from random amplitude scheme should converge to its 

standardized spectrum (the variance and shape). Figure 4.9 shows this behaviour the averaging 

of 500 wave spectrums with Hs =12 m, Tp = 14 s, ;U = 1200S and Δ� = 1S. 

 
Figure 4.9 Averaging 500 Random Amplitude Wave Spectrum 
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of variance [44]: 

 tY� = 2Û;U Õ S�(T)�T©
?  (4.26) 

Elgar [13] shows that this error can be neglected when the number of component N ≥ 1000. 
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relatively small frequency interval), the random amplitude scheme is suggested. In addition, 

Bæekaedal [6] suggested using random amplitude scheme for low harmonic component since it 

is more conservative than deterministic amplitude (random phase scheme).  

4.2.2. Alternatives to reduce number of component 

For inverse Fourier transform metohd, at least 10,800 should be used to perfrom complete 3-hour 

simulation of sea surface with time interval 0.5 seconds without any repetition. There is no 

significant trouble to simulate first order sea surface and the wave particle kinematics regarding 

computational time and required memory for numerical process. However, to simulate second 

order wave, the computational time and required memory become prohibitive since the number 

of component increased to 10,8002. To tackle this problem, some methods to reduce number of 

harmonic component are required. 

The main reason for a 3-hour simulation requieres a big number of components is to avoid 

repetition before the 3-hour simulation completes. The repetition is occured because every 

frequency components synchronizes to the lowest frequency. This means every component of 

frequency is a multiplication of an integer number (m) to the smallest frequency (which is equal 

to the frequency interval, ΔT). Because of that, the repetition occurs after the wave component 

with the lowest frequency (the largest period) completes. Figure 4.10 shows this case exactly. 

In figure 4.10, five wave component with different amplitudes (1m, 2m, 3m, 4m and 5m 

respectively) and frequencies (1 Hz, 0.8Hz, 0.6 Hz, 0.4 Hz, 0.2 Hz) are combined. The phases are 

set equal to zero so the repetition is easy to observe (when the phases are included, the same 

repetition alsco occurs). The combination of five wave components is presented in last plot. 

Since the lowest frequency is 0.2 Hz (period 5 second), the repetion occurs after 5 second since 

all frequencies are synchronized to 0.2 Hz. 
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Figure 4.10 Combination of Harmonic Components 

Therefore, to manipulate the repetition, the synchronization of wave frequency should be 

destroyed. Figure 4.11 shows an example where the repetition is manipulated. 

 

Figure 4.11 Combination of Harmonic Components 
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In figure 4.11, four wave components are combined with diferent frequencies (0.2 Hz, 0.45 Hz, 

0.7 Hz, and 0.95 Hz). All component has the same phase. In this case, the lowest frequency (0.2 

Hz) is not equal to frequency interval (0.25 Hz). Because of that, though the lowest wave 

frequency is 0.2 Hz (period 5 seconds), the repetition is not occurs after 5 second. In general, 

there are no exact repetition that occurs during 10 seconds. This is because the synchronization 

of frequency is destroyed. However, if it is observed furthermore, there is a repetition of shape 

after 4 seconds though the magnitude is not exactly repeated. This indicates that there is still 

frequency synchronization which caused by the equidistance frequency interval. Therefore, to 

completely destroy the synchronization, the frequency interval should be totally manipulated. 

When the frequency synchronization is destroyed, then 3-hour simulation requires less 

component than 10,800. There are several methods to achieve this. 

4.2.2.1. Random frequency scheme 

Faltinzen and Zhao [15] presented that if the frequency of wave component is randomly 

distributed between the component frequency limit, the problem of repeating sea surface 

realization can be avoided since the frequency is not expressed in preceeding value anymore. In 

this case, the frequency synchronization is destroyed. Therefore, by using this shceme, fewer 

components can be used for longer simulation time. Yet there is an issue when small magnitude 

of N is used. 

Tucker et.al. [45] showed that using deterministic amplitude (random phase shceme), the 

variance of variance of sea surface is underestimated when N is set as 100. However, combining 

the random phase scheme and random phase amplitude increases the variance of sample since 

the randomness from amplitude and frequency part directly affect the sample variance. As a 

consequence, the extreme value of sea surface and its standard deviation can be smaller or higher 

than theoretical value. 

4.2.2.2. Equal area method 

The basic idea for equal area method is that the rich energy part of spectrum is the most 

important part of the spectrum to define an irregular seastate. Therefore, more components 

should be placed in this part. The wave frequency is set which gives the same energy for each 

component. As result, the frequency span (ΔT) is no longer constant and the frequency 
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synchronization is broken. The wave frequncy can be taken as the middle value of frequency 

span in each block similar to equation 4.24. On the other hand, the amplitude is set as a constant 

value and determined by: 

 2��,f = Ë2 �  S(T) �T
õ��
õ�� ×  (4.27) 

Since the frequency component is no longer constant, repetition of sea surface history can be 

avoided. This implies that smaller number of harmonic components can be used than 

equidistance frequency. Figure 4.12 describes the discretization of wave spetrum by equal area 

method for 20 harmonic components with Hs =12 m, Tp = 14 s, ;U = 1200S and Δ� = 1S. 

 
Figure 4.12 Equal Area Method 
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Using equal are method can decrease the number of of required component. Therefore, similar to 

random phase scheme, care should be made when small number of component is used. By 

combining equal area method and random amplitude scheme, there is a possibility that the 

variance of sea surface is changed which lead to changes in variance of extreme. Figure 4.13 

shows the possible changes of sea surface variance from combination of equal area method and 

random amplitude scheme for JONSWAP wave spectrum with Hs =12 m, Tp = 14 s, ;U = 1200S 

and Δ� = 1S utilizing 50 components. 

 
 

Figure 4.13 Equal Area Method + Random Amplitude Scheme 
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In addition, Elgar et al.[13] stated that the adequacy of representing Gaussian condition depends 

on the effectiveness of placing component in rich energy part, not due to the number of harmonic 

component. Therefore, equal area method will be better in representing a Gaussian process than 

inverse Forier transform (equidistance frequency interval). This is also shown by Bæekaedal in 

his work [6].  

4.2.2.3. Peaked equal area method 

Since the natural frequency of the sturcture is usually located not in rich energy part of the 

spectrum, a modification should be made for equal area method. Binner [5] suggests that finer 

component mesh should be applied close to the natural freqeuncy of the structure. This 

modification can solve the problem regarding the lack on component around the natural 

frequency of structure causing more correct load and responses of the structure. This 

modification is called peaked equal area method. 

The first step in this method is dividing components into two groups: NEA (number of equal area 

method component) and Npeak (number of peaked component around natural frequency of the 

structure). The total harmonic component (N) is [6]: 

 × = ×�� + ×<D�Ç = ×(1 − s���) + ×s��� (4.28) 

Where s��� is a parameter describing the density of component located neared the natural 

frequency of the structure. The process of peaked equal area method is [6]: 

1. NEA is determined by equal area method 

2. The block that containing the eigenfrequency and its two-neigbouring block are removed. 

If the eigenfrequency located at the end of the spectrum, (either low frequency end or 

high frequency end) only one or none neobouring blocks are removed. 

3. The frequency range that does not contain any components (due to the removal in point 

2) is split into Npeak + 1,2,3,4 or 5 components. It is conditioned such as the frequency 

span for these components is decreasing towards natural frequency from both sides. One 

example of function than can be used [6]: 

 ΔT = (T� − T�J^) ×�J^ − ¢ + 1×�J^ °¬ï!ý��� ² (4.29) 
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Equation 4.29 is acounted for frequency lower than natural frequency of the structure 

(T�) where T�J^ is the low limit of freqeuncy range that contains no component and Nlow 

is number of component lower than structure eigenfrequency. It can be shown that: 

 « ×�J^ − ¢ + 1×�J^ °¬ï!ý��� ²
¬ï!ý
f»� = 1 (4.30) 

For frequncy larger than natural frequency: 

 ΔT = 1Tûf"û − T�4 ×ûf"û − ¢ + 1×ûf"û °¬'�#'��� ² (4.31) 

Where Nhigh are number of components larger than structure eigenfrequency and Tûf"û is 

the upper limit of freqeuncy range that contains no components. Value of Nlow and Nhigh 

should be balanced depends on where the eqigenfrequency located. In addition, the 

sumation of Nlow + Nhigh = Npeak. 

4. The new frecuency (Tf) is the middle frequency on each span. The amplitude can be 

determined either by deterministic amplitude (equation 4.23) or by random amplitude. 

Figure 4.13 shows the dicretization using peaked equal area method for JONSWAP wave 

spectrum with Hs =12 m, Tp = 14 s, ;U = 1200S and Δ� = 1S. s��� is equal to 30%. For 

presentation purposes, the applied natural frequency (T�) is set as 0.7 rad/s though the 

magnitude of T� is usually larger than 0.7 rad/s for Jack-up platform and located in greatly 

coarse component mesh.  

When peaked equal area method is combining with random amplitude scheme, there is 

significant change in variance (same problem as equal area method). Moreover, since less 

component located in rich energy part of spectrum, peaked equal area method is less accurate to 

model Gaussian sea surface than equal area method for the same value of N. However 

Bæekaedal [6] reported that when the eigenfrequency of structure lays on the rich energy part of 

the wave spectrum, peaked equal area method is better in simulating sea surface for low number 

of component than the non-peaked equal area method. 
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Figure 4.14 Peaked Equal Area Method 
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component which is still considered suifficient, 20-minute simulation is assumed adequate to 

simulate 3-hour simulations in this study. 

This method does not require to destroy the frequency synchronization when using inverse 

Fourier transform. In addition, this method does not create continous time series of surface 

elevation. However, the probabilistic model only requires extreme or largest extreme value of 

time series. Because of that, this  method is considered a good option for genrating probabilistic 

model. 

4.3. Simulation of Second Order Irregular Wave 

In order to simulate the second order irregular wave, the first order irregular wave must be 

simulated first. The energy information from wave sepctrum is converted to a set of regular wave 

components by several methods and scheme that are explained in the previous section. Then the 

surface elevation can be obtained by superposistion principle. However, to account the second 

order component, the correction terms which are expressed by equation 2.57 should be 

calculated and added to the first order sea surface. In this case, the number of harmonic 

component is significantly increased from N to N2. 

The same case is applied for calculating the kinematics of second order irregular wave. The wave 

kinematics from first order irregular wave is calculated then the second order correction term, 

which is gained by deriving the velocity potential expressed in equation 2.56, is added to the first 

order irregular wave kinematics. The wave particle kinematics are calculated in a grid system 

which means it is calculated point to point. Hence, the computational time is increased 

significantly. This condition makes the second order irregular wave simulation becomes 

unattractive. 

A wave spectrum contains energy not only from fist order wave but also second and bigger order 

wave. However, the first order irregular wave components are determined by utilizing total 

energy from wave spectrum. Adding second order correction term means adding more variance 

to sea surface time series which means introducing the second order term correction violates the 

amount of energy in the wave spectrum. Therefore, when a second order wave is wanted to be 

introduced, a wave spectrum should be linearized first before calculating first order wave. Some 

approaches to linearized the spectrum are summarized here. 
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4.3.1. Iteration to linearize spectrum 

In this method, every block in wave spectrum is checked. An iteration process is performed to 

find the right linear amplitude (2��) that will give right magnitude of the wave spectrum in each 

block when the second order correction is introduced. Since the number of component could be 

large, the iteration process could be time consuming. Moreover, the iteration is complicated 

because one block in wave spectrum is affected by another block through second order 

correction (through sum and difference term). 

4.3.2. Cut-off frequency 

Another way to maintain the energy in the wave spectrum when the second order correction is 

applied is by introducing a cut-off frequency (T
z{). This method was presented by Stansberg 

[39]. The components with frequency higher than T
z{ are assumed as bound waves. Therefore, 

the energy associate to second-order correction is considered come from the part of the wave 

spectrum with frequency higher than T
z{. As a consequence, the first order sea surface is 

determined only from part of the wave spectrum with ΔT ≤ T ≤ T
z{. Figure 4.15 shows a cut-

off frequency for JONSWAP spectrum with with Hs =12 m, Tp = 14 s, ;U = 1200S and Δ� = 1S. 

 
Figure 4.15 Cut-Off Frequency 
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This method is relatively simple since the iteration process is not required. Futhermore, this 

method can decrease the required number of component for sea surface simlation. As an 

example, 3-hour simulation needs 10,800 components for Δ� = 0.5S. By introducing TY�� =T
z{, the required component reduced 2198 for Hs =12 m. Therefore, combining the cut-off with 

the methods to reduce number of  component will make the second-order wave simulation 

becomes feasible. 

4.4. Directional Spectrum 

To represent a 3-dimensional sea surface (short crest wave), a directional spectrum is introduced. 

The directional spectrum (S(T, �)) is a multiplication of wave spectrum (S(T) as introduced in 

section 4.1) and a spreading function (�(�)). 

 S(T, �) = S(T)�(�) (4.32) 

In general, the spreading function is not necessary independent of frequency. In the other word, 

the form of spreading function could be �(�, T). However, for simplicity, it is assumed that the 

spreading function is independent of frequency. To maintain the energy in the spectrum, �(�) 

should satisfy: 

 S(T) = Õ S(T, �) ���$

? = Õ S(T)�(�) ���$

? → Õ �(�) ���$

? = 1 (4.33) 

There are various spreading functions that are proposed [8].The common spreading function 

which is used [31]: 

 �(�) = %&Ñ �£SÑ(�) , − Û2 ≤ � ≤ Û20, Æ6SÆ '  (4.34) 

v is an integer number. � = 0 is the main propagation direction of the wave. &Ñ is the normalized 

coefficient that insurance the satisfaction of equation 4.33. Therefore, &Ñ can be determined by 

equation 4.35. Figure 4.16 shows the shape of �(�) for various v. 

 &Ñ = 1� �£SÑ(�)  ���$? = 2Ñ��Û � °Ñ�²� °Ñ� + 1²�(()  (4.35) 
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Figure 4.16 Spreading Function 

From the directional spectrum, the first order amplitude for component ij  is determined by: 

 2��,f± = À2 S(Tf , �f)ΔTΔ� = á2 S(Tf)�1�±4 ΔTΔ� (4.36) 

Then, the first order sea surface can be determined by: 

 2(}, ~, �) = « « 2��,f±  �£S °Cf °} �£S1�±4 + ~ S¢F1�±4² − Tf� + ªf±²	
±

¬
f  (4.37) 

The particle kinematics can be calculated from equation 2.38  until 2.43 by separating the 

frequency (i) and direction component (j) as done in equation 4.37. The number of harmonic 

component becomes × } �. Hence, applying the spreading function into wave spectrum 

significantly increases the number of required component for simulation of first order sea surface 

and wave particle kinematic. Furthermore, the second order wave simulation became greatly 

prohibitive. Therefore, an alternative method should be used to represent the spreading function. 

Another way to express a 3-dimentional wave is by assigning only one direction to each 

frequency component. In this way, the required component is still equal to N. The direction of 

each frequency component is randomly determined. It is assumed that the direction of each 

component (�f) follows Gauss (normal) distribution. Therefore, �f can be determined by: 

 �f = v�� � Atu� (4.38) 
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σ* is the standard deviation of the direction in radian. � = 0 is the main direction of wave 

propagation. Long-crest wave is achieved when σ* is set as small number. I is a random number 

which is uniformly distributed between zero and one. v is the standard Gauss cumulative 

distribution. Because of that, this method is called random direction. Figure 4.17 shows the 

probability density function of � as a Gauss distribution with various σ*. To simplify, σ* is 

presented in degree though in calculation σ* is conversed to radian. 

 
Figure 4.17 Probability Density Function of Wave Direction 

The magnitude of probability density function could be larger than one as long the area under the 

curve is equal to one. When random direction is used with tu ≥ Û/5, there is a possibility that � 

is larger than Û/2. This contradicts the condition of spreading function which is described in 

figure 4.16. Therefore, the wave could propagates in the opposite direction since there is a 

possibility that adequate number of components have direction larger than Û/2. To avoid this 

issue, it is suggested to use tu < Û/5. 

For random direction, the first order sea surface is determined by modifying equation 4.37. In 

this case, to maintain the energy in the spectrum and to satisfy the condition in equation in 4.33, �1�±4Δ� is not applied to the formula since each frequency component only has one direction.  

 2(}, ~, �) = « À2 S(Tf) ΔT���������È�ó,�
 �£S1Cf1} �£S(�f) + ~ S¢F(�f)4 − Tf� + ªf4¬

f  (4.39) 
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Figure 4.18 Comparisson of Spread Function and Random Direction PDF
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The connection between random direction and common spreading function �(�) is expressed by 

the relation of tu and �(�): 

 tu = Ë∑ �±��1�±4 	±∑ �1�±4 	±  (4.40) 

Figure 4.18 shows the comparisson of �(�) and probability density function of � for various v. 

To calculate the second order directional term for sea surface, equation 2.57 can be used with 

aplying the wave number as a vector. This is briefly explained in section 2.4.2. 

4.5. Strategy to Decrease Computational Time in Extetnt 

To calculate the load and responses on the structure, the wave particle kinematics could be 

calculated first on grid system then apply to the structure. This is feasible for small volume 

structure such as Jack-Up or Jacket platform where the particle kinematics is assumed 

undistrurbed. Eventhough the number of required components have been reduced, to calculate 

wave perticle kinematics in grid system still could be very time consuming. Therefore some 

strategies to reduce the computational time are considered. In this section, some strategies to 

reduce the computational time of wave particle kinematics are introduced. 

4.5.1. Calculating wave kinematics at coarser grid 

The wave particle kinematics is first calculated at coarser grid. To find the load at the structure, 

the wave particle kinematics at structure coordinate are interpolated from adjacent grid 

coordinates. Therefore, a sensitivity analysis to determine how coarse a grid system that still 

produces acceptable result is required. 

4.5.2. Second order wave at upper layer 

Since the wave kineamtics decay exponentially with vertical coordinate both for first order wave 

and second order wave, then it can be assumed that the difference between second order and first 

order wave kinematics is negligible at particular location which is close to seabed. Therefore, to 

decrease the computational time, the second order wave kinematics are only applied close to sea 

surface (upper layer) while the first order wave kinematics are established at the rest of the depth 

(lower layer). By this strategy, number of calculation point for second order wave kinematics can 

be decreased significantly. Therefore, much faster computational time is gained.  
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Figure 4.19 Illustration Second Order at Upper Layer Method 

This second order at upper layer is illustrated by figure 4.6 for horizontal velocity case. This 

strategy is useful either for static and dynamic analysis of structure response. From previous 

project by Lubis [27], it shows that this method could save the computational time significantly 

for single vertical cylinder case. 

4.5.3. Spool-to-extreme wave method 

For ultimate limit state analysis, the main interest is the extreme response. In general, the 

extreme response occurs at extreme load condition. For drag dominated load, which is greatly 

affected by the wave particle velocity, the extreme load is assumed occurs at the extreme water 

surface elevation within certain duration. Since the computational time for simulating second 

order sea surface is relatively faster than for second order wave kinematics, then it is possible to 

locate when the extreme surface elevation happens. Henceforth, the wave particle kinematics, 

load and responses are determined only around the extreme surface elevation. For dynamic 

analysis, the response at certain time instant relies on response at previous time instant (this is 

presented in section 5.3.2). Thefore, there is no need to calculate wave kinematics from the start 

of sea surface simulation until the extreme of water surface elevation occurs. The wave particle 

kinematics then are calculated at a certain time interval before the extreme surface elevation 

occurs to accomodate the transient effect of the structure. This method is called spool-to-extreme 

wave and useful for dynamic analysis of structure response. Figure 4.20 illustrates this method. 

The first plot in figure 4.20 describes the complete second order sea surface while the second 

plot shows the sea surface for spool-to-extreme method. There is no specific condition about 

how long the time interval should be considered before the peak since the transient effect of a 

Second Order 

First Order 

wave ux 
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certain structure could be various in irregular sea. In addition, for some cases the maximum 

response could happen not at the extreme of water surface elevation (for instance for mass 

dominated structure). 

 

Figure 4.20 Illustration of Spool-to-Extreme Method 

4.5.4. Linear theory before maximum (linear-to-extreme) 

A further modification is made for spool-to-extreme method. Since the computational time of 

first order wave kinematics is relatively faster than the second order wave kinematics then on 

dynamic analysis of structure responses, the load before the extreme surface elevation is 

calculated from first order wave kinematics to account the structure transient responses. The 

second order wave is start to apply for a short interval time before the extreme surface elevation. 

By applying this scheme, it is expected that the duration of calculation can be decreased in 

extent. This method also does not have specific requirement for how long the load can be applied 

before the extreme surface elevation. Figure 4.21 illustrates this method. 

 

Figure 4.21 Illustration of Linear-to-Extreme Method 
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5. Structure Model, Loads and Response 

In the previous project by Lubis [27], the second order wave is tested on a single vertical 

cylinder. In this work, the analysis is extended and the second order wave is applied into a jack-

up platform. Jack-up is choosen since the jack-up is still categorized as small volume structure 

and have considerable dynamic behaviour. Then, in this section, the description about the jack-

up and the method to calculate the load and responses are presented. 

5.1. Structure Model 

The jack-up model which is used in this work is CJ62. The model was designed by engineering 

company GustoMSC and classified by DNV GL. CJ62 is a three legs, cantilever type drilling 

jack-up patform which is deisgned to operate 

in moderate to harsh environment. The jack-

up is designed to operate with water depth up 

to 130 meters. The radius of the leg 

approximately is 35.8 meters with distance 

between leg center equal to 62 meters. The 

legs are triangular with x-braces, open truss 

system. The finite element model is built in 

USFOS. In the finite element model, the legs 

are modelled with detail finite element. 

Figure 5.1 shows the finite element model of 

CJ62 jack-up. 

Using the detail finite element model gives 

more accurate responses, such as deck 

displacement, baseshear and overturning 

moment. Eventhough this work is more focus 

on the difference between effect of first order 

and second order wave model on the jack-up, 

the detail finite element model is also useful Figure 5.1 CJ62 Finite Element Model 
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in push-over and damage analysis. On the other hand, performing analysis with the detail finite 

element model leads to longer computational time. In order to save time, an approach to perform 

several simulations simultaneously is considered. This approach is explained in chapter 6. In 

addition, the water depth is set to 100 meters for this work. 

When determining the response of the structure, the nonlinear behaviour could be too significant 

to neglect. The nonlinearity on structure behaviour can be caused by [29]: 

• Geometrical condition (large displacement) 

• Material condition (nonlinearity on stress-strain relationship, e.g. plasticity) 

• Bondary condition (contact between structure) 

In the previous project, the nonlinearity on 

structure behaviour is avoided. The cylinder is 

modelled with very high modulus elasticity of 

material to avoid the plasticity. Moreover, by 

introducing very high modulus elasticity, the 

cylinder stiffness is also increased significantly, 

which restricts the cylinder from large 

displacement. As the result, nonlinearity from 

geomtric condition is avoided.  

In this work, the structure is not represented as a 

linear model anymore. The geometrical and 

material nonlinearity in the structure are 

considered in the finite element model. The 

material of the legs (both the column and the 

truss) is modelled with elasto-plastic material. In 

figure 5.2, the purple colour indicates the parts of 

the structure which have the elasto-plastic 

material. The rest of the structure are modelled 

with elastic material. In general, the jack-up model 

part can be categorized to four groups: 

Figure 5.2 Open Truss Model of Leg 
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• Three sets of leg 

• Three sets of support footing 

• One Deckbox 

• Jack Houses (part of the structure for transfering loads from the deckbox to the legs) 

The materials for all part of the structure are summarized in table 5.1. For deckbox, support 

footings and connecting columns, the yield stress is neglected as the parts are represent with 

elastic material. In addition, the density of deckbox, support footings and connecting columns are 

represented by very small number since the mass of these parts is modelled by nodal mass. 

Table 5.1 Material Parameter of Jack-up Model 

No Part Elastic Modulus Poisson Ration Yield Stress Density 

1 Legs 210 Gpa 0.3 690 Mpa 7,850 kg/m3 

2 Support Footing 2,100 Gpa 0.3 - - 

3 Deckbox 420 Gpa 0.3 - - 

4 Jack House 210 Gpa 0.3 - - 

Moreover, the stiffness, damping, mass and eigenvalue analysis of the model are explained in 

this section. 

5.1.1. Stiffness 

Since geometry nonlinearity is accounted, the stability (Livesley) function [3] is utilized to 

represent the beam stiffness. In this case, the P-+ effect on element level is included when 

deriving the stiffness of the beam. The P-+ effect is caused by the axial force on cylinder. The 

matrix stiffness of the beam is acquired by finding the exact solution of beam moment 

equilibrium. Figure 5.3 illustrates the beam element with end forces. 

For figure 5.3, the internal moment (�f) and external moment (�D) at any section " =  } are 

presented respectively in equation (5.1) and (5.2). 

