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Problem Description

This master thesis is an investigation of how different genetic algorithm models per-
form when used to solve the wind farm layout optimization problem. It is investigated
if population distributed genetic algorithms can obtain better results than traditional
non-population distributed genetic algorithms.
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Abstract

Wind turbine technology is a promising source of renewable energy. However, the
potential of wind turbine technology can not be utilized unless the wind farm layout
is efficient. The challenge with wind farm layout optimization is that finding the
optimal layout in the huge search space of different layouts is hard, if not impos-
sible, to do analytically. Genetic algorithm techniques have been applied in many
fields to solve non-linear optimization problems, and has shown promising results
when used for wind farm layout optimization. Even so, not much effort has been put
into investigating whether different genetic algorithm models can improve the results.

In this project, it is investigated if population distributed genetic algorithms are
able to solve the wind farm layout optimization problem better than traditional non-
population distributed genetic algorithms. This project is a contribution to a wind
farm layout optimization contest launched by the Genetic and Evolutionary Com-
putation Conference (GECCO) 2016.

An advanced genetic algorithm, containing four different genetic algorithm models,
was implemented for this project. One of the genetic algorithm models was a tradi-
tional genetic algorithm, and three were population distributed genetic algorithms.
The program was connected to a wind farm simulator provided by GECCO 2016 so
that the performance of the different genetic algorithm models could be investigated
on realistic wind scenarios.

The results showed that the traditional non-population distributed genetic algorithm
consistently obtained better results than the three population distributed genetic al-
gorithms. While two of the population distributed algorithms showed promising
results, the third seemed unfit for solving the wind farm layout optimization prob-
lem. It is concluded that when providing the different genetic algorithm models the
same amount of computational resources, the population distributed genetic algo-
rithms come up short.
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Sammendrag

(This is a Norwegian translation of the abstract)

Vindmølleteknologi er en lovende kilde til fornybar energi. Likevel kan ikke poten-
sialet til vindmøllene utnyttes hvis ikke posisjoneringen av vindmøllene i vindmølle-
parken er optimalisert. Utfordringen med vindmølleposisjonering er at løsningrommet
- antall mulige vindmølleposisjoneringer - er enormt, og det er ekstremt vanskelig, om
ikke umulig, å finne den optimale posisjoneringen analytisk. Genetiske algoritmer har
vist seg å være svært nyttige n̊ar de har blitt brukt til å løse ikke-lineære optimaliser-
ingproblemer, og de har vist lovende resultater brukt i vindmølleposisjonering. Det
er likevel lite forskning p̊a hvorvidt populasjonsdistribuerte genetiske algoritmer kan
oppn̊a bedre resultater enn ikke-populasjonsdistribuerte algoritmer for vindmølle-
posisjonering.

I dette prosjektet har det blitt undersøkt om populasjonsdistribuerte genetiske algo-
ritmer kan løse vindmølleposisjoneringsproblemet bedre enn den tradisjonelle genetiske
algoritmen. Prosjektet er et bidrag til en konkurranse for vindmølleposisjonering
lansert av konferansen GECCO (the Genetic and Evolutionary Computation Con-
ference) 2016.

En avansert genetisk algoritme best̊aende av fire forskjellige modeller var imple-
mentert for dette prosjektet. En av de genetiske algoritmene var en tradisjonell
genetisk algoritme, mens de tre andre var populasjonsdistribuerte genetiske algorit-
mer. Programmer ble koblet sammen med GECCO 2016’s vindfarmsimulator slik at
de forskjellige genetiske algoritmene kunne bli observert og sammenlignet p̊a forskjel-
lige vindscenarioer.

Resultatene viste at den tradisjonelle genetiske algoritmer konsekvent fant bedre
vindmølleposisjoneringer enn de tre populasjonsdistribuerte modellene. To av de
populasjonsdistribuerte algoritmene gav lovende resultater, mens den tredje viste
seg å være uegnet til å finne tilfredsstillende vindmølleposisjoner. Resultatene ledet
til konklusjonen at populasjonsdistribuerte algoritmer ikke alltid klarer å levere like
gode resultater som den tradisjonelle genetiske algoritmen n̊ar hver modell er tildelt
de samme resursene.
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Chapter 1

Introduction

This thesis is a contribution to the third edition of the wind farm layout optimiza-
tion contest launched by the Genetic and Evolutionary Computation Conference
(GECCO) 2016. The contest involves optimizing the number of turbines and tur-
bine positioning in a wind farm with goal of producing maximum power to minimum
cost using genetic algorithms. The wind farm simulator is provided by GECCO
2016, hence, the focus of this thesis will be on improving the genetic algorithm that
will be used to search for the optimal wind farm layout. This is accomplished by
investigating the state of the art within wind farm layout optimization and genetic
algorithms and experiment with variations of the genetic algorithm.

This chapter provides an introduction to this thesis. Section 1.1 contains the back-
ground and motivation. Section 1.2 introduces the goal and research questions that
will be investigated. In section 1.3, a brief overview of the research method is given.
Contributions is given in section 1.4, and an overview of the thesis structure is given
in section 1.5.

1.1 Motivation and Background

Transitioning from non-renewable energy sources to renewable energy sources is one
of the largest, if not the larges political challenge of today. Renewable energy is
less polluting than non-renewable energy and should therefore be preferred. How-
ever, renewable energy sources make up only 21% of the world’s energy sources as of
2011 [EIA, 2015]. Wind turbine technology is a promising source of renewable en-
ergy. Advances in wind turbine technology have led to increased power production
at lower cost. Despite these improvements, wind turbines still produce less energy
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1.1. MOTIVATION AND BACKGROUND CHAPTER 1. INTRODUCTION

than predicted because of the wake effect; reduction in wind speed caused by tur-
bines placed in front of other turbines [Samorani, 2013]. For wind energy to become
a bigger player in the world’s energy sources, sophisticated methods for wind turbine
placement in wind farms need to be developed so that each turbine produces as much
energy as possible.

Wind turbine positioning is hard to optimize analytically. Fortunately, a wide variety
of local search methods and bio-inspired methods have shown promising results, with
genetic algorithms being the most popular method. As more advanced approaches to
evaluate layouts has been developed, and more realistic constraints are introduced,
more sophisticated genetic algorithms are required. To come up with more advanced
genetic algorithms for solving the wind farm layout optimization problem, the an-
nual Genetic and Evolutionary Computation Conference (GECCO) 2016, launched
a competition where different contestants will provide their own implementation of
a genetic algorithm [IRIT, 2015]. The goal of the competition is to bring more real-
istic problems to algorithm developers, and to create an open source library useful
beyond the scope of the competition. Wind parameters and evaluation mechanisms
are provided by GECCO 2016, therefore, the focus of this thesis will be on optimiz-
ing the genetic algorithm. Still, some knowledge of wind turbines, wind farms, and
wind- and power models is crucial to understanding this thesis and will therefore be
introduced in chapter 2.

Greedy heuristics, simulated annealing search, ant colony algorithms, particle swarm
optimization and genetic algorithms have all been used in solving the wind farm lay-
out optimization problem, and these will all be reviewed in chapter 3. Turbine
positioning has been improved by genetic algorithms for more than 20 years, each
approach bringing something new to the field such as a new type of genetic algo-
rithm, a more realistic environment, or combinations of genetic algorithms and other
approaches. A few researchers have solved the wind farm layout optimization prob-
lem by implementing a population distributed genetic algorithms called the Island
model, and it has shown promising results. However, as far as the author knows,
no attempt has been made in implementing any of the other existing population
distributed models. This is the main motivation behind this thesis, and has inspired
the author to investigate the effect different population distributed algorithms can
have on the wind farm layout optimization problem. Chapter 2 contains a review of
the population distributed genetic algorithm investigated in this thesis.
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CHAPTER 1. INTRODUCTION 1.2. GOAL AND RESEARCH QUESTIONS

1.2 Goal and Research Questions

This section states the goal statement and research questions that will be investi-
gated in this thesis.

Goal statement

The project goal is to investigate the potential advantages of using popu-
lation distributed genetic algorithms in optimizing wind farm layout, i.e.
solving the wind farm layout optimization problem. [Samorani, 2013]

The performance of population distributed genetic algorithms will be observed and
compared to the performance of a simple genetic algorithm (non population dis-
tributed genetic algorithm) in order to answer the first research question. In addi-
tion, each of the population distributed genetic algorithms will be compared against
the others with the goal of answering the second research question.

Research question 1

Can distributed genetic algorithms improve the quality of the solution
to the wind farm layout optimization problem as compared to a simple
genetic algorithm?

Research question 2

Which distributed genetic algorithm works best for the wind farm layout
optimization problem? What properties are essential for its success?

Both research questions will be answered by testing the different distributed genetic
algorithms in a wind farm simulator provided by GECCO 2016. The genetic algo-
rithms will be implemented from scratch in order to give the author control of the
environment, as well as the possibility of adding functionality fast and easy. Each ge-
netic algorithm will be tested on different wind scenarios which are also provided by
the contest. Research question 1 will be answered by implementing 3 different types
of population distributed genetic algorithms and compare their results with a simple
genetic algorithm on different wind scenarios. Research question 2 will be tested the
same way, and the results from each of the population distributed algorithms will be
compared.

3



1.3. RESEARCH METHOD CHAPTER 1. INTRODUCTION

1.3 Research Method

In order to answer the research questions, a genetic algorithm was implemented for
this thesis. Even though a primitive genetic algorithm was provided by GECCO
2016 along with a wind farm evaluator and wind scenarios, the choice was made
to implement the algorithm from scratch so that the population distributed genetic
algorithms could be added easily, and so that more functionality could be added to
the program.

To evaluate the different genetic algorithm models, 4 scenarios provided by GECCO
2016 were used. The scenarios provided contained wind parameters, terrain descrip-
tion, and wind turbine parameters. First, experiments were run to find parameter
values for the genetic algorithm suitable for the wind farm layout optimization prob-
lem. Second, the different genetic algorithms were run with those settings. The
genetic algorithms were compared on four different wind scenarios and the results of
each scenario is presented. Finally, the results from the different simulations were
compared and analyzed in order to to answer the research questions.

1.4 Contributions

The contribution to the field of wind farm layout optimization provided by this the-
sis is a comparison of different population distributed genetic algorithms and their
ability to solve the problem. As far as the author knows, no attempt has been made
in comparing 3 population distributed genetic algorithms on the wind farm layout
optimization problem, therefore this thesis can contribute with clearance as of which,
if any, is the best choice for the given problem.

This thesis also contribute with an extensive survey of the state of the art within
wind farm layout optimization and artificial intelligence approaches. The survey is
provided in chapter 3 and can be useful beyond the scope of this thesis for everyone
who wants to get an overview of research within the field of wind farm layout opti-
mization using genetic algorithms.

4
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1.5 Thesis Structure

The thesis is divided into six chapters. Chapter 2 contains an introduction to the
wind farm layout optimization problem, a description of the simple genetic algorithm,
and a description of each of the different population distributed genetic algorithms
that will be implemented. Chapter 3 is a survey of the state of the art within
wind farm layout optimization using genetic algorithms and other methods. The
chapter also contains a discussion/conclusion of related work. Chapter 4 contains
the methodology used to implement and test the genetic algorithms. In chapter 5 the
results are presented and discussed, and finally, the research questions are answered
and discussed in chapter 6.

5
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Chapter 2

Background

This chapter contains the background for this thesis. In section 2.1 the wind farm
layout optimization problem is defined, and challenges of wind farm construction
are presented. The first part of section 2.2 gives an introduction to genetic algo-
rithms, this sub-section can be skipped if the reader is already familiar with genetic
algorithms. The second part of section 2.2 introduces the 3 population distributed
genetic algorithms that will be investigated in this thesis.

2.1 Wind Farm Layout Optimization

This section aims to give the reader an understanding of the wind farm layout op-
timization problem. It is divided into two parts. Part one formally defines the
wind farm layout optimization problem. Part two gives a brief introduction to wind
farm construction with the goal of providing the reader with an understanding of its
complexity and an introduction to the main challenges of wind farm layout design.

2.1.1 The Wind Farm Layout Optimization Problem

An overview of the wind farm layout optimization problem is presented by Samorani
[2013]. Grouping of wind turbines in a wind farm decreases installation- and main-
tenance costs. However, positioning of wind turbines in a farm also introduces new
challenges. The power produced by wind turbines is largely dependent on wind
speed, therefore it is important that the wind speed that hits each wind turbine is
as large as possible. The main challenge for wind farms is that a wind turbine po-
sitioned in front of another will cause a wake of turbulence, meaning that the wind
speed that hits the second wind turbine will be decreased. This effect is called wake

7



2.1. WIND FARM LAYOUT OPTIMIZATION CHAPTER 2. BACKGROUND

Figure 2.1: Optimal layout for a simplified wind scenario [Grady et al., 2005]. This
figure is provided as an example of a wind farm layout.

effect, and will be explained in the following sub-section. Since the goal is to pro-
duce as much power as possible, it is very important to position the wind turbines
so that the wake effect is minimized. Samorani [2013] stated the wind farm layout
optimization problem like this “The wind farm layout optimization problem consists
of finding the turbine positioning (wind farm layout) that maximizes the expected
power production”. In this thesis, the problem formulation will be extended to in-
clude both cost constraints and optimization of the number of wind turbines, not
just their positions. A formal definition is given below

”The wind farm layout optimization problem consists of finding the num-
ber of turbines and turbine positioning (wind farm) that maximizes the
expected power production while minimizing costs.”

A typical solution to the wind farm layout optimization problem is given in figure
2.1 [Grady et al., 2005]. The rectangular grid represents the wind farm. Black cells
represents positions containing wind turbines, and white cells represents empty po-
sitions. The wind farm layout in the figure is the optimal layout for a simple wind
scenario where the wind is blowing at one direction with constant speed. When the
wind is blowing from different directions with variable wind speed the turbines will
be more scattered around in the grid.

8
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2.1.2 Challenges of wind farm construction

Samorani [2013] gives an overview of the main challenges of wind farm construction.
First, a suitable site has to be found, meaning a site with good wind conditions.
Wind power conditions are partitioned into 7 different wind power classes. With to-
day’s technology, sites with power class 4 or higher are considered suitable for hosting
a wind farm. Even though the wind farm has the required wind conditions, it might
not be suitable for hosting a wind farm because it might be far from the electronic
grid, so that connecting it to it would be too costly, or it could require costly road
work because current infrastructure is not able to handle the transportation trucks.
Second, land owners has to be contacted and convinced that hosting a wind farm
on their land is a good idea. Land owners usually gets a percentage of the wind
farm profit. This phase of contract negotiation usually takes a few months. At the
same time, wind distribution need to be measured as accurately as possible. This
step is extremely important, since the layout of the farm is optimized based on the
measured wind distribution. Getting enough data to capture the wind distribution
can take a few months if wind conditions are stable all year long, but if the wind
conditions vary extensively over the year this step can take a few years.

An equally important step is to decide on which turbines to buy for the wind farm.
A trade-off exists between power and cost since larger wind turbines are usually
more expensive than smaller turbines, but they generally also produce more power.
Realistic estimation of maintenance cost is also crucial in deciding on turbine type.
In Samorani [2013] the number of wind turbines are also decided in this step, but
in this project, deciding the number of turbines is included in the wind farm layout
optimization problem and will therefore be part of the next step.

Only after the site is found, wind turbine type is selected, and wind distribution is
measured, can the layout optimization begin. Layout optimization faces different
challenges. At some locations, the terrain is a great challenge because it contains
areas which are unsuitable for wind turbines. These areas has to be dealt with by
the layout optimization algorithm so that turbines are only positioned in legal ar-
eas. There are also constraints on how close turbines can be positioned, according
to Şişbot et al. [2010], the minimum spacing rule states that the minimum distance
between turbines is 8D in prevailing wind direction, and 2D in cross wind direction,
where D is the rotor diameter. Still, the greatest challenge of wind farm layout op-
timization is the wake effect. As mentioned above, the wake effect is the effect of
reduced wind speed in the wake behind a wind turbine. Samorani explains the wake

9



2.1. WIND FARM LAYOUT OPTIMIZATION CHAPTER 2. BACKGROUND

effect using the Jensen wake model [Jensen, 1983]. As will be apparent after chapter
3, most research in wind farm layout optimization use the Jensen model because it
is quite accurate and simple. The Jensen model will be explained below in order to
give a brief understanding of how the wake effect is calculated.

