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As part of the master thesis, the candidate shall:

1. Give a thorough description of ballasting system types, their main functions, and interface with
other systems onboard the FPSO.

2. Document a literature survey on reported safety and reliability challenges and incidents/accidents
in relation to ballasting systems.
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Summary and Conclusions

Ballast systems perform important safety functions on ships and floating facilities, and failure
to ballast properly may lead to a major accident, involving multiple fatalities, release to envi-
ronment and loss of vessel. Assessments are therefore needed to verify that the systems are
sufficiently safe and reliable. The main objective of the thesis is to suggest a reliability assess-
ment approach for ballast systems, including recommendations to how reliability requirements

should be set for this type of system.

A combination of literature surveys provide the background for the reliability assessment ap-
proach. Previous work related to reliability of ballast systems is presented, followed by a pre-
sentation of the main regulations related to the systems. The third literature survey document
the reported safety and reliability challenges, incidents and accidents related to ballast sys-

tems.

As a basis for the detailed reliability assessment approach a typical ballast system on a ship
shaped vessel is presented. The safety critical functions of the system are identified and the
system is analyzed with regards to its role as a safety barrier system. The ballast system is subse-
quently classified as a safety instrumented system capable of protecting the vessel from hazards
that may lead to loss of stability and draft. A hazard analysis is used to assess the adequacy of
the barrier system, and the result of the analysis show that there are multiple hazards that may
lead to loss of stability and draft, and that although the frequency of occurence might be low,

the associated consequences can be very high.

A comparison between different methods for assigning reliability performance requirements
to ballast system functions is presented, based on two different approaches recommended by
the international IEC61508 standard and the Norwegian OLF-070 guideline, respectively. A rec-
ommendation is made to assign minimum reliability performance requirements to the ballast
system functions, based on the approach presented in the guideline. A proposed set of reliability

performance requirements are presented.

Potential failure causes and failure modes that may influence the reliability performance of bal-
last system functions are identified through a safety barrier failure analysis. As part of the anal-
ysis a failure mode, effect and criticality analysis of the main components is conducted.

The proposed reliability assessment approach is presented as a practical stepwise procedure to
be used when quantifying the reliability performance of the safety functions performed by a
ballast system. The approach is based on a reliability block diagram technique where poten-
tial common cause failures among the components can be included in the calculations. The

approach is developed to give conservative estimates for the reliability performance, and may



vii

be used as part of a verification process of ballast system reliability, as decision support during
the design phase of new systems or to quantify the effect of reliability enhancing efforts in the

operational phase.

In addition to the reliability assessment approach, a defence approach against common cause
failures in ballast systems is presented. The defence approach focus on the efforts that can be
made in the operational phase during maintentance and testing, to reduce the influence and

reoccurence of common cause failures.

Finally, the proposed reliability assessment approach is applied to the ballast system of the
Petrojarl Foinaven floating production, storage and offloading vessel as a case example of the
approach. The case example show that the proposed reliability performance requirements can
be achieved by performing functional tests of the ballast system components at regular inter-
vals, and that the stepwise procedure may also identify important improvement potentials for

ballast systems.
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Sammendrag

Ballastsystemer utforer viktige sikkerhetsfunksjoner ombord pa skip og flytende installasjoner,
og feil under ballasteringsoperasjoner kan fore til storulykker, med tap av menneskeliv, utslipp
til miljoet og tap av fartey. Det er derfor behov for pélitelighetsvurderinger for 4 verifisere at
systemene er tilstrekkelig sikre og pdlitelige. Hovedmalet med masteroppgaven er & foresla en
palitelighetsvurderingsmetode for ballastsystemer, i tillegg til 4 foresla hvordan palitelighetskrav

skal settes for slike systemer.

En kombinasjon av litteraturstudier danner bakgrunnen for palitelighetsvurderingsmetoden.
Tidligere arbeid knyttet til pdlitelighet av ballastsystemer er presentert, fulgt av en presentasjon
av de mest sentrale forskriftene som gjelder for ballastssystemer. Det tredje litteraturstudiet
dokumenterer de rapporterte sikkerhet- og palitelighetsutfordringene, hendelsene og ulykkene
knyttet til ballastsystemer.

Som en basis for den detaljerte palitelighetsvurderingsmetoden presenteres et typisk ballast sys-
tem installert pd et skip. De sikkerhetskritiske funksjonene i systemet er identifisert og systemet
er analysert i forhold til rollen det utforer som et sikkerhetsbarriere system. Ballastsystemet er
deretter klassifisert som et instrumentert sikkerhetssystem som kan beskytte fartoyet fra farek-
ilder som kan lede til tap av stabilitet og dypgang. En farekildeanalyse er benyttet for & vur-
dere tilstrekkeligheten av barriere systemet, og resultatet av analysen viser at det finnes en rekke
farekilder som kan lede til tap av stabilitet og dypgang, og at selv om hendelsesfrekvensen muli-

gens er lav, sa kan de tilherende konsekvensene vere veldig hoye.

En sammenligning mellom forskjellige metoder for & angi ytelseskrav for pdlitelighet til bal-
lastsystemer er presentert, basert pa to forskjellig metoder anbefalt av henholdsvis den inter-
nasjonale IEC61508 standarden og den norske retningslinjen OLF-070. Det er videre anbefalt
at minimumskrav til palitelighetsytelse bor angis til de forskjellige ballastsystemfunksjonene
basert pd metoden presentert i den overnevnte retningslinjen. Et sett med krav til palitelighet-

sytelse er foreslatt.

Potensielle feildrsaker og feilmodi som kan pavirke palitelighetsytelsen til ballastsystemfunksjonene
er identifisert gjennom en feilanalyse av sikkerhetsbarrieren. Som en del av analysen ble det ut-
fort en feilmodi, effekt og kritikalitetsanalyse av hovedkomponentene i systemet.

Den foreslatte pélitelighetsvurderingsmetoden er presentert som en praktisk stegvis metode
som kan benyttes for & kvantifisere palitelighetsytelsen av sikkerhetsfunksjonene i et ballastsys-
tem. Metoden er basert pa pélitelighets blokkdiagrammer hvor potensialet for fellesfeil mellom
komponentene kan inkluderes i beregningene.

Metoden er utviklet til & gi konservative estimater for palitelighetsytelsen, og kan brukes som
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en del av en verifikasjonsprosess for pélitelighet av et ballastsystem, som verktoy for beslut-
ningsstotte i designfasen av nye systemer eller for a kvantifisere effekten av pdlitelighetsfrem-

mende tiltak i operasjonsfasen.

I tillegg til pélitelighetsvurderingsmetoden, presenteres en forsvarmetode mot fellesfeil i bal-
lastsystemer. Forsvarsmetoden fokuserer pa tiltak som kan gjores i operasjonsfasen under ved-
likehold og testing for a redusere effekten av, og muligheten for tilbakefall av fellesfeil i sys-

temet.

Til slutt presenteres pélitelighetsvurderingsmetoden gjennom et anvendelseseksempel hvor meto-
den benyttes for & analysere ballastsystemet pa det flytende produksjonsskipet Petrojarl Foinaven.
Anvendelseseksempelet viser at de foreslatte kravene til palitelighetsytelse kan oppnés ved & ut-
fore regelmessige funksjonstester av komponentene i ballastsystemet, og at den stegvise meto-

den ogsa kan identifisere viktige forbedringspotensialer for ballast systemer.
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Chapter 1

Introduction

1.1 Background

Ballast systems perform important safety functions on ships and floating facilities, and FPSO
vessels are especially dependent on their ballast systems to adjust the stability and draft ac-
cording to how the vessel is loaded and unloaded with hydrocarbon products. Failure to ballast
properly may lead to a major accident, involving multiple fatalities, release to the environment
and loss of vessel as in the Ocean Ranger accident in 1982, and the recent incident with the
Petrobras P-34 FPSO in 2002.

Despite the major accident potential of unsuccessful ballast operations, the requirements to re-
liability assessments and reliability performance of these systems are not regulated as strict as
other systems in the offshore industry. Ballast systems are usually subject to traditional pre-
scriptive maritime regulations, where requirements to reliability performance is limited. This
may be about to change, as regulatory initiatives have been made to include ballast systems
under performance based offshore regulations. The first step was taken by the OLF070 (2004)
guideline used in the Norwegian offshore industry in 2004. The guideline assigned a reliabil-
ity performance requirement to ballast systems, which to this day represent the state-of-the-art
with regards to requirements for ballast system reliability performance.

This thesis is concerned with the need for improved reliability assessments methods and relia-
bility performance requirements to verify that ballast systems are sufficiently safe and reliable
for daily operation, as well as in emergency situations.
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1.1.1 Objective

The main objective of the thesis is to suggest an approach for how reliability assessments of bal-
last systems should be carried out, including recommendations to how reliability requirements

are being set for this type of system.
As part of the master thesis, the following shall be covered:

* Give a thorough description of ballasting system types, their main functions, and interface
with other systems onboard the FPSO.

* Document a literature survey on reported safety and reliability challenges and incidents/accidents
in relation to ballasting systems.

¢ Identify and classify safety-critical functions of a ballasting system.

¢ Define and discuss concepts like safe state and desired behavior upon fault conditions for

ballasting systems.

* Identify particular issues of relevance for reliability performance of ballasting systems, for

example the possibility for having common cause failures (CCFs).

* Identify and discuss relevant methods for defining reliability requirements for ballasting
systems.

e Suggest an approach for how the reliability of a ballasting system may be determined,
including the analysis of CCFs.

e Suggest an approach for preventing CCFs in relation to ballasting systems, including de-
sign related issues and operational/maintenance related issues.

* Identify and discuss challenges in relation to reliability assessments, for which further re-

search is needed.

1.1.2 Limitations

The study is limited to ballast systems installed on ship shaped vessels.
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1.1.3 Structure of the Report

The report is structured as follows

1.2

Chapter 1 provides the background information and problem formulation, objectives and
limitations, description of the structure of the report and a presentation of previous work
within the field of ballast system reliability.

Chapter 2 present the regulations and requirements related to ballast systems on floating
facilities operating on the NCS.

Chapter 3 begins with a description of a typical ballast system and the functions of the
system. The main components are described in detail, and the ballast system is classi-
fied as a SIS. A barrier analysis and safety barrier failure analysis is presented. The final
part of the chapter is a presentation of the relevant methods that can be used to assign
reliability requirements to ballast systems, and a proposed set of reliability performance

requirements for the ballast system functions.

Chapter 4 document the reported safety and reliability challenges, incidents and acci-

dents related to ballast systems.

Chapter 5 present the proposed stepwise reliability assessment method based on a relia-
bility block diagram technique followed by a common cause failure defence approach for
the operational phase of a ballast system.

Chapter 6 presents the reliability assessment approach through a case example conducted

on the ballast system of the Petrojarl Foinaven FPSO.

Literature Survey

The literature survey is divided into three parts. The first part document the previous work

related to reliability assessments of ballast systems, presented in the following section. The sec-

ond part present the regulations governing ballasting systems on the NCS in Chapter 2. The

third part present the reported safety and reliability challenges, incidents and accidents related

to ballast systems in Chapter 4.

Not alot of research has been carried out within the field of reliability assessments of ballast sys-

tems. The accident reports following the Ocean Ranger accident in 1982, mark the beginning

of the literature survey. These reports clearly pointed out the critical importance of ballast sys-

tem integrity, and sparked an increased focus on stability and ballast system reliability in the
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offshore industry. In response to the accident, the classification society DNV performed an in-
vestigation of the ballast system on a sister platform to the Ocean Ranger, and the investigation
stressed the importance of improved documentation of ballast systems and how it responded

to different interventions by the operator (Ostby et al., 1987).

Through the RABL-Risk Assessment Of Buoyancy Loss (RABL) (@stby et al., 1987) research pro-
gramme from 1986-87, the reliability of ballast systems on mobile platform concepts were sub-
ject to various assessments. The RABL programme was a joint industry project aimed at devel-
oping an analysis procedure for definition of accidental conditions and loads related to loss of
buoyancy for mobile drilling platforms, and one of the projects focused on ballast systems. A
risk assessment model for evaluation of ballast system failures and subsequent loss of buoyancy
was developed, and reliability data for ballast systems were gathered. The data is presented in
appendix Figure B.2.

Interestingly, the RABL project concluded that the probability of a critical accidental situation
due to technical failures in the ballast system, including power supply and instrumentation, was
so low that contemporary ballast system designs were in compliance with the proposed accep-
tance criteria, and that efforts should rather be put into detailed verification of ballast systems.
The project furthermore supported the use of the mandatory Failure Mode and Effect Analysis
(FMEA) technique during design, and that other methods, such as Fault Tree Analysis (FTA),
should only be performed if a lack of system redundancy or possible common cause failures
had been identified (Ostby et al., 1987).

With the introduction of FPSOs into harsh weather environments in the North Sea, with Petro-
jarl 1 as the first in 1986, the requirements applicable to FPSOs, including risk analysis, reliabil-
ity studies and stability evaluations became a subject of attention. The clash of the requirement
regimes is described in a paper prepared by DNV, Baunan (1996). The field of FPSO safety be-
came well represented in literature, but mostly related to collisions risks, risks associated with
the topside equipment, and techniques for using risk assessments as a design tool, e.g. Mac-
Donald et al. (1999), Nesje et al. (1999), Overfield and Collins (2000), Vinnem et al. (2000), Vin-
nem (2000), Leonhardsen et al. (2001), Chen and Moan (2003), OGP (2006), Chen et al. (2007),
Tronstad (2009).

Following the accident with the semi-submersible production platform Petrobras P-36 in 2001,
and the incident with the Petrobras P-34 FPSO in 2002, the state owned Brazilian oil company
Petrobras issued an Excellency Operational Program (PEO) with a series of tasks to improve
the safety and operational reliability of its platforms (Rocha et al., 2010). The effort resulted
in a qualitative methodology for risk and reliability analysis of the interaction between ballast
and loading systems, electric and hydraulic power systems and associated control systems on
production platforms. The methodology became mandatory for all new floating production
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projects in 2005. Based on one of these qualitative analysis, Rocha et al. (2010) presents a quan-
titative functional reliability study, based on a FMECA and fault tree analysis. Perhaps the most
interesting result of the article is the explicit recommendation that the least reliable component
from the study, the equivalent to the vessel control system, should be subject to a safety integrity
level (SIL) analysis based on the IEC 61511 standard.

Safety integrity analysis has been used in the North Sea offshore petroleum industry for over
a decade, and on the Norwegian Continental Shelf (NCS), the OLF-070 guideline, presented
in Section 2.0.3, represent the state-of-the art when it comes to reliability requirements and
verification of ballast systems on offshore facilities. Since 2004, the guideline has prescribed
minimum safety integrity level requirements for ballast systems, further discussed in Section
3.3.

Risk analysis and reliability assessments are related, and Vinnem et al. (2006) argues that apart
from analysis of ship collisions, risk analysis of maritime systems on offshore facilities, includ-
ing ballast systems, are normally extraordinarily simple and superficial, compared to the com-
prehensive analysis performed on petrochemical process equipment and in relation to drilling
operations. Vinnem et al. (2006) recommends the use of FTA and Event Tree Analysis (ETA) as
part of a ballast system risk analysis process. In Hansen (2007), FTA is applied to the ballast

system of a semisubmersible drilling rig from a risk analysis point of view.

The final part of the literature survey is based on reports following the Deepwater Horizon acci-
dentin 2010. As a response to the accident, the independent research organization SINTEF and
the Petroleum Safety Authority Norway (PSA) issued two separate reports, Tinmannsvik et al.
(2011) and Askedal et al. (2011), to highlight lessons learned from the Deepwater Horizon acci-
dent and other major accidents in the petroleum industry. The two reports provide recommen-
dations to the industry as a part of a continuous improvement effort, and present several im-
portant findings related to stability, floatability and ballast systems on offshore facilities where

improvements should be made.



Chapter 2
Regulations and Standards

On the Norwegian Continental Shelf (NCS), the Petroleum Safety Authority Norway (PSA) is
the regulatory authority for technical and operational safety. Any floating facility conducting
petroleum activities on the NCS, including FPSO vessels, must comply to the rules and regula-
tions of the PSA in all phases of operation. An important part of the documentation of compli-
ance to these rules and regulations is the Acknowledgement of Compliance (AoC), issued by the
PSA.

The AoC is a decision by the PSA that express the authorities” confidence that petroleum activ-
ities can be carried out using the floating facility within the framework of the regulations (PSA,
2011). The AoC will be issued on the basis of PSAs own assessment of the condition of the fa-
cility, measured against the rules and regulations applying to the use of mobile facilities on the
NCS at the time of the AoC. The practice of the AoC ensures that any floating facility operating
on the NCS, is compliant to the rules and regulations of the PSA, regardless of flag or class. For
FPSO vessels, holding an AoC has been mandatory since July 1st, 2006 (PSA, 2011).

Ballast systems and stability are regulated in two overlapping ways in the PSA regulations. The
PSA Facilities Regulations explicitly regulate ballast systems and stability through section 39 and
section 62, where refererence is made to the rules and requirements issued by the Norwegian
Maritime Authority (NMA). In addition, the ballasting function performed by the ballast system
on a floating facility is classified by the PSA as a safety function, subject to additional regula-

tions.

