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Preface

This master thesis is written at the Norwegian University of Science and Technology, Faculty

of Engineering Science and Technology, Department of Production and Quality Engineering, in

collaboration with Det Norske Veritas. It is carried out during the spring semester of 2013. The

thesis is within the field of risk management, with an emphasis on barrier management and

analysis. It is a continuation of the work done in the project thesis on Risk Assessment, which

also focused on barrier definitions.

The thesis is written for readers with an understanding of the basic methodologies and terms

used in risk assessments and analysis, that either conduct studies within the field of safety and

risk, or works with safety and risk.

Trondheim, 2013-06-10

)

Arve Olaf Alvik Torgauten



ii

Acknowledgment

I would like to thank my supervisors, Professor Stein Haugen at the department of Production

and Quality Engineering (NTNU), and Sondre Øie, Risk Management & Human Factors Consul-

tant at Det Norske Veritas, for their guidance and help with the thesis throughout the semester.

I also acknowledge the contributions of Det Norske Veritas, and their department of Risk

Management, for their interest in my thesis topic. Especially I would like to thank Koen van de

Merwe, and his help during the literature search.

A.O.A.T.



iii

Summary

This master thesis is written on the topic of barrier management, and specifically the human

and organizational aspects of this field. The main objective of the thesis is to clarify the use of

terms related to human and organizational aspects of barrier management. The thesis is re-

stricted to major accident risks in the offshore oil and gas industry.

There have in the later years been an increasing focus on the operational and organizational

aspects of risk reduction. In addition to this focus, the Petroleum Safety Authority in Norway

have stated that barriers are one of their most important areas of focus. There are however a

large number of different definition sets and classification schemes for barriers and risk reduc-

ing measures, both within the oil and gas industry, and in other industries. These definitions

and classifications integrate to a varying extent human and organizational aspects of the risk re-

ducing measures. There are also difficulties incorporating the human and organizational con-

tributions into accident scenario modeling, both because of the lack of data on these aspects

and the lack of modeling methods that are adaptable for the oil and gas industry.

Some of the main differentiation between the definitions that are described in the thesis is

the differentiation between what aspects that are a part of the barrier, and what aspects that

influences the barrier. Here there are some definitions that operates with a wide scope of what

constitutes a barrier, where human actions, rules, regulations, procedures and plans can be con-

sidered a part of the barrier, while other definitions strictly limits the scope of barriers to only

include technical and physical elements. The barrier definitions are often broken down into

sub-definitions. Some of the most common terms that are used are barrier elements, barrier

systems, barrier functions, and of course barrier. Some definition sets also include influencing

factors. Though correlations exists between the different barrier definitions, there are some sig-

nificant differences, especially on the operational and organizational aspects.

Some modeling methods, that incorporates or focuses on human and organizational aspects

are described and discussed in the thesis. The main focus is on Human Reliability Analysis

methods. This is a set of methods that are mainly developed and used in the nuclear power
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industry to model human actions. These models differentiates between human actions, perfor-

mance shaping, or influencing, factors, and uses probabilities to model human error or failure.

These modeling methods have not previously been used, to any great extent, in the oil and gas

industry, because of the challenges of adapting the data and models to the operations performed

on an oil rig, from the operations on nuclear power plants. The other modeling methods that

have been described and discussed are the use of Bayesian Belief Networks, the Functional Res-

onance Modeling Method and the System-Theoretic Accident Model and Process methodology.

These all have pros and cons regarding application for barrier modelling in the offshore oil and

gas industry.

Some of the definitions that was found and discussed in the literature survey, are applied to

different major accident related scenarios, in order to examine the differences between these

closer, in case scenarios. The cases that are used, are in different stages of an accident scenario.

The first case is an maintenance operation, where the different steps in the operation are de-

scribed. The second case is in relation to a drilling operation. Here the different elements in

well kick-detection are described. The last case is a hydro carbon leak scenario, where different

safety measures and procedures are described. For these three cases, four different definitions

or classifications of barriers are applied. The comparison shows that most of the differences

between the definitions are related to operational and organizational aspects of the procedures

and measures.

The findings in the thesis points towards that a focus on the function of the barriers is the

best way of incorporating operational and organizational aspects of barrier management into

modeling. This is opposed to a hardware focused barrier definition. A set of barrier definitions

that is based on this function-oriented view is proposed. Also a framework to identify barriers,

based on the new set of barrier definition is proposed. The proposed definition set is applied

to the same cases as the definitions found in the literature survey. The barrier identification

framework is exemplified through the application on a hydro carbon leak scenario. The findings

and the proposed definition are discussed, and some areas that are in need of future work are

proposed.



v

Samendrag

Denne masteroppgaven er skrevet om temaet barrierestyring, med fokus på de menneskelige og

organisatoriske aspektene av barrierer. Hovedmålet med oppgaven er å avklare bruk av termer

knyttet til menneskelige og organisatoriske aspekter av barrierestyring. Oppgaven er begrenst

til storulykkesrisiko innen offshore olje-og gassindustri.

Det har i de senere år vært et økende fokus på operasjonelle og organisatoriske aspekter

av risikoreduksjon. I tillegg til dette fokuset, har Petroleumstilsynet uttalt at barrierer er ett av

deres viktigste satsningsområder. Det er imidlertid flere forskjellige definisjoner og klassifis-

eringer av barrierer og risikoreduserned tiltak, både innen olje-og gassindustrien, og i andre

næringer. Disse integrerer i varierende grad menneskelige og organisatoriske aspekter av risiko-

reduserende tiltak. Det er også utfordringer, som omfatter de menneskelige og organisatoriske

bidragene i ulike modelleringsmetoder, både på grunn av manglende data om disse aspektene

og mangel på modelleringsmetoder som er tilpasset olje-og gassindustrien.

Noen av de viktigste forskjellene mellom de definisjonene, som er beskrevet i oppgaven,

er differensiering mellom hvilke aspekter som er en del av barrieren, og hvilke aspekter som

påvirker barrierer. Her er det noen definisjoner som opererer med et bredt scope i fohold til hva

det er som utgjør en barriere. I disse er menneskelige handlinger, regler, forskrifter, prosedyrer

og planer betraktet som en del av barrieren. Andre definisjoner begrenser scopet til defin-

isjonene ved å bare inkludere tekniske og fysiske elementer som barrierer. Det er også forskjeller

i måten barrieredefinisjonene er brutt ned i under-definisjoner. Noen av de vanligste elementene

er; barriere elementer, barriere systemer, barriere funksjoner, og selvfølgelig barrierer. Noen

definisjonssett innkluderer også påvirkende faktorer. Selv om der er korrelasjoner mellom de

ulike barrieredefinisjonene, er det også noen vesentlige forskjeller, særlig i forhold til operasjonelle

og organisatoriske aspekter.

Noen modelleringsmetoder, som inkorporerer eller fokuserer på menneskelige og organ-

isatoriske aspekter er beskrevet og diskutert i oppgaven. Hovedfokuset er på metoder innen
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Human Reliability Analysis. Dette er en samlebetegnelse på metoder, som har blitt utviklet og

brukt i kjernekraftindustrien, for å modellere menneskelige handlinger. Disse modellene skiller

mellom menneskelige handlinger, ytelses influerende/påvirkende faktorer. Metodene bruker

feil-sannsynligheter for å modellere menneskelige feil og svikt. Modelleringsmetodene har til

nå ikke vært så mye brukt i olje-og gass-industrien, på grunn av utfordringene med å tilpasse

data og modeller fra operasjoner på atomkraftverk til operasjoner utført i olje og gass indus-

trien. Andre modelleringmetoder, som er beskrevet og diskutert, er bruk av Bayesian Belief

Networks, Functional Resonance Modeling metoden og Sytem-Theoretical Accident Model and

Process metodikken. Det er fordeler og ulemper med alle disse modeleringsmetodene i fohold

til barrieremodelering i olje- og gass-industrien.

For å undersøke forskjellene mellom barriere definisjoer, nærmer er noen av de definisjonene

som ble funnet og diskutert i litteraturstudiet, anvendt på ulike storulykke relaterte scenarier.

Casene som er brukt, er i fra ulike stadier i et mulig ulykkesscenario. Den første casen er baser

på en vedlikeholdsoperasjon, hvor de forskjellige trinnene i operasjonen er beskrevet. Det andre

tilfellet er i forbindelse med en boreoperasjon. Her er de forskjellige elementene i brønnspark-

deteksjon beskrevet. Den siste casen er et hydrokarbon lekkasje scenario, der ulike sikkerhet-

stiltak er beskrevet. For disse tre tilfellene var fire forskjellige definisjoner, eller klassifiseringer

av barrierer anvendt. Sammenligningen viste at de fleste av forskjellene mellom disse defin-

isjonene var knyttet til operasjonelle og organisatoriske aspekter av prosedyrer og tiltak.

Funn i besvarelsen viser at den beste måten innlemme operasjonelle og organisatoriske as-

pekter av barrierestyring i modellering kan være å fokusere på funksjonen barrierene utfører.

Dette er i motsetning til et hardware fokusert barriereperspektiv. Det er foreslått et sett med bar-

rieredefinisjoner, som er basert på et funksjons-orienterte barriereperspektivet. Det er også et

rammeverk for å identifisere barrierer, basert på det nye settet med barrieredefinisjon er fores-

lått. De foreslåtte definisjonene er vurdert opp mot definisjonene som ble funnet i litteraturen-

studiet. Barriere-identifikasjonsrammeverket er også eksemplifisert gjennom programmet på

en hydrokarbon lekkasje scenario. Funnene og det foreslåtte definisjonssettet er diskutert, og

det er foreslått områder, som bør belyses ytterligere.
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Chapter 1

Introduction

1.1 Background

The term barriers are used in many different contexts. Within the field of safety and risk man-

agement, the term is used to describe certain risk reducing measures. The focus of this thesis

is barriers in the context of major accidents within the oil and gas industry. There are no well

defined consensus on the use of the term ’major accident’. There are several definitions in use,

and most include severe damage to material assets, severe environmental damage and loss of

human life. Some definitions also include financial losses, though that can be regarded as an

implicit loss in most major accidents. Though it is not a critical part of this thesis, the following

definition, used by the Norwegian Petroleum Safety Authority (PSA), of a major accidents is used

for this thesis;

Z An acute event such as a major emission, fire or explosion, immediately or later causing

several serious injuries and / or loss of life, serious environmental damage and / or loss of greater

economic value.

(translated from Norwegian) PSA (2012a)

Within the field of risk management and safety engineering, there is a growing understand-

ing that the increasing complexity of the technical and technological systems is a challenge that

must be taken seriously. In the oil and gas industry it have also, through incidents and accidents,

become clear that the consequences of failure of these systems can be catastrophic. These acci-

1
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dents have severe consequences in terms of economical cost, environmental damage and loss of

life. Neither of these consequences are accepted in todays society. An aspect of these challenges

that have received increasing attention is the interaction between these new technologies, and

the human operator and the surroundings of the operation. Though it seems to be clear that

the operational and organizational aspects influence the risk, there are not any clear consen-

sus on how these elements are to be modeled. Barrier is a widely used term for risk reducing

measures. The term is defined differently in different industries and within specific industries,

and ranges from quite narrow descriptions to an all-including expression, both including and

excluding the socio-technical aspect of safety measures. Barrier management have been listed

as one of the top priorities of the PSA, and have been a focus of the yearly evaluation of the risk

level in the petroleum industry (PSA, 2012b) on the Norwegian continental shelf. There have

been a discussion both in the academia and the industry on how to implement the operational

and organizational factors influencing barrier integrity. This may partly be contributed to the

lack of consistency within the definitions and standards used.

The main objective of the thesis is then a clarification of the terms used. This is done through

describing, evaluating and discussing the use of operational and organizational aspects in bar-

rier management, and proposing a barrier classification and a set of barrier definitions, where

operational and organizational aspects of barrier management are taken into account.

1.2 Objectives

The following tasks are formulated in order to answer the main objective of the thesis:

1. Perform a comprehensive review of literature on the topic of barriers, and in particular

human and organizational barriers. This should build on the review performed in the

project thesis and summarize additional literature found during the search.

2. Discuss existing definitions of barrier, barrier functions, barrier elements and influencing

factors with a view to determine their suitability in relation to operational and organiza-

tional barriers. Use examples and consider in particular if the definitions make it possible

to distinguish between barrier elements and influencing factors.
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3. Evaluate how operational and organizational barriers can be modeled in risk analysis.

4. Consider barrier classifications/categories proposed in the literature and see if they are

suitable for classification of operational and organizational barriers. Propose a classifi-

cation scheme that is helpful in relation to monitoring of operational and organizational

barriers and also in relation to modeling.

5. Based on the review of how barriers can be modeled in risk analysis, evaluate the suitabil-

ity of using SPAR-H as a method for modeling barriers in the oil and gas industry.

The last objective, evaluating suitability of the Human Reliability Analysis (HRA) method,

Spar-H for modeling barriers in the oil and gas industry, is emphasized less then the other ob-

jectives in the thesis. The Spar-H method is reviewed, and the use of HRA methods in general is

discussed. This change is done in agreement with the supervisor.

1.3 Limitations

There are several limitations to this thesis, the most profound being time. Time limits both the

amount of research, and the amount of verification of the results the author is able to perform.

Another limitation is the authors knowledge of practical utilization of barrier modeling. Though

a theoretical understanding have been established through , practical challenges may uninten-

tionally be overlooked. This is counteracted by the use of resources that has this knowledge,

such as the supervisors, literature and example cases. The authors lack of practical experience

in the application of the theoretical models are in general a limitation of the thesis.

1.4 Structure of the Report

This masters thesis is structured in two main parts. The first part is Chapters 2 and 3. Here a

literature survey and theoretical background needed is summarized, and a list of the main liter-

ature that is found and used in the literature survey, are found. Chapter 2 is focused on barrier

definitions, classification and use, with an emphasis on human and organizational elements.

This Chapter is to a great extent a continuation of the authors project thesis. Chapter 3 focuses
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on literature regarding modeling methods that are used to model human and organizational

factors.

The second part of the thesis is focused on the evaluation and development of barrier definitions

and barrier classifications. Chapter 4 consists of three case studies, where barrier definitions are

compared using possible scenarios. Chapter 5 discusses the findings in Chapter 2 though 4, and

proposes a possible solution of how human and organizational elements can be incorporated

into barrier modeling through a set of barrier definitions. For each chapter the findings are dis-

cussed. Chapter 6 contains a summary, and conclusion, in addition to a final discussion and

some suggestions for further work.

In agreement with the supervisor, the pre-study report and progress reports are not included in

the thesis.



Chapter 2

Literature survey and review

2.1 Literature overview

This chapter is an overview of relevant literature on the topics of barrier classification, integra-

tion of operational and organizational elements in barrier analysis and use of barriers in the

quantitative risk analysis. This is a continuation of the literature survey done in the project the-

sis (Torgauten, 2012), but with a stronger focus on the operational and organizational aspects of

the classification schemes. The list below shows some of the key literature that is read, and used

in this thesis. Other sources are also used. Although the literature focuses on different indus-

tries, the focus of the review is to describe and discuss the definitions and classifications, and if

possible find applicable definitions and classifications for the offshore oil and gas industry.

• Safety barriers: Definitions, classification, and performance (Sklet, 2006)

• Principles of barrier management in the petroleum industry (translated from Norwegian,

PSA (2012a))

• Risk Assessment | Theory, Methods, and Applications (Rausand, 2011)

• System Reliability Theory | Models, Statistical methods, and Applications (Rausand and

Høyland, 2004)

• The Human Contribution: unsafe acts, accidents and heroic recoveries (Reason, 2008)

5
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• Managing Risk of Organizational Accidents (Reason, 1997)

• Risk Level in the Petroleum Industry (PSA, 2012b)

• Barriers to prevent and limit acute releases to sea | Environmental barrier indicators (Hauge

et al., 2012)

• Engineering a Safer World (Leveson, 2011)

• Human and organizational factors in the operational phase of safety instrumented sys-

tems: A new approach (Schönbeck et al., 2010)

• NEK IEC 61511, Functional safety | Safety instrumented systems for the process industry

sector (Part 1 and Part 3) (NEK-IEC, 2003a) and (NEK-IEC, 2003b)

• NEK IEC 61508, Functional safety of electrical/electronic/programmable electronic safety-

related systems | Part 1: General requirements (NEK-IEC, 2010)

• ARAMIS User Guide (Accidental Risk Assessment Methodology for Industries in the con-

text of the SEVESO II directive) (H.Andersen et al., 2004)

• Guidelines for Safe and Reliable Instrumented Protective Systems (CCPS, 2010)

• Basic Safety Principles for Nuclear Power Plants (INSAG, 1999)

• Good Practices for Implementing Human Reliability Analysis | Final Report (U.S. NRC,

2005a)

• Evaluation of Human Reliability Analysis Methods Against Good Practices (U.S. NRC, 2006)

• ISO 31000 Risk management - Principles and guidelines (ISO, 2009)

• NS-EN ISO 17776:2000 Petroleum and Natural Gas Industries | Offshore production instal-

lations | Guidelines on tools and techniques for hazard identification (ISO, 2002)

• Risk Assessment (Torgauten, 2012)

Some of the literature have been used as support literature, and is not mentioned explicitly

in the text, but read, to gain a better understanding of the challenges and solutions.



CHAPTER 2. LITERATURE SURVEY AND REVIEW 7

2.2 Definitions and Classifications

There have been made several significant contributions to classification and defining risk re-

ducing measures. Several of the models and methodology is reviewed in Torgauten (2012). The

review shows that there are a wide verity of terms describing these risk reducing measures, as

well as different definitions of these terms. The inconsistency in use of terms are quite evident.

This is quite possibly mainly caused by the differences in the industries that these definitions

and models have been developed in. As stated by Torgauten (2012), a general definition, that

can be used in all industries may be hard to achieve. There is however great benefits of getting

input from different points of view, in order to get a holistic view of the matter in question. James

Reason have in several books and papers worked with human and organizational elements in

risk analysis. Some of the most important works are the ’Managing risk of organizational acci-

dents’ (Reason, 1997) and ’Human Error’ (Reason, 1990). The Swiss Cheese model, also known

as the Reason model, is often used as a basis for barrier understanding. The conceptual model

is shown in Figure 2.1. In the model there are several layers of defenses, between the hazard or

hazardous event and the asset that needs protection to prevent losses. The possibility of the de-

fense failing is illustrated as a hole in the defense. These are directly influenced by unsafe acts

and latent conditions, and indirectly influenced by workplace factors and organizational fac-

tors. The model is used in different industries with different understanding of what constitutes

a defense. Examples of this are given in Torgauten (2012). Reason (1997) uses a wide definition,

probably to provide possibilities of use in different industries.

