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Abstract
Information diffusion is where a message or data is passed from vertex to ver-
tex in a network via edges. Information diffusion is often used for simulations
in network research because it estimates how information propagates through a
network. A set of vertices that in initial state contains the data is known as
the seed nodes. The diffusion starts at the seed nodes and propagates over the
network. Finding the optimal seed nodes is a crucial part of information diffu-
sion. The seed nodes are the optimal targets to start passing messages during
a disaster scenario, vaccinate to prevent the spreading of a disease or even tar-
gets for viral marketing. Finding these seed nodes is an NP-hard problem and
require a significant amount of computation. One common used model in infor-
mation diffusion is the independent cascade model (ICM). ICM can be performed
as a sparse matrix-vector multiplication (SPMV). By using a application specific
hardware accelerator, we can accelerate the diffusion process and consequently,
the seed selection. Recently, high-level synthesis (HLS) have been getting more
attention. HLS transform high-level implementation and algorithms to low-level
designs. With HLS we designed a application specific intellectual property core
(IP-core) which we then implemented on the FPGA and perform seed selection.
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Sammendrag

Information diffusion er n̊ar en melding eller data blir sendt fra node til node via
kantene i et nettverk. Information diffusion er ofte brukt i simulering i nettverks
forskning siden den kan estimere hvordan data propagerer gjennom et nettverk.
Et sett med noder som starter med dataen er kjent som seed nodes. Diffusjonen
starter ved seed nodes og propagerer gjennom hele nettverket. å finne de mest
optimale seed nodes er en essensiell del av Information Diffusion, siden de kan
spre bedskjedet til mest mulig mennesker under en krisesituasjon, ved å vaksinere
dem s̊a kan man forhindre spredning av sykdommer, eller s̊a er de seed node de
optimale kandidater for å promotere produkt.

Å finne disse seed nodes er et NP-hard problem og krever stor mengde bereg-
ninger. En vanlig brukt modell er kjent som Independent cascade model(ICM).
ICM kan bli gjort via sparse matrix-vector multiplication (SPMV). Ved å bruke
en applikasjons spesifikk hardware akselerator, sp kan vi optimalisere diffusjons
prosessen og Seed selection. High level synthesis har i de siste f̊att mye mer opp-
merksomhet. HLS transformerer høy-niv̊a implementasjoner til lav-niv̊a design.
Ved hjelp av HLS kan vi utvikler applikasjons spesifikk intelectual property core
(IP core) som vi implementerte i en field-programmable gate array (FPGA) og
utføre seed selection
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Chapter 1

Introduction

1.1 Motivation
Information Diffusion is a field in network research where a message, or data, is
propagated through a network or a graph. The message originates from a chosen
set of vertices, known as seed nodes. These seed nodes pass the message to its
neighbours through the edges and thus propagates the message over the network.
The effectiveness of the diffusion is measured through the spread and the speed
of propagation and is dependent on the chosen seed nodes. By finding the most
optimal set of seed nodes, we can potentially stop an epidemic by vaccinating
influential vertices, we can find important targets for viral marketing by giving
free samples, and use this information to spread messages quickly during disaster
scenarios[2] [3].

There are multiple studies done regarding information diffusion, [2],[4], [5],
[6]. But as far as we know, there are none that focuses on optimizing the seed
selection in hardware. The current seed selection algorithm is a greedy solution[7],
where every set of vertices is tested and the set with the best coverage and time is
chosen. This is a time-consuming process and highly parallelizable, which makes
it a good candidate for Field-programmable gate arrays(FPGAs).

High-Level Syntesis (HLS) transform high-level behaviour and constraints to
lower level design.[8]. It makes it possible to implement an algorithm in a high-
level language, C or C++, and generate an optimal design in verilog or VHDL.
Verilog and VHDL are hardware descriptive languages designed to describe digital
systems [9].

Unlike traditional hardware design, HLS allows designers with limited knowl-
edge of hardware design to create an optimal custom Intellectual property core(IP-
core). In HLS, programmers can test out different optimization schemes in a short
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4 CHAPTER 1. INTRODUCTION

period, thus reducing development overhead.
In this thesis, we have implemented a simple IP-core that performs informa-

tion diffusion using the Independen Cascade model (ICM) as Breadth-First Search
(BFS) over boolean semiring. This is done by using HLS as the development tool.

1.2 Assignment Interpretation
From the assignment text, these task were chosen as the main focus of this thesis:

Task 1 (mandatory) Implement Information Diffusion as Sparse matrix vector
multiplication, with high level language C.

Task 2 (mandatory) Tailor the implementation of Information Diffusion for
synthesise with Vivado HLS.

Task 3 (optional) Implement said design on a Zynq FPGA board.

Task 4 (optional) Extend the system to be able to handle graph in the size of
toy graphs(containing 226) vertices)

1.3 Report Structure
We have here the basic outline for this report and a short overview of the remain-
der of this report:

Chapter 2: Background contains the theory regarding networks, information
diffusion, matrix-vector multiplication and high-level synthesis.

Chapter 3: Related Work gives a short introduction of the state of the art of
HLS implementations, information diffusion research and different optimization
of BFS.

Chapter 4: Design and Implementation present our implementation of our
IP-core and give a brief introduction regarding HLS implementation and opti-
mization.

Chapter 5: Result and Discussion will compare the result our core gener-
ated compared to a C-simulation. We will also discuss some of the design choices
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regarding the IP-core.

Chapter 6: Future Work present how our design can be further improved.

Chapter 7: Conclusion provides concluding remarks regarding this paper and
a summary of the identified tasks.
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Chapter 2

Background

In this chapter, we will look at the fundamental concepts and theory of the
different diffusion models, seed selection algorithms and perform BFS over the
boolean semiring. We will also have a look at HLS and specifications of the
Zedboard. This chapter will contain notations that we will use throughout the
report.

We will look at the independent cascade model, which is a special case of
breadth first search [10]. By looking at how to improve BFS, we can apply such
optimization to ICM and the seed selection algorithm.