In the following, the main regulations regarding ballast systems and stability from the PSA and
NMA are presented, followed by a presentation of relevant regulations and requirements con-
serning reliability assessments of ballast systems. Where reference is made to the Norwegian
Maritime Directorate, this is the former name of the NMA, as of January 1st. 2012.
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2.0.1 PSA Regulations

The PSA Facilities Regulations regulate ballast systems and stability for floating facilities explic-
itly in section 39 and section 62.

Section 39 Ballast system

Floating facilities shall be equipped with a system that can ballast any ballast tank under normal
operational conditions. In the event of unintended flooding of any space adjacent to the sea, it
shall nevertheless be possible to ballast. Ballast systems shall be in accordance with Section 2
and Sections 7 through 22 of the Norwegian Maritime Directorate’s Regulations relating to ballast

systems on mobile facilities (in Norwegian only).
The regulation referred to is NMA Regulation No. 879, presented in Section 2.0.2.
Section 62 Stability

Floating facilities shall be in accordance with the requirements in Sections 8 through 51 of the
Norwegian Maritime Directorate’s Regulations relating to stability, watertight subdivision and
watertight/weathertight closing mechanisms on mobile offshore facilities (in Norwegian only).
There shall be weight control systems on floating facilities, which ensure that the weight, weight
distribution and centre of gravity are within the design specifications. Equipment and structure
sections shall be secured against displacement that can influence stability.

The regulation referred to is NMA Regulation No. 878, presented in Section 2.0.2.

In the PSA Guideline regarding the facilities regulations, section 3, ballasting for floating facilities
is defined as a safety function. The Facilities Regulations, section 8, state that performance
requirements shall be stipulated for safety functions.

Section 8 Safety functions

Facilities shall be equipped with necessary safety functions that can at all times a) detect abnor-
mal conditions, b) prevent abnormal conditions from developing into hazard and accident situ-
ations, c) limit the damage caused by accidents. Requirements shall be stipulated for the perfor-
mance of safety functions. The status of safety functions shall be available in the central control

room.

2.0.2 NMA Regulations

The main regulations of the NMA regarding ballast systems and stability are
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e Regulation 20 December 1991 No. 879 conserning ballast systems on mobile offshore
units

* Regulation 20 December 1991 No. 878 concerning stability, watertight subdivision and

watertight/weathertight closing means on mobile offshore units

2.0.3 Reliability Assessment Requirements

The PSA and NMA regulations require that the ballast system is capable of performing its func-

tion, and indirectly presents reliability assessment as a means of verification.
In the NMA regulations, the following references to reliability assessments are made

* Regulation 20 December 1991 No. 879 conserning ballast systems on mobile offshore
units

- §8: Requirements for risk analysis: An analysis shall be carried out to verify the ability

of the ballast system to function in accordance with the provisions of these regulations
- The analysis may be a risk/reliability analysis (Vinnem et al., 2006)

* Regulation 20 December 1991 No. 878 concerning stability, watertight subdivision and

watertight/weathertight closing means on mobile offshore units

- § 5: Documentation: The company shall be able to document compliance with the
requirements of these regulations.

— This may be a risk/reliability analysis (Vinnem et al., 2006)
e Regulation 22 December 1993 No. 1239 concerning risk analysis for mobile offshore units

— § 15: Reliability/vulnerability analysis: In the risk analysis the company shall incor-
porate a reliability/vulnerability analysis from every vendor of vital operating systems
and safety and emergency systems. The result of the reliability/vulnerability analysis
shall be incorporated into and taken into account in the design analysis and construc-
tion analysis.

The PSA regulations introduce reliability assessments of the ballast system through the perfor-
mance requirements of safety functions. In the PSA Guideline regarding the facilities regulations,

Re Section 8, the following applies to safety functions, including the ballasting function:

For design of safety functions as mentioned in the first subsection, the standards NS-EN ISO 13793,
NORSOK S-001 and IEC 61508 and OLF guideline No. 070 should be used.



CHAPTER 2. REGULATIONS AND STANDARDS 10

In order to stipulate the performance for the safety functions as mentioned in the second subsec-
tion, the IEC 61508 standard and OLF Guideline No. 070 should be used where electrical, elec-

tronic and programmable electronic systems are used in the structure of the functions.

The reference made to the IEC61508 (2010) standard, and the OLF070 (2004) guideline is im-
portant. These documents will be presented in the next section, and are used throughout the
thesis.

IEC 61508 Standard

The IEC 61508 (2010) standard is the main international standard for developing safety require-
ments to electrical, electronic and programmable electronic safety related systems, also known
as Safety Instrumented Systems (SIS). SISs are safety systems comprising one or more input el-
ements, one or more logic solvers and and one or more actuating units. The main parts of a SIS
are illustrated in Figure 2.1, adopted from Lundteigen and Rausand (2007)

Q\
(O)——— Logic solver
o— s

Input elements Final elements

Figure 2.1: Main elements of a SIS

The IEC 61508 (2010) standard is a generic, performance based standard that outlines how the
functional safety of a SIS should be managed, and provides guidance to the process of validation
and verification of such systems. The standard is used extensively throughout the oil and gas
industry, together with the application specific standard for SISs in the process industry; the
[EC61511 (2004) standard. In Section 3.3, the process of developing reliability requirements
based on the IEC 61508 (2010) standard will be presented and discussed.

OLF 070 Guideline

The OLF070 (2004) guideline is a document developed to adapt and simplify the use of the
[EC61508 (2010) and IEC61511 (2004) standards in the Norwegian petroleum industry. The
guideline was developed as a joint industry project between operators and suppliers of the in-
dustry, with the support of The Norwegian Qil Industry Association (OLF).

The OLF070 (2004) guideline has become part of the recommended standard for specification,
design and operation of SISs on the NCS, and the document is closely linked to the safety func-
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tions defined in the PSA regulations. The guideline presents an alternative approach to the
IEC 61508 (2010) process of establishing reliability requirements to safety functions, and eval-
uates ballast systems explicitly as part of this approach. With regards to the quantification of
reliability of safety functions, the guideline recommends the use of the PDS method (Hauge
et al., 2009b). The PDS method is a reliability prediction method for SISs, in line with the main
principles of the IEC 61508 (2010) and IEC61511 (2004) standards. In Section 3.3, the process of
developing reliability requirements based on the OLF070 (2004) guideline will be presented and
discussed.



Chapter 3

FPSO Ballast System and Functions

3.1 Ballast System and Functions

3.1.1 Ballast System

All shipshaped floating production vessels are equipped with a ballast system, which is used
to maintain draft, stability and to keep the sheerforces and bending moments in the hull within
required limits. The ballast system performs these important functions by performing ballasting
and deballasting operations, whereby water is added or removed to different sections of the hull.

A typical ballast system consist of the following subsystems:
e Ballast tank configuration, pumps and valves
* Electric power system
* Hydraulic power system
* Ballast control system

In the following, a base case ballast system is described. The system is described at a level of
detail that provides a foundation for reliability assessments of different FPSO designs. The base

case vessel is a double sided and double bottomed ship shaped FPSO.

12
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Ballast Tank Configuration, Pumps and Valves

. Ball .
Electric allast . Hydraulic
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power +1/0 ower Portside ballast tanks
To
sea
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cea room room
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Seachests
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with valves and pumps
To

sea

Starbord ballast tanks
Figure 3.1: Sketch of the ballast system

Ballast Tank Configuration

The main ballast tanks are located on the port and starbord sides of the vessel, on each side of
the cargo tanks. The number of cargo and ballast tanks are usually determined based on the
production capacity of the FPSO and whether a shuttle tanker will be moored to offload the
produced oil. On the base case vessel, there are five main ballast tanks on each side.

The ballast tanks are connected to a ringmain line which transports ballast water between the
tanks and the pump room. Ballast valves control the flow of water between the individual tanks

and the ringmain line.

Through the ringmain line and pump room arrangement, ballast water can be transported be-
tween the port side and the sea, the starboard side and the sea, as well as internally between the
portside and starbord ballast tanks.

Additional ballast tanks may be located in the aft and foreward sections of the vessel, and are
used to manipulate the trim of the vessel. Ballasting for aft trim is performed to improve in-
herent heading control and weathervaning, and to facilitate process pipe drainage and effective

unloading of main ballast tanks. If the FPSO is equipped with an advanced turret system, an
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additional turret ballast system may be present. These additional ballast tank systems are not
included in the base case ballast system.

Ballast Valves

The ballast valves are hydraulically operated butterfly valves, that fail to a closed position. The
valves are normally closed, and are opened and kept open by hydraulic pressure acting through
a fail safe solenoid valve. The solenoid valve is normally closed, and is opened by electric signal
from the ballast control system. If the operator decides to close the valve or electric power is
lost, the electric signal will stop, and the solenoid will automatically return to a closed position,
closing the ballast valve. If hydraulic power is lost, the valve will return to closed position. A
position feedback signal is continuously sent from the actuator to the ballast control system. In
case of loss of position signal, the ballast control system will indicate a faulty signal, and close

the valve. Figure 3.2 present such a valve.

Hydraulic
Power

. Electric signal | Ballast control
Solenoid valve _— .
logic +1/0

t

Position monitoring I

Actuator

Butterfly valve

Figure 3.2: Hydraulically operated butterfly valve

Pump room

The pump room consists of a network of pipes, pumps and pump room valves that can be
brought to different configurations based on the planned ballasting operation. The ballast pumps
are electric centrifugal pumps operating in one direction only. In order to switch between bal-
lasting and deballasting operations, the water is routed around the pumps accordingly.

In the base case pump room configuration, three pumps are installed in a redundant setup,
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whereby any pump can perform any ballasting operation on its own. The pumps are normally
de-energized, and fail to a de-energized state. The pump room valves are hydraulically operated
butterfly valves, controlled by electric signal from the ballast control system. The valves are nor-
mally closed, and are fail-to-set valves. This means that the valves do not move to a predefined
position automatically upon loss of signal, but remain in the last known position. The valve is
similar to the valve presented in Figure 3.2.

Seachest/Discharge System

The seachest/discharge system is used when performing ballasting or deballasting operations
to sea. Two seachests are located below the waterline on each side of the vessel, providing pri-
mary intake of seawater for ballasting operations. The seachests are equipped with hydraulically
operated valves controlled by electric signal from the ballast control system. The valves are nor-
mally closed, and fail to a closed position. The valves are similar to the valve presented in Figure
3.2.

The discharge system consist of two pipes to sea, installed above the water line on each side
of the vessel. The discharge pipes are equipped with hydraulically operated ballast valves con-
trolled by electric signal from the ballast control system. The valves are normally closed and fail

to a closed position. The valves are similar to the valve presented in Figure 3.2.

Electrical Power System

The electric power system consists of the main power system, the emergency backup generator
and the Uninterruptible Power Sources (UPS).

Electric power is used to power the ballast control stations, pumps, the hydraulic power system

and to signal and receive position feedback from all the valves in the ballast system.

The main electric power system is operating continuously. In case of loss of main electric power,
UPSs will immidiately provide emergency power to the ballast control stations and operator
screens. Next, the emergency backup generator will turn on automatically. The emergency
backup generator provides a fraction of the main electric power, but enough power to operate
the ballast system.

Hydraulic Power System

The hydraulic power system consists of the main hydraulic power generator and a hydraulic
accumulator.
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Hydraulic power is used to operate all the ballast system valves. In order to ensure consistent
hydraulic pressure, the hydraulic power system is continuously energized and pressurized. In
case of loss of electric power, or failure of the main hydraulic power generator, the hydraulic ac-
cumulator will automatically provide sufficient hydraulic pressure to operate the ballast valves

for some time.

Ballast Control System

The ballast control system consists of the ballast control logic.

The ballast system is remotely controlled by an operator from a control station on the bridge
and/or from a designated ballast control room. From the control station, the various compo-
nents of the ballast system are activated through a control panel. The ballast control logic trans-
lates the operator commands and the feedback from the valves and pumps into electric signals,

activating the valve solenoids and ballast pumps accordingly.

The ballast operator will use various sources of information for decision support during bal-
lasting operations. The main sources of information are the calculations performed by the load
calculator, the information from level transmitters in cargo and ballast tanks and visual and

physical perception of the inclination and draft of the vessel.

3.1.2 Ballast System Functions

In the following section the main ballast system function is presented and split into safety func-
tions and non-safety related functions, providing a foundation for classification of the system.

The main function of the ballast system as presented in Petrojarl (2011a):

The ballast system is used to maintain sufficient drafft, stability and to keep the bending moments
and sheerforces within required limits

Safety Functions:
* Maintain stability and draft of the vessel.
Non-Safety Related Functions:
* Keep the bending moments within required limits.
* Keep the sheerforces within required limits.

These non-safety related functions are mentioned briefly in Section 3.1.4, but are otherwise not
included. They are defined as non-safety related functions as the lack of these functions would
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cause unnecessary stress to the hull of the vessel, but not loss of stability or draft and immidiate
danger of a hazardous situation.

3.1.3 Ballast System as a Safety Barrier

According to Sklet (2006), safety barriers are physical and/or non-physical means planned to
prevent, control, or mitigate undesired events or accidents. Depending on when the ballast
system is operated, it can prevent, control or mitigate unacceptable inclination and draft of the
vessel, by ballasting or deballasting the hull. The ballast system can be regarded as a:

* Safety barrier against unacceptable inclination and draft

The ballast system is the second safety barrier against unacceptable inclination. The primary
safety barrier against unacceptable inclination is the inherent stability and draft of the vessel
design. The ballast system should furthermore be regarded as a barrier system. A barrier system
is a system that has been designed and implemented to perform one or more barrier functions.
A barrier function is defined as (Sklet, 2006)

* Barrier function: A barrier function is a function planned to prevent, control, or mitigate
undesired events or accidents

If the barrier system is functioning, the barrier function is performed (Sklet, 2006). In order
to assess the full functionality of the ballast barrier system, the following barrier functions are

proposed:

* Barrier function 1: To ballast/deballast starbord ballast tank system in response to oper-

ator command (BF1)

e Barrier function 2: To ballast/deballast portside ballast tank system in response to oper-
ator command (BF2)

* Barrier function 3: To ballast/deballast between starbord and portside ballast tank sys-

tem in response to operator command (BF3)

e Barrier function 4: Emergency stop of ballast system operation in response to operator
command (BF4)

By combining ballasting and deballasting operations in the barrier function description in BF1,
BF2 and BF2, the similarities between the two operations are taken into account, minimizing
the number of individual barrier functions. The two operations have the opposite effect on the
vessel, but utilize almost all the same components. The only difference is the routing of the wa-

ter in the pump room, and the switch between using the seachest or discharge configuration to
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carry out the function. The reduced number of barrier functions simplify the reliability assess-
ment of the safety barrier. BF4 is included as a part of the barrier system, due to the fact that if
an intended ballasting operation gets out of control, the ballast system will actually create un-
acceptable inclination and draft. Having the possibility to stop an ongoing ballast operation is

therefore an important barrier function.

3.1.4 Ballast System Operational Situations

The ballast system functions are used in two operational situations:
1. Upon a hazardous event/situation
2. Normal operations

Upon a hazardous event/situation, any ongoing ballast operations is stopped, and the opera-
tor perform new ballasting operations to mitigate the occurence of an undesired event. This
operational situation will be intense and demanding, and rely on the operators ability to make
fast decisions and perform the correct operations. During this operational situation, the ballast

system perform safety barrier functions.

During normal operations the ballast system is used to perform non-safety related functions.
During production of crude, the FPSO alternates between a fully loaded state and an empty
state right after offloading to a shuttle tanker. Throughout these states, ballasting operations
are performed with regular intervals each day to maintain the draft and stability of the vessel,
and to keep the bending moments and sheerforces within required limits. These operations
are part of the daily production routine, and are not conducted as a response to a hazardous

event/situation.

3.1.5 Safety Barrier Classification

Safety barriers may be classified as either active or passive, and as physical/technical or hu-
man/operational, according to the classification by Sklet (2006), presented in Figure 3.3. An
active barrier is defined by Sklet (2006) as:

A barrier that is dependent on the actions of an operator, a control system, and/or some energy

sources to perform its function.

The ballast system performs its barrier functions upon demand from an operator by the means
of electronic and hydraulic energy sources controlled by a specialized control system, and can

be classified as an active, physical/technical barrier.
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Figure 3.3: Classification of barriers

Active, technical barriers are further classified into the following three groups, in accordance
with IEC61508 (2010) and IEC 61511 (2004)

e Safety Instrumented Systems (SIS)

- Safety systems comprising one or more input elements, one or more logic solvers

and and one or more actuating units.
e Other technology safety-related systems

- Active safety systems that do not have any integrated logic (Rausand, 2011), based
on technology other than electrical, electronic, or programmable electronic (Sklet,
2006).

* External risk reduction facilities

- Measures to reduce or mitigate the risk that is separate and distinct from the SIS or
other technology safety-related systems (Sklet, 2006).

