
Handling Autonomous Robot Scheduling
as an Optimization Problem

Alexander Bakke
Nils Inge Rugsveen

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

This dissertation investigates the possibility to model the behavior of an agent solving a

complex robotic scheduling task, mission 7a of the International Aerial Robotics Competi-

tion, as an optimization problem known as the Time-Dependent Orienteering Problem with

Time Windows. The robot environment is stochastic and dynamic, and the agent has to

make decisions in real time, with little to no possibility for preprocessing. Solution tech-

niques for the problem model and specializations of the problem have been investigated,

along with the swarm algorithms Ant Colony Optimization Algorithm and Intelligent Wa-

ter Drops Algorithm.

The swarm algorithms were implemented and applied to the problem model. The resulting

system was used by a controller to solve the mission in a simulator, where the performance

was evaluated by comparing the scheduler with a simple greedy controller.

Experiments show that the Intelligent Water Drops Algorithm and Ant Colony Optimiza-

tion Algorithm were able to find solutions of adequate quality. Modeling the International

Aerial Robotics Competition as a Time-Dependent Orienteering Problem with Time Win-

dows showed great promise, and the scheduler performed better than the greedy controller.

The Ant Colony Optimization Algorithm had better performance than Intelligent Water

Drops Algorithm in both solving the Time-Dependent Orienteering Problem with Time

Windows and the mission. The Intelligent Water Drops Algorithm showed difficulties with

completing plans when used in the controller because of large solution deviations. The per-

formance of the system in the real world is uncertain, and partial observability may need

to be addressed by Ascend NTNU before the competition.

i

Sammendrag

Denne avhandlingen utforsker mulighetene for å modellere oppførselen til en agent som

løser en kompleks planleggingsoppgave med roboter, oppdrag 7a i konkurransen Interna-

tional Aerial Robotics Competition, som et optimaliseringsproblem kjent som det Tid-

savhengige Orienteringsproblemet med Tidsvinduer. Robotmiljøet er stokastisk og dy-

namisk, og agenten må ta avgjørelser i sanntid, med liten til ingen mulighet for å gjøre

forarbeid. Løsningsteknikker for problemmodellen og spesialiseringer av den har blitt ut-

forsket, sammen med svermalgoritmene Maurkolonioptimalisering og Intelligente Van-

ndråper.

Svermalgoritmene har blitt implementert og anvendt på problemmodellen. Det utviklede

systemet ble brukt av en kontroller for å løse oppdraget i en simulator, hvor ytelsen ble

evaluert ved å sammenligne planleggeren med en enkel grådig kontroller.

Eksperimenter viser at Intelligente Vanndråper og Maurkolonioptimalisering klarte å finne

løsninger av tilfredsstillende kvalitet. Å modellere International Aerial Robotics Competi-

tion som et Tidsavhengig Orienteringsproblem med Tidsvinduer viste lovende resultater, og

planleggeren løste oppgaven bedre enn den grådige kontrolleren.

Maurkolonioptimaliseringen hadde bedre ytelse enn Intelligente Vanndråper både i å løse

det Tidsavhengige Orienteringsproblemet med Tidsvinduer og oppdraget. Intelligente Van-

ndråper viste vanskeligheter med å fullføre planer når den ble brukt i kontrolleren som

følge av store avvik mellom løsningene. Ytelsen til systemet i den virkelige verden er usikker,

og delvis observerbarhet må kanskje bli adressert av Ascend NTNU før konkurransen.

ii

Preface

This master dissertation was written by the authors at the Department of Computer and

Information Science at the Norwegian University of Science and Technology (NTNU).

The project is a part of Ascend NTNU, which is a student driven organization at NTNU.

Ascend NTNU will participate in the the International Aerial Robotics Competition(IARC),

the longest running collegiate aerial robotics challenge in the world, in the summer of 2016

as the first Scandinavian participants. Ascend NTNU was founded during the spring of

2015 and consists of students from multiple disciplines ranging from first year to fifth year

students.

The authors would like to thank supervisor Keith L. Downing for valuable guidance and

insight during the research.

Also, Ascend NTNU and the members should be acknowledged for their good support and

good memories, as well as KONGSBERG for the financial support.

Trondheim, June 7, 2016

Nils Inge Rugsveen, Alexander Seldal Bakke

iii

Acronyms

ACO Ant Colony Optimization Algorithm

ACS Ant Colony System

ERS Exponential Rank Selection

FPS Fitness Proportionate Selection

GPS Global Positioning System

HUD Heuristic Undesirability Degree

IARC International Aerial Robotics Competition

IWD Intelligent Water Drop

IWDA Intelligent Water Drops Algorithm

LRS Linear Ranking Selection

NTNU Norwegian University of Science and Technology

OP Orienteering Problem

OPTW Orienteering Problem with Time Windows

POI Point Of Interest

RQ Research Question

TDO Time-Dependent Orienteering Problem

TDOPTW Time-Dependent Orienteering Problem with Time Windows

iv

v

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

Contents

Abstract i

Sammendrag i

Preface ii

Acronyms iii

1 Introduction 2

1.1 Research Goal . 3

1.2 Research Questions . 4

1.3 Summary . 4

2 Background 6

2.1 International Aerial Robotics Competition . 6

2.1.1 The Mission . 7

2.1.2 Details . 7

2.1.3 Run Termination and Scoring . 9

2.2 Problem Definition . 10

2.2.1 Problem Abstraction . 10

2.2.2 Time-Dependent Orienteering Problem with Time Windows 10

2.2.3 Related Problems . 14

2.3 Algorithms . 20

2.3.1 Foundation . 21

vii

CONTENTS viii

2.3.2 Ant Colony Optimization . 22

2.3.3 Intelligent Water Drops . 33

2.4 Summary . 40

3 Tools and Technologies 43

3.1 Languages and Frameworks . 43

3.2 Visualization Tool . 43

3.2.1 Description . 44

3.3 Simulator . 45

3.3.1 Description . 45

3.3.2 Controlling the Aerial Robot . 47

3.4 Summary . 47

4 Methodology 49

4.1 Representing Time-Dependent Cost . 49

4.2 Heuristic Functions . 51

4.3 Selection Methods . 53

4.3.1 Fitness Proportionate . 53

4.3.2 Rank selection . 54

4.3.3 Tournament selection . 55

4.4 Pruning the Search Space . 55

4.5 Local Search . 56

4.6 Solution Reinforcement . 58

4.7 Solution Representation . 60

4.8 Applying the Model to the Simulator . 60

4.8.1 Cost Function . 61

4.8.2 Robot State . 61

4.8.3 Rewards . 62

4.8.4 Time Windows . 64

4.8.5 Service Time . 66

4.8.6 Action Selection . 67

CONTENTS 0

4.8.7 Commitment to Plan . 67

4.8.8 Solving Additional Requirements . 68

4.9 Greedy Controller . 69

4.10 Summary . 70

5 Results and discussion 72

5.1 Benchmark Tests . 73

5.1.1 Orienteering Problem with Time Windows 75

5.1.2 Time-Dependent Orienteering Problem with Time Windows 77

5.2 Simulator . 84

5.2.1 Behavior of Greedy Controller . 87

5.2.2 Behaviour of Time-Dependent Orienteering Problem with Time Win-

dows Controller . 90

5.2.3 Controller Comparison . 95

5.3 Summary . 96

6 Conclusion 97

6.1 Research Value . 99

6.2 Future Work . 100

A Appendix 102

A.1 Complete Formulation of Intelligent Water Drops Algorithm Equations 102

A.2 International Aerial Robotics Competition . 106

A.2.1 Previous Missions . 106

A.2.2 Scoring . 108

A.2.3 Competition Venues . 108

A.3 Additional Benchmark Results . 109

Bibliography 109

Chapter 1

Introduction

The International Aerial Robotics Competition (IARC) is the longest running collegiate

aerial robotics challenge in the world, with the primary goal to further research in aerial

robotics technology. Each time a mission is completed, a new one that has never been

solved is issued. The current mission, mission 7a, has not been solved in the two tries so

far.

The goal of mission 7a is to guide 10 robots driving on the floor of a square arena across a

specified side using an autonomous aerial robot. The aerial robot can turn a ground robot

a predefined angle by triggering a sensor on their top or front. The ground robots move in

a repeatable pattern, but have some noise in their trajectory such that the exact trajecto-

ries and positions are uncertain.

Ascend NTNU was established by a group of students at the Norwegian University of Sci-

ence and Technology (NTNU) to develop competence and knowledge in the area of robotics,

aiming at participation in IARC 2016. This dissertation will contribute to Ascend NTNU

and their participation in IARC with a system that controls the behavior of the aerial

robot. Some of the challenges include action planning in a stochastic environment, mov-

ing targets, preventing ground robots from exiting the arena erroneously, and minimization

of completion time.

The problem was abstracted and modeled as a Time-Dependent Orienteering Problem

2

CHAPTER 1. INTRODUCTION 3

with Time Windows (TDOPTW), a less known generalization of the Traveling Salesman

Problem. The objective is to maximize the received reward for visiting a set of nodes in a

graph, given a cost budget, i.e. maximum distance to travel, and a limited time window to

visit each node. Additionally, each node has a service time the agent is required to wait be-

fore departing, and the model is time-dependent, meaning that the edge costs depend on

the cost spent so far traversing the graph.

Due to rapid changes in the environment, finding an exact solution is assumed to be inessen-

tial, as such it was decided to use optimization algorithms for solving the problem. Fur-

thermore, since these solutions have to be constructed quickly, it was decided to use the

class of swarm optimization algorithms, which has shown to be computationally efficient at

finding high quality solutions. Two algorithms were chosen for this purpose: Ant Colony

Optimization Algorithm (ACO), which is inspired by how ants explore its environment, be-

cause of its strong foundation in research, many variants, and remarkable results on several

problems closely related to TDOPTW; and Intelligent Water Drops Algorithm (IWDA),

which is inspired by how water flows through its environment creating rivers to reach the

ocean, because of its similarities to ACO though having a more complex model, and its

convergence speed. To the extent of the authors’ knowledge, neither of these algorithms

have been shown to solve the Time-Dependent Orienteering Problem with Time Windows

before.

1.1 Research Goal

The goal of this research is to implement a scheduling system, modeled as a Time-Dependent

Orienteering Problem with Time Windows, for an autonomous aerial robot that guides

ground robots in a dynamic and stochastic environment. The implemented system will be

used in the 2016 International Aerial Robotics Competition, where continuous and time

efficient evaluation of action plans is required in order to respond to changes in the envi-

ronment.

CHAPTER 1. INTRODUCTION 4

1.2 Research Questions

Based on the competition environment and the proposed problem model, the following re-

search questions have been formulated:

RQ1 Which of the algorithms Ant Colony Optimization and Intelligent Water Drops can

solve the Time-Dependent Orienteering Problem with Time Windows?

RQ2 Which of the successful algorithms provides the best trade-off between solution qual-

ity and computation time?

RQ3 Is solving the IARC competition mission 7a as a Time-Dependent Orienteering Prob-

lem with Time Windows with the algorithms presented in RQ1 better than a greedy

algorithm?

Research question 1 (RQ1) and 2 (RQ2) relates to the application of the algorithms on

TDOPTW, while research question 3 (RQ3) relates to IARC mission 7a, with a great prac-

tical difference: In RQ3 the environment is defined as stochastic and continuous, which

requires continuous repair of action plans and limits benefit of deliberation about future

events. The results from RQ3 will show if modeling mission 7a as a combinatorial prob-

lem has any benefits compared with the simple approach of pursuing the highest available

reward at each execution step.

1.3 Summary

The goal of this research is to implement a scheduling system for an aerial robot for As-

cend NTNU, to use in the International Aerial Robotics Competition 2016, mission 7a.

The problem environment has been modeled as a Time-Dependent Orienteering Problem

with Time Windows, a generalization of the Traveling Salesman Problem. Intelligent Wa-

ter Drops Algorithm and Ant Colony Optimization Algorithm, two swarm intelligence algo-

rithms used in search, are proposed to solve the problem. The most appropriate algorithm,

CHAPTER 1. INTRODUCTION 5

including a simple greedy approach, to solve the mission will be identified.

In Chapter 2: Background the mission requirements, problem model, and swarm algo-

rithms will be examined. Chapter 3: Tools and Technologies reviews the tools used and de-

veloped during the research, such as a simulator of the mission environment, while in Chap-

ter 4: Methodology the implementation of the system will be explained and discussed. The

results of the tests performed are shown and discussed in Chapter 5: Results and discussion.

Chapter 2

Background

In this chapter the International Aerial Robotics Competition and the mission will be de-

scribed, and based on this the problem model defined. Problems related to the Time-Dependent

Orienteering Problem with Time Windows, and their solution approaches, will be reviewed.

A general explanation of the algorithms proposed to solve the problem will be given, as

well as different variants and previous work found in the literature.

2.1 International Aerial Robotics Competition

The International Aerial Robotics Competition was started in 1991 on the campus of Geor-

gia Institute of Technology, and is the longest running collegiate aerial robotics challenge

in the world. The primary goal of the competition has been to provide a purpose to fur-

ther research in state-of-the-art technology in aerial robotics, where each challenge required

autonomous robotic behavior not demonstrated by any organization or government at the

time. For a brief description of previous missions, see Appendix Appendix A.2.1: Previous

Missions.

6

CHAPTER 2. BACKGROUND 7

2.1.1 The Mission

The seventh and current mission was initiated in 2014, and consists of two parts designated

as mission 7a and mission 7b. This dissertation will try to solve the planning problem of

mission 7a. The overall goal is for the aerial robot to guide 10 autonomous ground robots

across the correct side, designated as the ‘green’ side, of a square within 10 minutes. Al-

though the task seems similar to a herding problem the robots does not act as a group,

which is apparent by frequent collisions between robots and that they have no knowledge

about the environment. Once a ground robot has moved outside the arena, whether over

the green side or any other, it is out of the game. Only when mission 7a is completed will

participants be tested in mission 7b.

In mission 7a, each team is allowed three flight attempts in order to complete the mis-

sion. The minimum mission, i.e. the minimum requirements for the mission to be deemed

achieved, is to get at least 7 ground robots that have been landed upon to cross the green

boundary.

2.1.2 Details

The following excerpt of conditions and rules are described by the organization IARC In-

ternational Aerial Robotics Competition (2015).

2.1.2.1 Targets

There are 10 autonomous ground robots moving around the arena at the speed of 0.33

m/s, acting as targets for the aerial robot to interact with. The hobbyist robot iRobot

Create, which can be found at www.irobot.com/About-iRobot/STEM/Create-2.aspx, serves

as the basis for the robot hardware. The movement of the robots are decided by four fac-

tors:

• Every 5 seconds the trajectory is changed 0–20 degrees (the ‘trajectory noise’)

http://www.irobot.com/About-iRobot/STEM/Create-2.aspx

CHAPTER 2. BACKGROUND 8

• Every 20 seconds the trajectory is changed 180 degrees (the ‘trajectory reversal’)

• On collision the trajectory is changed 180 degrees

• By landing on top of the robot, the trajectory is changed 45 degrees clockwise

Figure 2.1: IRobot Create is used as the ground robots. Image is taken from RobotShop
Inc (2015), a robotics vendor located in Mirabel, Quebec, Canada.

That way the ground robots change trajectory deterministically every 20 seconds, and with

a uniform probability distribution every 5 seconds. The possibility of collisions between

ground robots or ground robots and obstacles increase the uncertainty in the environment

significantly. Although initial positions and trajectories are known, the stochastic factors

makes it unsuccessful to plan beforehand.

In addition to the ground robots, there are four obstacle robots present in the arena. The

obstacles are based on the same robot model as the ground robots, but can be as much as

2 meters tall. The obstacles move clockwise concentrically with a radius of 5 meters and a

speed of 0.33 m/s, and will not change trajectory during the run. If an obstacle collides

with a ground robot (or possibly another obstacle), it will stop until it can move freely

again.

2.1.2.2 Aerial Robot

The basic design of the aerial robot may be decided by the participant, as long as it com-

plies with these requirements:

• Able to initialize launch and flight inside the arena autonomously

• Capable of sustained flight

CHAPTER 2. BACKGROUND 9

• Equipped with an independently controlled termination mechanism

• Navigates without use of global-positioning navigational aids, such as GPS

• Carries all sensory equipment

Computations may be performed on a separate computer and information transmitted be-

tween the computer and the aerial robot.

2.1.3 Run Termination and Scoring

A run is terminated when either

1. There are no robots left in the arena

2. The time has run out

3. The aerial robot has violated any of the rules:

(a) Collide with obstacle more than three times, whether in the air or on the ground

(b) Fly more than 2 meters outside the arena boundaries

(c) Fly outside the arena boundaries for more than 5 seconds

(d) Reach altitude of more than 3 meters

Participants receive points in two categories: Effectiveness measures, and subjective mea-

sures. The metrics relevant for this dissertation are the reward received for successfully

guiding a robot over the green boundary, and the per minute penalty until completing the

mission. An overview of the scoring categories can be found in Appendix A.2.2: Scoring.

The team with the highest numerical score after the minimum mission is achieved will win

the AUVSI Foundation Grand Prize and be declared winner of the mission 7a competition.

In the event of a tie, the team with the fastest run is declared the winner. The score serves

as a ranking of the participants, both in the event of success or failure to complete the mis-

sion.

CHAPTER 2. BACKGROUND 10

2.2 Problem Definition

This section will study the technical aspects of the problem more closely, and define an

abstraction of the problem such that it can be modeled mathematically.

2.2.1 Problem Abstraction

The scheduling problem of mission 7a can be considered a combinatorial optimization prob-

lem, where a set of nodes has to be interacted with before leaving the arena such that

maximum reward is received. Travel between nodes and interactions take time, the posi-

tion of all nodes will change with time, and hence also the associated cost of traveling be-

tween them. This makes the problem asymmetric, because the cost of traveling between

two nodes depends on the sequence they are visited in. A problem that closely resembles

the problem of mission 7a is the Time-Dependent Orienteering Problem with Time Win-

dows (TDOPTW).

2.2.2 Time-Dependent Orienteering Problem with Time

Windows

The TDOPTW is a generalization of the Traveling Salesman Problem (TSP), with multi-

ple differences: In TSP the objective is to visit all nodes in a graph and return to the ori-

gin with minimal cost Applegate et al. (2007), while TDOPTW seeks to maximize the re-

ward of visiting a subset of the graph within a given cost budget, where the travel cost be-

tween two nodes depends on the departure time, and rewards can only be obtained within

a given time window Garcia et al. (2010). A time window designates the minimum and

maximum amount of time that can be used to reach the node in order to receive the re-

ward. The time spent must be derived from the cost spent and the speed of the agent, but

in this dissertation the agent has a constant velocity of one unit, and thus the term ‘time

CHAPTER 2. BACKGROUND 11

window’ is interchangeable with ‘cost window’. At each node the agent must wait a desig-

nated ‘service time’, which is added to the traveling cost.

To the best of the authors’ knowledge, TDOPTW has only been proposed by Garcia et al.

(2010), and under no other name than TDOPTW. No mathematical formulation for the

problem has been defined, thus the one presented here is derived from the Time-Dependent

Orienteering Problem (TDO) as defined by Fomin and Lingas (2002), and Orienteering

Problem with Time Windows (OPTW) as defined by Kantor and Rosenwein (1992).

s ∈ S: A solution in the search space S

Tmax : Maximum travel time

t (j) = [ta(j), tb(j)] | 0 ≤ ta(j) ≤ tb(j), 0 ≤ tb(j) ≤ Tmax : Time window for node j

{v(i , j) | i = 1, . . . ,n −1, j = 2, . . . ,n}: The set of edges given nodes i and j

c(i , j , t) = (v(i , j), t) | ta(j) ≤ t +d(i , j , t) ≤ tb(j): A solution component, where v(i,

j) is traversed with departure time t

d(i , j , t): Time cost associated with adding solution component c(i, j, t) to the

path

b(j): Service time associated with adding solution component c(i, j, t) to the

path

r (j): Reward associated with node j

s = {c(1, j ,0), . . . ,c(k,n, t)}: A solution as a set of solution components

The following additional constraints apply:

c(i , j , t1) ∈ s | c(k, j , t2) ∉ s: No destination nodes should appear twice in the solu-

tion∑
c(i , j ,t)∈s

d(i , j , t) ≤ Tmax : Travel cost must not exceed cost budget

Given a objective function defined by

f (s) = ∑
c(i , j ,t)∈s

r (j) (2.1)

the problem is to construct a path s ∈ S from a specified origin, node 1, to a specified des-

CHAPTER 2. BACKGROUND 12

tination, node n, such that f (s) is optimized. The reward of node j can only be collected

during the interval t(j), its specified time window, but the agent may wait at the node un-

til the opening time. We assume that at most one time window is associated with each

node.

