
Experiments towards digital exam with
auto-grading in C++ programming
courses

Johannes Omberg Lier
Thea Christine Mathisen

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI
Co-supervisor: Guttorm Sindre, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Problem Statement

Climbing Mont Blanc (CMB) is a system for evaluation of programs executed on
modern multicores. CMB evaluates both performance and energy efficiency, but in
this project we will focus on how CMB can be combined with other means such as
e.g. multiple choice questions in a future digital exam with auto-grading in a C++

programming course, or similar courses.

The long term idea for this and succeeding projects is to use multiple choice questions,
or similar, that are possible to grade automatically, and a set of problems on the CMB
system to make up a complete possible exam in courses like TDT4102 – Procedural
and Object-Oriented Programming at the Norwegian University of Science and
Technology (NTNU). The main goal of this project is to develop and execute a
voluntary midterm test to be used in TDT4102 in the spring semester 2016, in
order to find strengths and weaknesses of this kind of digital examination approach.
Three of the more relevant aspects are student learning, grading fairness, and cost of
grading exams. This master thesis project builds on the project work by the same
two students finished in December 2015. That project was a feasibility study for this
master thesis project.

The following elements are included in the project:

a) Implement, organize, and lead an experimental midterm test in TDT4102 in
collaboration with its course staff and responsible teacher.

b) Implement a solution for extracting the complete results from the tests (both
multiple choice and CMB) to data in an Excel spreadsheet or a similar format
making automatic grading possible. Set up or program the receiving spreadsheet
to facilitate the auto-grading.

c) Identifying alternative question types that are suited for an autograding system
for C++ and other programming languages. Existing multiple choice questions
for C++ courses should be looked for. “License” rules for use by others must
be considered.

d) Discuss which of these question types will best fit into the C++ course at NTNU,
and how they complement what can be covered by the CMB system.

e) Develop or find some multiple choice questions, or similar, that can be used in
the midterm tests.

f) Develop or find, and upload some C++ problems to the CMB system to be
used in the tests in the C++ course.

i

g) Outline ideas for a realistic 5-year track making the vision “digital exam with
auto-grading” to a reality at NTNU.

If time, the students should also:

i) Discuss how the tests run in the spring semester could be correlated with other
more traditional exam-like tests with the purpose of assessing the goodness of
our approach.

j) Identify how user interface improvements can be implemented to better reach
the overall goal, and describe these as prioritized proposals to the CMB-project.

ii

Abstract

Climbing Mont Blanc (CMB) is an online judge system especially suited
for evaluating energy efficient programming solutions currently in devel-
opment by a team of professors and master students at the Norwegian
University of Science and Technology (NTNU). This project seeks to fur-
ther gain knowledge and experience in the field of automatic assessment
of programming problems, by identifying various question types suitable
for automatic and reliable assessment. We have found that most of the
question types commonly found on learning management systems, such
as itslearning and Blackboard, are suitable in an exam situation. As for
CMB, we have found that complete the code and fix the code problem
types can be considered suitable in most cases because the problem cre-
ator has much more control over the program flow. Problems that require
complete implementations and topic specific programming problems are
also suitable but in many cases measures needs to be done to maintain
validity of the evaluation.

To reach a conclusion on the feasibility of digital examination at NTNU, we
have conducted a midterm experiment with the students in the TDT4102
course, which has been described in detail. Elements such as the execution,
result extraction and anonymization of the respondents are covered. The
latter was done using a representative from the CMB team who had no
formal connection to the experiment in itself.

All results from the midterm test were statistically analyzed by testing
a set of null hypotheses that were defined early in the project. This
analysis confirmed what we originally believed; the use of familiar digital
tools such as the CMB system is beneficial when solving programming
problems, compared to writing code by hand.

Finally, we conclude that the midterm experiment was successful, due to
the results from both the midterm and questionnaire indicated that the
system has potential. We also suggest a plan for the project’s continuation
in the years ahead.

Sammendrag

Climbing Mont Blanc (CMB) er et online judge system, spesielt egnet
for å evaluere energi-effektiv programvare, som for tiden utvikles av et
team med professorer og studenter på Norges teknisk-naturvitenskapelige
universitet (NTNU). Dette masterprosjektet har som mål å opparbeide
erfaring og innsikt om digital og automatisk evaluering av programmer-
ingsoppgaver; for å gjøre dette skal vi identifisere et spekter av ulike
spørsmålstyper og programmeringsproblemer som egner seg for automa-
tisk evaluering. Vi har observert at de fleste spørsmålstypene man finner
i e-læringssystemer, som itslearning og Blackboard, passer godt inn i en
eksamenskontekst. På CMB ser vi at de mest egnede programmeringsopp-
gavetypene er typiske fullfør kodesnutten- og fiks kodesnutten-problemer,
der oppgaveforfatteren har større kontroll hva gjelder programflyt og
kodestruktur. Når det gjelder oppgavetyper som krever komplett imple-
mentasjon fra bunnen av, samt emne-spesifikke programmeringsproblemer,
må en i flere tilfeller gjøre tilpasninger for å opprettholde validiteten til
evalueringen.

For å konkludere hvorvidt en digital eksamensform er mulig å gjennomføre
på NTNU har vi planlagt og organisert et eksperiment som bestod av
en midtsemeserprøve for studenter i faget TDT4102. Vi har beskrevet
aspekter ved eksperimentet, inkludert planlegging, gjennomføring og
anonymisering av resultatene i ettertid. I sistnevnte prosess fikk vi god
hjelp av en representant fra CMB-teamet uten noen formell tilknytning
til vårt prosjekt.

Alle resultatene fra midtsemesterprøven ble analysert vha. nullhypote-
setesting av hypoteser vi definerte tidlig i prosjektet. Denne analysen
bekreftet vår teori om at det å bruke et digitalt programmeringsverk-
tøy er fordelaktig når man skal løse programmeringsoppgaver, særlig
sammenliknet med det å kode med penn og papir.

Til slutt konkluderer vi med at eksperimentet vårt var en suksess, da
resultatene fra både midtsemesterprøven og spørreundersøkelsen indikerte
at systemet har et stort potensial. Vi har også foreslått en plan for
prosjektets fremtid.

Acknowledgements

First of all, we are exceptionally grateful to our supervisors, Lasse Natvig
and Guttorm Sindre, who have provided us with invaluable guidance
and support throughout the past year. Furthermore, a big thanks to the
course staff of TDT4102 in the spring semester of 2016 for helping us out
with our experiment. Finally, we would like to thank Sindre Magnussen,
who has been an important supporter when we needed help with anything
CMB-related.

Contents

List of Figures xiii

List of Tables xv

List of Listings xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Assignment Interpretation . 2
1.3 Hypotheses . 3
1.4 Project Timeline . 3
1.5 Contributions . 4
1.6 Outline of Thesis . 5

2 Background 7
2.1 TDT4102 . 7

2.1.1 Learning Objectives . 8
2.1.2 Participant Statistics . 9
2.1.3 Exercises . 10
2.1.4 Final Exam . 11

2.2 Digital Assessment at NTNU . 13
2.2.1 Inspera Assessment . 14
2.2.2 itslearning . 14

2.3 Online Judge Systems . 17
2.4 Climbing Mont Blanc . 17

2.4.1 Adding Problems to CMB . 19
2.4.2 Solving Problems on CMB 19

2.5 Hypothesis Testing . 20
2.5.1 Conclusion Validity . 21

3 Question Types 23

ix

3.1 LMS Question Types . 23
3.1.1 Multiple Choice (MC) . 23
3.1.2 Either/Or . 25
3.1.3 Multiple Response (MR) . 25
3.1.4 Open Answer . 27
3.1.5 Short Answer . 28
3.1.6 Fill in the Blank . 29
3.1.7 Select From a List . 30
3.1.8 Match . 31
3.1.9 Order . 31
3.1.10 Hotspot – Click the Picture 33
3.1.11 Suitability . 34

3.2 CMB Question Types . 35
3.2.1 Complete the Code . 35
3.2.2 Fix the Code . 36
3.2.3 Topic Specific Programming Problems 38
3.2.4 Suitability . 40

4 Midterm Experiment 43
4.1 Experiment Description . 43
4.2 Planning and Preliminary Work . 44

4.2.1 CMB Workshop . 44
4.2.2 Participant Registration . 44
4.2.3 Pilot Run and Testing . 45
4.2.4 Constructing the Groups . 47

4.3 Midterm Assignment . 48
4.3.1 Multiple Choice Questions . 48
4.3.2 Short Answer Questions . 50
4.3.3 MyInteger . 50
4.3.4 Split . 52
4.3.5 Roommates . 53

4.4 Voluntary Midterm Experiment . 55
4.4.1 Experiment Execution . 55
4.4.2 Result Extraction . 56
4.4.3 Ensuring Anonymity . 58
4.4.4 Questionnaire . 59

5 Results 61
5.1 Midterm Results . 61

5.1.1 Part 1 – Multiple Choice and Short Answer 63
5.1.2 Programming Problems . 66

5.2 Questionnaire . 70

6 Discussion 77
6.1 Reliability of CMB’s Assessment . 77

6.1.1 Threats to Reliability . 77
6.2 Validity of CMB’s Assessment . 78

6.2.1 Threats to Validity . 79
6.2.2 Attempts at Improving Validity 79

6.3 Midterm Results . 80
6.4 Questionnaire . 81
6.5 Positive Experiences . 82
6.6 Negative Experiences . 83

7 Future Work 85
7.1 Future Experiments . 85

7.1.1 Simulation of an Exam . 85
7.1.2 Exercises . 86

7.2 Five Year Plan . 87
7.3 New Functional Requirements for CMB 88
7.4 Design Improvements for CMB . 89

8 Conclusion 93
8.1 Evaluation of Subtasks . 94
8.2 Summary and Conclusion . 95

References 97

Appendices
A json2excel 103

A.1 Setup . 103
A.2 Usage . 103
A.3 JSON Object Structure . 103
A.4 Source Code . 105

B Midterm 107

C Questionnaire 115

List of Figures

2.1 TDT4102 course size. 7
2.2 Examination statistics 2011–2015, including estimations for 2016. 9
2.3 Exam 2011, Task 1b). 11
2.4 Exam 2013, Task 1b). 12
2.5 Exam 2014, Task 1e). 12
2.6 Exam 2011, Task 2a), abbreviated. 12
2.7 Exam 2015, abbreviated introduction to Task 2. 13
2.8 Interaction model for the CMB system. 18

3.1 Example of multiple choice question. 24
3.2 Example of true/false question. 25
3.3 General example of either/or question. 25
3.4 Example of multiple response question, with answer. 26
3.5 Example of open answer question with code understanding. 27
3.6 Example of open answer question with reflection. 28
3.7 Example of short answer question. 28
3.8 Example of simulated short answer question. 29
3.9 Example of fill in the blank question. 29
3.10 Example of select from a list question. 30
3.11 Example of match question. 31
3.12 Example of order question. 32
3.13 Correct answer to order question example. 32
3.14 Incorrect answer to order question example. 32
3.15 Reversed answer to order question example. 33
3.16 Example of hotspot question. 34
3.17 Example of a complete the code problem. 36
3.18 Example of a fix the code problem. 37
3.19 Example of an object-oriented problem. 38
3.20 Example of an operator overloading problem. 39
3.21 Example of a file I/O problem. 39
3.22 Example of a problem using exception handling. 40

xiii

4.1 Anonymizing midterm results. 58

5.1 Grade distribution from the midterm test. 62
5.2 Grade distribution after an attempt at achieving a Gaussian distribution

by adjusting the point ranges. 62
5.3 Average score achieved on the multiple choice part. 65
5.4 Average score given to the programming problems 69
5.5 To what degree were you able to demonstrate your knowledge in C++

with regard to your assigned form of evaluation? 71
5.6 To what degree were you able to demonstrate common methods/techniques

in C++ with regard to your assigned form of evaluation? 72
5.7 To what degree would you say that your assigned form of evaluation is

an efficient way of solving programming problems? 72
5.8 To what degree would you say that your assigned form of evaluation is

an motivating way of solving programming problems? 72
5.9 To what degree would you say that your assigned form of evaluation is a

suitable way of solving programming problems? 73
5.10 To what degree would you say that your assigned form of evaluation is a

suitable way of being evaluated in programming problems? 73

A.1 Example of JSON group data from CMB. 104

List of Tables

1.1 Costs (in NOK) of evaluating programming exams. 2
1.5 Project timeline. 4
1.6 Project contributions. 5

2.4 Exercise overview, TDT4102 2016. 10
2.5 Common effect size indices for Cohen’s d. 21
2.6 Outcome of hypothesis testing. 22

3.1 Evaluation of suitability for LMS questions. 35
3.2 Evaluation of suitability for CMB questions. 41

4.3 Student profile representation. 47
4.4 Configurations for midterm test on itslearning. 48

5.1 Point ranges. 63
5.2 Multiple response scoring with four answer alternatives. 64
5.3 Mean, variance, F-test, T-test, Mann-Whitney and effect size for H01. . 66
5.4 Evaluation guideline for Q4 – MyInteger. 67
5.5 Evaluation guideline for Q5a – split. 67
5.6 Evaluation guideline for Q5b – Roomies. 68
5.7 Mean, variance, F-test, T-test, Mann-Whitney and effect size for H02. . 69
5.8 Mean, variance, F-test, T-test, Mann-Whitney and effect size for H02

after removing answers that received zero points. 71
5.9 Mean, variance, F-test, T-test, Mann-Whitney and effect size for H03

and H04. 74

xv

List of Listings

2.1 Example of input/output handling. 20

xvii

List of Acronyms

BYOD Bring Your Own Device.

CMB Climbing Mont Blanc.
CPU Central Processing Unit.

EDP Energy Delay Product.

FEIDE Felles Elektronisk IDEntitet.
FS Felles Studentsystem.

ICPC ACM International Collegiate Programming
Contest.

IDI the Department of Computer and Information
Science.

LMS Learning Management System.

MC Multiple Choice.
MR Multiple Response.

NTNU Norwegian University of Science and Technol-
ogy.

SEB Safe Exam Browser.
SSO Single Sign-On.

TA Teaching Assistant.

xix

Chapter1Introduction

From the first “Hello, world!” when learning the first steps of programming, to
creating a personal website or developing advanced industrial software, the process
of producing, compiling, and running program code is ultimately a purely digital
one. However, students who take introductory programming courses at Norwegian
University of Science and Technology (NTNU) are recommended to practice coding
by hand to prepare for the final course evaluation, which incidentally requires
them to produce hand-written code. If the university were to introduce digital
examination using the Climbing Mont Blanc (CMB) system, an online judge system
developed at NTNU – or any other digital assessment system for that matter – their
programming courses could evenly mirror industry standards, and the outdated
concept of programming by hand could perhaps retire.

In this thesis, we aim to contribute to this important development of program-
ming assessment by conducting an experiment involving real students and digital
examination.

1.1 Motivation

The motivation for this thesis stems not only from the desire to digitalize the
examination process of programming courses at NTNU, but also the cost and
potential impreciseness related to grading these exams [Har05]. Table 1.1 illustrates
how in the more sizeable courses at NTNU such as TDT4100 and TDT4102, a team
of evaluators might spend more than 250 hours, equivalent to nearly two man-months,
grading hand-written exam submissions, costing the university tens of thousands of
NOK. (These numbers were derived during our project thesis in the fall semester of
2015.) An examination system that allows for (semi-)automatic grading would be
significantly more efficient with regard to both time and cost than the current process,
and would furthermore provide a thoroughly unbiased and completely reliable form
of evaluation [SV15].

1

2 1. INTRODUCTION

TDT4100 TDT4102

Hours 296 257

Professor 53,354 46,324
Associate Professor 42,805 37,165
Assistant Professor 36,328 31,542

Research Fellow 38,089 33,071
Research Assistant 30,769 26,715

Table 1.1: Costs (in NOK) of evaluating programming exams.

Implementing new university standards is a process that requires time and extensive
research. Thus, this project will be the first step of a longer lasting experiment;
this initial work seeks to provide a solid foundation on which further research on
enforcing the use of digital exams at NTNU can be achieved, as well as producing an
example of how this type of exam can be structured.

1.2 Assignment Interpretation

This project is a part of the commencement phase of a longer undertaking, aiming
to explore the feasibility of a digital examination approach in programming courses
at NTNU. As a way of reaching a conclusion to this matter, the problem statement
describes a set of mandatory and optional elements to include our research. For
easier reference later in this thesis, the elements are enumerated and listed below.
The optional elements are marked with an asterisk (*).

Research

R1 Identify alternative question types that are suited for an autograding
system for C++ and other programming languages.

R2 Discuss which of the question types identified in R1 are best suited to
the TDT4102 course at NTNU.

R3 Outline ideas for a realistic 5-year track making the vision “digital exam
with autograding” a reality at NTNU.

R4* Identify how user interface improvements can be implemented to better
reach the overall goal, and describe these as prioritized proposals to the
CMB project.

1.3. HYPOTHESES 3

Experiment

E1 Organize an experimental midterm test in the TDT4102 course at NTNU.

E2 Develop and assemble a set of questions to be used in the midterm test.

E3 Administer a workshop to educate potential experiment participants
about the CMB system.

E4 Perform a thorough system test of CMB.

E5* Discuss how the experiment results could be correlated with other more
traditional exam-like tests with the purpose of assessing the goodness of
our approach.

Implementation

I1 Implement a solution for extracting the complete results from the tests
to data in an Excel spreadshet.

1.3 Hypotheses

After the experiment related to subtask E1, we will analyze the results to reject or
accept each of the following null hypotheses:

H01: Having a computer when answering multiple choice questions is not an
advantage with regard to performance.

H02: Having a computer when answering programming problems is an advantage
with regard to performance.

H03: The use of CMB is equally efficient as the current method of solving an
exam.

H04: The use of CMB is equally motivating to use as the current method of
solving programming problems.

In H04, “motivation” refers to the level of satisfaction the students experience while
using the CMB system.

1.4 Project Timeline

As the subtasks defined in Section 1.2 have a natural chronological order, we have
constructed a rough timeline of our project, which is presented in Table 1.5. This
timeline also includes other important events during the semester in which our
research is conducted, in order to illustrate how our tasks correlate with the university

4 1. INTRODUCTION

calendar.

Week Event Task

2 Lecture commencement

8 CMB workshop E3

10 Pilot run and system testing E4

11 Voluntary midterm experiment E1

12 Easter holidays

17 Lecture conclusion

23 TDT4102 final examination

Table 1.5: Project timeline.

During the weeks leading up to the experiment, our main focus will be on researching
appropriate question types (R1 and R2) and developing the midterm assignment
(E2). Before the experiment it is also important that task I1 is completed; if not, we
will have no simple way of extracting the midterm results, which will greatly delay
our work and probably affect the quality of our analysis. After week 11, we will
analyze the results in order to better suggest the directions for the project in the
years ahead (R3).

1.5 Contributions

Overall, our project contributes to the general progress towards implementing digital
programming exams at NTNU. More specifically, we have listed a set of four explicit
contributions in Table 1.6, which also locates the various sections of the thesis where
each task is dealt with.

Contribution Task Location

1 A research study on various question
types suitable for automatic grading. R1 and R2 Chapter 3

2
An original example of a midterm as-
signment for the TDT4102 course at
NTNU.

E2 Section 4.3

1.6. OUTLINE OF THESIS 5

3

Valuable insight with regard to the use
of CMB or other online judge system as
a tool for digital examination, compared
to the current approach.

E3, E4 and
E5*

Section 4.2.3 and
Chapter 6

4
Guidelines and suggestions for future
experiments based on gained insight and
our own conducted midterm experiment.

R3 and E1 Chapters 4 and 7

5 Suggestions for potential user interface
improvements on CMB. R4* Section 7.4

6
A Python-application for converting
JSON-data from CMB to an Excel
spreadsheet.

I1 Section 4.4.2 and
Appendix A

Table 1.6: Project contributions.

1.6 Outline of Thesis

The remainder of our thesis is organized as follows:

Chapter 2: Background contains background material on the most important
aspects of the TDT4102 course at NTNU, online judges and the CMB system,
initiatives for digital examination at NTNU, and finally statistics concepts related to
our research approach.