As seen form Figure 2.1 there is a clear distinction between the defenses in place and the

conditions that can lead to the failure of these defenses. Reason (1997) categorizes defenses

based on the function the they perform, as shown in the list below. In addition to the functional

categorization, Reason (1997) proposes a differentiation between soft and hard defenses. ’Hard’

defenses are typically physical barriers, alarms, interlocks, keys, non-destructive testing and

other technical or physical elements or functions. Legislation, training, oversight and front-

line operators are considered ’soft’ defenses. The main concerns of risk reducing measures, and

barriers are according to Reason (1997) considered to be as following:
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Unsafe Acts

Local workplace conditions

Organizational Factors

HAZARD LOSSES
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path
ways

Causes

Investigation

Defences

Figure 2.1: Conceptual barrier model presented by Reason (1997) (based on Figure 1.6 by Reason
(1997))

• to create understanding and awareness of the local hazards

• to give clear guidance on how to operate safely

• to provide alarms and warnings when danger is imminent

• to restore the system to a safe state in an off-normal situation

• to impose safety barriers between the hazards and the potential losses

• to contain and eliminate the hazards should the escape this barrier

• to provide the means of escape and rescue should hazard containment fail

One of the more resent and most comprehensive reviews of barrier definitions and classifi-

cations is the doctoral work by Sklet (2005). As Sklet (2006), and also the review of barrier theory

by Torgauten (2012) also shows, there are many different barrier classifications and definitions.

Torgauten (2012) shows that within oil and gas, the most common term to use to describe risk

reducing measures is the term barrier, while the nuclear industry uses ’layers of defense’, while

the aviation industry uses ’defenses’. Within the nuclear industry the term barrier is used in the

context of physical barriers. It is also noteworthy that within the oil and gas industry is a de-

gree of variation in the extent of the scope the term barrier, but the tendency is that the scope is
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wide, and includes physical, technical, operational and organizational aspects. The definition

recommended by Sklet (2006), given below, also reflects this. The definition recommended by

Sklet (2006) is based on several other definitions.

Z Safety Barrier: Safety barriers are physical and/or non-physical means planned to prevent,

control, or mitigate undesired events or accidents

Sklet (2006)

Z Barrier Function: A function planned to prevent, control or mitigate undesired events or ac-

cidents

Sklet (2006)

Z Barrier system: A system that has been designed and implemented to perform one or more

barrier functions

Sklet (2006)

Sklet (2006) also proposes a classification of barriers, as shown in Figure 2.2. This classifi-

cation distinguishes between active and passive barriers, and then again between physical and

operational/human passive barriers, and technical and operational/human active barriers.

Barrier Function What to do

Barrier Function How to do it

Realized by

Barrier Function Barrier Function

Physical Human/operational Technical Human/operational

Other technological
safety related sys.

Safety Instrumented
Systems

External risk 
reduction facilities

Figure 2.2: Classification of barriers based on Sklet (2006)
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As seen in Figure 2.2 there are both active and passive human/operational barriers. Sklet

(2006) notes that active human/operational barriers often are part of a work process, such as

self-control of work or third party control of work, while passive operational/human barriers

are for instance safety distance. Both of these can either be functioning continuously or on de-

mand.

As mentioned, in the nuclear industry, and specifically the International Nuclear Safety Agency

(INSAG, 1999) a more narrow definition of barriers is used. Here barriers are only physical el-

ements, meaning walls and physical separation. Other risk reducing measures are defined as

levels of defense. Different levels of defense model can as described by INSAG (1999) are based

on the objective of the level; prevention (level 1), control (level 2, 3 and 4) and mitigation (level

5). The defense in depth principle, as it is named, is focused on the reducing the possibility of

single human or equipment failures leading to harm to the public. The defense in depth princi-

ple does not focus specifically on humans as a safety function, but states that ’all safety activities,

whether organizational, behavioral or equipment rested are subject to layers of overlapping pro-

visions’ (INSAG, 1999).

The defense in depth principle in the nuclear power industry have strong resemblance to the

layers of protection principle used in the process industry. This principle can best be described

as shown in Figure 2.3. The layers of protection principle, as described by CCPS (2010), defines

a protection layer as ’(a) physical entity supported by a management system, which is capable of

preventing a hazardous event from propagating into undesired consequences’ CCPS (2010). The

human and organizational elements are thus defined as supportive elements.

H.Andersen et al. (2004) gives through the ARAMIS (Accidental Risk Assessment Methodol-

ogy for Industries in relation to the Seveso II directive) user guide, a framework to give a higher

degree of consistency for risk-based decision making within the chemical process industry. The

user guide gives among other steps information on identification of major accident hazards,

identification of safety barriers and assessment of their performance, and evaluation of safety

management efficiency to barrier reliability. H.Andersen et al. (2004) gives the following defini-
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PROCESS

CONTROL and MONITIRING

basic process control systems, monotoring and operator supervision

PREVENTION

Mechanical protection systems, process alarms, operators corrective actions

Safety instrumented control and prevention systems

MITIGATION

Mechanical mitigation systems, 

Safety instrumented control and mitigation systems, Operator supervision

PLANT EMERGENCY RESPONCE

Evacuation procedures

COMMUNITY EMERGENCY RESPONCE

Emergency broadcasting

Figure 2.3: The layers of defense (based on NEK-IEC 61511 part 1, figure 9 (NEK-IEC, 2003a))

tion of a safety barrier:

Z Safety Barrier: The safety barrier can be physical and engineered systems or human actions

based on specific procedures or administrative controls. The safety barrier directly serves the safety

function. The safety barrier are "how" to implement safety functions.

H.Andersen et al. (2004)

H.Andersen et al. (2004) also uses the term safety function to describe ’the "what" needed to

assure, increase and/or promote safety’. A safety function is defined as ’a technical or procedural

action, and not an object or a physical system’. The action is then carried out ’in order to avoid or

prevent an event or to control or limit the occurrence of the event.’.

The ARAMIS definitions are clearly based on the energy-barrier accident model, and utilizes

the Bow-Tie-model to a great extent to visualize the accident development and the barriers. As

shown in Figure 2.4, H.Andersen et al. (2004) defines the as a combination of fault trees leading

in to the critical event and event tree to determine the different consequences.

H.Andersen et al. (2004) divides the different safety barriers into four groups based on the

actions they realize; to avoid, to prevent, to control or to limit an event. The user guide also refers
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Figure 2.4: A simple representation of the Bow-Tie (based on Figure 3 by H.Andersen et al.
(2004))

to three types of barriers; active or passive barriers, and human action.

The user guide presented by H.Andersen et al. (2004) are to a great extent focused on the stan-

dards related to Safety Instrumented Systems (SIS), mainly the standards IEC 61508 and IEC

61511 (NEK-IEC, 2010, 2003a,b). The requirements related to these standards are described in

Section 2.2.3. When modeling safety barriers, H.Andersen et al. (2004) proposes a similar way

of assessing the frequency of failure as the Safety Integrity Level (SIL) is for a SIS. This is called

Level of Confidence and is denoted LC. The LC gives, as the SIL, a probability range of failure for

the subsystems that the safety barrier consists of. Here human actions are seen as a subsystem

of a safety barrier. As for a SIS, the requirement for LCs are divided into low demand and high

demand or continuous demand safety barriers. In addition to LCs the safety barriers are also

measured on efficiency and response time (RT).

H.Andersen et al. (2004) proposes a quite comprehensive classification scheme for safety

barriers. There are eleven types of barriers, as shown in Table 2.1. The terminology that differen-

tiates between control and barrier stems from the MORT (management oversight and risk tree)

methodology (H.Andersen et al., 2004). An introduction of the MORT methodology is found in

Rausand (2011).
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Table 2.1: Types of barriers (simplified from Table 14 by H.Andersen et al. (2004))

Barrier type Detect Diagnose /
activate

Act

Permanent - passive - control - - Hardware
Permanent - passive - barrier - - Hardware
Temporary - passive - - (human must

put in place)
Hardware

Permanent - active - - (may need acti-
vation by opera-
tor)

Hardware

Activated - hardware on demand -
barrier or control

Hardware Hardware Hardware

Activated - automated Hardware Software Hardware
Activated - manual Hardware Human Human/ remote

control
Activated - warned Hardware Human Human
Activated - assisted Hardware Software - hu-

man
Human/ remote
control

Activated - procedural Human Human Human/ remote
control

Activated - emergency Human Human Human/ remote
control

There are a differentiation made between the detection, diagnose/activation and act, as the

three basic functions of the barriers. A barrier can have one or more of these basic functions,

and the functions can be realized by different types of hardware and software or by humans.

Another, and in some aspects fundamentally different view on barriers is present by Holl-

nagel (2004). The basic element of Hollnagels classification is also a barrier system. The view is

based on normal operation, and not an accident sequence model, as most other barrier classifi-

cations and definitions are based on. The following four types of barrier systems are suggested

by Hollnagel (2004):

• Physical or material barrier system

• Functional (active or dynamic) barrier system

• Symbolic barrier system
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• Incorporeal barrier system

Especially the symbolic and incorporeal barrier systems are differentiates this barrier classi-

fication from the other classifications. The focus on understanding and knowledge as parts of a

barrier system shows a high focus on human interaction and also on normal operation. These

barrier systems are to a great extent focused on pre-event conditions, seen from a sequential

accident model perspective. While other barrier classifications are industry specific, is this clas-

sification more a general classification, border-lining to a non-industrial perspective. Hollnagel

(2004) also emphasis this by stating that the term barrier usually is understood from context.

2.2.1 Regulations and Regulatory Requirements

An important aspect to include, when reviewing barrier definitions and risk reducing measures,

is how the regulatory bodies uses the terms, and also how they enforces the regulations and stan-

dards. In Norway, the Petroleum Safety Authority (PSA) is the most important regulatory body.

The management regulations and the accompanying guidelines (PSA, 2010b,a), section five, is

the basis for how barriers are to be managed, and gives guidelines for the basic requirements

of barriers. The guideline to the management regulations section five states that ’(b)arriers (...),

can consist of either physical or non-physical measures, or a combination’ (PSA, 2010a). There

are no further clarification on what ’non-physical measures’ are, in these guidelines. However, in

the document ’Principals for barrier management in the petroleum industry’ (PSA, 2012a, 2013)

it is given some explanations on what these measures consists of. As mentioned in the previous

section, operational and organizational elements are incorporated into the PSA (2012a) defini-

tion.

Z Barrier: Technical, operational and organizational elements that individually or together

shall reduce the possibility of a specific error, hazards and accidents occur, or that mitigates or

prevents damage/nuisance.

(translated from Norwegian) PSA (2012a)

PSA (2012a) goes further than Sklet (2006) to specifically include operational and organi-

zational elements as a part of the definition of barriers. However in the second edition of this
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document (PSA, 2013), the descriptions of what constitutes organizational and operational bar-

rier elements are somewhat changed. An example of these changes are found in an example

given on a barrier function ’depressurize leaking segment’, where PSA (2012a) describes an orga-

nizational barrier as following (translated from Norwegian);

’if a CCR operator have to initiate manual actions to realize the function ’depressurize

leaking segment’, the operator is a part of an organizational barrier element. Actions

that is initiated would be an example of an operational barrier element.’

This is changed in the new version of the document (PSA, 2013), where the following used to

describe the operational and organizational barrier elements (translated from Norwegian);

’Documentation of the depressurization system would be an organizational barrier

element, while procedures, emergency preparedness plans and personnel that are to

secure and initiating potential manual depressurization, would be examples of oper-

ational barrier elements’

This is a quite drastic change as to what constitutes operational and organizational barrier

elements, but also clarifying, especially regarding organizational barrier elements. It is however

still unclear from the new description whether it is the plans, procedures and personnel that are

the operational barrier elements, or the actions an operator performs based on the procedures,

that constitutes the barrier elements in question.

Another definition of barriers used by PSA in their report on the risk level in the petroleum

industry (PSA, 2012b), is from the standard NS-EN ISO 17776:2000 for Petroleum and Natural

Gas Industries | Offshore production installations | Guidelines on tools and techniques for haz-

ard identification (ISO, 2002), given below.

Z Measures which reduce the probability of realizing a hazard’s potential for harm and which

reduces its consequences

ISO (2002)

ISO 17776 also notes that ’(b)arriers may be physical (materials, protective devices, shields,

segregation, etc.) or non-physical (procedures, inspections, training, drills etc.)’. PSA (2012b)
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notes that the term is used in a broad sense, and therefore includs procedures, inspections,

training and drills within non-physical barriers.

PSA (2012b) states that barriers is one of areas of importance for the PSA, and this topic has

a significant focus in this report. The following barriers are listed, that have been the focus of

the information gathering:

• Fire detection

• Gas detection

• Shutdown (Riser-EDSV, Production tree, DHSV)

• Blowdown valves (BDV)

• Pressure safety valve (PSV)

• Active fire prevetion (Deluge valve, start tests for pumps)

• Well integrity

• Maine systems (Ballast systems valves, watertight doors, reference systems)

• Maintenance management

• Response times

• Blowout preventor (BOP)

These barriers, or barrier elements, are mainly technical systems, where the focus of data

gathering is in the number of failures on test relative to the number of tests. It is also notewor-

thy that these elements are closely related to the NORSOK standard S-001 (NORSOK standards,

2008) that covers requirements to technical safety. For neither of these barriers, or barrier ele-

ments, the human or organizational influence are mentioned. There are however two elements

that stands out, maintenance management and response time. Whether or not these elements

should be defined as barrier elements can be discussed, when utilizing the definition presented

by PSA (2012a).

PSA (2013, 2012a) also focuses on the requirement given in the management regulations

(PSA, 2010b), where performance requirements must be set for barrier elements. Aspects that

can influence safety, such as culture can therefore not be considered a barrier element (PSA,
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2010b), nor can monitoring and review. Within the context of monitoring and review are ele-

ments of training and management. There are also made an important distinction between risk

influencing factors and barrier elements.

2.2.2 Integration of Human and Organizational Barriers in the Literature

Several of the articles and research papers that are listed in the literature survey have made

suggestions on how operational and organizational factors should be considered in relation to

risk assessments.

Hauge et al. (2012) have, as a part of a joint-industry project called ’Development of barriers

and indicators to prevent and limit pollutants to sea’, developed indicators for environmental

barriers. As a part of the report, the differentiation between indicators influencing factors and

barrier elements have been discussed. As shown in Figure 2.5, the basis for finding indicators on

the barriers, are through influential factors, that then again are related to the barrier element.

Degree of repeating failures
on Barrier element X

Indicator Influencing factor

Maintenance Quality on
Barrier element X

Barrier element

Barrier element X

Figure 2.5: Relation between indicator, influencing factor and barrier element (Generalized
from Figure 5-1 by Hauge et al. (2012))

The definitions that are used as a basis for the report by Hauge et al. (2012) are as following:

Z Barrier - A barrier can be regarded as a function which prevents a specific sequence of events

from taking place, or which directs the sequence of events in an intended direction to limit harm

Z Barrier function - The assigned responsibility or action of the barrier, e.g. prevent leakage,

limit amount of release or prevent ignition
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Z Barrier element - The personnel, equipment or systems that implement the barrier function

It is noteworthy to notice that the personnel that implements the barrier function is defined

as a barrier element. When illustrating the barrier elements that have been used as examples for

the development of indicators, Hauge et al. (2012) also includes a layer of organizational barrier

elements, as shown in Figure 2.6, where the barrier elements for a blowout precentor (BOP) are

shown. There is a district succession to the different barrier elements, where the organizational

barrier elements influences the human barrier elements, which then again influences some of

the technical barrier elements. There are also an arc indicating influence from the technical sys-

tems, or human-machine interface (HMI) to the human barrier element.

The OTS project (Sklet et al., 2010) proposes a way of monitoring the organizational and

operational aspects of safety barriers. Here are operational safety barriers described as ’human

and organizational factors’, and 7 operational safety barriers or performance standards as listed

below are covered (Sklet et al., 2010):

1. Work practice

2. Competance

3. Procedures

4. Communication

5. Workload and physical working environment

6. Management

7. Management of Change

The OTS-method is described as a proactive independent and systematic assessment of the

status of operational safety barriers. This differentiates it from other methods in being solely

focused on the operational phase of the lifecycle. The goal is here to monitor the condition of

the organizational and operational aspects of the barriers that are in place, in order to get a more

holistic view of the risk-picture on an installation. The OTS project is an addition the TTS project

that monitors the technical condition of the barriers. These are intended to be complement

each other, and are both intended for larger oversight, and not for continuous monitoring.



CHAPTER 2. LITERATURE SURVEY AND REVIEW 19

Barrier Function 2:
BOP seals

(gas is trapped in well below BOP)
1.

 T
ec

h
n

ic
al

 
B

ar
ri

er
E

le
m

en
ts Topside activation

and signal transfer 
systems

(Incl. backup)

Hydraulic actuation
systems (incl. pods,
accumulators and 

return)

Annular / ram
preventers

HMI / feedback
from position

indicators

2.
H

u
m

an
B

ar
ri

er
E

le
m

en
ts

HMI / feedback
from position

indicators

1.1 1.2 1.3

2.1

3.
O

rg
an

iz
at

io
n

al
B

ar
ri

er
E

le
m

en
ts

Operational 
procedures

3.1

Emergency
procedures

3.2

R
is

k
In

fl
u

en
ci

n
g 

Fa
ct

o
rs Management and 

work supervision

Communication,
cooperation and 

interfaces

Competance and
training

other RIFs

Figure 2.6: Example of barrier elements for a BOP seal function (Based on Figure C-3 by Hauge
et al. (2012))

2.2.3 Safety Instrumented Systems

A large amount of safety systems in the offshore industry are a part of a safety instrumented

systems, or SIS. A SIS consists of several technical elements and in some cases also human in-

teraction. A typical SIS consists of a set of sensors or other input elements, a logic solver, and

an actuating unit, for instance to give the system the ability to operate a valve, as shown in Fig-

ure 2.7.