2.2.2.1 Problems Not Covered by TDOPTW

Although the competition environment closely resembles TDOPTW, the following proper-

ties are not considered in TDOPTW:

• Partially observable: The environment is probably not fully observable, such that the

aerial robot does not have perfect knowledge about the robots’ position and trajec-

tory

• Stochastic: Future states cannot be calculated deterministically due to the robots’

trajectory noise

• Continuous: Due to the stochastic environment there are an infinite number of possi-

ble states and interaction points

After research question 1 and 2 have been solved, the stochastic and continuous proper-

ties of the environment must be handled in solving research question 3. The aerial robot’s

sensory capabilities at the point of the competition is not yet known, and thus partial ob-

servability will not be solved in this dissertation, although suggestions for solving it will be

made in Chapter 6: Conclusion.

2.2.2.2 Previous Work

As far as the authors are aware, the Time-Dependent Orienteering Problem with Time

Windows (TDOPTW) is not a well researched optimization problem, and only one arti-

cle solving this optimization problem was found, under the name TDOPTW. Garcia et al.

(2010) used the TDOPTW to model a Personalized Electronic Tourist Guide for mobile

hand-held devices, where the goal was to create personalized routes that maximize the

CHAPTER 2. BACKGROUND 13

tourists’ satisfaction. They managed to generate good solutions in real time1 in a real world

environment, creating tourist routes for the city San Sebastian.

Model

Each destination, i.e node, was called a Point Of Interest (POI) and given a score which

indicated how valuable the POI was. The POIs had opening hours which were modeled

as time windows. A tourist could travel between POIs by either walking or using public

transportation. The public transportation had different departures depending on the time

of day, thus introducing time dependency.

Approach

They developed a hybrid approach which split the TDOPTW into two problems, TDO and

OPTW and used a different heuristics on each of them. First they did an offline calcula-

tion of the average traveling time between two POIs, and stored them in a database, and

solved the problem as a OPTW based on Vansteenwegen et al. (2009), which uses an Iter-

ated Local Search.

After they obtained a solution for the OPTW with average travel times, they did a repair-

ing procedure with real travel times between POIs, starting from the first POI in the route.

If the real travel time was shorter than average they tried to move the visit towards the

start, updating waiting time and departure time of the visit. If the real travel time was

larger and made the route infeasible, they removed the POI from the route, moving other

visits forward.

Results

The city of San Sebastian, located in the North of Spain, was used to generate 32 test in-

stances. The problem model had around 50 POIs, and 26 public transport lines with 467

stops. The minimal time unit was 1 minute, and had four different cost budgets: 2, 4, 6,
1In Garcia et al. (2010), real time was defined as less than 5 seconds delay.

CHAPTER 2. BACKGROUND 14

and 8 hours. They established that a tourist needed a cost budget of 20 hours to visit all

the POIs, and observed that for an 8 hour cost budget they managed to collect around half

of the maximum possible score. Their worst calculation time was less than 0.25 seconds.

2.2.3 Related Problems

Specializations of the TDOPTW, such as the Traveling Salesman Problem, have been re-

searched extensively, and several successful approaches and techniques have been identi-

fied. The previous research on specializations will be investigated in order to gain insight

in techniques and approaches to solve different constraints present in TDOPTW. Addi-

tionally, some other problems will be discussed in order to determine their relevance to the

research questions.

2.2.3.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a combinatorial problem where the objective

is, given a set of cities and the travel cost between each pair of them, to find the cheapest

path to visit every city exactly once and return to the origin city Applegate et al. (2007).

The problem has been proven to be NP-hard Laporte (1991). The practical purposes of the

TSP has given rise to several, more complex variations of the problem.

Common Solutions

Laporte (1991) has investigated common solution techniques for TSP. The problem can be

solved by either using exact algorithms or approximation algorithms, depending on the size

of the problem and the resources available.

Exact Algorithms

An exact algorithm is an algorithm that promises to find the optimal solution to a prob-

lem. In order to solve exactly, TSP is often represented as an Integer Linear Programming

CHAPTER 2. BACKGROUND 15

problem, where the aim is to optimize a linear function, the objective function, which is

subject to equality and inequality constraints that are also linear. In TSP the objective

function is a measure of the cost of traveling a path, and the constraints ensures the valid-

ity of the path.

A commonly used exact solution technique used on Integer Linear Programming problems

are the Branch-and-Bound algorithm, where the idea is to find optimal bounds for the so-

lution. The problem is often formulated as a tree, and the algorithm systematically enu-

merates the candidate solutions, checking that the branch is inside the bounds before enu-

merating any further. The branch is discarded if it cannot find a better solution than the

best found so far. Typically for TSP, an initial lower bound can be obtained by relaxing

the constraints defined in the Integer Linear Programming problem.

Approximate Algorithms

An approximate algorithm does not necessarily find the optimal solution to a problem, but

a satisfactory one according to some criteria. Such algorithms are often used where compu-

tation power is limited or low delay is essential, in order to find adequate solutions without

traversing the complete search space. As mentioned, the TSP is a NP-hard problem, so it

is not always feasible to obtain an exact solution. Much research has focused on developing

heuristics to obtain an approximate solution. These approximations can be categorized as

heuristics with a worst-case performance, or heuristics with good empirical performance. A

simple way of approximating a lower bound for a symmetrical (undirected) TSP is to com-

pute the length of the shortest spanning tree of the problem. This is shown to guarantee a

lower bound within two times the optimal solution, and can be done in O(n2) time.

Some of the heuristics, categorized as either ‘tour construction procedures’ or ‘tour opti-

mization procedures’, known to yield good empirical solutions are briefly explained below.

Tour Construction Procedures

In tour construction procedures one or more paths are generated in each iteration, by iter-

atively adding an edge to the path until the path is completed. Each edge is selected ac-

CHAPTER 2. BACKGROUND 16

cording to some mechanism guided by the heuristic, until a satisfactory solution is found.

The nearest-neighbor algorithm adds the nearest neighbor of the current node to the path

at each step. It is shown that the complexity is O(n2)

Insertion algorithms start with a path of two nodes, and iteratively inserts a node chosen

with respect to a given criterion into the path. Such a criterion can be the least cost or the

node furthest away from the path. The complexity of this procedure varies between O(n2)

and O(nl og n) depending on the criterion being used.

The Patching algorithm is performed by constructing subtours (circuits not covering all

nodes) in a TSP, and connecting the subtours together by the minimal cost until the solu-

tion contains only one circuit.

Tour Optimization Procedures

Instead of generating a tour as in tour construction procedures, tour optimization proce-

dures modifies an existing path in order to improve the solution.

The r-opt algorithm considers a initial tour and removes r arcs from the tour, before ten-

tatively reconnecting the remaining subtours in all possible ways. If any improvements are

made, the new tour is set as the initial tour and a new round of r-opt is performed. This

continues until no more improvements can be obtained. Generally an r-value of 2 or 3 is

used. The 2-opt algorithm will be further discussed in Section 4.5: Local Search.

Simulated annealing is a successive method in combinatorial optimization, which is derived

from material annealing. In order to bring a material to a minimal-energy solid state, it is

heated until the particles are randomly distributed. Then it is gradually cooled down un-

til it reaches a stable state. In combinatorial optimization the temperature variable T is

initially high, which allows solutions in the neighborhood of another to be examined. Un-

like the r-opt algorithm, worse solutions can be obtained, which reduces the probability of

being trapped in a local optimum. As the temperature T decreases, fewer states are exam-

ined and the algorithm focuses in the area of the best found solution (i.e decreasing explo-

CHAPTER 2. BACKGROUND 17

ration2 in favor of exploitation3).

Tabu search also allows solutions to be deteriorated, but to divert the search from the vicin-

ity of examined solutions, it manages a list of forbidden solution components in a ‘tabu

list’. Each time a new best solution is found, its components are added to the tabu list,

where items persist for a given number of iterations. The Tabu search runs until a stop-

ping condition is met, such as a predefined number of iterations or a solution with a high

enough fitness4.

Relevance

TSP is a well known problem that has been extensively researched. By modifying tech-

niques devised for TSP with additional constraints, they may be applied to generalizations

of TSP. The research in representing and solving TSP with swarm optimization algorithms

is particularly interesting in context of the research questions, more so the algorithms that

have not received as much attention on generalizations of the TSP. Variants of ACO and

IWDA used on TSP are presented and discussed in Section 2.3: Algorithms.

However, dynamic cost and maximization of profits are not considered in TSP, nor visiting

nodes in a certain time window. As such, several constraints have to be applied to TSP

solutions to adapt them to TDOPTW.

2.2.3.2 Orienteering Problem

The Orienteering Problem, denoted by OP, is a generalization of the TSP. Its name origi-

nates from Tsiligirides (1984) and Chao et al. (1996). In OP, cities and traveling costs are

defined as in TSP. However, a predefined origin and destination node is given, as well as

a maximum allowed cost budget for the tour. Each city has a reward associated with it,

which is obtained when the traveler visits the city. The goal of OP is to maximize the to-

tal reward collected constrained by the cost budget, and thus TSP is a special case of OP
2Investigate a diverse area of the search space
3Search in the vicinity of known, good solutions in the search space
4The quality of the solution

CHAPTER 2. BACKGROUND 18

where the origin and destination is the same, all cities has the same reward, and the cost

budget allows for all cities to be visited.

This problem is also known as the Selective Traveling Salesperson Problem, the Maximum

Collection Problem, and the Bank Robber Problem Vansteenwegen et al. (2010).

Common Solutions

Since OP is a generalization of TSP, many of the methods mentioned previously can be

extended to solve the OP. The survey Vansteenwegen et al. (2010) lists several solution ap-

proaches. As with the TSP, there exists both exact and approximate algorithms to solve

the OP. Swarm optimization techniques have also proved successful on the OP in later

years.

Relevance

Although OP is not as well researched as TSP, the extensions applied to common TSP so-

lution techniques provide useful insight when applying the algorithms to TDOPTW. The

application of the swarm-based optimization algorithm Ant Colony Optimization on OP is

presented and discussed in Section 2.3.2.4: Metaheuristics for the Orienteering Problem.

The OP is closer related to TDOPTW than the TSP, because it incorporates the maxi-

mization of profits as its main goal, and does not require all nodes to be visited. Multiple

constraints remain, though, to make it identical to TDOPTW.

2.2.3.3 Orienteering Problem with Time Windows

The Orienteering Problem with Time Windows (OPTW) is a generalization of the OP,

with an additional constraint: Each node’s reward can only be obtained within the node’s

time window (cost window), meaning that the cost used to reach the node must be larger

than the opening time and smaller than the closing time to receive the reward. The OP is

therefore a special case of the OPWT where each city has an opening time of 0 (alterna-

CHAPTER 2. BACKGROUND 19

tively negative infinite) and a closing time of the cost budget (alternatively positive infi-

nite) such that all rewards can be obtained at any time Kantor and Rosenwein (1992).

Common Solutions

The survey Vansteenwegen et al. (2010) lists some solution approaches to the OPTW, but

the specific techniques have not great enough relevance to be reviewed here. The most im-

portant issue raised was that because of the time windows, tour improvement procedures

would not always yield valid routes in OPTW. It was stated that there are no general and

efficient solution to perform a local search, a category of tour improvement procedures,

producing only valid solutions.

Relevance

Investigations show that local search procedures vastly improve the performance of Intel-

ligent Water Drops Algorithm (IWDA) and Ant Colony Optimization Algorithm (ACO)

when solving TSP, as discussed in Section 2.3: Algorithms, but the performance when

solving OPTW is unknown. The problems with tour improvement procedures in OPTW

should be investigated further, in case some work-around which improves the performance

of IWDA and ACO can be found.

There is one constraint in TDOPTW that is not considered in OPTW, namely dynamic

cost depending on departure time, which will be investigated in Section 4.1: Representing

Time-Dependent Cost.

2.2.3.4 Other Problems

Mission 7a in IARC can be modeled as different types of problems. At first glance it may

look like a typical herding (Strombom et al. (2014)) or pursuit-evasion problem (Hespanha

et al.). However, the robots in the competition does not sense or model the environment

and cannot act as a herd or evade any pursuers. Furthermore, their actions are limited to

turning a set angle on contact, which makes them unable to align and cohere as in herds or

CHAPTER 2. BACKGROUND 20

evade by proximity as in pursuit-evasion problems.

Another approach is to look at the problem as a classical planning problem, and the use

of an automated planning approach such as Hierarchical Task Networks. Hierarchical Task

Networks breaks down goals into smaller tasks incrementally, and finally tasks into prim-

itive actions the agent can perform to alter the state of the environment Ghallab et al.

(2004). The main objective of such a system is to find a plan that achieves high-level goals

by low-level tasks, while solving dependencies between actions and their preconditions. Al-

though it would be possible for such a system to create plans for the competition environ-

ment, given a good reward function or heuristic, it is impractical as there are no dependen-

cies, and the single high-level task of each robot to direct them towards the green bound-

ary is trivial to map to the two low-level actions available.

Vehicle Routing Problem (VRP) is another generalization of TSP where several agents

cooperate to visit all nodes in a graph, with the goal of minimizing the cost Dantzig and

Ramser (1959). Since there is only one agent in the IARC mission it is not directly rel-

evant, but the problem has received much attention and research with ACO and IWDA

which can benefit this research.

2.3 Algorithms

In the following sections swarm intelligence, combinatorial problems, and the two swarm

intelligence algorithms ‘Intelligent Water Drops Algorithm’ (IWDA) and ‘Ant Colony Op-

timization Algorithm’ (ACO) will be presented. The previous applications of the two algo-

rithms and their relevance to the Time-Dependent Orienteering Problem with Time Win-

dows will also be reviewed.

CHAPTER 2. BACKGROUND 21

2.3.1 Foundation

Swarm Intelligence

The term ‘swarm intelligence’ was first introduced in Beni and Wang (1989), and denotes

a class of metaheuristic5 algorithms that simulate a system of simple and social living be-

ings, such as ants, termites, birds, and fish Parpinelli and Lopes (2011). Metaheuristic al-

gorithms are approximate algorithms used to obtain results with reasonable quality in a

reasonable amount of computation time for hard combinatorial and continuous optimiza-

tion problems. In swarm intelligence algorithms, simple entities interact with each other

and the environment according to a small set of rules, which as a system has an emergent

property that cannot be achieved by any single entity alone. Swarm algorithms can be ap-

plied to a wide variety of problems including search, simulation, and prediction, depending

on the specific algorithm, but require intimate knowledge of the problem to achieve the

wanted emergent behavior.

The General Combinatorial Problem

This subsection describes the combinatorial problem as formulated in Dorigo and Blum

(2005), and will be used to describe the algorithms in the following sections. A combinato-

rial optimization problem P is defined as follows:

P = (S,O, f): The problem model

S: The search space

O: A set of constraints among the variables

f : An objective function f | S →R+ to be optimized

where a solution s ∈ S is defined as

s = {X (1), ..., X (n)}: A set of n solution components
5A technique using a heuristic that is independent of the problem

CHAPTER 2. BACKGROUND 22

X (i) = v(i , j) ∈ D(i) = {d(i ,1), ...,d(i , |D(i)|)}: Domain values of X (i)

c(i , j) = (X (i), v(i , j)) ∈ C : A solution component in the set of solution compo-

nents

J (sp): The set of feasible solution components for a given partial solution

The goal then is to find a globally optimal solution s∗. As an example, if the objective is

to minimize the cost of a solution, s* can be defined as such:

f (s∗) ≤ f (s) ∀s ∈ S (2.2)

2.3.2 Ant Colony Optimization

The class of algorithms called Ant Colony Optimization (ACO) was introduced in 1991

with the algorithm Ant System Dorigo et al. (1991), as one of the first mainstream swarm

intelligence algorithms Parpinelli and Lopes (2011). While no applications to TDOPTW

has been found, ACO has been successfully applied to the closely related problem ‘Team

Orienteering Problem with Time Windows’ Montemanni et al. (2011), reviewed in Sec-

tion 2.3.2.4: Enhanced Ant Colony System for the Team Orienteering Problem with Time

Windows.

The foraging behavior of real ants serves as inspiration for ACO, emulating the behavior

of depositing pheromone as stigmergy6. When searching for food, ants will initially explore

the surrounding areas until a food source is found, and deposit pheromone on its return

trip from the food source. Both the same and different ants can distinguish this pheromone

trail and its strength in order to navigate to previously found food.
6A mechanism of indirect communication between agents or actions.

CHAPTER 2. BACKGROUND 23

2.3.2.1 Description

When the ant discovers a food source, the amount and quality of the food determines the

amount of pheromone the ant deposits on each time step on its return trip. Other ants en-

hance the trail as well when returning with food. As a mechanism of negative feedback,

i.e. suppressing the positive feedback of the pheromone to keep the system from stabilizing,

the pheromone will evaporate over time. As such, longer trails will have a lower concen-

tration of pheromone because ants need longer time to travel to the food source. A rea-

sonably good food source nearby may be more beneficial to a colony than a higher quality

food source further away, and the balance between positive and negative feedback makes

each ant able to perceive which food source has the highest utility for the colony.

An element of probability when choosing an action is present in each ant, which enables

exploration. Ants may ignore the strongest pheromone trail, or all pheromone trails alto-

gether, to find better routes or food sources. As the survey Dorigo and Blum (2005) points

out, this allows ants to find the shortest path between their nest and the best food source

by the indirect communication of pheromone trails alone. Even if a path is obstructed, e.g.

with a falling stick, the ants are able to quickly find the shortest path around it by explor-

ing and establishing new pheromone trails.

2.3.2.2 Definition

In ACO the following extension to the combinatorial problem in Section 2.3.1: The Gen-

eral Combinatorial Problem applies:

s(k) | k = 1, ...,m: The solution of ant k

J (sp (k)): The set of feasible solution components for the partial solution of ant k

t (i , j) ∈ T : Pheromone trail parameters associated with component v(i, j)

t0: The initial pheromone level, which is a constant larger than 0

f (s): Fitness function to be maximized

CHAPTER 2. BACKGROUND 24

2.3.2.3 Pseudocode

The following pseudocode shows the general ACO framework, where the functions are de-

scribed below.

1 Input : P , and parameters
2 In i t i a l i z ePhe r omoneVa lu e s (T)
3 s * = Nul l
4 wh i l e (not t e rm ina t i on c ond i t i on) :
5 G = Ø
6 f o r (j = 1 , . . . , m) :
7 s = Cons t ruc tSo lu t i on (T)
8 i f (s i s v a l i d s o l u t i o n) :
9 s = Loca lSearch (s)
10 G = G + s
11 i f (s * == Nul l or f (s) > f (s *)) : s * = s
12 ApplyPheromoneUpdate (T, G, s *)
13 r e tu rn s *

Figure 2.2: Pseudocode for the Ant Colony Optimization Algorithm

InitializePheromoneValues

Set the pheromone level of all edges to the initial pheromone level t0.