Figure 2.2: The wake effect [Samorani, 2013].

In figure 2.2 the small, black rectangle represents a wind turbine, and the blue area
behind it illustrates the area that is affected by the turbulence created by the wind
turbine. In the figure, the wind is blowing from left to right with uniform wind
speed U0. As the wind hits the wind turbine it creates a wake of turbulence behind
it so that the wind speed at distance x behind the wind turbine is U < U0. The
area behind the wind turbine that is affected by the wake at distance x has the
radius r1 = αx + rr where rr is the rotor radius and α is the entrainment constant,
a constant that decides how fast the wake expands. For a detailed, mathematical
explanation of the Jensen model and other wake models see references [Jensen, 1983]
and [Liang and Fang, 2014].

In summary, construction of a wind farm is a complicated and time consuming
process. Consecutive important decision have to be made before one can even begin
the layout optimization. The layout optimization is dependent on turbine cost,
terrain parameters, wind conditions and turbine positioning. Finding the optimal
layout is a non-linear, complex problem that only sophisticated algorithms can solve.

10



CHAPTER 2. BACKGROUND 2.2. GENETIC ALGORITHMS

2.2 Genetic Algorithms

This section provides the background needed to understand genetic algorithms. The
first sub-section gives a step-by-step introduction to simple genetic algorithms in-
vented by Holland [1992]. If not otherwise stated, this section is based on the books
Holland [1992] and Goldberg [2005]. If the reader is familiar with genetic algorithms
he or she can skip this sub-section. The second sub-section introduces the 3 pop-
ulation distributed genetic algorithms tested in this theses: The Island model, the
Cellular model and the Pool model [Gong et al., 2015].

2.2.1 Simple Genetic Algorithms (SGAs)

Genetic algorithms are probabilistic search algorithms inspired by evolution. Figure
2.3 shows the five steps that constitute the genetic algorithm. The genetic algorithm
operates on a population of individuals each representing a solution to the given
problem. The first step is therefore to generate the initial child population, which
usually consists of randomly generated individuals. The second step of the genetic
algorithm is evaluation. The child population is evaluated based on some predefined
fitness function (objective function); a measure of the goodness of the solution. Note
that the terms fitness function and objective function will be used interchangeably
in this thesis. The third- and forth step, adult selection and parent selection re-
spectively, is the processes of deciding which individuals from the child population
are allowed to grow up into adults and which are allowed to become parents for the
next generation of individuals. These steps are naturally guided by the fitness of the
individuals. The fifth and last step is called recombination. In this step, the genes
of the parent population are recombined and altered in order to generate a new,
hopefully improved, child population. After the new child population is generated
the process starts again and continues until some predefined stop condition is reached.

Inspired by survival of the fittest, the population evolves into a population of better
solutions to the given problem. Two properties are crucial for the utilization and
success of the genetic algorithm: (1) One have to know how to measure the fitness
of the individuals (goodness of the solutions), and (2) one have to find a way to
represent individuals so that genetic operations can be performed on them. Exam-
ples of representation, fitness calculation, selection and genetic operations will be
given below. Note that numerous different selection schemes and genetic operations
exists and that the sub-sections below only provides one example of each in order

11



2.2. GENETIC ALGORITHMS CHAPTER 2. BACKGROUND

Figure 2.3: Overview of the five steps that constitute the genetic algorithm.

to provide understanding of how a typical genetic algorithm works. How these steps
are actually implemented in this thesis is explained in chapter 4. If the reader is
familiar with simple genetic algorithms he or she can jump to sub-section 2.2.2.

Representation

In genetics, an organism’s hereditary information is called its genotype, and its ob-
servable properties its phenotype. For example, the hereditary information in your
genes (genotype) are responsible for your eye color (phenotype). The genetic search
algorithm usually works on genotypes represented as bit strings. Goldberg [2005]
explained this with a simple example. Let’s say the objective function that we want
to find the optimal solution for is x2 for x ∈ {0, 31}. Then we can generate genotypes
for the random solutions using bit strings of size 5, each representing a decimal value
(phenotype) between 0 and 31. Figure 2.4 displays the genotype and phenotype for
four randomly generated individuals. Here, the phenotypes are just the genotypes
on decimal form, but in other problems the phenotype could be everything from eye

12
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color to a wind farm layout.

Figure 2.4: Genotypes and phenotypes for 4 individuals where the phenotype is the
decimal value of the genotype (binary number).

Selection

As mentioned above, selection is a two-step process: Adult selection and parent se-
lection. Adult selection is the decision of choosing which children are allowed to grow
up and enter the adult pool and thereby become potential parents for the next gen-
eration. The simplest form of adult selection is called full generational replacement
and it consists of simply replacing the previous adult pool with the new child pop-
ulation. This adult selection scheme is one out of three adult selection mechanism
implemented for this thesis. These will all be explained in detail in chapter 4.

Parent selection is the process of selecting which individuals from the adult popu-
lation that will be the parents of the next child population. The simplest form of
parent selection is to simply select the fittest individuals. Unfortunately, this selec-
tion strategy often leads to premature convergence of non-optimal solutions. It is
important to prioritize exploration, at least in the beginning of the search, otherwise,
parts of the search space that could have lead to the optimal solution are cut off too
soon. To cope with this problem controlled elitist selection schemes are preferred. A
very popular selection strategy is tournament selection [Razali and Geraghty, 2011].
In tournament selection, groups of n individuals are randomly drawn from the pop-
ulation and the fittest individual in the group is appointed the tournament winner,
and is therefore selected. Figure 2.5 illustrates how tournament selection works. In
the example, n is equal to 3, therefore the three individuals with fitness 9, 4 and 6
are randomly drawn from the population. Since in this thesis, the fittest individuals

13
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are those with lowest fitness value, the individual with fitness 4 wins the tournament
and is chosen for reproduction.

Figure 2.5: Tournament selection. A group of three individuals are randomly drawn
from the pool of all individuals. The best individual in the group, the one with
fitness 4, is selected for reproduction [Razali and Geraghty, 2011].

By varying the value of n you can control how much exploration your algorithm
should do. If n is equal to the population size only the best individuals are selected,
and if n is equal to 1 the search is completely random. This means that low values
of n leads to more exploration of the search space, something that can potentially
guide the population to find better solutions. Higher values of n on the other hand
will often lead to fast convergence to sub-optimal solutions. These properties make
it desirable to vary the value of n during the genetic search so that exploration is
prioritized at the beginning of the search, while exploitation (making use of seem-
ingly good solutions) is prioritized at the end. Tournament selection is one out of
two parent selection methods implemented in this thesis, these will also be explained
in detail in chapter 4.

Crossover

Crossover means combining genes of parent solutions to produce child solutions. One
of the most common crossover schemes is called uniform crossover. For each gene
of the child solution there is a 50% chance the gene will be inherited from the first
parent and a 50% chance that the gene will be inherited from the second parent.
Figure 2.6 shows how uniform crossover works. As can be seen, the first gene of
child 1 is inherited from parent 1, the second and third gene from parent 2, and the
forth gene from parent 1 and so on. Uniform crossover is one out of three crossover
methods implemented for this thesis.
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Figure 2.6: Uniform crossover. Two child genotypes are created by combining the
genotypes of two parents. Each gene is drawn from one of the parents with equal
probability.

Mutation

In biology, mutation is defined as a permanent alteration in the DNA sequence that
makes up a gene. When the genetic algorithm works on genotypes of bit strings the
process consists of simply flipping bits. Mutation is usually implemented by flipping
some of the bits of the genotype as shown in figure 2.7.

Figure 2.7: Mutation of a single bit. The bit in position 6 at the upper bit string
has the value 1 before the mutation, while after mutation the value is flipped to 0.

Mutation is important because without mutation a population can evolve to a pop-
ulation of individuals where each genotype has the same value at a given position.
Since every individual has the same value in their genotype at the same position,
reproduction will never be able to make a new individual that does not also have
the same value at the same position. With mutation however, there is always a
probability of the value being flipped. Mutation is therefore crucial for maintaining
diversity in the population and keeping it from becoming sterile.

Even though mutation is important, the probability of mutation needs to be kept
low. If the mutation rate is very high, the genotype of a new individual will almost
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be a random bit string. Remember that a new individual is made by recombination
of two individuals with good fitness in the previous population. If mutation changes
the new individual heavily, it will not inherit the good features of its parents and the
whole point of evolutionary search will be gone.

2.2.2 Population Distributed Genetic Algorithms (PDGAs)

One of the main challenges of simple genetic algorithms is keeping diversity in the
population long enough so that the population does not converge to a sub-optimal
solution. By distributing the population, the algorithm is able to explore different
solution paths. This is usually an advantage, because the solutions that obtains the
best fitness in the end is not always the solutions that seem best right away. This
section introduces the 3 different population distributed algorithms that are inves-
tigated in this thesis. For an in-depth introduction to the models see [Gong et al.,
2015].

The Island Model

In the Island model, the population is divided into sub populations that are dis-
tributed onto different Islands. By letting each population evolve separately, differ-
ent islands can explore different solutions. Figure 2.8 displays a population divided
into four sub-populations.

Figure 2.8: An Island model using a ring topology with four demes (Islands) of size
five. [Gong et al., 2015]
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According to Huang [2007], six parameters must be specified when using the Island
model. First of all, one need to decide on the number of demes (Islands). Second,
the deme size needs to be specified; the number of individuals on each island. In
figure 2.8 the deme size is five, and four demes are used. Third, the topology must be
specified; the allowed routes to migrate from one population to another. Numerous
topologies can be used. In figure 2.8 the arrows represents legal migration routes.
Since the topology forms a circle it is called a ring topology. The forth and fifth
parameters listed by Huang are migration rate and migration interval, meaning the
number of individuals that migrate from one population to another and the num-
ber of generations between each migration respectively. These parameters are very
important since they largely affect the time the population gets to explore different
solutions before the best solutions from some of the demes takes over the population.
Sixth, the policy of deciding which individuals that migrate, and how to replace ex-
isting individuals with new migrants needs to be specified.

The parameters listed above must be given careful thought when implementing the
Island model, but as Gong explains, they are not the only ones. If the Island model
is implemented in parallel one also have to decide if the migration is synchronous
or asynchronous. Synchronous migration means that all migration is performed at
the same time; at a specific generation. Asynchronous migration on the other hand,
can be performed whenever one of the parallel processes are ready. Additionally,
it has to be decided if the Island model is homogeneous or heterogeneous. By a
homogeneous Island model, Gong et al. means an Island model where each sub
population use the same selection strategy, genetic operations and fitness function,
while as an heterogeneous Island model can implement different settings for different
Islands.

The Cellular Model

Figure 2.9 displays the Cellular model from Gong et al. [2015]. In the Cellular model
the population is distributed in a grid of cells where each cell holds one individual.
Each individual can only “see” the individuals of its neighborhood (as decided by
the given neighborhood topology) and can only be compared to, and mate with in-
dividuals in its neighborhood.

The takeover time is defined as the time it takes for one individual to propa-
gate through the whole population. The neighborhood topology largely affects the
takeover time. In figure 2.9 the neighborhood topology is defined as only the indi-
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Figure 2.9: Cellular model where the neighborhood topology consist of the cells to
the left, right, over and under the given cell [Gong et al., 2015].

viduals to the left, right, over and under the given individual. Since the topology
includes a small number of individuals, the takeover time will be long, meaning that
exploration is prioritized. If the topology consists of a larger number of cells the
takeover time will, off course, be much shorter.

The Cellular model can also be implemented in parallel, ideally with one processor
for each cell. As for the Island model, updating of the cells can be either synchronous
or asynchronous.

Pool Model

Another population distributed model is called the Pool model. In this model the
population is put in a shared global resource pool of n individuals, where it can be
accessed by different workers (threads). The resource pool is partitioned into equal
size partitions, and each of these partitions are assigned to exactly one worker. Each
worker perform selection, child generation and evaluation independently by selecting
individuals from the entire resource pool, but only updating the positions in the re-
source pool for which it is responsible for. This process is demonstrated in figure 2.10.

A worker w1 is responsible for k positions in the pool. This is indicated by the col-
oring scheme in figure 2.10, where the worker and the positions it is responsible for
has the same color. Each worker draws a population of individuals i1, i2, ..., ik from
random positions in the pool and performs genetic operations and fitness calculations
on them. Next, each new child individual is written back to the worker’s associated
positions 1, 2, ..., k, given that its fitness is higher than the fitness of the individual
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Figure 2.10: The pool model. Each worker has its own positions in the pool which
it returns individuals to. The red worker is responsible for the red positions in the
pool, and so on. Workers draw individuals from random positions in the pool, as
indicated by the arrows, but can only write them back to its own positions, given
that their fitness is higher than the fitness of the individual currently occupying the
position [Gong et al., 2015].

currently occupying the position. The implementation details of this, and the other
population distributed models, are presented in chapter 4.

2.3 Structured Literature Review

In order to get a deep understanding of genetic algorithms the books Holland [1992]
and Goldberg [2005] was read. By reading the initial work of Holland, the inventor
of the genetic algorithm, and the in depth explanation and analysis presented by
Goldberg, the author got the proper understanding of genetic algorithms needed to
write this thesis.

After an extensive literature search, the author was able to come up with the goal
and research questions that will be investigated in this thesis. The literature search
was performed in the following way: First, Google Scholar was used to search for
articles with the search words genetic algorithms and wind farm layout optimization.
A few of the first hits were read by the author. After reading these initial papers
the author’s understanding of the domain and domain vocabulary increased so new
searches were made with the search words genetic algorithm, evolutionary algorithm,
genetic computation, wind farm layout optimization and a few more. The resulting
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papers were collected by the author and review based on the following metrics: (a)
Number of citations, (b) similarity of the problem to the problem investigated in this
thesis, (c) whether the article brings something new to the field, and (d) publishing
date. Articles published in resent years were preferred, a long with a few initial pa-
pers because they laid the foundation for the field. The twelve articles summarized
in table 3.3 were selected to give the reader an extensive understanding of wind farm
layout optimization using genetic algorithms. Additionally, 4 articles about wind
farm layout optimization using other artificial intelligence techniques were chosen to
be presented in order to give the reader a brief overview over other approaches that
has been used solving the given problem.

In summary, this chapter has introduced the wind farm layout optimization prob-
lem and the challenges that comes with wind farm construction. The simple genetic
algorithm has been explained, and each of the 3 population distributed genetic algo-
rithms have been introduced. The next chapter will give the reader an overview over
the current research within wind farm layout optimization using genetic algorithms
and a few other techniques.
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Chapter 3

Related Work

Wind farm layout optimization has been studied extensively over the last 20 years
and the goal with this chapter is to provide the reader with an overview of the
research. This chapter is divided into three parts; Section 3.1 gives an extensive
overview of wind farm layout optimization using genetic algorithms, since genetic
algorithms are the main focus of this thesis. Section 3.2 gives a short review of other
optimization approaches, and section 3.3 contains a summary/discussion of related
work.

3.1 Wind Farm Layout Optimization using Ge-

netic Algorithms

Mosetti et al. [1994] were the first to successfully demonstrate the utilization of the
genetic algorithm in solving the wind farm layout optimization problem. Although
their work was made for illustrative purposes only, it laid the foundation for a number
of more extensive studies of wind farm layout optimization using genetic algorithms.

In order to properly model a wind farm one have to specify a wake model, a power
curve and a cost function. To model the wind decay, Mosetti et al. used a wake
model similar to the one developed by Jensen [1983]. Power generated by each tur-
bine i was modeled as a cubic function of the wind speed u and site roughness z0,
and summed up to get the total power produced by the farm in one year as shown
in equation 3.1. This power model is called the Betz power model [Albring, 1967].
Cost was modeled as a simple function of the number of turbines Nt, assuming the
cost/year of a single turbine is 1, and that a maximum cost reduction of 1

3
can be
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obtained for each turbine if a large number of machines are installed, as shown in
equation 3.2

Powertotal =
Nt∑
i

z0u
3
i , (3.1)

costtotal = Nt

(
2

3
+

1

3
e−0.00174N2

t

)
. (3.2)

With the goal of producing a great amount of power at low cost, the objective func-
tion to be minimized was formulated as a combination of equation 3.1 and 3.2

Objective =
1

Ptotal

w1 +
costtotal
Ptotal

w2 (3.3)

where w1 and w2 are weights. In the current study, w1 was kept small so that the
focus would be on lowest cost per energy produced.

