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Abstract

The application of nanoparticle-stabilized microbubbles(NP-MB) for localized drug delivery

is a new and promising method for enhancing the effectiveness of administered drugs. The

NP-MBs move through the vascular system before being destroyed by a targeted acoustic

pressure field. The NP-MBs shell properties determine the in-vivo response. Accurately de-

termining the shell properties will allow us to better understand the complex phenomenons

which make this method an valuable medical tool. This thesis aims to utilize finite element

modeling in order to better estimate the NP-MBs shell properties.

Previous thesis work at the Department of Physics has conducted a series of experiments

where individual NP-MBs were compressed by an atomic force microscope. The bubbles

force-displacement curve is the basis for estimating the shell properties. This system is con-

sidered equivalent to a parallel plate compression of a hollow sphere. A finite element model

representing a NP-MB model was simulated in Abaqus. Running different parameters and

material models the, Yeoh material model was identified as a better alternative to the tradi-

tional linear elastic material. The linear elastic model resulted in a poor fit to the experimen-

tal data, with the bubbles different Young’s modulus ranging from 25MPa to 112.5MPa. By

using Yeoh form the non-linear response of the NP-MBs were better replicated. The Yeoh

form, typically used for rubber materials, allow a non-linear stress-strain relation. The dif-

ferent bubbles were simulated with the Yeoh material and the estimates for the most relevant

coefficient, C20, ranges between 0.96e6 and 112.5e6

An alternative method for estimating the shell thickness is suggested. The simulations

buckling point is dependent on the dimensions and parameters of the input. By matching

the buckling point of the experiments force-displacement with to the buckling point of a

simulated model we are able to suggest and estimate for the shell thickness. The method

indicates a negative relation between the shell thickness MB diameter. The shell thickness of

the different BSA microbubbles was between 0.05 and 0.065µm The different casein bubbles

have an even thinner shell with estimated thicknesses ranging from 0.05µm to beyond the

lower limit (0.25µm) of the suggested method.
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Sammendrag

Mikrobobler stabilisert med nanopartikler (NP-MB) er en ny og lovende metode for effektiv

lokal avlevering av medisin. Bobler med medisin bundet i nanopartiklene fraktes rundt i det

vaskulære systemet før de destrueres ved hjelp av målrettet ultralyd. Boblens in-vivo respons

i et akustisk trykk felt er avhengig av skallets egenskaper. Etablering av disse egenskapene

vil hjelpe oss åbedre forståde komplekse effektene som gjør mikrobobler til et interessant

medisinsk verktøy. Denne masteroppgaven undersøker om bruken av element metoden kan

bedre estimeringen av skallets egenskaper.

Tidligere masteroppgaver ved Institutt for Fysikk har utført en rekke relevante eksperi-

menter. Individuelle mikrobobler har blitt trykt sammen ved hjelp av et atomic force micro-

scope. Den resulterende kraft-forskyvningskurven beskriver boblens stivhet. Denne stivheten

har opphav i skallets egenskaper, for eksempel tykkelse og elastitetsmodul. Det eksperi-

mentet anses som ekvivalent til komprimering av en hul sfære mellom to flate plater. Nu-

meriske modeller tilsvarende dette systemet ble modellert i Abaqus. Ved åkjøre et utvalg

parametere og materialmodeller finner vi at en Yeoh materialmodell beskriver den eksperi-

mentelle kraft-forskyvningskurven bedre enn det lineærelastiske alternativet. Boblenes es-

timerte elastitetsmodul for the lineærelastiske materialet ligger mellom 25 og 112.5 MPa.

Den lineærelastiske modellen predikerer dårlig responsen til de eksperimentelle dataene.

Ved bruk av Yeoh materialmodell kunne vi tilpasse dens koeffisienter slik at simuleringsre-

sultatene stemte bedre overens med de eksperimentelle dataene. Yeoh, typisk anvendt pågummi,

tillater en ikke-lineær spennings-tøynings kurve. Yeoh materialets koeffisienter ble funnet

for de forskjellige boblene. Den mest relevante parameteren, C20, ligger mellom 0.96e6 og

120e6

Det blir foreslått en alternativ metode for etablering av skalltykkelse. Ved åsammen-

ligne buklingspunktet i et eksperiment med et simulert buklingspunkt kan vi estimere skall-

tykkelsen. Ved åtilpasse simuleringens forskjellige parameter vil vi kunne si noe om for

eksempel skalltykkelsen. Denne metoden indikerer en negativ avhengighet mellom skall-

tykkelse og boblediameter. Skalltykkelsen for de forskjellige BSA boblene ligger mellom 0.05

og 0.065µm. Casein boblene har et enda tynnere skal med estimerte tykkelser mellom 0.05µm

og metodens nedre grense (0.25µm) for estimering.
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Chapter 1

Introduction

Coated microbubbles comprising of drug loaded nanoparticles(NPs) have successfully been

used to deliver drugs to a targeted area in vivo. The material properties of the microbub-

ble(MB) shell play an important role in predicting the response of a MB. Accurately describ-

ing the response will help tune the MB to ensure that they are able to circulate to the targeted

area. After reaching the target area they must exhibit the desired response at the application

of an ultrasound field. Considering NP-MBs the predictable destruction is also required in

order to successfully deliver the targeted drugs. One significant parameter is the material

stiffness of the MB shell. Assuming a linear elastic material Moe[1] estimated the Young’s

modulus (stiffness) for several NP-MB batches produced by SINTEF. By pressing on indi-

vidual bubbles with a flat surface he obtained a force-displacement (F −∆) curve for each

bubble. Using various established theoretical models for compression of spheres, an esti-

mate for the stiffness was determined. This thesis aims to better estimate the parameters

of the NPMB as the F −∆ curves exhibits behaviour which is not explained in the analytical

theories. Based on available information about the MBs we constructed and simulated an

approximate representation. This model seems to exhibit some elements of the experiment

behavior, for instance buckling which is the reduction in force required to continue com-

pression. We were able to suggest a method for inferring shell thickness and we fitted the

simulation parameters to the experimental data thus obtaining a new estimate for the shell

stiffness. The initial non-linear effects seen in the experiment data can not be described with

a linear elastic material model. The the non-linear Yeoh material model provides a better fit.

1



CHAPTER 1. INTRODUCTION

1.1 Background

An ultrasound contrast agent(UCA), also referred to as coated microbubbles, improves the

contrast between the agent and surrounding medium in an ultrasound image. The primary

purpose in a clinical setting has been to distinguish circulating liquid from the stationary

tissue and hence better show the flow of blood. Combining the concept of UCAs with drug

loaded NPs and creating NP-MBs we are able to locally deliver medicine by destroying the

bubbles in a targeted area. Increasing the concentration of drugs in a specific area enables a

greater uptake and utilization of the administered drugs.

By better understanding the shell properties we can further develop simulation accuracy.

This will allow us to move towards using numerical tools in explaining the complex inter-

actions which govern efficient drug delivery. An example would be drug delivery through

the blood-brain barrier(BBB) in which ultrasound (US) medicated delivery have shown in-

creased uptake. By being able to accurately represent the response of both bubble and bar-

rier, more efficient bubbles can be developed. By estimating the shell properties we are one

step closer to modeling the dynamic response of a microbubble.

Today there are two primary methods employed to estimate MB shell parameters. Atomic

force microscope (AFM) compression of a bubble and acoustic characterization. The AFM

experiment gives a direct measurement of an individual bubble’s stiffness. The acoustic

characterization is an indirect way of estimating the properties. It is based on measuring the

energy attenuation in a bubble solution and fitting theoretical model parameter from which

it is possible to derive shell parameters. AFM studies previously conducted in other mas-

ters theses are the background for this master thesis. We try to better describe the material

properties with additional insight gained from numerically simulating the problem. There

are numerous similar studies idealizing the geometry of MBs and employing analytical ex-

pressions to estimate the shell properties. None have so far tried to describe the response of

a NP-stabilized MB exposed to parallel plate compression.

1.1.1 Drug Loaded Nanoparticles

Nanoparticles containing drugs intended for cancer therapy have shown promise as a more

effective way to deliver drug to a cancerous tissue [2]. Two primary modes of targeting can-

cerous tissue are currently being researched, namely passive and active. Passive targeting

2



1.1. BACKGROUND

utilizes the enhanced permeability and retention (EPR) effect and allows the NPs to congre-

gate in the cancerous tissue [3, 4]. Active targeting employs specifically engineered ligands

which bind to molecules present in the targeted tissue [5, 6]. The use of loaded NPs is not

limited to cancer therapy and may be used with a variety of drugs, for example antiviral

agents [7].

1.1.2 Ultrasound Contrast Agent

Ultrasound contrast agents have been available since 1991 (Echovist, Bayer Schering Pharma

AG) but the first widely used UCA was Albunex which was introduced in 1994. As an UCA is

subjected to an acoustic US pressure, their compressibility due to the gas core will scatter the

US waves [8]. The boundary of two different materials will also cause US reflection, but to

a lesser extent than the UCAs, hence the improved contrast. The UCAs scattered waves are

then received by a transducer and an image of the tissue and UCAs can be created[9]. Typ-

ical UCAs are gas bubbles with a diameter of 1−10µm [10]. With UCAs being similar to the

size of a red blood cell they can pass through most microvessels and capillaries throughout

the body. [11]. A pure gas bubble on the micron size would quickly dissolve due to the sur-

face tension of water forcing the internal gas to diffuse quickly. UCAs are therefore coated

microbubbles (MBs) where a protein, lipid or polymer acts as a surfactants in order to re-

duce the shell tension causing pure gas bubble to diffuse and disperse. This enables them to

persist long enough to circulate and reach the desired area and be imaged.

1.1.3 SINTEF NP-MB

SINTEF is investigating the use of drug loaded NPs in an attempt to deliver drugs across the

blood-brain barrier (BBB). Successful transport of NPs across the BBB was demonstrated by

Andreas Aaslund of NTNU[12]. The NPs here were attached to a MB which transported the

NPs to the desired area. Mechanical effects induced by ultrasound exitation of the MBs dis-

rupted the BBB and allowed the NPs to pass. Ultrasound enhanced drug delivery of NPMBs

have been investigated by Eggen et Al. [13] and it appears that US exposure of tumors has a

positive effect on NP uptake.

3



CHAPTER 1. INTRODUCTION

1.2 Objectives

The overall objective of this thesis is to use finite element modeling as an alternative way of

estimating the shell parameters of nanoparticle-stabilized microbubbles (NP-MBs). Previ-

ous estimates of shell parameters are based on theoretical models derived for a linear and

small deformation regime. These fail to capture non-linear behaviour seen in experimental

data. NP-MBs are a relatively new field of science which means many highly relevant param-

eters are unknown. By simulating the compression of a NP-MB model we aim to determine

shell parameters by fitting the simulations variables to match the experimental data. Using

Abaqus as the finite element (FE) software we aim to gradually improve a simulation model

until a representative behaviour is seen.

1.3 Limitations

The history of NP stabilized MBs is short. The number and magnitude of unknown factors

present a big challenge in trying to conclude and estimate any one phenomenon or param-

eter. As the size of the components is on the nanometer scale it is hard to generalize any

observed phenomenon. There are uncertainties in the accuracy of measurement or imaging

and there is a distribution pertaining to any physical quality of the NP-MB. For the available

data we only have limited knowledge about the parameters of each component. Currently

the assembly process, geometry and local properties of a NP-MB have not been established.

One of the most significant unknown properties is the shell thickness. This is a crucial as-

pect of determining the shell stiffness and ultimately the bubble response both in vitro and

in vivo.

