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Summary

This thesis presents a review of the state of the art in Decision Making literature to elicit
four current challenges in supporting Decision Making through system design, in situated
industrial environments. A collaboration project with the Norwegian Aluminum indus-
try identifies the need of continuous workplace-education for their operators. They lack
knowledge of the processes they support.

A thorough literature review into human decision making, automation, and decision
support systems provides a set of four current challenges for supporting human decisions:
Decision Automation Systems, Feedback, Information Presentation, and Learning. These
challenges are combined with human decision literature, indicating opportunities for solu-
tions. A design of a screen-based Decision Support System using a theoretical case domain
demonstrates an implementation of opportunities from the current challenges, into novel
solutions.

The article recommends further research into the applications of the current challenges
of Decision Support Systems in industrial environments, by implementing and evaluating
a solution based on the opportunities of information systems in a situated environment.
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Chapter 1
Introduction

1.1 Background
This project set out on a path to address a problem identified in the Norwegian Aluminum
industry. A challenge that is general for all modern industrial work; reducing human
errors, specifically decision errors.

Automation has replaced most of the physical tasks of production work in western
industries (Farrington-Darby and J. R. Wilson 2006)). While task-automation has contin-
ually become a defining part of organizations, the human operators work and responsibility
has been extended, one operator is responsible for a multitude of complex processes. And
the work characteristics are changing from a decidedly skill- and rule-based physical work
to a challenging knowledge-based cognitive one.

The human operator is still performing routine tasks. The operators are now both sup-
porting and governing the automation. Tasks include controlling machines, taking mea-
surements and performing maintenance. But when automation fails, the human operator
is responsible for both diagnosing that there is a failure, and to limit the failures impact
on production. And the key to diagnostics is to both understand systems and the operating
environment.

Operators currently learn by instruction from more experienced operators, and by do-
ing (situated experience). They follow Standard Operating Procedures(SOP), and use these
to guide their work. However, operators have a limited theoretical understanding of their
workplace. This lack of knowledge sometimes lead to undesirable decisions.

The loss of expert and experienced workers is a great concern in some domains Farrington-
Darby and J. R. Wilson (2006). As automated systems replace manual operations the
situated process-understanding stays with the experienced operators, but these expert op-
erators are rapidly transitioning to leader-positions and retirement.

This thesis aims to start a project for improving decision strength in the process in-
dustry by identifying opportunities for novel technological decision support systems. The
main focus is on supporting the human operator’s decision strength, by facilitating exper-
tise.

1



Chapter 1. Introduction

An expert can be defined as “. . . has done the job for a considerable period of time,
knows the rules and procedures and the range of routines required very well, but also
knows where and when to sidestep these and to intervene on their own.” (Farrington-
Darby and J. R. Wilson 2006, p.17) Do we accelerate expertise?, or reduce the need for
expertise through automated systems?

To identify opportunities for improving human decision we must first understand how
humans make decisions, and how previous research has approached the problem. As the
problem of improving human decision making is still unsolved and rarely approached in
situated systems, a comprehensive review of the decision making literature is required.

Following the literature review, a set of current challenges will be identified. These
challenges are based on the lacks of cognitive support in current identified industrial sys-
tems and from best practices in other environments.

A simple design suggestion will be demonstrated to highlight the importance of the
literature review in designing novel systems to support what research shows as the most
important aspects of human cognition affecting decision strength.

In the example above, we have used “author-year” references, which is the preferred
format.

1.2 Objectives
The main objectives of this Master’s project are to:

1. Review decision making as a cognitive process.

2. Identify means of supporting decision making at the workplace as a cognitive pro-
cess.

3. Designing a technical solution to support learning at the workplace.

1.3 Structure of the Report
The rest of the report is organized as follows. Chapter 2 gives a thorough introduction
to Human Decision making, highlighting approaches and research methodologies com-
monly used and culminating in a four sections of opportunities for improving Human DM.
Chapter 3 Extends to the domain of Automation and the specific cognitive impact of au-
tomation design on the decision strength of humans. Chapter four reviews the state of
the art in decision support systems, providing a comprehensive introduction to the various
considerations required to create and facilitate human decisions.

Chapter 5 presents a set of four Current Challenges for industrial Decision System
Design, defined based on the findings from previous chapters. A set of opportunities are
also available, to facilitate solutions which can support the current challenges.

Chapter 6 reviews the current challenges by applying them in a simple design of a
Decision Support System for a theoretical case domain. Finally chapter 7 concludes the
project suggest further work.
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Chapter 2
Human Decision Making

2.1 Job Satisfaction and Self-Efficacy
A much used definition of job satisfaction is by Locke , who defines it as “. . . a pleasurable
or positive emotional state resulting from the appraisal of one’s job or job experiences”
(Locke, 1976 p. 1300, in Weiss 2002).

A central element in many of the theories of Job Satisfaction, is that for people to
be satisfied with their job, they need to have increased self esteem and a belief in their
own competence (See eg., Locke 1969; Ryan and Deci 2000; Weiss 2002) Understanding
of work processes, and control over decisions are competence indicators, and can affect
self-efficacy and self-esteem. If the individual does not receive enough feedback from the
environment, this is likely to leave him dissatisfied (Weiss 2002).

(Seligman and Csikszentmihalyi 2000) argue that “normal” people need advice and
guidance to create a more fulfilling life. One of their prescriptions for fulfilling activities
in every culture is the development of wisdom. Understanding the world around us leads
to an intrinsic wellbeing that cannot be compared to short time happiness.

Perceived Self-Efficacy is defined as ‘people’s beliefs about their capabilities to pro-
duce “designated levels of performance that exercise influence over events that affect their
lives” (Bandura 1994, p. 71). Recently Schaubroeck, Kim, and Peng (2012) reviews the
literature and show that this effect often correlates with an positive impact on happiness,
job performance and job-turnover rates. Self-determination theory (Ryan and Deci 2000)
is one of the approaches to show the relation of intrinsic and extrinsic motivations and how
these affect tasks enjoyment and psychological wellbeing.

The leading causes of job burnout is exhaustion, cynicism and lack of accomplishment
(Macnamara, Hambrick, and Oswald 2014). Exhaustion is caused by job stressors, such as
time and workload. Cynicism is related to how the individual feels attached to his job and
his own feeling towards aspects of his work. Finally, the feeling that the individual does not
accomplish anything worthwhile, either through application of knowledge or productivity.
The antithesis of burnout is speculated to be engagement (Macnamara, Hambrick, and
Oswald 2014). Vigor, dedication and absorption are some of the leading causes, and these

3
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factors highly influence the leading causes of burnout.
To reduce the occurrence of burnout, an organizational approach seem to be the best

(Macnamara, Hambrick, and Oswald 2014). Attempts to engage and reduce burnout in
individual approaches often fail to consider work and task cynicism and accomplishments
as considerable factors. Giving individuals vacations or temporary different tasks might
alleviate the problem, but will not remove it. An organizational approach seem to have
better efficiency in practical applications. Creating work-settings where the focus is to
increase engagement, contrary to reducing burnout is recommended.

The most notable characteristic on job satisfaction is the nature of the work itself, the
“intrinsic job characteristics” (Saari and Judge 2004) This includes job challenge, worker
autonomy, variety and scope. These seem to be the best predictors of employee retention
(Saari and Judge 2004). In a large metastudy Judge et al. (2001) measured an increase
in worker performance by .30 the more satisfied he was with his job. Performance had
greater impact in complex, professional work.

Zuboff (1988) is one of the earliest researchers analyzing employee job satisfaction
when technology is introduced and modifies their workday. Their job satisfaction, attitude
towards supervisors and the organization may be negatively affected if this reduce the self
efficacy of employees, and reduce their previous expertise and competence to the same
level as a novice.

These organizational requirements are considerations for the approach this thesis takes
for assuming the human role in decisions as important. In order to retain and motivate
employees a basic self efficacy is required. Humans need to build self efficacy deliberate
decisions and individual responsibility to actually increase their enjoyment of work. Fa-
cilitating this process through the development of operator skill is a potent approach, and
human decisions will be the focus of this thesis.

2.2 Introduction to Human Decision Making

Decision-Making is defined in Cambridge Dictionary as “The action or process of making
important decisions” (Decision-making 2016) and a decision is often regarded as being
based on a number of sub-decisions (Hoffman and Yates 2005). Decision skills are influ-
enced by a number of cognitive processes, and when performed in complex environments
human decisions are based on assumptions and intuition (Hoffman and Yates 2005; Klein,
Ross, et al. 2003).

Hoffman and Yates (2005) argue that the decision making process as defined in the
common language is insufficient, as it often is simplified to a three step model of identi-
fying, deciding, and executing on a certain thing. These decisions are rare and artificial,
compared to the decisions encountered in work outside of theory. Human decisions are in-
fluenced by such factors as inherited dispositions, abilities, training, culture. And research
attention spans from option evaluation to heuristics and biases. Monitoring work processes
to identify decisions is not enough, a theoretical understanding of human decision making
and the approaches to our concepts of our environments and the goals and subtleties of
decisions is important to create systems which are able to support decision making, and to
improve the decision making abilities in non-computerized approaches.

4



2.2 Introduction to Human Decision Making

I will analyze human decision making with a basis in the cognitive abilities and lim-
itations of humans and its effects on human decision making. Decision making is in this
thesis limited as the process of perceiving a problem, generating one or more hypothe-
sis based on both internal and external cognition, and finally deciding on an approach to
handle the problem. This process of decision making can be automated, or performed by
humans. The main decision-making issues researched in this article are problems that have
to be decided under ’uncertainty’ (Tversky and Kahneman 1974). In situations where all
data available cannot be compared to all information in a given period of time. Decision
making is a subject to the cognitive sciences, the studies of how the brain works. To under-
stand how to make industrial operators improve decisions, we need a basic understanding
on the approaches humans take to make decisions outside of the laboratory.

Decisions are made every minute, but most are not consciously deliberated on over
a period of time. The decisions made in this article is highly related to the individuality
of operators, and their intrinsic motivation and autonomic decisions. The increased pro-
ficiency of an operator can affect both operational efficiency but also satisfaction. 80%
of industrial accidents are said to be caused by human errors, in some reports even more
(Rasmussen 1999; Salminen and Tallberg 1996). Accidents are often categorized into the
Skills, Rules, Knowledge model (Rasmussen 1983) by lack of skill, knowledge, or the use
and understanding of cognitive rules, and the understanding of how mistakes often are par-
tially caused by wrong decisions is an important focus point of the following exploration
of Human DM.

2.2.1 Applicability
Most if not all current frameworks for how Decision Making works in practice seem to
be based on rigid research, but still there are tens to hundreds of models explaining both
how simple and deliberate decisions should be approached. There will never become one
generalizable model that solves human decision making, but the models developed can
help understand how we make decisions, and guide humans on to a better path through
metacognition.

There are several similarities between research on DM in avionics, medicine and indus-
trial processing. Lindgaard (1995) argues that human problem solving characteristics are
valid across domains such as clinical and process control, but that the systems developed
will need to vary considerably between these domains . Systems design is not necessary
generalizable, but much of the research on the theoretical basis for human decisions is
applicable to a range of fields (Kaber and Endsley 1998; Lindgaard 1995).

The most compatible research to industrial decision-making is research exploring de-
cisions based on data and observations which afford a reasonable amount of certainty and
clarity. Kahneman and Klein (2009) argue that expertise is most applicable in these areas
of high validity, fields where the same situation occurs multiple times and can be evalu-
ated and learned. The reverse is expertise in stock markets, predictions on societal changes
where uncontrollable external events have a high degree of impact on outcomes. A high
validity environment is required for the development of routinely good decisions; thus
for expert intuition. The high validity environment is defined by a sufficient regularity
to make correct decisions based on previous experiences. Decisions made on equipment
and in industrial process environments often comply with the concept of a high validity
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environment, but as we will see from this review, industrial systems awareness of the im-
plications of high validity, and a continued commitment to implementing it into digital
systems design.

2.2.2 Decision Support
P. J. Smith et al. (2012) argue that an understanding of the decision making literature
is an important part of the knowledge engineering required to implement decision and
automation systems. Familiarizing with the literature enables the designer to optimize
decision making strategies, trying to avoid biases, and educating the decision maker.

The implementation of DSS has currently not been consequently proven as effective
in all domains. Moja et al.’s 2014 review of support systems suggest that there is no
statistical effect on morbidity in hospital in situations where DSS are applied as assistance
to healthcare professionals. The low number of participants in these studies argue for a
pessimistic view, where even positive results from scientific studies might be subject to
publication bias. On the other hand, we know that people are capable of increasing their
decision capabilities; the current systems might not approach the problem effectively.

Supporting decisions through learning is another approach, Billett (2001) states that:
“How workplaces afford opportunities for learning, and how individuals elect to engage in
activities and with the support and guidance provided by the workplace, is central to un-
derstanding workplaces as learning environments. ” (Billett 2001, p2 ) (See also Bereiter
and Scardamalia 1993, Ch. 8). This statement might be seen as commonsense, but the
importance is in the context. The variety of opportunities provided for learners will be im-
portant for the quality of learning that transpires. Equally, how individuals engage in work
practice will determine how and what they learn. Billet (2001) further state that “these
factors might be overlooked if the links between engaging in thinking and acting at work
and learning through those actions is not fully understood. And, establishing a workplace
training system, without understanding the bases of participation, is likely to lead to dis-
appointment for both workers and enterprises.“ (Billet 2001, p6). Decision System design
with the goal of improving decision skill in operators will have to evaluate the learning
opportunities, and the restraints this implies on the design of the learning approaches.

2.2.3 Human Cognition and Decicison Making
Decision making that involves humans is directly related to Human Cognition. The cog-
nition of humans

2.3 System 1 and System 2
Cognition in decision making has in the last 30 years been greatly influenced by a dual-
procession theory in which human cognition is divided in two distinct systems with greatly
different attributes (eg. Kahneman 2003, 2011; Kahneman and Frederick 2002; Klein
1999). I begin the explanations of human decision making with these two ”systems” be-
cause the underlaying principles should be prevalent in all models on real human, and
operator decision making.
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2.4 The dual-processing theory
A popular conception of cognition in decision making is represented by a dual-processing
theory (eg: Evans and Stanovich 2013; Kahneman 2011; Kahneman and Frederick 2002;
Klein 2009). Kahneman (2011, pp28-30) describe the two as the “automatic system” and
“effortful system”, but clarifies that we should not use the terms as more than nicknames
for generalizations of a collection of processes in the brain. Kahneman’s reasoning for
using the names System 1 and System 2 is to have a concrete subject that humans can fit
stories and opinions to. These systems represent different approaches in the brain to think-
ing. System 1 is fast, low effort, intuitive, optimistic and unaware. System 2 is largely
characterized as a polar opposite, it is slow, analytical, critical and requires increased con-
scious effort. But System 2 is lazy, it resists work and works relatively slow. Because
System 1 is quick, and always has an answer ready, but this answer is not necessarily
the correct one, the relaxed monitoring state of System 2 is what makes us able to make
reasonable but fast decisions using System 1.

System 1, the “intuitive” associative one, proves effective much of the time. It is very
influenced by prior experiences, and associations with situations, people, shapes, colors,
sound, smells and more. All processed sensory input is at first accessed by System 1,
and it is instantly ready to provide an opinion. The system is characterized by heuristics
and other mental shortcuts. Humans recognize patterns of sensory inputs, and decide on
an opinion of the situation. System 1 is fast, and often provides the right answer. But it
can fail, and it can fail catastrophically. When a situation is thought to be recognized, the
normal response is to make new information fit the working hypothesis. If the working
hypothesis is wrong, it can take a lot of conflicting cues to snap out of it. (Kahneman and
Frederick 2002)

System 2, is the analytical system. It does not want to be set to work, because it
requires a lot of attention, and it is often sequential. Every decision requires directed
thought, and multiple hypotheses need to be generated and deducted before the “best”
decision using the available information and best known weighting method. It is engaged
when the cues does not fit any existing model. System 2 is required to solve complex
problems that has not been experienced before, but can also be forcibly introduced to check
System 1. When the cognitive systems are overloaded, system 2 often fails to monitor
system 1 and obvious errors might occur (Kahneman and Frederick 2002).

The importance of introducing these terms is to familiarize with a prevalent view in
psychology, that has an impact in all kinds of human decision making, where the ”opti-
mal” decision inevitably is influenced by aspects such as mental and physical mood, in-
telligence, knowledge, exposure to statistical thinking and time pressure (Kahneman and
Frederick 2002).

2.5 Reasoning
The applicability of these as a model of human decision making models is widely ac-
cepted, but they are not rarely used on their own. Humans employ a variety of strate-
gies, and the research for a good model of human decision making continues to this
day. In the following I will present some models for human decisions, and two different
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Figure 2.1: An information Processing model of decision making. Illustration from Wickens, Hol-
lands, et al. (2012, Fig 8.1)

andsometimesperceivedasopposing research approaches to the human decision process
is presented in short.

2.5.1 Reasoning Strategies

There are probably hundreds of reasoning strategies and various models for these, the
models using cognition range from strictly analytical and objective to being based on intu-
ition and heuristics. Some are based on simple features, such as lowest price of a product
type. The ones that are more interesting in real-life decision making scenarios are those
that are made under uncertainty. Where the situation does not fit into a previous model,
and where the humans reasoning for coming up with an adequate solution is challenged.

Most models are based on a similar base of how humans make decisions, and the ex-
planation from Wickens, Hollands, et al. (2012) is used below. The information processing
model is an introduction to the basis for the following sections, and for the introduction of
several strategies and approaches to decision making.

Wickens, Hollands, et al. (2012, Ch.8) describes a general approach to decision making
in Figure 2.1. Simply explained; Any environment leaves an enormous amount of cues.
Humans, machines, animals, plants, everything leaves cues to the observer as to their state;
present and past. A cue is picked up by our senses, a person arrives late, a machine gen-
erates a new frequency of sound, a warning sign on a closed container. All cues require
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some degree of experience to be perceived, but might not necessarily be consciously in-
terpreted. One or many hypothesis is generated based on one or multiple cues, and these
are reviewed. The hypothesis cannot be created using long term memory, It is generated
in working memory and later the long-term memory is accessed to retrieve confirming
cues from previous situations. Using working memory, and long-term working memory
the cues are compared to similar situations presenting the same cue, and hypotheses are
created.

These hypothesis are compared to other cues in the environment, by constantly looking
for confirming or contradicting evidence.The validation process is iterative, and when one
hypothesis is discarded or modified, a new iteration of an evolved or adjusted hypothesis
might be evaluated. A choice is made based on the best hypothesis, and the response is
executed giving feedback to the environment.

By being aware of human and personal decision biases, often termed meta-cognition,
we are able to better evaluate our choice and to make a conscious effort into avoiding
traps and errors related to decision making (Wickens, Hollands, et al. 2012, ,Ch.8). The
decision-process is limited by attention, resources, effort, situation awareness, experience,
cognitive biases, abilities. To make decisions, humans employ a set of different strategies.
While some are conscious, like making decisions based on a spreadsheet of weighted
information, others are unconscious but elaborate. An example of this is expert decisions
made in complex situations where the decision often is based on unconscious processing
of cues and situated knowledge (Klein 1999)

To implement learning into the decision making process, we must retrieve feedback
through a feedback loop (Wickens, Hollands, et al. 2012, Sect 8.4), (see eg., Black and
Wiliam (1998) for a review producing convincing evidence for learning in all levels of
expertise through correct feedback). Feedback of decision outcomes is sometimes used
to assist in refining a diagnosis, when the action can be altered after receiving feedback.
Meta-cognitive evaluation may trigger the search for more information. Lastly feedback
may be transfered into learning and knowledge. Although often delayed this feedback may
be processed in long-term memory in order for the decision maker to revise his internal
rules of decision making or the estimates of risks.

2.6 A selection of DM Strategies

Wang and Ruhe (2007) presents an overview of decision strategies, and categorize them
into four areas. While they do not present a deep review of any of them, awareness of
these categories is a good basis for further reading.

2.6.1 Intuitive

Intuitive decisions are naturally based on intuition, unconscious thought and evaluation
where a result of the decision process is picked. Examples are arbitrary, preference based,
and commonsensical decisions. These examples often use simple familiarity, tendency,
expectations, and cost measures to come up with an answer.
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2.6.2 Empirical
Empirical decisions are based on a knowledgeable exhaustive research on the decision
scenario. Common examples are trial and error, experiments, experience, consultants,
estimation. These are all connected in that they use previous knowledge and experience to
predict the future, the degree of certainty is varying but if performed correctly the outcome
will be as rigorous as possible for humans. The problem is that these decisions require an
amount of time, experience and level of reason which is not frequently available for most
tasks.

2.6.3 Heuristic
Heuristic decisions are based on human estimation methods that work to make decisions
easier and faster when making judgments under uncertainty. These decisions can be af-
fected by principles and ethics, that the person has acquired over time. Other heuristic
decision types are representative, availability and anchoring. Heuristics work by aggregat-
ing information acquired into a unconscious predisposition for choices. Picking a brand
over another, guessing a time period of a picture based on clothes and image quality. All
humans have biases in these heuristics, and they are hard to notice and to avoid. Some of
these biases will be discussed in detail later, as they are significant for all kinds of decision
making.

2.6.4 Rational
Rational decisions are ideal decisions based on all evidence and cues to an objective set
of goals and requirements. But such decisions prove impossible for a human. Our best
approach is to choose a set of variables to evaluate a decision, only then are we able to
consistently make the “best” decision.The two main categories of rational decisions are
based on the event’s rate of change; an event that is changing and uncertain should be
handled with game theory, interactive events and decision grids. While static decisions,
such as an investment of a new kind of equipment or choosing which machine to maintain
first can be organized into strategies such as minimum cost, maximum benefit, maximum
utility in a cost-benefit ratio. The cost/benefit can be based on an evaluation of certainty,
risks, and uncertainty.

2.7 Decision Evaluation Approaches

2.7.1 Satisficing
The difference between singular and comparative strategies in decision making is related
to the findings of Nobel Prize laureate Herbert Simon, which in 1957 introduced a theory
of decision strategies called ’satisficing’; selecting the first option that works well enough.
Satisficing is different from optimizing, which means trying to come up with the best
strategy. Optimizing is comparatively hard, and takes a lot of time and the idea of Simon
was that humans mostly satisfice, and that ’rational decisions’ are uncommon. Satisficing
is by design more efficient. While satisficing was originally made as a decision strategy for
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use in business and economics, Klein (1999, p298) argues that it is even more applicable
for events where time and outcome is highly related, in live and ongoing events with
uncertainty to decisions. Klein lists examples such as in aviation, military, firefighting and
medicine.

2.7.2 Expected value

By always choosing the most valuable outcome. The problem of this approach is that
a general framework for defining the value of outcomes in a range of environments is
impossible to create. A choice that would be optimal repeating over and over again, might
not be optimal if you only have one chance. When time and pressure limits the available
data to perform a decision, this problem of conceptualizing a value for every choice gets
harder. (Wickens et al. 2012, §8)

2.7.3 Good decisions from good outcomes

One approach to decisions is to view a decision as a “good” decisions when the decision
created a good outcome, and bad ones are the ones that create a “bad” outcome (Wickens,
Hollands, et al. 2012, Ch 8). This view is an straightforward approach to evaluate a de-
cision, although very susceptible to hindsight bias (eg., Croskerry 2003a). Klein (2009)
disagrees, and counters with this definition: “a poor decision is one that if the knowledge
gained would lead to a different decision if a similar situation arose.” (Klein 2009, p.271)
This view includes the feedback loop as an indicator for decision strength, and a good
decision is a decision that would have been tried again if the same situation occurs twice,
even if the outcome the first time was not “good”.

One example of a bad decision that often appears in decision-making literature is the
USS Vincennes case. A commercial airplane was mistaken for a fighter plane and shot
down (Cooke 2008, pp. 78-80; Klein 1999, pp. 75-78). This is rightly and widely regarded
as a bad decision, but as analyzed by Cooke the circumstances of the decision involved
both errors in automatic systems, human performance and contextually driven expecta-
tions. Just one year earlier, on the USS Stark, the decision to hold fire was made and 27
soldiers lost their lives when attacked by a fighter plane mistaken for a commercial airliner.
These two decisions could just as likely have been switched and would not have been the
event to start the Natural Decision Making branch of cognitive research (Klein 2008), and
a required mention in every article on the subject. Decisions are not black and white, and
we must not succumb to the hindsight bias when analyzing and evaluating them.

2.7.4 Expertise

A third approach is using expertise as a measurement of probable decision quality. Ex-
perts in fields such as chess and physics make better decisions in their field, can we apply
the same to all kinds of decision makers? One of the problems with this approach is
that experts in several non-structured domains do not create decisions better than novices.
(Wickens, Hollands, et al. 2012)
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2.8 Two prevalent Approaches to analysis

2.8.1 The Analytical Approach
Rational or Normative decision making, and how people should make decisions according
to some optimal framework. How can decisions be optimized to select the “best” outcome
of a choice situation. The cognitive studies in this field is concentrated on the departures
of the human choice from the optimal decision. Human Biases and heuristics are the
prevalent themes. (Wickens et al 2015, §8.2).