Ballast systems should be classified as SIS, and the main parts of the ballast system SIS is pre-
sented in Figure 3.4. Upon demand, the ballast operator will provide the ballast control system
with operator commands. Together with the feedback signals from the final elements, these are
the main input elements to the SIS. The feedback signals are position indication signals from
valves, activation signals from pumps. The ballast control logic will translate the input elements
into electric signal based on the pre-programmed logic, and subsequently activate the final el-
ements. The final elements in the ballast system are the electric pumps and various ballast
system valves.
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Figure 3.4: Ballast systems as a SIS

Historically, ballast systems did not involve any integrated logic, and the operator would con-
trol the ballasting operations from hardware based control stations. By physically operating
switches, the final elements in the ballast system would be activated and deactivated directly.
According to the classification scheme above, ballast systems were Other technology safety-related
systems. With the introduction of integrated logic, ballast systems became Safety Instrumented
Systems, with new inherent hazards and reliability challenges. Despite this transition, ballast
systems are not regulated as SISs today. Throughout the rest of the report the ballast system will

be treated according to a SIS classification.

SISs are used to implement one of more safety instrumented functions (SIF). A SIF is defined by
Rausand (2011) as

Safety Instrumented Function (SIF): A barrier function that is implemented by a SIS and that is
intended to achieve or maintain a safe state of the EUC with respect to a specific deviation (process
demand). A SIS may consist of one or more SIFs.

The specific deviation or process demand should be regarded as the loss of stability and/or draft
due to a hazardous event. The SIFs of the ballast system correspond to the barrier functions
identified in Section 3.1.3. The SIFs are presented along with the defined success criteria for
each SIF and an associated sketch of the components involved in carrying out the SIE

e SIF 1: To ballast/deballast starbord ballast tank system in response to operator command

— The SIF is successful when: (1) One of the starbord ballast tanks is ballasted/deballasted
to sea in response to operator command. (2) The ballasting operation stops upon
operator command.
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Figure 3.5: Sketch of SIF1

* SIF 2: To ballast/deballast portside ballast tank system in response to operator command

— The SIF is successful when: (1) One of the portside ballast tanks is ballasted/deballasted
to sea in response to operator command. (2) The ballasting operation stops upon

operator command.
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Figure 3.6: Sketch of SIF2

 SIF 3: To ballast/deballast between starbord and portside ballast tank system in response

to operator command

— The SIF is successful when: (1) One of the portside ballast tanks is ballasted/deballasted
with one of the starbord ballast tanks in response to operator command. (2) The bal-

lasting operation stops upon operator command.
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Figure 3.7: Sketch of SIF3

e SIF 4: Emergency stop of ballast system operation in response to operator command

— The SIF is successful when: (1) Any ongoing ballasting operation is stopped upon

operator command. (2) All active components return to safe state.

The type and amount of electrical components constituting an emergency shutdown will
vary significantly. A sketch of the components is therefore not presented.

Safe State of the FPSO

The ballast system is designed to bring the vessel into a safe state, by the use of the SIFs. The
IEC 61508 (2010) standard defines a safe state as

Safe state: the state of the Equipment Under Control (EUC) when safety is achieved.

The IEC61508 (2010) standard does not provide any specific rules as to how the EUC and and its
boundaries should be defined (OLF070, 2004), but based on the definitions in the standard, the
OLF070 (2004) guideline has proposed that the EUC can be a piece of equipment, machinery,

part of an offshore installation, or the entire installation.

With regards to the ballast system, the EUC is the entire FPSO vessel. This definition excludes
any mooring, riser or offloading systems from the boundary of the EUC.

Defining the safe state of the EUC is not straightforward, as the vessel is in constant motion.

With reference to the definition of safe state, safety is achieved when the FPSO has acceptable
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inclination and draft. The limits for what is acceptable will vary, but the vessel must comply
to the stability requirements of the flag or class, and these limits will be part of the vessel doc-
umentation. Per definition, as long as the vessel has a controlled inclination and draft within
acceptable limits, safety is achieved, and the EUC is in safe state. The following definition is
proposed:

e Safe state of the vessel is the controlled state in which the vessel has acceptable inclination
and draft

This is the safe state of the FPSO, but it can not be translated directly into a requirement for
fail safe design of the ballast system, because the ballast system has the capability of bringing
the EUC both in and out of the safe state, depending on the actions of the operator. The same
applies to any ballasting operation which is out of control. As such, the ballast system will not

be able to automatically bring the EUC into safe state upon a ballast system failure.

The ballast system should be designed to fail to a state in which no escalation of a hazardous
event is possible. On a system level, this implies that the ballast system should seize to perform
any ballasting operations. On a component level, all components should fail to a state in which
no ballasting operation is possible. The NMA regulation No. 879, presented in Section 2.0.2,
define this state as the safe position of the system, where the valves are required to be closed and
ballast pumps stopped.

SIS Mode of Operation

The IEC 61508 (2010) standard differentiates between two modes of operation for SISs: low de-
mand mode of operation and high demand/continuous mode of operation. The classification
refer to the demand frequency of the SIS, and the boundary point between the modes is often
taken to be once per year (Rausand, 2011). If a demand occurs more often than once per year,
the SIS is operating in a high demand mode of operation. The classification of mode of operation

is important, as the reliability requirements to SISs are set according to the classification.

Ballast systems on FPSOs are used extensively throughout the year. Ballasting operations are
conducted daily, and the system is in high demand, but these operations are conducted as part
of the daily production routine. When a ballast system SIF is used to respond to a loss of stability
and/or draft due to a hazardous event, this can be looked upon as an on demand situation,
related to systems in low demand mode of operation. In the OLF070 (2004) guideline, the low
demand mode of operation is referred to as a demand mode of operation. The ballast system is

hereby classified as a on demand system operating in a low demand mode of operation.
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3.1.6 Hazard Analysis

A HAZID is carried out to identify hazards that can lead to loss of stability and draft of the vessel.
The result of the HAZID is presented in Figure 3.8. The identified hazards are categorized into

the following hazard categories:
* External: hazards originating from external forces acting on the vessel

* Internal: hazards originating from possible internal fault conditions in the ballast system,

or during ballasting operations

e Human error: hazards originating from maloperation of the ballast system or vessel equip-

ment

The hazards are ranked according to frequency and consequence based on a coarse evaluation
of the hazard. The corresponding risk priority number (RPN) is the sum of the two ranking

categories, ranging from 1 as the lowest, and 5 as the highest.

Limitations The HAZID was limited to identify only a selection of external hazards and hazards

due to human errors.

Results of the HAZID There are multiple hazards leading to loss of stability and draft of a vessel,
and although many of these hazards are rare, the consequences can be very high, and their
influence on the total risk of the EUC is substantial. The hazards originating from the internal
hazard category are especially important as these hazards can be practically eliminated by a

robust ballast system design.
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Hazard

Hazard category
Internal/External/H
uman error

Hazardous
event

Frequency
class

Consequence
class

RPN

Marine collision

Loss of mooring

Loss of cargo to sea

Water ingress into vessel

Heavy weather

Heavy wind

Greenwater

External

Human error during ballasting, crane
operation, offloading, production,
cargo handling etc.

Human error

Ballast control system spurious trip

SIF 1 spurious trip

SIF 2 spurious trip

SIF 3 spurious trip

Loss of control during SIF1 operation

Loss of control during SIF2 operation

Loss of control during SIF3 operation

Internal

Loss of
stability/
draft
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Hazard-Barrier Matrix

Figure 3.8: HAZID
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Based on the barriers and SIFs identified in Section 3.1.3 and Section 3.1.5, and the hazards iden-

tified in Section 3.1.6, a hazard-barrier matrix is used to evaluate the adequacy of the barriers.

The main objectives of a hazard-barrier matrix are to (Rausand, 2011)

e Identify barriers that are (or should be) implemented as protection against a specified

hazard.

¢ Identify barriers that are able to protect against more than one hazard.

e Identify hazards for which protection is inadequate.

* Verify the adequacy of the existing barriers and indicate where improvements are needed.

Hazard Categories: The hazard categories are equivalent to the hazard categories defined in the

HAZID study in Section 3.1.6:
¢ External (hazards)
¢ Internal (hazards)

e Human error (hazards)
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Internal hazards are assessed individually, while human error hazards and external hazards are

assessed as groups of hazards.

Barrier Categories: Three barriers have been included in the matrix:
* Barrier 1: The inherent stability and draft of the vessel design
 Barrier 2: The ballast system
e Barrier 3: Other possible interventions

Results of the Hazard-Barrier Matrix

The hazard-barrier matrix present the critical importance of the emergency stop function of
SIF4, as the primary barrier against internal hazards. The inherent stability/draft of the vessel is
seen to be the only barrier able to protect against all the hazards. For external hazards and hu-
man error hazards, SIF1, SIF2 and SIF3 can be used in different combinations to regain stability
and draft of the vessel. Manual intervention against internal hazards is the physical override of

valves and pumps by the vessel crew.
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SIF3 operation

Hazard-Barrier Matrix Barrier 1 Barrier 2 Barrier 3
Hazard o Inhe.rfent Ballast system
Hazard description | stability/ Other
R draft | SIF1 | SIF2 | SIF3 | SIF4
Loss of stability X X X X
External
Loss of draft X X X X
Human [Loss of stability X X X X
rror 1) oss of draft X X X X
Ballast control system X X Manual
spurious trip intervention
X X Manual
SIF 1 spurious trip intervention
X X Manual
SIF 2 spurious trip intervention
Internal X X Manual
SIF 3 spurious trip intervention
Loss of control during X X Manual
SIF1 operation intervention
Loss of control during X X Manual
SIF2 operation intervention
Loss of control during X X Manual

intervention

3.2 Safety Barrier Failure Analysis

Figure 3.9: Hazard-barrier matrix
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In order to function properly, the components constituting the various SIFs of the ballast system

must be in proper condition and available on demand. This is not always so, and the ballast

system may fail to operate as desired when one of its SIFs fail due to random, systematic or

common cause failure. These failure causes are the main sources of system unavailability, and

during ballast system design, operation and reliability verification, it is important to understand

these types of failures and their influence on SIF performance.

In the following section the various failure causes and failure modes of the ballast system com-

ponents are classified. Subsequently, a failure modes, effects and criticality analysis (FMECA) is

carried out on the ballast system components.
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3.2.1 Failure Cause Classification
Random and Systematic Failures

The IEC61508 (2010) standard differentiate between random hardware failures and systematic
failures, and based on this failure cause classification the PDS method (Hauge et al., 2009b)
present a failure classification that provides a detailed classification of systematic failures. In the
PDS method (Hauge et al., 2009b), random hardware failures are defined as failures resulting
from the natural degradation mechanisms of the component. Systematic failures are defined
as failures related to a particular cause other than natural degradation. These failures are due to
errors made during specification, design, operation and maintenance phases of the component

lifecycle.

In the PDS method classification (Hauge et al., 2009b), random hardware failures are consider to
be independent failures and are assumed not to result in CCE while systematic failures are po-
tentially dependent failures which may lead to CCE Due to the detailed breakdown of systematic
failures, the PDS failure cause taxonomy has been adopted. In the PDS method, systematic fail-
ures are split into

* Software faults: Programming faults introduced during software design, modification or

during updates. Ex: Ballast control logic programming fault.

* Design related failure: Failures introduced during the design phase of the equipment. Ex:
Ballast valve fails to close due to insufficient actuator force.

¢ Installation failure: Failures introduced during the last phases prior to operation, during

installation/commisioning. Ex: Ballast valve position sensor miscalibrated.

» Excessive stress failure: Failure due to stress beyond the design specification of the com-
ponent. Ex: Ballast pumps operated during high pressure gravity filling.

* Operational failure: Failures initiated by human errors during operation or maintenance/testing.

Ex: Ballast pumps operated dry.

Common Cause Failures
If two or more dependent failures occur simultaneously, this is referred to as a CCE defined
as

Common cause failure (CCF): A dependent failure in which two or more component fault states

exist simultaneously, or within a short time interval, and are a direct result of a shared cause.
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The definition is adopted from Rausand (2011), originating from the nuclear industry. As CCFs
can lead to simultaneous failures of redundant components, SIFs and even different SIFs at the
same time, CCFs represent a serious threat to SIS reliability performance. Ballast systems are
susceptible to CCFs, and it is of critical importance to recognize the failure type and find ways
to reduce the influence of CCF in design and operation of ballast systems, and to include the
contribution from CCF in reliability verification calculations.

The CCF definition includes several of the attributes of CCFs, identified by Watson and Smith
(1980), adopted from Rausand (2011)

e The components affected are unable to perform as required.

* Multiple failures exist within (but not limited to) redundant configurations.

* The failures are a "first in line" type of failure, not the result of cascading failures.
 The failures occur within a defined critical time period

* The failures are due to a single underlying defect or physical phenomenon

* The effect of failures must lead to some major disabling of the system s ability to perform
as required.

The emphasis on dependent failure in the definition is important, and explains why CCF causes
are often identical to the systematic failure causes. To clarify when dependent failures are de-
fined as CCE the following attributes from Lundteigen and Rausand (2007) may be used as a
guideline: (1) the CCF event comprises multiple (complete) failures of two or more redundant
components or two or more SIFs due to a shared cause, (2) the multiple failures occur within
the same inspection or function test interval, (3) the CCF event leads to failure of a single SIF or
loss of several SIFs.

CCEF failures reduce the effect of redundancy in SIS design, and the number of components fail-
ing at the same time is only limited to the severity of the common cause, and the strength of the
dependency between the components. It should be noted that a CCF may lead to just one com-

ponent failing, if the other components have not yet failed within the critical time period.

An important element of failure classification of CCF is to identify the basic causes of compo-
nent failure and the reason why several components are affected by the same basic cause. One
way to do this, is by splitting CCFs failure causes into to root causes and coupling factors. A root

cause of a failure is defined by Rausand (2011) as

Root cause: The root cause of a specified failure is the most basic cause that, if corrected, would
prevent recurrence of this and similar failures.
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A coupling factor is defined by Rausand (2011) as

Coupling factor: A property that makes multiple components susceptible to failure from a single
shared cause.

A CCF is always the result of a root cause and a coupling factor, and knowledge of root causes
and coupling factors among the components in a SIS will provide a basis for corrective actions
and defenses aimed at minimizing the influence of CCF on the system. In Section 5.3, a defence

approach against CCF in ballast systems is presented.

3.2.2 Failure Mode Classification

In IEC 61508 (2010), failure modes are split into Dangerous (D) and Safe (S) failures, based on
the effect the failure mode has on the function of the SIS, the SIS subsystem or the SIS element.
Dangerous failures "prevent the safety function from operating when required, or decreases the
probability that the safety function operates correctly when required"(IEC 61508, 2010), while Safe
failures "result in the spurious activation of the safety function to put the EUC (or part thereof)
into a safe state, or increases the probability of the spurious operation of the safety function into a
safe state.” (IEC 61508, 2010)

Based on the definitions above, and the descriptions in Rausand (2011) the following classifica-

tion and subclassification is used:

e Dangerous (D). The SIS/SIS subsystem/SIS element does not fulfill its required safety-
related functions upon demand. These failures may be split further into:

- Dangerous Undetected (DU): Dangerous failures that prevent activation on demand

and are revealed only by testing or when a demand occurs.

- Dangerous Detected (DD): Dangerous failures that are detected immidiately when
they occur.

* Safe failure (S). The SIS/SIS subsystem/SIS element has a nondangerous failure. These
failures may be split further into:

- Safe Undetected (SU): Non-dangerous failures that are not detected by automatic
self-testing or incidentally by personnel.

- Safe Detected (SD): Non-dangerous failures that are detected by automatic self-testing

or incidentally by personnel.



CHAPTER 3. FPSO BALLAST SYSTEM AND FUNCTIONS 31

3.2.3 Failure Modes, Effects and Criticality Analysis (FMECA)

A FMECA is carried out to identify failure modes, failure causes and failure effects among the
main components of the ballast system. The main objective of the FMECA is to identify the
dangerous undetected (DU) failure modes of the ballast system components. The dangerous
undetected failure modes are hidden failures that will only be revealed by a real demand or a
function test. The final FMECA worksheets are presented in appendix Figure B.1. A description
of the method can be found in Rausand (2011) or the IEC 60812 (2006) standard.

System Breakdown

The FMECA is based on the system description from Section 3.1.1, and the system breakdown
presented in appendix Figure B.1. The system breakdown provides an overview of the relevant
components, but does not reflect the system functionality. The components included in the
FMECA analysis are:

Ballast tank configuration, ballast
valves and pumps

Ballast valves
Pumproom valves
Seachest valves
Discharge valves
Ballast pumps

Electric power system

Main electric power generator
Emergency backup generator
UPS

Hydraulic power system

Main hydraulic power generator
Hydraulic accumulator

Ballast control system

Ballast control logic

Table 3.1: Components subject to the FMEA

System Functions and Operational Modes

The components are analysis in accordance to how they function as part of the barrier functions
presented in Section 3.1.3. The operational modes are based on the typical modes of the specific
component. The failure modes are ranked according to frequency and consequence based on a
coarse evaluation. The corresponding risk priority number (RPN) is the sum of the two ranking
categories, ranging from 1 as the lowest, and 5 as the highest.

Assumptions and Limitations
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During the FMECA analysis, it is assumed that only one component fails at a time.