Chapter 3: Question Types delves into our research on various question types
that may be suitable for digital examination with automatic grading. This chapter is
divided into two parts, where the first part deals with the question types related to the
general theory that one may implement in a typical learning management system and
how they are commonly evaluated. The second part discusses approaches to testing
programming proficiency, and how these approaches may have to be customized to
fit CMB or online judge-type systems in general.

Chapter 4: Voluntary Midterm Experiment deals with all aspects of our
experiment, from the planning phase to the actual execution. In this chapter, we
also present the midterm assignment used in the experiment, as well as the manner
in which we ensured anonymous participation, and how we extracted results from
the applications we used.

Chapter 5: Results presents two types of results related to the midterm experiment;
first of all, we look at the participant results measuring their proficiency in C++ .
Second, we discuss a set of null hypotheses which are then statistically analyzed

6 1. INTRODUCTION

based on implicit aspects of the experiment such as average scores and results from
a questionnaire.

Chapter 6: Discussion provides discussions on the reliability and validity of CMB
as an assessment tool, as well as our thoughts on the experiment results, positive
and negative experiences from the project in hindsight.

Chapter 7: Future Work suggests a direction for the project moving forward. In
this chapter, we propose a new experiment, as well as presenting a prospective plan
for the next five years. Finally, we discuss potential new requirements for the CMB
system in order to make it more suitable as an examination tool in an introductory
programming course.

Chapter 8: Conclusion summarizes our tasks and contributions, providing a final
evaluation of how these tasks have been executed.

Chapter2Background

In this chapter, we present background material relevant to our project. First,
in Section 2.1 we thoroughly discuss aspects of the TDT4102 – Procedural and
Object-Oriented Programming course at NTNU, from which we have used students
as participants for our main experiment. We present our findings from analyzing
trends regarding question types in written exams from the past eight years. Next, we
describe the current process in effect at NTNU for implementing the use of digital
tools for assessment in Section 2.2. Section 2.3 explains the concept of online judge
systems. Section 2.4 introduces the Climbing Mont Blanc system, which is the digital
tool we use in our experiment on digital assessment; in this section we describe how
to create, manage, and solve problems on the system. Finally, we present statistical
approaches for hypothesis testing in Section 2.5 which will be relevant in Chapter 5.

2.1 TDT4102

TDT4102 – Procedural and Object-Oriented Programming is an introductory pro-
gramming course taught annually at NTNU, aiming to instruct students in basic
concepts of the C++ programming language, as well as the most important aspects
of object-oriented programming and how it differs from procedural programming.
A registered student count of approximately 800 and a course staff of 56 makes
TDT4102 one of the largest courses in its department.

Figure 2.1: TDT4102 course size.

7

8 2. BACKGROUND

2.1.1 Learning Objectives

Listed below are the formal learning objectives for the course, obtained from the
official TDT4102 course site [oSNa]. Each learning objective is identified with a short
key for easy reference later in the paper.

Knowledge

K1 Has broad and practical oriented knowledge of the C++ programming
language. Knows the syntax and rules for variable declarations and data
types, type conversions, control structures, functions and operators,
overloading, classes, inheritance, templates, exceptions.

K2 Has knowledge about automatic and dynamic variables and the use of
pointers.

K3 Has knowledge about recursion, simple algorithms and data structures.

K4 Has knowledge of procedural- and object-oriented modularization of code
and how code can be organized in multiple files, compilation and linking.

K5 Has knowledge of the standard libraries, in/out data, commonly used
library functions and template-classes.

K6 Has knowledge of modern development tools, techniques for debugging
and simple testing of code.

K7 Has knowledge of diagrams for object-oriented programs.

Skills
S1 Can develop a program from description of the problem to a working

solution without errors.

S2 Knows commonly used coding techniques and patterns and is able to
work efficiently and iteratively in the construction of a solution.

S3 Can create procedural programs where the code is reasonably
modularized in functions, and object-oriented where the code is
organized in classes. Is able to choose a solution that fits the problem.

S4 Is able to write code that is readable, reusable and simple to maintain.

S5 Is able to read code and understand how the code behaves in runtime.

Competence

C1 Can analyze a problem and construct a solution efficiently.

2.1. TDT4102 9

C2 Can communicate and discuss code solutions and explain how a program
behaves.

C3 Is able to find tools and aids, find and use documentation of the
programming language and standard libraries.

2.1.2 Participant Statistics

Gaining proficiency in C++ through the TDT4102 course is a mandatory part of
certain study programs at NTNU, including Energy and Environmental Engineering
(MTENERG), Cybernetics and Robotics (MTTK), Applied Physics and Mathematics
(MTFYMA), and Electronics Systems Design and Innovation (MTELSYS). For
other study programs, including Industrial Economics and Technology Management
(MTIØT), Nanotechnology (MTNANO), Natural Science with Teacher Education
(MLREAL), Chemical Engineering and Biotechnology (MTKJ), Physics (BFY), and
Informatics (BIT), TDT4102 is an elective course option. In addition to this, other
students at NTNU, especially those studying Computer Science (MTDT), have been
known to take the course for supplementary competence.

Figure 2.2: Examination statistics 2011–2015, including estimations for 2016.

From reports generated on NTNU’s Grade statistics tool [oSNb], reinforced by the
above information, one can infer that TDT4102 is one of the top five courses at
the Department of Computer and Information Science (IDI) with regard to student
enrollment. Figure 2.2 presents the number of students who were registered and
present for the final examination during the past five years, as well as how many

10 2. BACKGROUND

students are registered for evaluation in 2016. The number of students present for
the final examination in 2016 is an approximation calculated from percentages of
preceding years.

Recent deviations in the course structure of the MTTK study program led to a
situation where both first- and second-year students were enrolled in the TDT4102
course in 2016, explaining the significant increase in candidate numbers from the
previous years, as well as the small drop from 2014 to 2015.

2.1.3 Exercises

Alongside the lectures, registered students are expected to complete an exercise
project consisting of twelve separately evaluated programming exercises, of which
eight must gain approval in order to take the final examination. Table 2.4 contains
an overview of the exercise project as implemented in 2016.

No. Content
Due

(Week)

1 Transitioning from Matlab/Python to C++. 3

2 Procedural programming in C++; standard input/output;
general intro to functions.

4

3 C++ file structure; using standard library functions; pseudo-
random numbers; introduction to pointers.

5

4 Call-by-value vs. call-by-reference; arrays; creating a simple
program.

6

5 Enums, structs, and classes. 7

6 Operator overloading. 8

7 Dynamic allocation of memory. 9

8 Streams and files. 10

9 SFML; creating a game with a graphic user interface. 13

10 Inheritance; polymorphism; virtual functions. 14

11 Standard Template Library; iterators; custom templates. 15

12 Exception handling; smart pointers. 16

Table 2.4: Exercise overview, TDT4102 2016.

2.1. TDT4102 11

2.1.4 Final Exam

A four-hour written examination concludes the students’ enrollment in the course
and fully determines their final grade. In accordance with support material code C
[oSNe], students are permitted to bring a standard basic calculator as well as the
course textbook, chosen by the lecturer each semester. As mentioned earlier, the
final exam requires the students to produce hand-written code, as well as answer
theoretical questions related to procedural and object-oriented programming with
C++.

An analysis of the ordinary and re-sit examinations from the past eight years exhibits
certain trends related to the questions types included in the problem set, listed and
exemplified below.

Code Understanding

Most of the examinations commence with a few simple code understanding questions,
in compliance with learning objectives S5 and C2. This question type typically
requires the student to analyze a block of code and either explain the functionality
or determine the output, as exhibited in Figure 2.3.

Q What values are printed?

1 int a[] = {1, 2, 3, 4, 5};
2 int *b = a;
3 int *c = &a[2];
4 a[0] = 0;
5 cout << a[0] << endl;
6 cout << *b << endl;
7 cout << *(++c) << endl;

Figure 2.3: Exam 2011, Task 1b).

A derived form of this question was detected, where the student must analyze a block
of code and explain why it does not perform as intended. The planned functionality
is either described (as exemplified in Figure 2.4) or must be derived from the code
sample itself (Figure 2.5).

Simple Problem Solving

In order to test the student’s ability to solve simple problems with programming
and satisfy learning objectives S1, S4, and C1, the exam often includes a handful of
smaller problem descriptions from which the student must produce a coded solution,
typically in one function. An example of this is presented in Figure 2.6. For this

12 2. BACKGROUND

Q The function ArrayAlloc should create an int array with a given
size n and initialize all the elements in the array to a given value v.
The following code is a first attempt at implementing ArrayAlloc:

1 int* ArrayAlloc(int n, int v) {
2 int ret[n];
3 for (int i = 0; i < n; i++)
4 ret[i] = v;
5 return ret;
6 }

Explain in one sentence (max 20 words) what is wrong with this
implementation.

Figure 2.4: Exam 2013, Task 1b).

Q This code does not behave as planned. Find the error and explain
what the correct code is.

1 int x = 5;
2 int y = 6;
3 if (x =! y) {
4 cout << x << "is different from" << y << endl;
5 } else {
6 cout << x << "is not different from" << y << endl;
7 }

[Enclosed hint] The source code compiles and runs, but prints out
“0 is not different from 6”. When you check the compiling output,
you find a “Warning” stating “Using the result of an assignment
as condition without parenthesis”. This is a warning produced by
XCode and it indirectly indicates what the error is.

Figure 2.5: Exam 2014, Task 1e).

question type, the teacher may test any of the learning objectives categorized as
Knowledge, depending on the problem to be solved.

Q Write a function bool isLeapYear(int year) that returns true
if year is a leap year and false if not. The function must imple-
ment the rules for leap years.
(Excluded: Formal definition of a leap year quoted from Wikipedia.)

Figure 2.6: Exam 2011, Task 2a), abbreviated.

2.2. DIGITAL ASSESSMENT AT NTNU 13

Constructing a Program

Almost every published exam has a task where the student is expected to combine
several aspects of the curriculum in the implementation of a complete program,
typically in the form of a game. Problems of this type often account for the biggest
percentage of the overall grade and thus require the longest time to solve. This task
is highly appropriate to include because, depending on the functional requirements,
the implementation process may cover most of the learning objectives of the course,
especially those involving object-oriented programming and coding technique. In
the final exam of 2015, the students were asked to implement elements from the
popular video game Snake [Wik], involving graphics programming, the C++ Standard
Template Library (STL), classes and inheritance, as well as acquainting oneself with
provided code. Figure 2.7 quotes the original problem introduction, shortened to
signify the extent of the task, which consisted of nine subtasks.

Q In this assignment you will implement parts of a game that com-
monly is called Snake. In this game, the user controls with the
arrow keys a snake that moves around on the screen and eats
pieces of food that pop up at random places. Whenever a piece is
eaten the length of the snake increases. The game is over if the
snake hits the borders of the window or if the snake collides with
itself. [...] The challenge in this assignment is to understand a
somewhat complex problem (given the time limits) and to design
and write code that is essential for the program. [...] Examples
and explanations can be found in the appendix. Start by figuring
out how main() works.

Figure 2.7: Exam 2015, abbreviated introduction to Task 2.

2.2 Digital Assessment at NTNU

Introducing digital exams could greatly improve upon processes that are currently in
place at Norwegian university institutions [SV15]. In August 2015, Berit Kjeldstad
from the rectorate at NTNU wrote a blog post presenting the Digital Exam project
at NTNU, aiming for a full digitalization of exams at NTNU within 2022 [Ber15].
As of 2015, NTNU is the university in Norway with the highest number of annually
conducted exams with about 132 000 exams. Kjeldstad states the two primary reasons
for this digitalization. Firstly, is for the students to be able to take their exams
digitally, whether it is a regular exam or other forms of evaluation. Secondly, the
digitalization is just as necessary for the course staff (teachers, sensors, administration,
etc.) as it will improve workflow. The system that has been chosen for this project is
Inspera Assessment (discussed in Section 2.2.1), which is specifically aimed at making
the final examination process in courses at NTNU more efficient and digitalized. In

14 2. BACKGROUND

the fall semester of 2015, a handful of courses from various institutes at the university
were selected for pilot testing of the system.

Organization of courses at NTNU are done through a Learning Management System
(LMS); itslearning, which is further discussed in Section 2.2.2, is the current system
of choice, but will be replaced by Blackboard in 2017 [Norc, Sol16]. Many courses
have a mandatory or voluntary mid-term evaluation during the semester, often in
the form of a multiple choice quiz completed on itslearning, which has an extensive
framework for this type of test. For this reason, we will utilize itslearning for our
midterm experiment; fortunately, Blackboard has an equally extensive test framework
with the same capabilities as itslearning. Thus, our findings may be applicable to
the new system if our research is continued in the future.

2.2.1 Inspera Assessment

Inspera Assessment is the flagship product of Inspera AS, and is currently being
introduced as a tool for digital examination at NTNU [oSNd]. The system allows
the students to take exams on their own devices; a concept denoted as Bring Your
Own Device (BYOD). This is made possible by requiring the participants to use
a browser called Safe Exam Browser (SEB). Research has shown that SEB is not
a 100% secure application [Sø15], but its aim is to transform any computer into a
secure workstation that regulates what utilities the exam participants can access
during an examination [Saf]. Inspera Assessment also includes features such as a
plagiarism checker from Ephorus [Eph], hosting by Amazon Web Services [Ama],
as well as student user management through Felles Elektronisk IDEntitet (FEIDE)
[Fei] and Felles Studentsystem (FS) [Fel], which are the services used by students
and employees at NTNU for access to itslearning, Innsida (NTNU’s intranet), and
Studentweb (administration site for course registration, exam dates, grades, etc.).

Inspera Assessment is a solid system for theoretical examinations where the par-
ticipants are required to answer questions and problems with a longer answer text.
However, Inspera Assessment is sub-optimal when it comes to programming exami-
nations, as it contains no or minimal support for programming such as compiling
and running code, testing, etc. It does, however, support syntax highlighting for
selected programming languages and displaying line numbers.

2.2.2 itslearning

itslearning is a cloud-based LMS utilized by several of the bigger learning establish-
ments in Norway [its], including NTNU for the time being. Developed at Bergen
University College (HIB), itslearning offers an extensive education-oriented forum
for students and professors. Each taught course has a dedicated subpage accessible
by their respective participants, assigned various roles such as Professor, Teaching

2.2. DIGITAL ASSESSMENT AT NTNU 15

Assistant (TA), or Student. At NTNU, itslearning is mostly used as a platform for
distributing information and organizing course exercises during a semester. However,
some professors will additionally make use of the LMS as an evaluation tool by
creating mandatory tests for the students using itslearning’s Test tool.

A user with higher access rights (typically a Professor or a TA) can create a test as
part of a course subpage. As test creator, one has the option to set test variables
such as time limits, individual question scores, penalty scores for wrong answers,
and assessment type. Of the available assessment types, the most interesting is the
grade option, whereby a student will receive a letter grade based on their overall
score. In addition to this, the test creator may define a non-static score range for
each grade level; if these ranges are modified after or during the test, each student’s
grade is automatically recalculated. This particular functionality mirrors the grading
process for regular exams at NTNU. Each question may also be weighted, such that
answering certain questions correctly yields a higher score.

After a completed test, itslearning allows the extraction of result data to an Excel
spreadsheet if a user with Professor access rights has tuned a few specific parameters
in the course subpage’s settings. itslearning also offers a statistics overview directly
on the test page, illustrating the grade distribution as a graph, as well as accuracy
statistics on individual questions. This information is unfortunately not included
in the downloadable Excel spreadsheet; this file only contains a list of students and
their total test scores.

Test Question Types

When creating a test, the professor may select between ten different question types,
categorized as either general or interactive. Questions of the general classification
uses familiar methods like multiple choice and open answer to test the knowledge of
the participant. There are seven general question types to choose from:

• Either/or
Users are presented with a question and exactly two alternative answers where
exactly one of them is correct. Typical use cases include True/False statements.

• Multiple choice
Users are presented with a question and a specified number of alternative
answers where exactly one of them is correct.

• Multiple response
Similar to the multiple choice question type, but more than one alternative
answer may be correct. Users can typically distinguish a multiple response
question from a multiple choice question by looking out for checkboxes instead
of radiobuttons, indicating multiple selection.

16 2. BACKGROUND

• Short answer
Users are presented with a question and an input field where they should submit
a written answer in 90 characters or less. For automatic evaluation, the test
creator can provide a list of keywords or key phrases that should be included
in a correct answer.

• Open answer
Similar to the short answer question type, but the written answer has no
character limitation. Also known as essay question, open answer questions
are best suited for manual assessment. However, itslearning offers automatic
evaluation similar to short answer, where the test creator can provide keywords
and keyphrases as a basis for evaluation.

• Select from a list
Users are required to fill in the missing words or expressions in a given text by
selecting from a dropdown list of alternatives.

• Fill in the blank
Similar to the select from a list question type, except the users, are not provided
with a list of suggestions for each missing word, but rather a blank text field.

Interactive questions are largely based on drag-and-drop. There are three question
types under this category:

• Match
Users are presented with two lists of equal size and are required to find relations
between the items in the lists. To achieve this, the user clicks and drags an
item from the second list into empty areas that are connected to each item in
the first list.

• Order
Users are asked to arrange items from a list in a certain order. Similar to the
match question type, the user achieves the ordering by clicking and dragging
the elements into the correct place.

• Hotspot – Click the picture
Users are presented with a question and an image, and must provide an answer
by clicking the correct area (the “hotspot”) in the provided image. The test
creator defines the hotspot by using a selection marker similar to the ones
found in photo editing applications.

2.3. ONLINE JUDGE SYSTEMS 17

2.3 Online Judge Systems

From the notion that programming is a purely digital task, the concept of online
judge systems has emerged to offer users an easy and fun way of learning and
practicing coding [CKLO03]. An online judge system has a database containing an
extensive collection of problems that can be solved with programming. Users upload
their coded solutions, which are then compiled and evaluated by the system and
either accepted or rejected as valid submissions based on a set of tests. Besides the
acceptance status, users may receive more substantial feedback such as runtime and
potentially occurred program errors. Organized programming contests such as the
ACM International Collegiate Programming Contest (ICPC) [ICP, PW08] or, more
locally, IDI Open [Norb], are a recurring use case for these systems.

Typical problems found in an online judge system are tasks where the user must
engineer a program or algorithm that should return the correct output based on some
given input. In order to test the correctness of a submission, the system utilizes a set
of input and output pairs. Submissions are run with the input set, and the program’s
output is then compared to the correct output. Generally, the page containing the
problem description will also include a sample input and output pair, so that the
users have something to test their code with locally before submitting their solution.
The test set that is used on the program after submitting is often quite large and
will handle edge cases that may be more challenging to identify.

Kurnia et.al. [KLC01] discuss online judges as automatic grading systems for
programming assignments. These are often embedded in programming courses;
users have the opportunity to enroll in online classes and solve problems suited to the
class they are taking. Examples of this are Kattis [EKN+11], which was developed
and used actively in programming courses at the Royal Institute of Technology (KTH)
in Sweden, and CMB, which is currently being introduced at NTNU in courses like
TDT4102.

2.4 Climbing Mont Blanc

Climbing Mont Blanc (CMB) [Nat, NFS+15] is an online judge system especially
suited for evaluating energy efficient programming solutions. Running on the state-
of-the-art multicore processor Exynos Octa [Ltd14] used in modern smartphone
technology from Samsung, the CMB system evaluates submissions in terms of
execution time, energy consumption, and energy efficiency measured in Energy Delay
Product (EDP).

CMB was initiated as the central part of the master thesis project of Torbjørn
Follan and Simen Støa in 2015 [FS15], and is currently being developed by Sindre

18 2. BACKGROUND

Magnussen as a part of his master thesis. The idea that inspired these projects
belongs to Professor Lasse Natvig at IDI at NTNU, who has taken the role as a
supervisor for the developers throughout the process. Two separate versions of
the system have been available to us on during the project: climb-dev, which is
currently an open beta hosted by the development server, and climb, which is the
latest production version of CMB.

