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Abstract 

A study of axial vibrations in a vertical drill string is conducted using a spring-mass-damper 

model with -n coupled elements. The main motivation behind this is to describe the axial 

vibrations using a simple mathematical model that allows for a substantial interpretation and 

application of control theory. In other words, the analytical model describing the test segments 

in this thesis can easily apply to other vertical drill string models, with a few adjustments. The 

study attempts to answer the following research question: 

To what extent can the lumped element model be used to replicate  

and predict axial vibrations in a vertical drill string? 

The analytical model is derived and tested on the following three scenarios. The first scenario 

considers only the transient state of the model. It divides into overdamped, critically damped, 

and underdamped systems. This scenario features both physical experiments and numerical 

simulations. Results from experiments and numerical simulations are presented graphically in 

order to identify similarities between the two systems. The second scenario considers the step 

response as the driving force, and the last scenario introduces a sinusoidal driving force. Only 

numerical simulations are presented in the last two scenarios. 

It is found that the lumped element model cannot be verified on the basis of a comparison of 

the experimental results and the analytical model for the transient state. The analytical model 

cannot replicate and predict axial vibrations in a vertical drill string.  
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Sammendrag 

En studie av aksiale vibrasjoner av en vertikal borestreng har blitt utført ved bruk av en fjær-

masse-demper-modell med n  elementer. Hovedmotivasjonen bak dette er å beskrive de aksiale 

vibrasjoner ved hjelp av en enkel matematisk modell som resulterer i betydelig tolkning og 

anvendelse av kontroll teorien. Med noen få justeringer, kan den analytiske modellen som 

beskriver testsegmenter i denne avhandlingen enkelt implementeres i andre vertikale borestreng 

modeller. Dette leder oss til å definere følgende problemstilling: 

I hvilken grad kan fjær-masse-demper-modellen benyttes til å gjenskape  

og forutsi aksielle vibrasjoner i en vertikal borestreng? 

Tre scenarioer ble utformet ved utledning av den analytiske modellen. Det første scenariet 

evaluerer den transiente tilstanden til modellen, og deles inn i systemene overdempet, kritisk 

dempet, og underdempet. Dette scenariet omfatter både fysiske eksperimenter så vel som 

numeriske simuleringer. Resultater fra de fysiske eksperimentene og numeriske simuleringer 

presenteres grafisk for å identifisere eventuelle likheter mellom de to systemene. Det andre 

scenariet evaluerer steg respons som den pådrivende kraften. Siste scenariet introduserer en 

sinusformet drivkraft. Kun resultater fra numeriske simuleringer har blitt presentert for de to 

siste scenariene. 

På basis av sammenligningen mellom de eksperimentelle resultatene og den analytiske 

modellen for den transiente tilstanden, kan fjær-masse-demper modellen ikke verifiseres. Den 

analytiske modellen kan ikke presentere en pålitelig replikasjon og predikasjon av aksielle 

vibrasjoner i en vertikal borestreng. 
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1 Introduction 

Mechanical vibrations in a drill string are the main causes of performance loss and a low rate 

of penetration (ROP) (Dupriest, 2006). Such mechanical vibrations occur unintentionally 

during drilling operations. They often have damaging effects on the overall drilling system, 

resulting in damaged equipment, borehole disruption, and can even cause safety problems 

(Macpherson et al., 1993). These damaging effects are often associated with economic losses 

in the drill string system (Márquez et al., 2015: Azar & Samuel, 2007: Dupriest et al., 2010).  

Over the last fifty years, extensive research effort has been made on the modeling of drilling 

systems. Bailey and Finnie of Shell Development Company conducted the first analytical and 

experimental study on torsional and axial drilling vibrations in 1960 (Bailey & Finnie, 1960). 

Ever since, multiple methods are recognized to model different types of vibrations in a drill 

string, as described in chapter 2 in Márquez et al. (2015) and in Ghasemloonia et al. (2015). 

Márquez et al. (2015) classifies the drill string models into lumped element models, distributed 

element models, and neutral-type time-delay models. Such models are primarily used to 

simulate one of the three main types of drill string vibrations, namely axial (bit bouncing), 

lateral (bending behavior of the drill string) and torsional (stick and slip phenomenon).  

Depending on the application, both distributed element models and lumped element models are 

commonly used. Distributed element models, however, involve solving a set of partial 

differential equations with boundary and initial conditions (Taylor & Zhu, 2005). In such a 

system, all dependent variables are functions of time and one or more spatial variables (Bilbao, 

2014). Consequently, modelling and simulation of such systems is a highly time-consuming 

process. Moreover, the mathematical descriptions are only applicable for the specified part of 

the system. Any change in parameters requires more time-consuming simulations. In contrast, 

a lumped element model involves solving a set of ordinary differential equations where the 

dependent variables of interest are functions of time alone.  

A spring-mass-damper system is a type of a lumped element model commonly used for 

describing vibrations in mechanical systems. This thesis investigates axial vibrations in a 

vertical drill string using a spring-mass-damper model. According to Hovda (2016), the simple 

mathematical description allows for a substantial interpretation and application of control 

theory. The study attempts to answer the following research question:  
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To what extent can the lumped element model be used to replicate  

and predict axial vibrations in a vertical drill string? 

The purpose of this thesis is therefore threefold. Firstly, to derive a spring-mass-damper model 

of a vertical drill string for one and multiple elements. Secondly, to design experiments based 

on a vertical drill string to measure axial strain (displacement) using strain gauges. Finally, to 

compare the numerical models and experimental results, in order to be able to draw conclusions 

about the validity of the analytical model. 

This thesis begins with a discussion of a spring-mass-damper model with a single element. The 

simple model is evaluated for overdamped, critically damped, and underdamped systems. The 

extension to multiple elements is described in Hovda (2015). According to Hovda (2015), the 

spatially distributed drill string approximates by a topology of discrete entities, i.e. -n coupled 

spring-mass-damper system. It is based on the assumption that all interactions between the rigid 

masses is only through springs and dampers. This leads to a system of second-order ordinary 

differential equations that is presented in a matrix form. Because these equations are coupled, 

an eigenvalue decomposition is necessary. Chapter 8 in Kreyszig (2006) describes various 

methods for determining eigenvalues and eigenvectors. By forming a set of decoupled 

equations, it is possible to solve the system using standard procedures.  

Hovda (2015) considers only two scenarios, namely step response and sinusoidal driving forces. 

This thesis differ from Hovda (2015) by extending the model to a third scenario that considers 

the transient state of the drill string. Essentially, the model evaluates axial vibrations in a drill 

string after being subjected to an axial force.  

This thesis is laid out as follows: Chapter 2 covers the derivation of a spring-mass-damper 

model for one and n  elements, respectively. Chapter 3 presents general information about strain 

gauges and technical instrumentation. The theory presented in chapter 3 builds on the work 

from Hassan (2015). Chapter 4 describes the general setup of the experiments. The 

experimental results and evaluation are given in chapter 5. Chapter 6 discusses uncertainties 

and the reliability of the experiments and the analytical model. Concluding remarks are given 

in chapter 6.  
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2 Dynamic Model of the Drill String 

2.1 The Drill String as a Single Spring-Mass-Damper Element 

Considering a point mass m  connected to the end of a weightless spring. The point mass 

stretches the spring by a length 
0q  to reach the equilibrium position of the system. At this 

position, the spring force acting on the point mass and the gravity force acting on the spring is 

in equilibrium.  q t  represents the displacement of the point mass at time ,t  relative to 
0.q  

The piston acts as the viscous damping force, representing the drilling fluid in a borehole. 

Because of the viscous piston, the velocity decreases in proportion to the acting damping force. 

Figure 2.1 illustrates a simple spring-mass-damper model compared to a continuous drill string. 

Notice that positive direction is downward. The spring is stretched  0q   when the movement 

is below the equilibrium line, and compressed  0q   when the movement is above that line. 

 

Figure 2.1: Left figure shows the damped harmonic oscillator with a point mass m  and a spring with a 

spring constant .k  The forces acting on the point mass are the gravity force, ,mg  the force from the 

spring, ,kq  given by Hooke’s law, and the viscous piston force, which acts as a damping force, .cq  The 

right figure illustrates a continuous drillpipe.  

In mechanical systems, Hooke’s law lays the foundation for the lumped element model. It 

connects the physical systems of a continuous drillpipe and a spring-mass-damper model 

together. Hooke’s law presents therefore the stress acting on a drillpipe and the spring force 

acting on a point mass, respectively (figure 2.1):  

 and .sE F k L       
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E  is modulus of elasticity of the material (Young’s modulus),   is strain, k  is the spring 

constant, and L  is displacement of the spring. Because both systems is assumed equal, the 

force acting on both of them must also be equal, i.e.: 

.c

c c

EAF k L L
E E k

A A L L
 

 
        (2.1) 

The lumped element model makes it possible to solve the system of a spring-mass-damper 

model using ordinary differential equations, which simplify the process of finding an analytical 

solution. Therefore, applying Newton’s second law on the system implies 

0.
c k

mq kq cq mg q q q g
m m

          (2.2) 

A coordinate transformation from q  to x  eliminates the -g term and simplifies equation (2.2) 

(Hassan, 2015): 

m
q x g q x q x

k
       (2.3) 

The transformation also improves the equation by giving it a more realistic view, i.e. at no 

tension  0 0x   instead of  0 0,q   which is physically unrealistic. This statement is proven 

by the fact that when  0 0,q   equation (2.3) results in (0) / .q mg k  Hence, even at 

equilibrium the system is under the influence of gravity. The result of the coordinate 

transformation is therefore: 

2

0 02 0,x x x     (2.4) 

where  

0    and   .
2

k c

m mk
    (2.5) 

0  is the natural frequency of the system, which is the frequency of an undamped harmonic 

oscillator.   is the damping ratio of the system (Tseng, 2008). 

The characteristic equation of the second-order differential equation (2.4) can be formed: 

2 2

0 02 0.r r      

The roots of the characteristic equation are (Chu et al., 2011): 

2

0 0 1.r        (2.6) 
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Equation (2.6) provides three possible solutions, depending on the damping ratio, ,  which 

determines the behavior of the system. 

2.1.1 Overdamped System  1   

When 1,   equation (2.6) provides two distinct real roots, 2

0 0 1,r        which form 

the solution (Tseng, 2008): 

 
   2 2

0 0
1 2

1 1

1 2 1 2 ,
t t

r t r tx t C e C e C e C e
          

     (2.7) 

where constants 
1C  and 

2C  can be determined by the initial conditions. 

2.1.2 Critically Damped System  1   

When 1,   equation (2.6) provides one real root, 
0 ,r    forming the solution (Tseng, 

2008): 

  0 0

1 2 1 2 .
t trt rtx t C e C te C e C te

  
     (2.8) 

Similar to case I, the initial conditions determines the constants 
1C  and 

2.C  

2.1.3 Underdamped System  1   

When 1,   equation (2.6) provides two complex roots, i.e. 2

0 0 1.r        This gives 

the following solution of the system (Tseng, 2008; Morin, 2015): 

          0 0

1 2cos sin sin .
t t

d d dx t e C t C t x t Ae t
     

      (2.9) 

2

0 1d     is the damped angular frequency of the system, A  is the amplitude, and   is 

the phase shift.  
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2.2 The Drill String as -n Coupled Spring-Mass-Damper Elements 

The system of one spring-mass-damper element describes the fundamental idea behind the 

lumped element model. However, in order to derive a proper analytical model, we need to 

generalize the system into -n point masses connected to -n spring elements. Figure 2.2 

illustrates such system. The springs are free to rotate with respect to the point masses, meaning 

that each spring cannot take up angular momentum. A one-dimensional coordinate system is 

introduced, where origin is at position ,Q  representing the rig deck. The first point mass has 

coordinates  1 ,q t  the second one  2 ,q t  and so on.   iq t  represents the distance between the 

center point on each point mass to the point where the spring is neither compressed or in tension. 

Hence, the generalized coordinates,   ,iq t  uniquely defines the position of each element in the 

drill string at time t  (Hovda, 2015). 

 

Figure 2.2: -n coupled spring-mass-damper model. R  represents the viscous friction force acting on 

the opposite direction of the displacement. Positive direction on the one-dimensional coordinate system 

is downward in -q direction. 

The Newton’s second law on each element is given by 

   

   

 

1 1 1 2 2 1 1

1 1 1

1

for element 1

0 for element 2 1

for element 

i i

i i i i i i i i i i

n n n n n n n

m q m g k q Q k q q R i

m q m g k q q k q q R i n

m q m g k q q R i n







  



       


          
     

 (2.10) 
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where 
im  is the mass of element i  and 

ik  is the spring constant of the spring that is connected 

above point mass .i  The buoyancy factor, ,  is introduced to simulate the drill fluid in a typical 

borehole. The external force, ,iR  is equivalent with the viscous friction force, as known from 

section (2.1). 