ConstructSolution

Given

o(i , j): The heuristic value of adding solution component c(i, j),

iteratively build a sequence of feasible solution components by, for each ant k, selecting a

feasible solution component by the transition probabilities defined as

pk (i , j) =

(t (i , j))a×(o(i , j))b∑

c(q,r)∈J (sp (k))
(t (q,r))a×(o(q,r))b i f c(i , j) ∈ J (sp (k))

0 el se

(2.3)

CHAPTER 2. BACKGROUND 25

where a and b denotes a relative importance between heuristic information and pheromone

value. If the set of feasible solution components is empty, the function returns.

ApplyPheromoneUpdate

A global pheromone update function will be applied to all components as follows.

t (i , j) = (1−p)× t (i , j)+ p
Gp

∑
{s∈Gp | c(i , j)∈s}

F (s) (2.4)

where

p ∈ (0,1]: The evaporation rate of the pheromone

Gp ⊆ G ∪ s∗: Some subset of the newly found solutions and the best solution,

depending on the problem

F (s) | f (s) < f (s′) → ∞> F (s) ≥ F (s′): A quality function F(s)

LocalSearch

A local search is performed by applying local changes to a solution, creating new solutions

that are closely related to the original solution. In the context of discrete combinatorial

problems, a local change could be to swap the order of two solution components. Perform-

ing a local search is optional in ACO and not necessary for the algorithm to function prop-

erly, but may improve the performance drastically on larger problems. Local search pro-

vides exploitation in the neighborhood of found solutions to improve them, as a tour op-

timization procedure. Some of the most used and well-known local search algorithms to

use with ACO are r-opt, as described in Section 2.2.3.1: Tour Optimization Procedures,

and Lin-Kernighan, in which r and a variable number of components are exchanged respec-

tively Dorigo and Gambardella (1997). In ACO, an r-value of 2 or 3 is usually applied, and

2-opt will be further explained in Section 4.5: Local Search.

CHAPTER 2. BACKGROUND 26

2.3.2.4 Variants and Applications

Several variants of the ACO algorithm has been devised and successfully applied to vari-

ous problems. Some of the variants are listed in Table 2.1. Table 2.2 includes some of the

general applications for the ACO algorithm. Several authors have solved TSP implement-

ing the general ACO as a tour construction algorithm, including Ant System in the original

ACO article Dorigo et al. (1991). More interesting are the several variants of ACO that

demonstrate improved performance on TSP and its generalizations compared to Ant Sys-

tem, and thus will receive the most attention in this section.

Algorithm Authors Year

Ant System Dorigo et al. 1991

Elitist Ant System Dorigo et al. 1992

Ant-Q Gambardella and Dorigo 1995

Ant Colony System Dorigo and Gambardella 1996

Max-Min Ant System Stützle and Hoos 1996

Rank-Based Ant System Bullnheimer et al. 1997

Ants Maniezzo 1999

BWAS Cordon et al. 2000

Hyper-Cube Ant System Blum et al. 2001

Table 2.1: A non-exhaustive list of successful ACO algorithms Dorigo et al. (2006)

CHAPTER 2. BACKGROUND 27

Problem name Authors Year

Traveling Salesman Problem Dorigo et al. 1991, 1996

Graph Coloring Costa and Hertz 1997

Vehicle Routing Gambardella and Dorigo 1999

Multiple Knapsack Leguizamón and Michalewicz 1999

Sequential Ordering Gambardella and Dorigo 2000

Constraint Satisfaction Solnon 2000, 2002

Project Scheduling Merkle et al. 2002

Bayesian Networks Campos et al. 2002

Orienteering Problem Liang et al. 2002

Maximum Clique Fenet and Solnon 2003

Team Orienteering Problem with Time Windows Montemanni et al. 2011

Time-Dependent Orienteering Problem Verbeeck et al. 2013

Table 2.2: A non-exhaustive list of ACO algorithm applications Dorigo et al. (2006)

Ant Colony System

A variant of ACO called Ant Colony System (ACS) has been shown to outperform Ant

System and other nature-inspired algorithms such as simulated annealing and evolutionary

computation as a tour construction algorithm on TSP Dorigo and Gambardella (1997).

The differences from Ant System are:

• The global pheromone update rule only applies to components in the best found solu-

tion

• A local pheromone update rule applies to edges when visited

CHAPTER 2. BACKGROUND 28

• Modified state transition rule: If u ≤ u0 for a random float 0 <= u <= 1 and some pa-

rameter u0 as the exploitation probability, the edge with the highest transition prob-

ability is chosen; else the normal state transition rule is used

The local pheromone update rule is defined as

t (i , j) = (1−p)× t (i , j)+p × t0 (2.5)

One important characteristic of this modification is that the local pheromone update rule

will instantly degrade the pheromone level of the traversed edge, such that other ants will

be less inclined to pick these edges. Later when more edges are degraded the previously

traversed edges will become relatively more attractive again and have a higher probability

of being traversed late in a path.

The modification of the global pheromone update rule was done to improve exploitation

of the most promising areas of the graph, although it is pointed out that the difference is

minimal. The modified state transition rule leads to higher exploitation of edges with a

large pheromone and heuristic value.

When compared with Simulated Annealing, Elastic Net7, and Genetic Algorithm on rela-

tively small problem sets, ACS generally had better solution quality and significantly lower

computation time.

The algorithm was also extended to use a local search procedure, restricted 3-opt, which

exchanges 3 components in the solution with unused components in order to find better

solutions. Restricted 3-opt was chosen because of its performance on the asymmetric ver-

sion of TSP, as it does not allow swapping to be a reversion of a path between two cities.

As a result, it avoids parts of the search space that generally contains no improvements.

Another criteria of restricted 3-opt is that it only swaps edges with better alternatives.

The test results showed that by extending the algorithm with a tour improvement heuris-

tic, it was able to compete with the best algorithms of the previous year for solving large
7An iterative procedure where two forces are applied to a ring: One for minimizing the length of the

ring, the other for minimizing the distance from the ring to each node

CHAPTER 2. BACKGROUND 29

symmetric and asymmetric TSP, with significantly less effort.

Ant-Q

The Ant-Q family of algorithms are based on Ant System and inspired by Q-learning Gam-

bardella and Dorigo (1995). It was shown to solve TSP with very good or optimal solu-

tions on hard instances of the asymmetric problem version, where finding an exact solution

is infeasible.

The state transition rule is the same as in ACS, while the equivalent to pheromone val-

ues, called AQ-value (reads “Ant-Q-value”), are updated for each city visited based on two

terms: A reinforcement term and a discounted evaluation of the next state. The last term

introduces a preference for paths connecting to short paths.

An interesting characteristic of this system is that the ants do not converge to a single

path, but rather continues to optimize the results in a subset of the search space indefi-

nitely.

Max-Min Ant System

The main goal of creating the Max-Min Ant System was to investigate the exploitation of

the best results during a run Stültze and Hoos (1996). The main differences compared with

Ant System are:

• Only the best ant adds pheromones

• Explicit maximum and minimum pheromone values

• Pheromone trails are initialized to the maximum value

It was observed that some configurations of the algorithm was prone to stagnate early, but

could be fixed by adjusting the maximum and minimum pheromone values. It was also ob-

served that the convergence rate could be adjusted by the pheromone evaporation rate.

Using a 3-opt local search procedure, it was shown to generate solutions with higher qual-

ity than the winner of the First International Contest on Evolutionary Computation on

CHAPTER 2. BACKGROUND 30

asymmetric TSP, but had longer run times. It was pointed out that, although it is an im-

provement over Ant System, the results are suboptimal to other ACO variants, and the lo-

cal search procedure could be improved by a large step Markov Chain, iterated Lin-Kernighan,

or Genetic Local Search.

Metaheuristics for the Orienteering Problem

See Section 2.2.3.2: Orienteering Problem for a review of the Orienteering problem defini-

tion.

In order to comply with the cost restriction, the Ant System algorithm evaluates the cost

of connecting a partial solution with the final node at each selection step. In Liang et al.

(2002), if the cost budget is reached or exceeded, the ant will travel to the final node and

terminate its run, as a result either binding to or breaching the constraint. Instead of re-

fusing infeasible solutions and restricting the search space of the ants, a local search is per-

formed to improve the solution and hopefully find a feasible solution.

A local search procedure called Variable Neighborhood Search is employed, where multiple

local search procedures are employed sequentially, each using a larger neighborhood search

space than the previous. Each procedure is initiated only if the preceding iteration could

improve the solution. The search method is further explained in Section 4.5: Local Search.

In order to discourage ants from following trails with a cost that far exceeds the constraint,

a penalty is incorporated in the pheromone update function, which size depends on the

distance to the cost budget. The pheromone update is performed locally on each step, and

globally on the best feasible solution. Generally, the local updates evaporate the trail, and

the global updates enhance the trail.

Some comparisons with other algorithms have been made, and it showed similar or better

computation times Liang et al. (2002).

CHAPTER 2. BACKGROUND 31

A Fast Solution Method for the Time-Dependent Orienteering Prob-

lem

The Time-Dependent Orienteering Problem differs from the Orienteering Problem only in

the costs, where each edge cost is dynamic and depends on the cost spent traversing the

graph so far. The approach in C.Verbeeck et al. (2013), based on ACS, will be discussed in

this section. The context of the article is creating a personalized tourist trip planner where

travel time for a given distance depends on traffic congestion. Travel speed on an arc is

derived from a speed model, based on congestion and the relevant time step.

While the solution for OP proposed in Section 2.3.2.4: Metaheuristics for the Orienteering

Problem allows invalid solutions to be created before optimizing it to find a valid solution,

this approach creates only valid solutions and use local search procedures to increase the

number of nodes visited. 2-opt is used after constructing a solution in order to improve the

traveling cost, and then the Insert Local Search Procedure attempts to create valid solu-

tions with more nodes by inserting non-included vertices at different indices.

The test results show that high quality solutions were achieved with low computational

cost compared to other techniques. A sensitivity demonstration also showed that behavior

did not change with small parameter changes, which indicates that robust behavior might

be expected in real world applications. It is worth noting that the approach outlined here

requires an effective tour optimization procedure, which as mentioned in Section 2.2.3.3:

Orienteering Problem with Time Windows can be difficult on problems with time windows.

Enhanced Ant Colony System for the Team Orienteering Problem with

Time Windows

The Team Orienteering Problem with Time Windows is mostly identical to the Orienteer-

ing Problem with Time Windows, the only difference being that multiple agents can coop-

erate to solve the task, which generally leads to higher received reward in total.

CHAPTER 2. BACKGROUND 32

Montemanni et al. (2011) solved this problem using the Ant Colony System (described

in Section 2.3.2.4: Ant Colony System) with two changes in the implementation to reduce

the computational cost: First, in the state transition rule, instead of performing a fitness

proportionate selection between all possible edges when u > u0, it selects the edge with the

corresponding position in the best solution found so far.

Second, a better integration between the constructive phase and the local search proce-

dure, based on the assumption that repeatedly performing a local search will not lead to

improvements, such that this procedure should be performed less frequently than every it-

eration for every solution. They propose to perform a local search with a probability of ic
it
,

where ic is the number of iterations since last local search on this solution, and it is the

total number of iterations performed.

The benchmark results showed that when the algorithms were constrained to 3600 ms com-

putation time on very large problem instances, their implementation generally performed

better than the default implementation, because it was able to converge to a good solu-

tion faster. With no time constraint it was able to improve the best known result on some

larger problem instances with two to four agents in the team, but no improvements were

reported using one agent (equivalent to the Orienteering Problem with Time Windows).

Therefore these improvements are only expected to be of value if high computational cost

becomes a problem.

Other

Investigations on the Dynamic Traveling Salesman Problem showed that using an immi-

grant scheme was beneficial in dynamic environments Mavrovouniotis and Yang (2013). In

the Dynamic Traveling Salesman Problem, some property that affects the cost of an edge is

changed, in a stochastic fashion, during the path traversal. In order for the agent to always

travel the optimal route, according to the available knowledge, it has to optimize the prob-

lem several times. An immigrant scheme works by retaining the pheromone trails between

each optimization iteration, but replacing the least fit part of the established population

with new individuals, in order to both maintain diversity and provide knowledge transfer

CHAPTER 2. BACKGROUND 33

between iterations. This technique is relevant when similar problem states needs to be cal-

culated consecutively and consistency or computational cost are an issue.

Yu et al. (2009) created the Improved Ant Colony Optimization algorithm for solving the

Vehicle Routing Problem. For a description of the problem see Section 2.2.3.4: Other Problems.

They introduced a mutation operation with was executed with decreasing probability for

each iteration, in which two solution tours are mixed to create two new solutions, and an

ant-weight strategy, where local pheromone updates are based on the contribution of each

edge to the solution. The algorithm had a little higher run time, but generated better re-

sults compared with some of the best algorithms on the problem.

2.3.3 Intelligent Water Drops

Intelligent Water Drops Algorithm (IWDA) is a nature-inspired swarm optimization tech-

nique introduced in 2007 by Shah-Hosseini (2007). No applications to neither TDOPTW

nor OPTW have been found. The algorithm is inspired by how water drops flowing in

rivers find their way to lakes, seas or oceans despite obstacles in their way. If there were

no obstacles the water drops would flow straight towards the lowest point due to gravity,

which is the shortest path. However, due to the natural obstacles in the environment, the

river has twists and turns. It seems that nature creates optimal paths in terms of distance

from the destination and the constraints of the environment Alijla et al. (2014).

2.3.3.1 Description

Imagine a water drop moving from one point in a river to another as show in Figure 2.3. It

is assumed that the water drop has the capacity to carry soil and as the water drop moves

to its destination the soil carried is increased as the soil in the river bed decreases.

CHAPTER 2. BACKGROUND 34

Figure 2.3: The IWD on the left flows to the right while removing soil from the river bed
and adding it to itself

As well as carrying soil, the water drop has a velocity which plays an important role in re-

moving soil from river beds. If two water drops with the same amount of soil traverse the

same river stretch it is assumed that the water drop with higher velocity removes more soil

from the river bed. In Figure 2.4 higher velocity is represented by a longer vector and the

size of the water drop represents the soil carried by the water drop.

Figure 2.4: The IWD with higher velocity retrieves more soil from the river bed

In contrast to how the velocity of water drops traversing a path determines the amount

of soil removed from the path, the amount of soil in the path determines the velocity of a

water drop. Figure 2.5 shows two identical water drops traversing two different paths. The

path with less soil lets the water drop gain more speed and gather more soil from the path,

while the path with more soil provides greater resistance, hence lower velocity for the drop

and less soil gathered.

CHAPTER 2. BACKGROUND 35

Figure 2.5: Two identical IWDs flows in two different rivers. The IWD that flows in the
river with less soil gains more speed and gathers more soil

Water flowing in nature chooses the path of least resistance, which for the Intelligent Wa-

ter Drop (IWD) is the soil in the edges to traverse, thus an IWD has a higher possibility to

choose an edge with less soil over an edge with more soil.

In nature, countless of water drops flow together and changes the environment to find an

optimal path for reaching their destination. IWDA does the same with agents constructing

paths and changing the search space over time, using the characteristics mention above,

until the optimal or near optimal path emerges.

2.3.3.2 Definition

Extending the combinatorial problem defined in Section 2.3.1: The General Combinato-

rial Problem, the IWDA can be defined as follows, based on the definition in Alijla et al.

(2014):

s(k) | k = 1, ...,m: The solution of water drop k

sI B : Iteration best solution

vel IW D : The velocity of a given IWD

soi l (k): Soil carried by a water drop k

soi l (i , j): Soil retained by a component c(i,j)

CHAPTER 2. BACKGROUND 36

2.3.3.3 Pseudocode

The main steps of the IWDA are shown in Figure 2.6, and its details are defined below.

Only the most important equations are described here, see Appendix A.1: Complete For-

mulation of Intelligent Water Drops Algorithm Equations for all of the equations that make

up the Intelligent Water Drops algorithm.

1 Input : P , and parameters
2 I n i t i a l i z e E d g e S o i l ()
3 wh i l e (not a lgo r i thm te rmina t i on c ond i t i on) :
4 I n i t i a l i z eWat e rD rop s ()
5 wh i l e (not c on s t r u c t i o n t e rm ina t i on c ond i t i on) :
6 f o r (k = 1 , . . . , m) :
7 EdgeSe l e c t i on ()
8 UpdateWaterDrop ()
9 i f (f (s(k)) < f (sI B)) :
10 sI B = s(k)
11 UpdateEdges (sI B)
12 i f (f (sI B) < f (s∗)) :
13 s∗= sI B

14 r e tu rn s *

Figure 2.6: Pseudocode for the Intelligent Water Drops Algorithm

InitializeEdgeSoil

Initialize each edge in the graph with a set amount of soil.

InitalizeWaterDrops

Creates the IWDs and distributes them randomly over all possible nodes.

EdgeSelection

As mention earlier, an IWD has a higher probability of selecting a path with less resis-

tance, i.e. less soil. It uses a fitness proportionate selection, described in Section 4.3: Se-

CHAPTER 2. BACKGROUND 37

lection Methods, where the fitness is measured as the amount of soil residing in an edge:

f (soi l (i , j)) = 1

ε+ g (soi l (i , j))
8 (2.6)

g (soi l (i , j)) =

soi l (i , j) i f min

l∉vc(IW D)
soi l (i , l) ≥ 0

soi l (i , j)− min
l∉vc(IW D)

soi l (i , l) el se

9 (2.7)

where g(soil(i, j)) is used to shift the value of soil(i, j) towards positive values. Therefore

IWDA represents the best path with a minimal fitness value, as shown in Figure 2.6, line

12.

UpdateWaterDrop

Here the velocity of and soil carried by the IWD, and soil residing in the traversed edge is

updated. The most important equation for soil update is Equation 2.8 which describes the

time an IWD uses to traverse an edge. The HUD(i, j), i.e. Heuristic Undesirability Degree,

is a method that gives an indication of how poor the given move is. Thus the HUD should

yield a low value if moving to j is a favorable move. HUD is discussed more in Section 4.2:

Heuristic Functions. The faster an IWD traverses an edge, the more soil is transferred from

the edge to the IWD.

t i me(i , j , vel IW D) = HU D(i , j)

vel IW D
(2.8)

8ε is a small positive number, usually 0.01
9vc(IWD) is a list of visited nodes for the IWD

CHAPTER 2. BACKGROUND 38

UpdateEdges

After all IWDs in an iteration has completed constructing a path, the best IWD is chosen

and all the edges in its path get updated according to this equation:

soi l (i , j) = (1+ρIW D)× soi l (i , j)−ρIW D × soi l (sI B)× 1

(m −1)
(2.9)

where m is the number of IWDs and ρIW D is a positive constant between 0 and 1.

2.3.3.4 Variants and Applications

This sections reviews the application of the algorithm on the Traveling Salesman Prob-

lem and the Vehicle Routing Problem, described in Section 2.2.3.1: Traveling Salesman

Problem and Section 2.2.3.4: Other Problems respectively, as well as a proposed modifica-

tion of the algorithm, and its convergence properties.

Solving the Traveling Salesman Problem

When the IWDA was first proposed, it was tested on typical TSP problem instances such

as eli51 Reinelt (2008). Shah-Hosseini (2007) showed that the IWDA were able to find

global optimum tours, however this was not guaranteed. Sometimes the IWDA converged

to a good local optimum after few iterations. They also noticed that the IWDA were able

to escape some local optima, which is an appealing property of the IWDA.

Solving the Vehicle Routing Problem

Kamkar et al. (2010) used the IWDA to solve the Vehicle Routing Problem described in Sec-

tion 2.2.3.4: Other Problems. They compared it with implementations of Simulated An-

nealing and Tabu Search by Osman (1993), and Improved Ant Colony by Bin et al. (2008),

on 14 benchmark instances designed by Christofides et al.

Their results shows that IWDA competes with other well known and widely used algo-

CHAPTER 2. BACKGROUND 39

rithms for the problem. As discovered by Shah-Hosseini (2007), IWDA has the ability to

escape local optima. IWDA was also shown to use consistently low computation time com-

pared to the other algorithms.