2.1 Information Diffusion

Information diffusion is looking at how information is propagated through a net-
work. A vertex can be either activated(infected) or inactivated(healthy/noninfected),
each vertex can spread the contagion(activation,infection) to their neighbour.
Some examples would be how a meme, a trend or a disease is spread through a
community. The process consists of a set of starter vertices, which we will call
seed nodes, which are ”infected” at initial time step. During each time step, there
are a percentage pg where the ”infected” vertices would ”infect” its neighbours.
Seed nodes is a set of k vertices that in the initial time-step are infected. They
will pass on the information/infection during each iteration, and the informa-
tion/infection will propagate through the network.

7
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2.2 Basic Diffusion Models
For information diffusion, two common models are used for simulations. Those
are the linear threshold model(LTM) and the independent cascade model(ICM)
[11].

ICM is a model where each spread of contagion is dependent on a ”coin flip”.
Each person has a chance to be contaminated, and during each diffusion, depen-
dent on the result of the coin flip, that person is either contaminated/infected
or healthy. In ICM, an infected person can not reinfect the previously spared
person. The probability of infection can be either globally, or locally. In Figure
2.1a, we can see a situation where C have five neighbour,A,B,D,E and F. In the
initial state, only C is infected. Five separate ”coin flips” was done and resulted
in three more activations as shown in Figure 2.1b. C spread the contagion to
three other people, while A and F were spared. In Figure 2.1c F is activated by
E.

(a) Initial state (b) second state, activated
by C is marked blue

(c) third state, activated
by E is marked red, no
more activation from C

Figure 2.1: Independent cascade model

For the LTM activation is not dependent on a probability and a ”coin flip”,
but an internal threshold of activated neighbours. The spread of contagion is
dependent on how large of a fraction of their neighbour is activated. For our
example, let say that for a person to be infected, 0.6 of their total neighbour
must be infected before they can contract the contagion. In Figure ??, we see
that in the initial state A,B and D are infected. For C, more than 0.6 of its total
neighbours are activated, this resulted in an activation of it too as seen in Figure
2.2c. We can see that both E and F have only 0.5 of their neighbours activated,
and thus in Figure 2.2c no more activation is presence.

A real world example of the LTM would be e.g. A new product on the
market. People would adopt the new product it enough of their acquaintance is
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(a) Initial state, A,B,D is
activated.

(b) Second state, S is ac-
tivated and marked blue.

(c) Third state, no more
activation, since both E
and F have less then 0.6
activated neighbours.

Figure 2.2: Linear Threshold mode

using it (activated). While ICM would be more directed marketing. Where free
samples are given to some users. Those users would then promote the product
and potentially spread the product to other.

ICM is a special case of BFS, both algorithm traverse graphs in a level-by-
level approach. The difference is that for ICM, each node is not guaranteed to
be activated. If an ICM had an activation chance of a hundred percent, then the
ICM would be the same as BFS.

2.3 Breadth First Search
BFS is a tree traversal algorithm. BFS starts at the root vertex vr. The algorithm
then stores all vrs children vertices in a queue. The algorithm then takes the first
vertex from the queue, v1 and stores all the children vertices to v1 in the back of
the queue. This process continues until the queue is empty and all the vertices
have been iterated over.

BFS is a common graph iteration algorithm but is often limited by the irreg-
ular memory access where the algorithm has to find the data stored in different
spaces in memory.

2.3.1 BFS to Data Diffusion
The motivation for transforming breadth first search as matrix-vector multiplica-
tion is that displaying the graph algorithm as a matrix multiplication can display
the data access pattern for the algorithm and can be readily optimized [12].
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Algorithm 1 Breadth First Search
1: dist[∀v ∈ V ] = −1; currentQ, nextQ = ∅
2: step = 0; dist[root] = step
3: ENQUEUE(nextQ,root)
4: while nextQ 6= ∅ do
5: currentQ = newxtQ;nextQ = ∅
6: step = step+ 1
7: while currentQ 6= ∅ do
8: u = DEQUEUE(currentQ)
9: for v ∈ Adj[u] do

10: if dist[v] == −1 then
11: dist[v] = step
12: ENQUEUE(nextQ, v)

return dist

As mentioned before, ICM is a special case of the breadth first search. By
modifying the algorithm proposed earlier, we can, in theory, perform ICM with
matrix-vector multiplication.

2.4 Matrix Notations
Networks can be represented as sparse adjacency matrices [12] [13]. By represent-
ing networks as a sparse matrix, we can often discover different ways to optimize
the algorithm, or a different structure to store the data. The adjacency matrix,
in particular, is an interesting way to represent the graph. A graph G = (V,E),
G have N vertices and M edges, and this correspond to a N×N adjacency ma-
trix called A. If A(i,j)=1, then there is an edge from vi to vj . Otherwise, it is
0. In Figure:2.3a, we can see how a undirected graph can be represented as an
adjacency matrix. Each square symbolises a connection between two vertices. To
generate a undirected graph as an adjacency matrix, the matrix must be mirrored
diagonally, meaning if A(i,j)=1, then A(j,i)=1, if this is not true, then the matrix
would be representing a directed graph.

2.4.1 Sparse Matrix
A sparse matrix is a matrix containing few nonzero entries. A social graph with
few edges would often be represented as a sparse matrix. Since sparse matrices
only have few non-zero elements, by storing only the non-zero elements, we can
have savings in memory.
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(a) The adjacency matrix

(b) The graph correspond-
ing to the adjacency ma-
trix

Figure 2.3: Sparse matrix to graph

2.4.2 Breadth First Search as Matrix Multiplication.

From [12], we can see that BFS can be recast as algebraic operations. BFS can be
performed by applying matrix-vector multiplication over Boolean semirings [10].
The graph is represented as an adjacency matrix A, then for the root vertex, a
vector x(root)=1 is multiplied with the matrix A. A × x0 = y0. y0 is the result
of the first matrix-vector multiplication and in the next iteration, x1 = y0. We
can see from the Figure2.4

By performing an AND operation between each element in a row in the matrix
and the corresponding element in the vector, then applies the OR operation
between each result from the AND operation, we can find the result, which is the
row number in the. This will be further explained in Chapter 4.