 �f = −� A ,,�� (5.1) 

 �D = �� + Ð�" − ×ø(, − ,�) (5.2) 
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Figure 5.3 Beam Element with End Forces [3] � and A is the elastic modulus and moment inertia respectively. �� and Ð� are moment and shear 

force at point A while ×ø is the axial force. ,(}) is the lateral displacement of the beam at point 

x. ,,� and ,,�� are the first and second x-derivative of ,. Therefore, to satisfy the equilibrium: 

 �f � �D   →   �� A ,,�� � �� � Ð�" − ×ø(, − ,�) 
,,�� � C,�, � 1� A ��� � Ð�" + ×ø,�)   ;    C,� � ×ø� A 

(5.3) 

The differential equation in equation 5.3 is the beam moment equlibrium. The exact solution for 

equation 5.3 is represented by combination of homogenous (,)) and particular (,�) solution: 

 ,(}) = ,) +,� = �� S¢F(C,}) + �� cos�C,}� � 1×ø ��� � Ð�" + ×ø,�) (5.4) 

In order to find the coefficient �� and ��, the boundary conditions should be satisfied. The 

boundary conditions are: 

 ,(0� � ,�  ;   ,,��0� � ���   ;    ,�E� � ,-  ;   ,,��E� � ��- (5.5) 

Combining the bondary condition and equilibrium condition, the relationship between force (or 

moment) and displacement (or rotation) is presented in equation 5.6 [3]. 

NX 

NX 
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 (5.6) 

The xf can be determined by: 

Compression : Tension : x� = _��F(_) 
x� = 13 _�(1 − x�) 

x� = 14 x� + 34 x� 
xZ = − 12 x� + 32 x� x� = x�x� 

x� = _��Fℎ(_) 
x� = 13 _�(x� − 1) 

x� = 14 x� + 34 x� 
xZ = − 12 x� + 32 x� x� = x�x� 

_ = Û2 Ë×ø×�    ;    ×� = Û � A E�  

This stiffness matrix is applied in USFOS. The global stiffness matrix of the structure (K) is 

established by assembling all element stiffness matrices (CD). ×� is Euler buckling force. 

5.1.2. Mass 

In order to analyze the dynamic response of the structure, the mass matrix of element has to be 

defined. In this work, it is choosen to use consistent mass to calculate the mass of the element. 

Consistent mass means that the mass is based on the same interpolation function as the stiffness 

matrix. However, in USFOS, the mass is based on the interpolation function of linear 3D beam 

[37] instead of the nonlinear interpolation function which is described in equation (5.6). 

Therefore, the mass is not truly consistent with the stiffness matrix but is still considered 

adequately accurate. For beam element without shear and axial deformation, the mass matrix can 

be established by [24]: 



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Structure Model, Loads and Responses  70 

 

 

 3D = Õ sD×,l×, E2�
�� �ξF   ;    S = ,, θ 

N?@ = 14 12 − 3ξr + ξr�4  ;  N*A = 14 11 − ξr − ξr� + ξr�4 
N?A = 14 12 + 3ξr − ξr�4  ;  Nθ2 = 14 1−1 − ξr + ξr2 + ξr34 

(5.7) 

 3B = sDE420
56
66
7 156 −22E 54 13E−22E 4E� −13E −3E�54 −13E 156 22E13E −3E� 22E 4E� 89

99
:
 (5.8) 

Where ×, is the shape function for diplacement (,) or rotation (θ), sD is mass per length (kg/m). 

The global mass matrix of the structure (M) is established by assembling all element mass 

matrices (3B). Moreover, the contribution of added mass from hydrodynamic force should be 

accounted in in mass matrix. Explanation about added mass is presented in section 5.2. 

5.1.3. Damping 

Damping is the ability of the structure to dissipate kinetic energy energy. Source of damping can 

be various and modelling them can be complicated. However, damping for structure (C) is 

normally assumed as proportional to stiffness and matrix of the structure [24] which can be 

expressed by: 

 � = ]�! + ]�B (5.9) 

This damping system is known as Rayleigh damping. It can be shown that the global mass and 

stiffness matrices have orthogonality behaviour. Therefore, since the Rayleigh damping is 

proportional to mass and stiffness, it also has the othogonality behaviour. In addition, damping 

can also be determined as a ratio of structure critical damping for certain eigenmodes 

(explanation about eigenmodes is presented in section 5.14). The structure critical damping for 

eigenmode i (wC) can be expresed as:  

 �
�,������ = á2 3����� C�D     ;   3����� = wC9!wC   ;    C�D = wC9BwC (5.10) 

Then, the damping of the structure can be determined from eqigenmode i: 

 � = wC j
,f �
�,������ wC9 (5.11) 
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j
,f is the damping ratio for eigenmodes i. Since the structure has several eigenmodes, the 

damping ratio also has several values. In addition, each eigenmode refers to certain 

eigenfrequency. Therefore, the damping ratio (j
) can be expressed as a function of 

eigenfrequency (T�): 

 j
 = 12 �]�T� + ]�T�� (5.12) 

When ]� = 0, j
 is proportional to T� then ]� damps high frequency oscillation modes 

(eqigenmodes). With the same consideration, ]� damps low eigenfrequency oscillation modes. If 

two damping ratios (j
,� and j
,�) at two structure eigenfrequencies (T�,� and T�,�) are known, ]� and ]� can be calculated by: 

 ]� = 2T�,�T�,�T�,�� − T�,�� 1j
,�T�,� + j
�T�,�4 (5.13) 

 ]� = 2T�,�� − T�,�� 1j
,�T�,� − j
,�T�,�4 (5.14) 

For jack-up case, there are three sources of damping on the structure. They are strutural damping, 

soil damping and hydrodynamic damping. Structural damping is produced by the material of the 

jack-up. Soil damping is introduced by the foundation system. The hydrodynamic damping is 

determined by the velocity of structure relatively to the wave particle velocity. In this case, the 

hydrodynamic damping is a non-linear damping and known as viscous damping. DNV [11] 

recommends that the range of structural damping is between 1-3%. For soil damping, the range 

is recommended between 0-2% while for hydrodynamic damping is between 2-4%. Furthermore, 

DNV recommends that the total damping for storm condition should be in the range of 6-9%.  

Table 5.2 Assumed Damping Ratio 

No 
Damping Ratio 

(j
) 
Eigenfrequency T� �Ø��/S� 7� �(�� 

1 3% 0.62 0.1 
2 2% 62.83 10 

In USFOS, the hydrodynamic damping is directly calculated from structure relative velocity. The 

soil damping is neglected in this case. Moreover, the structural damping determined by 

specifying two different damping ratios for two different eqigenfrequencies. Table 5.2 shows the 
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assumed damping ratios for two different eigenfrequencies. In addition, figure 5.4 shows the 

damping ratio for different eigenfrequencies based on the assumed damping ratio. The 

eigenfrequencies are presented in Hz instead of rad/s. 

 
Figure 5.4 Damping Ratio of The Structure 

5.1.4. Eigenvalue analysis 

For undamped free vibration system, the equation of motion can be written as: 

 !OQ + BO =   (5.15) 

By assuming O = wS¢F (T��), then equation 5.15 can be rewritten as: 

 (B − T�!)w =   (5.16) 

w is the vector of eigenmodes and T� is the eigenfrequency. This is an eigenvalue problem 

where w is the eigenvector and T� is the eigenvalue. The untrivial solution is found by 

calculating the determinant of (B − T�!) that gives zero value. Solving this, the set of 

eigenfrequency (eigenvalue) and its corresponding eigenmodes are obtained [24].  

In order to solve eigenvalue problem for finite element of structure, shifted-inverse itteration 

method can be used [24]. However, in this work the structure eigenfrequencies are determined by 

USFOS. The eigenperiods of jack-up model are presented in table 5.3. 
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Table 5.3 Structure Eigenfrequency 

No Mode 
Eigenperiod (;�) 

 [s] 

Eigenfrequency T� �Ø��/S� 7� �(�� 
1 1st  X-Bending 5.91 1.06 0.17 

2 1st  Y-Bending 5.91 1.06 0.17 

3 Rotational 5.41 1.16 0.18 

4 2nd  X-Bending 0.55 11.4 1.82 

5 2nd  Y-Bending 0.55 11.4 1.82 

5.2. Loads 

For jack-up platform, the dimension of members in legs truss system are smaller than the wave 

length. Because of that, the wave load on jack-up legs can be determined directly from 

undisturbed wave particle kinematics. In this case, the wave load is calculated by utilizing 

Morison equation. 

5.2.1. Morrison Equation 

It is assumed that the strip theory is valid for determining load on jack-up leg. As a consequence, 

the Morrison equation can be combined with strip theory. The Morrison equation for a strip 

element of cylinder is expressed by: 

 �� = s Û��4 �	�� �������������E�D�{f� lD�Y
+  12 s �
 � [�|[�| ���������������
��" lD�Y

 (5.17) 

Where CM is addedmass coefficient and CD is drag coefficient. For regular wave, as it can be 

observed from equation 2.21, and 2.23, [� has maximum magnitude at wave crest while �� is 

equal to zero. At the mean water level, �� has maximum value while [� is equal to zero. For 

irregular wave condition, since it contains a set of regular wave component with different 

amplitudes, frequencies and phases, the inertia term is not totally zero at wave crest and the drag 

term is not totally zero at the mean water level. For single vertical cylinder case, when ( > 10 � 

and j > 5�, the drag load (viscous forces) dominates. In this case, H, j and D are wave height, 

wave length and cylinder diameter respectively. This is illustrated in figure 5.5.  
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Figure 5.5 Relative Importance of Wave Load [14] 

According to NORSOK [33], for slender structure, CD = 1.05 and CM = 1.2 for rough member 

and CD = 0.65 and CM = 1.6 for smooth member. The roughness of member can determined by 

considering the existence of marine growth at the Jack-up leg. NORSOK [33] suggest that the 

marine growth can be considered exist up to two meters above the mean water level. Therefore, �
 = 0.65 and �	 � 1.6 for � Ê 23 while �
 � 1.05 and �	 � 1.2 for �   23. In this case, sea 

surface and wave kinematics should be modelled by second order or higher order wave model. 

On the other hand, when the sea surface is modelled as Gaussian sea (sea surface and wave 

particle kinematic is determined by first order model), the hydrodynamic coefficient should be 

modified to give reasonable load level. �	 is kept as previous model while �
 � 1.15 for all z 

coordinate. Figure 5.6 illustrates the applied hydrodynamic coeffien for second order (or higher) 

wave model and first order model. 

 

 

 

 

 

 

 

 

Figure 5.6 Applied Hydrodynamic Coefficient along z-Coordinate 
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5.2.2. Added Mass 

In the potential theory, the inertia force presented in equation 5.17 is a combination of two 

sources of force. These sources of force are: 

• Force comes from diffraction problem. In diffraction problem, the wave comes and hits 

the structure while the structure is restrained. 

• Force comes from radiation problem. In radiation problem, the structure is forced to 

move and create waves. There is no incident wave in this case, i.e. the generated wave 

from the motion of structure is the only wave exists. 

The diffraction and radiation problems are illustrated by figure 5.4 [14]: 

 

Figure 5.7 Illustration about Diffraction and Radiation Problem [14] 

By solving radiation problem, another load terms exist. They are added mass, hydrodynamic 

damping and restoring. For jack-up system, the hydrodynamic restoring term can be neglected 

since the magnitude is small compared to stiffness of cylinder. The hydrodynamic damping from 

potential theory can also be neglected since it is smaller than viscous damping (viscous damping 

is determined from velocity of the structure relative to the wave particle velocity). However, the 

added mass force should be considered. 

When the structure is oscillating, the added mass term for each strip element of cylinder can be 

calculated by [25]: 

 ��� = − s Û��
4 ��	 � 1����������������

�§§D§ Y�,,»��
  ØQ (5.18) 

The added mass is calculated for each cylinder finite element and added to mass term of the 

structure (as presented in section 5.1.2).  
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5.3. Response 

The response of structure can be analyzed by two different approaches. The first way is by static 

analysis. In this method, the contribution from damping and mass is neglected. The second way 

is dynamic analysis. In this case, the contribution from mass and damping is accounted. In this 

section, the displacement of the jack-up is taken as response. 

5.3.1. Static Analysis 

For static analysis, the dynamic behaviour of the structure is assumed can be neglected. 

Therefore, the displacement (O) can be analyzed by: 

 B O = L (5.19) 

Similar to stiffness matrix, the force matrix (R) is also needed to assembly before it is included in 

equation 5.19. The response from static analysis does not depend on previous response. Hence, it 

is possible to calculate the extreme response by only observing the condtion of sea surface where 

the extreme load possible to occur. In this way, calculation is relatively simple and fast. To 

account for the dynamic behaviour of the structure, the static analysis can be extended by 

utilizing equivalent dynamic amplification factor (EDAF). EDAF is the ratio between dynamic 

and static response of the structure.  

5.3.2. Dynamic Analysis 

In dynamic analysis, the displacement is calculated by solving equation of motion. The equation 

of motion is: 

 !OQ + �OP + BO = L(�) (5.20) 

OQ , OP  and O respectively are structure acceleration, velocity and displacement. The equation of 

motion in time domain is solved by utilizing numerical integration. There are several schemes of 

numerical integration for solving the equation of motion, e.g. constant acceleration method, 

linear acceleration method and Newmark’s β family [24]. In this study, the HHT-α (Hilber, 

Hughes and Taylor alpha-dissipation) method, the method which is used in USFOS, is utilized. 

This method averages the damping, stiffness and force term by α-parameter. In general, the 

lower modes (modes with low eigenfrequency) govern the oscillation of structure. Then, using α 

method will be advantageous since it introduces artificial damping for higher order modes of 

vibration. 
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The equation of motion for HHT-α method is expressed as: 

!OQ f�� = �(1 + ])Lf�� − ]Lf� − �(1 + ])�OP f�� − ]�OP f + (1 + ])BOP f�� − ]BOf� 
Of�� = Of + ∆� OP f + ∆��2 (1 − 2_)OQ f + ∆��_OQ f�� 

OP f�� = OP f + ∆� (1 − a)OQ f + ∆� a OQ f�� 

(5.21) 

a and _ are the parameter in Newmark-β method. The stability of the integration is determine by 

α, β and γ. The unconditional stability is achived when: 

 − 13 < ] < 0  ;   a = 12 (1 − 2])  ;   _ = 14 (1 − ])� (5.22) 

When ] is equal to zero, HHT-α becomes constant average method. In this work, ] is set as -0.1. 

The incremental equations are obtained by substracting the solution at time i+1  with solution at i. 

 !(OQ f�� − OQ f) + (1 + ])(�OP f�� − �OP f) + (1 + ])(BOf�� − BOf) = 
 (1 + ])(Lf�� − Lf) + Lf − !OQ f − �OP f − BOf (5.23) 

 ∆OQ f�� = OQ f�� − OQ f = 1∆��_ ∆Of�� − 1∆�_ OP f − 12_ OQ f (5.24) 

 ∆OP f�� = OP f�� − OP f = a∆�_ ∆Of�� − a_ OP f − ∆� � a2_ − 1� OQ f (5.25) 

Then ∆Of�� will be the only unknown when equation (5.23) is combined with equation (5.24) 

and (5.25). Therefore, equation (5.23) can be rewritten as: 

�(1 + ])B + (1 + ]) a∆�_ � + 1∆��_ !� ∆Of�� = (1 + ])(Lf�� − Lf) + Lf − 
!OQ f − �OP f − BOf + � 1∆�_ OP f − 12_ OQ f�! + �(1 + ]) Üa_ OP f + ∆� � a2_ − 1�Ý�OQ f (5.26) 

By knowing ∆Of��, displacement, velocity and acceleration of the structure can be calculated 

from: 

 Of�� = Of + ∆Of�� (5.27) 

 OP f�� = a�_ ∆Of�� + �1 − a_� OP f − ∆� � a2_ − 1� OQ f (5.28) 

 OQ f�� = 1∆��_ ∆Of�� − 1∆�_ OP f + �1 − 12_� OQ f (5.29) 
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6. Numerical Model 

In this work, all the calculation and simulation is performed numerically. The works covers the 

metocean analysis, sea surface simulation, wave particle kinematics calculation and structure 

response analysis of the jack-up. In addition, since a big number of simulation is needed to 

perform, a particular scheme should be established to do the numerical simulation efficiently. 

This section presents the explanation  and consideration of the numerical model in this work. 

6.1. Flowchart of Simulation 

The simulations in this work can be categorized into five main groups, which are: 

• Metocean analysis to find the significant wave height and spectral peak period for 100 

year return period 

• Simulation of sea surface utilizing the significant wave height and spectral peak period 

from metocean analysis 

• Calculation of the wave particle kinematics for each surface evelation 

• Calculation of jack-up static and dynamic responses 

The first three groups are performed in MATLAB while the last one is performed in USFOS. 

The works can be presented in a flowchart. Figure 6.1 shows the flowchart of the work. 

 

 

 

 

 

 

 

 

Figure 6.1 Flowchart of Simulation 
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The parallelogram indicates an input/output while rectangular indicates a process (simulation or 

calculation). Several three hour simulations of sea surface, wave particle kinematics and 

responses are acquired by generating new random seeds which means generating new amplitude, 

frequency and phase of harmonic component (depends on the choosen scheme). The blue colour 

are indicates the process which are performed utilizing USFOS while the rest of work are 

performed in MATLAB (red colour).  

After certain number of simulations is performed, the distribution of jack-up responses are 

calculated. In this case, the calculated responses in USFOS are baseshear and overturning 

moment reaction at the bottom of jack-up. The number of performed simulation is determined 

differently depends on the focus of analysis. Since the simulation is performed repeatedly, then 

the best method to do repetition in MATLAB and USFOS is observed. 

6.2. Looping in MATLAB 

In general, the calculation and simulation in MATLAB requires repetitive process. Choosing the 

appropriate technique can speed up the calculation. Because of that, several looping techniques 

are compared. The option which are discussed here is only valid in MATLAB since other 

computation tools has different environment and library. In this section, four techniques of 

looping in MATLAB are compared: 

1) For-loop : the simplest looping method in MATLAB. Each component of looping is 

analyzed one-by-one then the result is saved into a result matrix. The result matrix is 

updated for each looping since the size of result matrix changes in each looping. 

2) For-loop with preallocating memory : when the final size of result matrix is known, the 

final result matrix can be created first. Hence, result from every calculation is assigned 

into the final result matrix. In this way, the unnecessary computational time for updating 

result matrix can be avoided. 

3) Vectorization : MATLAB uses processor-optimzed for matrix and vector computation. 

Therefore, a matrix operations could be significantly faster than simple looping process. 

Therefore, the for-loop process is converted into a set of matrix (or vector) then the 

matrix operations are performed. In this case, additional vectorization proccess is needed 

to perform and for some cases the required memory can be larger than simple for-loop 

process. Moreover, the for-loop process can not be vectorized in several cases. 
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4) Parallel for-lop : when the for-loop can not be vectorized, pararller for-loop can be used 

as an aternative technique to speed up the calculation. This technique distributes the 

looping processes into several workers and some processes are executed at the same 

moment. However, this process depends on the number of available workers in 

MATLAB which is affected by number of computer cores. 

To observe the required computational time from four different techniques, a looping is 

performed to calculate the third power of matrix A which is a matrix with size 5000 x 5000. The 

computational time is measured and summarized in table 6.1. In addition, figure 6.2 shows the 

result as percentage of simple for-loop computational time. It should be noted that the 

computational time is also affected by computer processor and memory which gives different 

computational time in different computer for the same technique. For instance, the pararel for-

loop is not very efficient method for computer with small memory and less processor. Therefore, 

result in table 6.1 and figure 6.2 should be considered as a trend instead of absolute difference. 

The MATLAB script for comparing different looping technique is presented in appendix 1. 

Table 6.1 Computational Time of Different Looping Technique 

No Technique Computational 
Time [s] 

Percentage 
[%] 

1 For-loop 69.29 100 

2 For-loop with preallocating memory 6.13 8.85 
3 Vectorization 0.59 0.85 
4 Pararel for-loop 44.79 64.64 
5 Pararel for-loop with preallocating memory 3.18 4.59 

 

Figure 6.2 Computational Time for Different Looping Technique 
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From table 6.1, vectorization technique shows the fastest calculation process. Therefore, the 

MATLAB codes in this work are built based on vectorization technique. A 20-minutes second 

order-sea surface simulation with time interval 0.5s requires at least 12002 looping process. 

Calculating wave particle kinematics in grid system with size 100m x 100m x 100m (x,y and z 

coordinate) and interval 1m for 20 minutes means that the looping should be done: 

×[3ùÆØ £7 6££I¢F= = 1200�  × 100 × 100 × 100 × �20 × 600.5 � = 3.456 × 10�� (6.1) 

Even when the wave can be assumed as long crest wave which makes the grid system in y-

coordinate can be represented by single y-coordinate for each x and z-coordinate, the process still 

requires 3.456 × 10�� looping proccess. In this case, the vectorization can not be done due to 

memory problem. Therefore, a combination of vectorization and pararel for-loop is utilized. All 

in all, choosing a right looping technique could improve the effiency of calculation in MATLAB. 

In this work, several MATLAB scripts and functions has been built. Evethough the arragenment 

differs which depends on the focus of analysis, each functions and script has its own purposes. 

The input, output and purpose of the function is explained in the appendix 2. 

6.3. USFOS 

The responses of jack-up, both static and dynamic responses, are calculated by USFOS. USFOS 

is a computer program which is built to calculate the nonlinear ultimate strength and anlayze 

progressive collapse of a frame structure. Bassically USFOS is designed to analyze the collapse 

of structure like tubular jacket but trough development USFOS is able to analyze other various 

effects. The installed USFOS package consists of several moduls. Three main modules which is 

used in this work is usfos, dynres and Xact. Usfos is the main modul of USFOS which performs 

all numerical numerical calculation and generates the results. Dynres is modul which is used in 

time domain analysis. Dynres converts the time domain result (which is in .dyn format) from 

usfos modul into .plo format which is usable for further analysis (for example the post analysis in 

MATLAB). Xact or Graphical User Interface (GUI) can be used for model setup, execution and 

post processor. Xact can be used to verify the finite element model through graphs. Moreover, 

Xact is really useful modul since it can produce several important graphs to describe the result of 

analysis. 
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6.3.1. Input 

There are several ways to input model in USFOS. One of them is by using Xact modul. The input 

model can be distributed into three .fem files, which are head/control file, load file and model 

file. The head/control file contains the control parameters. The model file contains the finite 

element model such as nodes, elements, materials, and mass description. The load on the 

structure can be included either in head or model file or can be given in separate file as load file. 

In this work, all the calculation of sea surface and wave particle kinematics are performed in 

MATLAB. Therefore, the result of MATLAB calculation shall be transfered into USFOS. The 

sea surface and wave particle kinematics is transferred into USFOS as .w132 file format which is 

the format of gridwave file. The wavedata command in USFOS (generally is written in head file) 

is modified by changing the type into grid. This command tells USFOS to utilize the transferred 

gridwave file as the wave data for calculating load on the structure. In this case, the usfos modul 

is processed first from Xact modul then usfos asks for the gridwave file. Hence the name of 

gridwave file is given then the simulation can be continued.  

6.3.2. Simulation 

The loads in USFOS is determined by utilizing Morison equation. For time domain simulation, 

the load is introduced as a time series. USFOS applies the wave load only for wet part of the 

model. Beacause of that, the wet elements are checked before the load applied. 

There are two different ways to account the buoyancy force in USFOS. The first way, which is 

also the default option in USFOS, is by using simple Archimedes calculation. In this case, the 

displacement of structure is calculated and the buoyancy force is determined using Archimedes 

formula. The other way to account the buoyancy force is by integrating the pressure (static and 

dynamic) along the strucre. This method leads to more accurate result with longer computational 

time as the consequence.  In this work, the first option is considered enough to perform in the 

simulation. 

The command consimas is used to activate the consistent mass option in USFOS. The comment 

CINIDEF introduces an imperfection in the structure for buckling analysis purposes. The drag 

coefficients along z-coordinate are determined by HYDRO_Cd command while HYDRO_cm 

introduces the addedmass coefficients along z-coordinate of the structure. 
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In USFOS, the responses are determined by static and dynamic time domain analysis. To 

perform either static and dynamic time domain analysis, a time history should be set first in 

USFOS by using command TIMEHIST. For wave load, the switch should be choosen as 

timehistory type. However, before the wave load is applied (both in dynamic and static analysis), 

the weight and buoyancy force should be accounted first. In this case, the weight and buoyancy 

force is applied as load combination. To avoid the misinterpretation of load as an impact, the 

combination of weight and buoyancy force is applied gradually for one second with static 

analysis. The time history with type S_Curve is chosen in this case. 

Another issue which is needed to consider for time domain simulation in USFOS is the 

maximum time step. The default maximum timestep in USFOS is 512 step. Using CMAXSTEP 

command, the maximum time step is increased to performs complete 20-minute simulation. In 

addition, the transient effect of the structure shall be accounted too. Therefore, the responses of 

structure for certain interval is neglected for further analysis in MATLAB. 

USFOS applies the updated Lagrange method to calculate the responses in time domain. For 

each time instance, the load is applied in steps. The stiffness is updated in each load steps then 

the displacement of the structure is determined. After each displacement calculation, the 

structure configuration is updated (nodal coordinate, element force and possible plastic hinge). 