Modification of Selection Method

Alijla et al. (2014) proposed two new selection methods to the IWDA (a description of ‘se-

lection methods’ can be found in Section 4.3: Selection Methods). They pointed out that

the original selection method, fitness proportionate selection (FPS), shown in Equation

4.3.1, were susceptible to three limitations:

1. Inability to accommodate negative soil values

2. Inability to create a different selection pressure for fitter nodes when most of the

nodes have a similar fitness value

3. Inability to handle selection dominated by a node with an exceptionally high fitness

value, as compared with those from other nodes in a selection pool

To address these limitations they proposed to use two types of ranking selection: Linear

Ranking Selection (LRS), and Exponential Ranking Selection (ERS). While FPS is based

on the absolute fitness value, ranking selection is based on the rationale of fitness rank to

determine the probability of selection. The ranking of the fitness values are subject to the

mapping function, which maps a fitness value to a selection probability, and the selection

pressure (SP), which controls the degree of exploration and exploitation.

P (i) = 1

N
× (SP −2(SP −1)× i −1

N −1
) (2.10)

P (i) = SP i−1 × 1−SP

1−SP N
(2.11)

LRS is shown in Equation 2.10 and ERS in Equation 2.11. In both equations i ∈ {1, ..., N }

represents the rank of the edge, where 1 is the fittest edge (i.e. the edge with the lowest

CHAPTER 2. BACKGROUND 40

soil value) and N is the least fit edge. In Equation 2.10 SP, where 1 ≤ SP ≤ 2, is used to

control the gradient of the linear selection function. In Equation 2.11 SP, where 0 < SP < 1,

is used to control the gradient for the exponential selection function.

Alijla et al. (2014) did an extensive study on different optimization problems, where TSP

was one of them. Their study showed that the selection method had a significant impact

on the performance of IWDA, and that ERS were more effective than LRS and FPS in re-

spect to solution quality. However, the computational effort in using ranking selection was

high, and the effort of ERS was shown to be 1.15 to 13 times higher than FPS in their case

studies.

Convergence Properties of Intelligent Water Drops Algorithm

Shah-Hosseini (2008) investigated the convergence properties of the IWDA, and showed

mathematically that the IWDA possess the property called ‘convergence in value’, which

means that the algorithm is able to find the optimal solution if the number of iterations is

sufficiently big.

2.4 Summary

The International Aerial Robotics Competition was initiated in order to further research

in the field of autonomous aerial robotics behavior. Mission 7a was first tried in 2014, and

has not been completed in the two tries so far. The goal of the mission is to autonomously

guide 10 robots moving on the floor across a specified side of an arena using an aerial robot.

The trajectory of the ground robots are changed every 5 seconds to induce stochasticity in

the environment, and reversed every 20 seconds. In order to guide the robots the aerial

robot can either land on top of them or induce a collision to make them turn a predefined

number of degrees. As part of the challenge, the aerial robot must carry all sensory equip-

ment and navigate without global-positioning system.

In order to solve the problem, the different mission requirements and the environment was

CHAPTER 2. BACKGROUND 41

examined to determine how the aerial robot should behave. When considering a limited

number of interactions, the problem can be considered a combinatorial problem of possible

combinations of visitation order. The currently existing problem model with the highest

fit with the mission abstraction was found to be the Time-Dependent Orienteering Prob-

lem with Time-Windows: Given a set of nodes where each has a position, trajectory, speed,

reward, time window, and service time, find the optimal path (or visitation order) with re-

spect to received reward, given that travel cost between two nodes change with time and

the reward can only be collected within the node’s time window. The environmental prop-

erties of the mission not handled by the TDOPTW problem model are the stochasticity,

continuity, and partial observability, where the last property will not be solved in this dis-

sertation.

Research showed that TDOPTW has only been examined once before, which solved the

problem as an Orienteering Problem with Time Windows offline using the average cost

of each edge over time, and repaired the solution with real-time data cost data to achieve

TDOPTW. One difference in implementation is that it modeled the time-dependent cost as

a series of incidents, opposed to the changing Euclidean distances most fitting the mission

problem. Related problems include TSP, OP, and OPTW, where the main difference be-

tween each of them and between them and TDOPTW are additional constraints. As such,

techniques used in specializations of TDOPTW is expected to work for TDOPTW as well.

Swarm algorithms belong to the field of Swarm Intelligence, where the general idea is to

simulate a system of simple beings where an emergent property is achieved through so-

cial interactions. Ant Colony Optimization Algorithm and Intelligent Water Drops Algo-

rithm are two such algorithms, used in search. ACO is inspired by the foraging behavior

of ants, where emergent behavior is achieved by ants depositing pheromone trails, distin-

guishable by it and other ants, on paths leading towards food sources. Better food sources

have stronger pheromone trails leading towards them, and equivalently in the algorithm for

better solutions. An element of probability over which path to choose exists both in the

algorithm and real world, which enables exploration of the search space. Variants of ACO

include the commonly used Ant Colony System, and different applications of local search

CHAPTER 2. BACKGROUND 42

procedures such as 2-opt. IWDA is inspired by how water flows and creates rivers in na-

ture, where emergent behavior is achieved by water drops removing soil from the rivers.

Rivers with less soil leads towards better solutions, and are more probable to be chosen by

a water drop than a river with much soil. Variants of IWDA use different selection meth-

ods, which yield slightly better results with significantly more computational cost.

Chapter 3

Tools and Technologies

In the following sections the technologies used and the tools implemented in conjunction

with the research will be described, and the motivation and importance of the tools will be

briefly discussed.

3.1 Languages and Frameworks

The entire code base for this dissertation was implemented in C++11 by the authors. The

project was built with GNU Make, which made it easy to build all the modules of the project.

The graphical modules, such as the simulator and visualization tool, are realized by Sim-

ple DirectMedia Layer 2 (SDL2). SDL2 is a cross-platform development library designed

to provide low level access to audio, keyboard, mouse, joystick, and graphics hardware

through OpenGL and Direct3D.

3.2 Visualization Tool

When working with swarm based algorithms and optimization problems, simply imple-

menting the algorithm is not enough. Each algorithm may have different parameters that

44

CHAPTER 3. TOOLS AND TECHNOLOGIES 45

affect the behavior of the algorithm, such as number of iterations, number of agents and

selection methods. There is rarely one setting that works for every problem, therefore these

parameters needs to be experimented with. The parameters and selection methods will be

discussed further in Chapter 4: Methodology. To quickly alter the parameters and the al-

gorithms for the same problems, the authors developed a visualization tool.

Figure 3.1: Two screen captures of the visualization tool, both showing an OPTW problem
solved by ACO. To the left the solution is shown. To the right the pheromone trails are
shown, where red symbolizes a high amount and blue a low amount of pheromone

3.2.1 Description

The visualization tool can read TSP, OP, OPTW, and TDOPTW problems from text files

and render them as a graph. It can run both ACO and IWDA with different parameters

and draws a teal line to show the resulting path of the algorithm. Figure 3.1 shows a screen-

shot of the visualization tool. To the right it shows the pheromones of the ACO. Red indi-

cates a strong pheromone trail and blue indicates weak pheromone trails. For the IWDA

this represents the amount of soil that resides in the edges. Underneath each node the

node’s reward is shown, and the time window and service time of a node can be seen by

hovering over it with the mouse.

CHAPTER 3. TOOLS AND TECHNOLOGIES 46

3.3 Simulator

A simulator was implemented in order to have a predictable testing environment, as well

as being able to test independently of hardware. At the time this dissertation was written,

the aerial robot was not available for testing. The mission simulator provided a testing en-

vironment in accordance with the mission environment, to determine the effectiveness of

solving the mission as a TDOPTW.

3.3.1 Description

The simulator is a 2D representation of the mission environment and is shown in Figure

3.2. The yellow circles represents the ground robots and the blue circles represent the ob-

stacle robots. The implementation of the robots is retrieved from the source code to be im-

plemented in the physical ground robots, issued by IARC. The aerial robot is represented

by the the white cross, the small white circle represents the destination of the aerial robot

and the big circle is the perception area of the aerial robot. The perception area is where

the aerial robot can be certain that it gets correct visual input used for landing, but is a

feature not used in this dissertation as the whole environment is fully observable during

this research. The white lines in Figure 3.2 represent the solution path of the algorithm

and the red lines shows the calculated flight path for the aerial robot.

CHAPTER 3. TOOLS AND TECHNOLOGIES 47

Figure 3.2: A screenshot of the simulator. Yellow circles are ground robots, blue are obsta-
cles, the aerial robot is represented as the white cross, the small white circle is the desti-
nation of the aerial robot. The white path shows the robots to be visited and the red path
shows the aerial robot’s flight plan

The panel to the left shows the options of the simulator. The most important features of

the panel are as follows:

• Pause the simulation

• Reset the simulation

• Record the simulation

• Generate problem instances from the simulator by pressing ‘Save snapshot’. This

saves the current state of the simulator which can be translated to a TDOPTW prob-

lem.

CHAPTER 3. TOOLS AND TECHNOLOGIES 48

3.3.2 Controlling the Aerial Robot

An UDP (User Datagram Protocol) port is opened by the simulator. This port is used by

the simulator to send and receive data. At a given interval the simulator is sending the

state of the current simulation out on the UDP port. The state consist of the position and

direction of all objects in the simulator, which robots are turning and the speed of the

aerial robot. The simulator is also listening for commands at the UDP port. This makes

the simulator independent of any specific controller, and makes it easy to implement addi-

tional controllers. The supported commands is listed below:

• LandOnTopOf(robot_ID)

• LandInFrontOf(robot_ID)

• Track(robot_ID)

• Search(x, y), where (x, y) is the destination coordinates

• Pause

• Start

Using these commands, another program can control the aerial robot by connecting to the

same UDP port. A typical controller will listen to the port and receive information about

the simulation. Based on this information it can decide what to do and send commands

to the aerial robot. The implementation of the controller using TDOPTW is explained in

Section 4.8: Applying the Model to the Simulator.

3.4 Summary

The code for this project was written in C++, using the library ‘Simple DirectMedia Layer

2’ for visualizations. In addition to implementing the algorithms a tool for visualizing differ-

ent properties of the algorithms and their outputs, as well as a mission environment simu-

lator and a controller for the aerial robot in the simulator, were created. The visualiza-

CHAPTER 3. TOOLS AND TECHNOLOGIES 49

tion tool provides a user interface for changing parameters and loading different prob-

lem instances, and visualizing the algorithms’ trails and outputted solutions in order to

detect deficiencies. The mission simulator provides a testing environment in accordance

with the mission environment, to determine the effectiveness of solving the mission as a

TDOPTW.

Chapter 4

Methodology

In this chapter implementation details, the application of time-dependent cost, and model-

ing the mission environment as a Time-Dependent Orienteering Problem with Time Win-

dows will be reviewed. Lastly the greedy controller will be described.

4.1 Representing Time-Dependent Cost

As the edge costs in TDOPTW are changing with time (imagine the nodes moving around),

simply calculating the Euclidean distance between the initial position of two points is not

sufficient. In Garcia et al. (2010) the time-dependence of the traveling cost is represented

as a matrix, where each row represents a directed edge in the graph, and each column

the travel cost after visiting the column index number of nodes so far. This is practical

for their application, as it is possible to capture complex non-linear cost relationships in a

straightforward and understandable manner.

In the case of the competition, on the other hand, it would be hard to model cost this way,

as there are usually just one node that can be precisely reached with a given cost, and

there are a lot of different combinations of paths, making the matrix impractically large.

Furthermore, assuming linear movement between each trajectory reversal the cost can

easily be calculated by finding the lowest intersection time between the robot and aerial

50

CHAPTER 4. METHODOLOGY 51

robot, as described below in Section 4.1: Intersection Time, and multiplying the time by

the aerial robot’s speed.

One aspect to remember when calculating edge cost is that all nodes move when the agent

is visiting other nodes, so when calculating edge costs the position of the destination node

must be calculated with respect to the cost used so far.

Two different approaches have been considered: Modeling the edges in OPTW with a dy-

namic cost function, or expanding the search graph with each possible edge cost. Given

that the mission environment requires fast solution creation in order to keep up with the

stochastic environment, it was chosen to use a dynamic cost function, as the expanded

graph would be magnitudes larger. The changing cost and reuse of edges between differ-

ent solutions could be a problem for ACO and IWDA, as the trail of each edge is affected

by the solution combinations previously explored. While ACO might mitigate this problem

as pheromones are degraded when better subspaces and solutions are found, IWDA can be

severely biased by previously explored neighborhoods when finding better neighborhoods

later.

Figure 4.1: The left graph represents a generic representation of moving nodes, the other
graphs two different ways to represent time-dependency. Node A and B are stationary,
whereas C and D has a movement represented by the gray doted line. The red and blue
lines represents two different paths.

CHAPTER 4. METHODOLOGY 52

Intersection Time

Given

U : The aerial robot’s absolute speed

V : The robot’s speed vector

R: The aerial robot’s position vector

S: The robot’s position vector

we want to find the time where the positions of the robot and the aerial robot are equal

S +V t = R +U t

R −S +V t =U t

P +V t =U t

(4.1)

The positions can be expressed as the distance from the origin of the system

(Px +Vx t)2 + (Py +Vy t)2 = (U t)2

P 2
x +P 2

y +V 2
x t 2 +V 2

y t 2 +2PxVx t +2PyVy t −U 2t 2 = 0

(V 2
x +V 2

y −U 2)t 2 + (2PxVx +2PyVy)t + (P 2
x +P 2

y) = 0

(4.2)

Then we can solve for t by using the quadratic equation.

4.2 Heuristic Functions

Heuristic functions are used to find approximate solutions to problems, trading accuracy

for speed. ACO and IWDA use heuristic functions to select the next edge in the path when

searching the graph. The implemented heuristic functions are described below.

CHAPTER 4. METHODOLOGY 53

Intelligent Water Drops Algorithm

IWDA uses heuristics for calculating the transition probability to each eligible edge. As

explained in Section 2.3.3.3: EdgeSelection, the probability of traversing an edge is based

on the amount of soil residing in an edge which again is dependent on Equation 2.8. This

equation is dependent on the velocity of the drop and the Heuristic Undesirable Degree

(HUD).

HUD must be adjusted for the given type of problem. As the goal of TDOPTW is to max-

imize the total received reward with a traveling budget, this HUD will disfavor long dis-

tances with low reward. HUD represents a favorable transition as a low value. Given the

reward r (j) received for adding edge v(i , j) with the cost of d(i , j , t) to the solution at time

t, the heuristic function is implemented as

o(i , j , t) = d(i , j , t)

r (j)
(4.3)

Ant Colony Optimization Algorithm

In ACO the heuristic function is applied when calculating the transition probability to

each eligible edge, as described in Section 2.3.2.3: ConstructSolution, in combination with

the pheromone value. The pheromone value and heuristic value has their separate static

parameters scaling the values, so that the relative importance may be adjusted.

As the goal of TDOPTW is to maximize the total received reward, this heuristic function

favors edges leading to high rewards. Given the reward r (j) received for adding edge v(i , j)

to the solution at time t, the heuristic function is implemented as

o(i , j , t) = r (j)− rmi n

rmax − rmi n
(4.4)

CHAPTER 4. METHODOLOGY 54

where

rmax = max
i

r (i)

rmi n = min
i

r (i)
(4.5)

4.3 Selection Methods

Selection methods, mostly used in genetic algorithms, are genetic operators for selecting

the best individuals from a larger pool of individuals, with some degree of diversity among

its population Floreano and Mattiussi (2008). In ACO and IWDA selection methods are

used when selecting the next edge, each having a fitness value based on some heuristic, to

be added to the path of a solution. The reason for wanting diversity is because higher di-

versity is able to both capture the best individuals and a broad selection with opportuni-

ties to find better optima, opposed to always selecting the perceived best individuals which

might lead the population towards a local optimum. The ‘selection pressure’ adjusts the

competition among the individuals, and a higher selection pressure usually leads to lower

diversity and faster convergence of the algorithm.

Rank selection was not tested on IWDA because Alijla et al. (2014) showed that it pro-

vided only minor improvements in result over fitness proportionate selection, with a large

computational penalty. According to Floreano and Mattiussi (2008) tournament selection

provides a middle-ground between rank selection and fitness proportionate selection in

terms of effect, so in context of the knowledge about rank selection it was decided to not

test tournament selection either on IWDA. All three methods were implemented and tested

with ACO.

4.3.1 Fitness Proportionate

In fitness proportionate selection, also known as roulette wheel selection, an individual is

selected according to a probability proportionate to the ratio between its fitness value and

CHAPTER 4. METHODOLOGY 55

the sum of the fitness values of the population. The probability is given by

p(i) = f (i)
N∑

j=1
f (j)

(4.6)

where f(i) is the fitness value of individual i in a population of N individuals.

This can be illustrated by a roulette wheel, where each slots corresponds to an individual,

and the size of the slot is proportionate to the fitness of the individual: The higher fit-

ness an individual has, the higher the probability that it will be selected when the wheel is

spun. Initially when all individuals have equal fitness, they have equal probability of being

selected. In later iterations individuals with higher probability will dominate the selection

process, which will sometimes cause premature convergence, meaning that it gets stuck in

a local optimum.

4.3.2 Rank selection

Instead of selecting an individual with a probability proportionate to their absolute fitness

level, in rank selection the individuals are ranked from best to worst based on the fitness

level. The probability of selecting an individual is then calculated to be proportionate to

their rank, where the best ranked individual has the highest probability of being selected.

Given that each individual i has a rank p(i) = i where p(1) is the least fit individual and

p(N) is the fittest individual, the selection probabilities can be expressed similarly to that

of fitness proportionate selection:

p(i) = p(i)
N∑

j=1
p(j)

(4.7)

in a population of N individuals.

This alleviates the problem with a dominating set of high fitness individuals in fitness pro-

portionate selection, but is more expensive computation-wise which can have a certain im-

CHAPTER 4. METHODOLOGY 56

pact when delay is crucial.

4.3.3 Tournament selection

In tournament selection multiple competitions between a subset of the population are per-

formed, where only the best individual is selected in each competition. This procedure is

performed n times in order to select n number of individuals. Each competition is per-

formed by randomly picking k number of individuals, called the tournament size, from the

population and selecting the fittest individual, i.e. selecting i such that

max
i∈k

f (i) (4.8)

After each competition all the k individuals are put back in the population and are eligi-

ble to participate in later tournaments. Tournament selection provides a good compromise

between selection pressure and diversity in the resulting population.

4.4 Pruning the Search Space

TDOPTW has several constraints that can be leveraged in order to prune the search space

during the search. The constraints, as defined in Section 2.2.2: Time-Dependent Orienteer-

ing Problem with Time Windows, is repeated here for convenience:

• Each node can be visited only once

• Path cost cannot exceed cost budget

• If an end node is specified, the edge connecting the destination node to the end

node needs to be considered as well

Additionally, when the received reward is zero, whether because the node has an inherent

reward of zero or because of missing the time window, it should be avoided as visiting it

CHAPTER 4. METHODOLOGY 57

will only result in increased cost.

In each path incrementation the nodes that yield reward without invalidating the path are

extracted from the search space. This way the initially large search space may be reduced

dynamically to exclude solution configurations that definitely would disadvantage the solu-

tion. Depending on the problem configuration, the set of viable nodes may be reduced to

just a single or a handful of nodes.

4.5 Local Search

A local search is a tour improvement procedure, aiming at making small changes to a given

solution in order to improve it. In this dissertation, the methods 2-opt and Variable Neigh-

borhood Search have been tested on ACO.

2-opt

This simple local search mechanism works by taking any subset of the path (except the

start and end node if they are constrained to specific values), and reversing the order of

this subset in the path. The name 2-opt stems from reversing the middle subset, in effect

removing 2 edges and reconnecting the subsets. Usually, all possible combinations are tested

for improvements before the best path is returned, as illustrated in Figure 4.2.