Mosetti et al. divided the wind farm terrain into a 10 × 10 quadratic grid where a
wind turbine could be installed in the middle of each cell. The optimization problem
would then be to position the turbines in the cells in a way that maximize power
production and minimize cost. With this representation, an individual of the genetic
search could be represented as a binary string of length 100, where each index rep-
resents a cell in the grid, so that a value of 1 means that a wind turbine is installed
in the corresponding cell, and a value of 0 means that there is no wind turbine in
the corresponding cell. Figure 3.1 illustrates how an individual represents a wind
farm for a wind farm partitioned into 100 cells. The genetic algorithm used was a
simple, single-population genetic algorithm. The crossover operation was performed
at random locations with probability 0.6 < Pc < 0.9 and mutation was performed
with probability 0.01 < Pm < 0.1.

The model was tested using a single turbine type on three different wind scenarios:
(a) Single wind direction with uniform intensity, (b) multiple wind directions with
constant intensity, and (c) multiple wind directions and intensities. For each scenario,
the results were compared to random configurations of 50 turbines. One of the
metrics used to compare the models were efficiency which is defined as the amount
of energy produced out of the energy that would have been produced without wake
effect. In scenario (a), the efficiency of the random configuration was 0.50, while the
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Figure 3.1: An example of how the wind farm is represented in the genetic search
from Mosetti et al. [1994]. An individual is represented as a bit-string of size 100,
where each cell can either contain the value 1 or 0, representing a position containing
a turbine and a position not containing a turbine, respectively.

efficiency of the optimized solution was 0.95. In (b), the efficiency was increased from
0.35 in the random configuration to 0.88 in the optimized configuration. And, in (c)
the efficiency was increased from 0.34 to 0.84. For each scenario the number of wind
turbines was decreased drastically in the optimized version. Table 3.1 summarizes
the results obtained.

As pointed out by Mosetti et al., different simplifying assumptions were made in
the model such as the cost- and power model. The results were also only compared
to randomly generated layouts. In order to find out if genetic algorithm are appli-
cable to real-world problems they should be compared against layouts obtained by
industry-accepted optimization methods. However, the purpose of this initial paper
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Table 3.1: Optimized configurations compared against random configurations for
each of the three scenarios (a) single wind direction, (b) multiple wind directions
with constant intensity and (c) multiple wind directions and intensities[Mosetti et al.,
1994].

Scenario Configuration Efficiency Ptot(kWyear) cost/kWyear Number of turbines
(a) Random 0.50 13025 2.57× 10−3 50

Optimized 0.95 12375 1.57× 10−3 25
(b) Random 0.35 9117 3.68× 10−3 50

Optimized 0.88 8711 1.84× 10−3 19
(c) Random 0.34 4767 7.04× 10−3 50

Optimized 0.84 3695 3.61× 10−3 15

was to demonstrate the applicability of genetic algorithms on the wind farm layout
optimization problem, and it has certainly laid the ground work for a number of
studies performed over the last 20 years.

Grady et al. [2005] picked up where Mosetti et al. [1994] left of. They recognized
that while the results of Mosetti et al. beats random configurations they were not
close to beat configurations made by simple empirical placement schemes. In their
study, they wanted to show that by implementing a population distributed genetic
algorithm, the effectiveness of the algorithm could also be compared to optimal
configurations. As Mosetti et al., they used the Jensen wake decay model, as well
as the same cost- and power function, shown in equation 3.2 and 3.1 respectively.
However, the objective function was changed into the following

Objective =
cost

Ptot

. (3.4)

The same three scenarios as Mosetti et al. were considered. However, the number of
individuals was increased from 200 to 600, and run for 3000 generations instead of
400. The population distributed model used was an Island model where the individ-
uals were divided into 20 sub-populations. Sadly, not many implementation details
were shared. On the first scenario, Grady et al. recognized that with uniform wind
distribution the optimal solution could be obtained empirically by optimizing one
single row of the layout, and copy it to the rest. As opposed to Mosetti et al., the
obtained results identical to the optimal solution. In scenarios (b) and (c) however,
the optimal solutions could not be obtained empirically, and therefore the results are
just compared against those of Mosetti et al. The results for each scenario is dis-
played in table 3.2. The first thing to notice is the difference in number of turbines.
Grady et al. ends up with more turbines in each case, approximately doubling the
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number of turbines in scenario (b) and (c). The explanation behind this observation
lies in the objective function. Objective function 3.3 prioritizes low cost and hence
prioritizes a lower turbine count. For each scenario the fitness of Mosetti et al. is
higher than the fitness obtained by Grady et al. With exception of the first scenario,
the efficiency is also higher in Mosetti et al. These results make sense since fewer
turbines leads to less wake effect and decreased efficiency. However, in each case, the
total power production is largely increased in the current study, which also makes
sense based on the turbine count.

Table 3.2: A comparison of the results obtained by Mosetti et al. [1994] and Grady
et al. [2005] for each of the three scenarios.

Scenario Parameter Mosetti et al. Grady et al.
(a) Fitness 0.0016197 0.0015436

Total power (kW year) 12 352 14 310
Efficiency (%) 91.645 92.015
Number of turbines 26 30

(b) Fitness 0.0017371 0.0015666
Total power (kW year) 9244.7 17220
Efficiency (%) 93.859 85.174
Number of turbines 19 39

(c) Fitness 0.00099405 0.00080314
Total power (kW year) 13 460 32 038
Efficiency (%) 94.62 86.619
Number of turbines 15 39

In summary, Grady et al. were able to show that by implementing a population
distributed genetic algorithm the optimal solution for scenario (a) can be obtained.
They also showed that the power production obtained in Mosetti et al. could be
increased by optimizing parameter values and using a more sophisticated implemen-
tation of the genetic algorithm. However, they make no attempt to compare their
solutions for scenario (b) and (c) to solutions obtained using industry-accepted op-
timization techniques. For a similar study where individuals are implemented as
matrices in MATLAB see Emami and Noghreh [2010].
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Zhao et al. [2006] presented a very interesting study, where the electrical system of
an off shore wind farm on Burko Bank in Liverpool Bay was optimized using a ge-
netic algorithm. Although this is a study of cable clustering design, with fixed wind
turbine count and positions, it is very interesting because it is compared against
actual results obtained by the Burbo project team. To get an understanding of the
optimization problem four example clustering designs are presented in figure 3.2.

Figure 3.2: Four example clustering designs [Zhao et al., 2006].

In their publication, Zhao et al. present an extensive study of different genetic algo-
rithm techniques to find out which technique leads to the best results on this type of
optimization problem. Premature convergence is discovered as the main problem of
the genetic algorithm and to deal with this, different techniques are presented such
as a diversity check, and a crowding technique called restricted tournament selec-
tion. For implementation details see reference Zhao et al. [2006]. Different genetic
algorithm designs were tested, and the results showed that the final layout obtained
was equal to the layout obtain by the Burbo project team! This shows that opti-
mization using sophisticated genetic algorithms can find the same solution as current
optimization techniques for optimization of electrical systems.

Huang [2007] presented a study showing that a population distributed genetic algo-
rithm performs better than a simple genetic algorithm. Huang uses a more realistic
objective function than the previous studies, taking into account the selling price
of electric energy, as well as cost and energy production. The distributed genetic
algorithm used is the Island model, with 600 individuals divided among 20 demes,
with the ring-topology shown in figure 3.3.
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Figure 3.3: Ring topology example with 6 demes [Huang, 2007].

The simulation was run for 2500 generations with the migration strategy that 3.3%
of the individuals with highest fitness were selected as migrants, to replace the in-
dividuals with lowest fitness in the new population every 20th generation. The
distributed algorithm was tested using the same three scenarios as Mosetti et al.
[1994] and Grady et al. [2005], and compared against a simple genetic algorithm. In
case (a) the population distributed genetic algorithm was able to come up with the
optimal solution (presented by Grady et al.), while as the simple genetic algorithm
was not. For each of the three scenarios the population distributed algorithm ended
up with higher fitness value, more power produced, lower CPU time and fewer gen-
erations. In case (a) the turbine count was equal for both algorithms, resulting in
higher efficiency for the distributed algorithm. In scenario (b) and (c) the population
distributed algorithm produced solutions with one additional turbine compared to
the simple algorithm, resulting in slightly lower efficiency.

All studies presented above have used binary encoding in their wind farm repre-
sentation, but Mora et al. [2007] presented a study where the binary encoding was
replaced by an integer encoding. In their approach, an individual was represented
as a set of (x, y)-coordinates representing turbine positions. In addition to optimize
turbine position, Mora et al. also wanted to optimize both turbine type and height.
In order to do this, they represented the individuals by a matrix as shown in figure
3.4. The first row contained the x-coordinates of the turbines, the second row the
y-coordinates, the third row turbine type and the forth row turbine height as shown
in figure 3.4. Note that with this type of encoding, different individuals can have
different lengths, depending on the number of turbines in each solution.

Five crossover methods, and a masked mutation method were presented for the new
type of encoding, see Mora et al. [2007] for implementation details. To model the
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Figure 3.4: Representation of an individual of length k (layout with k turbines),
where the first row represents x-coordinates of the turbines, the second row y-
coordinates, the third row turbine type, and the forth row turbine height [Mora
et al., 2007].

wind speed, the Weibull distribution was used, a more realistic wind speed model
than the one used in the previous studies. The Weibull distribution will be explained
in more detail in chapter 4, since it is also used in this thesis. Three different case
studies were performed. The first one is a search for the optimal solution when the
number of turbines are decided beforehand. The second is a search for the optimal
positioning, type and height of turbines within a given budget. And the third one a
search for the optimal solution with no such constraints. The results are only briefly
discussed. However, this paper marks the shift from binary- to integer encoding, and
from simple wind models to the Weibull distribution.

Wan et al. [2009] criticized the simple power-, and wind distribution model presented
by references Grady et al. [2005], Mosetti et al. [1994]. Rather, they used the Weibull
distribution as Mora et al. [2007] to model the wind, and they introduced a novel
power model

∫ uout

uin

P (u)f(u)du, (3.5)

where uin is the cut-in wind speed of the turbine, and uout is the cut-out wind speed
of the turbine. P (u) is the power output for the wind speed u and f(u) is the prob-
ability density of the wind speed u. The genetic algorithm was similar to that of
Grady et al., and results showed that the produced power increases.

One of the most complete studies of the wind farm layout optimization problem was
done by Kusiak and Song [2010]. Their study is based on six assumptions, which

28



CHAPTER 3. RELATED WORK 3.1. WIND FARM LAYOUT OPTIMIZATION USING GENETIC ALGORITHMS

according to the authors are realistic and industrial-accepted. The study assume a
fixed, predetermined turbine count, small variations of surface roughness, turbines
with equal power curves, wind speed following the Weibull distribution, that wind
speed at different locations with same direction share the same Weibull distribution,
and last, it assumes that any two turbines must be separated with at least four rotor
diameters. A multi-objective function was used to calculate the fitness of the solu-
tions. It consisted of one objective function to maximize expected energy produced,
and one to minimize the constraint violations. Kusiak et al. critiques Mosetti et al.
and Grady et al. for not basing their wind energy calculation on the power curve
function and not thoroughly discussing wind direction. Their work include an exten-
sive model of wind energy based on a discretization of the expected power production
for each wind direction. Their algorithm was tested on real wind data, and compared
against an upper bound on power production (power produced without wake effect),
and their results show that less than 2% of power is lost due to wake effects when 6
turbines are positioned in the wind farm.

Assumptions such as cost models only dependent on the number of turbines are un-
realistic, and needs to be refined in order to model the wind farm layout optimization
problem in a realistic way. González et al. [2010] introduced a cost model based on
the net present value, which takes into account wind speed, wind distribution, the
number-, type-, rated power- and tower height of turbines, loss due to wake effects,
auxiliary costs, road infrastructure, buildings, substation, electrical framework and
financial aspects such as return on investment. For example, In order to more ac-
curately model civil cost they present a greedy search which connects wind turbines
to auxiliary roads or other turbines dependent on their position. Figure 3.5 shows
how the greedy algorithm works. First, the distance between each turbine and every
road is calculated. Since turbine A is closest to road 1, they are connected. Second,
the distance between the remaining turbines and the roads and turbines already con-
nected are compared, and turbine C is connected to road 2. At last, turbine B needs
to be connected. Since it is closer to turbine A, than turbine C or any of the roads,
it is connected to turbine A.

Other new features includes a local search used when the genetic algorithm cannot
find a better individual, and a genetic algorithm that can manage forbidden areas
and that gives penalties for turbines positioned in undesirable terrain. Individuals
are represented the same way as in reference Mora et al. [2007] displayed in figure
3.4. Results are compared against Grady, and shows higher produced energy. The
authors also include three case studies showing how their algorithm can handle re-
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Figure 3.5: Greedy algorithm to estimate civil cost. [González et al., 2010].

strictions such as roads crossing, forbidden zones, undesirable zones and maximum
investment cost.

Şişbot et al. [2010] published a case study of wind turbine placement on a wind
farm at the Island Gökçeada, at the north east of the Aegean Sea. The population
distributed Island model was used, but unlike Huang’s, the individuals were evaluated
based on multiple objective functions; one that measures the total cost (installation
and operational), and one that measure total power production. Şişbot et al. argue
that in an environment with changing demands, the use of a multi-objective function
gives the decision-makers the opportunity to evaluate the different designs based
on cost and power production separately, without ill-informed, randomly generated
weights. The selection process used is a controlled, elitist process, meaning that not
only the fittest, but also some individuals that can spread diversity to the population
are selected for reproduction. The genetic algorithm returns a set of Pareto optimal
solutions; a set of solutions that are not dominated by any other solution in the set.
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Stated more formally, solution y is said to dominate solution x if

∀i : fi(x) ≤ fi(y) and ∃j : fj(x) < fj(y) (3.6)

where fi is the objective function [Murata et al., 2001]. Other interesting features
of this study is the introduction of constraints on wind turbine positions and con-
straints on the cost, meaning that individuals with wind turbines outside the area of
the island, and individuals with costs larger than the budget are removed from the
population. Even though constraints on individuals are not in accordance with the
nature genetic algorithms, they can be necessary when the algorithm is applied to
a real problem. Another feature introduced in this paper is rectangular cells. The
argument behind this decision is that the safe distance between wind turbines is de-
pendent on the direction of the turbine. The minimum distance between turbines in
prevailing wind is 8D, while the minimum distance between turbines in the crosswind
is 2D. Despite this attempt to make the wind scenario more realistic, it is critiqued
because it operates with a constant wind direction and constant speed, using the
average wind direction and speed measured at the Island [Samorani, 2013]. Results
are not compared against previous studies, and the argument behind this decision is
that it is difficult to compare a Pareto-optimal set of solutions to one of the previous
solutions.

Another very interesting solution to the wind farm layout optimization problem was
proposed by Saavedra-Morena et al. [2011]. Four novel improvements were included
in their model. First, a shape model was introduced to model the terrain shape. By
introducing this model, the simplification of a square grid was lost, and every terrain
shape could be implemented. Second, an orography model was used to model the
wind speed on different heights. Using this technique, the wind model is much more
realistic because it takes into account that wind speed differs at different heights.
Third, they introduce a new cost model, which takes into account installation cost,
connection between turbines, road construction and net benefit from the produced
energy. The fourth, and maybe most exiting improvement presented was that a
greedy heuristic was used to decide the initial positioning of the turbines for some
of the individuals. This improvement was requested by Mosetti et al. in 1994, but
not included by anyone until now. The greedy heuristic works by placing turbines
one by one in the position with maximal wind speed. First of all, the first turbine
is positioned in the position wind maximum wind speed. Next, the wind speed is
updated because of the reduction in wind speed caused by the wake effect of the first
turbine. Third, the second turbine is positioned in the position with maximal wind
speed. This process continues until N wind turbines have been placed. Clearly, the
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resulting layout is largely influenced by the positioning of the first turbine, and leads
to a sub-optimal solution on its own. However, it is much better than a random
solution, and as it turns out a good starting point for the genetic search. Results
for 15 different orographys for the same terrain shape were provided, showing the
objective function values obtained by the greedy heuristic, a simple genetic algo-
rithm with random starting positions, and the seeded genetic algorithm (the genetic
algorithm with starting positions found by the greedy heuristic). In each case, the
genetic algorithm with random starting positions beats the results obtained by the
greedy heuristic, but more importantly, in each case, the seeded genetic algorithm
beats the results of the simple genetic algorithm.