Figure 2.4: BFS on Boolean semiring
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2.4.3 Semiring
A semiring is a set of elements with only two binary operations. The two oper-
ations are often known as ”addition”(+) and ”multiplication”(×). Semirings are
often used in abstract algebra to categorize a set of elements. Boolean semirings
is a set of binary elements: ’1’ and ’0’ and defined as 1 + 1 = 1. As we shown in
the previous section, the algorithm performs matrix multiplication uses the two
operations, multiplications, and addition. In [10], the AND and OR operator
were chosen instead of the normal addition and multiplication.

2.5 Seed Selection Algorithm
The seed selection algorithm is the algorithm used to select the initial k seed
nodes to be chosen at the start of the information diffusion. Each selected ver-
tices is in the initial timestep activated. During each time step, the seed nodes
will propagate the activation along the network depend on what diffusion model
is used. We can compare it to a new gadget or a cosmetic company trying to pro-
mote a new product. By selecting a few influential persons to give a free sample,
the new trend would most likely spread through viral marketing [14]. The seed
selection algorithm would be the algorithm to select the few influential individ-
uals to receive this free sample. There are multiple different schemes to choose
from, in this section, we will focus on four different algorithms, greedy algorithm,
degree algorithm, random algorithm and the independent greedy algorithm.

2.5.1 The Greedy Algorithm
The greedy algorithm [7] [15] proposed by Kempe et al, is known to be the optimal
algorithm in seed selection according to the result from [7].

The greedy algorithm starts by choosing one vertex and perform one ICM
over the entire network and stores its spread. This process repeats for every
vertex available. The vertex with the best coverage would then be stored in a set
S. The algorithm continues and chooses a new vertex in combination with the
vertices in set S. This process continues until there are k different vertices in set
S, which will be returned as the most optimal set of k vertices for this matrix.

2.5.2 The Degree Algorithm
Another popular algorithm is the degree algorithm [7]. Unlike the greedy al-
gorithm, does not compute the coverage of vertex, the algorithm picks the top
k vertices according to the degree distribution instead. The vertex chooses the
top k vertices with the highest degree and stores them as the seed nodes. This
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Algorithm 2 Greedy Algorithm
1: Start with A = ∅
2: while |A| ≤ l do
3: For each vertex x, use repeated sampling to approximate σ(A ∪ x) to

within (1± ε) with probability 1âĹŠδ
4: Add the vertex with largest estimate for σ(A ∪ x) to A.
5: Output the set A of vertices.

approach benefits over the greedy algorithm by not having as much computation
time as the greedy algorithm since only one iteration is needed to compute the
degree to the vertex. The disadvantage is that this algorithm does not take the
degree correlation into account. High degree vertices would often have common
vertex as neighbours[16]. This would result in multiple overlapping activated
vertices chosen.

Algorithm 3 Degree Algorithm
1: Start with A = ∅
2: while |A| ≤ l do
3: For each vertex x, use repeated sampling to compute DegreeMax(x).
4: Add the vertex with largest degree to A.
5: Output the set A of vertices.

2.5.3 Independent Algorithm
Another algorithm is the independent greedy algorithm. The algorithm iterates
through the network, computing the spread of each vertex. The algorithm then
chooses the vertex with the largest coverage independent of the other previous
chosen vertices. This algorithm is a special case of the greedy algorithm men-
tioned above.

Algorithm 4 Independent Algorithm
1: Start with A = ∅
2: while |A| ≤ l do
3: For each vertex x, use repeated sampling to approximate σ(A ∪ x) to

within (1± ε) with probability 1âĹŠδ
4: Add the vertex with largest estimate for σ(x) to A.
5: Output the set A of vertices.
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2.5.4 Random Algorithm

The last one is the random algorithm. The random algorithm just picks a random
seed node. This approach is the simplest to implement and easiest. The downside
is that this is random, and there are no strategic choosing of seed node.

2.6 High-Level Synthesis

High-Level Synthesis convert algorithms implemented on the higher level down to
Register Transfer Level (RTL)[17]. RTL is models of digital circuits displaying the
flow of data between register, logical operations and such. It is commonly used to
describe low-level digital systems. HLS is known to be able to reduce development
effort and cost of creating specialized hardware compared to traditional hand-
drawn RTL designs[18][19][17]. By taking high-level languages such as C, C++,
and SystemC implementations and generate the optimal architecture. HLS allows
the user to generate custom Intellectual Property(IP) core. An IP-core is a custom
created data core that has an output and an input port.

2.7 ZedBoard

The Zedboard that we used for this project, is Xilinx Zynq-7000 All programmable
System-on-chip(SoC) Z-7020. Consist of a dual core ARM cortex-A9 MPCore
based processing system(PS) and an Artix-7 XC7Z020 FPGA. The FPGA is
the programmable logic(PL). The Zedboard have 512 MB DDR3 RAM, 256MB
Quad-SPI Flash, and 4GB SD card.[20]. The system offers the flexibility and
scalability of an FPGA[21].

THe FPGA use Advance eXtensible Interface(AXI4)bus protocol. There are
three types if AXI4 interfaces:

• AXI4 Lite- Simple, memory mapped communication. Useful for small
single read.

• AXI4-Stream - for continues streaming of data.

• AXI4 - For memory mapped applications.

A component with PL implemented would be able to connect to the PS
through an AXI4 bus port. The close coupling between t
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Figure 2.5: How the adjacency matrix is flipped on the diagonal

2.8 RMat
One problem during graph analyzation and calculation is finding suitable graphs
to analyses. Generating large reproducible networks is one of the strengths of
R-mat. One solution proposed by Chakrabartiy et al. is to use the ”recursive
matrix” or R-mat model. The R-mat model generates networks with only a few
parameters, the generated graph will naturally have the small world properties
and follows the laws of normal vertices, and have a quick generation speed [1].
The R-mat models goal is to generate graphs that match the degree distribution,
exhibits a ” community ” structure and have a small diameter and matches other
criteria. [1]. The algorithm to generate such a recursive matrix is as follows: The
idea is to partition the adjacency matrix into four equally sized part branded
A, B, C, D, as shown in Figure2.5. The adjacency matrix starts by having all
element set to 0. Each new edge is ”dropped” onto the adjacency matrix. Which
section the edge would be placed in, is chosen randomly. Each section have a
probability of a, b, c, d, and a + b + c + d = 1. After a section is chosen, the
partition that was chosen is partitioned again. This continues until the chosen
section is a 1x1 square and the edge is dropped there. From the algorithm, we can
see that the R-mat generator is capable of generating graphs with total numbers
of vertex V = 2x. Since the algorithm partitioned the matrix into four part.
This is approach would only generate a directed graph. To generate undirected
graph, b = c and the adjacency matrix must make a ”copy flip” on the diagonal
elements, like Figure 2.5. The Rmat is reproducible if the random placement of
the vertices is deterministic.
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Chapter 3

Related Work

In this chapter, we will look at the state of research regarding High-Level Syn-
thesis, information diffusion, and optimization of independent cascade model and
breadth-first search.