CHAPTER 4. METHODOLOGY 58

1 Input : e x i s t i ngRout e
2 wh i l e (not s topp ing c ond i t i on) :
3 DEFINE START
4 bes t_d i s tance = c a l c u l a t eD i s t a n c e (ex i s t i ngRout e) ;
5 f o r (each e l i g i b l e node m) :
6 f o r (each e l i g i b l e node n a f t e r m in path) :
7 newRoute = ex i s t i ngRout e [0 . . .m−1]
8 newRoute += r e v e r s e (ex i s t i ngRout e [m . . . n])
9 newRoute += ex i s t i ngRout e [n +1 . . . end]
10 new_distance = c a l c u l a t eD i s t a n c e (newRoute)
11 i f (new_distance < bes t_d i s tance) :
12 ex i s t i ngRout e = newRoute
13 GOTO START
14 re tu rn ex i s t i ngRout e

Figure 4.2: Pseudocode for 2-opt local search

Variable Neighbourhood Search

As described in Section 2.3.2.4: Metaheuristics for the Orienteering Problem, this search

method applies several independent procedures sequentially, each examining a larger neigh-

borhood than the previous, to improve a solution. In order to limit computational cost

each procedure is applied only if the preceding one improved the solution, under the as-

sumption that no improvements can be found far away if none could be found close to the

initial solution.

A short description of each procedure, in the order performed, is given below. If an im-

provement is found the procedure is repeated until no more improvements are found be-

fore continuing with the next procedure. In this context a node is ‘viable’ to remove, in-

terchange, or add if the operation does not invalidate the path according to the given con-

straints.

1. Interchange method: For each viable solution node interchange it with a viable un-

used node

2. Eliminate method: For each viable solution node eliminate it from the tour

3. Forward Insert method: For each viable solution node move it from its current posi-

CHAPTER 4. METHODOLOGY 59

tion in the path to a later viable position

4. Backward Insert method: Equivalent to Forward Insert method, for each viable solu-

tion node move it from its current position in the path to an earlier viable position

5. Swap method: For each pair of viable solution nodes interchange their positions

6. Add method: For each position in the path, insert a viable unused node

Given the cost d(i , j , t) and reward r (j) received for traversing the edge v(i , j) at time t,

the fitness function is expressed as:

f (s) =

∑
c(i , j ,t)∈s

r (j)∑
c(i , j ,t)∈s

d(i , j , t)
(4.9)

This fitness function assumes that decreasing the cost, usually at the expense of the re-

ward, might lead to discovery of alternate paths resulting in higher end reward. Without

this assumption the Eliminate method would never find improvements.

4.6 Solution Reinforcement

A fitness function calculates a single value, the relative goodness, of a solution or solution

component given some goal. In ACO and IWDA fitness functions are used to evaluate the

quality of a given solution, which is used to strengthen the trail parameters for the heuris-

tic functions. Below, the specific procedures implemented in each algorithm are described

in detail.

Intelligent Water Drops Algorithm

The IWDA has both a global and local soil update rule as described in Section 2.3.3.3:

UpdateWaterDrop and Section 2.3.3.3: UpdateEdges.

During the solution construction procedure, each IWD moves sequentially one step at each

CHAPTER 4. METHODOLOGY 60

iterations, thus making the IWDs influence each other during each move. After each move

the soil residing in the edge traversed is updated given the equation:

soi l (i , j) = 1−εp ∗ soi l (i , j)−εp ∗∆soi l (i , j) (4.10)

∆soi l (i , j) = as

bs + cs ∗ t i me2(i , j , vel IW D)
123 (4.11)

From Equation 2.8 it is seen that the velocity of the IWD and the heuristic undesirability

degree decides how much the given move should be reinforced. The parameters as , bs , and

cs decide in which degree the heuristic should apply and εp controls the degree of explo-

ration and exploitation.

After the construction phase is completed, the solution with the highest received reward is

reinforced with Equation 2.9. This reinforcement is called the global update, and directs

the search towards the most promising areas of the search space. The parameter pi wd , also

referred to as es , controls how much the IWD should affect the reinforcement, thus control-

ling the degree of exploration and exploitation.

Ant Colony Optimization Algorithm

The local pheromone update rule defined by Ant Colony System (ACS), described in Sec-

tion 2.3.2.4: Ant Colony System, as well as the global pheromone update rule from Ant

System, described in Section 2.3.2.3: ApplyPheromoneUpdate, were implemented.

The solution construction procedure is implemented such that ants build their solutions in

parallel, the ants sequentially picking their next edge, such that when the local update rule

is employed each selection affects all successive selections. As described in Section 2.3.2.4:

Ant Colony System the local pheromone update rule degrades all traversed edges, encour-

aging exploration of unvisited subsets of the search space.
1as is a positive number, usually set to 1.0
2bs is a small positive number, usually set to 0.01
3cs is a positive number, usually set to 1.0

CHAPTER 4. METHODOLOGY 61

The global pheromone update rule encourages exploitation of the search space neighboring

the best solution. The values are updated according to Equation 2.4, where the subset of

solutions Gp was chosen to include all solutions found in the iteration, as well as the best

found solution so far if not already included. The quality functions is implemented as

F (s) = f (s)∑
i∈Gp

f (i)
(4.12)

where f (s) is the sum of rewards of solution s, such that the quality values are normalized

to the range from 0 to 1 and sums to 1. As the quality of a solution affects all the edges

equally, an edge with high cost or leading to a low reward can still have a high pheromone

value.

4.7 Solution Representation

A solution can be represented as an array of values mapping to nodes, where the order sig-

nifies the visitation order of the path. In this implementation, an integer array mapping to

node indices in the state is used. As an example, a solution S given the set I ∈ {0,1,2,3,4}

of node indices could be represented as:

S = [0,2,4,1,0] (4.13)

4.8 Applying the Model to the Simulator

The following sections will describe in detail how the environment of the International

Aerial Robotics Competition mission 7a is modeled as a Time-Dependent Orienteering

Problem with Time Windows, as well as functions essential to apply the model to the mis-

sion environment. Finally, environment characteristics not handled by the model is dis-

cussed.

CHAPTER 4. METHODOLOGY 62

4.8.1 Cost Function

Opposed to TDOPTW, the robots reverse their trajectory every 20 seconds in the compe-

tition, which needs to be considered in order to calculate the correct cost of traversing an

edge. If the intersection time found by Equation 4.2 is lower than or equal to the remain-

ing time until trajectory reversal, we can simply use this value to calculate edge cost. If

not, the equation Equation 4.1 must be reformulated: We know the remaining time before

the robot turns, and thus its position and resulting speed vector after turning.

Given

U : The aerial robot’s absolute speed

V : The robot’s speed vector after turning

R: The aerial robot’s position vector

S: The robot’s position vector at the point of turning

T : The remaining time until trajectory reversal

we want to find the time where the positions of the robot and the aerial robot are equal

S +V t = R +U (t +T)

R −S +V t =U (t +T)

P +V t =U (t +T)

(4.14)

With this, solving for t can be derived similarly to Equation 4.2.

4.8.2 Robot State

When reading the problem state, rewards, time windows, service times, and appropriate

actions are not given explicitly and must be determined by the application. In order to

determine these values, the current state of each robot is analyzed. The following states

have been defined:

CHAPTER 4. METHODOLOGY 63

1. LEAVING: The robot will leave the arena erroneously before next trajectory reversal

2. PASSING_GREEN: The robot will leave the arena across the green line before the

next trajectory reversal

3. TARGET_DIRECTION: The robot is heading towards the green line

4. OPPOSITE_DIRECTION: The robot is heading opposite of the green line

5. WRONG_DIRECTION: None of the conditions above apply

When more than one case applies to a robot, the state with the lowest index in the list

above will have priority.

4.8.3 Rewards

Given the robot state as input, the following rewards are defined for each robot:

Robot state Base reward Positional reward Maximum possible reward

LEAVING 100 No 100
PASSING_GREEN 0 No 0
TARGET_DIRECTION 5 Yes 63
OPPOSITE_DIRECTION 5 Yes 63
WRONG_DIRECTION 2.5 Yes 60.5

Table 4.1: Rewards attributed each robot, given the state and position of the robot. Posi-
tional reward ranges from 0 to 58, and the maximum possible reward denotes the highest
final reward after the base reward and the positional reward have been summed

A robot that will leave the arena erroneously without interaction is awarded the maxi-

mum available reward, as repeated occurrences would result in failing the mission (and

would penalize the team’s score for each robot leaving). Robots that are assumed to pass

the green line will receive no reward such that it will be ignored by the aerial robot. The

robots heading towards or opposite from the green line is the easiest to guide over the

green line, and will be slightly prioritized in order to simplify the problem state as quickly

as possible. The positional reward, as illustrated in Figure 4.4, is added to the base re-

ward for some states as defined in Table 4.1. Given the robot position (x, y), the arena

CHAPTER 4. METHODOLOGY 64

x = [0,20], y = [0,20], and the green line x = [0,20], y = 20, the positional reward is defined

by:

1 reward = 0
2 i f (x < 4 or x > 16 or y < 4) : reward += 25
3 i f (y > 16) : reward += 33
4 r e tu rn reward

Figure 4.3: Pseudocode determining the positional rewards

The robots closest to the green line receives the highest positional reward in order to quickly

get robots over the green line and simplify the problem state. Additionally, robots close to

the sides are assumed to have a higher probability of leaving the arena erroneously, and

will be given a higher reward than robots in the center of the arena. Rewards in overlap-

ping areas (close to the green line and the sides) are cumulative. Robots positioned in the

center of the arena are assumed to have a higher probability of colliding with obstacles and

other robots (because all robots and obstacles are centered around the middle of the arena

when the mission begins) and behaving unexpectedly, and thus receive no additional re-

ward.

CHAPTER 4. METHODOLOGY 65

Figure 4.4: Shows the mapping of positional
reward

Figure 4.5: Shows an example of robots with
their reward calculated from their position
and direction

4.8.4 Time Windows

As denoted by t(j) and explained in Section 2.2.2: Time-Dependent Orienteering Problem

with Time Windows, the time window of a robot represents the minimum and maximum

cost that can be used to reach the robot to receive the reward. As the rewards defined

in Section 4.8.3: Rewards are associated with a state, and also intuitively some goal state

that should replace the current state, such as changing a ‘LEAVING’ state to a ‘TAR-

GET_DIRECTION’ state, there are usually a limited time when it is useful to change this

state. As an example, when the robot is leaving the arena it is not useful, or even possible,

to turn it after it has left the arena, and the reward should only be able to be collected be-

fore that time. Below Table 4.2 defines the time windows associated with each robot state,

given a cost budget of 40.

CHAPTER 4. METHODOLOGY 66

Robot state Opening time Closing time

LEAVING 0 (time until leaving arena)
PASSING_GREEN 0 0
TARGET_DIRECTION (time remaining) - 6 (time remaining) + 17

OPPOSITE_DIRECTION 0, if (time remaining) >3
34, else

(time remaining) - 3, if (time remaining) >3
40, else

WRONG_DIRECTION 0 40

Table 4.2: The opening and closing time of a robot’s time window, given the robot state
and a cost budget of 40. ‘Time remaining’ denotes the time until trajectory reversal, and
‘time until leaving arena’ is the approximated value until the robot exits the arena. The
state ‘OPPOSITE_DIRECTION’ has two possible time windows depending on the time
until trajectory reversal

When a robot is leaving the arena, we can change its trajectory immediately, but intu-

itively no later than the time at which it leaves the arena. When the robot is expected

to pass the green line it is beneficial to not interact with it, and the time window is never

open.

When the robot is heading towards the green line without passing it, it is beneficial to turn

it the opposite direction close to the trajectory reversal, such that it can benefit from 20

seconds of traveling toward the green line after the trajectory reversal. Correspondingly

when the robot is heading opposite of the green line it is not beneficial to turn it close to

the upwards trajectory reversal, and we have two cases: Early turn the robot towards the

green line to benefit from traveling the correct direction most of the period, and late before

the next downwards trajectory reversal turn it downwards to benefit from the following

upwards trajectory reversal (equivalent to the time window of ‘TARGET_DIRECTION’).

It was found empirically that there were benefits of having a large time window for robots

going the opposite direction, as this could lead to finding more beneficial solutions.

CHAPTER 4. METHODOLOGY 67

Figure 4.6: The green markings on the path
illustrate when the node is available (i.e
open) for interaction, while the red shows
when the node is closed.

Figure 4.7: To the left the robot is assigned
a closing window equal to the time it uses to
leave the arena erroneously, and to the right
it is set to zero because it leaves the arena
correctly

4.8.5 Service Time

The service time is approximated based on the initial state, as shown in Table 4.3, based

on the available actions. Each individual action takes 4 seconds to perform, such that turn-

ing a robot 45 degrees three times takes 12 seconds.

Robot state Assumed action plan Service time

LEAVING createTurnPlan(…) {4, 8, 12}
PASSING_GREEN (Empty) 0
TARGET_DIRECTION 180 degrees 4
OPPOSITE_DIRECTION 180 degrees 4
WRONG_DIRECTION createTurnPlan(…) {4, 8, 12}

Table 4.3: Service costs and assumed action plan given the robot state. The function ‘cre-
ateTurnPlan’ calculates the number of actions required to turn the robot towards the green
line, outputting one of three values

Because the trajectory noise cannot be predicted, the environment is assumed to be deter-

ministic in these approximations. Thus, given the action selection defined in Section 4.8.6:

Action Selection, robots heading towards or opposite from the green line will only require

a single turn of 180 degrees. For robots having other angles, the number of actions re-

quired needs to be calculated, using the function denoted in Table 4.3 as ‘createTurnPlan’,

CHAPTER 4. METHODOLOGY 68

which returns minimally 1 and maximally 3 actions to be performed for a robot heading

the wrong direction, resulting in a service time in {4,8,12}.

4.8.6 Action Selection

As described in Section 2.1.2.1: Targets there are two possible robot interactions:

• Land in front (causing collision): Turns robot 180 degrees

• Land on top: Turns robot 45 degrees clockwise

The aerial robot will create an action plan for the robot upon arrival that minimizes the

number of actions required to turn the robot as directly as possible towards the green line,

or opposite if less than 7 seconds remain until trajectory reversal such that it will shortly

turn towards the green line. Given the minimum increment of 45 degrees, the action plan

must be created so that the robot crosses the green line before possibly crossing the sides.

4.8.7 Commitment to Plan

As the state of the mission arena changes continuously and heuristic search algorithms are

not guaranteed to find the optimal solution, ACO and IWDA are expected to often pro-

duce slightly different solutions with no or relatively small changes in the state. On one

hand the algorithms might in a short time span find solutions with insignificant increase

in reward, such that strictly following the plan with highest reward might lead to changing

plans frequently without any significant benefit in the mission. On the other hand, small

fluctuations in the state might yield fluctuations in a solution’s reward as well, such that

two similar solutions might alternate as the perceived best solution.

In order to complete the mission it is crucial that the aerial robot is able to complete ac-

tions, preferably most of the plan as a plan with high total reward may still have low re-

wards early in the plan, and should not change plans unless it has a large benefit. Such a

case could be, given the stochastic environment, that a previously safe robot is now sud-

CHAPTER 4. METHODOLOGY 69

denly about to leave the arena and requires saving. Thus some strategy is required to de-

cide when to commit to and when to change the currently active plan.

In order for a competing solution to replace the current solution it is required to be expo-

nentially better, given a small constant as the exponent. Given that rcur r ent is the reward

of the current active solution scur r ent and rnew the reward of the competing solution snew ,

the strategy can be expressed as:

scur r ent =

snew i f rnew > r e

cur r ent

scur r ent el se
(4.15)

for some constant e. In the implemented strategy, a constant of e = 1.3 was used. It is a

simple technique, but highly dependent on the allocation of rewards.

4.8.8 Solving Additional Requirements

As mentioned in Section 2.2.2.1: Problems Not Covered by TDOPTW the environment of

TDOPTW is fully observable, discrete, and deterministic. In the competition and simu-

lator the environment is stochastic and continuous, which needs to be handled and is dis-

cussed below. The partial observability will not be solved in this dissertation due to uncer-

tainties regarding the capabilities of the aerial robot’s sensory equipment.

Stochasticity

The stochasticity of the mission is made impossible to plan for or predict for longer periods

of time, as the trajectory noise occurring every 5 seconds turns the robots 0 to 20 degrees

in the clockwise or counterclockwise direction. Fortunately, experience shows that during

traversal of an edge this has minor significance on the general state of the arena, such that

the aerial robot should often be able to complete its current task. Thus, the best option is

to use the median values as if they were deterministic.

CHAPTER 4. METHODOLOGY 70

In order to mitigate the stochasticity for longer periods of time, the only solution is to re-

view the state and plan often in order to account for recent changes, which IWDA and

ACO is suited for because of their fast solution generation. In the implementation the

state is reviewed and a new plan is created every 500 milliseconds. This brings up another

problem, namely commitment to the current plan.

Although the aerial robot needs to be prepared to switch plan if rewards change dras-

tically, e.g. in the event of a previously safe robot leaving the arena, the worst that can

happen is that the aerial robot switches plan every fraction of a second because of small

changes in the state, travel cost, or reward, or in the case of not being able to find the op-

timal solution multiple times in a row. The solution is, when comparing the reward to be

collected in each plan, to add a margin to the current plan, such that the new plan needs

to be significantly better than the current in order to become the active plan, as discussed

in Section 4.8.7: Commitment to Plan.

Continuity

Because of the stochastic environment the positions and trajectories of the robots cannot

be predicted accurately, and there are infinitely many possibilities. Because of small de-

viations between the state the solution was created from and the current state, the ap-

plication is prone to perform wasteful actions. This is reduced by frequent replanning as

discussed before, and handing control of the aerial robot’s movement over to a separate

controller using real-time information when close to the targeted robot.

4.9 Greedy Controller

A greedy algorithm is an algorithm that selects the best choice available at the moment,

without regard of possible future consequences Cormen et al. (2009). The greedy controller

was implemented to evaluate the performance of applying TDOPTW to the mission, and

regards the ground robot closest to the green line as the most important object to handle.

CHAPTER 4. METHODOLOGY 71

When the closest robot is found, the aerial robot will follow this robot and guide the robot

until it crosses the green line. Then it will find the next robot closest to the green line and

continue until there are no robots left.

The greedy controller is the simplest form of decision making for the aerial robot to imple-

ment. It does not require much to work, except from finding a ground robot, and the abil-

ity to land on and in front of a ground robot. It is assumed that Ascend NTNU will use

this implementation for the first physical test on the actual mission due to its simplicity.

4.10 Summary

Opposed to the only known study of TDOPTW, which represented time-dependent cost

as a matrix of costs given all possible interaction timings, the implementation proposed in

this dissertation use the Euclidean distance between points moving as a function of time.

Each cost is calculated dynamically when required, and although it would be possible to

expand the initial graph with each possible edge cost between each pair of nodes, this would

lead to graphs magnitudes larger than the initial graph and be computationally expensive

to search through. One possible consequence of choosing this model is that the trail pa-

rameters, since they can depend on multiple costs, can misrepresent the benefits an edge

provides to a specific solution.

In order to select the next edge to add to a solution, both ACO and IWDA calculate the

heuristic value of the edge based on the reward and cost it provides, such that shorter

edges leading to higher rewards are preferred. The heuristic value and trail parameter of

an edge are used in a selection method to calculate the transition probability to that edge,

in other words the odds of adding the edge to the solution. Rank selection and tournament

selection was applied to ACO alongside the default fitness proportionate selection. IWDA

only implemented fitness proportionate selection, because rank selection has been shown

to yield only minor improvements with a high computational cost with IWDA. In order

to avoid searching through infeasible solutions, the search space is dynamically pruned of

invalid solution components. Both 2-opt and Variable Neighborhood Search has been im-

CHAPTER 4. METHODOLOGY 72

plemented with ACO as local search algorithms, to see if a tour improvement procedure

could improve the performance of the tour construction procedure.

Both IWDA and ACO employ a local and global solution reinforcement procedure. In

IWDA the local reinforcement immediately removes some soil after an IWD has traversed

an edge, and the global reinforcement is performed after each iteration by removing some

soil from the edges of the iteration best solution, based on the amount of soil in the IWD.