* The identified failure causes should be regarded as examples, not the result of a full as-

sessment.

* Regarding detection of failure, failures are assumed to be either hidden or evident. Evident
failures are detected the moment they occur. Hidden failures are detected during testing
or during actual demand. Function testing or on-demand situations are assumed to be

the only methods for detecting errors.

* Only the main failure modes of the components have been analyzed.

3.3 Reliability Performance Requirements

The PSA requires that the IEC61508 (2010) standard and the OLF070 (2004) guideline is used
when stipulating the performance of safety functions when electrical, electronic and programmable
electronic systems are inherent in the structure of the function. The IEC61508 (2010) standard
and the OLF070 (2004) guideline determine reliability requirements in two different ways. In
the following the two approaches are presented and discussed, and the proposed reliability re-
quirements for ballast systems on FPSOs will be presented.

The IEC 61508 Approach for Setting Reliability Requirements

The IEC61508 (2010) is based on a Safety Life Cycle concept, which represent the necassary steps
towards achieving functional safety for an EUC in a systematic way. Central to the safety life
cycle concept is the structured and thorough approach to hazard and risk analysis, and the ob-
jective of the process is to identify the risk associated with the EUC and the EUC control system.
If the risk is found to be above the upper level of tolerability, the standard requires that one or
more safety functions should be put in place to reduce the risk to a tolerable level. The con-
cept is illustrated in Figure 3.10, adopted from OLF070 (2004) based on the original figure from
[EC 61508 (2010) standard.
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Figure 3.10: Framwork for risk reduction in IEC 61508

The level of tolerable risk for an EUC will vary, and is often derived from
* Regulations and guidelines from regulatory authorities
* Industry standards
* Expert, industry or scientific advice

The safety function will then be assigned a safety integrity requirement, which will be a measure
of the risk reduction associated with the safety function. The IEC 61508 (2010) approach ensures
that all requirements are risk based, and that all decisions shall be taken based on tolerability of

risk and in the effort of risk reduction.

The standard requires that the risk reduction achieved by the function should be quantified and
expressed as a safety integrity level (SIL), which will be the primary reliability requirement for
the safety function. Safety integrity level (SIL) is defined by Rausand (2011) as

Safety integrity level (SIL): the probability of a safety-related system satisfactorily performing the
required safety functions under all the stated conditions within a specified period of time.

The IEC 61508 (2010) standard defines four discrete safety integrity levels, where each level cor-
responds to an interval in the average probability of failure on demand, PFD g, and the prob-
ability of a dangerous failure per hour, PF H, as shown in Figure 3.11, adopted from the OLF070
(2004) guideline.
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SIL 4 is the highest safety integrity level, and SIL 1 the lowest. The PFD ;¢ applies to SISs op-
erating in on demand/low demand mode of operation, and the PFH applies to SISs in high
demand mode of operation. For the rest of the thesis, PFD is the equivalent to PFD 4.

Safety Integrity Demand Mode of Operation Continuous / High Demand
Level Mode of Operation
(average probability of failure to
perform its design function on demand - (probability of a dangerous failure
PFD) per hour)
4 >10°to < 10* >10"to < 10*
3 >10"to < 107 >10%to <107
2 >10”to < 107 >10"to <10
1 >107to < 10" >10°to <107

Figure 3.11: Safety integrity levels in IEC 61508

By using the “top-down” IEC 61508 (2010) approach, the obtained SIL requirement for each SIF
will be directly related to the total risk reduction needs of the EUC. For each SIS introduced
to protect the EUC, the initial EUC risk will be reduced towards the acceptable risk level. The
process of assigning SIL requirements to various SIFs based on the identified risk reduction goal
is called SIL allocation. A number of qualitative and quantitative methods for SIL allocation

exist and several are presented in IEC 61508 (2010), such as
e Layers of protection analysis (LOPA)
* Risk graph method
e Event tree method
The OLF 070 Approach for Setting Reliability Requirements

The OLF070 (2004) guideline presents a different approach to setting reliability requirements
for safety systems than the risk based approach of the IEC61508 (2010). The guideline make
use of the same reliability performance metric, the SIL concept, but rather than allocating the
requirements to the SIFs "top-down", a set of minimum SIL requirements have been established
for the most common safety functions, as defined by the PSA.

As presented in the guideline, the rationale behind predefining the SIL requirements is
* To ensure a minimum safety level
* To enhance standardisation across the industry

¢ To avoid time-consuming calculations and documentation for more or less standard safety

functions.
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The minimum SIL requirements have been developed by combining simplified loop diagrams
of the safety functions with reliability data based on industry experience. As such, if the reli-
ability experienced in the industry is low, the minimum SIL requirement can turn out low. To
cope with this issue, the guideline has stipulated the stricter performance requirement in cases
where the calculated requirement turn out between two reliability levels, and emphasises that

the requirements are minimum requirements.

In the guideline, the ballast system is defined as a safety system with two safety functions, with
individual SIL requirements. The minimum requirements are established based on two simpli-

fied loop diagrams, and a number of assumptions.
e OLF070 Subfunction 1: Start of ballast system for initiation of rig re-establishment
— SIL1 minimum requirement
e OLF070 Subfunction 2: Emergency stop of ballast system
— SIL2 minimum requirement
Proposed Reliability Performance Requirements

The proposed reliability requirements to FPSO ballast systems are based on the OLF 070 ap-
proach for setting reliability requirements. Although the risk based approach of the IEC 61508
(2010) standard may lead to an adequately strict requirement, the process of assigning reliabil-
ity performance targets for ballast systems based on the overall EUC risk is not preferred, for

several reasons:

e The level of detail of QRAs as they are performed today, make them less appropriate for
stating absolute criteria. (OLF070, 2004)

* The requirements should be absolute, and applicable to all FPSOs, regardless of the risk
profile of the vessel.

* By assigning requirements directly to the systems, a minimum safety level is achieved,

regadless of any modification to the vessel.

The minimum SIL requirement approach is therefore adopted as the most effective way to en-

sure adequate reliability performance of ballast system functions.

With regards to the specific SIL requirements proposed by the OLF070 (2004) guideline, these

are not adopted without a proper discussion.

As presented above, the SIL requirements are the result of calculations based on a combination
of simplified loop diagrams and reliability data from the industry. In addition to the data, a range
of assumptions are made with regards to the test interval of the various components.
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A review of the data used in the calculation in OLF070 (2004) showed that some of the data had

changed since the calculations were performed. More specifically, the failure rate data used to

represent the failure rate of the valves had actually reduced significantly. To verify if the SIL re-

quirements would have been stricter if the calculations where performed today, a series of case

calculations are performed on the OLF070 Subfunction 1: Start of ballast system for initiation of
rig re-establishment. The result of the calculations are presented in appendix Figure B.6. The

findings of the calculations are presented:

¢ Casel: The calculations are identical to the calculations in OLF070 (2004). The result is a

SIL1 minimum requirement.

e Case2: The calculations are performed based on the same assumptions as in Casel, but
with the new valve failure rates. The PFD of the function result in a SIL1 minimum re-

quirement.

e Case3: The calculations are performed based on the same assumptions as in Casel, but
with the new valve failure rates and a 2190h test interval instead of a 4380h from Case 1.

The PFD of the function result in a SIL1 minimum requirement.

* Case4: The calculations are performed based on the same assumptions as in Casel, but
with the new failure rates and a 730h test interval instead of a 4380h from Case 1. The PFD

of the function result in a SIL2 minimum requirement.

The main result of the calculations show that if the calculations were performed today with the
same assumptions, same test interval, but new failure rates (Case2), the resulting minimum SIL
requirement would turn out the same. If the calculations were performed today with the same
assumptions, new failure rates and a test interval for valves less than every sixth week (1011h)

as in Case4, the PFD of the function would correspond to a SIL 2 minimum requirement.

Since the ballast valves on a FPSO are used every day, one could argue that they are actually
"tested" all the time, but an important assumption when performing function tests are that the
valves are assumed to be as good as new when they have been function tested. To carry out such
a test, a more thorough test approach is conducted. Due to resource constraints, these function

tests are performed less frequently.

To conclude on the specific requirement of the OLF070 (2004), the requirements for OLF070
Subfunction 1: Start of ballast system for initiation of rig re-establishment could have been in-
creased to a SIL2 minimum requirement to ensure continuous improvement of reliability per-
formance of ballast system functions. On the other hand, as the guideline stress the fact that
these requirements are minimum requirements, the SIL1 performance requirement is found ad-
equate.
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For ship-shaped floating facilities, including FPSOs, the following reliability performance re-
quirements are proposed, based on the SIFs and the success criteria identified in Section 3.1.5:

Safety Instrumented Function Proposed minimum SIL requirement
SIF1 SIL1
SIF2 SIL1
SIF3 SIL1
SIF4 SIL2

Table 3.2: Proposed minimum SIL requirements to ballast system functions

The requirements for SIF1 and SIF2 are based on the calculations conducted in Case3, where
the minimum SIL requirement calculations from OLF070 (2004) are performed with new fail-
ure rates and a 2190h test interval. The requirement for SIF3 is based on the calculations from
Case5 in appendix Figure B.6. In Case5, minimum SIL requirement calculations are performed
according to the OLF070 (2004) approach, but based on 1003-voting for pumps, 2190h test in-
terval, and a tank valve+solenoid/pilot instead of a discharge valve+ solenoid/pilot to account
for the configuration necessary to carry out SIF3. The result is a PFD within the SIL1 interval.
The requirement for SIF3 is adopted from the OLF070 Subfunction 2: Emergency stop of ballast

system.

With regards to the OLF070 (2004) guideline, there should be different requirements to differ-
ent floating facilities. By assigning only one requirement, covering all facilities with a ballast
system, important differences between the systems are overlooked. An important function of
a ballast system on a shipshaped vessel is the possibility to ballast internally between the port-
and starbord side, presented through SIF3. This is an important function of a shipshaped ves-
sel’s ballast system, and should be given a unique reliability requirement as in the proposed
requirements. As a minimum, different requirements should be made to ship-shaped vessels

and semi-submersible rigs, to account for the differences in design.
Reliability Performance Achieved

According to IEC 61508 (2010), three main types of requirements have to be fulfilled in order to
claim that a specific SIF have the potential to actually achieve a given SIL upon system startup:
(OLF070, 2004)

e A quantitative analysis must verity that the required failure probability can be achieved
for the SIE

e A qualitative requirement must be met, expressed in terms of architectural constraints on

the subsystem constituting the safety function.

* Requirements concerning which techniques and measures should be used to avoid and
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control systematic faults.

The requirements to the SIL achieved will not be looked further into. More information on the
subject can be found in the IEC61508 (2010) standard and the OLF070 (2004) guideline.



Chapter 4
Incidents and Accidents

The following chapter presents the findings of the literature survey into the reported safety and
reliability challenges, incidents and accidents related to ballast systems. Incidents to both ships
and other floating facilities are presented. The major incidents and accidents are presented

below, and the minor incidents are summarized and presented in Appendix B.

Rather than reproducing a full description of the incidents and accidents, the incident descrip-
tions are primarily concerned with the specific findings related to the ballast systems.

The findings show that failures related to ballast system can have a severe impact on the chain
of events in an accident. The Ocean Ranger accident is one of the worst accidents ever in the off-
shore industry, and the investigations revealed the vulnerability of ballast control system failure.
Using reliability assessment terminology, the control system, indicators and operator panels on
the Ocean ranger were subject to a severe CCE where the root cause was electric failure due to
water ingress, and the coupling factor between the different components was the same loca-

tion.

The Petrobras P-34 FPSO incident is highly relevant for the topic of the thesis. The incident rep-
resent a typical systematic software failure where the control logic of the ballast system lacked
the proper fail safe functionality upon valve position feedback failure. The incident stress the
importance of proper manual intervention and emergency plans in case of loss of control of the
ballast system, and the need for proper reliability assessments of ballast systems.

The Gjoa and Thunder Horse accidents represent systematic failures inherent in the design of
the ballast systems. Although the Gjoa platform was under modification work, the systematic
programming errors in the valve control systems had been made prior to installation. The same
applies to the hydraulic power unit installed on the Thunder Horse production facility.

The minor incidents present a series of spurious trip incidents, valve leakage failures and other

39
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incidents causing a range of problems in the daily operation.

4.1 Minor Incidents and Accidents

Minor incidents and accident where ballast systems have caused or contributed to unwanted
events are documented in a set of tables in Appendix B. The tables and their associated data

sources are presented in Table 4.1

Table 4.1: Overview of tables and datasources

Table Description Source

B.1 Stability incidents reported to the PSA (Source | Vinnem et al. (2006)
1)

B.2 Stability incidents reported to the PSA (Source | Vinnem et al. (2006)
1)

B.3 Stability incidents reported to HSE (UK) 1980- | Vinnem et al. (2006)
2003 (Source 2)
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4.2 Major Incidents and Accidents

Petrobras P-34

Date and time: 13.10.2002

Accident type and severity: Critical list of the FPSO due to ballast system failure. Potential

major accident. Evacuation.

Accident location: Barracuda field, Campos Basin Brazil

Description of system involved:
FPSO converted from a tanker. L.W.H: 240x26x17m. Displacement 62000tons. Storage capac-
ity: 58000m3. Production capacity: 45000 bopd. Owned and operated by Petrobras.

Context of accident: Weather was not a contributing factor to the event.

Accident description in relation to the ballast system:

The incident occured during maintenance of a battery charger. The electric circuits fed by
the particular battery charger became de-energized, among them the intrinsic safety panel
connecting the ballast and cargo control system with the electric position feedback from the
ballast and cargo valves. The main electric power generation shut down, and the hydraulic
power system, ECOS and PLC relay cards in the valve control system were de-energized.
Emergency backup generator started within 40 sec, PLC relay cards energized, ECOS starts
booting operating systems but remain down in 11min. The PLC receives no position feedback
from any valve (OmA). The PLC logic was not failsafe and started immidiate actions to open
all valves in order to reach the (4mA) electric feedback signal corresponding to a closed valve
(20mA=0Open). All 66 ballast and cargo tanks were opened by hydraulic pressure available
in the hydraulic accumulators. Crude oil in the cargo tanks and ballast water in the ballast
tanks gravity drained to the portside tanks. The FPSO reached a critical 34 degree list before
control was regained and salvaging operations could begin. Crew were abandoned in lifeboats

throughout the incident. No injuries to personnel.

Source of information:
Tinmannsvik et al. (2011)
Petrobras (2002). Figure 4.1 adopted from Petrobras (2002)
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PETROBRAS

@ Listing description

Tanks level after listing

Maximum level

Figure 4.1: Petrobras P-34
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Ocean Ranger

Date and time: 15.02.1982

Accident type and severity: Major accident. Rig capesizing. Loss of all 84 crewmembers. Loss
of semisubmersible drilling rig.

Accident location: Canadian waters outside Newfoundland

Description of system involved:
Semisubmersible drilling rig owned by ODECO, drilling for Mobil Exploration. L.W.H:
121x80x103m. Weight: 25000tons. Designed for harsh weather operations.

Context of accident: An incoming storm had a direct effect on the accident. The rig was
preparing to abandon drilling operations and prepare for the storm when the accident oc-

curred. The rig had not yet been brought to safe draft.

Accident description in relation to the ballast system:

A large wave hit the Ocean Ranger as the rig was preparing for the storm. The wave broke
2 of the 4 portlights in the ballast control room located in a vulnerable position in a column
below the main deck. Water ingress through the portlights caused the ballast control station
to malfunction, and ballast valves to open and close in an uncontrolled way.

"As a direct or indirect result of the malfunction, several valves in the ballast control system
opened or were opened allowing seawater to enter the forward ballast tanks and/or on-board
ballast water to gravitate forward, either of which would have caused a substantial forward
list." (U.S. Coast Guard, 1983)

The combination of the electric malfunction, ineffective initial response from the ballast op-
erators and lack of training in emergency operation of the ballast control system caused the
Ocean Ranger to assume a forward list allowing the unprotected forward chain lockers to be
filled with seawater, causing increased list. The ballast system pump and piping design and ar-
rangement was inadequate for deballasting at excessive heel or trim angles under emergency
operating conditions. Efforts to abandon the rig was unsuccessful, and the rig eventually cape-
sized and sank. All 84 crewmembers died in the accident.
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Ocean Ranger

Accident description in relation to the ballast system: (Continued)

All the ballast valves on the Ocean Ranger, except two manually operated sea inlet gate valves
were pneumatically operated butterfly valves located in the ballast pump rooms and propul-
sion rooms of each pontoon. The valves were designed to fail to a closed position in case of an
electrical or air pressure failure. Investigations showed that the crew had attempted to manu-
ally operate the system by using brass control rods designed to manually operate the systems
air control solenoids, which in turn controlled the opening and closing of the ballast valves.
Since all valve indication lights were out, this was most likely done completely in the blind. It
normally took approximately 40 seconds to open a valve and 20 seconds to close a valve.

Another feature was the main electric power cut off installed inside the ballast control con-
sole. The cut off circuit breaker was not marked, and testimonies from former crewmembers
indicated that operators were unaware of the location of this circuit breaker.The investigations
of the accident confirmed that a series of mitigating actions could have been initiated by the
operators if they had been sufficiently trained to operate the ballast system in an emergency

situation.