The SIS shall fulfill one or several purposes, defined as safety instrumented functions (SIFs).

The requirements as it is formulated in the standards IEC 61511 (2003a; 2003b) and IEC 61508
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Logic Solver

Input elements
Actuatuing
elements

Figure 2.7: Typical elements in a safety instrumented system (based on Figure 12.4 Rausand
(2011))

(2010), are given by the safety integrity level (SIL) requirements to the SIS. These can be estab-

lished in different manners, but one of the common ways of establishing a SIL requirement is

through a Layers of Protection Analysis (LOPA). LOPA has a set of specific requirements related

to the selection of what layers of protection that can be considered in the analysis. The protec-

tive layers have to be considered independent of each other in order to be a taken in to account

in a LOPA. The criteria for independent protection layers (IPL) are given in NEK-IEC (2003b)

61511 part 3, and are as following:

• Specificity: An IPL is designed solely to prevent of to mitigate the consequences of one

potentially hazardous event

• Independence: An IPL is independent of the other protection layers associated with the

identified danger

• Dependability: It can be counted on to do what it was designed to do. Both random and

systematic failures are addressed in the design

• Auditability: It is designed to facilitate regular validation of the protective functions. Proof

testing and maintenance of the safety system is necessary.

With regards to types of failures, the PDS handbook (Hauge and Onshus, 2009), which de-

scribes a method of quantification for safety unavailability of a SIS, uses two main categories

of failure; Random hardware failure and Systematic failure. For this thesis it is the systematic

failures that are of interest. The types of systematic failure are shown in Table 2.2, as they are

described by Hauge and Onshus (2009).
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Table 2.2: Types of systematic failures (Hauge and Onshus, 2009)

Failure type Example

Software faults Programming errors, error during updating
Installation failure Gas detector left on after commissioning,

Valve installed in wrong direction
Design related failure Inadequate or erroneous specifications, Inad-

equate or erroneous implementation
Excessive stress Excessive vibrations, Too high temperature
Operational failure Valve left wrong position, sensor calibration

failure, detector override mode

The systematic failures for a SIS is often regarded as the most difficult to quantify, since the

failures have a higher degree of dependence on influencing factors. Unlike the random hard-

ware failures, which can be estimated with the help of accelerated testing and experience data.

Schönbeck et al. (2010) have developed a new approach to modeling human and organiza-

tional factors in the operational phase of safety instrumented systems. The approach introduces

a way of including human and organizational factors in the operational SIL, by estimating the

proportion of the design SIL that can be explained by human and organizational factors. These

factors are then weighted and normalized, before the safety influencing factors are rated and

used to calculate the operational SIL. This is proposed done thorough a BBN structure, where

the different influencing factors are modeled, and the contribution on the SIL is can be calcu-

lated. The safety influencing factors that is mentioned us listed in Table 2.3
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Table 2.3: Safety influencing factors (Table 2 in Schönbeck et al. (2010))

Safety influencing
factor

Description

1. Maintenance
Management

Management, rather then execution, of
maintenance activities

2. Procedures Quality, accuracy, relevance, availability
and workability of operation and main-
tenance procedures

3. Error-enforcing
conditions

Conditions that force people to operate
in a manner not foreseen during system
design

4. Housekeeping Orderliness in the workplace
5. Goal comp ability Compatibility of goals at and between

individual, group and organizational
level

6. Communication Possible lack of communication due to
system failures, message failures, and
misinterpretation

7. Organisation Possible deficiencies on organizational
structure and responsibilities

8. Training Spesific expertise relevant to the opera-
tors’ jobs
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2.3 Discussion

Based on the literature survey and review, it can be concluded that there are in many cases a lack

of consensus on terms and definitions. The lack of fundamental definitions makes it harder to

be precise when describing the different aspects of a risk assessment. One can not be certain

that the same definition applies to a defense as it applies to a barrier. In some industries these

are fundamentally different, while others treat them as equivalents. As shown in this chapter,

and in Torgauten (2012) there are a diversity of definitions and terms when describing risk re-

ducing measures. But there are also some agreement in some areas. Within the oil and gas in-

dustry there are a tendency to include most kinds of risk reducing measures in the definition of

barriers, including operational and organizational barriers. There are however no specific defi-

nitions on what constitutes a operational, nor organizational barrier or barrier element. There

are made attempts to differentiate between factors influencing the barrier and the elements that

constitutes the barrier it self, for instance by Hauge et al. (2012). The distinction is not always

well defined and the line is at best blurry. Hollnagel (2004) states that the term barrier is under-

stood from the context. Though this may be true, the singular form of the word barrier leads to

believe that it is a single element. Even though most of the definitions takes this into account

by specifying that a barrier is for instance one or more barrier elements, a barrier in the context

of oil and gas industry is rarely a single element, but rather a system of technical elements and

actions. These actions can either be performed by technical systems, such as a SIS, or by a hu-

man. This is mainly a challenge when characterizing the hardware as the basic element. If one

considers barriers as a set of hardware elements, the human contribution to barriers is basically

influencing factors, or in some cases simple actions, such as activate deluge system, and so on.

The human ability of reasoning will then be reduced to a procedural element where only what

is written in the procedure is accounted for.

Another view that is presented, is the functional view of barriers. Both the definitions pre-

sented by ARAMIS (H.Andersen et al., 2004) and in the report by Hauge et al. (2012) are focused

on barrier functions, rather then barrier systems. In both cases, the barrier elements or systems

are secondary to the barrier function. In these definitions, human actions can be a part of, or
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be a barrier, if the action realizes a barrier function, and is planed and assigned to do so. This

does not differ greatly from the definitions presented by Sklet (2006), but in the classification of

barriers presented by Sklet, the only actions that are mentioned is the procedural checking of

actions, and not the actions them self.

Another distinction that can be made is whether the human/operational action is a part of

the fulfillment of the barrier function, or if it is an interaction with the technical system, that

then again realizes the barrier function. An obvious example is the maintenance of a barrier

system. It is clear that the human interaction with the system, the maintenance action, influ-

ences the barrier systems ability to fulfill its function. But when modeling barriers, it can be

argued that the maintenance of the barrier does not directly influence the realization of the bar-

rier function, but rather affects its effectiveness, or the performance of the barrier element. For

instance a poorly maintained valve, that closes slower then the technical specification should

lead to believe, can still realize its intended function, but with a lower performance. This is a

possible way of categorizing human actions in relation to barriers. On the other hand there,

one can make the argument that an activation of a barrier would be within this category. For

instance an activation of a SIS system, where the system is performing the actual risk reduction,

for instance fire extinguishing, but the human activates the system, since the human detects

and assesses the situation different from the SIS.

Another element in the human contribution is the term human error. There are several uses

for this term, and not all are applicable in the case of barriers, even though they are related

to barriers or barrier systems. When Hauge and Onshus (2009) describes types of systematic

failures, these may all be seen as different types human error, except from the excessive stress

failure type. These failure types are of course related to SIS failures, and not specifically related

to barriers, though a SIS normally can be considered a barrier, or a part of a barrier. This shows

that the term human error can be used in all stages of a elements lifecycle, and that a lot of fail-

ures can be contributed to the human element. Though for the sake of argument, it must be

drawn a line were one considers the direct human influence to the safety as a separate contri-

bution from the indirect contribution from design and manufacturing.
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In the list of safety influencing factors, that Schönbeck et al. (2010) presents, most of the fac-

tors can be seen as organizational elements or factors. These are high level preconditions, that

in relation to the barrier model presented by Reason (1997) are local workplace conditions and

organizational factors, that can act as latent conditions on barriers or defenses.

The last distinction to be made is the difference between single-element and multi-element

barriers. Those barriers that consist of a single element are in most cases physical structures.

These are what Sklet (2006) refers to as passive, physical barrier elements. This is the term that

there are the most consensus with regards to what can be called a barrier. There are non that

disputes that physical walls can be barriers. It is the multi-element barriers that the discussion

should focus on.

PSA have, as the ’Principles of Barrier Management’ (translated from Norwegian)(PSA, 2012a,

2013) documents reflects, made a increasing effort to include organizational and operational

factors and elements into the requirements to barrier management for the oil and gas industry

on the Norwegian continental shelf. The focus in barrier management, seems, to a great extent,

to have been dictated by the NORSOK S-001 standard (NORSOK standards, 2008) of technical

safety. The keywords of the NORSOK S-001 standard, and the barrier management guidelines

correlates to a great extent. This may lead to believe that the operational elements of barriers

are less important. It is therefore easy to assume that the safety performance standards that is

proposed in the NORSOK S-001 standard are covering all aspects of the performance standards

related to a specific barrier. The standard does, however, not take organizational or operational

elements into account. There are therefore few standards that can be used as guidelines for

how these influence the barrier integrity. Some mentions of human contributions are made

in the NEK-IEC standard 61511 (NEK-IEC, 2003a), though not much emphasis is made on this

subject. The shift in the explanation that PSA is giving, of what constitutes an operational and

organizational barrier element in the 2012 and the 2013 version of the ’Principles for barrier

management...’ PSA (2012a, 2013) also shows that there are discussions and further need of

clarification.

The discussion shows that there are inconsistencies, and little consensus on how the operational
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and organizational aspects of barriers should be treated. Some trends can be found, such as the

focus on functions. Though there are quite large discrepancies between what is considered a

barrier function, from high level descriptions that borderlines to be goals or objectives, and to

low level, single function, descriptions, the functional view of barriers have some benefits since

it describes the risk reducing act, rather then a hardware function. There are, however definitely

room for improvement and clarification, on what constitutes a barrier function, barrier element

or a barrier system.



Chapter 3

Modeling Methods for Operational and

Organizational Factors and Elements

This chapter reviews and discusses different methodologies and methods that are proposed

used for modeling operational and organizational aspects, mainly in relation to barriers, but

also in general. The main focus is on quantitative models, but qualitative models are also re-

viewed. Four main methodologies are described; Human Reliability Analysis, Bayesian Belief

Networks, Functional Resonance Analysis Method, and System-Theoretical Analysis and Pro-

cess methodology.

3.1 Human Reliability Analysis

Human reliability analysis (HRA) is one of the methods of quantifying human behavior that

have been used and tested in risk assessments in different industries. The method have mainly

been developed and tested in the nuclear industry, since the 1980s. Here HRA is a part of the

probabilistic risk assessment (PRA), also called probabilistic safety assessment. According to

the Nuclear Energy Agency (NEA, 2004) the main objectives of HRA are:

1. To ensure that the key human interactions are systematically identified, analyzed and in-

corporated into the the safety analysis on a traceable manner

2. To quantify the probabilities of their success and failure

3. To provide insight that might improve human performance.

27
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There are several methodologies related to HRA. Most of these are based on the use of hu-

man error probability (HEP) as the quantitative elements of the analysis. HEP data in most

cases based on expert judgement and test scenarios (NEA, 2004). This means that there are un-

certainty related to these values. In most cases HEP data is incorporated into event tree analysis,

that aggregates the HEP values into failure probabilities. The main steps of HRA often consists

of the following (Rausand, 2011):

1. Identify critical operations where human errors could lead to accidents and/or opera-

tional problems

2. Analyze the relevant tasks and brake them down onto subtasks and task steps.

3. Identify potential human error modes and, if possible, error causes and performance-

influencing factors.

4. Determine the HEPs for each error mode and for the complete task.

Reason (1990) describes four types of human error or unsafe acts that can lead to major

accidents. These are slips, lapses, mistakes and violations. This division is often used as a basis

in HRA models according to Rausand (2011). There are also some other methods of qualification

that in use. What constitutes human errors and human failures are therefore defined several

different ways. Rausand (2011) lists, in addition to the classification given by Reason (1990), the

following models of classification:

• Skill-, rule-, and knowledge-based behavior modes, proposed by Rasmussen (1983)

• Errors of omission and errors of commission, proposed by Guttmann and Swain (1983)

There are also some other models, that do not derive directly from the HRA methodologies,

that uses HEP data as a source of information on human actions. Vinnem et al. (2012) reflects

on the use of HEP data in the oil and gas industry. The argument is made that the amount of

data available that are applicable for the oil and gas industry is to low. HEP data available form

for instance the nuclear industry, is often not directly transferable to the oil and gas industry.

The differences between the industries are quite significant on a large scale. Since Risk_OMT

to a great extent only focuses on maintenance operations, and other technical elements that

deviates in many aspects, there still might be other areas of operation where HRA data can be
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transferable. For instance some operation-room tasks and procedures could be transferable

between nuclear and oil and gas.

3.1.1 HRA methods

There are several HRA methodologies that are used to model human reliability. Some of the

most used are THERP (technique for human error rate prediction) and HEART (human error

assessment and reduction technique). In addition is SPAR-H (standarized plant analysis risk-

human reliability analysis) a technique that is under research to be used in the oil and gas in-

dustry by DNV and Statoil (van de Merwe et al., 2012), and therefore also of interest.

Both THERP and HEART are methods developed to provide input to a QRA to integrate human

action and human error into risk analysis (Rausand, 2011). It is not in the scope of this thesis

to go in depth of these methods, but the mathematical basics of both these methods are quite

similar. The difference is that THERP handles the error probabilities on a basic action level,

while HEART uses HEPs on task level (Rausand, 2011). This means that THERP breaks the tasks

further down then HEART does. Both of these methods have limitations, which are more thor-

oughly presented by Rausand (2011). Some main limitations of the HEART method is that it only

assess single tasks, and does not have any task classification.

Two of the methods that can be used in order to identify, and analyze tasks and break them

down into subtasks is functional analysis and task analysis. One of the methodologies is the

functional analysis system technique (FAST). This form of analysis is called hierarchical task

analysis. The analysis starts with a goal that shall be fulfilled. The goal is then broken down

into system functions needed to fulfill the task, that again is broken down into functions. As for

fault trees there are AND and OR gates that can be used to divide the different functions into sub

functions or sub tasks. As seen in Figure 3.1, from the left to right one can follow the ’how’ of

fulfilling the intended function, and from the right to left one can find ’why’ the different sub-

tasks needs to be done. This method can be used for technical systems, and for human actions,

or a combination of both.

Task analysis is structured around the sequence of tasks, rather then the function. So while

the basic elements can be the same as in a functional analysis, the sequence will be different. An

example of the use of a task analysis could be a set of tasks needed to realize a barrier function.
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Figure 3.1: FAST diagram (based on Fig. 3.5 by Rausand and Høyland (2004))

Spar-H

Gould et al. (2012) are in the paper ’Human Reliability Analysis in Major Accident Risk Analysis

in the Norwegian Petroleum Industry’ investigating the applicability of HRA to the oil and gas

industry. Among the evaluated HRA methods, Spar-H (Standardized Plant Analysis-Human Re-

liability Analysis) was found to be the most applicable to the petroleum industry. Gould et al.

(2012) notes that the method have mainly been applied to post-initiator tasks, since the amount

of variables in pre-initiator tasks makes them more complex. In their discussion Gould et al.

(2012) notes that some of the main difficulties with adapting HRA to the petroleum industry is

that the nuclear power plants, the models are made for, have more standardized operator tasks

and event trees, and that the number of possible accident scenarios are much higher in the off-

shore oil and gas industry then in the nuclear power industry.

The application of Spar-H in managed-pressure drilling operations have also later been ex-

plored by van de Merwe et al. (2012). Spar-H is ’a structured approach to identify and assessing

the potential for human error in complex tasks’ (van de Merwe et al., 2012). The method have
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been applied to drilling floor operations by van de Merwe et al. (2012). The main challenges

mentioned for this application was the interpretation of results, the prioritization of recom-

mendations and the applicability of the performance shaping factors (PSF). Spar-H uses eight

PSFs to adjust the HEP data, and by that increase the resolution of the model. The PSFs used are

(U.S. NRC, 2006);

• Available Time

• Stress/ Stressors

• Complexity

• Experience/ Training

• Procedures

• Ergonomics/ HMI

• Fitness for Duty

• Work Processes

The Spar-H method is according to U.S. NRC (2006) ’a simplified HRA method for estimat-

ing the HEPs associated with operator and crew actions and decisions at commercial U.S. power

plants. It is categorized as mainly a quantification tool and that it provides limited support for

identification of human failure events and modeling of these in a probabilistic risk assessment

(U.S. NRC, 2006).

U.S. NRC (2006) presents, in the report of ’Evaluation of HRA methods Against Good prac-

tices’, some strengths and limitations of the SPAR-H method. These strengths and limitations

are summarized in Table 3.1

3.1.2 Performance Influencing Factors

Performance influencing factors (PIF), also known as performance shaping factors (PSF) (Rau-

sand, 2011), is an important part of most HRA analysis (U.S. NRC, 2005b). The HEP values are

often a generic, meant to fit a wide range of circumstances related to a operation. PIFs are used

to adjust the HEP according to the environment, and to better fit collected data and experience.

A definition of a PIF can be found in Rausand (2011) where a PIF is defined as following:
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Table 3.1: Summary of strengths and limitations of Spar-H, based on U.S. NRC (2006) Table 4.1.

Strengths Limitation

- Simple underlying model makes Spar
H easy to use

- Resolution of PSFs may be inadequate
for detailed analysis

- The eight PSFs included may cover
many situations where more detailed
analysis is not required.

- Despite detailed discussion of poten-
tial interaction effects between PSFs,
treats PSFs as independent.

- Even though the effects of time on per-
formance is treated similar to that in
the THERP and ASEP TRCs, other poten-
tially important PSFs are considered in
conjunction with the time factor.

- No explicit guidance is provided for
addressing a wider range of PSFs when
needed, but does encourage analysts
to use more recent context developing
methods if more detail is needed for
their application, particularly as related
to diagnosis errors.

- Provides a detailed discussion of po-
tential interaction effects between PSFs
(but see related limitation).

- Although authors checked underlying
data for consistency with other meth-
ods, basis for selection of final values
was not always clear.

- Acknowledges that the method may
not be appropriate where more realis-
tic, detailed analysis of diagnosis errors
is needed.

- THERP like dependence model can be
used to address both subtask and event
sequence dependence.
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Z PIF: A factor that influences human performance and hand human error probabilities. Performance-

influencing factors may be external to humans or may be part of their internal characteristics.