In ACO the local reinforcement immediately removes some pheromone from the edge after

an ant has traversed it, and the global reinforcement is performed after each iteration by

adding pheromone to the so far best solution. The solutions are represented as an array of

integers, where each integer represents a node.

The state retrieved from the simulator is converted to a TDOPTW model by assessing the

current and future position of each robot. Using the positions and remaining time until

trajectory reversal, rewards and time windows are assigned to nodes according to a static

map. Service time is calculated based on the initial trajectory of each node in order to

turn it towards the green line. The action plan, which defines the cheapest way to turn the

robot towards the green line, is created upon visiting the robot. While plans are calculated

every 500ms by the controller the commitment strategy decides if the currently active plan

should be exchanged with the new plan, based on the rewards of the solutions.

TDOPTW does not regard the partially observable, continuous, and stochastic properties

of the environment. While the simulator provides a fully observable environment, unlike

the mission, stochasticity and continuity must be handled. By ignoring noise when model-

ing the state and frequently replanning for the aerial robot, the problems associated with

stochasticity and continuity will hopefully be solved, or at least mitigated.

In order to evaluate the performance of the TDOPTW controller for the simulator, a greedy

controller always guiding the robot closest to the green line, possibly the simplest approach

to solving the mission, was implemented.

Chapter 5

Results and discussion

In this chapter the results from testing the implementation will be shown and discussed.

As the construction of the physical aerial robot was not completed at the time this disser-

tation was written, only benchmark tests and simulator tests have been performed.

Unless stated otherwise, the parameters used for IWDA are listed in Table 5.1 and for

ACO in Table 5.2. The parameter values were based on the literature investigated in Sec-

tion 2.3.3: Intelligent Water Drops and Section 2.3.2: Ant Colony Optimization respec-

tively, and adjusted to maximize preliminary benchmark results on the same test sets de-

scribed in Section 5.1.2: Time-Dependent Orienteering Problem with Time Windows.

74

CHAPTER 5. RESULTS AND DISCUSSION 75

Parameter Value

m (number of agents) 50
Number of iterations 100
Initial soil 1000
Initial velocity 4
av 1
bv 0.01
cv 1
as 1
bs 0.01
cs 1
es 0.1
ep 0.1

Table 5.1: Default parameters for IWDA

Parameter Value

m (number of agents) 20
Number of iterations 10
t0 (initial pheromone) 0.001
a (pheromone importance) 1
b (heuristic importance) 1
p (evaporation rate) 0.5
u0 (exploitation probability) 0.9

Table 5.2: Default parameters for ACO

5.1 Benchmark Tests

Some test instances exists for TDOPTW, created by Garcia et al. (2010), but as described

in Section 4.1: Representing Time-Dependent Cost they were not suitable for the imple-

mentation targeting the mission environment. Thus, in order to compare the performance

of ACO and IWDA with the literature, additional tests were performed on OPTW. To the

extent of the authors’ knowledge, IWDA has not been tested on any variations of the Ori-

enteering Problem, and therefore it was of importance to investigate its performance.

Comparing ACO using rank, tournament, and fitness proportionate selection no significant

CHAPTER 5. RESULTS AND DISCUSSION 76

differences were found (the results can be found in Table A.3, Table A.4, and Table 5.11

respectively). Since fitness proportionate selection is typically used with ACO, and IWDA

use it as well, it was decided to continue testing using only this selection method.

Two local search methods have been implemented with ACO, namely 2-opt and Variable

Neighborhood Search, both described in Section 4.5: Local Search. Preliminary results

showed insignificant differences in received reward and significantly greater computational

cost using Variable Neighborhood Search, and thus benchmark tests will only be carried

out using 2-opt as the local search procedure.

In Table 5.3 the different symbols and abbreviations used in the following results are de-

scribed.

Symbol/abbreviation Description

Name The problem instance name excluding the prefix ‘50_’
Max Reward Maximum solution reward
Avg Reward Average solution reward
Min Reward Minimum solution reward
Dev Reward Standard deviation of solution rewards
Max Cost Maximum solution cost
Avg Cost Average solution cost
Min Cost Minimum solution cost
Dev Cost Standard deviation of solution costs
Max Time Maximum problem instance computation time
Avg Time Average problem instance computation time
Min Time Minimum problem instance computation time
Dev Time Standard deviation of problem instance computation times
Max Itr Maximum number of algorithm iterations to find best solution
Avg Itr Average number of algorithm iterations to find best solution
Min Itr Minimum number of algorithm iterations to find best solution
Dev Itr Standard deviation of number of iterations to find best solution

Table 5.3: Description of abbreviations and symbols used in describing the benchmark re-
sults

The following two subsections describes the results of a 100 runs on six different problem

instances for ACO and IWDA.

CHAPTER 5. RESULTS AND DISCUSSION 77

5.1.1 Orienteering Problem with Time Windows

The problem instances used was found on http://www.mech.kuleuven.be, created in rela-

tion to Righini and Salani (2006). From the collection specific test instances were chosen to

have high variation in cost budgets, time windows, and node positions, especially consider-

ing the degree of clustering of nodes. Each of the problem instances has 50 nodes to visit,

with a given start node and end node.

Name Max Reward Avg Reward Min Reward Dev Reward Cost Budget Max Cost Avg Cost Min Cost Dev cost

c101 210.00 166.40 140.00 13.00 1236 1,232.54 1,181.06 1,148.33 25.14
c109 270.00 225.50 200.00 13.44 1236 1,234.17 1,169.82 1,102.33 35.54
r107 203.00 176.77 153.00 9.97 230 229.80 221.13 195.72 7.55
r109 147.00 123.69 109.00 8.33 230 224.20 201.67 183.49 10.57
rc101 170.00 148.00 130.00 8.49 240 226.04 209.44 189.87 6.21
rc106 190.00 160.50 140.00 12.28 240 233.95 208.79 191.15 11.86

Table 5.4: Reward and cost results for IWD with low exploitation

Name Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 1.3104 1.1914 1.0788 0.0516 99.00 33.00 1.00 28.72
c109 2.1613 2.0476 1.9794 0.0317 100.00 33.00 1.00 24.39
r107 2.1866 2.0206 1.9559 0.0386 94.00 57.00 9.00 18.51
r109 1.3567 1.2278 1.1231 0.0570 100.00 41.00 1.00 28.78
rc101 1.0580 0.9361 0.8493 0.0475 99.00 43.00 1.00 28.77
rc106 1.1823 1.1307 1.0773 0.0202 98.00 46.00 1.00 29.75

Table 5.5: Time and iteration results for IWD with low exploitation

Name Max Reward Avg Reward Min Reward Dev Reward Cost Budget Max Cost Avg Cost Min Cost Dev cost

c101 260.00 260.00 260.00 0.00 1236 1,174.50 1,169.41 1,169.20 1.04
c109 330.00 322.00 320.00 4.00 1236 1,233.80 1,210.89 1,181.00 15.95
r107 204.00 199.39 196.00 2.16 230 226.20 225.83 224.40 0.62
r109 186.00 183.60 180.00 2.94 230 221.90 216.18 207.60 7.01
rc101 170.00 170.00 170.00 0.00 240 219.20 218.66 216.20 1.15
rc106 200.00 200.00 200.00 0.00 240 234.40 225.13 219.20 5.12

Table 5.6: Reward and cost results for ACO using fitness proportionate selection and no
local search

CHAPTER 5. RESULTS AND DISCUSSION 78

Name Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 0.0813 0.0670 0.0622 0.0038 8.00 3.00 1.00 2.51
c109 0.1048 0.0964 0.0895 0.0040 8.00 3.00 1.00 2.28
r107 0.0824 0.0720 0.0668 0.0035 8.00 6.00 4.00 1.23
r109 0.0721 0.0607 0.0556 0.0035 10.00 5.00 2.00 3.44
rc101 0.0510 0.0418 0.0382 0.0032 3.00 1.00 1.00 0.97
rc106 0.0620 0.0528 0.0488 0.0035 4.00 2.00 1.00 1.08

Table 5.7: Time and iteration results for ACO using fitness proportionate selection and no
local search

Although no previous applications of IWDA on the problem has been found, the results

show that both ACO and IWDA can find solutions significantly better than the worst solu-

tions encountered. The computation time used to find these solutions are low compared to

what could be expected from a brute force search of a graph this size.

Name Best known ACO IWDA

c101 320.00 260.00 210.00
c109 380.00 330.00 270.00
r107 299.00 204.00 203.00
r109 277.00 186.00 147.00
rc101 219.00 170.00 170.00
rc106 252.00 200.00 190.00

Table 5.8: Comparison with best known results

Table 5.8 compares the achieved maximum reward with the best known results, as reported

by Gunawan et al. (2015). Neither ACO nor IWDA are able to find the best known solu-

tions for any of the problem instances, but finding optimal solutions to such problems re-

quires lots of fine-tuning and optimization of the algorithms towards the specific problem

instance and the general problem. The reason for this is the narrow space that the optimal

solutions exist in.

In every graph search there are neighborhoods of solutions that are similar in composition,

but with the given constraints the neighborhood of excellent solutions might be very bad,

or in worst case, consisting of mostly illegal solutions. The cost budget and time windows

CHAPTER 5. RESULTS AND DISCUSSION 79

might eliminate solutions in the neighborhood of optimal solutions, while the reward and

cost of getting there might misguide heuristic algorithms away from these neighborhoods.

5.1.2 Time-Dependent Orienteering Problem with Time

Windows

The problem instances used were based on the problem instances used in Section 5.1.1:

Orienteering Problem with Time Windows, adopted by inserting node values not consid-

ered in OPTW: For each node a random trajectory value in the range [0,2π), and a speed

of 0.33 (as the robot speed in the mission is 0.33 m/s). There are no known optima for

these test instances, and so the performance can only be evaluated between ACO and IWDA.

Name Max Reward Avg Reward Min Reward Dev Reward Cost Budget Max Cost Avg Cost Min Cost Dev cost

c101 160.00 132.90 110.00 8.87 1236 897.68 739.39 653.73 49.26
c109 180.00 150.70 110.00 15.31 1236 1,076.08 873.63 712.13 76.87
r107 145.00 120.21 97.00 9.62 230 219.92 180.64 153.70 14.17
r109 143.00 119.24 102.00 9.92 230 185.37 151.27 128.53 11.45
rc101 160.00 136.10 100.00 11.04 240 212.53 189.74 145.18 12.04
rc106 150.00 123.80 100.00 10.66 240 195.50 173.05 141.59 14.87

Table 5.9: Reward and cost results for IWD with low exploitation

Name Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 2.1841 2.0591 1.9849 0.0460 99.00 42.00 1.00 27.81
c109 2.6679 2.5725 2.4822 0.0356 100.00 44.00 2.00 30.59
r107 2.2776 2.1375 2.0576 0.0410 100.00 35.00 1.00 28.01
r109 1.9883 1.9181 1.8297 0.0361 99.00 20.00 1.00 21.36
rc101 1.4162 1.3394 1.2456 0.0276 97.00 25.00 1.00 26.84
rc106 1.5268 1.4602 1.4046 0.0278 93.00 28.00 1.00 22.03

Table 5.10: Time and iteration results for IWD with low exploitation

CHAPTER 5. RESULTS AND DISCUSSION 80

Name Max Reward Avg Reward Min Reward Dev Reward Cost Budget Max Cost Avg Cost Min Cost Dev cost

c101 130.00 130.00 130.00 0.00 1236 858.93 858.93 858.93 0.00
c109 210.00 204.00 200.00 4.90 1236 1,229.39 1,186.45 1,088.19 45.39
r107 155.00 149.13 148.00 1.79 230 227.64 216.02 208.22 6.17
r109 154.00 146.97 138.00 6.14 230 220.18 209.58 192.38 6.94
rc101 150.00 148.70 140.00 3.36 240 237.41 231.73 228.32 4.27
rc106 150.00 150.00 150.00 0.00 240 226.10 223.14 221.61 2.08

Table 5.11: Reward and cost results for ACO without local search

Name Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 0.0831 0.0721 0.0654 0.0039 1.00 1.00 1.00 0.00
c109 0.1304 0.1168 0.1064 0.0056 10.00 4.00 1.00 3.04
r107 0.1285 0.1150 0.1060 0.0052 9.00 3.00 1.00 2.81
r109 0.1283 0.1066 0.0979 0.0054 10.00 4.00 1.00 3.27
rc101 0.0876 0.0759 0.0693 0.0038 3.00 1.00 1.00 0.50
rc106 0.0933 0.0842 0.0753 0.0042 8.00 5.00 2.00 1.95

Table 5.12: Time and iteration results for ACO without local search

The results show that both ACO and IWDA, neither of which have been shown to solve

the problem before, find solutions significantly better than the worst solutions encountered.

The differences between the two algorithms are smaller than on OPTW, and IWDA had

the best results on two problem instances.

The difficulty discussed earlier with finding good solutions in bad neighborhoods is empha-

sized by the time-dependent cost of the problems, as the neighborhoods change depending

on the cost used to get there. Furthermore similar solutions might differ more in both cost

and reward than in OPTW, and the trails of the algorithms might not be fully utilized, as

discussed in Section 4.1: Representing Time-Dependent Cost.

For the purpose of solving the mission it is assumed that it is more important to generally

find a high average reward and low deviation in rewards rather than a high maximum re-

ward, as the state of the problem changes significantly throughout the mission. This will

be further discussed in Section 5.2: Simulator.

CHAPTER 5. RESULTS AND DISCUSSION 81

Without local search With local search
Name Max Reward Avg Reward Avg Time Max Reward Avg Reward Avg Time
c101 130.00 130.00 0.0721 130.00 130.00 0.0797
c109 210.00 204.00 0.1168 210.00 203.40 0.1352
r107 155.00 149.13 0.1150 150.00 149.07 0.1412
r109 154.00 146.97 0.1066 153.00 148.03 0.1344
rc101 150.00 148.70 0.0759 150.00 150.00 0.0932
rc106 150.00 150.00 0.0842 150.00 148.90 0.0980

Table 5.13: Comparing ACO with 2-opt local search and without local search

As mentioned in Section 2.3.2.3: LocalSearch a local search procedure (i.e. tour improve-

ment procedure) can highly benefit tour construction procedures when creating solutions,

but as mentioned in Section 2.2.3.3: Orienteering Problem with Time Windows, creating

an efficient local search procedure for problems with time windows is difficult. 2-opt, as

described in Section 4.5: Local Search has been tested with ACO with the results shown

in Table 5.13. The difference in received rewards are insignificant given statistical error,

and it was observed that the local search procedure generally were unable to improve any

solutions because of the tight constraints. In light of the increased computational cost of

the local search, remaining tests will be performed without the use of a local search proce-

dure.

High exploitation Low exploitation

Name Max Reward Avg Reward Avg Itr Max Reward Avg Reward Dev Reward Avg Itr
c101 170.00 112.60 10.00 160.00 132.90 8.87 42.00
c109 180.00 138.30 24.00 180.00 150.70 15.31 44.00
r107 142.00 111.95 8.00 145.00 120.21 9.62 35.00
r109 142.00 111.32 11.00 143.00 119.24 9.92 20.00
rc101 150.00 115.40 2.00 160.00 136.10 11.04 25.00
rc106 140.00 106.20 3.00 150.00 123.80 10.66 28.00

Table 5.14: Comparing IWD with high and low exploitation

As described in Section 2.3.3: Intelligent Water Drops IWDA changes its search space by

removing soil from rivers, but it is not able to replace the soil. So if the algorithm finds a

good neighborhood it is difficult for it to find solutions in other neighborhoods, and it gets

worse the longer the so far best solution has been reinforced.

As can be seen in Figure 5.1, a neighborhood which is available if an IWD moves to ‘B’, it

CHAPTER 5. RESULTS AND DISCUSSION 82

Figure 5.1: A local good neighborhood will attract more IWDs, thus higher search pres-
sure, while the global solution may be in another neighborhood.

is able to find solutions which are locally good, but not optimal as designated by the yel-

low star. The global optimal solution is in the neighborhood that opens up if ‘A’ is visited,

but the algorithm is prone to continue reinforcing the path to B and put the pressure on

that neighborhood, which makes it hard to find the optimal solution. But there will always

be a probability for an IWD to choose A, and that probability depends on the amount of

soil residing in the edges. So in order to lower the exploitation pressure of the algorithm,

the parameters for removing soil during traversal and solution reinforcement, respectively

ep and es , can be decreased in order to decrease the convergence speed.

Table 5.14 compares two different parameter settings for IWDA, one with high (es = ep =
0.9) and one with low exploitation pressure (es = ep = 0.1). The results show that lower-

ing the degree of exploitation allows the algorithm to discover better solutions with the

same number of iterations as the upper limit, i.e. with the same computational cost. Also,

we see increased average number of iterations used to find the best solution with lower ex-

ploitation, which illustrates the lower convergence speed.

In the following diagrams, some interesting results from the benchmark tests on ACO and

IWDA are compared side by side.

CHAPTER 5. RESULTS AND DISCUSSION 83

Figure 5.2: Reward received on problem instance ‘c109’

Figure 5.2 shows that ACO finds higher reward on problem instance ‘c109’ for TDOPTW.

The average and minimum reward found in ACO is higher than the maximum reward found

in IWDA, and has low deviation, which illustrates how stable it is.

Figure 5.3: Cost spent on problem instance ‘c109’

Figure 5.3 shows that ACO use more cost, and thus as seen in Figure 5.2 is able to find

higher rewards as well. As the cost budget is 1236, it is apparent that IWDA stagnates in

neighborhoods where it is too far to other nodes with open time windows. As ACO has a

CHAPTER 5. RESULTS AND DISCUSSION 84

smaller deviation in rewards than IWDA, it is not unexpected that it has a smaller devia-

tion in costs as well.

Figure 5.4: Computation time in seconds spent on problem instance ‘c109’

In Figure 5.4 the difference in computational cost is illustrated. Given that IWDA have a

higher number of agents and iterations to find solutions, it is to be expected. The devia-

tion can be explained by difference in solution lengths explored, where creating longer solu-

tions require additional computations to be performed. Since ACO has an almost insignifi-

cant deviation in its computational cost (too small to be shown in the figure, but present

in Table 5.12), it can be assumed that there are relatively small variations in the explored

search space between each run. These results show that using rank selection in IWDA, as

mentioned in Section 2.3.3.4: Modification of Selection Method, would make the algorithm

infeasible for use in the mission because of high computational cost.

CHAPTER 5. RESULTS AND DISCUSSION 85

Figure 5.5: Iteration when best solution was found on problem instance ‘c109’

Knowing that the algorithms run a different number of iterations, the algorithms need to

be compared relatively in Figure 5.5. The difference between the maximum and minimum

number of iterations, and the high deviation, illustrates how edge selection, based on the

transition probabilities of the edges, can affect how quickly the best solutions are found,

and that the algorithms can escape bad subspaces to find good solutions later. The av-

erages are low compared to the maximum values, which shows that it is possible to trade

lower computational cost for slightly worse solutions on average, and vice versa. This is

supported by ‘convergence in value’ as discussed in Section 2.3.3.4: Convergence Proper-

ties of Intelligent Water Drops Algorithm, where IWDA is said to find the optimal solution

given enough iterations.

CHAPTER 5. RESULTS AND DISCUSSION 86

Figure 5.6: Reward received on problem instance ‘c101’

Problem instance ‘c101’ was one of two problem instances where IWDA achieved better

rewards than ACO. In Figure 5.6 it is shown that the average reward of IWDA is higher

than the maximum reward found by ACO on ‘c101’. As seen in Table 5.12 ACO usually

requires few iterations to find its best solution, which indicates that it gets stuck in a lo-

cal optimum and is unable to escape during the allocated iterations. An important aspect

to notice is that in the instances where IWDA has higher maximum reward than ACO,

the average of ACO is still close to or higher than that of IWDA, and with no deviation

it could be preferable to use ACO in the mission because of its consistency. Producing

equal or similar solutions for similar states reduces the need of a complex commitment al-

gorithm.