2.8.2 The Intuitive Approach
The human short term memory operates with a small number of items (see eg: Brady, Kon-
kle, and Alvarez 2011; G. A. Miller 1956), but there is evidence that humans can process
more items better when not consciously deliberating them (Dijksterhuis, Bos, et al. 2006).
Dijksterhuis and Nordgren (2006) suggest that small decisions should be made using de-
liberate thinking, but larger decisions benefit by using unconscious thinking. Contrary to
the often established belief that choices are better when made with deliberation, a view
that has been present for hundreds of years (Dijksterhuis, Bos, et al. mentions Descartes
and Locke), it is according to the authors still presented as the most valid method in current
literature. Using unconscious processing of decisions seem to lead to better satisfaction
in the decision makers minds, and more often the objectively superior choice is made
(Dijksterhuis and Nordgren 2006).

2.9 Cognitive Heuristics and Biases
There are several areas of decision making that are under current research, but the most
prominent one is the Heuristics and Biases approach. Sprung out as an reaction to the ”Ra-
tional Choice Model”, and applying the Herbert Simon’s idea of ”Bounded Rationality”
(Gilovich, Griffin, and Kahneman 2002). This approach assumes that human decisions
are for the most part subject to a number of heuristic principles1, employed to limit the
cognitive work required to make decisions. This description can suggest they are a prod-
uct of lazy and inattentive minds, but when experiments are performed with incentives for
attention the effect of the biases is not sufficiently reduced(Gilovich, Griffin, and Kahne-
man 2002). Heuristics are piggybacking on basic calculations that the mind automatically
associates with context and irrelevant data. The automatic processing seems to ignore
sample size, prior odds, reliability of evidence and more similar effects, and the research
on heuristics and biases has uncovered many more such ’biases’. This effect is present in
everyday decisions, but the studies of heuristics and biases also try to find specific situa-
tions when these biases come into effect. To better be able to control and educate on these.
(Gilovich, Griffin, and Kahneman 2002)

The Heuristics and Biases approach can be traced to the 1954 seminal book ’Clinical
versus statistical prediction’ by Meehl (Kahneman and Klein 2009). Meehl had reviewed

1“[Heuristic princpiples] . . . reduce the complex tasks of assessing probabilities and predicting values to sim-
pler judgmental operations.” (Tversky and Kahneman 1974, p. 1124)
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20 cases where algorithms had been introduced and tested against human decision making,
and in almost every case the algorithms performed better than human prediction. Meehl
believed that systematic errors in the decision making process were the cause, such as
ignoring a base rate and believing in intuition. Inconsistency is one of the major influences
of the problems with human decision making, humans evaluating the same case will not
be consistent in their decision (Kahneman and Klein 2009).

Tversky and Kahneman (1974) published their seminal article “Judgment under Un-
certainty: Heuristics and Biases” in 1974 which examined three familiar heuristics that
affect how people make decisions under uncertainty: (1) representativeness, when people
automatically match patterns, (2) availability of instances of memories greatly affect how
people look at situations, (3) adjustment from an anchor; how people anchor their esti-
mates to numbers that is clearly unrelated to the current decision. This article has at the
time of writing been cited over 30 000 times, and Kahneman and Tversky’s contributions
in cognitive decision making ended up with Kahneman receiving a Nobel Price in Eco-
nomics for this work. Tversky would after all accounts have been a part of the of prize if
it was awarded posthumously (Kahneman 2003).

The core idea of the heuristics and biases program is based on the observation that
humans use simplifying procedures instead of extensive algorithmic processing to make
decisions under uncertainty (Gilovich, Griffin, and Kahneman 2002). In many decisions,
operators use mental shortcuts and rules of thumb to arrive at decisions. These are called
heuristics, and are central in much if not all decisions we make. Kahneman (2011) uses this
definition of heuristics: “[Heuristics] is a simple procedure that helps find adequate, though
often imperfect, answers to difficult questions.” ((Kahneman 2011, p. 98)). The heuristics
create a way for humans to make better decisions by replacing a gap of information with
a qualified guess based on previous experiences and knowledge. While the gap is filled
using informations that has been processed by the decision makers earlier experiences, this
information might be misleading or wrong. Some heuristics decision models are initiated
by System 1 and adopted by System 2, and other cases System 1 never involves System 2
(Kahneman and Frederick 2002). Awareness of these situations is important to be able to
control the use of heuristics and monitor through metacognition (eg. Croskerry, Singhal,
and Mamede 2013a).

Kahneman (2003) suggest that the use of heuristics is often giving a good answer to the
wrong question. Before the actual question subject has been correctly identified system 1
fires an answer to what presents it self as an easy solution. When a discrepancy is detected
people often discard their intuitive answer and utilize system 2 to analyze the situation and
the discrepancy and to come up with a new solution.

As an example of biases in the real world Kahneman (2003) refers to his work with
the recruitment of soldiers, where they went through an interview process and presented
quantitative test results from performance and cognitive tests. The interview was the final
obstacle in the admission process, and could keep or eliminate any applicant. What Kah-
neman found was that the interviewer feels certain that his choices are the best soldiers.
When informed of the negligible correlation of soldiers with the expected results from
the interviews, interviewers did not adjust their satisfaction with their choices. While the
numbers clearly showed a correlation between test results and performance. The heuris-
tics involved in the hiring process show how we often overestimate certain non-influencing
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characteristics as essential to the decision model. Both lack of feedback and the resistance
to change led the decision makers to never revise their model of influencing aspects of a
good soldier. This aspect of “superstition” is one of the many aspects of heuristics that are
wrongfully applied.

“The best we can do is to compromise: learn to recognize situations in
which mistakes are likely and try harder to avoid significant mistakes when
the stakes are high. . . . it is easier to recognize other peoples mistakes than
our own.” (Kahneman 2011, p. 28)

Kahneman and Klein presents Goldbergs evidence (In Kahneman and Klein 2009,
y1970) of the bootstrapping effect, in which Goldman observed the decision making of 31
practitioners over a 900 cases and created an individual profile for each of their predictions.
The he applied this profile to review the net 900 cases, and found the profile to make better
decisions than the humans. This effect illustrates the point of inconsistency in human
judgment, in some cases to an extent that severely impacts the validity and repeatability of
human judgment.

2.10 Intuitive Reasoning
Dane, Rockmann, and Pratt (2012) and Goldstein and Gigerenzer (2002) argue that the
research on heuristics has switched the definition of heuristics from “. . . heuristics are
strategies that guide information search and modify problem representations to facilitate
solutions.” (Goldstein and Gigerenzer 2002, p. 75) to “Poor surrogates for optimal proce-
dures rather than indispensable psychological tools”. Their argument is that much of the
research performed has a major focus on the shortcoming og heuristics and the positive
and inevitable performance impact on real-life tasks is overlooked.

Neys, Cromheeke, and Osman (2011) show how research in intuitive responses and
in correlation with the effects of earlier H&B research shows how the study design and
nuances of experiments often produce contradictory results. They argue that the image of
cognitive heuristics as misleading seems to be withering.

2.10.1 Naturalistic Decision Making vs Heuristics and Biases: Intu-
ition vs Analytic?

Naturalistic Decision making (NDM) and Heuristics and Biases (H&B) are two approaches
to unwrapping the decisions of humans. The different approaches they use can be seen as
a top down, and bottom up approach, where NDM looks at experts in real situations to
figure out how they work, while HB looks at laboratory studies with control groups and
controlled studies (Kahneman and Klein 2009).

NDMs primary goal is to ’demystify intuition in decision making’ (Kahneman and
Klein 2009). Klein (2008) argues that the NDM is a continuation to the work from Heuris-
tics and Biases field. The argument for branching off and approaching DM in a new way is
that while HB has recognized how people fail to make decisions, they will never find how
people actually make decisions by continuing with laboratory experiments. NDM argues
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for observing experts in the field, the goal is to better understand how experts think and
apply their knowledge. Knowledge elicitation methods such as Cognitive Task Analysis
(CTA) is often used, because the experts rarely know what they actually are doing. They
seldom strictly adhere to procedural instruction, but utilize tacit knowledge to adjust their
performance according to the situation (Kahneman and Klein 2009). The approach from
the initial NDM researchers was to look away from HB and how people make subopti-
mal decisions. They wanted to approach the actual decision makers in their own domain,
and study how they actually made good decisions and what factors impacted this real life
decision making (Klein 2008).

“A person will consider a decision to be poor if the knowledge gained would lead to a
different decision if a similar decision arose.” (Klein 1999, p. 271) People make decisions
all the time, why are some of them better than others? The main ideological difference
towards this question between HB and NDM, according to Klein (2009, p. 272), is that the
heuristic view sees poor decisions as caused by biases in the way we think. Klein argues
that this often is seen as an indicator of the poor performance of heuristics, and in many
cases it seems that the negative sides of heuristics is demonstrated. The naturalistic view
tend to reject the idea of faulty reasoning because of biases and take the position that poor
decisions are caused by factors such as lack of experience, lack of information, and due to
mental stimulation. These ’de minimis’ errors in which signs of an environmental problem
are explained away as unimportant to a future or past error or mistake (Klein 2009, p. 247).

In contrast Heuristics and Biases (HB) has a skeptical attitude towards expertise and
expert judgment. It is leaning more towards clinical trials and using decision support
systems and procedures to limit errors in human decision making. They focus on the biases
and processes that reflect limitations in human attention, working memory or strategy
choice. As well as focus on common decision routines, known as heuristics, that work
well most of the time, but occasionally lead to undesirable outcomes.H&B does not focus
on the deviations from the optimal choice, but how people process information and the
structure and limits of humans as an information processing system. Although these fields
might seem different, the goal is the same; What makes the best decisions and how can
experts improve their own and the non-experts knowledge (Kahneman and Klein 2009).

2.10.2 The Intuitive Approach
The intuitive approach is investigating what they deem a more naturalistic approach to hu-
man decisions, as we can not (and should not) eliminate “System 1” thinking, so analyzing
the positive and negative effects of this outside and inside laboratory studies the research
of unconscious information processing often provides results that differ from the analysis
of the H&B and NDM approach.

The intuitive approach to decision-making is based on the assumption of expert knowl-
edge can be applied into correct decisions without explicit awareness of the steps taken to
make the decision. Experts often make correct decisions based on limited or no obvious
explicit evidence, unconsciously absorbing cues into the decision process. The decision
making process is characterized by a ’satisficing’ approach and is often fast-paced. By
satisficing, the decision maker tries to generate a hypothesis using the readily available
cues. The hypothesis can be modeled as a story, containing the available cues, and using
prior experience to both notice cues and recalling the best approach when certain cues and
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combinations are appropriate. By using patterns from similar situations, the expert is of-
ten combining these patterns to generate a new decision, without awareness of this. This
requires expertise, and prior experience is key.

Because this process is fast, and not based on a complete weighted analysis of all
possible outcomes, intuition and human decision is has bounded-rationality. It is based
on a hard-wired response to the cues, and often little or no “slow” thinking occurs. The
heuristics and mental-shortcuts necessary to perform quick decisions rely on instinctive
first impressions, and can lead to mistakes if these heuristics are caught in biases that
are unfounded. (Kahneman and Klein 2009) Croskerry (2009) argues that because of
the uncertainty of intuitive decision making, and the non numerical representation of it,
the research into improving this form of decision-making has been limited in fields such
as clinical decision making. The argument in other domains is that research on experts
requires domain expertise, something which most academic researchers understandably
lack. It seems like most of the relevant research to industrial applications in NDM is in
avionics, medicine, military, and process control.

Experience seems to be the most influential factor in a decision makers intuitive judg-
ment validity. (eg. Dane, Rockmann, and Pratt 2012). Farrington-Darby and J. R. Wil-
son (2006) argue that an effective way of eliciting knowledge of how experts differ from
novices can not be achieved by comparing experts and novices in laboratories, they need to
be compared in naturalistic environments to have a higher skill ceiling so that real expertise
can be elicited.

C. A. Miller and Parasuraman (2007) state that knowledge about human reasoning is
largely based on the studies of constrained problem spaces eg. chess and physics. Experts
recognize patterns of activity within a domain at an integrated higher level, ”chunking”,
than novices do. This abstraction method is important to limit the amount of chunks the
mind has to process, as is already mentioned as a limitation and issue of optimal human
cognition.

Recognition Primed Decisions

To evaluate a single course of action, fire-ground commanders use the power of mental
stimulation, running the action of a certain process trough their minds (Klein 1999, p298).
If they spot a potential problem, they adjust the course of action mentally and try to come
up with a satisfactory solution. This is not a foolproof solution, but it seems to work better
than the option of comparative analysis of options in a time-sensitive decision process.

One of the findings Klein (1999) wants to emphasize is the fact that it seems that its not
the novices that impulsively jump to conclusions and the experts comparatively analyzing
situations. It might just be the opposite, novices try to analyze the situation and find mul-
tiple opportunities before settling for one of them, while the experts find one opportunity
and try to work within the constraints of that opportunity - creating a satisfactory solution
more efficiently than the novice. This fits the model of skill development by Dreyfus and
Dreyfus (1980), which remarks this trait in experts and not in experienced non-experts.

The Recognition Primed Decision Theory(RPD) modeled in Figure 2.2 is an abstrac-
tion of this expert decision process (Klein 1993, 1999, pp. 15-30). According to RPD,
there are three different types of decisions; (1) simple matches where the situation is rec-
ognized as fitting; (2) diagnostics of the situation is needed; (3) Evaluation of the course of
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Figure 2.2: Recognition Primed Decision Model. From (Klein 1993)
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action is needed. The basic implications are that a situation can be recognized as a similar
or equal situation to a former instance that the decision maker has knowledge of, from tacit
experience or literature. If the situation is recognized, we get four attributes. Expectancies,
Goals, Relevant Cues, Actions. If the expectancies do not match, we need to find another
experience to adjust the current working model. But if the model is adequate we have a
number of actions available that might fit the current situation. The first action that comes
to mind is evaluated based on a mental simulation, and if it will work it is implemented.

Models like the RPD model suggest that humans rarely perform sequential wide searches
for solutions, but rather employ memory and previous experience. The knowledge and ex-
perience is combined to what seems like prototypical response plans (P. J. Smith et al.
2012).

2.10.3 Macrocognition - A natural extension
Klein states that the core of the RPD model is based on the same heuristics described by
Tversky and Kahneman (1974), the simulation heuristic used for diagnostics and evalua-
tion, and the availability and representativeness heuristics , for recognizing situations as
typical(Klein 1993, 1999, p. 298). This continues the view that both NDM and HB are
interconnected and possibly should cooperate more than they have done. A combination
of views from these researchers might be the most fitting for a “realistic” model of the
average human decision maker. Klein, Ross, et al. (2003) works to unify a broad approach
to natural cogntion outside of DM with defining macrocognition, a top down approach to
cognition in which expert performance in real workplaces and environments are analyzed
to generate hypotheses for laboratory testing. The macrocognitive approach encompass
sensemaking, problem detection, adapting, re-planning, coordination and decisionmak-
ing. Each of these rely in various degree on a number of supporting processes; maintain-
ing common ground, developing mental models, managing risk, and managing uncertainty
(Patterson and Hoffman 2012) The phenomena examined by a macrocognitve approach is
related to microcognitive heuristics and biases research. Klein, Ross, et al. (2003) argue
for macrocognition as a better approach for the discovery of methods; decades of research
on heuristics had not lead to the discovery of models such as RPD. According to them a
top down, situated, macro-perspective have a significant role in the endeavor to discover
and conceptualize human cognition.

Some argue that this notion of Macrocognition encompass and is a natural extension to
the Naturalistic Decision Making term, and that the science and study of NDM will have to
address issues besides DM to get a more complete impression of the complex environment
of decision making (Klein 2008; Patterson and Hoffman 2012).

2.10.4 Intuition and Expertise
In relatively recognizable environments, expert operators implement a great del of implcit
knowledge of constraints, equipment, opportunities, environment, other participants, and
previous experience to create a working strategy and will combine these into a prototypical
response plan for sitautions that are unfamiliar (Klein 2008; Klein, Moon, and Hoffman
2006; P. J. Smith et al. 2012). The expert will often look for opportunities and satisfice for
the first and best solution that fits the constraints identified.
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While the intuitive approach is used by experts in their own domain of expertise, they
use patterns and mental models and does not consciously process cues. Experts do rely on
causal reasoning and scientific knowledge when applying to areas outside their expertise
(R. A. Miller and Geissbuhler 2007). Experienced readers see words, not letters when they
read. The same situated knowledge is applicable in many fields of expertise, and the devel-
opment of proficiency should be supported through system interface design and learning
programmes. Working to enhance chunking enabling operators to “see the matrix” is an
important job of the information system.

The mental models of experts are often contrasting the teaching material and the mental
model of beginners/non-experts (Klein 2009, p. 24). Experts know what signs to look for
when both acknowledging that there might be a situation, and will in many cases spot the
signs of errors earlier than procedures and similar models. Knowledge elicitation methods
such as Cognitive Task Analysis (eg., Militello and Hutton 1998; Zachary, Ryder, and
Hicinbothom 1998) can be applied to better understand and to possibly generate teaching
content more in line with the experts models. .

2.10.5 Grounded Cognition

Grounded Cognition is a research approach to the cognitive research on humans that ex-
plicitly incorporates our senses into cognition. Barsalou (2008) has reviewed the current
state of the research, and argues that scientific rigor in methods is oppressing progress into
a field of cognition which has indications to be a better model of human cognition. In-
cluding vision, tactile, movement and similar senses and a connected distributed cognition
in representation of things and concepts. And the differences caused by the ways people
have experiences with these concepts, by feeling, smelling or reading about them. The
argument is that the brain recollects concepts by simulating an experience and the implicit
memory to create a perceptual inference.

2.11 The Analytical Approach

The analytical approach is the rigid way of performing a decision. It is the approach to
a decision using analysis and weighting and Bayesian calculations for finding a ’best op-
tion’. If we want to make the perfect decisions, with all cues available and quantifiable,
this is the approach to use. When in a laboratory setting, performing a selection of the
rational choice, human biases often clutter our minds. The analytical approach attempts
to reduce the bias effect using decision-frameworks, but these are mostly applied as deci-
sion models in economic and . Where all possible hypothesis are deduced and critically
analyzed. It is based on acquired critical, logical thought and analytical skill. The analyt-
ical approach often characterize novices which attempt to make a decision the “correct”
way. But it can be used as a tool by experienced practitioners when the diagnoses are rare
and esoteric, as well as fatigue and sleep deprivation. In these situations the brain does
more mistakes, and relies more on automated systems. A conscious attempt to analyze the
situation can improve decision making efficiency. SourceS? Wickens?
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Chapter 2. Human Decision Making

2.12 Human Reasoning Errors
To better understand how people can make better decisions, we need to understand the
process behind their current decision errors. (P. J. Smith et al. 2012) This section presents
a categorization of cognitive errors and biases to highlight situations and types of problems
that humans have a problem making the optimal decision.

Human errors can be classified into two categories; slips, and mistakes (P. J. Smith
et al. 2012). Slips are decisions in which the human has the knowledge and the correct
goal of operation but his actions does not match the intentions, due to conflicting motor
or cognitive activities. Contrary, mistakes result from the correct appliance of a persons
current knowledge to achieve a goal, but the ’knowledge’ is inadequate or incorrect.

D. A. Norman (1981) define these slips, and explains how they are further classified
into; (1) slips that result from errors in the formation of intention, (2) result from faulty ac-
tivation of schemas, and (3) result of faulty triggering of active schemas. These categories
are further detailed. (1) Intention slips; Intent: ”Put lid on sugar bowl”, Result: ”Put sugar
lid on coffee cup”. (2a) Capture slips; where frequently performed tasks are executed in
place of the intended one. (2b) Activation slips: Heading to the bathroom but realizing
that you have no idea of why you were going there. Only minutes later recalling that you
wanted to put in contact-lenses. (3) Errors caused by thinking too far ahead while per-
forming an automated skill; Such as switching up words while presenting a speech. These
slips can occur in a number of situations, and can cause incidents in industrial settings.
Norman argues that the reduction method for slips is to implement feedback mechanisms,
making people aware of their slips.

2.12.1 Human Error and Blame
Klein (2009, p. 129) presents Jim Reasons work on the basis of human error. Reasons
“Swiss Cheese” model of errors has had a major impact in deflecting the blame on the
person working at the sharp end, the operator, pilot or nurse. Spreading the investigation
throughout the organizational influences. Reason argues that there are two approaches
normally applied: “Human as a hero” and “Human as a hazard”. According to Reason we
overemphasize the “human as a hazard” model and should reduce the focus on ‘human’
errors.

Reason (in Klein 1999) coined the term latent pathogens, the term describes all the
factors, such as poor training, design, procedures, that might be undetected until the oper-
ator falls into the “trap”. If we try to understand the information available to a person, the
goals the person is pursuing and the level of experience, we will stop blaming people for
making decision errors. No one is arguing that we should not look at poor outcomes. The
real work is it find out the range of factors that resulted in the undesirable outcome.

Woods, Johannesen, et al. (1994, Ch.2) discuss errors and incidents in Human-Computer
systems. One of their main statements in this chapter is that systems fail(p52). Errors are a
part of a bigger system where all the constraints and the context of the error is important,
see Figure 2.3. A problem is by Woods et al. described as the culmination of a multitude
of environmental issues leading to the sharp end of the error: the direct entity causing it.
If this entity is a human, we will according to Woods et al. regularly see that they ignored
routines, were stressed, tired or inattentive, and similar explanations. When the analysis
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Organizational Context

resources and constraints

Operational System as a Cognitive System

Attentional Dynamics

Knowledge Strategic Factors

errors and expertise

demands

Monitored Process

Figure 2.3: Operators work within the boundaries of knowledge, attentional dynamics and strategic
factors. errors and expertise are developed at the connecting point between operations and process
demands. Figure adapted from Woods, Johannesen, et al. (1994, p. 21)
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of the fault can single out one thing, its easy to focus on the improvements/punishments
directed to the single instance. But when examining such errors, we need to redirect atten-
tion to the environmental causes that culminated into an error.

“The design of artifacts affects the potential for erroneous actions and paths
towards disaster.” (Woods, Johannesen, et al. 1994, p. 27)

Woods, Johannesen, et al. (1994) have identified a seemingly obvious statement with
the above, but the importance is that it affects it. Systems may increase the potential
for mistakes and errors. In some instances the new systems are so good at automatically
adjusting for problems without indicating the state, that when it no longer can compensate
it will fail catastrophically. Systems design has to take into account the environment, the
opportunities and limitations of human operators, and they have to expect and embrace
failure.

Klein (2009) further argue that we have a tendency to overlook those that perform
well, and try to “fix” those that make errors more than we follow up those that achieve
consistently.

“. . . In contrast, when we watch people who work in well-ordered and stable
domains, who carry out rules, and who remember facts, we don’t find much to
admire. We evaluate their performance by counting how often they make
mistakes.” (Klein 2009, p. 111)

2.12.2 Mental Simulation
Klein defines mental simulation as “The ability to imagine people and objects consciously
and to transform those people and objects through several transitions, finally picturing
them in a different way than at the start.” (Klein 1999, p. 45) They are effective methods
for adjusting a model of a similar situation to fit a new context. Kleins earlierly mentioned
Recognition Primed Decision model assumes this as the most commonly used methods for
expert decision makers.

But what causes failures in mental simulations? We tend to hang on to our mental
models, and adjust out world view to fit the model. While Klein (1999, p. 68) argues
that its not a failure of mental simulation that they are sometimes wrong, as the point is
to generate a valid explanation – not a proof. But when we use a simulation to predict a
future event, we have a overconfidence in the simulation we created. Additionally mental
simulation requires effort and time, but seems to be the better option than eg. a deductive
reasoning of the situation. Which will take even more time and effort in situations where
time is critical.

Simulations also have limitations when the number of “parts”, elements or variables
are involved. According to Klein (1999, p. 52) (Chase and Simon 1973, and eg.) a mental
simulation rarely apply to more than three factors, and seems to last for around six tran-
sition states. An expert might merge factors based on previous experience, increasing the
ability to simulate a complex task. In the cases where just abstracting will not help, a sim-
ulation of specific events might contribute to abstraction of a sequence or factor. If there
are too many simulations, externalizing and fusing some of the knowledge into a chunk,
by writing notes or drawing diagrams is a supporting task for the cognitive workload.
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2.12.3 WYSIATI

According to Kahneman (2011, p. 85) an essential design-feature of the associative ma-
chine that is the human mind, is that it only represents the activated ideas. Kahneman
coins the term “What you see is all there is” (WYSAITI) to describe the effect. This effect
is a major influence in intuitive thinking, and is a way for human cognition to fill in gaps
and . Information which is not recognized is not (and cannot) be taken into account when
making a decision. System 1 excels at creating a story fitting the available information,
but cannot take into account what it does not have access to. It works just as fast using
little and much information, and largely ignores the volume in deciding on the quality of a
decision. System 1 is radically insensitive to the quality and quantity of information. The
first impression of a situation, a machine or a person can be determined by a few factors.
An introduction, a strange noise, an annoying feature. All these effect how people make
decisions using relatively few data points.

2.12.4 Superstition

Klein (2009, pp. 280-282) describes superstition and how it affects decision making.
Learning from experience is hard, because the relationship between cause and effect is
hard to grasp and to learn from, and time delays confuse this process even more. Every
time we compile a story from an experience we can be understanding the effects of our
decision wrong. Following this superstition problem, Shanteau (1992) argues that fields
where expertise is possible are those which involve things, regularity, possibilities for er-
rors, good feedback routines, where problems can be decomposed, and where decision
aids are common. He lists fields of work like chess masters, physicists, accountants, grain
inspectors. Expertise is not necessarily linked with good performance in fields such as:
psychiatrists, personnel selectors, stock brokers. In these lines of work the listed traits
are not as common, and unclear feedback based on irregular and unique events lead to
’superstition’ and misleading mental models.