3.1 Information Diffusion
There are multiple studies done regarding information diffusion. Studies show
how information diffusion can be applied during an disease outbreak[2], viral
marketing[14], coordinat during crisis situation[22].

Different models of information diffusion have been done on blogs[23][24], and
Twitter[25]. We can see that in an age of social media, the studies of information
diffusion is more relevant than ever.

While [6] have argued that the emerging of social networks and media have
changed the traditional model. The activation is no longer only relying on neigh-
bour vertices, but also an external influence. They found that a large amount
of information volume in Twitter is the result of network diffusion, while a small
amount is due to external events and factors outside the network[6]. Another
study shows that during the 2011 Egyptian Uprising, how a large amount of
rebel movement were ”tweeted”[22] during the uprising.

As we mentioned in Chapter 2, we mainly focus on two common informa-
tion diffusion models, ICM, and LTM. But there are different models too. [5]
proposed several different problems with traditional models where each vertex
is either activated(infected, influenced, ’1’) or inactive(healthy, not reached, ’0’),
and passes the contagion(information, data, infection, influence) to neighbour-
ing vertices through the edges. The report mentioned different assumptions that
such models make. Among them is that a complete graph is provided, the spread

17
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of contagion is from a known source, and that the structure of the network is
sufficient to explain the behaviour[5]. The report proposes an alternative model,
Linear Influence Model(LIM), where the focus is on the global influence that an
infected vertex has on the rate of diffusion through the implicit network. This
model makes the assumption that newly activated vertices are dependent on pre-
viously activated vertices. The LIM does not need explicit knowledge of the entire
network. Instead, the model takes the newly activated vertices and models them
as a influence function, which is used to find the global influence.

3.2 High-Level Synthesis
High-Level Synthesis as a concept has been around since the mid-1980s and early-
1990s[17][26]. Carnegie-Mellon University design automation (CMU-DA)[27][28]
was a pioneering early version of HLS tools. The tool gathers quickly considerable
interest. Many HLS tools were built in later years mostly for prototyping and
research[29][30][31]. Some of these were able to produce real chips, but the reason
for the lack of further development and adaptation was that RTL synthesis was
not a widely accepted and an immature field. This often lead to suboptimal
solutions.

Around the year 2000, new HLS tools were developed in academia and the
industry. These tools, used high-level language, C and C++. Vivado HLS,
designed by Xilinx [32], is one such HLS tool. The Vivado HLS became free
during their 2015.4 update[33]. This resulted in a revived interest in HLS. The
community around HLS is also evolving, on the Xilinx-forum, there are multiple
answers and active members. We can see that the solution designed by HLS tools
is close to traditional hand-crafted designs[34].

Cong et al,[17] discusses different problems and reason for failed commercial-
ization of early HLS tools. concluded that the problem with the early HLS tools
can be summarized by the following reasons: ”Lack of comprehensive design lan-
guage support”, ”Lack of reusable and portable design specification”, ”Narrow
focus on datapath synthesis”, ”lack satisfactory QoR”, and ”Lack of a compelling
Reason/event to adopt new design methodology”.

Early versions of HLS tools was not a C-to-RTL transformation. Most of
them needed a custom Hardware Descriptive Language(HDL). Lacking reusable
and portable design specification resulted in that HLS tools required users to in-
clude detailed information regarding timing and interface information into source
codes. This resulted in a target dependent solution and can’t easily port to other
devices. The narrow focus on datapath synthesis resulted in a lack of focus on
an interface to other hardware modules and platform integration. Those aspects
were left to the users to solve system integration problem. The lack of founda-
tion to accurately measure HLS result and often failed to meet timing and power
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requirement with early HLS tools were another limiting factor. The last reason
was that there was no real driving force to turn developers over to such a young
and early development format. HLS tools showed exciting capabilities, but most
developers did not want to move from the safe and tested RTL design methodol-
ogy. The paper concludes with that current(2011)HLS tools showed tremendous
potentials in becoming standard in selected deployment.

3.2.1 Applications using HLS
In [35], HLS was used to design an accelerator for database analytic and SQL
operation. The design was implemented on a Virtex-7 xc7vx690t-g1761-2 FPGA
with a focus on accelerating operations; join, data filter, sort, merge and string
matching. The accelerator was implemented in C++ in Vivado HLS and opti-
mized with UNROLL directive, PIPELINE directive, and ARRAY PARTITION.
The UNROLL directive unroll all of the specified loops, while the PIPELINE di-
rective allows multiple accelerators to process data at each clock cycle. The AR-
RAY PARTITION directive partition data into registers. The accelerator showed
promises, giving a 15-140× speedup compared to Postgres software DBMS run-
ning selected TPCH queries.

[36] explored the advantages and disadvantages of HLS implementation of
image processing. They argued that custom algorithms on FPGA platforms will
most likely result in an improvement, but the algorithms must be tailored to the
platforms. The author conducted different case studies to show both the strengths
and the weaknesses of HLS. The report goes through image filtering, connected
component analysis and two-dimensional fast-Fourier transformation(FFT). One
example that the author brings up is during image filtering where HLS was not
able to identify the standard accessing pattern during special cases. This resulted
in that the HLS built additional hardware to counter such an exception. The re-
port concluded that while HLS can significantly reduce development time and
improve utilization of the design space, it is still important to focus on careful
design. The report concludes that HLS can offer many benefits, and is an im-
provement over conventional RTL-designs, but is not a replacement for hardware
designers or clever designs.