1.4 Approach

Due to the difficulty of acquiring accurate knowledge of NP-MB structure and geometry the

Abaqus model evolved in relation to the available information. Initial models were based

on a homogeneous, constant thickness spherical shell where as later and final models in-

corporates protruding NPs. The primary results of interest is the F −∆ curve of a parallel

plate compression scenario, representing the experiment. Python scripting in Abaqus was

utilized as it allowed for automation of simple repetitive tasks as the models were iterated.

4



1.5. THEORIES FOR ESTIMATING THE YOUNG’S MODULUS

The scripting allowed the modeling of numerous NPs distributed across the MB without the

tedious practice of placing each one by use of the Abaqus CAE GUI. The material properties

of the models were then adjusted so the simulations results would behave like the MBs in

the experiment.

1.5 Theories for Estimating the Young’s Modulus

Moe [1] covered four different models for determining the Young’s modulus of spheres and

shells. These are briefly discussed below and their individual assumptions are presented.

Figure 1.1 illustrates the various theories given equivalent boundary conditions for the ap-

plicable variables.

1.5.1 deJong Theory

N. de Jong and L.Hoff [14] presents a model for determining the shell elasticity of a coated

gas bubble. The model is based on the relation between the change in bubble radius u and

the pressure difference inside and outside the shell derived by Reismann [15]. The model as-

sumes a homogeneous, constant thickness shell which is perfectly elastic. Further assuming

t << R the Reismanns relation can be simplified to (1.1).

u = (pa −pb)r 2 1−ν
2Et

(1.1)

Moe, Chen et al.[16] and Morris [17] have employed this relation to estimate the Young’s

modulus from AFM data. Their method of application defines the force needed to compress

the bubble as the product of the bubble stiffness and the displacement (1.2). The force ex-

erted on the shell is defined as the pressure integrated over the shell (1.3). The pressure force

is proportional with the shell stiffness and the radial change (1.4). . By solving this for Kshel l ,

inserting (1.1) for the displacement u and using (1.3) in place of Fde Jong we get (1.5). Using

Kshel l = Kbubble they obtain an equation for the Young’s modulus (1.6) as a function of the

bubble stiffness.

FAF M = Kbubble u (1.2)

5



CHAPTER 1. INTRODUCTION

Figure 1.1: The four different theories covered by Moe are fitted to a compressive force of
10nN at a relative compression εDe f 1/30.

Fde Jong = (pa −pb)Aspher e (1.3)

Fde Jong = Kshel l u (1.4)

Kshel l =
8πEt

1−ν (1.5)

E = (1−ν)
Kbubble

8πt
(1.6)

This way of employing the model does not describe any elements found in parallel plate

compression of a MB. There is no driving hydrostatic pressure in the AFM experiment and

the compression of the bubble is not equivalent to a uniform reduction in radius, which

the de Jong theory is based on. The loading is illustrated in Figure 1.2. This theory is not

applicable for estimating the Young’s modulus from the AFM experiment.

1.5.2 Reissner Theory

The Reissner theory[18, 19] also featured by Moe has been used to estimate the Young’s mod-

ulus in previous AFM studies of MBs [20, 21, 22, 17, 23]. The Reissner theory assumes a ho-

mogeneous, constant thickness, thin t/R < 1/10 and perfectly elastic shell. It theory is based

6



1.5. THEORIES FOR ESTIMATING THE YOUNG’S MODULUS

u

Figure 1.2

u

Figure 1.3

on a spherical cap with a point load acting along the axis of symmetry. The point load must

be sufficently far from edge of the cap, φ = sin−1(1.65
p

t/R), as the effect of edge boundary

conditions can influence the stiffness. The loading condition is illustrated in figure1.3. The

relation between deformation d and force F is given by (1.7). This model includes the bend-

ing stiffness of the shell which is assumed to be a driving factor in the AFM experiment. The

model differs in the loading boundary condition and only for very small deformation will

the loading area be comparable to a point load. Elsner et al.[21] employed a FEM analysis

and showed that the Reissner theory remains a good approximation even for large contact

compression, up to a few shell thicknesses.

d =
√

3(1−ν2)

4

R

t 2

F

E
(1.7)

Kbubble is defined by (1.8). Note that u = 2d . Substituting this into ther Reissner equation

we can isolate the Young‘s Modulus as a function of bubble stiffness (1.9). As mentioned,

7



CHAPTER 1. INTRODUCTION

this equation looks at spherical cap. Relating this to the symmetrical compression of a full

bubble is not explicitly stated in Moe, Morris or Buchner Santos and all three appear to only

consider deformation at the one loading pole. This is despite citing Elsner et al. who suggests

that a distributed load found at both the loading pole and the immobilization pole would

contribute to the deformation.

Kshel l =
F

u
(1.8)

E =
√

3(1−ν2)

4

D0

t 2
Kshel l (1.9)

1.5.3 Hertz Theory

The Hertz theory[24] is a general solution to the contact problem of two solid, homogeneous

elastic spheres. This model does not yield the Young’s modulus of a spherical shell but a

spherical solid. Figure 1.4 illustrates the system which the Hertz theory is based on. This

model will thus only be applicable for very thick shelled MBs with small deformations. By

letting one sphere have an infinite radius and infinite stiffness we obtain the case of a sphere

pressed onto a rigid plate (1.10).

d = 3

√
9F 2(1−ν2)

16RE 2
(1.10)

By defining the relative deformation εDe f = u/D0, using Kbubble as in (1.11) and modify-

ing the original equation to consider the symmetric compression we can isolate the Young’s

modulus (1.12).

Kbubble =
F

ε3/2
De f

(1.11)

E = 12(1−ν2)p
2D2

0

Kbubble (1.12)

The Hertz theory has been used in several studies to determine elastic properties of bi-

ological material where Buchner Santos et al. [22] looks at a MB shell and Lulevich et al.

(2006) [25] looks at a cell with an internal medium. For the purpose of gaining knowledge

about MBs in-vitro behaviour this model will not accurately predict the behaviour of a shell

bubble.

8



1.5. THEORIES FOR ESTIMATING THE YOUNG’S MODULUS

u

Figure 1.4: Hertz theory for compression of a solid sphere

1.5.4 Elastic Membrane Theory

The elastic membrane theory was developed by Lulevich et al. (2004)[26]. This theory also

assumes a homogeneous, constant thickness and perfectly elastic shell. The system from

which the theory is derived from consists of a shell filled with an incompressible liquid.

When the sphere is compressed volume conservation will induce a membrane stress cre-

ating internal pressure and a reaction force opposing the compression. Lulevich also incor-

porates a simple consideration of the reaction force arising from the membrane bending at

the separation point from the substrate/ compressing plate. This region is illustrated in Fig-

ure 1.5 and it is assumed that all bending occurs over a length comparable to the thickness

u

t

Figure 1.5

The total reaction force from both membrane bending the volume conservation mem-

brane stretching is given in (1.13) where εDe f = u/Do . Since the MBs investigated have a

9



CHAPTER 1. INTRODUCTION

gas core the contribution from the volume conservation will be smaller and is neglected (see

Section 3.2.1). By defining Kshel l in (1.14) the resulting expression relating bubble stiffness

to the Young’s modulus is given in (1.15)

F = π

2
p

2
Et 2ε1/2

De f +4πEtR0ε
3
De f (1.13)

Kshel l =
F

ε1/2
De f

(1.14)

E = 2
p

2

πt 2
Kshel l (1.15)
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Chapter 2

Experiment Details

2.1 Background

The AFM-data available is from NP-MBs produced by SINTEF and is denoted GB-161 and

GB-167. In order to simulate the NP-MBs it is important to describe the boundary condi-

tions(BCs) as accurately as possible, allowing us to make reasonable simplifications. This

chapter covers the fabrication processes of a general NP-MB and we briefly discuss how

various properties impact the modeling of the MBs. The information gathered about fab-

rication process and component properties is an aggregate from different batches including

batches produced after the batches we have data for. Is has be difficult do gather accurate

information about the GB-161 and 167 batches specifically. Different aspects are covered by

information gathered from equivalent or similar processes. The details of the experimental

setup are also covered, again aiming to accurately describe the conditions in which the bub-

bles are tested. These BCs are equally important to the MBs own BCs when we try to analyse

the data provided by the AFM.

2.1.1 Nanoparticle

The data presented by Moe[1] utilizes MBs with Targ 121 NPs. Two phases of respectively fat-

soluble and water soluble components are mixed. The fat-soluble mixture comprises PACA

(poly(alkyl cyanoacrylate)) monomers and dyes(Nile Red®) while the water soluble mixture

consists of PEG(Polyethylene glycol) and surfactants. An ultrasound field is applied and a

miniemulsion is obtained. The microspheres polymerizes and creates solid particles. The

size of the NPs is dependent on the intensity of the energy field. The PEG aggregates in the
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CHAPTER 2. EXPERIMENT DETAILS

(a)

(b)

Figure 2.1: (a) STEM image of PEGylated PBCA NPs. (b) Hydrodynamic diameter of PEGy-
lated PBCA NPs. Both images gathered from Mørch et al.[27]

interface of the emulsion particles giving rise to a surface which SINTEF assumes to consist

of 50:50 hydrophobic/ hydrophilic polymer ends. The average size of these SINTEF NPs is

typically 200nm. This information is gathered from Astrid Bjørkøy (Department of Physics).

The specific size distribution of the Targ 121 NPs is not know, but it is expected to be similar

to later NP batches. Figure 2.1b shows a size distribution of NPs with the majority of NPs

being in the 100-200nm range.

Studies done after Moe’s experiment cover NPs in greater detail and provide valuable

insight into later generation NP and MB properties. Figure 2.1a shows poly(butyl cyanoacry-

late) based NPs imaged by scanning transmission electron microscopy (STEM). Mørch et al.

[27] characterizes the ζ-potential of the NPs which dictates the degree of repulsion. The ζ-

potential is found to be between -15 and -35mV depending on PEGylation. This suggest that

the NPs will not rapidly aggregate and hence some degree of separation between the NPs is

assumed.

2.1.2 Formation of MBs

To make NP-MBs a solution of NP( 1%) and protein (Casein or BSA, 0.1-1.0wt%) is mixed and

any air is displaced by the desired gas. The sealed container is then stirred with an ultraturax.

The stirring speed determines the average size of the formed MBs. A representative distribu-

tion for GB batch NP-MBs is shown in Figure 2.2. We do not have the distribution of the GB

batches we have data from. The GB161 and GB167 MBs are all made with casein.

The gasses employed by SINTEF vary by batch and include carbon dioxide (CO2), air and
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2.1. BACKGROUND

Figure 2.2: Distribution of GB169 NP-MBs having a mean size of 3.92µm. Graph gathered
from G. Moe[1].

perfluorpropane (C3F8). Due to the NP-MB having a stable size over time the internal pres-

sure is assumed to be at equilibrium with the surrounding medium. A heavier gas like the

perfluorpropane with a higher molecular mass reduces dissipation rate out of the MB. This

prolongs the relaxation time when the MB is produced. It is assumed that the rate of loading

is too fast for any significant amount of gas to diffuse out due to an increased internal pres-

sure. Borden & Lango [28] suggested a dissolution relation for MBs based on diffusivity of

the gas. The Epstein and Plesset equation [29] couples the change in radius to the diffusion

of gas out from a bubble. By adding a term for the diffusivity through the shell, Borden &

Lango were able to describe the time dependent dissolution of a coated MB. Since diffusion

through the shell is dependent on the shell thickness it is assumed that the relatively large

expected thickness of a protein MB causes very little gas to dissipate throughout the exper-

iment and can hence be neglected. For the purpose of the AFM experiment the type of gas

is irrelevant since any internal pressure effect is only dependent on the relative change in

volume, not the molecular weight of the gas.