Evidently, equation (2.10) is a system of -n coupled second order ordinary differential 

equations. Therefore, it can be written on matrix form as 

 ,q q q t   M C K g f  (2.11) 

where M  and C  is given by mI  and ,cI  respectively. The C  matrix is determined from the 

relation  / .i i ic R q   g is a vector with elements ,im g  and  K  is a tridiagonal matrix of the 

form 

0 0 0 0
1 2 2

0 0 0
2 2 3 3

0 0 0 0
3 3 4

.

0 0 0 0
2 1 1

0 0 0
1 1

0 0 0 0

k k k

k k k k

k k k

k k k
n n n

k k k k
n n n n

k k
n n

  
 
   

 
  

 
  
  

   
   

  
 
 

K   

 tf  is a vector with first element  1 ,k Q t  and the others are zero. Because of the   ,Q t  

 1f t  is known as the driving force of the system. 

It is necessary to make a coordinate transformation, similar to section 2.1, before further 

evaluation of equation (2.11), using the expression:  

. -1y = q + K g y = q y = q   

It is possible to show that the inverse of K  is given by 

1, 1 1,n 1

1

1 1 ,i 1 1 , 1

  where   ,
n

i i i i

i i

i n i i n i n iK

    



       

 
   

 
-1

0 0
K K K

0 1
  

which is described in more details in Hovda (2015).  
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Obviously, ,u v0  and ,u v1  are -by-u v  matrices with zeroes and ones, respectively. Moreover, 

iK g  is a vector with zeros on the 1i   first elements, and rest of the elements have the value 

1 .
n

i jj i
k gB m

  According to Hovda (2015), this value is the same as the displacement of spring 

i  from its equilibrium position. Because of 
1

,
n

ii
g g


-1K K  the coordinate transformation 

means that every 
iy  is zero when all the elements are hanging at the equilibrium position. 

Hence, the coordinate transformation gives the model a more realistic view because of 

  10i iy K g  instead of  0 0,iq   which means that the springs are not in tension or in 

compression. The last statement is only true for a massless drill string, i.e. .i iy q  The 

coordinate transformation results in: 

 .tMy +Cy +Ky = f  (2.12) 

The process of decoupling the equations in (2.12) depends highly on the tridiagonal matrix  .K  

If  K  is a diagonal matrix, no further procedures are required to decouple the equations and 

solve them separately. However, there is a procedure to decouple (2.12). Since both M  and K  

are real symmetric and positive definite (i.e. 0T v Mv  and 0T v Kv  for any nonzero and real 

column vector v ), then ( M , K ) is a real definite pair (Hovda, 2016). Hence, the generalized 

eigenvalue problem 

   where     and  T TMv = Kv  V MV = I  V KV = D   

leads to a matrix of eigenvectors, V , and a diagonal matrix D  of eigenvalues, where I  is the 

identity vector. Introducing the second coordinate transformation expressed as  

,x x x y = V y = V y = V   

which leads to 

 .T Tx C x x t  V V D V f  (2.13) 

Notice that equation (2.13) is multiplied by the transpose matrix of the eigenvectors, .TV   

Obviously, the system is still coupled since TCV V  is not diagonal. According to Hovda (2015), 

it is a fair approximation to assume that cC M  where c  is a constant. If the bottom hole 

assembly (BHA) is short compared to the drillpipe, it is fair to assume that 
1 1/ .c c m  This 

means that the BHA affects the damping ratio at a higher degree than what is real. The final set 

of uncoupled equations are therefore: 
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 2

1 12 ,i i i i i i ix x x V k Q t       (2.14) 

where ,i iiD   / 2 ,i ic   and 
1iV  is the -thi  element of the first eigenvector. 

The general solution of equation (2.14) consist of an ordinary solution, also known as the 

transient solution, and a particular solution, known as the steady state solution. 

     , ,i o i p ix t x t x t    

 

Considering three main scenarios: 

1. The transient state of the system, i.e.    , .i o ix t x t  The initial conditions are selected 

so that    0  and 0 0,i i ix Q x   where 1

i i iQ k w  is the initial displacement caused by 

a specific mass loaded on the system. 1

ik   is the inverse matrix of the spring constant 

and 
iw  is the gravitational force caused by the loaded mass. It is important to notice that 

the initial conditions converted to a 1n  vector are given by (0) ,x Q  where 

1 .Q k w  The 1n  vector, ,w  consist of zeros except the 1n  element, i.e. the 

element where the mass is loaded.  

2. The step response as the driving force, i.e. 

 
0  0

 0.s

for t
Q t

Q for t


 


  

sQ  is the initial displacement of the first element as a result of the step. Moreover, the 

initial conditions are defined as  0 0ix   and  0 0.ix   

3. A sinusoidal driving force, i.e.    sindQ t Q t . 

Before discussing the three scenarios, it is important to derive an expression for the viscous 

friction force, ,iR  so that the damping ratio can be determined. 
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2.2.1 The Viscous Friction Force 

The viscous friction force acts in opposite direction of the movement of the drill string. 
iR  is 

the viscous force acting on element i  of the drill string. Figure 2.3 illustrates a moving drill 

string when POOH. The velocity profile of the drill mud shows the impact of the moving drill 

string. The velocity of the drill mud is higher between the drill collar and the borehole wall 

because the distance is smaller, i.e. ( ) ( ).hole p hole hole c holeR R R R     Hence, the force acting 

on the drill collar is larger than the one acting on the drillpipe. 

 

Figure 2.3: The viscous forces acting on the drillpipe and the drill collar when POOH. 
holeR  is the radius 

of the borehole, p holeR  and 
c holeR  are radiuses of the drillpipe and drill the collar, respectively. 

In order to derive a useful equation for the viscous friction force, it is necessary to generate the 

following assumptions, where we assume that 

 the mud pump is turned off and no circulation in the mud. 

 the fluid is Newtonian, i.e. 

hole

w

R

v

r 


 


    

 the flow is laminar, steady and axial symmetric 

 the flow component is only parallel to the movement of the drillpipe, i.e. no flow in 

horizontal plane (figure 2.3). 
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 no slip condition at the wellbore wall, ,holer R  so that   0i holeu R  . In annulus, no slip 

condition on inner pipe as well, i.e.   ,i i hole iu R q   where 
i holeR  is the outer radius of 

the drill string and 
iq  is the velocity of the drill string ( pv  in figure 2.3). 

The viscous friction force acting on element i  with length 
iL  is expressed as 

hole

2

i

i
i hole i

R

u
R R L

r 

 


 


  

The final equation for 
iR  is derived in appendix A, and expresses as 

         

     

2 2 2 2
2 2 2 2 2 2 2

2
4 2

2 1 1 4 ln
2 ,

1 ln 1

i i n n i i n i

i i i

i i i

R L q
       

 
  

       
  
   
 

 (2.15) 

where 
i  is the ratio of the outer radius of the drillpipe and the borehole radius, i.e. 

/ ,i p holer R   and 
n  is the ratio of the outer radius of the drill collar and the borehole radius, 

i.e. / .n c holer R   
iq  is velocity of the drill string at element .i  

2.2.2 Scenario 1: The Transient State 

When only considering the transient state of the system, will equation (2.14) converts to 

22 0.i i i i i ix x x      (2.16) 

Clearly, this will give the same homogeneous solutions as described in section 2.1, but for n

elements. The characteristic equation of (2.16) gives three possible solutions, depending on the 

damping ratio, .i   

2.2.2.1 Overdamped System  1
i
    

Modifying equation (2.7) from section 2.1.1: 

 
   2 2

,1 ,2
1 1

1, 2, 1, 2,

i i i i i i
i i

t t t t

i i i i ix t C e C e C e C e
            

      

where 
2

,1 1i i i i i         and 
2

,2 1.i i i i i         By implementing the initial 

conditions  0i ix Q  and  0 0,ix   we get the following equation: 
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   ,1 ,2

,2 ,1

,2 ,1

,i it ti
i i i

i i

Q
x t e e

 
 

 
 


 (2.17) 

where 
,2

1,

,2 ,1

i i

i

i i

Q
C



 



 and 

,1

2,

,2 ,1

.
i i

i

i i

Q
C



 
 


  

The system in equation (2.17) will not oscillate because it represents the overdamped system, 

which is obvious because it lacks a complex term in the exponentials. It is worth noting that 

each element will cross its equilibrium line maximum once.  

It is necessary to obtain the solution in the original or the physical coordinate system, i.e. 

,Y Vx    

where V  is a matrix of eigenvectors. Again, by applying the initial conditions in the coordinate 

system, it is possible to determine the new initial displacement of the x  matrix. Evidently, it is 

known that 

      1 1 1

. .0 0  which implies 0 ,      I CY Vx Q x C V Q V k w  (2.18) 

where 
. .I CC  is the initial condition vector. Using the fact that 

   
1

n

j ji i

i

y t V x t


   

to superposition the modal solutions. Hence 

   ,1 ,2. .,

,2 ,1

1 ,2 ,1

.i i

n
t tji I C i

j i i

i i i

V C
y t e e

 
 

 

 


  (2.19) 

 

2.2.2.2 Critically Damped System  1
i
   

Recalling equation (2.8) from section 2.1.2, modified to element :i   

  1, 2, .i i i it t

i i ix t C e C te
    

    

Similar to the overdamped system, implementing the initial conditions  0i ix Q  and 

 0 0ix   to determine constants 1,iC  and 2, .iC  The final equation is therefore 

   1 ,i it

i i i ix t Qe t
   

    

where 1, 2, and .i i i i i iC Q C Q      



13 

 

Since this is a critically damped system, the elements returns to its equilibrium position as 

quickly as possible without oscillating. However, each element could cross its equilibrium line 

maximum once, just like the overdamped system. 

Similar to the overdamped system, it is necessary to obtain the solution in the original or the 

physical coordinate system. Therefore: 

   . .,

1

1 .i i

n
t

j ji I C i i i

i

y t V C e t
   



   (2.20) 

Notice that the initial condition, . ., ,I C iC  derived in section 2.2.2.1 has been implemented in the 

equation. 

2.2.2.3 Underdamped System  1
i
   

Recalling equation (2.9) from section 2.1.3, modified to element :i   

   2
,sin .

c
t

i i d i ix t Ae t 


    

Implementing the initial conditions  0i ix Q  and  0 0ix   to determine the amplitude 
iA  

and the phase shift ,i  which gives the following equation: 

 
 

 
2

,sin ,
sin

c
t

i
i d i i

i

Q e
x t t 





    

where 
 sin

i
i

i

Q
A


  and 

21
arctan

i

i

i






 
 
 
 

. 

Again, the superposition of modal solutions results in the equation: 

 
 

 . .,2
,

1

sin .
sin

c nt ji I C i

j d i i

i i

V C
y t e t 







   (2.21) 

Notice that the initial condition, . ., ,I C iC  derived in section 2.2.2.1 has been implemented to the 

equation. 
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2.2.3 Scenario 2: Step Response as the Driving Force 

Recalling equation (2.14): 

 2

1 12 ,i i i i i i ix x x V k Q t        

where  Q t is the displacement of the elements at time 0t   denoted to the step response, given 

as: 

 
0  0

 0.s

for t
Q t

Q for t


 


  

At 0,t   the element is moved to ,sQ  assuming this happens momentarily, i.e. .x   At steady 

state, i.e. when ,t   the statements 0y y x x     are valid. These initial conditions 

imply that all amplitudes are zero, 0.iA   

The transient solution of the system, assuming underdamped, is given as: 

   2
, ,sin .

c
t

o i i d i ix t Ae t 


    

The particular solution is found by investigating the right-hand side of equation (2.14), which 

is the constant 
1 1 .i sV k Q  Hence, we search for a particular solution of the form 

     p, p, p,0 0,i i i ix t K x t x t       

where 
iK  is an arbitrary constant. By inserting the expressions of p,ix  into the differential 

equation, one can find that 

  1 1
p, 2

.i s
i

i

V k Q
x t


    

The general solution of the system is determined by a superposition of the homogeneous 

solution and the particular solution, i.e.: 

        1 12
, p, , 2

sin .
c

t
i s

i o i i i d i i

i

V k Q
x t x t x t Ae t 





       

The amplitude 
iA  and the phase shift 

i  are determined by the initial conditions  0 0ix   and 

 0 0,ix   which leads to: 
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 

 

 
   

2

21 1

2

1sin
 and sin 1  & cos .

sin cos

iii s
i i i i i

i i i i

V k Q
A


   

   


         

The general solution is therefore: 

 
 

2
1 1

,2 2

0  0

e
1 sin  0.