[37] implemented a fast Fourier transform (FFT) algorithm for different dig-
ital system processing application in HLS. There the authors used Simulink for
verification of their design, and implemented it in HLS.

[19] discuss improvements to the current HLS tools with polyhedral transfor-
mation. Here they present a problem with HLS, which is that unless the code
is inherently compatible, HLS can not apply most of the optimizations. Zuo
et al. proposed the polyhedral model, the model takes data dependent multi-
block program as input and performs three steps: Classification of array access
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patterns, performance Metric, and implementation. During the classification of
array access patterns, a set of data access pattern is defined and classified. Then
the appropriate loop transformation is applied. The next step, the performance
of each loop transformation with data-dependency is estimated, and the best
improvement is chosen. In the final step, the chosen solution, loop transforma-
tion, and inserting HLS directive are applied. Then an interface block for the
data-dependent blocks is generated. The generated communication block is then
optimized depending on how it behaves. The paper concludes with that the
polyhedral model can model can find important loop transformation, thus enable
optimization such as pipeline and parallelization.

[34] is a case-study where HLS is used to implement two compute heavy
machine learning techniques with different computational properties. The two
algorithms that were tested was Lloyd’s Algorithm and a Filtering Algorithm.
The result was that for the first case, a similar performance between the HLS
solution and a hand-written solution, while the second algorithm was severely
worse with HLS if the developer did not customize for HLS.

3.3 Different optimization scheme
There are a large amount of different optimization research on graph traversal,
especially on Breadth First Search.

[10] proposed a hybrid FPGA-CPU heterogeneous platform for BFS. The
idea is to run the first couple of steps on the CPU core, then switch over to
the FPGA accelerator to explore the rest of the graph. The CPU is better
suited for calculating while there is a smaller frontier, while the FPGA core is
better suited for a larger frontier. By exploiting the characteristics of small-
world networks where the frontier is much larger after two-three iterations, one
can significantly improve computation time. The report proposed an alternative
method of performing the breadth-first search. By performing it as a sparse
matrix-vector multiplication over a boolean semiring, more parallelization option
was discovered. The result was a speedup of 7.8 compared to a pure software
implementation ,and 2× better compared to an accelerator-only implementation.

[38] propose a hybrid solution, combining a conventional top-down algorithm
and a novel bottom-up algorithm. The optimization in this paper focuses on
examining fewer edges, thus reduce computation time and trying to circumvent
one major drawback with BFS; memory-bound on shared memory. The top-
down approach is the traditional algorithm, where a frontier expands and visits
all vertices on that level, before each vertex checks its neighbour for unvisited
vertices. Unvisited vertices are placed in the frontier vector and marked as visited.
The bottom-up algorithm, contrary to the top -down the algorithm, is where each
children vertex tries to find a potential parent. A neighbour vertex can be the
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parent if the neighbour is also in the frontier vector. This results in that after a
vertex finds its parent, there is no need to traverse the rest of the frontier. By
using different approach during different time, the report was able to achieve a
speedup of 3.3 - 7.8× on synthetic graphs and 2.4 âĂŞ 4.6× on real social network
graphs.
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Chapter 4

Design and Implementation

In this chapter, we will present our implementation of the sparse matrix-vector
multiplication (SpMV) over boolean semiring, how we implemented with HLS
and how we connected the IP-cores in the FPGA.

4.0.1 High Level Implementation
Our implementation of the SpMV is done in HLS. The algorithm takes in an
adjacency matrix and a set of seed nodes as input and outputs a result vector
showing which vertices were activated. The algorithm stops when all the vertices
have been activated, or it is unable to find any new candidates. Unlike normal
SpMV, where each iteration will activate all their neighbours, an ICM is depen-
dent on random number generator (RNG) and a global or local probability. For
this project a global probability of 5% was used, i.e. each vertex had a 5% chance
of being activated. If v1 was not activated by Vr on the first iteration, Vr can
not reactivate v1 on the next iteration. To prevent a reactivation, as mentioned
above, a frontier vector will be sent in instead of the result from the previous
iteration.

A vector is a list of vertices. The frontier vector is generated by comparing the
result from current iteration with a list of activated vertices. The vertices that
are in the frontier vector are the vertices that were not activated in the previous
iteration but were activated in the current iteration.

Our algorithm applies SpMV over the matrix and the frontier. For each
iteration, each element in a row of the matrix is applied an AND (&&) operation
with the corresponding element in the frontier vector. The results from these
operations will be ORed (‖) together, which gives the result for the row.

Unlike the breadth-first search on a boolean semiring, each vertex will have a
chance not to be activated (set as ’1’), even if matrix row[x] and frontier[x] = 1.

23
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(martix row[0] && frontier[0])‖(matrix row[1] && frontier[1])‖ . . .
(matrix row[n] && frontier[n])=result[row]

This resulted in that for each &&- operation, we need to && another coin toss,
which determined if the activation takes place. The coin-toss is determined by
the RNG and the global probability.

The algorithm will continue until either all of the vertices are activated, or no
more vertices can be activated. This is solved with a function dist gen, a function
that stops the algorithm when either no more vertices are activated in frontier
vector, or all the vertices in the result vector are activated.

In the high-level implementation, the implementation of the algorithm was
done on two levels. The top level was the TopLevelWrapper. The TopLevelWrap-
per was set as the main function in our HLS implementation. The function takes
in the address of the location of the matrix, the address of the result, and the
address to the frontier. Since we are working with ICM, a global probability, a
random seed as the initial state for the LFSR is also set as input. The TopLevel-
Wrapper stores the useful data in a local buffer, where it is sent to the datapath
function. The datapath function is a sparse matrix-vector multiplication.

We can see the overview of our implementation in Figure 4.1. Where the
processing system sends the adjacency matrix and the frontier vector to out IP-
core; called TopLevelWrapperd

4.0.2 Seed Selection
Seed selection that was implemented was the greedy seed selection. Our IP-
core performed ICM with an input of a set of vertices as seed nodes. The greedy
algorithm was implemented on PS, and continuously sends new sets of seed nodes
to the IP-core much like the 4.1.