Source of information:
Tinmannsvik et al. (2011)
U.S. Coast Guard (1983)
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Gjoa

Date and time: 03.03.2010

Accident type and severity: Minor stability incident, spurious trip of ballast system

Accident location: Dockside at Aker Stord Norway

Description of system involved: Semisubmersible drilling rig

Context of accident: No weather effects.

Accident description in relation to the ballast system:

The rig was under construction and outfitting when a power failure caused a number of con-
trol units to stop and restart. Due to a programming error in the ballast control logic, all the
ballast valves in a specific quadrant were spuriously opened, causing 700-900tons of ballast
water to migrate internally, causing a 3 degree list of the rig. The power failure also caused
a series of local failures where systems had to be manually restarted. The emergency shut-
down button for the ballast system had not yet been installed. Controlled evacuation of the
rig. Control of the situation after restarting systems.

Source of information: Tinmannsvik et al. (2011) Vinnem et al. (2006)

Aban Pearl

Date and time: 13.05.2010

Accident type and severity: Semisubmersible sinking

Accident location: Off the coast of Venezuela

Description of system involved: Semisubmersible gas production platform from 1977. Newly
refurbished.

Context of accident: No weather effects.

Accident description in relation to the ballast system: The floating devices on the rig started
to take in water during transit. The rig eventually sank. Probable cause is leakage, malopera-
tion or other error with the ballast system (Tinmannsvik et al., 2011).

Source of information: Tinmannsvik et al. (2011) Vinnem et al. (2006)
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Thunder Horse

Date and time: 08.07.2005

Accident type and severity: Severe and uncontrolled heel of floating production platform.

Accident location: US Gulf of Mexico

Description of system involved: Semisubmersible production platform.

Context of accident: The platform was under commisioning, and the incident happened dur-

ing evacuation before Hurrican Dennis.

Accident description in relation to the ballast system:

The rig had been evacuated due to the passage of Hurricane Dennis. When the crew returned
to the rig they found it listing 20 degrees with the top deck in the water on the port side. Find-
ings indicate that failures associated with the hydraulic control system and the isolation of the
system during evacuation led to the partial opening of multiple hydraulically operated valves
in the ballast and bilge systems of the vessel, allowing water migration to take place. The
ballast water migration led to the initial listing of around 16 degrees. The subsequent water
migration into manned spaces in the lower hull via faulty check valves in the integrated bal-
last and bilge system increased the degree of listing. Downflooding of seawater, and possible
wave action associated with the hurricane increasing the list up to 21 degrees. The platform

was restored.

Source of information: Tinmannsvik et al. (2011)

Jupiter

Date and time: 12.04.2011

Accident type and severity: Semisubmersible flotell partial sinking.

Accident location: Gulf of Mexico

Description of system involved: Semisubmersible flotell

Context of accident: Weather was not a contributing factor.

Accident description in relation to the ballast system:

The semisubmersible flotell started to take in large amounts of seawater through a faulty valve
in one of the pontoons. The 713 workers onboard were evacuated. The affected side eventually
sank to the bottom of the shallow water.

Source of information: Tinmannsvik et al. (2011)




Chapter 5

Reliability Assessment Approach for FPSO
Ballast Systems

In the following chapter, a stepwise reliability assessment approach for ballast systems is pre-
sented. The reliability assessment approach can be used to quantify the reliability performance
of the safety functions of a ballast system, and idenfify the contribution from CCFs on the re-
liability performance of these functions. The results of the assessment can be used as part of
a verification process of reliability performance, as decision support during the design phase
of new ballast systems or to quantify reliability enhancing efforts performed on an existing de-
sign.

In addition, a defence approach against CCFs in ballast systems is presented. The approach
can be used to improve the operators ability to identify and avoid the reoccurence of CCF in the
operational phase.

5.1 Background for the Approach

5.1.1 Selection of Reliability Modeling Approach

In order to verify compliance to reliability targets of SIFs, the IEC61508 (2010) and IEC61511
(2004) standards suggest the use of FTA, Reliability Block Diagrams (RBD) or Markov methods
to calculate reliability performance (Lundteigen and Rausand, 2009). FTA and RBD are methods
that model the system failures and functions in a static way, with binary states. The system
components and functions are assumed to be either available or not. With Markov methods, the

components may have more than one state, and Markov methods is preferred when modeling
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dynamic systems that are switching between different states. As the ballast system components
may be adequately modeled as either available or not, Markov methods are not included as part
of the modeling approach.

Both FTA and RBD are applicable methods for reliability modeling of the ballast system, and if
the models are established on the same basis, the two approaches will give the same result. The
FTA method is considered to be more comprehensive than the RBD method, due to the failure
oriented approach, and is often preferred for modeling complex SIFs with a large number of

components.

The RBD method provides a different approach to modeling. Rather than focusing on how a
function may fail, the approach focuses on how a function may be achieved, and the sequence
of reliability blocks in the RBD may be set up similar to the sequence the SIF is activated. This
is a benefit, as components can then be easily added and removed to the RBD when model-
ing different ballast system designs. Generic RBDs for the different SIFs can easily changed to
represent the ship specific configuration of a safety function. Identified CCF among redundant
components can easily be included in the RBD. Due to the flexibility of the RBD method, it is
found to be the most appropriate modeling approach for the ballast system reliability assess-

ment.

5.1.2 PFD Calculation

The quantitative reliability performance measure for a SIS operating in low demand mode of
operation is the average probability of failure on demand, PFD,¢ (PFD), which is only related
to DU-failures. The PFD can be calculated for individual items and complete systems as long as

the following basic assumptions hold:

* The item is subject to a regular functional test at test interval 7

All hidden failures are revealed by the functional test and repaired immidiately.

The time required to test and repair the item is considered to be negligible

After a test/repair the item is "as good as new"

The item is not subject to diagnostic self-testing

The item is functioning as a safety barrier only if a DU failure mode is not present

For practical calculations of PFD, approximation formulaes are used. For detailed derivations
leading to these formulaes, see Rausand and Heyland (2004). The following approximation for-

mulaes can be used in the assessment:



CHAPTER 5. RELIABILITY ASSESSMENT APPROACH FOR FPSO BALLAST SYSTEMS 49

PFD Single Item:

For a single item, tested at regular intervals of length 7, with constant failure rate Apy with
respect to DU-failures, and where Apy7 is small, (i.e. < 10_2)(Lundteigen and Rausand, 2009),
the following formula can be used:

A
PFD ~ 2RUT

(5.1

The approximation is conservative, which means that the approximated valve is greater than
the correct value obtained by detailed calculations.

PFD Parallel Items:

For two independent items of the same type operated as a 1002-system, tested simultaneously
at regular intervals of length 7, with constant failure rates Apy with respect to DU-failures, and
where ApyT is small (i.e. < 1072), the following formula can be used:

1
PFD = §(/1DUT)2 (5.2)

A 1oo2-system will only fail when both components fail. The probability Q(?) that the system is
in failed state at time ¢ is

Q) =q:1(1) - q2(1) (5.3)

Where ¢g;(¢) is the probability that component i is in failed state at time ¢, for i=1,2. This rela-
tionship is sometimes wrongfully interpreted in PFD software calculations, where PFD; ., is
calculated by

PFDi,on =T"PFD, (5.4)

The approximation does not give accurate results, and should not be used directly. The reason
it does not hold is because PFD is the average unavailability of the system, and the average of
a product is not the same as the product of averages. This is known as the Schwartz inequal-
ity.

Interestingly, 5.4 can be used successfully to calculate PFD of more complex 1o0on-configurations
comprising different types of components if coupled with the correction factor presented in
Lundteigen and Rausand (2009):

211
CF100n =
n+l

For complex 1oon-configurations that comprise different types of components, the approach

(5.5)

is as follows: (1) Calculate PFD of each redundant channel. (2) Calculate the non-conservative
PFD by using 5.4. (3) Reduce the non-conservative error by multiplying with the appropriate
correction factor from 5.5.
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PFD Series System:

For two independent items with individual constant failure rates Apy, and Apy, with respect
to DU-failures, tested simultaneously at regular intervals of length 7, where both items have to
function for the system to function, and where Apy, 7 is small (i.e. < 1072) for i=1,2., the follow-

ing formula can be used:

(Apu, + Apu,)T  Apu T N Abpu,T
2 2 2

PFD =

(5.6)

The approximation shows that for series systems, the PFD of a series system is approximately
the sum of the PFDs of the individual items (Rausand and Heyland, 2004).

PFD koon-Systems:

For a system of independent components of the same type operated as a koon-system, tested
simultaneously at regular intervals of length 7, with constant failure rates Apy with respect to
DU-failures, and where Apy7 is small (i.e. < 1072), the following formula can be used:

(5.7)

n (ADUT)n_kH—l
PFDgoon = ( )—

n-k+1] n—-k+2

PFD of Components in Continuous Operation:

In order to calculate PFD of component in continuous operation, a simplification can be made.
These items are in continuous operation with occasional unexpected downtime. They are not
function tested or needed "on demand". The suggested approach for modeling these compo-
nents is presented through the main electric power system.

Consider the main electric power system as an item, which is either functioning or not. By
functioning, the item is in active operation, delivering electric power. By not functioning, the
item is unavailable due to any failure cause, as opposed to a planned shutdown. When the main
electric power is repaired, it is assumed to be "as good as new", with sufficient power.

The average unavailability of the item, Ay, denotes the mean proportion of time the item is not

functioning (Rausand and Heyland, 2004)

- MTTR
Agy =
MTTF+MTTR

(5.8)
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Where MTTR (mean time to repair) denotes the mean downtime after a failure, and MTTF (mean
time to failure) denotes the mean functioning time of the item. MTTF may be written as

1
MTTF = 1 (5.9)

Where A denotes the failure rate of the item. Equation 5.8 becomes

. MTTR _ A-MTTR
“”_%+MTTR_1+7L'MTTR

(5.10)

The second term in the denominator is negligible for practical calculations and the final term
becomes
- A-MTTR
PFDzAm,:f:/I-MTTR (5.11)
Where A denotes how often the main electric power is not functioning due to an unexpected fail-

ure, and the MTTR is the time required to get the main electric power functioning again.
PFD of Human Interventions:

If any human interventions are necessary to successfully execute a ballasting function, the pos-
sible non-fulfilment of that task should be included in the PFD calculations. The planning and
initiation of the ballast functions should not be included in the calculations, only possible ex-
traordinary human interventions identified through the shipspecific ballast system familiariza-
tion.

As with structured Human Reliability Analysis (HRA) methods, some of the benefits of includ-
ing human errors during reliability modeling are that the process (Rausand, 2011): (1) Identifies
weaknesses in operator interfaces with the system (2) Demonstrates quantitative improvements
in human interfaces (3) Supports the development of preventive or mitigating measures to re-

duced the influence of human errors on the system reliability.

If sufficient data is available, the probability of a human error can be represented by the Human
Error Probability defined as

Human error probability (HEP): The probability that an error will occur when a given task is
performed.

Estimated by

number of errors
HEP =

number of opportunities for error

Alternatively, the HEP may be based on expert judgement or by using tabulated values for hu-
man performance. The LOPA technique, presented in the IEC61511 (2004) standard provide the



CHAPTER 5. RELIABILITY ASSESSMENT APPROACH FOR FPSO BALLAST SYSTEMS 52

suggested PFD values for operator intervention in Table 5.1, adopted from IEC 61511 (2004).

Protection layer PFD

Human performance (trained, no stress) 1,0x 1072 to 1,0 x 10~*
Human performance (under stress) 0,5t01,0

Operator response to alarms 1,0x 107!

Table 5.1: PFD of Human performance

5.1.3 Common Cause Failure Modeling

The IEC61508 (2010) and IEC61511 (2004) standards require that the effect of CCFs are included
in reliability performance calculations, and recommend the use of the -factor model.

The f-factor model is the most commonly used model for CCF modeling, but it is not the only

option for modeling CCFs.

The model assigns a fraction, f of the failures of a component to be CCE and assumes that
when a CCF occurs, all components in that component group will fail due to the same cause. In
a redundant setup, with n identical components in parallel, each with a constant failure rate A,
this means that given a component failure, this failure will cause all the n other components to
fail with probability 5, and involve only the single component with probability (1 — §) (Rausand,
2011).

The implications of the simplicity of the -factor model, is that the contribution from CCFs will
dominate the results of PFD calculations, regardless of voting configuration (Rausand, 2011).
This can be illustrated by an example:

Consider a system of 5 ballast tank valves configured as 1005-system, which is functioning as
long as at least one of the five channels is functioning. The critical failure rate of the valves is
estimated to Apy, and the valves have been found to be exposed to CCFs. The system is tested
atregular intervals of length 7, and one can assume that the testing is perfect and that the valves
are as good as new after each test.

The PFD is calculated by using 5.7 for a koon-system of identical and independent components,
with CCFs modeled by the g-factor model

(1-PB)Apyr)® N BApyt
6 2
The first term in the answer is the contribution from independent failures, while the last term is

PFD1005 = (512)

from CCFs. The contribution from CCFs will by far outweigh the contribution from the indepen-
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dent failures, and this dominance will not be affected significantly by any change in voting. As
one may expect to have CCFs where not all the redundant components fail with probability S,

the B-factor model will be rather pessimistic for redundant systems with many channels.

This has been taken into consideration in the OLF070 guideline, which recommend the CCF
model developed as part of the PDS method (Hauge et al., 2009b) when quantifying PFD. The
model argues that there should be different f factors for different voting configurations, and
presents a configuration factor, Cysyon, Which takes into account the specific voting configu-
ration. The result is a CCF modeling approach which is more sensitive to the specific voting
configuration in the reliability model. The modified §-factor of a system with MooN voting
configuration equals:

ﬁMooN = CMooN ,6 (5.13)

The numerical values for the Cy;0n factor can be extracted from figure 5.1, adopted from Hauge
and Onshus (2009). Note that for 1002 systems the Cj,42=1, resulting in ;,02=p.

M\N |[N=2 N=3 N=4 N=5 N=6
M=1 |[C;2=1.0 |Ci003=0.30 | Cio04=0.15 | Cio05=0.08 | Cio06=0.04
M=2 - Co003=2.4 | Ca00a=0.75 | C2005=10.45 | C006=0.26
M=3 - - C3004=4.0 [ C3005=12 | C3006=0.8
M=4 - - - Ci005=6.0 | Cao06=1.6
M=35 - - - - Cso06= 8.1

Figure 5.1: Cy;,05, factors

The difference between the methods can be illustrated by applying the Cy;y,n-factor approach
to the example presented above. For the 1005 system, the C; 45 = 0,08, and the corrected 1,05 = 0,08 -

((1 = B1oos)ApuT)® N BP1roosApuT

PFD =
loo5 6 2

(5.14)

The result can be seen in the second term, corresponding to the contribution from CCF failures
on the system PFD. The high redundancy in the 1005 voting has marginalized the Sp;00n, which
in turn results in a reduced contribution from CCF failures on the system PFD.

Due to this powerful characteristic, the CCF modeling from the PDS method has been chosen
as the preferred CCF modeling approach for the reliability assessment.
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Determining

There are three main sources of § factors to common cause component groups
e Checklists
* Reliability databases
* Expert judgement

The IEC61508 (2010) standard encourage the use of enclosed checklists to establish f factors
based on the specific condition of the installation. The OLF070 (2004) guideline recommends
the use of a generic f factor based on operational experience documented in reliability databases,
and refer to f§ factors from the PDS method (Hauge et al., 2009b).

For initial calculations, applicable tabulated £ factors from the PDS method (Hauge et al., 2009b)
can be used. In Figure 5.3, the f factors are presented in connection with the proposed reliability
data.

If efforts are made to reduce the influence of CCFs on a later stage, the result of the efforts can
be quantified into the f factor, by using the Active protection application specific p approach
developed for the PDS method (Hauge et al., 2009b). The idea behind the approach is to multiply
the generic § with a parameter kg, which can be chosen based on an assessment of the systems
protection against CCFs. The numerical values for kg can be extracted from Figure 5.2, adopted
from the PDS handbook (Hauge et al., 2009b).

kg Protection Comments
0.1 Very high protection | Separation/segregation and diversity/redundancy fully implemented
0.5 Extended protection | Some additional protection implemented and documented
1 Normal protection Average level of protection — current practice
5 Reduced protection Less protection than typically implemented

Figure 5.2: kg parameters

5.1.4 Reliability Data

For areliability assessment focusing on the PFD of various SIFs, the rate of dangerous undetected
failures, Apy, and the functional test interval, T, are the most important parameters, governing
the prediction of how often a safety function is likely to fail on demand. The following data is

needed for each component:

e The rate of Dangerous Undetected failures, Apy
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e The functional test interval, T
* B-factors for common cause component groups
Other data relevant for the assessment:
e The failure rate of components in continuous operation, A.
e The MTTR (mean time to repair) of components in continuous operation

Reliability data can be obtained from a variety of sources, such as generic databases, company-
specific databases or joint databases from several companies within the same industry. While
some databases provide failure rates for each relevant failure mode, other databases only pro-
vide total failure rates.