1

c
t

i i s
d i i

i i

for t

x t V k Q
t for t 

 






 
           

  

Similar to the previous sections, it is necessary to obtain the solution in the original or the 

physical coordinate system. Hence 

 
 

2
1

1 ,2 2
1

0  0

e
1 sin  0

1

c
t

n
ji ij

s d i i

i i i

for t

V Vy t
k Q t for t 

 








  
               


  

According to Hovda (2016), the fact that -1 -1TK V D V  implies  1 1

12 1
1

,-1K
n

ji i

j
i i

V V
k







    

which leads to the final solution: 

   1 12
,

2 2
1

0  0

e sin  0.
1

c nt ji ij
s s d i i

i
i i

for t

k V Vy t
Q Q t for t 

 








    





 (2.22) 

 

2.2.4 Scenario 3: Sinusoidal Driving Force 

In the case of sinusoidal driving force, i.e.    sin ,dQ t Q t  equation (2.14) converts to 

 2

1 12 sin ,i i i i i i i dx x x V k Q t        (2.23) 

where 
dQ  is a constant that characterize the strength of the driving force, and   is its angular 

frequency.  

The system starts at rest in its initial position and the transient solution is therefore zero. Hence, 

the general solution consists only of the steady state solution. Evidently, the steady state 

solution is of the form 
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   sin ,i i ix t A t    (2.24) 

where 
iA  is a constant and 

i  is an induced phase shift relative to the driving force. When 

equation (2.24) is substituted into equation (2.23), it is found to satisfy that equation only when 

 
1 1

2 22
2 2 2 2

 and arctan .i d
i i

i
i

V k Q c
A

c




   

 
   

  

  

The derivation of these results are given in appendix B. The solution to the steady state is 

therefore: 

 
 

 1 1

2
2 2 2 2

sin .i d
i i

i

V k Q
x t t

c

 

  

 

 

 
 

Similar to previous sections, it is necessary to obtain the solution in the original or the physical 

coordinate system, i.e.: 

     
1

.
n

j ji i

i

t y t V x t


  Y Vx   

The superposition of modal solutions is therefore: 

   
1

sin ,
n

j ij i

i

y t t 


     

where  

 

1 1

2
2 2 2 2

.
ji i d

ij

i

V V k Q

c  

 

 

  

Because all the sinusoids have the same frequency, they can be added together in this way 

(Hovda, 2015; Smyth, 2015): 

   sin ,j j jy t t     (2.25) 

where  

 
 

 1 1

sin
cos    and   arctan

cos

n n
ij ii

j ij kj i k j

i k ij ii


  

 

 
       

  





 (2.26) 
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3 Strain Gauges as a Tool of Strain Measurements 

Strain gauges are electrical devices used to measure strain on solid bodies. This chapter consists 

of four sections and presents all technical aspects of strain gauges as a tool for strain 

measurements. The first section provides general information about strain gauges and strain. 

The second section explains the system structure of strain gauges, which consists of different 

bridge circuits and their applications. The third section explains noise control and methods to 

mitigate error by reducing electrical noise that affects the system. The last section provides 

information of methods for calibrating strain gauge systems.   

3.1 Strain Gauges 

A strain gauge measures microscopic changes in position, usually measured in μm.  The 

electrical resistance of the device varies proportional to the amount of strain in the device, and 

is due to a solid body is stretched, twisted or compressed. Hence, strain that the device measures 

is defined as the amount of deformation a solid body undergoes due to an applied force, or the 

fractional change in length, as shown in figure 3.1.  

 

Figure 3.1: The definition of strain. A solid body undergoes deformation due to an applied force, where 

L  represents the amount of deformation parallel to the applied force. (NI, 2014) 

Mathematically, strain defines as 

,
L

L E





   (3.1) 

where   is the stress acting on the cross sectional area of a solid body and E  is the modulus 

of elasticity of the material. The magnitude of strain depends therefore on the Young’s modulus 

of the material, and the magnitude of the applied force. According to equation (3.1), when a 

solid body undergoes a tensile force, the magnitude of the strain will be positive. However, if 

the force is compressive, the magnitude of the strain will be negative.  
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When the material in figure 3.1 undergoes strain, a phenomenon known as Poisson strain 

occurs. This phenomenon causes the thinning of the material by making the girth of the 

material, ,D  to contract in the transverse direction. Therefore, the Poisson’s ratio of the material 

determines the magnitude of this transverse contraction. Poisson’s ratio, ,  is defined as the 

negative ratio of the strain in the transverse direction, to the strain in the axial direction, i.e. (NI, 

2014): 

,




   (3.2) 

where   is strain in the transverse direction (perpendicular to the applied force). 

There exist several types of strain gauges used for different purposes. Most commonly used are 

bonded metallic strain gauges, which is illustrated in figure 3.2. The bonded metallic strain 

gauge consists of a metallic foil arranged in a grid pattern. This will maximize the amount of 

metallic foil subjected to strain in the parallel direction of the applied force. At the same time, 

the effect of Poisson’s strain and shear strain is minimized by keeping the cross sectional area 

of the grid as small as possible. The grid is embedded in a carrier sheet of plastic or rubber, and 

must be attached directly to the test body, so that the grid pattern is parallel to the direction of 

the applied force. The strain gauge will then respond with a linear change in the electrical 

resistance (NI, 2014). In order to avoid uncertainties and inaccuracies in the measurements, it 

is important to mount the device correctly and according to its regulations on the test specimen. 

 

Figure 3.2: Bonded metallic strain gauge. The metallic foil is arranged in a grid pattern to maximize the 

area of the foil that is subjected to strain. (SEESL, 2015) 

The nominal resistance of strain gauges varies from 30 to 3000 Ω.  High nominal resistance 

provides high resistance changes, which means higher sensitivity. The problem with high 

resistance devices is that they are easily worn out and the probability of damaging the device 
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during the experiments is high. Since our system requires both high resolution of the 

measurements and high threshold for wear, it will be wise to choose a strain gauge with low 

resistance. Increasing the resolution of the measurement system will compensate for this. The 

strain gauges used in the experiments have a nominal resistance of 120 Ω.  

Gage Factor, GF,  is a quantitative constant that expresses the sensitivity of the gauges. 

According to NI (2014), the gage factor is defined as the ratio of the fractional change in 

electrical resistance to the fractional change in length, as shown in equation (3.3). 

GF

R

RR

L R

L



 
    
 

 
 

 (3.3) 

 

3.2 System Structure of Strain Gauges 

Generally, strain gauges measure no more than a few millistrain ( 3ε 10 ). Therefore, it requires 

accurate measurement tools to detect such small resistance changes. Consider the following 

scenario; if a test body undergoes a strain of 1 millistrain, will a strain gauge with  GF 2  

experience a resistance change of  32 1 10 0.2 %   . If the nominal resistance of the strain 

gauge is 120 ,  will the change only be 0.24 .  Therefore, in order to measure such small 

changes the strain gauges are arranged in a so-called Wheatstone bridge. Figure 3.3 illustrates 

the general Wheatstone bridge, which consists of four resistance points and an excitation 

voltage, 
Ex ,V  that is applied across the bridge. 
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Figure 3.3: The Wheatstone bridge. 
1 4R R  represents the resistors, 

OV  is the output voltage, and 
EXV  

is the excitation voltage. (NI, 2014) 

The output voltage, ,OV  measures the voltage at the intersection point between 
1R  and 

2 ,R  

relative to the intersection point of 
3R  and 

4.R  In order for 
OV  to change in value, it requires a 

change in resistance. Applying Kirchhoff’s law at both intersection points gives the following 

equations: 

2 3

32
EX EX

1 2 3 4

  and  .R R

RR
V V V V

R R R R
 

 
  

Combining these equations gives the formula for the output voltage: 

3 2

3 2
EX

3 4 1 2

.O R R

R R
V V V V

R R R R

 
    

  
 (3.4) 

When the bridge is balanced, the system is not strained and the relation between those two 

intersection points in figure 3.3 are 
1 2 4 3/ / .R R R R  The output voltage in equation (3.4) will 

then be zero. In an ideal, physical system, such offset voltage is always zero, but because of 

small differences in resistance and other factors that affects the system, the offset voltage is 

never zero. In addition, any changes in resistance in any arm of the bridge will lead to a nonzero 

output voltage. 

In most cases, a Wheatstone bridge controls a strain gauge system. Such bridge is designed to 

measure the difference in resistance of voltage change. The bridge consists of four resistors, a 

power source and a voltmeter. The voltmeter often includes an analog to digital converter to 

convert the signals to stable, digital outputs. It is important to point out that electrical noise 

easily affects the analog signal. Good connections, shielding and soldering are key elements in 

order to make such system work properly.  
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For the system in figure 3.3, one can replace one of the resistors with a strain gauge to create a 

signal that varies with the change in resistance. There are many ways to connect the system. It 

exists bridges with one, two or four strain gauges, known as quarter-, half- and full-bridge. 

3.2.1 Quarter-Bridge Circuit 

A quart-bridge circuit is a system where a strain gauge replaces one resistance in the general 

Wheatstone bridge. Figure 3.4 shows the general Wheatstone bridge, where a strain gauge 

replaces the resistance 
3.R  Such quarter-bridge circuit is used to detect any changes in the 

resistance of the strain gauge because any changes in the resistance will unbalance the circuit. 

This unbalance in resistance will then produce a nonzero output voltage that can be readable by 

the measuring device. A quarter-bridge circuit is often used in places where there is short on 

space, for example on load springs, and in places where the temperature is constant. High 

sensitivity to temperature changes makes such circuit not applicable for measurements that 

requires higher accuracy. Manufactures often provide graphs and charts to compensate for such 

inaccuracies, but this requires installation of a temperature sensor to the system. Therefore, this 

type of circuit will not be used in the experiments.  

 

Figure 3.4: Quarter-bridge circuit with a strain gauge replacing resistance 
3.R  (All About Circuits, 

2015) 

The strain gauge in figure 3.4 measures resistance change, denoted by .GR  By using equation 

(3.4), we can find an expression for the strain-induced change in resistance, denoted by ,R  

GF GF .G

G

R
R R

R





       (3.5) 
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3.2.2 Half-Bridge Circuit 

A half-bridge circuit consists of two strain gauges that replaces two of the four resistors in the 

Wheatstone bridge. Such bridge is used in systems where there is important to measure axial 

strain and bending in the specimen. This will double the sensitivity of the bridge compared to 

the quart-bridge circuit. In addition, both strain gauges will help reduce the effects of 

temperature because both experience the same temperature changes, and therefore will cancel 

out the effects.  

There are two methods to configure a half-bridge circuit, depending on the purpose of the 

experiment. The first one is half-bridge circuit type I, which is illustrated in figure 3.5. Both 

strain gauges are organized in such a way that the upper one undergoes tension, and the lower 

one undergoes compression. Hence, this type of half-bridge circuit will only react to bending 

stress.  

Another type of half-bridge circuit is type II. One strain gauge is connected with the direction 

of the axial stress, and the other one acts in such a way that it will reduce the Poisson strain, 

and therefore connected perpendicular to the axial stress. This will make it possible to measure 

both axial and bending strain. Figure 3.6 illustrates how both strain gauges are oriented relative 

to each other. 

   

Figure 3.5: Left figure shows a downward force applied to a test specimen with an active half-bridge 

system, and right figure shows the system structure of a half-bridge circuit type I. Strain gauges are 

organized in parallel to each other and will therefore only react to bending forces. (All About Circuit, 

2015; NI, 2015) 
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Figure 3.6: Half-bridge circuit type II measuring axial and bending strain. (NI, 2016) 

3.2.3 Full-Bridge Circuit 

Four strain gauges can be bonded to the circuit, and create a full-bridge circuit. The advantages 

of such system is higher sensitivity than the half-bridge circuit, and gives higher amounts of 

measurements. Like the half-bridge circuit, the full-bridge will compensate for the temperature 

changes and wire resistance. The disadvantages of such circuit are that it requires more space, 

more cables to handle, and a complicated process to attach the strain gauges on the test 

specimen. There exist three methods to connect the strain gauges, depends on the purpose of 

the measurements. 

The first one, full-bridge circuit type I, consists of four active strain gauges that are mounted in 

such a way that two of them are mounted at the top of the specimen, parallel to each other. The 

other two are mounted at the bottom, parallel to each other, as shown in figure 3.7. Therefore, 

the top pair will measure tension, and the bottom pair will measure the compression. The bridge 

is highly sensitive to bending stress, but minimizes the effect of axial stress. 

The second one, full-bridge circuit type II, consists of four active strain gauges where two of 

them are mounted in the direction of the bending stress on both sides of the test specimen. The 

other two are mounted perpendicular to the principal axis of stress on both sides of the test 

specimen, and works together to minimize Poisson’s strain, as shown in figure 3.7. The bridge 

will only measure bending strain, and will reject axial strain because the two perpendicular 

strain gauges are connected parallel in the circuit, as shown in figure 3.7 as  1R   and 

 2 .R   



24 

 

 

Figure 3.7: Left figure shows full-bridge circuit type I, which measures only bending strain. Right figure 

shows full-bridge circuit type II, measuring only bending strain, but at the same time compensating for 

Poisson’s strain. (NI, 2016) 

The third type of full-bridge is mounted the same way as type II, but the difference is the way 

they are connected to the circuit. By connecting them in both parts of the circuit, as shown in 

figure 3.8, one can compensate for Poisson’s strain as well as minimizing the effect of bending 

stress. This is effective in cases where the primary goal is to measure axial strain. Therefore, 

this type of bridge circuit is used in the experiments.  