CMB is inspired by the Mont-Blanc project [Taf13], which was initiated in October
2011. Behind this project lies the anticipated use of exascale computer system and
the notion that their energy consumption will significantly restrict these systems
[SDM10]; an exascale computer system is capable of performing at least one exaflop
(1018) operations per second. The Mont-Blanc project’s primary goal is to develop a
new computer architecture which will set the standard for future high-performance
computing systems.

As far as we know, CMB is unique within its field because it considers the measured
energy efficiency during evaluation of submitted code solutions. During the evaluation
process, the system treats the submitted program as a black box, feeding it input
and obtaining output without any concept of code structure, syntax, or program
flow. Similar to other online judges, the output is then compared to the contents
of a text file corresponding to the expected results, yielding an acceptance verdict
which is returned to the user along with the measured energy consumption.

Figure 2.8: Interaction model for the CMB system.

2.4. CLIMBING MONT BLANC 19

Figure 2.8 illustrates the system interaction for an administrator (blue) and a typical
user (yellow), further discussed in the following subsections.

2.4.1 Adding Problems to CMB

Adding problems to CMB is essentially a process that consists of adding files to the
system. This dataset comprises four text files (.txt), and a script for testing the
submitted answers. The four text files are two pairs of input and the corresponding
output. One pair is small-input and small-answer which makes up the small
correctness test, testing whether the submitted code compiles and runs without error.
The other pair is input and output which is the big correctness test that covers all
edge cases.

The script used for evaluating the submissions must be named checker.cpp, and is
advised to be implemented individually for each problem in CMB. This way, each
submission can be tested and evaluated in a tailored fashion. For instance, some
exercises might yield partial credit or credit for close-to-correct answers, such as
floating point numbers where the error margin can be minuscule. For problems like
these where there may be multiple correct solutions, an administrator has the option
to add a “goodness” evaluation parameter, measuring the degree of coverage of a
problem solution; for example in the Vertex Cover problem, where the goodness
value will typically be based on the percentage of total vertices covered. Feedback
and error messages for individual cases can also be implemented in the checker if
desired.

2.4.2 Solving Problems on CMB

As mentioned, CMB uses an input/output approach when evaluating submitted
code. Therefore, it is crucial that the uploaded solution handles input and output;
the resulting program must be able to read input from a stream of undefined size,
and write to output in the appropriate format, often exemplified on the problem
description page. Generally, this task is straightforward and can be implemented
as presented in Listing 2.1, which is derived from the system documentation [CMB]
and is especially suited for exercises that perform an operation for each line of input.
In more complex problems, one may need to preprocess each line of input (e.g.,
typecasting, or deriving distinct components). Output can be written in several
manners; after testing the system we found any combination of cout, printf, cerr
and clog to be successful.

Certain guidelines specified by the system documentation must be taken into con-
sideration when uploading solutions to CMB. As mentioned, the most important
requirement is that the code should be able to handle input and output. Other
significant requirements are related to the format of submissions, such as file ex-

20 2. BACKGROUND

Listing 2.1 Example of input/output handling.
1 #include <iostream>
2 #include <string>
3 using namespace std;
4

5 string solveProblem(string num);
6

7 int main(void) {
8 cin.sync_with_stdio(false);
9 string input;

10 while (cin >> input)
11 {
12 cout << solveProblem(input) << endl;
13 }
14 return 0;
15 }

tension restrictions and naming conventions. All code files (cpp, c, h, or hpp files)
associated with a submission must be placed into a single directory, which must
then be compressed into a zip file. This zip is then unpacked and its contents
are preprocessed and compiled, a procedure which is performed by a sequence of
bash scripts. Because of the lack of filename sanitation, subdirectories and filenames
cannot begin with a hyphen (-), nor include instances of the slash (/) or whitespace
character. Contradicting these conventions can potentially lead to unwanted behavior
during compilation, which, in the worst case, may lead to system failure.

2.5 Hypothesis Testing

In Section 1.3, we presented a set of null hypotheses H0x, which are each formed in
such a way that they are rejected if there is a significant difference in the samples
involved in each respective hypothesis [BS87]. H1, called the alternate hypothesis, is
considered true if H0 is rejected. However, H0 can not be considered true if it is
not rejected and H1 cannot be considered false. Later, in Chapter 5, we will use the
terms one-tail- and two-tail tests. A one-tail test seeks to determine whether or not
the mean of the test set A (µA) is greater or less than the mean of test set B (µB). A
two-tail, on the other hand, seeks to determine whether or not µA is unequal to µB .

H1 =
{
µB > µA or µB < µA if one-tail
µB 6= µA if two-tail

(2.1)

2.5. HYPOTHESIS TESTING 21

This process comprises some statistical calculations. If the investigated hypothesis,
H0, involves two sets of data, one must start off with an F-test [ML06] to compare
the variances. The main test is the T-test [Ros14], which will be used to determine
whether or not H0 should be rejected. The results of the F-test is needed for the
T-test to produce appropriate results.

To reject the hypothesis, the T-test must show that there was, in fact, a significant
difference between the two sets of results, as opposed to a coincidental difference.
This is done by comparing the p-value from the T-test with a commonly defined
value, α = 0.05. If the T-test states that H0 cannot be rejected, no further testing
is needed. On the other hand, if the T-test states that H0 can be rejected, more
testing should be done in order to ensure and strengthen validity. Since the T-test is
sensitive for normality, one can conduct a Shapiro-Wilk test [SW65] to determine
whether the samples are normally distributed. If that is the case, one can assume
the conclusion from the T-test to be correct. If not, a Mann-Whitney test, which is
a non-parametric test, is needed to increase the validity of the conclusion [Ros14].

The tools we will be using for the analysis are Excel 2013 [Micb] with the Analysis
ToolPak add-on [Mica] for the F-test and T-test and Real Statistics Resource Pack
[Staa] for the Shapiro-Wilk test, Mann-Whitney U Test Calculator [Stab] for the
Non-Parametric test, the Effect Size Calculator [Uni] for Cohen’s d and Hedge’s g,
and finally the Sample Size/Power Calculator [Bio] for calculating the number of
participants needed in each group to achieve a strong effect size.

2.5.1 Conclusion Validity

After the final conclusion about the hypothesis is drawn, the effect size is calculated
to determine a measure of confidence of the conclusion; the lower the effect size,
the less confident one can be about the conclusion. Measures commonly used are
Cohen’s d [Coh92] and Hedge’s g [HO14], where the latter is used because it takes
the population sizes into account. The effect size can further be used to calculate
the desired size of each sample in order to make the conclusion sufficiently powerful.
This calculation is useful for future references.

Small 0.2
Medium 0.5

Large 0.8
Very large 1.3

Table 2.5: Common effect size indices for Cohen’s d.

Common effect size indices for both Cohen’s d and Hedge’s g are shown in Table 2.5
[SF12]. With a relatively large effect size, one can be certain to avoid erroneous

22 2. BACKGROUND

conclusions as shown in Table 2.6.

H0 is true H1 is true
Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

Table 2.6: Outcome of hypothesis testing.

Chapter3Question Types

This chapter contains an in-depth study of various question types, categorized into
two sections: Section 3.1 discusses question types that are not directed toward pure
programming tasks, but rather suited for theoretical questions typically answered
using itslearning or other possible learning management systems that support au-
tomatic evaluation. Section 3.2 covers more general questions types that explicitly
involve programming, and that are suitable for CMB. For each of the presented
question types, we will provide an example related to the C++ programming language
as well as a discussion on whether the presented question types are well-suited for
automatic grading on the respective systems.

3.1 LMS Question Types

Part 1 of our proposed examination form consists of a set of questions that do not
directly require programming to be answered. Instead, they cover the more theorical
aspects of C++ and thus satisfying the TDT4102 learning objectives (presented in
Section 2.1.1) K1 through K7, S5, and C2.

The question types in this section are all based on the question types offered by
itslearning, first presented in Section 2.2.2.

3.1.1 Multiple Choice (MC)

A Multiple Choice (MC) question, exemplified in Figure 3.1, consists of a textual
question (the stem), and a list of answers, where one is correct (the key), and the
rest are wrong (the distractors); respondents are asked to distinguish the key from
the distractors.

An important disadvantage of using MC questions is that upon not knowing the
correct answer, a respondent still has a 1

i chance of guessing the key, where i denotes
the total number of alternatives. In the case of either/or and multiple response

23

24 3. QUESTION TYPES

Q What is the difference between a struct and a class in terms of
default access modifier?

© All struct members are public while class members are private.
© All struct members are protected while class members are

public.
© All struct members are public while class members are

protected.
© All struct members are private while class members are public.

Figure 3.1: Example of multiple choice question.

questions (discussed below in Sections 3.1.2 and 3.1.3) the probability is even higher.
This issue is commonly addressed by penalizing wrong answers with a negative score
to counterbalance the points accumulated from guessing [Bur04, Hol24].

Guidelines

According to Hansen and Dexter [HD97], «a high quality MC question should present
a task that is clearly understood and be constructed so that it can be answered
correctly by those who have achieved the intended learning outcome, but so that its
content or structure does not reveal the correct answer to the uninformed student».
Several research teams have produced sets of guidelines for ensuring quality in MC
items [Aik87, HD89, HDR02]. We list the most commonly occurring guideline entries
as follows:

• Avoid negative stems. Using terms like “not” in the stems increases the
complexity of the question. If it is absolutely necessary to use the negative
wording, emphasize negative terms so that they are less likely to be overlooked.

• Balanced key positioning. Position the key so that it appears the same
number of times in each possible position.

• Punctuation conventions. Use capitalization and punctuation in a consis-
tent manner. Alternatives should be capitalized when they represent answers to
a question; alternatives should not be capitalized if they represent completion
to a statement. Unnecessary punctuation when used with numbers may be
confused with decimal points.

• Grammatical consistency. The stem and alternatives should all be gram-
matically consistent; a lack of consistency may reveal the key or enable the
respondents to eliminate certain distractors.

3.1. LMS QUESTION TYPES 25

• Correctness of key. Make sure that the key is clearly the only correct or
single best option.

• Avoid absolute terms. Statements that include words like “always” or “never”
are usually false, and increases the probability of an uninformed respondent
guessing the correct answer.

• Distractor plausibility. The overall quality of an MC question is often
decided by the quality of the distractors; make sure that all of the distractors
seem plausible for respondents who cannot distinguish the key from knowledge.

• Length consistency. Make sure that all of the alternatives are of approxi-
mately the same length.

• Avoid verbal clues. Using more textbook language in one of the alternatives
may disclose the key. Two alternatives that are worded differently but have
essentially the same meaning eliminates them both as distractors, as there can
only be one correct answer.

3.1.2 Either/Or

A direct sub-category of the MC question type is the either/or question type, where
there is exactly one key and exactly one distractor. True/false questions, like the
one presented in Figure 3.2, are the most common occurrence of this question type,
but one can also specify other variants as exemplified in Figure 3.3.

Q In C++, all variables must be declared before they may be used.

© True © False

Figure 3.2: Example of true/false question.

Q Which copy-approach does the default copy-constructor use?

© Deep copy © Shallow copy

Figure 3.3: General example of either/or question.

3.1.3 Multiple Response (MR)

The Multiple Response (MR) question type is another sub-category of MC, where
there may be more than one key in the list of answers, but not necessarily. Thus,

26 3. QUESTION TYPES

an MR question is more complex to answer than an MC question, as the number of
keys is unknown to the respondent. A typical use of an MR question is listing a set
of statements and asking the respondents to identify the ones that are true. In a
programming course, one may provide a variation of this, exemplified in Figure 3.4.

Scoring

When scoring an MR question, one must choose between a polytomous or dichotomous
approach. Polytomous scoring implies the use of partial credit, which can be done
in a number of ways based on various weighting methods [DLT+95]. Dichotomous
scoring, on the other hand, is based on an all-or-nothing concept requiring all selected
responses to be correct for a question.

Q (5 points) According to the class hierarchy given by the following
code, which of the declarations are valid?

1 class A {};
2 class B: public A {};
3 class C: public B {};
4 class D: public A {};

� A a = C(); � D d = B();
� C c = A(); � B b = C();

Figure 3.4: Example of multiple response question, with answer.

Figure 3.4 exemplifies a respondent who has selected one correct and one wrong
alternative (the correct answers are marked in bold text) to an MR question with
a possible score of 5 points. A dichotomous scoring approach would yield 0 points
because the submitted answer is not 100% correct, whereas a polytomous approach
would yield a score between 0 and 5 depending on the scoring algorithm.

itslearning’s test framework uses a dichotomous scoring model for MC, and a poly-
tomous model for MR; each response alternative can yield either 0 or qmax

n points,
where qmax denotes the maximum possible score for question q, and n is the number
of response alternatives for question q. An option yields points when its checked-state
corresponds to its correctness value; hence, an incorrect option will yield points if it
is not checked, according to itslearning’s evaluation model. Using this scoring model,
the answer submitted in Figure 3.4 would amount to 2.5 points. Selecting all of the
alternatives yields 0 points unless they are all correct, but this would serve against
the purpose of a fair test. Selecting none of the alternatives also yields 0 points.

3.1. LMS QUESTION TYPES 27

3.1.4 Open Answer

An open answer question is ideal to use in a code understanding situation, or when
testing the ability to reflect upon an issue or about a statement. Out of all the
question types discussed in this chapter, the open answer question type is the one
that most greatly corresponds with the format of the questions used in the current
examination form. Below are two examples of how this question type could be used
in our proposed digital examination form, as a code understanding question, modified
from its original appearance in the final exam of TDT4102 in 2013 (Figure 3.5), and
as a reflection question (Figure 3.6).

Q The class Tree below is used to create a binary tree. The class
definition declares a constructor and two member functions. The
implementation of one of the member function is given below the
class definition. What does the member function insert(string
name) do?

1 class Tree {
2 Tree *_left;
3 Tree *_right;
4 string _name;
5 public:
6 Tree(string name) : _left(NULL),
7 _right(NULL), _name(name) {}
8 void insert(string name);
9 void insert(const Tree &tree);

10 friend ostream& operator <<(ostream&, const Tree&);
11 };
12

13 void Tree::insert (string name) {
14 Tree **destination = &_right;
15 if (name < _name) {
16 destination = &_left;
17 }
18 if (destination == NULL)
19 (*destination) = new Tree(name);
20 else
21 (*destination)->insert(name);
22 }

Figure 3.5: Example of open answer question with code understanding.

28 3. QUESTION TYPES

Q Should the stream-operator (<<) be implemented as a member?
Why, or why not?

Figure 3.6: Example of open answer question with reflection.

3.1.5 Short Answer

Short answer questions are well-suited for assessing a respondent’s ability to provide
short and concise descriptions of possibly extensive concepts. Being able to do this
reflects the level of knowledge within a specific subject; requiring a short answer
eliminates the possibility of “covering up” the fact that one does not know the exact
answer by submitting a wordy and obscure response. As opposed to open answer, the
respondents are restricted by a character limitation with regard to their submitted
answer. On itslearning, this limitation is set to 90 characters; depending on the
question, limiting the input length to 90 characters may be too demanding, but
in these situations, a blurry character limitation that may still classify as a short
answer question can be simulated using the open answer question type. Figure 3.7
exemplifies a short answer question where 90 characters are more than enough,
whereas Figure 3.8 presents a question where 90 characters may be too restrictive.

Q What is the output of the following program?

1 #include <iostream>
2 #include <string.h>
3 using namespace std;
4

5 int main() {
6 char str[] = "Hello\0World";
7 cout << strlen(str) << " " << sizeof(str);
8 }

Figure 3.7: Example of short answer question.

Automatic evaluation

Because of the reflective nature of a short or open answer question, being able to
provide automatic evaluation is a significant challenge. itslearning has attempted to
face this challenge by allowing the teacher to prepare a list of key words that are
expected to be included in a correct answer. However, grammatical aspects such as
typographical errors or synonyms must be considered by the teacher, as the system
can only handle upper- and lowercase transformations automatically. Thus, to reflect
a realistic manual evaluation, the teacher must think of every possible variation of

3.1. LMS QUESTION TYPES 29

Q The following function should create an int array with a given
size n and initialize all the elements in the array to a given value
v. Explain in one sentece what is wrong with the implementation.

1 int* foo(int n, int v) {
2 int ret[n];
3 for (int i = 0; i < n; i++) {
4 ret[i] = v;
5 }
6 return ret;
7 }

Figure 3.8: Example of simulated short answer question.

the keywords, and even then, there is no guarantee that the respondent has used the
keywords in the correct context.

3.1.6 Fill in the Blank

In a fill in the blank question, the respondent should fill in the missing words or
phrases from a given text. Figure 3.9 shows an example where the text is a code
segment, requiring the respondent to understand the given code and be able to
complete it the intended way.

Q Fill in the missing pieces of the following code segment. The
purpose of the program is to swap the values of the two pointers
first and second.

1 void swapPointers(int* first, int* second) {
2 int firstValue = ???;
3 int secondValue = ???;
4 ??? = secondValue;
5 ??? = firstValue;
6 }
7

8 int a = 2;
9 int b = 4;

10

11 swap(???, ???);

Figure 3.9: Example of fill in the blank question.

30 3. QUESTION TYPES

Synonymity

A potential pitfall with the fill in the blank question type on itslearning is that the
automatic evaluator checks perfect equality between the submitted string and the
correct string. There is no option to provide a list of synonyms or alternative ways
of expression; for instance, in the above example (Figure 3.9), the correct answer
for the first blank (???) is *first, but an alternative and completely valid way of
dereferencing a pointer in C++ is *(first) (with parentheses) or * first (with
whitespace).

Blackboard has addressed this issue by allowing a list of correct answers to be included
by the test creator, as well as introducing three options for evaluation of each input
field: exact match, contains, and pattern match. Exact match evaluates each input
similar to itslearning, that is, the input string should be exactly the same as the
correct answer provided by the test creator. Contains allows for minor variations to
the provided correct answer, such as the plural form. That is, the correct answer
must be a substring of the respondent’s submitted answer. Finally, pattern match
evaluation checks the submitted answers using regular expressions [Fri02] so as to
allow for more variability of answers.

3.1.7 Select From a List

Q Fill in the missing pieces of the following code segment. The
purpose of the program is to swap the values of the two pointers
first and second.

Figure 3.10: Example of select from a list question.

3.1. LMS QUESTION TYPES 31

The select from a list question type is similar to the aforementioned fill in the blank,
except the respondent is not required to directly type in the missing words or phrases,
but rather select the correct option from a provided list of alternatives. In a way,
each missing word or phrase becomes an MC question. Figure 3.10 presents the
same question as in Figure 3.9, but with a dropdown menu with options instead of
blanks. The dropdown menu is the same for all of the blanks, even if the options have
already been selected elsewhere in the text, and the test creator can add additional
distractors that do not belong in any of the blanks.

3.1.8 Match

Match questions involve finding the relation between pairs of elements from two
separate lists. Figure 3.11 illustrates a very simple example of such a question. Our
main concern is that questions of this type might be too trivial to include in an exam
context.

Q Match the value with the correct type.

Figure 3.11: Example of match question.

The boxes on the right side should be drag-and-dropped into the correct areas marked
with “?”.

3.1.9 Order

Order questions involve sorting a list of elements with regard to some condition
described in the problem text. An example of an order question is presented in

32 3. QUESTION TYPES

Figure 3.12, in which the boxes should be dragged-and-dropped into the appropriate
order in the empty placeholders.

Q Sort the operators by order of evaluation. An operator to the left
will be evaluated before the operator to the right.

Figure 3.12: Example of order question.

Scoring approach

A critical drawback with the order question type when using itslearning is that
the automatic grading feature only considers whether the elements are in the exact
correct index in the placeholders, and does not take into consideration the relative
order of the elements. That is, if one element is misplaced such that the succeeding
elements are shifted one place to the right, no points are rewarded for getting the
relative order of the remaining elements correct. This is illustrated in Figures 3.13
and 3.14; the first figure shows the correct answer to the order question in Figure 3.12,
giving the respondent a maximum score of 10 points. The second figure, however,
will only yield a score of 2 points because only the first element is placed in its exact
correct place.

Figure 3.13: Correct answer to order question example.