2.12.5 Omission and Isolation, System Design Influencing Operator
Decisions

Woods, Johannesen, et al. (1994, pp. 30-33) contextualize one error caused by omission of
a step in a setup-procedure. A routine task to set up some equipment had a step that was
not embedded in the structure of the equipment. This step then require more knowledge,
and has memory demands. This error is more often committed when operators are under
stress, time pressure, or are new to the system. By isolating this step it increases the
chances of omission errors, one error that is majorly impacted by the cognitive state and
skill of the operator. By designing procedures that reduce possibilities for omissions by
isolation, by requiring, highlighting, triaing, reminders, feedback, forcing functions we
have opportunities to revise the system design to reduce these errors.

Errors caused by a discrepance in the state of the system and the state the operator
believes the system is in, a mode error. Only when the operator or the system can identify
that the other has interpreted the wrong state are we able to fix this problem. Cognitive
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forcing strategies can often easily address this problem, and it is one of the simple “obvi-
ous” problems that occur daily with no effect, but can have a great impact on decisions if
larger systems and humans operate with different views of reality.

2.13 Dynamics for Human Operating Error
Woods, Dekker, et al. (2010) divide the factors influencing operator error in a system into
three categories (Seen in figure 1 above). Knowledge factors, Attentional dynamics, and
strategic factors. These groups cannot be evaluated alone, they overlap and influence each
other and are also affected by elements such as demands, and organizational context. The
demands are on the sharp end of the problem. Demands are in a constant balancing game
with resources, such as expertise and knowledge. When the demands are large, available
resources are essential to avoiding errors.

2.13.1 Knowledge Factors
Mental Models and Buggy Knowledge

Mental models is defined as a “. . . a mental representation of the way that the (relevant part
of the) world works . . . ” (Woods, Dekker, et al. 2010, p. 104). This world-view is used in
simulations to make inferences about how the world interacts and to predict future events.
The mental models are the basis for human knowledge, and are a result of practitioners
experiences and builds upon prior models. Most of the time mental models of things and
concepts are suitable approximations to the environment, but when oversimplifications
or ‘buggy’ mental models are used as a basis for decisions we see errors and accidents
happen (Woods, Dekker, et al. 2010, pp. 104-105). Woods et al. discuss that buggy mental
models of automation systems often create a dysfunctional relationship between system
and operator, where the operators trust or distrust in machine performance is the cause of
accidents, an automation bias.

Knowledge Calibration

Knowledge and mental models requires knowledge calibration, an awareness of the “ac-
curacy, completeness, limits and boundaries of their knowledge” (Woods, Dekker, et al.
2010, p. 106). Woods et al. Argue that miscalibration of mental models is caused by lack
of feedback and lack of experience with applying the knowledge. This knowledge calibra-
tion cannot occur before a cue is intercepted to indicate that the model is wrong. Explicit
feedback, on job education and alert performance is some of the approaches to calibrate
these models. The avoidance of miscalibration, from faulty feedback or knowledge is pos-
sible, and cognitive checks has to be set in place, the biases of the mind can fool our own
models of the world.

Combined Knowledge

Operators have knowledge and models which they have no knowlege of how to com-
bine; models in a similar domain can often be combined from inert knowledge to explicit

24



2.13 Dynamics for Human Operating Error

knowledge (Woods, Dekker, et al. 2010, pp. 107-108). Combining knowledge of individ-
ual models into a concept of relation and connecting prior knowledge to this connection
creates an improved understanding of the environment. The problem is that environmental
cues often direct what knowledge we possess and are able to recall. Knowledge is often not
summoned during an incident, but readily available when probed. Wick et al. Complicate
how this measure of understanding when not probed is important, but it is complicated to
measure objectively.

Oversimplification

(Schwenk 1984) argues that simplification processes are unavoidable in human decision
making, the models and heuristics we apply to fit our observations correct for complexity.
Woods, Dekker, et al. (2010, pp. 108-110)agree that simplifications are necessary, but that
there is a pitfall in oversimplifying. Oversimplification occurs when the mental model does
not inherit enough complexity to correctly define the workings of the system it models. As
with Recognition Primed Decision making we often try to find matching models, and look
for cues and opportunities for adjusting the model to the current situation. If the original
model is insufficiently advanced, we are in danger of performing a decision on the wrong
basis. Cognitive biases can often be represented as oversimplifications, where prior events
and experiences bias our decision skill in novel situations. But required simplifications
are often regarded as oversimplifications when seen in retrospect, while the situation often
require these simplifications to make any decision in the required timeframe. This aspect of
simplification is hard to manage and to give guidance in which situations they are required.

2.13.2 Attentional Dynamics
Situation Awareness, and commonly the lack of situational awareness, has a major impact
on decision strength Woods, Dekker, et al. (2010, pp. 116-117). Operators in changing en-
vironments with hazards, opportunities, misinformation and novel situations require great
cognitive strength to process and calculate the impact of these impressions. An internal
coherent model of the state of the world is an indicator of awareness, so when this model
breaks down in to fragments with no clear connection we cannot perceive and comprehend
the current state or predict the future. This can lead to a situation where the operator is
unable to connect and complete the situational picture without rebuilding it from the start,
an opportunity not commonly available when the situation is ongoing. Individual mental
capacity is important in some situations, but even team awareness is an approach to re-
duce the cognitive workload of the individual. Systems design might impact SA, because
of data presentation and cues that are different and colliding with the mental model of
operators, and alarms that rip operators out of their “attentional” bubble.

2.13.3 Strategic Factors
Goal Conflicts

Human decisions are affected by the goals we operate with. Both personal goals, and in-
ternal and external organizational goals and the expectations from colleagues affect how
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and why we emphasize certain choices and ignore others Woods, Dekker, et al. (2010,
pp. 118–123). Choices in prioritizing attention, ordering evacuations, modifying and fol-
lowing routines and personal safety are greatly affected by the involvement and the actual
goals of the organization and the individual. In the Norwegian industry, there is a great
focus on safety as a goal for operations.

For instance, I (the author) practitioned as an industrial mechanic at a Norwegian
nickel refinery. We had the saying “Think Safety First” indoctrinated from the first day at
work. The official stance, and the real stance of the management was that personnel safety
was more important than production. Meanwhile, the operators at times sacrificed safety
for efficiency, our personal intrinsically motivated goals were to keep the process going,
even when there was some personal risk. Some of the more seasoned employees which
had worked there for 30-40 years, their entire working career, were accustomed to the
“get things done” principle. They would perform tasks efficient but at the cost of personal
safety. There were no rewards for risky behavior, and injuries were scrutinized by man-
agement. This goal of safety had greatly reduced injuries and incidents, but had reached a
point that seemed incompatible with operation demands to operators in my division. The
incentives for high safety operations were directly affiliated with the bonus program for
the division of the company, and in my impression currently led to the underreporting of
minor injuries and failures to ‘dress up’ safety-statistics, which . Weick, Sutcliffe, and Ob-
stfeld (1999) argue that humans in non-open cooperative-environments like these perform
worse than teams open to admitting accidents and mistakes.

Organizational goal conflicts and incentives might cause unintended consequences
even for programs that have only the best intentions in mind. The cost of different de-
cision paths are highly related to the individual operators goals Woods, Dekker, et al.
(2010, pp. 123-125). The consequences of possible failure is weighed, opportunities for
instant gratification is tempting.

Woods, Dekker, et al. (2010, pp. 129-131)describe the problem of by authority-responsibility
double bindings. These double bindings occur when procedures are developed that should
and must be followed, limiting the operators opportunities to modify and produce new
paths to solutions. In situations where the operator believes that following procedures is
inadequate, but departing from procedures is disallowed. In a case of a review, the operator
following the inaccurate procedure (or system ‘advice’) will have his fault be attributed to
system error, reducing the “demands”, but not the responsibility of the sharp end operator.
This will inhibit the growth and opportunities resorting from operator expertise.

2.13.4 Data Overload
Most accident reports show how data was available, but not used correctly or never ex-
amined (Klein 2009, pp. 129-146) Klein argues that ’less is more’. Human information
processing has an upper boundary, and providing operators with infinite information often
leads to worse performance compared to a limit of the number of cues. Data and infor-
mation overload will lead to cognitive biases such as anchoring, as humans work with a
few numbers and look for confirming evidence. When there is no awareness of a problem,
this issue is increased. When information is presented context insensitive, operators will
overlook and ignore issues that in review are obvious. Woods, Patterson, and Roth (2002)
argue for the data availability paradox. In every field of practice the consensus is that

26



2.14 Decision Biases

more data is important for better decisions, but at the same time the flood of available data
is problematic and hampers performance. The data availability paradox is result from the
data avaliabilitys ““. . . simultaneous juxtaposition of our success and our vulnerability.”
(Woods, Patterson, and Roth 2002, p. 23).

2.14 Decision Biases
Researchers over the last 40 years have delineated a number of cognitive errors and biases,
and more will still be found. The universality of these heuristics and biases applied by
humans seem to be valid Tversky and Kahneman (1974). But the most promising cure
for these errors is awareness, and the ability to collect and investigate sources of errors
in decisions and outcomes of decisions that could be affected by debiasing. A majority
of errors in clinical diagnostics performed by professional seems likely to be caused by
cognitive errors (Croskerry 2003a).

2.14.1 Three Mile Island Incident
An prominent example of a real life, industrial incident influenced by two prominent bi-
ases, anchoring and confirmation biases was the Three Mile Island Accident (Three Mile
Island accident 2016). This incident led to much of the research on Human Computer
Interaction, because of its publicity and danger, and public investigation of the causes. In
review, the problems were initiated due to a wrongly operating valve, and following sys-
tem error. A valve controlling coolant for the nuclear operator was remotely closed by an
operator, and the status lights indicated that it was shut. This valve was still open, although
all system indicators on this valve told operators it was closed. Only when the next shift
arrived, diagnosing the problem with fresh minds, they diagnosed that this indicator was
incorrect and that the valve was still open. Metacognitive debiasing strategies are impor-
tant to avoid ignoring “obvious” errors. Operators have the skills and knowledge to find
the problem, but they are not looking for the obvious and simple errors Woods, Dekker,
et al. (2010, pp. 117-118). On a general decision proficiency note, Weick, Sutcliffe, and
Obstfeld (1999) argue that the tight coupling between systems to increase operational ef-
ficiency and time-dependent processes may have influenced this accident because of the
disconnection of the human element in normal operations.

2.14.2 A collection of simple Biases
There are a number of identified biases in human thinking, that seem to be applicable to
the majority of humans. Expertise in a domain will as stated earlier alleviate some of these,
but a great deal of them will remain as unconscious adjustments to our decisions. In 2.1
are some of the most interesting for the current analysis of industrial decision making, but
they are not exhaustive (See Croskerry 2003b, or Wikipedia for a more exhaustive list)
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Table 2.1: A Selection of Biases (Adapted from Croskerry 2003a)

Bias Description

Availability Knowledge effect when experience would have led to a better
outcome, and this was not evident to the decision maker. ie.,
The problem has not been seen for a long time, or alternately a
reverse diagnosis.

Base-rate neglect Tendency to neglect the true base rate of an occurrence.
Events that rarely happen, but are available in recent memory,
are often overvalued in the hypothesis generation.

Commission Bias Obligation to do something for the problem, right now. The
practitioner feels obligated to do something/anything for the
patient. Tendency to not await, but execute any idea.

Confirmation Bias The human tendency to look for cues that support the current
hypothesis.

Framing Effect Framing due to information presentation. The procedure has
90% chance of working, or 10% chance of failing. The
presentation of data with identical meaning significantly
influence peoples decisions.

Feedback sanction The bias that happens when a procedure is performed, and the
performer is happy about the result and will use the same
approach again. The real consequence of the error is learned
later, or never.

Hindsight Bias Under or over-evaluation of the abilities of the person or
system that caused the error.

Multiple alternative
Bias

Reducing the number of alternatives might cause the process
to be simpler to manage, but might impact the ability to see
new alternatives later. Hard to reactivate discarded
alternatives.

Omission Bias A bias towards ignoring errors made by the practitioner, when
something that was already breaking down is not salvaged.

Order Effects Information pick-up can be represented by an ’U’ diagram.
We remember the first and last things people tell us. It is
important to be aware of this tendency when receiving and
giving information.

Outcome Bias If a bad decision turned out good, it will be remembered as
good. And the reverse is true for a good decision that turned
out bad.

Overconfidence Bias A universal tendency to believe we know more than we do.
Using intuition, incomplete information, ignoring cues and
creating them to fit our world/view. Very related to the
anchoring and commission biases, in that our own ideas and
actions are more valued.
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Table 2.1: A Selection of Biases (Continued)

Bias Description
Playing the odds When two problems can be recognized by the same cues, there

is a tendency to try to fix the most common one first. Instead
of further examining to verify or disprove the hypothesis of a
less common problem.

Posterior Probability
error

Dismissing symptoms because of equipment/patient/other
history. “The pump has always made that noise.” – rejecting it
as a potential symptom or cue for a bigger problem.

Premature Closure Coming to an conclusion before it has been verified, and
stopping the search for a better solution while waiting for the
verification.

Search Satisficing The tendency to call off a search when a fitting hypothesis for
the problem has been found.

Vertical Line Failure Silo thinking and performing tasks economically, efficient and
utility. Carries the inherent penalty of inflexibility. Lateral
thinking is necessary to find the best solutions.

Visceral Bias Your feelings towards the patient can affect decision-making
capabilities.

2.14.3 Biases and Debiasing Strategies

Tversky and Kahneman’s 1974 article, “Judgment Under Uncertainty: Heuristics and Bi-
ases” is the seminal articles on biases and how they affect human decision making. The
three main categories of biases discovered by Tversky and Kahneman set the stage for a
plethora of research on how people make decisions based on Herbert Simon’s idea of Lim-
ited Rationality. The effect on human reasoning errors are massive, although some (eg:
Klein, Ross, et al. 2003) argue that the effect on experts is limited. Others (eg. Croskerry
2003b; Croskerry, Singhal, and Mamede 2013a) argue that a metacognitive awareness of
biases is critical for optimal diagnostic performance.

The three categories of biases Tversky and Kahneman found are related to how people
make decisions when not all the information is available or processable, or when the tech-
nique in the trick is unfamiliar or novel to the problem solver. While the issue they found
is that common problems; situations in personal economics and everyday decisions, show
the same biased effect.

Availability Bias

The availability bias shows how recent and extreme events are easier to remember and
have a greater impact on decisions. Events which happened in previous accidents on simi-
lar equipment might impact the diagnostic approach. The operator might ignore warnings
because of recent instances of misleading error messages. Heuristics are a way to limit
cognitive work, and ignoring such a common error might be one strategy. But even when
machines are crying wolf, the expert operator must be able and curious to check the cause
of false alarms.
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Representational Bias

The representativeness bias represents the human tendency to have a limited cognitive
understanding of how events are related, basic statistical reasoning and how correlation
does not imply causation. This bias is important in how operators decide based on events
that come to mind, and how the mind wants to create patterns, even in random data. We
will also ignore base rates, such as 1 in every 100 ovens have overheat errors. If operators
are presented with a hypothesis related to overheating, they are likely to ignore the base
rate of the error when diagnosing the oven. We do not respond optimally to sample size or
A coin flipped to Heads 5 times in a row is not that uncommon. It will happen about every
25 = 32th time. If we flip a coin 100 times this sequence occurs at least once, but humans
observing will often believe that the coin is non-random.

Further people tend to predict and project outcomes that are favorable, discarding the
odds. People are susceptible to an illusion of validity. In which the operators base their
decisions on the similarity of the values of the problem, and what the proposed solution is
supposed to fix. Largely ignoring the prevalence of more common problems a uncommon
fix is applied. Regression towards the mean is another issue, Tversky and Kahneman apply
it to feedback. A common belief is that commendation often leads to worse performance,
and a critical evaluation leads to better. The real cause of this effect is that the mean
performance is more common. So when an operator is critiqued for bad performance he
statistically will perform better on the following task, as that is his normal operating level.

Prior Hypothesis Bias

Decision makers have a prior hypothesis bias, in which they look for confirming evidence
of their current hypothesis, existing information and beliefs (Schwenk 1984). People have
a tendency to find the bad sides of non-preferred alternatives. If an idea has been chosen,
implicitly or explicitly, the decision maker will often resist changing the decision. An open
mind to switching and reverting decisions is important for making critical decisions.

Strategy Locking

A bias towards picking the same strategy for choosing alternatives is also problematic, if
operators get stuck in always making the same assumptions and applying the same strategy
we might miss solutions that are use different resources and opportunities. (Schwenk
1984)

Unfounded Optimism

Schwenk (1984) further describes a bias towards making strategic decisions in which de-
cision makers often have a tendency to decide on something thinking that if any problems
come up they will be able to amend and work around them. This tendency seems to be al-
leviated with experience, but is important to be aware of when performing decisions under
uncertainty.
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Fixation and Cognitive Lockup

Often called Fixation Bias, humans have a tendency to not revise and account for the
evolving situation often occurring in large dynamic event-driven environments (Woods,
Dekker, et al. 2010, pp. 117-121). In retrospective reviews there are often a number of
available cues that with observation should have forced a review of the situation. This
fixation can be through elimination, selection or ignoring a change in the environment.
Because of the wide definition, only mental forcing strategies can alleviate the general
problem. Fixation often occurs due to attempts to adjust a common strategy to a problem
where the strategy cannot account for the environmental differences. The best approaches
to amend this fixation is to invite new people to see the situation, create new models of
the situation and forcing a situational review using forcing strategies and routines. Several
major accidents, such as Chernobyl and Three Mile Island, was in part caused by a fixation
to a problem which could be solved by revising and revitalizing the assessment based on
new evidence.

Incorrect Revision of Probabilities

Failure to revise probabilities when sequential or parallel tasks are performed that can
affect probability of earlier simulated tasks.

2.15 Improving Reasoning
Human decisions have a tendency to extremity (Koehler, Brenner, and Griffin 2002) .
We use subjective probability to generate decision models, but as humans are affected
by frequency, availability and other biases the subjective models cannot compete with a
statistical model. Experts have a tendency to attribute much of their judgments to these
subjective models of event frequency. If these events are monitored and a correct statistical
model is computed and learned, experts will have less biased view of the situation. They
also suggest that some of the biases often attributed towards subjective probabilities are
affected by self-investment. People with a stake in the outcome have a tendency to be
more optimistic, (eg., the Unfounded Optimism Bias).

2.15.1 Metacognition and Cognitive Forcing Strategies
Croskerry (2003a) argue that procedural errors are easy to notice, we miss a step in a recipe
and later figure out that we miss something required. Cognitive errors in comparison are
tough to notice, they are internal errors that the operator has no awareness of . Cognitive
errors often occur even with expert domain/skills and knowledge. People are generally not
familiar with cognitive biases and errors, and by education and familiarization with biases
and cognitive errors can facilitate metacognition. Klein (1999) defines metacognition as
“. . . the awareness of the inherent limitations in human cognition.” (Klein 1999, p. 158).
Croskerry (2003a) has a broader description of the impact and opportunities of metacog-
nition. For effective metacognition an understanding and appreciation for the learning
process is required; the importance of the information has to be evaluated, specific items
has to be remembered and forgotten. A broader view of the situation is required, beyond
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immediate perception. Actively pursuing information with the awareness of cognitive
traps, and the issues presented. Finally, the ability of experts to use all this in the selection
of decision processes and how experts often have automated the selection of approaches,
using a deliberate intervention in the thinking process to identify the real deciding factors
and internalizing these into the decision model.

Croskerry (2003a) describes an overview of cognitive forcing strategies for clinical
decision making, but the model is generalizable to every structured environment. A pre-
requisite to minimizing cognitive errors is to understand the theory of cognitive errors.
There are three sequential levels of cognitive forcing strategies. (1) Universal, at this level
knowledge about cognitive errors must be learned to understand and be aware of biases.
(2) Generic, knowledge on generic situations where heuristics might be involved in the
searching for cues. An example is the ‘Satisficing’ heuristic where searching vigilance is
reduced when the first possible cause of error is found, thereby overlooking other possible
causes. (3) Specific, understanding of how cognitive errors often play a role in specific
scenarios and knowing how to debias accordingly.

The levels mirror the cognition theory of humans, and by creating a depth tree of cate-
gories we highlight areas of cognition that can often be overlooked. To improve reasoning,
the steps are cumulative but separate. Increasing knowledge and appreciation of the un-
derlaying principles of improvement stands out as a key to improving general DM skills.

Croskerry (2003a) propose that a five step model can be applied, a cognitive forcing
strategy. His approach tries to encompass an approach to awareness of common biases
and their impact on a number of situations where intuition needs to be validated or scruti-
nized: Learning techniques for de-biasing, increasing knowledge of specific heuristics and
biases, scenario recognition through case knowledge, and finally the goal of avoiding and
minimizing specific errors at the sharp end. Stepping back and de-anchoring, broadening
the horizon and simulating the decision one more time before executing irreversible pro-
cesses. These cognitively ’simple’ strategies force the best mentally processable decision
model, and is intended to avoid pitfalls in common situations by familiar biases.

Expert Metacognition

There are indications that experience and age seems to reduce the effect of bias in human
DM (eg. Neys, Cromheeke, and Osman 2011). Klein (1999, pp. 158-160) state that experts
unaware of the term metacognition often apply a practical version of metacognition. Char-
acteristics of expert implicit metacognition is awareness of own limitations. They are more
often utilizing cognitive aids that reduce the use of working memory. Experts apply a per-
spective view of most tasks, and stepping back from the initial solution. Self critique and
an ability to reflect on decisions both while they are happening and retrospective, seems to
be more prevalent in experts. Finally experts are better to generate strategies based on the
information gathered, for better performance on the current task. This strategy will often
include cognitive debiasing strategies that they have applied due to previous experiences.

Rasmussen’s 1983 Skills-Rules-Knowledge (SRK) framework is intended to catego-
rize human proficiency into three categories. Level 1 proficiency is Skill, it is accomplished
when a task is simple to perform and automated by the operator, the task is not necessarily
simple, it can be to play a piano or driving a car. Level 2 is Rules, require more cognitive
input but often follows a procedural pattern whereby a mix of skills and knowledge is ap-
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plied to reach the goal state of a procedural instruction. And finally Level 3 is Knowledge,
this behavior requires people to apply knowledge in any form to create or practice novel
(to them) solutions. Farrington-Darby and J. R. Wilson (2006) argue that its not unrea-
sonable to expect that experts might move more easily between the skill levels in the SRK
framework. Experts adapt more easily and have a greater repertoire of rules and knowl-
edge, while the tacit skills are often more elaborate. The reasoning for mentioning SRK in
the metacognition part is to highlight how experts seem to have an easier time of incorpo-
rating knowledge based performance into a skill, or that they are able to transform a skill
into knowledge. As we will see later, the SRK can be applied to learning and possibly
shortening the long path to expertise.

External and Internal Cognition

R. A. Wilson and Clark (2009) compiles research showing two different approaches to
cognition. The internal and external views of cognition are separated in how they perceive
environments effect the decisions and cognitive work. Internal Cognition can be described
as the part of our thinking in-between perception (input) and action (output). While Exter-
nal Cognition suggests that the internal view of cognition only sees a part of how humans
perceive and process information, and suggest that a model of cognition has to address this
problem. They argue that we need to see cognition in a perspective of extensions and mod-
ifiability. Extended computationalism the process of offloading cognitive resources onto
external objects, such as pen and paper. This use of external resources is extremely im-
portant when modeling how people make cognitive decisions and trying to increase their
decision making skills through systems design .

These new cognitive extensions are often identified from internal cognitive processes,
but where the mind has identified that external extensions can help with reliability, speed
and memory(R. A. Wilson and Clark 2009). Humans often use Task Specific Devices,
such as hammers and screwdrivers. (Wilson and Clark argue that analysis of these TSD
is essential to identifying opportunities for creating new TSD and improving cognitive
support for a process, not just the individual task.

2.15.2 Deliberate Practice

“. . . experience is not the mere passage of time or longevity; it is the refine-
ment of preconceived notions and theory by encountering many actual prac-
tical situations that add nuances or shades of differences to theory” (Benner
1982, p. 407)

Kahneman (2011) quotes Herbert Simon’s definition of intuition, from ’What is an
Explanation of Behavior’: “The situation has provided a cue; this cue has given the expert
access to information stored in memory, and the information provides the answer. Intuition
is nothing more and nothing less than recognition.” (Simon 1992, in Kahneman 2011,
p. 239)

Kahneman (2011) describes the implications of this definition as ““. . . reducing the
apparent magic of intuition to the everyday experience of memory” (Kahneman 2011,
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Figure 2.4: Developing Tacit Knowledge, figure adapted from Klein (2009, p. 112)

p. 239). We gain experience and expertise by recognizing known situations and predicting
outcomes based on the previous cues we either consciously or unconsciously perceive.

A mind that follows what was earlier referred to as WYSIATI (What you see is all
there is) will achieve high confidence in his abilities and knowledge, by ignoring what he
does not know. This might be why humans have high confidence in unfounded intuitions.
System 1 is System 2, the operator needs to be aware of this framing effect and its impact
on decision-making. WYSIATI is the way that we can function as humans, we infer a
situation through some observed cues and fit this to a model. All performed in system 1.
Unless the operator is made aware of more cues, and system 2 might be set in motion.
Kahneman is aware and highlights the differences between NDM and H&B approaches to
decision making, relating to WYSATI and expertise, he recognize that they are applicable
in different domains and at different times.