5.2 Simulator

All of the tests in this section were run in the implemented simulator and recorded. Each

test ran until there were no more ground robots left to guide, even if the simulation ex-

ceeded 10 minutes. The asterisk symbol (*) is used to illustrate that the robot left the

arena erroneously at the given time.

CHAPTER 5. RESULTS AND DISCUSSION 87

As indicated by the results in the previous section, IWDA had a high deviation in solu-

tion quality. As a result of the high difference in solutions, the controller had problems

with committing to a specific plan to follow. Thus the IWDA controller used a significant

amount of time flying back and forth without handling robots, as illustrated in Figure 5.7:

In step 1 a plan is active; 3 seconds later, in step 2, the plan has changed; before the aerial

robot is able to move a significant distance (as seen in step 3), in step 4 a new plan similar

to the one in step 1 is set as active, only 3 seconds after the last replanning. This behavior

is prevalent with IWDA and explains why such a long time is required to guide all robots

over the green line. Given the evidence and the significant modifications required to resolve

the commitment issue with the IWDA controller it was decided of stop the simulator test-

ing with IWDA after 3 runs and continue only with ACO.

Run Min. requirement All requirements Lost robots 1. robot 2. robot 3. robot 4. robot 5. robot 6. robot 7. robot 8. robot 9. robot 10. robot

1 473 593 0 38 119 156 240 276 454 473 515 592 593
2 496 678 0 79 176 231 350 380 412 496 573 587 678
3 458 695 0 38 150 320 357 398 415 458 514 532 695
Avg 475,67 655,33 0,00 51,67 148,33 235,67 315,67 351,33 427,00 475,67 534,00 570,33 655,33

Table 5.15: TDOPTW with IWDA Controller

CHAPTER 5. RESULTS AND DISCUSSION 88

Figure 5.7: Shows a picture series of the TDOPTW controller using IWDA ranging over 8
seconds, which illustrates how the IWDA controller struggles with commitment to a path

CHAPTER 5. RESULTS AND DISCUSSION 89

5.2.1 Behavior of Greedy Controller

Run Min. requirement All requirements Lost robots 1. robot 2. robot 3. robot 4. robot 5. robot 6. robot 7. robot 8. robot 9. robot 10. robot

1 418 - 1 37 73 120 179 240 313* 353 418 509 620
2 387 720 0 36 77 107 168 233 307 387 527 627 720
3 378 619 0 39 86 151 175 227 278 378 460 530 619
4 418 - 2 36 78 127 153 200 314 376* 418 419* 532
5 371 628 0 35 71 105 189 220 275 371 437 540 628
6 439 713 0 38 88 141 250 293 372 439 546 628 713
7 336 674 0 36 67 97 158 233 306 336 419 553 674
8 411 628 0 38 75 113 176 259 337 411 470 536 628
9 300 - 1 51 75 111 151* 158 173 237 300 373 478
10 348 559 0 50 78 117 159 212 247 348 415 488 559
Avg 380,60 648,71 0,40 39,60 76,80 118,90 178,56 227,50 289,89 362,22 441,00 531,56 617,10

Table 5.16: Greedy Controller, where the asterisk denotes that the robot left the arena er-
roneously

As seen from the results in table Table 5.16 in all 10 runs the greedy algorithm achieves

the minimum requirement of the mission to guide 7 robots over green line under 10 min-

utes, but never to guide all 10 robots over the green line under 10 minutes. Figure 5.2.1

compares the table data from the greedy runs, and all runs are relatively close to the aver-

age. As the aerial robot only guides a single robot at the time it does not induce any addi-

tional uncertainties in the state, opposed to TDOPTW, which is discussed later.

CHAPTER 5. RESULTS AND DISCUSSION 90

Figure 5.8: Shows the result of 10 different runs using the greedy controller. The blue line
is the average, and the red lines show runs were robots were lost

As the greedy controller finds the robot closest to the green line and handles this robot

until it has crossed the green line, it uses relatively short time, average of 40 seconds, to

guide the first robot. As seen from Figure 5.2.1 it takes longer and longer to guide robots

over the green line, and the average line flattens out. This can be explained by the fact

that the robots starts moving outwards from a circle, and the nature of the greedy algo-

rithm shines through and will not handle the robots furthest away until its the only one

left to handle.

CHAPTER 5. RESULTS AND DISCUSSION 91

Figure 5.9: Shows the greedy controller and how it selects the robot closest to the green
line in different states of the simulation

The greedy controller sometimes looses robots and in run 4 it lost 2 robots during 8 min-

utes and 52 seconds. Since the algorithm always chooses the robot closest to the green line

as its next to guide, it has no possibility to save other robots about to leave the arena. As

such, the number of robots lost depends on chance. As seen in Figure 5.10 the aerial robot

ignores the three robots in danger of exiting the arena, and selects the robot closest to the

green line. After it has guided the robot over the green line, it has lost two robots which

illustrates how it ignores the bigger picture during its robot selection.

Figure 5.10: Shows how the greedy robots selects and continue to work on the robot closest
to the green line, ending with 2 robots exiting the mission arena

CHAPTER 5. RESULTS AND DISCUSSION 92

5.2.2 Behaviour of Time-Dependent Orienteering Prob-

lem with Time Windows Controller

Run Min. requirement All requirements Lost robots 1. robot 2. robot 3. robot 4. robot 5. robot 6. robot 7. robot 8. robot 9. robot 10. robot

1 378 451 0 39 180 219 300 314 331 378 414 420 451
2 374 - 1 37 93 140* 277 300 352 354 374 453 469
3 314 450 0 40 75 80 134 135 179 314 360 412 450
4 556 - 1 189 196 231* 260 358 377 520 556 570 619
5 496 - 1 38 39 219* 309 398 433 448 496 498 511
6 258 351 0 99 119 135 137 196 200 258 271 294 351
7 375 489 0 79 227 255 293 298 351 375 379 471 489
8 316 450 0 78 133 216 274 276 310 316 376 395 450
9 394 - 1 37 196 218 258 291 319* 338 394 488 610
10 357 539 0 51 254 278 279 286 350 357 416 519 539
Avg 381,80 455,00 0,44 68,70 151,20 200,14 252,10 285,20 320,33 380,20 403,60 452,00 493,90

Table 5.17: TDOPTW with ACO controller, where the asterisk denotes that the robot left
the arena erroneously

The results in Table 5.17 show that the TDOPTW controller with ACO achieves the mini-

mum requirement of the mission, i.e. guiding 7 robots over the green line in 10 minutes, in

all runs. Additionally, in all the runs performed without losing a robot it managed to guide

all the robots over the green line within 10 minutes. In two of the instances where it lost

a robot it was due to collisions close to the edge of the arena, too far away for the aerial

robot to reach in time. Another loss happened because delays in the turn actions resulted

in the robot leaving the arena, as shown in Figure 5.14 and further explained below. The

last loss happened because a competing plan received a higher score than saving the robot

would, although it was expected to leave the arena.

CHAPTER 5. RESULTS AND DISCUSSION 93

Figure 5.11: Compares the results from each run of the TDOPTW controller using ACO.
The green graph is the average, and red graphs show runs where a robot were lost

Figure 5.11 shows that there are great differences between the individual runs. One com-

mon trait is that between plateaus the graph leaps multiple increments in a short duration,

which testifies to the aerial robot’s behavior of guiding multiple robots simultaneously to-

wards the green line, spending more time on each group of robots than greedy does on a

single robot. One advantage of TDOPTW is the ability to guide robots about to leave the

arena or in dangerous zones towards safe zones, but as observed in the results sometimes

robots will escape the arena early in the run, when the collision frequency is high. The in-

teractions from the aerial robot may in some instances increase the collision rate, because

more robots are gathered in a smaller area, which leads to greater uncertainty with respect

to future states. Although the average value indicates expected performance of the algo-

CHAPTER 5. RESULTS AND DISCUSSION 94

rithm, it does not reflect any single run very well.

Figure 5.12: A picture series showing the behavior of waiting and handling multiple robots.
These pictures are taken form run number 6

Figure 5.12 shows the behavior of guiding multiple robots and waiting for time windows.

In step 1 the aerial robot has a plan involving two robots, in step two it waits until step 3

with handling the robot it currently hovers over, before returning to the first robot in step

4. Notice that after each interaction a new plan including the recently handled robot is

created: This way it is able to continue working on these two robots and guide them over

the green line before handling other robots, behavior made possible by frequent replanning,

limited cost budget, and the loose commitment strategy driven by reward comparison.

When these two robots are expected to pass the green line unattended, a plan involving

other robots is created.

CHAPTER 5. RESULTS AND DISCUSSION 95

Figure 5.13: A picture series showing the algorithm changing plans to handle a robot in a
dangerous area, and successfully saving the robot. These pictures are taken from run num-
ber 6

Figure 5.13 shows a situation in step 1 where the aerial robot ignores the two robots ex-

pected to pass the green line unattended, and creates a plan involving two other robots.

In step 2 a robot on the left side recently passed into what is considered a more danger-

ous area and the node representation was assigned a higher reward, such that a new plan

involving this robot was created. Afterwards the aerial robot continues to handle the two

robots from the plan in step 2.

CHAPTER 5. RESULTS AND DISCUSSION 96

Figure 5.14: A picture series showing an failed attempt of saving a robot due to the action
selection. These pictures are taken from run number 4

Figure 5.14 shows one of the instances where a robot left the arena erroneously. As the

aerial robot is handling the robot, it tries to turn the robot towards the green line with the

fewest number of actions, i.e. two 45 degree turns. The delay between each 45 degree turn

enables the robot to progress between the actions resulting in it leaving the bounds of the

arena, which could have been prevented by calculating a different action plan.

CHAPTER 5. RESULTS AND DISCUSSION 97

5.2.3 Controller Comparison

Figure 5.15: Compares the average of the greedy controller, represented by the blue line,
and the TDOPTW controller with ACO, represented by the green line

As Figure 5.15 shows, the average completion time of the TDOPTW controller is lower

than the greedy controller by about 150 seconds. The graphs intersect at the 7th robot,

which happens to be the minimum requirement to complete the mission, as mentioned

in Section 2.1.1: The Mission. The most important thing to notice is that the TDOPTW

controller spends more time than the greedy controller guiding the first few robots across

the green line, but is redeemed when more robots are turned the correct direction and

there are fewer robots to handle.

CHAPTER 5. RESULTS AND DISCUSSION 98

5.3 Summary

IWDA and ACO were tested on OPTW because of the lack of comparable test results for

TDOPTW, and was chosen because the only difference is the time-dependency. The test

results showed that both IWDA and ACO were able to solve the problem, and although

they were far from finding the best known solutions, the range of found solutions showed

they were both able to find high quality solutions.

When testing on TDOPTW both algorithms were shown to produce valid solutions, and

were shown to find solutions of higher quality than the worst solutions encountered. In 4

out of 6 problem instances ACO outperformed IWDA on most accounts, and generally had

a higher average reward and lower reward deviation. Given the test results ACO showed

greater promise for use in the simulator than IWDA. Furthermore IWDA was shown to

perform better with lower exploitation pressure towards previous solutions, and ACO to

have no significant change in performance by using 2-opt local search, except for higher

computational cost.

The greedy controller solved the minimum requirement of the mission, guiding 7 robots

across the green line in less than 10 minutes, in all instances, but were never able to guide

all 10 robots across the green line in less than 10 minutes in any of the runs.

As expected, given the test results on TDOPTW, using IWDA in the TDOPTW controller

had worse results than using ACO. It was shown to have problems with committing to a

path, and given the poor results testing with IWDA was ended after 3 runs. The TDOPTW

controller with ACO showed great promise, and on average solved the minimum require-

ment of the mission in the same time as the greedy controller. Furthermore, it showed

greater ability than the greedy controller to guide robots when fewer robots remained in

the state, and in 6 of the 10 instances it guided 10 of the robots over the green line in un-

der 10 minutes, averaging about 150 seconds lower than the greedy controller. Still, its in-

teraction with multiple robots would in some instances induce more frequent collisions and

thus greater uncertainties in the state.

Chapter 6

Conclusion

The goal of this research was to implement a scheduling system, modeled as a Time-Dependent

Orienteering Problem with Time Windows, for an autonomous aerial robot that guides

robots in a dynamic and stochastic environment, for use in the International Aerial Robotics

Competition 2016. The main challenges addressed in this work was how to model the envi-

ronment, what the desired behavior of the aerial robot was, and how to derive the behavior

using real-time information.

After abstracting the problem it was compared with known problems, and a good fit was

found in the combinatorial problem Time-Dependent Orienteering Problem with Time-

Windows. Given the vast amount of possible solutions in even simple Time-Dependent Ori-

enteering Problem with Time Windows instances, the swarm algorithms Intelligent Water

Drops Algorithm and Ant Colony Optimization Algorithm were used to perform a heuristic

search through possible solutions. During implementation multiple variants and techniques

for Intelligent Water Drops Algorithm and Ant Colony Optimization Algorithm were ex-

amined, discussed, and tested regarding beneficial properties for the mission environment.

Properties of the mission environment not handled in Time-Dependent Orienteering Prob-

lem with Time Windows were solved by frequently planning with a short time horizon.

100

CHAPTER 6. CONCLUSION 101

Research Question 1

Which of the algorithms Ant Colony Optimization and Intelligent Water Drops can solve

the Time-Dependent Orienteering Problem with Time Windows?

The results in Section 5.1.2: Time-Dependent Orienteering Problem with Time Windows

shows that both Ant Colony Optimization Algorithm and Intelligent Water Drops Algo-

rithm are able to solve the optimization problem Time-Dependent Orienteering Problem

with Time Windows with adequate results and low computational cost. Since the test in-

stances used have not been tested earlier in the literature it is difficult to ascertain the per-

formance of the algorithms on Time-Dependent Orienteering Problem with Time Windows,

but results from solving the Orienteering Problem with Time Windows indicates that other

algorithms (or other abbreviations of tested algorithms) could perform better on the Time-

Dependent Orienteering Problem with Time Windows.

Research Question 2

Which of the successful algorithms provides the best trade-off between solution quality and

computation time?

As shown in Section 5.1.2: Time-Dependent Orienteering Problem with Time Windows In-

telligent Water Drops Algorithm and Ant Colony Optimization Algorithm performed best

with respect to received reward on different instances, but generally Ant Colony Optimiza-

tion Algorithm was shown to solve the problems with greater average reward and lower de-

viation in reward. The Intelligent Water Drops Algorithm was required to use more agents

and iterations to obtain comparable results to Ant Colony Optimization Algorithm, which

resulted in significantly higher computational cost. Thus the Ant Colony Optimization Al-

gorithm provides the best trade-off between solution quality and computation time.

In context of the simulator, the higher average and lower deviation in reward with Ant

Colony Optimization Algorithm was prevalent, as the aerial robot was more consistent re-

garding commitments when planning, opposed to the time wasted changing plans when

Intelligent Water Drops Algorithm was applied.

CHAPTER 6. CONCLUSION 102

Research Question 3

Is solving the IARC competition mission 7a as a Time-Dependent Orienteering Problem

with Time Windows with the algorithms presented in RQ1 better than a greedy algorithm?

In Section 5.2: Simulator the Time-Dependent Orienteering Problem with Time Windows

controller with Ant Colony Optimization Algorithm was shown to perform better than the

simple ‘greedy controller’, while the Intelligent Water Drops Algorithm had problems when

applied to the controller, and the results are not able to support any conclusion regard-

ing its performance versus the greedy controller. With the Ant Colony Optimization Algo-

rithm, the Time-Dependent Orienteering Problem with Time Windows controller showed

desirable behaviors and were able to guide multiple robots simultaneously, and were in

multiple instances able to guide all 10 robots across the green line in under 10 minutes,

while the greedy controller only managed to do this once.

However, in the early states of the mission the greedy controller was able to guide robots

over the green line faster, and in some instances the Time-Dependent Orienteering Prob-

lem with Time Windows controller induced more collisions in the state which led to higher

uncertainties and sometimes lost robots. Given that the greedy controller were able to

achieve the minimum mission requirement in all the performed runs, the results show the

greedy controller should be sufficient to solve the mission, and thus the cost of implement-

ing a Time-Dependent Orienteering Problem with Time Windows controller must be con-

sidered before justifying the benefits.

6.1 Research Value

In this research it has been shown that Intelligent Water Drops Algorithm and Ant Colony

Optimization Algorithm is able to solve the combinatorial problem Time-Dependent Ori-

enteering Problem with Time Windows, which, to the extent of the authors’ knowledge,

has not been done before. This also applies to the Orienteering Problem and Orienteering

Problem with Time Windows for the Intelligent Water Drops Algorithm.

CHAPTER 6. CONCLUSION 103

Furthermore, the research has shown that solving mission 7a of the International Aerial

Robotics Competition with Time-Dependent Orienteering Problem with Time Windows

as model outperforms an example of a simple greedy algorithm. Both benefits and draw-

backs of the Time-Dependent Orienteering Problem with Time Windows controller and the

greedy controller have been revealed, which is of great value for Ascend NTNU, and possi-

bly other participants in the competition. As Time-Dependent Orienteering Problem with

Time Windows models the IARC mission 7a, this dissertation has contributed to identify a

practical application of the model.

6.2 Future Work

Reviewing the simulator results, many of the errors and deficiencies of the system can be

prevented by further developing different functionalities of the controller. One of the high-

lighted incidents where a robot leaves the arena erroneously could have been prevented if

the action selection had turned the robot away from danger instead of directly towards the

green line. This procedure would incur at least one additional action, but the benefits out-

weighs the alternative of losing the robot. Additional enhancements of the action selection

includes creating action plans directing robots away from collisions and dangerous areas of

the arena, and possibly reduce distance between sets of robots that are handled simultane-

ously.

Further controller enhancements include improving the commitment strategy, which could

improve the performance with both algorithms, but especially Intelligent Water Drops Al-

gorithm given the previously discussed commitment issues. The benefits of an improved

commitment strategy versus the current solution needs to be considered though, as the is-

sue is complicated and could have been a dissertation in itself.

As seen by the results, the greedy controller excels in the early parts of the mission, and

is not susceptible to include additional uncertainties in the state. The Time-Dependent

Orienteering Problem with Time Windows controller on the other hand excels at the later

states, and as such making the Time-Dependent Orienteering Problem with Time Windows

CHAPTER 6. CONCLUSION 104

controller adapt some of the behavior of the greedy controller for the initial four robots

would probably be beneficial.

As discussed in Section 4.1: Representing Time-Dependent Cost, the edges of the graph

are reused for trail parameters, independent of the dynamic cost and how the edge is used

in combination with other edges. This principle works for a brute force search, but goes

against the emergent properties of swarm intelligence, and the alternative approach of ex-

panding the graph to include all possible edges, with respect to their costs, should be fur-

ther researched to determine the difference in performance it can offer, and the computa-

tional cost it entails.

The final, and possibly most important, question remains: How will the system perform

in the real world? The implementation of the system requires a large amount of informa-

tion about the environment it operates in. Perception will probably be limited, and thus a

model of the parts of the environment not visible needs to be maintained. Uncertainties re-

garding the position and trajectory of the robots can lead to problems when updating the

internal model, e.g. when a robot is found in an expected position but with wrong trajec-

tory, it is uncertain whether the robot has collided or if it is another robot. This problem

may be further emphasized if robots leave the arena without the aerial robot perceiving or

expecting this. Greater uncertainties in both travel cost and service time may lead to plans

failing unexpectedly, as real costs may be higher or lower than expected.

Thus the plans produced by the current implementation are expected to be less robust in

the real world, but reducing the available cost budget, changing the commitment strategy,

and modifying the action plan to cluster robots within the aerial robot’s perception range

are modifications worth exploring, which may enable at least parts of the behaviors high-

lighted in this research.

Given that the greedy controller is easier to implement and the test results show that it

satisfies the minimum requirements of the mission, Ascend NTNU should test the greedy

controller in the real world and evaluate its performance before considering implementing

the Time-Dependent Orienteering Problem with Time Windows controller.