Figure 3.14: Incorrect answer to order question example.

A third situation is exemplified in Figure 3.15, where the elements are placed backward.
None of the elements are positioned relatively correct to each other; however, one of
the elements is in the exact right place yielding 2 points, which makes little sense
with regard to the question.

3.1. LMS QUESTION TYPES 33

Figure 3.15: Reversed answer to order question example.

An alternative way of scoring this type of question is thus to consider each unique
pair of elements and give a partial score based solely on their relative order. For
the submitted answer in Figure 3.14, the scoring for each element would proceed as
follows:

• :: (scope) is relatively correct to all of the other elements, yielding a maximum
partial score of 2 (qmax) points.

• = (direct assignment) is positioned relatively correct to the first element,
but not the rest. Thus it gains a partial score of 0.5 (qmax × 1

n−1) points.

• The three remaining elements are positioned relatively correct to five out of six
of the other elements, thus yielding a partial score of 1.5 (qmax × 3

n−1) points
each.

• The total score is the sum of all of the partial element scores: 2+0.5+3×1.75 =
7.75 out of a possible 10.

Here, qmax = smax

n , where smax is the maximum score for the question, and n is the
number of elements to be ordered (in this case, smax = 10 and n = 5).

Using the same scoring method on Figure 3.15 would yield a total score of 0 points
as none of the elements are positioned correctly relative to each other.

3.1.10 Hotspot – Click the Picture

Hotspot questions requires the respondent to click on a certain area of a provided
image to locate something described in the problem text. For example, Figure 3.16
shows the picture of a motherboard, and the task is to locate the Central Processing
Unit (CPU).

A potential pitfall with the hotspot question type is the potential lack of boundary
precision of each component in the picture. A test creator may not necessarily
include the explicit boundaries, and a respondent might intend to press the correct
component, but miss the borders. Alternatively, and more relevant for the course
TDT4102, one could use this question type to require the students to locate a certain

34 3. QUESTION TYPES

Q Locate the CPU on the motherboard.

Figure 3.16: Example of hotspot question.

code line or block, function or similar. This would resemble both the MC and select
from a list question types, except the alternatives are not explicitly shown.

3.1.11 Suitability

Although all of the question types are to a certain degree suitable with regard to
testing the programming knowledge of a respondent, a central criterion for suitability
in this context is the possibility of automatic evaluation in a fair manner that should
reflect the way one would evaluate manually. Table 3.1 presents an overview of the
LMS appropriate question types and a conclusion on whether or not they are suitable
to use in an auto-grading context. The conclusions marked with an asterisk (*) come
with certain reservations, discussed below.

MC, MR, either/or, and select from a list are all straightforward to evaluate auto-
matically, as they all have a well-defined assessment model that will be equivalent
for any candidate system, with no potential pitfalls. Short answer is suitable as long
as the question is kept concise and unambiguous; questions like “What does this
function do?” is near impossible to predict correct answers to, and would require an
evaluator to inspect the answers manually, as they would have to in open answer
questions.

Fill in the blank and order would without a doubt be suitable if their evaluation
models were improved. With that said, it is important to note that we have only had
the opportunity to test these question types on itslearning. For both of the question
types, we have discussed alternative evaluation approaches that we believe would
surpass the assessment models used by itslearning with regard to mirroring a manual

3.2. CMB QUESTION TYPES 35

Question Type Suitable
Multiple choice Yes
Either/or Yes
Multiple response Yes
Open answer No
Short answer Yes*
Fill in the blank Yes*
Select from a list Yes
Match Yes*
Order Yes*
Hotspot Yes*

Table 3.1: Evaluation of suitability for LMS questions.

evaluation by a human grader. Luckily, the reluctance we have experienced might
not be a great setback for future work, as Blackboard will soon replace itslearning as
the acting LMS at NTNU.

Finally, when it comes to match and hotspot questions, they both have a well-defined
assessment model suitable for automatic grading. However, our concerns are strictly
related to the simplicity of the questions that fit under these question types. That is,
the question types are well-suited for automatic evaluation, but the questions will
not necessarily be complex enough to belong in a final exam.

3.2 CMB Question Types

We have already identified three programming problem types when discussing trends
from previous exams for the TDT4102 course (Section 2.1.4), and we will thus not
repeat them here. They will, however, be considered during the suitability analysis
in Section 3.2.4.

3.2.1 Complete the Code

Complete the code problems are appropriate when the problem text requires an
implementation to be structured in a specific way, for example using a certain
method or data structure. Figure 3.17 shows an example of this problem type
(assume the problem text also includes a detailed description of how the sorting
algorithm works). The respondent is required to implement the bubble sort algorithm
[Ast03] by adding the missing code where it is indicated. There are a number of

36 3. QUESTION TYPES

ways to implement this, but the example shows how the problem creator can make
sure the students solves the problem specifically with the use of nested for-loops.
It is also necessary for the student to understand the given code, which is in direct
compliance with learning objective S5.

Q Complete the following code that is supposed to sort a vector of
integers using the bubble sort method.

1 void bubblesort(vector<int> * list) {
2 for (int i = 0; i < list -> size(); ++i){
3 for (int j = 0; j < list -> size() - 1; ++j){
4 // YOUR CODE HERE
5 }
6 }
7 }

Figure 3.17: Example of a complete the code problem.

Code integrity

On CMB there is no way of making sure the respondent has not altered the provided
code, which directly opposes the intentions of the problem type. A solution to this
issue that does not involve changes to the CMB system is to make sure that the
effort of completing the provided code is less than the effort needed to solve the
problem from scratch. Thus, the problem to be solved must be sufficiently complex
with regard to finding a solution without a nudge in the right direction.

3.2.2 Fix the Code

Fix the code problems are seemingly similar to complete the code at first glance.
However, the main focus lies more in the fine details of programming. Respondents
need to study the given code, which is disguised as a complete program, and locate
the errors (syntactic or logical). With this problem type, one can test the students
in the more specific parts in a program, such as potential pitfalls or commonly
overlooked elements. Figure 3.18 shows an example where the respondent is required
to fix an attempted implementation of a function that should return 1 if the input is
a prime number and 0 otherwise.

Our example contains four errors, where two of them are logical errors which result in
wrongful behavior and the last two cause runtime errors. The first error is found on
line 3; the description clearly states that negative integers (including 0) are defined
as primes. The second error can be found on line 5. Since the numbers 1 and 2 are
both primes the return value should be 1 and not 0. The third (and perhaps the

3.2. CMB QUESTION TYPES 37

most obvious) error is on line 8, where there should be a for identifier instead of
while. The last is on line 15, where i should not initially be 0 because it implies
zero-division. Preferably, the initial value should be 3.

Q Below is an attempt at implementing a function for finding prime
numbers. The function takes an integer as input and should return
1 if it is a prime number and 0 otherwise.

1 int is_prime(int n) {
2 //non-positive numbers are not defined as prime numbers
3 if(n < 0) return 0;
4 // 1 and 2 are defined as primes
5 if(n <= 2) return 0;
6 // No even numbers are primes
7 if(n % 2 == 0) return 0;
8 while (int i = 0; i < sqrt(n) + 1; ++i){
9 if(n % i == 0) return 0;

10 }
11 return 1;
12 }
13

14 int main() {
15 for (int i = 0; i <= 100; ++i){
16 if(is_prime(i)) cout << i << endl;
17 }
18 }

Figure 3.18: Example of a fix the code problem.

38 3. QUESTION TYPES

To implement this problem type on CMB, one would give the respondents the faulty
code (which would not be accepted by the system), and they would have to fix it in
such a way that the system accepts the solution.

3.2.3 Topic Specific Programming Problems

In this section, a selection of important topics in programming are described, and
their suitability with regard to online judge system is discussed.

Principles of object-oriented programming

Object-oriented programming is a widely used programming paradigm which is based
on the concept of objects. Many universities offer courses completely dedicated to the
subject, most likely due to the fact that there is a substantial amount of programming
languages that support it and rely heavily on it. It is also a vast paradigm containing
other frequently used mechanisms such as inheritance. A typical object-oriented
assignment is exemplified in Figure 3.19.

Q In this task you will implement a class, WDiary, which is intended to
function as a workout diary. The user must be able to create, save
and delete Entry instances in the diary. Each Entry must contain
a date and a comment related to the workout. Each WDiary has
an instance of Person called owner, containing a name, current
weight and height, and methods for accessing this information
and changing the weight. Additionally, each entry can store other
users who joined the workout if any. Since this is not an actual
publicly available application, we can assume all existing users are
accessible and can be added without their permission.

Figure 3.19: Example of an object-oriented problem.

The task of customizing an object-oriented programming assignment suitable for
online judge systems is not straightforward. Since one cannot detect the object-
orientated structure of a code submission based on the input or output, the online
judge must be able to examine the code itself to evaluate the use of object-orientation,
i.e., with the use of pattern recognition.

Operator overloading

A key feature in C++is operator overloading, which makes it possible for common
operators such as arithmetic operators and the stream operator (<<) to work on
custom object types. A typical assignment involving operator provides the respondent
with a class definition and asks for the implementation of one or more operators.

3.2. CMB QUESTION TYPES 39

Another example is presented in Figure 3.20, where one should re-define the addition
and subtraction operators for the string type.

Q Everything that can be represented using a string contains a non-
negative number of characters. Overload the operators for the type
string so that the result when adding a string to another should
be the number of total characters. Equivalently, subtracting two
strings should result in the difference in the number of characters
in the two strings.

Figure 3.20: Example of an operator overloading problem.

Similar to the issue with object-oriented programming concepts, operator overloading
is difficult to validate on an online judge such as CMB as there is no guarantee that
the respondent has structured the code in the correct manner. However, a solution
could again be to provide the students with skeleton code that is so complex and
possibly obfuscated that more effort is required to try and find a way around the
skeleton code to reach a working solution.

File I/O

Reading from and writing to a file is important in many applications. It is used
for permanently storing information, accessing permanently stored information or
reading information from an external source. File I/O is an important part of the
learning objectives of the course TDT4102.

Q In this task you will implement a permanently stored Top 10 high
score list. The list should be stored in an external .txt file which
your code will read from and write to. The program will take a
score as input and correctly insert it in the list if it belongs in the
top ten. The list must never exceed ten lines.

Figure 3.21: Example of a file I/O problem.

We have not come across any online judge systems, including CMB, that support
file operations. Thus, code inspection is required in order to properly evaluate this
problem type.

Exception handling

Exception handling is a concept often used in programming languages to handle
unexpected behavior without crashing the program. In the TDT4102 course, excep-
tion handling assignments are often related to input sanitation, as exemplified in
Figure 3.22.

40 3. QUESTION TYPES

Q Some important information about a car is its owner, mileage and
model year. Given the class Car, implement its constructor which
should properly set said information with the following restrictions:

• Every registered car has an owner (i.e., the owner field cannot
be null).

• The mileage must be non-negative and be of type int.

• One can assume the model year is between than year 1899
and current year.

Implement appropriate exceptions for each of these cases.

Figure 3.22: Example of a problem using exception handling.

Programs uploaded to online judges are commonly quite simple and do not have
complex function call stacks, which is one of the reasons to include exception handling.
On a typical exam, exception handling simply involves writing output to signify
what went wrong in the code. As online judge systems are only based on input and
output and do not know anything about structural aspects of the code, again we
have the issue where it is impossible to validate whether the respondent has handled
the problem using exceptions at all.

3.2.4 Suitability

Table 3.2 show a summary of the programming problem types and whether or
not they are suitable for online judge systems. The conclusions marked with an
asterisk (*) come with certain reservations, discussed below. An important criterion
for suitability of the programming problem types is that the solution should not
have a strictly defined structure in order to be accepted during manual evaluation.
Alternatively, as we have discussed earlier, it should be possible to create a code
skeleton so complex that the student does not bother trying to solve the problem
from scratch.

Simple problem solving and fix the code are all considered suitable for an online judge
system because the structure of the code should not impact the verdict; the central
requirement is to solve a problem. Also, it is the problem designer’s task to make
sure the system can evaluate the problem. When constructing a simple problem
solving assignment, one must be sure to describe clearly how the input should be
processed and the output formatted.

Complete the code, operator overloading problems and object-oriented programming
problems all face the issue of not being able to validate the structure of the submitted

3.2. CMB QUESTION TYPES 41

Question Type Suitable
Code understanding No
Simple problem solving Yes
Constructing a program Yes
Complete the code Yes*
Fix the code Yes
Object-oriented programming Yes*
Operator overloading Yes*
File I/O No
Exception handling No*

Table 3.2: Evaluation of suitability for CMB questions.

code. However, they are possible to design in such a way that an online judge system
can evaluate them. A method used to make this work for operator overloading and
object-oriented programming problems is described in Section 4.3.

Code understanding are deemed unsuitable for online judge systems because they do
not involve programming explicitly, but rather the ability to follow the logical flow
of a block of code in order to determine what the output is, or what is supposed to
happen. This problem type is more suited in the LMS part of the digital examination,
specifically as a short answer question as discussed in Section 3.1.5.

Exception handling problems are not considered suitable for online judge systems
because one cannot know if the respondent outputs the exceptions correct, i.e., uses
try-catch blocks and throw. cout can easily replicate the output from an exception.
However, one can, with some creativity, try to ensure the correct use of exception by
e.g. providing skeleton code. Hence, we marked the conclusion with an asterisk.

Finally, File I/O is not suitable for online judge systems because they require reading
from and writing to files, which is seemingly from the experience we have gained
from researching online judge systems not currently supported.

Chapter4Midterm Experiment

In this chapter, we will discuss all aspects of the midterm experiment conducted
in March 2016. First, Section 4.1 states the description of the experiment as it
was defined at the beginning of this research project. Section 4.2 delves into the
preliminary phase of the project, including partial results from testing the CMB
system prior to the experiment. Section 4.3 deals with the assignment used in the
experiment. Finally, we discuss the actual experiment execution in Section 4.4,
including a description of how we kept the results from the test anonymous.

4.1 Experiment Description

A set of students from the TDT4102 course will participate in the experiment, where
they will take a midterm test prepared by us. Seeing as the aim of the experiment is
to compare two different exam approaches, the participants will be split into two
groups: Group A will complete the test in the traditional manner using pen and
paper, and Group B will complete the test digitally using CMB and itslearning.
Ideally, the two groups will be as similar as possible with regard to student program
distribution. Splitting the participants into two groups requires a higher number of
total participants to ensure that each group consists of enough representatives to
make the results feasible; therefore, we have set the ideal number of participants to
100.

In total, two consecutive 45-minute sessions will be at our disposal; sacrificing the
15-minute break, we have 1 hour and 45 minutes during which we must introduce
the project, walk the participants through the guidelines of using the CMB system,
execute the test itself, manage delivery of responses, and serve food. Based on these
circumstances, we set the duration of the test to be 1 hour and 20 minutes.

Unlike the final examination, no aids will be permitted during the test, to ensure that
the outcome of the test is not affected by uncontrolled available assistance. Obviously,
the group taking the test digitally will have complete access to the Internet; hopefully,

43

44 4. MIDTERM EXPERIMENT

these participants will respect the nature of the experiment and not exploit this
circumstance. As the results from the midterm will not count in any way towards
their final grade in the course, the participants have nothing to gain by cheating.

As a way of attracting more students, we will order pizza for all participants when
the test is done. After completing the test, the participants will also be asked to
complete an anonymous questionnaire (attached in Appendix C) which will later
be used by the research team in order to derive additional information about the
experiment.

4.2 Planning and Preliminary Work

4.2.1 CMB Workshop

Aiming to familiarize TDT4102 students with CMB and online judge systems, a
workshop took place in Week 8, replacing a regular lecture and consisting of a
demonstration and interactive work. Said workshop was led by the research team, as
well as a representative from the CMB development team. Also present were two
representatives from the course staff, who were both familiar with the system from a
user’s standpoint but with no additional significance to the CMB project.

In preparation for the workshop, we created and uploaded a handful of exercises of
varying difficulty to CMB. Most of these exercises were close to trivial, seeing as the
majority of the students were assumed unfamiliar with the programming approach
often required by an online judge system.

During the presentation of the system, the students saw a demonstration on how to
solve a simple problem; the Prime Numbers problem was used as an example, where
one should determine whether or not a number is a prime, and output 1 (true) or 0
(false) based on the conclusion. After the demonstration, the students were left to
work for themselves and solve the previously mentioned set of prepared problems.

Originally, we wanted to use the climb server for the workshop, seeing as this is the
server we would use in the experiment later on. However, we ended up having to
use the climb-dev server, as climb was down for reasons discovered later; this is
discussed in Section 4.2.3. These issues probably affected the overall interest for the
midterm experiment, which we intended to promote in the workshop.

4.2.2 Participant Registration

By Week 9, a registration form for the experiment was created using Google Forms
[Goo] and distributed to the students of the TDT4102 course. In the form we asked
for the following information (all fields were required):

4.2. PLANNING AND PRELIMINARY WORK 45

Full name Full name of each volunteer was necessary to be able
to map each participant to their respective username
on CMB.

Study program
and study year

This information was crucial because we attempted to
achieve a balanced representation of each class grade
and each study program in the two groups used in the
experiment, seeing as the educational background of
each participant may affect performance. Representa-
tives will also have varying prerequisites from having
taken a diverse number of university-level courses.

E-mail address Prior to the experiment, we needed the participants
e-mail addresses to enable distribution of information.
After the process of splitting the participants into two
groups (described in Section 4.2.4), we sent out infor-
mative e-mails to the respective groups.

Familiarity with
online judges

Knowing whether or not the participant has experience
with using CMB or a different online judge system was
relevant because we wanted to assign these students
to the digital group in the experiment. We assumed
this would save time on the experiment day, as well
as increase the overall success rate of submissions to
CMB.

Consession to the
use of results

Because the plan was to store the results from the
experiment indefinitely, each participant had to be
informed of this, as well as grant us the permission to
do so.

4.2.3 Pilot Run and Testing

In Week 10, we administered a pilot run for the midterm in collaboration with
the TDT4102 course staff, where the aim was to check whether the test questions
were understandable, as well as confirming the timeframe in accordance with the
workload. Two representatives from the course staff received the test and completed
it digitally with itslearning and CMB. Upon feedback from the pilot participants, we
made a few revisions to the test, mainly in the provided source code, where several
#include statements had been neglected. Both candidates completed the test in
less than the allotted time of 1 hour and 20 minutes, endorsing our estimation of the
time required of less proficient C++ programmers.

During the same week, a thorough test of the CMB system was completed to ensure

46 4. MIDTERM EXPERIMENT

reliability and stability throughout the experiment, so as to avoid the situation we
found ourselves in during the CMB workshop discussed in Section 4.2.1. These tests
uncovered three important undocumented facts that could lead to problems when
submitting solutions on CMB.

Hidden files

When compressing directories on a Mac running OS X, the resulting zip includes
two hidden files not supported by CMB; __MACOSX and .DS_Store. Similarly, zip
files created in Windows may include a hidden desktop.ini file, though this is not
common. These files are automatically created by the operating system, and must
be removed manually. On a Mac, where the issue is consistent over all compressions,
the bash commands below can be executed in the Terminal application in order to
exclude the unwanted files in a compression.

$ rm -rf path_to_solution/.DS_Store
$ zip -rX filename.zip path_to_solution

Line endings

Different operating systems have different standards for line endings, a common
inconvenience amongst programmers [Jef]. Unix-based operating systems such as
Mac OS X and Linux use the LF (Unicode U+000A) standard, whereas non-Unix
operating system, including Windows, commonly operate with CR LF (Unicode
U+000D U+000A). Administrators using Windows machines must make sure that
input and output files use the Unix standard for line endings before uploading a
problem to CMB, which runs on a Unix server.

No timeout on small correctness test

For a problem entity in the CMB system, the administrator-provided files small_input
and small_output make up the small correctness test which is, as described in Sec-
tion 2.4.1, used to identify potential runtime errors and to validate the problem
solving abilities of the submitted solution. A common and highly relevant issue is
the infinite loop, which is technically not identified as a runtime error. Therefore, it
is important that systems handling user-submitted code are able to recognize and
manage infinite loops, where the management aspect often implicates some sort of
timeout functionality.