Therefore, the displacement calculation based on linear analysis which depends on the updated 

configuration. 

DynRes_G command produces the global responses of time domain simulation. In this work, the 

base shear and overturning moment reaction are chosen as the observed responses. In addition, 

DynRes_G is also used to verify the surface elevation and the wave load.  

6.3.3. Multiple simulations in USFOS 

The computational time for complete 20-minutes simulation of structure responses in USFOS 

could be more than 10 minutes (this depends on the specification of the computer). In addition, 

the result for certain time interval in the begining of simulation is neglected to avoid transient 

response. Therefore, to do complete 3-hour simulation, at least ten 20-minutes simulation needs 

to perform. Moreover, this work requires at least 30 simulations of structure response for 
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statistical purposes. Therefore, performing simulation sequently is very time consuming. To 

avoid this issues, a parallel computing is performed in the simulation. 

USFOS is based on UNIX operating system. Back in 2013, Tange [41] presented a tool to 

perform parallel computing in UNIX operating system. This tool is called GNU Parallel and still 

being continuosly developed until now. Since all new computers utilize multicore processors, the 

concept of GNU Parallel is to optimize the usage of the processors to do parallel computing. The 

easiest way to perform parallel computing is by spliting the number of jobs equally into some 

workers without considering the weight of each jobs. On the other hand, GNU Plot optimizes the 

parallel computing by spawning a new job immediately after a job finish in particular worker 

[42]. Figure 6.3 illustrates the comparisson of these two different methods where 32 jobs are 

distributed into 4 workers. 

By utilizing the GNU Parallel, several number of responses simulations by USFOS can be 

performed simultaneously. In this case, a UNIX script is built to combine the USFOS with GNU 

Parallel. As a consequence, the computational time is reduced drastically not to mention the 

convenience which is achived by performing the simulation automatically. In addition, 

CYGWIN is utilized to run an UNIX script in windows. 

 

 

 

 

 

 

 

 

 

Figure 6.3 Illustration of Parallel Computation  

(Left: Simple parallel computing, Right: GNU Parallel scheme) [42] 
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7. Comparisson and Verification of Model 

Before applied to jack-up model, the sea surface model is verified first. The distribution of sea 

surface model is compared to theoretical distribution. The second order wave particle kinematics 

are compared to 5th Stokes wave which is the popular wave theory for quasi-static analysis. 

Some comparissons are also performed between different stretching methods, and schemes to 

determine the harmonic components. In addition, a verification of transfering sea surface and 

wave particle kinematics from MATLAB to USFOS is performed. All the simulation in this 

chapter is performed with (, = 14.9 3, and ;< = 15.8s which are the parameters used in previous 

work by Evardsen [12]. In addition, the water depth is set as 100 m and ∆� = 0.5S. 

7.1. Bootstrapping 

When fitting a set of data into a particular distribution, there is a question about the number of 

data that should be included to produce a fitted distribution with good confidence level. In this 

case, boostrapping method can be used to show the uncertainty level regarding the number of 

data (N) which are included in the fitting process. The procedure of bootstraping is quite simple 

and fast to perform.  

For example, the largest maximum first order surface elevation (2�Y) is assumed follows 

Rayleigh distribution raised to the power of N. For bootstraping purpose, 2�Y is determined by: 

 2�Y = tÈË−2 6F �1 − °�/5!(2�Y)²;�/;7�   ; ;� = 0.77 ;I (7.1) 

tÈ = (,/4 for JONSWAP spectrum. �/5!(2�Y) is determined by random number which is uniformly 

distributed between zero and one. After calculating a set of 2�Y, the empirical distribution is 

produced. Repeating the procedures for several times shows the deviation for certain CDF value. 

Figure 7.1 shows bootstraping result for N = 30, 50, 100 and 500. The procedures are repeated 

500 times. 

In figure 7.1, larger N makes the fitted model converges to the theoretical model. This means, 

using small number of data gives significant uncertainty which is an epistemic uncertainty. 

Therefore, the deviation in the model shall be accounted when using small number of data. 
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Figure 7.1 Bootstrapping Comparisson
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7.2. Verification of Sea Surface Model 

To verify the model, the CDF of maximum surface elevation (2Y) from the model is compared 

with theoretical distribution. Furthermore, the CDF of the largest maximum surface elevation 

(2�Y) is also observed. In this case, 3-hour simulation of sea surface is performed. Various 

schemes to determine the amplitude, frequency and phase of harmonic components are tested.  

7.2.1. Distribution of maximum first order sea surface 

The Rayleigh distribution is compared to distribution of zero-crossing maximum of surface 

elevation while the Rice distribution is compared to distribution of surface local maxima. Figure 

7.2 shows the sea surface at x=0 for 200s time window with its local and zero-crossing 

maximums. 

 

Figure 7.2 Surface Elevation and Maximum Surface Elevation 

Figure 7.3 shows the comparisson between empirical and theoretical CDF from two different 
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and random amplitude (two pictures down). More realizations are presented in appendix 3 for 

deterministic amplitude and appendix 4 for random amplitude. From the realizations, Rice 

distribution tends to underestimate the distribution of local maxima at the lower tail. Based on 

this fact, the model is not totally broadbanded process as it is assumed in Rice distribution. For 

some cases, the Rice distribution underestimates the distribution of local maxima at the upper tail 

though it overestimates the distribution for the other cases. This is due to the epistemic 

uncertainty in the model. In addition, introducing random amplitude sligthly increases the 

uncertainty. The uncertainty can be shown by the bootstrapping method as it is shown in section 

7.1. Despite all of that, it can be concluded that the local maximum distribution follows Rice 

distribution. 
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Figure 7.3 Comparisson of Maximum Surface CDF 

Up: Deterministic Amplitude; Down: Random Amplitude
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The uncertainty of the shape is also observed in the upper tail of maximum zero-crossing 

distribution. This uncertainty is also can be proven by bootstraping the Rayleigh CDF. However, 

the empirical model does not follows the Rayleigh distribution at lower tail. At lower tail, the 

Rayleigh distribution always overestimates the maximum surface elevation. This due to the 

effect of high frequency harmonic components and indicates that the surface is not totally 

narowbanded.  

When the sea surface is assumed as narrowbanded process, the  period between crest is assumed 

equal to the zero-crossing period. Moreover, the zero-crossing period is assumed not 

significantly varies. However, real sea surface is greatly irregular and not totally narrowbanded 

where the period is not concentrated only in a certain range of period. Therefore, when a wave 

spectrum is converted into time series of surface elevation, high frequency components (which 

has smaller amplitude) occurs more intense than lower frequency. As a result, when the 

empirical CDF is constructuted, significant number of maximum surface elevation which refers 

to the high frequency components will dominate the lower tail of the CDF and shifted the lower 

tail of empirical CDF to left side of Rayleigh distribution. This means Rayleigh distribution will 

always overestimates the distribution of maximum surface at the lower tail.  

From figure 7.3, Rayleigh distribution gives higher maximum surface elevation than Rice 

distribution. For ultimate limit state analysis, the main concern of analysis is the upper tail of 

CDF. Because of that, the Rayleigh distribution is considered as a good distribution for design. 

All in all, figure 7.3 shows that the surface model is agree well with the theoretical model. 

7.2.2. Distribution of largest maximum of first order sea surface 

The theoretical CDF of largest maximum is expressed by equation 3.17. To produce the 

empirical distribution, 100 3-hour simulations of first order sea surface are performed. The 

largest maximum from each simulation is gathered and sorted to produce the empirical 

distribution. Figure 7.4 shows one possible realization of largest maximum empirical distribution 

of first order sea surface with equidistance frequency interval and deterministic amplitude. 

Another realization is presented in appendix 7. 

In addition, the bootstrapping is performed to analyze the deviation as consequence of using 900 

data. The procedure of bootstrapping is repeated 500 times. The smallest and largest value for 
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each CDF level are plotted as dash line in figure 7.4 to show the lower and upper limit of 

bootstraping. Hence, it is easy to determine wether the empirical distribution is acceptable or not 

by considering the deviation from boostrapping. Figure 7.4 shows that the empirical distribution 

agrees well with the theoretical distribution since it is located inside the bootstrapping limit. 

 

Figure 7.4 CDF of Largest Maximum for for Deterministic Amplitude 

Figure 7.5 shows one possible realization of 3-hour largest maximum sea surface distribution 

with random amplitude scheme. It is explained in section 4.2.1.2 that introducing random 

amplitude  changes the variance of surface elevation from the deterministic amplitude variance. 

However, figure 7.5 shows that the empirical CDF from random amplitude scheme is located 

inside the limit of bootstrapping. Therefore, it is conlculed that introducing random amplitude 

into 3-hour surface elevation still gives good agreement between empirical and theoretical 

distribution. More distributions of sea surface largest maxima for random amplitude are 

presented in appendix 8. 
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Figure 7.5 CDF of Largest Maximum for for Random Amplitude 

7.2.3. Methods of reducing number of component 

Generating the distribution of largest maximum of sea surface (or the distribution of largest 

response of structure)  requires more than one simulation. For first order sea, there is no great 

problem with the computational time. However, the process could be time consuming for second 

order sea surface. Therefore, methods to reduce number of harmonic component is utilized. 

7.2.3.1.  Partition of time series 

In this case, the partition of time series (explained in section 4.2.2.4) is performed. The three 

hour simulation is splited into 9 different 20-minutes simulation. To achieve 100 3-hour 

simulation, 900 20-minute of first order simulations are performed. Each largest maximum 

surface from each simulation is gathered and sorted to produce empirical distribution of largest 

maxima. Figure 7.6 shows the distribution of largest maximum of first order sea surface for 

deterministic amplitude utilizing 900 samples. Another 20-minutes largest maximum distribution 

is presented in appendix 5.  

10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 3-Hour Largest Maximum

 

 

First Order

Rayleigh10800/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Comparisson and Verification of Model  92 

 

 

 

Figure 7.6 CDF of Largest Maximum for Deterministic Amplitude 

From the graph, it can be observed that the limit of bootstapping is really close to the Rayleigh 

CDF. This means the uncertainty in producing empirical CDF is significantly decreased by using 

900 samples. The upper tail empirical CDF shows a good agreement with theoretical CDF since 

it still locates inside the bootstraping limit. Eventhough the lower tail of empirical distribution is 

slightly out of the bootstraping limit, it is concluded that the empirical CDF agrees with 

Rayleigh. 

To construct the distribution of 3-hour largest maximum, the largest maximums of 20-minute 

simulation are gathered. Without sorting the value, the 900 20-minutes largest maximum samples 

are separated into 100 groups where each group consists of 9 samples. Since the sample are not 

sorted, the randomness of the data is maintained. Hereinafter, the largest maximum of each 

group is collected and sorted to establish the empirical distribution. 

Figure 7.7 shows the distribution of 3-hour largest maximum for the first order sea surface with 

deterministic amplitude (up) and ramdom amplitude (down). From both figure, it is concluded 

that partition of time series method produces a good model based on fact the the empirical CDF 

agrees well with the theoretical CDF and located inside the bootstraping limit. In addition, for 
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first order sea surface, the partition of time series method requires only 30% of complete 3-hour 

computational time to create single 3-hour simulation of sea surface. More empirical 

distributions from utilizing partition of time series presented in the appendix. 

 

 

Figure 7.7 CDF of Largest Maximum for for Time Series Partition 
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7.2.3.2. Random frequency 

Figure 7.8 shows the empirical distribution of using random frequency scheme with 

deterministic amplitude. In this case, the same number of harmonic component as complete 3-

hour analysis is used. It shows that the random frequency scheme shows a good agreement 

between its empirical CDF and theoretical CDF. Therefore, the analysis is continued by reducing 

number of component. 

 

Figure 7.8 CDF of Largest Maximum for Random Frequency 
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performed. However, the effect on structure responses is still questionable. Figure 7.9 shows the 

distribution of 3-hour sea surface largest maxima. 

 

Figure 7.9 CDF of Largest Maximum for Random Frequency with Deterministic Amplitude 

number of component =  500 

 

Figure 7.10 CDF of Largest Maximum for Random Frequency with Random Amplitude 

number of component =  1000 
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Introducing random amplitude, empirical distribution of largest maximum by using random 

frequency is already fall out from bootstraping limit when 500 harmonic components are used. 

Moreover, from different realizations, the lower tail of empirical distribution generally deviate 

from theoretical distribution. It indicates that combining random amplitude and frequency 

increasing the uncertainty in the empirical distribution. Figure 7.8 shows the distribution of 3-

hour largest maximum sea surface from random frequency and random amplitude with 1000 

components. It seems that even by using 1000 components, the empirical distribution shows 

questionable result. More distributions are presented in appendix 13. 

7.2.3.3. Equal Area 

Similar to the analysis which is performed in random frequency, the minimum frequency is set as 2Û ;U⁄ = 2Û 10800⁄  while the maximum frequency is equal to 2Û ∆�⁄ = 2Û 0.5⁄ . The frequency 

interval (∆T) is adjusted to give the desired number of harmonic component. Seven different 

numbers of component are observed, which are 50, 100, 200, 500, 1000, 2000, 5000. In addition, 

the deterministic amplitude is used. It is found that even by using 50 harmonic components, the 

empirical CDF still match correctly with the theoretical CDF. Figure 7.11 shows this result. The 

other empirical distributions, which corespond to the other number of component, are presented 

in appendix 14. 

 

Figure 7.11 CDF of Largest Maximum for Equal Area with Deterministic Amplitude 
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When utilizing random amplitude, performing equal area with 50 harmonic components still 

produces an empirical CDF that agrees well with theoretical distribution at the upper tail. 

However, there is a possibility that the empirical CDF underestimates the value at the lower tail. 

Figure 7.12 shows distribution of 3-hour largest maximum of sea surface for equal area and 

random amplitude utilizing 50 harmonic components. Therefore it can be concluded that the 

equal area method could simulate 3-hour sea surface with smaller number of component than 

random frequency and partition of time series method. However, similar to the random 

frequency, the effect on structure response is still questionable. 

 

Figure 7.12 CDF of Largest Maximum for Equal Area with Random Amplitude 

number of component =  50 

7.2.4. Effect of cut-off frequency 

In section 2.5, for second order wave simulation, some cut-off frequencies are introduced for 
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(2�Y) while table 7.1 shows the change in variance of sea surface (tÈ)  coresponds to the cut-off 
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Figure 7.13 Effect of Cut-off Frequency in Maximum Surface CDF 

Table 7.1 Variance after Introducing Cut-off Frequency 

No Cut-Off Frequency (T
z{) Spectrum Variance (3J) Time-Series Variance (3J) 

1 4T< 13.90 13.90 

2 3T< 13.79 13.79 

3 2T< 13.19 13.19 

4 À2= (,⁄  13.77 13.77 

It can be observed that by introducing T
z{, the lower tail of empirical distribution shift closer to 

the Rayleigh distribution. This behaviour is more apparent in second order sea surface 
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distribution. Therefore, it is confirmed that high frequency components is the reason why the 

lower tail of empirical distribution does not follow Rayleigh distribution as it is explained in 

section 7.2.1. In addition, introducing stansberg cut-off (T
z{ = À2=/(,) still gives acceptable 

variance of sea surface. The loss of variance will be covered up by introducing second order 

corection. 

7.2.5. Second Order Sea Surface 

The second orer sea surface is generated by utilizing equation 2.57. To save time and the usage 

of CPU memory, the 3-hour simulation is performed by partition of time series where the 9 

different 20-minutes simulations are performed. Figure 7.14 shows the time series of the second 

order sea surface aroung the largest maximum value. In this case, the random amplitude is used. 

 

Figure 7.14 Time Series of Second Order Sea Surface 

In figure 7.14, the shape of second order surface depends on the first order surface and the 

correction terms. The correction term consists of two parts, which are sum and difference term. It 

seems that at the largest maximum second order surface, the sum term has its maximum value 

(the crest of sum term). However, at the same time instance, the difference term does not has its 

minimum value (the trough of difference term). Forristal [18] illustrated the same behaviour in 

his second order model. Therefore, it is concluded that the difference term is not always has the 

minimum value at the largest maximum second order surface elevation.  
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7.2.6. Distribution of maximum second order sea surface 

For second order sea surface, the distribution of maximum is assumed follows Forristal 

distribution of wave crest which is expressed in equation 3.26. Therefore, to verify the model of 

second order sea surface, the empirical CDF is compared to Forristall CDF. Figure 7.15 shows 

the comparisson between empirical CDF and the Forristall CDF for determinisitic amplitude case 

without the cut-off frequency. More empirical CDFs are presented in appendix 16. 

 

Figure 7.15 CDF of Maximum Sea Surface for Deterministic Amplitude 

In figure 7.15, the theoretical distribution is compared to empirical distribution of zero-crossing 

and positive local maxima. The empirical distribution of zero-crossing maximum shows good 

agreement with theoretical distribution though the empirical CDF of positive local maxima tends 

to underestimate the Forristall distribution. This means the Forristal distribution is valid for 

narrowbanded process. Moreover, the lower tail of zero-crossing maxima CDF does not follow 

the Forristal distribution. Similar to the first order sea surface, this behaviour is caused by the 

high frequency components, as it is explained in section 7.2.4. Introducing cut-off frequency will 

force the lower tail of zero-crossing CDF to follow Forisstall distribution.  
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Figure 7.15 shows a realization where the spectrum is not linearized. Though the eqmpirical 

distribution follows theoretical distribution well, the variance of surface elevation which 

corresponds to second order correction is calculated twice. To maintain the varince, the spectrum 

should be linearized by iteration process or introducing a cut-off frequency (explained in section 

4.3). In this case, a cut-off frequency (T
z{ = À2=/(,) is introduced. Previously, it is explained 

that introducing the Stansberg cut-off frequency reducing surface elevation variance from 13.95 

to 13.77. However, second order correction term produces additional variance with magnitude 

0.12 which means the total variance of surface elevation after introducing second order 

correction term is equal to 13.89. Though this is still smaller than the actual variance from wave 

spectrum, the difference is negligible. 

As explained in section 4.3.2, using T
z{ reduces the number of harmonic component. A 20-

minutes simulation with ∆� = 0.5S requires at least 1200 harmonic component for equidistance 

frequency interval. By introducing T
z{, the number of component is reduced to 244. As a 

consequence, the simulation save 99% of computational time. Figure 7.16 shows the CDF of 

maximum sea surface when the cut-off freqeuncy is introduced. 

 

Figure 7.16 CDF of Maximum Sea Surface for Deterministic Amplitude 
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Introducing cut-off frequency changes the sea surface condition from broadbanded process to 

narrowbanded. This is proven by the empirical distribution of zero-crossing and positive local 

maxima which almost coincide. Furthermore, the lower tail of zero-crossing CDF is close to the 

Forisstall distribution though there is still slight deviation. Therefore, it is verified that the high 

frequency components are the reason why the lower tail of zero-crossing CDF deviates from 

theoretical distribution. All in all, the agreement between empirical and theoretical distribution 

indicates that the model of second order sea surface is verified for partition of time series and 

determiniestic amplitude. 

Figure 7.17 shows the comparisson between theoretical and empirical CDF when random 

amplitude is introduced. In figure 7.17, empirical CDF of positive local maximum seems also 

underestimates the Forisstall CDF. Therefore, it is concluded that the Forisstall distribution 

seems to represent the distribution of zero-crossing maximum which refers to narrowbanded 

process. In addition, the second order sea surface model is also verified when the random 

amplitude is introduced. 

 

Figure 7.17 CDF of Maximum Sea Surface for Deterministic Amplitude 

 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζm

F
( 

ζ m
 )

Distribution of 3-Hour Maximum

 

 

Zero Crossing Max

Positive Local Max
Forisstall



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Comparisson and Verification of Model  103 

 

 

7.2.7. Distribution of largest maximum second order sea surface 

Similar to the first order process, the largest maximum distribution for second order sea surface 

is expressed as equation 3.17 where �/!(2Y) is equal to Forisstall CDF. 100 3-hour simulation of 

second order sea surface is performed. Figure 7.18 shows the comparisson between the empirical 

CDF and theoretical CDF for second order surface as well as its first order surface component. 

Equidistance frequency interval with determenistic amplitude method is executed to simulate the 

surface. The left figure shows the first order part while the right figure coresponds to second 

order surface. More empirical distributions are presented in appendix 20. Eventhough the shape 

of empirical CDF does not perfectly follows the theoretical CDF, both first and second order 

empirical CDF shows good result since they are located inside the bootstraping limit. It is 

concluded that 100 samples is the main reason for deviation on the shape of empirical CDF. All 

in all, the second order model with time partition and deterministic amplitude is verified. 

 

Figure 7.18 Distribution of Largest Maxima for Deterministic Amplitude 

Left: First Order; Right: Second Order 

CDFs when utilizing the random amplitude  are presented in appendix 21. In general, the CDF of 

second order surface utilizing random amplitude shows a good agreement with theoretical 

distribution. Therefore, the time partition with random amplitude is considered good enough to 

simulate 3-hour second order surface. 
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7.3. Verification of Wave Particle Kinematic 

In this case, 20-minute sea surface is performed. The wave particle kinematics along the z-

coordinates is observed. In this case, only horizontal velocity and acceleration that is analyzed 

since the forces on the jack-up are mainly affected by these particle kinematics. 

7.3.1. First order wave particle kinematics 

Three stretching methods for first order kinematics are compared. They are Wheeler stretching, 

linear extraploation and constant stretching, which are explained at section 2.5. A 20-minute 

simulation of first order sea surface is performed. Figure 7.24 shows the horizontal velocity and 

acceleration along the z-coordinate when the largest maximum sea surface occurs. The points 

along z-coordinate is set be concentrated next to the sea surface. The left figure shows the 

horizontal velocity while the horizontal acceleration is presented in right figure. 

 

Figure 7.19 Wave Particle Kinematics at Largest Maximum of Sea Surface 
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practice while the constant stretching is the stretching method which is proposed when the Airy 

theory was presented. Therefore, assuming that Wheeler and constant strectching gives the 

correct value of surface particle kinematics, it is not suggested to use linear extrapolation for first 

order sea surface. Wheeler stretching mainly produces smaller wave particle kinematics than 

constant strectching which will cause smaller base shear and overturning moment. Therefore, the 

usage of Wheeler stretching is questionable for large crest or trough. 

From the same simulation, it is found that largest horizontal acceleration exist at the mean sea 

surface. Figure 7.20 shows the particle kinematics when the horrizontal acceleration occurs. In 

this case, the particle kinematics from all method are coincided. 

 

Figure 7.20 Wave Particle Kinematics at Largest Maximum of Sea Surface 
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Figure 7.21 First Order Sea Surface, Horizontal Velocity and Horizontal Acceleration 

In figure 7.21, the maximum horizontal velocity does not occurs at the same time instant as 

largest sea surface maximum. In addition, the largest horizontal acceleration does not occur at 

the mean sea surface. Figure 7.22 shows the particle kinematics when the largest horizontal 

acceleration occurs. In this case, Wheeler stretching takes the horizontal acceleration at mean 

surface as the horizontal acceleration at true surface. As a result, Wheeler stretching 

overestimates the horizontal acceleration at true surface. 

 

Figure 7.22 Particle Kinematics When Largest Horizontal Surface Acceleration Occurs 
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7.3.2. Second order wave particle kinematics 

For second order wave case, the Wheeler and linear extrapolation method is used to find the 

wave particle kinematics along the z-coordinate. As explained in section 2.5.2, to perform the 

Wheeler stretching, the second order sea surface should be linearized first. In this case, the 

second order surface is determined first by utilizing equation 2.57. By using discrete Fourier 

transform, which is expressed in equation 4.4), a new set of harmonic component is determined. 

Combining equation 4.10 and 4.13, the new amplitude of harmonic component i (2��,fg) can be 

determined by: 

 2��,fg = 2|2�̅Tf�| (7.2) 

In this study, the phase is determined by combination of two MATLAB functions which are 

angle( ) and unwrap( ). angle( ) is used to determine the phase angle of complex number while 

unwrap( ) corrects the phase angle. The wave particle kinematics are determined from first order 

kinematics utilizing the new set of harmonic component. In this study, the fast Fourier transform 

is used where the number of harmonic component is expressed as a power of 2.  

 

Figure 7.23 Second Order Horizontal Velocity at Largest Sea Surface Maximum 
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Figure 7.23 shows the comparisson of horizontal velocity along the z-coordinate from linear 

extrapolation, ‘right-way’ Wheeler stretching (linearized Wheeler) and ‘wrong-way’ Wheeler 

stretching. In figure 7.23, the appropirate way of using Wheeler stretching produces surface 

horizontal velocity which is similar to linear extrapolation result. Performing Wheeler 

inappropritely (where the second order kinematics is directly stretched without linearization) 

greatly underestimates the surface kinematics. In addition, the Wheeler stretching gives lower 

magnitude of horizontal velocity than linear extrapolation along the z-coordinate.  