Azmin et al[30] investigated the stabilizing effect of gold NP coated MBs. Two primary

dissolution limiting effects were suggested; NPs limit the effective surfactant area where the

gas can diffuse through and the tension between NPs being reduced as the packing density
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increases. The NPs reduce the speed of bubble dissolution until a critical particle concen-

tration is reached and a stable MB diameter is maintained. The MBs in this study were pro-

duced with only a surfactant(PEG-40-stearate) as opposed to the SINTEF MBs which uses

protein as the surfactant. The stabilizing effect of protein might be different than that of

only surfactant and the stable radius of the SINTEF MBs might have a substantially different

critical particle concentration. The primary interaction between NPs and the protein is as-

sumed to be electrostatic and Mørch et al. [27] hypothesises that the NPs act as a hub from

which a network of higher order protein multimers can extend along the gas-water interface.

2.1.3 Surface Properties

The surface geometry of a later generation MB was inspected with Scanning Electron Micro-

scope (SEM) imaging. Figure 2.3 shows the surface of the bubble. The GB194 batch depicted

below uses a BSA protein surfactant. No casein NP-MBs were imaged with SEM and we lack

a detailed surface image of these. To be able to capture the images the surface had to be

coated with Au. This was done with chemical vapor deposition. The thickness has not been

disclosed but being similar to the imaging process of NPs in Figure 2.1a we can assume a

coating thickness of around 5nm.

Other NPs produced by SINTEF, presumably with similar methods, have approximately

0.088 PEG chain pr nm2 [27]. The PEG chains on the surface of the NPs will affect the con-

tact region of the F −∆ curves. Pasche et al. [31] studied the compressibility of various PEG

densities and found that a PEGylated sphere compressed by a flat SiO2 surface show an ex-

ponential rise in force as the relative separation goes towards zero. Considering data with

similar PEG coverage ( 0.1 nm−2) and scaling with our NP diameter the effect of PEG com-

pression has a range of about 5nm. No further significant compression of the PEG layer

occurs after about 1.6nN (Scaled to NP D=200nm). The effect of PEG chain compression is

therefore neglected. The low PEG coverage of the NPs combined with the small 200nm di-

ameter also limits the number of PEG chains in the initial contact area, which also indicates

that the effect of PEG compression should be neglected. A study done by Kowalczyk et al.

[32] shows that HSA, presumably similar to BSA which is used in Finnøy’s NP-MBs, is able

to coat the surface of a poly(styrene/acrolein) microsphere. This could mean that any PEG

originally present on the NPs are suppressed or otherwise impacted by the surfactant protein

14



2.1. BACKGROUND

(a) (b)

(c)
(d)

Figure 2.3: (a-c) Scanning electron microscopy picture of NP-MB batch GB194. (d) Detailed
view of NP-MB surface in Figure 2.3c. Pictures kindly provided by A. Bjørkøy
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2.1.4 Shell Thickness

The shell thickness of the GB batch MBs has not been accurately determined. Moe has em-

ployed a thickness of 300nm based on Figure 2.4. The confocal laser scanning microscope

allows focusing on a cross section of the sample and illuminates the fluorescent particles

in the NPs. From the image we can assume a single layer of NPs. It is not possible to say

anything about the thickness of the non-fluorescent medium surrounding the NPs.

Figure 2.4: Confocal Laser Scanning Microscope image of a GB batch NP-MB [1]

Assuming one layer of NPs around the bubble and looking at Figure 2.3d, we can infer

that the protein matrix thickness is significantly thinner than the NP diameter. Pure protein

MBs like Albunex have been covered in a variety of literature. The molecular mass of the hu-

man serum albumin(HSA) is similar to the bovine serum albumin(BSA) and one can imagine

similar size and behaviour of the protein. Albunex shell thickness has been suggested by sev-

eral sources; 15 nm [33], 25nm by de Jong et Al. [14] and 30-50nm by Barnhart et al.[34]. Of

the mentioned studies Barnhart et al. best covers other aspects of the bubble properties and

the 30-50nm is hence assumed to be a good estimate.
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2.2. AFM

Figure 2.5: Schematic of an atomic force microscope[35]

2.2 AFM

Figure 2.5 illustrates how an AFM operates. Light is aimed at the cantilever tip and reflected

up to a four node photo-detector. As the cantilever bends due to any force, direct force or

otherwise, the intensity in each quadrant of the photo-detector changes. Knowing the move-

ment of the cantilever the force is computed as the product of the cantilever displacement

and the cantilever stiffness kc . The AFM tip and MBs are submerged in about 2mm of water.

The hydrostatic pressure from submergence is negligible The viscous damping of the system

moving through the water is assumed negligible due to no distinguishable hysteresis being

present as the AFM cantilever approaches and retracts from the MBs. The AFM base was

driven at 0.5Hz which corresponds to a scan rate of 6µm/s.

2.2.1 MB Immobilization

The hard base of the AFM setup is a glass dish (WillCo-dish®, WillCo Wells, BV, Amsterdam,

Netherlands) coated with branched polyethylenimine(PEI). This allows the MBs to be at-

tached and kept in place as the AFM measurement is conducted. The thickness and material

properties of the PEI layer has not been studied. Deflection sensitivity tests preformed on

the glass surface show deflection of the cantilever tip for separation less than 10nm. Further

deformation of the base is not evident. It is not know how much of the deflection leading

up to contact is due to various repulsive forces and how much is from compression of the
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PEI. Chen et al. [16] studied a similar system with a PLL coating and found no significant

deformation of the substrate. Van der Waals forces are typically present only closer than

0.3−0.6nm and is neglected. The magnitude of any potential electrostatic repulsion is not

know. Figure 2.6 shows the force on the cantilever as a function of separation from the glass

base. On the stiffest bubbles, 10nm this base sensitivity can reduce the effective bubble com-

pression with as much as 10%. This effect is compensated for in all subsequent plots. This

was done by defining the sensitive region of 10nm and inverting the sensitivity curve. The

yielding substrate is a function of the compressive force. This will yield a stiffer MB due to the

sensitivity curve being done with a rigid cantilever tip. This tip has an initial angle of 11◦ and

the end is presumably square. This will penetrate the substrate easier than the immobilized

MB, hence a siffer calibrated MB F −∆ curve is obtained. Overall the effect of the substrate

deformation is small and the softer solution is assumed to be appropriate.

Figure 2.6: Deflection of cantilever as it approaches the glass base. Raw data provided by A.
Bjørkøy

The MBs were attached to the coated glass base by overfilling a container with NP-MB

solution and placing the coated glass base on top, illustrated by Figure 2.7. The NP-MBs rise

upwards due to the buoyancy and adhere to the coating. Due to the small size of the MBs

the buoyancy in the piconewton range meaning that the MBs see little or no deformation as

they adhere to the glass base.
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2.2. AFM

Figure 2.7: Immobilisation of NP-MBs to a coated glass base, illustration gathered from Moe

2.2.2 AFM Tip

A flat cantilever of type NSC12 (MicroMasch, Madrid, Spain) was utilized. The shape of the

cantilever is shown in Figure 2.8. The coating of the AFM tip is not known.The cantilevers

used had a stiffness, kc , between 0.3-1.0 N/m. The exact stiffness of each cantilever used was

determined by thermal tuning. This method looks at the cantilevers response to thermal

noise, determining its resonance frequency and hence deriving its stiffness from the geom-

etry and now known eigenvalue. [35]. The flat cantilever is oriented at an 11° angle relative

to the horizontal base. The cantilever tip was placed over the selected MB as illustrated in

Figure 2.9. The bubble was positioned as close to the end of the tip as possible to assure that

the overhanging portion did not come in contact with the base
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Figure 2.8: ZEM image of 37 series AFM tip (MicroMasch, Madrid, Spain) which has replaced
the NSC12 tip used in Moe’s experiment.

Figure 2.9: NSC12 flat AFM tip over NP-MB[1].
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2.3 Experimental Data

The numerical data available is from Moe’s experiments. Finnøy did a similar study in 2013

and this data is only available as F −∆ plots found in his thesis. Both data sets will be used

to draw insight from the simulations and other theoretical considerations. Some bubbles

exhibit a notable hysteresis in the measurement data. This effect was difficult to accurately

compensate for due to instances of binding in the unloading curves. Simply taking the aver-

age would disrupt the initial true F −∆ response. As only about half of the bubbles show any

significant sign of hysteresis it was decided to only analyse the F −∆ curve as the cantilever

tip was approaching.

2.3.1 Determining contact point

Processing of the numerical data from Moe’s experiment follows. The AFM output provided

by A. Bjørkøy consists of the force on the cantilever and the location of the of the base rela-

tive to an unknown reference. To get the compression of the NP-MB we have to first subtract

the cantilever deflection from the base location and then set the point of contact. The can-

tilever deflection is the product of the force and the inverse of the cantilever stiffness kc .

This enables us to separate the deflection of the cantilever and the compression of the MB.

Moe does not indicate how he has determined the contact point but if he adopted Finnøys

approach the contact point is defined as "where the force between two consecutive data

points changes with more than 0.5nN". The validity of method is questionable as you might

loose any non-linear effects present in the initial part of the compression. Several alternative

methods have been suggested by others performing similar AFM measurements on variuos

structures. Chen et al. [16] uses the same approach as McKendry et al. [36], defining the

contact point as where "the measured force increased by 2% relative to the baseline value for

10 consecutive data points". Other methods include fitting to analytical solutions eg. Hertz

model for a solid sphere [37], direct analysis (visual) of the changing derivative [38] and al-

gorithm based numerical analysis of the FD-curve by Jaasma et al. [39].

As the data set presented was rather inconsistent the chosen method was a combina-

tion of direct analysis and the algorithm based numerical analysis presented by Jaasma et

al. This method defines the contact point as the last point where derivative of the cantilever

deflection is zero. The root of the derivative is approximated by fitting a linear function to a
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predefined region and finding its root. Jaasma defines the region as 15-40% of the maximum

value of the derivative. A strict region like this did not work for our available data. Direct

analysis was incorporated to find an appropriate region to fit the linear function. This is ex-

emplified in Figure 2.10b. As the data supplied was not smooth the cantilever deflection data

was filtered with a Savitzky-Golay filter[40]. The filter fits a polynomial to a predefined frame

of data points by the linear least squares method. The center value of the local polynomial

becomes the filtered value at the coinciding midpoint of the range. The local polynomial

is then recomputed after moving the frame one data point to the right. The first deriva-

tive of the cantilever deflection is computed by a second order central difference scheme.

The last step was truncated as the backward difference method employed at the end caused

significant discontinuities. This smoothing ended up hiding details of the cantilevers con-

tact point. The contact point determination was done with the unfiltered cantilever deriva-

tive. This also a reasonable approach as the linear regression smooths any local noise. The

smoothing was only applied to the final F −∆ curve. The last few data points of each mea-

surement might be inconsistent due to the base switching from approaching to retracting.

The FD curves of all the available numerical data are plotted in Figure 2.11. The two differ-

ent F −∆ curves presented in Figure 2.12 are gatherd from Finnøy’s Master Thesis [41]. All of

Finnøy’s MB compression plots are included in Appendix A.

(a) Cantilever deflection.
(b) Derivative of cantilever de-
flection.

(c) Calibrated F-∆ curve.