 

Figure 3.8: Full-bridge circuit type III measuring axial strain while compensating for Poisson’s strain. 

(NI, 2016) 

Equations (3.4) and (3.5) lays the basement for deriving equations for strain calculated for the 

different bridge configurations, which results in table 3.1 where the different strain equations 

are given. Notice that in cases where wire resistance is crucial, the term wire1
G

R

R

 
 

 
 is applied 

to the equation.  
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Table 3.1: Equations for strain calculations given for the different bridge configurations. (Agilent 

Technologies, 1999) 

Bridge configuration Type Equation for strain    

Quarter-bridge 

Normal 
 

4

GF 1 2

o

r

V

V






 

Compensating for wire 
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 
wire4

  1
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r

r G

RV

V R

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  
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temperature changes 

Half-bridge 

Type I 
wire2

1
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Full-bridge 

Type I 
GF
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Type II 
 

2
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
 
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Type III    
2

GF 1 -1

r

r

V

V


 
 

   
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3.3 Noise Control 

During strain gauge measurements, analog signals are transported through the gauges and to 

the analog to digital converter (ADC). It is possible to change these signals with electrostatic 

noise, and leads to inaccurate results and incorrect interpretation of the strain signals. In the 

worst case, the strain signals can be useless (Vishay, 2013). The sources of electrostatic noise 

are usually power wires, motors, fluorescent lamps, welding and soldering equipment, vibrators 

or radio transmitters. The noise can either follow the power-supply wire into the system, or 

intercept the wiring that transports the analogue signals. Noise following the power-supply wire 

into the system have specific frequencies, and therefore easy to filter out in the software used 

to process the measurements. The power-supply noise will show up as 50-60 Hz noise in the 

measurements (NI, 2012). Figure 3.9 shows possible noise sources. Notice that the noise affects 

even the strain gauges. This is especially important in experiments where steel is used. In such 

cases, it is important to wrap the steel surface with isolating material, such as tape.  

 

Figure 3.9: Electrostatic noise coupling (left) and electromagnetic noise coupling (right). (Vishay, 

2013) 

Most common barrier against electrostatic noise is a conductive shield, known as a Faraday 

cage, placed around the conductor. The cage captures charges and preventing them to reach the 

signal wire. It is necessary to ground the cage for best effect. Figure 3.10 illustrates how to 

shield the signal wires from electrostatic noise. 
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Figure 3.10: Electrostatic shielding. (Vishay, 2013) 

Short wires should be considered to reduce the effect of wire resistance, but also effects from 

the environment. Twisting the wires as shown in figure 3.11 will also reduce the absorption of 

any noise.  

 

Figure 3.11: Cable comparison. (Vishay, 2013) 

3.4 Calibrating Methods for Strain Gauge Systems 

In principle, there is a linear relationship between strain and stress in a strain gauge system. 

However, this can change due to instrumentation, and the signals can be disproportionate. Three 

important factors are considered to ensure accurate measurements. 

3.4.1 Amplification 

The actual measurements,  ,OV  of strain gauges are relatively small. The output of the bridges 

is usually no more than a few mV  per volt of excitation voltage (
EXV ). Therefore, it is necessary 

to implement an amplifier to increase the signal level and improve the resolution of the 

measurements. An amplifier increases the measurement data by a factor, .k  It means that the 

actual output multiplies by the k -factor. The amplifiers used in the experiments has a k -factor 

of 1000. 
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3.4.2 Offset 

The output voltage of the bridge is usually nonzero when no stress is applied. This is due to the 

effects of wire resistance, small differences in resistance among the bridge arms, and 

temperature changes. There are two methods to offset the initial voltage output, but only the 

second method is used in the experiments (NI, 2014). 

1. Software Compensation: the simplest and fastest method where one initial measurement 

is done before any stress is applied to the system. This offset value, denoted by 
offset ,V  

is used to adjust the measurements. Therefore, the following expression should be true 

in unstrained condition: 

offset 0.OV V    

2. Offset Nulling Circuit: an adjustable resistance, also known as a potentiometer, applies 

to the circuit to offset the output of the bridge to zero. 

3.4.3 Shunt Calibration 

Shunt calibration is a technique for simulating strain in a strain gauge measurement system by 

shunting a known resistance to one leg of the bridge. In this way, one can verify the outputs 

relative to the known or predetermined resistance. A resistor with high amount of resistance, 

known as ,SR  connects across one leg of the bridge. This will create a known change in 

resistance, .R  The output compares to the known or expected value. Figure 3.12 shows the 

process of shunting 
SR  across 

3R  in a strain gauge circuit. Shunt calibration is described in 

details in Vishay (2013) for all the different bridge circuits.  

 

Figure 3.12: Shunt resistor with known resistance is connected across 3.R  

  



29 

 

4 Experimental Setup 

This chapter introduces the setup used in the experiments. Six main experiments have been 

designed. The first section covers three experiments related to the first scenario with 6, 20, and 

46 elements, denoted by experiment I.I, I.II, and I.III. The second section cover experiment II, 

which consist of experimenting with a continuous pipe. The third and fourth sections relate to 

scenario two and three, respectively. The setup of the experiments builds on the baseline of a 

strain gauge structure. Such structure consists of strain gauges on test specimen, an amplifier 

to amplify the signals, a DAQ measurement hardware, also known as a microcontroller. Finally, 

a software to process the data. Figure 4.1 illustrates the system. Section five to nine introduces 

these components.  

 

Figure 4.1: Block diagram of a typical test system. (1) is the test segment. Notice that the last element 

is a BHA-segment. (2) is the amplifier system, (3) is the DAQ microcontroller, and (4) is the software 

where the digital data is processed (LabVIEW). 
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4.1 Experiment I: Vertical Drill String in a Transient State 

The purpose of the following experiments is to design a drill string and examine its behavior in 

form of axial vibrations. A specific weight is loaded on element 1i n   of the drill string, and 

the weight is then released. The strain in four different elements will be measured. The result 

will be compared to the numerical simulation to prove the accuracy of the theoretical model. 

Only the transient state of the system is considered, which is described in details in section 

2.2.2.  

Table 4.1:  Technical specifications of experiments I.I-I.III. Channels #1 #4  indicate element number 

where the strain gauges are installed.  

Experiment #  Elements   Length m  Channel #1  Channel #2  Channel #3  Channel #4  

I.I  6 0.975 2 3 4 5 

I.II  20 2.865 2 17 18 19 

I.III  46 6.375 2 15 30 45 

 

Table 4.1 summarizes the technical specifications of the test segments in experiment I.I-I.III. 

The first test segment consists of six elements. The first five elements consist of 95 mm  long 

plexiglas pipes connected to 100 mm  long steel pipes. Each element is therefore 135 mm  long. 

The last element is a 300 mm  long BHA made of steel. Figure 4.2 and figure 4.3 illustrates 

the technical specifications and the setup of the system, respectively. It is important to notice 

that the plexiglas pipes is assumed to associate with the spring elements in the analytical model. 

Hence, the steel pipes is the point-mass element and all mass is assumed to be accumulated 

there. This is a fair approximation because steel has a much higher modulus of elasticity than 

plexiglas. As a result, only strain on the plexiglas segments will be measured. 

The test segment in experiment I.II is extended and consists of 20 elements. The first 19 

elements consist of plexiglas-steel pipes, and the last element is the BHA. It is important to 

notice that the thickness of the plexiglas pipes is changed to 5 mm,  i.e. ID 20 mm,  as shown 

in figure 4.4. The test segment in experiment I.III is extended to 46 elements. The first 45 

elements consist of plexiglas-steel pipes, and the last element is the BHA. It has the same 

dimensions as experiment I.II, as shown in figure 4.4. 
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Figure 4.2: Technical specifications of experiment I.I. It consists of five elements plus a heavy weight 

BHA at the end. A full-bridge circuit type III is installed on each of the elements 2-5. (Hassan, 2015) 

 

Figure 4.3: The experiment I.I setup. The weight loads on element 1.i n    
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Figure 4.4: Technical specifications of the extended test segment in experiment I.II and I.III. Notice 

that the thickness of the plexiglas segment is changed to 5 mm,  i.e. ID 20 mm.   

4.2 Experiment II: The Continuous Drill String 

This experiment is designed as a control experiment with the purpose of validating the results 

in experiment I. A continuous plexiglas pipe is chosen with a length of 2.0 m  and an outer 

diameter of 30 mm.  Essentially, we want to investigate the behavior of the continuous plexiglas 

pipe and its reaction to an applied force. This is done by comparing the behavior to the test 

segments in experiment I. Moreover, this is a method to investigate the reliability of the strain 

gauges. Four strain gauges are installed in the center of the pipe. The gauges arranges in the so-

called full-bridge circuit type III. Similar to experiment I, a specific weight is loaded at the end 

of the pipe. The weight is then released and the impact measured.  
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Figure 4.5: The technical specifications of the continuous plexiglas pipe. 

4.3 Experiment III: Step Response 

Experimenting with step response on the models presented in experiment I is difficult. This is 

due to the size of the models. As a result, it requires a motor or a mechanical device that can 

generate a displacement change faster than the period of the longitudinal mode. The frequency 

and the period of the pressure waves created as a result of the displacement change, is given by 

21
,

2

s r

r s

c n L
f T

n L f c
     (4.1) 

where 
sc  is the speed of sound in the specific material, 

rn  is the refractive index of the material, 

and L  is the length of the material (Choudhary & Verma, 2011). 

The step response produces two longitudinal modes, i.e. a wave that moves downward the 

system, and then reflected at the bottom of the last element ( 2rn  ). Obviously, the pressure 

wave will reach each of the elements at different times due to the distance from the impact zone. 

Moreover, both plexiglas and steel pipes have different sound velocities. This results in two 

cases, in which the first one is to only consider the sound velocity of plexiglas. The other case 

considers only the sound velocity of steel pipes. Table 4.2 compares both cases and presents 

the time in which the wave will reach element 1i n   and reflected back, for experiments I.I-

I.III, determined from equation (4.1). The BHA segment is not considered in this evaluation. 

Furthermore, it is important to notice that the sound velocities of plexiglas and steel are 

, 1700 m/ss pc   and ,c 5920 m/s,s s   respectively (Classltd, 2013). 
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Table 4.2 shows that the three experiments have different times for the longitudinal mode to 

reach the last plexiglas element, i.e. element 1n , and then reflected. This is due to the length 

of each drill string, whereas experiment I.III has longest test segment and hence longest wave 

propagation time. Consequently, the model presented in experiment I.III is most suitable for a 

step response experiment rather than the two other models. Clearly, it is easier for the 

mechanical motor or device to generate a displacement change at least faster than 4.10 ms  

(experiment I.III) rather than 0.456 ms  (experiment I.I). As a result, it is easier to design the 

mechanical motor to achieve the requirements. This thesis will only consider models presented 

in experiment I.I and I.III in the numerical simulation. 

Table 4.2: The effect of longitudinal mode in both plexiglas- and steel pipes for experiments I.I-I.III. 

The time required for the wave to reach the end of element 1,i n   and then reflected, is given by .T  

f  indicates the frequency of the pressure wave. Clearly, it takes longer time for the wave to propagate 

through the plexiglas contra the steel pipe. 

Experiment Plexiglas Steel 

#  Total depth for 1 mi n     sT  1 sf       sT  1 sf     

I.I  0.675  31.59 10  629.6  44.56 10   2192.6  

I.II  2.565  36.04 10  165.7  31.73 10  577.0  

I.III  6.075  314.3 10  70.0  34.10 10  243.6   

 

4.4 Experiment IV: Sinusoidal Driving Force 

In order to simulate the test segment in experiment I.III with a sinusoidal driving force, it is 

necessary to implement a mechanical motor to the system in figure 4.1. The mechanical motor 

will rotate with a predefined, constant angular frequency, and hence create steady constant 

sinusoidal oscillations. Figure 4.6 illustrates the principal idea behind the mechanical motor. 

Choosing low amplitude and high frequency results in a more realistic system. However, it is 

important to be aware of the measuring frequency of the strain gauges. If the driving frequency 

of the motor is higher than the measuring frequency of the gauges, the measurements will be 

invalid and useless.  
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Figure 4.6: A mechanical rotating motor installed on the system in order to create steady, sinusoidal 

oscillations. The rotating device creates vertical vibrations, and forcing the drill string to move along. 

(Hassan, 2015) 

4.5 HBM XY Strain Gauge 

The strain gauges used in the experiments are manufactured by HBM, of the XY series with 

two measuring grids arranged at an 90 offset from each other. Such strain gauges are used for 

analysis of a biaxial stress state where the principal directions are known. The gauges have a 

nominal resistance of 120 ,  and are designed to neutralize the effects of temperature changes 

automatically. Table 4.3 presents the technical specification of the strain gauges and the full-

bridge circuit type III. Because each system consists of two strain gauges, it makes the process 

of installing the system on the test bodies much easier. Hence, one has to take into account only 

two systems when installing the gauges in order to produce the full-bridge circuit. 