Figure 7.24 shows the condition of wave particle kinematics when the largest horizontal 

acceleration from linear extrapolation occurs. From figure 7.25, it can be observed that the linear 

extrapolation shows lower value than Wheeler stretching for horizontal acceleration. However, 

there is a disagreement between horizontal velocity profile from Wheeler and linear 

extrapolation.  

 
Figure 7.24 Second Order Horizontal Velocity at Largest Horizontal Acceleration 
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of the included freqeuncy is broader for Wheeler stretching than linear extrapolation. In addition, 

the range of difference frequency is also increased. It is suspected that the second order 

difference term on the rich energy part of the spectrum is the main reason for the difference in 

figure 7.24. This is because the behaviour of the different between the two methods is more close 

to the behaviour of high frequency component which has faster decay rate than the lower 

frequency. However, only difference term that is located on the rich energy part of the spectrum 

that has adequate amplitude and frequency to give significant different between Wheeler and 

linear extrapolation kinematics.   

Since the linear extrapolation calculates the magnitude of second order kinematics correctly up 

to the mean sea surface, using Wheeler stretching for second order wave will underestimate the 

total drag load along the cylinder. Therefore, using linear extrapolation for second order sea is 

considered better than Wheeler stretching. This consideration is supported with the comparisson 

of wave load in section 7.4.  

7.3.3. Comparisson between second order model and 5th Stokes wave 

To verify the particle wave kinematics calculation, the second order model is compared to 5th 

Stokes. In design, 5th Stokes wave is the common theory to determine the perticle kinematics at 

the largest crest. The 5th Stokes does not produce the exact particle kinematics around the 

extreme crest though it shows a good agreement with the exact value. Therefore, if the second 

order model is good enough, the particle kinematics do not significantly deviate from 5th Stokes 

wave. 

The 5th Stokes wave is generated by using the software which is built by Fenton [16]. First, the 

effect of wave period and height on the particle kinematics of 5th Stokes wave is observed. Three 

different combinations of wave height and wave period are presented. In addition, it is checked 

that the combinations are still inside the wave breaking limit. The water depth is 100 m.  

Table 7.2 Combination of Wave Height and Period 

No Wave Height (s) Wave Period (s) Upper limit of Wave Height (m) 
1 28 13 36.3 
2 28 16 49.4 
3 31 13 36.3 
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Table 7.2 shows the combination of wave height and period including its upper limit of wave 

height for wave breaking. The upper limit of wave height is determined by using equation 2.79. 

It is confirmed that all the wave height is below their upper limit. Therefore, three different 5th 

Stokes waves are established and compared. Figure 7.25 shows the sea surface, the maximum 

horizontal velocity and maximum horizontal acceleration. It seems the maximum horizontal 

velocity always occurs at wave crest while the maximum horizontal acceleration does not occur 

at mean surface level as predicted by Airy theory. 

 

 

Figure 7.25 5
th

 Stokes from Three Different H and T Combination 

Up: Surface; Down Left: Max Horizontal Velocity; Down Right: Max Horizontal Acceleration 
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Some observations are made and summarized. 

1) Increasing wave height increases the wave crest 

2) Increasing wave height increases the horizontal velocity and acceleration both at the sea 

bottom and sea surface 

3) Increasing wave period decreases the wave crest 

4) Increasing wave period increases both horizontal velocity and acceleration at the sea 

bottom but decreases them at the sea surface. 

As briefly explained in section 2.6.1, the amplitude of surface elevation for 5th Stokes wave 

component is found from iteration process which is proportional to wave stepness ((/j). 

Therefore, point 1) and 3) is acceptable. In additon, horizontal velocity and acceleration is also 

proportional to wave height which verify the point 2). For Stokes wave, both horizontal velocity 

and acceleration contain �£Sℎ(C(� + �)) term. Increasing wave length (decreasing wave number) 

will decrease the decay rate of �£Sℎ ( ) term. Therefore, the behaviour on observation 4) is based 

on this reason. 

In the nextstep, comparisson is made between the second order model and the 5th Stokes. 100 3-

hour simulations of second order surface are performed utilizing partition of time series method 

with deterministic amplitude. The largest surface maximum from each simulation is gathered and 

sorted then the horizontal velocity is established for each result by utilizing linear extrapolation.  

For second order model, the largest surface maximum and its two adjacent troughs are assumed 

as a single wave. The wave period is determined as the time interval between the two adjacent 

trough. In addition, the wave height is assumed as the distance between the largest surface 

maximum and the lowest value between the two neighbouring troughs. For 5th Stokes wave, the 

wave height is iterated in order to produce the same crest as the largest surface maximum of 

second order simulation while the period is equal to second order model period.  

Figure 7.26 shows an example of fitting a 5th Stokes wave into the second order model. In this 

case, the period of 5th Stokes is set to be equal to the period of second order model (time interval 

between two red point). However, to produce the same crest, the 5th Stokes should has a larger 

wave height than the second order model. The horizontal velocity when the crest occurs is 

presented in figure 7.27. 
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Figure 7.26 Second Order Surface Model vs 5

th
 Stokes Wave 

 
Figure 7.27 Horizontal Velocity: Second Order Model vs 5

th
 Stokes 
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When it is compared to linear (first order) horizontal velocity, the 5th Stokes gives small 

deviation below certain z coordinate (in this case, below -20m). On the other hand, the second 

order horizontal velocity produces smaller magnitude than first order horizontal velocity. This is 

explained by the existance of difference term. It seems that for second order wave, the magnitude 

of difference term is significant to reduce the first order horizontal velocity along the z 

coordinate. Moreover, the magnitude of sum term is not adequate to give an important effect to 

the second order horizontal velocity. 

In figure 7.27, it is also obvious why the difference and sum term above the mean sea surface are 

set equal as the magnitude on mean sea surface (this was indicated by the Stansberg difference 

and sum term) for linear extrapolation method. If the difference term is not set equal to the 

magnitude of difference term at mean sea surface, the second order horizontal velocity will 

greatly be reduced which makes the second order kinematic amiss. As the consequence, the 

exponential behaviour above the mean surface is lost since the increment of wave particle 

kinematics only depends on the derivative term. 

From the 100 3-hour simulations, to establish the same wave crest, the 5th Stokes wave height 

does not always has larger magnitude than second order model wave height. Figure 7.28 shows 

an example of 5th Stokes wave which has smaller wave height than second order model to 

produce the same wave crest. 

 

Figure 7.28 Second Order Surface Model vs 5
th

 Stokes Wave 
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The horizontal velocity at wave crest is presented in figure 7.29. From figure 7.29 and and 7.27, 

it can be observed that either when the 5th Stokes wave height is smaller or larger than second 

order model wave height, the 5th Stokes tends to produce larger horizontal velocity below mean 

sea surface and smaller velocity at the sea surface. However, there is a possibility that this 

behaviour does not occur. 

 
Figure 7.29 Horizontal Velocity: Second Order Model vs 5

th
 Stokes 

For linear extrapolation, the magnitude of second order horizontal velocity along the z-
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�z�ò,f, Cf�, Tf�, and ªf� respectively are the amplitude, wave number, wave angular frequency and 

phase of difference term component i. It can be proven that �z�ò,f and �£Sℎ1Cf�(� + �)4 always 

have positive value. However, the sign of �£S (Cf�} − Tf�� + ªf�) depends on parameter x and t. 

To analyze the horizontal velocity along the z-coordinate, the equation 7.3 can be simplified as: 

 [�� = « �z�ò,������� �£Sℎ1Cf�(� + �)4¬
f»�  (7.4) 

At the wave crest, �z�ò,������� commonly has a negative value. In this case, the difference term profile 

along the z-coordinate is similar as shown in figure 7.27 and 7.29. However, for particular case, 

�z�ò,������� may have positive value for high frequency components. In this case, component with 

positive �z�ò,������� has faster decay rate but larger magnitude above mean sea surface. As a 

consequence, a turning point exists on the horizontal velocity profile along the z-coordinate at 

the largest surface maximum. Figure 7.30 shows a possible case of this behaviour. More 

comparisson betwen second order and 5th Stokes horizontal velocity is presented in the appendix. 

 

Figure 7.30 Horizontal Velocity: Second Order Model vs 5
th

 Stokes 
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In this case, there is a possibility that 5th Stokes produces larger surface horizontal velocity at the 

surface. In addition, for some cases, it is found that the 5th Stokes wave could produces smaller 

horizontal velocity than second order model at the sea bottom. Therefore, it is concluded that the 

magnitude of second order model is irregular though it tends to produce larger magnitude at 

surface and smaller magnitude at sea bottom than 5th Stokes wave. In addition, the 5th Stokes has 

zero horizontal accelearation along z-coordinated at wave crest while the second order model has 

certain magnitude. Therefore, using 5th Stokes on non-drag dominated structure is questionable. 

Table  7.3 shows the comparisson of wave height between second order model and 5th Stokes 

wave for 15 different largest surface maximums. In addition, the horizontal velocity is applied to 

a cylinder with diameter (D) 1m with CD =0.65 and CM =1.6 for � >  23  and CD =1.05 and  and 

CM =1.2 for � ≤ 23. The comparisson of static baseshear and overturning moment (which is 

calculated in MATLAB) between second order model and 5th Stokes is also presented in table 

7.3. In general, the 5th Stokes wave gives larger baseshear and overturning moment. The same 

behaviour is also presented by Evardsen [12], [22] in his work. 

Table 7.3 Second Order Model vs 5
th

 Stokes 

No 

Stokes 

Wave 

Height 

[m] 

Second 

Order 

Wave 

Height 

[m] 

Wave 

Period 

[s] 

Crest 

[m] 

Stokes 

Base 

Shear 

[kN] 

Second 

Order 

Base 

Shear 

[kN] 

Stokes 

Overturning 

Moment 

[kNm] 

Second Order 

Model 

Overturning 

Moment (kNm] 

1 31.279 28.604 13.500 18.835 1.176 1.016 105.261 95.459 

2 30.356 30.720 12.500 18.481 1.123 1.050 104.174 99.237 

3 30.378 31.065 13.000 18.334 1.102 1.063 100.006 96.728 

4 28.950 30.798 11.500 17.878 1.060 1.043 101.647 95.843 

5 29.434 30.152 12.500 17.805 1.038 0.939 95.734 87.287 

6 29.565 28.495 13.500 17.635 1.018 0.904 90.070 85.007 

7 29.434 28.848 14.000 17.433 0.999 0.872 86.485 81.623 

8 28.291 27.878 11.500 17.376 0.992 0.919 94.664 87.784 

9 28.357 28.891 12.000 17.228 0.971 0.905 90.846 82.363 

10 28.994 28.449 13.500 17.227 0.974 0.883 85.841 83.957 

11 28.489 27.018 12.500 17.149 0.957 0.839 87.761 78.349 

12 28.247 28.427 12.000 17.146 0.961 0.834 89.803 79.166 

13 28.467 29.219 12.500 17.136 0.956 0.862 87.606 81.377 

14 28.401 28.777 12.500 17.072 0.949 0.743 86.972 68.824 

15 27.522 28.706 11.000 17.055 0.970 0.865 94.023 83.280 
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Furthermore, from the 100 3-hour second order simulation, the empirical CDF of static baseshear 

and overturning moment at largest surface elevation on cylinder with diameter 1m is established. 

The same hydrodynamic coefficient from previous analysis is used. The baseshear and 

overturning moment are calculated in MATLAB. Figure 7.31 shows, the comparisson of static 

base shear and overturning moment empirical CDF for second order wave and 5th Stokes model. 

It can be observed that 5th Stokes gives larger static base shear and overturning momment than 

second order model. Therefore, it is concluded that for single drag dominaed cylinder case, the 

5th Stokes gives a conservative static base shear and over turning moment. More empirical CDFs 

of static base shear and overturning moment from different method of determining harmonic 

component are presented in the appendix. For CDF equal to 0.95, the ratio between 5th Stokes 

baseshear and second order model is 1.08 while for overturning moment is 1.03. This means for 

CDF equal to 0.95, the 5th Stokes gives 8% larger static base shear and 3% larger static 

overturning moment than second order model. 

  

Figure 7.31 Empirical CDF of Base Shear and Over Turning Moment 
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Previously, it is shown that the maximum drag load occurs at the wave crest (maximum sea 

surface). Therefore, the comparisson of drag load is focused on the wave crest. Figure 7.32 

shows the horizontal velocity along z-coordinate for 5th Stokes wave, first order and second order 

model. Moreover, the horizontal velocity above the mean sea surface is determined by various 

stretching method. 

 
Figure 7.32 Horizontal Velocity along z-Coordinate 

First order wheeler and first order linear respectively refer to Wheeler and linear extrapolation of 

first order horizontal velocity while second order Wheeler and second order linear respectively 
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It can be observed that both first order Wheeler and constant stretching give smaller surface 

horizontal velocity than second order model (either second order Wheeler or second order linear 

extrapolation ) and 5th Stokes wave. It is also explained before that 5th Stokes tends to produce 

smaller surface horizontal velocity than second order model. At mean sea surface, the constant 

stretching produces the largest horizontal velocity. In general, either for first order or second 

order model, the Wheeler streching underestimates the horizontal velocity around the mean sea 

surface. In addition, it is explained before that linear extrapolation on first order sea will 

overestimates the surface horizontal velocity and it is not reccomended to be used. 

In section 5.2.1, it is explained that for second order or higher order wave model, CD = 0.65 for � >  23  and CD =1.05 for � ≤ 23. A modification is made to drag coefficient when calculating 

the load from first order wave where CD =1.15 for all z-coordinate. Therefore, a comparisson of 

drag load is made based on these drag coefficients. Figure 7.33 shows the drag load along z-

coordinate for single vertical cylinder with diameter 1m. 

 

Figure 7.33 Drag Load Along the z-Coordinate 
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In figure 7.33, there is a jump in second order drag load profile since two different drag 

coefficients are used along the z-coordinate. For first order drag load, the profile is continous. It 

can be observed from figure 7.33 that there is a good agreement between the first order Wheeler 

(red line) and second order linear extrapolation (green line) drag load profile except the jump in 

the second order linear extrapolation. Though the drag load at the surface is smaller, majority 5th 

Stokes produces larger drag load than second order linear extrapolation. That is why the 

empirical CDF of static baseshear and overturning moment of 5th Stokes wave (presented in 

fugure 7.31) are more conservative than second order linear extrapolation. In addition, first order 

linear extrapolation greatly overestimates the drag load and is not suggested to be used. The 

linear extrapolation can be used if only the drag coefficient is modified for z-coordinate above 

the mean surface though this makes the calculation more complicated not to mention the 

unensured quality of the result. All in all, second order wheeler seems to underestimate the drag 

load while constant stretching gives the most conservative result. 

 
Figure 7.34 Horizontal Velocity along z-Coordinate 
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In figure 7.34, 5th Stokes shows zero horizontal acceleration along the coordinate. This is 

because 5th Stokes wave is a regular wave. As explained in section 2.3.1 with first order wave as 

an example, for regular wave, horizontal acceleration is equal to zero at wave crest while the 

horizontal velocity has its maximum value. There is a difference regarding the location of 

maximum horizontal acceleration between 5th Stokes and first order wave as indicated in section 

7.3.3. However, the main focus in this analysis is on the wave crest and not at the location of 

maximum horizontal acceleration. 

On the other hand, since both first order and second order model in this work are irregular 

waves, the horizontal acceleration is not totally zero at the wave crest though the magnitude is 

small compared to the horizontal velocity. In this case, the horizontal acceleration is irregular 

along the z-coordinate. It seems that the horizontal acceleration from some components has 

already have negative value while some high frequency component (which has faster decay rate) 

still has positive horizontal acceleration. As a consequence, the magnitude of horizontal 

acceleration at the surface is smaller than at the mean water surface.  

 

Figure 7.35 Inertia Load Along the z-coordinate 
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For both first order and second order wave, CM = 1.6 for � >  23  and CM =1.2 for � ≤ 23. The 

inertia load along the z-coordinate is presented in figure 7.35. There is a different in the 

behaviour of second order Wheeler stretching (yellow line in figure 7.35) then the other method. 

This is suspected as the consequence of the different cut-off frequency which is used by second 

order Wheeler stretching method. As an effect, the second order Wheeler could overestimates the 

magnitude of inertia load. However, the profile of horizontal acceleration at wave crest is 

different between various method. Figure 7.36 shows another realization of horrizontal 

acceleration and inertia load at wave crest. It still can be observed that second order Wheeler 

stretching overestimates the horizontal acceleration. 

 
Figure 7.36 Horizontal Acceleration and Inertia Load 
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is iterated to give the same crest height as the second order model. Figure 7.37 shows the 
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Table 7.4 Comparisson of Static Base Shear and Overturning Moment  

No 

Stokes 

Wave 

Height 

[m] 

Second 

Order 

Model 

Wave 

Height 

[m] 

Wave 

Period 

[s] 

Crest 

[m] 

 Static Base Shear [kN] Static Overturning Moment [kNm] 

5th 

Stokes   

Second 

Order 

Linear 

Ext. 

First 

Order 

Wheeler 

First 

Order 

Linear 

Ext. 

Constant 

Stretching 

Second 

Order 

Wheeler 

5th 

Stokes   

Second Order 

Linear 

Extrapolation 

First 

Order 

Wheeler 

First Order 

Linear 

Extrapolation 

Constant 

Stretching 

Second 

Order 

Wheeler 

1 34.55 33.34 11.50 22.15 1.73 1.53 1.29 3.06 2.17 1.06 173.04 154.48 118.16 302.16 202.19 105.63 

2 32.25 29.02 13.50 19.54 1.27 1.15 1.04 2.39 1.72 0.85 114.36 112.31 93.87 233.64 158.73 81.36 

3 31.49 30.79 13.00 19.13 1.21 1.07 0.95 2.19 1.58 0.77 110.42 105.00 86.65 214.97 146.92 74.58 

4 30.95 29.99 13.50 18.60 1.14 0.98 0.93 1.88 1.45 0.74 102.04 93.77 82.13 178.94 131.38 69.72 

5 30.63 30.93 15.50 18.09 1.12 1.01 1.01 1.58 1.38 0.86 91.99 89.59 83.23 139.54 116.74 74.53 

6 29.86 30.04 13.50 17.83 1.05 0.96 0.88 1.80 1.39 0.74 92.67 90.83 78.18 171.36 125.56 68.67 

7 29.96 30.62 15.00 17.66 1.05 0.97 0.99 1.52 1.33 0.85 87.57 85.11 81.15 132.62 112.19 72.52 

8 29.38 28.12 13.50 17.50 1.00 0.91 0.85 1.67 1.31 0.71 88.41 85.00 74.76 157.98 118.18 65.89 

9 29.10 29.05 13.50 17.30 0.98 0.90 0.83 1.47 1.22 0.71 85.98 82.66 71.74 135.53 108.02 65.12 

10 29.10 30.76 13.50 17.29 0.98 0.90 0.80 1.48 1.20 0.68 85.98 85.55 70.41 138.23 107.44 62.75 

11 28.66 28.92 13.00 17.12 0.96 0.89 0.82 1.48 1.22 0.72 85.82 82.61 71.83 136.94 108.57 65.67 

12 28.80 27.86 14.00 17.00 0.95 0.88 0.86 1.39 1.19 0.74 82.03 77.66 70.73 122.99 100.66 63.97 

13 28.36 29.47 13.00 16.91 0.93 0.88 0.88 1.32 1.18 0.75 83.26 77.61 72.80 115.16 99.48 64.64 

14 27.59 28.88 11.50 16.87 0.93 0.92 0.83 1.30 1.16 0.74 88.56 84.72 71.55 116.74 101.45 67.33 

15 28.84 30.18 15.50 16.86 0.96 0.85 0.90 1.49 1.25 0.75 78.42 73.94 73.54 133.16 105.81 64.25 

16 28.38 28.91 13.50 16.81 0.92 0.83 0.78 1.35 1.13 0.67 80.74 75.59 67.01 123.16 99.20 60.12 

17 28.38 27.50 13.50 16.80 0.92 0.82 0.77 1.39 1.15 0.65 80.74 76.63 67.38 129.13 102.45 59.75 

18 28.26 28.19 13.50 16.72 0.91 0.85 0.79 1.33 1.14 0.69 79.79 78.20 68.10 121.36 100.13 62.55 

19 27.89 26.51 12.50 16.72 0.90 0.84 0.72 1.50 1.17 0.63 82.46 81.14 65.78 144.60 107.42 59.96 

20 27.05 30.01 11.00 16.71 0.92 0.90 0.71 1.44 1.13 0.64 89.13 86.78 64.04 137.33 103.25 60.69 
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Figure 7.37 Empirical CDF of Static Baseshear and Overturning Moment 
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7.5. Verification of Transfering Data to USFOS 

The sea surface and wave particle kinematics are transferred to USFOS trough wavegrid file 

since the response of jack-up platform is calculated by using USFOS. Therefore, a brief 

verification is performed to insure that the data is transfered corretly from MATLAB to USFOS. 

In this case, a single vertical cylinder with diameter 1m is set as the object of comparisson. A 20-

minute first order sea simulation utilizing equal area method and random amplitude with 220 

components is performed. The Wheeler stretching is used to determined the particle kinematics 

along the z-coordinate. In addition, CD =1.15 and CM =1.6 along the z coordinate. It should be 

noted that the focus on this particular verification study is the comparisson of load. Therefore, 

any methods can be used to simulate the sea surface and wave particle kinematics. Utilizing the 

result of simulation, the static baseshear and overturning moment on the cylinder from USFOS 

and MATLAB are compared. Figure 7.39 shows the comparisson of static baseshear and 

overturning moment between USFOS and MATLAB. 

 

Figure 7.38 Comparisson of Load between USFOS and MATLAB 

From figure 7.38, it can be observed that both static baseshear and overturning moment from 
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8. Reducing Computational Time in Grid System 

Eventhough the required harmonic components can be reduced by various method, to calculate 

3-hour simulations in a grid system is still prohibitive due to the the large computational time 

and required memory. To solve this problem, some stategies to reduce the computational time 

(also the required memory) are introduced. Explanation about the strategies is presented in 

section 4.5. In this chapter, the effects of applying these strategies to responses calculation of 

jack-up platform is presented.  

In this case, the long crest wave is assumed and the wave is propagates along the x coordinate. 

The wave particle kinematics on the grid is determined by only oberving a single line on the grid. 

This is illustrated by figure 8.1.  

       

       

       

       

       

       

       

       

Figure 8.1 Illustration of Grid System 

The round shapes shows particular coordinates in the grid system. The red shapes incicates the 

coordinates where the calculation of sea surface is performed. This coordinates is called the 

calculation points. Then, all points that has same y-coordinates as the calculation points is set to 

have the same magnitude of surface elevation and wave particle kinematics as calculation points. 

As a consequnce, the sea surface which is presented in figure 8.2 is established. All simulation in 

this chapter is performed utilizing equidistance frequency interval with random amplitude. The 

time interval is set as 0.5 s. In addition, (, = 133 and ;� � 15.9S. These value is estbalished 

from metocean analysis which is presented in chapter 9. 
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Figure 8.2 Long Crest Surface Elevation 
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the interval of  z-coordinate is decreased gradually from sea bottom to the sea surface. In this 

case, the interval of z-coordinate is set equal to 20m for � ≤ −803, 10m for � ≤ −603, 5m for � ≤ −303 and 1m for � ≤ surface elevation. The z-coordinate in grid system is defined up to 

30m to accomodate high wave crest. For all case, the interval of x-coordinate is set as 5m to 

reduce the computational time and memory usage.  

Table 8.1 Number of Calculation Point along z-Coordinate and Computational Time 

Case 

Number of 

Calculation 

Points 

Computational Time [second] 

Kinematic 

(Matlab) 
Response (USFOS) 

First 

Order 

Second 

Order 

First Order Second Order 

Static Dynamic Static Dynamic 

1 261 1658 33943 1873 1593 1594 1829 

2 131 840 16671 1440 1728 1700 1689 

3 66 428 8494 1745 1701 1908 1606 

4 70 363 9369 1447 1479 1698 1522 

Table 8.1 shows the number of calculation points along the z-coordinate and the computational 

time for each case. The computational of response analysis in USFOS does not have general 

trend. The possible reason is the pararel computing process. In pararel computing process, 

several jobs are submited into USFOS simultaneously. Therefore, the computational time 

depends on how many active jobs and the available space of CPU memory. Therefore, 

computational time in USFOS can not be taken as object of comparisson in this case. The 

comparisson of computational time is focused on kinematic computational time. 

From table 8.1, it can be observed that the case 3, where z-interval is set as 2m, shows the 

smallest number of calculation points along the z-coordinate between the compared cases. As a 

consequence, the case 3 requires the smallest computational time for second order kinematics. 

For first order wave, the kinematic computational time for the case 4 is smaller than case 3 

though case 4 has more calculation points. This is due to the performed numerical scheme in 

MATLAB. For first order wave, the kinematics on the calculation points above sea surface is 

directly set as zero. In this case, the unnecessary multiplication process in MATLAB is avoided. 

It seems that the fourth case has more calculation points above the sea surface than the third case. 

As a consequence, the fourth case executes the simulation faster than the third case. This implies 

that by distributing the calculation points wisely, the computational time could be reduced. 