It is important that the data is applicable and conservative, and the IEC61508 (2010) standard
requires that any failure rate data used for verification purposes should have a statistical confi-
dence level of at least 70% (OLF070, 2004). This means that company-specific databases must
have a lot of data before they can be used for verification purposes.

Through the PDS project (Hauge et al., 2009b), a range of reliability data is analyzed and struc-
tured into a PDS Data Handbook (Hauge et al., 2009a), updated at regular intervals. The data is
primarily obtained from the OREDA data handbooks, and the data provides best average esti-
mates of equipment failure rates based on experience gathered mainly from the petroleum in-
dustry. The OLF070 (2004) guideline use PDS data as the primary source of reliability data.

The OREDA reliability data is based on maintenance reports from single item failures, and as
such contain all failures both independent and CCFs. The status related to the contribution
from CCFs on the data is not fully known (Lundteigen and Rausand, 2007). Through the RABL
project (Ostby et al., 1987), a list of reliability data for ballast systems is presented. The data
consist mainly of old OREDA data, and is presented in appendix Figure B.2.

As an expert judgement opinion on what data that should be applied, the PDS data from the
example calculations in the OLF070 (2004) guideline is used and updated with data from the
latest PDS Data Handbook, (Hauge et al., 2009a).

In Figure 5.3 a shortlist of the proposed reliability data is presented, along with applicable f
factors. For a full review of the reliability data see appendix Figure B.7 and B.8.
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Ballast tank
configuration, Type A DU (per 1076h) B-factor Comment
pumps and valves
Valve + DU fail i
Ballast tank valve @ \,Ie ) 3 3% y a.u ure rate is
solenoid/pilot fail to open
Pump room valve Valve + 3 39 DU failure rate is
solenoid/pilot fail to open
Seachest valve Valve + 3 39 DU failure rate is
solenoid/pilot fail to open
Ive + DU fail i
Discharge valve va \,Ie . 3 3% v ?I ure rate s
solenoid/pilot fail to open
Not available. Fail to Failure rate
Ballast pump Centrifugal complete| start on demand = 5% includes only "fail
9,4 per 10M h to start
Ballast control
system Type A DU (per 1076h) B-factor Comment
. Programmable
Ballast control logic
+1/0 safety system - 1 5%
single system
Electrical
conf:o:‘:ts Type A DU (per 1076h) B-factor Comment
Manual pushbutton Pushbutton 0,4 3%
Safety relay Relay 0,2 3%
Isolation relay Relay 0,2 3%
MCC shutdown relay Relay 0,2 3%
Contactor Relay 0,2 3%
Valve including
Valve actuator (ex. 2,1 3%
Pilot/solenoid)
Solenoid/Pilot Solenoid 0,9 2%/10%.

Figure 5.3: Shortlist of applicable reliability data

5.2 Stepwise Procedure

The reliability assessment approach is based on the following stepwise procedure:
Step 1: Ballast system familiarization
Step 2: Identification of common cause component groups
Step 3: RBD construction
Step 4: Determination of reliability data
Step 5: PFD calculations
Step 6: Comparison with reliability performance targets

In the following section the different steps will be presented.
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5.2.1 Step 1: Ballast System Familiarization

The first part of the reliability assessment is a thorough review of the ship specific ballast sys-
tem. This is an important part of the procedure, as the subsequent steps and final results are
highly dependent on the findings of the familiarization. The outcome of the review should in-
clude:

* Adescription of the differences between the ship specific ballast system and the base case
ballast system, and associated implications on the system functions

» Alist of the different SIFs, associated functional block diagrams and their criteria for suc-

cessful execution

* Which components that are operated to achieve the SIFs, and how these components may
fail

Relevant sources of information are: P&ID diagrams, flow diagrams, loop drawings for hydraulic
and electrical systems, cause and effect diagrams, operation manuals etc. Design engineers
or personnel familiar with the specific system should be involved in the familiarization pro-

Cess.

5.2.2 Step 2: Identification of Common Cause Component Groups

Based on the system familiarization, components that are dependent and may share the same
failure cause shall be included in the same common cause component group. This ensures a
basis for including CCFs in the subsequent calculations. The process is as follows:

¢ Identify components that are dependent
* Identify if any of these components may share the same common failure cause.

* Include these components in the same common cause component group

5.2.3 Step 3: RBD Construction

The next step is to model the RBDs of the SIFs based on the system familiarization and identified
common cause component groups. For an introduction to RBD modeling, see Rausand and
Hoyland (2004). The process is as follows:

* Model the elementary utilities electric and hydraulic power first, and include these utili-
ties as seperate reliability blocks in the RBDs of the SIFs.
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* Model the RBDs of the SIFs one by one, taking into account the voting configuration of

redundant components.

e If common cause component groups have been identified, and these components are part
of aredundant configuration in a SIE the potential CCF among these components shall be

modeled as a separate block in the RBD.

An important part of the utility modeling, is to include the possibility of loss of main power. If
the switch to backup systems involve any human interaction, the possible non-fulfilment of this

interaction should also be modeled.

A simplification can be made with regards to SIF1, SIF2 and SIF3. These SIFs perform two dif-
ferent operations, ballasting and deballasting, and should be modeled with two RBDs each. A
simplification of the RBD modeling can be made by including both operations in the same RBD,
since both operations are assumed to be carried out with the same amount of valves of almost
the same type.

5.2.4 Step 4: Determination of Reliability Data

The identified components of the ballast system should be coupled with the best available relia-
bility data. Ship-specific data should be used if the data is available, well documented and has a
statistical confidence level of at least 70%. This can be a real challenge, and if ship-specific data
is not available, the data presented in Section 5.1.4 can be used. If expert judgements and other
assumptions are made, these assumptions should be documented.

5.2.5 Step 5: PFD Calculations

Important assumptions must be verified before the PFD of the various SIFs can be calculated.
In Section 5.1.2 these assumptions are listed, and should be verified with design engineers or

operators. The most important assumptions that should be clarified, are:

a) If full functional tests are carried out at regular intervals, and to what extent these tests are
capable of revealing all DU failures.

b) If the operation of the ballast system is stopped once a DU failure is revealed, and whether

or not the failure will be repaired immidiately.

In the reliability assessment approach, it is assumed that the assumptions in Section 5.1.2 are
valid. When the assumptions have been verified, the PFD of the various SIFs can then be calcu-

lated by successively calculating the PFD of the RBDs, using the formulaes from section 5.1.2,
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and reliability data from Section 5.2.4. The calculations can be done by hand, without the use of
specialized software.

5.2.6 Step 6: Comparison with Reliability Performance Targets

The final step is to present the results of the PFD calculations, and compare the results with
the associated reliability performance targets. Deviations from the reliability targets should be
discussed, and the different contributions from the different component groups or failure types
may be extracted, including the contribution from CCFs on the reliability performance.
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5.3 Defense Approach Against CCF in Ballast Systems

CCFs may be introduced during design of ballast systems as well as in the operational phase.
In the following section, issues related to CCFs during ballast system design will be presented
briefly, followed by a defense approach against CCFs to be used in the operational phase.

Design Phase: In the design phase, designers have the possibility to reduce the level of sys-
tematic failures to a minimum, reducing the systems potential for CCE As presented in Section
3.2.1, systematic failures are dependent failures that can lead to CCFs, and special care should
be made when choosing software systems, hardware components and installation procedures
for the final design. Examples of potential sources for CCF introduced in the design phase may
be:

e Design related: Pumps installed in the same location with the same external environmen-
tal exposure. Ballast valves not specified for operation in cold environments. Pump room
valves with identical design, installed in the same environment. Ballast control station

vulnerable to water ingress.
* Software related: Ballast control logic programming error, resulting in latent errors.

e Installation related: Valves installed in the wrong direction. Pollution in the hydraulic

supply lines after pipe cutting and installation.

Operational Phase: In the operational phase the main source of CCF are failures introduced
during functional testing, inspection and improper use of the system. The systematic failures
described as excessive stress- and operational failures in Section 3.2.1, are introduced in this
phase, and may lead to CCFs.

5.3.1 Defence Approach

As CCFs introduced in the operational phase will have a great impact on the reliability perfor-
mance of the ballast system, a defense approach is presented, that can improve the operators
ability to detect CCFs and avoid introducing new CCFs in the operational phase. These experi-
ences can later be used in the design of new ballast systems. The defence approach is valuable as
a tool to monitor the level of CCF on a systems, and can provide input into calculation methods

developed to monitor the SIL level of SIFs in the operational phase.

The proposed CCF defense approach is based on an approach presented in Lundteigen and
Rausand (2007), adapted to suit ballast systems. The CCF defense approach may be integrated

with current practices for function testing, inspection and follow up of other safety critical equip-
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ment on the FPSO. The approach is built around a general function test and inspection proce-
dure presented through the activity blocks in Figure 5.4, adopted from Lundteigen and Rausand
(2007). The tasks in the defence approach are:

Task 1: Proper planning of function tests and inspection

Task 2: Avoid introducing CCFs during function tests and inspection
Task 3: Improve the quality of failure reporting

Task 4: Identify CCFs through failure analysis

Task 5: Implement defense measures

Task 6: Validation and continuous improvement

t———————— Avoid introducing CCFs (Task 2) —48M

> Preparation > Execution —> Restoration

Validation
and continuous

Ensure that neces- 4

sary improvements

Improve quality of

are captured Scheduling < improvements Failure reporting 1(‘&71_lgérke :g)escrlptlons
(Task 1) A (Task 6)
Y
Implementation (<€ Failure analysis |«
Select and implement Identify CCFs and
defenses (Task 5) related causes (Task 4)

Figure 5.4: Main concepts of the CCF defense approach

Task 1: Proper planning of function tests and inspection

The defense approach will iteratively provide corrections to the function test and inspection
procedure. Ensure that the latest improvements are updated in the maintenance management
system before the next test.

Task 2: Avoid introducing CCFs during function tests and inspection

Function tests and inspections should be carried out with high awareness to CCF causes, as hu-
man errors, erroneous procedures and deficient work processes are potential sources of CCFs.
Lundteigen and Rausand (2007) recommends the use of checklists to improve the defense against
CCFs in these activities, and suggest the use of different checklists for preparation, execution
and restoration. Deviations may then be discussed and compensated with the responsible tech-
nician. The slightly modified checklists are presented in Table 5.2, based on Lundteigen and
Rausand (2007):
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Checklist for preperation Yes/No
(1) Have potential human errors during execution and restoration been identified Y/N
and discussed?

(2) Have human error incidents been experienced during previous execution? Y/N

(3) Have compensating measures been identified and implemented to avoid hu- Y/N
man errors?

(4) Are the personnel executing the test familiar with the test procedure? Y/N

(5) Does the procedure have known deficiencies? Y/N

(6) Does the procedure describe the necessary steps to safely restore the sys- Y/N
tem/component?

Checklist for execution Yes/No

(1) Are the components operated within the specified environmental and operat- Y/N
ing conditions?
(2) Are the components protected against damage from nearby work activities? Y/N

(3) Are all the ballast system components labeled? Y/N
Checklist for restoration Yes/No
(1) Has the physical restoration of the components been verified? Y/N

(2) Are any remaining inhibits, overrides or bypasses logged, and compensating Y/N
measures identified and implemented?
(3) Has the safety function been verified before start-up? Y/N

Table 5.2: Checklists for preparation, execution and restoration during function tests and in-
spections

Task 3: Improve the quality of failure reporting

Operators should report failures related to the ballast system components the same way as they
would for other safety critical equipment.

Failure reporting should involve free text descriptions of failure causes, effects and detection
methods, which can be used to verify the initial failure classification, and provide necessary in-
formation to decide whether a CCF has occured. The following set of checklist questions based
on Lundteigen and Rausand (2007) may be used during free text failure reporting.

Questions for free text description

(1) How was the failure discovered?

(2) What is believed to be the cause(s) of failure?

(3) What was the effect of failure on the ballast system function?

(4) Was the component tested or inspected differently than in the procedure? If
yes, why?

(5) Has the component been overexposed to operational or environmental stress?
If yes, what is the cause?

(6) Have similar failures been experienced previously?

Table 5.3: Questions for free text description during failure reporting
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Task 4: Identify CCFs through failure analysis

Based on failure reports from the maintenance management system, the next step is to analyse
and identify CCFs for the purpose of selecting appropriate defenses. Lundteigen and Rausand

(2007) suggests a stepwise procedure
e Stepl: Review the failure description and verify/correct the initial failure classification

 Step2: Perform an initial screening that captures failures that

a) have similar design or physical location

b) share failure causes

c¢) have been discovered within the same test or inspection interval

d) are not random failures as defined in section 3.2.1.

* Step3: Perform a root cause and coupling factor analysis of each identified CCE

The analysis is a critical part of the defense approach, as it provides insight into the

causes of CCE and basis for identifying effective defenses.

If the root cause of a failure is difficult to identify, defenses against the coupling factor
may be enough to stop reoccurence of the CCE

The analysis should be carried out by a group of personnel.

Aroot cause and coupling factor analysis diagram can be used, as presented in Lundteigen
and Rausand (2007).

* Step4: List the root cause and coupling factors in a cause-defense matrix, as presented in
figure 5.5
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CCF Root cause |Coupling Defense Impact
factor alternatives (H/M/L) S )
Failure in Solenoid Identical Replace
ballast valves stuck due to design solenoids
pollution in with more M M
hydraulic robust
supply design
Same Install filters
hydraulic in hydraulic M L
supply supply
Failure in Electric Identical Replace
ballast motor failure design pumps with
pumps due to water more robust M M
ingress design
Same. Segregate M M
location the pumps
Reduce the
possibility of H L
flooding

Figure 5.5: Cause defense matrix

Task 5: Implement defense measures.

64

Appropriate defenses against root causes and coupling factors may be found by considering a

list of generic defense options, as in Figure 5.6, adopted from Lundteigen and Rausand (2007)

which take into account possible design, procedural and physical improvements. The generic

defense options should be considered a starting point for more specific defenses.
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Generic defense options

Administrative Improved preparation

control Improved coordination
Improved responsibilities
Improved feedback of experience
Improved safety culture
Improved training
Improved quality control

Documentation Improved drawings
Improved functional description

Procedures New procedure
Improved procedure text (clarification,
added scope or information)
Improved quality control of restoration
Improved test tools and calibration

Monitoring and New alarm or alert. Implementation must
surveillance follow IEC 61508 (1998)/61511 (2003)
New condition or logic sequence

Physical barriers Improved physical support or fastening
Improved physical protection

Hardware or software Modifications requiring design changes.
modifications of SIS Redesign following IEC 61508 (1998)/61511
(2003)

Figure 5.6: Generic defense options against CCF

Selected defences should be listed in the cause-defense matrix, with indication of whether the
root cause or the coupling factor is affected. Evaluations on impact and cost may also be added,
where impact is understood as the ability of the defense measure to protect against future oc-

curences.
Task 6: Validation and continuous improvement

The activities related to function testing and inspection, as well as the approach taken to mini-
mize the potential for CCFs during these activities, should be subject to regular validation and
improvements. Maintenance personnel and technician should continuously improve the test-
ing and inspection procedures, and evalute the defenses implemented against CCFs. As an aid
the validation of the activities in the operational phase, the checklist for validation in Table 5.4

can be used. The checklist is adopted from Lundteigen and Rausand (2007).
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Checklist for validation Yes/No
(1) Are the requirements for the safety function covered by the function test or Y/N
inspection procedure(s)?

(2) Are all personnel involved in ballast system testing, inspection, maintenance Y/N
and follow up familiar with the CCF concept?

(3) Are dangerous undetected failure modes known and catered for in the func- Y/N
tion test and inspection procedures?

(4) Are the test limitations known? Y/N
(5) Are all redundant channels of the safety functions covered by the function test Y/N
or inspection procedure?

(6) Are failures introduced during function testing and inspection captured, ana- Y/N
lyzed and used to improve the associated procedures?

(7) Are failure detected during real demands analyzed to verify that they would Y/N
have been detected during a function test or inspection?

(8) Are changes in operating or environmental conditions captured and analyzed Y/N
for necessary modifications to the ballast system or related procedures?

(9) Are the calibration and test tools suitable and maintained according to the Y/N
vendor recommendations?

(10) Are personnel using the calibration and test tools familiar with their applica- Y/N
tion?

(11) Are procedure deficiencies followed up? Y/N
(13) Are CCF systematically identified and analyzed, and defenses implemented Y/N
to precent their reoccurence?

Table 5.4: Checklists for preparation, execution and restoration during functional tests and in-
spections



Chapter 6
Case example: Petrojarl Foinaven FPSO

In this chapter a case example of the reliability assessment approach is presented. The reliabil-
ity assessment approach is conducted on a ship shaped FPSO owned and operated by Teekay

Petrojarl, one of the worlds leading FPSO operators.

6.0.2 Presentation of the Foinaven FPSO

The Petrojarl Foinaven, is a purpose built FPSO designed for oil production in the ultra harsh
environments of the North Sea. The FPSO was delivered by Astano of Spain in 1996, and is
currently operating on the Foinaven Field in the UK sector of the North Sea. The ship complies
with the British continental shelf regulations, and is classified with DNV.