Klein (2009, Ch.7) argues that the current emphasis on reducing mistakes in organi-
zations severely limits the development of expertise. He argues for the view of Positive
Psychology to be applied into workplace environments. Seligman and Csikszentmihalyi
(2000) started the modern movement towards Positive Psychology, their argument for the
movement the focus in psychological science to develop remedies. They argue that this
approach will never give fulfillment and happiness, only reduce pain and sadness and pos-
sibly just remove the identity of a person. Klein argue that this is true for operators too.
And one of the areas of fulfillment is developing expertise. Figure 2.4. Klein (2009, Ch.7)
argues that this is applicable to cognitive sciences. Klein’s argument is that “. . . a fear of
mistakes should be balanced with a pursuit of expertise” (Klein 2009, p. 112).
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Tacit Knowledge

According to Klein (2009, Ch.2) tacit knowledge plays a prominent part in our ability to
cope with complex conditions. Tacit knowledge is the knowledge that we cannot express,
but that is unconsciously learned trough practice of a profession or task. Normal explicit
knowledge such as declarative information and routines & procedures are usually known
to the operator, but they are supported by a stack of tacit knowledge that cannot be easily
expressed. Klein remarks that it is easy to ignore tacit knowledge when analyzing humans
and organizations, because it is hard to articulate or even notice. (This issue has been
approached using Cognitive Task Analysis (eg., Militello and Hutton 1998; Papautsky et
al. 2015; Parasuraman and Manzey 2010) )

Procedures might be applicable in simple environments and to support tasks that have
a finite list of possible states, but knowing how to violate the procedures is a type of
tacit knowledge (Klein 2009, p. 39). Noticing changes is a tacit knowledge, when the
procedure closely match the current scenario - the expert is often the one to recognize
that the procedure is not applicable to this scenario, as the cues do not fit the procedural
assumptions (Klein 2009,p39).

It is hard to give people feedback about tacit knowledge. As a re-
sult, when settings or tasks are complex we give feedback about
departures from procedures instead of helping people to notice
subtle cues and patterns. Except when having a conversation about
procedures, we don’t know how to learn from one another about
tacit knowledge. (Klein 2009, p. 42)

2.15.3 Supporting Intuition
Supporting intuition is important for improving reasoning. One definition of intuition
is: “Intuition depends on the use of experience to recognize key pattens that indicate the
dynamics of the situation” (Klein 1999, p. 31). Subtle signs that conflict with or fit a model,
that can often not be articulated by the decision maker in regards to why they observed the
situation. Skilled decision makers know that they can trust their intuition, but at the same
time may feel uncomfortable trusting a source of power that seems so accidental. Klein
(1999, p. 33) argues that intuition is a byproduct of expertise, an expert processes clues
for situations without direct awareness. He further argues that the idea of Extra Sensory
Perception(ESP) is actually intuition, and influenced by expertise and familiarity. The
sensory inputs from the situation is compared with available models of similar situations.
When the situation fails to present the cues that are expected, the expert will recognize the
need to step back and reconsider. This is the main difference in NDM from H&B research,

Kahneman and Klein (2009) argue that experts in structured fields have a better under-
standing of their own limitations, possibly because of the personal risks associated with
the tasks. If an engineer has to make a decision in a field he is not an expert, he will
more likely ask another expert in that domain. Clear feedback, standard methods and con-
sequences for error appear to be factors implicating how much outside of their expertise
people are willing to go, and how far they are confident in going.

An approach to teaching intuition is to develop a training program (Klein 2009, pp. 42-
44). Using exercises and realistic scenarios, so the person has the opportunity to size up
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numerous interactions quickly. A good simulation lets you stop the action, step back and
see the cues, and you can use multiple scenarios together - to better illustrate the similari-
ties. An other approach is to compile stories using important cues. The core element is that
we teach pattern matching, that has the relevance to be applied into working situations.

Kahneman (2011, pp. 240-241) argues that regularities of the environment might be
easier to observe in certain domains. Immediate and unambiguous feedback are signs of
a task that is easier to use intuition and “System 1” control, these are kind environments.
Good and quick feedback and opportunities for practice is what Kahneman argues as the
predictors of developing intuitive expertise. Whereas a system with a delayed or ambigu-
ous feedback, a wicked learning environment, might trick your intuition to thinking that
the process had a positive result, while the real results are negative and never addressed
or acknowledged (Hogarth 2001 in Hogarth, Lejarraga, and Soyer 2015). Hogarth, Le-
jarraga, and Soyer (2015) suggest that we try to create kind environments in the learning
resources, avoiding confused learning and emphasizing correct feedback. They suggest
that simulation technology is one of the best methods for reliably featuring instant feed-
back on temporal-”real life” tasks.

The characteristics of expertise vary according to the cognitive demands that must be
met (Mosier 2008). Expertise in hybrid ecologies entails the ability to recognize not only
patterns of cues and information, but also potential pitfalls that are artifacts of technol-
ogy. Mode errors, hidden data, or non-coupled systems and indicators. Expertise includes
knowledge of how a system works, and the ability to describe the functional relations
among the variables in a system. (Mosier 2008). Experts must be able to combine infor-
mation to create a better picture, and when digital systems are applied we have a better
opportunity, but also a possibility of bias towards automation that must be avoided, and
taken into account in system design. Both digital and real information is examined by ex-
perienced practitioners, validating their model from system input to the cues provided by
the physical object or situationn. “The physician may interpret the digital data on a set of
monitors, and then examine the patient to see if the visual appearance corresponds to his or
her interpretation” (Mosier 2008, p. 49) Understanding all the states of the technological
systems and the clues presented, while continually auditing and relating data to compare
validity is one of the challenges and advantages of using automated systems. Expertise
necessitate knowledge of which strategy is appropriate at a given time in a given situation.

Expert – Novice differences

In a study of the difference cognitive work in expert vs novice emergency department
physicians Schubert et al. (2013) found significant differences in how expert practitioners
(10,000+ hours) and novices, handle situations in the Emergency Department. Among sig-
nificant differences is: (1) novices often use the checklist approach or create a timeline of
objective data acquisition (for instance lab results or radiographs). The novice looks pri-
marily for objective information. Experts are better at telling the patients story by focusing
on the extraction and interaction of essential information.

Secondly the novices had greater problems when there were no “textbook” signs of
any specific diagnosis. Further novices tend to discard data that does not fit with their
textbook description of a case, and will try to frame the case into previously diagnosed
cases. Experts, on the other hand maintain a broader view over the situation, and because
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of their experience with similar non-textbook cases, are more vary of cues that should
discard the working hypothesis, and are more willing to adapt to these new cues.

Error Diagnostics

To diagnose errors and to find solutions we have to compare a model with reality, or
compare reality with the model (de Kleer and Williams 1987). To work effectively and
efficient with mental models we have to revise and create new models based on experience,
and be able to alter realtiy to fit good and working models. What separates the study of
de Kleer and Williams is that they approached how models could be used to diagnose
multiple fault errors. Their data suggest that good model based diagnostics need to use
a-priori designed models to find Bayesian best approach diagnostic guides.

2.15.4 Improving Understanding - Workplace Learning
“How workplaces afford opportunities force learning, and how individuals
elect to engage in activities and with the support and guidance provided by the
workplace, is central to understanding workplaces as learning environments.”
(Billett 2001, p. 4)

Both how individuals engage in activities and how the workplace offers support and
guidance are central aspects as to how knowledge is acquired. In industry appliances such
as aluminum industry a big portion of the work is performed on appliances the operator
never understand the principles behind his work. By understanding how people learn on
the workplace, we can better support the learning process and the affordance of workplace
learning.

As mentioned in section 2.15.3, intuition and expertise has a decisive impact on de-
cision strength. To facilitate acquisition of expertise some background knowledge is re-
quired, and professional learning is one way to build this understanding.

As Billett (2001) states, the findings that if and how the workplace affords learning im-
pacts actual learning in the workplace, are commonsense. The kinds of opportunities pro-
vided for learners will be important for the quality of learning that transpires. Equally, how
individuals engage in work practice will determine how and what they learn. Billet (2001)
further suggest that “These factors might be overlooked if the links between engaging in
thinking and acting at work and learning through those actions is not fully understood.
And, establishing a workplace training system, without understanding the bases of par-
ticipation, is likely to lead to disappointment for both workers and enterprises.[emphasis
added]” (Billett 2001, p. 6)

Hoffman, Feltovich, et al. (2009) and Kahneman (2011, p. 240) indicate that there are
a number of requirements for supporting skill and expertise in workplaces.

• working on the edge of proficiency, a stretching of skill using increasing challenges.
• intrinsic motivation to put in work at the required level
• feedback that is meaningful
• an expert mentors support and encouragement
• opportunities for practice in a regular environment
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Kahneman (2011, p240) describes two basic conditions for acquiring intuitive exper-
tise:

• An environment that is sufficiently regular to be predictable
• An opportunity to learn these regularities through prolonged practice

Kahneman argues that when both these conditions are satisfied, intuitions are likely to be
skilled. Physicians, nurses, athletes, and firefighters are said to face “complex but fun-
damentally orderly situations” . “While decisions for stock prices and political scientists
who make long-term forecasts operate in a zero-validity environment. Their failures re-
flect the basic unpredictability of the events that they try to forecast.punct” (Kahneman
2011, p. 240)

Instruction

Eiriksdottir and Catrambone (2011) argue for three main types of instruction: Procedural
Instruction, Principles or system-oriented instructions, and examples or instances of the
task. These have widely different characteristics and are used among each other in in-
struction. Procedures explain the steps of an operation, principles explain why the steps
are chosen and the theory behind them, and examples are instances of the task where the
operator gets to try or see how the problem is supposed to be handled. The goal of instruc-
tion is vital to the shape of the learning material; one time instructions can be simple and
produce correct results without much understanding. In other scenarios the instructions
have to take into account that the operator is expected to adjust the instructed information
into new cases. Initial performance of a task might not indicate long term proficiency.

Eiriksdottir and Catrambone (2011) suggest that design of instructions to support learn-
ing and transfer of information requires a different set of factors opposed to initial perfor-
mance. People often choose the cognitively easier path to solve problems, and instructional
design has to take this into account. Eiriksdottir and Catrambone have through a litera-
ture review identified that fading information; reducing information available during each
iteration of a procedure. Improving understanding and mental models through presenting
principles of the procedural instructions will improve the mental model of operators. Peo-
ple can learn from examples, but only when analogical reasoning and one-to-one mapping
with procedures is avoided. Incomplete information seems to be the most proficient way
of inciting learning, as the cognitive work is forcibly increased and this leads to improved
understanding and especially performance when going outside of standard operating pro-
cedures.

In contrast Feltovich, Spiro, and Coulson (1989) argue that initial simplified models
can limit the depth students embark into the material. The initial model is often more
satisfying and has glanced over some of the non-intuitive aspects of the more accurate
description of the modeled concept. The first model is then often the one memorized, be-
cause the story has more relations to peoples other models and experiences. They suggest
advanced knowledge acquisition as a method where the primary goals of the education is
to get the concepts right, sacrificing the speed of which learners gain adequate knowledge
but accessing the maximum potential of learners. Learning that shows comparatively low
initial proficiency increase, can lead to greater flexibility and transfer when these advanced
principles are practiced over time. The learners are evaluated by their understanding and
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applied knowledge, combining concepts to engage novel situations. Klein (2009, pp. 269-
282), argues that unlearning is hard. People hold on to simplified mental models because
they are relatable to experiences from other domains. To become an expert you will need
to be open and able to change and dismiss mental models for models that do not fit your
current world view. Klein suggest that identifying and disconnecting some “unintuitive”
models early is a good approach for alleviating this issue, and experienced practitioners
must be aware of this when instructing novices.

Feedback

“Experts learn more from their mistakes than from what they get right.” (Hoffman, Fel-
tovich, et al. 2009, p. 20). Mistakes happen, and they might happen frequently. But mis-
takes can be elusive and hidden. A practitioner that get little feedback about the result of
his decisions will never have any indication of his choices impact on the environment. Hu-
mans have a tendency to believe our practice is the correct one, so debiasing this through
feedback, and presenting feedback in a way that encourages learning can separate good
from bad decision making development.

2.15.5 Information Needs
Zhang and D. A. Norman (1994) argue that research on cognitive decision making often
ignore that physical items can support the cognitive task. They work with the term Dis-
tributed Cognitive Tasks, in which they argue that the external representations of cognition,
such as in writing down a number, or creating physical models are not emphasized enough
in the current research. They found evidence for a recommendation to further investigate
the physical representation of the data and information in the external world that supports
cognitive decisions. They use the term representational effect, to describe “a phenomenon
where different isomorphic representations of a common formal structure can cause dra-
matically different cognitive behaviors” (Zhang and D. A. Norman 1994, p. 88).

Zhang and D. A. Norman (1994) continue by explaining the distributed representa-
tional space. A task can be viewed as an internal and an external representation. These
two representations both combine to and extend an abstract task space, the distributed rep-
resentation. The main argument of the article is that the external space and its representa-
tion might be seen as identical to a theorist, but three different representations of the same
external knowledge can for a normal human occur to have no relation with each other, and
task performance is greatly impacted by both instructions and artifact shapes. The design
of a decision aid and the external representation of the decision system is highly important
for an improved understanding of systems of all kinds.

2.16 Situation Awareness
A large portion of the tasks operators are performing in todays world are increasingly
dynamic and in changing environments. Changing environments cause challenges for
decision making, and one of the critical precursors to a good decision is that of maintaining
situational awareness (SA). One commonly used definition of SA is ““. . . the perception
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Figure 2.5: Model of situation awareness, simplified from Endsley (1995, p35)

of the elements in the environment within a volume of space and time, the comprehension
of their meaning, and the projection of their status in the near future.” (Endsley 1988,
cited in Sneddon, Mearns, and Flin 2006) Task performance is dependent on an up to date
understanding of the environment, and a temporary loss of SA can be enough to cause
both injuries and economic damage. It is not enough for the operator to perceive the
environment trough observing values and cues, he must be able to both understand the
connection between the cues, and to project a future state based on these cues. (Endsley
1995) “Recognizing the situation provided the challenge to the decision maker, ” (Kaempf,
Wolf, and Miller (1993, p1110) in Endsley 1995).

In Sneddon, Mearns, and Flin’s 2006 study of accidents in offshore crews, they define
characteristics of the operating environments where they state that situational awareness is
an important factor:

1. Multiple goals to be pursued by operators simultaneously;
2. Multiple tasks having different relevance to goals competing for the operators atten-

tion;
3. Operator performance under time stress and negative consequences associated with

poor performance.

2.16.1 Levels of Situation Awareness
Endsley (1995) suggests that there are three levels of situation awareness, and that errors
can occur on any of these levels. Figure 2.5 visualize her model of Situation Awareness.
The three levels are Perception, Comprehension and Projection and are sequential and
level based. The levels are described below to show

Level 1 SA: Perception of the elements in the environment

This is the lowest level of situational awareness and is associated with the perception of
data in its raw form. This can be that a operator notices other people, status of equipment
values and various labels for these data. Worker environment should be continually moni-
tored to encode sensory information and to detect changes in significant stimuli. Attention
is limited and is intrinsically limited to include the boundaries of the working memory
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system (Sneddon, Mearns, and Flin 2006). Consequently attention is selective and critical
elements may be missed or ignored in the perception stage.

Level 2 SA: Comprehension

This involves the combination, interpretation , storage and retention of information to paint
a holistic picture of the current situation (Endsley 1995). This level is shown to be a de-
viation of meaning from the perceived elements. This is partially supported by the mental
models already stored in long-term memory. The degree of situational comprehension
will vary from person to person , and expertise and skill has major effect on the level of
comprehension, especially in high activity situations (Endsley 1995).

Level 3 SA: Projection

This final level occurs as a result of the combination of levels 1 and 2. The stage is
responsible for extrapolating the information gathered into a projection of future events.
Having the ability to correctly forecast possible future circumstances is vital, as it enables
the formulation of suitable action courses to meet goals (Sneddon, Mearns, and Flin 2006)
.

2.17 Expertise
A recurring theme in the previous section has been that experts perform decisions better
than novices. In this part the expert will be presented, and methods for facilitating expertise
are presented. The concept of an ’expert’, “Experts are operationally defined as those who
have been recognized within their profession as having the necessary skills and abilities
to perform at the highest level.” (Shanteau 1992, p. 255) This implies that an expert is
anyone that performs better than most practitioners in the field. Expertise is not necessarily
related to experience. An oft stated figure is that 10,000 hours of deliberate practice is the
baseline to become an expert in any advanced profession, from chess to music to medical
doctors. Although some evidence show that the effect of deliberate practice is overstated
(Macnamara, Hambrick, and Oswald 2014). Experts approach problems in a different
way experienced-nonexperts (Woods 1995, p. 2374). They are able to devote resources
into specific tasks, or managing parallel attention and to keep track of tasks. They are
able to identify which tasks are critical and suspend even important tasks to cope with
developing vulnerabilities. They assign and distribute tasks to subordinates. And they
know what sacrifice is required, and where to invest resources.

An example of the difference between experts and novices is presented by Serfaty
et al. (1997). They studied expertise in battlefield commanders. Their findings indicate
that expert commanders create a more elaborate and extensive mental model, where the
steps were more detailed, and they understood and articulated the risks involved. The
non-experts often came up with the same approach, but without the understanding of why
and how the plan could fail. It seems that experts use prior experiences, and war-stories
where they have personal experience, or have heard about similar events to better generate
their mental model, and simulating the event. This is highly related to the feedback-loop
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Figure 2.6: Dreyfus’s judgment and decsions process model. Based on Sage (1981, Fig. 8)

discussed Wickens, Hollands, et al. (eg., 2012), where knowing both the why and what
happened, will adjust future approaches to similar situations.

Bereiter and Scardamalia (1993) present one of the defining works on the elicitation
and specification of expertise. There is a significant difference in performance from people
with identical amounts of experience, as measured in time. Experience does not imply ex-
pertise. “The difference between experts and experienced practitioners is not that one does
things well and the other does things badly. Rather, the expert addresses problems whereas
the experienced nonexpert carries out practiced routines.” (Bereiter and Scardamalia 1993,
p. 11). An experienced-nonexpert and an expert might operate at the same level when prac-
ticing routine procedures, but when incidents and innovations are required the true experts
use their low level domain knowledge and associative mental models to understand how
the problem can be solved. Bereiter and Scardamalia suggest that the differences between
experts and experienced non-experts is how they pursue their career: The expert wants
to be challenged, to understand more, and apply the knowledge into novel situations. In
contrast, the experienced nonexpert tries to align their work to routines and procedures.
An expert practitioner that is supposed to fix a lever, will not only fix or replace the lever
with an identical one, but figure out why the lever broke and create a new solution.

The expert is not born with ’intellectual brilliance’, the skill and extraordinarity is
based on a knowledge base of both intrinsic and extrinsic knowledge. Understanding is
often based on understanding the systems on a deep level, experts understand the engineer-
ing and processes of the domain of expertise, rather than recognizing the process from a
symptomatic level.

Figure 2.6 is designed to to visualize S. E. Dreyfus and H. L. Dreyfus’s 1980 general
specification of the sequential levels of skill development. As skill develops different
mental functions are used based on level of understanding. Their idea is to show that
expertise often replaces and extends basic operating procedures. At the same time they
show that these operating procedures must be introduced to get the practitioner faster from
novice to proficient. Recognizing aspects and cues in an holistic sense is one of the signs
of a proficient practitioner. Relating to decision making they too see an expert as someone
that makes decisions based on intuition and not an analytical approach. (For a further
explanation of the levels of proficiency see: (Benner 1982))
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Formal Knowledge in Expertise

Bereiter and Scardamalia (1993, pp. 61-74) discuss formal knowledge and its applicability
to expertise. Their definition of formal knowledge is loosely based on ‘it can be rep-
resented in textbooks’ but they argue that the traditional view of knowledge has always
been using this a kind of physically reproducible knowledge. Formal knowledge is more
tangible, and ready for discussing, criticism, comparison and to teach without reconceptu-
alizing or modifying. However, the connection between expertise and formal knowledge
is not a 1-1 relationship, and experts utilize formal knowledge in various applications.
Bereiter and Scardamalia argue for three main functions of importance to experts: (1) for-
mal knowledge is essential for dealing with issues of truth and justification. According to
them there is reduced use of formal knowledge to make decisions with experience (See
eg: Schubert et al. 2013). But the formal knowledge is often used in justifying choices
and connecting performance to understanding. Non-experts use more formal knowledge
while performing tasks, but experts utilize their informal knowledge and experience, be-
fore justifying their choices referring to formal knowledge later. (2) Formal knowledge
is important for communication, teaching, and learning. An ontology of knowledge is re-
quired for communication with other practitioners in the same profession, and to formalize
knowledge using the terminologies applicable to the field. (3) Formal knowledge provides
starting points for the construction of informal knowledge and skills.

A scenario illustrating the conversion of formal knowledge into skill is given by (Bere-
iter and Scardamalia 1993). The task of driving to your friend Amy’s cottage is a skill
you do not possess. Amy gives you a series of instructions of how to get there. ‘Drive
left at the intersection, follow for x km, under the bridge and take a sharp left’. These in-
structions break the main goal into subgoals that are obtainable, but you might have to use
other formal knowledge and skills such as map reading and inferencing based on implicit
information. After a few times following these procedures the task of driving to Amy’s
cottage is proceduralized and automated. This same approach is used in textbooks, with
incremental learning to attain bigger goals. This ’textbook approach’ can only get you
partway to expertise, applied knowledge and an attentive situated experience is required to
bring most practitioner to a level of expertise.

Developing Expertise

Bereiter and Scardamalia (1993, p. 222) argue that to better support expertise, the organi-
zation has to develop societies and culture where the process of expertise is normal rather
than exceptional. The inherit curiosity of humans must be supported and “exploited” to
give those operators that want to understand, a better chance at developing expertise. They
further suggest that individual goals (In traditional education) can be replaced with goals
of classroom understanding of a topic. If a group of operators are tasked to understand a
problem, not everyone needs to completely understand it. But if a shared society within
the group is encouraging learning together both individuals and the society winds up with
more knowledge and experience.

Bereiter and Scardamalia (1993, pp. 77-120) uses a metaphor of driving, which show
their view of how expertise require a different mindset and environmental support. Normal
learning by experience tapers of when the level of performance is adequate. When learning
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to drive a car, most of us stop learning and are satisfied when able to handle driving on
roads. This is how we satisfice, the tasks is performed adequately. They argue for an
approach called Learning Reinvestment, learning to drive a racing car with the intention of
winning races. To win races, a requirement is incremental challenging tasks building upon
knowledge and skill. The difference between normal learning and the learning that fosters
expertise is what we do with the capacity we gain by automating and proceduralizing
knowledge. Normal learning leads to satisficing. If the environment is the same, the skill
of the operator will remain sufficient, but no more. A change in environment or tasks will
lead to learning, but will stop when sufficient. An expert has an intrinsic motivation to
utilize the capacity gained by experience to further experience and knowledge of the task
and environment.

Three common forms of reinvestment to build expertise are: (1) reinvestment in learn-
ing, (2) Seeking out novel and difficult problems, and (3) Tackling more complex repre-
sentations of recurrent problems. By working towards the edge of competence the expert
create themselves, we cannot force expertise through workplace-learning programs and
systems design. But we can support the elicitation and curiosity of those whom strive to
understand and challenge their knowledge.

The real world mostly provides opportunities to do the routine. Expertise
involving the nonroutine is harder to get from everyday work experience be-
cause the right situations occur rarely and often are handled by established
experts when they do occur, not by students. (Lesgold (1992), in Hoffman,
Feltovich, et al. 2009, p. 18)

Hoffman, Feltovich, et al. (2009) argue for the introduction of the term Accelerated
Learning into the world of intelligent systems. Accelerated learning is an idea that we can
develop proficiency in tasks faster than by a traditional situated teacher-student approach.
They argue that the current learning systems often attempt to help people become profi-
cient in as short time as possible, but what is really needed is an approach that helps with
the journey from competent to expert. An adaption of the criteria has been presented in
Section 2.15.4.
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Automation

3.1 Introduction

In the fullest contemporary sense, the term automation refers to a.
the mechanization and integration of the sensing of environmen-
tal variables (by artificial sensors), b. data processing and deci-
sion making (by computers), c. mechanical action (by motors or
devices that apply forces on the environment), and/or d. “informa-
tion action” by communication of processed information to people.
(Sheridan and Parasuraman 2005, p. 90)

Sheridan and Parasuraman (2005) base this definition as an opposition to the dictio-
nary definition which is outdated and mostly referring to the physical labor that is replaced
by automation. Current automation focus in the industry is just as focused on the cognitive
labor. Automated computers perform analysis, makes decisions, displays information,
and record and compile data. Humans work with and are considered essential to automa-
tion systems. In comparison to the technical capabilities, human capabilities – human
performance and cognition in automated systems – are much less frequently written about
(Parasuraman and Riley 1997; Parasuraman, Sheridan, and Wickens 2000). Automation
does not supplant human activity, but the nature of work is changed.

When discussing the use of automation in regards to decision making, the category
of cognitive supporting automation systems are the most applicable. The average human
brain has for a long time not been able to compete with systems on simple arithmetic tasks
such as mathematics and simple procedural calculations. Recently, systems have been
able to utilize better developed models, big-data and more processing power to replace an
ever-increasing number of human tasks.