The address to the matrix, result, frontier, and the random seed and global
probability is all mapped as AXI4-Lite while the matrix, frontier, and the result
are memory mapped. This allows us to send in the address of the memory location
where the variables are stored and apply our algorithm.

Since ICM is dependent on a random function, we ran each set of seed nodes
50 times to find the average runtime and coverage to find the most optimal set
of vertices.

4.1 IP-core
For this project, we have implemented an IP-core with Vivado HLS. The IP-core
applies a modified version of SpMV over an adjacency matrix and a set of vertices
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Figure 4.1: Overview of out implementation

known as seed nodes. We will give a brief introduction to HLS programming and
how to customize the algorithm for HLS. For our implementation, our IP-core
would perform the diffusion and return the activated node. The PS would then
calculate the spread of this iteration and supply the IP-core with the next set of
seed nodes. This process continues until we have found the best set of seed node
with k vertices

4.2 Design flow of HLS
For this project, Xilinx Vivado HLS 2016.1 was used. The usual workflow in
designing with Vivado HLS is as follow.

1. Define your function/algorithm.

2. Simulate as compile code.

3. Synthesise.

4. Co-simulate.
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There are some steps that Vivado HLS requires before the project can start. In
the beginning, Vivado HLS would require the designer to specify which function
is the top level of the implementation. That top function would determine which
port the IP core would have and what type of AXI4 protocol to implement. Vi-
vado HLS also enables the user to specify to which platform this implementation
is for.

The first step in designing with Vivado HLS is to define the algorithm that
will be synthesised. E.g. for this report, it is the matrix-vector multiplication.
After identifying different requirements and dependencies, the algorithm is im-
plemented in C with Vivado HLS. Vivado HLS has some limitation regarding the
high-level implementations:

• No dynamic memory (Need to be static), Vivado HLS does not support
malloc, free, new or delete.

• NO STD, FILE-IO, etc., (no system calls).

• avoid recursive functions.

The next step is to run C simulation. This will verify that the C implemen-
tation is correct, by running the test in the testbench. The test in the testbench
is created by the designer. After verifying that the implementation is correct,
next step is to synthesise the implementation. Vivado HLS will then generate
the appropriate Verilog or VHDL, depending on the designer choice. The finished
generated solution is then reviewed by reading the Vivado synthesis report. The
report containing crucial information regarding the generated solution. There
we can find the performance estimates of the generated core, the utilization es-
timates, and the interface to the generated core. After all, this is done, Vivado
offers a run C/RTL Cosimulation. Vivado will then run both the C simulation
and testbench and the same testbench on a simulated version of the implemented
core. This function allows the designer to verify that the generated core have the
same behaviour as the simulated C implementation.

After Cosimulation is done, the IP-core is ready for export. Export RTL
generates the necessary RTL files and exports the IP core. The exported IP-core
can then be found in the project folder and is ready to be uploaded to the FPGA.

The input and output port of the IP core is determined by the variables that
the top function requires. Variables that are read from will automatically be set
as input, while variable that are only written to will be set as output. In order
for the core to understand what is mutable, the output is often set as a pointer
(For C code). VIVADO HLS generates control signals cl automatically.
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Figure 4.2: Diagram of HLS wokflow
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4.3 Linear-Feedback Shift Register
The LFSR is a commonly used pseudorandom number generator(pRNG)[39]. Dif-
ferent sized LFRS can generate a wider range of pseudorandom numbers. LFSR
generates a pseudorandom number based on the previous pseudorandom number
it generated. The LFSR implemented for this project is a 16-bit shift register,
that can generate a pseudorandom number in the range from 0-216(65536). To
generate the new number, the bits from positions 16,14,13 and 11, is XORed.
I.e. (((16 XOR 14) XOR 13 ) XOR 11) = new bit. The new bit is pushed into
bit position 1 and the entire registers shifts towards right 1 bit. This allows the
IP-core to generate a pseudorandom number based on an initial seed input. From
Figure: 4.3 we can see that to generate continuously pseudorandom numbers the
output from the LFSR is used as the next iterations seed.

Figure 4.3: 16-bit Linear-Feedback Shift Register

4.4 Network and graph generator
The graphs that were used in this report was generated by an R-mat generator.
For this project, we choose to implement an R-mat generator as mentioned in
Chapter: 2.8 and [1]. The generator is implemented in Python [40] with numpy.
The generator generates adjacency matrix with 2k vertices, where k is known as
the scale of the sparse matrix. The total amount of edges the graph contains is
set as total amount of edge = k × edge factor. The edge factor is the ratio
between the graph’s edge count and ins vertex count[41].

4.5 How is it connected
As shown in Figure 4.4, out IP-core is the TopLevelWrapper, and the PS is the
Zynq processing system. The AXI interconnect serves as a interconnect between
our IP-core and the PS.
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Our core is memory mapped and we use the bus interface AXI4-Lite for
communication. The core includes a DMA-component, which the HLS would
initiate for us. This allows us to utilize the High-performance slave interface on
our PS.

4.6 Xilinx SDK
In Xilinx vivado, a Xilinx Software Development Kit was provided. In the SDK,
the IP-core was initiated, and control signals were set. For our experiment, the
seed selection was implemented in Xilinx SDK. in this project; a greedy seed
selection was implemented. In our PS, we generate a vertex

4.7 Optimization
The function matrix vector multiplication() performs a single matrix-vector mul-
tiplication. From the pseudocode, we can see that there is room for parallelization
of the SpMV. The outer for loop from the pseudocode can be parallelized since
the for loop is not dependent on the variables from the inner for-loop.

Another possible parallelization is during the simulation, after the SpMV, the
frontier vector needs to be calculated. And a converged() function is called in
the end to determine if the simulation is finished. The frontier calculation and
converged can be run in parallel.

Include the different directives, PIPELINE, LOOP UNROLL and DEPEN-
DENCE. Directives are a predefined optimization that HLS provides, by incorpo-
rate them in the high-level implementation, HLS would apply specific optimiza-
tion. For our implementation, the following directive was added.

• PIPELINE Allows the implementation to utilize concurrent execution of
operations [42]. This allows loops and functions to execute in parallel.