The ship’s production facilities comprise two parallel two stage separation trains for separation
of crude oil, gas and produced water. The crude oil is temporarily stored in cargo tanks onboard,
for subsequent offloading to shuttle tankers. The produced gas is used for generation of electric-
ity, fuel to boilers, gas lift and is also exported to a nearby field for increased recovery purposes
(Petrojarl, 2011b). The Petrojarl Foinaven FPSO in numbers:

Length overall 250.2m
Breadth 34.0m
Draught 12.8 m
Deadweight 43.2769 tonnes
Oil storage capacity 260000 bbls
Total ballast tank capacity 33580 m®
Crude oil production capacity 140000 bopd
Riser/umbilicals connected 12

Table 6.1: Petrojarl Foinaven FPSO in numbers
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Figure 6.1: Teekay Petrojarl Foinaven

Ensuring proper stability of the ship is a high priority concern on the Foinaven FPSO. Due to a
combination of a typically heavy topside design and a suboptimal cargo tank design, the vessel
is highly dependent on a properly functioning ballast system to ensure acceptable inclination
and draft of the vessel.

6.1 Reliability Assessment of the Foinaven FPSO Ballast System

The main body of the Foinaven FPSO consist of a double bottom and a double hull divided into
ballast tanks on port and starbord side of the ship. Three main ballast pumps are located in the

aft ballast pump room.

In addition to the main ballast tanks, one ballast tank is located at each side of the turret, and
ballast tanks are also arranged in the forward and aft sections of the vessel. These tanks are op-
erated by two ballast trim pumps located in the aft engine room, and two ballast trim pumps
in the forward engine room. These additional ballast tank systems will not be included in the
assessment. In the following sections, the stepwise procedure of the reliability assessment ap-
proach is conducted.
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6.1.1 Step 1: Ballast System Familiarization
Main deviations from the base case ballast system

The ballast system on the Foinaven FPSO is similar to the base case ballast system in Section
3.1.1, but some important deviations exist. The system familiarization is based on a detailed
study of the Foinaven ballast system presented in appendix Figures B.9 and B.10, an interviews
with personnel familiar with the specific system. The main deviations and the related implica-
tions on the system functions is presented:

Ballast Tank Configuration, Pumps and Valves:
e The ballast tank valves are of fail-to-set design.

- Implication: Upon loss of electric power, hydraulic power or control of the ballast
operation, the ballast valves will not fail to a safe position, and water migration is

possible in and out of the open ballast tank.
* Three pumproom valves are hydraulically operated throttle valves.
- Implication: Not accounted for. Assumed identical to butterfly valves.
Electric Power System

e Upon loss of main electric power, all hydraulically operated valves are unavailable for op-
eration. In order to regain control of the valves, the emergency backup system must be
functioning, and three hydraulic cabinets for operation of hydraulic valves must be reset
by physically locating and reseting the hydraulic cabinets Petrojarl (2011a). The cabinets
are located in three different sections of the ship.

— Implication: Critical barrier function unavailability upon main electric power loss.

Multiple human error possibilities during resetting operation.
Hydraulic Power System
* Assumed identical to base case hydraulic system
Ballast Control System
* The emergency stop function only stops the ballast pumps.

— Implication: Critically reduced emergency stop barrier function. Emergency stop
barrier function ineffective during gravity based ballasting operations to sea, or dur-

ing pumpless ballasting operation between starbord and portside ballast tanks.
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* The ballast system can be fully controlled from the bridge or from a designated NCC con-

trol room.

— Implication: Enhanced redundancy in the control system. The redundancy has not
been accounted for due to the extensive assessment needed to fully verify the actual
level of redundancy in the control system. Assumed identical to base case ballast
control system.

Description of the SIFs and Associated Components

The Foinaven FPSO ballast system is capable of performing SIF1, SIF2 and SIF3 as described
in Section 3.1.5. The emergency stop function on Foinaven does not fulfill the requirements of
SIF4. In order to fulfill the requirements of SIF4, the emergency stop function must meet all the

prerequisites of a successful operation, not only stop ballast pumps upon demand.
 SIF 1: To ballast/deballast starbord ballast tank system in response to operator command

— The SIF is successful when: (1) One of the starbord ballast tanks is ballasted/deballasted
to sea in response to operator command, by using ballast pump 2 or 3. (2) The bal-

lasting operation stops upon operator command.
* SIF 2: To ballast/deballast portside ballast tank system in response to operator command

— The SIF is successful when: (1) One of the portside ballast tanks is ballasted/deballasted
to sea in response to operator command, by using ballast pump 1 or 2. (2) The bal-

lasting operation stops upon operator command.

* SIF 3: To ballast/deballast between starbord and portside ballast tank system in response

to operator command

— The SIF is successful when: (1) One of the portside ballast tanks is ballasted/deballasted
with one of the starbord ballast tanks in response to operator command, by using
ballast pump 1, 2 or 3. (2) The ballasting operation stops upon operator command.

» SIF 4: Emergency stop of ballast system operation in response to operator command

— Not accounted for.

6.1.2 Step 2: Identification of Common Cause Component Groups

The main common cause component groups are:
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Common cause component group
Ballast valves Identical design
Same internal and external environ-
mental exposure
Same hydraulic supply
Same potential failure causes
Pumps Identical design
Same internal and external environ-
mental exposure
Same electric supply
Same potential failure causes
Pump room valves Identical design
Same internal and external environ-
mental exposure
Same hydraulic supply
Same potential failure causes

Table 6.2: List of identified common cause component groups

A major source of potential for CCFs may be found if the ballast control system is subject to a
full system breakdown and analysis. The operator controls, the control logic, and all associated
electrical components located in the same area may be susceptible to CCE with reference to the
Ocean Ranger accident. In the case study, the ballast control system is assumed identical to the

simplified single unit control system in the base case system.

The potential for common cause failure amongst the components in the electric and hydraulic
power systems have not been accounted for.

6.1.3 Step 2: RBD Construction
RBD Modeling of Elementary Utilities

RBD Electric Power System

The RBD of the electric power system is modeled as a redundant system, with two separate
channels.
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Main
Electric
Power
L we o He H HE H ues || Backue ||
generator

Figure 6.2: RBDel

In case of loss of main electric power, the RBD represents the necessary blocks needed to ful-
fill the function. The UPS reliability block represent the UPSs necessary to support the ballast
control system and operator screens. The emergency backup generator is represented by an in-
dividual block. The possible non-fulfillment of the human interactions needed to regain control
of the ballast system upon loss of main electric power is represented by three Human Error reli-
ability blocks. The three blocks represent the three human interactions needed at three seperate

locations.
RBD Hydraulic Power System

The RBD of the hydraulic power system is modeled as a redundant system, with two seperate

channels, to highlight the accumulator function in case of loss of main hydraulic power.

Main
Hydraulic
power

Hydraulic
accumulator

Figure 6.3: RBDhyd

RBD Modeling of Individual SIFs

The SIFs are modeled by evaluating the components needed to execute the different functions
according to the success criteria of the different SIFs. The RBDs of the SIFs are modeled based
on the system familiarization in step 1. As the operator can choose any of the ballast tanks on
each side of the vessel to carry out SIF1, SIF2 and SIF3, this option is modeled as a redundant
configuration with a 1005 voting. Pump functions are modeled with the respective voting of
the pumps. Potential CCFs in redundant configurations are modeled as separate blocks in the
RBDs.
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RBDI. SIF 1: To ballast/deballast starbord ballast tank system in response to operator command

Ballast = = Pum Pum Pum Discharge
. |) Electric || Hydraulic| Pumps CCF Valves SB CCF 2 2 e g
control logic i . - - H room room room f{/Seachest
| power || power [l 1002 Pumps 1loo5 Valves SB
+1/0 AR L valve valve valve valve

Figure 6.4: RBD1

RBD2. SIF 2: To ballast/deballast portside ballast tank system in response to operator command

Ballast
control logic
+1/0

—_——_—— - —_—— —

—-
| Electric :JHydraulicl
| power || power

[EEPEEPRRIECHPUEE |} RN p——— |

Pum Pum Pum Discharge
Pumps ccF  ||vaivesps|| ccF P P P g
. 1 - H room room room {/Seachest
1002 Pumps 1loo5 Valves PS
valve valve valve valve

Figure 6.5: RBD2

RBD3. SIF 3: To ballast/deballast between starbord and portside ballast tank system in response
to operator command

Ballast

+1/0

—
control logic J

_—e,—— e ———

| power || power |

— o, el ... .. ..

Electric || Hydraulic|

P
Pumps || CCF |[valvesps|| cck || """ |lvalvesss ccF
loo3 Pumps loo5 Valves PS valve loo5 Valves SB

Figure 6.6: RBD3

RBDA4. SIF 4: Emergency stop of ballast system operation in response to operator command

Not accounted for.

6.1.4 Step 4: Determine Relevant Reliability Data

Ship-specific data is not available for the assessment. Reliability data is collected from section
5.1.4, and presented in Figure 6.7.
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No.

Failure rate A

Test interval

Component type DU (per 1076h) t(h) B-factor | PFD single item Comment
Includ Ive +
Ballast valve 3 2190 3% 3,29E-03 neluaes vaive
solenoid/pilot
Includ Ive +
Pump room valve 3 2190 3% 3,29E-03 new e§ ve Ye
solenoid/pilot
Seachest/Discharge Includes valve +
/ & 3 2190 3% 3,29E-03 .
valve solenoid/pilot
Includ ly fail t
Ballast pump - - 5% 9,40E-04 ncludes only 1alt to
start
Ballast control logi
allast control logic 1 8760 4,38E-03
+1/0
Emereency backu Assumed identical
gency backup - - 9,40E-04  |to ballast pump fail
generator
to start
Component type Average
(Continuous Failure rate A MTTR B-factor| unavailability Comment
operation) of the item
Main electri
ain Clectric POWEr| 4 14¢-04 10 1,14E-03 | Ref. assumption 3
system
UPS 1,14E-04 10 1,14E-03 Ref. assumption 3
Main hydrauli
aln hydraufic 3,00E-06 10 3,00E-05 | Ref. assumption 3
power generator
Hydrauli
ydraufic 1,14E-04 10 1,14E-03 | Ref. assumption 3

accumulator

Figure 6.7: Reliability data used in the case example

Description of assumptions related to reliability data

Ballast valves, pump room valves and discharge/seachest valves are assumed

to be function tested every 3 months (2190 hours)

The ballast control logic is assumed to be function tested once per year (8760

hours)

The estimated failure rates and MTTR of the components in continuous op-

eration:

Main electric power generators: A=1/8760 (Once per year), MTTR= 10h.
UPS: 1=1/8760 (Once per year), MTTR= 10h.
Main hydraulic power generator: A=3-107% (RABL), MTTR= 10h.
Hydraulic accumulator: A= 1/8760 (Once per year), MTTR= 10h.

The PFD of a ballast pump includes only "fail to start". The valve failure rates

only include the DU failure mode "fail to open".

The human interventions are assumed equal to "Operator response to

alarms"in table 5.1. PFDy5=0,1

Table 6.3: Description of assumptions
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6.1.5 Step 5: PFD Calculations

For the PFD calculations, it is assumed that all assumptions in 5.1.2 are valid. The elementary
utilities are calculated first, followed by calculations of the various SIFs. For all calculations, the

formulaes from section 5.1.2 are used together with reliability data from figure 6.7.

PFD Elementary Utilities

PFD Electric Power System

Main
Electric
Power

U we H we § we H ups [ Backup | |
generator

Figure 6.8: RBDelec

The RBD consist of a complex Ioon-configuration comprising different types of components.
Calculating PFD,,. is done by utilizing the non-conservative approximation from 5.4 coupled
with the correction factor from 5.5. The PFD of the human interventions are assumed equal to

"Operator response to alarms" in Table 5.1.
1 _
PFDcpannein = PFDpainetec ® Aavstrek ¥ A-MTTR = % -10=1,14-10 3

PFDchannei2 = PFDyg+ PFDygp+ PFDyg+ PFDyps +PFDbackupgen
PFDyr=0,1
1
PFD =~ A EA-MTTRZ—-1021,14-10_3
UPS avstrek 8760
PFDbackupgen =9,4- 10_4
PED phannei>» =0,1+0,1+0,1+1,14-1073+9,4-107*=3,02-107"

PFDgjec = PED channein PFDchanner2:CFro02 = (1, 14'10_3)channell'(3» Oz'lo_l)chunn612'4/3 =4,6- 10_4

PFD Hydraulic Power System
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Main
Hydraulic
power

Hydraulic
accumulator

Figure 6.9: RBDhyd

The RBD consist of two non-identical items configured as 1002-configuration. Calculating PFD-
hydr is done by utilizing the non-conservative approximation from 5.4 coupled with the correc-
tion factor from 5.5. The

PFDchannenn = PFDMainhya = Aavstrek = A-MTTR=3-10"°-10=3-10""

1
PED hanneiz = PFD ace = Agpstrek * A-MTTR = 5760 10=1,14-1073

PFDpyar = PFDchannetn PFDcnannei2CFro02 = (3:107°) channein*(1,14:107) channer4/3 = 4,6 107

PFD of Ballast Pumps

Since the reliability data identified for the ballast pumps only include the "fail to start" on de-
mand failure mode, the PFD of redundant ballast pump configurations should be calculated
with some care, especially when including CCFs. For a 1002 pump configuration, the PFD1402pumps
can be calculated by utilizing the non-conservative approximation from 5.4 coupled with the

correction factor from 5.5:
PFDIOOZpumps = PFDpump'PFDpump'CFlooz = (9;4‘10_4)pump'(9,4'10_4)pump'(4/3) =12 10_6
For a 1002 pump configuration modeled with CCF:

PFDind + PFDCCE =

loo2pumps loo2pumps —

(1= Broo2) ApuT)? N Broo2ADUT
3 2

= ((1- Broo2)?-1,2-1076)ind + (Blooz-9,4-107H D

loo2pumps loo2pumps

= ((1_ﬁlooz)z‘PFch)OZpumps))izcoigpumps"‘(ﬁlooZ'PFDpump)i%};pumps
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For a 1003 pump configuration modeled with CCF:

PFDloogpumps = PFDpump'PFDpump'PFDpump'CF1003 = 9,4'10_4'9,4'10_4'9,4'10_4'(2) = 2' 10_9

ind CCF _
PFD1003pumps + PFDIOOBpumps -

(1= Broo3) ApuT)® N Broo3ApuT
4 2

(1= Broo3)®-2,0-107%)ind +(Bloo3-9,4-107HECE

loo3pumps loo3pumps

— 3 ind CCF
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PFD of SIFs

PFD SIF1: To ballast/deballast starbord ballast tank system in response to operator com-

mand
Ballast |~ —~ — —, 7 T — ™ Pump Pump Pump |[Discharge
. |) Electric || Hydraulic| Pumps CCF Valves SB CCF
control logic i . g - H room room room f{/Seachest
| power || power [| 1002 Pumps loo5 Valves SB
+1/0 IR L valve valve valve valve

Figure 6.10: RBD1

The RBD of SIF1 consist of a series structure of non-identical items. The two elementary utility
functions, electric power and hydraulic power, are identical to the corresponding RBDs in Sec-
tion 6.1.5. Ballast controllogic is modeled as a single item. The redundant ballast pump function
is modeled as a single item with a 1002 configuration, with 1402 = Ci002-=1,0-0,05=0,05.
The contribution from CCF of the pumps is modeled as a seperate item in the RBD. The redun-
dant valve configuration is modeled as a single item with a 1005 configuration, with B;,05 =
Ci005-8=0,21-0,03 = 0,0063. The contribution from CCF of the valves is modeled as a seperate
item in the RBD. Finally, the pumproom valves and the discharge/seachest valve are modeled
as single items.

PFDgip1 = PFDjogic + PFDejec + PFDpyar + PFDY) + PFD¢CD

loo2pumps loo2pumps

+PFD!nY + PFDCH + PFDppy+ PFDyyy + PFDy,y, + PFDgg,

loo5valvesSB loo5valvesSB

Pumps: PFD' "% + PFDCCH

loo2pumps loo2pumps —

= ((1-0,05)%-1,2-10~6)ind +(0,05-9,4-10"4H ¢t = (1,2-1078)ind +(4,7-1075)¢¢F

loo2pumps loo2pumps loo2pumps loo2pumps
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5
(ind) (CCF) (1= Bro05)Apu,v - 7)°  BroosApuv T
Ballast valves: PFDloo5valvesSB T PFD1005llall/eSSB 6 + 2 -

1-0,0063)-3-107%-.2190)> 0,0063-3-1076-2190 .
( ) Y = (2-1071%)ind +(2,1-107%)¢CE

6 2 loo5valves loo5valves

1-107%.8760
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loo5valves loo5valves 2 2
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loo2pumps loo2pumps
+(2-1071%)ind +(2,1-1072)¢CE +3+(3,3-107%) pry + (3,3-107%) 4y

loo5valves loo5valves

PFDg;p1 =1,8-1072

PFD SIF2: To ballast/deballast portside ballast tank system in response to operator com-

mand
Ballast T, T P P P Disch
_] Electric |)Hydraulicl| Pumps CCF Valves PS CCF o —— SIS ESIEES
control logic H . - H room room room {/Seachest
| power l| power Il 1002 Pumps loo5 Valves PS
+1/0 oo g valve valve valve valve

Figure 6.11: RBD2

The RBD of SIF2 consist of a series structure of non-identical items. The two elementary utility
functions, electric power and hydraulic power, are identical to the corresponding RBDs in sec-
tion 6.1.5. Ballast control logic is modeled as a single item. The redundant ballast pump function
is modeled as a single item with a 1002 configuration, with 1402 = Ci002-=1,0-0,05=0,05.
The contribution from CCF of the pumps is modeled as seperate item in the RBD. The redun-
dant valve configuration is modeled as a single item with a I1005 configuration, with f;,05=
Cil005-$=0,21-0,03 = 0,0063. The contribution from CCF of the valves is modeled as a seperate
item in the RBD. Finally, the pumproom valve and the discharge/seachest valve are modeled as

single items.