But automation is applied to reduce human workload and increase efficiency (Parasur-
aman and Riley 1997). What this implies for the human role in the industrial environment
in the future is still uncertain, but in the following it is presented some of the current
research on the effect of automated systems and their influence on humans, and vice versa.
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The most common task for a human when interacting with an automated system is to
take the role of supervisor. This supervisory control, has five main cognitive functions
(Sheridan and Parasuraman 2005). Planning, teaching the automation, monitoring the au-
tomations execution, intervening or assuming control if needed, and learn from experience.

A central theme in later years is Human-Centered Automation popularized by Billings
(in Sheridan and Parasuraman 2005, p. 94). The focus on this is the aspect of human
interaction with automation systems and how we can best create automation systems that
support the operational flexibility a human supervisor or operator provides. There is no
consensus to this quest for excellence, but the notion that automation must be designed to
work in conjunction, and adapt it to a human operator is generally agreed upon (Sheridan
and Parasuraman 2005)

3.2 Levels of Automation
Automation can be usefully characterized by a continuum off levels rather than as an all-
or-none concept (Parasuraman and Riley 1997). Under full manual control the particular
function (or decision) is controlled by the human, with no automated system influence.
At the other extreme of full automation, the machine controls all aspects of the function,
including its monitoring, and only its products (not internal operations) are visible to the
human operator.

Parasuraman, Sheridan, and Wickens (2000) present a model for the types and lev-
els of human interaction with automation. Human interactions with automated systems
is a critical part of decision support, and the degree of automation greatly affect both use,
misuse, disuse and abuse of automation, both by the operators and the designers. The ques-
tion they set out to solve is: given technical capabilities, which system functions should
be automated and to what extent? Automating tasks is traditionally viewed as a techni-
cal problem, and the research on the human parameters is limited. By approaching four
stages of automation, and separating each stage into a grade of automation, the framework
proposed should impact automation designers.

Table 3.1 is referenced and used by Parasuraman, Sheridan, and Wickens (2000) and
I will use their explanation of the model. The table shows a ten point scale where higher
levels representing increased autonomy of computer over human action in decision making
systems. For example at level 2 the system propose several options to the human and the
system has no say in which option is chosen, while in level 4 the system presents one
decision alternative, but the human retains authority. At level 6 the computer gives the
human a limited time to interact.

Figure 3.1 describes four stages of human information processing as described by
Parasuraman, Sheridan, and Wickens (2000). Sensory processing is the acquisition and
registration of multiple sources of information. The second stage is where conscious per-
ception and manipulation of processed and retrieved information in working memory. The
third is where decisions are reached based on such cognitive processing. And the fourth
stage involves the implementation of a response or action consistent with the decision
choice. These four stages have an equivalent in automatic systems; (1) information ac-
quisition, (2) information analysis, (3) decision and action selection, and (4) action im-
plementation. Each of these functions can be automated to different degrees. One system
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Table 3.1: Levels of Automation - Scale of Levels of Automation of Decision and Control (From
Wickens, Mavor, et al. 1998, p. 14)

High Automation 10. The computer decides everything and acts
autonomously, ignoring the human.

9. informs the human only if it, the computer, decides to
8. informs the human only if asked, or
7. executes automatically, then necessarily informs the

human, and
6. allows the human a restricted time to veto before

automatic execution, or
5. executes that suggestion if the human approves, or
4. suggests one alternative, and
3. narrows the selection down to a few, or
2. The computer offers a complete set of decision/action

alternatives, or
Low Automation 1. The computer offers no assistance: the human must

take all decisions and actions.

Sensory
Processing

Decision
Making

Perception/
Working
Memory

Response
Selection

Figure 3.1: This illustration extends Table 3.1 to the four stages of information processing by Para-
suraman, Sheridan, and Wickens (2000)

might have a high automation in the information acquisition phase, but not on the sub-
sequent phases. Another system might be close to completely automatic, only requiring
human interaction only when it needs to.

This scale is used for describing Levels of Automation (LOA) in several consequent
articles. Parasuraman, Sheridan, and Wickens (2008) argue for a further simplification.
(Stage 1 and 2), and (Stage 3 and 4). The first two stages (1 and 2) are responsible for
information acquisition and analysis, physical and mechanical tasks . While the last two
(3 and 4) are responsible for decision making and action; cognitive information process-
ing. They contextualize the LOA with some examples: A medium LOA in information
acquisition and analysis, the data acquisition phase, can highlight relevant data to indicate
a potential problem. In a higher LOA this is not necessarily the case, here filtering is used
to hide “irrelevant” data and highlight “relevant” data. The reliability of filtering can be
important, and a potential performance cost may occur if the priority of information is
suboptimal. Stage 2, automation of information analysis, supports working memory, situ-
ation assessment, diagnosis, and inference. Parasurman and Wickens use an example at a
low LOA where an automated analysis is performed and extrapolation over time, or pre-
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diction is performed (eg., Fleming and Pritchett 2016; Wickens, Gempler, and Morphew
2000). At higher LOA at Stage 2 involves integration, in which several input variables are
combined into a single output value (ie Cooke 2008, p60).

Parasuraman, Sheridan, and Wickens continues by explaining stage 3 and 4. These au-
tomated decision aids are responsible for choices, and can be seen as if-then systems. The
system must take assumptions of the cost, risk, and values of different choices. When re-
liable these decision automation systems increase performance, but when not reliable they
perform worse than an information analysis system (stage 2 system), likely because of
the recommendation approach (Sarter and Schroeder 2001). Sarter and Schroeder’s find-
ings suggest that unless the reliability of a decision aid is perfect, status displays may be
preferred. Thus avoiding automation biases while increasing performance benefits over a
non-automated baseline, this is also the conclusion of Rovira, McGarry, and Parasuraman
(2007) who performed a study on imperfect decision making in high risk, low timeframe
situations where they found unreliable decision automation inferior to unreliable informa-
tion automation in all three measured tests. Parasuraman, Sheridan, and Wickens (2008)
Speculates that information automation may be the superior approach because the user
must continue to generate the decisions for the courses of action. As a result, users might
be more aware of the consequences of the choice, and of the impact of a faulty dataset.

If we are to increase the level of automation to the highest, both level 3 and 4 automa-
tion must be performed by the system. This can be implemented in time critical decisions,
such as automatic breaking in cars. This introduces a trust issue, in virtually all imple-
mentations where the operator has no understanding of the ‘opaque’ system and when and
what it makes decisions (Lee and See 2004).

3.2.1 Procedural Instructions
Procedural instructions are an approach to decision-automation, where the material for
how to diagnose and solve a problem is standardized into a stepwise instruction guiding
operators. Procedures are used for everyday tasks, an example is baking: Most of us use
procedures for baking bread, in which all ingredients and tools are listed, and the exact
flow of the process is detailed. This will produce the same result, using the same amount
of time, and the same resources every time. If we learn this recipe by heart, we will be
able to make a good bread. But the issues arise when there are other issues complicating
the problem. An expert baker might see the same recipe but identify opportunities that
fit the current situation better. We might need the bread earlier, or we lack some of the
ingredients. The expert connects prior experience and modifies the procedure to create a
good result.

Klein (2009, pp. 22-30) propose that following procedures can limit understanding.
In many areas the understanding of the process and especially what happens when some-
thing goes wrong beyond procedures is a decaying skill. Klein is critical of the state-
ment “Teaching people procedures helps them perform tasks more skillfully”, this claim
is supported by some scenarios such as the implementation of procedures for Surgeons
and Operating Rooms. In other fields, where the decision making process often has to
take into account many different variables and a changing scenario. The operators are led
into mindlessness and complacency by following instructions instead of understanding the
process. “By understanding the process, experts are usually working around or loosely
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following the procedure.” (Klein 2009, p. 23). Klein refers to scenarios where accurate
procedures are made, but they are presented in ways that are not appropriate. Examples of
this are procedure documents with hundreds of pages made to handle time sensitive and
rare situations. Procedures and mind-automation should according to Klein be approached
as guidelines and best-practices, but understanding is the key to handling non-routine ex-
ceptions.

Diagnosing

Understanding

Predicting
Mediocre

Forecasters

Highly Skilled Forecasters

Figure 3.2: “Forecasting Processes used by mediocre and skilled weather forecasters.” (Recreated
based on Klein 2009, p. 23)

Klein (2009, p. 23) illustrates the issue using weather forecasters in Figure 3.2. In
forecasting procedures mandate which data to collect and the analysis to perform. But
expert forecasters seem to follow their intuition and more often detects unusual weather
conditions.

Operators which do not understand the process they are supporting: operators support-
ing tasks performed only by following step-by-step procedures, will never be able to learn
or operate at an expert level. Procedures seem to equalize the levels of operators, both un-
skilled and experts now operate on the same level and expertise can be dwindling from the
organization because of the absence of challenge and learning opportunities in mindlessly
performing routine tasks.

3.3 Automation Cost
”With computerization I am further away from the job than I have ever been
before. I used to listen to the sounds the boiler makes and know just how it
was running. I could look at the fire in the furnace and tell by its color how it
was burning. I knew what kinds of adjustments were needed by the shades of
color I saw. . . . I feel uncomfortable being away from these sights and smells.
Now I only have numbers to go by. I am scared of that boiler, and I feel that I
should be closer to it in order to control it.” (Zuboff 1988, p. 63)

Mosier et al. (1998) describe a China Airlines flight, where power in one of the four
engines was lost. The flight was running on autopilot, controlling both speed and pitch.
When one of the four engines started having troubles the system responded with com-
pensating for the problem by holding the wing down and increasing power to the other

49



Chapter 3. Automation

engines. Even though all the individual information pieces were available the crew did
not realize that they had lost an engine. When they disabled the autopilot to land, they
suddenly lost altitude and yaw of the airplane. Automation can mask errors, and when
compensations in effect are not reliably addressed to the operators this is a major cause of
accidents.

Mosier (2008) presents a view that highly technological environments are signifi-
cantly different from purely naturalistic environments and that this difference impacts
all macrocognitive functions and thus decision making. She states that technological aids
in decision environments reduce the ambiguity inherent in naturalistic cues. They process
data from the outside environment and display them as highly reliable and accurate infor-
mation rather than probabilistic cues. While some of the data is retrieved from sensors,
experts often need to validate with a real situation. This leads to a hybrid ecology: It is
deterministic in that much of the uncertainty has been engineered out through technical
reliability, but it is naturalistic in that conditions of the physical and social world — in-
cluding ill-structured problems, ambiguous cues, time pressure and rapid changes interact
with and complement conditions in the electronic world. In a hybrid ecology, cues and
information may originate in either the naturalistic environment (external, physical) or the
deterministic systems (internal, electronic). Inputs from both sides of the ecology must
be used by effective practitioners to make the optimal decision. Technologically ’invisi-
ble’ cues such as smoke and sounds, can often provide critical input to the diagnosis of
high-tech system anomalies.

This hybrid ecology leads to implications in expert decision making. Models like the
Recognition-primed decision model (RPD) (Klein 1993), is claimed by Mosier (2008)
to not apply when data is presented on a monitor. Data can be hidden below surface
displays or mean different things in different display modes. A critical component of
expertise in hybrid environments is knowing whether and when the situation is amenable to
being intuitively recognized. Mosier makes the proposal that successful decision making
in hybrid environments is supported by analysis, more than intuition. The analysis is here
defined less rigidly than in other decision sciences. We do not need to create a diagram and
model of alternatives and mathematically weigh them. We define analysis as “conscious,
logically defensible, step-by-step process” (Hammond 1996,p60, in Mosier 2008). This
definition presents analysis as an opposite to intuition, but not necessarily using empirical
decision strategies.

(Onnasch et al. 2014) found in a meta-study of automation systems that the skills of
operators are greatly decayed when not in use, as can be the case with automated systems.
Task automation greatly reduced operator ability when returning to manual execution of
the task, and situation awareness was reduced when automated. Task efficiency was pos-
itively affected by almost any kind of automation, so there seems to be a settlement in
current systems by reducing operator understanding and increasing operational efficiency.
According to Ornash et al.s findings, there are indications that if the goal is operator un-
derstanding and supporting operator knowledge, task automation should be limited.

3.3.1 Mental Workload
Parasuraman and Riley (1997) states that one of the fundamental reasons for introducing
automation into complex systems is to lessen the chance of human error by reducing the

50



3.3 Automation Cost

operators high mental load. However, this is not necessarily applicable to reality. Humans
seem to distrust automation and often prefers performing the task manually. Bainbridge
(1983) exemplifies the need for a challenge, any cognitive or physical endeavor, by from a
processing plant: The operators would switch equipment to manual during the graveyard
shift when no managers were on site. If the operator cannot manually perform the task he
is made to oversee the job is classified as: “. . . one of the worst types [of job], it is very
boring but very responsible, yet there is no opportunity to acquire or maintain the qualities
required to handle the responsibility.” (Bainbridge 1983, p. 776) If the job is deskilled by
being reduced to a monitoring task, it is hard for the individual to come to terms with and
will often require compensation in pay or other benefits (Bainbridge 1983).

Mosier (2008) present some common issues with ’intuitive’ displays. According to her
system designers often concentrate on ’enhancing’ judgment environments by providing
decision aids that are designed to increase the accuracy of judgment, but this is often based
on assumptions for information the individual needs, and how it should be presented. In
aircraft instrumentation, the trend has been to present data in pictorial, intuitive formats
whenever possible, an approach that seems fitting based on the research on mental models
and situated understanding. But this focus on highlighting and simplifying automated in-
formation has inadvertently led the decision-maker down a dangerous path, operators start
assuming that the systems represented on the screen can be managed in an intuitive fash-
ion. This is according to Mosier a false assumption. Within seemingly intuitive displays
are often layers of complex data. These system couplings may produce unanticipated,
quickly propagating effects if not analyzed and taken into account.

3.3.2 Cognitive Skills
“We are locked into a spiral in which poor human performance begets automation,

which worsens human performance, which begets increasing automation.” (William Langewi-
esche Langewiesche 2014)

The quote above is one of the ending statements in a critical analysis of the 2009
Air France Flight 447 crash, which seems to have occurred in part because of pilots with
“experience” from hundreds of hours in the air having limited practice flying without ad-
vanced automation assistance (Langewiesche 2014). When suddenly the automation fails,
because of a sequence of “bad luck”, the pilots fail their job as knowledgeable and respon-
sible operators.

An operator will only be able to create successful new strategies for unusual situations
if he has an adequate knowledge of the process (Bainbridge 1983). There are two prob-
lems with this for ‘machine-minding’ operators: Efficient retrieval from long-term mem-
ory requires frequent usage. And this type of knowledge develops only through use and
feedback about its effectiveness. Bainbridge (1983) argues that people given this knowl-
edge in theoretical classroom instruction without appropriate practical exercises will lack
understanding as it will not be within a framework which makes it meaningful. They will
not remember much of it as the knowledge will not be associated with retrieval strategies
which are integrated with the rest of the task. There is some concern that the present
generation of automated systems, which are operated by former manual operators, are
using their experience for understanding, which later generations of operators cannot be
expected to have.
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Cooke (2008, p. 60) describes the implementation of a monitoring system for anes-
thesia, where a simple automated unit displays the projections of the blood content of the
various drugs enabling a full body anesthesia. The task is quite simple, but it is cognitively
demanding to track three different drugs each with unique half-life and absorption rates.
The system described by Cooke both monitored and displayed a prediction of future devel-
opments. This unit replaced monitoring of “proxy variables” such as heart rate, breathing,
and twitching with a standardized display for blood content and an estimate for total anes-
thesia. The initial results were positive, and even a novice was able to perform the role.
This is argued to have sparked resistance because the system was not well received by the
anesthesia community – possibly fearing for their profession to erode.

Technology in hybrid environments should support human cognition, but of-
ten does not do so effectively. The way in which data and information are pre-
sented may have a powerful impact on judgment strategy that will be induced,
and thus whether or not the appropriate cognitive strategy will be elicited or
facilitated. (Mosier 2008, p. 48)

Decision-aiding systems should recognize and support this requirement. Many tech-
nological systems are designed on the basis of incomplete or inaccurate suppositions about
the nature of human judgment and the requirements for metacognitive awareness and
sound judgment processes. (Mosier 2008, p. 48). In their efforts to provide an easy-
to-use intuitive interface display format, designers have often buried that data needed to
retrace or follow system actions. These calculations and resultant actions often occur
without the awareness of the human operator. System opaqueness, another facet of many
technological systems, also interferes with the capability to track processes analytically.
Mosier argues that the elaborate electronic screen systems with hidden complexity might
impair rather than support macrocognitive processing and decision making, as it does not
facilitate appropriate cognitive responses and awareness.

3.3.3 Situation Awareness
Automation of decision making systems may reduce situation awareness (eg., Onnasch
et al. 2014; Parasuraman, Sheridan, and Wickens 2000). Humans adjust their awareness
when other agents perform changes, opposed to performing the changes themselves. Also
if a decision support system reliably suggest the best alternative, operators might become
complacent and discard their own view of the situation.

The cognitive process required in hybrid systems, may be apparently intuitive but they
are really analytical (Mosier 2008). Only when all systems represent the same informa-
tion and present redundancy the data can be trusted. Failure to control data can lead to
inadequate or incorrect situation assessment, with subsequent injuries and incidents.

3.3.4 Automation Bias
Parasuraman and Manzey (2010) state that it is important for the designer to be aware
of the biases involved when designing automation systems. Designers and operators
must recognize the unpredictability of how people will use automation in specific cir-
cumstances, because people are different. They suggest that if automation is to be used
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appropriately, potential biases and influences on decisions must be recognized by train-
ing personell, developers and managers. Individual operators needs to be made aware of
operational biases that might lead to lower decision quality.

Experts must be aware of the problems on over-relying on technology for problem
detection. A byproduct of this tendency is automation bias, “a flawed decision process
characterized by the use of automated information as a heuristic replacement for vigilant
information seeking and processing,” (Mosier 2008, p. 50) as a factors in professional
pilots’ decision errors. Mosier (2008) presents two classes of technology related errors
that commonly emerge in hybrid decision environments: (1) omission errors, failure to
find and understand information that is not presented by the system or procedure and (2)
commission errors, where operators follow procedures and directions without verifying
against available information, or in spite of contradictory information. Wickens, Gem-
pler, and Morphew (2000) findings indicate increased commission bias frequency when in
making decisions using difficult to process data, but that conclude that the complacency
to automation provide enough benefits to outweigh the reduced Situation Awareness and
manual-review.

Mosier et al. (1998) argue that automated systems are often introduced as superior to
human performance. The automated cues they produce have a more accurate mathematical
background, and can visualize and combine a thousands of calculations that the average
operator could never fathom. The risk involved is when some automated cues require
resources to interpret and operator knowledge is required to find the underlaying problems.

Humans go for the path of least resistance, often named the garden path, and when
one approach is supported by automation this path if often chosen. Automation is often
beneficial, it helps offload information seeking and compiling, it highlights warning signs
and gives the operator more cognitive resources to focus on other tasks. The main problem
of automation is that it makes it less likely for operators to seek information supporting or
contradicting the automated statement (eg., Mosier et al. 1998).

Automation biases occur when there is an over-reliance on automation, causing subop-
timal decisions. Humans are bad at monitoring, and will often lose track of system states
when automated.

Another effect of the automation bias can happen if the user is not aware of the limi-
tations of the system (C. A. Miller and Parasuraman 2007). When the user is unaware of
system capabilities, he might suppose that nothing is wrong when diagnosing a problem
using system guidance. But if the system is incapable of detecting this error, it can have
catastrophic consequences when the operator trusts systems to guide his diagnostics and
decision.

3.3.5 Complacency
As mentioned above, operators can become complacent when expected to overlook au-
tomated processes that are almost reliable (eg. Klein 2009, pp. 23-30). Operators do not
learn why the procedures are performed as they are led into mindlessness and complacency
by following instructions instead of understanding the process. Yeh, Wickens, and Seagull
(1999) describes the results of an automated air to ground targeting system, where perfor-
mance of a slightly faulty system was worse than the control-group lacking any automated
support. The automated target would not always be the highest priority, but because of
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the the systems highlighted target pilots were inattentive and showed complacency to the
surrounding environment. This supports what Parasuraman and Manzey (2010) indicate
as a correlation between the effects of automation complacency and -bias. Complacency
seems correlated with the frequency of observed failures in the decision making system.
Trust is built up over time, and failures detected is inversely related ot the time since last
detected decision system failure.

Bainbridge (1983) states that operators that are expected to solely monitor that an auto-
matic process is acting correctly, but which has the responsibility if anything goes wrong,
can not acquire this skill through his work. This raises complexities as: can an operator
that is unskilled with lack of real understanding really monitor a process or evaluate a de-
cision proposition? Bainbridge states that ’Vigilance’ studies indicate that it is impossible
for even motivated humans to maintain an effective awareness of a system where nothing
happens for most of the time. This leads to a reliance on automated alarm systems, thereby
reducing the role and skill of the human operator to a alarm-processor. A classic method
of forcing data monitoring is to require the operator to make a log, but according to Bain-
bridge people frequently write down numbers without processing what they represent.

Operators do not learn why the procedures are performed as they are led into mind-
lessness and complacency by following instructions instead of understanding the process
(Klein 2009, pp. 23-30).

3.4 Summary
In this chapter, a quick review of some terms related to the use of automation by human
operators. Current Automated systems seem to conflict with goals of human understand-
ing. Automation is no longer merely automation of a physical task, but can facilitate and
automate decision making and information retrieval. The appliances of automation sys-
tems seem to ignore features of human cognition, and more than ever, operators require
knowledge to understand opaque automation features and limitations.
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Chapter 4
Decision Support Systems

“Our design problem is less – can we build a visualization or an autonomous machine,
and more – what would be useful to visualise and how to make automated and intelligent
systems team players.” (Woods, Patterson, and Roth 2002, p. 34)

4.1 Introduction
This chapters focus is on the interaction between Decision Support Systems (DSS) and
the operators decision capabilities. The study shows how many problems have been ap-
proached, and the most glaring errors and opportunities for the design of Decision Support
Systems have been selected. This part continues in the style of the previous parts by pre-
senting selected authors views on a challenge in human decision when using automated
systems, and often the opportunities for alleviating such problems are included.

P. J. Smith et al. (2012) defines an Active Decision Support system as “[Systems that]
use algorithms to actively monitor situations and to generate inferences in order to assist
with tasks such as planning diagnosis and process control.” (P. J. Smith et al. 2012, p. 590).
Other types of computer-assisted decision systems are those that improve: User access to
information, presentation of information, or which helps improve communication. The
definition of the Decision Support Systems(DSS) in this chapter are not necessarily sys-
tems that automate the decision process and requires user input; it is a broad term that
encompasses all types of systems and environments designed for improving operator de-
cision strength during a situation in a certain environment.

Zuboff (1988, pp. 7-12) clarifies what distinguishes current information technology
from earlier generations of automated machine technology. While IT can be used to ex-
tend, reproduce, and improve upon machine technology, it also is able to convert the cur-
rent state of sensors, equipment, products into data and information. Modern automation
is not mute, can via sharing data produce a rendering of events, objects, and processes
so that they become visible, knowable and shareable for operators. Current automation
systems should be designed to inform as well as automate. Systems are no longer limited
to performing their actions in a ’black box’, we can utilize them to translate the current
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process and making it understandable. But this requires intent and leadership to implement
correctly.

Zuboff (1988) argue that the introduction technological support systems cannot in it-
self ’enslave’ or ’liberate’ people, the managements decisions for introducing either em-
powering them by education through systems or subjugating them by using automation to
eliminate cognitive tasks.

P. J. Smith et al. (2012) argue that improving process efficiency through procedure
redesign, improving communication and better memory aids might prove as, or more ef-
fective than an Active DSS would. The process goal has to be the most important part
of the design process. The goal is rarely to develop a DSS but to improve operator and
process efficiency and safety. If complete automation is better, it should be implemented.
Contrary monitoring decisions and alerting when they are objectively wrong can be an-
other approach. Weick, Sutcliffe, and Obstfeld (1999) argue that a defining part of High-
Reliability Organizations are how they avoid oversimplifying process instructions to fa-
cilitate better understanding of routines and to find opportunities hidden in the shadows.
Operators should possess the knowledge, and have the responsibility of decisions, but a
direct access to his leaders for input, collaboration and coordination.

Yoon and Hammer (1988) referencing Wickens arguments in ’Engineering Psycology
and Human Performance’, the hardest cognitive task is the diagnosis, a precursor of any
decision. Wickens based this on two factors; the number of cues available vs the number
that can be held in memory, and the number of mental operations to be performed. Sup-
porting this diagnosis process seems to be one of the hardest tasks to implement, especially
when diagnosing novel problems. The system needs to be able to support the humans dis-
covery of cues, and the mental model of the operator should be able to adjust to problems
not modeled in the system.

“The challenge for applied cognitive psychology is to provide models, data, and tech-
niques to help designers build an effective configuration of human and machine elements
within a joint cognitive system. ” (Woods 1985, p. 89)

Building decision support systems is not a technical problem, and it is not a human
problem. If the goal of the system is to improve decision quality, the dilemma of automa-
tion, and conditions for expertise is central to the process. The degree of automation, level
of guidance, design of the interface all needs to support the goal of improving the decisions
made in the industrial processes.

Woods (1985) suggest that a problem based approach to developing systems is always
more appropriate than an technology driven approach. The technology utilized has to
suit the problem, and is only a tool and possibly a limitation. A problem in a dangerous
environment might imply automation as the tool, while a problem of inconsistency and
memory lapses might require redundant support and validation. Should the system be
designed for specialists or generalists, or even specialists in diverging fields requiring use
of identical systems? The requirements for discoverable interfaces and usability change
according to the users training and frequency of use.