Rausand (2011)

Rausand (2011) specifies three types of PIFs; (1) External, (2) Internal and (3) Stressors. Exter-

nal are factors external to the operator such as human-machine interface (HMI), organizational

factors and procedures. Internal are factors internal to the operator, such as training, motivation

and experience, while stressors are factors producing mental and physical stress such as fatigue,

speed and load.

3.2 Bayesian Networks

Bayesian networks, or bayesian belief networks (BBNs) are one of the methods used to model

influence between different factors. It describes causal relationships between different factors,

that results in one or more outcomes Rausand (2011). It can bare resemblance to fault tree

analysis and event tree analysis, and these methods can, with minor difficulties, be modeled as

a BBNs. A BBN can be both quantitative and qualitative, or a combination of these. The method

is based on acyclic graphs, in combination with probability tables for quantitative analyses. The

graph consists of nodes and directed arches. A simple BBN network is shown in Figure 3.2. Here

node A is the parent node of node B and C, and node B and C are the child nodes of node A. The

nodes B and C cain also be called the decedents of node A while node A is then the ancestor of

node B and C.

A

B

C

Figure 3.2: A simple BBN example with three nodes
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That the graph is acyclic means that a node can not be dependent or influenced by it self,

through other nodes. This means that if a node A have an arc to node B, and a node B have an arc

to node C, neither node B nor C can have an arc to node A. When using BBNs for a quantitative

analysis, the nodes can be discrete or continuous variables. Each node can then be given a set

of states that the node can exist in. An example can be a machine that can either be working

or not. This gives the node two states. Each state then is given a probability, either discrete or

continuous.

3.2.1 Analysis Methods Utelizing BBN

There are a number of different analysis methods that have proposed the use of BBNs. The main

use of BBN in these methods are to model human and organizational aspects of hazardous sce-

narios, but there have also been research on full BBN implementation. Most of these methods

and analysis models have been developed during the last ten years, and have therefore not been

extensively tested in the industry. Some of the methods are the Risk_OMT method (Vinnem

et al., 2012), that is based on the BORA project, that to some degree have been utilized by the

RNNP (PSA, 2012b). Risk_OMT is mainly a hybrid approach, where the BBNs are combined with

event tree and fault tree analysis, in order to take organizational and operational factors in to ac-

count. These are denoted risk influencing factors (RIF) and is divided into organizational and

operational layers, in the model. A conceptual model of the Risk_OMT hybrid modeling method

is shown in Figure 3.3.

There have also been shown fully integrated BBN models, using the Risk_OMT method. Here

both fault trees and event trees are converted to BBNs, in addition to the operational and orga-

nizational factors. As seen in Figure 3.3, the influencing factors are influencing an act, or activity

performed by a human. The factors that are listed by Vinnem et al. (2012) are shown in Table 3.2.

Most of these are related to what can be considered local workplace conditions and organiza-

tional factors in the model of defenses presented by Reason (1997).



CHAPTER 3. MODELING METHODS 35

B1: Incorrect

 isola./blind

B1 isola./blind

No Leakage

No Leakage

No Leakage

Lekage, proceede 

with 

next scenario

Maintenance 

Work

Do Maintenance 

Failure isola./

Blinding B1.B

B1.B

G-B1.BG-B1.BO-B1.B

Omission 

failure B1.B

Execution

failure B1.B

Mistake

failure B1.B

Violation

failure B1.B

M-B1.B V-B1.B

Slips&Lapses

failure B1.B

FTA -> S-B1.B

Design Time pressure Workload

Mngm technical Mngm task

Figure 3.3: The hybrid approach presented in Vinnem et al. (2012)

Table 3.2: Risk influencing factors in the Risk_OMT model by Vinnem et al. (2012)

Level 1 RIF

Competance
Disposable work descriptions
Governing documents
Technical documentation
Design
HMI
Communication
Supervision
Time pressure
Workload
Work motivation

Level 2 RIF

Management Competance
Management Information
Management Technical
Management General
Management Task
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3.3 FRAM

Functional resonance analysis method (FRAM) is an analysis method developed by Eirik Holl-

nagel. The method is strongly influenced by the principle of resilience engineering, and is there-

fore considered fundamentally different from the energy-barrier event based models, that most

other methods are based on. Though Hollnagel (2012) argues that FRAM is not related to any

specific accident model, both Hollnagel (2012) and Halseth (2012) shows that resilience en-

gineering is an accident model that fits FRAM. A review of the modeling method is found in

Torgauten (2012). FRAM is based on mapping the relations between different functions. Each

function has six nodes, that represents the four restrictions that can influence the function, in

addition to the input and output to and from the function. The four restrictions are Time, Re-

sources, Control and Preconditions. The variability of the function will then change based on

these restrictions, and the input to the function. The visual representation of the FRAM model

is shown in Figure 3.4. The variability is considered a quality, rather then a quantity, of the func-

tion by Hollnagel (2012). This means that it is not a range uncertainty of a probability value,

such as the variation is described in normal PRAs. The variability is instead expressed verbally.

The variability of a technical function are normally lower then of a function based on human

action.

It is also important to note that Hollnagel (2012) specifies that the term failure is not a part of the

FRAM methodology and model. This constitutes a significant differentiation from the energy-

barrier based accident models. The aim of the FRAM model is then to visualize the influence

between functions, in order to better understand the system as a whole.This means that the

model does not look at a specific accident scenario, but at normal operations, where a variation

in a function can resonance through other functions, creating larger variations, that again can

lead to an accident. Because of these fundamental differences from the energy-barrier related

view, risk reducing measures and barriers are to greater extent related to decrease the variability

of the functions, rather then imposing some measure between an energy source and an asset.

This is also reflected by the barrier definitions presented by Hollnagel (2004). However, the mod-

eling method is focused on functions, and there are therefore no differences in modeling human

actions, technical action or combinations of these.
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Figure 3.4: Simplified example of a FRAM network (based on Hollnagel (2012))

3.4 System theoretical methods

Leveson (2011) describes a fundamentally different approach to model systems form the event

and sequence based models, in a system theoretical approach of modeling. The main difference

from the traditional modeling methods is the fundamentally different accident model. The sys-

tem theoretical accident model presented by Leveson (2004), called System-Theoretic Accident

Model and Process methodology (STAMP), is based the notions of constraints, process under

control and control loops. The accident model is based on enforcement of safety constraints. An

unwanted event is then described as an unsuccessful enforcement of a safety constraint (Leve-

son, 2011). The modeling methods is based on a process under control. This process is then

monitored by a sensor of some kind, that sends data on the state of the process to a controller.

The controller can be either be human, a technical system, or a logic solver that evaluates the

state of the process. If changes are needed, in order to keep the process under control, an ac-

tuator makes the control loop complete. The control loop is then an example of active control,

and enforcement of safety constraints. A conceptual example of the modeling method is given

in Figure 3.5. Passive control is for instance shields and barriers such as containment vessels.



CHAPTER 3. MODELING METHODS 38

These are not explicitly modeled when utilizing this method.

Automated Controller

Sensor

Process

Variables

Controlled

Variables

Actuator

Process

Input

Process

Output

Disturbance

Process

Figure 3.5: Conceptual example of a control loop as used in STAMP, with automated controller

3.5 Discussion

The models described in this chapter, are only covered in a theoretical manner. It is difficult

to assume how differences in the results of applying these methods to cases could be, and the

qualitative and quantitative differences in the results of a test of these models, other then the

obvious theoretical differences. The scope of this thesis is therefor limited to the evaluation of

how human and organizational elements are treated in the different methods, and not their im-

pact on quantitative or qualitative risk assessments.

HRA methods are well known, and tested within nuclear industry. Unlike most methods,

there are a set and tested framework for modeling, that takes both human action and under-

lying factors, through PIFs, into account. This seems to be the most thoroughly evaluated and

tested methodology for assessment of human error probabilities, both qualitatively and quanti-

tatively. The variety of methods and modeling tools makes the possibility of being able to adapt

the methodology greater. One of the main challenge of adapting HRA methodology and HEP

data, is that the existing data is developed for the nuclear energy industry. The data is often not
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applicable to the oil and gas industry because of the differences in work conditions and the type

of tasks that have been in focus of the nuclear industry. In the nuclear energy industry most

human interaction is done through a control room. This differs widely from the conditions in

the production areas of a offshore oil or gas installation where much of the human-machine

interaction takes place in the oil and gas industry. Of course there are control room activities

on a offshore installation as well, but the degree of standardization or similarities of both work

procedures and work environment that can be achieved in the nuclear energy industry, is nearly

impossible to recreate in the oil and gas industry. The collection of data, and the flexibility of

the data, is therefore a main concern before it is possible to fully utilize HRA methodology in

risk assessments for a offshore installation. There is the possibility of using expert judgement

in addition to measured data, in order to create HEP data for offshore installations. This will

possibly lessen the workload and costs of collecting data, but can also give a greater degree of

uncertainty in the data.

Another concern about HRA is the linearity of the modeling methods that is used. Analysis

methods, such as FAST and other task or function oriented analysis methods, describes a linear

relation between tasks, such as task A follows task B and so on. In a complex work environment,

and especially during unwanted or unexpected events, a set of tasks may be cyclic, repeated, or

be carried out close to simultaneously. A modeling method is of course always only a theoreti-

cal representation of the real world scenario, and it is impossible to get an exact match between

the model and the real world. The possibilities of improving the way these actions are modeled

should nevertheless be explored.

Spar-H is found through collaborative research projects in the oil and gas industry to be a

possible HRA model to use, in order to include human failure in post-initiator task analysis.

This can be a first step to fully integrate HRA into both QRA and operational modeling. The

model does however have many of the same challenges, with regard to data shortage and appli-

cability, as mentioned in the general description of HRA. That the Spar-H method seems to be

fairly simple, and less comprehensive compared to other methods, does not diminish it, rather

the opposite. By introducing a less complex and user-friendly model the possibility of getting

the model tested and implemented should increase. Though the model uses, what seems to be
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quite generic PSFs, these probably needs to be adjusted in order to work in the oil and gas in-

dustry.

Critique of the way a HRA treats human actions, is also presented by supporters of both

the system theoretical and the resilience based accident models, such as Leveson (2011) and

Hollnagel (2004). The two accident models comes at the HRA methodology from two different

angles. Leveson (2011) discusses the conflicts between reliability and safety. It is argued that

increased reliability does not mean an increase in safety, and that in some cases the opposite is

true; ’higher reliability leads to a less safe system’ (Leveson, 2011). This is exemplified by Leve-

son (2011) by a pressure vessel; A pressure vessel with an increase pressure to burst ratio will

be more reliable, but if a rupture occur, the pressure will be higher, and therefore cause more

damage and be less safe. This notion can also be translated to human reliability; decisions and

actions can be reliable, but an accident can still occur if the information these are based on is

incorrect. The information can be correct on a ’local’ level, in which the decision and action is

taken, but be incorrect on a system level in a larger socio-technical system that the local system

is a part of. The fact that HRA does not address safety, but reliability of human actions, directs

the critique of reliability focused models at HRA methods.

The control loop model presented by Leveson (2011) does however seem to be a very logical

way of modeling repetitive elements, also for barrier systems. It also allows easy integration of

human detection, actions and reasoning, as sensors, controllers and actuators. There does not

seem to be any restrictions on what one can model using this method. Though this might not

be the intended purpose of the modeling method, it is a possible area of interest to model some

barrier functions as control loops, rather then linear sequences, where that is needed. Though

the fundamentals of system theory and normal operation focus is not directly applicable to the

energy-barrier principle, there seem to be room for both points of view within risk reduction

methods. However it seems that the energy-barrier principle best represents the post-initiating

event scenario.
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The FRAM methodology presented by Hollnagel (2004, 2012) is based on the notion of vari-

ety in functions. The model addresses the question of treating human actions in the same way as

technical systems. The notion that human action can be given a failure probability is not within

the scope of the FRAM methodology (Hollnagel, 2012). The argument is that the variation of the

performance of a human is an inherent quality of the "human condition". This can be seen as a

critique of the assignment of reliability probabilities or error probabilities to humans.

It can however be debated whether or not the different points of view that these models that

are described in this chapter, represent are mutually exclusive or complementary. In the opin-

ion of the author, the models seem to supplement each other, rather then exclude each other.

For instance are resilience thinking and the energy-barrier model, in the opinion of the author

not mutually exclusive. There must be room for applying resilience thinking, as an addition to

the energy-barrier principle. A more resilient organization and resilience engineering of sys-

tems does not exclude the need of barriers or risk reducing measures when an undesired event

occurs. Though resilience might reduce the probability of such an event occurring, the proba-

bility can never be expected to reach zero.

Even though there are possibilities of further developing the alternative analysis methods

that are in use are present, and new elements should be included, the energy barrier model is

both an effective, straightforward, and comprehensible way of modeling an accident scenario,

especially of post-initiating event scenarios. For this type of scenario, the simplicity of the tradi-

tional event tree and fault trees seems to be the easiest way of conveying the possible outcomes,

also when including the human and organizational aspects of the event and barriers.





Chapter 4

Evaluation of Current Barrier Definitions

and Classifications

This chapter will discuss the current barrier definitions and describe the differences between

these definitions through example cases. The definitions that are examined are the definition

and classification presented by Sklet (2006), the classification presented in the ARAMIS project

by H.Andersen et al. (2004), the definitions presented by PSA (2013) and the classification pre-

sented by Hollnagel (2004). The three cases that are used are chosen based on where in the

accident sequence the event takes place.

The first case, Case example A, is based on a maintenance procedure. This is clearly taking place

before an hazardous event, and is a purely a preventive measure.

The second case, Case example B, is based on a drilling operation, specifically kick detection

during the drilling operation. This is in a middle ground where the operation is not in the nor-

mal operation phase, and not after a hazardous event, but rather in the middle between these

phases, where a failure almost instantly will cause a hazardous event.

The third case, Case example - C, is a post initiating event scenario, where a leak have occurred

on an offshore installation.

43
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4.1 Case Example - A

The example case A is a procedural description of tasks or steps in a maintenance operation

on equipment that normally is containing hydrocarbons (HC) under pressure. The operation is

divided into 78 steps, and was used in the BORA project. For the case in question, objective for

the barriers, barrier systems or barrier elements is assumed to be to prevent or avoid a HC leak

during maintenance operation. Four different definitions or classifications of barriers are ap-

plied to the procedure, to identify which elements in this kind of procedure can be categorized

as barriers, barrier elements, or influencing factors within the different classification. Table C.1

shows the results of the categorization.

A complete description, of each of the steps in the operation, is found in Appendix B.

Table 4.1: Procedures related to maintenance operation, based on BORA.

Work description Sklet

Classification

ARAMIS

Classification

PSA

Definitions

Hollnagel

Definitions

Planning

1 Receives Work

Order (WO)

Performance

Influencing

Factor

2 Draw up work

description

Performance

Influencing

Factor

3 Requisite

resources,materials

etc. after need

Performance

Influencing

Factor

4 Draw up plan for

shutdown/start-up

Performance

Influencing

Factor

5 Draw up valves and

blindings -package

( V&B)

Performance

Influencing

Factor
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6 Split point marked

in the P&ID

Performance

Influencing

Factor

7 Draw up V&B list Performance

Influencing

Factor

8 Valve position

marked in P&ID

Performance

Influencing

Factor

9 Mark blindings on

P&ID

Performance

Influencing

Factor

10 Draw up AC-form Performance

Influencing

Factor

11 Identify and mark

common barriers

Performance

Influencing

Factor

Symbolic

barrier system ?

12 Control and sign

V&B package

Active Human&

Operational

Performance

Influencing

Factor

13 Draw up Work

Permit ( WP), level 1

Performance

Influencing

Factor

14 Pre-approval of WP Active Human&

Operational

Performance

Influencing

Factor
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15 Coordinating with

(Central Control

Room) CCR and

other activities

Active Human&

Operational

Performance

Influencing

Factor

Preparing equipment/system

16 Provide the neces-

sary tools, etc.

Performance

Influencing

Factor

17 Finds the correct

seal

18 Perform operation

and maintenance

preparation

according to the WP

Barrier Element

19 Process shut down Active Human&

Operational

Activated

Procedural

Barrier Element Functional

barrier system

20 Isolate equipment

using shutdown

valves

Active Human&

Operational

Activated

Procedural

Barrier Element Functional

barrier system

21 Pressure release to

flare or other sys-

tem

Active Human&

Operational

Activated

Procedural/

Assisted

Barrier Element Functional

barrier system

22 Drain fluid to closed

system (including

all low points and

instrumental pipes)

Active Human&

Operational

Activated

Procedural

Barrier Element

23 Freeing gas Active Human&

Operational

Activated

Procedural

Barrier Element
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24 Isolation with

blindings

Active Human&

Operational +

Passive Physical

Temporary -

Passive

Barrier Element Physical

barrier system

25 Lock/disconnect

valves

Active Human&

Operational +

Passive Physical

Temperary -

Passive

Barrier Element Functional

barrier system

26 Disconnect pumps,

heat cables etc.

Active Human&

Operational +

Passive Physical

Temporary -

Passive

Barrier Element Functional

barrier system

27 Label valves Active Human&

Operational

Activated

Warned

Symbolic

barrier system

28 Label blindings Active Human&

Operational

Activated

Warned

Symbolic

barrier system

29 Label flanges to be

split

Active Human&

Operational

Activated

Warned

Symbolic

barrier system

30 Sign WO form Active Human&

Operational

31 Draw up SJA Active Human&

Operational

Barrier Element Incorporeal

barrier system

32 Perform operation

and maintenance

preparations

according to the WP

Incorporeal

barrier system

33 Work place control

and sign WP

Active Human&

Operational

34 Approve work

location and sign

work permit

Active Human&

Operational
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35 Authorize WP

(activate in SAP)

Active Human&

Operational

36 Before work call/

review WP

Active Human&

Operational

37 Handover between

shifts

38 Disconnect safety

system

Active Human&

Operational

Temporary -

Passive

Barrier Element Functional

barrier system

39 Sign splice log Active Human&

Operational

Barrier Element Functional

barrier system

40 Keep V&B-list in

central space

41 Control of spark

and ignition

sources

Active Human&

Operational

Barrier Element

Conduction of maintenance

42 Control that the

flange is the one

in question, and

that the system is

emptied of HC

Active Human&

Operational

Performance

Influencing

Factor

Incorporeal

barrier system

43 Disassembly of

flanges

Incorporeal

barrier system

44 Supervision of

opening flanges

Active Human&

Operational

45 Sign AC-form

46 Venting tank Activated Prece-

dural

Barrier Element

47 Gas measurement Barrier Element
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48 Control of flanges,

seal surfaces and

tracks.