For the Foinaven FPSO, SIF1 and SIF1 have identical RBD setups. The reliability blocks refer to
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other components, but since they are the same type of components, the outcome of the calcu-
lation will be the same if the same data is used and the same assumptions hold.

For this case example, it assumed that the same assumptions hold for the components in SIF1
and SIF2. The PFD of SIF2 will then be same as the PFD of SIF1.

PFEDgsipp = PFDgip = 1,8-1072

PFD SIF3: To ballast/deballast between starbord and portside ballast tank system in response
to operator command

—_——— e —_—— —

Ball =

2"t |\ Electric |)Hydraulicl[ pumps || ccF |[valvesps][ ccr PumP vaves se||  ccr
control logic = i i | 1 H  room

+1/0 | power l| power || 1003 Pumps 1loo5 Valves PS valve loo5 |[[Valves SB

Figure 6.12: RBD3

The RBD of SIF3 consist of a series structure of non-identical items. The two elementary util-
ity functions, electric power and hydraulic power, are identical to the corresponding RBDs in
Section 6.1.5. Ballast control logic is modeled as a single item. The redundant ballast pump
function is modeled as a single item with a 1003 configuration. The contribution from CCF of
the pumps is modeled as seperate item in the RBD, with 1,03 = C1003- 8 =0,30-0,05=0,015.
The redundant valve configurations are modeled as single items with 1005 configurations, with
B1oo5 = C1o05°-f=0,21-0,03 =0,0063. The contribution from CCF of the valves is modeled as
seperate items in the RBD. Finally, the pumproom valve is included as a single item.

— (ind) (CCF)
PFDgip3 = pFDlogic +PFD,jec + PFDhydr + PFDIOOSpumps + PFDloo3pumps
(ind) (CCF) (ind) (CCF)
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((1-0,015)°2,0- 107150, +(0,015-9,4- 10708

—9vind ~5\CCF

(2-10 )igo3pumps +(1,41-10 )1003pumm

5
Ballast valves PS: PFD{"% +PFD\¢CH = @ =Proo)Aouy 7 | ProosAovy T

loo5valvesPS loo5valvesPS — 6 2
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1-0,0063)-3-1076-2190)> 0,0063-3-1076-2190 .

6 2 loo5valves loo5valves

5
. (ind) (CCF) _ (1= P1roos)Apu,v - T)°  ProosApuv T _
Ballast valves SB: PFD1005 UalvesPS+PFD1005 valvesPS — 6 + 2 -

1-0,0063)-3-1076-2190)> 0,0063-3-1075-2190 .
(( ) ) + — (2.10—12)11’1(1 +(2’1.10—5)CCF

6 2 loo5valves loo5valves

PFDgp3 = (4y4'10_3)logic+(4» 6'10_4)elec+(4» 6'10_8)hydr+(2'10_9)iggl3pumps+(1’41'10_5)?(5)}37pumps

+(2:10712)ind +(2,1-107%)¢CE +(3,3:107%) 5, p+(2:10712) 04 +(2,1-107%)¢CE

loo5valves loo5valves loo5valves loo5valves

PFDgp3 =8,22-1073

6.1.6 Step 6: Comparison with Reliability Performance Targets

In Table 6.4, the calculated PFD values are compared to the minimum SIL performance require-
ments presented in Table 3.2.

Reliability  Target PFDs;r
target achieved
Foinaven SIF1 SIL1 Yes 1,8-1072
Foinaven SIF2 SIL1 Yes 1,8-1072
Foinaven SIF3 SIL1 Yes 8,22-1073
Foinaven SIF4 SIL.2 N/A N/A

Table 6.4: Comparison with reliability performance targets

The results of the calculations show that the ballast system on the Foinaven FPSO is fully capable
of reaching the proposed minimum reliability performance requirements for ballast systems, as
long as all the assumptions from Table 6.3 hold, including the various functional test intervals.
It should be emphasized that most of the reliability data used is not ship specific, but based on
applicable data gathered from the offshore industry. In order to reduced the CCF potential in the
operational phase to a minimum, the CCF defense approach from Section 5.3 may be applied.
In addition to the quantitative results, the reliability assessment identified several critical devi-
ations from the base case ballast system leading to reduced safety barrier functionality. These
deviations and their implication on the system functions are presented in Section 6.1.1.



Chapter 7

Summary and Recommendations for
Further Work

7.1 Summary and Conclusions

The main objective of the master thesis has been to suggest a reliability assessment approach
for ballast systems, and include recommendations to how reliability requirements should be set
for this type of system. As a part of fulfilling the main objectives, a series of tasks have been
performed.

The literature survey is presented in three parts. The first part document previous work in the
field of ballast system reliability in Section 1.2, the second part present the regulations governing
ballast systems on the NCS in Section 2, and the third part document the reported safety and
reliability challenges, incidents and accidents related to ballast systems in Chapter 4.

As a basis for the reliability assessment approach, a typical ballast on a ship shaped vessel is
presented in Chapter 3, and the interface between the system and the electric and hydraulic
power systems on the ship is described. The system and the main components are presented
at a level of detail that provides a foundation for reliability assessments of different ballast sys-
tem designs. The safety critical functions of the system are identified and the ballast system is

defined as a safety barrier against unacceptable inclination and draft of the vessel.

The ballast system is then classified as a SIS, and the safety critical functions of the ballast system
are classified as SIFs installed to protect against hazards that may lead to loss of stability and
draft of the vessel. The concept of safe state of the FPSO is discussed in Section 3.1.5, and the

desired behaviour upon fault conditions for the ballast system components is described.
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A HAZID and hazard-barrier matrix is used to analyze the adequacy of the ballast system as a
barrier, and in Section 3.2 a failure analysis is conducted to identify failure causes and failure
modes that may influence the reliability performance of ballast systems, including the possibil-
ity of having CCFs among the components. A FMECA is conducted and documented in work-
sheet B.3, B.4 and B.5.

Relevant methods for defining reliability performance requirements for ballast systems are pre-
sented and discussed in Section 3.3. The risk based approach of the IEC 61508 (2010) standard
is compared to the minimum SIL requirement approach from the OLF070 (2004) guideline. The
minimum SIL requirement approach is chosen as the state-of-the-art approach for defining SIL
requirements to ballast system SIFs, and a set of proposed minimum SIL requirements are pre-
sented.

A reliability assessment approach for ballast systems is presented in Chapter 5. The reliability
assessment approach is based on a RBD technique, and can be used to calculate the PFD of the
SIFs in the ballast system. The potential for CCFs among the components can be included in
the calculations, and the assessment is developed to give conservative estimates for reliability
performance. In Chapter 6 the reliability assessment approach is applied to the ballast system

of the Petrojarl Foinaven FPSO, as a case example of the approach.

A defense approach against CCFs in ballast systems is presented in Section 5.3. The defence ap-
proach can be implemented in the operational phase, to reduce the influence and reoccurence

of CCF during maintenance and testing of the ballast system components.

7.2 Discussion

Despite the importance of well functioning ballast systems on ships and floating facilities, and
a series of incidents and accidents where the unreliability of ballast systems have been a con-
tributing factor, not alot of research has been carried out within the field of ballast system reli-
ability. The requirements to these systems are still based on prescriptive maritime regulations,
although initiatives have been taken to include ballast systems under the performance based
regulations of the offshore industry. This has been done under the regulatory regime on the
NCS since 2004, as described in Section 2.

The typical ballast system presented in Chapter 3 is the result of simplifications making the
model applicable to a range of designs without losing the most important details. During actual
verifications, the simplification should be verified and the level of detail should be as high as
possible.
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The proposed reliability performance requirements of the ballast system functions are based on
the minimum SIL requirement approach of the OLF070 (2004) guideline. The requirements are
not especially strict. As part of a continuous improvement effort, the requirements should be
higher, butin line with the idea of the guideline, these requirements should be seen as minimum
requirements.

The strength of the proposed reliability assessment approach is the practical stepwise proce-
dure, and the flexible RBD modeling combined with conservative approximation formulaes for
reliability performance calculations. The reliability assessment can be performed without using
specialized software, and the contributions from CCFs can be included in the diagrams and cal-
culations. A limitation of the approach is that the RBDs can be quite large if a lot of details are
included in the assessment. If complex modeling is needed to assess a subsystem of a ballast
system, e.g. the control system, FTA can be used to model and quantify the PFD of the subsys-
tem, and subsequently include the results into the RBD.

The case example of the reliability assessment approach show that the proposed reliability per-
formance requirements can be achieved by performing functional tests at regular intervals, and
that the stepwise procedure may also identify important improvement potentials for ballast sys-
tems. A limitation of the case example is the lack of ship specific failure data that would have
increased the relevance of the results.

7.3 Recommendations for Further Work

In the suggested reliability assessment approach, the various SIFs are assessed individually, and
the effect of CCF is limited to the specific SIF being analysed. The first proposal for further work
is to investigate the dependency between the various SIFs, and the effect of CCF among different
SIFs.

The second proposal is to develop a detailed reliability assessment approach for ballast control
systems that can assess the true redundancy in the control system, and evaluate the spurious

trip and dangerous failure potential.

The third proposal is to develop a risk analysis methodology based on the possible outcomes of
ballast system fault states. The analysis can be based on extensive scenario modeling and ETA

techniques.
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Appendix A
Acronyms

AOC Acknowledgement of Compliance

BF Barrier function

CCF Common cause failure

D Dangerous failure

DNV Det Norske Veritas

DU Dangerous undetected failure

DD Dangerous detected failure

ETA Event Tree Analysis

EUC Equipment under control

FTA Fault tree analysis

FMEA Failure mode and effect analysis

FMECA Failure mode, effect and criticality analysis
FPSO Floating Production, Storage and Offloading
HAZID Hazard identification

HEP Human error probability

HRA Human reliability analysis

I/0 Input-output

MTTF Mean time to failure
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MTTR Mean time to repair

MooN M-out-of-N voting

NCS Norwegian Continental Shelf

NMA Norwegian Maritime Authority

OLF The Norwegian Oil Industry Association
PSA Petroleum Safety Authority Norway

PFD Probability of failure on demand

PFH Probability of a dangerous failure per hour]
P&ID Process and instrumentation diagram
QRA Quantitative risk analysis

LOPA Layer of protection analysis

RABL Risk Assessment of Buoyancy Loss

RAMS Reliability, availability, maintainability and safety
RPN Risk priority number

SIL Safety integrity level

SIS Safety instrumented system

SIF Safety instrumented function

S Safe failure

SU Safe undetected failure

SD Safe detected failure

UPS Uninterruptible power sources
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Ballast system

Ballast system Electric power Hydraulic power Ballast control
configuration system system system
Main electric Main hydraulic Ballast control

=1 Ballast valves |} - - :

Ipower generator Ipower generator logic

Pump room Emergency Hydraulic
- - backup -
valves accumulator
generator

=1 Seachest valves | b= UPS

= Discharge valves

= Ballast pumps

Figure B.1: Hierarchical breakdown of the ballast system
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Item Failure rate Data
(per hour) source
1. Ballast valves
Hydr. operated, butterfly
- Critical failure 12 - 10-6 OREDA
- Fail to close (per demand) 2-10-3 OREDA
- Blocked 1.7 - 10-6 OREDA
- Faulty indication 15+ 10-6 OREDA
- Internal leakages (sign.) 3.10-6 OREDA
2. Check valve (hydr.system)
- All modes 3.10-6 IEEE
3. Hydr. pipes (#<3")
- All modes (pr. km) 0.5+ 10-7 Magpie
- Rupture/plugged 3-10-1! WASH 1400
(per section)
4, Hydr. power supply unit
- Critical 3-10-6 OREDA
- Erratic control 7 -10-6 OREDA
5. Electronic control unit
(PLC, typical)
- Critical failure 30 - 10-6 OREDA
6. Level indicator
- Critical 0.7 - 10-6 OREDA/IEEE
- Erratic output 0.4 - 10-6 OREDA/IEEE
7. Pipe (ballast water)
- Sign. external leak (pr. km) 2-10°% ICI
8. Ballast water pump system
- Fail while running 3.2 - 10-% Study of ballast system
oil tanker
Veritec report 85-3410
- Fail to start (per demand) 10-2

OREDA

Figure B.2: RABL datasheet
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Table B.1: Stability incidents reported to the PSA

Date Facility (Built) | Type Description Source
18.12.2000, Transocean Semi Spurious trip of ballast pumps 1
Arctic (1986) sub.
12.02.1995| Transocean Semi Spurious trip of ballast pump. Pump | 1
Arctic (1986) sub. overheated.
14.06.1995| Transocean Semi Spurious stop of ballast pump after 1 | 1
Arctic (1986) | sub. minute. Fail while running.
01.12.1995| Transocean Semi Unreliable level indicators in bal- | 1
Arctic (1986) sub. last tanks. 400-600mt deviation be-
tween calculated and observed dis-
placement.
18.04.1996| Transocean Semi Ballast pipe leakage close to seachest | 1
Wildcat sub. valve.
13.08.1998| Transocean Semi Failure in automatic ballast tank level | 1
Prospect sub. indicator
27.08.1998 Transocean Semi Ballast control screen frozen image. 1
Prospect sub.
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Table B.2: Stability incidents reported to the PSA

Date Facility (Built) | Type Description Source
21.01.1999| Polar Pioneer | Semi Overfilling of ballast tanks. Ballast wa- | 1
sub. ter migration through vent holes
09.08.1999| Transocean Semi Rig list due to forgotten ongoing grav- | 1
Wildcat sub. ity filling of ballast tank
18.02.2000, Transocean Semi Three incident of spurious trip of | 1
Arctic sub. same ballast pump within 48 hours
16.11.2000| Transocean Semi Water migration into open manhole | 1
Wildcat sub. during ballasting for operational draft
22.01.2001| Polar Pioneer | Semi Failure in ballast tank level indicators | 1
sub.
23.02.2001| Transocean Semi Leaking through ballast tank valve in | 1
Wildcat sub. closed position during ballasting for
operational draft.
10.05.2001| Polar Pioneer | Semi Valve in ballast system leakingi closed | 1
sub. position
29.12.2001| Transocean Semi Ballast valve failure during test. Dam- | 1
Arctic sub. age to the ringmain line due to sudden
water migration
05.05.2003| West Alpha Semi Ballast tank valve leakage in closed | 1
sub. position
02.08.2004| Bideford Dol- | Semi Ballast tank valve leakage in closed | 1
phin sub. position
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Table B.3: Stability incidents reported to HSE (UK) 1980-2003
Date Facility | Type Description Source
(Built)

1986 N/A Semi "A malfunction of the semi’s ballast control system | 2

sub. caused the rig to list 9 deg. before control was obtained
and the uprighted after 90minutes. Five helicopters heli-
copters flew in in case of evacuation".

1990 N/A Semi "Electrical failure of power supply to ballast control sys- | 2
sub. tem. Ac output power inverter on ups tripped offline, bat-

tery backup to to systems feeds through the inverter and
was not able to come in to keep system running. Three
seperate operator stations were without power for ap-
prox. 8 min. until UPS was reset. No observable damage
was done to UPS system, nor can fault be duplicated. Bal-
last control system went into failsafe condition prevent-
ing loss of trim or stability. System was restored to full
operational capability."

1999 N/A Floating| Two gas alarms in production system."Possible software | 2
pro- anomalies also caused GT shutdown and starting failures
duc- on emergency power generation. During the period of
tion power loss deluge activation occurred in a number of fire
(details | zones due to loss of air pressure and a list of 5 degress
un- to Starboard developed due to the free flow of the bal-
known) | last through open valves in the system. At no time was

the vessel in stability at risk and would have stabilized
at around 6-8 degrees once levels in the ballast tanks
had settled."Actions:"Manual intervention by emergency
teams to close ballast valves at local controls."

2000 N/A Semi During exploratory drilling."Control of the starboard bal- | 2
sub. last desk was lost and all the remote operated valves went

to open position."Series of valves closed by manual in-
tervention. Rig trimmed to 6 degrees. Regained control.
Emergency scrambling. Coastguard informed.

2000 N/A Semi Rig started listing. "On checking ballast panel noticed | 2

sub. all valves showing open & closed"A burst water line had
short circuited the starboard emergency ballast control
panel. Water intake stopped. Rig list 3 degrees. Starboard
ballast system stabilized.Rig trimmed using port ballast
system.
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APPENDIX B. ADDITIONAL INFORMATION
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