Both Mora et al. [2007] and González et al. [2010] used the genetic algorithm to
optimize the height of the turbines, as well as other parameters by representing in-
dividuals as shown in figure 3.4. Another approach to optimize turbine height was
presented by Chen et al. [2013]. They state that normally, the same turbine type
can be bought with several different heights, and that it therefore makes sense to
use different height turbines. To optimize turbine position and height, they used
two nested genetic algorithms. The first was used to optimize turbine positioning,
while the second was used to decide between two turbine heights. For each gener-
ation of the first genetic algorithm, the second one was run for 50 generations to
optimized turbine height. Binary encoding was used for individual representation
in both genetic searches as shown in figure 3.6. The first binary string represent
turbine positioning in the environment, while the second binary string represents
turbine height for each position that contains a turbine. Several case studies were
performed in the paper, and results show that turbine layout with different turbine
height, produce more energy than same-height layouts every time.

Gao et al. [2015] also implemented a population distributed genetic algorithm using
the Island model to solve the wind farm layout optimization problem. Unfortunately,
the implementation details have not been published. Integer encoding was used to
represent individuals, but unlike those presented earlier [González et al., 2010, Kusiak
and Song, 2010, Mora et al., 2007, Saavedra-Morena et al., 2011], each individual
had the same number of turbines. The algorithm was tested on the same three
scenarios from Mosetti et al. and compared against other studies [González et al.,
2010, Grady et al., 2005, Mosetti et al., 1994, Wan et al., 2009]. For the comparison
to be valid they force their solutions to use the same number of turbines as obtained
in the results of the previous studies. In each case their resulting layout is able
to produce more energy, and has higher efficiency, however, it never achieves the
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Figure 3.6: Genotype to phenotype translation from Chen et al. [2013]. (a) Binary
string representing turbine positions, (b) binary string representing height of the
given turbines positioned by the first genetic algorithm.

highest fitness. In addition to this comparison, Gao et al. introduce an interesting
hypothetical case study of wind turbine placement on an offshore farm located in
the Hong Kong southeastern water. By using real wind data, collected over 20 years,
they demonstrate that the distributed genetic algorithm can be applied to a real-
world wind farm layout optimization problem. The resulting wind farm layout was
estimated to be able to produce 9.1% of yearly electrical consumption in Hong Kong
(2012).
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3.2 Wind Farm Layout Optimization Different Ap-

proaches

A greedy heuristic approach to the wind farm layout optimization problem was pre-
sented by Ozturk and Norman [2004]. The algorithm starts with an initial solution,
where a number of wind turbines are positioned in the wind farm at random posi-
tions. Next, the greedy algorithm tries to improve the layout by performing either
an add operation, a remove operation or a move operation. The add operation works
by randomly position one new turbine in the terrain a number of times at different
locations, and observe the change in the objective function value. The remove op-
eration works by observing the change in objective function value when a turbine is
removed, the process is repeated for all turbines. A move operation consist of moving
each turbine 4 rotor diameters away from its current position in eight wind directions
one at a time, and observe the change in the objective function value. The operation
performed by the algorithm is the one that improves the objective function value
the most. The greedy heuristic often converged to a local optimum, and the authors
try to cope with this problem by performing randomly perturbations on a number
of turbine positions if no improvements could be found using the add-, remove-, or
move operation. Three approaches were investigated to find the initial position of
the turbines; (1) randomly positioning, (2) packing the wind farm with as many
turbines as possible, and (3) start with zero turbines. Preliminary testing showed
that the second approach produced best results. The greedy algorithm was tested,
and the results were compared to a feasible solution with the maximum number of
turbines positioned, i.e. the initial layout before the algorithm was run. In 10 out of
12 case studies the algorithm improved the layout of the wind farm, with an average
improvement of 4.3%.

Bilbao and Alba [2009] designed a simulated annealing algorithm to solve the wind
farm layout optimization problem. The same wind parameters and representation
as Grady et al. [2005] were used, and the algorithm was tested on the same three
scenarios. The simulated annealing algorithm works as follows: First, an initial lay-
out is obtained by randomly positioning a predefined number of turbines. Later, a
random position that contains a turbine is chosen, and a new, randomly generated
location is suggested. If the new position is better, the turbine is moved, but if
the new position is not better, the turbine is moved with a given probability which
is regulated by a decreasing temperature parameter, in order to prevent the algo-
rithm from converging to a local optimum. In case (a) from [Grady et al., 2005]
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the simulated annealing algorithm was able to find the same optimal solution, and
that by using only ≈ 4% of the execution time of Grady et al., and only ≈ 1% of
the time spent evaluating the solution. In case (b) and (c) the simulated annealing
algorithm was able to find solutions with better fitness, higher power production,
higher efficiency, and significantly lower execution- and evaluation times, showing
that simulation annealing might be a good technique to search for the optimal wind
farm layout, and it should definitively be tested in a more realistic environment.

Eroğlu and Seçkiner [2012] proposed an ant colony algorithm for the wind farm layout
optimization problem. The algorithm was inspired by the way ants search for food,
and how ants guide each other to food sources by leaving a pheromone trail. The
algorithm operates on a predetermined number of turbines, randomly positioned.
The pheromone quantity of each turbine is decided by calculating the wake loss for
the given turbine, resulting in a stronger pheromone trail for turbines with worse
locations. Ants will follow the pheromone trail, therefore more ants will try to better
the position of the worse turbines by moving them in random directions - the turbine
is only moved if the new position is better than the current. Results are compared
against [Kusiak and Song, 2010] and it is shown that the ant colony algorithm was
able to position two more turbines, eight turbines in total, and that when the number
of turbines was greater than two, the ant colony algorithm produced more power,
experienced less wake loss and obtained higher efficiency.

Another technique to search for the best wind farm layout is swarm optimization, and
Wan et al. [2012] demonstrates how a Gaussian particle swarm algorithm can solve
the wind farm layout optimization problem. Swarm optimization, is an optimization
technique inspired by fish schooling, insect swarms and bird flocking. The algorithm
presented used an objective function that tries to maximize produced power, while
minimizing constraint violations. The algorithm works as follows: First, N parti-
cles (turbines) are placed in random (x, y)-positions. Second, the initial solution is
evaluated and the results are saved. Third, the population best position zg is saved,
along with the current best position observed for each particle Zp, which in the be-
ginning will be the initial positions. An algorithm is presented, to decide which,
out of two layouts, is the best. It works by first prioritizing layouts which violates
less constraints, and second compare power produced by the two layouts. Forth, an
updating scheme is run for a given number of iterations. It first checks if the local
best position observed by that particle zp is equal to the global best position zg,
and if so, uses an regeneration scheme that moves the particle to a random position.
Otherwise, a new position is calculated for the particle based on the particles current
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position, its current best observed position and the global best observed position and
two normalized random Gaussian numbers. If the new position is better than the
previous one, the particle is moved. A differential evolution local scheme is also incor-
porated in each iteration to improve the algorithms local search ability. It basically
works by randomly picking three random particles as potential parents for a given
particle, and combine these to generate an alternative new position, which is assign
to the particle, if it is better than the current one. Results were compared against
[Grady et al., 2005], and they showed that the power generated is higher using this
algorithm. Their algorithm is also tested in a more realistic environment and com-
pared against an empirical method as well as a simpler particle swarm algorithm. The
results showed that the power generated was increased using the proposed algorithm.

3.3 Discussion Related Work

In order to summarize the different publications that use genetic algorithms to solve
the wind farm layout optimization problem the wake-, wind-, power-, and cost model,
along with the objective function, type of genetic algorithm, representation of indi-
viduals, and novelties presented in each publication is presented in table 3.3. Note
that the table is simplified so that it fits on one page, but it still provides a good
overview of the publications.

As can be seen in the table, each article utilized some variation of the Jensen model,
developed by Jensen [1983], and later improved upon by Katic et al. [1986] and
Frandsen et al. [2007], to model wind speed decay as a consequence of the wake
effect. The same model will also be used in this thesis.

Even though not many improvements has been made to the wake model, the wind
model has evolved a lot since Mosetti et al. [1994]. As presented earlier, the three
wind scenarios developed by Mosetti et al.: (a) Single wind direction, uniform inten-
sity, (b) multiple wind directions, uniform intensity, and (c) multiple wind directions
and intensities, are not very realistic (these scenarios are represented as “simple sce-
narios” in table 3.3). The Weibull distribution, introduced by Mora et al. [2007],
models the wind distribution much better, and has been adopted by everyone, ex-
cept those who still wanted to compare their results against Mosetti et al. [1994]
and Grady et al. [2005]. As mentioned before, the Weibull distribution will also be
used to model wind distribution in this thesis, and will be described in more detail
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in chapter 4.

The majority of the publications presented used the power model presented by
Mosetti et al. [1994], however, Kusiak and Song [2010] present a more realistic,
linear power model, which also will be used in this thesis which also is explained in
chapter 4.

The quality of the cost model has varied greatly in the different studies. The very
unrealistic cost model that only takes turbine count into account has been adopted
by many, as can be seen in table 3.3 represented as “simple”. However, [Mora et al.,
2007], [González et al., 2010], [Şişbot et al., 2010], [Saavedra-Morena et al., 2011],
and [Chen et al., 2013] used more realist cost models, taking into account differ-
ent parameters such as net present value, installation cost, maintenance work, civil
work, interest rate and so on, these are represented as “complex” in the table. In the
current thesis, a very complicated objective function is presented, one which takes
into account turbine cost, substation cost, interest rate, operating costs, and turbine
count as well as produced power. chapter 4 gives an detailed explanation of the
objective function.

Other artificial intelligence methods also shows promising results in solving the wind
farm layout optimization problem. Simulated annealing [Bilbao and Alba, 2009],
ant-colony optimization [Eroğlu and Seçkiner, 2012] and swarm optimization [Wan
et al., 2012] are popular algorithms within the artificial intelligence community, that
should be optimized in order to solve the wind farm layout optimization problem.
The greedy heuristic approach presented in [Ozturk and Norman, 2004] needs to be
tested in a more realistic environment in order to find out if this method really could
be used on turbine layout positioning.

In this thesis, the wake-, wind-, power-, and cost model, and objective function was
provided by GECCO 2016, and therefore no attempt will be made in improving
any of these. Since the simple genetic algorithm presented by Mosetti et al. [1994],
different approaches has been tested in order to improve the results. Already in
2005, it was shown that by using a population distributed genetic algorithm [Grady
et al., 2005], and change a few parameters, the results from Mosetti et al. [1994]
could be improved. In Huang [2007], the focus was on showing how the Island
model performed better than a simple genetic algorithm on solving the wind farm
layout optimization problem, and his results show that the population distributed
genetic algorithm was never beaten by the simple genetic algorithm. Both Grady
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et al., and Huang et al., used the Island model when implementing their population
distributed genetic algorithms. Even though these results indicate that population
distributed genetic algorithms works better, the results of Grady et al., is beaten by
the simple genetic algorithm of González et al. [2010] when a local search is used
together with the genetic algorithm. Also, in Saavedra-Morena et al. [2011] it is
shown that a seeded simple genetic algorithm shows promising results, even though
it is not compared against a population distributed genetic algorithm. Gao et al.
[2015] also demonstrates how their Island model performed better than González
et al. [2010], Grady et al. [2005], Mosetti et al. [1994], Wan et al. [2009], but sadly
they did not share many implementation details. These results clearly show that
population distributed genetic algorithms can be an effective optimization technique
for the wind farm layout optimization problem, and they are the motivation behind
the goal statement and research questions..
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In summary, this chapter has given an overview over them most important research
within the field of wind farm layout optimization and genetic algorithms. It has
been shown that no effort have been put in testing other population distributed
genetic algorithms than the Island model. Additionally, it has been shown that
optimization methods other than genetic algorithms also can be used to optimized
wind farm layout. The next chapter contains the implementation details of the
genetic algorithm models implemented for this thesis.
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Chapter 4

Methodology

In this chapter, the simulator used to investigate the research questions is described.
An overview of the system is presented in section 4.1. Section 4.2 includes imple-
mentation details, and design decisions made when implementing the simple genetic
algorithm which is the foundation for all the population distributed genetic algo-
rithms. The wind scenarios used to evaluate the different population distributed
genetic algorithms are described in section 4.3. Section 4.4 contain implementation
details of the population distributed genetic algorithms. And, the choice of imple-
menting the genetic algorithm from scratch is explained in section 4.5.

4.1 System Architecture

The program was implemented in Java and the interactions between the different
classes of the program are shown in figure 4.1. The GeneticAlgorithm class is ex-
tended by the three population distributed genetic algorithm classes: IslandModel,
CellularModel and PoolModel. In addition, the GeneticAlgorithm class is also im-
plemented as instances in all three population distributed algorithms. The main
loop of the program is contained in the GeneticAlgorithm class. It uses instances
of the classes WindScenario, WindFarmLayoutEvaluator, Population, AdultSelec-
tion, ParentSelection, Crossover and Mutation. AdultSelection and ParentSelection
are interfaces that needs to be implemented if new methods are to be added to
the program, and Crossover is an abstract class containing one method which ev-
ery Crossover class must implement. Mutation is a class containing four different
mutation methods.
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Figure 4.1: Class Diagram.

4.2 Genetic Algorithm Implementation Details

As mentioned in chapter 2, the genetic algorithm is a four step process: Adult
selection, parent selection, recombination such as crossover and mutation, and fitness
evaluation as repeated in figure 4.2. Implementation details of each step is described
in the subsequent sub sections. In addition, the wind-, wake-, and power model used
in evaluating the genetic algorithm are described in the following subsections since
these are crucial to understanding the fitness function.
The simple genetic algorithm is implemented using the Master/Slave model. The
Master/Slave model is the most common way of implementing a simple genetic al-
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Figure 4.2: Genetic algorithm.

gorithm. Evaluation of the different layouts in a population is by far the most time
consuming step of the genetic algorithm. The Master/Slave model copes with this
problem by distributing the evaluation to slave processes, one for each core of the
computer. By evaluation the population in parallel, the heaviest computational load
is split between all the cores of the computer and the speed-up is proportional to the
number of cores. The Master/Slave model is displayed in figure 4.3.

Figure 4.3: Master-slave model. The master process distributes the population to
different slave processes, which calculate the fitness of each individual and return the
results to the master process [Gong et al., 2015].
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4.2.1 Representation

As in most of the studies presented in chapter 3, the individuals implemented for the
genetic algorithm for this thesis are represented by binary strings. However, each
position in the binary string can be directly mapped to a position in the terrain
kept in an array called ”grid”. The purpose behind this design decision is that not
all positions in the terrain, when dividing the terrain into a squared grid, are legal
turbine positions because of the existence of obstacles. By implementing individuals
this way, the genetic operations can be performed on individuals without having to
check for illegal positions since this is already taken care of as soon as the scenario
is read from file. Also, this design decision makes sure that no space is wasted
keeping illegal positions in the binary representation. Figure 4.4 shows how a given
terrain is represented using a binary string and the grid-array. The grid to the left
in the figure represents the terrain. Red cells represent illegal positions while grey
cells represents legal positions. An individual and the grid array are presented to
the right. Since there are only 9 legal positions in the terrain the individual has
length 9. The grid-array contains the (x,y)-positions of each legal positions in the
terrain. The given individual has the value 1 in positions 2, 4 and 8 respectively
(zero indexed), meaning that wind turbines are positioned in the (x,y)-positions in
positions 2, 4 and 8 in the grid-array, meaning position (1,2), (2,0) and (3,2) in the
terrain. Wind parameters and obstacle positions are read into the program from the
scenarios provided by GECCO 2016, these will be described later in this chapter.

Figure 4.4: Individual representation. The grey squares represent legal turbine po-
sitions in the terrain, while the red represent illegal positions. Since there are only
nine legal positions in this example, an individual is represented as a binary string
of length 9. The grid array is shared between all the individuals and holds the (x,
y)-coordinates for each legal position.
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4.2.2 Adult Selection

Adult selection is the process of selecting which individuals that are allowed to step
into the adult pool and thereby become potential parents for the next generation of
individuals. Three adult selection mechanisms were implemented in this thesis: Full
generational replacement, generational mixing, and overproduction. Each method
was tested in order to decide which adult selection method was more suitable for
solving the wind farm layout optimization problem.