Active Human&

Operational

Barrier Element Incorporeal

barrier system

49 Work performed ac-

cording to WO

50 Sign form for “work

performed”

Active Human&

Operational

51 Control seal, bolts

and tracks

Active Human&

Operational

Barrier Ele-

ments

52 Assembly of flanges

53 Label assembled

flanges

Active Human&

Operational

Activated

Warned

Symbolic

barrier system

54 Fill inn AC form

55 AC-form saved for a

week at minimum.

Active Human&

Operational

56 Clean work area

57 Sign form “check

out before

returning equip-

ment after com-

pleted work”

Active Human&

Operational

58 Perform final in-

spection, sign WP

Active Human&

Operational

59 Connect safety

system

Active Human&

Operational

Activated Pro-

cedural/ Acti-

vated Assisted

Functional

barrier system

60 Sign splice log Active Human&

Operational
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Resetting system and production start up

61 Removes blindings Active Human&

Operational

Activated Pro-

cedural

62 Resetting valves Active Human&

Operational

Activated Pro-

cedural

63 Removes labelling

on valves and

blindings

Active Human&

Operational

64 O2-freeing

65 Leak test performed

66 Connect hoses Active Human&

Operational

Activated Pro-

cedural

Barrier Element

67 Reset valves Active Human&

Operational

Activated Prece-

dural

Barrier Element

68 Disconnect hoses Active Human&

Operational

Activated Pro-

cedural

69 Log possible

leakages in relation

to the leak test

Active Human&

Operational

70 Unlock border

valves

72 Connect pumps,

heat exchangers

etc.

Active Human&

Operational +

Active Technical

73 Open border valves

74 Remove labels on

border valves

75 Perform final

control

Active Human&

Operational
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76 Authorize work,

sign WP, complete

SAP

77 Debriefing

78 Start-up of normal

production

Activated Pro-

cedural

4.1.1 Comments on Results of Case Example - A

From Table C.1 there are some trends that are evident. The case listings shows that for the defi-

nitions and classification presented by Sklet (2006), a high number of both third-party and self-

check of procedures and actions can be classified as an ’active; human & operational’ part of a

barrier system. These are all within the preparation of equipment and the actual execution of

the maintenance procedure.

Very few of the tasks in the planning process falls under Sklets definition of barrier system or

safety barrier. There is room for discussion on this point, where it could be argued that the

planning process in as a whole is a safety barrier. This interoperation is based on that there are

rules, regulations and guidelines, both from authorities and often company specific, that specify

that the planning procedures shell be executed. These planning procedures can then be inter-

preted as ’planned to prevent accidents’, and thereby a safety barrier. The interpretation used in

Table C.1 is somewhat more conservative, where the planning process is seen as the planning of

means to prevent an accident.

The control of work done in the planning procedures are in this case considered a part of an

active; human&operational part of a barrier system.

The classification and definitions presented by H.Andersen et al. (2004) has a higher focus

on execution and actions. The ’activated - procedural’ and the ’temporary - passive’ barriers cov-

ers some of the same steps that the PSA (2013) and Sklet (2006) covers with respectively barrier

element and active; human&operational, but is more specific on what the action is, and who

or what it is that carries out the action to realize the barrier function in question. There are
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also steps, such as ’start up of normal procedure’ that is in the ARAMIS classification considered

a barrier, that the other classifications does not. In general the ARAMIS classification is more

specific on the requirement to the function of the barrier. The barriers as defined by ARAMIS

(H.Andersen et al., 2004) is the easiest to identify, as the description and the specificity of what

constitutes a barrier is quite clear.

The barrier definitions presented by PSA (2013, 2012a) has introduced ’performance influ-

encing factors’ in addition to the barrier, barrier element, and barrier function definitions. As

Table C.1 shows, most of the planing procedures can be categorized as performance influencing

factors within the scope PSA (2013) presents. The definitions for barrier and barrier elements are

somewhat vuage, or at least wide. The clarification that is given in PSA (2013) can be interpreted

so that the entire procedure presented in Table C.1 is as a whole a performance influencing fac-

tor on for instance a containment barrier. On the other hand, since the definitions are as they

are, it must be possible to relate it to the context of operations as well. This is the way it have

been interpreted for this case. This interpretation leads to a conservative approach, where only

elements that is possible to assign performance requirements to, in accordance to the state-

ments by PSA (2013) are considered barrier elements.

The classification Hollnagel (2004) presents, is quite different from the other classifications

used in this case study. The focus is more specifically on means to warn or prevent human

interaction to cause unwanted incidents, especially through the symbolic barriers and the In-

corporeal barriers. The physical barrier are also represented, while more interactive physical

barriers, such as the locking of valves and disconnection of equipment is functional barriers,

because of the need of interaction in order to function. It can definitely be agued that the fo-

cus of Hollnagel (2004) is on normal operation, and the barriers classification that is presented

is therefore more focused on embedded procedures, not additional measures in extra ordinary

circumstances, such as a accident sequence.
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4.2 Case Example - B

This case is based on the case example used by Hauge et al. (2012) in the SINTEF report ’Barriers

to prevent and limit acute releases to sea | Environmental barrier indicators’, and Chief Counsel’s

Report (Bartlit et al., 2011) on the Macondo accident.

The case is based on the drilling process, more specifically on kick detection and avoidance,

where the main hardware is the blowout preventer (BOP) and mud control. The technical el-

ements are in place to prevent releases to sea. There are also human machine interaction and

interpretation, in addition to rules, regulations and procedures related to this operation. The

operation itself can more accurately be described as a loop of operations where several of the

elements are either a continuous operation or a task that can be performed several times within

the time period, rather than a linear sequence where one thing leads to the next. There are how-

ever also more linear sequences, especially if a kick is detected. A list of procedures and other

elements is found in Table C.2. These elements are then assessed against the four classifications

and definitions.

For the case in question, objective for the barriers, barrier systems or barrier elements is

assumed to be to detect signs of kicks to prevent and minimize the effects of an escalation.

Table 4.2: Description of kick detection operational elements

Element

description

Sklet

Classification

ARAMIS

Classification

PSA

Definitions

Hollnagel

Definitions

Pit gain Active Technical Barrier Element Incorporeal

barrier system

Flow out measure-

ment

Active Technical Activated -

warned

Barrier Element Functional

barrier system

Flow in measure-

ment

Active Technical Activated -

warned

Barrier Element Functional

barrier system

Flow in/out com-

parison

Active Human &

Operational

Activated -

warned /

assisted

Barrier Element Incorporeal

barrier system
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Operator knowl-

edge

Performance in-

fluencing factor

Incorporeal

barrier system

Visual inspection of

flow line (video)

Active Human &

Operational

Barrier Element Incorporeal

barrier system

Mudlogging Active Technical Barrier Element Incorporeal

barrier system

Drill pipe pressure

measurement

Active Technical Activated

warned

Barrier Element Incorporeal

barrier system

Gas content mea-

surement

Active Technical Activated

warned

Barrier Element Incorporeal

barrier system

Overboard valve Active Technical Activated

Hardware on

demand

Barrier Element Functional

barrier system

Drilling operation

Drilling supervision Active Human &

Operational

Barrier Element Incorporeal

barrier system

Emergency re-

sponse manual

Barrier Element Incorporeal

barrier system

Driller Training Performance

Influencing

Factor

Emergency discon-

nect system (ESD)

Active Technical Activated -

manual /

automated /

emergency

Barrier element Functional

barrier system

BOP blind shear

ram

Active Technical Activated -

manual /

automated /

emergency

Barrier Element

/ Barrier

Functional

barrier system
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4.2.1 Comments on Results of Case Example - B

In this case there are to a great extent consensus between the different definitions on what is

considered a part of a barrier, barrier elements and/or barrier system. In the case of the def-

initions and classifications presented by Sklet (2006), most of the barriers can be classified as

active technical parts of a barrier system, and with some Active Human & Operational elements

of supervision. Most of the elements included in the case can be classified as parts of the barrier

system, when using the Sklet (2006) classification. The elements that does not fall within this

classification are related to the drilling process itself, and not specifically to kick detection.

The ARAMIS classification (H.Andersen et al., 2004) has least amount of elements that falls

within any of the barrier categories. The classifications focus on execution is evident in this

case. The measurement elements are here seen as part of the barriers, the detection, but the

action and diagnose of the condition is done by an operator. Another possible interpretation

here would be only activation of counteracting elements should be included as barriers or bar-

rier elements. These differences from the other definitions is maybe the strongest evidence that

the ARAMIS classification is made for process plants and not for drilling operations. There is

absolutely room in the definition of barrier presented by H.Andersen et al. (2004) for classifying

other elements in the case as barriers or parts of barriers.

When applying the PSA (2013) definition, most of the technical and operational elements

can be considered as barrier elements. The exceptions are the training and knowledge elements

that are considered performance influencing factors.

Most of the elements requiring some kind of human understanding and interpretation of the

system is considered incorporeal barrier systems, when applying the classifications presented

by Hollnagel (2004). The technical or mechanical elements are considered functional barrier

systems or parts of functional barrier systems. It seems that Hollnagel (2004) definition and

classification is quite applicable for this type of operation. The focus on human understanding

of the system and the signs from the systems, seem to coincide with the barrier view of Holl-

nagel.
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Not considered a barrier element is the drilling operation itself. Though some might con-

sider all elements mentioned in Table C.2 as part of the drilling operation, the element is in this

context considered the practical execution of tasks on the drilling deck. Since no detailed de-

scription of this operation is found, this is seen as a single element in this case. There might well

be elements within such a operation that might fall within one or more of the definitions that is

applied to the case study.

4.3 Case Example - C

The third case is constructed around a leak scenario, and is strongly influenced by the NORSOK

standard S-001(NORSOK standards, 2008), and base on the leak scenario described the paper

’Risk assessment in the offshore industry by Brandsæter (2002). The leak scenario is described on

a more general level in the event tree in Figure 4.1, and the elements is described in Table 4.3.

For the case in question, objective for the barriers, barrier systems or barrier elements is

assumed to be minimize repercussions and consequences of HC leak on offshore installation.

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 2210

1-1

2-1

3-1

4-1

5-1

6-1

7-1

4-2

5-2

6-2

7-2

4-3

5-3

6-3

7-3

4-4

5-4

6-4

7-4

2-2

3-2

Yes/ True

TREE: HYDROCARBON LEAK

Figure 4.1: Event tree of leak scenario(Based on Fig.5 from Brandsæter (2002))

The leak event have seven stages or levels of escalation, as seen in the event tree; (1) Isolation

failure, (2) Ignition inside area, (3) Ignition outside area, (4) Strong explotion, (5) Fire water, (6)

Spread to other equipment and (7) Spreads to other areas (Brandsæter, 2002)
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Table 4.3: Description of elements in the leak scenario

Element

description

Sklet

Classification

ARAMIS

Classification

PSA

Definitions

Hollnagel

Definitions

Isolation of HC gas Passive Physical Permanent

Passive

Barrier Element Physical Barrier

system

Detection of HC gas

in leak area (Sensor)

Active - Techni-

cal

Activated -

Automated

Barrier Element (Functional

Barrier System)

Detection of HC gas

in leak area (Hu-

man)

Activated

Procedural

Barrier Element Incorporeal

Barrier System

Detection of fire in

leak area (Sensor)

Active - Techni-

cal

Activated -

Automated

Barrier Element (Functional

Barrier System)

Detection of fire in

leak area (Human)

Activated -

Procedural

Barrier Element Incorporeal

Barrier System

Detection of fire in

other area (Sensor)

Active - Techni-

cal

Activated -

Automated

Barrier Element (Functional

Barrier System)

Detection of fire in

other area (Human)

Activated -

Procedural

Barrier Element Incorporeal

Barrier System

HC to flare/ vent Active Technical Activated -

Automated

Barrier Element (Functional

Barrier System)

Ventilation of leak

area (evacuate gas

or seal off)

Passive Physical

/ Active Techni-

cal

Permanent

Active

Barrier Element (Functional

Barrier System)

Separation of leak

area (seal of area for

humans)

Passive Physical

/ Active Techni-

cal / Passive Hu-

man

Activated Emer-

gency

Barrier Element Physical Barrier

System
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Alarm activated

(Technical)

Active Technical Activated - au-

tomated

Barrier Element Symbolic Bar-

rier System

Alarm activated

(Human)

Activated -

manual

Barrier Element Functional Bar-

rier System

Alarm activated

(CCR)

Activated - as-

sisted

Barrier Element Functional Bar-

rier System

Activation of ESD

(automatic)

Active Technical Activated - au-

tomated

Barrier Element (Functional

Barrier system)

Activation of ESD

(manual)

Activated man-

ual

Barrier Element Functional Bar-

rier System

Activation of ESD

(CCR)

Active Technical Activated as-

sisted

Barrier Element Functional Bar-

rier System

Activation of Fire-

water in leak area

(Activator)

Active Technical Activated auto-

mated

Barrier Element (Functional

Barrier System)

Activation of Fire-

water in leak area

(Human)

Activated man-

ual / emergency

Barrier Element Functional Bar-

rier System

Activation of

water curtains

Active Technical Activated -

hardware on

demand

Barrier element Functional Bar-

rier System

Firewalls Passive Physical Permanent Pas-

sive barrier

Barrier Element Physical Barrier

System

Evacuation proce-

dure

Active Human&

Operational

Barrier Element Incorporeal

Barrier system

Evacuation Passive Hu-

man& Opera-

tional

Activated emer-

gency

Barrier Element
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4.3.1 Comments on Results of Case Example - C

As it is for the case B example, some of the operations and events are happening simultaneously

or in a loop of interactions, but there is a somewhat more sequential progression of events. This

is also the case where there are the most consensus on what is to be considered a barrier and not.

Some differences are there, especially related to the human activation of different safety related

systems. The description of human & operational elements by Sklet (2006) does not include

activation of safety systems. A possible reason for this may be that this is assumed to be included

in other safety systems, such as a SIS, where human activation is included in the reliability of

the SIS, as shown in NEK-IEC standard 61508 (NEK-IEC, 2010). Since there are a high degree

of technical elements present in this case there is also a high degree of consensus between the

different barrier definitions. This shows quite clearly that it is the human and organizational

contributions that is difficult to handle. As PSA (2013) notes, is it not what one calls the risk

reducing measure that matters, but rather the differentiation between what is and what is not

a barrier. All elements in this case, except the evacuation itself, can be classified as a barrier

element within scope of the classification presented by PSA (2013), for this case.

4.4 Discussion

The three cases used represent different states of in the operation, and also different levels of

human interaction. Case A is focused on operations carried out by humans. There are no auto-

mated elements, and depending on the view on barriers, either few or no technical barrier func-

tions. Most of the human actions can be considered rule based and/ or knowledge based. Case

B have a combination of both operational and technical elements, both separate and together.

Here the operational elements are also skill based. The third case, Case C, has a predominance

of technical elements, but also some operational element or human actions.

When comparing the results of the cases, there are some trends and characteristics of the

different barrier definitions and classifications, that may not be so evident from a purely the-

oretical point of view. Minor differences in wording, can give quite significant differences in
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practical application.

To sum up the main differences and characteristics of the different definitions and classifi-

cations with regards to operational and organizational elements can be listed as following:

• Sklet (2006) - Focus on control functions and checking procedures

• H.Andersen et al. (2004) - Focus on actions and specificity

• PSA (2012a, 2013) - does not (specifically) differentiate between different barrier elements,

or barrier types. Only definition set that includes influencing factors.

• Hollnagel (2004) - Focus on normal operation, and thereby more focused on "embedded"

barriers.

The distinguishing characteristic for the PSA (2013) classification is that it takes the perfor-

mance influencing factors into account. On the other hand there is less room for differentia-

tion in the PSA (2013) than in the other definitions and classifications. Even though PSA (2013)

discusses organizational and operational barrier elements, in addition to technical barrier ele-

ments, it also makes the argument that what one calls the barrier element is not important, but

rather which elements that are barrier elements and not. This is a sound and practical approach

in general, but it also leaves much room for interpretation. This can be both positive and neg-

ative. Because of a large diversity of operations and safety procedures, a strict set of definitions

of barrier types, may constrict what elements are put in place in order to reduce risk of major

accidents. It may also lead to believe that elements vital to major accident avoidance are not.

This can for instance be manifested through less focus on maintenance on important elements,

because they do not get categorized as ’safety critical’, or human operations and actions is seen

as less important since its not a part of a barrier or safety system. On the other hand a wide def-

inition may give a unbalanced risk picture, where the weight can go either way, for instance that

elements that reduces risk are not taken in to account, or that risk reducing ability is allocated to

elements that in fact does not reduce risk in any significant way. When the definition is as wide

as it is, the amount of elements that needs to be considered may also increase. This may lead to

less attention on the elements that actually reduces risk in a significant way.

The ARAMIS definitions (H.Andersen et al., 2004) is, as opposed to the PSA (2013) definition,

quite specific on what elements are considered barriers. The trisection of the different barriers
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with detect, diagnose/activate, and act gives a quite divers and complex brake down of the differ-

ent types of barriers, while still having a manageable subset of barriers. The term barrier is used

by ARAMIS, much in the same way as barrier system is used by both Sklet (2006) This allows to

break the barriers down into what could be considered barrier elements. The drawback of this

is as mentioned above, there might be elements that is not taken in to account, even if they have

risk reducing effects.

Sklets proposed definition and classification (Sklet, 2006) has a stronger hardware perspec-

tive then both the PSA (2013) definition and the ARAMIS (H.Andersen et al., 2004) definition

and classification. The basic levels of the barrier systems are here the hardware that carries

out the function, that may be characterized as barrier elements. The classification then seems

to be based on hardware characteristics, rather then functional characteristics. These are not

mutually exclusive, shift the focus of analyst. The choice of not including human action as hu-

man&operational parts of the system is maybe a strict interpretation of the definitions that are

presented by Sklet (2006), but based on the examples given in the paper this is a very plausible

interpretation.