Figure 2.10

The F −∆ curves from both Moe and Finnøy are from the last of 20 compressions. Finnøy

determined that most of the bubbles underwent some small degree of permanent change

in the first few compressions. As the number of compressions increased the response con-

verges. From the data presented by Finnøy any permanent buckling is not evident.
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(a) (b)

Figure 2.11: (a) Absolute compression and (b) relative compression F −∆ curves from Moe‘s
experiments, data provided by A. Bjørkøy (Department of Physics)

(a) (b)

Figure 2.12: (a) YM-73 BSA abd (b) YM-73 Casein F −∆ curves gathered from Finnøy’s Master
Thesis [41].
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2.3.2 Determining Bubble Diameter

The diameter of Moe’s NP-MBs is determined by counting the number of pixels the bubble

spans as viewed through a microscope. The pixel width is 0.24µm. This causes significant

problems with regards to the accuracy as the indicated diameter has an error of +- 0.24µm.

This translates to 6% of the GB169 mean diameter and a 17% error over the data sets span

(4.08− 2.64/mum). This is quite a significant error and it could have an influence on the

accuracy of the results.
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Chapter 3

Simulation

In this chapter we cover the model used to obtain simulation results. Two different shell

geometries are presented. The smooth MB geometry employs a constant shell thickness

where as the nubbed shell is based on spherical caps protruding from the MB surface. The

constant thickness shell did not work well. It did not seem to describe the alternating second

derivative found in some of the F-∆ curves. SEM images of later generation NPs indicate a

non-smooth surface.

3.1 Abaqus

To numerically model the NP-MBs the finite element program Abaqus (Dassault Systèmes

Simulia, Waltham, MA) was used. This program allows solving non-linear systems with both

implicit and explicit solvers. All presented simulations were considered quasi static and run

in Abaqus/Standard utilizing the implicit solver.

3.1.1 Input dimensions

Abaqus does not employ any specific dimensions but requires consistency across input units.

Any length dimension is denoted in µm, any pressure is denoted kPa, thus any force is de-

noted in nN .
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Figure 3.1: The influence of plate-bubble friction.

3.2 Boundary conditions

MB compression between the AFM cantilever and the glass base are simplified to compres-

sion between two analytically rigid surfaces, as the PEI glass coating already has been com-

pensated for. The angle between the AFM tip and the base described in Section 2.2.2 was

also neglected as preliminary simulations showed only a small difference between angled

surfaces and parallel surfaces, seen in Figure 3.2. Note that this comparison uses a rough

friction formulation in order to keep the bubble from squeezing out between the symmetric,

angled plates. The magnitude of the force is similar and the phase shift is attributed to the

plate contacting the NP as at slightly different angle. To restrain the model with the angled

plate without imposing unreasonable boundary conditions on the base of the MB, a rough

friction formulation was used. The subsequent simulations are all parallel plate compres-

sion. The influence of friction between the MB and plates is relevant for the final stiffness.

Due to lack of information about the interaction properties of the NP-MBs and the surface

of the cantilever tip, a frictionless interaction was used all subsequent simulations. From

Figure 3.1 we can see that in increase in friction causes a stiffer response.

3.2.1 Effect of Internal Pressure

Compression on a closed volume like the MB will increase the internal pressure and induce

a strain the shell. An increase in internal pressure will oppose the compressing force. The

influence of the internal gas being compressed can first be evaluated as a simple system,

26



3.2. BOUNDARY CONDITIONS

Figure 3.2: Angled compression of a sphere compared to parallel plate compression.

F

F

u/2

u/2

D - u

Figure 3.3

illustrated in Figure 3.3. The two spherical caps are subtracted from the initial volume while

maintaining a constant amount of gas.

If we assume a rigid shell with no bending stiffness, then the internal overpressure is a

function of the volume reduction (3.1). The normalized force resulting from the overpres-

sure applied to a circular cross section corresponding to the spherical cap size is given by

equation (3.2) where εDe f = u/D is the relative compression. Figure 3.4 plots the normalized

force function and shows the exponential increase as the volume is compressed. Note that

this is a worst case estimate. In reality the increase in pressure will also cause the membrane

to stretch and the resulting force will be less.

pover pr essur e

p1
=

( 2

2−ε3
De f (3ε−1

De f −1)
−1

)
(3.1)
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Figure 3.4: Normalized force resisting compression as a function of relative deformation εDe f

YLABEL

F

p1R2
=

−ε6
De f +5ε5

De f −6ε3
De f

2−ε2
De f (3−εDe f )

(3.2)

These plots and functions enable us to estimate a critical compression after which the inter-

nal pressure becomes significant. Most of Moe’s simulation data are in the sub 40nN range.

Assuming an equilibrium pressure of 101kPa and a MB diameter of 3µm and that we want

a worst case pressure influence of less than 5%. The relative compression must then be less

than approximately 0.061. Simulation data shows that the effect on the MBs is small for a

relative compression εDe f < 0.1.

The effect of the internal pressure was simulated for a generic nubbed sphere. The fluid

cavity interaction in Abaqus creates a volume element from a surface element on the part

and a reference node, in this case the center of the sphere. As the geometry changes the vol-

ume of the surface-node element will change accordingly and impose a pressure according

to ideal gas law under isothermal conditions. The ambient pressure was set to 101kPa and

the temperature was set to 20◦C .

Figure 3.5 illustrates the difference between one simulations with internal pressure and

one without. The diameter of the bubble is 3µm, thickness of 50nm and a Young’s modulus

of 24 MPa. This Young’s modulus corresponds to the estimated stiffness of a GB bubble, not

including the effect of internal gas. Internal pressure is not included in subsequent simula-

tion as it drastically increases computational cost and the effect is negligible for the relative

deformations seen in Moe’s experiment.
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Figure 3.5: Simulation with and without the effect of internal compressible gas.

3.3 Material models

The two material model used in the simulations was the linear elastic, homogeneous and

isotropic material (HILE) and the Yeoh form. A typical example for the HILE materia’s appli-

cation would be small deformations of steel or other metals. The Yeoh material model is a

hyperelastic material. Hyperelastic materials are often used to describe the stiffness of rub-

bers and polymers and has the ability to alter the shape of a non-linear stress-strain relation.

Conceptually this might be a better fit to our problem of modeling proteins which exhibit an

exponential stress-strain response. The two models are covered in further details below.

3.3.1 Compressibility

The Poisson ration, ν, is the degree of compressibility and an incompressible material has

ν = 0.5. The compressibility of biological material is typically assumed to be nearly incom-

pressible [42, 43] with a Poisson ratio ν of 0.45− 0.49. We opt to use ν = 0.45 as BSA and

casein are biological material and no specific compressibility was found for either protein.

By choosing ν< 0.49 we also avoid the need to employ hybrid elements. It is uncertain what

Poisson ration was employed by Moe. Finnøy used ν= 0.4 based on another study employ-

ing PCBA NPs but using an organic surfactant(Triton X-100, Merch, Germany)[44] instead of

protein based.
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3.3.2 Linear Elastic

The linear elastic property means that the material exhibits a linear relation, the stiffness

matrix E , between the strain vector ε and the stress vector σ seen in equation (3.3). The

tensile modulus, the linear coefficient relating stress and strain is called the Young’s modulus

and is denoted E . A linear elastic simulation is compared to a non-linear tensile modulus in

Figure 3.6.

σ=== Eε (3.3)

3.3.3 Yeoh

When using Yeoh form for the material model we have a greater ability to alter the stress

strain curve. The investigation into the Yeoh material is motivated by the F −∆ curve of

proteins[45, 46, 47, 48] which exhibits an exponential stress strain relation. Kawakami et

al.[49] show the successive unbinding of a protein as intermolecular bonds are broken. These

unbinding steps are neglected as the MBs in this thesis are composed of denatured protein

(direct communication with Andres Åslund, Department of Physics, NTNU). The degree of

denaturation is not known.

The Yeoh form is an energy function for a hyperelastic material. The incompressible ma-

terial version is presented in equation (3.4) where I1 is the first strain invariant of the right

green strain (3.5).

W =C10(I1 −3)+C20(I1 −3)2 +C30(I1 −3)3 (3.4)

I1 = tr (C ) =λ2
1 +λ2

2 +λ2
3 (3.5)

The right Cauchy-Green deformation tensor is given by (3.6) where F is the deformation

gradient given in (3.7). Incompressible behaviour is defined by J = det (F ) = 1

C = F T F (3.6)

F = ∂x

X
(3.7)

The 2. Piola Kirchoff stress is found by differentiating the energy function with respect
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(a) F−∆ curve for the two material properties. (b) σ−ε curve for uniaxial strain.

Figure 3.6: Stress-strain plot for the two material models. These have the same parameters
as the F −∆ plot.

to the Green strain (3.8). The 2. Piola Kirchhoff expresses the current deformed force on the

undeformed unit area and is energy conjugate to the Green strain.

S = ∂W

∂E
(3.8)

The coefficients of the Yeoh form allow us to tune the initial slope as well as the coeffi-

cients for the second and third order relation. In order to replicate the exponential effect of

the It was not possible to successfully alter the Poisson ratio of this material to anything other

than ν= 0.5. The incompressible material was used in combination with an incompressible

element formulation. The initial stiffness is chosen very low in order to represent the small

slope of the initial regions of the experimental data.

The large deformation of a nubbed shell, DMB = 3.0, tShel l = 0.05, with Yeoh material is

shown in Figure 3.7.
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Figure 3.7: F −∆ curve of a nubbed shell with Yeoh material. Model geometry: DN P = 0.2µm,
DMB = 3.0µm, tShel l = 0.05µm, packing density = 15

π µm−2. Material properties: C 10 =
100,C 20 = 800e3,C 30 = 0,D1,D2,D3 = 0

3.4 Smooth MB Shell

Plate compression of a spherical shell is an extensions of the sphere-sphere contact problem

covered by Elsner et al.[21]. Initial simulations were run on half the sphere with an axis-

symmetric model using solid elements. The pre- and post-deformation geometry is shown

in Figure 3.8 As compression continues the plate will stabilize the shell until a critical point is

reached. This point is not possible estimate with the simulations as it is strongly dependent

on the magnitude of imperfections introduced. Imperfections were found by a linear pertur-

bation buckling analysis with a unit overpressure on the entire outer surface of the sphere.

The first two buckling modes were then introduced as imperfections with a magnitude 10−3

of the buckling modes. If the imperfections were too small then the simulation would crash

due to time step length limits. The effect of internal pressure was not included here. This

would drive an exponential increase in compressive resistance for εDe f > 0.1.

Typical F−∆ curves are presented in Figure 3.9. The simulations were run with a constant

Young’s modulus E = 30MPa, a fixed diamter D = 3.0µm and a equal maximum relative

deformation εDe f = 0.2

This simulation model was not pursued to great extent due to the missing initial non-

linear region and input dependence on the buckling point
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(a) (b)

Figure 3.8: (a) Geometry of the undeformed axis-symmetric smooth sphere and (b) the de-
formed geometry.

(a) (b)

Figure 3.9: Typical F −∆ curves with two different thicknesses.
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3.4.1 Mesh and Element Properties

For simplicity the models are run with rectangular elements, 10 elements across the thick-

ness. Maintaining a longer than taller aspect ratio is important in order to avoid integration

errors of the shear force. 10 elements across the thickness also helps alleviate this issue. A

quadratic axis-symmetric element, CAX8, was used. Reducing computational time was not

a priority due to the small number of elements. The contact method used was a master sur-

face to slave nodes. The slave nodes are not allowed to penetrate the master surface. This

does cause some inaccuracy with the courser mesh as the elements edges are still allowed

to penetrate. To alleviate this one could have employed a surface to surface formulation

which forces the average of the full elements penetration to zero. The surface to surface for-

mulation was not used as an accurate initial contact description was desired and a surface

approach would have allowed penetration of the topmost node.