 

Figure 4.7: HBM XY1 rosette strain gauge with two measuring grid. The grid dimensions are 

6 mm,a   6 mm,b   and 23.5 mm.c   (NSMarket, 2016) 
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Table 4.3: Technical specification of the strain gauges and the full-bridge circuit type III. 

Parameter Value Unit Comment 

offsetV   0.00 V  Offset voltage  

EXV   5.00 V  Excitation voltage 

nominalR   120 Ω  Nominal resistance 

GF   2   Gage Factor 

 

4.6 The Amplifier System 

The signal from the strain gauges amplifies before further processing. Therefore, an amplifier 

system is custom-built as shown in figure 4.8. The signal from the strain gauges enters the 

system from input port (2), and leaves the system from the output port (3) to the DAQ 

microcontroller. The system consists of four-paired amplifier of the type BB INA125P, which 

again connects to each full-bridge strain gauge circuit. Figure 4.9 shows the basic setup of a 

single INA125p amplifier. The system powers by a Traco Power DC/DC converter, which 

converts 18 32 V  input voltage to 12 V  output voltage. The system will amplify the signals 

by a factor of 1000, as mentioned in section 3.4.3. 

 

Figure 4.8: The structure of the amplifier. (1) is the power supply, (2) is the input port from the strain 

gauges, (3) is the output port that goes to the DAQ microcontroller, (4) is the BB INA125P amplifier 

and (5) is the TRACO POWER DC/DC converter.  
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Figure 4.9: The basic setup for a single BB INA125P amplifier.  Signals from the full-bridge strain 

gauge circuit enters the system at the ports  and .IN INV V 
 The signals are then amplified by a gaining 

factor of 1000, and leaves the system from port .OV  (ChinaICMart, 2012) 

4.7 DAQ Microcontroller 

The amplified signal transports to the data acquisition hardware, also known as DAQ 

microcontroller. The NI USB-6009 device provides eight single-ended analog input channels,

AI,  two analog output channels, AO,  12 digital input/output channels, DIO,  and a 32-bit 

counter with a full-speed USB interface (NI, 2015). The analog signals connect to the  AI  input 

channels. The DAQ microcontroller converts the signals to readable, digital signals, before 

transporting to a computer through the USB channel for further processing in LabVIEW. 

Figure 4.10 illustrates the system.  
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Figure 4.10: Left figure shows how the amplified signals from the strain gauge circuits are connected 

to the DAQ microcontroller. Right figure shows the block diagram of the system. Notice the 8 resistors 

that are connected between GND (ground) and the analog input channels, AI.   

4.8 LabVIEW 

Laboratory virtual instrumentation engineering workbench, also known as LabVIEW, is a 

visual programming language where one builds a block diagram and a control panel. The blocks 

connect together by strings so that the programming becomes visual. The program will then be 

of such a high level that it does not require any programming skills from the operator. Therefore, 

behind each block several blocks perform necessary tasks that together will build up that 

specific block. LabVIEW operates also graphical while- and if-loops.  

The digital signals from the DAQ microcontroller are automatically processed in LabVIEW 

according to the specific designed block diagram. Appendix C illustrates the designed block 

diagram. 

It is worth mentioning that the measuring frequency of the circuit is 11,000 Hz , and because 

of that, LabVIEW cannot filtrate and smoothen the signals during the measurements. Therefore, 

the method of Savitzky-Golay filtering applies to the raw data to “smooth out” the noisy signal 

before further processing. Appendix D provides further details about the method of Savitzky-

Golay filtering. 
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4.9 Simulations in MATLAB 

The analytical model presented in section 2.2 is implemented and simulated in the numerical 

computing program MATLAB for the three scenarios. For this, three main assumptions are 

required to simplify the algorithm. First, it is important to assume that only the plexiglas 

elements reacts to stress. Hence, the strain gauges are only installed on the plexiglas elements. 

Because of much higher modulus of elasticity of the steel elements, the stress acting on them 

results in negligible strain. This is compatible with the lumped element model because the 

plexiglas elements act as the spring elements, and the steel pipes as point masses. Moreover, 

each element is designed as a 95 mm plexiglas element and a 100 mm steel element. This results 

in the length of 135 mm for all elements except the BHA, which is 300 mm long HWDP (figure 

4.2 and figure 4.4).  

Because of the simplicity of the analytical model, it is necessary to assume that all the non-

conservative forces acting on the system are integrated into the viscous friction force .R  

Clearly, equation (2.14) from section 2.2.1 shows that the magnitude of the viscous friction 

force varies only with the viscosity of the liquid,  . This means that the viscosity parameter 

behaves more like the friction factor of the system rather than a parameter related only to the 

viscous fluid. The viscosity of the three systems in section 2.2.2 is chosen in accordance with 

the experimental results. The determined value of the viscosity of the underdamped system 

(section 2.2.2.3) lays the ground for the numerical simulations of experiment III and IV.  

Table 4.4 presents the necessary input parameters of the models for the three scenarios. It is 

important to notice that an “invisible” borehole is created around the drill string. Creating such 

borehole makes it possible to calculate alpha, ,  which is the ratio between the outer radius of 

the drill string and the borehole, and hence determine the viscous friction force. The argument 

behind determining the size of the borehole is the relation between a 5
89   borehole drilled 

with a 1
25   drill string, which is 1.75.  The outer radius of the drill string in our system is 

15 mm,  which results in 26.25 mm  as the outer radius of the “invisible” borehole. 
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Table 4.4: Input parameters in MATLAB. 

Parameter Value Unit Parameter Description 

il  0.135 m  Length of each elements 

BHAl  0.300 m  Length of BHA 

Plexiglasr  0.015 m  Outer radius of the plexiglas pipe 

steelr  0.009 m  Outer radius of the steel block 

BHAr  0.015 m  Outer radius of BHA 

holeR  0.026 m  Assumed radius of the “borehole” 

steel  7850 
3

kg

m
 Density of steel (ETB, 2015) 

Plexiglas  1180 
3

kg

m
 Density of plexiglas (PubChem, 2015) 

elementm  0.116 kg  Mass of each drill string elements  

BHAm  1.66 kg  Mass of the BHA segment 

plexiglas   0.35    Poisson’s ratio, plexiglas (Altuglas, 2008) 

PlexiglasE  3.1 GPa  Young’s modulus, plexiglas (Altuglas, 2008) 

steelE  210 GPa  Young’s modulus, steel (ETB, 2015) 
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5 Experimental Results and Evaluation 

The most important findings from experiments and simulations are presented in this chapter. 

Sections that consist of both experimental results and numerical simulations divides into three 

parts (experiment I.I and I.II). Firstly, the measured raw data is filtrated and converted to 

displacement before plotting and presented in graphs. Secondly, numerical results from 

simulations in MATLAB are presented for their respective systems, i.e. overdamped and 

underdamped systems. Finally, both results are plotted together for the specific elements, in 

order to find correlations between both models.  

Only results from simulations are presented for experiment I.III, III, and IV. The respective 

elements have been selected arbitrary.  

The results of the continuous plexiglas pipe in experiment II are compared to the experimental 

results in experiment I.II.  

5.1 Experiment I 

The initial systems in experiment I.I and I.II was loaded with the same weight of 10 kg  while 

LabVIEW measured the output data from the DAQ microcontroller. The mass was then 

removed instantly and the output data were recorded until the system reached initial state. The 

output data from LabVIEW was then imported to MATLAB.  

Before further processing of the raw data, it is necessary to filtrate and smoothen the data to 

eliminate the unnecessary noise, as described in section 4.8. The method of Savitzky-Golay 

(polynomial) smoothing filter is implemented for each output data. In order to filtrate the data, 

it is necessary to determine the polynomial order, ,p  which creates the polynomial equation 

that approximates the data points. It is also necessary to determine the frame size, ,N  known 

as the data window in which the model considers when looking at each individual point during 

the smoothing routine. Figure 5.1 compares three cases of filtration with the original data. 

Obviously, higher polynomial order in combination with smaller frame size results in less 

filtration, i.e. closest to the original data (case I). In comparison, case III presents a more 

realistic filtration because it filtrates out the unnecessary noise and at the same time preserves 

the shape of the original data. Hence, a polynomial order of 5p   and a frame size of 51N   

is chosen in the filtration of all the output data from the experiments.  
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Figure 5.1: Comparison of the original data and three cases of data filtration. Higher polynomial order 

in combination with low frame size gives less filtration (case I). In comparison, higher frame size gives 

a more realistic view because it filtrates out the unnecessary noise and at the same time preserves the 

shape of the original data (case III). 

It is necessary to convert the filtrated voltage data to strain. Table 3.1 in section 3.2 provides 

the correct formula for calculating the strain for the full-bridge circuit type III, which is 

   
2 ,

GF 1 -1

r

r

V

V


 
 

   
  

where offset

EX

.O
r

V V
V

V


  

offset ,V  
EX ,V  and GF  are given in Table 4.3. The final stage of 

determining the displacement of each measuring points is by using equation (3.1), i.e. 
0L L   

where 
0L is the initial length of each element. 

5.1.1 Experiment I.I 

Figure 5.2 illustrates the displacement of the four channels (measuring points) during the entire 

experiment. Observing the fact that before offset nulling the circuit in LabVIEW, each element 

has a significantly different initial displacement. Element 4 and 5 starts with positive 

displacement. On the other hand, element 2 starts with negative displacement, while element 3 

does not sustain the same level of initial displacement. This behavior is a result of the way the 

strain gauge circuits are connected to the amplifier system. However, the offset nulling process 

in LabVIEW correlates this diversity.  
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Figure 5.2: Displacement of elements 2-5. The plot presents the process of offset nulling the circuit (1), 

loading a mass of 10 kg on the system (2), instantly remove the mass (3), and observe the process of 

returning to initial state (4). 

Figure 5.3 shows the behavior of the system during, and after the release of the mass. 

Observations indicate that it takes the system approximately 12 ms  from the mass is released 

until it reaches the point where it starts to stretch again.  

 

Figure 5.3: Displacement of elements 2-5 during release of the mass. The system reaches the initial 

state during the first 500 ms  after the impact. 
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Figure 5.4: Displacement of each element during, and after release of the mass. Element 5 behaves 

different because after the impact, the element oscillates with relatively high period before it reaches the 

initial state. In contrast, element 2-4 oscillates maximum four times with quite low period 

(approximately 18 ms ) before they reaches initial state.  

By implementing the transient state of the vertical drill string in MATLAB for the three 

systems, i.e. overdamped, critically damped, and underdamped systems, it is possible to 

compare them to the experimental results. Furthermore, it is important to adjust the magnitude 

of the viscosity for the three systems. This is done to satisfy the requirements of the damping 

ratio.  Three arbitrary parameters are chosen so that 

  

180 for overdamped system, i.e. 1.55857594

Pa s 115.49006 for critically damped system, i.e. 1.00000000

1.5 for underdamped system, i.e. 0.01298813.

i

i

i



 






  
 

  

The critically damped system requires a damping ratio that equals one, i.e. 1.i   It is difficult 

to determine a value for the viscosity in order to satisfy such requirement. However, the 

viscosity can be approximated so that the damping ratio is close to one. This is a fair assumption 

because the deviation is negligible  162.22 10 .i
     
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Figure 5.5: Relation between overdamped. Critically damped, and underdamped systems of the 

transient state. Observing that the critically damped system dies out rapidly without oscillating, and 

reaches zero at 0.05 ms.  The underdamped system on the other hand oscillates at least six times before 

the vibrations dies out. In comparison, the overdamped system slightly decreases to zero. 

Figure 5.5 illustrates the relation between the three systems of the transient state. Obviously, 

the critical damped system cannot be further considered because of its rapidly decreasing 

behavior. However, evaluating the overdamped system for elements 2-5 are necessary before 

comparing them to the experimental results.  

The behavior of the overdamped system for elements 2-5 is shown in figure 5.6. Clearly, the 

elements have the same decreasing time with an approximate value of 250 ms. Close 

observation indicates that each element has a different initial displacement. Element 2 starts 

with the lowest initial displacement  2 1.25 mL    and the value increases proportional with 

increased element numbers.  

This is a result of Hooke’s law where the initial displacement of element i  is a sum of initial 

displacements of the previous elements, i.e. 
1 1

1 1

.
n n

n i n i

i i

L L L L
 

 

       
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Figure 5.6: The overdamped system for elements 2-5. Observing that the elements decreases towards 

zero with the same decreasing time. Furthermore, each element starts at different initial displacement 

due to Hooke’s law. Hence, element 5 have highest initial displacement. 

Figure 5.7 illustrates the comparison of the overdamped system and the experimental results 

of elements 2-5. After close observation, it is found that there are no correlations between both 

models. This is due to the non-oscillating behavior of the overdamped system. In comparison, 

the experimental model tends to oscillate at least six times before it dies out. In addition, the 

initial displacement of the experimental model is approximately 13 μm. The value tends to 

diverge between the elements, but this diversity is minimal. The initial displacement of the 

overdamped system on the other hand is much lower, starting at 1.3 μm  for element 2, and 

increases to 3.5 μm  for element 5. 
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Figure 5.7: A comparison of the experimental results and the overdamped system for elements 2-5. 