• UNROLL generates multiple independent operations instead of sequential
operation such as for-loops.[42]

• DEPENDENCE Provides additional information in regarding loop-carry
dependency. Allows loops too be pipelined.[42]



30 CHAPTER 4. DESIGN AND IMPLEMENTATION

D
D

R

F
IX

E
D

_I
O

T
op

Le
ve

lW
ra

pp
er

_0

T
op

le
ve

lw
ra

pp
er

 (
P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_h
os

tm
em

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

ax
i_

m
em

_i
nt

er
co

n

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N
[0

:0
]

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N
[0

:0
]

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N
[0

:0
]

pr
oc

es
si

ng
_s

ys
te

m
7_

0

Z
Y

N
Q

7 
P

ro
ce

ss
in

g 
S

ys
te

m

D
D

R

F
IX

E
D

_I
O

U
S

B
IN

D
_0

S
_A

X
I_

H
P

0_
F

IF
O

_C
T

R
L

M
_A

X
I_

G
P

0
S

_A
X

I_
H

P
0

T
T

C
0_

W
A

V
E

0_
O

U
T

T
T

C
0_

W
A

V
E

1_
O

U
T

T
T

C
0_

W
A

V
E

2_
O

U
T

M
_A

X
I_

G
P

0_
A

C
LK

S
_A

X
I_

H
P

0_
A

C
LK

IR
Q

_F
2P

[0
:0

]

F
C

LK
_C

LK
0

F
C

LK
_R

E
S

E
T

0_
N

pr
oc

es
si

ng
_s

ys
te

m
7_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N
[0

:0
]

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N
[0

:0
]

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N
[0

:0
]

rs
t_

pr
oc

es
si

ng
_s

ys
te

m
7_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

Figure 4.4: Our IP-core and how it is connected.



Chapter 5

Result and Discussion

Here we will present the results that we received from the experiments. The
algorithm was able to finish an extreme scaled down version of the original sparse
matrix-vector multiplication. The result was a 16 × 16 adjacency matrix, which
is unfortunate since our goal was to iterate over large graphs. But these results
are still interesting and proves that HLS can be an improvement over traditional
hardware design.

This resulted in that most of the numbers here are taken from Vivado HLS
simulation and Cosimulation.

5.1 Experimental Setup
For this experiment, we used a 16×16 adjacency matrix generated with a R mat
generator. A adjacency matrix with the following variable was created for this
experiment.

• A = 0.57

• B = 0.19

• C = 0.19

• D = 1-0.57-0.19-0.19 = 0.05

• Edge factor = 16

• k (Scale) = 4

For this experiment, we set a global probability for activation at 5% and an
initial seed of 42 for the linear feedback shift register. We ran each information

31
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Figure 5.1: The R-mat model [1]

diffusion iteration 50 times and found the average coverage and time usage for
each run; each run used a new initial seed, thus each run is different.

Our implementation was a greedy solution, where the PS generated a new set
of seeds.

The processing system (PS) sends the matrix and frontier to the Processing
logic (PL). The

The implementation was done on a Zedboard [43], with a ZYNQ7 Processing
system. The adjacency matrix was stored in the 4GB SD card. The Zedboard
was using a 15000000 JTAG Clock Frequency.

5.2 Results

In Table 5.3, we can see that by varying the buffer size, we get variable results.
We can see that in C simulation, by using a larger buffer so that the IP core can
take the entire row of the matrix, the result is somewhat better than the other.
While for the RTL implementation, there does not seem to be the case. For the
RTL simulation, by choosing buffer size equal to eight, get a better time.

For table 5.1, the first column shows the how many vertices were in the
seed nodes, the second column displays the coverage. Unsurprisingly, the more
seed nodes that were chosen, the larger was the coverage. For table 5.1, the
measurements are in microseconds. The time usage(diffusion) column shows us
how much time was spent on an average ICM iteration, while the last column
shows how much time each seed selection took.

For Table 5.2, it’s the same experiments in software C simulation. The results
are measured in seconds.

from these results, we can clearly see that the RTL simulation is faster then
the C simulation.
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Table 5.1: Results from Zedboard, different sized seed nodes.

k coverage
Time us-

age(diffusion)in
microseconds

Seed selection
time usage in

micro sec
1 0.198750 32.74 us 0.45 us
2 0.247500 936.88 us 0.87 us
3 0.306250 1237.62 us 1.26 us
4 0.391250 1501.96 us 1.63 us
5 0.460000 1936.74 us 1.97 us

Table 5.2: Results from C simulation, different sized seed nodes.

k coverage Time
usage(diffusion)

Time
usage(seed)

1 0.222500 0.000680 s 0.472000 s
2 0.270000 0.000900 s 1.209000 s
3 0.307500 0.004400 s 10.443000s
4 0.368750 0.005720 s 13.901000 s
5 0.482500 0.004560 s 16.497999 s

5.3 Performance
As we can see, the hardware implementation is better than the C-simulated
implementation, even at this low scale, we can see that the

We have here included a snapshot of our synthesis report. As we can see,
we have a rather large usage of look-up table (LUT) and flip-flop(FF) for our
design. This is the result of the PIPELINE and Loop unrolling. Our high-level
implementation does contain several Loops and dependencies; this results in a
significant amount of resource used.

By using the random() function provided by Python, we placed ’1’ in its des-

Table 5.3: Results from simulation with vary buffer size

Buffersize
Time in

milliseconds (with
C simulation)

Time in
milliseconds (with
RTL simulation)

4 7.200 ms 0.920 ms
8 6.260 ms 0.680 ms
16 5.180 ms 0.760 ms
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ignated position. After the matrix was generated, we further applied a diagonal
copying as shown in Figure:2.5. This is obligatory to create an undirected graph.

5.4 Discussion

5.4.1 Results

From our results its hard to say if HLS was an improvement or not. Since we
worked on a network of such small scale, it is hard to say anything concrete re-
garding the effectiveness to HLS and our implementation. From the simulated
data, we can see that C simulation is much slower than the hardware implementa-
tion. One reason that we got odd numbers might be that the testbench program
that the C simulation used were slightly different than the FPGA.

But the result from Table 5.2 is interesting. We can see that the seed selection
algorithm was severely worse then the HLS implementation on FPGA.