In our case, the issue with line endings described earlier caused infinite loops in
certain submissions. Because CMB at the time did not handle this circumstance,
the system’s capacity to run submissions was exhausted, and the server seemingly
went down.

4.2. PLANNING AND PRELIMINARY WORK 47

4.2.4 Constructing the Groups

When constructing the two groups for the experiment, we considered each participant’s
student profile, defined as a unique combination of the student program and class
grade features; the most common student profile amongst the registered participants
was (MTTK, 1). A full list of the represented student profiles after initial registration
is listed in Table 4.3.

To ensure equal representation of each student profile in Groups A and B, we went
through the student profiles one by one. Unless one of the groups had claimed
half of the participants in the current student profile (in which case the remaining
participants were placed in the opposite group), the following process was repeated
for each student: If a student had declared familiarity with online judge systems,
they were automatically placed in Group B; otherwise, their assigned group was
decided by coin toss.

Student Profile Count

(BFY, 2) 1

(BIT, 3) 1

(BMAT, 1) 1

(BMAT, 2) 2

(MLREAL, 2) 2

(MTDT, 1) 2

(MTDT, 3) 1

(MTELSYS, 1) 11

(MTENERG, 1) 1

(MTENERG, 2) 6

(MTENERG, 3) 1

(MTFYMA, 1) 1

(MTFYMA, 2) 8

(MTKJ, 4) 1

(MTTK, 1) 32

(MTTK, 2) 18

Table 4.3: Student profile representation.

48 4. MIDTERM EXPERIMENT

4.3 Midterm Assignment

Presented in this section is the midterm test we developed and used for the experiment
in Week 11. As the students have not been through the entire curriculum, we had
to restrict the questions to only deal with subjects up to and including exercise 8
(Table 2.4 contains an overview of the exercises and their subjects). There are two
parts to the midterm assignment; Part 1 consists of MC, MR, and short answer
questions, and should be completed on itslearning for participants in Group B. Part
2 includes three programming questions that should be evaluated on CMB for Group
B. Group A will complete all of the questions with traditional pen and paper. The
respondents have 1 hour and 20 minutes to complete the test.

All of the questions presented in this section are summarized in Appendix B, which
contains the actual document that was delivered to the participants (in Norwegian,
as TDT4102 does not require English understanding).

When creating a test on itslearning, the test creator must configure a set of test
properties. Table 4.4 shows the configurable properties and how they were set during
the test.

Assessment Scoring

Scoring method Without penalty

Question navigation Free navigation

Number of allowed attempts 1

Max time allowed per attempt Unlimited (minutes)

Show answer to participant When the teacher decides

Use feedback No feedback

Table 4.4: Configurations for midterm test on itslearning.

The reason for setting the Scoring method property to Scoring instead of Grade,
which seems like the obvious option, is explained in Section 4.4.2.

4.3.1 Multiple Choice Questions

Either/or questions have exactly two alternative answers, whereas a user can differ-
entiate between an MR from an MC question from the checkboxes, which replace
the use of radio buttons when there is only one key.

4.3. MIDTERM ASSIGNMENT 49

Q1a (5 points) Which of the expressions are true after running the
following code?

1 int x = 5;
2 int y = 42;
3 int* ptr1 = &x;
4 int* ptr2 = ptr1;
5 *ptr2 = y;

� x == 5 � ptr2 == &y
� x == 42 � *ptr1 == y

Q1b (5 points) According to the class hierarchy given by the following
code, which of the declarations are valid?

1 class A {};
2 class B: public A {};
3 class C: public B {};
4 class D: public A {};

� A a = C(); � D d = B();
� C c = A(); � B b = C();

Q1c (5 points) One of the approaches to inspect whether two C-string
variables are equal is to use the == operator.

© True © False

Q1d (5 points) How can you declare a function to return an int array
of size n?

© It is not possible. © int* createArray(int n)
© int[] createArray(n) © They are both valid.

50 4. MIDTERM EXPERIMENT

Q1e (5 points) In which cases is the copy constructor of MyClass called?
You can assume that myInstance is an instance of the MyClass
type.

� MyClass newInstance = MyClass(myInstance);
� void myFunction(MyClass c);
� void myFunction(MyClass &c);
� MyClass newInstance;

4.3.2 Short Answer Questions

In order to make the test compatible with itslearning’s automatic grading tool using
a list of pre-defined keywords, we had to select short answer questions with a clear,
non-negotiable answer.

Q2 (5 points) What is the output of the following program?

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int x = 7;
6 int y = 5;
7 int c = y++ + --x;
8 cout << c;
9 }

Q3 (5 points) Which char is used to terminate a C-string?

4.3.3 MyInteger

The first programming problem is called MyInteger (Q4). This problem was mainly
intended to test proficiency with operator overloading in C++ (K1 in 2.1.1). Also,
learning objectives K4, S1, S2, S5 and C1 are partly or completely covered. Some
of the header file was given to the students to assist in understanding the intended
structure of the code. Group B received a zip-file including the unfinished header-file,
as well as a complete implementation of the main-method that handles the input
and output on CMB.

Group B was additionally asked to implement the remaining arithmetic operators -,
-=, *, *=, /, and /=. This would seem like a considerable increase of workload, but
seeing as the respondents could essentially copy and paste their implementations

4.3. MIDTERM ASSIGNMENT 51

Q4 (25 points) In this task you will implement a class MyInteger.
This class should have a single member variable, value, of type
int, and should also implement the following:

• two addition operators, + and +=

• the unary operator - (used to represent negative numbers,
e.g., -10)

• the insertion operator <<
Create a constructor for MyInteger that accepts an integer value,
and implement the required operators. You can use the provided
header-file (below) as a starting point; note, however, that you must
decide for yourself how the declarations of the addition operators
should be defined.

1 // MyInteger.h
2 #include <iostream>
3 using namespace std;
4

5 class MyInteger {
6 int value;
7

8 public:
9 MyInteger(int val);

10

11 int getValue() const;
12

13 MyInteger operator-() const;
14

15 friend ostream& operator <<(ostream& cout,
16 const MyInteger& myInt);
17 };

of + and +=, only having to replace a single character, we did not regard this as a
significant disadvantage. This extra requirement was added because the parser we
used to validate the submissions on CMB made use of all arithmetic integer operators;
had we provided code for the remaining operators in the provided skeleton code,
Group B would have the solution and thus an unfair advantage.

Evaluation

As the assignment essentially was to replicate the functionality of the int datatype,
some measures needed to be taken to make sure the respondents used the custom

52 4. MIDTERM EXPERIMENT

MyInteger class and not the built-in int type. Hence, we created a parser to
translate mathematical expressions represented as strings to an expression where the
MyInteger class represented each of the operands. This parser was included as a
separate file (Parser.cpp) in the attached skeleton code.

In an attempt to ensure that the respondents could not tamper with either of
the attachments and thus discover the program flow, we performed simple code
obfuscation [CTL97] where function and variable names were “encrypted”.

4.3.4 Split

As opposed to Q4, the split problem requires a complete implementation from
scratch. Hence, K6, S1, S2 and C1 is the most relevant learning objectives because
they emphasize the process of creating a solution. As described in the problem
text (Q5a) the intended purpose of the program is to divide an input text at every
instance of a certain character. For Group B, a zip-file was provided, containing an
implementation of the main-method for handling input and output.

Q5a (15 points) Implement a function split that should split up a text
string into substrings based on a given character. The function
should accept a string (the text string to be split) and a char
(the character deciding where to split) argument, and should return
a vector<string> consisting of the resulting substrings. You can
use the attached documentation on vector for hints of which
methods to utilize in your solution.

Example: A call to the function split("Programming_is_fun",
‘_’) should return vector consisting of the elements
["Programming", "is", "fun"].

Hint: string has a member function substr(startPosition,
length).

Evaluation

The split problem was the easiest one to adapt to CMB. Except the basic code for
getting the inputs from system arguments, nothing was done to adapt the task to
the system. The only thing to be aware of is to avoid using the same test input set in
small-input.txt as in input.txt. If the two test sets are equal, the respondents
will see the expected result as an error message in case of a logical error.

This potential problem is not considered critical because the respondent would have
to guess that the big input set is equal to the smaller input set; nothing about the
problem description or other problem aspects should indicate this to the respondents.

4.3. MIDTERM ASSIGNMENT 53

4.3.5 Roommates

The final programming problem created for the midterm test was intended to be the
most time-consuming and challenging problem. The problem provides a skeleton
code for both groups and is divided into three parts. For the first part, shown as
part one in Q5b, the students must implement the Person class and additional
methods for accessing fields which, suggested by the header file, should at least
include getName() and getRoomies(). The second part requires the completion of
the method Person::addRoomie(). For the third and last part the test takers must
implement a function that returns a Person instance given the name of the person
as a string.

In the skeleton code, “roommates” was abbreviated to “roomies” to spare Group
A for having to write long function declarations. The task generally seeks to cover
learning objectives K1 through K6, S1, S2, S5 and C1.

Evaluation

While designing the roommate problem we experimented with creating a parser that
would run text as functions. For example, if a line in an input file is "increment()"
the program should run the function called increment() if it exists. However, this
programming feature, called reflection [DM95], is unfortunately not supported in
C++.

If C++ supported reflection, we could control the entire program flow from the input
set. The input could be a set of method- or function calls each with its own prompt
(e.g. “John added Paul as a roommate” in john.addRoomie("Paul")).

Instead, we provided an extensive skeleton code in the problem description, which
would discourage the respondents to solve the problem in another fashion. There
would simply not be enough time to solve the entire task in a different way than
what was intended.

54 4. MIDTERM EXPERIMENT

Q5b (25 points) Roommates

1. Implement a class Person. An instance of this class should have a
name and a list of roommates. Implement appropriate methods to
access these characteristics. You can use the following header-file
to get you started.

1 // Person.h
2 class Person{
3 string name;
4 vector<Person*> roomies;
5

6 public:
7 Person(string name);
8 void addRoomie(Person* roomie);
9 vector<Person*> getRoomies() const;

10 string getName() const;
11 };

2. Implement the method Person::addRoommate. This method
should accept an instance of Person as an argument and add
it as a roommate to the list of roommates. Remember that if
Person A lives with Person B and Person B lives with
Person C, then Person A also lives with Person C. To get
you started, we have provided a for loop that prevents a potential
infinite loop.

1 // Person.cpp
2 /* Add roommate */
3 void Person::addRoomie(Person* roomie) {
4 /* LEAVE THIS CODE HERE to avoid infinite loop */
5 for (int i = 0; i < roomies.size(); i++) {
6 if (roomies[i] == roomie || roomie == this){
7 return;
8 }
9 }

10 // YOUR IMPLEMENTATION HERE
11 }

3. Implement the function findPersonByName that accepts a name
as a string and a vector containing instances of Person as
arguments, and returns a pointer to the correct Person object
from the vector.

4.4. VOLUNTARY MIDTERM EXPERIMENT 55

4.4 Voluntary Midterm Experiment

The actual midterm experiment was executed in the middle of Week 11; a thorough
description of the experiment can be found in Section 4.1. On the experiment day,
we used the following checklist to administer the various tasks that were necessary
to complete:

• Triple-check working solutions on CMB

• Add all participants in Group B to private group on CMB

• Manage permissions on itslearning such that only participants in Group B may
take the test

• Make all problems visible on CMB

• Prepare lists of participants for each group

• Prepare list for anonymization

• Print out at least enough copies of the test for the participants in Group A

• Confirm pizza order

At its peak, the participant count was 89. However, we received a large number of
e-mails from students who could not make it to the experiment after all, and so we
ended up with 69 registered and finally 65 attending participants. Because we did
not expect so many cancellations, we divided the registered candidates into group
A and B several days before the actual experiment. Incidentally, the majority of
withdrawals came from participants in group B, and thus the final group distribution
was somewhat unbalanced, with 36 students in Group A and 29 in Group B.

4.4.1 Experiment Execution

After separating the participants into two groups, we sent out two e-mails (one to
each group), telling them which group they had been put in and the implications
that followed. In the same e-mail, we asked the participants in Group B to create a
user on CMB and submit their username to us, so that we could make the process of
adding them to the private group on the experiment day more efficient, and so that
they would not have to waste any time during the test.

When the participants arrived on the experiment day, we had printed out lists for
both groups so that no one would be confused about which group they belonged
to. We spent a few minutes in the beginning of the session thanking all of the
participants for their contribution and explaining some rules of engagement with

56 4. MIDTERM EXPERIMENT

regard to uploading solutions to CMB, related to the issues that were uncovered in
the system tests (described in Section 4.2.3).

During the test, there were a few questions related to the test itself, as well as a
few participants from Group B, who had trouble uploading to CMB. A general
problem was that they did not follow the rules for which files to upload, as well as
the naming conventions of the directories and files; when analyzing the uploads later,
we discovered a few .xcodeproj and .vcproj files (entire Xcode and Visual Studio
project files). Near the end of the test, we asked the students who had not managed
to upload a solution successfully to submit their files to a representative from the
course staff, who was there to help with delivery and anonymization (discussed later
in Section 4.4.3).

When the test reached its end, the participants in Group A delivered their answers
to two representatives from the TDT4102 course staff who registered their presence
and gave them an identification number to be used in the anonymization process.
Finally, we served all the participants pizza and distributed the questionnaire per
e-mail, based on the list of present students.

4.4.2 Result Extraction

Preferably, the results from the midterm test should be collected from itslearning
and CMB separately, and be combined in an Excel-spreadsheet to mirror the current
process of grading exams for professors at NTNU. The following is a description of
how this can be achieved for each of the systems we used in out experiment.

itslearning

Luckily, itslearning has a feature for extracting test results and other course page
information as an Excel-spreadsheet (alternatively, data can be downloaded as a
CSV file), with some tuning of the course page’s settings. A user with sufficient
access rights (for example Teacher) must visit the Settings page and enable the
Assessment record feature under Course properties and features. After an
ended test, the same user can download the assessment record file from the Status
and follow-up page.

An important note is that in the Excel spreadsheet, the result representation for each
test corresponds to the assessment option chosen when creating the respective test.
I.e., if the Grade assessment is chosen for a test, the spreadsheet will only contain a
letter in the range A through F, and not the actual accumulated score per student.
Thus, it is beneficial to select the Score assessment option when the score ranges for
each grade could potentially be changed after analyzing the results (as we had to do,
discussed in Section 5.1).

4.4. VOLUNTARY MIDTERM EXPERIMENT 57

CMB

At the beginning of this project, there was no available method for exporting results
from CMB involving Excel or any similar spreadsheet applications. However, finding
the desired information was not impossible; any user (admin or regular user) could
log into CMB online to see result data in two alternative ways.

The first alternative was to visit a specific problem on the CMB site. Each problem
page publicly lists the users who have managed to solve the respective problem
(implying that CMB has managed to compile and run the submitted code, and
accepted the proposed output) with username and details such as code runtime and
energy efficiency. In an assessment context, one can conclude whether the students
who are listed have solved the problem in a satisfactory manner based on, for example,
the code runtime, or simply have “blind faith” in the system and rewarding the
student a full score because the solution was accepted. However, there was no way
of retrieving the information of users who have tried to solve the problem but failed.
This was a big issue because depending on which approach one wishes to take with
regard to automatic assessment, one may wish to differentiate between respondents
who have attempted to solve a problem and those who have not provided a solution
at all.

A second and superior alternative were to access the admin interface of CMB
to retrieve all submissions to a specific problem, regardless of whether or not the
submitted solution was accepted by the system. These submissions can be downloaded
separately and then inspected manually from the submission page. This option
enables the professor to reward respondents with answers that are close-to-correct;
students who have tried but not completely succeeded could be given partial credit
if they show knowledge and understanding despite not having finished a complete
working solution. However, this option still does not meet our requirement to
automated result extraction to an Excel spreadsheet; the professor must still create
a dedicated spreadsheet and fill in each cell manually while inspecting submissions.

All of the information we sought was available, all that was missing was a way
to extract it into an interim format such that it could easily be converted into a
spreadsheet in Excel. Communicating with the CMB development team yielded a
specialized function for group creators on CMB, which parses all submissions for all
problems in a group problem set and returning it in a downloadable JSON file [JSO].
Based on this data, we developed a Python application we named json2excel, which
is simply customized to convert the JSON data from CMB to an Excel-file.

json2excel outputs an Excel-file where each row, representing a user, contains four
fields per problem in the group problem set. These four fields contain runtime, energy
efficiency, EDP, and an empty field for the professor or sensor to fill in a score for the

58 4. MIDTERM EXPERIMENT

problem. In the spreadsheet, the reader can identify users who have attempted to
upload a solution without success, as all of the corresponding problem fields contain
a 0, in contrast to those who have not attempted to solve the problem at all, for
which the corresponding fields are empty. This way, the evaluator can decide for
himself whether or not to inspect specific users’ code for a potential partial score.
Documentation for setup and use of json2excel can be found in Appendix A.

4.4.3 Ensuring Anonymity

Prior to the experiment, the participants were informed that all results would be
stored in an anonymous and confidential manner, to which they gave their consent
during registration. To ensure anonymity of the results, a representative from the
TDT4102 course staff with no other association to the experiment mapped each
participant to a unique identification number. The final mapping was kept unavailable
to outside parties, including the research team who performed the evaluation of each
test submission.

Figure 4.1: Anonymizing midterm results.

Figure 4.1 illustrates the anonymization process. For the CMB results of the experi-
ment, one of the representatives from the course staff ran our json2excel script on
extracted JSON data from CMB. The resulting spreadsheet was merged with the
spreadsheet downloaded from itslearning, and the names in the identifying column
of the spreadsheet were replaced with the correct ID number from the previously
mentioned mapping before the spreadsheet was forwarded to the research team for
the evaluation and grading process.

The anonymization is necessary because if we choose to store sensitive personal data,
we are obligated to notify the Norwegian Centre for Research Data (NSD) at least
30 days prior to the experiment [Nora]. In combination with the fact that storing
personal data was not a necessity for the experiment we found it more convenient to
perform the anonymization.

4.4. VOLUNTARY MIDTERM EXPERIMENT 59

4.4.4 Questionnaire

After the experiment, we distributed a questionnaire so that the participants could
supply their opinions and feedback with regard to the use of digital tools in an
examination setting. The questionnaire was later analyzed to answer some of the
hypotheses presented in Section 1.3. A Norwegian copy of the questionnaire can
be found in Appendix C, and the insights gained from the submitted answers are
presented in Section 5.2.

Chapter5Results

In this chapter, we present the results from our conducted midterm experiment
presented in Chapter 4. First, in Section 5.1, we describe our scoring strategies for
the two parts of the midterm test, as well as how the students performed, providing
a comparison of the average results of the two groups. Then, we present and discuss
the answers from the questionnaire we distributed after the experiment in Section 5.2.

Three sets of hypotheses are presented throughout this chapter, one for each of
the two parts of the midterm test (multiple choice/short answer and programming
part) and one for the questionnaire. By analyzing the results, we are seeking to
determine whether the use of the CMB system is more suitable than the current way
of evaluating code. To do this, we make use of the null hypotheses introduced in
Section 1.3.

5.1 Midterm Results

For the voluntary midterm test, the maximum achievable score was 100 points; the
first part including a set of MC, MR, and short answer questions worth 35 points,
and a programming part worth 65 points. Overall, the students assigned to Group A
got an average total score of 49% whereas the students who were assigned to Group B
got an average total score of 53%. All solutions submitted by Group B not accepted
by CMB were assessed manually with the same criteria as for Group A.

Optimally, all test results at NTNU should be close to a Gaussian (normal) dis-
tribution [Inf] with C as the average grade. The average score for the two groups
combined was 51% which in accordance with the grade scale defined by NTNU is
equivalent to the grade E [Nord].