One of the main issues of designing DSS are that the routine decisions they often sup-
port are the same ones that operators already performed well, but when the DSS requires
an operator to act as a safety net when the designers have failed to anticipate a situation,
situated knowledge from routine operations should have been applied, but it might have
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eroded (P. J. Smith et al. 2012).
Rogers (2004) argue that design and research has to work together. Designers should

use research as their basis for innovative designs. And designers can contribute to sci-
ence by doing rigorous research and publishing their novel findings. A common problem
according to Rogers is that academics are unfamiliar with designers work and methods,
and designers have reserved appreciation for academic rigorous methods. Throughout this
chapter I have compiled a number of methods generated both by design and research to
support the design of decision support systems. Research and generalizing method from
other domains as a base for designing specific domain resources can be a valuable input to
the creative process, and has been the basis for the designs presented in this thesis.

The automation systems that support operator decisions are not necessarily there for
minimizing the loss from operational mistakes (Hoc, Amalberti, and Boreham 1995; Woods
and Hollnagel 2006, Ch.6). Decision Systems should help prevent malfunction, support
maintenance tasks, limit operation mistakes, and monitor specific indicators of malfunc-
tion. A system that detects a malfunction can help predict the course and cause, and pro-
vide procedures with automated responses to contain the issue. Finally when a malfunction
is at a late stage, the system should support the repair and minimize loss. Every observed
issue should be reported, for a statistical preventative effect and a objective source of fail-
ure information to be utilized in the design of later system iterations, or in modifications
of the current one.

As seen in Chapter 2, one sensible approach if we want to improve human decision
making. To reduce the effect of human decision biases, and to avoid theoretical mistakes,
we have to help operators build expertise. Improving mental models, to help people adjust
their own assessments of situations and thereby improving their own decision making
heuristics to better fit with the correct anchors.

4.1.1 DSS Requirement Elicitation
Eliciting the real mental models of operators and to find the actual operational difficulties
of users require a number of methods and approaches. Below a best practice review by P. J.
Smith et al. and D. Norman’s requirement principles are selected as an introduction to the
specific needs when designing novel decision support systems are selected. These methods
require a deep understanding of the target domain and human cognition to be effective.
When incorrect assumptions are applied in the design of decision support systems, the
subsequent changes often require organizational changes (Woods, Dekker, et al. 2010,
pp. xv-xx). Researching prior examples and methods to prevent and identify these possible
causes for incidents is one of the main keys to implement and enhance capabilities of
decision support systems.

Woods, Dekker, et al. (2010, pp. xv-xx) argue that researching errors in HCI is an
issue in which many stakeholders are impacted when issues are discovered. Systems that
are composed with design-flaws are hard to modify, both latent organizational issues and
direct operational procedures has to change and the impact on the orgnization from these
errors might be unsurmountable when the system is already in use. Researching prior
examples and methods to prevent and identify these possible causes for incidents is one of
the main keys to implement and enhance capabilities and capacity of mental and computer
systems, thereby reducing errors.
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D. Norman (1983) suggest that there are four different concepts we have to consider
when researching the mental models of operators: the target system, the conceptual model
of the target system, the user’s mental model of the target system, and the scientist’s con-
ceptualization of that mental model. The target system is the system the user is learning
about. The conceptual model is the model the teacher, designer, scientists and engineers
have created for the target system. Mental models seem to be functional models, not nec-
essarily technically accurate. These mental models are influenced by the users interaction
with the system and the users theoretical and practical familiarity with similar systems.
The Scientists representation of a mental model is how the scientist analyze the mental
model of a learner or operator to find discrepancies between this and the established model
of the system.

There are a number of elicitation methods for uncovering the actual domain-requirements
for a DSS, P. J. Smith et al. (2012) list a number of methods, but a short summary of their
approaches is presented below.

Needs analysis

Needs analysis, we need to establish if the system is required, and how humans should
be a part of the system. We need to establish the underlaying goals of the operators and
executives, and analyze how a system could satisfy the actual needs of the company. Fur-
ther operations of actual operators is required to see the larger context of the DSS, often
the problem caused by inadequate decision making is caused by contextual issues. Smith
et al states that system designs can be tested using use case scenarios, but the best test
is performed by real users. Multiple iterations are required to produce the best kind of
system.

Cognitive Task Analysis and Walkthroughs

Cognitive Task Analysis (CTA) and Cognitive Walkthroughs are methods for understand-
ing how tasks are performed, and how they would be performed using the DSS developed.
CTA observes operators performing their day to day job, and compares this with what
believe they do and the official procedures. Cognitive Walkthroughs are used to predict
task performance for the new system by asking operators to follow the steps proposed in
the design of the new DSS, and having them evaluate how and why this would/would not
work by acting out the process.

Work Domain Analysis

Work Domain Analyses, is a supplement to CTA. CTA is often looking at the processes of
an identified objective or goal. However DSS in complex environments will never be able
to find all the scenarios that can arise. WDA will attempt to approach the problem from
the other side, evaluating and modeling the environment and analyzing the possibilities
for situations in the environment. P. J. Smith et al. (2012) use the common analogy of
describing a route to a location by words or by using points on a map. The route is easier
to accomplish using ’language’-based sequential instructions, but when an issue occurs we
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have more problems adjusting. Using the map we have to use more cognitive processing,
but it is more resilient to unexpected occurrences, like blocked roads and traffic.

Ecological Interface Design

Ecological interface design is a paradigm in the design of automated systems that try to re-
duce the time operators spend on skills and rules in interface interaction (see Rasmussen’s
1983 SRK framework, section 2.15.1), and to optimize the application of human knowl-
edge in cooperation with the system (See eg., Jamieson et al. 2007; Rasmussen 1999).
The ecological analysis can be done using task-based or work-domain analysis but should
optimally use a combinations of various knowledge elicitation approaches. Ecological in-
terfaces often highlight goals, current tasks and other features that operators are interested
in automatically and available.

4.1.2 Importance of Analysis and Knowledge
Woods, Dekker, et al. (2010, pp. xv-xx) argue in their search of explaining “human errors”
suggest that there is an tendency to “declare war” on errors. We track and count them,
and analyze them using flawed frameworks. Their argument is that organizations work
by the cognitive glue of operators and management working towards a common goal, with
constraints such as time, workload, motivation and more. They make flawed systems work
together, often so well that external and internal investigators will not discover their adap-
tations and effort. What often is left to discover during routine safety audits and error
counts is errors, incidents where a practitioner or system created an “obvious” incident.
Woods, Dekker, et al. argue that most of the potential, and often dangerous errors lie be-
hind the label of “human error”, where an error is attributed to a human cognitive failure
leading to an incident. The authors argue that the new world of highly coupled and con-
nected systems

4.1.3 Automation Cooperation
Automation Systems are often designed with automation in mind, suppressing the human
element of the system design. Christoffersen and Woods (2002) argue that the human is
seen as a risk and a cause of errors, and the common design ideology is to automate the
operators tasks without managing the surrounding working environment. An automated
task might reduce a humans manual labor, but will inevitably place an increased workload
into the cognitive tasks. This change of workload has a great impact on the operating
capacity of the human. As mentioned in Chapter 3, humans have issues managing and
supervising automated tasks. When the automation system is reliable, the human focus
attention to his other tasks. When a sudden inconsistency in the automation occurs, this
can cause a wave of workload changes both down and up from the new automated system.
Systems need to be able to indicate its current and projected state to the operator, and the
operator has to be able to understand what tasks the system performs.

Christoffersen and Woods argue that more advanced automations systems result in an
increase of system autonomy and authority, but with this increase in sophistication the
requirements for effective human-computer cooperation increase. Systems have to be able
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to make the operator aware of its goals and current process just as any human would be able
to as another human operator. If this cooperation is faulty we will see more automation
surprises , where the state of the system conflicts with the state the human supervisor
expects.

When humans collaborate they create a common ground for understanding, in order to
support coordination of their problem solving efforts. Christoffersen and Woods suggest
that this notion of a shared representation is important when designing HCI. They break
shared representations down into two parts; shared representation of the problem, and
representation of the activities of other agents. A common understanding of the problem
at hand is required, and several questions are proposed as evaluation metrics: What type
of problem is it? Is it a difficult problem or routine? High or low priority? What types
of solution strategies are appropriate? How is the problem state evolving? . If both parts
are able to communicate this, the collaboration is complete. Additionally the other part
is the information of what hte other part is working on and the related information to that
process.

Modelling systems after human interactions might have an positive impact on the
strength of human decisions. Automation etiquette is an example, where the interrup-
tions of automation systems are modeled to fit what humans etiquette would indicate is the
best approach. Sheridan and Parasuraman (2005) show how systems with high reliability
(80%) which interrupt, hurry and bother the human operator can result in inferior results
to a lower reliability (60%) system that works better together with humans. Automation
etiquette improves automation cooperation. Quantity, quality, relation and the manner in
which you present it all has an impact on the user experience, and has a direct connection
with task performance.

4.1.4 Reliability

Weick, Sutcliffe, and Obstfeld (1999) discuss High-Reliability Organizations and how the
discussions of reliability of organizations and the effect of human-computer interactions
and design of operations to allow for errors, or to automated to the degree of elimination of
the error. How far should an automated system go to alleviate errors before the reduction
is considered better than to not have automated it?

The traditional definitions of reliability argues that a repeatable and reproducible ac-
tions or patterns of activity is a fundamental principle of “. . . the notion of repeatability or
reproducibility of actions or patterns of activity is fundamental to traditional definitions of
reliability.” (Weick, Sutcliffe, and Obstfeld 1999, p. 35). Weick, Sutcliffe, and Obstfeld
agree that this definition is accurate on a macroperspective, but not when studying relia-
bility in individual system and operator performance. Situated operations require constant
adjustment for regular performance at optimal capacity. This adjustment process is rarely
supported by routines and programs alone, and cognitive processes and decision skill has
a major influence on reliability. The argument is that an overreaching concept in the pro-
duction of systems and evaluation reliability is that routines and procedures have to guide
cognitive tasks instead of attempting to replace them.

Rasmussen (1999) argues for three central design issues controlling that the Human-
Machine System facilitates the ability for reliable operator control.
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• ”Are objectives, intentions, and performance criteria known and communicated ef-
fectively among controllers (decision makers)?”

• ”Are controllers supplied with reliable information on the actual state of affairs, and
is that information directly comparable to the formulation of objectives?”

• ”Are controllers capable of control, that is, do they know the effective control points
and system responses?”

• (Questions from Rasmussen 1999, pp. 208-209 )

The relevance of these questions to the design of DSS is that they emphasize the structure
that is required for learning and operator understanding. Design of systems with a human
component must implement methods for communicating its intentions and take input from
the operator in an understandable fashion. Rasmussen explain that the traditional display
of only factual information and data is insufficient for effective system understanding,
systems should also display intentional information explaining how and why the system is
proposing a decisions.

4.2 DSS Examples
Below I have included a number of reports on current systems present in the research
literature. A number of categories of decision support systems are available, and this list is
intended as an indicator for the wide range of possibilities to facilitate operator decisions
and understanding.

Diagnostic (Medicine) Decision Support
DSS have been attempted employed in Medical systems since the inception of the idea,
R. A. Miller and Geissbuhler (2007) describe how earlier Diagnostic Decision Support
Systems (DDSS) attempted to solve the “global” problem of diagnosing all diseases, the
development focus has shifted to creating DSS for the individual procedures in a clinical
diagnosis. The current systems assume that the user will interact in an iterative fashion,
where the DSS and the user cooperate in finding the solution.

Decision Trees
Martignon, Katsikopoulos, and Woike (2008) describe a model for decision-support using
Fast Frugal Trees, simple yes now questions that the operator must answer for a step by
step diagnostic sequence. The process is “fast and frugal”, only if the operator has at least
one exit at each level. Every level has to be able to provide an answer to the problem, or
dig deeper. While quick, this model is hard to design and has severe limitations when the
diagnostic model is incomplete.

Communication Support
P. J. Smith et al. (2012) present some design decisions made for a communication sys-
tem incorporating a Decision Management component to reduce interruptions for in field
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military communications. By incorporating sensors such as heart-rate, motion monitor-
ing, EEG (Brain-activity scanning), they were able to both make communicators aware
of the ongoing situation, and converted non-important messages to a text display to limit
the cognitive workload of the field-operator. The equipment required to support this is by
Smith et al. regarded as a possible source of reduced situation awareness, and this is a
blocking limitation for adoption in field-operation. The reduced SA from equipment is not
enough to warrant the opportunities of the communications system, but with some sensor
development we might have such systems in the future.

Multi-Level Automation
Multi-Level automation is an decision automation approach using computer meditated
mode switching to collaborate with the humans perceived information needs.

Fleming and Pritchett (2016) describe the levels of automation in a common Traf-
fic Alert and Collision Avoidance system. (TCAS) This system normally acts as a low
level information automation ((Using the scale from Parasuraman, Sheridan, and Wickens
2000)) by displaying nearby traffic on a radar for pilots. When an anomaly or discrepancy
occurs, the system alarms and warns the pilot and might suggest precautionary ‘traffic an-
nouncements’ and more imminent ‘resolution advisory’ (RA) warnings. When the system
identifies a time-critical RA and both aircraft have TCAS, it will coordinate the RA to sug-
gest opposite paths for the fastest avoidance agreement. Additionally some newer aircraft
have RA connected to the autopilot, and automated avoidance can happen unless the pilot
overrides the system advice.

The system described has a ‘multi-level automation’ which is context sensitive. The
functions provided to the operator changes with context, and in critical situations the op-
erator might even be eliminated from the decision sequence. Fleming and Pritchett argues
that operator compliance is an important part of using the TCAS system correctly. Si-
multaneously, the Federal Aviation Administration (FAA) shifts the responsibility to the
flight crew; they are required to check and validate the RA. In some situations the flight
crew might resolve to ignore the TCAS, but this requires a simultaneous cognitive process
to scrutinize and actualize on the situation . This use of the system requires education
systems based on actual expert performances and how they utilize systems in a variety of
situations. (Fleming and Pritchett 2016) argues for the appliance of the SRK framework
(discussed earlier) as an application for learning goals and material.

Virtual Reality
As Virtual Reality (VR) quickly is becoming a reality in a number home-techonlogy ap-
plications, they are still rare in industrial systems. Re, Oliver, and Bordegoni (2016) looks
at the results of a number of studies on VR in Industrial tasks, they indicate improved
performance, but at the cost of ergonomics, situational awareness and monetary expense.
These factors currently prevent adoption. Technology limitations are a major hurdle even
today, systems are either large and high-fidelity or small and relatively low information
display capacity. Hand-held displays such as Mobile phones and tablet require a operator
to hold them reducing manual ability. The current generation of Virtual Reality applica-
tions are “currently unacceptable in industry because they are unstable, not scalable and
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they have ergonomic and economic issues that negatively affect working conditions in
long-term usage” (Re, Oliver, and Bordegoni 2016, p. 382). The potential is clearly there,
and laboratory tests show reduced cognitive workload with increased performance, but the
impact of these types of devices is still low in the current day possibilities for developing
Decision Support Systems.

4.3 Learning Requirements
To implement effective automation systems we need to implement learning into the sys-
tem design. Zuboff (1988) argue that ’informating’ technology cannot be useful without a
supporting learning structure. Understanding is a requirement for comprehension of infor-
mation, and the environment around any system must support learning to optimally utilize
such systems. “. . . a learning environment [emphasis added] would encourage questions
and dialogue. It would assume shared knowledge and collegial relationships. It would
support play and experimentation, as it recognized the intimate linkages between the ab-
straction of work and the requirements for social interchange, intellectual exploration, and
heightened responsibility.” (Zuboff 1988, p. 308).

Davenport and Short (1990) argue that IT Systems can be designed to monitor or em-
power employees. When implementing automation to redesigning business processes the
learning-potential of information systems is often neglected. This potential must be eval-
uated when contemplating new systems.

Not everyone is motivated to be an expert learner, but creating an environment where
learning resources is available and supported will enhance the possibilities for those who
want to develop expertise. (Bereiter and Scardamalia 1993, pp. 152-181)

C. M. Karuppan and M. Karuppan (2008) reviews research showing that the timing
of training emerges as an important factor of performance, in accordance with learn-
ing/forgetting theory. They found that a solid mental model and understanding of the
system had a great effect on both operational efficiency and adaptability. This effect is
especially large on far-transfer tasks, where information has to be combined and under-
stood. In training they found that Active experimenters performed better, and generated
more accurate mental models, hands on experience seems to be one of the major sources
of learning to use IT systems, and should be emphasized in instructional design.

IS trainers should emphasize the acquisition of highly capable users to first learn the
system, and utilize these to help during education of “Normal” users (C. M. Karuppan and
M. Karuppan 2008) .

Cognitive Overload in Learning

Mayer and Moreno (2003) suggest that Multimedia Learning, learning using written- and
spoken words and illustrations, can be used to improve meaningful learning. Meaningful
learning is defined by them as a “. . . deep understanding of the material, which includes
attending to important aspects of the presented material, mentally organizing it into a co-
herent cognitive structure, and integrating it with relevant existing knowledge.” (Mayer
and Moreno 2003, p. 43). In short their model of multimedia learning suggest that a
problem of cognitive learning system is cognitive overload. The brain can only process
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so much information at once, and information-presentation greatly affects the learning
process. These overloads can be managed, by general principles such as eliminating re-
dundancy, aligning, synchronizing, and individualizing content. While this is not directly
related to decision making processes, the learning output of the system design is greatly
influenced bu design principles such as these and must be taken into account as in any
other system that involves user interfaces directly exposed to users.

Recognizing Training Requirements
Cues are identified as an important part of human decision making, but might be as impor-
tant in learning and understanding how systems work (Clark et al. 2008). By observing
experts use of cues, these should be incorporated into the learning program. Using iden-
tical cues in the learning and sitauted experience is important to understand which goals
and procedures are appropriate for the individual cues when observed in the production
environment

One such applications is to use the Skills Rules Knowledge model by Rasmussen
(1983, See Section 2.15.1), it is recommended as a a foundation for developing opera-
tor training programs. Evaluating actual situated performance of expert operators show us
which situations an operator has to be skilled, where he can use rules and the situations in
which (and what) knowledge is applied to resolve the condition.

Fleming and Pritchett (2016) use the SRK framework and argue that Skill Based and
Rule based behavior is overemphasized in the learning program for the Traffic Control Au-
tomation System (TCAS) (see Section 4.2. Knowledge Based limitations are hard to learn
from experience, behavior is often misunderstood and operators seem to have incorrect
or lacking models of the functionality of the systems black-box calculations. However,
responsibility is given to the operator because of their presumed elaborate knowledge-
based competence. Knowing when to ignore the systems advice is dependent on modal
and abstract knowledge of the system limitations. And when most TCAS in the future are
connected to the autopilot, the operators Knowledge Based Behavior is the most important
role in the Human-Computer cooperation. By using frameworks such as SRK to eveluate
the learning process, there is an opportunity to find areas of competence where the learning
program and actual operational operator-requirements diverge.

4.4 Cognitive Requirements
If we engineer complex cognitive systems on the basis of mistaken or inap-
propriate views of cognition, we can wind up designing systems that degrade
performance rather than improve it. The results stemming from the applica-
tion of any cognitive systems engineering methodology will be incomplete
unless they include a description of the cognition that is needed to accomplish
the work. (Klein, Ross, et al. 2003, p. 1)

Identifying the cognitive limitations of humans is a requirement for designing effective
decision support systems. Humans use heuristics, intuition, analysis to comprehend the
environment and arguments for decisions.
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4.4.1 Cognitive Elicitation
By identifying the cognitive biases and decision-limitations of operational problems, the
basis of both system- and learning design is argued as more appropriate. Real problems
outside the laboratory are usually presented with incomplete information, and humans will
subconsciously try to fill gaps in their understanding. (Simon 1983). The data inferred by
humans is based on assumptions of the problem domain, heuristics. By assuming that
the operator is able to infer and use heuristics to help automated systems, can facilitate
inherently better decisions. An analysis of operators work and repeated errors require an
observer which has an deep understanding of both human cognition and the work-process,
to be able to uncover these internal biases (Croskerry 2003a).

Zuboff (1988, Ch. 2) show that operators which possess mainly action-centered skills
often have difficulties mastering the transition computerized systems, but those that are
able to convert their situated knowledge into their understanding of the decision support
system seem to understand and make better decisions than those familiar with only one
environment. In this instance the systems are not designed with the mental models of
the operators in mind, so the abstract thinking employed seem to be easier for those with
intricate knowledge of the background workings of the systems.

4.4.2 Knowledge Requirements
Both Morris and Rouse (1985) and Zuboff (1988, Ch.2) argue that theoretical knowledge
is not a requirement for improved performance in operating industrial process systems.
Operators understanding of the theoretical aspects of the process does not impact ability
to support a automation system. Operators with a form of process feel has an improved
performance, but this experience cannot be obtained through textual instruction. Morris
and Rouse argue that educating operators in technical knowledge is disproportionate to the
level of system understanding gained, and that the traditional approach with instruction
through theory should be challenged. Meanwhile findings from other researchers (Yoon
and Hammer 1988), argue that theoretical understanding might be important for accurate
diagnostics in novel situations.

4.4.3 Cognitive Models
One problem of decision support systems are that they often operate in a black box. The
system can often propose a solution, but the reasoning is either hidden or unavailable to
the human operator. This limits the possibilities for learning and intuitive understanding.
The decisions of a system might be based on a faulty approach, and the process must
be repeatable. Some systems have presented textual step-by step reasoning explanations
(eg., Musen, Middleton, and Greenes 2014), but these are not universally acclaimed (eg.,
Jonassen and Ionas 2006; Mosier 2008).

Mapping the users mental models and the designers and engineers conceptual models
of the system is highly important to support the development of a correct understanding of
the instantiated system (D. Norman 1983). The operators use their System 1 (See Chapter
1) explaining and connecting causality by heuristics. Cognitive Decisions require definite
explanations of limitations to the reasoning strategy of the decision support system to
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avoid automation complacency. This will cause faulty mental models, satisficing to meet
operating demands, not trusting systems and not revising based on experience.

Causal relationships are one of the defining features of mental models, but is an aspect
often denied in automation systems. Decision support systems should present explanation
of the causal reasoning applied, and that the user understands the basic implications of
each sequential node in a decision path (Jonassen and Ionas 2006). Jonassen and Ionas
(2006) use Influence Diagrams as one approach that helps understanding, which can be
adapted to screen based reasoning systems.

4.4.4 Monitoring Automation

As seen in Chapter 3, humans are bad at monitoring screen based displays of automated
systems. They become complacent. Even when motivated, humans are unable to effec-
tively review mostly static data in an efficient manner.

O’Hara et al. (2000) state that two factors influence fault detection through monitoring:
The characteristics of the environment and the operators knowledge and expectations. The
first one is generalized as data driven, and the second model driven. Data-Driven is data
that works by itself eg., temperature, color, smoke, sound. Alarm systems usually support
the data driven approach, highlighting data that is outside operating values. The model
driven is how humans and computers use a model to combine data into a bigger picture,
either by standard procedures to monitor data at intervals and combining them according
to a procedure. Or by knowledge and expertise and reading values to create a picture of a
situation.

4.4.5 Automation Bias

The automation Bias is presented in Chapter 2, and is a bias influenced by humans over-
trust, complacency, and of omission and commission errors by automation of both cog-
nitive and physical tasks and procedures. The bias is common in automation systems,
because systems often employed and designed to reduce human workload, often elimi-
nating the human to a responsible entity. As a result, humans re-prioritize their cognitive
resources on other tasks, and trust automation more than reasonable.

Mosier et al. (1998) and Skitka, Mosier, and Burdick (2000) studied the effect of ac-
countability on automation bias, and found that subjects with more responsibility and ac-
countability improved performance on monitoring automated decisions. They were more
alert of system errors, and also able to support their own choices when their opinion dif-
fered from the machines. The subjects in both articles were instructed that the machines
inferences could be flawed, but that the digital measurements were reliable. Accountable
operators were more attentive, as was evidenced by more information seeking and use of
verification procedures. One effect that is described as interesting by Skitka, Mosier, and
Burdick is that the operators that put in more time on verifying and validating information
did not spend more time overall on the laboratory test scenarios. The accountancy ef-
fect led to vigilance only when accountable for monitoring system behavior and accuracy,
when accountable for other types of tasks not requiring increased information acquisition
and vigilance there was no reduced automation bias.
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Bereiter and Scardamalia (1993, pp. 58-61) describes how self-regulatory knowledge
is important and one of the most learnable and generalizable expert skills. The ability to
use metacognition and meta-knowledge to adjust and correct the current model of a sit-
uation can be performed by taking a step back and comparing to literature and previous
experiences (eg. Croskerry, Singhal, and Mamede 2013b). By comparing ongoing prob-
lems to experience, the current mental-model and the model of the domain is connected
and there is an increased possibility for learning and knowledge.

4.4.6 Distributed Cognition
Hollan, Hutchins, and Kirsh (2000) presents an approach called distributed cognition.
They argue that system design has to account for how both people and systems interact,
when designing systems supporting cognitive work.

A further observation from is that people offload cognition to their environment (R. A.
Wilson and Clark 2009; Hollan, Hutchins, and Kirsh 2000), by taking notes, looking up
information and using automation systems we reduce the cognitive requirements for pro-
cessing advanced decisions.