The Hollnagel (2004) definitions are somewhat different from the rest. The focus on normal

operation, and to some degree resilience, is quite evident, both from the classifications them

selfs, and in the case studies. It is never the less an interesting comparison to make. The focus of

this definition is clearly on the human part of the system, and especially on understanding and

interpretation. This is something the other definitions and classifications does not cover to the

same extent. The other side of this is that technical systems are not as well covered in this set

of definitions. There can be made an argument for classifying technical systems as functional

barrier systems, though this is not obvious. Automated technical systems, such as many types

of SIS’s are not in need of any human interaction in order to function as intended. Also purely

mechanical systems, such as pressure release valves, that automatically opens at a certain pres-

sure level will fall outside the scope of the functional barrier system definition. A single purpose

technical element, such as the measurement of pressure have in case example B been classified

as a functional barrier system. The reason for this is that this is seen as a element in a func-
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tional barrier system. This interpretation may be somewhat ambiguous, but seems reasonable.

All of these technical systems would also fall outside the scope of the physical barrier system

definition, where the main concern is the passive protection elements. The lack of consistency

and possibility of categorizing technical systems is the main drawback of the Hollnagel (2004)

definitions and classification. For the cases used in this chapter, it may be argued that the in-

corporeal barrier system have been used at to many of the elements in the cases. However the

argument used when applying the incorporeal barrier system is that these elements are based on

thought processes and thereby knowledge, which is the basis for the incorporeal barrier system

definition.



Chapter 5

Classification of Operational and

Organizational Barriers

As shown in previous chapters, there are both a wide variety of types of human error and types

of organizational factors that can be influential both in a QRA and in the operational phase.

This chapter proposes a new way of classifying barriers. The treatment of operational and or-

ganizational elements is one of the main focus areas. The classification is also done with strong

emphasis towards modeling and possible quantification of risk related to barrier failure. The

proposed classification and definitions are strongly influenced by the definitions and classifica-

tions presented by Sklet (2006) and ARAMIS (H.Andersen et al., 2004), as well as the underlying

goal of the barrier management document presented by PSA (2013) and the management regu-

lations and guidelines presented by PSA (2010b,a).

5.1 Basis of a New Barrier Classification and Definition

As shown in the previous chapter there are several well thought out definitions and classifica-

tions of barriers. There have been several attempts to include human and organizational ele-

ments in different ways. It is an general consensus that the human and organizational elements

in risk reduction are important, but many of the presented definitions have added them to al-

ready existing definitions and classifications, that have a bias towards the technical and physical

barrier elements, and are made to fit these.

63
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When classifying and defining barriers, there are several aspects that needs to be consid-

ered. It is important to recognize the limitations of the modeling methods available, and the

ability of collecting reliable data. Even though the results of a risk assessment, or a QRA, must

be seen as an estimate and the considerable uncertainty that is embedded in the models should

be emphasized, there should also be an emphasis on restricting the types of elements that are

modeled to those elements that are possible to quantify with a measurable degree of accuracy

and verifiability. This should be reflected in the definition and classifications that are to be used.

5.1.1 Human Factors and Organizational Factors in Models and Definitions

There are, as shown in Chapter 3 several methodologies that have been developed to model the

influence of human factors on technical systems, and the influence of human interaction on

safety in general, both quantitative and qualitative. It is important to take these methods and

models into account when proposing a new set of barrier definitions. Also in the classification

scheme, it is important to bring in the practical application of the classification.

When comparing the different methodologies that are presented in Chapter 3, it is evident

that there are some types of human factors that are the main focus areas. One of the most im-

portant is the human action. There are two main ways to address these; direct and indirect. HRA

have mainly a direct approach, by addressing a set of tasks that can either be carried out correct,

or incorrect. This is more or less consistent with the types of barriers that ARAMIS (H.Andersen

et al., 2004) presents. Sklet (2006) presents a more indirect approach to this, by classifying self

control and peer control of tasks as elements in a barrier system, but seemingly not the action

it self. This limits the overuse of the barrier term is eliminated, since if actions are to be consid-

ered barriers, the possibility of adding too many and nearly all actions as barrier elements, even

though the risk reducing abilities of these actions are negligible or non-existing.

The BBN (Bayesian Belief Network) methods can be adapted to many different barrier clas-

sifications and definitions, since the purpose of the modeling method is not risk-specific, but
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has a rather general cause-and-effect focus. This coincides with most energy-barrier based ac-

cident models. The models main drawbacks is the amount of computing and values needed in

order to present a complete model. On the other hand, the BBN approach can be combined

with more traditional modeling methods, such as fault trees (FT) and event trees (ET). One of

the main reasons for choosing BBN instead of FT and ET is the ability to weight the parent nodes

impact on the child node. This seems to mostly be needed in relation to human and organiza-

tional elements, and the amount of computation can thereby be reduced. Also the possibility of

using both quantitative, and semi-quantitative or qualitative measures gives the BBN approach

an advantage. Whether or not these advantages outweigh the drawbacks of the method is not

considered to be within the scope of this thesis.

The FRAM modeling method presented by Hollnagel (2012) is heavily focused on human

actions, but also on the inability to calculate or quantify anything that predicts human actions.

The fundamental view is that human performance is by definition variable. Though this may be

true, it is also important to be reminded that risk assessments are not an exact science. All mod-

eling is an approximation of the world or a system, with a varying degree of accuracy, in order

to visualize important aspects. Quantifying the probability of failing a task, with a given uncer-

tainty attached, is an approximation that makes it simpler to add these factors to the totality of

the model of a socio-technical system. Despite the unwillingness to quantify human actions,

the FRAM methodology and Hollnagel (2012) illuminates an interesting approach to modeling

human action with a strong emphasis on the function of the action. This also coincides to some

degree with the safety instrumented system approach, that also sets the function of the system

as the most important element.

The only definition of barriers, of the four used for the case study, that uses the term orga-

nizational barrier elements is the definitions presented by PSA (2013). It may be argued that

the classification presented by Hollnagel (2004) also includes organizational elements in the in-

corporeal barrier system definition, in the sense of rules and regulations being part of a barrier

system. Though this is somewhat ambiguous since the definition also can be interpreted so that

it is the knowledge that is needed in order to carry out tasks, and thereby the human element

that is the actual barrier system.
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The definitions that PSA (2013) presents seems to focus on the ability to adapt to any modeling

method, in order to not constrain the user to much. Since PSA is a governmental regulatory

body, this is a natural approach. Also, since the focus on human and organizational elements is

relatively new, this approach might be a way of facilitating innovation in the industry, and then

later find a ’best practice’, and adapt it into regulatory guidelines. This may be the reason that

organizational elements are included by PSA (2013), in order to not constrict the users.

Since the models that include human factors seem to focus on the actions or tasks that are

carried out, the barrier definitions should reflect that. Also based on the functions of defenses,

described by Reason (1997), the focus of defenses is the action taken to avoid, control or mitigate

an unwanted event.

When evaluating the different definitions, it is in many cases evident that the human factors

and organizational factors is added on already exciting definitions, and thereby only makes it

more complex. Since the focus seems to have been on the hardware, in these definitions, adding

a complex ’component’ as a human or an organization, makes the definitions and classifications

more complex as well. This is, in the opinion of the author, an unnecessary level of complexity.

By switching to a more function oriented point of view, the complexity of the hardware become a

secondary concern. This implies that the the ability of performing a function is the main aspect

to be modeled and monitored, and by that specifying the conditions of the modeling and the

monitoring.

5.2 Proposed Barrier Deffinitions and Classification

In the opinion of the author, the most important question to ask when establishing barriers is

why. The need, and purpose of the barrier must be the fundamental element of barrier manage-

ment. If the need and the purpose of establishing a barrier function is not possible to articulate,

or describe, the need is probably not well established. As a consequence of a well defined need

and purpose, it can be easier to communicate the importance and justification of the barrier,

both to management and to operators, operating and maintaining the barriers. The objective of

the barrier must therefore be one of the fundamental aspects of the barrier classification, and



CHAPTER 5. CLASSIFICATION OF OPERATIONAL AND ORGANIZATIONAL BARRIERS 67

must be based on a need found through hazard or risk identification. The objective of a barrier

is realized by successfully performing the functions needed, when they are needed. The choice

have therefore been made to classify barriers based on the need of functions, not hardware. The

following set of definitions is therefore developed.

A barrier objective is defined as following:

Z Barrier Objective: The intended purpose of the barrier, in order to prevent, control or mitigate

the risk of a specific undesired event, disclosed by hazard analysis.

The barrier objective is found by asking why a barrier is needed, and is thereby answered

by for instance; to minimize leak, to prevent ignition, to shield evacuation route from fire, to

prevent escalation of fire, to prevent leak, or to contain HC gas. It is a higher level description of

why a barrier is needed. This is found after assessing the potential hazards of the area in ques-

tion. There might also be possibility of introducing a more specific objective, or requirement

that the barrier functions need to fulfill. A barrier objective is realized by performing of one or

more barrier functions. The barrier functions are then found by asking how the barrier objective

can be met. These are specific function related to the realization of the barrier, not the function

of the equipment used. For instance a pump in a firewater pump arrangement has the hardware

function of pumping a given amount of water, but the barrier function that the firewater pump

performs is to supply a given water to the sprinkler. The barrier function is the actual actions

or task that needs to be carried out to prevent, control or mitigate a specific undecided event.

A single or a set of barrier functions is "the barrier", since it is what is done in order to prevent,

control or mitigate the event in question. A barrier function can then be defined as following:

Z Barrier Function: A function that is required in order to realize the barrier objective, and is

performed by one (or more) barrier element(s).

Barrier functions can be categorized by the use of six basic barrier functions; (1) monitor, (2)

detect, (3) decide, (4) activate, (5) confine, and (6) take action.
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1. Monitor - continues surveillance of input to discover trends and errors

2. Detect - the discovery of unwanted parameters or circumstances

3. Decide - the combining of available information, reaching a conclusion

4. Activate - the initiation of a technical system that takes action on or warns

5. Confine - the interposing between hazard and asset

6. Take action - an intervention that prevents, controls or mitigates a specific event

The basic functions are intended as a starting point, or guidewords, when describing the

barrier function. The barrier functions can be realized by one or more barrier element, and a

barrier element can partake in realizing one or more barrier functions. Barrier elements can be

technical system, a physical structure, and / or a human. A barrier element is then defined as

following:

Z Barrier Element: A physical structure, a technical system, or a human that is intended and

implemented to perform one or more barrier functions, or a specific part of a barrier function.

There are however several influential factors that can affect the ability of a barrier element

to perform its intended function. These factors does not take part in realizing the function it

self. These may either impede or facilitate the performance of the intended function. These are

for instance environmental factors, the level of training of the operators, planning activities, the

maintenance quality, stressors in the workplace (local workplace conditions (Reason, 1997)).

Other factors can in a positive way influence the barrier elements ability to perform its function

as it was intended. These factors can for instance be inspections, self-check procedures, and

peer-check procedures, and organizational and external factors such as regulations, rules, and

guidelines.

Z Influencing factors: Factors that influence to perform the intended function, when needed,

either in a positive or a negative manner.

Based on these definitions, a classification scheme have been developed. The classification

is based on the basic functions mentioned in the definitions. The classification scheme is shown
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in Figure 5.1, and a visual representation of the hierarchy of elements realizing a barrier objec-

tive is shown in Figure 5.2.

Barrier Objective 

Barrier Function

Infuencing Factors

How?

Monitor Take ActionDecide Activate ConfineDetect

Human

Technical
What?

Why?

Human

Technical

Human Human

Technical

Physical

Technical

Human

Technical

Hazardous Event

Figure 5.1: Classification for barriers

5.2.1 Impact on Operational and Organizational Factors

The proposed definition set is attempting to both reduce the gap, that is introduced between

the human and the technical elements, while still drawing a clear line between what can be

considered a barrier and what can not. A holistic approach to risk reducing measures must be

based on the functions that needs to be performed in order to reduce risk, and allocate risk

reduction to the elements that have the appropriate reliability and availability, to perform the

required function. The organizational factors in this definition set and classification scheme are

considered influencing factors, since they do not directly perform the actions that achieves the

barrier function. An organization does not take action, even though the expression is used often.

The people in the organization uses the rules and regulations that is developed and adopted by

the organization.
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Barrier Objective 

Barrier Function 1

Barrier Function 2

Barrier Function 3

Barrier Function n

...

...

...

Barrier Element 1

Barrier Element 2

Barrier Element 2

Barrier Element 1

Barrier Element m

Barrier Element 4

Barrier Element 3

INFLUENCING
 FACTORS

HAZARDOUS
EVENT

Why? How? What?

Figure 5.2: Example of hierarchy of elements realizing a barrier objective

Modeling Methods

The changes that are proposed does not impact the modeling methods that are used for QRA

and similar analyzes in a significant way with regards to technical and physical elements and

systems. It is however intended to give a gateway to include more operational elements and

tasks into the analyzes. By creating awareness on what functions are needed to achieve a barrier

objective, rather then focusing solely on the hardware functions, it will perhaps make it sim-

pler to consider the functions humans can perform, and not overlook these during the design

phases. Also by limiting the human contribution to functions, which is tangible and if not always

directly measurable, then at least possible to estimate using expert judgement, the inclusion of

human contributions becomes more manageable then, for instance the wider definitions used

(i.e. PSA (2013) and Hollnagel (2004)). Also the fact that organizational elements are consid-

ered influential factors, makes the set of elements to include more manageable, even though

the contribution of organizational factors might be an increase of data needed to be processed.
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In a QRA or other similar quantitative analysis methods, it is the barrier function that should

be modeled, as a risk reducing factor. Based on hardware reliability, human error probabilities

and factors influencing both human and hardware, it should be possible to calculate the avail-

ability and reliability of the barrier functions, that then are incorporated into the QRA models.

It is however important to recognize the fact that when focusing on several barrier functions,

that may or may not be performed by the same or a subset of the same barrier elements, one

need to adjust the availability of the barrier elements based on what other barrier functions it is

needed to perform.

Operational Monitoring of Barriers

The proposed changes in definitions and classification might have a bigger influence on oper-

ational monitoring of barriers then on the quantitative risk analysis made in the design phase.

By focusing on the ability to realize the function and thereby achieve the objective, the totality

of function that the barrier elements are to achieve must be in focus, rather then a single ele-

ment. Both in terms of what to monitor, and methods to use, the definitions and classification

provides a functional approach. The barrier can be monitored in several ways; use of functional

tests on elements, use of indicators either on the elements, the functions, or the influencing

factors, monitoring technical condition of elements, or a combination of these. The hierarchy

presented in Figure 5.2 can also be a guideline of how the barrier objectives can be monitored

in a near-continuous fashion, or within a given time interval. By including color coding of the

different elements, functions and the objectives, a dashboard of failures or degradation of either

can be shown. A failure of an objective would here be critical. Both the functions and elements

can have redundancy, so even if one function or one barrier element fails, the barrier objective

can still be met. Though the interconnections between the barrier elements must then be clear.

This can be done by introducing AND and OR gates between the barrier functions and barrier

elements, or by displaying the barrier elements in serial and parallel structures. With the func-

tional view it may also be easier to consider alternative options for performing a function, if a

system fails or an operator becomes unavailable, without getting caught up in the hardware,

when using a functional approach rather then a hardware focused approach. It may also be
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easier to incorporate and identify the impact of degradation of hardware on barrier functions in

the modeling methods, since the focus always should be on the ability of the hardware to realize

the barrier function, and not the hardware function. For instance a degraded firewater pump

may still be able to perform its intended hardware function of pumping water, but may not be

able to realize its barrier function of delivering a certain amount to the sprinklers at any give

time. The functional view then forces the user to look at the whole systems ability to perform

its intended function. It is also in relation to the barrier functions that performance standards

should be made, if using the proposed barrier definition set.

Relation to HRA

There are some distinct similarities between the hierarchy of elements and functions presented

in Figure 5.2, and the FAST method for HRA, briefly presented in Chapter 3. The same why and

how questions are used in both. Though the definitions and the classifications are not made

to fit a HRA methodology, the similarities could possibly make the transition easier to include

human factors to a greater extent. Also the influencing factors described in the definitions and

the PSFs used in HRA methodologies coincides. The organizational elements are in both cases

seen as influences rather then elements. The use of HEP on human barrier elements, and PIFs

on the organizational factors seems therefore to be a obvious possibility. Since HRA are based

on the reliability of human performance, the functional approach seems to be a good fit, since

the reliability of the barrier function is a key measure for design phase modeling methods, such

as QRAs, where HRA methodologies are likely to be used.

Relation to Other Modeling Methods For Human and Organizational Factors

One of the methods that have been tested, to some degree, for modeling human and organiza-

tional factors in the oil and gas industry is bayesian belief networks (BBNs). The ability to have

levels of influencing factors, and the ability to combine BBNs with fault trees and event trees.

Here there are some concerns regarding the amount of data and calculations needed in order to

get the resolution of the model at an acceptable level. The lack of data is a general concern with

regards to human error or failure integration, but the exponential increase in amount of data in

the data table.
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The FRAM methodology presented by Hollnagel (2012) based on variation in functions and

the relation between the different functions. The fundamental principle of the FRAM method

is the variability of performance of these functions. Even though the FRAM method is based

on functions, one can not assume that a functional approach to barrier definitions provides the

possibility of modeling barriers as done in the FRAM method. It might be possible on a high

level with the proposed barrier definitions. It may be a possibility of lower level (i.e. sub-system

level) if one defines barrier element functions, in addition to the proposed definitions. This

level is however intentionally left out of the proposed definition set, because of the level of de-

tail needed to classify barrier element functions would be to comprehensive for modeling, at

least with the information available for this thesis. The normal operation focus of the method

does also set some restrictions on the use of FRAM in relation to energy barrier focus that is in-

herent in the barrier definition presented.

The system theoretical method presented by Leveson (2011) is also based normal operation,

and thereby have the same restrictions as the FRAM method. The modeling method itself is

based on control loops, which have some properties that may be interesting for human and

organizational factors. Some operations that are cyclic in nature, such as monitoring, control

loops can give a more realistic representation of such a process.