Full generational replacement, the simplest adult selection mechanism, replaces the
entire previous adult population with the newly generated child population. The sec-
ond method, generational mixing, is illustrated in figure 4.5. As the name suggests,
generational mixing mix the previous adult pool together with the new child pool
and selects the best individuals from the mix to become the new adult population.
As can be seen in the figure, the new adult pool consists of the best individuals from
both the newly generated child pool and the previous adult pool. The two individu-
als with fitness 2 and 3 are selected from the child pool, and the two individuals with
fitness 4 and 4 are selected from the previous adult pool. The new child population
will therefore contain individuals with fitness 4, 2, 3 and 4, instead of fitness of 5, 6, 3
and 2, which would be the adult population if full generational replacement was used.

Figure 4.5: Generational mixing. The best individuals, from the pool consisting of
individuals from the previous adult population and the new child population are
selected as new the adult population.

Overproduction, the third adult selection mechanism, is illustrated in figure 4.6. The
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newly generated child population consist of twice as many individuals as there are
room for in the adult population. Therefore, the children have to compete against
each other for the spots in the adult pool.

Figure 4.6: Overproduction. The newly generated child population consist of twice
as many individuals as there are room for in the adult population. Therefore, only
the fittest individuals from the large child population grow up into adults.

4.2.3 Parent Selection

Parent selection is the process of deciding which adults become parents for the next
child generation. When choosing parent selection method there are a few concerns
that needs to be addressed. First, it is important that parents with good genes gets
their genes transferred to the next generation. However, it is also important to keep
diversity in the population so that one does not end up with a sub-optimal solution.
Two parent selection methods are implemented for the genetic algorithm for this
thesis: Tournament selection and roulette wheel selection.

In tournament selection, a given number of individuals are drawn randomly from the
population. The number of individuals drawn is decided by the variable tournament
size. These individuals compete in a tournament for one spot in the parent pool.
The individual with best fitness is selected as a parent. These tournaments continue
until the adult pool is full. Figure 4.7 shows how tournament selection works. As
can be seen in the figure, three individuals are drawn randomly from the adult pool,
meaning that the tournament size in this example is 3. The best individual, the
individual with fitness 4 is the tournament winner and is allowed to enter the adult
pool. In order to maintain diversity in the population there is a small probability
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that parents are selected randomly from the adult pool instead of with tournament
selection. This probability is called epsilon and makes sure that a small percent of
the parents that might not currently be best are not killed of right away. Different
values of the tournament size variable needs to be tested in order to find the settings
that allow the algorithm to explore different solutions, but that also prioritize the
best solutions. In chapter 5, results obtained for different values of tournament size
and epsilon are compared.

Figure 4.7: Tournament selection. Three individuals with fitness 9, 4 and 6 respec-
tively, are selected randomly from the adult population. The individuals with best
fitness, fitness 4, is the tournament winner and is selected into the parent pool.

Roulette wheel selection assigns a probability of being chosen as parent to each indi-
vidual proportional to its fitness. Individuals with better fitness will therefore have
a higher probability of beings selected into the parent pool. Figure 4.8 shows how
roulette wheel selection works. The roulette wheel on the left shows the probability
for each of the four individuals being selected. Since individual4 has the best fitness,
it has a larger probability of being selected than the others.

4.2.4 Genetic Operations

This subsection gives an overview over the genetic operations used to produce the
next child generation. Three crossover methods, elitism and three mutation methods
are implemented and will be presented.

4.2.4.1 Crossover and Elitism

Crossover is the recombination method utilized by the genetic algorithm to perform
sexual reproduction. A crossover operation produced two children by recombining
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Figure 4.8: Roulette wheel selection. The roulette wheel is shown to the left, the four
individuals to the right. Individual4 has a four times better fitness than individual2
and therefore has a four times larger probability of being selected.

genes of two parent individuals. The genetic algorithm implemented for this the-
sis has three crossover methods to chose from: Single point crossover, two point
crossover and uniform crossover [Magalhaes-Mendes, 2013]. These are all presented
in figure 4.9. As shown in figure 4.9a, single point crossover uses a randomly gener-
ated position, called the crossover point, to perform recombination. All genes from
the first parent prior to the crossover point are copied to the first child, and all
genes after the crossover point are copied to the second child, and all genes from
the second parent prior to the crossover point is copied to the second child, and
all genes after the crossover point is copied to the first child. Two point crossover
is similar to single point crossover, except that it uses two crossover points instead
of one. This is shown in figure 4.9b. In uniform crossover, there is a fifty percent
probability that each gene will be drawn from each parent as shown in figure 4.9c.
This crossover method mix up the parent genes more than the two others, therefore
more gene patterns will be lost using this method. Even though crossover is the
main recombination method it is not used for creating every child individual. Some
child individuals are copies of their parents with potential small mutation in their
genes. The number of individuals created using crossover is decided by the crossover
rate. Crossover rates are usually kept pretty high since the goal is to evolve new and
better solutions.

A method used to make sure that the best individuals in the population does not
get killed of by accident is called elitism. Elitism simply takes the best individual(s)
from the parent population and copies it(them) directly into the new child population
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(a) (b) (c)

Figure 4.9: Crossover methods: (a) Single point crossover, (b) two point crossover,
and (c) uniform crossover.

without performing any genetic operations on it(them). Elitism is commonly used
with genetic algorithm and will be used in this thesis as well.

4.2.4.2 Mutation

Although crossover is a powerful genetic operator that makes sure that child indi-
viduals inherit genes from the best parent individuals, it is not enough by itself.
Without any way to mutate genes, one can end up with a population where every
individual has the same gene value in the same position, this means that no re-
combination method will be able to change the value of that gene. Mutation is the
operation used by the genetic algorithm to make sure that the population do not
get sterile. In nature, genes can be mutated in numerous ways. In this thesis, three
mutation methods are implemented to mimic the mutation methods that can hap-
pen in genes [Soni and Kumar, 2014], these are called: Flip mutation, interchanging
mutation, and inversion mutation. Flip mutation, shown in sub-figure 4.10a, is the
most common mutation method used in genetic algorithms. As its name imply, flip
mutation works by flipping the value of bits in the genotype. Usually, mutation rates
are low since one do not want mutation to make too many changes to the good genes
inherited from parent individuals, but simply introduce some diversity. Therefore,
only a couple of bits are mutated in each genotype each generation. Interchange
mutation and inversion mutation are rarely used in genetic algorithms, however they
are included in this thesis to introduce even more diversity in the population and
hopefully help the genetic search finding even better solutions. They both intro-
duce more change than flip mutation, and will be assigned rates even lower than
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the mutation rate for flip mutation. Figure 4.10b and 4.10c shows interchange- and
inversion mutation respectively. Interchange mutation works by picking two random
genes and interchange their values, while inversion mutation works by picking two
random positions and invert each gene between those positions.

(a) (b) (c)

Figure 4.10: Mutation methods: (a) Single point crossover, (b) two point crossover,
and (c) uniform crossover.

4.2.5 Wind-, Wake- and Power Model

The evaluation class uses the same wake-, wind- and power model as Kusiak and Song
[2010]. The wake model used is the classical Jensen model [Jensen, 1983], which is
used in almost every study of the wind farm layout optimization problem, as can be
seen in table 3.3.

Wind distribution is modeled using the Weibull distribution, a continuous probability
distribution shown to model wind distribution quite well [Justus et al., 1978]. The
probability density function is shown in equation 4.1

f(x; c, k) =

{
k
c

(
x
c

)k−1
e−(x

c )
k

if x ≥ 0

0 if x < 0
(4.1)

where k is called the shape parameter and c is the scale parameter, and k, c > 0. In
most of the wind scenarios provided by GECCO 2016, k ≈ 2, this is shown empir-
ically to be a good value for wind speed distribution [Justus et al., 1978]. On the
other hand, the shape parameter vary for each wind direction. Figure 4.11 shows the
Weibull distribution plotted for k = 2 and for different values of c.

The wind scenarios used in this thesis are therefore a specification of the shape- and
scale parameters for every wind direction, where wind direction is partitioned into 24
different directions. Twenty wind scenarios are provided by GECCO 2016, 10 which
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Figure 4.11: The Weibull distribution plotted for k = 2 for different values of the
scale parameter c.

simply specify wind distribution parameters, and 10 that specify wind distribution
parameters and locations of obstacles.

The power curve used is also the same as used in Kusiak and Song [2010], it is the
linear function shown in equation 4.2,

f(v) =


0 if v < vcut−in

λv + η if vcut−in ≤ v ≤ vrated

Prated if vcut−out > v > vrated.

(4.2)

Here λ is the slope parameter, v the wind speed, η the intercept parameter, Prated

is the fixed power output, and vcut−in is the cut-in speed; the minimum speed for
which the turbine produces power, and vcut−out is the cut-out speed; the maximum
wind speed for which the turbine is kept on.

4.2.6 Fitness Function

The main task of the evaluation class is to calculate the fitness of each individual
based on the fitness function. The fitness function to be minimized is provided by
GECCO 2016, and is displayed in equation 4.3.
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fitness =
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ct · n + cs ·
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)
+ cOM · n(
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r

) · 1

8760 · P
+

0.1

n
(4.3)

Description and numerical values of all parameters in equation 4.3 are displayed in
table 4.1. As can be seen in this table, the values of n, the number of turbines,
and P , farm energy output, are not given. This is because the number of turbines,
together with the turbine positions, are the parameters to be optimized by the ge-
netic algorithm. Farm energy output is the indirect parameter that we are trying to
optimize. It is dependent on turbines count, position, wind scenario and so on, and
is of course therefore not provided in table 4.1 either.

Table 4.1: Description and value of each parameter used in the objective function
provided by GECCO 2015.

Parameter Description Value
ct Turbine cost (usd) 750 000
cs Substation cost (usd) 8 000 000
m Turbines per substation 30
r Interest rate 0.03
y Farm lifetime (years) 20
cOM Yearly operating costs per turbine 20 000
n Number of turbines
m Farm energy output

Intuitively, the objective function can be divided into different parts. The first paren-
thesis in the nominator of the first fraction is the construction cost, while the second
parenthesis is the economies of scale and the third part of the nominator is yearly
operating costs. The denominator represents the interests. The denominator of the
second fraction describes yearly power output, while the number 0.1 in the nomina-
tor of the last fraction is a farm size coefficient.
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4.3 Scenarios

Figure 4.12: Obstacles are described in the scenarios with its (x, y)-boundaries.

GECCO 2016 has provided the contestants with 20 different wind scenarios for
which the genetic algorithm can be tested on. Each wind scenario contain shape
and scale parameters, k and c respectively, for each wind directions where wind
direction is partitioned into slots that cover a 15 degree angle each, so that there
are 24 different wind directions. Unavailable areas are described in the scenario by
the parameters xmin, xmax, ymin and ymax as shown in figure 4.12. In the figure,
two obstacles are described giving their (x, y)-boundaries. The boundaries of the
obstacles are marked with black lines. The yellow area in the middle of the lines are
the illegal areas. Each wind scenario also contain values for the constants ”width”,
”height”, ”number of turbines” and ”wake free energy”. The scenarios are read from
file at the beginning of each run of the genetic algorithm.

4.4 Population Distributed Genetic Algorithms Im-

plementation Details

Now that the reader is familiar with how individuals are represented, which selection
mechanisms and genetic operators that are implemented, how fitness is calculated,
and how the scenarios look, it is time to go into details of how the population dis-
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tributed genetic algorithms are implemented. Although the population distributed
genetic algorithms were introduced in chapter 2, the details of how each step in figure
4.2 are implemented for each model was not given. Therefore, this section contains
a detailed description of how the population distributed genetic algorithms are im-
plemented.

One decision that can be mentioned here, because it applies to all the models below,
is whether the three population distributed genetic algorithms are heterogeneous or
homogeneous. In an homogeneous environment, the same rules apply to the entire
model. This means that the same adult- and parent selection mechanisms, the same
genetic operators and the same fitness function is used for the entire model, it is not
different for different Islands (Island model), workers (Pool model) or areas (Cellu-
lar model). Even though it would be very interesting to implement heterogeneous
models, it is not done in this thesis. The reason behind this decision is that it is best
to let the same rules apply to every part of every model when different models are
compared.

4.4.1 The Island Model Design Decisions

The Island model works as follows: A population of individuals are partitioned into
sub populations which are distributed onto different Islands. An Island can be con-
nected to one or more Islands and individuals on one Island can migrate to other
Islands following one of the migration routes. Table 4.2 gives an description of the
Island model parameters. For a number of generations, decided by the variable mi-
gration interval, the population on each Island follow the steps of the simple genetic
algorithm from figure 4.2. However, when the populations has evolved for migration
interval generations some individuals from one Island can migrate to another Island.
These two steps continue until the total number of generations reaches some prede-
fined value.

As mentioned in chapter 2 the Island model can be implemented with either syn-
chronized or asynchronized migration. Synchronized migration means that migra-
tion is performed at the same generation for all Island, and asynchronized migration
means that migration can be performed whenever an Island is ready. In this thesis,
the Island model is implemented with synchronous migration in order to not over-
complicate the migration function.
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Table 4.2: Island model parameter description.

Parameter Description
Deme size Number of individuals on each Island (deme)
Deme count Number of Islands (demes)
Migration rate Number of individuals that migrate
Migration interval Number of generations between migration.
Number of migrations Total number of times migration is performed.
Topology Circular

As mentioned, migration means that individuals migrates to another Island. In this
thesis, migration from one Island to another means that the best individuals from
Island i is copied onto Island j to replace the individuals with lowest fitness on Is-
land j. In other words, migration does not mean that the best individuals in Island i
leaves that Island, but that copies of them replace the individuals with worst fitness
on Island j. The number of individuals that migrate is decided by the parameter
migration rate.

As described in table 4.2 the topology implemented in this thesis is circular. This
can be seen in figure 4.13 where the legal migration routes are indicated by arrows.
Since individuals are only allowed to migrate in one direction with this topology it
will take time before the best individuals on the upper-right Island to travel to the
upper-left Island since they have to go through both Islands on the bottom. This
means that different parts of the solution space can be explored on different Island
before individuals from one Island take over the entire population.

4.4.2 Pool Model Design Decisions

In the Pool model, the individuals are distributed in a resource pool. The resource
pool is partitioned into equal size partitions so that one worker is responsible for
one partition. Each worker selects x individuals from the entire population, where x
is equal to the total population size divided by the total number of workers. Next,
each worker generates a child pool by performing genetic operations on the selected
individuals. After the new child pool is generated, each child individual is com-
pared against the individual in the resource pool currently occupying its designated
position. If the fitness of the new individuals is better than the fitness of the old
individual the new child individual overwrites the old individuals. This is illustrated
in figure 4.14. As can be seen in the figure worker i overwrites the individuals in
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Figure 4.13: Island model topology.

positions 1, 3 and 4 in the partition it is responsible for.

Figure 4.14: Pool model updating function. For each generation, each worker updates
its region if the new individuals are better than the individuals currently occupying
the position.

The pool model is asynchronous by nature. The workers, implemented as Java
threads, operate unaware of each other. Since each worker only writes to its own
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positions in the resource pool, it is not a problem that the workers work indepen-
dently without any form of synchronization. By implementing the Pool model this
way some parts of the resource pool might have better fitness that others because
they have evolved for more generations than other parts. This property ensures that
different parts of the search space is explored in different regions of the resource pool.

As mentioned above, parent individuals are selected from the entire resource pool.
However, parents are not picked completely at random. For each parent selected a
group of potential parents are selected at random from the resource pool, and these
individuals compete for the spot in the parent pool by tournament selection. This
guides the evolution in the right direction. Picking individuals at random might also
work for this model since the new individuals are only written back if they are better
than the previous individuals, however, this would make evolution extremely slow,
and it would not make sense from an evolutionary point of view because the fittest
individuals are not prioritized.

4.4.3 Cellular Model Design Decisions

The Cellular model distributes the population in a square grid. Each individual has
its own cell which corresponds to an (x, y)-position. For each generation, each cell
is updated. Each cell in the grid is updated by selecting parent individuals that are
close to the given cell, perform genetic operations on those parents and write the
newly generated individual back to the cell.

As mentioned in the background, the cells in the Cellular model could either be
updated in a synchronous fashion or an asynchronous fashion. In this thesis the
updating is synchronous, meaning that the cells are updated simultaneously.