Figure 5.8 illustrates the behavior of the underdamped system for elements 2-5. Clearly, the 

elements reach zero at the same time, i.e. at 5 ms.  Similar to the overdamped system, each 

element have different initial displacement. This is again due to Hooke’s law, which results in 

increased initial displacement as we move down the elements in the vertical drill string. 

Moreover, observations indicate that the shape of the waves becomes clearer from element 2 to 

element 5, i.e. element 5 have better wave shape than element 2.  
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Figure 5.8: The underdamped system for elements 2-5. Clearly, the elements reach zero at the same 

time  5 ms .  Similar to the overdamped system, each element starts at different initial displacement due 

to Hooke’s law. 

The comparison of the underdamped system and the experimental results for elements 2-5 are 

illustrated in figure 5.9. By comparing both results, it is clear that there are no similarities 

between the systems. The underdamped system oscillates with much higher frequency, and 

hence dies out long before the experimental system. The waves of the underdamped system 

have a period of 0.5 ms.T   In comparison, the waves of the experimental system have a period 

of 16 ms.T   Besides, the amplitudes of the underdamped system are much lower. The 

underdamped model tends to cross origin multiple times. This means each element undergoes 

compression. This behavior is not observed in the experimental model.  
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Figure 5.9: A comparison of the experimental results and the underdamped system for elements 2-5. 

 

5.1.2 Experiment I.II 

Figure 5.10 shows the behavior of the system during, and after the release of the mass. 

Observation indicates that it takes the system approximately 20 ms  from the mass is released 

until it reaches the point where it starts to stretch again. 

Figure 5.11 illustrates the displacement of each element during, and after the release of the 

mass. Element 2 behaves differently because it oscillates with a higher amplitude, and goes 

below zero at least two times, i.e. the element undergoes compression. In contrast, elements 17, 

18, and 19 oscillate with approximately same amplitude, and neither of them goes below the 

zero line  0 .y    
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Figure 5.10: Displacement of elements 2, 17, 18, and 19 during release of the mass. It take the system 

400 ms to reach the steady state. 

  

  

Figure 5.11: Displacement of element 2, 17, 18, and 19 during, and after release of the mass.  
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Regarding the transient state of the system, only the overdamped and the underdamped systems 

are considered. Because of the rapid decreasing behavior of the critical system, it cannot be 

considered. However, before further evaluation it is important to adjust the magnitude of the 

viscosity for both systems. This is done to satisfy the requirements of the damping ratio, but 

also to fit the experimental results. Two arbitrary parameters are chosen so that 

  
55 for overdamped system, i.e. 1.53193728

Pa s
0.035 for underdamped system, i.e. 0.00097487.

i

i







  


  

 

Figure 5.12 illustrates the overdamped system for elements 2, 17, 18, and 19. Similar to 

experiment I.I, it is clear that the initial displacement increases as we move down the elements 

in the vertical drill string. Again, this is a result of Hooke’s law. Furthermore, observation 

indicates that the elements behave similar regarding decreasing time and the required time to 

reach equilibrium state. However, by analyzing the initial displacement of each element, i.e. 

the displacement at 0 ms 2.5 ms,t   it can be found that element 2 has a response time of 

0.4 ms.rt   This is due to the period of the longitudinal mode created as a result of removing 

the mass. By using equation (4.1) in section 4.3, it is possible to determine theoretically the 

period of the longitudinal mode, i.e. the time required for the wave to reach element 2 and 

reflected back. The distance between element 19 and element 2 is 2.16 m.  If we consider both 

plexiglas- and steel pipe systems, we get 

plexiglas plexiglas

steel steel

2 4 2.16
5.082 ms 2.541 ms

1700

2 4 2.16
1.46 ms 0.73 ms.

5920

r

s

r

s

n L
T t

c

n L
T t

c


    


    

   

Evidently, the time required for the longitudinal mode to reach element 2 through steel is closer 

to the actual value than through plexiglas. This means that the steel elements play a higher role 

than expected. 



52 

 

  

  

Figure 5.12: The overdamped system for elements 2, 17, 18, and 19. Observing that the elements 

decreases towards zero with the same decreasing time. Furthermore, each element starts at different 

initial displacement due to Hooke’s law. 

Figure 5.13 compares the overdamped system with the experimental results of elements 2, 17, 

18, and 19. Similar to experiment I.I, observations indicate that there are no relations between 

both models. Neither of the elements shows correlation with the overdamped system. This is 

due to the lack of oscillations in the overdamped system. Obviously, the experimental results 

indicate that each element oscillates at least ten times before reaching the equilibrium state. 

This is in contrast to the overdamped system, which decreases without oscillating. However, 

the last elements, i.e. 17,  18,  and 19,i   show some similarity with the experimental results. 

This is primarily seen at the initial displacement, whereas both models start approximately at 

the same position. 
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Figure 5.13: A comparison of the experimental results and the overdamped system for elements 2, 17, 

18, and 19. 

The behavior of the underdamped system is illustrated in figure 5.14. Again, it can be observed 

that the elements reaches an equilibrium state at the same time, i.e. at 70 ms.  Furthermore, 

observing that the shape of the waves becomes smoother as we move down the vertical drill 

string, i.e. closer to the element where the weight was loaded on. It is important to notice the 

response time in element 2. The value is similar to the one calculated for the overdamped system 

 0.4 msrt   because the period of the longitudinal mode is not affected by the behavior of the 

system. It depends only on the properties of the material. 
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Figure 5.14: The underdamped system for elements 2, 17, 18, and 19. Observing that the elements 

reaches zero at the same time  70 .ms  Similar to the overdamped system, each element starts at 

different initial displacement due to Hooke’s law. 

Figure 5.15 shows the comparison of the underdamped system and the experimental results for 

elements 2, 17, 18, and 19. Similar to experiment I.I, there are no clear relation between both 

systems. The underdamped system oscillates with much higher speed, and hence dies out long 

before the experimental system. The waves of the underdamped system have a period of 

4.5 ms.T   In comparison, the waves of the experimental system have a period of 30 ms.T   
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Figure 5.15: A comparison of the experimental results and the underdamped system for elements 2, 17, 

18, and 19. 

5.1.3 Experiment I.III 

The test segment with 46 elements are evaluated for both overdamped and underdamped 

systems. The magnitude of the viscosity is adjusted for both systems. Two arbitrary parameters 

are suggested so that 

  
25 for overdamped system, i.e. 1.59733647

Pa s
0.015 for underdamped system, i.e. 0.00095840.
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Figure 5.16 shows the displacement of the overdamped system for elements 1, 15, 30, and 46 

(BHA). Observation indicates that the response time for elements 1 and 15 are 20 msrt   and 

1.7 ms,rt   respectively. The response time decreases as we move closer to the element where 

the mass was loaded on. 
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Figure 5.16: The overdamped system for elements 1, 15, 30, and 46 (BHA). A similar behavior is 

observed between the elements. This is particularly seen in decreasing time and the shape of the graphs. 

Figure 5.17 illustrates the displacement of the underdamped system for elements 1, 15, 30, and 

46, respectively. Similar to the overdamped system, the response time for elements 1 and 15 

are clearly observed. The values are equivalent because the response time is not affected by the 

behavior of the systems. It depends only on the properties of the material. Further observations 

of element 1 indicate a wide range of frequencies. Besides the dominating waves with high 

amplitude and low frequencies, secondary waves are also observed. The frequencies of such 

waves are high with low amplitudes, and are usually implemented in the dominating waves. 

This phenomenon tends to die out as we move down the test segment, i.e. closer to the element 

where the mass was loaded on.  
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Figure 5.17: The underdamped system for elements 1, 15, 30, and 46 (BHA).   
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5.2 Experiment II: The Continuous Drill String 

The plexiglas pipe was subjected to a weight of 10 kg,  similar to experiment I. Figure 5.18 

shows the displacement of the plexiglas pipe during the entire process.  

 

Figure 5.18: Displacement of the continuous plexiglas pipe. The figure illustrates the entire process of 

offset nulling the circuit, loading a mass of 10 kg  on the system, instantly remove the mass, and observe 

the process of returning to initial state. 

Figure 5.19 illustrates the displacement of the plexiglas pipe during, and after the mass was 

released. Observing that the plexiglas pipe oscillates a few times during its return to initial state.  

A comparison between the measured strain for the plexiglas pipe and element 17 from 

experiment I.II is made in figure 5.20. Measured time is converted to a non-dimensional time 

step. This is done to align both graphs in order to compare them with each other. The data to 

the plexiglas pipe is therefore shifted along the x-axis by a factor of 50.134 10 .   Clearly, both 

system returns to the initial state at the same time. The plexiglas pipe, however tends to oscillate 

around the line 0.y   In comparison, element 17 oscillates around the line 1.5.y   Moreover, 

element 17 have larger displacement after the mass applies to both systems, resulting in higher 

strain. Observing that 6

plexiglas 76 10    and 6

element 17 94 10 .    This is a result of the 

additional mass loaded on element 17, which includes elements 18, 19, and BHA.  
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Figure 5.19: Displacement of the continuous plexiglas pipe during, and after release of the mass.  

 

Figure 5.20: The continuous plexiglas pipe versus element 17 in experiment I.II. Only strain is 

considered. The data to the plexiglas pipe has been shifted by a factor of 
50.134 10   in order to 

correlate with element 17. 

Figure 5.21 shows the comparison of strain for the plexiglas pipe and elements 2, 17, 18, and 

19 of the test segment from experiment I.II. Observing clear correlation between the shape of 

the graphs. However, the applied mass results in higher strain on the elements. Besides, they 

tend to oscillate at a higher scale. This is a result of the additional mass loaded on the elements, 

which includes the weight of the next elements and BHA.  
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Figure 5.21: Strain comparison of the continuous plexiglas pipe and elements 2, 17, 18, and 19. A clear 

correlation between the shape of the graphs are observed. The graph of the elements oscillates at a larger 

scale. The additional masses loaded on the elements explains this behavior. 
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5.3 Experiment III: Step Response 

The behavior of the test segment is determined by the step, .sQ  Therefore, it is necessary to 

determine a reasonable value for it before further simulations of the model. Because the initial 

displacement of the elements in the experimental results of section 5.1 was established around 

13.0 μm,  it will be a fair assumption to define that 13.0 μm.sQ   This corresponds to a 

mechanical motor that initiate a displacement change of the first element equivalent to .sQ  Two 

systems have been considered, whereas the first one is the test segment in experiment I.I, and 

the second one the test segment in experiment I.III. Both systems are assumed underdamped. 

Table 5.1 presents both systems with the respective parameters. Notice that the values of 

viscosity corresponds to the one used in experiments I.I and I.III. 

Table 5.1: The input parameters of system I and II. Notice that the values of viscosity corresponds to 

the one used in experiments I.I and I.III. 

System #   Total depth m  Elements  Viscosity [Pas]  iDamping ratio  

I  0.975  6   1.5   0.01301787   

II  6.375  46   0.015  0.00095840   

 

Figure 5.22 compares both systems for elements 1,  1,  and .i n n   We observe that element 1 

oscillates with the smallest amplitude in both systems, an amplitude around 4 μm,  which is 

very low compared to the step. However, as element i  increases, the amplitude also increases. 

Obviously, the amplitude of system II is generally higher than system I because of the lower 

viscosity factor, and therefore lower damping ratio.  

By close observation of elements 5 and 45, the response time of the longitudinal mode can be 

determined. The response time for element 5 is approximately 
5 0.8 ms,T   and for element 45 

45 1.16 ms.T   This is quite different from the theoretically calculated period of the longitudinal 

mode in table 4.2. 
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Figure 5.22: Comparison of system I and system II for elements 1,  1,  and .i n n    
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5.4 Experiment IV: Sinusoidal Driving Force 

The test segment presented in experiment I.III is chosen for the simulation with the sinusoidal 

driving force due to the high number of elements. By implementing equation (2.25)  and (2.26) 

in MATLAB, the behavior of the model can be evaluated. Two systems have been considered, 

as shown in Table 5.2. The amplitude factor of both systems is set to 0.01 m.A  Two different 

periods have been chosen so that 
1 0.1 sT   and 

2 0.001 sT   for system I and II, respectively. 

The relation 2 / ,T   determines the driving frequency of the system. The driving frequency 

is therefore 
1 20 π   and 

2 2000 π   for system I and II, respectively. From Table 5.2 it is 

clear that both eigenfrequencies and the damping ratios of the elements are independent of the 

driving frequency. Furthermore, it is important to notice that the viscosity of the test segment 

has been reduced to 0.00015 Pas   for the sake of simplicity.  

Table 5.2: The comparison of systems I and II with their respective damped eigenfrequencies, 
, ,d eigen  

and the corresponding damping ratios, ,i  for elements 1, 15, 30, and 46. The value of both parameters 

are independent of the driving frequency. 