5.2.2 Comparison to Definitions used in Cases A, B and C

The proposed definitions and classification is applied to the cases presented in Chapter 4. The

tables with that shows the application of the definitions and classification on the cases is shown

in Appendix C. The case examples gives some insight into how the proposed definitions can be-

have in use. The most distinct difference from the other definitions that is applied to the cases

is the number of elements that is considered influencing factors. Several of the elements that in

the other definitions are barrier elements, or parts of the barrier system, is with the proposed

definitions influencing factors. Especially the elements related to formalities and checks offs of

work conducted in Case A, differentiates the new definitions. A procedure that became difficult

to place in the new set of definitions, for Case A, was the labeling of for instance valves. Here it
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can be argued that the labeling is an influencing factor, that influences the operator in a positive

way. Another interpretation is that the act of labeling is an barrier function, in the same sense

that disconnecting safety systems are, in order to avoid unwanted events. The lather is chosen

in this case, but the lack of practical experience from the author is in general a source of error.

In the results of Case B and C the outcome for the proposed definitions, were more similar to

the other definitions, though it can be argued that the proposed definitions and classifications

is more detailed and for some elements give a more accurate description of the actual elements

in question. That there are less differences between the proposed definition in the last two cases

is not unexpected, especially Case C that have a high degree of technical elements. This shows

that the definitions work for the basic technical elements, as well as being able to incorporate

the operational elements.

5.3 Possible Framework for Barrier Identification

The definition and classification opens the possibility of a framework that can be used to struc-

ture the process of barrier identification, both in the design phase, and in an operational phase

or during modifications. For a generic barrier identification process the process can be de-

scribed in the following nine steps:

1. Perform hazard identification or risk analysis

2. Identify what hazards or hazardous events that can occur where allocation of risk reducing

measures are needed.

3. Identify the barrier objectives by asking why you need a barrier for the specific situation,

or event in the accident sequence.

4. Identify what functions are needed in order to achieve a barrier objective that have been

identified, by asking how the barrier objective can be achieved. (The six basic functions

can act as guidewords, for instance by using the worksheet (see Figure 5.3))

5. Identify what barrier elements are needed by asking what is needed to perform the func-

tions that are identified in Step 4.
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6. Confirm the ability of the barrier element to perform it intended function (for instance by

using the barrier evaluation criteria presented by Rausand (2011)), to check that the risk

reduction is adequate.

7. Identify factors that will influence the barrier elements ability to perform it intended func-

tion

8. If the risk reduction is not adequate, repeat Steps 4-7 to add additional functions, or addi-

tional elements for redundancy.

9. Repeat Steps 4-8 for all barrier objectives

In order to structure the process, a worksheet have been developed. The worksheet is shown

in Figure 5.3. The worksheet is generic, and can and should be modified to the needs of the

user. For instance, a barrier function can be realized by several barrier elements. The worksheet

provides an overview of the possible barrier functions that can be applied, and thereby makes it

harder to forget or overlook a barrier function that could be needed. The next subsection gives

an example of how this framework can be applied to a accident scenario.

Barrier Objective 1 ... Barrier Objective n
Barrier Function Barrier Element ... ... Barrier Function Barrier Element

Monitor

Detect

Decide

Activate

Confine

Take Action

Figure 5.3: Example of worksheet for barrier identification
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5.3.1 Case Example - Leak Scenario

In order to better explain the barrier definitions, classification scheme and barrier identification

method, a case example is used to do this. The system in question is based on the same scenario

used in Case B in Chapter 4. The scenario has the seven stages of escalation that is described

by Brandsæter (2002); (1) Isolation failure, (2) Ignition inside area, (3) Ignition outside area, (4)

Strong explosion, (5) Fire water, (6) Spread to other equipment and (7) Spreads to other areas. This

list then constitutes steps 1 and 2 in the framework for barrier identification presented in Sec-

tion 5.3. The next step is then to identify the barrier objectives. In this case ’minimize leakage’,

and ’detect leak’ would be an obvious barrier objective for the initial stages of the gas leak. Other

barrier objectives could be ’raise awareness of gas leak in leak area’, ’lower gas concentration in

area to non-dangerous level’, and ’prevent gas ignition’. If there is an ignition of the HC gas, there

would be several other barrier objectives that is needed, but for this example the focus is on

pre-ignition barriers.

Step 4 is to identify the functions needed in order to achieve the barrier objective. This is

done with the help of the guide words, and the worksheet. This is shown for this example case

for the ’minimize leak’ and ’prevent ignition’ barrier objectives. The barrier elements needed to

realize these barrier functions are then identified in Step 5 of the framework. The application

of these steps on the case example is shown in Table 5.1. From the table it is shown that there

might be possibilities of several barrier elements preforming the same barrier function, and in

some cases, several barrier elements are needed to perform a needed function.

The next step in the proposed framework is the confirmation of the barrier elements ability to

perform its intended function. This step is not performed in this example. Here some calcula-

tions, and expert judgement can be used, in combination with experience data.

Step 7 is focused on identifying influencing factors. These are of course case specific, but some

general influencing factors, such as the safety influencing factors presented by Schönbeck et al.

(2010), such as maintenance management, procedures, housekeeping, communication and train-

ing, as presented in Chapter 2.3. For human operations and human machine interactions (HMI),

PSFs can be used. These would depend on the HRA modeling method used. The last two steps

are not included in this example, since they only are repeating the previous steps.
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Table 5.1: Example of use for the barrier identification worksheet for the barrier objective mini-
mize leak and Prevent Igintion

Minimize leak
Barrier Function Barrier Element

Monitor
Observ pressurechanges in vessel Pressure sensor

Operator
Mecanical pressure sensitive device

Monitor HC gas level in given area Gas sensors
Operator

Detect
Detect ruptures in vessels Operator

vessle integrity sensors(?)
Detect high levels of HC gas Gas detectors

Decide

Activate Activate shutdown valve leading in
to area

Logic solver
Operator
CCR Operator

Confine Seal of given area Doors
Hatches

Take Action

Prevent Ignition
Barrier Function Barrier Element

Monitor Monitor HC gas in areas with igni-
tion sources

Gas sensors
Operator

Detect
Detect HC gas in vicinity of possi-
ble ignition source

Operator
Gas detector

Decide
decide whether or not to shut
down processes that may cause
ignition

Operator
CCR operators

Activate
Activeate shutdown procedures Operator

SIS

Confine
Isolate hot surfaces that can lead
to ignition

Isolating material
Heat sink

Take Action
Shut down possible ignition
sources if alarm is activated

Operator
SIS
CCR operator
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5.4 Discussion of the Proposed Definitions and Classification

One of the clear characteristics of the proposed set of definitions and classification, is the sep-

aration of all organizational aspects of the operation of the barrier are considered influential

factors, rather then barrier elements. The organizational elements, such as procedures on a low

level, and rules and guidelines on a higher level, are separated from the barrier functions realiza-

tion, since they does not perform the action that detects, monitors, decides, activates, confines,

or takes action on an undesired event. That does not mean that the procedures or guidelines are

less important, or that less focus should be on these factors when working with safety and risk

reduction on a installation. Procedures, rules, regulations, and guidelines lay the foundation of

which actions and measures that are to be taken, and when they should be performed. But the

quality of a procedure does not assure the quality of an action, it only influences it.

An example of this may be that a procedure states that if a ship infringes the safety sone of an

offshore oil rig, the ship must be contacted and measures such as activating an alarm must be

take. However, it is logical to assume that if a ship is registered as being on a collision course

with the oil rig, the natural response to this would be to try to contact the ship, and take mea-

sures to notify the people on offshore oil rig. And it is this action that serves as a barrier, not the

procedure. A procedure will influence when and what measures are to be carried out, but not

execute the necessary actions, and is therefore not considered a barrier element.

There are some challenges with the proposed definition. The use of the basic functions mon-

itor, detect, decide, activate, confine, and take action, may in some ways be too constricting and,

in some situations, ambiguous to the user. The constrictions are intended, but it may in some

cases be too much. Especially in cases where elements performs several functions, as a SIS does,

or a human might do. This is counteracted by specifying that one barrier element can perform

one or more functions.

Some actions may also be difficult to place. An example of this can for instance be moni-

toring of a flow measure, in the kick detection example in case B. The operator are supposed

to detect signs of kicks. This can then be categorized as a detecting - function. In the case
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studies, especially Case B however, the comparison have been categorized as a decide function,

and the the monitoring technical input from the sensors have been categorized as a technical-

monitoring, since the detection of signs of kicks is, based on the Bartlit et al. (2011) report, a con-

tinuous process that is different, depending on type of equipment used and type of drilling that

is conducted. The detect-function is meant more or less as an equivalent of a sensor-function,

but also including human senses, such as it is used in case C, where detection of a gas leak or a

fire can be done by either a sensor or a human. There are therefore definitely some ambiguity

related to these terms.

Another element of the proposed definition that might be somewhat confusing is the intro-

duction of a new term, barrier objective. Since the term barrier function is somewhat estab-

lished as a near-equivalent to the barrier objective definition that is presented, there might be

some ambiguity, and misunderstanding of the differences of the two terms. The term is intro-

duced in addition to barrier function, to give a clearer distinction between the goal and the per-

formed function. Other terms, such as barrier function and barrier sub-functions, and barrier

system-function and barrier element-function, have been considered during the development of

the definitions.

In relation to the barrier performance characteristics presented by Rausand (2011)1 and bar-

rier properties presented by Hollnagel (2004)2, both described by Torgauten (2012), the pro-

posed classifications and definitions seems to be applicable. Both focus on the ability to per-

form the intended function. The intent of the proposed definitions and classification is indeed

to highlight the functions, and make the measures and assessment of the barriers abilities fo-

cused on the barriers function.

A element that the Hollnagel (2004) definition has, that the new proposed definition does

not have, is the focus on how the barrier is perceived. An example of this is an alarm activation.

An alarm can in the classification presented by Hollnagel (2004) be an symbolic barrier system. It

1Specificity, Adequacy, Independence dependability, Robustness, Auditability
2Efficiency and adequacy, Robustness (reliability), Delay in implementation, Applicability to safety critical tasks,

Availability, Evaluation, Dependance on humans
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focuses on what the barrier does, rather then the act that engages it, as the proposed definition

in this thesis does.

The proposed definitions and the proposed classification does however seem to be a good

fit for several of the possible modeling methods that are available such as HRA methodologies

and models that are academical, and under development and not tested in large scale such as

FRAM and to some degree BBNs. BBNs are a available methods of modeling, but within the field

of risk assessments and especially with regards to human and organizational factors, it is still a

model that is under development.

In the proposed model, the barrier elements function is not included as a separate level.

There is definitely possibilities of including this, but here the question is here whether or not

this contributes to a better understanding of the barrier function, or only confuses the user of

the definitions. On the element level, the barrier element function and the hardware function

becomes more intertwined.

Even though this set of definitions and the classification scheme are focused on the function

of barriers, rather then the hardware itself, there are, and will be in the future, specific require-

ments to some of the standard barriers or barrier element, especially when they are related to

specific standards. Examples of possible specific requirements are the NORSOK D-001 standard

and the NORSOK S-001 standard (NORSOK standards, 2012, 2008). The NORSOK D-001 is spe-

cific towards drilling operations, while the NORSOK S-001 is more general regarding design and

operational requirements to technical safety. It is worth noting that these established specific

requirements does not seem to conflict with the barrier definitions and classification that is pre-

sented in this thesis, but that it is not necessarily a direct equivalence between the requirements

in the standards and the barrier function or the barrier objective in the definitions.



CHAPTER 5. CLASSIFICATION OF OPERATIONAL AND ORGANIZATIONAL BARRIERS 81

It is also important to note that this is not a reversal of the barrier strategies that are in place.

The focus on barrier functions are in many cases already there, but this classification and defi-

nition scheme attempts to take it one step further, and by that ease the integration of human/

operational elements, while still giving some boundaries.

With regards to future improvements and trends within the safety and risk reducing meth-

ods, such as resilience and system thinking, the proposed definitions will not be outdated if such

models should be introduced. The fundamental concept of resilience engineering, as described

by Hollnagel (2012), is ’a description of characteristic functions, and look(s) for ways to enhance

the systems ability to respond, monitor, learn and anticipate. This coincides with the functional

view of barriers as presented by the proposed set of definitions and classification.





Chapter 6

Summary

In this chapter a summary of the thesis, and the findings of this thesis. A brief discussion on the

results of the thesis is conducted, and also possible areas of further work are suggested.

6.1 Summary and Findings

The thesis have addressed some important elements on risk reducing measures, and the rela-

tion to operational and organizational factors. In Chapter 2, the literature survey and review is

described. The focus of the survey is both the barriers in general, in addition to the human and

organizational aspects of risk reducing measures. The review is wide, and gives a brief overview

of the general barrier concepts, such as the Reason model (Reason, 1997), the definitions and

classification presented by Sklet (2006), the layers of protection principle and the layers of de-

fense principle. There are also a review of the ARAMIS definitions and classifications of barriers

(H.Andersen et al., 2004), which arises from the chemical process industry. Some methods and

models that integrates human and organizational elements, that was not covered by Torgauten

(2012) is also reviewed, and summarized. The regulatory authorities proposed definitions and

guidelines have been emphasized, since these give some ground rules on what the authorities

demands of the oil and gas industry. There are also reviewed some literature regarding safety in-

strumented systems, and their relation to human and organizational elements, since these are

an important part of the safety systems that are in place in the industry today.

The literature survey and review confirmed that there are inconsistencies in the way human

83
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and organizational elements are treated. There are however some trends that arises. There is

a stronger focus on barrier functions, rather then hardware. There are however not a obvious

consensus on how human and organizational elements are to be treated with regards to barrier

functions.

Chapter 3 is focused on the main modeling methods that have a focus on human and organi-

zational elements, and is giving a brief summary of the main aspects of these models. The main

focus is on human reliability analysis (HRA), but also other methods and models are briefly re-

viewed. HRA methods is a well established way of including human and organizational factors

in risk analysis, in other industries, especially the nuclear power industry. There are however

research done on utilizing HRA in the oil and gas industry, such as the work done by van de

Merwe et al. (2012), attempting to utilize the Spar-H methodology on oil and gas operations.

There is however several challenges when doing so, both with regards to the methods them

selfs, and with regard to the lack of data available on human and organizational factors and

errors. HEP data, which is an important part of the HRA methodologies, are also used in other

methods, modeling human contributions to errors. Risk_OMT (Vinnem et al., 2012), a modeling

method using BBNs to model influential factors to human action uses HEP data in combination

with expert judgement to quantify the human contributions. One of the main limitations in the

Risk_OMT project was the lack of data on human error and influencing factors.

Some other modeling methods are also described, such as the FRAM method presented by Holl-

nagel (2012). This method constitutes a fundamentally different approach to modeling, as the

main goal is to identify the influence between different functions, and how the functions varies

based on different influences. The FRAM method is also a qualitative method, where the varia-

tion in the functions are to be described verbally, and not by probabilities. Though not focused

on the energy-barrier-asset paradigm the FRAM method focuses on functions and variability,

that could be used to analyze barriers as well.

The fourth modeling method that is described in Chapter 3, is based on the system theoretical

approach presented by Leveson (2011), called STAMP. This model is also focused on normal

operations, but is structured around control loops. Here the possibility of including human

elements, either as sensors, controller or as actuators, are evident. This interpretation of the
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modeling method might fit some barriers quite well, although this might not be the intention of

Leveson (2011).

Chapter 4 is a divided in three case studies. The the example cases are chosen to represent

different cases where barriers are considered and used. Four barrier definitions is then applied

to the elements in the cases, to see what elements are considered barrier elements, barrier func-

tions or influential factors, and observe the differences between the four barrier definitions in

applied situations. This is in order to uncover differences that are unapparent when just assess-

ing the wording of the different barrier definitions. The four definitions chosen was; the Princi-

ples of Barrier Management in the petroleum industry(PSA, 2013), the ARAMIS definitions and

classifications (H.Andersen et al., 2004), the barrier definitions and classifications presented by

Sklet (2006) and the barrier definitions presented by Hollnagel (2004).

The first case is based on a maintenance operation, that was used in the BORA project. This case

is a clear pre-event (or pre-hazardous event) situation, in the Reason (1997) event sequence. The

differences between the four definitions was most evident in this case, compared to the other

two cases. Both the definition by Sklet (2006) and by PSA (2013) define a larger amount of the

elements in this case as barrier elements or parts of the barrier system, then the ARAMIS defini-

tions (H.Andersen et al., 2004) does. This is especially regarding the checking of work and other

procedural elements. The definition by PSA (2013) also stands out in this case, because of the

use of performance influencing factors, which allows for a more differentiated selection.

The second case is a kick detection process, in relation to a drilling operation. Here there are

more technical elements, where there are a higher degree of consistency between the different

definitions. Here the set of definitions that deviated the most from the rest, was the ARAMS defi-

nition. This can in some degree be contributed to the fact that the ARAMIS definition is focused

on the process industry, where this kind of operations are non existing. There are also some

differences in the treatment of knowledge and training.

The last case example is a leak scenario, where the definition and classification that stands out

is the definition presented by Sklet (2006) in relation to detection and activation activities for

operators.

The trends that are evident, with regards to operational and organizational aspects, in the case
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examples are that Sklet (2006) focuses on checking procedures and control functions, that the

ARAMIS definition focuses on actions, and that the Hollnagel (2004) definition focuses on nor-

mal operations and warnings. The definitions presented by PSA (2013) stands out as less spe-

cific, trending to wage on operational and organizational aspects, where most elements in the

cases could be considered barrier elements.

Chapter 5 discusses the previous chapters, and presents a new set of barrier definitions and a

new classification scheme based on these definitions. The definition set is based on a functional

view of the barrier term. This means that the barrier function becomes the most important part

of the barrier. The function is however somewhat different from the barrier function definitions

presented previously in the thesis. The barrier functions are low level functions that realizes the

barriers objective, which is the higher level goal in relation to a specific hazardous event. There

are provided some guide words for describing the barrier function needed; detect, monitor, de-

cide, activate, confine, and take action these basic functions can then be realized by either a

technical system, a human or a physical structure. The barrier elements are then limited to the

those that are realizing the barrier function directly. This means that for instance procedures,

rules, regulations, maintenance, and environmental conditions are defined as influencing fac-

tors. This is in order to differentiate between the acts and conditions that actually realizes the

barrier function from the elements that influence the ability of the barrier elements to realize

the barrier function. This distinction is made to make it easier to understand what functions

are needed to prevent, control or mitigate a hazardous event, and then in turn make it easier

to communicate what these functions do, in order to raise the awareness on what is needed in

order to prevent, control or mitigate an event.

The following definitions is proposed in Chapter 5:

Z Barrier Objective: The intended purpose of the barrier, in order to prevent, control or mitigate

the risk of a specific undesired event, disclosed by hazard analysis.