However, in order to perform vectorization, the kinematics are calculated on all calculation 
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points including the calculation points above the sea surface for second order kinematic case. 

Therefore, in the built MATLAB script, the numerical scheme to calculate second order 

kinematics is not sensitive to number of calculation points above the sea surface. That is why for 

second order kinematics, case 4, which has more calculation points, has larger computational 

time than case 3.In addition, the case 4 cut 78% computational time for first order wave and 72% 

computational time for second order wave when it is compared to case 1.  

In order to verify the accuracy, the mean and standard deviation of baseshear and overturning 

moment are observed. Table 8.2 presents the mean of baseshear and overturning moment for 

each case while table 8.3 shows the standard deviation.  

Table 8.2 Mean of Baseshear and Overturning Moment 

Case 

Mean of Baseshear [kN] Mean of Overturning Moment[kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

1 0.0 0.0 -0.1 -0.1 30.9 54.1 19.8 44.4 

2 0.0 0.0 -0.1 -0.1 30.8 53.1 21.0 45.0 

3 0.0 0.0 -0.1 -0.1 30.8 54.2 21.5 45.0 

4 0.0 0.0 -0.1 -0.1 31.0 53.4 21.0 44.8 

Table 8.3 Standard Deviation of Baseshear and Overturing Moment 

Case 

 Std. of Baseshear [kN] Std. of Overturning Moment[kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

1 0.9 1.1 0.8 1.0 160.9 177.8 157.1 173.2 

2 0.9 1.1 0.8 1.0 160.8 176.8 157.7 172.6 

3 0.9 1.1 0.8 1.0 160.7 175.5 158.0 172.4 

4 0.9 1.1 0.8 1.0 160.8 176.7 157.7 172.7 

It is assumed that the case 1 gives the most accurate result since its z-coordinate grid is denser 

than the other cases. In table 8.2 and 8.3, case 3 mainly produces larger deviation when the mean 

and standard deviation are compared to the case 1. All in all, the deviations from each case are 

mainly less than 5% (except for static second order overturning moment of case 3) which 

indicates case 2, 3 and 4 gives acceptable result. The analysis is continued by observing the 

maximum baseshear and overturning moment. Table 8.4 to table 8.7 respectively shows the 

positive maximum baseshear, positive maximum overturning moment, negative maximum 

baseshear and negative maximum overturning moment. 
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Table 8.4 Positive Maximum Baseshear 

Case 

Maximum Baseshear 

First Order Second Order 

Static Dynamic Static Dynamic 

Mag. [kN] t [s] Mag. [kN] t [s] Mag. [kN] t [s] Mag. [kN] t [s] 

1 3.7 296.5 4.1 297.0 3.0 296.5 3.2 297.0 

2 3.7 296.5 4.0 297.0 3.0 296.5 3.3 297.0 

3 3.7 296.5 4.0 297.0 3.1 296.5 3.4 297.0 

4 3.7 296.5 4.0 297.0 3.0 296.5 3.3 297.0 

Table 8.5 Positive Maximum Overturning Moment 

Case 

Maximum Overturning Moment 

First Order Second Order 

Static Dynamic Static Dynamic 

Mag. [kNm] t [s] Mag. [kNm] t [s] Mag. [kNm] t [s] Mag. [kNm] t [s] 

1 397.5 296.5 516.8 297.5 337.3 296.5 479.4 601.0 

2 397.6 296.5 508.8 297.5 341.6 296.5 470.3 601.0 

3 397.8 296.5 508.2 297.5 344.6 296.5 469.2 601.0 

4 397.8 296.5 509.2 297.5 341.8 296.5 470.5 601.0 

Table 8.6 Negative Maximum Baseshear 

Case 

Maximum Baseshear  

First Order Second Order 

Static Dynamic Static Dynamic 

Mag.[kN] t [s] Mag. [kN] t [s] Mag. [kN] t [s] Mag. [kN] t [s] 

1 -4.5 607.5 -5.0 609.0 -4.2 607.0 -4.9 609.0 

2 -4.5 607.5 -5.0 609.0 -4.2 607.5 -4.8 609.0 

3 -4.5 607.5 -5.0 609.0 -4.1 607.0 -4.8 608.5 

4 -4.5 607.5 -5.0 609.0 -4.2 607.5 -4.8 609.0 

Table 8.7 Negative Maximum Overturning Moment 

Case 

Maximum Overturning Moment [kNm] 

First Order Second Order 

Static Dynamic Static Dynamic 

Mag. [kNm] t [s] Mag. [kNm] t [s] Mag. [kNm] t [s] Mag. [kNm] t [s] 

1 -178.6 584.5 -298.6 609.5 -176.3 584.5 -282.7 609.0 

2 -178.7 584.5 -293.9 609.5 -176.4 584.5 -290.6 609.0 

3 -179.6 314.0 -296.5 609.5 -176.5 584.5 -287.3 609.0 

4 -178.7 584.5 -294.1 609.5 -176.4 584.5 -290.7 609.0 

From table 8.4 to table 8.7, compared to case 1, the case 3 generally produces larger deviation 

then the other cases. It seems the first order negative maximum overtuning moment of case 3 

occurs at different time instance than the other cases though it is checked that in the same time 
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instance as other cases, case 3 does not produce significant deviation on the negative overturning 

moment.  Despite all of that, case 2, 3 and 4 have deviation which is less than 5%. This indicates 

that all cases give acceptable result. However, the fourth case is the most appealing method to 

apply since it has the smaller computational time than case 1 and 2 but creates smaller deviation 

than case 3. Therefore, for further ananlysis, case 4 is used to define the z-coordinate in grid 

system. 

8.1.2. Coarser grid for x-coordinate 

Eight different intervals of x-coordinate are observed which are 1m, 2m, 3m, 5m, 7m, 10m, 13m 

and 15. The interval of z-coordinate gradually decrease from the sea bottom to the sea surface 

which is similar to case 4 in previous section. The 1m interval is assumed gives the most correct 

result between the other cases. Therefore, the 1m interval is made as a reference. In addition, the 

static and dynamic analysis of structure responses are performed. Table 8.8 shows the number of 

calculation point along the x-coordinate and the computational time for each observed case. 

Table 8.8 Number of Calculation Point along z-Coordinate and Computational Time 

Case 
Interval 

[m] 

Number of 

Calculation 

Points 

Computational Time [second] 

Kinematic 

(Matlab) 
Response (USFOS) 

First 

Order 

Second 

Order 

First Order Second Order 

Static Dynamic Static Dynamic 

1 1 101 1493 40176 769 1611 1253 1662 

2 2 51 756 20365 651 1644 2070 1400 

3 3 34 499 13670 606 1833 1956 1331 

4 5 21 311 8975 573 1315 1631 1372 

5 7 15 221 6075 553 1282 1605 1265 

6 10 11 162 4567 934 1257 1500 1328 

7 13 8 127 3227 780 1409 1713 1271 

8 15 7 105 2784 835 1237 1860 1272 

Since multiple calculation in USFOS is performed by utilizing pararellel computing, the 

calculation speed depends on the available memory and processor when executing the job. As a 

consequence, the comparisson of USFOS computational time is not reliable to perform. 

Logically, USFOS spends longer duration when executing the grid system with smaller x interval 

since it requires bigger memory due to the greater number of calculation point. This can be 

observed by comparing case 1 and case 8 where the case 8 executes the simulation faster than 

case 1.  
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The observation is focused on the computational time of wave particle kinematics and sea 

surface at MATLAB. By setting 1m interval as reference, it is observed that utilizing 5m as 

interval of x-coordinate cuts the computational time up to 78% for both first order and second 

order sea. In this case, one simulation of 20-minutes second order sea spends 2.5 hours to be 

completed. Furthermore, using x-coordinate interval equal to 15 m cuts the 93% computational 

time of first and second order. 

Table, 8.9 shows the mean of baseshear and overturning while figure 8.3 presents the percentage 

of mean for each x-interval when they are compared to x-interval = 1m. The percentage of mean 

in figure 8.3 is determined by: 

Table 8.9 Mean of Baseshear and Overturning Moment 

Case 
Interval 

[m] 

Mean of Baseshear [kN] Mean of Overturning Moment[kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

1 1 0.0 0.0 -0.1 -0.1 26.2 68.6 16.7 53.3 

2 2 0.0 0.0 -0.1 -0.1 26.7 68.3 16.9 52.5 

3 3 0.0 0.0 -0.1 -0.1 26.8 66.8 17.1 51.8 

4 5 0.0 0.0 -0.1 -0.1 26.4 65.6 16.9 50.0 

5 7 0.0 0.0 -0.1 -0.1 26.5 63.1 17.1 46.8 

6 10 0.0 0.0 -0.1 -0.1 26.9 58.2 17.3 42.9 

7 13 0.0 0.0 -0.1 -0.1 26.1 47.7 16.8 34.3 

8 15 0.0 0.0 -0.1 -0.1 26.7 48.3 17.5 36.4 

 

From table 8.9, it can be observed that the mean of baseshear is equal to zero for first order sea 

and -0.1 for second order sea even when the interval of x-coordinate is set as 15m. This is logical 

since the second order sea has higher crest (produces negative baseshear) and lower trough 

(produces positive baseshear). For overturning moment, it can be observed that the deviation 

tends to increase when increasing the x-interval. The deviation of mean of overturning moment 

could be larger than 5% when x-interval is greater than 5m. Furthermore, for dynamic second 

order overturning moment, the deviation of mean is equal to 12% when the x-interval is set as 

7m. Therefore, assuming the acceptable mean deviation is 5%, the 5m x-interval produces the 

fastest computational time with acceptable result. 

Table 8.10 shows the standard deviation of baseshear and overturning moment. Observing the 

standard deviation in table 8.10, for static baseshear case from first order sea, it seems all 

deviation of standard deviation is less than 5%. However, for first order dynamic baseshear case 
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the deviation of standard deviation could be larger than 5% when the x-interval is set larger than 

10m. For overturning moment, all deviation of standard deviation is less than 5%. Therefore, 

based on standard deviation, interval 10m produces the fastest simulation with acceptable result 

if 5% is set as the largest acceptable deviation. 

Table 8.10 Standard Deviation of Baseshear and Overturning Moment 

Case 
Interval 

[m] 

Baseshear [kN] Overturning Moment[kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

1 1 0.8 1.0 0.7 1.0 160.9 177.2 157.9 173.6 

2 2 0.8 1.0 0.7 1.0 160.9 177.0 158.0 173.5 

3 3 0.8 1.0 0.7 1.0 161.0 176.7 158.0 173.0 

4 5 0.8 1.0 0.8 1.0 161.2 176.0 158.2 172.9 

5 7 0.8 1.0 0.8 0.9 161.3 174.3 158.2 171.8 

6 10 0.8 1.0 0.8 0.9 161.4 172.9 158.5 171.2 

7 13 0.8 0.9 0.8 0.9 161.5 170.2 158.6 169.3 

8 15 0.8 1.0 0.8 0.9 161.7 171.2 158.8 170.1 

The positive maximum (when the jack-up at the wave trough) and negative maximum (when the 

jack-up at wave crest) of base shear and overturning moment from static and dynamic analysis 

are presented in table 8.13 and 8.14 respectively. It can be observed that even when the x-

interval larger than 1m, the positive maximum of second order dynamic baseshear could occurs 

at different time instance than x-interval equal to 1m. In addition, the deviation of positive and 

negative maximum value from all cases could be larger than 5% when the  x-interval is larger 

than 5m. For ultimate limit state, the main focus is the negative maximum baseshear and 

overturning moment where the wave crest occurs regardless of the time instance. Therefore, it is 

concluded that based on the maximum baseshear and overturning moment, 5m is the largest 

interval with acceptable result. 

From comparisson of mean, standard deviation and maximum, it is observed that increasing x-

interval will not always increase the deviation of result. When x-interval > 5m, it seems the 

increment in the deviation becomes uncertain while the increment is still predictable for x-

interval ≤ 5m. Therefore, it is concluded that too coarse grid could produce uncertainty in the 

interpolation result. In addition, based on comparisson of mean, standard deviation and 

maximum value, interval 5m is the largest interval with acceptable result. Therefore, for further 

analysis, the grid system is established with x-interval equal to 5m. 
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Table 8.11 Positive Maximum Response 

Interval 

[m] 

Baseshear Overturning Moment [kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

1 3.2 216.5 3.3 674.0 2.8 216.5 3.1 416.5 332.5 962.5 482.5 416.5 304.2 216.5 493.0 416.5 

2 3.2 216.5 3.2 674.0 2.9 216.5 3.1 215.0 333.3 962.5 483.4 416.5 307.2 216.5 496.6 416.5 

3 3.3 216.5 3.2 674.0 2.9 216.5 3.2 215.0 336.0 216.5 489.5 416.5 308.9 216.5 502.0 416.5 

5 3.3 216.5 3.2 674.0 2.9 216.5 3.3 215.0 343.3 216.5 487.8 416.5 312.7 216.5 513.6 416.5 

7 3.3 216.5 3.2 215.5 3.0 216.5 3.3 215.0 342.4 216.5 473.8 416.5 315.0 216.5 501.1 416.5 

10 3.4 216.5 3.3 215.5 3.0 216.5 3.5 215.0 351.7 216.5 471.5 416.5 318.8 216.5 506.8 416.5 

13 3.4 216.0 3.6 216.0 3.0 216.5 3.7 215.0 354.0 216.0 436.6 416.5 319.0 216.5 483.0 215.0 

15 3.5 216.5 3.6 215.5 3.0 216.5 3.8 215.5 364.8 216.5 450.0 416.5 324.9 216.5 488.1 215.0 

 

Table 8.12 Negative Maximum Response 

Interval 

[m] 

Baseshear Overturning Moment [kNm] 

First Order Second Order First Order Second Order 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

Mag. 

[kN] 
t [s] 

1 -3.8 1410.0 -5.2 1410.5 -3.7 1410.0 -5.3 1410.5 -177.5 221.0 -345.2 1410.5 -175.0 38.5 -378.3 1410.5 

2 -3.8 1410.0 -5.2 1410.5 -3.7 1410.0 -5.3 1410.5 -183.8 221.0 -343.3 1410.5 -174.7 38.5 -378.0 1410.5 

3 -3.8 1410.0 -5.2 1410.5 -3.7 1410.0 -5.3 1410.5 -188.5 1420.5 -344.1 1410.5 -174.5 438.0 -377.2 1410.5 

5 -3.9 1410.0 -5.2 1410.5 -3.7 1410.0 -5.3 1410.5 -187.2 220.5 -341.4 1410.5 -174.4 438.0 -374.0 1410.5 

7 -3.9 1410.0 -5.2 1410.5 -3.8 1410.0 -5.3 1410.5 -185.1 220.5 -335.8 1410.5 -177.3 392.5 -364.7 1410.5 

10 -3.9 1410.0 -5.2 1410.5 -3.8 1410.0 -5.2 1410.5 -181.7 220.5 -328.0 1410.5 -176.1 392.5 -354.8 1411.0 

13 -4.0 1410.0 -5.1 1410.5 -3.8 1410.0 -5.0 1410.5 -178.8 392.5 -304.0 1410.5 -174.0 392.5 -334.1 1411.0 

15 -4.1 1410.0 -5.1 1410.5 -3.8 1410.0 -5.0 1410.5 -178.0 392.5 -303.8 1410.5 -173.1 392.5 -334.8 1411.0 
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8.2. Second Order Wave at Upper Layer 

As explained in section 4.5.2, applying the second order wave particle kinematics only at the 

calculation points which are close to sea surface could decrease the computational time. A 

comparisson study is performed to find how deep the second order wave particle kinematics can 

be applied with acceptable result. In the previous project about second order wave force on 

single vertical cylinder by Lubis [27], applying second order surface only at 10% of depth  (10m 

out of 100m) can cut the computational time up to 88% with small deviation on the maximum, 

mean and standard deviation of responses. In addition, the equidistance interval of z-coordinate 

is utilized in his work. However, it is explained in section 8.1.1 that concentrating the calculation 

points close to the sea surface gives significant cut to the computational time. Therefore, instead 

of applying equidistance z-interval, gradually decreased z-interval is established when observing 

the effect of applying second order kinematics only at calculation points that are close to the sea 

surface. The profiles of horizontal velocity at x = 0 when the largest wave crest occurs are 

presented in figure 8.3. 

   
Figure 8.3 Horizontal Particle Velocity Profile 

In figure 8.3, the second order kinematics is applied up to three different depths (d2 which refer 

to the depth of second order kinematics) which are 5m, 25m and 50m. It can be observed that 

there is significant jump in the kinematic profile when the d2 is set as 5m. In this case, the wave 

load is expected larger than the wave load from complete second order kinematics along z-

coordinate. On the other hand, larger d2 produces smaller deviation in the profile. 
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In this case, the analysis is focused on the maximum negative (when the crest hit the structure) 

baseshear and overturning moment. In addition, the comparisson of computational time is 

concentrated in computational time of kinematics calculation time in MATLAB since the 

number of calculation points in grid is similar for each observed cases. Table 8.13 presents the 

observed cases, the kinematics computational time and the maximum responses. 

Table 8.13 Combination of First and Second Order Kinematics along Z-Coordinate 

Depth of 

Second 

Order 

(d2) 

Computational 

Time 

Maximum Negative Response 

Baseshear Overturning Moment [kNm] 

Static Dynamic Static Dynamic 

[s] % Value[kN] Dev.[%] Value[kN] Dev.[%] Value[kNm] Dev.[%] Value[kNm] Dev.[%] 

Comp.  10298 Ref. -3.7 Ref. -0.6 Ref. -174.4 Ref. -374.0 Ref. 

5 m 4147 40 -4.1 10.8 -0.5 -5.0 -177.4 1.7 -399.0 6.7 

10 m 4965 48 -4.1 10.9 -0.5 -6.4 -177.7 1.9 -396.1 5.9 

15 m 5616 55 -4.1 10.3 -0.5 -5.8 -177.7 1.9 -394.9 5.6 

20 m 6142 60 -4.1 9.3 -0.5 -5.2 -177.8 1.9 -391.9 4.8 

25 m 6987 68 -4.1 8.8 -0.5 -4.9 -177.9 2.0 -390.3 4.3 

30 m 7415 72 -4.0 7.5 -0.5 -3.9 -178.0 2.0 -386.1 3.2 

40 m 7908 77 -4.0 6.0 -0.5 -2.9 -178.1 2.1 -381.7 2.0 

50 m 8335 81 -3.9 4.9 -0.5 -2.2 -178.2 2.2 -379.0 1.3 

Comp. refers to complete second order kinematic along the z-coordinate and is set as reference 

result to measure the deviation of the observed case. The percentages of deviation and the 

percentage of computational time from observed case are presented (indicated by %). From table 

8.13, it is observed that by applying second order kinematics up to 40m depth still produces 

deviation of static baseshear larger than 5%. As presented in figure 8.3, applying second order 

kinematics only for small depth overestimates the wave load. This is also supported by result in 

table 8.3, which d2 = 5m produces larger magnitude of maximum negative baseshear. For 

overturning moment, the deviation depends on kinematics profile around the mean sea surface on 

each leg. Therefore, when d2 is small (which means there is significant jump of kinematics 

profile close to sea surface), the reduction of overturning moment from wave load close to sea 

surface equalize the overestimation the overturning moment from wave load close to sea bottom. 

However, there is an exception for dynamic overturning moment, where the overturning moment 

is affected by the structure configuration in previous time instance. In addition, d2=50m only 

save 20% computational time. This is different than the result from previous work [27] where the 

cut of computational time is up to 65% for d2 =30m. Since the calculation points are 

concentrated close to sea surface, it seems the method produces smaller cut of computational 

time than equidistance z-interval.  
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8.3. Spool-to-Extreme and Linear-to-Extreme 

To apply spool-to-extreme and linear-to-extreme method, the surface elevation at x=0 is 

observed. The time instance when the maximum surface elevation occurs is assumed as the time 

instance for maximum responses. The duration before the maximum surface elevation is varied 

to observed the effect of spool-to-extreme and linear-to-extreme method on maximum response. 

Spoll-to-extreme and linear to extreme is used to reduce the computational time of dynamic 

analysis. However, the static response is observed first since it is easier to explain the deviation 

in static analysis than in dynamic analysis. 

 

Figure 8.4 Surface elevation and Static Baseshear 

Figure 8.4 shows the surface elevation and static baseshear reaction time series. From figure 8.4, 

it can be observed that the maximum surface occurs at different time instance than maximum 

negative static baseshear. Therefore, assuming the largest negative static baseshear occurs at the 

largest surface elevation is not fully correct.  This is based on the fact that the largest wave load 

does not always occur at the largest surface elevation (as presented in section 7.31). In addition, 

when the largest negative baseshear occurs, the wave crest does not located at x=0. Figure 8.5 

shows the surface elevation profile when the largest negative static baseshear occurs. It can be 

observed that the wave crest is located close to the double leg of jack-up platform (in this case 

the wave is propagating in x-direction). Therefore, it is more complicated to predict the 

occurence of maximum baseshear and overturning moment from surface elevation though it can 

be assumed the wave crest occurs around the double leg location.  
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Figure 8.5 Surface Elevation Profile at Largest Negative Static Baseshear 

In figure 8.4, though the largest baseshear does not occur at the largest surface elevation, the 

largest baseshear is still in the range of second order simulation for spool-to-extreme method. In 

this case the, second order simulation is started 100 seconds before the largest surface time 

instance which is also the smallest observed duration for spool-to-extreme method. However, for 

linear-to-extreme method in figure 8.4, the surface elevation is spooled until 100 seconds before 

the largest maximum and then the first order wave is performed until 10 seconds before the 

largest surface elevation. As a consequence, the largest base shear is located in the range of first 

order simulation and the largest baseshear is underestimated. Therefore, due to random 

occurence of the largest baseshear, spool-to-extreme method is more appealing to be used than 

linear-to-exteme since it still can cover the maximum static baseshear that occurs around the 

largest surface elevation. However, when the largest baseshear occurs far away from the largest 

surface elevation,  both spool-to-extreme and linear-to-extreme becomes questionable to be used. 

To tackle this problem, the observation can be performed not only at single largest surface 

elevation in 20-minutes but also at second and even third largest surface elevation. As a 

consequence, the reduction of computational time decreases significantly, especially when the 

duration of spool is large. 

Table 8.14 presents the maximum baseshear and overturning moment. Spool-up-to refers to the 

duration before largest surface elevation for spool-to-extreme method while linear-up-to refers to 

duration before the largest surface elevation where the second order wave is applied. The 

complete refers to complete second order and is taken as reference. Since the occurence of the 

largest baseshear is located around the largest surface, spool-to-extreme method produces small 
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deviation for static baseshear and overturning moment for all observed spool duration. However, 

for linear-to-extreme method, setting the linear-up-to < 70s produces large deviation for static 

baseshear. The deviation is larger than 25%. However, for static overturning moment, the 

deviation less than 2% for all observed cases. For dynamic baseshear, except when spool-up-to = 

100s, all observed spool-to-extreme cases produces deviation less than 5%. For dynamic 

baseshear from linear-to-extreme, the deviation is less than 5% only when linear-up-to = 70s and  

spoo-up-to ≥ 200s. A weird result comes from negative dynamic overturning moment. All the 

spool-to-extreme result gives large deviation. In addition, only when spool-up-to=100s and 

linear-up-to < 70s produces small deviation. This is not an expected result. Since duration of 

second order simulation of linear-to-extreme is small, it is suspected that somehow the transient 

overturning moment from linear-to-extreme is comparable with the maximum dynamic 

overturning moment. All in all, based on maximum static baseshear, dynamic baseshear and 

static overturning moment, spool-to-extreme can be used with spool-up-to ≥ 200s while linear-

to-extreme can be used when linear-up-to≥ 70s. In addition, none of the observed cases satisfy 

the requirement for dynamic overturning moment. 