In our attempt at normalizing the grade distribution, the point range of the lower
section of the grades (i.e. F, E, D, and C) were adjusted as shown in Table 5.1.
The adjusted ranges make the assessment more favorable to the majority of the

61

62 5. RESULTS

participants. Figure 5.1 shows the original grade distribution which is dominated
by grades in the bottom half which could indicate that the test may have been too
challenging. The normalization makes the score more equitable and comparable
with other tests, as well as giving the students a more suitable impression of their
performance [Win]. Also, since we are inexperienced test creators, some tasks or
subtasks might have been assigned more or fewer points than they should have, based
on their level of difficulty and significance. After the adjustment, the overall result
is normalized and in our opinion reasonable. Figure 5.2 shows the result after the
adjustment.

Figure 5.1: Grade distribution from the midterm test.

Figure 5.2: Grade distribution after an attempt at achieving a Gaussian distribution
by adjusting the point ranges.

5.1. MIDTERM RESULTS 63

Grade Adjusted Range Default Range
A 89 – 100 89 – 100
B 77 – 88 77 – 88
C 60 – 76 65 – 76
D 47 – 59 53 – 64
E 36 – 46 41 – 52
F 0 – 35 0 – 40

Table 5.1: Point ranges.

5.1.1 Part 1 – Multiple Choice and Short Answer

The first part of the midterm test is the easiest part to assess, as all of the utilized
question types have a clearly defined evaluation model, ensuring unbiased assessment.
Because there is no partial credit to gain, this section of the test is evaluated the same
way manually as it is assessed digitally (in this case by itslearning). The maximum
achievable score in this part was 35 points (5 points for each sub-question).

The students’ performance will help us accept or reject the following null hypothesis:

H01: Having a computer when answering multiple choice questions is not an
advantage with regard to performance.

Scoring the Multiple Choice and Multiple Response Questions

In our midterm test, the applied scoring approach was decided by itslearning, where
the only configurable option was to use negative marks for incorrect answers (which
we chose not to do). As described in Section 3.1.3, itslearning uses a dichotomous
scoring model for MC (no partial scoring), and a polytomous model for MR. Table 5.2
shows an overview of the total score for a MR question based on how many of the
alternatives were correctly or incorrectly checked; here, correct means that a key
was selected or that a distractor was not selected, and incorrect means that a
distractor was selected or that a key was not selected. The maximum achievable
score for each question was 5 points, and all MR questions had exactly four answer
alternatives.

At NTNU, the usual standard in MC-like exams is to include negative marking for
wrong answers. As explained previously, this is to balance out potential points gained
by guessing where the respondent did not know the correct answer. However, we
chose not to penalize wrongful answers with negative marks because the end result
would be more complex to analyze; the aim of the experiment was to test the CMB

64 5. RESULTS

Correct # Incorrect Score
0 4 0
1 3 1.25
2 2 2.5
3 1 3.75
4 0 5

Table 5.2: Multiple response scoring with four answer alternatives.

system as a tool for programming examinations, and not the students’ proficiency in
C++.

Scoring the Short Answer Questions

For the short answer questions, we utilized itslearning’s automatic scoring tool by
storing keywords corresponding to the accepted answers. As mentioned, we had
to select questions with clear, non-negotiable answers, in order to avoid the risk of
forgetting crucial keywords in the test framework.

Q2 was a code understanding question where the student was expected to submit
the correct output; the question has exactly one correct answer and could yield 0 or
5 points.

For Q3, the correct answer is ‘\0’, but the question could prompt optional answers
that would also be correct. Thus, \0, null-char or null-character also yielded a
full score of 5 points. Some students answered ‘0’ or ‘/0’, but we decided to not
award partial score to these attempts, as they are ultimately wrong. We did not
account for typographical errors, as this would require manual inspection of each
digitally submitted answer.

Analysis of Results

Starting with the multiple choice part we see a widespread in scores. The average
score from the multiple choice questions of the students that solved the problems
using pen and paper were 48% (16.84 out of a possible 35). We expected the results
of the multiple choice part to be close to equal for the two test forms seeing as it is
just a matter of choosing the correct alternative; the medium in which the students
used to solve the test should not affect performance. However, the average scores of
the students that solved the multiple choice problems digitally was 63% (22.05 out
of a possible 35). Figure 5.3 illustrates the average score for the two groups for the
first part of the midterm test.

5.1. MIDTERM RESULTS 65

Figure 5.3: Average score achieved on the multiple choice part.

Hypothesis Conclusion

The process of testing hypotheses mentioned in Section 2.5 will be used when testing
all hypotheses, starting with H01. This hypothesis involves the two sets of results
from Group A and Group B from the first part of the midterm test, of which the
average scores are shown in Figure 5.3. The results from the F-test suggests using
the T-test assuming equal variances. We initially expected the results to be close
to equal; we expect the mean of the results in Group A (µA) to be equal to the
mean of the results in Group B (µB). The T-test yields a relatively small two-tail
p-value, 0.001 = p < α = 0.05, which means the difference between the two results
are significant. The two-tailed p-value is used since the alternate hypothesis, the
means will be unequal, can be that one mean is either lower or higher than the other.

Conducting the Shapiro-Wilk test shows that the samples can not be considered
normally distributed, which means the Mann-Whitney test should be conducted.
Finally, the p-value from the Mann-Whitney test is calculated, which supports the
results from the T-test. Based on these findings, it seems that H01 can be rejected.
However, further calculations are needed to be more certain and to have a measure
of how strong the conclusion of a rejection will be.

Lastly, the effect size is calculated. The two samples have an effect size of Cohen’s
d = 0.80 and Hedge’s g = 0.79. Based on Table 2.5 we can see that the values are
considered large which indicates a strong confidence in our conclusion. Since the
effect size is high, we can assume the groups are already sufficiently large (the size of

66 5. RESULTS

Hypothesis H01

Group A Group B
Mean 47.56% 63.18%

Variance 3.99% 3.62%
F 1.104

F Critical 1.841
Variance Equal

T-test p-value 0.002
Normal distribution No

Mann-Whitney 0.002
Reject H0? Yes
Cohen’s d 0.801
Hedge’s g 0.789

Table 5.3: Mean, variance, F-test, T-test, Mann-Whitney and effect size for H01.

Group A was 36 and Group B was 29). The number of participants required for a
strong effect size is calculated to be 29 for Group A and 24 for Group B.

In conclusion, we can quite confidently reject the hypothesis, H01, which states that
there is no benefit in using a computer to answer multiple choice and short answer
questions.

5.1.2 Programming Problems

The programming part is evaluated much differently manually compared to how it is
evaluated by CMB. As discussed in Section 6.3, the manner in which one chooses to
evaluate the submitted code greatly impacts the end results.

We will analyze the students’ performance on the programming part to accept or
reject the following null hypothesis:

H02: Having a computer when answering programming problems is an advantage
with regard to performance.

Scoring the Programming Problems

Seeing as we used a team of two people to evaluate the tests, it was necessary with a
strict guideline on how to score the programming problems to make the assessment
criteria as consistent as possible. To achieve this, we found it most efficient to break

5.1. MIDTERM RESULTS 67

down the three programming tasks into fundamental components, and assign a partial
score for each achieved component.

Component Points

Correct implementation of MyInteger class constructor 2.5

Correct implementation of getValue 2.5

Correct declaration and implementation of the + operator 2.5

Correct use of call- and return by reference in + operator
implementation

2.5

Correct declaration and implementation of the += operator 2.5

Correct use of call- and return-by-reference in += operator
implementation

2.5

Correct implementation of the unary - operator 5

Correct implementation of the << operator 5

Table 5.4: Evaluation guideline for Q4 – MyInteger.

Tables 5.4 to 5.6 show how we broke down the subproblems in Q4 and Q5 to evaluate
each component. Because CMB can reject submissions based on minor faults in the
code, and Q5 has three major problems that need to be solved correctly (split,
addRoomie and findPersonByName), we chose to upload split as a separate problem
to lower the acceptance threshold. Submissions from Group B candidates that were
approved by CMB automatically earned a full score, based on the implication that
the problem must be solved correctly in order to be accepted by the system.

Component Points

Iterate through the input-string using correct for-loop
syntax

2.5

Correct insertion to vector 2.5

Omit the split character during insertion 5

Remember to insert the last word of the input-string 5

Table 5.5: Evaluation guideline for Q5a – split.

68 5. RESULTS

Component Points

Correct implementation of Person class constructor 2.5

Correct implementation of getName and getRoomies 2.5

Add input roomie to your own list of roommates in
addRoomie

2.5

Add input roomie to your current roommates’ lists in
addRoomie

5

Make the recursive call roomie->addRoomie(this) in
order to add yourself and your roommates to input
roomie’s and its roommates’ lists

2.5

Correct logic in implementation of findPersonByName 7.5

Correct use of pointer syntax in implementation of
findPersonByName

2.5

Table 5.6: Evaluation guideline for Q5b – Roomies.

Analysis of Results

When it comes to the programming problems the two groups performed almost
identically. The students in Group B achieved an average score of 48% (31.2 out of a
possible 65 points) on the programming part exclusively, while the students in Group
A got an average of 49% (31.85 out of a possible 65 points). It is worth mentioning
that the observed similar performance is despite the fact that more of Group B’s
answers were given zero points than for Group A. As many as 32% of the answers
from the digital test were given zero points. For the handwritten answers, only 10%
of the answers were given zero points.

Some of the zero-point answers came from students who did not submit their code.
There were cases where students submitted a Visual Studio project file which did
not include any source files. Some files we received were corrupted. Also, we suspect
that some students forgot to send their code by e-mail if they were unable to upload
their code to CMB. In these cases, we could not give partial credit.

If the programs submitted by any of the participants were accepted by CMB, they
were immediately given a full score for that problem. Because CMB does not reward
partial credit, the sensors have to examine the code that did not yield any score. If
the examination results were completely automatic with no partial credit rewarded
by manual inspection, the result achieved by the Group B would be significantly
worse; the average score would then be 19% compared to the original average of 48%.

5.1. MIDTERM RESULTS 69

Figure 5.4: Average score given to the programming problems

Figure 5.4 shows the average score distribution between the programming problems.

Hypothesis Conclusion

Hypothesis H01

Group A Group B
Mean 49.38% 47.88%

Variance 8.06% 5.46%
F 1.475

F Critical 1.799
Variance Equal

T-test p-value 0.816
Normal distribution -

Mann-Whitney -
Reject H0? No
Cohen’s d -
Hedge’s g -

Table 5.7: Mean, variance, F-test, T-test, Mann-Whitney and effect size for H02.

As with the previous testing, the variances are compared using the F-test to determine
what T-test is appropriate. From the F-test, we conclude that we should continue

70 5. RESULTS

using the T-test assuming equal variances to compare the two data sets. Again, we
look at the two-tail p-value. The results show that the p-value is relatively high
compared to the α-value, 0.82 = p > α = 0.05. Based on these findings we cannot
reject the hypothesis, H02, stating that the two groups will perform equally. Since
there is no strong indication that H02 is false there is no point in doing further
calculations. This result is further discussed in Section 6.3.

For comparison, all the answers that received zero points were removed in both
groups and analyzed again. The alteration was done because we suspected that
Group B’s performance was greatly reduced due to confusion with the process of
submitting. The new data sets were analyzed the same way as the others. The
new means was 69.55 % for Group B and 53.55 % for Group A. The T-test now
shows that there is, in fact, a significant difference between the two mean with the
Mann-Whitney test supporting it. The effect size can be considered strong with
a Cohen’s d of 0.83 and a Hedge’s g of 0.82. The strong effect size indicates that
the number of respondents, which is in this case adjusted to 35 in Group A and
26 in Group B, is more than enough. Still, we calculate the minimum number of
participants needed for a strong effect size to be 28 in Group A and 21 in Group
B. In other words, based on this analyze we can confidently reject the hypothesis,
H02, stating that there is no advantage in using a computer to solve programming
problems.

Table 5.8 shows the numbers from the different tests conducted. The mean and
variance are represented as percentages because of varying total score among the
respondents after some of their answers were ignored.

5.2 Questionnaire

After the participants finished the midterm test, they were asked to complete a
questionnaire concerning their view on the use of CMB in general, how CMB affected
their performance if they used it and how the process of solving the test went,
regardless of method. The questionnaire is found in Appendix C.

Our goal with the questionnaire is to accept or reject the following null hypotheses:

H03: The use of CMB is equally efficient as the current method of solving an
exam.

H04: The use of CMB is equally motivating to use as the current method of
solving programming problems.

Figures 5.5 to 5.10 show charts for some of the questions given in the questionnaire
where a score of 1 represents the most disagreeing response, 3 is a neutral response,

5.2. QUESTIONNAIRE 71

Hypothesis H01

Group A Group B
Mean 53.55% 69.55%

Variance 19.26% 19.39%
F 1.002

F Critical 1.897
Variance Equal

T-test p-value 0.002
Normal distribution No

Mann-Whitney 0.003
Reject H0? Yes
Cohen’s d 0.828
Hedge’s g 0.817

Table 5.8: Mean, variance, F-test, T-test, Mann-Whitney and effect size for H02
after removing answers that received zero points.

and 5 represents the most agreeing response. The charts show the average response
given from the participants divided into the two groups.

Group A Group B

Figure 5.5: To what degree were you able to demonstrate your knowledge in C++

with regard to your assigned form of evaluation?

72 5. RESULTS

Group A Group B

Figure 5.6: To what degree were you able to demonstrate common methods/tech-
niques in C++ with regard to your assigned form of evaluation?

Group A Group B

Figure 5.7: To what degree would you say that your assigned form of evaluation is
an efficient way of solving programming problems?

Group A Group B

Figure 5.8: To what degree would you say that your assigned form of evaluation is
an motivating way of solving programming problems?

5.2. QUESTIONNAIRE 73

Group A Group B

Figure 5.9: To what degree would you say that your assigned form of evaluation is
a suitable way of solving programming problems?

Group A Group B

Figure 5.10: To what degree would you say that your assigned form of evaluation
is a suitable way of being evaluated in programming problems?

Hypothesis Conclusions

Analyzing the questionnaire we attempt to accept or reject the two last hypotheses.
First, we want to determine whether the use of CMB is more efficient than the
current way of taking an exam. To do so, we will see if H03, which states that
the two methods are equally efficient, can be rejected. The hypothesis involves the
answers to the question shown in Figure 5.7.

The F-test suggests conducting the T-test assuming equal variance. Since it is already
known that the average response indicates that H03 can be rejected, the one-tail
results will be studied. I.e., if there is a significant difference we can assume that
using the CMB system is more effective.

The T-test outputs a one-tail p-value, p = 0.001 < 0.05 = α, which indicates that
the hypothesis can be rejected, but further testing is desirable to strengthen the
conclusion.

74 5. RESULTS

Hypothesis H03 H04

Group A Group B Group A Group B
Mean 2.750 3.565 2.893 3.565

Variance 0.787 0.893 1.358 0.893
F 1.135 1.520

F Critical 1.950 2.004
Compared Variance Equal Equal

T-test P-value 0.001 0.015
Normal distribution No No

Mann-Whitney 0.0038 0.024
Reject H0? Yes Yes
Cohen’s d 0.895 0.641
Hedge’s g 0.884 0.624

Table 5.9: Mean, variance, F-test, T-test, Mann-Whitney and effect size for H03
and H04.

Same as before, the normality of the answers must be tested to determine the necessity
if a Mann-Whitney test. The Shapiro-Wilk test states that the answers are not
normally distributed, ergo the non-parametric Mann-Whitney test is needed. With a
p-value, p = 0.004 < 0.05 = α, the results supports the conclusion to reject from the
T-test.

Next the strength of the conclusion that H03 will be rejected will be calculated by
determining the effect size. Both Cohen’s d and Hedge’s g is relatively high and can
be considered a large effect size with Cohen’s d = 0.89 and Hedge’s g = 0.88. The
number of participants needed in the two groups was calculated to be 23 in Group A
and 19 in Group B. The actual number of students who answered the questionnaire
were 28 from Group A and 23 from Group B.

Based on these findings we can conclude with confidence that the use of the CMB
system is more efficient than the current way of taking an exam.

The final hypothesis tested in this chapter, H04, involves the two sets of answers to
the question shown in Figure 5.8.

Just like for the previous hypothesis, the T-test is conducted assuming equal variances
based on the result from the F-test. The T-test suggests to reject H04 based on the
relatively low p-value, p = 0.015 < α = 0.05. Since Shapiro-Wilk’s test states that
the answers are not normalized, Mann-Whitney’s test is conducted and supports the

5.2. QUESTIONNAIRE 75

conclusion from the T-test.

With a Cohen’s d = 0.64 and Hedge’s g = 0.62 the effect size can only be considered
to be medium. Hence, calculating the size of the two groups needed to achieve a
sufficiently powerful conclusion can be useful. Based on those calculations, the size
of Group A would have to be 46 people and 38 for Group B, which means that 15
more participants for both groups were needed.

In conclusion, it is likely that the use of the CMB system is more motivating than
using pen and paper, although it is not as certain as the previous conclusions.

Chapter6Discussion

In this chapter, we reflect on the reliability and validity aspects of CMB as an
evaluation system in Sections 6.1 and 6.2. Section 6.3 contains a discussion of the
midterm results, including our thoughts on why the results turned out the way they
did. Section 6.4 concerns the questionnaire that was distributed after the midterm
experiment. Finally, we present thoughts on positive and negative experiences from
the project in Sections 6.5 and 6.6.

6.1 Reliability of CMB’s Assessment

As previously mentioned, one of the primary motivations behind the CMB system is
to remove the uncertainty of a human grader to improve the reliability of assessing
final examination on a university level. Reliability can be described as the accuracy
of an assessment where irrelevant factors do not influence the evaluation. These
factors, such as mood, time of day, or personal bias, does not exist within the CMB
system. Even objective evaluations (e.g. multiple choice) may be wrongfully assessed
by a human grader, discussed in Section 6.1.1.

Equivalent submissions to CMB will yield the same result. However, this assumption
is not based on anything other than the concept of online judge systems, where one
expects this to be the case. No tests have been formally conducted to validate this,
but seeing as CMB is a small application running on a specific server, this must be
true because all submissions are run on the same machine.

We will see in Section 6.2 that the reliability of CMB alone does not make it a perfect
assessment system.

6.1.1 Threats to Reliability

In our experiment, we experienced an error that would not happen in a fully automatic
system: Two of the identification numbers were swapped in the spreadsheet containing

77

78 6. DISCUSSION

the results, which led to an inconsistency between the submissions we received after
the anonymization and the result extracted directly from itslearning and CMB.
Fortunately, we got a sense that something had gone wrong when we went through
every solution submitted to CMB that had not get accepted. One submission was
registered with a suspiciously high score based on the content of the submission,
which was investigated and consequently, the mix-up was discovered. With that
said, the mix-up had happened during the anonymization process. Hence, this was a
human error; had the anonymization process been fully automated the mixup would
probably not have happened.

Today, programming exams are written by hand, and it is sometimes possible to
identify a person based on handwriting. Although it may not be relevant in an
examination situation, it might reveal some demographic factors about the respondent;
depending on the course, the students can choose to answer in either Norwegian,
Swedish, Danish or English [oSNc]. In addition to this, Norwegian has two written
standards. All these different factors can contribute to identifying a student, which
may affect the examiner. For example, if a class of 30 students contains one exchange
student from outside Scandinavia, the teacher can be quite certain that the one person
who answers the exam in English is the exchange student. Even if the evaluator is
unable to relate a submission to a specific individual, the examiner may be able to
determine the gender based on handwriting, and treat the submission based on this.

Because the system is “blind” of the submitted code and only takes the output into
account, a human grader has to check the code manually if necessary and give credit
based on it. Although all submissions are written generically on a computer in a
universal programming language, all human grading needs to be removed to achieve
the most reliable system possible.

6.2 Validity of CMB’s Assessment

As described by Wynne Harlen [Har05], «validity refers to what is assessed and how
well this corresponds to the behavior or construct that it is intended to test or assess».
In other words, the final assessment should reflect the students’ understanding of
the subject as a whole, and not simply the final answer to each question. Validity
ensures that the given answer to each task in a test is deducted from appropriate
reasoning according to a particular curriculum. If a student gives the correct answer
but backs it up with incorrect statements, the answer should be deemed invalid and
be given no or partial credit.