Element # 

System I System II 

4 -1

,eigen 10 sd     510i
    4 -1

,eigen 10 sd     510i
    

1 0.9375 75.027 0.9375 75.027 

15 3.3041 2.1287 3.3041 2.1287 

30 6.1154 1.1502 6.1154 1.1502 

46  BHA  7.3390 0.9584 7.3390 0.9584 

   

Figure 5.23 shows the plot of both systems. Evidently, the movement of each element reaches 

steady state at the same time for both systems, which is approximately 6.55 s.sett   

Observations indicate that element 1 have the smallest initial displacement, and that the value 

increases as we move down the test segment. Hence, element 46 have the highest initial 

displacement. Furthermore, both systems oscillate with the same amplitude. The only 

difference is the driving frequency. 
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Figure 5.23: The movement of the test segment in system I and II for elements 1, 15, 30, and 46. Both 

systems have the same amplitude and settling time. The only difference is the driving frequency. 
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6 Discussion 

6.1 Quality of Measured Data 

Measurement errors occur in all experimental data. Each part of the experimental model 

consists of uncertainties, which together affect the measurements. The constructed model, the 

strain gauges, connecting wires between strain gauges and the amplifier, the amplifier, and even 

the data filtration process are all sources of uncertainties. Each affects the output data to a 

different degree. However, the major contributions come from the model itself, strain gauges, 

and the filtration.  

6.1.1 Factors That Limit the Validity of the Constructed Model 

The model is associated with a number of limitations that arise as a result of its simple design, 

yet complex behavior. As shown in figure 4.3, the model is attached to utility clamps or steel 

wires in order to prevent element 1 from moving. However, utility clamps tend to oscillate after 

the mass is released. As a result, the entire system oscillates with the same frequency. This 

causes a ringing behavior, which appears clearly on the plots of the experimental results. The 

ringing behavior can be observed in figure 5.3 for time interval 19.1 19.2.t   It can also be 

observed in figure 5.10 for time interval 14.47 14.7.t   The effect of such behavior is 

reduced, but not eliminated after introduction of a steel wire. The contribution of the ringing 

effect to the overall uncertainty in experimental results is difficult to determine.  

Multiple elements, attached together with bolts, behave differently than expected during release 

of the mass. It was assumed that each element would only oscillate vertically, but observations 

indicate that the elements “jump up” and swing like a pendulum. This behavior is primarily 

observed in the last elements, including the BHA. Strain gauges used in the experiments 

measure only the axial strain, and not the bending strain. Moreover, they are extremely sensitive 

to movement and temperature changes. As a result, the pendulum behavior interrupts the 

measurements of the strain gauges. The contribution of this interruption to the overall 

uncertainty is difficult to determine, but it is known to cause the ringing behavior observed in 

the experimental results.  

Comparison of the continuous plexiglas pipe and the test segment with 20 elements in figure 

5.21 clearly indicates the effect on the ringing behavior. A continuous pipe eliminates the 
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jumping effect after the release of the weight and reduces the pendulum behavior to a certain 

degree. 

Basically, the model is constructed with an assumption that the steel elements behave like point-

masses rather than pipes. Even though the modulus of elasticity of steel is much greater than 

that of plexiglas, the steel elements will expand. It is difficult to determine the effect of such 

strain on the experimental results, because no strain measurements were recorded on the steel 

elements.  

6.1.2 Noise That Affects the Strain Gauge systems 

Section 3.3 provides several techniques to minimize noise that affects the strain gauges. All 

electrostatic and electromagnetic noises affect the system in different ways. It is therefore 

difficult, if not impossible, to eliminate the effect of the noise on the experimental results. 

However, several techniques are introduced to minimize such effects. First, the strain gauges 

are glued with an insulating adhesive to the plexiglas elements. The adhesive functions as 

temperature insulator, but can also minimize electrostatic noise to a limited degree. Second, the 

connecting wires are twisted together as pairs and insulated with a thermoplastic PVC 

(alternative c in figure 3.11). Third, the steel elements are wrapped into an insulating tape in 

order to reduce its effect on the strain gauges.  

6.1.3 Effect of the Filtration Process 

The filtrating process is an important part of the data evaluation because a significant amount 

of data is filtered out. Choosing the right filtration method is therefore crucial for the outcome 

of the experiments. The main argument behind choosing the Savitzky-Golay filtering method 

is its ability to preserve the high-frequency components of the signal. It is also effective at 

preserving the shape of the peaks that appear in the measurements. However, choosing an 

appropriate polynomial order and a frame size is only based on visual observations. As shown 

in figure 5.1, several cases are evaluated in order to produce a convenient filtration. A trial-

and-error process leads to choosing a polynomial order of 5p   and a frame size of 51.N   

This combination filters most of the noise, and at the same time, preserves the overall shape of 

the curve.  

Further, one may argue that the trial-and-error process, based only on visual observations, is a 

highly simplified method to filter out the noise. Such method will probably filter out some of 
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the high-frequency signals along with the noise. This may change the understanding of the 

experimental results. However, because of the lack of a systematic method to determine and 

measure the sources of noise, it is difficult to implement other more effective methods.   

6.2 Quality of the Analytical Model 

The lumped element model approximates the spatially distributed drill string by a topology of 

discrete entities. This allows the derivation of a simple analytical model that describes axial 

vibrations in a vertical drill string. However, the model presents a significant simplification of 

the continuous drill string. There are three key factors in the analytical model that must be 

analyzed. 

The model assumes that each element consists of a point mass and a spring, whereas all the 

mass is concentrated in one point mass. This simplifies the physical behavior of the element 

and allows neglecting its size and shape. Thus, neglecting the moment of inertia and rotational 

properties. It is, however, difficult to find a material that satisfies the properties of a point mass. 

The use of a steel pipe as a point mass limits this assumption because each steel pipe has a 

length and shape. Therefore, the steel pipes undergo strain during loading of the mass. 

Moreover, because the steel pipes are connected with bolts to the plexiglas elements, there is a 

high possibility that they take up angular momentum. The effect of this is unknown because 

measurements of bending stress are not made.  

Further, the analytical model assumes that the sum of all external friction forces is integrated 

into the viscous friction force. Clearly, equation (2.14) from section 2.2.1 shows that the 

magnitude of the viscous friction force varies only with the viscosity of the liquid. This means 

that the viscosity parameter behaves more like the friction factor of the system rather than a 

parameter related only to the viscous fluid. It is therefore necessary to adjust the magnitude of 

the viscosity in order to satisfy the requirements of the damping ratio. This adjustment, 

however, resulted in unrealistically high viscosity factors, especially in the overdamped system.  

For the test segment in experiment I.I, a viscosity factor of 180 Pa s    is determined. 

Theoretically, it requires a heavy viscous fluid with properties close to peanut butter in order to 

replicate such high damping ratio (Liquid Control, 2016). However, it is observed that the 

viscosity factor reduces as the number of elements increases. This is seen in the test segments 

in experiment I.II and I.III, where the viscosity factor is reduced to 55 Pa s    and 

25 Pa s,    respectively, in order to create the same damping ratio. 
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In addition, determining the size of the “invisible” borehole is crucial for the outcome of the 

damping ratio. The argument behind determining the size of the borehole is the relation between 

a 5
89   borehole drilled with a 1

25   drill string. This resulted in an OD 52.5 mm  for the 

borehole. Increasing the size of the borehole, for the same viscosity, reduces the value of the 

damping ratio, and vice versa.  

6.3 Further Work 

Further experiments should be developed for the transient state scenario in order to verify the 

initial conditions. Experiment I.III should be conducted alongside further experiments where 

the number of elements is increased, i.e. 100,  150,  200 etc.i   Conducting the experiment in 

an actual borehole with a viscous fluid should be considered. A combination of a sufficient 

number of elements and an actual borehole would result in an appropriate choice of the viscous 

fluid. Experimenting with different loaded mass should also be considered. 

The ringing behavior that occurs after release of the mass should be further examined. 

Necessary measures should be implemented in order to either minimize its effect, or determine 

its magnitude in order to adjust the data. Such measures include the use of a better equipment 

to attach the test segment to, i.e. steel beams or a concrete ceiling. This will eliminate the 

oscillations of the entire test segment after the release of the mass. A better mechanism to attach 

and release the loaded mass of the last element should also be considered. If necessary, a 

continuous pipe should be considered rather than multiple elements. 

Furthermore, plexiglas elements should be replaced by metal pipes, for example aluminum. 

Plexiglas pipes undergo elastic deformation at small strain, but the way they behave cannot 

completely replicate the behavior of a metal pipe. It is important to choose pipes with small 

thickness when metals like aluminum is considered. This will allow the pipes to expand to a 

greater extent, and therefore present a better replication of a spring. On the other hand, the 

thickness of the steel pipes should be increased in order to maintain the mass ratio between steel 

and aluminum pipes. 

Experiments related to scenario 1 and 2 should be performed in accordance with the guidelines 

given in this paper. Regarding the step response, it is necessary to implement a sufficient 

amount of elements in order to increase the response time of the last several elements. 

Furthermore, this will simplify the process of designing a mechanical motor which can generate 

a displacement change faster than the response time of the last elements. 



69 

 

If the validity of the model is proven for these particular scenarios, then further steps is to 

implement the theoretical model for more sophisticated geometries, such as deviated wells. 

Development of the model is based on a simple geometry, and must be expanded in order to 

apply to different geometries. Further expansion must include parameters such as Coulomb’s 

friction between the borehole and the drill string, and angular momentum at the connection 

points between the elements. Because of the deviation, Newton’s way of approaching the 

solution complicates the process. Therefore, more simplified methods, such as an Euler-

Lagrange method should be considered. 
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7 Conclusion 

A study of axial vibrations in a vertical drill string is conducted using a -n coupled spring-mass-

damper model. The main motivation behind this is to describe the axial vibrations using a 

simple mathematical model that allows for a substantial interpretation and application of control 

theory. In other words, the analytical model used to describe test segments in this thesis can 

easily apply to other vertical drill string models, with a few adjustments. For this reason, this 

thesis investigates to what extent the lumped element model can be used to replicate and predict 

axial vibrations in a vertical drill string.  

It is found that the lumped element model cannot be verified on the basis of a comparison of 

the experimental results and the analytical model for the transient state. The analytical model 

cannot replicate and predict axial vibrations in a vertical drill string. Further, the comparison of 

test segments and the analytical model has led to the following two additional conclusions. 

Firstly, there is no correlation between the underdamped system and test segments with 6 and 

20 elements, respectively (experiment I.I and I.II). The same applies to the overdamped system 

and the test segment with 6 elements. However, a weak correlation between the overdamped 

system and the test segment with 20 elements is observed for the last three elements.  

Secondly, a ringing behavior is observed in the test segments, which causes some of the 

oscillations that occurs after release of the mass. The effect of this is minimized by using a 

continuous drill string (experiment II) or by attaching the test segment to a firm object. 

The experiments on the test segments are conducted on the basis of a simplified model. This is 

an oversimplification of the real life drill string. As a direct consequence of such choice of 

model, the study encountered three main limitations.  

Firstly, the conclusions reached in this thesis may not necessarily apply to different models with 

complex geometries. Such models give a better representation of a real life drill string. Hence, 

the study should be extended to more complex geometries. 

Secondly, the experiments only account for the transient state of the system. Physical 

experiments with step response and sinusoidal driving forces should also be conducted in 

accordance with the guidance given in this paper.  

Finally, the number of elements in the test segment is inversely proportional to the damping 

ratio. A small number of elements requires an extremely high viscosity fluid in the borehole. 
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An increase in the number of elements in the test segment will alleviate this requirement and 

bring simulations closer to reality. The borehole size is also inversely proportional to the 

damping ratio. Therefore, a sufficient high number of elements in a test segment should be used 

in future experiments. 