The topology used in this thesis is a square topology, as shown in figure 4.15. Only
individuals within the square can be selected as parents for the middle cell. Parent
selection are performed by tournament selection within the square. By distributing
individuals in a grid different parts of the grid will explore different regions of the
search space.
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Figure 4.15: Cellular model topology. Only individuals within the marked square
are allowed to become parents for the middle cell.

4.5 Motivation behind Implementing the Genetic

Algorithm from Scratch

Even though GECCO 2016 has provided each contestant with an API which could
be used directly, or improved upon and used in the competition, the decision to
implement the genetic algorithm from scratch was made. Even though this decision
lead to more work for the author, several arguments supported the decision. First
of all, even though the provided genetic algorithm was implemented in Java, it was
not very object oriented nor was it modular, something that made it very difficult to
add new features to the code without having to do major changes. In addition, the
provided genetic algorithm was extremely simple with no room for making any deci-
sions about which method to use for any of the steps in figure 4.2. Other problems
such as hard-coded variables and too long methods made it very difficult to make
changes and add new features.

The new genetic algorithm is implemented so that new selection methods can be
added by simply implementing the AdultSelection- or ParentSelection interface, and
new crossover methods can be added by extending the Crossover class. This makes
the program much more flexible, if one wish to try something new. No variables are
hard-coded in the new program, but taken as parameters to the GeneticAlgorithm
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constructor, leaving no room for making errors. The major improvement, and most
important motivation behind the decisions of implementing the genetic algorithm
from scratch is that it gives the author total control over every aspect of the code,
and it was very important with modular code when the population distributed ge-
netic algorithms were implemented.

In summary, this chapter contains the implementation detail of the genetic algorithm
implemented for this thesis. Now that the reader is familiar with how the different
genetic algorithm models are implemented it is time to take a closer look at the
results obtained in this thesis.
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Chapter 5

Results and Discussion

This chapter includes presentation and analysis of the results obtained in this thesis.
Section 5.1 presents results from testing different parameter settings for the genetic
algorithm, and briefly discusses each results. Section 5.2 presents the main results
obtained when running the different population distributed genetic algorithms. Sec-
tion 5.3 contains a discussion and comparison of the results obtained in section 5.2.

5.1 Parameter settings

Parameter settings are crucial for obtaining good results with the genetic algorithm,
therefore, this whole section is devoted to the process. Simulations were run to
find the best adult selection method, parent selection method, crossover method,
crossover rate and mutation rate for the given problem. Even though it would take
much less time and effort to test these values on a toy problem, such as One Max, the
decision was made to test them on the real problem. The reason for this is that it is
not necessarily true that the parameter values most fit to solve the One Max problem
is the same as those most fit to solve the wind farm layout optimization problem.
In the wind farm layout optimization problem the relative positions of the turbines
are extremely important, this property distinguishes wind farm layout optimization
from other problems and could mean that it needs different parameter values than
a toy problem with different properties.

It is important to note that even though effort was made to find the right parameter
values for the genetic algorithm, it is impossible to obtain the optimal ones. Just
imagine trying to test every single value of the continuous parameter crossover rate,
just that would be impossible! Therefore, the values that are tested for each pa-
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rameter are based on the authors previous knowledge and experience with genetic
algorithms.

For each simulation presented in this section one parameter were optimized while
the others were kept fixed with the values shown in table 5.1. The parameters in the
table are common for all the genetic algorithm models implemented in this thesis,
however, they are only optimized when run on the Master/Slave model. Ideally, they
should be optimized for all of the models, but that would not be possible within the
time frame of this thesis.

Table 5.1: Values that were kept fixed while one by one were optimized to find the
correct settings for the find farm layout optimization problem.

Parameter Value
Wind scenario 00.xml
Evaluator KusiakLayoutEvaluator
Population size 100
Generations 100
Elitism true
Flip mutation rate 0.01
Inversion mutation rate 0.0
Interchange mutation rate 0.0
Parent selection Tournament selection
Tournament size 5% of population size
Epsilon 0.1
Crossover method Uniform crossover
Crossover rate 0.9

As can be seen in table 5.1, other parameters such as wind scenario, population
size, number of generations, whether elitism should be used and mutation rate for
interchange mutation and inversion mutation could also be optimized. However, as
explained above, the time frame of this thesis prevented the author from running
these simulations. These variables are therefore set using the authors previous expe-
rience with genetic algorithms. Testing different parameter values on a single wind
scenario might lead to values that are tailored for the given scenario and that are
not as well suited for some of the other scenarios. However, the author does not
believe this to be crucial for the final results. Population size is a value that heavily
influence the performance of the genetic algorithm, because greater population size
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increase the probability of finding the global best solution. When testing parameter
values, the population size was kept at 100 for two reasons: First, a population size
of 100 is large enough so that many different solutions can be explored. Second,
when the population size was kept at 100, the adult selection mechanism overpro-
duction would require 200 evaluations each generation. This doubles the evaluation
time, the step that is already the bottleneck of the algorithm. Elitism was set to
true for every run, meaning that the best individual of each generation will survive.
This decision is based on the authors previous experience with genetic algorithms,
where experiments has shown that elitism leads to better results because the best
individual is not lost due to coincidences. Three different mutation methods were
implemented, but experiments were only run to find the optimal value for the flip
mutation rate. Usually, flip mutation is the only mutation method used with genetic
algorithms and it is therefore also used as the main mutation method in this thesis.
Inversion mutation and interchange mutation will also be used, but they will be as-
signed low enough probabilities so that they will not make trouble, but hopefully,
lead to occasional, rare jumps from one part of the solution space to another so that
the population do not get stuck in a local minima.

In summary, the sub-sections below contain simulations run to find the parameter
values most suited for the wind farm layout optimization problem. The resulting pa-
rameter values will be used for all 4 genetic algorithm models in section 5.2. In order
to get trustworthy results, each simulation is run 10 times and the plots shown in the
subsequent sub-sections are averaged over these 10 simulations. Even though all the
models are implemented to run in parallel it takes half a day to run one simulation
on an 8 core computer, this is the reason why only the most crucial parameters are
optimized and why they are only optimized on the Master/Slave model even though
they will be used by the other models as well.

5.1.1 Adult Selection

Figure 5.1 shows the results of running the genetic algorithm with the three different
adult selection methods. Sub-figure 5.1a, 5.1b, and 5.1c shows the results for full
generational replacement, generational mixing and overproduction respectively.

The results show that full generational replacement ends up with worse fitness than
both generational mixing and overproduction, and that overproduction is the method
that is able to achieve the best fitness of the three. These results agrees with the
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authors previous experience. Note that with generational mixing, only the solutions
from the new child population that are better than those in the previous adult pop-
ulation are allowed to enter the adult pool. This means that from one generation
to another the average fitness of the new adult population can never be worse than
the average fitness of the previous adult population. If every new solution generated
is worse than those from the previous generation, the previous generation is given
another attempt to reproduce and the fitness from one generation to another is left
unchanged. However, if one or more of the new solutions are better than those in
the previous generation they will be allowed into the adult pool, and the new adult
pool will have better fitness than the previous. Full generational replacement does
not take this greedy approach. It replaces the entire previous adult population, even
though that might lead to worse average fitness from one generation to another. This
does not however mean that full generational replacement always obtains worse final
results compared to generational mixing. On this problem however, it seems like
the greedy approach taken by generational mixing works well for wind farm layout
optimization. Overproduction will, as full generational replacement, replace the en-
tire previous adult pool with new individuals. However, with overproduction, the
probability that the new adult population will have better average fitness is much
higher since it has twice as many children to choose from. This means that even
though it is not guaranteed, it is likely that the new adult population will have
higher fitness than the previous one. The results show that overproduction is the
most suitable adult selection method for the wind farm layout optimization problem.

(a) (b) (c)

Figure 5.1: Adult selection methods: (a) Full generational replacement, (b) genera-
tional mixing and (c) overproduction. Each plot shows the averaged results obtained
when running each scenario 10 times.
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5.1.2 Parent Selection

Figure 5.2 shows the results for running the genetic algorithm with parent selection
methods roulette wheel in sub-figure 5.2a, and tournament selection in sub-figures
5.2b - 5.2f. Tournament selection is run with five different values for the variable
tournament size. Clearly, roulette wheel do not work well for this problem. Roulette
wheel assigns each individual a probability of being selected proportional to its fit-
ness, and since there is not a large difference in fitness of the different individuals the
selection becomes almost random. With tournament selection on the other hand,
this problem is taken care of because it finds the best individuals out of those com-
peting, even though there is not much difference in their fitness.

As can be seen in figure 5.2, the fitness gets better as the variable tournament size
increases. However, a larger tournament size than 25 is not tested. The reason for
this is that 25 is already a very large tournament size. With 25 % of the individuals
competing in every tournament the population will not have much time to explore
different solutions because the best individuals will take over the entire population
extremely fast. As can be seen in the figure, a tournament size of 25 is not signif-
icantly better than a tournament size of 20, and therefore 20 is chosen as the final
tournament size to slow down the take-over time.

As mentioned before, epsilon is the probability that the selected individual is selected
at random from the adult pool instead of by tournament selection. Figure 5.3 shows
the result for testing the values 5 %, 10 %, and 15 %. As can be seen in the figure,
varying epsilon does not have a significant impact on the fitness of the wind farm
layout optimization problem.

5.1.3 Crossover Methods

Figure 5.4 show the results when running the genetic algorithm with single point
crossover, two point crossover, and uniform crossover as can be seen in sub-figures
5.4a, 5.4b, and 5.4c respectively. The experiment show that no crossover method
is significantly better than the others in solving the wind farm layout optimization
problem. This result is unexpected. Intuitively, one would expect uniform crossover
to perform worse because it mixes up the relative positions of the wind turbines more
than single point crossover and two point crossover. However, the results contradicts
this hypothesis.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Parent selection methods: (a) Roulette wheel, (b) tournament selection,
tournament size 5 (c) tournament selection, tournament size 10, (d) tournament
selection, tournament size 15, (e) tournament selection, tournaments size 20, and (f)
tournament selection, tournament size 25. Each result is an average over 10 runs.

(a) (b) (c)

Figure 5.3: Different epsilon values: (a) Epsilon 0.05, (b) epsilon 0.10, and (c) epsilon
0.15. The tournament size was kept fixed at 20 since that was proven to give the
best results. Each plot is an average over 10 runs.
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(a) (b) (c)

Figure 5.4: Crossover methods averaged over 10 runs: (a) Single point crossover, (b)
two point crossover and (c) uniform crossover.

5.1.4 Crossover Rate

Figure 5.5 displays the results of running the genetic algorithm with different crossover
rates. As can be seen in the figure, the crossover rate do not have a large impact
on the fitness for this problem. A crossover rate below 0.4 gives slightly worse fit-
ness than a crossover rate above 0.6. However, it is not obvious which crossover
rate is best out of those presented in sub-figures 5.5d, 5.5e, and 5.5f. The differ-
ences in the results obtained when running the algorithm with these crossover rates
are not significant, and it can not be stated that one is better than the others based
on these results. It can only be stated that a crossover rate above 0.6 should be used.

5.1.5 Mutation Rate

In figure 5.6, the effect of varying the mutation rate can be seen. As the figure shows,
if the mutation rate is very low as shown in sub-figure 5.6a, the population is clearly
not able to find a good solution. Mutation means adding or removing a turbine. As
sub-figure 5.6a show, with a mutation rate that is too low the genetic algorithm will
not be able to add or remove enough turbines and therefore the population ends up
in a local minima. On the other hand, when the mutation rate gets too high, as
shown in sub-figure 5.6e, the population is able to explore many different solutions
something that increases its chance of finding the global minima. However, since
mutation is performed too frequently, it is not able to stay there even if it finds the
global optimal solution. These results show that mutation rate largely impacts the
fitness, and that a mutation rate of 0.001 clearly gives the best results.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Crossover rates average over 10 runs: (a) Crossover rate 0.0, (b) crossover
rate 0.2, (c) crossover rate 0.4, (d) crossover rate 0.6, (e) crossover rate 0.8, and (f)
crossover rate 1.0.

5.2 Results

5.2.1 Final Parameter Values

This sub-section gives an overview of the final parameter values that will be used in
the subsequent sub-section when running the different models. Table 5.2 provides an
overview of the parameter values that will be used when running the Master/Slave
model. The adult selection method, parent selection method, parent selection param-
eters, crossover method, crossover rate and mutation rate are those that was proven
to work best for the Master/Slave model in section 5.1. As table 5.2 show, the pop-
ulation size was set to 100 and the number of generations to 200. A population size
of 100 is quite small, but since overproduction is the selected adult selection method,
a population size of 100 leads to evaluation of 200 individuals for each generation.
Since evaluation is the bottleneck for wind farm layout optimization, a larger popula-
tion size would not be possible to evaluate for 200 generations within the time limits
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(a) (b) (c)

(d) (e)

Figure 5.6: Mutation rate averaged over 10 runs: (a) Mutation rate 0.0001, (b)
mutation rate 0.0005 and (c) mutation rate 0.001, (d) mutation rate 0.005 and (e)
mutation rate 0.01s.

of this thesis. A possibility could be to pick a larger population size and a smaller
number of generations, but since the objective of this thesis is to explore population
distributed genetic algorithms a large number of generations is crucial. Population
distributed genetic algorithms need more time to find good solutions because they
spend more time than simple genetic algorithms on exploring different parts of the
search space.

The parameter values in table 5.2 will also be used for all of the population dis-
tributed models if not otherwise stated. Table 5.3 contains the additional parameter
values used by the Island model, and those parameters from table 5.2 that have new
values for the Island model. The parameter deme size, the number of individuals
on each Island, is set to 26 resulting in a total population size of 104, not 100 as in
table 5.2. The reason behind this is that the implementation requires a population
size of even numbers on each Island, this is not a problem since a few additional
individuals will not be enough to impact the final results. The parameter migration
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Table 5.2: Parameter values used for the Master/Slave model.

Parameter Value
Population size 100
Generations 200
Crossover method Single point crossover
Crossover rate 0.9
Elitism True
Flip mutation rate 0.001
Inversion mutation rate 0.000001
Interchange mutation rate 0.000001
Adult selection mechanism Overproduction
Parent selection mechanism Tournament selection
Tournament size 20% of population size
Epsilon 0.1

rate was set to 2, meaning that only 7 % of the individuals on an Island are replaced
by new individuals each migration. This number was set to be low so that the new
individuals would not be able to take over the new population too fast. The param-
eter deme count is set to 4 and the topology is circular as presented in figure 4.13 in
chapter 4. In order to let the populations on the different Islands explore different
parts of the search space 20 generations are run between each migration. Migration
is performed 10 times so that the total number of generations becomes 200 as for the
Master/Slave model.

Table 5.3: Parameter values used for the Island model.

Parameter Value
Deme size 26
Total population size 104
Deme count 4
Migration rate 2
Number of migrations 10
Migration interval 20
Topology Circular (figure 4.13)

As can be seen in table 5.5, the Cellular model is run with population size of 225. At
a first glance this might seem like an odd decision since the models above has a pop-
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ulation size of about 100 individuals, but the reason is simple. For the Master/Slave
model, and Island model overproduction is used as the adult selection technique be-
cause it was proven the best technique in section 5.1. For the Cellular model however,
it does not make sense to use overproduction because of the way the grid is updated.
Each new individual is generated to occupy a particular spot in the grid, because it
has its own area for which its parents can be chosen from. Since each new individual
is mapped to one position in the grid, overproduction does not make sense to use
and it is therefore not used for the Cellular model. Because of this, the population
size is set to approximately 200 individuals, so that the Cellular model performs the
same number of evaluations as the other models each generation. The reason why
the population size is 225 and not 200 is because a quadratic grid is used to distribute
the production and 225 is equal to 152. As explained in the methodology chapter,
the topology used is a simple square containing nine individuals. The individual in
the middle square can only be replaced by individuals generated by recombining in-
dividuals within the square grid. The decision to make the neighborhood this small
is that it will give different solutions the opportunity to dominate different areas of
the grid, giving the algorithm time to explore.

Table 5.4: Parameter values used for the Cellular model.

Parameter Value
Population size 225
Topology Square (figure 4.15)

Table 5.5 shows the parameter values used by the Pool model that differs from those
in table 5.2. The population size is set to 200 so that 200 evaluations are performed
for each of the 200 generations. As for the Cellular model, the individuals of the Pool
model occupy specific positions. Child generation consist of producing one new indi-
vidual for each position that a worker is responsible for. If overproduction was used,
it would be no clear mapping between new child individuals and the old individuals
of the worker because twice as many individuals as positions would be generated,
this does not make sense for the Pool model. Because of this a population size of
200 individuals were used so that 200 evaluations are performed for each generation
as for the other models.