3.5 Nubbed MB Shell

3.5.1 Geometry

The geometry of the NPMB is based on a hollow sphere where its thickness represent the sur-

factant found in the gas-liquid interface. A number of smaller solid spheres are distributed

on this interface. Based on the the SEM images in Figure 2.3 and the assumption that the

NPs assemble in the interface with approximately equal parts on either side of the gas-liquid

interface the locations of the NPs can be determined. The largest cross section of the NPs

are placed on to the middle surface of the shell as illustrated in Figure 3.10. A general NP di-

ameter was chosen to be 200nm and they are modeled approximately equidistant from each

other. The distribution of NPs and hence equidistant points on a sphere has no analytical

solution except for the few platonic solids (polyhedras with flat, equal faces) with 4, 6, 8, 12

or 20 vertices.

There are a variety of methods for approximating equidistant points on a spherical sur-

face. The Thompson problem[50], minimizing the potential of electrostatic energy in a sys-

tem of electrons, can be solved numerically and will yield an optimal distribution. Rakhmanov

et at. [51] fits N equal area parts onto the spherical surface where the area corresponds to a

diameter which does not interfere with neighboring areas. A computationally less expensive
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approach and the approached used in the NP-MB Abaqus models employ a Fibonacci lattice

[52]. The sphere is divided into N-2 equally spaced circles and points are assigned consec-

utively on the circles with an angular increment equal to the golden angle ≈ 137◦ [53]. The

golden ratio, on which the golden angle is derived from prohibits periodicity in the angular

assignment due to its irrationality and thus clustering of points are avoided. The lattice poles

were chosen 90◦ from the loading point as the NP distribution at the lattice poles was not at

uniform as the remaining distribution. Figure 3.11 illustrates how the points are placed along

a spiral. The Fibonacci lattice is used to assign NP location on the NP-MB shell and was cho-

sen due to its implementation simplicity and available documentation. The NP packing den-

sity on the MB shell was sett to Q
4πµm−2 where the the area of the MB shell is A = 4πr 2µm2

and Q ranged from the lesser packed (55) to the very tightly packed (75). A general packing

Q = 60 was utilized on all simulations except the sensitivity study of NP packing. This was

motivated by the SEM images in chapter 2 and the magnitude of the zeta-potential which

indicates some degree of repulsion between the NPs.

The construction of the geometry was done with Abaqus’ python interface which allowed

automation over the variables like MB diameter, shell thickness, NP diameter, NP location,

material properties, mesh resolution, element properties and the loading boundary condi-

tion. This enables efficient iteration over the parameters, allowing us to quickly evaluate

each variables significance.

Only one quarter of the sphere is run in Abaqus. Assuming a symmetric compression on

both the top and bottom we can cut the sphere in half. This is still a large model which would

take a long time to run. Assuming an approximately symmetric compression around plane

parallel to the loading axis further reduces the solver matrix. This assumption is an approx-

imation as the NPs are not symmetrically distributed. A further halving would enhance any

errors relating to the NPs being split by the symmetry plane. This would be especially rele-

vant during the initial deformation as a errors pertaining to local lack of symmetry would be

multiplied four times as opposed to two. Ideally, the NPs would be a separate entity from the

MB shell. The polymer NPs are presumably stiffer than the protein shell they are embedded

in. During the time of modeling, no efficient way of separating the NPs from the shell was

achieved. The NPs were therefore assigned the same material properties as the shell. This

was assumed reasonable due to the NPs being solid, such that there would be little local de-

formation. As the force increases more NPs will come in contact with the compressing plate

35



CHAPTER 3. SIMULATION

t

RN P

RMB

Figure 3.10: Location of NP centroid in relation to the shell cross section

Figure 3.11: The points are placed along a spiral pattern. Figure taken from Keinert et al. [54]

and the compressive force will be distributed. The deformation of a single NP is negligible

compared to their respective rigid body motion.

3.5.2 Mesh and Element Properties

The complex geometry and number of smaller solid spheres on the surface warranted the

use of Abaqus’ automatic mesh tool. To accommodate the solid spheres a tetrahedral ele-

ment illustrated in Figure 3.13 was chosen. Of the available elements the C3D10I element

has superior performance on contact problems [55] but will not work with incompressible

material. The C3D10I element is called the "improved surface stress visualization tetrahe-

dral". This is due to the 11 point integration scheme with integration points being located
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(a)
(b)

Figure 3.12: (a) Complete quarter model with a diameter of 3.0µm and (b) complete quarter
model mesh.

at the edges of the elements with one point in the middle. Since we are not interested in

the stress distribution at the contact points, but rather the total transferred force, a C3D10

element was chosen for the HILE material model and C3D10H was used with the Yeoh ma-

terial model. The hybrid element formulation alleviates both volumetric locking problems

and oversensitive pressure response to small deformations which arise with incompressible

materials [56]. This was required for the use of the incompressible Yeoh material model.

The second order shape functions also improve the representation of surface stresses and

the curved geometry found at the contact points between the NPs and the rigid plate. A de-

tailed view of the NP-MB mesh is shown in Figure 3.14b. Figure 3.16 illustrates the change in

response as a function of different mesh sizes. This plot illustrates that the larger elements

produce a reasonable estimate. The mesh sensitivity was not run for a finer mesh due to the

rapidly increasing size of the solver matrix. As the NP-MB model is cut along the symmetry

plane, smaller geometries might have to be described. Many of the GB bubbles required a

mesh size of maximum 0.02 in order for the automatic meshing tool to function. This ap-

proximate mesh size was used for all the final simulations.

Deformation Geometry

The deformation geometry of the nubbed shell is shown in Figure 3.15.
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Figure 3.13: C3D10 element

(a) (b)

Figure 3.14: Detailed view of the embedded NP geometry, unmeshed (3.14a) and meshed
with therahedra elements (3.14b). DN P = 0.2µm, DMB = 3.0µm, tShel l = 0.05µm and packing
density = 15

π
µm−2.
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(a) (b)

Figure 3.15: (a) Undeformed geometry of a nubbed shell and (b) the resulting deformed ge-
ometry

Figure 3.16: The simulated response is dependent on the mesh size. The two coarser meshes
behave similarly due to both having only one tetrahedra element a cross the shell thickness.

3.5.3 Simplified MB Shell

As the diameter of the MB increased the number of elements required to accurately model

the shell across its constant thickness grows to the second power. This created issues with the

practical completion of the simulation. It not only took a very long time but the solver files

quickly increased past 30GB and consumed all available disk space on the lab computers. A

simplified geometry was therefore created. Only a spherical cap of 1/4th of the radius was

given NPs. This allowed for hexahedral elements on the major portion of the model, drasti-

cally improving computational cost. The Poisson ratio was set to 0.4 during initial studies.

The sensitivity study indicates that this has little impact on the stiffness of the material and

the results are assumed equivalent for µ = 0.45 The simplified model is illustrated in Figure
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(a) (b)

Figure 3.17: Simplified model with a diameter of 3.0µm (a) and the simplified model mesh
(b)

Figure 3.18: Simplified model and full model F −∆ curve.

3.17a. Reissner, covered earlier predicts that shells strain is negligible once you get a certain

distance from the point of contact. This indicates that the simplified model is a valid as-

sumption for the initial region of the simulation. The simulated F −∆ curve of both the full

and simplified model is shown in Figure 3.18.

Calibration of Simplified Shell

The simplified shell section should ideally behave exactly as the nubbed section. A rea-

sonable approximation was made by comparing two square sections with identical BCs. A

1x1x0.05 plate was created with and without small spheres. All DOFs were disabled on one
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(a) Displacement magnitude (b) Mises stress

(c) Displacement magnitude (d) Mises stress

Figure 3.19: Comparison of a nubbed and simple calibration plate.

side while a shear force was applied to an identical cross section on the opposite side. The

elastic moduli of the simple plate was adjusted until the maximum displacement for the two

models was similar, see Figure 3.19. The model shows a stiffness ratio of about 1:3.5 between

the nubbed and simple plate. This ration was used in the subsequent models to get a rep-

resentable response from the simpler shell. Depending on the geometry this simplifications

reduces the number of elements by 3/4 something which drastically reduces computational

cost. This simplified model was only used with the HILE material model as the stiffness of

the model scales approximately linear. Depending on how the input variables are adjusted

this is not the case for the Yeoh material.

Mesh and Element Properties

The simplified model employs the full tetrahedral mesh (C3D10) for the upper eighth of the

sphere. The lower simple geometry was meshed with three or four hexahedral (C3D20) ele-
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(a) Undeformed simple NP-MB (b) Deformed simple NP-MB

Figure 3.20: Deformation geometry of simplified shell

ments across the thickness with large second and third dimension. The boundary between

the sections requires incompatible elements as they have a different number of nodes. Due

to the incompatible elements not being located in a large strain portion of the model it is

assumed that their behavior does not introduce any significant error.

Deformation Geometry

The deformation geometry of the simplified shell is shown in Figure 3.20.

3.6 Sensitivity Study

To get an idea about how the model responds to uncertainties in the input variables we ran

a spectrum of simulations across relevant parameters for the HILE material model. These

parameters include the diameter, shell thickness, NP diameter and NP packing. Previous

simulations have also also run in order to justify the assumed boundary conditions, for ex-

ample ignoring the effect of any internal gas or the effect of contact friction.

A general comment can be made about the steps seen in the F −∆ curves. These are pre-

sumably caused by new NPs coming in contact with the compressing plate. This temporary

alters the stiffness and will in the later regions of the compression contribute to the buckling

of the shell.

3.6.1 Diameter

The simulations F −∆ curves are shown in Figure 3.21. These simulations all have a shell

thickness of 50nm and a packing density, Q, of 60. The HILE material has a Young’s modulus
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Figure 3.21: F −∆ curve of various diameters.

Figure 3.22: F −∆ curve of various thicknesses.

of 30 MPa. The diameter is a highly relevant parameter as the accuracy of the tested MB

diameter is poor. The plot shows that the diameter does not significantly affect the resulting

force. The oscillations are attributed to a different contact sequence for the NPs, as they are

distributed slightly different for each diameter.

3.6.2 Shell Thickness

The simulations F −∆ curves with various thicknesses are shown in Figure 3.22. There is a

significant effect on the MB stiffness as various thicknesses are simulated. This indicates the

importance of the parameter. NPs are located identical for the different thicknesses which

contributes to the similar oscillating behaviour.

43



CHAPTER 3. SIMULATION

Figure 3.23: F −∆ curve of various thicknesses.

3.6.3 NP Density

The packing density of the NPs seem to primarily affect the initial oscillating behaviour. The

oscilation of the F −∆ curve is attributed to when new NPs come in contact with the com-

pressing plate. This becomes less evident as NP packing increases due to the increased sta-

bility and stiffness caused by inter NP bending having to occur on a smaller area of the MB

shell.

3.6.4 NP Diameter

A limited number of NP diameters were simulated and is presented in Figure 3.24. It appears

that the F−∆ curves oscillation is largely dependent on the NP packing where smaller NP-MB

simulations exhibit a similar but softer behaviour when the packing density is kept constant.
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Figure 3.24: F −∆ curve of two different NP diameters and two different packing densities.