Appendix A

Appendix

A.1 Complete Formulation of Intelligent Wa-

ter Drops Algorithm Equations

In this section all the equations of the IWDA are showed and explained.

m: Number of IWDs

s(k) | k = 1, . . . ,m: The solution of water drop k

sI B : Iteration best solution

vel (k, t): The velocity of a water drop k at time t

soi l (k): Soil carried by a water drop k

soi l (i , j): Soil retained by an edge

106

APPENDIX A. APPENDIX 107

1 Input : P , and parameters
2 I n i t i a l i z e E d g e S o i l ()
3 wh i l e (not a lgo r i thm te rmina t i on c ond i t i on) :
4 I n i t i a l i z eWat e rD rop s ()
5 wh i l e (not c on s t r u c t i o n t e rm ina t i on c ond i t i on) :
6 f or (k = 1, . . . ,m) :
7 EdgeSe l e c t i on ()
8 UpdateWaterDrop ()
9 i f (f (s(k)) < f (sI B)) :
10 sI B = s(k)
11 UpdateEdges (sI B)
12 i f (f (sI B) < f (s∗)) :
13 s∗= sI B

14 r e tu rn s *

InitializeEdgeSoil

Initialize each edge with soil.

InitializeWaterDrops

On each iteration of the algorithm the water drops are initialized with a predetermined

velocity and amount of soil, as well as being scattered, i.e. adding the first component to

their solution.

EdgeSelection

This method determines how a water drop k residing in node i chooses its next node j

through the selection of an edge component v(i, j). The probability for k to choose v(i, j)

is determined by

p(k, i , j) = f (soi l (i , j))∑
∀l∉s(k)

f (soi l (i , l))
, (A.1)

APPENDIX A. APPENDIX 108

which uses a heuristic function, i.e. measure of how good the solution is, defined by

f (soi l (i , j)) = 1

ε+ g (soi l (i , j))
(A.2)

where ε is a small positive number used to prevent division by zero, and

g (soi l (i , j)) =

soi l (i , j) i f min

∀l∉s(k)
≥ 0

soi l (i , l)− min
∀l∉s(k)

(soi l (i , l)) other wi se.
(A.3)

such that an edge with little soil is chosen more often. After the edge is selected, it is added

to the solution of water drop k.

UpdateWaterDrop

Given the static velocity update parameters (av ,bv ,cv), every time a water drop moves be-

tween nodes, its velocity is updated by

vel (k, t +1) = vel (k, t)+ av

bv + cv × soi l (i , j)
. (A.4)

The amout of soil carried by the water drop k is updated according to

soi l (k) = soi l (k)+∆soi l (i , j) (A.5)

and the amount of soil left in the edge after the water drop has traversed it is

soi l (i , j) = (1−ρn)× soi l (i , j)−ρn ×∆soi l (i , j) (A.6)

where 0 < ρn < 0. Given the static soil update parameters (as ,bs ,cs), the amount of soil

APPENDIX A. APPENDIX 109

removed from the path and carried by the water drop is defined by

∆soi l (i , j) = as

bs + cs × t i me(i , j | vel (k, t +1))
, (A.7)

where the function time describes the duration of traversing the edge as a function of the

water drops velocity, defined by

t i me(i , j | vel (k, t +1)) = HU D(i , j)

vel (k, t +1)
(A.8)

where HUD(i, j) is a desirability heuristic for v(i, j).

UpdateEdges

After all water drops have constructed a tour, the edges of the best solution found in the

current iteration is updated:

soi l (i , j) = (1+ρIW D)× soi l (i , j)−ρIW D × soi l (sI B)× 1

m −1
(A.9)

where ρIW D is a positive constant.

Termination Conditions

Any termination condition may be specified, both for the algorithm and solution construc-

tion. A common condition is to run a fixed, finite number of iterations.

APPENDIX A. APPENDIX 110

A.2 International Aerial Robotics Competition

A.2.1 Previous Missions

Previously six different challenges has been completed, each taking one to eight years to

accomplish. The next sections will give a brief description of each mission.

A.2.1.1 First Mission

The initial mission was for the aerial robot to move a metallic disk from one side of an

arena to the other, completely autonomously. It took the competitors two years to accom-

plish autonomous take-off, flight, and landing, and another two years to complete the mis-

sion in 1995.

A.2.1.2 Second Mission

The second mission consisted of searching for toxic waste, as signified by partially buried

waste drums, and identifying the contents by hazard labels found on the drums. The mis-

sion was finished in 1997.

A.2.1.3 Third Mission

The third mission was a search and rescue mission, requiring the robots to search for sur-

vivors and dead amid fires, broken water mains, toxic gas, and rubble, and report the in-

formation back to a rescue team. The mission was completed in 2000.

A.2.1.4 Fourth Mission

The fourth mission consisted of three similar scenarios:

APPENDIX A. APPENDIX 111

• Hostage rescue mission, where the robot had to fly 3 km, identify the embassy build-

ing the hostages were being held, and in some way relay pictures of the hostages back

to the station.

• A tapestry was reported by an archaeological team in a mausoleum a short time be-

fore their death, due to an ancient virus, where the robots task is to find the tapestry

and relay images back to base before the destruction of the mausoleum.

• After an explosion at a nuclear facility, only one reactor remain intact. The robots

mission is to relay pictures of the instrument panel inside the nuclear facility in order

for a team at the base to determine if a melt-down is imminent.

All requirements of the challenge, except completing in under 15 minutes, was accomplished

in 2008. As the organizers of the challenge deemed it an insignificant challenge to accom-

plish the time requirement, the mission was terminated as successful.

A.2.1.5 Fifth Mission

The fifth mission was an extension of the fourth, where the task was to navigate a complex

interior of a building without the aid of global-positioning navigational aids, in order to

reach a designated target and relay images back to base. The mission was accomplished in

2009.

A.2.1.6 Sixth Mission

Again, the next mission was an extension of the previous one, where the goal was to navi-

gate an unknown structure and steal a flash drive, replacing it with an identical flash drive

to avoid the detection of theft. The mission was completed in 2013.

APPENDIX A. APPENDIX 112

A.2.2 Scoring

Participants receive points in two categories: Effectiveness measures, and subjective mea-

sures. The effectiveness measures consists of rewards and penalties according to the skill

displayed in completing the mission in the following categories:

• Rewards

• Ground robot crossing green boundary, having been touched on top

• Autonomous operation

• Obstacle avoidance

• Penalties

• Ground robot not crossing green boundary, or crossing it without being touched

on top

• Per minute penalty until completion

The subjective measure consists of rewards in the following categories, with predefined cri-

teria:

• Elegance of design and craftsmanship

• Innovation in air vehicle design

• Safety of design to bystanders

• Journal paper

• Best team T-shirt

A.2.3 Competition Venues

From 2012 the competition has been served in two venues: In USA, mainly serving Ameri-

can, European, and African teams; and in China mainly serving Asian and Oceanic teams.

APPENDIX A. APPENDIX 113

Despite this general distribution, teams may choose which venue to participate in. As this

paper is written, the specific locations of the 2016 challenge are yet to be decided.

A.3 Additional Benchmark Results

Unless stated otherwise, all results below are gathered from 100 runs on each problem in-

stance.

Without local search With local search

Name Max Reward Avg Reward Min Reward Dev Reward Max Time Avg Time Min Time Dev time Max Reward Avg Reward Min Reward Dev Reward Max Time Avg Time Min Time Dev time
c101 130.00 130.00 130.00 0.00 0.0831 0.0721 0.0654 0.0039 130.00 130.00 130.00 0.00 0.0929 0.0797 0.0732 0.0040
c109 210.00 204.00 200.00 4.90 0.1304 0.1168 0.1064 0.0056 210.00 203.40 200.00 4.74 0.1482 0.1352 0.1249 0.0055
r107 155.00 149.13 148.00 1.79 0.1285 0.1150 0.1060 0.0052 150.00 149.07 149.00 0.26 0.1556 0.1412 0.1280 0.0058
r109 154.00 146.97 138.00 6.14 0.1283 0.1066 0.0979 0.0054 153.00 148.03 140.00 5.91 0.1822 0.1344 0.1187 0.0103
rc101 150.00 148.70 140.00 3.36 0.0876 0.0759 0.0693 0.0038 150.00 150.00 150.00 0.00 0.1041 0.0932 0.0833 0.0045
rc106 150.00 150.00 150.00 0.00 0.0933 0.0842 0.0753 0.0042 150.00 148.90 140.00 3.13 0.1106 0.0980 0.0895 0.0047

Table A.1: Comparing ACO with 2-opt local search and without local search

High exploitation Low exploitation

Name Max Reward Avg Reward Min Reward Dev Reward Max Itr Avg Itr Min Itr Dev Itr Max Reward Avg Reward Min Reward Dev Reward Max Itr Avg Itr Min Itr Dev Itr
c101 170.00 112.60 100.00 12.54 92.00 10.00 1.00 14.30 160.00 132.90 110.00 8.87 99.00 42.00 1.00 27.81
c109 180.00 138.30 110.00 14.29 97.00 24.00 1.00 26.34 180.00 150.70 110.00 15.31 100.00 44.00 2.00 30.59
r107 142.00 111.95 92.00 11.08 99.00 8.00 1.00 16.44 145.00 120.21 97.00 9.62 100.00 35.00 1.00 28.01
r109 142.00 111.32 78.00 12.18 100.00 11.00 1.00 17.75 143.00 119.24 102.00 9.92 99.00 20.00 1.00 21.36
rc101 150.00 115.40 80.00 14.03 13.00 2.00 1.00 1.93 160.00 136.10 100.00 11.04 97.00 25.00 1.00 26.84
rc106 140.00 106.20 70.00 13.40 24.00 3.00 1.00 3.82 150.00 123.80 100.00 10.66 93.00 28.00 1.00 22.03

Table A.2: Comparing IWD with high and low exploitation

Name Max Reward Avg Reward Min Reward Dev Reward Max Cost Avg Cost Min Cost Dev cost Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 130.00 130.00 130.00 0.00 1,078.65 900.68 858.93 86.19 0.0661 0.0531 0.0511 0.0019 1.00 1.00 1.00 0.00
c109 210.00 205.40 200.00 4.98 1,216.64 1,206.56 1,196.54 9.91 0.0913 0.0870 0.0838 0.0018 10.00 3.00 1.00 2.72
r107 152.00 149.36 149.00 0.97 226.22 219.79 218.92 2.37 0.1313 0.0904 0.0825 0.0096 4.00 2.00 1.00 1.26
r109 153.00 148.21 139.00 6.16 222.36 212.08 207.71 5.04 0.1072 0.0875 0.0780 0.0063 8.00 3.00 1.00 2.35
rc101 150.00 150.00 150.00 0.00 236.90 230.21 228.32 3.56 0.0708 0.0583 0.0537 0.0038 7.00 3.00 1.00 2.29
rc106 160.00 148.40 140.00 6.74 235.64 223.61 219.72 5.50 0.0661 0.0614 0.0586 0.0014 7.00 3.00 1.00 2.24

Table A.3: ACO on TDOPTW problem instances using rank selection

Name Max Reward Avg Reward Min Reward Dev Reward Max Cost Avg Cost Min Cost Dev cost Max Time Avg Time Min Time Dev time Max Itr Avg Itr Min Itr Dev Itr

c101 130.00 130.00 130.00 0.00 858.93 858.93 858.93 0.00 0.0613 0.0533 0.0513 0.0015 1.00 1.00 1.00 0.00
c109 210.00 209.90 200.00 0.99 1,216.64 1,211.28 1,169.78 14.73 0.0975 0.0879 0.0851 0.0020 7.00 3.00 1.00 2.22
r107 154.00 148.95 148.00 1.83 218.92 212.39 208.22 5.12 0.0963 0.0865 0.0832 0.0021 7.00 2.00 1.00 2.16
r109 153.00 149.02 140.00 5.35 225.38 211.73 207.71 6.13 0.0879 0.0806 0.0767 0.0018 9.00 5.00 4.00 1.91
rc101 150.00 150.00 150.00 0.00 236.90 232.44 228.32 4.29 0.0632 0.0565 0.0544 0.0013 4.00 1.00 1.00 1.46
rc106 150.00 148.50 140.00 3.57 226.10 222.63 219.72 2.31 0.0678 0.0622 0.0601 0.0013 9.00 2.00 1.00 2.54

Table A.4: ACO on TDOPTW problem instances using tournament selection

Bibliography

Alijla, B. O., Wong, L.-P., Lim, C. P., Khader, A. T., and Al-Betar, M. A. (2014). A modi-

fied intelligent water drops algorithm and its application to optimization problems.

Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J. (2007). The traveling sales-

man problem.

Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic systems. NATO ASI

Series, 102:703–712.

Bin, Y., Zhong-Zhen, Y., and Baozhen, Y. (2008). An improved ant colony optimization

for vehicle routing problem. European Journal of Operational Research, 196:171–176.

Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996). A fast and effective heuristic for the

orienteering problem. European Journal of Operational Research 88, pages 475–489.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to algo-

rithms. MIT Press, 3 edition.

C.Verbeeck, Sörensen, K., Aghezzaf, E.-H., and Vansteenwegen, P. (2013). A fast solution

method for the time-dependent orienteering problem. European Journal of Operational

Research, 236:419–432.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6(1):80–91.

Dorigo, M., Birattari, M., and Stützle, T. (2006). Ant colony optimization: Artificial ants

as a computational intelligence technique. IEEE Computational Intelligence Magazine.

114

BIBLIOGRAPHY 115

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344:243–278.

Dorigo, M., Colorni, A., and Maniezzo, V. (1991). Distributed optimization by ant

colonies. Proceedings of Ecal91, pages 134–142.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary Com-

putation, 1.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence: theories, meth-

ods, and technologies. MIT Press.

Fomin, F. V. and Lingas, A. (2002). Approximation algorithms for time-dependent orien-

teering. Information Processing Letters 83, pages 57–62.

Gambardella, L. M. and Dorigo, M. (1995). Ant-q: A reinforcement learning approach to

the traveling salesman problem. Proceedings of ML-95, Twelfth International Conference

on Machine Learning, pages 252–260.

Garcia, A., Arbelaitz, O., Vansteenwegen, P., Souffriau, W., and Linaza, M. T. (2010). Hy-

brid approach for the public transportation time-dependent orienteering problem with

time windows.

Ghallab, M., Nau, D., and Traverso, P. (2004). Hierarchical task network planning. Auto-

mated Planning, page 229–261.

Gunawan, A., LAU, H. C., and Lu, K. (2015). The latest best known solutions for the

team orienteering problem with time windows (toptw) benchmark instances.

Hespanha, J., Kim, H. J., and Sastry, S. Multiple-agent probabilistic pursuit-evasion

games. Proceedings of the 38th IEEE Conference on Decision and Control (Cat.

No.99CH36304).

http://www.mech.kuleuven.be. The Team Orienteering Problem with Time Windows: Test

Instances. http://www.mech.kuleuven.be/en/cib/op. [Online; accessed 26-May-2016].

http://www.mech.kuleuven.be/en/cib/op

BIBLIOGRAPHY 116

International Aerial Robotics Competition (2015). Official rules for the international aerial

robotics competition. http://www.aerialroboticscompetition.org/downloads/

mission7rules_081015.pdf. [Online; accessed 08.12.15].

Kamkar, I., Akbarzadeh-T, M.-R., and Yaghoobi, M. (2010). Intelligent water drops: A

new optimization algorithm for solving the vehicle routing problem.

Kantor, M. G. and Rosenwein, M. B. (1992). The orienteering problem with time windows.

Laporte, G. (1991). The traveling salesman problem: An overview of exact and approxi-

mate algorithms.

Liang, Y.-C., Kulturel-Konak, S., and Smith, A. E. (2002). Meta heuristics for the orien-

teering problem.

Mavrovouniotis, M. and Yang, S. (2013). Ant colony optimization with immigrant schemes

for the dynamic travelling salesman problem with traffic factors.

Montemanni, R., Weyland, D., and Gambardella, L. (2011). An enhanced ant colony sys-

tem for the team orienteering problem with time windows. 2011 International Sympo-

sium on Computer Science and Society.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the

vehicle routing problem. Annals of Operations Research, 41:421–451.

Parpinelli, R. S. and Lopes, H. S. (2011). New inspirations in swarm intelligence: A survey.

International J. Bio-Inspired Computation, 3.

Reinelt, G. (2008). Symmetrical tsp data sets. http://www.iwr.uni-heidelberg.de/

groups/comopt/software/TSPLIB95/tsp/. [Online; accessed 08-December-2015].

Righini, G. and Salani, M. (2006). Dynamic programming for the orienteering problem

with time windows.

RobotShop Inc (2015). iRobot Releases iRobot Create Platform. http://www.robotshop.

com/blog/en/hackers-rejoice-irobot-releases-irobot-create-platform-3892.

[Online; accessed 08.12.15].

http://www.aerialroboticscompetition.org/downloads/mission7rules_081015.pdf
http://www.aerialroboticscompetition.org/downloads/mission7rules_081015.pdf
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
http://www.robotshop.com/blog/en/hackers-rejoice-irobot-releases-irobot-create-platform-3892
http://www.robotshop.com/blog/en/hackers-rejoice-irobot-releases-irobot-create-platform-3892

BIBLIOGRAPHY 117

Shah-Hosseini, H. (2007). Problem solving by intelligent water drops.

Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method

for solving the multiple knapsack problem. Computing and Cybernetics, 1(2):193–212.

Strombom, D., Mann, R. P., Wilson, A. M., Hailes, S., Morton, A. J., Sumpter, D. J. T.,

and King, A. J. (2014). Solving the shepherding problem: heuristics for herding au-

tonomous, interacting agents. Journal of The Royal Society Interface, 11(100).

Stültze, T. and Hoos, H. (1996). Improving the ant system: A detailed report on the max-

min ant system.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. J. OpI Res. Soc.,

35(9):797–809.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., and Oudheusden, D. V. (2009). Iterated

local search for the team orienteering problem with time windows. Computers and Oper-

ations Research 36, pages 3281–3290.

Vansteenwegen, P., Souffriau, W., and Oudheusden, D. V. (2010). The orienteering prob-

lem: A survey.

Yu, B., Yang, Z.-Z., and Yao, B. (2009). An improved ant colony optimization for vehicle

routing problem. European Journal of Operational Research, 196:171–176.

	Abstract
	Sammendrag
	Preface
	Acronyms
	Introduction
	Research Goal
	Research Questions
	Summary

	Background
	International Aerial Robotics Competition
	The Mission
	Details
	Run Termination and Scoring

	Problem Definition
	Problem Abstraction
	Time-Dependent Orienteering Problem with Time Windows
	Related Problems

	Algorithms
	Foundation
	Ant Colony Optimization
	Intelligent Water Drops

	Summary

	Tools and Technologies
	Languages and Frameworks
	Visualization Tool
	Description

	Simulator
	Description
	Controlling the Aerial Robot

	Summary

	Methodology
	Representing Time-Dependent Cost
	Heuristic Functions
	Selection Methods
	Fitness Proportionate
	Rank selection
	Tournament selection

	Pruning the Search Space
	Local Search
	Solution Reinforcement
	Solution Representation
	Applying the Model to the Simulator
	Cost Function
	Robot State
	Rewards
	Time Windows
	Service Time
	Action Selection
	Commitment to Plan
	Solving Additional Requirements

	Greedy Controller
	Summary

	Results and discussion
	Benchmark Tests
	Orienteering Problem with Time Windows
	Time-Dependent Orienteering Problem with Time Windows

	Simulator
	Behavior of Greedy Controller
	Behaviour of Time-Dependent Orienteering Problem with Time Windows Controller
	Controller Comparison

	Summary

	Conclusion
	Research Value
	Future Work

	Appendix
	Complete Formulation of Intelligent Water Drops Algorithm Equations
	International Aerial Robotics Competition
	Previous Missions
	Scoring
	Competition Venues

	Additional Benchmark Results

	Bibliography