In summary, in order to make the comparison as fair as possible, the parameter
values of each models is set so that approximately 200 individuals are evaluated for
each of the 200 generations. This ensures that every model gets approximately the
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Table 5.5: Parameter values used for the Pool model.

Parameter Value
Population size 200
Number of workers 4

same processor time.

5.2.2 Performance Metrics

Each of the 4 genetic algorithm models are tested on 4 wind scenarios. The wind
scenarios are provided by GECCO 2016 and can be seen in table 5.6. As can be
seen, the first two scenarios are without obstacles, while the two last scenarios are
with obstacles.

Table 5.6: Test scenarios provided by GECCO 2016.

Scenario Name Obstacles
00.xml No obstacles.
05.xml No obstacles.
obs00.xml Obstacles.
obs05.xml Obstacles.

The performance of the 4 models on each of the four scenarios are measured using
the performance metrics shown in table 5.7. The first performance metric is the
fitness function value presented in chapter 4. The fitness value used in the results
are the fitness values for the best individual for each generation. The efficiency is a
measure of how much energy the given layout is able to produce out of the power
the layout would have been able to produce had there been no wake effect, as shown
in equation 5.1

efficiency =
yearly power output

wake free yearly power output
. (5.1)

The performance metrics cost and power represent the cost and power part of the
fitness function. Figure 5.7, shows which parts of the fitness function presented in
chapter 4 that represents cost and which represents power. The last metric, number
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of turbines, is intuitively the total number of turbines in the layout.

Figure 5.7: A screen shot of the fitness function presented in chapter 4 where the
cost and power metrics are shown.

Table 5.7: For each scenario, results are measured in these measurements.

Results measured Description
Fitness Fitness of the best individual
Efficiency Amount of power produced out of maximum
Cost Total cost (USD)
Power Yearly power output (kWh)
Number of turbines Total number of turbines

In chapter 2, one of the resulting layouts from [Grady et al., 2005] was shown as
an example layout. The resulting layouts from this project are however too large to
include in this thesis. Luckily, will the performance metrics presented above give a
much more clear understanding of the performance of the models than any resulting
layout would.

5.2.3 Results Scenario 00.xml

The results when all the models were run on scenario 00.xml is shown in figure 5.8.
It is important to note that each of the plots display results averaged over 10 simu-
lations so that the discussion below is based on the models’ average behavior. The
fitness plot is shown in sub-figure 5.8a. The Master/Slave model is able to get the
best fitness, the Pool model comes in second, quite close to the Master/Slave model,
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the Island model comes in third, and the Cellular model comes in forth, clearly not
able to keep up with the other models.

Sub-figure 5.8b shows the performance of the different models in terms of efficiency.
Efficiency is a very interesting measure, since it shows the models’ ability to live up
to their potential. It is interesting to note that even though the Master/Slave model,
Island model and Cellular model end up with approximately the same number of
turbines they are not able to produce equally efficiency layouts. This shows that
the Island model and Cellular model are not able to position the given number of
turbines in the wind farm as well as the Master/Slave model.

As shown in sub-figures 5.8c and 5.8e, the plots for cost and number of turbines
have identical shape. This makes sense off course since the cost increase and de-
crease with the number of turbines. The plot in sub-figure 5.8e show that the Pool
model on average end up with layouts that have a higher number of turbines. Solu-
tions with many turbines will be able to produce much energy, despite the fact that
they suffer more from wake loss than layouts with fewer turbines. The Pool model
ends up with layouts that score well on fitness, even though they are more expensive
than those obtained by the other models because they in return produce more energy.

As shown in figure 5.8e, the Island model spends the first 40 generations or so, ex-
ploring layouts with higher number of turbines before it realizes that settling on a
layout with fewer turbines decrease the cost at the same time as it increases efficiency
because of reduced wake loss. The cost and number of turbines plots of the Island
model are very interesting because they show the effect of migration. As sub-figures
5.8e and 5.8c shows, the model jumps from one solution space to another at genera-
tion 20 and 40, the generations when migration is performed.

As opposed to the other model, the Cellular model is able to explore different num-
ber of turbines for many generations as can be seen in sub-figure 5.8e. For the other
models, it seems like individuals with a given number of turbines soon has monop-
olized the entire population, but for the Cellular model different parts of the grid
still explored different number of turbines after 200 generations. Even though this
property is desirable, the Cellular model takes it too far. While the other models are
able to optimize the positions of turbines in their layouts after stabilizing on a given
number of turbines, the Cellular model never reaches this phase.

The performance of the different models can be viewed in terms of power in sub-
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figure 5.8d. Power, as mentioned above, is closely related to the number of turbines.
As the Pool model has discovered, a solution with more turbines leads to higher en-
ergy output. As the sub-figure show, after the models have stabilized on a particular
number of turbines, the power is slowly increasing. This is because the turbines are
slowly moved into positions with less wake loss. It is interesting to observe that even
though the Island model and Cellular model has found layouts with as few turbines
as the Master/Slave model, they are not able to optimize the turbine positions as
well as the Master/Slave model in the same number of generations.

In summary, the optimization can be viewed as consisting of two phases. The first
phase is the search for the optimal number of turbines, while the second phase consist
of moving turbines around in order to reduce wake loss. The Island model stays in
phase one longer than the Master/Slave model and the Pool model. The Cellular
model never leaves phase one. While the population of the other models are mo-
nopolized by individuals with the same number of turbines in a few generations, the
Cellular model is still exploring different numbers of turbines after 200 generations.

5.2.4 Results Scenario 05.xml

The results for running the different models on scenario 05.xml is shown in figure 5.9.
The fitness plot is shown in sub-figure 5.9a. As for scenario 00.xml, the Master/Slave
model obtains the best fitness closely followed by the Pool model. The Island model
comes in third again, and the Cellular model is not able to keep up with the other
models on this scenario either. After 200 generations the Cellular model has a fitness
which each of the other models had beaten already at generation 10.

The efficiency plot is shown in sub-figure 5.9b. The Master/Slave model and Pool
model are able to find a solution with approximately the same efficiency. The Island
model is a few steps behind, while the efficiency of the Cellular model is increasing
extremely slowly.

Sub-figures 5.9c and 5.9e shows cost plot and number of turbines plot respectively.
As can be seen, all the models end up with different number of turbines on average.
This could indicate that this layout is harder to optimize than the one above where
3 of the models ended up with the same average number of turbines. As was the
case for the scenario above, the Master/Slave model and Pool model have decided
on the number of turbines in approximately 10 generations, the population of the
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Island model has not been monopolized before after 40 generations, and the Cellular
model never stabilize on a given number of turbines.

Power is closely related to the number of turbines, and as can be seen in sub-figure
5.9d, the Island model, which is the model that found layouts with the highest num-
ber of turbines on average, is able to produce most energy. The Cellular model ends
up with the second highest number of turbines on average, yet, it ends up with the
layouts that produce less power on average. This should not be possible, and shows
the Cellular model’s inability to position turbines in positions that reduce wake loss.
The Master/Slave model finds solutions with a larger number of turbines than the
Pool model, and is therefore also able to produce a little more energy as expected.

5.2.5 Results Scenario obs00.xml

Figure 5.10 shows the results obtained when running the models on scenario obs00.xml.
As for scenairo 00.xml and 05.xml, the Master/Slave model obtains the best fitness,
the Pool model the second best, the Island model third best and the Cellular model
the fourth best, as can be seen in sub-figure 5.10a.

As for efficiency, the results are similar as those observed for scenario 05.xml as can
be seen in sub-figure 5.10b. Both the Master/Slave model and the Pool model are
able to optimize their solutions so that they produce more than 84.5 % of the wake
free energy. The Island model however, is only able to produce just above 83.5 % of
the wake free energy.

As shown in sub-figures 5.10c and 5.10e the Island model ends up with a higher
number of turbines on average than the other models. The Cellular model ends up
with the second highest number of turbines, the Master/Slave model with the third
highest number of turbines and the Pool model with the lowest number of turbines.
These results are similar to the ones obtained on scenario 05.xml. The high number
of turbines obtained by the Island model explains why the model scored so badly on
efficiency.

The Island model finds the solutions which produces most power, a reasonable re-
sult since no other model ends up with more turbines. However, the Island model is
closely followed by the Master/Slave model even though it finds a solution with fewer
turbines. This shows that the Master/Slave model is much better at optimizing the
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turbine positions. One problematic observation is that the Cellular model ends up
with a solution that produces less power than all the other models even though it
ends up with a solution with high number of turbines. This results show that the
Cellular model is not able to find a solution that position the turbines well within
200 generations.

5.2.6 Results Scenario obs05.xml

Figure 5.11 shows the results from scenario obs05.xml averaged over 10 runs. Fitness
is shown in sub-figure 5.9a. As can be seen, the result are similar to those observed
for the other scenarios and they will therefore not be discussed here.

In summary, the results show that the Master/Slave model is able to optimize wind
farm layout better than the population distributed models. The Master/Slave model
and Pool model only spend a few generations testing solutions with different number
of turbines before settling for a given number and start optimizing turbine positions.
The Island model reaches this step a little later, while the Cellular model new do.
It is very unlikely that any of the models have found the global optimal solution for
any of the scenarios given how few number of turbines they explore compared to how
large the search space is.
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(a) Fitness (b) Efficiency

(c) Cost (d) Power

(e) Turbines

Figure 5.8: Scenario 00.xml averaged over 10 runs: (a) Fitness plot, (b) efficiency
plot, (c) cost plot, (d) power plot, and (e) number of turbines.
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(a) Fitness (b) Efficiency

(c) Cost (d) Power

(e) Turbines

Figure 5.9: Scenario 05.xml averaged over 10 runs: (a) Fitness plot, (b) efficiency
plot, (c) cost plot, (d) power plot, and (e) number of turbines.
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(a) Fitness (b) Efficiency

(c) Cost (d) Power

(e) Turbines

Figure 5.10: Scenario obs00.xml averaged over 10 runs: (a) Fitness plot, (b) efficiency
plot, (c) cost plot, (d) power plot, and (e) number of turbines.
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(a) Fitness (b) Efficiency

(c) Cost (d) Power

(e) Turbines

Figure 5.11: Scenario obs05.xml averaged over 10 runs: (a) Fitness plot, (b) efficiency
plot, (c) cost plot, (d) power plot, and (e) number of turbines.
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5.3 Discussion

In the previous section it was shown that the non-population distributed Mas-
ter/Slave model consistently was able to evolve layouts with better fitness than the
3 population distributed models. The Pool model came in second, the Island model
came in third and the Cellular model came in fourth and last. There can be many
reasons for this, and they will all be discussed in this section. The main results are
summaries below.

• The non-population distributed Master/Slave model was the model able to
obtain the best results.

• The Pool model obtained the second best results, with fitness values close to
those obtained by the Master/Slave model.

• The Island model obtained the third best results. This model spent more time
exploring different number of turbines than the Master/Slave model and the
Pool model.

• The Cellular model obtained the forth best results. This model was not able
to produce efficient wind farm layouts.

As mentioned earlier, the wind farm layout optimization problem is extremely hard,
if not impossible, to solve analytically. The solution space is simply too huge for any
computer to evaluate every possible wind farm layout to find the best one. For a
wind farm with only 500 legal turbine positions, 2500 different layouts exists! With
a solution space this large, it is very unlikely that a genetic algorithm is able to find
the global optimal solution. As the results show, the Master/Slave model spend less
than 10 generations before individuals with a given number of turbines have monop-
olized the population. It is therefore unlikely that it has found the global optimal
number of turbines. One would expect that a model that spends more time testing
different number of turbines would be able to come up with better solutions. How-
ever, the results contradicted this hypothesis. The Island model is the only model,
except from the Cellular model, able to explore different number of turbines for a
significant amount of time. Still, the model is not able to find layouts as good as
those found by the Master/Slave model and the Pool model. These results suggest
that the models benefit from settling for a sub-optimal number of turbines fast so
that they have more time to spend optimizing the positions of the turbines.
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It could also be the case that the Master/Slave model were able to obtain better
results than the population distributed models because the parameter values were
tailored for this model. This is definitively an advantage for the Master/Slave model.
Even though the parameters, selection mechanisms, and genetic operations are com-
mon for all the models, it is not certain that the settings that works best for the
Master/Slave model works best for the other models. If these settings had been tai-
lored for each model it could have been the case that one or more of the population
distributed genetic algorithms would be able to perform better. But, as explained
before, the 20-week time frame of this project prevented the author form tailoring
these settings for each of the population distributed model. However, since each
model is solving the same problem it is not very likely that there would be huge
differences in the settings for the different models.

Another reason that might explain why the population distributed models were not
able to keep up with the Master/Slave model is that the parameters that are unique
for the different population distributed models were not optimized. Parameters such
as deme size, deme count, migration rate, migration interval, and number of migra-
tions for the Island model, and number of workers for the Pool model were selected
based on values that have worked well on other problems. Different topologies for
the Island model and the Cellular model should also have been tested in order to find
out which where the optimal ones. However, as mentioned in the paragraph above,
time limitations prevented the author from testing and optimizing these values.

In spite of the fact that the results show that the traditional non-population dis-
tributed Master/Slave model works best for the wind farm layout optimization
problem it is important to note that these results could be different under differ-
ent circumstances. It has only been proved that it performs best when each model
is provided the same resources, with the parameter values presented in sub-section
5.2.1. One challenge with using genetic algorithms is that they can be implemented
in so many different ways. As shown in section 5.1, different selection mechanisms,
genetic operations and parameter values influence the performance of the genetic
algorithm. It is impossible to find the optimal combination of the parameters, be-
cause it would require testing every value of every parameter against every value of
all other parameters. Therefore, it can only be concluded that non-population dis-
tributed models perform better than population distributed models under the given
circumstances.
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Even though providing each of the models with the same amount of computer re-
sources seems fair it also introduces challenges. The main property that distinguishes
population distributed genetic algorithms from non-population distributed genetic
algorithms is that they spend more time exploring different solutions in order to
hopefully find the global optimal solution. This means that population distributed
genetic algorithms by nature require more time than non-population distributed ge-
netic algorithms. In order to satisfy this requirement, but also provide a fair compar-
ison one could allow the models to run for the same number of generations after the
population has decided on the number of turbines it wish to pursue. This way, the
population distributed genetic algorithms would not be punished because they spend
more time exploring different number of turbines. As mentioned earlier, the Pool
model is not able to explore different number of turbines for a significant amount of
time, this adjustment would therefore not affect the results of the Pool model. The
Island model on the other hand would probably benefit from this scheme. The Cel-
lular model would probably also benefit from this scheme, however, it would require
that it run for so many more generations that it would be impossible to do in practice.

In chapter 3, Grady et al. [2005] and Huang [2007] showed that under different
circumstances, the Island model were able to find better wind farm layouts than a
traditional non-population distributed model. It was therefore a little surprising that
the Island model were outperformed by the Master/Slave model in this project, but
there can be many reasons for this. Grady et al. [2005] implement an Island model
and compare the results obtained with those of Mosetti et al. [1994], which was ob-
tained with a traditional non-population distributed genetic algorithm. However,
Grady et al. [2005] increased both the population size and the number of genera-
tions in their experiment. It can therefore not be stated with certainty that the
Island model were the key to their success, it could just as likely be the increase
in population size or the increase in the total number of generations. Huang [2007]
on the other hand, implemented one traditional genetic algorithm and one Island
model and compare their results when both models were run for the same number of
generations with the same population size. It is therefore more surprising that the
results obtained in this thesis were different from those obtained by Huang [2007],
but there can be many reasons for this. In the experiments done by Huang [2007],
the population size were 3 times as large as in this project and the total number
of generations were more than 12 times the total number of generation used in this
thesis. Obviously, a larger population size is an advantage for genetic algorithms.
The probability of finding the global best solution increase with the population size.
This is also true for the number of generations, increasing the total number of gen-
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erations increases the probability of finding the global optimal solutions. It could
therefore be the case that if the Island model in this thesis were run with a larger
population size, or for more generations it could surpass the Master/Slave model.
Another difference between this project and the project of Huang [2007] is the topol-
ogy. In the topology of Huang [2007], 20 Islands were used, five times as many
as in this project. This means that it would take longer for individuals from one
Island to monopolized the entire population something that also could benefit the
model. Other differences between this project and the project of Huang [2007] are
the fitness function and the wind scenarios. In this project, the fitness function
and wind scenarios are much more complex than the ones used in Huang [2007].
Therefore, it could be the case that while the Island model is able to outperform the
simple genetic algorithm with a simple fitness function on simple scenarios, it comes
up short when the fitness function and scenarios are more complex and more realistic.