45



CHAPTER 3. SIMULATION

46



Chapter 4

Results

4.1 Infer Shell Thickness from Buckling Point

4.1.1 Data Insight

Finnøy’s F −∆ curves have a reoccurring plateau. In order to check potential insights we

define the buckling to be at the inflection point of the first drastically reduced slope. In most

cases this would be where the slope is either close to or lower than zero. By employing this

criteria on Finnøy’s graphs from 2013 (Appendix A) we can identify a decrease in buckling

point as a function of diameter. All available data points were plotted in Figure 4.1. There

seems to be a negative dependence on the diameter. Unfortunately the sample size is not

large enough to conclude if the relation between the buckling point and the NP-MB diameter

is either linear or exponentially decaying. This same plateau is not evident in the limited data

available from Moe’s experiment, due to the low maximal load.

The simulations also exhibit a buckling behaviour. When using the HILE material the

buckling point is not dependent on the material stiffness. This means the force in Figure

4.2a and 4.3a can be normalized.

To estimate the shell thickness we first establish the buckling point for the AFM data. By

finding diameter and corresponding buckling point in Figure 4.2, the remaining difference is

found in Figure 4.3 and then used to predict the shell thickness. The relation between the NP

diameter and NP packing density is complex. This method was not the primary focus of the

thesis and the limited resources allocated means the complex relations were not adequately

described. A linear perturbation buckling analysis of a point load failed to yield predict the
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Figure 4.1: Buckle point in Finnøy’s data, See appendix A

(a) (b)

Figure 4.2: (a) F −∆ curves of different diameters. Not all plots are included. (b) The simu-
lated buckling point plotted as a function of diameter, t = 0.05µm.

observed buckling point and is therefore not included.

An alternative way of determining the shell thickness was also presented by Lytra et al.

[23]. Using polymeric and lipid MBs they employ a combination of the Reissner Theory [18,

19] for the initial linear region and the Pogorelov model[57] for subsequent buckled state to

estimate both the Youngs modulus and the thickness. This has not been applied to Moe or

Finnøy’s data as it considers a smooth sphere. The method presented here is similar to the

one in Lytra et al. as it not only considers the transition to the buckled state but also includes

the geometric effect the NPs contribute. The estimated shell thicknesses are presented in

Figure 4.5. The lowest buckling values were not possible to estimate based on the simulation

data at hand. This could indicate indicates that the excluded factors are of importance or

that the data from the simulations is wrong and not applicable. The only discernible trend is
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(a) (b)

Figure 4.3: (a) F −∆ curves are scaled to an equal force at εDe f = 0.035, not all plots are
included. (b) The simulated buckling point plotted as a function of thickness, D = 3.0µm.

Figure 4.4

Figure 4.5: Finnøu’s data with estimated thickness as a function of diameter. Points on the
red dotted line are not properly estimated as their response indicated an even thinner shell
than the simulation data can estimate.

for the YM73BSA where there seems to be a negative correlation with the diameter.

4.2 Simulation Compared to Experimental Data

The two different material models presented in chapter 3 were run on the nubbed sphere

geometry. Figure 4.6 illustrated the different stress and strain response of the two materials.

The strain in the HILE model is localized close to the loading area, illustrated in Figure 4.6a.

The very low linear stiffness coefficient means significant deformations also occur far from

the loading area. This means that we will see a later buckling response as the supporting part
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(a) HILE strain (b) HILE stress

(c) Yeoh strain (d) Yeoh stress

Figure 4.6: Stress and strain comparison of the HILE and Yeoh material models for the GB167
Nr13 MB

of the sphere also deforms. This is illustrated in Figure 4.6c where the majority of the strain

seen in the shell is of the same order of magnitude. This is in strong contrast to the HILE

model where large localized strains contribute to most of the deformation. The uniform

distribution of strain in the Yeoh model means that larger deformations will also occur at the

NP locations.

4.2.1 HILE Material

The Young’s modulus of the simulation data was adjusted so that the maximum force and

displacement of both the simulation and experiment coincide. This method of fitting the

Young’s modulus will also underestimate the stiffness towards the end of the data if we as-

sume a constant slope for a hypothetical continued loading. As can be seen from Figure 4.7

we were not able to reproduce the initial non-linear region with the HILE material. This mis-

match is also seen with the GB161 experimental data. The Young’s modulus’ calculated from

the available data is plotted in Figure 4.8. The there is no evident dependence on the diame-

ter and the difference in Young’s modulus for similar diameter MBs is large. This method of
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determining the Young’s modulus is therefore not a good alternative.

4.2.2 Yeoh Material Model

The Yeoh models exhibits a non-linear behaviour and yields a better fit to the experimental

data. Figure 4.11 shows GB167 bubbles plotted against simulation data. The coefficients

used for both the GB161 and GB167 batch are presented in table 4.9. The experimental data’s

tendency to exhibit a rapid increase in stiffness followed by a region of constant stiffness is

not explained by the Yeoh parameters used. Unfortunately it was not possible to run a full

array of parameters due to this material being included at a late stage of the project. Similar

to the tensile stiffness of the HILE model, there is a large span in the coefficients. The average

of the GB167 fitted C20 parameter was used on a standard bubble DMB = 3.0µm. This is

plotted against the 40nN experimental data from Moe in Figure 4.10.

The sensitivity study covered in the simulation chapter was done with a HILE material.

Due to uncertainties about the assumed packing density a comparative simulation was also

run with the Yeoh material. This is shown in Figure 4.13.
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(a) Nr 1 (b) Nr 3

(c) Nr 4 (d) Nr 13

(e) Nr 14

Figure 4.7: HILE simulations visually fitted to the GB167 experimental data.
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Figure 4.8: GB 167, Young’s Modulus as a function of diameter.

Bubble C10 C20 C30
GB167 Nr 1 100 1.84 ·106 0
GB167 Nr 3 100 0,96 ·106 0
GB167 Nr 4 100 32.0 ·106 0
GB167 Nr 13 100 2.04 ·106 0
GB161 Nr 1 100 5.32 ·106 0
GB161 Nr 2 100 120 ·106 0
GB161 Nr 4 100 13.1 ·106 0
GB161 Nr 6 100 30.6 ·106 0

Figure 4.9: Yeoh parameters fitted by visual inspection.

Figure 4.10: Simulation run with the C20 coefficient averaged across the GB167 simulations
and plotted against all 40nN F −∆ curves.
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(a) Nr 1 (b) Nr 3

(c) Nr 4 (d) Nr 13

(e) Nr 14

Figure 4.11: GB 167 bubbles compared to Yeoh simulation data
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(a) Nr 1 (b) Nr 2

(c) Nr 4 (d) Nr 6

Figure 4.12: GB 161 bubbles compared to Yeoh simulation data

(a)

(b) (c)

Figure 4.13: (a)F −∆ curve of the two packing densities. (b ,c) Illustrates the modeled surface
geometry of packing density Q = 60 and Q = 75.
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4.3 Reissner Theory vs Simulation

As seen in all the experimental F −∆ curves the initial slope is zero. This comes from the def-

inition of contact as covered in Section 2.3.1. As discussed previously this is is attributed to

unknown boundary conditions or material non-linearity. Comparing the simulation data to

the Reissner theory we can see that it could be used as a reasonable estimate for the parallel

plate compression of both a perfectly smooth sphere and the nubbed sphere.

4.3.1 Smooth Shell

The Reissner Theory is shown to be a reasonable estimate for the initial deformation regime.

Figure 4.14 compares the Reissner Theory to two different shell thicknesses with a diameter

D = 3.0. There is some mismatch in the initial stiffness, something that might be due to a

contact coarser mesh in the thicker shell. The Reissner Theory seems to be a good estimate

up to a relative compression εDe f < 0.05.

4.3.2 Nubbed Shell

As seen in Figure 4.15 the Reissner theory yields a reasonable estimate for relative deforma-

tions smaller that the buckling point, typically εDe f < 0.05.

(a) (b)

Figure 4.14: Plate compression of a smooth shell compared with the linear Reissner Theory.
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(a) (b)

Figure 4.15: Plate compression of a nubbed shell compared with the linear Reissner Theory.

4.4 Viscoelasticity of Shell

When looking at both the approach and retract F −∆ curve of each individual bubble, about

half of them exhibit a notable hysteresis. Due to the hysteresis only being present after can-

tilever bending is initiated, we can assume that the hysteresis is not induced by viscous drag

as the cantilever moves through the water. This leaves the shell material as one potential

cause of the hysteresis. To estimate the viscosity we will assume that the rate of loading is

the same in both directions due to the contrary not having been explicitly stated. The scan

rate of the AFM is covered in Section 2.2. We can then establish an average force which will

give us the magnitude in force being induced by viscous resistance. As stated in Chapter 2

the resulting average is not suitable for shell stiffness estimation. This is due to effects like

tip binding which causes an upwards force on the bubble as the cantilever retracts past the

initial contact point. The rate of bubble compression is different from the scan rate. As the

cantilever touches the bubble it will deflect and the effective rate of the bubble compression

is reduced. By finding the rate of compression of the bubble we can determine the viscosity

of the bubble. In order to obtain the viscosity of the shell we have to relate the bubble vis-

cosity to the deformation geometry of the shell. The finite deformation of an elastic MB shell

will have the same deformation geometry as a quasi-static loading of a viscoelastic MB shell.

Assuming the deformations of a viscoelastic MB happens in a similar fashion for both dy-

namic and quasi-static loading we can relate the shear strain to the rate of strain. The shear

strain rate γ̇ is assumed to be proportional with the relative compression rate u̇
D0

and hence

the shear modulus being proportional to the shear viscosity. The shear modulus is given by

G = E/2(1+ν). Employing these assumption to the Reissner Theory equation (4.1), we ob-
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(a) (b)

Figure 4.16: (a) The F −∆ curve of both the loading and unloading is plotted with the average
of the two. (b) Viscous resistance as a function of displacement.

tain a new equation for the viscous contribution to the force equation (4.3). Rearranging this

equation we can obtain an estimate for the viscosity of the material with (4.4). A Poisson

ration, nu = 0.45 and a constant shell thickness was used. The maximum value of the vis-

cous contribution was used to compute the viscosity. The estimated viscosity is presented in

Figure 4.17

F = E
4√

3(1−ν2)

t 2

D0
u (4.1)

F = 2G(1+ν)
4√

3(1−ν2)

t 2

D0
u (4.2)

Fvi sc =µ 8(1+ν)√
3(1−ν2)

t 2

D0
u̇ (4.3)

µs =
√

3(1−ν2)

8(1+ν)

D0

t 2

Fvi sc

u̇
(4.4)

This result is vastly different from the Finnøy data where casein MB viscosity was de-

termined by theoretical attenuation estimates and parameter fitting (µs = 1.29± 0.06 Pa s).

The thickness assumed by Finnøy was 0.15µm as opposed to our 0.05µm but even when

employing our simple consideration with Finnøy’s assumed thickness, the viscosity is still

three orders of magnitude larger (1.9 ·103Pas −136.8 ·103Pas). This discrepancy raises large

concerns about the validity of this simple consideration and this method is probably wrong.
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Figure 4.17: The viscosity if the shell was estimated with a constant thickness of 0.05µm
across the datasets.
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Chapter 5

Discussion

5.1 Experimental Data

The limited data set available is one of the biggest challenges faced in this thesis. A larger

number of data sets would help us distinctly isolate phenomenons seen in the F −∆ curves.

Right now we have no way of determining if an observed effect is unique or part of other data

sets exhibiting the same behaviour. For the available experimental data there seems to be a

trend of "soft" and "firm" bubbles. The stiff bubbles all undergo a relatively small relative

compression where an initial softer region is followed by a sharp increase in stiffness. The

later parts of the "stiff" F−∆ curve appear linear. The softer bubbles seem to all display some

form of non-linearity across the entire deformation regime. There is no correlation between

the stiffness and batch or diameter. Based on the data from Moe and our FEM simulations

it is still not possible to determine if the non-linearity is caused by material specific proper-

ties or other external unknown boundary conditions. A larger sample size, including larger

deformations, might allow us to distinctly discern trends and anomalies which could reduce

the apparent lack of correlation in the experimental data.