Table 8.14 Maximum Baseshear and Overturning Moment  

Negative Static Baseshear [kN] 
 

Negative Dynamic Baseshear [kN] 

Complete -3,5 Linear-up-to [s] 
 

Complete -4,1 Linear-up-to [s] 

Spool-up-to [s] 10 30 50 70 
 

Spool-up-to [s] 10 30 50 70 

100 -3,5 -4,4 -4,4 -4,4 -3,5 
 

100 -3,7 -5,0 -5,0 -5,0 -3,7 

200 -3,5 -4,4 -4,4 -4,4 -3,5 
 

200 -3,9 -5,2 -5,2 -5,2 -4,2 

300 -3,5 -4,4 -4,4 -4,4 -3,5 
 

300 -3,9 -5,1 -5,1 -5,1 -4,1 

400 -3,5 -4,4 -4,4 -4,4 -3,5 
 

400 -3,9 -5,1 -5,1 -5,1 -4,2 

500 -3,5 -4,4 -4,4 -4,4 -3,5 
 

500 -3,9 -5,1 -5,1 -5,1 -4,2 

600 -3,5 -4,4 -4,4 -4,4 -3,5 
 

600 -3,9 -5,1 -5,1 -5,1 -4,2 

             

Negative Static Overturning Moment [kNm] 
 

Negative Dynamic Overturning Moment [kNm] 

Complete -181,8 Linear-up-to [s] 
 

Complete -272,4 Linear-up-to [s] 

Spool-up-to [s] 10 30 50 70 
 

Spool-up-to [s] 10 30 50 70 

100 -180,8 -183,8 -183,8 -183,8 -180,8 
 

100 -204,6 -271,2 -271,2 -271,2 -204,7 

200 -180,7 -183,9 -183,9 -183,9 -180,7 
 

200 -234,7 -308,9 -308,9 -308,9 -240,4 

300 -180,7 -183,9 -183,9 -183,9 -180,7 
 

300 -230,9 -306,8 -306,8 -306,8 -238,2 

400 -180,6 -184,0 -184,0 -184,0 -180,6 
 

400 -233,4 -305,7 -305,7 -305,7 -243,3 

500 -180,6 -184,0 -184,0 -184,0 -180,6 
 

500 -233,5 -305,8 -305,8 -305,8 -243,3 

600 -180,5 -184,1 -184,1 -184,1 -180,5 
 

600 -233,4 -305,9 -305,9 -305,9 -243,1 
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However, different than coarser grid method and combination of first order and second order 

along z-coordinate, the spool-to-extreme and linear-to-extreme can not be based only on one 

simulation. The analysis requires several simulations for comparisson purposes. However, due to 

time limitation, the comparisson is not continued. However, the kinematics computational time is 

summarized in table 8.15 as an estimation for the next work. The left table presents the 

computational time in seconds while the right table presents the computaitional time in 

percentage of complete second order computational time. From table 8.15, using spool-to-

extreme with spool-up-to=600s can save 42% of computational time. In addition, applying 

second order wave only on the last 70 seconds of spool-to-extreme while the rest 530s is 

established by first order wave could save 80% computational time. This indicates the linear-to-

exteme could be an appealing method if the correct duration of spool is utilized. 

Table 8.15 Kinematic Computational Time from Spool-to-Extreme and Linear-to-Extreme 

Computational Time [s] 

 

Computational Time  [% of Complete Analysis] 

Complete 8975 Linear-up-to [s] 

 

Complete 100 Linear-up-to [s] 

Spool-up-to [s] 10 30 50 70 

 

Spool-up-to [s] 10 30 50 70 

100 2291 1626 1769 1930 2094 

 

100 22 16 17 19 20 

200 3065 1636 1806 1932 2120 

 

200 30 16 18 19 21 

300 3870 1620 1777 1910 2107 

 

300 38 16 17 19 20 

400 4627 1651 1782 1918 2125 

 

400 45 16 17 19 21 

500 5371 1641 1794 1940 2104 

 

500 52 16 17 19 20 

600 6103 1623 1776 1937 2080 

 

600 59 16 17 19 20 

8.4. Summary 

Observing different x-interval for grid system, it is found that x-interval=5m is the largest 

interval with the fastest computational time and acceptable result. In addition, applying gradually 

decreased interval along z-coordinate gives extra cut to computational time. Performing the 

second order kinematics only up to 50m depth could save 20% computational time for gradually 

decreased z-interval whiler the spool-to-extreme and linear-to-extreme can save the 

computational time up to 80%. However, from all observed case, both spool-to-extreme and 

linear-to-extreme gives large deviation of dynamic overturning moment. In addition, due to the 

random occurence of largest baseshear and overturning moment, one simulation is not adequate 

for comparisson study. In the next chapter, the x-interval is set as 5m and gradually decreased z-

interval is utilized. 
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9. Metocean Analysis 

The jack-up is designed to withstand the environmental load of the location where the jack-up is 

planned to be installed. The environmental load is establish from meteorology and oceanography 

(metocean) analysis. Basically the metocean analysis covers the analysis of wind, current and 

wave. However, since this work is focused on the wave load, the performed metocean analysis is 

specified into analysis of wave. In this case, the wave record is observed to find the seastate 

which produces the extreme jack-up responses. 

9.1. Site Location 

 

Figure 9.1 Location of HindcasT Data ( www.maps.google.com ) 

In this work, the typical location of jack-up platform is observed. It is assumed that the jack-up 

located at the southern part of North sea. The metocean analysis is based on hindcast wave data 

at latitude 53.61o N and longitude 3.41o E. Figure 9.1 shows the location of the hindcast data 

from Google map. Comparing the location with map of North Sea from Norwegian Petroleum 

Directorate (NPD), this coordinate is found around Ekofisk field. This was shown in figure 9.2. 

The WAM10 wave model [46] is used to hindcast the wave data. The hindcast data is presented 

in file “NS south_WAM10_5361N_0341E.txt” which contains the wind speed, wind direction, 

and wave parameters (significant wave height and spectral peak period) for each 3 hour from 1st 

September 1957 to 30th June 2014. In this study, only significant wave height and spectral peak 

period from total sea is considered. 
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Figure 9.2 Location of Hindcast Data ( www.npd.com, [34] ) 

9.2. Scatter Diagram 

Table 9.1 illustrates the data inside the hindcast file. From the hindcast file, the significant wave 

height (Hs) and spectral peak period (Tp) from total sea are processed. They are marked by the 

red line in table 9.1.  

Table 9.1 Illustration of the Hindcast Data 

YEAR MONTH DAY HOUR 
WIND TOTAL SEA WIND SEA SWELL SEA 

WSP DIR HS TP TM DIRP DIRM HS TP DIRP HS TP DIRP 

1957 9 1 6 4.4 222. 0.9 5.2 4.4 212. 226. 0.2 2.9 227. 0.9 5.2 212. 

1957 9 1 9 4.9 214. 0.8 5.2 4.4 212. 218. 0.3 3.2 212. 0.8 5.2 212. 

1957 9 1 12 4.3 223. 0.8 5.2 4.4 212. 218. 0.2 2.9 227. 0.8 5.2 212. 

1957 9 1 15 2.1 300. 0.8 5.2 4.6 212. 224. 0.1 0.0 220. 0.8 5.2 212. 

1957 9 1 18 4.4 350. 0.8 5.2 4.8 212. 229. 0.1 2.7 347. 0.8 5.2 212. 

1957 9 1 21 5.6 336. 0.7 5.2 4.8 212. 235. 0.1 3.6 2. 0.7 5.2 212. 

1957 9 2 0 7.8 323. 0.8 5.2 3.8 272. 262. 0.5 2.7 287. 0.7 5.2 257. 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

2014 6 3 0 12 9.0 320. 1.6 6.9 4.9 347. 340. 1.2 6.3 332. 1.0 7.6 2. 

2014 6 3 0 15 8.8 323. 1.6 6.9 4.9 347. 339. 1.3 6.3 332. 1.1 7.6 2. 

2014 6 3 0 18 8.4 322. 1.6 6.9 5.0 347. 340. 1.2 6.3 332. 1.1 7.6 2. 

Figure 9.3 shows the scatter plot of Hs and Tp. From figure 9.3, it can be observed that rather 

than random, Tp seems to be grouped. This is due to the limitation of WAM10 model. In order to 

save memory, WAM10 uses discrete logarithmic spacing when saves the Tp for each 3-hour [1]. 



 NTNU    
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Metocean Analysis  143 

 

 

In this case, WAM10 model only stores two digit of the ln(Tp). For instance, Tp with magnitude 

14.31s ( ln(14.3)=2.66 ) and 15.6s ( ln(15.6)=2.74 ) are saved into memory as as 2.7. As a 

consequence, there are only 24 different possible magnitudes of Tp between 2 and 20 s.  

 
Figure 9.3 The Scatter Plot of Hs and Tp 

Left: Without Randomiztaion; Right: With Randomization 

The randomness on Tp can be recovered by using equation (9.1) [4]. 

 ;< = 3.244 Æ}I ³0.09525 �Ø£[F� �1 + 6F1;<′ 3.244⁄ 40.09525 � − 0.5 + Ø�F��´ (9.1) 

In this case, ;I′ is the spectral peak period from measurement while ;< is the final spectral period 

for further analysis. In addition, round means round up/down the value inside the bracket into the 

closest integer while rand indicates a random number which is uniformly distributed between 

zero and one. Figure 9.4 shows the scatter of Hs and Tp after the randomization. After 

randomizing the Tp, each combination of Hs and Tp is classed. In this work, the interval of Hs 

class is 0.5 m while the interval of Tp class is 1s. 

9.3. Joint Distribution of Hs and Tp 

In section 3.1.1, it is explained that to account the long-term variation, the joint distribution of Hs 

and Tp should be established. The joint PDF of Hs and Tp is expressed by equation 3.37. 

Therefore, the marginal distribution of Hs and conditional distribution of Tp  should be 

determined first. This section presents the summary of process to determine the joint distribution 

of Hs and Tp.  
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9.3.1. Marginal distribution of Hs 

In section 3.3.1, it is explained that 3-parameter Weibull can be used as the marginal distribution 

of significant wave height (7$8((,)). The location (j^), scale (]^) , and shape (_^) parameter are 

determined using method of moment. Figure 9.4 shows the fitted weibull CDF. 

 

Figure 9.4 Fitted 3-Parameter Weibull 

From method of moment, it is found that j^ = 0.38, ]^ = 1.64 and _^ = 1.24. It should be 

noted that the mean, variance and skewness coeffcient of Hs should be calculated directly from 

measurement (before Hs is classed) since determining the mean, variance and skewnwss 

coefficient from scatter diagram leads to some deviation between the empirical CDF of Hs (blue 

dot) and the fitted 3-parameter Weibull.  

9.3.2. Conditional Distribution of Tp 

The distribution of Tp is conditional since it depends on Hs (79:|$8(;<|(,)). It is assumed that 79:|$8(;<|(,) follows log-normal distribution which is given in equation 3.42. 79:|$8(;<|(,) is 

determined for each class of Hs. To established a log-normal distribution, the mean and variance 

of ln(Tp) should be found first. Therefore, since the distribution of Tp depends on Hs, mean and 

variance of ln(Tp) should be analyzed from each class of Hs. Figure 9.5 shows the fitted function 

of mean of ln(Tp) with Hs as the variable. 
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Figure 9.5 Fitted Function of Mean ln (Tp) 

The mean of ln(Tp) can be determined from data by using equation 3.44. The relation between 

mean of ln(Tp) and Hs is assumed follows equation 9.2: 

 k�� 1lm�)*4 = �� + �� (,
&  (9.2) 

From fitting process, it is found that �� = 1.18, �� = 0.69, and �� = 0.33. For variance of ln(Tp), it 

is assumed that: 

 t�� 1lm�)*4� = �� + �� Æ}I(−�� (X) (9.3) 

The variance of ln(Tp) can be established from the data using equation 3.45. By fitting equation 

9.3 to the data, it is found that �� = 0.2, �� = 0.76 and �� = 0.007. It is possible for �� to have 

negative value which gives a negative variance of ln(Tp) for large Hs. Therefore, �� should be 

restricted from having a negative value. In this work, eventhough �� has a positive value from 

fitting process, it is considered to observe the effect of various values of �� on the variance of 

ln(Tp). Figure 9.6 shows the fitted function of variance ln(Tp) when �� is not restricted (�� =0.007) and when �� is set as 0.005 and 0. 
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Figure 9.6 Fitted Function of Variance ln (Tp) 

In figure 9.6, it can be observed that larger �� gives increases the variance of ln(Tp) at large Hs. 

As a consequence, the variability of Tp is also increased at certain Hs when larger �� is utilized. 

This can be proven by checking the 90% band of Tp (range between Tp with CDF 5% and 95%). 

Figure 9.7 shows the 90% band of Tp on the scatter plot of Hs and Tp. 

 
Figure 9.7 90% Band of Tp 
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In figure 9.7, it can be observed that �� = 0.007 produces larger 90% band of Tp than the other 

two values of ��. The dynamic analysis of jack-up platform not only depends on the wave height 

but also the wave period. Because of that, larger 90% band of Tp is considered better for dynamic 

analysis of the jack-up platform since it covers broader range of Tp. Therefore, it is decided that �� = 0.007 for further analysis. 

9.4. Full Long-Term Analysis of Sea Surface 

For design wave method, it is assumed that the extreme responses of drag dominated structure, 

such as jack-up platform, occurs at the largest maximum surface elevation (the largest crest). 

Therefore, by performing full long-term analysis, the largest crest for certain return period is 

determined. The full long-term analysis CDF of 3-hour crest is expressed by equation 3.36. In 

this case, the integration of equation 3.36 is performed numerically where the discretization is 

introduced in the integration process. Therefore, equation 3.36 can be rewritten as: 

 �%&'(�) = « « ��#ú|$8,9:(�|(,, ;<)�������������XûJ�{�{D�Y §f,{�f>z{fJ�
7$8 ((,)79:|$8(;<|(,)���������������Ñ��f�{fJ� f� )*��§ lm)*lm

∆(,∆;< 
(9.4) 

In this case, ∆(, and ∆;< are assumed constant. However, since the 3-hour wave crest CDF 

increases significantly, using constant ∆(, and ∆;< could lead to numerical error. Therefore a 

slight modification is made into equation 9.4 for numerical purposes. Instead of using PDF, the 

marginal distribution of Hs and the conditional distribution of Tp are expressed by CDF. 

Therefore, equation 9.4 can be rewritten as: 

 �%&'(�) = « « ��#ú|$8,9:(�|(,, ;<)�������������XûJ�{�{D�Y §f,{�f>z{fJ�
�)*((,)�l<|)*(;<|(,)���������������Ñ��f�{fJ� f� )*��§ lm)*lm

 
(9.5) 

In this case, the usage of constant ∆(, and ∆;< can be neglected then it is assumed that the 

numerical integration gives result with better accuracy. In addition, theoretically the total 

sumation of �$8((,)�9:|$8(;<|(,) is equal to one. However, due to numerical limitation, the total 

summation of �$8((,)�9:|$8(;<|(,) is not perfectly one. This could create an upper limit for the 

3-hour wave crest CDF. Because of that, the 3-hour wave crest with 100-year return period could 

not be found since its CDF magnitude could be greater than the introduced upper limit. 
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To tackle this limitation, the joint distribution is normalized. Therefore, the equation 9.5 is 

rewritten as: 

 �%&'(�) = ∑ ∑ ��#ú|$8,9:(�|(,, ;<) �)*((,) �l<|)*(;<|(,))*lm ∑ ∑ �$8((,) �9:|$8(;<|(,))*lm  (9.6) 

The Forisstall wave crest distribution, which are respectively expressed by equation 3.26, is 

intorduced as ��#ú|$8,9:(�|(,, ;<). In addition, the long-term analysis is also performed to find 

the largest wave height with 100-year return period. In this case, the Forisstall wave height 

(equation 3.25) is taken as the  short term distribution. The result of long term analysis is 

summarized in table 9.2. 

Table 9.2 Result of Long-Term Analysis 

Return Period 
Wave Height 

[m] 

Wave Crest 

[m] 

Wave Period (T) [s] 

Lower Limit Mean Upper Limit 

100-year 24.8 15.5 12.7 14.6 16.5 

The lower limit and upper limit of wave period is determined by using equation 3.49. The mean 

wave period is taken as the average between the upper and lower limit of wave period. It is 

checked that the breaking wave height limit for T=12.7s is 34m and T=16.5 is 51.3 m. Therefore, 

it is concluded that the wave does not break for combination of wave height/crest and wave 

period from table 9.2.  

Another approach to determine the wave period is by analyzing the 90% band of Tp at Hs
 with 

100-year return period. The wave period is determined as 0.9Tp. Table 9.5 shows the Hs with 

100-year return period, its 90% band of Tp and its range of wave period (T). It can be observed 

that the presented wave periods in table 9.3 are close the presented wave period in table 9.2 

though table 9.3 shows slightly larger wave period than table 9.2. As presented in section 7.3.3, 

for 5th Stokes, smaller wave period produces slightly larger wave crest which is considered as 

conservative result. Therefore, the result on table 9.2 is used for further analysis.  

Table 9.3 100-year Hs, 90% Band of Tp and Range of T 

HS [m] 13.1 m 

 Lower Limit Mean Upper Limit 

TP [s] 14.2 16.3 18.6 

T [s] 12.8 14.7 16.7 
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Figure 9.8 5th
  Stokes Model for 100-year Wave Hight and Wave Crest 

Furthermore, the 5th Stokes model is established using combination of wave period and wave 

height/crest from table 9.2. It is found that the 5th Stokes wave which uses 100-year wave height 

produces smaller wave crest than 100-year wave crest. This is illustrated by figure 9.8 by taken 

mean value as the wave period. Therefore, the 5th Stokes wave height is iterated to produce the 

100-year wave crest. Table 9.3 shows the 5th Stokes wave height to produce the same 100-year 

wave crest for each period.  

Table 9.4 5th Stokes Wave Height which Produces 100-year Wave Crest 

Wave Period [s] 12.7 14.6 16.5 

Wave Height [m] 26.2 26.7 26.8 

The responses of jack-up are analyzed when hit by the 5th Stokes wave with parameters from 

table 9.2. As explained in section 5.2.1, hydrodynamic coefficient for second order model is used 

to determine the responses of jack-up when the 5th Stokes wave is used. Table 9.8 shows the 

maximum reaction of static baseshear and overturning moment of the jack-up platform. Since 

table 9.8 shows the reaction, negative maximum occurs when the wave crest hit the jack-up. 

Table 9.5 Static Baseshear and Overturning Moment of 100-year Wave Height and Crest 

Response 
Wave Height =24.8m Wave Crest = 15.5m 

T=12.7s T=14.6s T=16.5 T=12.7s T=14.6s T=16.5 

Baseshear [kN] -7.10 -7.84 -8.72 -8.65 -9.85 -11.00 

Overturning Moment [kNm] -397.06 -388.903 -415.45 -541.75 -568.95 -602.87 
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From table 9.3, it can be observed the fitting 5th Stokes to 100-year wave crest gives greater 

magnitude than 100-year wave height. In addition, wave period equal to the upper limit (T=16.5) 

produces the most conservative result. However, it decided to use result from mean period to 

compare with the result of second order analysis in the next chapter.  

9.5. Contour Line Method 

Beside full long-term analysis of sea surface, contour line method is the other approach to 

determine the worst responses of jack-up. For ultimate limit state, Hs and Tp with 100-year return 

period is analyzed. Therefore, the contour line of Hs and Tp with return period 100 year is 

established. In section 3.3.2, it is explained that the contour line is established by transforming 

Hs and Tp to standard Gaussian variables (U1 and U2). In standard Gaussian space, the contour 

line is established by creating a circle with radius _�. For 100-year return period, _� is 

determined by equation 9.7. Figure 9.8 shows the contour line for 100-year return period in 

Gaussian space. 

 _� = v�� �1 − 3365 × 24 × 100� = 4.49 (9.7) 

 

Figure 9.9 100-Year Contour Line in Gaussian Space 
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it is transformed back. In addition, it is also presented the 100-year contour line when �� = 0 

and �� = 0.05. 

 
Figure 9.10 100-Year Contour Line with From Various d3 Coefficient 

From figure 9.9, it can be observed that using �� = 0 produces a contour line with too narrow 

head. It is considered not conservative when analyzing the worst sea state using the contour line 

with �� = 0. Similar to the discussions regarding 90% band of Tp, contour line with �� = 0.007 

is considered the most conservative contour line between the other values.  

The quality of the contour line is assessed by counting the number of points that are located 

outside the contour line. Theoretically, the number of point outside the contour line (Np,outside) can 

be determined as: 

 ×<,Jz{,f§D = ×<,{J{��  Æ}I �− 12 _��� (9.8) 

In this case, ×<,{J{�� refers to total number of data from measurement. By using equation 9.8, ×<,Jz{,f§D = 2. Observing the data in the Gaussian space and neglecting the data which has (S < j^, it is found that number of data outside the contour line is 11 which is significatnly 

greater than the theoretical result. Therefore, the quality of countour line is questionable. 
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In figure 9.10, it can be observed that points which are outside the contour line are mainly in the 

Hs range of 3-6m. In addition, these points are located at the right side curve of contour line. The 

shape of concour line for this specific location depends on the magnitude of parameter �� and �� 

in equation 9.3. Therefore, to reduce the number of outside points in these location, the 

magnitude of �� should be increased or �� should be decreased. However, this work focus in the 

extreme condition of Hs and Tp which is commonly located at the head of contour line. Since 

there are no significant difference for number of outside points at the head part of contour line, it 

is considered that the current contour line is good enough and modification of contour line is 

neglected. 

9.6. Worst Sea State 

A sea state is characterized by combination of Hs and Tp. The worst sea state is the sea state that 

produces the extreme responses of the jack up. By utilizing the contour line, the worst sea state 

can be determined. The worst sea state can be used to create a wave spectrum or to establish a 

probability model of maximum sea surface elevation. There are various considerations to 

determine the worst sea state in this study which are presented in this section. 

9.6.1. Based on the largest maximum surface elevation 

For static analysis of drag dominated structure, it is assumed that the largest responses occurs at 

the largest maximum surface elevation. Therefore, the worst sea state is determined as the sea 

state which gives the largest of largest maximum surface elevation.  

 
Figure 9.11 Determining Worst Seastate from Largest Surface Elevation  
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To find this particular sea state, all combination of Hs and Tp are utilized to establish Forisstall 

crest CDF. For particular level of CDF (in this case when CDF = 0.9), the sea state that gives the 

largest wave crest is taken as the worst sea state. This was illustrated by figure 9.11. The worst 

sea state is presented in table 9.6. 

Table 9.6 Worst Sea State Based on the Largest Surface Elevation 

Worst Seastate 
Hs [m] Tp [s] 

13 15.9 

In this sea state, it is found that the result of 100-year wave crest from full long-term analysis is 

located at CDF = 0.86. NORSOK [33] suggests that for 100-year return period, the annual 

exceedence perobability of wave crest is taken as 0.85. This is close to the full long-term result 

though the result of full long-term gives slight overestimation. Therefore, it is concluded that the 

presented result in table 9.6 is valid. 

9.6.2. Based on the responses from 5th Stokes Wave 

The analysis of worst sea state can be extended by fitting the largest wave crest/wave height on 

5th Stokes model and simulate the responses of jack-up platform. In this case, the Forisstall 

distribution of wave height/wave crest is established for several seastates and the wave 

height/crest with fractile 0.9 is taken to be fitted to 5th Stokes wave. 

 
Figure 9.12 Choosen Seastate from Contour Line 
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Simulating the responses of jack-up platform with 5th Stokes wave can not be performed for all 

seastates on the contour line since it is time consuming. Therefore, the analysis focus on several  

seastates. From previous section, it is found that the worst seastate is located around the head of 

contour line. Therefore, the analysis is concentrated on this area. It is decided that only seastates 

with Hs larger than 12 m are taken for further analysis. Figure 9.12 shows the location of the 

choosen seastates. Furthermore, table 9.7 shows the Hs and Tp for the choosen seastates  and its 

largest surface elevation, positive and negative maximum static baseshear reaction and positive 

and negative maximum overturning moment reaction. Figure 9.13 and 9.14 respectively presents 

the positive and negative static baseshear reaction and positive and negative overturning moment 

reaction from each combination of Hs and Tp which are presented in table 9.7. 

Table 9.7 Maximum Baseshear and Overturning moment of The Choosen Seastate 

No Hs [m] Tp [s] T [s] H [m] C [m] 
Fitted 

H [m] 

Baseshear [kN] Overturningmoment [kNm] 

Positive Negative Positive Negative 

Crest Height Crest Height Crest Height Crest Height 

1 12.16 18.22 16.40 22.82 13.82 24.20 4.64 4.22 -8.25 -7.31 382.72 368.32 -385.24 -322.50 

2 12.34 18.11 16.30 23.18 14.06 24.58 4.74 4.27 -8.47 -7.50 388.24 369.08 -401.85 -337.12 

3 12.53 17.96 16.17 23.54 14.32 24.95 4.82 4.32 -8.68 -7.69 392.72 370.56 -417.64 -351.72 

4 12.72 17.76 15.98 23.91 14.59 25.36 4.88 4.40 -9.26 -7.84 396.36 372.44 -483.13 -364.88 

5 12.91 17.44 15.70 24.29 14.88 25.80 4.90 4.41 -9.80 -8.00 399.01 373.92 -537.85 -379.54 

6 13.09 16.55 14.89 24.70 15.29 26.36 4.62 4.17 -9.69 -7.92 387.83 367.27 -550.12 -388.27 

7 12.90 15.42 13.88 24.43 15.32 26.25 4.04 3.61 -9.12 -7.15 363.84 340.64 -534.64 -351.44 

8 12.71 14.90 13.41 24.11 15.21 25.97 3.71 3.29 -8.74 -6.71 346.40 331.07 -521.33 -329.90 

9 12.52 14.50 13.05 23.79 15.08 25.69 3.43 3.03 -8.43 -6.41 333.55 321.52 -508.86 -315.67 

10 12.33 14.14 12.73 23.47 14.93 25.39 3.19 2.90 -7.99 -6.11 324.46 315.65 -479.26 -302.07 

11 12.14 13.83 12.45 23.14 14.78 25.06 2.95 2.75 -7.64 -5.88 313.83 309.69 -460.58 -290.98 

 
Figure 9.13 Positive and Negative Maximum Baseshear and Overturning Moment 
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The maximum value of baseshear, overturning moment and wave crest are shaded in table 9.7. 