Analysis of the performance

Our IP core was originally designed for networks with 1024 vertices, but after
implementing with the optimization directives, the resource usage was massive.
This resulted in a severe scale down for this project. The resulted network was
reduced down to the size of 16 vertices. In network analysis, this is such a small
scale that the results from this experiment would not be reliable. Since in such
a small graph there might be multiple different factors can affect the results.

The original idea with table 5.3 was to observe how the IP-core behaved when
it would receive part of the matrix row. By finding an optimal buffer size that
would satiate the bandwidth and still receive enough elements to compute. The
result we got was not very representative. Since our implementation and the
matrix we used was so small compared to other networks, we would not have
been close to satiate the bandwidth.

In Figure 5.2, we can see that by synthesis an IP-core with several 1024 buffers,
the resource estimate would be 222% of the available LUT. This is due to our
implementation have several large for and while loops. By including PIPELINE
directive and UNROLL directive, results in significantly larger usage of resources
then a core with a smaller buffer.

Figure 5.3 is the synthesis report from our implementation with buffer size 16.
The resource usage is much more realistic to what we can implement compared
to Figure 5.2.
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Figure 5.2: Synthesis report for IP-core with buffersize 1024

Figure 5.3: Synthesis report for IP-core with buffer size 16

problem that was encountered

One problem that was encountered during this project was that the output signal
from the synthesiser was not the correct direction. The output signal was often
set as an input signal. The HLS would automatically set the values as output
signal or input signal.The return value from a function would be set as an output
signal, while the variable that the function takes would be set as the input signal.
Another way to specify that something is the output signal would be to explicitly
set them as pointer arguments. This will in set the signal to be the output signal.
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Another problem that I often encountered was that the Vivado HLS often
stop working. The problem was fixed by creating a new project and include the
previous files.

Sometimes Vivado HLS was not able to Cosimulate the implementation the
first time. I was not able to find a solution to this issue except resynthesis the
project, which usually works.

There was an incidence where the implementation on the Zedboard did not
behave as the implementation. This was solved by reprogramming the device
and sometimes, restarting the Zedboard.



Chapter 6

Future work

Information diffusion and seed selection, in general, computes large graphs, and
thus is very time-consuming. There is, therefore, several improvements that have
yet to be explored.

1. Different architecture for this implementation, we used a core including
the LFSR; it would be interesting to explore different design. One solution
that we did not have the chance to explore is implemented a large buffer
connected to a single LFSR that continuously generates a random number.
The implemented cores would be then each pop one random number for
each coin toss. This solution requires a large buffer and would potentially
generate large overhead with reading from the buffer. A large enough buffer
would also be required since there are in worst case scenario for a single
SpMV run, we would need n2 coin toss. The potential benefits of such
a design would be better space utilization. A smaller core would use less
resource of the Zedboard. This can result in more parallelization.

2. Use larger graph In graph theory, graph used is often at scale(26-42).
The smallest mentioned graph from Graph500, is 226, a toy graph. Our
graph is not even close to such a large graph. Testing this architecture up
against a larger graph would be beneficial.

3. Customize algorithm As mentioned in Chapter 3, HLS can generate
a close to hand written design if the algorithm is customized for HLS.
An interesting potential improvement would be to analyse algorithm and
explore different solutions and implementation.

4. Compare different solutions In this report, we have only shown the
result from one architecture, it would be interesting to compare different
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schemes and other solutions.

5. Memory Optimization. For this algorithm, we store the entire adjacency
matrix. This is inefficient for a sparse matrix. A potential improvement
would be to explore a different storage format for the adjacency matrix.

6. Try different seed selection algorithm In this report, we implemented
the greedy seed selection. It would have been interesting to compare dif-
ferent seed selection algorithm and compare the results. There are papers
[15] that proposes an alternative greedy solution.

7. Better optimization with HLS would result in potentially better uti-
lization of the resources on the Zedboard. Our design was not the most
optimal and could only compute small graphs. One future aspect would be
to optimize for much larger networks.

8. A general IP core was implemented, but due to time constraints, were
not used for this project. The general IP core had a fixed buffer size, but
could accept matrix and vector of a larger size. The IP-core would store
nodes in the buffer, compute the SPMV, and then send the result back. This
solution resulted in massive overhead with transporting data back and forth
between PL and PS. This core was not used due to time constraints.



Chapter 7

Conclusion

In this report, we have explored the possibility to use HLS as an implementation
tool to accelerate seed selection for information diffusion. We used a modified
version of sparse matrix-vector multiplication to perform ICM iterations. We
have implemented a simple IP-core that applies ICM with an adjacency matrix
and a set of seed nodes. The core returns the percentage of infected nodes in
the network. The design was loaded onto an FPGA and multiple tests were con-
ducted both on the chip and in the simulation. From the result we saw that the
implementation done on the FPGA was much faster then the C simulation, but
due to the small size of our adjacency matrix, it is hard to conclude that HLS gen-
erates better solutions. Even though results were not optimal, the development
time was greatly reduced by Vivado HLS.

In this project, we were not able to synthesise an IP-core that could compute
large matrices. By synthesising an IP-core with s larger buffer, the resource usage
was much higher than what was available on our Zedboard. This is likely the
result of lack of customization of the high-level implementation.

Task 1 (mandatory) Implement information diffusion as sparse matrix-
vector multiplication, with high level language C. Completed

W have in this project implemented a modified sparse matrix-vector multi-
plication that perform ICM. The implementation detail can be found in Chapter
4, and the theory can be found at 2

Task 2 (mandatory) Tailor the implementation of Information Diffusion for
synthesise with Vivado HLS. Complete

The design was able to synthesise in Xilinx Vivado HLS and gave back some-
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what interesting results. The detail about the HLS and different optimization
used can be found at chapter 4.

Task 3 (optional) Implement said design on a Zynq FPGA board.

Out IP-core was able to upload on the FPGA and gave back the result. Chap-
ter 5 presents the result from the FPGA and other

Task 4 (optional) Extend the system to be able to handle graph in the size
of toy graphs(containing 226) vertices)

Due to unfamiliarity with HLS and time constraints. We were not able to
extend the system to compute larger graph.
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