5.1.1 Contact Point

The contact point definition will impact how much of the initial non-linear region will be

included in the F −∆ curve. Our chosen approach to determining the contact point is con-

servative as it includes all initial contact effects. The manual approach of the direct analysis

in our definition would be problematic for a larger sample size. A simple algorithm for defin-

ing the required parameters could be implemented in order to manage a larger data set. This
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definition is in contrast to Finnøy’s approach which defined the contact point as where the

magnitude of the slope was above a certain value. This strict metric which purposely ex-

cludes some of the small slope found in the initial region. The size of the excluded regions in

the Finnøy’s data is not known.

The variety of definitions of contact points in other studies creates difficulties in compar-

ing both experimental and simulation F −∆ curves with other external analyses and data.

This is an issue when attempting to predict a shell thickness for the Finnøy data as he has

employed a strict metric for contact point which purposely eliminates small initial slopes

(see Section 2.3.1).

5.1.2 Diameter of bubble

Due to the limited resolution of the AFM imaging equipment, the diameter of individual

bubbles can not be accurately determined. The pixel size in the tested bubble images equates

to 0.24µm. As seen in the sensitivity study for the HILE material, this diameter uncertainty is

not detrimental for the estimated stiffness. The sensitivity study indicates a fluctuating error

up to around 10%. The oscillations are probably caused by a different NP packing struc-

ture as the NPs are uniquely placed for each diameter. This error is not considered critical

due to the span of tensile modulus being orders of magnitude larger than the potential error

caused by the diameter uncertainty. A. Bjørkøy (Department of Physics) since obtained a

new imaging system with a maximum resolution of 150nm. This will improve the accuracy

of the reported diameter for future experiments.

5.1.3 Stiff vs Soft Bubbles

As mentioned previously the F −∆ curves can potentially be grouped into two categories:

stiff and soft. This is can be seen in Figure 2.11. It is possible that the bubbles with a stiffer

F −∆ curve was deemed undeformed. It might be hard to observe a perfect depression of the

center of the MB as the thickness of MB that creates the image contrast would remain the

same. Glynos et al.[20] observed permanent deformations polymer MBs was possible. Due

to the limited data, it is not possible to suggest a permanent deformation as the cause of the

stiffer bubbles.

Looking at all of Moe’s data, the curves seem to have a similar stiffness towards the end

of the compression. This was investigated further and a seemingly linear relation between
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(a) (b)

Figure 5.1: (a) Slope of last five data points for each GB MB. (b) Young’s modulus correspond-
ing to the later part of the experimental data.

bubble stiffness and diameter is seen. This evaluation was done by calculating the slope be-

tween data point N and N-4. The resulting stiffness is shown in Figure 5.1a. We can create

an alternative estimate for the Young’s modulus of a HILE NP-MB by assuming that the ini-

tial non-linear regime is caused by external BCs and not pure deformation of the bubble.

This is alternative representative region also assumes that initial non-linear effects can not

be attributed to material non-linearity. By looking at the later region of compression the un-

determined BCs can be considered displaced or otherwise negligible. Based on the Reissner

theory being a good assumption for the initial compression of a perfect HILE NP-MB, we can

obtain an alternative Young’s modulus from the calculated stiffness. A constant thickness of

50nm was used and the resulting Young’s modulus is shown in Figure 5.1b.

An experimental specific uncertainty is the challenge of centering the AFM cantilever

over the NP-MBs. This might also cause errors in the reported F −∆ curves. Any non-center

loading could potentially cause the cantilever to twist, something that would negatively im-

pact the accuracy of the force measurement.

5.1.4 Initial Non-linear Behaviour

Based on the information gathered and simulations run, it appears that the non-linear re-

gion is attributed to either a non-linear material model or other still undefined boundary

conditions. As seen by the simulations employing the HILE material model, the non-linear

region has no apparent geometric explanation. Any linear material will have an initial stiff-

ness where as the experimental data has no initial stiffness. The Yeoh material model better

represents this effect. Setting the C10 coefficient to 0 or close to zero we are able to obtain
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a very soft initial response. The Yeoh simulations corresponds better to the experimental

data. A potential material non-linearity is supported by the typical non-linear σ−ε curve of

protein. This alone is not enough to support this as the single determining cause of the ini-

tial non-linearity. Boundary conditions that can induce non-linearity are for example PEG-

chains on the outside of the NPs. Their length and density is scarcely documented and the

displacement of a grass-like structure could have a greater influence on the F −∆ curve than

originally reasoned in Section 2.1.3. The effect of the entire NP-MB being coated in a layer of

protein might also influence the initial contact behaviour. There could also be an undocu-

mented electrostatic repulsion between the MB and the cantilever tip. The Coulomb charge,

C, required for two charged points 5nm apart repelling each other with 5nN would require

3.7C. This equates to about 3 Ampere seconds. It is not known if such a charge could persist

for both the tip and the coated dish. The Yeoh form used in our simulations behave simi-

larly with an exponential σ− ε relation and seems to fit the experimental data much better

than the HILE material model. Another non-linear effect might be the solubility of the ca-

sein used in the GB batch. A hydrated outer layer of casein or HSA[34] might provide some

initial resistance, seen in the F −∆ curves. Due to the number of different models of casein

it is difficult to draw insight from its properties [58] and it was neglected.

The F−∆ curves were calibrated with a sensitivity study which showed a short initial non-

linear response. The glass base subject to the sensitivity study is coated with a polymer which

could contribute to this. It is not known of the sensitivity study was done on the same glass

base as the bubble compression. Different polymer thicknesses both globaly and regionaly

on the glass base would impact the non-linear influence on the bubble measurements.

5.2 Shell Properties

The MBs estimated Young’s modulus for the HILE simulations range from 24.8-112.5 MPa

and there was no obvious correlation to the diameter. The method of fitting the F −∆ curves

is highly subjective. Without making unjust assumptions about the initial non-linear region,

it is not possible to get a good prediction of the MBs tensile modulus using the HILE ma-

terial. The Yeoh model was used with a low initial stiffness, C10 = 100, and the resulting C20

parameters ranged from 0.96e6−40e6. The Yeoh model was fitted visually with one iteration.

The C30 parameter was set to 0 for all experimental fittings as involving this parameter would
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have complicated the fitting process further. In hindsight this variable could better describe

the sharper rise in stiffness seen in the "stiff" bubbles. An alternative fitting method could

have incorporated a matrix of variables dependent on a cost function. The cost function

is dependent on the simulations deviation from the experimental data and minimizing this

would optimize the coefficients. This method would require a refined model as the simula-

tion time associated with this iterative approach would be large.

Both material models have also been assumed isotropic and homogeneous. This is a

very big leap to take for example due to the dimensions of the shell thickness possibly being

less than 5-10 molecules. Presently, no information has been found about the validity of

continuum theory for protein deformation on this scale. Being able to describe the thickness

in integer multiples of molecules strongly indicates that continuum theory could very easily

fail.

Taking the GB167 Nr 13 MB as an example, we can look at the reasonableness of the re-

sulting stresses. The HILE model has a final maximum Mises stress of around 6.7 MPa where

as the Yeoh model has a final maximum Mises of 43 MPa. This large difference is attributed

to the Yeoh models smaller contact area, illustrated in Figure 4.6c, causing higher localizes

stress. A study investigated a casein and glycerin(70%/30%) film which was shown to exhibit

tensile modulus of between 1 and 15 MPa[59]. The thickness, 20−180µm, was significantly

larger than what is found in the MBs. This creates uncertainty about this estimates appli-

cability. This experiment was conducted in air meaning there is no liquid interface. It was

found that the modulus was negatively correlated to the air humidity, which further dis-

suades comparison. This experiment is not directly comparable and does not directly inval-

idate the much higher tensile modulus seen in the MB experiment. Looking at the available

material properties of HSA, assumed to be similar to BSA, we see that our Young’s modu-

lus estimate is similar to the minimum breaking strength of HSA. HSA’s secondary structure

is approximately 4x4x14nm in size [60] and an individual HSA molecule is stronger than

the reported unbinding force between the HSA and HSA antibody. The breaking strength of

90-244pN[48, 61] translates to a breaking stress σ/br eak < 5.6−15.5MPa. A layered protein

structure would probably exhibit a higher breaking due to it being held in place along it’s

length as opposed to only being fixed at the ends. The studies only mentioned the breaking

strength and it is therefore not possible to say anything about the tensile modulus. If we look

at the different proteins as whole, our simulation data are within the same order of magni-
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tude as a proteins breaking strength. Further literature about the breaking strength or tensile

modulus of casein or BSA was not found.

5.2.1 Constant Thickness vs Constant Tensile Modulus

Due to the difficulty of determining the shell thickness of the MBs it is often presumed con-

stant. This might not be the most sensible approach considering that materials of similar

composition should exhibit similar material properties. This is not the case for the tensile

modulus estimates seen in this thesis. The largest estimate for the Young’s modulus is a fac-

tor of four larger than the smallest. The same trend is seen with the Yeoh model. The large

spread in the experimental data is not even close to a single material parameter. This is

something that indicates other factors, like the shell thickness playing an important role in

the MB behaviour.

5.2.2 Estimating Shell Thickness

Our method of estimating the shell thickness as a function of buckling point show that the

shell thickness might be negatively related to both MB diameter and shell thickness. The

steps present in the buckling dependence plots are attributed to the geometric effect of the

NPs. Previously Lytra et al.[23] has employed a theoretical pre- and post-buckling of perfect

spheres in order estimate the stiffness and shell thickness. This method is not applicable to

our MBs primarily due to a different loading condition.

As seen in the estimated thickness plot, we hit a lower threshold for the thickness. This

is due to not having simulated thinner shells, thus not having any data to interpolate. The

thinner shell was not modeled due to the thinner shell still requiring a minimum number

of nodes across the thickness. This is something which drastically increases the number of

elements required, driving the computational cost up. A thinner models should be investi-

gated further in order to be able to estimate the shell thickness of the MBs with a low bucking

point. Presently only the shell thickness and MB diameter is included. The effect of pack-

ing density is shown but not included in the estimates. As seen in the sensitivity study, the

response is also dependent on NP diameter, contact friction and NP location relative to the

initial contact point. The effect of these were not investigated so their effect is difficult to

quantify. The estimation of the Finnøy MBs buckling point was also done by direct analy-

sis and is therefore highly subjective. An algorithmic approach to determining the buckling
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point should be developed. It’s application requires numerical data, something that was not

available for the Finnøy data. Again, in hindsight, the Yeoh material model should have been

run for this experiment too. The large displacement response look similar to the HILE model

except that the pre-buckling stiffness is maintained.

5.3 Simulated MBs

5.3.1 Smooth Shell

The plate compression of a smooth shell did not provide much insight into the NP-MB be-

haviour. The initial linear region indicates that the Reissner Theory could be a good estimate

for the Young’s modulus of both the smooth and nubbed shell with a linear elastic material.

The range of validity will be highly dependent on the diameter, shell thickness and imper-

fections of the sphere. This relation was not studied in great detail and should only be used

as an indication that this approach might be applicable for HILE spheres.

5.3.2 Simplified Nubbed Shell

The simplified nubbed shells were very useful in the sensitivity study of the HILE material.

They significantly reduced run time and enabled fast iterations across parameters. Their

applicability with the Yeoh material is questionable as the calibration between the nubbed

and simple sections will become very complex. Their usefulness will therefor be limited.