The problem with CMB is the validity of its assessment. It can only verify that
the resulting output of a student’s code is correct or not, regardless of how the
output was generated. Because of this, programming tasks that focus on e.g. specific

6.2. VALIDITY OF CMB’S ASSESSMENT 79

programming methods, architectures or techniques are significantly harder to design
to work as desired on the CMB system. The problem designer needs to take measures
to avoid that the students simply print out the correct output without making use of
the elements of the problem on which they were supposed to be tested. Also, since
there is no partial scoring, a submission that is close-to-correct and a submission
that is nowhere near correct would both currently receive the same zero score.

6.2.1 Threats to Validity

Our biggest concern when creating the programming problems was to ensure that
the respondents could not find another way of solving the problem without making
use of the essential elements which were to be tested. For example, given a problem
that requires the respondents to create a class, Person, and create several instances
of it with names given as input. To check if the respondent has done this correctly,
one could be tempted to iterate through the Person instances and print out the name
field. In this (simplified) case, one could directly output the names coming from the
input, without any further processing.

Another potential concern, based on the same issue that the submitted code is treated
as a black box, is that the students could make use of external libraries to solve
subproblems that were supposed to be solved using logic skills.

In the questionnaire we asked the students which form of examination they thought
would be the most vulnerable with regard to cheating; 50 out of 51 respondents
agreed that the CMB system is more susceptible to cheating. We were not very
concerned about cheating during our experiment because the students would not
personally gain anything by doing so. Instead, we chose to trust the participants to
respect the validity of the experiment result. In the future, when the system used
for digital programming examination, cheating by using the Internet will hopefully
not even be a subject of discussion due to the use of security frameworks such as
SEB. If anything, machine-written text on a screen in front of a student compared
to handwritten text lying flat on a table might make it easier to read other students’
answers during an exam.

6.2.2 Attempts at Improving Validity

While designing our midterm, we found ways to eliminate the possibility of defying
the intended code structure of the more comprehensive problems. One of the attempts
is found in the first programming task in the midterm test, where the students receive
a skeleton code for parsing text into mathematical expressions. All variables and
functions were given encrypted names to make it harder for the students to skip the
parsing and simply print out the answers to the expressions. This approach does

80 6. DISCUSSION

not guarantee that the students do not understand the encrypted code, but it would
take a considerable amount of effort to exploit it.

Another attempt at improving validity is to give the respondents enough help (e.g.
skeleton code or complete functions) that most alternative implementations other
that the intended would be a more challenging choice. This approach is practiced in
the last exercise in the midterm test, where the students received a class definition,
incomplete and empty functions and header files, and were instructed to complete
the code in order to make it run the intended way.

A third alternative is to split the task in such a way that when the test taker reaches
the point where the final program segment that completes the entire program needs
to be implemented, any other implementation that would yield the same output
would be unnecessary because most of the code is already finished. The problem
maker leads the students to solve a bigger problem in a certain way. This method is
similar to the example above, but in a way the participants are creating the skeleton
code on their own.

6.3 Midterm Results

Before the hypothesis testing was conducted, the significant difference in the multiple
choice results of the two groups (as shown in Figure 5.3) was considered to be
coincidental, but we suspected that some participants may have cheated by checking
for answers online or by testing the theory questions in an IDE. On the other hand,
we find it strange if some would break the given rules since their performance does
not influence their final grade in the course. We were suspicious because there are
no apparent reasons why there should be such a significant difference. Since the
hypothesis stating that using the CMB system is equally efficient as solving the
midterm using pen and paper is false, one cannot conclude that the difference is
coincidental. More participants in Group B might have had spare time reasoning on
the questions before or after they completed the programming questions.

An explanation could also be our method of separating the participants, which was
supposed to result in two equal sized groups with approximately equal skills. As
mentioned in Section 4.4.1, the participants did not end up evenly distributed between
the test forms, with a larger amount of participants in Group A (37 participants
against 28 in Group B). Also, there was no way of knowing that the two groups were
on average approximately equally experienced programmers; to ensure this we would
need to significantly increase the number of participants in the experiment.

In the second part of the midterm test, the achieved average score of the two
groups was almost identical. Before the execution of the midterm test, we were

6.4. QUESTIONNAIRE 81

confident that Group B would perform better than Group A because for three reasons:
Firstly, due to it being the way of programming that closely resembled their most
used programming environment. Second, the additional feedback and possibility
of debugging code should lower the threshold of proceeding from a close-to-correct
answer to a completely correct answer. Finally, the ease of editing the code would
result in a significantly more efficient use of the respondents’ time, which would again
result in more time to solve the problems.

When reviewing the submissions for the split problem that got the wrong output,
we found something rather peculiar. Even with error messages like “Result: ‘United
States of America’ was: ‘United States of’ ”, many of the participants had still not
fixed the problem with the code (excluding the last word of the input string). We
concluded that there can be two reasons for this; either they did not have the time
to fix the issues, or they did not understand the feedback. If they managed to split a
sentence at the correct place at the start of the phrase, adding the last remaining
word should not be too challenging.

For the hypothesis H02, we did a test with altered data sets for comparison. The
resulting numbers indicate that without the zero point answers, Group B did, in
fact, perform significantly better that Group A. Hence, the test results supports the
belief that the respondents in Group B did lose a significant amount of points due to
problems with submitting their code. In this case, we believe that this conclusion
is the closest to describe the performance of the respondents since it is only taking
their code into account, not their attempt at submitting it.

6.4 Questionnaire

Group B achieved a similar average score as Group A when rewarded with partial
credit, and significantly lower when not. However, based on the responses from
the questionnaire, it seems that using CMB and itslearning for evaluation is the
preferred option. On average, Group B responded more positively to the evaluation
on how their assigned form of evaluation affected their performance. Also, there was
a general disagreement to the statement that the assigned form of evaluation affected
their performance negatively. For Group A, the opposite can be said about the
two questions; their answers leaned more towards their assigned form of evaluation
affecting their performance in a negative way.

The fact that both groups seemed positive to digital examination as a form of
evaluation strengthens our belief that Group B would perform significantly better
if they were more familiar with the system if they had more time to complete the
test, and if their performance would actually affect their final grade in the course.
One cannot assume that the students would find CMB favorable if they found that

82 6. DISCUSSION

it affected their performance in a negative way.

The use of CMB seems to be more efficient than solving by hand based on the results
of the testing of the null hypothesis, H03. As mentioned earlier, the reason is believed
to be the benefits that follow the use of a code editor. Another reason might be that
the feedback given by the system helps the students figure out what they are doing
wrong, so they avoid grinding on their code for longer periods of time.

Based on the testing of the null hypothesis, H04, it seems that the use of CMB is
more motivating than the traditional evaluation form. The reasons can be a variety
of things, and it is certainly a matter of opinion. However, some factors may be
recurring amongst the respondents. There might be a great satisfaction in submitting
a solution and instantly getting accepted if the solution is correct. Compared to the
traditional way where you either receive verbal feedback or have to check online to
see the written feedback from a TA (with varying quality), or receive only a grade
several weeks after delivering an exam.

For some, the notion of competition, in the form of the high score list, might encourage
further efforts in their submissions. However, in an exam context, the high score list
should be hidden so as not to reveal information about other respondents.

One part of the questionnaire was only given to the participants placed in Group B,
as they specifically concerned the CMB system. One of the questions asked in this
part was whether they would prefer CMB over the current form of evaluation for the
exercise project in the course, where the overall response was negative. Hopefully,
the reason was that they already had grown accustomed to the current form, and the
system still was a bit new and overwhelming. Another reason might be that by using
CMB for the exercises would remove the interactions with the TAs, on which many
of the students rely on with regard to understanding important concepts in C++.

However, when asking whether they would prefer the CMB system over the current
form of evaluating exams they were on average more positive, which is a more
important result with regard to this project.

6.5 Positive Experiences

Overall, the execution of the midterm experiment went well without any serious
problems. Because of an error while updating the production system server (climb)
prior to the experiment, we considered asking all the participants to create a new
user on the development system (climb-dev) and solve the problems there. The new
update was supposed to solve the issue with hidden files explained in Section 4.2.3.
Instead, we told the participants to ask us if they experienced issues with their uploads,
and we would come around and help them remove the hidden files. Thankfully, the

6.6. NEGATIVE EXPERIENCES 83

system had no problems handling the traffic of many users, as both we and the CMB
development team had feared. In the case of a system crash, we would have to inform
all participants to switch to climb-dev, or solve the test in any IDE, but instead of
submitting to CMB they would have to submit it to the course staff representative
by e-mail. In the latter case, we would have to submit each solution to CMB in order
to get valid JSON data for our json2excel application.

Based on the information gathered from the questionnaire, as well as verbal feedback
after the midterm experiment, it seems that many students have a positive attitude
towards the use of CMB. This is important as the involvement of students is crucial
to the project overall.

6.6 Negative Experiences

One thing we regret not doing before or during the test was to spend more time
making sure the participants knew exactly how to deliver their code, and how to make
sense of the system feedback. Many students did not manage to do this correctly,
and we spent many hours uploading their code to CMB after we received the files
from the course staff representative who assisted with anonymization. As previously
mentioned, some of the participants even sent us submissions that did not consist
of any source code at all. Our data would be more consistent if we spent more
time distributing this information such that every submission would be valid and
accountable. Also, we may not have been clear enough on how the students in Group
B should use the CMB system during the examination. Some students did not know
they could submit several times and use the system as a way of debugging their code.

After the division into the two groups, some participants canceled their attendance,
especially the participants assigned to Group B. These cancellations resulted in an
imbalance in the size of the two groups. To solve this issue, we should have waited
with the division until perhaps the night before the day of the experiment. In this
case, every respondent would have to bring their computer in case they got assigned
to Group B. The separation on the day of the experiment would be manageable and
efficient with some planning beforehand.

Finally, the biggest letdown from the experiment is that we forgot to distribute the
questionnaire before the volunteers left. To make up for this, we sent out an e-mail
to all of the registered participants containing a link to the questionnaire, which was
created with Google Forms. However, we did not receive feedback from all of the
participants; only 51 students submitted answers to the questionnaire, and we lost
valuable data.

Chapter7Future Work

In this chapter, we present our insights on how the next years could look like for
the CMB project, as an online judge and as a tool for evaluation of programming
exams. All propositions are made based on results and findings discussed earlier
in this thesis. First, Section 7.1 suggests two possible experiments that could be
conducted in collaboration with the TDT4102 course. Section 7.2 presents a five-year
plan for the project. Finally, we specifically identify possible functional and design
requirements for the CMB system in Sections 7.3 and 7.4.

7.1 Future Experiments

7.1.1 Simulation of an Exam

An experiment similar to ours should make a few alterations to both the planning
and the execution. Because NTNU is in the process of replacing itslearning with
Blackboard as its utilized LMS, one should perhaps do another review of the available
question types and the possibilities for automatic evaluation. Alternatively, one could
implement a completely new system that supports the question types described in
Chapter 3.

After developing a set of questions, a pilot test should be completed in order to
confirm that the allocated time is sufficient to solve all of the problems. This is also
a perfect opportunity to receive reviews of the content and quality of the included
questions.

Registration for the experiment can be done in a similar manner as our experiment,
using Google Forms distributed on the course page of itslearning. Because we did
not achieve the expected number of candidates, it may be interesting to promote the
experiments to students outside of the course (with a certain level of C++ knowledge).
Also, the division of candidates should preferably be done similar to the process
described in Section 4.2.4, but closer to the day of the experiment. One can use the

85

86 7. FUTURE WORK

checklist provided in Section 4.4 for further guidance of what should be done on the
day of the experiment.

It may be a good idea to team up with someone familiar with the course as well as
CMB itself. During a test, many questions or situations may arise when students
are unfamiliar with new systems, and several people are needed to respond to every
request. If anonymization of the participants is necessary, one can recruit an external
resource to be responsible for this.

Right before the initiation of the test, it is highly recommended to make an effort to
ensure that the students know how to use the system, both the process of submitting
and how to use the feedback given by the system for debugging. Preferably, the
students should also have gained some experience beforehand, for example in one or
more workshops prior to the experiment, or from the exercise project as suggested in
Section 7.1.2.

If a questionnaire is to be distributed in order to gain insight subsequent to the
experiment, one should make sure that it is presented directly after the end of the
test, preferably before food is served, if there is food. For reference, our questionnaire
is found in Appendix C; a relevant goal for the experiment could be to gain improved
feedback, and analyze the factors that might lead to this improvement. Questions
such as the process of submitting or the content of the feedback of the system are
highly valuable during the analysis of the results. If many of the participants were
confused with the process of submitting and therefore were unable to submit, that
would greatly impact the result. If possible, one should also consider placing the
experiment closer (but not too close) to the final exam, which would make it more
similar to an actual exam situation seeing as the students would probably have
gained more experience with the programming language, and the results would better
reflect the participants’ actual knowledge of the subject. If the students were more
comfortable with programming in general, they would hopefully look at the system
as the aid in which it is intended, and not an obstacle or further confusion.

7.1.2 Exercises

An interesting experiment would be to implement the CMB system into the exercise
project which is completed throughout the semester, perhaps by offering the students
the chance to complete an exercise using CMB alone. To increase the number of
potential participants the teacher could allow the students to complete the CMB
exercise in the place of a regular exercise.

Although the students were not particularly positive about submitting all their
exercises to the system, many would probably enjoy the gamification factor. In a

7.2. FIVE YEAR PLAN 87

potential experiment, one could tempt the students into participating by rewarding
the top students on the high score list in some way.

This suggested experiment is based on the assumptions that the experiment takes
place in one sitting, similar to the midterm experiment where all the participants are
sitting in the same room solving the problems. One could also allow the students to
solve the exercises at home like they normally would do. However, to complete this
experiment, it is necessary that a handful of the TAs have sufficient knowledge about
the system to be able to help the students. Also, in this case, one must be aware
that the students have access to the Internet, and must design the problems with
this in mind. Though the intention is to avoid human interference in the evaluation
process, there is currently no way of detecting plagiarism on CMB that does not
involve manual inspection of submitted code.

7.2 Five Year Plan

During the next five years, more experiments should be conducted with the guidance
of the experience described in this thesis. Since NTNU is replacing itslearning with
Blackboard as its LMS, the project team should familiarize with the new system. A
natural next step is to conduct one or both of the experiments described in Section 7.1
in the near future. Our suggestion is to start with a simulation of an exam, for
which this thesis can contribute with the most experience and information. After
the execution and analysis of the result, one can utilize the information from both
this thesis and the newly gathered experience from the conducted experiment in
planning the exercise experiment. Testing the system with an exercise will yield new
experiences and valuable insight which will further contribute to the overall project
goal.

When the course staff is comfortable with both the system and conducting tests
with it, the system can be further integrated with the TDT4102 course. At this
point solving exercises using CMB might be a mandatory part of the course. It is
reasonable to believe that many students will appreciate an increased focus on CMB
in class when their performance on an exercise depends partially on their knowledge
about the system.

As of now, the CMB system is not ready to completely replace all evaluation in the
TDT4102 course, but in the future when some of the missing functional requirements
listed in Section 7.3 hopefully have been implemented, and both the staff and students
are comfortable with the system, a complete substitution can be a reality. From
thereon, using the system as a part of the final evaluation will be more natural as it
would be a familiar working environment for the students.

88 7. FUTURE WORK

7.3 New Functional Requirements for CMB

After gaining experiment with the CMB system a number of missing features has
come to mind. Some more important than others, and some considered more realistic
based on assumed implementation cost.

Code Evaluation

As described in Section 6.2 the problem designer have to be creative to ensure that
the students are solving the intended problem. This task would be made significantly
easier if the system itself could check for specific elements in the submitted programs.
This change would probably have the biggest impact on the system as well as being
the most challenging addition to implement. Another feature we could make use of
is if one could ensure that any given code is unaltered and still existing. This way
one could define the main method and therefore know the output is coming from the
correct location in the output and formatted the intended way.

Result Extraction

In the admin interface, it should be possible to retrieve a list of submission information
for each problem in a problem set, preferably as an Excel spreadsheet. This data
should preferably contain the following:

• User information such as username, full name, or student identification
number.

• Result status for each problem in the problem set; success or failure, de-
pending on whether the submitted response was accepted by CMB or not. An
overview of which students have attempted to solve the problem is interesting
with regard to checking for almost-correct answers that should gain some credit.

Login via FEIDE

FEIDE is the Single Sign-On (SSO) service used by students and employees at NTNU
for access to various internal platforms. Users should be able to log onto the CMB
system through this service. This implies that all NTNU affiliates will have a user
on CMB.

Additional User Information

When registering as a new user on CMB, a user is only required to enter a username
and an e-mail address. In addition to these fields, users should be able to register
their full name and student identification number, which is the number used when

7.4. DESIGN IMPROVEMENTS FOR CMB 89

evaluating exams at NTNU. These extra fields are to avoid personal bias and
subjective assessment.

Additional Feedback

Currently, when uploading a submission to a problem on CMB, the user will receive
feedback on code runtime and energy-efficiency. In courses like TDT4102 where
one is taught the importance of memory management when programming in C++ ,
information about memory usage would also be interesting to receive when submitting
code to the system.

Scheduled Problem Sets

It should be possible to schedule a date and time for publication of a certain problem
set, so as to allow a professor to upload exam problems prior to the final examination
date. An alternative feature to this is to be able to make a problem set hidden for all
users apart from the creator and perhaps certain other users specified by the creator.

Submission Deadline

If CMB is going to be used for course exercise projects, the system should introduce a
concept of deadlines for certain problems or problem sets. If a submission is uploaded
after the deadline, it should be flagged as overdue.

Support for Additional Programming Languages

If digital examination using CMB becomes a reality at NTNU, other introductory
programming courses such as TDT4100 – Object-Oriented Programming, which
teaches Java, should also have the option to use the system.

Plagiarism control

As the intention of the system is to eliminate the manual process of evaluating code,
the system needs to be able to detect plagiarism, both from external sources and
from other students.

7.4 Design Improvements for CMB

Based on our analysis of the results from the midterm, as well as feedback and
personal experiences, we suggest the following design improvements for the CMB
system, which may improve the usability of the system for inexperienced users.

90 7. FUTURE WORK

Visibility of System Status

Jakob Nielsen discusses heuristics for user interface design, and the first heuristic
is visibility of system status [Nie95], which we feel that CMB is currently missing.
System status in this context refers to the stages of uploading, compiling and running
a problem. Because the server only has the capacity to run one submission at a
time, a user who is waiting for the server sees the message “in queue”, but there
is no information of queue position. In an examination setting where there will be
multiple uploads at the same time, dynamically updated queue position information
would be very useful as one would get an indication of how long one should expect
to wait for the acceptance status. Sindre Magnussen suggests a way of implementing
this in his master thesis [Mag16].

Improve Feedback Visibility

As discussed in Section 6.3, we suspect that most of the participants were not aware
of the fact that they could use the feedback messages as a “debugging” tool. As of
now, a user must click a button called Show Error, which would seem obvious and
visible enough. However, there is no guarantee that a user clicks this button when
the submission is rejected. A suggestion is thus that the error message could pop up
as a notification post near the top of the screen, similar to other messages that one
can hide when they have been read. This way, the user is “forced” to read the error
message.

Documentation of Common Errors

During our experiment, some of the students who monitored their feedback for failed
submissions did not understand most of the error messages. In order to gain more
insight to one’s own submission, it may be useful to include better documentation of
the most common error messages.

Optional Visibility of High Score List

For each problem page, there should be an option to make the public high score
list visible only to an admin user, or the creator of the problem set. When using
CMB for an exercise during the semester, the high score list is an important element
for motivation; it provides an element of “gamification” and competition to the
exercises. However, in an exam context, the list of users who have been able to solve
the problem should be hidden to anyone else, as it might have a negative effect on
the personal motivation of the students.

7.4. DESIGN IMPROVEMENTS FOR CMB 91

Multiple File Upload

Several of the experiment participants had issues with the pre-processing step of
compressing a strict set of files before uploading it to the system. In order to make
the upload process simpler and more intuitive, a user should be able to upload only
relevant files in unknown quantities to the system, instead of just a single zip-file.