4.4.7 Summary
To create better DSS we have to become proficient in the domain. We can never under-
stand experts decision processes without understanding some of the principles behind their
decisions. When building new systems, a requirement is awareness of the genuine usage-
patterns of the precursor system. The system we replace might have tacit features that
were unintended in design, but widely used and that are difficult to uncover and represent
using the intended hardware for the novel systems.

4.4.8 Reasoning Strategies for automation systems
Pople (1982) suggest that using a differential diagnosis approach, where decision support
is aggregated into groups that can be eliminated using few variables. This is the approach
of expert practitioners, whom often utilize the approach of finding conflicting cues to elim-
inate frequent problems first. By selecting and eliminating the most common diagnosis,
the practitioner keeps alternatives in the back of his head. The problem of creating good
algorithmic computer aided decision making systems is greatly impacted by the level of
understanding required for most expert practitioner tasks. The approach suggested by
Pople is to create diagnostic systems that have the ability to finalize decision paths when
a finite number of problems are possible. Human Diagnostic reasoning can be supported
by these processes, by using computerized automation in finalizing a diagnosis. It might
simply be to generate an exhaustive list of all possible diagnosis, where the system can as-
suring that the correct diagnosis is on the list. A simple approach like this can affords the
practitioner to redirect his cognitive abilities, and to debias from eg., an anchoring effect
or confirmation bias.

Abductive reasoning is a retrospective diagnostic strategy, looking at the current symp-
toms to infer the problem component (P. J. Smith et al. 2012). It is a common occurrence
in current decision support systems. The issues for human decisions in such environments
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are that there can be a multitude of problems co-occurring, maybe even masking the true
problem. Noisy data is hard to interpret. To utilize such data the human processing it has
to search, but he has to know when to stop.

4.5 Environmental Considerations

The environmental considerations in DSS design are related to the impacts of the operators
surroundings to his understanding of the working domain. The entire workplace and the
operational requirements affect operators decision strength (Rasmussen 1999).

In domains where data and impressions are overwhelming in amounts, and where un-
derstanding of the current status is complicated, decision support systems are often cor-
rectly applied to help humans. But as P. J. Smith et al. (2012) indicate, the role of the
human has to be evaluated to the accuracy of the DSS. If the automated decisions are
accurate and reliable, the humans role might be a supervisory one. Contrary if the auto-
mated domain is incapable of reliable decision support, it might be better to implement the
automation as a critic to the operator.

4.5.1 System Design Considerations

When creating systems a requirement should be to support expert operations. To facilitate
expertise in using computer systems we have to avoid creating wicked environments (Kah-
neman and Klein 2009). To support intuitive learning and understanding of data interfaces,
the data has to be represented in the same way at any two times where identical data is the
basis of the presented visual model. Blauner’s 1964 study Alienation and Freedom (Re-
lated in in Zuboff 1988, pp. 51-57) highlights that automation of production is increasing
the requirements for breadth of knowledge and awareness over a wider part of the factory,
but the deep knowledge of the technical and scientific process is reduced. In industries
involving chemical processes a knowledge gap is created, where the operator has less un-
derstanding of the physical processes than what is apparent in automotive and production
industries. Zuboff states that this not inherently is a problem, the new skills required is to
manage the system interfaces – understanding the context of numbers and figures is the
new skill. The understanding of the actual operating systems could just as well be simula-
tions, and Zuboff argues that controlling tasks have become similar to craftsman skills. But
for craftsman skills to develop, a number of design features and helping systems should
be applied.

As mentioned earlier, “Experts often make opportunistic use of environmental struc-
ture to simplify tasks.” (Hollan, Hutchins, and Kirsh 2000, p. 182) Taking into account
how current systems are utilized by experts is one of the great opportunities for designing
effective new systems. Good decision system design cannot be based on procedures, in-
terviews and operator accounts alone — we need to observe through task analysis. This
Cognitive Ethnography approach is by Hollan, Hutchins, and Kirsh addressed as espe-
cially good for observing behavior in situated experiences and then validating the cause of
this through experiments. When the theory for an interaction behavior is defined we are
able to base new designs on this, where we create a loop for new observations.
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4.6 Presentation Requirements
When designing Decision Support Systems a focus on Presentation is a requirement to
represent understanding. Systems have to facilitate transparency and discoverability, and
relate the functional relationships between models and systems. To facilitate understand-
ing of information, an explanation of the computers reasoning has to be available. The
situated experiences with devices and interfaces are major influences of understanding
systems and how they work (Woods, Dekker, et al. 2010, p. 106).

Currently automation systems are designed to avoid errors, but rarely to facilitate ex-
pertise. One problem caused by this is that humans rarely get to apply their knowledge
on real problems, reducing the feedback and learning potential for when a real problem
occurs.

Rasmussen (1999) argue for a method improving system and operator safety by “ac-
cepting all errors as inevitable”. Systems has to be designed by this principle. Automated
systems will never be able to correct for all errors. If an error passes through all safe-
guards in the “safest” system, it will be much harder for operators to diagnose and prevent
the error because they have no experience with the rare event. Systems should accept
malfunctions and errors, display and highlight these, and require operators to support the
decisions adjusting for the error. Operators familiar with the system are able to diagnose
and intervene when a major malfunction happens. The responsibility and trust is again in
the hands of operators, and to some degree removed from the system and system-designers.

Users base their understanding of ‘normal’ on prior experiences, and major system
changes might collide with mental models and demands in a way that is incompatible
with the decision flow prior to the system was added. This aspect has to be taken into
consideration, and model mapping in learning environments is one possible approach.

4.6.1 Information Channels
Preserving information channels was earlier presented as an important part of the cognitive
affordances of a new system. Operators use approaches uninteded by the initial designers
to accomplish their goals, and their mental and extra-cognitive usages of systems to store
data and remember operations are just as important as the intended usage of the systems.

Data requires context in representation (Woods, Dekker, et al. 2010, pp. 162-169).
Most data has baselines, expected values and off scale values indicating error or stoppage.
Monitoring this data is a cognitive task that is hard for humans to follow by just using
numbers, such as reading a digital pressure gauge. Analog pressure gauges often have
operator marks using a pen to indicate an optimal value. Any operator will be able to see
that a value outside of the indication is an incident, and no knowledge is needed to report to
a supervisor. This aspect is often lost when converting to digital values, even in “analog”
- speedometer representations you are often unable to indicate operational and optimal
values. Systems have to be able to represent context to facilitate recognitional diagnosis
and decision making. Each value should be monitored, and their status over time should
be available to discover when the value started diverging, and how it has changed over
time.

Hollan, Hutchins, and Kirsh (2000) highlight the roles of representation of cognitive
models in interfaces of computational systems. They argue that systems have to map the
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important physical features onto the interface, to facilitate adjusting the cognitive work of
converting the digital data to the physical problem and vice versa. (See: Re, Oliver, and
Bordegoni 2016, for a direct mapping using Virtual Reality).

This coupling with environmental and situated learning is highly important to system
design, and discovering and sharing methods and models for designs is a highly important
task to create the best possible systems for improving decision skill via screen systems.

Operators often utilize their workspace to remember and prioritize work. On a PC
the operator opens windows, resize them based on current importance, checks back on
completed windows to verify information. Hollan, Hutchins, and Kirsh (2000) argue that
studies of planning and activity often observe the temporal activities, but they should in
addition analyze how “ . . . agents lay down instruments, ingredients, work-in-progress and
the like” (Hollan, Hutchins, and Kirsh 2000, p. 190). Humans are constantly organizing
their workspace, some times consciously other times not. Workspace organization has
individual patterns, but supporting information storage and possibilities for navigating in
seemingly arbitrary ways to debug selected problems seems to be important for optimal
cognitive offloading.

History Enriched Digital Objects

Physical objects are components to wear, movement, ordering, stacking and more. This
perceivable usage history is an important factor in distinguishing how equipment is used,
and has been used recently. Hollan, Hutchins, and Kirsh (2000) argue that is an often
overlooked component of expert perception that rarely is transfered into digital systems.
The opportunities by digitalizing systems is that we can record all these interactions and
create better systems based on them. A button that is worn down on a physical system is
the most used one, it implies functionality and safe operations to use the patterns others
have utilized before.

Various approaches to history enriched digital objects are possible. Through data col-
lection we can generate heatmaps and inspect usage patterns related to various situations
and procedures. Using this systems can provide improved decision support to the operator
by eg., highlighting commons steps and removing information sources based on context.
The opportunity is that digital systems can contextually guide operators more than the
physical interfaces they replace.

4.6.2 Information Convenience

Convenience and ease of access are one of the main factors for human information seeking.
People expect fast access to information. Users seem to be transitioning quickly from
getting information in books and libraries, to more accessible digital information sources
(Connaway, Dickey, and Radford 2011).

R. Smith (1996) explains how the traditional sources of information doctors are pro-
vided does not suit their needs for information seeking. Books are outdated and slow,
journals have a low signal to noise ratio. Clinical operators information needs is often
more for feedback, guidance, affirmation and support. Smith argues that the existing ICT
solutions are insufficient, but as we now are 20 (!) years later it seems like there has been
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a shift in knowledge retrieval towards using ICT and Internet based information sources
(Clarke et al. 2013).

Fiol et al. (2008) present an example of a system where a low barrier to information
retrieval both increase efficiency and decision-making capabilities. They found an average
17% decrease in time spent, and in 60% of the cases the practitioner reported that their
decision-making had been supported by the increased availability of information.

Automation etiquette seems to have an impact in the efficiency of human operators
consulting with automated decision support systems. Sheridan and Parasuraman (2005)
show how systems with high reliability (80%) which interrupt, hurry and bother the hu-
man operator can result in inferior results to a lower reliability (60%) system that works
better together with humans. Automation etiquette is an approach to implement human
cooperative etiquette into automation systems, to improve automation cooperation. Quan-
tity, quality, relation and the manner in which you present it all has an impact on the user
experience, and has a direct connection with task performance.

Makary and Daniel (2016) indicate that to reduce harm from individual and system er-
rors, we have among other principles to ”facilitate a culture of speaking up”. Organizations
which recognize that diagnostic- and decision-errors are frequent should design systems
that embrace human errors, and which facilitate reporting incidents to better understand
and prevent recurring errors.

4.6.3 Data Overload
A common issue in humans decision awareness is overlooking and discarding information
because of the sheer amount of information. (Woods, Patterson, and Roth 2002) describe
some methods to reduce the problem of data overload in computer systems. (1) organiza-
tion of information should follow recognizable patterns and mappings to related data, and
the system must provide different perspectives to the data. (2) information systems need
to positively highlight data, not negatively eliminate other data. (3) context sensitivity,
improving information validity requires a context sensitive approach, both by visualizing
data departures from normals and highlighting events and patterns. Additionally highlight-
ing related data to the current interest of the operator. (4) Observability, designing with
the objective of fast recognition even when not given explicit attention. (5) conceptual
spaces in the design, using mental models of systems to map and coordinate data while
visualizing this relation to the operator so that the connection is explicit.

An example of the studies of “simple” subsystems that will affect how HCI and DSS
are designed is how Woods (1995) show how alarms impact human decisions through di-
rected attention. Automated alarm systems are often disconnected from each other, so
when one component fail alarms sound for every dependent component. The alarm prob-
lem is that alarms mostly occur in situations with the highest cognitive workload, time
sensitive and unsafe situations. The idea of alarms is to highlight sudden changes in the
monitored data, and to support human cognitive abilities, and avoid biases. Attempts to
use automation finesse has according to Woods (1995) often failed, the automated diag-
nostics of issues are often surpassed by improved information handling and visualization
capabilities. New systems has to take into account emphpreattentive reference; the idea
that information from alarms should be displayed without breaking operators attention
their current task.
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Systems have to be designed with the principle of discoverability and a peripheral
vision of alarm states. Alarms are an informational task, and should not force informa-
tion processing over the current task. Focus on establishing the correct operational and
HCI types in areas like spatial dedication, auditory displays, analogue alarm displays, and
alarm intelligence are components of system design that have great impact on the cognitive
workload and abilities.

4.6.4 Procedural Instructions
O’Hara et al. (2000, CH.5) presents guidelines for nuclear power plant response plans.
The objective of the operator when following procedures in Nuclear Power Plants is to
compensate for inadequates, fill in gaps and resolve conflicts between control objectives.
Operators must be able to work around and use procedures as a basis, as the overreaching
goals are more important than following individual steps. Both the coming and past steps
of the procedure is important for operators understanding and awareness. And the goal of
the procedure is important to highlight. Further systems must support navigating within
and across procedures, to better support human operations in high impact situations. An
approach for improved instructions is applied by Eiriksdottir and Catrambone (2011), as
it is rarely enough to just provide proceduralized instructions. We need to digitalize the
principles behind procedures. Principles explain the reasoning for procedures, and are able
to fill in and support the human searching for knowledge.

4.7 Summary
In this chapter a number of results and indications for the design of decision support sys-
tems were presented to highlight the opportunities for creating DSS in industrial environ-
ments.
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Chapter 5
Current Challenges in Facilitating
Industrial Human Decision Making

5.1 Introduction

An understanding of Human Cognition is important to improve decision making in or-
ganizations (P. J. Smith et al. 2012). The state of the art and the research communities
current understanding of human cognition and decision strategies are presented in the pre-
ceding chapters. There are a number of approaches to human decision making. Human
decisions are greatly influenced by biases, cognitive shortcuts that make us able to infer
from incomplete data and make quick choices. Humans use these shortcuts to make fast
decisions, and the ones that work appropriately are called heuristics. Natural Decision
Making argues that applying heuristics through intuitive thinking makes good decisions.
Effective intuition requires an extensive situated knowledge of the domain. Humans can
adapt strategies to minimize reasoning errors. These strategies involve cognitive forcing,
learning, and deliberate practice.

Automation seems to increase efficiency while reducing expertise, but this is not a
requirement. By reducing the opacity of automation systems, there seems to be potential
for human learning and understanding.

The third chapter presents current ’state of the art’ of considerations for Decision Sup-
port Systems (DSS), highlighting important concepts recognized in literature specific for
the development of DSS and situated learning elicitation.

In this chapter presents four current challenges and opportunities for industrial DSS
based on the literature study. These indications from literature and current systems de-
signs and are a combination of current ’state of the art’ of DSS and lack of presence from
concepts with the cognitive decision literature.
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5.2 Automated Decision Support
Humans are likely to make mistakes, our decisions are based on a number of biases and
heuristics. The most commonly applied solution is automation, automated tasks eliminate
the human inconsistencies and replace routine tasks. But when a task requires a mix of
knowledge and skill in an environment not suitable for complete automation, an automated
decision support system comes out as one possible design solution.

Any type of automation is employed to reduce human workload, and by reducing work
we also reduce opportunities for learning and understanding. ’Machine-minding’ opera-
tors are thought to be slowly deskilled, because frequent retrieval of knowledge is required
to maintain long-term memory. Operating systems often lead to a ’black-box’ of inac-
cessible information, and understanding of the workings of such a system is impossible
without assistance.

Automated systems also affect humans through the Automation Bias, and automa-
tion Complacency. Humans operating with systems where no errors are discovered trust
the system to perform the task correctly. Operators using decision support systems with
undiscovered errors are observed to perform worse, than the control group without any
assistance.

The literature study also indicate that the efficiency of Decision Support Systems in
Medicine currently is uncertain, and laboratory effectiveness has not yet been observed in
actual performance results (See eg., Moja et al. 2014).

The decision systems need to balance between task specificity and generalizabley. De-
veloping decision support software requires an intricate understanding of the domain, and
the operators in the domains requirements.

Opportunities
While the current systems have a number of problems, several opportunities have been
discovered through the literature study presented in 3.

Decision Automation Systems are in better at interpreting data and have access to an
infinite number of sensors and procedures. The limiting factor for the employment of
automation in decision is that creating the software and, machine collaboration is hard.

To alleviate the problem of automation system a human operator is often applied as
a responsible decision maker and as a validation entity. To facilitate this symbiosis, the
opportunitiy is to design systems for human computer collaboration. These systems ar
designed with the collaboration of user and system in mind. All automated decisions and
steps are available for review by the user. The automation system can request data from the
operator, and opposite. The system has to be able to collaborate in human terms, express-
ing certainty and doubt when needed. The goals of the system, and the user has to match,
when goals are discrepant mode errors can undermine the progress on the diagnostic task.

As with the levels of automation discussed in Chapter 3, a system helping with a high
automation data analysis and presentation, but low level of automation of decision and
execution is a system more reliant on humans for a full picture evaluation and systems for
simple model based checks of the environment. Systems need to encourage procedures on
the side of the “happy path”. To better de-bias humans in how they follow automation,
we need to make them aware and remind them of the limitations of the system, and the
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opportunities of alternatives. If the system is uncertain, suggesting or doubting decisions
it must be visible to the human. The human part of the system is the one that can combine
cues across procedures and find what could be a common cause.

Operations require constant adjustment for regular performance at optimal capacity.
And systems design must allow for the human to adjust and control system choices. Expe-
rienced decision makers rarely follow procedures, because procedures never facilitate the
correct response for specific cases. Allowing for adjustments and recording adjustments
to create better procedures using expert feedback is one opportunity available.

The hardest cognitive task is the diagnosis, and automated DSS might have problems
identifying errors caused by the components without sensors. To follow up on the data
collection approach that is undervalued in research is to identify failure patterns by apply-
ing a retrospective analysis of the diagnosis systems. Similar patterns might require the
same procedures for diagnosis.

Decision support systems have the opportunity to display more of the causal reasoning
of the decision it creates in a visual or textual way. Causal models are highly important to
human cognitive performance and memory, and by makeing these available through auto-
mated decision support systems they facilitate an understanding of the principles behind
the reasoning.

5.3 Encouraging Learning
A big part of increasing decision strength is as highlighted in the literature study to build
expertise. Experts make better and quicker decisions because of their greater knowledge
base and understanding of both automation and environment, and they are capable of com-
bining this knowledge into a novel discoveries and solutions. Current system design seems
to discourage learning, as automated ’black-box’ systems and simplified proceduresare
employed to avoid human error. Even systems which provide the operator with adequate
information does not by itself provide learning opportunities Zuboff (1988).

Current industrial systems discourage mistakes and errors to a point where humans
lack opportunities to make errors. Errors are in the first section shown as the way people
learn most efficiently. Organizations are usually right in attempting to lower errors, but
they rarely compensate by building opportunities for expertise.

Understanding is a requirement for comprehension of information, and to make de-
cisions. The entire environment around systems must be designed to facilitate such un-
derstanding to help the responsible operator diagnose and scrutinize automated support
systems (Zuboff 1988).

Operators with situated knowledge from before a decision support system is imple-
mented, and whom convert this knowledge into their model of the automated system seem
to make better decisions. But this situated knowledge seeps from industries where op-
erators only are familiar with the automation. These operators perform their tasks just
as well as those with theoretical knowledge (Morris and Rouse 1985). The argument is
that a combination of operational proficiency and environment knowledge creates the best
operator for diagnosing and non-routine decisions.

“Thus, confronted with complex, real-world process disturbances, operators must mon-
itor the performance of the procedure to verify its correspondence to the higher-level goals
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that it was designed to achieve.” (O’Hara et al. 2000, p5–46) O’Hara et al. are recom-
mending usage of procedures in Nuclear Power Plants, describing the tasks of operators
and the limitations of procedures when applied to real world problems. The operators task
is to achieve the goals of the procedure, not to follow procedural tasks. The procedure is a
cognitive tool to guide operators on the correct path, and the response of the operator has
to be adjusted to fit the limitations of the real world. This principle has to be emphasized in
the current systems design, by guiding and instruction operators with procedures operators
can develop complacency and reduced knowledge.

Current learning practices at industrial environments seem to be based on an instruc-
tional and procedural approach. The problem of situation awareness and safety leads to
little instruction performed in the operational field. Guidance is given and in some com-
munities shared by discussions. But theory is rarely readily available. Often simplified
models of the main operating systems are presented before entering the workplace for
the first time, but there is rarely any theoretical follow up unless the operator specifically
requests it.

Opportunities

Systems design can facilitate expertise. Bereiter and Scardamalia (1993) show us how
facilitation of expertise is to provide new challenges and opportunities for learning. Those
operators who are interested must be provided with a low-effort, encouraged system for
furthering their understanding. A supporting learning structure following any decision
support software will help interested operators understand the reasonings behind a situated
experience and theory.

a solid mental model and understanding of the system had a great effect on both op-
erational efficiency and adaptability (related to training before use of industrial systems)
C. M. Karuppan and M. Karuppan (2008)

Shortening the path to operator expertise seems to be possible through other areas than
situated practice. We may apply the SRK framework as seen in Section 4.3, to facilitate in-
structions on the actual cues and tasks of experts operators. Supporting understanding has
effectiveness on operational efficiency and adaptability C. M. Karuppan and M. Karuppan
(eg., 2008)

Mental Models are rarely available on their own, they are systems connected to other
mental models to complete a big model of the domain and the entire human cognition.
Learning theory is easier when connected to experience.

Webster-Wright’s 2009 idea of Continued Professional Learning (CPL) requires a
holistic approach to learning, where learning continues before and after a ”course” or
”event” (Webster-Wright 2009). Billett (2001) argue that the workplace can support or
dismiss learning through the activities they apply. Instructional Scaffolding, mentoring,
dedicated learning time, and more are applied to provide opportunities.

Effective learning assumes active experience, observation, reflection, formulation of
concepts and applying and testing these in practice (Webster-Wright 2009).

Instructional Systems design is an opportunity that, as far as I have been able to un-
derstand is a novel concept in industrial systems. Learning is regarded as a supporting
process, separate from the production programs. While this separation from the working
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environment is reasonable, because of safety constraints, an under-appreciated opportunity
is to connect individual operators situated experience with learning resources.

“Domains in which expertise can flourish are domains in which there is no inherent
limit on progress. There is always a larger context within which the present problem-
solving effort is partial and oversimplified.” (Bereiter and Scardamalia 1993, p. 98)

The ability to look up interesting procedures, chemical elements, and the specifica-
tions, connection and roles of automated equipment is a possibility. Systems that accom-
pany instructions together with a concept that is able to catch the users interest in the
working environment should have the ability to connect to an system outside of the pro-
duction area.

One such supporting system could be an simulation software, using an identical in-
terface to the situated automation software. Providing an identical state to the situated
environment. The ability to explore and inform could be supported by instructional learn-
ing (C. M. Karuppan and M. Karuppan 2008), ie., by a guidance ”teacher” – an operator
proficient in the inner workings of systems that have a pristine opportunity to learn away
the principles in a safe environment to subjects that are there because of their expressed
interest in a certain situated experience.

5.4 Feedback

Decisions in any environment offer ambiguous feedback, the choices and modifications
done to systems can have repercussions that only become apparent hours, days, or weeks
after the modification is performed. Mistakes are not a problem if they are only made once,
and thereafter are avoided. But environments with lacking feedback may base influence
of human decisions nn the wrong assumptions. These environments are regarded wicked,
because inherently ambiguous feedback is unconsciously inferred by human cognition and
heuristics.

Feedback of such delayed processes are currently hard to accomplish. The individual
operator making the decision might not be available, and discovering the reasonable tasks.

Feedback is also a requirement in the information seeking of professionals, they want
to validate their strategy before making a decision (R. Smith 1996),

Opportunities

Bereiter and Scardamalia (1993, pp. 58-61) and Croskerry, Singhal, and Mamede (2013b)
describes how self-regulatory knowledge and cognitive forcing strategies can be applied to
make experienced operators more aware of the inherent difficulties of industrial systems.

Digital systems inherit possibilities for logging events, decision and feedback for each
interaction. Using personalized user accounts to create environments intending to pro-
vide feedback for delayed operations and for example discovering insufficient awareness
of operators, that can be informed of their limitations. A system designed through this ap-
proach limits the issue of wicked feedback from delayed process results. The interactions
are logged so that both human and automation decisions will be able to find the source of
error and to correct the misunderstanding.
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Working with situated systems are one of the most important features of learning to
perform task efficiently in many industries (Woods, Dekker, et al. 2010, p. 106)).

Situated feedback is possible by implementing monitoring systems instead of Auto-
mated Decision Support Systems.

5.5 Information Presentation
A current challenge in any information system, and even more so in automated ones is the
challenge of supporting expertise through the presentation of data.

Systems often break down their representations to oversimplified representations. These
representations often seem to afford expert intuition when using them. But such systems
are dangerous and can mislead decision makers, especially in situations of errors and inci-
dents.

Mental Models and Cues from the prior systems are often eliminated. Physical wear
on buttons indicate a history of use, but this if often overlooked in system design. Many
systems mask the data behind aggregated models and inferred understanding. Sytems that
seem simple to the operator might combine a large number of data sets. Users often are
unaware of the complexities and base their intuitive decisions on misguided assumptions.

Alarm Systems are one example of systems that work best in the situation where they
are the least important. System design require a central focus on their effectiveness for
supporting human decisions in high workload situations.

Opportunities
Experts use mental models and cues for their environmental understanding. By providing
bites of theoretical models directly into the situated environment, there is an opportunity
to facilitate the applications of theory. This is a central part in maintaining theoretical
knowledge instead of making a task merely routine.

Users should have the opportunity of modifying the displays of information to their
needs. Using contextual displays seem to be an opportunity that is promising if the context
can be inferred correctly.

Systems should relate data in a way that connects the current system to the other system
in the production line. A ”process” feel is an indication for operational performance and
can be improved by .