5.3.3 Nubbed Shell

Ideally the NPs and surfactant shell would have been modeled with unique material param-

eters. Assigning the NPs a unique material was not trivial to automate and the homogeneous

model was therefore adopted. The rapid increase in thickness at the edge of the NPs mean

that most of the deformation occurs in the thinner shell between the NPs. The geometric

effect of the NPs plate contact is maintained due to the limited deformation and flattening

of the solid NPs. Inter NP deformations are assumed to be a greater issue in the Yeoh model

due to the low initial stiffness. This again reinforces the notion that they should have been

modeled with different properties.
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The NP packing density chosen was based on visual inspection of the SEM images in Sec-

tion 2.1.3. There appears to be some separation between the smaller NPs. It was attempted

to count the number of fluorescent particles seen in Figure 2.4 and guessing the diameter

being the MB size average, 3µm. A DMB = 3.0µm model with a Q = 60 packing density has

about the same number of particles in it’s symmetry plane as the fluorescent MB. Also con-

sidering the small repulsive force caused by the negative ζ potential the NPs were placed

some distance apart. In hindsight this was a premature decision due to the uncertainty of

the reference diameter and a larger variety of packing densities should have been tried. The

SEM images can also have been wrongly interpreted and the perceived separation might also

be a product the protein surfactant filling the voids between the NPs in a non-uniform way.

A simulation problem that will arise with the denser NP packing is the equidistant dis-

tribution. The Fibonacci lattice sees a slightly denser packing in one particular direction.

If the homogeneous material model is employed as packing density increases, the touching

NPs will form continuous spirals extending from the lattice poles. This spiral will be thicker

than the shell itself, inducing a stiffer behaviour. The Fibonacci method also does not pack

the NPs as efficiently as possible. It is believed that a unstructured distribution could yield a

denser lower packing limit. This could potentially be done by solving the Thompson model

presented in Section 3.5.1. This could prove to be computationally expensive and other more

efficient methods might be available.

As mentioned previously, thinner shells should also have been further investigated. The

lower estimate for a pure HSA bubble (15nm) should also have been included. This was not

accomplished due to the modeling method and the large number of elements required to

run the model.

The contact between the compressing plate and the NP-MP was modeled frictionless. As

mentioned in Section 4.4 some MBs exhibit a binding effect, which is the MB sticking to the

AFM tip. This indicates that the contact maybe should not be modeled frictionless.

5.3.4 Alternative Modeling Method

An alternative modeling method was hypothesized late in the project. This was not tested

but might yield better results. It is based on creating a second set of NPs as surface based

parts, separate from the the full NP-MB model. By using a Boolean cut between a concentric

NP surface and an embedded NP, a separate part will be created where the solid NP is now

68



5.4. ESTIMATING VISCOSITY OF NP-MB SHELL

a unique segment contained in the full model. Using this method on all the NPs we can

assign a unique material parameter to each. This would allow us to increase the mesh size

in the solid NP segments, reducing run time. Appropriate material properties can now also

be assigned the NPs, eliminating any unrealistic deformation happening within the NP. This

could potentially be combined with discrete rigid surfaces, further reducing computational

cost.

5.4 Estimating Viscosity of NP-MB Shell

Estimating the viscosity of the NP-MB shell based on the F −∆ hysteresis resulted in a signif-

icantly higher shear viscosity than previously estimated by Finnøy. The validity of this thesis’

assumptions must be further investigated. An explanation could also be caused by equip-

ment specific properties like a hysteresis in the z-measurement of the AFM base location.

Finnøys measurements were run with a closed Z loop which compensates for any hystere-

sis in the piezo element controlling the z axis motion. It is not known if Moe employed the

same method but F −∆ hysteresis is seen in both Finnøy’s and Moe’s experiments. The shell

viscosity estimation used by Finnøy and Moe has used by several other [62, 63, 64, 65]. It is

based on a indirect measurement. This is something that will induce further uncertainty as

the indirect measurements adds another layer of potential errors. The attenuation is mea-

sured when a MB solution is exposed to a varying ultrasound field. The results are then

compared to analytically developed attenuation curves from which a shell viscosity can be

inferred. The frequency the MBs are exposed to in the attenuation estimates are also much

larger than the AFM compression. The viscosity could potentially be rate dependent.

5.5 Implications and Further Work

We have shown that the Yeoh material model better predicts the F −∆ response of a NP-MB.

Based on the data available it was not possible to definitely conclude that this is the primary

cause of non-linearity. The Yeoh models applicability should be confirmed by using it on a

sample size with a larger deformation regime.
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Attenuation

If the Yeoh material model is applicable we can investigate the effect this has on the an-

alytical estimates of the attenuation as an MB is exposed to a acoustic pressure. The dy-

namic equations used to simulate a theoretical attenuation elastic shell bubbles, Church [66]

and the thin shell version presented by Hoff et al. [67], incorporate a linear elastic material

for non-linear oscillations. We suggest expanding the equations to consider the non-linear

stress strain relation of the Yeoh model. The established analytical solution to the non-linear

problem is then voided but the response for a given system can still be numerically inte-

grated. This can then be compared to the linear material models and the measured attenu-

ation.

Shell Thickness

Regardless of the material model used in either quasi-static or dynamic considerations of

MB properties, the challenge of determining the shell thickness remains. The method of es-

timating the shell thickness as a function of the buckling point is promising. In order for this

to be useful it should be expanded with the Yeoh material model and run for a larger variety

of parameter. First and foremost thinner shells should be simulated as this seems to be a

very relevant factor. Presently only the MB diameter and shell thickness are included, but

this should be expanded to include all relevant parameters. Finding the appropriate param-

eters values when the parameter functions are seemingly discontinuous will be a challenge.

The assumption that a single parameters response is independent of the other parameters

will also have to be investigated.

Reissner Theory

The linearity of the large deformation plate loading of both the smooth and irregular sur-

face shell was somewhat surprising. This is an extension of the finite element analysis Elsner

et al.[21] conducted on the Reissner Theory’s validity for a rigid sphere compression of a

spherical shell. The rigid sphere had a radius four times larger than the shell being com-

pressed. Our simulations are conceptually similar but with an infinite radius on the com-

pressing sphere. This has not the primary focus of the thesis and should thus be further

investigated for validity.
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5.5.1 Alternative Method for Determinig NP-MB Tensile Modulus

Investigating the basis for the deJong theory presented in 1.5.1 and its incompatibility with

the AFM experiment spurred the idea of utilizing this theory on a applicable experiment. An

alternative method for determining the shell parameters is suggested. This method, hereby

referred to as Morton’s method, is motivated by the deJong theory where the bubble radius is

a function a induced hydrostatic pressure. The hypothesis is that large quantities of relatively

accurate of data can be obtained with little equipment other than an accurate microscope

with imaging capabilities. By subjecting a MB solution to a hydrostatic pressure we can relate

the change of radius to the imposed pressure and hence gain insight of the shells properties.

Previously the deJong theory has only been used to estimate the response and attenu-

ation of MBs exposed to an acoustic pressure. The acoustic pressure is often in the MHz

range meaning the response needs to be considered dynamic. The concept of tracking MB

diameter with the purpose of determining shell parameters has previously only been done

by high speed imaging of the response to an acoustic pressure [68, 69]. By not using the

acoustic pressure as the exiting force we reduce potential errors associated with the dynamic

response of the bubble.

Having the ability to accurately image MBs in a solution allows us to determine the radius

of the MBs in the field of view. By imaging the MBs before and after a hydrostatic pressure

has been applied we can determine shell properties like the thickness and stiffness. The

number of data points gathered from each experiment will be a function of the numbers

of NPs in the field of view. Initial analysis of the response can be determined manually as

a proof of concept. By employing an image analyzing algorithm this experimental method

can be automated and scaled. This will enable statistical analysis of the data, which will

be useful in characterizing general MB properties and predicting typical behaviour. There

has not been found any previous literature on utilizing a hydrostatic pressure and the radial

response of an MB to establish shell properties. deJong et al. (2009)[68] used a high speed

camera to image the bubble response as a function of an acoustic pulse. Marmottant et al.

[70] investigated the critical buckling pressure of a coated MB. This will be relevant when

MBs are exposed to an overpressure.
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Practical Considerations

In order to get a quasi-static radial response the MBs must be exposed to a hydrostatic pres-

sure. This means that the MBs must be contained in a pressure vessel. As far as initial re-

search can tell there is no available system which can impose a hydrostatic pressure on a

sample while maintaining the ability to image the sample. This will be an engineering chal-

lenge as the quality of the microscope image is dependent on the glass thickness of the sam-

ple container.

The thin glass surface poses a limitation as maximum operating pressure will be a func-

tion of the thickness and surface are of the glass. An initial analytical consideration indicates

that a 1mm thick glass plate covering a 30mm diameter hole will be able to withstand about

200kPa before breaking. This means that the unsupported glass surface should be as small

as possible while still allowing the microscope aperture to contact the glass of the sample

container. The aperture requires direct contact with the sample container and a small drop

of oil is used to ensure the desired optical qualities of the interface. The MBs will also have

to be immobilised on the glass surface as a larger than necessary focal distance will impact

the accuracy. Immobilization is described in Finnøy’s thesis [41].

The imaging equipment available at the Department of Physics has a resolution of 150nm.

Initial consideration of a NP-MB similar to the GB bubbles DMB = 3.0µm, t = 0.05µm give

an idea about the expected response. The low initial stiffness of the bubble deformations

is translated into an visually estimated initial tensile stiffness E = 5MPa. This gives an ex-

pected change in diameter of 4.5nm/kPa. If the Yeoh material model better represent the

actual behavior then this ratio will increase due to a lower initial stiffness.

In addition to an imaging system a pressure vessel and a pump is required. The pump

should be able to create both under- and overpressure and does not need to be sophisticated

beyond keeping a constant pressure. An accurate pressure gauge is also required. If we want

to follow the slow dynamic response of the bubble a data logging tool would be needed for

the pressure gauge.

Morton’s method remains to be tested but hopefully this will be an efficient and accurate

way of estimating shell properties for quasi-static loading. The only larger, more expensive,

equipment required is the microscope making it easy to use as no high speed camera is re-

quired. Capturing many data samples in each experiment will enable the use of statistical

tool which enables better and more general characterization.
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Conclusion

This thesis has shown that finite element simulation can be used to estimate shell properties

of a nanoparticle-stabilized microbubble. The Yeoh parameter is a better fit to the experi-

mental data than the linear elastic material. The piecewise linear regions present in many

of the NP-MB F −∆ curves are unfortunately not represented by the Yeoh model’s simulated

response. Based on this we can conclude that a non-linear behavior of the material is a likely

but not necessarily exclusive factor of the non-linear response seen in the experimental data.

The HILE material simulations showed no sign of stiffening. This presumably leaves any un-

determined boundary conditions as the sole cause of the non-linear response. Based on the

large deformations of the bubbles it is not likely that the unknown boundary conditions are

the sole perpetrator either. We therefore conclude that it is unlikely that the material prop-

erties behave linearly. The introduction of the non-linear tensile modulus might impact the

results of current analytical estimates pertaining to a protein MB shell exposed to an acoustic

pressure.

The FE models also allows us to extract information based the buckling point of the

MBs. Until a better approach for estimating an NP-MBs shell thickness is devised, our sug-

gested method will hopefully be a valuable improvement over the previously utilized edu-

cated guess.

The proposed method of estimating the shell viscosity based on the loading curve hys-

teresis is not deemed suitable. This is due to the large discrepancy between the estimated

viscosities and previously reported viscosities.
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