The Pool model stands out as the population distributed genetic algorithm fittest
for solving the wind farm layout optimization problem. One reason why this might
be is that out of the 3 population distributed models, the Pool model is the one most
similar to the Master/Slave model. As mentioned above, the parameter values were
optimized when tested on the Master/Slave model, and since the Pool model is most
similar to the Master/Slave model it is likely that the same parameter values would
work for this model. As the Master/Slave model, the Pool model does not waste
many generations searching for the optimal number of turbines. It makes the deci-
sion in less than 15 generations, and spends the rest of its time optimizing solutions
with that given number of turbines. This worked well for the Master/Slave model,
and it worked well for the Pool model too.

The Cellular model is outperformed by all the other models. It is not able to get
results that are close to those obtained by the others. One reason for this is that
the Cellular model is by far the model that needs most generations to find a good
solution. For example, for the individual in the upper left corner, it would take a
minimum of 14 generations to spread its genes to the lower right corner. The Cellu-
lar model is simply too slow to compete with the other models. A solution to this
problem could be to use a larger square for which parents for each individual can
be selected from. This would however make the model more similar to the Mas-
ter/Slave model, and make it lose its unique features. As mentioned in chapter 4,
the updating function used by the Cellular model works so that each individual is
replaced each generation, even when the new individual has worse fitness than the
current individual. This explains why the Cellular model fitness get worse for the
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first 5-10 generations, before it slowly starts to get better. If the updating function
had been similar to the one used by the Pool model, so that each individual were
only replaced if the new individual had better fitness, the results might have been
better. However, it could also be the case that this greedy approach would lead to
worse results in the end.

Even though it is outside the scope of this thesis, it is interesting to discuss the fitness
function. It is very hard to find the optimal fitness function, i.e. the fitness func-
tion that guides the population towards the layout that will make the owners most
money. The fitness function is based on cost estimates, power estimates and wind
predictions. Therefore, it might not be the case that those who came up with the
fitness function is 100% certain that it is optimal. Because of this, it would probably
be interesting for the owners of the wind farm to take a look at the different results
obtained by the different models and make up their own decision about which they
would want to implement.

In summary, it has been showed that population distributed genetic algorithms are
not always able to come up with better results than the traditional, non-population
distributed genetic algorithm. Now that the results are presented and discussed it is
time to go back and answer the research questions.
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Chapter 6

Conclusion

In this thesis, different genetic algorithm models have been implemented and tested.
The goal of the thesis was to investigate how population distributed genetic algo-
rithms would perform when used to solve the wind farm layout optimization problem.
The performance of the population distributed genetic algorithms were compared to
the performance of the simple genetic algorithm and the performance of each other.
In this chapter, an overview of the thesis will be presented in section 6.1. In section
6.2 the goal and research questions are discussed and answered. Section 6.3 contains
a discussion of how this thesis contribute to the field of wind farm layout optimization
using genetic algorithm technology, and section 6.4 contains suggestions to further
work.

6.1 Overview

In chapter 2, the wind farm layout optimization problem was introduced and chal-
lenges to wind farm construction were presented. An introduction to genetic algo-
rithms was also given, and the 3 population distributed genetic algorithms investi-
gated in this thesis were introduced.

Chapter 3 contains a thorough review of research within the field of wind farm layout
optimization using genetic algorithm technology. In table 3.3 the most important
features of each publication is presented. Chapter 3 also contain a brief overview
of other artificial intelligence methods that have been used to optimize wind farm
layout. During the research phase, it became apparent that no attempt had been
made to investigate the performance of the Pool model and the Cellular model on
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wind farm layout optimization. The only population distributed genetic algorithm
reported tested was the Island model [Gao et al., 2015, Grady et al., 2005, Huang,
2007, Şişbot et al., 2010, Wan et al., 2009]. The fact that no attempt had been made
in testing other population distributed genetic algorithms than the Island model on
the wind farm layout optimization problem, even though the Island model performed
so well, was the main motivation behind the choice of the goal statement and re-
search questions.

Chapter 4 presents the methodology for investigating the goal- and research ques-
tions. The decision was made to implement the genetic algorithm from scratch and
connect it to the wind farm simulator provided by GECCO 2016. The chapter first
gives a system overview. Next, the implementation details for the simple genetic
algorithm are presented and discussed. The wind-, wake-, and power model, fitness
function and test scenarios are also given. Additionally, the design decisions for the
3 population distributed genetic algorithms are presented and explained.

The final results of the experiments are presented in chapter 5. The first part of the
chapter contains the results of testing different parameter values, selection mecha-
nisms and recombination mechanism. The second part of the chapter contains the
results obtained when running the different genetic algorithm models on 4 different
wind scenarios, 2 containing obstacles and 2 not containing obstacles. A discussion
of the results are provided at the end of the chapter. The results show that the
Master/Slave model is able to find better results for each of the 4 scenarios. The
Pool model performs second best, the Island model third best and the Cellular model
forth best.

6.2 Goal Evaluation

The objective of this thesis was to investigate the possible advantages of using popu-
lation distributed genetic algorithms in optimizing wind farm layout. In this section,
the research questions will be reviewed, answered and discussed.

Research question 1

Can distributed genetic algorithms improve the quality of the solution
to the wind farm layout optimization problem as compared to a simple
genetic algorithm?
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The results from this thesis show that population distributed genetic algorithm does
not necessarily find better solutions than the simple genetic algorithm for the wind
farm layout optimization problem. In this thesis, the Master/Slave model consis-
tently found better wind farm layouts than the population distributed genetic algo-
rithms.

As mentioned in chapter 1 the wind farm layout optimization problem is impossi-
ble to solve analytically because the search space is too big. For a wind farm site
with 500 legal turbine positions 2500 different layouts exist, that is, more layouts
than the number of particles in the universe! This analogy explains just how com-
plex the wind farm layout optimization problem is, and it illustrates how unlikely
it is that a genetic algorithm is able to come up with the global optimal solution.
The Master/Slave model is the model that spends the least time exploring different
number of turbines. It settles on a given number of turbines after approximately 10
generations and starts optimizing the turbine positions within that solution space.
This strategy of settling for a local minima fast and optimize turbine positions for
as many generations as possible seem to work! And, as the results imply, this might
be the property that makes the Master/Slave model outperform the other models.

Another possible explanation why the Master/Slave model obtain better results than
the population distributed genetic algorithms could be that the genetic algorithm pa-
rameters and selection strategies were optimized running this model. It might be the
case that the population distributed models could obtain better results if these set-
tings where tailored for every model. Sadly, the time frame of this thesis prevented
the author to perform these experiments for every model.

It is important to note that this thesis have only proven that the Master/Slave
model performs better than population distributed genetic algorithms when each
model is provided the same amount of resources. As mentioned in the discussion,
it could be argued that it is wrong to compare population distributed models with
the Master/Slave model with the same amount of resources. The essential property
of population distributed models is that they spend more time exploring different
number of turbines before they settle on a given number and start optimizing turbine
positions. However, it would be very difficult to compare the results of the models
were they not given the same amount of resources.

Another fact that might explain why the population distributed genetic algorithms
were not able to come up with results as good as the Master/Slave model could be
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that the parameters that are specific for the population distributed models were not
optimized, but set based on the authors previous experience with genetic algorithms.
As mentioned many times before, there was no time to perform these experiments
in this project.

Research question 2

Which distributed genetic algorithm works best for the wind farm layout
optimization problem? What properties are essential for its success?

Out of the population distributed genetic algorithms, the Pool model was able to
find the best solutions. The Island model also came up with acceptable results, while
the Cellular model had trouble keeping up with the other models.

Above it was discussed that the property that made the Master/Slave model superior
to the other models could be that it does not waste time searching for the optimal
number of turbines, but settles fast in a local minima, and spends most of its time
optimizing wind turbine positions. The results obtained by the Pool model supports
this explanation. The Pool model is the population distributed genetic algorithm
that resembles the Master/Slave model most. The results show that it settles on a
given number of turbines almost as fast as the Master/Slave model and spend an
extensive amount of time optimizing turbines positions. The difference in fitness be-
tween the Master/Slave model and the Pool model is small enough so that it might
be reasonable to conclude that if the settings had been tailored for the Pool model,
it would have been able to obtain similar results.

As mentioned, as opposed to the Pool model, the Island model was able to take ad-
vantage of its population distributed property by using it to explore different number
of turbines. It was expected that this property would be crucial for the success of
the populating distributed genetic algorithms. However, this thesis have proven that
under the given circumstances this property was not an advantage. As discussed
before, a number of reasons could explain this result. First, it might be the case
that this property is only advantageous when the model is allowed to run for more
generations, and is allowed to optimize each solution longer. It might also be the
case that this exploration is a waste of time because the algorithms are not able
to find the global optimal solution anyway, and should concentrate on optimizing a
local minima.
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The Cellular model was not able to come up with good solutions for the problem.
The model performed so much worse than the other models that it is safe to say that
it is not suited for wind farm layout optimization. The problem with the Cellular
model is that it would require so much more time than the other models that it
would be unfit to use, at least when run on a personal computer.

In summary, genetic algorithms have been used trying to solve the wind farm layout
optimization problem for more than 20 years. Genetic search algorithms have be-
come the primary artificial intelligence technique in wind farm optimization because
the problem is too complex to solve analytically. However, the complexity of the
problem is also apparent when genetic algorithms are used. It is shown that prop-
erties that usually are advantageous for genetic algorithms such as their ability to
explore different solutions might not benefit wind farm optimization. However, the
suggestions presented in section 6.4 should be investigated before it can be said with
certainty that population distributed models are less suited for wind farm layout
optimization than simple genetic algorithms.

6.3 Contributions

This thesis contribute to the field of wind farm layout optimization in more than
one way. First of all, chapter 3 contains the most complete survey of the state of
the art within wind farm layout optimization and genetic algorithms. Even though
the survey was mainly a byproduct of the thesis, meant to provide the author and
reader with an overview, it has become one of the biggest contributions of this thesis.
Samorani [2013] includes a small survey of different techniques used to optimize wind
farm layouts, but it only covers a fraction of the research presented in the survey in
chapter 4. A survey of the state of the art would be very useful for other researchers
working on wind farm layout optimization.

The survey in chapter 3 showed that genetic algorithms are suitable for wind farm
layout optimization. However, no attempt, has been made in investigating the per-
formance of the Pool model and Cellular model on the wind farm layout optimization
problem. Therefore, this thesis contributes to the field by being the first project at-
tempting to show which, if any, of the population distributed genetic algorithms are
best equipped for wind farm layout optimization. The results obtained in this thesis
can be used as a basis for further research within the field. Section 6.4 contains sug-
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gestions on how the research presented in this thesis could be investigated further.
Many interesting directions can, and should, be taken in order to find out which
method is truly the primary method for wind farm layout optimization.

The main lesson from this project:

Using population distributed genetic algorithms to solve the wind farm
layout optimization problem will not necessarily lead to better fitness than
with simple genetic algorithms. Population distributed genetic algorithm
demand more computational resources and will therefore have trouble
beating a simple genetic algorithm with the same amount of resources.
Population distributed genetic algorithms are more advanced than simple
genetic algorithms and it will therefore be more difficult to find the cor-
rect settings for them. However, when handed more resources it is clear
that population distributed genetic algorithms are powerful algorithms that
should be investigated further on the wind farm layout optimization prob-
lem.

6.4 Further work

As far as the author knows, this is the first time different population distributed ge-
netic algorithms have been compared against each other and against a simple genetic
algorithm in their ability to solve the wind farm layout optimization problem. This
thesis can be view as a first attempt to understand how population distributed ge-
netic algorithm can affect wind farm layout optimization, and it should be explored
further.

Both research questions should be further investigated. As has been mentioned, fur-
ther work should be done in optimizing the parameters that are specific for each
of the population distributed models. For the Island model, experiments should be
performed to optimize deme size, deme count, migration rate, migration interval and
the topology. Especially, the author believes that optimizing the migration interval
would have a major impact on the performance of the Island model. As the results
showed, the Island model was able to explore different number of turbines for a sig-
nificant amount of time. However, it was not given enough time to optimize each of
these number of turbines, and therefore it was not able to realize the potential of the
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solution it had found before it jumped to another solution. Increasing the migra-
tion interval could have changed the final results. For the Cellular model, different
topologies should be investigated and compared. A larger square, or another form
of topology would affect the results. The replacement strategy of replacing every in-
dividual at every generation even though the new individual had worse fitness than
the previous individual should probably be revised. It might also be the case that
a different parent selection function, such as roulette wheel, would work better for
this model, even though it did not work for the Master/Slave model. For the Pool
model, different number of workers should be tested. It would also be very interest-
ing to take control over the scheduling of the different workers, and investigate the
effect of letting one or more of the workers to get far ahead of the others in evolution
and compare this to simulations where the workers are at about the same generation.

In addition to optimize the parameters that are specific for each model it would also
be desirable to redo the parameter settings from section 5.1 for each of the popu-
lation distributed genetic algorithms. This would make sure that the Master/Slave
model does not have an advantage because the settings used for every model is only
tested on that model. Even though the author does not believe this part to be as
important as the improvements recommended in the paragraph above, it could have
an impact on the final results.

All 3 population distributed genetic algorithms were implemented as homogeneous
models. It would be very interesting to observe how implementing these as hetero-
geneous models would affect the results. This would require an extensive amount of
work because so many different settings could be used, that it might be wise to start
with only one of the models. It would be very interesting to observe how the Island
model could be improved by using different parameter settings, selection mechanisms
and recombination methods on each Island and compare the results against a homo-
geneous implementation. It would also be very interesting to let the workers of the
Pool model run with different settings, and to let different settings apply to different
parts of the grid in the Cellular model.

The Island model and Cellular model were both synchronous. Implementing these
as asynchronous models could also be interesting to investigate, although the author
does not believe that this would impact the results as much as implementing them
as heterogeneous models.

Since this thesis is a contribution to GECCO 2016, where the goal is to optimize
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the objective function provided by the contest, a multi-objective function was not
implemented. However, it would be very interesting to solve the wind farm layout
optimization problem with a multi-objective genetic algorithm, and combine this
with population distributed genetic algorithms. Finding the best objective function
is a difficult job, which includes a lot of estimation. It is extremely difficult to come
up with a fitness function that guide the population to the optimal solution. Because
of this, it is often more accurate to use a multi-objective function because then you
do not have to weight the importance of the different objective against each other.
A population distributed genetic algorithm would be perfect for optimizing a multi-
objective function because each Island, worker or area could be assigned a different
objective function.

Gong et al. [2015] also present distributed genetic algorithms which are combina-
tions of each other. The Island model implemented for this thesis was actually one
of the models mentioned, because the Master/Slave model was run on each Island.
However, the population distributed genetic algorithms were not combined. [Gong
et al., 2015] suggest combining the Island model with the Cellular model (one cellu-
lar model on every Island) or running an Island model on each Island in the Island
model. These models go even further in their attempt to slow down take over time,
and investigate different solutions.

Saavedra-Morena et al. [2011] used a greedy heuristic to decide the initial position
of the wind turbines, and then used the genetic algorithm to improve the results.
Saavedra-Morena et al. [2011] showed that the final results were better than those
obtained by the genetic algorithm when it started out with random solutions. This
strategy could also be implemented together with the models implemented in this
thesis to investigate if this would improve the final results obtain by the population
distributed genetic algorithms.

In section 3.2 it was shown that greedy heuristics, simulated annealing, ant colony
algorithms and other swarm algorithms could also be used to solve the wind farm lay-
out optimization problem. A study comparing different artificial intelligence methods
in solving the wind farm layout optimization problem would be very interesting. It
would also be possible to combine the different algorithms either by letting a genetic
algorithm run first and then trying to let one of the other methods improve the final
results, or the other way around.

As discussed, this thesis has answered some questions and left the author with many
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new questions that it would be very interesting to investigate and answer. This
thesis has laid the foundation for further work within population distributed genetic
algorithms and wind farm layout optimization.
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