Using the same information displays in training and in the real system helps connecting
the mental model from the theoretically approached training with the situated experience
gained from the workplace.
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6.1 Case
The introduction to decision strategy and cognitive science has focused on adult cogni-
tion, especially in industries where the working environment is stable and regular. In 2006
the Norwegian industry was composed of 33% process and machine operators, trans-
port workers and similar(Bore and Skoglund 2008, p. 10). These lines of work mostly
require a low amount of education, and most process specific knowledge is (as in many
other professions, learned at work). 23% are craftsmen with prior education on their craft,
such as carpenters, welders, mechanics. It can be hypothesized that many of these pro-
fessionals also have a limited understanding of the intricacies of their workplace systems.
Automation has become a reality in most of the industrial work, in the Norwegian metal
industry the number of workers have gone from 24 000 to 8 000 employees in the period
of 1974-2006 (Skoglund 2008, pp. 114-115), and the reason for this is the introduction of
IT and automation systems for both supporting and production tasks. The requirements
for knowledge and profession has increased, and in many industries the prior roles of un-
skilled workers are replaced with automation and increasingly advanced machines (Berg
2015, Ch.4) .

Indications like those mentioned above, and personal experiences from work at two in-
dustrial companies is that operational tasks are often performed by operators with limited
theoretical education, their professional experience is often from profession training, such
as mechanical and process-industrial skilled workers, and situated learning. This combi-
nation of prior experience and skill makes workers proficient at most tasks, but they lack
expertise gained from understanding.

6.1.1 Example Industry - Aluminum Refinement

Through a cooperation project with the Norwegian aluminum industry an identified prob-
lem is that operators make mistakes due to a lack of understanding or knowledge. Cur-
rently operators in the aluminum industry mainly learn on the job, they are guided by
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Figure 6.1: A potroom at a Norwegian Aluminum Plant ( c©2002 Norsk Hydro ASA, approved for
royalty-free reproduction in all media by any person or organization.)

operators with situated experience and are taught the tools and tasks they are to perform
until proficient.

This has lead to operators with limited ability to make their own inferences and judg-
ments, and both operators and the management indicate that responsibility knowledge is a
need for work satisfaction and performance.

6.1.2 Case Problem

Aluminum (Al) is refined from Alumina(Al2O3,), using the Hall-Héroult electrolysis pro-
cess to reduce the Alumina down to Carbon-dioxide (CO2) and Aluminum (Al) . The
simplified equation is (Al2O3 + 3C = 2Al + 1.5CO2),in practice producing around 1kg
Aluminum and 1.5 kg CO2, requiring 13-15kWh energy per kg ((Kvande and Drabløs
2014).

The work environment at an aluminum smelting plant is seen in Figure 6.1. Huge halls,
called potrooms, can be more than 1km long, at 50 meters wide and 20meters high (Kvande
and Drabløs 2014). Each potroom usually contains between 100 and 400 electrolysis cells,
often called pots. Each pot is connected, where the cathode of one cell is connected to the
anode of the next one, creating a cell-line (potline). Each pot require electric power to run,
and this is the major cost in producing aluminum. Figure 6.2 illustrate the structure of an
individual cell and the requirements for converting Alumina to Aluminum
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Figure 6.2: “Flow sheet of the aluminum production process.” (From Kvande and Drabløs 2014,
25, CC BY-NC-ND 3.0)

6.1.3 Operations

An example problem often identified is related to operating at high efficiencies. As seen
in figure 6.2 feeding of Alumina happens from a silo to the electrolyte solution. A quick
summary of the problem is that modifications of the electrolyte contents are required for
optimal cell efficiency. Modern pots operate at between 88-96% efficiency. A pot operat-
ing at 100% efficiency @ 200kiloAmpere will produce 1610kg aluminum in 24 hours. The
difference between operating at 88% and 94% at this pot is (1513kg−1417kg = 105kg) a
day. With a market value of USD 1.54 per KG (as of 2016-02-18) this will over the course
of a year amount to an revenue difference of USD 59 000.00, with negligible extra costs
(Grjotheim and Kvande 1986, pp. 137-138)

Operating at high efficiencies require accuracy in operational methods. The most im-
portant factor is reducing heat. A 10 ◦C reduction in electrolyte temperature will result
in a 1-2% efficiency increase (Thonstad and Rolseth 2005). Most plants operate using
10-13 wt% excess Aluminum Fluoride content. This is a compromise between increasing
current efficiency and maintaining stability. The ratio of Aluminum Fluoride (AlF3) can
go up to 40% in theory, reducing temperature even more, but it is limited by the accu-
racy of system and the manual labor still involved in operations (Thonstad and Rolseth
2005). The increase of (AlF3) lead to a reduced absorption of Alumina (Al2O3) into the
electrolyte. Alumina levels under 2 wt% can cause an depletion of Alumnia at the anode;
an anode effect, releasing extremely potent greenhouse gases (perfluorocarbons). Over-
feeding Alumina will cause slug to drop to the bottom of the pool, requiring maintenance
and reduced cell operating time. This leads to a current operating efficiency at around 2-4
wt%, maintained by point feeders which feed the electrolyte every minute (Kvande and
Drabløs 2014).

One of the major problems they have is that Aluminum Fluoride has a delayed effect,
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it will take hours before the melting temperature of the electrolyte lowers. If the cell has
high levels of Aluminum Fluoride and is unmonitored highoverheat can occur. Overheat
is the delta between heat and melting point, is optimally at 5 − 10 ◦C. This range cause
the electrolyte to harden at the sidewalls, reducing wear on the outer wall linings.

The cost of operational errors in an aluminum cell can be extensive. Relining of the
cathode in a modern pot costs more than USD 100 000.00 (Thonstad, Fellner, et al. 2001,
p. 5). A normal cathode lifetime is between 1 800 and 2 800 days, but some cells have
operated for more than 4 000 days. There is considerable variation among cells, even with
the same design and construction, indicating that cell operation may have a significant
impact on cathode lives (Thonstad, Fellner, et al. 2001, p. 5).

The human operator is largely as a supervisory controller and a data provider for the
automated routine systems. The cooperation process between the human and automation
seems like an likely influence to cell lifetime.

6.1.4 Scenario Description
In the following I have created an usecase of the idea for a systems design based on the
knowledge from the State of the Art literature study.

Simon Persona

Simon has worked at the aluminum plant for three weeks, and this is his first job of its kind.
He is quite athletic, wants to work hard when he can. He got the job when referred from a
friend, and they work together on the day to day job. He intends to work over the summer,
and possibly return the next summers. He wants to spend the next three years at university
studying economics. Simon is inexperienced and non-skilled, and started the job a few
weeks ago. Until now he has had a personal support when performing routine tasks, but
from now on he is on his own. He is reasonably scared of the big and dangerous machinery.
Performing a mistake is his largest fear, and he is extra aware of his performance because
of this.

Scenario - Last pot of the day

Simon is on his way to a routine measurement check. The last pot of the day, but it is the
cell that everyone says is problematic. This is Simon’s first time checking this one alone.
Simon starts by performing the temperature check on the electrolyte. He has learned that
a measurement by only a few centimeters wrong can invalidate the assessment, so he per-
forms the procedure as advised by his instructor. The temperature is 1002, 2 ◦C. Simon is
aware that this was a high number, but nothing out of the ordinary. All other measurements
are on point for the optimal values. When entering the data onto the fixed touch screen,
he received a warning that the temperature was deviating from the projected value. The
projected value was almost 50 ◦C lower, and the system suggested performing another
measurement. The second measurement measured 1001, 8 ◦C, and was entered into the
system again. The system does a calculation and displays a number of approaches to ex-
plain the correlation between electrolyte temperature and AlF3 contents. An explanation
was given to Simon for each step of the calculations, and the confidence was displayed.
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Figure 6.3: Operator working on an Electrolysis Cell ( c©2004 Norsk Hydro ASA, approved for
royalty-free reproduction in all media by any person or organization.)

While Simon’s familiarity with chemistry is inadequate to make inferences to the cause,
he is able to understand the effect because of the graphical relation display, as it is sim-
ilar to one used in training. When AlF3 percentage rises, electrolyte temperature should
decrease. The current measured difference indicates an overheat effect of 50 ◦C, which
if untreated at this level will severely impact cell lifetime. The system explains all this,
and requests Simon to validate with an observation. The observation is instructed by a
procedure automatically retrieved. Simon observes a shade of yellow on the oven being
significantly brighter at the edges than in the middle, validating procedure expectations.

Because Simon’s validating tasks support the working hypothesis, he is suggested (by
the system) to check voltage levels, as there has not been any recorded validations of the
automated measurement since Operator ’Vibeke’ checked it 57 days ago. The automated
measurement system might have malfunctioned, and is supplying excess electricity, ele-
vating temperature.

Simon is not certified to work with electricity, and is instructed to request assistance.
He contacts the control-room using the built in microphone and camera in the display-unit.
The information currently on Simons display is available to the operator in the control
room. Because the situation as explained by Simon could be wasting both power and cell
longevity, Control sends, Åsmund, an experienced operator over at once. An incident is
quickly recorded referring to automation and human choices in the Decision Support, to
better find causes and improving procedural support. As Simon is disconnecting from his
session, he interested in understanding more about one of the terms in the explanation.
He uses the display to mark his session as ’Interesting’, causing the recorded data and
situation to be available for review in a simulator setting. Åsmund overtake computer
system control to continue the operator-guidance. And Simon ends his shift for the day, as
Åsmunds task is a specialized task where safety trumps further learning for Simon.
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Scenario - Incident Review

The next day Simon refers to the incident at the morning review meeting. His manager
is interested in the error, as it is uncommon. Simon is encouraged to review the situation
in the simulator to better understand the significance of his experience. He is also able to
follow the steps of the more experienced operator to finish the maintenance procedure and
the real data source is used as a basis for the model. Using a computer with bot the same
interface as used in production, and a supporting visual simulation and learning system
Simon is able to review and create a situated learning experience outside of the operating
environment. He is guided by an expert, showing and explaining the chemical reactions
and challenges. Simon is able to ”play” with the values and a timeline to see exactly
when and how the voltage measurements are thought to separate from the real values. The
instant overview of the effects of interactions is important for Simons understanding of the
delayed effect, as it was hard to see how a normal operating temperature could cause such
damage to the equipment.

6.2 Design Considerations
THe design is identified to visualize a possible solution to the Current Challenges in De-
cision Making.

6.2.1 Limitations
Environment

The design process is using the domain of the aluminum industry as an example for a well
structured domain, where a repeatable process is performed using chemical and physical
reactions to create aluminum. The supporting tasks performed by operators are in large
part proceduralized, making decision support systems viable. Complete process automa-
tion is not possible with the current technology, so the human operators are a vital part to
efficient production.

Functionality

The design proposed is based on the supposition that supporting systems can be imple-
mented. The novelty of the findings in this section is to apply the general user experience
of a system supporting decision strength, and to follow this goal there will be no actual
support structure implemented. Some of the required supporting systems for the proposed
solution includes the back-end of a competent Decision Support System, a communica-
tions platform, and a visual process simulation.

Hardware Technology

A simple technology survey was performed using a search into established methods for
evaluating hardware interfaces. The basis was Maike et al.’s 2015 framework for evalu-
ating natural user interfaces, but arguments were also adapted from Anhalt et al. (2001),

84



6.2 Design Considerations

Hinckley and Wigdor (2012), Siewiorek, Smailagic, and Starner (2012), and Thomas and
Richards (2012) and domain requirements. The completed framework used six main cat-
egories: technology, interaction, support requirements, safety and awareness, learning,
ergonomics, and communication. The final document is supplied in Appendix 1.

A total of 19 technology categories were analyzed. From Virtual Reality, cognitive-
state-sensors, to stationary consoles. The analysis of possible systems were more exten-
sive than those eliminated by insurmountable complications, and was based on a Internet
Search and from ’The human-computer interaction handbook’ (Jacko 2012).

The main challenges for adapting novel technologies are environmental safety chal-
lenges such as: the operators safety equipment (such as gloves, glasses, helmet, and
hearing-protection, see Figure 6.3), reduction of situation awareness, operating in con-
junction with tools, a issues caused by the electromagnetic interference from potlines, and
more.

Solutions for a system capable of demonstrating the current challenges in decision
making are limited. To best support the current high importance tasks, a combination of a
touch screen (either capacitive or resistive) and utilizing a personal Near Field Communi-
cations(NFC)-enabled stylus as a part of the mandatory operator equipment was chosen..

The touch screen is supposed to be placed as a terminal on each cell, replacing the cur-
rent input systems based on a keypad and a one-line display. The screen size is assumed
to be small, between 12-20 inches, depending on the selection of a monitor that can with-
stand the demanding environments (Two modern examples are Hope Industrial Systems
NEMA 4X1, and Beckhoff CP22xx2).

The use of a personal stylus for industrial interactions is a novel concept, and no similar
combination of products have been found by the author. Only one commercial touch stylus
is found with NFC implemented, the vWand3 – but an implementation of an NFC chip
in any mass-produced stylus will be possible as the technology is highly compact and
resilient. The stylus can be attached to the belt or chest pocket using a retractable reel,
as commonly seen with access cards and key-chains. Using NFC the system will be able
to recognize the operator based on the pen, while the NFC technology provides low cost,
replaceable pen styluses.

6.2.2 Approach

Designing software is a complicated task. To create systems for a specific environment a
number of studies and elicitation methods should be employed. Decision Support Systems
should be created using a Human-Centered Design, where a number of methods are ap-
plied to facilitate adequate consideration of user needs ((P. J. Smith et al. 2012)), methods
such as Cognitive Task Analysis, Needs Requirements, and Work Domain Analysis should
be performed in cooperation with the specific industrial entity.

In this report a theoretical aluminum plant has been used in place of a real environ-
ment. The importance of best-practice methods in developing a real design cannot be
overemphasized, but because such methods are well researched this design has no real re-

1http://www.hopeindustrial.com/
2http://www.beckhoff.no
3http://www.vwand.com/
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quirements analysis performed except for the theoretical domain and environment review
presented in Section 6.1.

The five Current Challenges were all attempted implemented in the system. As the
requirements are cognitive and not physical, the creative process has few limitations. The
prototyping process went over several weeks where approaches were created and dis-
missed, using pen and paper for element design.

The prototype was developed using Pen and Paper before porting over to Mockplus4,
a rapid prototyping software.

6.3 Design
The design is created to inspire a further development process using the current challenges
to implement a system in a real industrial environment. The system is low-fidelity and has
severe limitations in readability, usability, and accessibility, and should not be programmed
in the current form. In the following a description of the thoughts behind each of the
subsystems are reviewed, before some screens are presented.

6.3.1 Automated Decision Support System

The automated decision support in my system is based on already existing routines and
procedures. What separates this from existing systems is that it is more open for human
interpretation with system guidance. The system highlights its own preferences, how it
got there and where it will continue after. By following each step of the systems decisions,
skilled operators can review and validate the decision guide. The decision support system
is high on the automation scale in information retrieval and presentation automation. It
should will automatically choose straightforward decisions, but when there is an oppor-
tunity for sidestepping the procedure, and requirements for progress choices that system
only guides the human which has the final call. The idea of presenting the full procedures
and showing them to the operator, instead of displaying instructions for the current step
only is to make the operator aware of the systems limitations. If the operator has though of
a different path, he can investigate if the system has checked that step. The systems goals
have to be clear “,” (O’Hara et al. 2000, p5–46) the operator has to be able to understand
the overlaying plan of the system to be able to collaborate with it. The current goals of the
collaboration has to be established in a way that both operators and the system are explicit
in their understanding of the problem. We have to think of the system as a collaborator,
in which humans are able to communicate with the system, and the system communicates
and adapts to the humans wishes. Offloading decisions that are easier for a machine than
a human is encouraged for the best decision performance, but when the system fails we
need to have humans that are capable of A) recognizing that the system has failed, and
B) diagnosing what needs to be adjusted to keep the system running, C) diagnosing the
system malfunction or error.

Separating large unstructured problems into smaller structured ones, can be a method
for implementing better problem solving in machines (Simon 1983)

4Mockplus v2.1.8.2 (http://www.mockplus.com/)
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6.3.2 Feedback

The system proposal supports feedback by providing each operator with a personalized
interaction device that register the interactions made with a cell panel. When an operator
has been involved in a step of a procedure, a measurement, or any other interaction with
the cell it is logged on a personal basis. The intention of this logging is not to monitor
employee efficiency, but to be able to correct mislearned behavior. By following up on
these interactions, especially when an error occurs in a cell. This can help operators adjust
their performance, but also highlight patterns in decisions that require modification of
procedures and learning resources.

Current operators retrieve too little feedback on their changes, so a system could help
management and operators connect to fix these performance issues The organizational
culture will have to be very open for failures and to encourage learning from mistakes.
Implementing this kind of surveillance can lead to employee dissatisfaction.

Essential Part of Decision Experience Learning Decisions

6.3.3 Learning

Imagine reading an article on Wikipedia, but not having links to the highlighted words in
the text. Most of us would not be able to generate a deep understanding of a subject if
we could not understand certain core elements and how they collaborate. The cognitive
models and stories that we create from a situated interaction and event that we maintained
has an increased ability to store theoretical information if it is connected to the tacit expe-
rience.

The idea is to implement a learning element as a core feature of the system. Every key
word, procedure, step, and more can be saved in a “curious” list. Because the operator is
in the dangerous working area, there is safety and awareness reasons for not presenting
learning in the situation. But if we are able to spark curiosity while performing situated
work, and later connecting with the same situation, simulated on “on screen” in a safe en-
vironment, while supporting this learning through any kind of E-learning material, books,
peers or instructors. I hypothesize that one of the largest blockades to developing exper-
tise in highly difficult, technical and tacit environments is eliminated. The problem is
how to connect learning to situated material. This is the eternal problem of developmental
learning in organizations. People forget what they learn because they can not relate to it.

Learning programs for new employees can be based on the information that is most
commonly tagged as “curious”, and individual profiles can be made to support operators
in shaping their learning. Operators might want to overlook certain procedures when they
are performed, and could possibly connect with the performing operator if notified of this
interest. Growing knowledge workers in situation and outside of education.

If we implement possibilities for learning into the systems we create, we might be able
to engage some of the willing operators to deeper understand the chemical and techno-
logical interactions of the process that the operator is supporting. Encourage usage of this
functionality Experts use procedures as guidelines, while novices follow them. Experience
combined with theory has the potential to create an expert that can combine these two into
new knowledge and methods.
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6.3.4 Live Support

Decisions can be hard to make on your own, especially when you are unexperienced or
unfamiliar with the procedures you are performing. A low effort system to connect with
more experienced control-room operators where they see the same screen as you and are
able to guide using both knowledge and tacit skills to explain why and how the problem
should be handled is an approach to supporting learning.

6.3.5 Avoiding Biases

Procedural Checklist

Increasing awareness trough a simple procedural checklist approach to verify system sta-
tus. This step is to avoid automation complacency and biases. By requiring that the op-
erator signs of on each cell, we force him to take responsibility for the status of the cell
and we get instant feedback if something is not as good as it could be. Cell state is an
important factor of cell health, and if there is any visual cues and hunches that operators
can easily report we can get a better overview of the long time effects of inspections. This
cell inspection can be used to trigger operating procedures if needed.

Operational Feedback

Feedback can also be provided by the operator in regards to the automated system. For a
good cooperation with automated systems and procedures, an operator can provide feed-
back on how he used the procedures and if there was any other steps that were necessary
or unneeded for this particular procedure. Simple feedback strategies like this one will
enhance the possibilities of operator engagement in the happy path of a system.

Happy Path

Encouraging and showing procedures on the outside of the “happy path”. To better de-
bias humans in how they follow automation, we need to make them aware and remind
them of the limitations of the system. System design that takes into account automation
bias will have to cooperate with the human operator in a human way. If the system is
uncertain, suggesting or doubting decisions it must be visible to the human. The human
part of the system is the one that can combine cues across procedures and find what could
be a common cause.

6.3.6 Design Description

Figure 6.4 shows the design of the automated decision management system. A procedure
initiated because of a discrepancy between the measured and projected value of the elec-
trolyte temperature. The goals of the procedures are highly visible at all times, to inform
the operator of the systems intentions. A timeline is displayed with a red ’dashed’ line in
the middle of the screen, illustrating the current time of procedure. It has the affordance of
going back in time to review decisions and alternate decision paths. Every decision node
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has indications if the task performed for the node is manual, automated or requires a delib-
erate override of the systems model of the cell state. The system provides estimates for the
decision strength, for each alternative of the current decision section. Each of the decision
nodes are available to click on for more information of the decision systems choices.

Automated Decision Node

Figure 6.5 further explain what happens when pressing a node in Figure 6.4. This node
displays the decision systems inferred reasoning for starting the automated procedure, and
who was responsible for executing the next step. Logging is important for understand-
ing the flow of procedures, but limited operator input is requested while in the working
environment.

Human Intervention Decision Node

Figure 6.6 is what is displayed to a decision maker to the current recommended step in
the automation overview. As always the reasoning and projection of the automation is
the main content. At the right side the theoretical explanation is provided, the principles
behind the automated choice. These are simple elicitation and mental model recollection
cues to facilitate connection theoretical knowledge with the current situation, and should
be created by experts for each step of procedures.

Certain words are marked with a red underscored highlight, and entire parts are marked
with ’hearts’. These highlights represent the explicit connections to the learning program
described above. Clicking each one provides a heart and a list of situation-connected
terms, that can be accessed outside of the production environment. The screen space
required is very limited, and by developing systems with this in mind implementing the
feature should be uncomplicated. The actions provided show the operator that alternatives
can be explored, attempting to reduce automation bias.

Status Report Screen

The status report screen (Figure 6.7) is intended to facilitate operator awareness and safe
operations of pots. A central element discovered in the automation requirements are that

It is a simple, fast-and-frugal checklist approach to easily report discrepancies of the
state of the cell, intended to use after every manual job performed. With only five clicks
an operating cell is verified as correctly operational. If an discrepancy is detected a simple
checklist continues the process, avoiding manual text-input. The process should take sec-
onds to perform for experienced operators. Every status report is linked to the individual
operator, and each cell interaction can be verified by other operators with the event log.
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Chapter 7
Summary and Recommendations
for Further Work

7.1 Summary and Conclusions

The objective of this thesis was to review the current state of the art in Human decision
making and decision support systems, to elicit current challenges and opportunities for im-
plementing effective decision making in industrial environments. Human decision making
(DM) is a complicated process, often debated in research. Two different research ap-
proaches, Natural Decision Making (NDM), and Heuristics and Biases (H&B)] approach
the problem of human DM from a different perspective. NDM approaches situated deci-
sions in the working environments, while H&B use rigorous methods and experiments to
understand the microperspective. A wide range of theories of human errors when making
decisions under uncertainty are approached as a foundation for a review of opportunities
for improving human DM. Metacognitive Forcing strategies can be a solution for decision
makers, MF requires an understanding of the domain and of human cognition, and em-
ploying general and problem-specific strategies to reduce the impact of human limitations.
Deliberate Practice is required to understand and operate at a high level, and understanding
the limits and that understanding is only an approximation of the actual effects. To build
knowledge, a requirement is the opportunity to practice the acquired knowledge. Expertise
cannot be developed in environments controlled by procedures and error prevention, this
common industrial environment seems to result in ”average” operators.

The environment can be designed and modified to support intuition, learning and in-
formation availability. These three categories are important in facilitating the decision
proficiency of human operators.

Further, we have identified that humans are often replaced with automation. And while
the automation of physical routine tasks is approaching complete, the automation of non-
routine cognitive decisions have a long way to go. Current Automation in industrial appli-
cations seem to help understanding the automation system, but not the underlying princi-
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ples. The lack of observability and transparency of automated systems mean that in safety
critical applications humans are not able to intervene when an issue arise. The impact of
automation on human cognition is still uncertain. Some argue that a deskilling process
occurs, while others argue that the understanding of systems is more important than the
actual physical and chemical process and that operations require system understanding
more than environmental knowledge.

The third chapter presented a state of the art and common guiding principles for the
design of Decision Support Systems (DSS). DSS are categorized into active, using au-
tomation to support the actual decision task. And passive systems helping the operator
decide by using presentation and learning methods to improve the operators cognitive de-
cision strength through situated learning and user experience guidelines.

The research from the first part of the report culminate in a summary of the prominent
areas requiring further research as applied elements in industrial environments. Current
challenges in the design of systems supporting human decision making are: (1) the de-
sign of cooperative, informative Automated Decision Support Systems. (2) increasing the
Feedback operators receive from the production envrionment. (3) Improving the inherent
Learning provided by the system and supporting systems; operators need to have accessi-
ble learning resources (4) Supporting operators through expert operators and requests for
personal assistance.

As an evaluation of the process, a design was proposed from a theoretical Norwegian
Aluminum Plant environment. The design shows how the current challenges in decision
making can be approached with both basic and more demanding information systems so-
lutions.

7.2 Recommendations for Further Work
As the practical result of this work is in identifying and creating a hypothetical solution,
further work has to apply the current challenges to a design for a real industrial partner,
where effectiveness of one or more solutions is evaluated. The solution should be de-
veloped using best practice strategies as highlighted throughout this paper and in Section
4.1.1.

The effectiveness of a solution is dependent on the problem area approached. Both
long and short term decision strength evaluation has to be performed, and a number of ap-
proaches for this are available in the current literature (See eg., Crandall 2006; McGeorge
et al. 2015; Papautsky et al. 2015; P. J. Smith et al. 2012).
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