Z Barrier Function: A function that is required in order to realize the barrier objective, and is

performed by one (or more) barrier element(s).
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Z Barrier Element: A physical structure, a technical system, or a human that is intended and

implemented to perform one or more barrier functions, or a specific part of a barrier function.

Z Influencing factors: Factors that influence the barrier elements ability to perform the intended

function, either in a positive or a negative manner.

The barrier definitions are then compared to the three cases used in Chapter 4. The defi-

nitions and classification is incorporated into a proposed framework for barrier identification

purposes, and this framework is then used to give an example of the use of the barrier defini-

tions.

6.2 Discussion

The main goal of this thesis is to highlight the challenges in implementing non-technical ele-

ments into barrier thinking, clarify the terms and definitions, and propose a possible solution

of how this can be done. There are some main challenges that are in need of consideration.

The first is the line between what is considered a barrier element and what is not. The various

definitions found in the literature survey has different ideas of where this line should be drawn.

In the opinion of the author, there is a logical distinction between the elements physically per-

forming a function that reduces risk, and the elements that supports the functional elements.

This is not to say that supporting elements, such as procedures and maintenance management,

are not important in order to reduce risk, however, it does not perform the risk reducing action,

it only facilitates the action.

This is also the reasoning behind the focus on the barrier function as the most important el-

ement of the barrier, which is the second aspect of this thesis. It is the ability to perform this

functions that prevents, controls or mitigates a hazardous event. On the other side, it can then

be said that all normal operation actions that prevents the process from going outside its in-

tended area of operation, are to be considered barriers. This might be true, and normal opera-

tion elements are important to maintain a safe operation, however, the energy-barrier principle



CHAPTER 6. SUMMARY 88

implies the occurrence of unwanted events, and the planning of handling such unwanted sce-

narios, and it is in this principle the barrier term must be founded.

The third aspect of this thesis is the ability to model and monitor the performance of the non-

technical barrier aspects. Though several modeling methodologies have been reviewed, it is

difficult to assess the suitability of them without an comparison, both to todays methods and

to each other. Because of this lack of actual comparison, especially quantitative comparison,

it is not given any specific recommendation on what modeling methods that should be used.

However, the HRA methodologies seem to be the basis for the barrier modeling methods that

has its basis in the energy-barrier principle. If the challenges of applicability of the model and

the amount of data available are solved, HRA, and in particular HEP data seem to be a valid way

of modeling human factors in relation to the functional barrier view the proposed barrier defi-

nition set is providing. This is though something that should be reviewed more thoroughly.

It can be argued that the proposed barrier classification and definition set are only another one

in the large amount of barrier definitions available. Though, from the authors point of view, the

proposed solution is not a final solution, but hopefully a step in the right direction in order to

be able to include human actions and organizational factors in risk assessments, and clarify the

distinction between function and hardware.

6.3 Further Work

Some of the areas that this of particular interest for further research, based on the findings of

this thesis, are the use of HRA in both QRAs and in operational modeling. This will be compre-

hensive, and will probably be part of larger research projects.

Also, if the proposed barrier definitions are to be used in any real applications, third party re-

views should be performed. Here weaknesses and improvements of the definitions can be high-

lighted.

The differences in application for functional versus hardware focused barrier definitions should

also be studied. This should be done in order to explain and highlight practical differences be-

tween these two perspectives.
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In addition, the relation between performance standards, influencing factors and barrier

elements is in need of further study, especially in relation to quantification of human and or-

ganizational barrier aspects. The author believes that a more real-world case based test of the

different modeling methods would be beneficial in order to actually be able to conclude in some

way on that modeling methods that are possible to use, given a specific definition is used. This

would require a higher degree of participation from the industry and in particular those operat-

ing the offshore vessels.
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Appendix A

Acronyms

ARAMIS Accidental risk assessment methodology for industries

in the framework of the Seveso II directive

BOP Blowout Preventor

BORA Barrier and Operational Risk Analysis

BBN Bayesian Belief Network

CCPS Center for Chemical Process Safety

CCR Central Control Room

ET Event tree

ETA Event tree analysis

FMEA Failure mode and effect analysis

FT Fault tree

FTA Fault tree analysis

HAZOP Hazard and operability study

HC Hydro Carbon

HEP Human Error Probability

HFR Human Failure Ra

HRA Human reliability analysis

IF Influencing Factor (Similar to RIF, PIF and PSF)

IPL Independent protection layers

ICAO International Civil Aviation Organization
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INSAG International Nuclear Safety Advisory Group

LC Level of Confidence

LOPA Layer of protection analysis

MTTF Mean time to failure

MTO Human, technological and organizational

PFD Probability of failure on demand

PHA Preliminary hazard analysis

PSA Petroleum Safety Authority (PSA is also known as Probability Safety Assessment, see QRA)

RAMS Reliability, availability, maintainability, and safety

RIF Risk Influencing Factor (Similar to IF, PIF and PSF)

Risk_OMT Risk modeling - Integration of Organizational, Human and Technical factors

RT Responce Time

SIL Safety integrity level

SIS Safety instrumented systems

Spar-H Standardized plant analysis risk - Human Reliability Analysis

STAMP System-Theoretic Accident Model and Process methodology

TRA Total Risk Assessment (Similar to QRA)

P&ID Pumps and Instrumentation Diagram

V&B Valves and Blindings

PIF Preformance Influencing Factor

PSF Performance Shaping Factor

QRA Quantitative Risk Assessment / Analysis (Treated equal to PSA, TRA, etc.)



Appendix B

List of operation

Descriptions of the operation taken from the BORA studies, from the description given in Halseth

(2012)

Table B.1: Description of maintenance operation tasks

Work description Executor Demands Possible Faults

Planning

1 Receives Work Order

(WO)

Planner Piping and Instrumenta-

tion Diagram (P&ID) + Ac-

tivity and control form

(AC-form)

2 Draw up work de-

scription

Planner

3 Requisite re-

sources,materials

etc. after need

Planner

4 Draw up plan for

shutdown/start-up

Area-/ operator

manager
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5 Draw up valves and

blindings-package

(V&B)

Planner V&B drawn up based on

WR0218

V&B- list not drawn

up, V&B-list is

wrong

6 Split point marked in

the P&ID

Operations sys-

tem manager

All connections

mounted/demounted

must be marked in the

P&ID

Split position not

noted, Wrong split

position noted

7 Draw up V&B list V&B must include a V&B-

list

V&B list not drawn

up, V&B list is wrong

8 Valve position

marked in P&ID

Valve position described

and marked in P&ID

Valve position not

scribed and marked

in P&ID

9 Mark blindings on

P&ID

Area-/ operator

manager

Blindings described and

marked in P&ID

Blinding not noted,

Wrong blinding

noted

10 Draw up AC-form Planner Moment values for flange

assembly, type of seal and

relevant tool info included

in the AC-form

AC-form not drawn

up Wrong seal type

specified, Wrong

pump pressure

specified, Wrong

moment specified

11 Identify and mark

common barriers

Common barriers should

be marked with ref. to

V&B- package and be

identified with orange

rectangular labels

Common barriers

not marked
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12 Control and sign V&B

package

Area-/ operator

manager

Independent QA on the

plan with the Operations

and maintenance (O&M)

operator

(Quality Assurance)

QA not performed,

Fault in V&B pack-

age not identified

13 Draw up Work Permit

( WP), level 1

Planner WP must be at level 1 WP not drawn up,

Inadequate WP

14 Pre-approval of WP Area-

/operations

manager, 1st

manager, Plat-

form manager

WP at level 1 must be ap-

proved by: Manger (on-

shore) and area manager

or the person in place of

the area manager. The WP

must be treated at the on-

shore daily meeting before

coordination of WP and

other simultaneous activi-

ties

WP not pre-

approved

15 Coordinating with

(Centeral Control

Room) CCR and

other activities

Area-/ opera-

tions manager,

CCR

Inadequate co-

ordination, No

coordination

Preparing equipment/system

16 Provide the necessary

tools, etc.

Technician The person responsi-

ble for the execution is

also responsible for the

provision of necessary

equipment for splitting

and assembly, lifting tools

and jigs, tools for flange

assembly and lubrication

Hydraulic tool not

calibrated
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17 Finds the correct seal Technician The person responsible

for the execution must see

too that the right seal is

available

Chooses the wrong

seal

18 Perform operation

and maintenance

preparation accord-

ing to the WP

Area technician Necessary operation and

safety preparations must

be done according to the

WP and procedures

19 Process shut down CCR

20 Isolate equipment us-

ing shutdown valves

CCR / Area

technician

Isolate the equipment by

closing the specified shut-

down valves

Closes the wrong

valves, Valve in

wrong position

21 Pressure release to

flare or other system

CCR Reduce the pressure by

ventilating to the flare

Opens the wrong

valve

22 Drain fluid to closed

system (including all

low points and in-

strumental pipes)

Area technician Drain fluid to closed

system and drain all low

points/inst. Pipes of

oil/condensate too closed

system and flush with N2

and/or steam

No draining, Inad-

equate draining,

Contact with other

HC systems (valve

in wrong position/

opens wrong valve/

inadequate proce-

dures)

23 Freeing gas Area technician No gas freeing, Inad-

equate gas freeing

24 Isolation with blind-

ings

Area technician Requirements for isola-

tion: P<10 Barg: closed

and locked, P> Barg:

DB&B or blinding
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25 Lock/disconnect

valves

Area techni-

cian, Instru-

ment techni-

cian

Valves are locked where

this is necessary

Valve not

locked/disconnected,

Inadequate locking

26 Disconnect pumps,

heat cables etc.

Electro El. equipment

not disconnected,

Wrong el. equip-

ment disconnect

27 Label valves Area technician All unlabelled valves

should be marked in

the field. The need of

labelling tagged valves

in the field is evaluated

by the operation sys-

tem manager. All valves

used for isolation shall

be durable, clearly and

unambiguously labeled

Valve not labelled,

Wrong valve labelled

28 Label blindings Area technician All blindings affected in

the field must be labelled.

All blindings used for

isolation shall be durable,

clearly and unambigu-

ously labeled

Blinding not la-

belled, Wrong

blinding labelled

29 Label flanges to be

split

Area techni-

cian, Techni-

cian

All flanges shall be la-

belled with WO nr and

P&ID nr as a minimum

Flange not labelled,

Wrong flange la-

belled
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30 Sign WO form Area technician WO form not

signed, WO form

singed without the

equipment being

prepared WO form

singed without the

equipment being

prepared

31 Draw up SJA Area/ operation

manager, Area

Technician,

CCR, Techni-

cian

Evaluate the need of a SJA SJA not performed,

Inadequate SJA,

Inadequate involve-

ment

32 Perform operation

and maintenance

preparations accord-

ing to the WP

Technician Technician must perform

operations and safety

preparations according to

the WP and procedures

33 Work place control

and sign WP

Technician Perform control and

through sign confirm that

orders will be/ are done

Shortcomings not

found

34 Approve work loca-

tion and sign work

permit

Area technician Control work permit

35 Authorize WP (acti-

vate in SAP)

CCR CCR evaluates if the work

can be started in relations

to ongoing activities. The

authorization to start is

given by activating the WP

in SAP
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36 Before work call/ re-

view WP

Area techni-

cian, Techni-

cian

Check that one is on the

right equipment, System

manager must control

draining and that the

system is pressure free,

Approved WP must be

in the work location and

a review of this must be

done with the personnel

involved before the work

is started.

37 Handover between

shifts

Requirements in rela-

tion to shift change.

Communication and co-

ordination meeting held

and important decisions

documented. Review of

planned and on-going ac-

tivities performed. Ensure

that the new shift gets all

information on status

Inadequate commu-

nication

38 Disconnect safety

system

Area techni-

cian, CCR

Disconnection of safety

system and disconnec-

tion/ locking of electric

equipment must be regis-

tered on the WP form or

isolation document

Safety system not

disconnected

39 Sign splice log Splice log not signed
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40 Keep V&B-list in cen-

tral space

Updated V&Bs are kept in

central place of the plant.

Changes in status in V&B

are continuously reported

in the V&B

41 Control of spark and

ignition sources

Inadequate control

of spark and ignition

sources

Conduction of maintenance

42 Control that the

flange is the one in

question, and that

the system is emptied

of HC

Area techni-

cian, Techni-

cian

Operational system

manager and techni-

cian should ensure that

WO is approved, the

flange in question Is the

correct one, that isola-

tion/binding is performed

correctly and that there is

no pressure or HC left in

the system etc.

43 Disassembly of

flanges

Technician Work done on

wrong system, The

system opened still

contains pressure

44 Supervision of open-

ing flanges

Area technician Area tec. should be

present when splitting of

HC systems is performed.

Work in adjacent areas

should be stopped.

45 Sign AC-form Technician AC-form signed
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46 Venting tank Production

technicain

Inadequate venting,

No venting

47 Gas measurement Area technician

48 Control of flanges,

seal surfaces and

tracks.

Technician Flanges, seal surfaces and

tracks are controlled for

injuries, corrosion and

wear. Control that bolts

and nuts are the right

material and tagged ac-

cording to specifications

Damages not dis-

covered on flanges,

seal surfaces or

tracks.

49 Work performed ac-

cording to WO

Technician Work not performed

according to WO,

Wrong operation of

valves

50 Sign form for “work

performed”

Technician If the tank or drum has

been opened, the form

“internal inspection”

must be filled out and

approved before the tank

is closed.

51 Control seal, bolts

and tracks

Technician Control that the right type

of seal is used and the

quality of the material

Wrong seal not dis-

covered, Damages

on bolts and tracks

not discovered
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52 Assembly of flanges Technician Skills required: - 3 day

course in flange assembly,

- Experience with supervi-

sion, - > 1 yr since the last

course, if its more than 1

yr since the last course, an

E-course may be taken

Flange not assem-

bled, Preload to

low, Preload to high,

Askew assembly,

Bolts not locked,

Missing seal in

flange, Wrong seal

in flange, Damage

on seal in flange, In-

adequate or wrong

lubrication of metal

gasket

53 Label assembled

flanges

Technician Old labelling is removed

and replaced by a new tag

on the flange connection

with the WO nr. Moment,

date, name and sign.

Flange not labelled,

Flange wrong la-

belled

54 Fill inn AC form Technician The person responsible

for the assembly should

fill inn and sign the AC

form continuously as the

flanges are assembled.

AC form not filled

out, AC form inade-

quately filled out.

55 AC-form saved for a

week at minimum.

CCR The AC-form must be

saved for at least a week

after the system is in

operation

56 Clean work area Technician
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57 Sign form “check

out before return-

ing equipment after

completed work”

The responsible person

should fill in the form

Form not filled in,

Form wrongly filled

in

58 Perform final inspec-

tion, sign WP

Technician Technician should per-

form a final inspection

in the work place and by

signing this confirm that

the workplace is cleaned

and secure

Wrong assembly not

discovered

59 Connect safety sys-

tem

CCR, Area tech-

nician

CCR should perform a

reconnection with discon-

nected safety functions

where this is relevant and

register this in the WP

form

Safety system not

connected

60 Sign splice log CCR Splice log not signed

Resetting system and production start up

61 Removes blindings Technician Forgets to movie

blindings

62 Resetting valves Area technician Valves not reset

63 Removes labelling on

valves and blindings

Area technician All labels in the field

should be removed

Labels not removed

64 O2-freeing Area technician O2 must be removed to

achieve inert atmosphere

before tank or equipment

is ready for start up, N2

used as flushing gas

O2 not removed,

Wrong valve oper-

ated
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65 Leak test performed Area techni-

cian, CCR

Leak testing should al-

ways be performed ac-

cording to approved spec-

ifications/ procedures

Leak test not per-

formed, Wrong as-

sembly not discov-

ered in leak test (ex.

Wrong seal used)

66 Connect hoses Area technician Requirements to standard

couplings, labelling, in-

spection, pressure testing

Use of un approved

hoses, Hose not cor-

rectly connected

67 Reset valves Area technician Valves not reset

68 Disconnect hoses Area technician Hoses not discon-

nected

69 Log possible leakages CCR All leakages during Leakages not logged

in relation to the leak

test

testing should be logged

in a separate system

70 Unlock border valves Area techni-

cian, Instru-

ment techni-

cian

Valves unlocked

before system is

cleared, Valve in

wrong position,

Transmitters not

calibrated

72 Connect pumps, heat

exchangers etc.

Electrician Electric equipment

not connected

73 Open border valves Border valves not

opened

74 Remove labels on

border valves

Labels must be removed Labels not removed,

Labels removed

without valve being

opened
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75 Perform final control Area technician The area technician

should perform the fi-

nal control on the work

place after the work is

done. By signing he/she

confirms that the work

place is acceptable, in

addition to the tagging,

locks and equipment be-

ing removed and is ready

for operation

Final control not

performed, Inade-

quacy not discov-

ered

76 Authorize work, sign

WP, complete SAP

CCR CCR will by signing, con-

firm the completion of the

work is authorized by the

CCR

Work authorized

without being

completed, Work

completed without

being authorized

77 Debriefing Debriefing not per-

formed

78 Start-up of normal

production

Area techni-

cian, CCR

Start-up not accord-

ing to procedures.





Appendix C

Comparison of Proposed Barrier Definitions

and Classification

This appendix contains the description of the events and work descriptions used in the cases in

Chapter 4 with the addition of the new proposed barrier definition also is applied.

C.1 Case A

Table C.1 lists the work process in a maintenance operation, from the BORA research project.

The list of operation is based on Halseth (2012). The results of the case is commented on in

Chapter 5.2.2.
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C.2 Case B

Table C.2 shows the elements related to kick detection used in Case B, in Chaper 5, where the

prop The elements is based on a description of kick detection barriers by Hauge et al. (2012) in

the SINTEF report ’Barriers to prevent and limit acute releases to sea | Environmental barrier in-

dicators’, and Chief Counsel’s Report (Bartlit et al., 2011) description of kick detection, regarding

the Macondo accident.
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C.3 Case C

Table C.3 is the basis of Case C, presented in Chapter 4. Case C is based on a leak scenario, and

the information that is used to construct the elements of the case is based on the elements in

NORSOK standard S-001(NORSOK standards, 2008), and base on the leak scenario described

the paper ’Risk assessment in the offshore industry by Brandsæter (2002)
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