The negative maximum baseshear and overturning moment refers to the maximum baseshear and 

overturning moment when wave crest hit the jack-up (when the wave load has the same direction 

as the wave propagation). In table 9.7, it is proven again that fitting 5th Stokes to the wave crest 

produces conservative result than fitting 5th Stokes to the wave height. It can be observed that sea 

state with Hs = 12.91 m and Tp = 17.44s, which is located slight to the right hand side of the 

highest point in contour line, gives the largest baseshear (either positive or negative base shear). 

While the possitive maximum overturning moment also occurs in this seastate, the negative 

maximum overturning moment occurs at different seastate, which is seastate with Hs = 13.09 m 

and Tp = 16.55s. This seastate is also the the highest point in the contour line. 

In the previous section, the worst sea state refers to Hs = 13.0 m and Tp = 15.9 which is located 

slightly in the left side of the highest point in contour line. This seastate is not included when 

calculating the responses of jack-up from 5th Stokes wave. However, it is found that from the 

presented 11 sea states on table 9.7, seastates with Hs = 12.9 m and Tp = 15.4s produces the 

largest wave crest which is close to the seastate from previous section. 

9.6.3. Based on the responses from irregular sea simulation 

The 5th Stokes is only useful when determining the static response of structure. Therefore, to 

account the dynamic behaviour of the structure when determining the worst seastate along the 

contour line, the  responses of the jack-up are found by simulating an irregular sea. The irregular 

sea surface is determined from a wave spectrum. To create a wave spectrum, Hs and Tp from 

each seastates is utilized. In this case, 100 simulations of irregular sea are performed for each 

seastate. The largest responses from each simlation are gathered and sorted to create an empirical 

CDF of responses. Furthermore, the comparisson is performed at the empirical CDF=0.9 to 

determine the worst sea state. 

Simulating 100 3-hour second order irregular sea for each seastate is prohibitive due to 

computational time. Therefore, 100 20-minute first order irregular sea are established for each 

seastae. The equidistance frequency with random amplitude is used to determine the harmonic 

component while the Wheeler stretching is utilized to establish the wave particle kinematics. In 

this case, as explained in section 5.2.1, the hydrodynamic coefficient which refers to first order 

model hydrodynamic coefficient is used. To avoid the transient effect, the first five minutes of 
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response time series is neglected. To recover maintain the duration of simulation, additional 5 

minutes is included in simulation which makes total duration of simulation equal to 25 minutes. 

The repetition of sea surface occurs at 20 minute however this does not affect the analysis of 

responses. In addition, the choosen seastates are the seastates which are presented in table 9.7. 

Table 9.8 presents the the magnitude of positive and negative maximum of baseshear and 

overturning moment at fractile 90% while figure 9.14 illustrates the result in table 9.8. 

Table 9.8 Maximum Baseshear and Overturning Moment at 90% Fractile 

No Hs [m] Tp [s] 

 90%-Baseshear [kN] 90%-Overturningmoment [kNm] 

Positive Negative Positive Negative 

Static Dynamic Static Dynamic Static Dynamic Static Dynamic 

1 12.16 18.22 4.84 5.18 -5.60 -6.51 426.66 569.50 -221.90 -391.55 

2 12.34 18.11 5.18 5.48 -6.07 -6.74 433.46 598.47 -239.87 -449.36 

3 12.53 17.96 5.02 5.37 -6.18 -6.74 437.84 606.71 -253.46 -423.90 

4 12.72 17.76 5.31 5.74 -6.18 -7.31 437.96 612.36 -263.80 -475.39 

5 12.91 17.44 5.23 5.40 -5.71 -7.03 438.49 635.18 -255.02 -480.30 

6 13.09 16.55 5.56 6.00 -6.44 -7.29 467.07 661.63 -279.74 -490.94 

7 12.90 15.42 4.45 5.67 -5.33 -6.95 417.55 655.69 -210.06 -480.10 

8 12.71 14.90 4.81 5.98 -5.41 -6.38 437.65 722.32 -228.44 -460.39 

9 12.52 14.50 4.60 5.57 -4.85 -6.13 452.45 695.80 -194.54 -450.42 

10 12.33 14.14 3.98 5.05 -4.40 -5.80 403.33 706.39 -189.70 -445.24 

11 12.14 13.83 3.71 4.80 -4.27 -6.08 386.06 688.85 -190.37 -465.81 

 

 

Figure 9.14 Maximum Baseshear and Overturning Moment at 90% Fractile 
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In table 9.8, it seems that seastate number  6, where Hs = 13.09m and Tp = 16.55s mainly 

produces the largest maximum response. For maximum negative dynamic baseshear, seastate 

number 4 gives the largest value though the different between its value and seastate number 6 

result is small. In addition, seastate number 8 produces the largest maximum positive dynamic  

overturning moment. 

The positive baseshear and overturning moment mainly occurs when the jack-up hit by the wave 

trough. In this case, the Wheeler stretching overestimates the load on the jack-up since it set the 

kinematics on the surface (z = 2) equal to the kinematics on mean surface (z = 0). Therefore, 

instead considering the maximum positive result, it is more convincing to determine the worst 

seastate based on maximum negative baseshear and overturning moment. As a consequence, 

seastate with Hs = 13.09m and Tp = 16.55s is defined as the worst seastate. 

9.6.4. Comparisson of result from three methods 

The results of worst seastate from 3 presented method are summarized in table 9.9. From all 

methods, it seems the Hs is located around 13m while the spectral peak period varies. Due to 

time limitation, seastate with Hs =13m and Tp =15.9s is not included into the analysis of 5th 

Stokes and irregular sea. However, the spectral peak periods from 5th Stokes and irregular sea 

consideration are mainly close to the spectral peak period from surface elevation consideration. It 

is assumed that when seastate with Hs =13m and Tp =15.9s is included in the analysis of 5th 

Stokes and irregular sea, it will produce the maximum responses with comparable magnitude as 

the worst reponses from 5th Stokes and irregular sea consideration. Therefore, it is concluded that 

the worst sea state along the 100-year contour line is the seastate with Hs =13m and Tp =15.9s. 

This seastate will be utilized for further analysis.    

Table 9.9 Summary of The Worst Seastate 

Based on 
Seastate 

Hs [m] Tp [s] 
Surface Elevation 13 15.9 

5th Stokes Wave 
Baseshear 12.9 17.4 
Overturning Moment 13.1 16.5 

Irregular Sea 
Baseshear 13.1 16.5 
Overturning Moment 13.1 16.5 
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10. Second Order Wave Effect on Jack-Up Platfrom 

To analyze the responses of jack-up platform, several simulations of second order model are 

performed. Performing complete and continous 3-hour second order analysis is prohibitve since 

it needs at least 10,8002 harmonic component for ∆� = 0.5S. Therefore, the partition of time 

series method is utilized where a 3-hour second order sea is divided into 9 different 20-minute 

simulations. It was shown in chapter 7 that single 20-minute simulation for first order wave 

requires at least around 220 harmonic components for equidistance frequency interval method 

with introducing a cut-off frequency. For second order process, 2202 harmonic component is 

utilized. In addition, to avoid the transient effect of the jack-up, the first five minutes in the time 

series is neglected. To recover the five minutes lost, additional five minutes is introduced. The 

repetition of wave surface will occur after 20-minute but it is acceptable since the first five 

minutes in the time series are neglected.  

To save memory and computational time, the x-interval is set as 5m and the calculation point is 

concentrated close to the sea surface (the accuracy and the computational time is presented in 

section 8.1). The second order model hydrodynamic coefficient, which is described in section 

5.2.1 is used. In this case, the worst sea state which is determined in chapter 11 is used. The Hs is 

set equal to 13m while Tp =15.9s. Various comparissons are performed and presented here. 

10.1. 20-Minute Simulation 

To establish 30 3-hour of second order simulation with partition of time series method, at least 

270 20-minute of second order simulations should be performed. In this work, it is decided to 

perform 369 20-minute simulations. It is observed that linear extrapolation method takes around 

2.5 hours to perform single 20-minute simulation (presented in section 8.1.2). Therefore, due to 

time and CPU memory limitations, the 369 simulations are distributed equally into 6 computers 

which are operated simultaneously. Figure 10.1 shows the empirical CDF of maximum negative 

baseshear for 20-minutes simulation. From figure 10.1, it is observed that there are repetitions in 

the maximum baseshear. When the data is checked, it is found that there are several 20-minutes 

simulation that occurs more than once. However, these repetitions occur not on the same 

computer. Moreover, the repetitions occur not in order. For example, 20-minute case 4 in the 

first computer is similar to 20-minute case 39 in the second computer. Therefore, it is concluded 
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that the repetition is random. It is suspected that the method to generate random number in 

MATLAB is the source of repetition in the simulations where running several simulations on 6 

computers simultaneously could creates similar data between the computers.  

 

Figure 10.1 Empirical CDF of Maximum Second Order Baseshear 

To avoid the repetitions, the data is filtered. The unique maximum negative baseshears (which 

come from unique surface and kinematics time series) are gathered and sorted. It is found that 

from the performed 369 20-minutes simulation, there are 124 unique maximum negative 

baseshears. Therefore, the empirical CDF is established based on these 124 values. Figure 10.2 

shows the empirical CDF of maximum negative second order baseshear and overturning moment 

from linear extrapolation method after neglecting the repetitions. 

  

Figure 10.2 Empirical CDF of Maximum Second Order Baseshear and Overturning Moment 
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In figure 10.3, the empirical CDF of maximum overturning moment seems to have two gradients 

when it is plotted into Gumbel paper. For static overturning moment, it seems the sample is 

mainly located around 1.8 kNm and and create a first gradient of the CDF. The gradient of CDF 

is changed when the overturning moment is larger than 2 kNm for static analysis and 2.9kNm for 

dynamic analysis. The shift of gradient on the empirical CDF indicating a bad behaving system. 

One possible reason for this jump is because the kinematics in 3 legs of jack-up occurs at the 

same phase which creates a larger overturning moment. The change of gradient does not occurs 

at the empirical CDF of baseshear. 

The EDAF is determined by calculating the ratio between dynamic and static result for CDF = 

0.9. It is found that for baseshear, the EDAF is equal to 1.25 while EDAF is 1.94 for overturning 

moment. The analysis is continued by comparing the CDF of baseshear and overturning moment 

from first order and second order sea and utilizing various stretching method. Utilizing various 

stretching methods, the computational time of single 20-minutes simulation of first order sea is 

around 20 seconds which is greatly faster than second order sea simulation. In addition, 

performing Wheeler stretching into single 20-minutes second order sea only requires 400 

seconds approximately. The empirical CDF of largest baseshear and overturning moment for 20-

minutes simulation and various model are presented in figure 10.3.  

Six methods are compared in figure 10.3. First order refers to first order sea and second order 

refers to second order sea. Linear extrapolation, constant and Wheeler indicate the performed 

stretching method to calculate the kinematics along the z-coordinate. In section 5.2.1, it is 

explained about the hydrodynamic coefficients which are used for first order and second order 

sea. However, for single cylinder case, which is explained in section 7.4, using the 

hydrodynamic coefficient of first order model (coef.1) on kinematics from first order linear 

extrapolation greatly overestimates the wave load and responses. As explained in section 5.2.1, 

the coef. 1 is a modification of drag and added mass coefficient to produce load from first order 

sea with comparable magnitude as the load form second order sea. This modification is mainly 

used for first order Wheeler stretching. That is why using coef. 1 on first order linear 

extrapolation (or on constant stretching) will produces conservative result. Therefore, it is 

decided to test the hydrodynamic coefficient of second order model (coef.2) to the first order 

linear extrapolation. 
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Figure 10.3 Distribution of Maximum Negative Baseshear and Overturing Moment
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In figure 10.4, similar to single cylinder case (section 7.4), the Wheeler stretching on second 

order sea produces the lowest baseshear and overturning moment while the linear extrapolation 

on first order sea with coef.1 greatly overestimates the response. The constant stretcing on first 

order sea also overestimates the response. It seems using coef.2 to first order linear extrapolation 

still produces greater result than linear extrapolation on second order sea. Moreover, there is a 

good agreement between first order Wheeler and second order linear extrapolation which is also 

experienced for single cylinder case in section 7.4 though first order Wheeler stretching gives 

slighly smaller value for cylinder case. This indicates that instead of using linear extrapolation on 

second order sea which is time onsuming, the irregular sea can be simulated by performing 

Wheeler stretching on first order sea with modified hydrodynamic coefficient. However, 

Wheeler streching gives great overestimation of wave load at the wave trough. 

10.2. 3-Hour Simulation 

The largest responses of each 9 20-minute simulations are gathered and sorted to produces an 

empirical CDF of 3-hour simulation. In addition, the empirical CDF is fitted into Gumbel 

distribution. The magnitude at 90% fractile is presented in table 10.1. In addition, the EDAF, 

which is taken as ratio between dynamic and static responses at 0.9 freactile, is also presented.  

Table 10.1 Maximum Baseshear and Overturning Moment at 0.9 Fractile 

Method 

Negative 

Baseshear [kN] Overturning Moment [kNm] 

Static Dynamic EDAF Static Dynamic EDAF 

First Order Linear Extrapolation (Coeff.1) 14.2 17.5 1.2 793.2 1592.5 2.0 

First Order Linear Extrapolation (Coeff.2) 10.9 12.9 1.2 672.0 945.8 1.4 

First Order Constant 12.1 14.3 1.2 763.0 1260.4 1.7 

First Order Wheeler 9.2 10.4 1.1 522.0 790.7 1.5 

Second Order Linear Extrapolation 8.3 10.0 1.2 471.3 817.8 1.7 

Second Order Wheeler 4.5 6.7 1.5 310.6 418.6 1.3 

In addition, table 10.2 shows the 5th Stokes static responses for 100-year crest with middle wave 

period (T=14.6s) which is presented in section 9.4. 

Table 10.2 5
th 

Stokes Static Responses for 100-year Return Period 

5
th 

Stokes Static Responses 
Wave Crest = 15.5m 

T=14.6s 

Baseshear [kN] 9.85 

Overturning Moment [kNm] 568.95 
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From single cylinder case, the linear extrapolation on second order wave produces comparable 3-

hour static baseshear to the result from 5th Stokes. Therefore, for jack-up cases, the static 

baseshear of 5th Stokes wave utilizing longterm analysis of wave crest is compared to the 3-hour 

static baseshear from linear extrapolation on second order wave. It should be noted that the 

comparisson between 5th Stokes and irregular wave for cylinder case is based on the same wave 

occurence (the 5th Stokes is fitted to produce the same wave crest as irreular wave simulation). 

However, for jack-up case, the wave profile for 5th Stokes is different than the second order wave 

profile since the 5th Stokes wave is based on wave crest from longterm analysis. 

By comparing result from table 10.1 and 10.2, the ratio of static baseshear between 5th Stokes 

and second order linear extrapolation is around 1.18. This implies that the Stokes wave produces 

conservative result. However, the empirical CDF of 3-hour jack-up responses is merely based on 

13 data. As a consequence, the epistemic uncertainty on the CDF shape is great. The epistemic 

uncertainty can be illustrated by performing bootstrapping to the fitted CDF. Left figure in figure 

10.4 shows the fitted CDF (Gumbell distribution) of baseshear and its bootstrapping limit for 

second order linear extrapolation case. 

 

Figure 10.4 Maximum Static Baseshear Empirical CDF for Second Order Linear Ext. 

(Left: 3-hour Static Baseshear;  Right: 20-Minute Static Baseshear)  
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minute simulation, 124 data exists. Therefore, the Gumbel distribution is fitted into 20-minutes 

static baseshear data and presented as right side figure in figure 10.4. By assuming that the 

maximum of static baseshear is statistical independent and identical distributed, the Gumbel 

distribution of 3-hour static baseshear can be established by: 

 ��#$(") = 1��� !(")4H (10.1) 

Therefore, the new Gumbel distribution and its bootstapping limit is presented in figure 10.5. 

Table 10.3 shows the 90% fractile value of 3-hour static responses from second order linear 

extrapolation including its lower and upper bootstraping limit. From table 10.3, the 90% fractile 

of 3-hour static baseshear is 7.9 kN which is smaller than previous result. However, the range of 

deviation at 90% level is 1.7kN indicating the new baseshear CDF has better quality than the 

previous baseshear CDF. Ratio between 5th Stokes and 90% fractile of 3-hour static baseshear is 

1.2. Utilizing the upper limit of bootstaping, the ratio between 5th Stokes and 3-hour static 

baseshear is 1.1 which is close to the ratio from sinle cylinder case (1.08). 

Table 10.3 3-Hour StaticResponse from Second Order Linear Extrapolation 

Static Responses 90% 
Value 

Bootstrapping Limit 
Lower  Upper  

Baseshear [kN] 7.9 7.2 8.9 
Overturning Moment [kNm] 404.2 367.9 462.48 

  

Figure 10.5 3-Hour Maximum Static Baseshear Empirical CDF 

(Using linear extrapolation on second order wave) 
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For static overturning moment, the ratio between 5th 
 Stokes and 90% value of second order linear 

extrapolation result is 1.4. In addition, the ratio between 5th Stokes and upper bootstrapping limit 

of 90% value is 1.2. The analysis is continued by observing the CDF of wave crest (maximum 

surface elevation). In this case, the largest wave crest at x=0 is observed from 124 20-minute 

simulations. Left side figure in figure 10.6 shows the CDF of largest wave crest for 20-minute 

simulation. Furthermore, the CDF of largest wave crest for 3-hour simulation is established from 

CDF of largest wave crest for 20-minute simulation by utilizing equation 10.1. Right side figure 

in figure 10.6 shows the CDF of largest wave crest for 3-hour simulation. 

 

Figure 10.6 Distribution of Largest Wave Crest 

(Left: 20-Minutes Largest Crest; Right: 3-Hour Largest Crest) 

As explained in section 3.2.3, Gumbell distribution is an asymptotic extreme distribution which 

is a good distribution when N→∞. Therefore, it can be observed in figure 10.6 that the fitted 

Gumbell distribution gives larger wave crest than Forisstall crest distribution. In addition, for 

high fractile, the data is closer to Forisstall distribution than the fitted Gumbell. However, the 

difference between Gumbell and Forisstall crest at 90% percentile can be tolerated. The 90% 

value of wave crest from Gumbell and Forisstall including the bootstraping limit of Gumbell 

distribution is presented in table 10.3.  

Table 10.4 90% Wave Crest 
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However, for jack-up, the largest baseshear and overturning moment does not only depend on the 

crest magnitude. In addtion, the crest tends to be located close to the leg location than at x=0 

when largest baseshear and overturning moment occurs. Therefore, the surface and kinematic 

profile when the largest baseshear and overturning moment occur are observed. 

10.3. Surface and Wave Kinematic Profile at Jack-Up leg 

The observation is focused on horizontal particle velocity since it greatly affects the wave load 

for jack-up leg. In addition, the observation is concentrated to second order linear extrapolation 

method. There is no data that perfectly coincides with 90% responses value which are presented 

in table 10.3. Therefore, the the observation is performed with data which has the closest 

responses to the result in table 10.3. The observed baseshear and overturning moment is smaller 

than result in table 10.3. In addition, the kinematics and surface profile when the largest observed 

responses occurs from second order model is also observed. Figure 10.7 shows the illustration of 

surface elevation profile from event close to 90% static baseshear (left figure) and overturning 

moment (middle left figure). The middle right figure shows the largest observed responses from 

second order model while the right figure shows the 5th Stokes wave profile which gives the 

largest static baseshear and overturning moment. In figure 10.7, the surface elevation it coarser 

than the real data. The exact surface profile can be found in appendix 29. 

 

Figure 10.7 Surface Elevation Profile at Largest Responses 
(Left: 90% Baseshear; Middle-Left: 90% Overturning Moment; Midle-Right: Largest Observed Response;Right: 5

th
 Stokes) 

From figure 10.7, it can be observed that when the maximum static baseshear and overturning 

moment occurs, the 5th Stokes wave crest is located at the location of the double leg of the jack-
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up. The same surface elevation profile is observed for the 90% overturning moment from second 

order sea. However, for 90% baseshear, it seems that all jack-up legs are located at two adjacent 

wave crests. In addition, the magnitude of wave crest for the 90% baseshear is smaller than the 

100-year wave crest and the magnitude of wave crest for the largest overturning moment. Table 

10.5 shows the magnitude of wave crest from the four observed cases. 

 Table 10.5 Wave Crests from The Four Observed Cases 

5th Stokes 90% Baseshear  90% Overturning Moment Largest Response 
15.5m 13.4m 15.0m 17.3m 

In table 10.4, the wave crest of 90% baseshear is smaller than 5th Stokes wave crest. This is 

because the observed case that represents 90% baseshear does not really produces the 90% value 

of static baseshear. However, this indicates that due to the spacial effect, the largest response in 

irregular seas could be smaller than 100-year wave crest. Therefore, it is concluded that for 

irregular  wave, the largest value could come from two adjacent waves with magnitude of crest 

smaller than 100-year wave crest. 

Figure 10.8 shows the kinematic profile along z-coordinate at the double and single leg of jack-

up when the largest baseshear and the largest overturning moment occurs, both from second 

order wave and 5th Stokes wave. In addition, the largest observed response from second order 

model is also presented. 

 
Figure 10.8 Kinematic Profile along z-coordinate at Jack-Up Leg 
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Based on the kinematic profile at figure 10.7, when the largest baseshear occurs, 5th Stokes tends 

to have larger wave crest and larger magnitude of horizontal velocity than second order wave 

model at the double leg location. However, at the single leg location, second order wave model 

has larger wave crest and larger magnitude of horizontal velocity than 5th Stokes. Since the drag 

load depends on square of horizontal velocity, it seems the difference on double leg location is 

the source of overestimation on 5th Stokes baseshear. The difference between 5th Stokes and 

second order model in each leg is measured by the ratio of drag load normalized by leg diameter.  

 M��¢£ £7 ×£Ø3�6¢�Æ� �Ø�= E£�� = �∑ �� s �
 [�|[�| ��W ���' X{JÇD,�∑ �� s �
 [�|[�| ��W �XD
J�§ I�§D�
 (10.2) 

At the double leg location, the ratio of normalized drag load is around 1.5 while the ratio in the 

single leg location is around 0.6. This means, Stokes 5th produces 50% larger drag load then 

second order model at double leg location while it produces 40% smaller drag load at single leg 

location. In total, the ratio of normalized drag load between 5th Stokes and second order model is 

1.3 which explain the ratio of static baseshear in previous section. 

For overturning moment, it seems that the largest values is more affected by the horizontal 

velocity around the surface. In figure 10.8, large horizontal velocity are located around sea 

surface at double leg location for 90% overturning moment configuration which produces larger 

overturning moment that 90% baseshear configuration. The ratio of normalized overturning 

moment in double leg is 1.3 while the ratio is 7.9 in single leg. This means, 5th Stokes gives 30% 

larger overturning moment from drag load than second order model in double leg location. In 

addition, the overturning moment in double leg location seems dominating the total overturning 

moment since the ratio of total normalized overturning moment is 1.4 though 5th Stokes wave 

produces almost 8 times larger overturning moment than second order model. 

10.4. EDAF for Jack-Up 

Table 10.1 presents the EDAF for every observed case. However, it is explained before that the 

EDAF is merely based on 13 data. Thefore, as the new EDAF is established by fitting a Gumbel 

distribution to 20-minutes responses and raised it to the power 9. Table 10.4 shows the new 90% 

fractile value and its EDAF. 
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Table 10.6 Maximum Baseshear and Overturning Moment at 0.9 Fractile 

Method 

Negative 

Baseshear [kN] Overturning Moment [kNm] 

Static Dynamic EDAF Static Dynamic EDAF 

First Order Linear Extrapolation (Coeff.1) 13.0 16.3 1.3 918.6 1516.2 1.7 

First Order Linear Extrapolation (Coeff.2) 10.1 12.3 1.2 592.1 1030.4 1.7 

First Order Constant 11.2 13.7 1.2 699.6 1197.5 1.7 

First Order Wheeler 8.5 10.0 1.2 421.3 747.5 1.8 

Second Order Linear Extrapolation 7.9 9.7 1.2 404.3 768.8 1.9 

Second Order Wheeler 5.4 6.6 1.2 266.4 440.4 1.7 

In table 10.1, it seems by including the dynamic behaviour of the structure, the baseshear 

increases around 20-30% while overturning moment increases around 70-90%. This indicates 

that the dynamic behaviour is crucial when analyzing overturning moment reaction. In addition, 

performing Wheeler stretching on first order sea by utilizing first order hydrodynamic coefficient 

produces comparable result to second order linear extrapolation. Since it spends only 0.1% 

second order linear extrapolation computational time, it is recommended to use first order 

Wheeler for analyzing the ultimate limit state of jack-up on irregular seas. 