This thesis admires the previous research efforts by others. It shows that there is still much to 

be done to substantiate the use of a lumped element model to replicate and predict axial 

vibrations in a vertical drill string. Several improvements are proposed to pave the way for 

future research in this area. 
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Nomenclature and Abbreviations 

Roman Symbols 

A   Amplitude of the oscillations for an underdamped system 

cA  Cross-sectional area of an element 

c  Damping factor of the viscous piston 

sc   Speed of sound in a specific material 

1C  Constant related to the ordinary solution of the homogeneous differential equation  

2C  Constant related to the ordinary solution of the homogeneous differential equation  

C   n n  diagonal matrix representing the spring constant of elements 

I.C.C   1n  vector describing the initial conditions of the transient state 

D   Diameter of a solid body 

D  n n  diagonal matrix of eigenvectors 

E  Modulus of elasticity (Young’s modulus) 

f  Frequency 

f  Vector with dimensions 1n  representing the driving force of the system 

sF  Spring force, given by Hooke’s law, acting on a point mass 

g  Gravity of Earth 

g   Vector with dimensions 1n  representing the gravity force of all elements 

i  Element number 

I  Identity vector with dimensions 1n   

k  Spring constant given by Hooke’s law 

ik  The spring constant of the spring that is connected above element i   

k   n n  tridiagonal matrix  representing spring constants of n  springs 

L   Length of a test segment 

iL  Length of element i   

0L   Initial length of element i  

m  Mass of an element/point mass 

im  Mass of element i  

nm  Mass of element i n  

M   Diagonal matrix with dimensions n n  representing the mass of all elements  
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n  Number of elements in the spring-mass-damper model 

rn   Refractive index of a material 

N   Frame size, i.e. data window during filtration of a data set 

p  Polynomial order 

q  Displacement of an element/point mass 

0q  Initial displacement of element/point mass, i.e. equilibrium position 

iq  Displacement of element i  

q  Velocity of an element 

q  Acceleration of an element 

Q  Position of origin for the one-dimensional coordinate system (assumed at drill deck) 

iQ   Initial displacement of element i  for the transient state 

sQ   Initial displacement of element 1 as a result of the step 

dQ  Amplitude of the driving force 

Q   1n  vector  representing Initial displacement of all elements for the transient state 

r  Variable forming the characteristic equation of a 2nd order differential equation  

holeR  Radius of the borehole 

R  Electrical resistance (only chapter 3) 

GR   Resistance change measured by a strain gauge (only chapter 3) 

iR  The external forces/viscous friction force acting on element i   

wireR   Wire resistance in a Wheatstone bridge (only chapter 3) 

t  Time 

T  Period of a pressure wave/longitudinal mode 

iu  Velocity of drilling fluid at element i   

pv  Velocity of the drill string when POOH 

v   Arbitrary, nonzero and real column vector for the generalized eigenvalue problem 

EXV   Excitation voltage of a Wheatstone bridge 

oV  Output voltage of a Wheatstone bridge 

offsetV   Offset voltage 

rV   Voltage ratio between voltage change in the circuit and excitation voltage 

V   1n  vector of eigenvectors 
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w  1n  vector representing the gravitational force caused by a loaded mass 

x  Displacement of an element in the new coordinate system 

ix  Displacement of element i  

ox   Transient/ordinary solution of n - coupled spring-mass-damper system 

px   Steady-state/particular solution of n - coupled spring-mass-damper system 

x  Velocity of an element 

x  Acceleration of an element 

y   1n  vector representing the displacement of all elements  

y  1n  vector representing the velocity of all elements 

y  1n  vector representing the acceleration of all elements 

  

Greek Symbols 

   Ratio between outer radius of the drill string and radius of the borehole 

i  Ratio of the outer radius of the drillpipe and radius of the borehole 

n  Ratio of the outer radius of the drill collar and radius of the borehole 

i holeR  Outer radius of the drill string at element i   

   Buoyancy factor 

,1i  Variable representing 
2 1i i i i       in the transient solution 

,2i  Variable representing 
2 1i i i i       in the transient solution 

j  Phase shift for element j i  

j   Amplification factor for element j i  

   Change in the value of a variable 

   Change of any changeable quantity 

L  Change in length of a material 

R  Change in resistance (only chapter 3) 

   Strain 

T   Strain in transverse direction of the applied force 

   Scalar used in the eigenvalue decomposition 

   Viscosity of drilling fluid 

   Poisson’s ratio 



80 

 

plexiglas   Poisson’s ratio, plexiglas 

   Bending strain in the transverse direction of applied force 

   Axial stress acting on a cross-sectional area 

   Damping factor/ratio 

i  Damping factor/ratio of element i  

   Summation operator 

w   Shear stress at wellbore wall 

   Phase shift 

i   Phase shift of element i  

i   Induced phase shift relative to the driving force, for element i  

ij   Variable summarizing the amplitudes of all elements for sinusoidal driving force 

kj   Variable summarizing the amplitudes of all elements for sinusoidal driving force 

   Angular frequency of the driving force 

0  Natural frequency of a system, i.e. frequency of an undamped harmonic oscillator 

d  Damped angular frequency of a system 

,d i  Damped angular frequency of element i  

i  Natural angular frequency of element i   

   Unit ohm 

  

Abbreviations 

AC Alternating current  

AI Analog input channel 

ADC Analog to digital converter 

AO Analog output channel 

BB Burr-Brown (integrated circuits manufacturer) 

BHA Bottom hole assembly 

DAQ Data acquisition 

DC Direct current 

DIO Digital input/output channel 

GF Gage factor 
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GND Ground 

HBM Hottinger Baldwin Messtechnik GmbH (strain gauge manufacturer) 

HWDP Heavyweight drillpipe 

ID Inner diameter  

INA Instrumentation amplifier 

LabVIEW Laboratory Virtual Instrument Engineering Workbench 

MATLAB Matrix Laboratory 

MD Measured depth 

NI National Instruments  

OD Outer diameter 

POOH Pull out of the hole, i.e. to remove the drill string from the wellbore 

PVC Polyvinyl Chloride – a thermostatic insulator 

ROP Rate of penetration 
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Appendices 

A Viscous Friction Force 

The viscous friction force acts in opposite direction of the movement of the drill string. 
iR  is 

the viscous force acting on element i  of the drill string. Figure A-1 illustrates a moving drill 

string when POOH. The velocity profile of the drill mud shows the impact of the moving drill 

string. The velocity of the drill mud is higher between the drill collar and the borehole wall 

because the distance is smaller, i.e. ( ) ( ).hole p hole hole c holeR R R R     Hence, the force acting 

on the drill collar is larger than the one acting on the drillpipe. 

 

Figure A-1: The viscous forces acting on the drillpipe and the drill collar when POOH. holeR  is the 

radius of the borehole, p holeR  and c holeR  are radiuses of the drillpipe and drill the collar, respectively. 

In order to derive a useful equation for the viscous friction force, it is necessary to generate the 

following assumptions, where we assume that 

 the mud pump is turned off and no circulation in the mud. 

 the fluid is Newtonian, i.e. 

hole

w

R

v

r 


 


    

 the flow is laminar, steady and axial symmetric 

 the flow component is only parallel to the movement of the drillpipe, i.e. no flow in 

horizontal plane (figure A-1). 
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 no slip condition at the wellbore wall, 
hole ,r R  so that  hole 0iu R  . In annulus, no slip 

condition on inner pipe as well, i.e.  hole ,i i iu R q   where 
holeiR  is the outer radius of 

the drill string and 
iq  is the velocity of the drill string ( pv  in figure A-1). 

Investigating the Navier-Stokes momentum equation in three-dimensional cylindrical 

coordinates, in the z-direction (Morrison, 2011). 

2 2

2 2 2

1 1
.z z z z z z z

r z z

uu u u u u u up
u u r g

t r r z z r r r r z


  

 

           
            

            
 (A.1) 

By applying the assumptions, equation (A.1) reduces to 

1 1
,iup

r
z r r r

   
  

   
 (A.2) 

where 
iu  is the axial velocity component around element .i  Solving the differential equation: 

2
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1

2

1 2

1

2

1
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r r

r z
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u r
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





  
   

  

 
 

 

 
    

 

  

 

 

 (A.3) 

Here, 
1

,
4

p
U

z





 

1c  and 
2c  are constants calculated from the boundary conditions given under 

the assumptions. Implementing the boundary conditions into equation (A.3): 

2 2

hole 1 hole 2 2 hole 1 hole0 ln lnUR c R c c UR c R        (A.4) 

 2 2

hole 1 hole 2lni iq U R c R c     (A.5) 

Inserting equation (A.4) into (A.5) gives the following solution: 

 
 

2 2

hole

1

1

ln

i i

i

q UR
c





 
  (A.6) 

Equation (A.4) into (A.3) gives then: 

2

2

hole 1

hole hole

1 lni

r r
u UR c

R R

    
       
     

 (A.7) 
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Next step is to determine the pressure gradient, .
p

z




 It can be determined from the volumetric 

flow rate in the well: 

2 2

holen nQ R q   (A.8) 

where 
nR  is the outer radius of the drill collar (

holecR  in figure A-1). This is also equal to 

taking the integral of the velocity profile over the annulus (Hovda, 2015). 
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This leads to: 
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 

2
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 (A.9) 

It was necessary to make the assumption that 
n iq q  in order to derive a useful expression for 

the viscous friction force. From equation (A.8) and (A.9), we get an expression for :U  

   

     

2 2 2

22 4 2
hole

2 ln 1
   where   .
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   


  

  
  

  
 (A.10) 

Inserting equation (A.10) into (A.7) gives an expression for the velocity: 

 
 
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 (A.11) 

The derivative of (A.11) is: 

 
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 
 

 (A.12) 

The viscous friction force acting on element   ii L  is given by: 
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 


 
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 (A.13) 

Finally, by inserting equations (A.11) and (A.12) into (A.13), we can derive an expression for 

the viscous friction force acting on element   ii L  (Hovda, 2015). 
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B Complex Number Representation 

Recalling equation (2.20) and (2.21) from section 2.2.4: 

 2

1 12 sin ,i i i i i i i dx x x V k Q t        (2.20) 

The method used to determine 
iA  and the phase shift ,i  is by using the relation between sine- 

and cosine functions and the exponential function with the imaginary argument. This relation 

is known as Euler’s formula and states that 

cos sin ,ixe x i x    (B.1) 

where 1i    is the imaginary unit. Obviously, ixe  is a complex quantity with cos x  as the 

real part and sini x  as the imaginary part. Observing that equation (2.21) is the imaginary part 

of the complex function  ii t

iAe
 

 and the right-hand side of equation (2.20) is the imaginary 

part of 1 1 .i t

i dV k Q e   Hence, by taking the expression 

   ii t

ix t Ae
 

   (B.2) 

and substituting it into the modified version of the equation (2.20), i.e.: 

2

1 12 ,i t

i i i i i i i dx x x V k Q e        (B.3) 

then the ‘imaginary part’ of equation (B.2) is a solution of (2.21) if equation (B.2) is a solution 

of (B.3). Therefore, substituting gives: 

   2 2

12 .ii t i t

i i i i i i di Ae V k Q e
     


        

Dividing out the common factor i te   and re-arranging to obtain 

1

2 2
.

2
ii i i d

i

i i i

V k Q
Ae

i



   
 

 
   

Inverting this and expanding the exponential function using equation (B.1): 

 
2 2

1

21 1
cos sin .ii i i i

i i

i i i i d

i
e i

A A V k Q

    
   

       

By evaluating the equation, it is possible to see that 

   sin .i i ix t A t    (2.21) 
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2 2

1 1

21 1
cos   and  sin .i i i

i i

i i i d i i i dA V k Q A V k Q
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 
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Squaring each of equation (B.4), adding and re-arranging gives: 
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Hence 
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i

i

V k Q
A

c  



 

 
(B.6) 

By dividing the imaginary part of equation (B.4) by the real part of equation (B.4), we obtain:  

2 2
arctan ,i

i

c


 

 
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 
  

where 2 .i ic    
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C LabVIEW Program 

C.1 Front Panel 

 

Figure C-1: Front panel of the LabVIEW program. Channel 1-4 indicate the measuring elements. Two 

columns are aligned to each channel. Left one is for time and right one for measured resistance in the 

strain gauge circuit. The function stop (F) breaks the measuring process The offset nulling the circuit is 

done by the function Zero. 

Figure C-1 illustrates the front panel of the LabVIEW program. It is primarily used to run the 

measurements, stop the measuring process (stop (F)), and to offset nulling the circuit (Zero). 

The program measures with an accuracy of 7 decimals.  
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C.2 Block Diagram 

Figure C-2 illustrates the block diagram of the LabVIEW program.  

 

Figure C-2: The block diagram of the LabVIEW program.  
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D Savitzky-Golay Filtering Method 

MathWorks (2016) describes the Savitzky-Golay filtering method as: 

Savitzky-Golay smoothing filters (also called digital smoothing polynomial filters or least-

squares smoothing filters) are typically used to "smooth out" a noisy signal whose frequency 

span (without noise) is large. In this type of application, Savitzky-Golay smoothing filters 

perform much better than standard averaging finite impulse response (FIR) filters, which tend 

to filter out a significant portion of the signal's high frequency content along with the noise. 

Although Savitzky-Golay filters are more effective at preserving the pertinent high frequency 

components of the signal. Savitzky-Golay filters are optimal in the sense that they minimize the 

least-squares error in fitting a polynomial to frames of noisy data. 

Basically, Savitzky & Golay (1964) showed that a set of integers, i.e. 
1, , , , ,n n n nA A A A  

 can 

be derived and used as weighting coefficients to perform the smoothing process. These 

weighting coefficients are known as convolution integers. Savitzky and Golay proved that the 

use of these convolution integers are equivalent with the process of fitting the data to a 

polynomial. In comparison, the method is computationally more effective and much faster. 

Hence, the smoothed data point,   ,k s
y  by the Savitzky-Golay algorithm is given by the 

following equation (Efstathiou, 2000): 

 
1

n

i k

i n
k ns

i

i n

A y

y

A











  (D.1) 

 