10.5. Summary 

Similar to cylinder case, performing Wheeler stretching on second order sea significantly 

underestimates the wave load on jack-up. However, performing Wheeler stretching on first order 

sea and using the modified hydrodynamic coefficients (first order hydrodynamic coefficients) 

produces comparable result to linear extrapolation on second order sea.  

By utilizing linear extrapolation on second order sea, the responses (reaction baseshear and 

overturning moment) from second order iregular sea is smaller than responses from 5th Stokes 

wave. This indicates that utilizing 5th Stokes is a conservative approach to measure the responses 

of jack-up. Moreover, responses from iregular seas is a random process which requires big 

number of data to establish result with high confidence level. In this work, the 3-hour extreme 

distribution is predicted from 20-minute extreme distribution. However, it is more reliable to 

established 3-hour distribution directly from 3-hour simulation. 

The extreme baseshear is possible coming from wave with smaller crest that 100-year wave 

crest. In this case, the extreme baseshear is greatly affected by the wave length. However, the 

extreme overturning moment is greatly affected by the kinematic profile around the surface. 
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11. Conclusion and Recomendation for Future Work 

11.1. Conclusion 

This thesis work deal with the time domain simulation of structure responses on irregular seas. 

The main focuses are the effects of second order irregular sea on jack-up paltform and the 

alternative methods to reduce the computational time. In the begining, the verification of second 

order wave model is performed by comparing the distribution of second order crest with Forisstal 

crest distribution. The analysis in continued by observing the effect of second order on single 

vertical cylinder with diameter 1m before tested on jack-up platform. 

The first approach to reduce computational time is by reducing the number of harmonic 

component. Dividing 3-hour analysis into 9 20-minute simulations could significantly decreases 

the number of component from 10,800 components to 1,200 components (when time interval is 

0.5 seconds) since smaller duration of simulation has greater frequency interval. In addition, a 

cut-off frequency is utilized to maintain the energy on the wave spectrum when the second order 

correction is introduced. When introducing the cut-off frequency, the required harmonic 

component is reduced from 1,200 to around 220 components (depend on the significant wave 

height) which gives additional cut to the computational time. In addition, cut-off frequency 

changes the surface elevation process from broadbanded process to narrowbanded process. All in 

all, the crest distribution from second order surface model shows a good agreement with 

Forisstall distribution which verifies the quality of second order surface model. 

Various extrapolation methods to define the kinematics along vertical coordinated are observed. 

Utilizing Wheeler stretching on second order wave gives comparable surface horizontal velocity 

to surface horizontal velocity of linear extrapolation on second order wave. However, Wheeler 

stretching on second order wave underestimates the horizontal velocity below the surface. To 

verify the wave particle kineatics, the horizontal particle velocity from linear extrapolation on 

second order wave model is compared to horizontal particle velocity from 5th Stokes wave. In 

this case, the second order wave model tends to produces larger surface horizontal velocity than 

5th Stokes wave though the second order model produces smaller horizontal velocity than 5th 

Stokes below mean surface.  
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In single vertical cylinder tests, the Wheeler stretching on second order wave greatly 

underestimates the static response of the cylinder. On the other hand, linear extrapolation method 

on second order wave produces comparable responses of the structure to the responses from 5th 

Stokes wave. In addition, performing Wheeler stretching on first order wave (Gaussian sea) with 

utilizing the modified hydrodynamic coefficients produces comparable static baseshear to the 

static baseshear from 5th Stokes wave though it underestimates the static overturning moment. 

For jack-up case, various altervatives to reduce computational time in grid system are observed. 

It is found that utilizing grid system with x-interval = 5m and gradually decrease z-interval 

produces the smallest computational time with accepatable deviation of static and dynamic 

response. By applying the second order kinematics only up to 50m (where the depth is 100m) 

can decrease the computational time up to 20% with acceptable deviation of responses. In this 

case, the cut on computational depends on the distribution of calculation points along the z-

coordinate. In addition, only applying the second order kinematics at location close to water 

surface increases the magnitude of static and dynamic responses. 

It is found that the maximum baseshear and response do not always occur at the largest surface 

elevation. Therefore, the assumption which is made in spool-to-extreme and linear-to-extreme 

method is not fully correct. As a consequnce, the deviation of extreme responses may be great 

and the actual extreme response on the time series may be not observed. However, the analysis 

for spool-to-extreme and linear-to-extreme method is only based on one simulation. Since the 

occurence of largest response is a random process, analysis based on statistical comparisson 

should be performed. 

For jack-up case, the responses from irregular seas is compared with the responses from 

longterm analysis of the wave. In this case, the 5th Stokes wave is fitted to wave with 100-year 

return period. Similar to the result from single cylinder case, in jack-up case, Wheeler stretching 

on second order wave greatly underestimates the static responses while linear extrapolation on 

second order wave gives comparable static responses to the static responses from 5th Stokes 

wave. In addition, in irregular seas, the largest static baseshear could occurs when the jack-up hit 

by the wave with smaller crest than 100-year wave crest but comparable length to the distance 

between jack-up leg. On the other hand, the largest static overturning moment tends to occurs 

from wave with crest close to 100-year wave crest since the static overturning moment is greatly 
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affected by length of moment arm and the kinematic profile along the surface. Furthermore, from 

the observed jack-up, dynamic analysis produces 20% larger baseshear and 90% larger 

overturning moment than static analysis. This indicates that performing quasistatic analysis 

without including the EDAF could greatly underestimates the baseshear and overturning moment 

of jack-up in irregular seas. 

11.2. Recommendations for Future Work 

In this work, to analyze the jack-up responses, the 3-hour simulation is divided into 9 differents 

20-minute simulation to decrease the harmonic component. The analysis can be continued to 

observed the effect of utilizing equal area and peaked equal area method to the jack-up 

responses. In addition, the effect second order irregular wave on various jack-up natural periods 

should be observed. The jack-up natural period can be changed by adjusting the mass on the 

jack-up. 

It is found from this study that using small z-interval at location close to sea surface and large z-

interval around the sea bottom can decrease the computational time. Therefore, another analysis 

can be performed by only using small x-interval around the jack-up leg. In addition, several 3-

hour simulation should be performed to verify the quality of spool-to-extreme and linear-to-

extreme method since the verificantion is based only on one simulation in this study. 

Due to time limitation and repetition in data, only 13 3-hour simulation exists. Therefore, the 

distribution of 3-hour extreme response is predicted by raising the distribution of 20-minute 

extreme response to the power of 9. The distribution of 20-minute extreme response is 

determined by fit a Gumbell distribution to the data. Since the Gumbell distribution is a 

asymptotic distribution of extreme, it overestimates the extreme response at high percentile. 

Therefore, raising the distribution of 20-minute extreme response to the power of 9 could 

increase the overestimation in the Gumbell. Therefore, for future  work, it is important to check 

distribution of 3-hour extreme response by directly fitting the Gumbell distribution to adequate 

number of 3-hour simulation. In addition, it is also interesting to check the effect of second order 

irregular wave on jack-up for short crest sea. A validation of the approach to simulate second 

order irregular wave with small number of harmonic component which is presented in section 

4.4 should be performed.  
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APPENDIX 1-MATLAB Script for Computational Time Comparisson 
close all  
clearvars  
clc  
  
A=rand(5000);  
%matlabpool('open',4)  
  
%% SIMPLE FOR-LOOP 
tic  
for  i=1:5000  
    for  j=1:5000  
        B1(i,j)=A(i,j)^3;  
    end  
end  
dur1=toc;  
  
%% FOR-LOOP WITH PREALLOCATING MEMORY 
tic  
B2=zeros(5000);  
for  i=1:5000  
    for  j=1:5000  
        B2(i,j)=A(i,j)^3;  
    end  
end  
dur2=toc;  
  
%% VECTORIZATION 
tic  
B3=A.^3;  
dur3=toc;  
  
%% PARALLEL FOR LOOP 
tic  
parfor  i=1:5000  
    for  j=1:5000  
        B4(i,j)=A(i,j)^3;  
    end  
end  
dur4=toc;  
  
%% PARALLEL FOR-LOOP WITH PREALLOCATING MEMORY 
tic  
B5=zeros(5000);  
parfor  i=1:5000  
    for  j=1:5000  
        B5(i,j)=A(i,j)^3;  
    end  
end  
dur5=toc;  
%matlabpool('close') 
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APPENDIX 2-Built Matlab Function 
Function()/Script.m Input – Output – Usage 

apf() amplitude, frequency, frequency limit, method (1,2,3 or 4) 

amplitude, frequency, phase 

Determine the amplitude, frequency and phase of harmonic component from choosen 

method: 1. Random phase; 2. Random amplitude; 3. Random frequency; 4. All random 

BOOTSTRAPING.m Performing bootstrapping for Rayleigh and Forristall crest distribution then taking the lower 

and upper limit. numelBOT refer to the number of repetition 

bsovtm() horizontal particle velocity, horizontal particle acceleration, z-coordinate, depth, diameter, 

condition (1 or 2) 

Baseshear, Overturning moment 

Calculating baseshear and overturning moment for a single vertical cylinder. The drag and 

added mass coefficient is determined by the condition: 1. Linear wave consideration; 2. 

Second or higher order consideration 

cdfHs() scatter data, significant wave height from data, spectral peak period from data 

c-coefficients,d-coefficients,location parameter (λ), scale parameter (α),  shape parameter 

(β),alternative 1 d-coefficient, alternative 2 d-coefficient 

Fitting Significant wave height data to 3-parameter weibull distribution (represented by λ, α 

and β). In addition, fitting a function to find relationship between mean of ln (Tp) and Hs 

(represented by c-coefficients); and between variance of ln (Tp) and Hs (represented by d-

coefficients). Another d-coefficients is presented when d3 = 0 and d3 = 0.005. In the end, th 

90% band of Tp is ploted 

constantstretch() wavenumber, wavefreqeuncy, phase, x-coordinate, time instance, velocity potential 

amplitude, horizontal particle velocity amplitude, vertical particle velocity amplitude, 

horizontal particle acceleration amplitude, vertical particle acceleration amplitude 

potential velocity, horizontal particle velocity, vertical particle velocity, horizontal particle 

acceleration, vertical particle acceleration  

Performing constant stretching to establish kinematics along z-coordinate 

contourg() set of significnat wave height, set of spectral peak period, annual probability,c-coefficients, 

d-coefficients, location parameter (λ), scale parameter (α),  shape parameter (β), 

Theoreticel probability of point outside the contour line, number of actual data outside the 

contour line, set of seastate along the contour line 

Creating the environmental contour line based on the desired annual probability then 

counting the point outside the contour line 

EAP() type of spectrum (‘PM’ or ‘JONSWAP’), significant wave height, spectral peak period, option 

for plot (‘yes’ or ‘no’), number of harmonic component, minimum frequency, maximum 

frequency, gamma (only used for JONSWAP spectrum) 

amplitude, frequency, frequency limit 

Performing equal area method to determine the amplitude and frequency from the chosen 

spectrum (PM or JONSWAP) 

EAPP() type of spectrum (‘PM’ or ‘JONSWAP’), significant wave height, spectral peak period, option 

for plot (‘yes’ or ‘no’), natural frequency of structure, number of harmonic component, 

density of peaked component, minimum frequency, maximum frequency, gamma (only 

used for JONSWAP spectrum) 

amplitude, frequency, frequency limit 

Performing peaked equal area method for given structure natural frequency to determine 

the amplitude and frequency from the chosen spectrum (PM or JONSWAP) 

FFT() type of spectrum (‘PM’ or ‘JONSWAP’), significant wave height, spectral peak period, option 

for plot (‘yes’ or ‘no’), frequency interval, minimum frequency, maximum frequency, gamma 

(only used for JONSWAP spectrum) 
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Amplitude, frequency, frequency limit 

Performing peaked equidistance frequency method (inverse discrete Fourier transform) to 

determine the amplitude and frequency from the chosen spectrum (PM or JONSWAP) 

fiitingstokes() wave height, wave crest, wave period, water depth 

wave height 

Adjusting the 5
th

 Stokes wave weight to produce the desired wave crest for certain wave 

period and water depth using Fenton’s software 

gridwave() name of girdwave file, x-coordinate, y-coordinate, z-coordinate, time instance, surface 

elevation, x-horizontal particle velocity, y-horizontal particle velocity, vertical particle 

velocity, x-horizontal particle acceleration, y-horizontal particle acceleration, vertical 

particle acceleration 

gridwave file  

Creating a gridwave file for further analysis is USFOS 

HC3H() annual probability, water depth, c-coefficients, d-coefficients,location parameter (λ), scale 

parameter (α),  shape parameter (β) 

number of iteration for wave height, number of iteration for wave crest, wave height, CDF 

for wave height result, CDF for wave crest result, summation of joint probability PDF 

Determining the 3-hour extreme wave crest and wave height from full long-term analysis 

Hcin() annual probability, water depth, c-coefficients, d-coefficients,location parameter (λ), scale 

parameter (α),  shape parameter (β) 

number of iteration for wave height, number of iteration for wave crest, wave height, CDF 

for wave height result, CDF for wave crest result, mean of zero-crossing frequency, 

summation of joint probability PDF, summation of joint probability PDF x zero-crossing 

frequency 

Determining the individual wave crest and wave height from full long-term analysis 

HsTp() name of measurement data 

significant wave height, spectral peak period without randomization, spectral peak period 

with randomization 

Extracting the significant wave and spectral peak period (with and without randomization) 

from WAM10 data  

JONSWAP() significant wave height, spectral peak period, minimum frequency, maximum frequency, 

frequency interval, gamma parameter 

spectrum for given wave frequency, wave frequency, 0
th

 spectral moment, 1
st

 spectral 

moment,2
nd

 spectral moment, 3
rd

 spectral moment, 4
th

 spectral moment  

Establishing JONSWAP spectrum and its n-th spectral moment 

kinematictest.m Extracting the horizontal velocity from Fenton’s software result and compare it with 

irregular sea model. In addition, the baseshear and overturning moment are determined 

linkinematic() amplitude, frequency, phase, surface elevation, x-coordinate, time instance, number of z-

coordinate (considered to be revised), depth, method (1,2 or 3) 

horizontal particle velocity, vertical particle velocity, horiznontal particle acceleration, 

vertical particle acceleration, z-coordinate, potential velocity 

Determining the kinematics of first order sea based on the choosen method: 1.Wheeler 

stretching; 2. Linear extrapolation; 3. Constant stretching 

linsurface() amplitude, frequency, phase, x-coordinate, time instance, water depth 

surface elevation 

Establishing the first order surface elevation 

metocean.m Main script for performing metocean analysis 

perex() water depth, seastate along the contour line, wave crest from long-term analysis, wave 

height from long-term ananlysis 

percentile of long-term analysis on the worst seastate CDF, worst seastate based on wave 
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height, worst seastate based on wave crest, 90% wave crest on the worst sea state, 90% 

wave height on the worst sea state 

Determining the worst seastate along the contour line including the 90% value on the worst 

sea state 

plotfenton.m Plot the surface elevation and horizontal particle velocity of Fenton’s software 

PM() significant wave height, spectral peak period, minimum frequency, maximum frequency, 

frequency interval 

spectrum for given wave frequency, wave frequency, 0
th

 spectral moment, 1
st

 spectral 

moment,2
nd

 spectral moment, 3
rd

 spectral moment, 4
th

 spectral moment 

Establishing PM spectrum and its n-th spectral moment 

qprob() annual probability, c-coefficients, d-coefficients,  

significant wave height for desired annual probability, mean spectral peak period of 

significant wave height for desired annual probability, 5% spectral peak period of significant 

wave height for desired annual probability, 95% spectral peak period of significant wave 

height for desired annual probability 

Determining the significant wave height for the desired annual probability and its mean, 5% 

and 95% spectral peak period 

scatdiag() set of significant wave height, set of spectral peak period 

scatter diagram 

Creating a scatter diagram 

seckinematic() amplitude of first order wave, amplitude of second order wave, wave frequency, wave 

number, phase, second order surface, Dmin, Dplus, wave number of difference term, wave 

number of sum term, wave frequency of difference term, wave frequency of sum term, x-

coordinate, number of z-coordinate (considered to be revised), time instance, water depth, 

lower point of z-coordinate, method (1 or 2), spectral peak frequency, multiplication of 

wave frequency, PSImin, PSIplus, plot option (1 or 0) 

horizontal particle velocity, vertical particle velocity, horiznontal particle acceleration, 

vertical particle acceleration, z-coordinate, potential velocity 

Determining the kinematics of second order sea based on the choosen method: 1.Wheeler 

stretching; 2. Linear extrapolation 

secspect() amplitude, frequency, frequency limit, water depth 

spectrum for given wave frequency for difference term, spectrum for given wave frequency 

for sum term, 0
th

 spectral moment 

Determining the second order spectrum from second order correction term 

secstansberg() wave number, wave frequency, phase, x-coordinate, time instance, PSImin, PSIplus, 

amplitude of surface difference term, amplitude of surface sum term, amplitude of 

horizontal velocity difference term, amplitude of horizontal velocity sum term, amplitude of 

vertical velocity difference term, amplitude of vertical velocity sum term, amplitude of 

horizontal acceleration difference term, amplitude of horizontal acceleration sum term, 

amplitude of vertical acceleration difference term, amplitude of vertical acceleration sum 

term, amplitude of first order velocity potential, amplitude of first order horizontal velocity, 

amplitude of first order vertical velocity, amplitude of first order horizontal acceleration, 

amplitude of first order vertical acceleration, amplitude of horizontal velocity derivative 

term, amplitude of horizontal acceleration derivative term, amplitude of potential velocity 

difference term, amplitude of vertical velocity derivative term, amplitude of vertical 

acceleration derivative term  

second order velocity potential, second order horizontal velocity, second order vertical 

velocity, second order horizontal acceleration, second order vertical acceleration, horizontal 

velocity difference term, horizontal velocity sum term, horizontal velocity derivative term, 

horizontal acceleration difference term, horizontal acceleration sum term, horizontal 

acceleration derivative term 
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Performing linear extrapolation (presented by Stansberg) for second order wave kinematics 

secsurface() wave amplitude, frequency, frequency limit, phase, water depth, lower point for kinematics 

calculation, x-coordinate, number of z-coordinate (considered to be revised), time instance, 

method (1 or 2), spectral peak frequency, velocity condition (1 or 0), plot option (1 or 0), 

first order surface 

second order surface, second order surface correction, second order horizontal velocity, 

second order vertical velocity, second order horizontal acceleration, second order vertical 

acceleration, z-coordinate, second order potential velocity, surface correction difference 

term, surface corretion sum term 

Calculating second order surface and its wave kinematics based on the choosen method: 

1.Wheeler stretching; 2. Linear extrapolation. When velocity condition is set as 0, the 

second order kinematics is not calculated. Lower point of kinematic is used when 

performing combination of first and second order kinematic along z-coordinate 

stansberg() wave number, wave frequency, phase, x-coordinate, time instance, amplitude of first order 

velocity potential, amplitude of first order horizontal velocity, amplitude of first order 

vertical velocity, amplitude of first order horizontal acceleration, amplitude of first order 

vertical acceleration, amplitude of horizontal velocity derivative term, amplitude of 

horizontal acceleration derivative term, amplitude of potential velocity difference term, 

amplitude of vertical velocity derivative term, amplitude of vertical acceleration derivative 

term 

First order velocity potential, first order horizontal velocity, first order vertical velocity, first 

order horizontal acceleration, first order vertical accelaration 

Performing linear extrapolation (presented by Stansberg) for first order wave 

statwave() time instance, surface elevation 

time of maximum surface elevation, positive maximum surface elevation, sorted maximum 

surface elevation, CDF of positive maximum surface elevation 

Determining the positive maximum surface elevation from time series 

stokesresult.m Extracting largest surface elevation from time series of surface elevation, fitting the 5
th

 

Stokes wave to produce the same wave crest, comparing the kinematics and then 

calculating the baseshear and overturning moment 

surfacekin() kinematic 

surface kinematic 

Extracting the kinematic on surface elevation from kinematics along z-coordinate 

theorydist.m Establishing Rayleigh and Forristall crest distribution 

wavefreq() wave number, water depth 

wave frequency, number of iteration 

Establishing wave frequency from given wave number 

wavenum() wave frequency, water depth 

wave number 

Establishing wave number from given wave frequency 

wheeler() amplitude, wave number, wave frequency, phase, surface elevation, x-coordinate, z-

coordinate, time instance, water depth 

velocity potential, horizontal velocity, vertical velocity, horizontal acceleration, vertical 

acceleration, pressure 

Performing wheeler stretching to determine the kinematics along z-coordinate 

zerocross() time instance, surface elevation 

time of maximum zero-crossing surface elevation, maximum zero-crossing surface 

elevation, sorted maximum zero-crossing surface elevation, CDF of positive maximum zero-

crossing surface elevation 

Determining the maximum zero-crossing surface elevation from time series 
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APPENDIX 3-CDF of First Order Surface Maxima 
Equidistance Frequency, Determinisitic Amplitude 
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APPENDIX 4-CDF of First Order Surface Maxima  

Equidistance Frequency, Random Amplitude 
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APPENDIX 5-CDF of 20-Minute Largest First Order Surface Maxima : 
Equidistance Frequency, Deterministic Amplitude 
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APPENDIX 6-CDF of 20-Minute Largest First Order Surface Maxima :  
Equidistance Frequency, Random Amplitude 

 

 

6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 20-Minutes Largest Maximum

 

 

First Order

Rayleigh1200/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping

6 8 10 12 14 16 18 20 22 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 20-Minutes Largest Maximum

 

 

First Order

Rayleigh1200/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Appendix  187 

 

 

APPENDIX 7- CDF of 3-Hour Largest First Order Surface Maxima :  
Equidistance Frequency, Deterministic Amplitude 
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APPENDIX 8-CDF of 3-Hour Largest First Order Surface Maxima 

Equidistance Frequency, Random Amplitude 

 

10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 3-Hour Largest Maximum

 

 

First Order

Rayleigh10800/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping

10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 3-Hour Largest Maximum

 

 

First Order

Rayleigh10800/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping

10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 3-Hour Largest Maximum

 

 

First Order

Rayleigh10800/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping

10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζlm

F
( 

ζ lm
 )

Distribution of 3-Hour Largest Maximum

 

 

First Order

Rayleigh10800/Tz

Lower Limit of Boostrapping

Upper Limit of Boostrapping



 NTNU   
 Norwegian University of Science and Technology Michael Binsar Lubis 
 

Appendix  189 

 

 

APPENDIX 9-CDF of 3-Hour Largest First Order Surface Maxima  
Random Frequency, Deterministic Amplitude (Number of component = 10800) 
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APPENDIX 10-CDF of 3-Hour Largest First Order Surface Maxima 

Time Series Partition, deterministic Amplitude 
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APPENDIX 11-CDF of 3-Hour Largest First Order Surface Maxima 

Partition of Time Series, Random Amplitude 
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APPENDIX 12-CDF of 3-Hour Largest First Order Surface Maxima 
Random Frequency, Deterministic Amplitude (Reducing Number of Component) 
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APPENDIX 13-CDF of 3-Hour Largest First Order Surface Maxima 
Random Frequency, Random Amplitude 
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APPENDIX 14-CDF of 3-Hour Largest First Order Surface Maxima 
Equal Area, Deterministic Amplitude 
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APPENDIX 15-CDF of 3-Hour Largest First Order Surface Maxima 
Equal Area, Random Amplitude 
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APPENDIX 16-CDF of 3-Hour Second Order Surface Largest Maxima 
Partition of Time Series , Deterministic Amplitude without Cut-Off frequency 
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APPENDIX 17-CDF of 3-Hour Second Order Surface Largest Maxima 
Partition of Time Series, Random Amplitude without Cut-Off frequency 
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APPENDIX 18-CDF of 3-Hour Second Order Surface Largest Maxima 
Partition of Time Series, Deterministic Amplitude with Cut-Off frequency 
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APPENDIX 19-CDF of Second Order Surface Maxima  
Partition Time Series, Random Amplitude with Cut-off Frequency 
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APPENDIX 20-Distribution of Second Order Largest Maxima 

Equidistance Frequency, Deterministic Amplitude 
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APPENDIX 21-Distribution of Second Order Largest Maxima 

Partition of Time Series, Random Amplitude 
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APPENDIX 22- Horizontal Velocity: Second Order Model vs 5TH Stokes 
Partition Time Series, Deterministic Amplitude 
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APPENDIX 23- Horizontal Velocity: Second Order Model vs 5TH Stokes 
Partition Time Series, Random Amplitude 
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APPENDIX 24- Horizontal Velocity: Second Order Model vs 5TH Stokes 
Random Frequency 
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APPENDIX 25- Horizontal Velocity: Second Order Model vs 5TH Stokes 
Equal Area, Deterministic Amplitude 
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APPENDIX 26- Horizontal Velocity: Second Order Model vs 5TH Stokes 
Equal Area, Random Amplitude 
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APPENDIX 27- Single Cyllinder Static Base Shear CDF 
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APPENDIX 28- Single Cyllinder Static Overturning Moment CDF 
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APPENDIX 29- Surface Profile at Jack-Up Lergest Response 
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