This suggestion is also relevant for CMB’s admin interface. When adding a problem to
CMB (discussed in Section 2.4.1), an admin user must upload five files to the system
separately; this is quite tedious, especially when adding more than one problem. A
multiple file uploader would save a significant amount of time.

Chapter8Conclusion

This chapter concludes our thesis. First, in Section 8.1, we will evaluate the subtasks
introduced in Section 1.2 and discuss whether or not we feel that they have been
fulfilled. Finally, we provide a summary of the thesis, as well as a formal conclusion
in Section 8.2.

Four null hypothesis were introduced which were tested to see if their statements
involving the means of two data sets could be rejected. Since the hypotheses suggest
that two means are equal, one can reject them if one detects a significant difference
in the means. If this is the case, one cannot assume that the hypothesis in focus is
correct. Below is a summary of the testing of our hypotheses.

Hypothesis Description Conclusion
H01 Having a computer when answering multiple choice

questions is not an advantage with regard to per-
formance.

Rejected

H02 Having a computer when answering programming
problems is an advantage with regard to perfor-
mance.

Rejected*

H03 The use of CMB is equally efficient as the current
method of solving an exam.

Rejected

H04 The use of CMB is equally motivating to use as the
current method of solving programming problems.

Rejected

* When excluding the zero point answers for both groups, the hypothesis, H02, could
be rejected, otherwise it could not. We believe that the testing of the hypothesis
without the zero points answers give the conclusion closest to the truth because of
the amount of failed submissions to CMB.

93

94 8. CONCLUSION

8.1 Evaluation of Subtasks

Each subtask defined in Section 1.2 is evaluated as follows.

R1 Identify alternative question types that are suited for an autograding
system for C++ and other programming languages.
A complete research study was conducted on LMS-appropriate question
types and common programming problem types, was completed and
presented in Chapter 3.

R2 Discuss which of the question types identified in R1 are best suited to the
TDT4102 course at NTNU.
For each question type presented in Chapter 3, we provided a discussion
concerning the suitability of each question type. All of the examples
presented in the same chapter was related to the curriculum in the
TDT4102 course.

R3 Outline ideas for a realistic 5-year track making the vision “digital exam
with autograding” a reality at NTNU.
Sections 7.1 and 7.2 consists of a set of ideas that can be implemented in
the CMB project during the next five years. These ideas are based on
the experiment we conducted during the spring semester of 2016.

R4* Identify how user interface improvements can be implemented to better
reach the overall goal, and describe these as prioritized proposals to the
CMB project.
A list of both functional and design improvement suggestions are provided
in Sections 7.3 and 7.4.

E1 Organize an experimental midterm test in the TDT4102 course at NTNU.
Chapter 4 addresses the voluntary midterm experiment we completed
in March 2016 with students from the TDT4102 course. This chapter
includes a detailed description of the planning and execution phases of
the experiment.

E2 Develop and assemble a set of questions to be used in the midterm test.
Based on the question types we researched in Chapter 3, we developed
a midterm test to be used in our experiment. The test is presented in
Section 4.3, and the Norwegian version which was distributed to the
experiment participants is included in Appendix B.

8.2. SUMMARY AND CONCLUSION 95

E3 Administer a workshop to educate potential experiment participants about
the CMB system.
To educate the students in the use of CMB we organized a workshop
prior to the experiment. Details about the workshop are presented in
Section 4.2.1, which contains the preparation and execution process.

E4 Perform a thorough system test of CMB.
Prior to the experiment we tested the CMB system and identified a few
issues, discussed in Section 4.2.3.

E5* Discuss how the experiment results could be correlated with other more
traditional exam-like tests with the purpose of assessing the goodness of
our approach.
Initially, the plan for our experiment was to only use the evaluation
form of Group B. However, we decided that the results would be more
significant if we were able to incorporate the current standard, and
compare the two approaches. Thus, this subtask falls under E1, and the
results are presented in Chapter 5.

I1 Implement a solution for extracting the complete results from the tests to
data in an Excel spreadshet.
itslearning has a built-in result extraction feature which exports the data
to an Excel spreadsheet; this process is described in Section 2.2.2. We
also created a custom result extraction application to export data from
CMB to an Excel spreadsheet, covered in Section 4.4.2. Setup and usage
of the application is described in Appendix A.

8.2 Summary and Conclusion

In this project, we have conduct research on how Climbing Mont Blanc (CMB), an
online judge system, can work as an assessment tool in the TDT4102 course at the
Norwegian University of Science and Technology (NTNU). The system is currently in
development, so the purpose of our research has been to help the progression further.
The current method of evaluating programming exams is both costly and with varying
reliability, and one can never assume that human evaluators are completely consistent
in their evaluation. A system for automatic assessment and grading would make the
process of evaluating programming exams significantly more efficient and consistent.

Our first contribution towards a digital evaluation form is to describe different problem
types used to evaluate programming problems in detail. Also, we reason about
whether or not each of them is suitable to be used with CMB and online judge systems

96 8. CONCLUSION

in general. We have also reviewed question types suitable for learning management
platforms that have a strict evaluation model and could easily be implemented in
any exam tool, such as multiple choice and multiple response questions.

Subsequently, we provide a midterm assignment with multiple choice questions and
programming problems well-suited to be evaluated by the system.

In-depth information about the usage of CMB as well as other online judge systems as
a tool for digital examination is thoroughly described, which can be used to educate
any new members to the project.

After the midterm had been conducted, we initiated extensive statistical analysis
and discussion of the results. This information is further used to provide both
valuable insight about the current status of the system, and suggestions for future
improvements to the system as well as future experiments. In addition, a rough
outline for the continuation of the project has been suggested which can give our
predecessors an indication of where to initiate the next iteration of the project.

This thesis also describes possible improvements to the user interface. These sug-
gestions will hopefully contribute to further engaging the students in using the
system.

Our final contribution contains a method for extracting the results from CMB to
an Excel spreadsheet. The extraction is in the form of a Python application, which
converts JSON-data to the appropriate spreadsheet format.

In conclusion, our research has contributed to the development towards digital
examination with an automatic grading of programming exams at NTNU. We have
covered how to prepare for and execute experiments relevant to the project. Also, we
describe how to create problems for both LMS systems and the CMB system so that
they can be evaluated digitally with a focus on keeping the validity of the assessment
at an acceptable level.

References

[Aik87] Lewis R Aiken. Testing with multiple-choice items. Journal of Research &
Development in Education, 1987.

[Ama] Amazon. Amazon Web Services. https://aws.amazon.com/. Accessed: Decem-
ber 7th, 2015.

[Ast03] Owen Astrachan. Bubble sort: an archaeological algorithmic analysis. In ACM
SIGCSE Bulletin, volume 35, pages 1–5. ACM, 2003.

[Ber15] Berit Kjeldstad. Digitalisering av eksamen angår oss
alle. https://www.ntnu.no/blogger/rektoratet/2015/08/
digitalisering-av-eksamen-angar-oss-alle/, 2015. Accessed: December
10th, 2015.

[Bio] Biomath. Sample size/power calulations. http://www.biomath.info/power/
ttest.htm. Accessed: May 24th, 2016.

[BS87] James O Berger and Thomas Sellke. Testing a point null hypothesis: the
irreconcilability of p values and evidence. Journal of the American statistical
Association, 82(397):112–122, 1987.

[Bur04] Richard F Burton. Multiple choice and true/false tests: reliability measures
and some implications of negative marking. Assessment & Evaluation in Higher
Education, 29(5):585–595, 2004.

[CKLO03] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On automated
grading of programming assignments in an academic institution. Computers &
Education, 41(2):121–131, 2003.

[CMB] CMB. Climbing Mont Blanc – How To. https://climb.idi.ntnu.no/#/howto.
Accessed: April 28th, 2016.

[Coh92] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of
obfuscating transformations. Technical report, Department of Computer Science,
The University of Auckland, New Zealand, 1997.

97

https://aws.amazon.com/
https://www.ntnu.no/blogger/rektoratet/2015/08/digitalisering-av-eksamen-angar-oss-alle/
https://www.ntnu.no/blogger/rektoratet/2015/08/digitalisering-av-eksamen-angar-oss-alle/
http://www.biomath.info/power/ttest.htm
http://www.biomath.info/power/ttest.htm
https://climb.idi.ntnu.no/#/howto

98 REFERENCES

[DLT+95] Fritz Drasgow, Michael V Levine, Sherman Tsien, Bruce Williams, and Alan D
Mead. Fitting polytomous item response theory models to multiple-choice tests.
Applied Psychological Measurement, 19(2):143–166, 1995.

[DM95] François-Nicola Demers and Jacques Malenfant. Reflection in logic, functional
and object-oriented programming: a short comparative study. In Proceedings of
the IJCAI, volume 95, pages 29–38, 1995.

[EKN+11] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and Viggo
Kann. Five years with kattis—using an automated assessment system in teaching.
In Frontiers in Education Conference (FIE), 2011, pages T3J–1. IEEE, 2011.

[Eph] Ephorus. Ephorus – Homepage. http://www.ephorus.com/. Accessed: December
5th, 2015.

[Fei] Feide. Introducing Feide. https://www.feide.no/introducing-feide. Ac-
cessed: December 8th, 2015.

[Fel] Felles Studentsystem. Felles Studentsystem – Homepage. http://www.
fellesstudentsystem.no/. Accessed: December 7th, 2015.

[Fou] Python Software Foundation. pip x.x.x: Python package index. https://pypi.
python.org/pypi/pip. Accessed: February 9th, 2016.

[Fri02] Jeffrey EF Friedl. Mastering regular expressions. "O’Reilly Media, Inc.", 2002.

[FS15] Torbjørn Follan and Simen Støa. Climbing Mont Blanc – A Prototype System for
Online Energy Efficient Based Programming Competitions on ARM Platforms.
Master’s thesis, Norwegian University of Science and Technology (NTNU), 2015.

[GC] Eric Gazoni and Charlie Clark. openpyxl – A Python library to read/write
Excel 2010 xlsx/xlsm files —- openpyxl 2.4.0 documentation. https://openpyxl.
readthedocs.org/en/2.4. Accessed: February 9th, 2016.

[Goo] Google. Google Forms – create and analyze surveys, for free. https://www.
google.com/forms/about/. Accessed: May 2nd, 2016.

[Har05] Wynne Harlen. Trusting teachers’ judgement: Research evidence of the reliability
and validity of teachers’ assessment used for summative purposes. Research
Papers in Education, 20(3):245–270, 2005.

[HD89] Thomas M Haladyna and Steven M Downing. A taxonomy of multiple-choice
item-writing rules. Applied measurement in education, 2(1):37–50, 1989.

[HD97] James D Hansen and Lee Dexter. Quality multiple-choice test questions: Item-
writing guidelines and an analysis of auditing testbanks. Journal of Education
for Business, 73(2):94–97, 1997.

[HDR02] Thomas M Haladyna, Steven M Downing, and Michael C Rodriguez. A review
of multiple-choice item-writing guidelines for classroom assessment. Applied
measurement in education, 15(3):309–333, 2002.

http://www.ephorus.com/
https://www.feide.no/introducing-feide
http://www.fellesstudentsystem.no/
http://www.fellesstudentsystem.no/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
https://openpyxl.readthedocs.org/en/2.4
https://openpyxl.readthedocs.org/en/2.4
https://www.google.com/forms/about/
https://www.google.com/forms/about/

REFERENCES 99

[HO14] Larry V Hedges and Ingram Olkin. Statistical methods for meta-analysis. Academic
press, 2014.

[Hol24] Karl J Holzinger. On scoring multiple response tests. Journal of Educational
Psychology, 15(7):445, 1924.

[ICP] ICPC. The ACM-ICPC International Collegiate Programming Contest. https:
//icpc.baylor.edu/. Accessed: October 23rd, 2015.

[Inf] Information Technology Laboratory. Normal Distribution. http://www.itl.
nist.gov/div898/handbook/eda/section3/eda3661.htm. Accessed: May 16th,
2016.

[its] itslearning. itslearning: How It All Began. http://www.itslearning.net/
our-story. Accessed: May 3rd, 2016.

[Jef] Jeff Atwood. The Great Newline Schism. http://blog.codinghorror.com/
the-great-newline-schism/. Accessed: May 3rd, 2016.

[JSO] JSON. json.org. http://www.json.org/. Accessed: May 31st, 2016.

[KLC01] Andy Kurnia, Andrew Lim, and Brenda Cheang. Online judge. Computers &
Education, 36(4):299–315, 2001.

[Ltd14] Samsung Electronics Co. Ltd. Samsung Exynos Octa. http://www.samsung.com/
global/business/semiconductor/minisite/Exynos/w/solution.html, 2014.
Accessed: October 7th, 2015.

[Mag16] Sindre Magnussen. Improving System Usability of Climbing Mont Blanc – An
Online Judge Focusing on Energy Efficient Programming. Master’s thesis, Nor-
wegian University of Science and Technology (NTNU), 2016. Note: Title may
have changed.

[Mica] Microsoft. Load the analysis toolpak. https://support.office.com/en-us/
article/Load-the-Analysis-ToolPak-6a63e598-cd6d-42e3-9317-6b40ba1a66b4.
Accessed: May 21st, 2016.

[Micb] Microsoft. What’s new in excel 2013. https://support.office.com/en-IE/
article/what-s-new-in-excel-2013-1cbc42cd-bfaf-43d7-9031-5688ef1392fd.
Accessed: May 21st, 2016.

[ML06] Morris L Marx and Richard J Larsen. Introduction to mathematical statistics and
its applications, volume 31. Pearson/Prentice Hall Upper Saddle River, NJ, USA,
2006.

[Nat] Lasse Natvig. Climbing Mont Blanc project – NTNU. https://www.ntnu.edu/
idi/card/cmb. Accessed: February 5th, 2016.

[NFS+15] Lasse Natvig, Torbjørn Follan, Simen Støa, Sindre Magnussen, and Antonio
García-Guirado. Climbing mont blanc - A training site for energy efficient
programming on heterogeneous multicore processors. CoRR, abs/1511.02240,
2015.

https://icpc.baylor.edu/
https://icpc.baylor.edu/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://www.itslearning.net/our-story
http://www.itslearning.net/our-story
http://blog.codinghorror.com/the-great-newline-schism/
http://blog.codinghorror.com/the-great-newline-schism/
http://www.json.org/
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/w/solution.html
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/w/solution.html
https://support.office.com/en-us/article/Load-the-Analysis-ToolPak-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
https://support.office.com/en-us/article/Load-the-Analysis-ToolPak-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
https://support.office.com/en-IE/article/what-s-new-in-excel-2013-1cbc42cd-bfaf-43d7-9031-5688ef1392fd
https://support.office.com/en-IE/article/what-s-new-in-excel-2013-1cbc42cd-bfaf-43d7-9031-5688ef1392fd
https://www.ntnu.edu/idi/card/cmb
https://www.ntnu.edu/idi/card/cmb

100 REFERENCES

[Nie95] Jakob Nielsen. 10 usability heuristics for user interface design. Fremont: Nielsen
Norman Group.[Consult. 20 maio 2014]. Disponível na Internet, 1995.

[Nora] Norsk Senter for Forskningsdata. Meldeplikt. http://www.nsd.uib.no/
personvern/meldeplikt/. Accessed: May 13th, 2016.

[Norb] Norwegian University of Science and Technology (NTNU). IDI Open. https:
//idiopen.idi.ntnu.no. Accessed: October 23rd, 2015.

[Norc] Norwegian University of Science and Technology (NTNU). Nyhet – blackboard
valgt som nytt e-læringssystem ved ntnu. https://www.ntnu.no/aktuelt/2016/
els. Accessed: May 3rd, 2016.

[Nord] Norwegian University of Science and Technology (NTNU). Pros-
entvurderingsmetoden. https://innsida.ntnu.no/wiki/-/wiki/Norsk/
Prosentvurderingsmetoden. Accessed: May 11th, 2016.

[oSNa] Norwegian University of Science and Technology (NTNU). Course – Procedural
and Object-Oriented Programming – TDT4102 – NTNU. https://www.ntnu.
edu/studies/courses/TDT4102. Accessed: November 3rd, 2015.

[oSNb] Norwegian University of Science and Technology (NTNU). Gradestatistics. http:
//www.ntnu.no/karstat/makeReport.do. Accessed: November 12th, 2015.

[oSNc] Norwegian University of Science and Technology (NTNU). Language in exam-
ination question papers. https://innsida.ntnu.no/wiki/-/wiki/English/
Language+in+examination+question+papers. Accessed: June 2nd, 2016.

[oSNd] Norwegian University of Science and Technology (NTNU). NTNU – Digital ek-
samen. https://www.ntnu.no/wiki/display/ppfntnuit/-Digital+eksamen.
Accessed: December 7th, 2015.

[oSNe] Norwegian University of Science and Technology (NTNU). Permitted Exami-
nation Aids – Wiki (Inside NTNU). https://innsida.ntnu.no/wiki/-/wiki/
English/Permitted+examination+aids. Accessed: March 2016.

[PW08] De-chang PI and Qing-xian WU. Acm international collegiate programming
contest and cultivation of innovative talent [j]. Journal of Electrical & Electronic
Education, 3:019, 2008.

[Ros14] Sheldon M Ross. Introduction to probability and statistics for engineers and
scientists. Academic Press, 2014.

[Sø15] Thea Marie Søgaard. Cheating threats in digital byod exams: A preliminary
investigation. Master’s thesis, Norwegian University of Science and Technology
(NTNU), 2015.

[Saf] Safe Exam Browser. Safe Exam Browser – Overview. http://safeexambrowser.
org/about_overview_en.html. Accessed: December 7th, 2015.

http://www.nsd.uib.no/personvern/meldeplikt/
http://www.nsd.uib.no/personvern/meldeplikt/
https://idiopen.idi.ntnu.no
https://idiopen.idi.ntnu.no
https://www.ntnu.no/aktuelt/2016/els
https://www.ntnu.no/aktuelt/2016/els
https://innsida.ntnu.no/wiki/-/wiki/Norsk/Prosentvurderingsmetoden
https://innsida.ntnu.no/wiki/-/wiki/Norsk/Prosentvurderingsmetoden
https://www.ntnu.edu/studies/courses/TDT4102
https://www.ntnu.edu/studies/courses/TDT4102
http://www.ntnu.no/karstat/makeReport.do
http://www.ntnu.no/karstat/makeReport.do
https://innsida.ntnu.no/wiki/-/wiki/English/Language+in+examination+question+papers
https://innsida.ntnu.no/wiki/-/wiki/English/Language+in+examination+question+papers
https://www.ntnu.no/wiki/display/ppfntnuit/-Digital+eksamen
https://innsida.ntnu.no/wiki/-/wiki/English/Permitted+examination+aids
https://innsida.ntnu.no/wiki/-/wiki/English/Permitted+examination+aids
http://safeexambrowser.org/about_overview_en.html
http://safeexambrowser.org/about_overview_en.html

REFERENCES 101

[SDM10] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology
challenges. In High Performance Computing for Computational Science–VECPAR
2010, pages 1–25. Springer, 2010.

[SF12] Gail M Sullivan and Richard Feinn. Using effect size-or why the p value is not
enough. Journal of graduate medical education, 4(3):279–282, 2012.

[Sol16] Solveig Mikkelsen. Vraker itslearning til fordel for
amerikanske blackboard. Universitetsavisa, 2016. Avail-
able at http://www.universitetsavisa.no/campus/2016/02/05/
Vraker-Itslearning-til-fordel-for-amerikanske-Blackboard-55052.
ece. Accessed: May 3rd, 2016.

[Staa] Real Statistics. Real statistics resource pack. http://www.real-statistics.
com/free-download/real-statistics-resource-pack/. Accessed: May 20th,
2016.

[Stab] Social Science Statistics. Mann-whitney u test calculator. http://www.
socscistatistics.com/tests/mannwhitney/Default2.aspx. Accessed: May
24th, 2016.

[SV15] Guttorm Sindre and Aparna Vegendla. E-exams and exam process improvement.
Norsk Informatikkonferanse (NIK), 2015.

[SW65] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[Taf13] Daniele Tafani. The mont-blanc project. Leibniz Supercomputing Centre, 2013.

[Uni] The Hong Kong Polytechnic University. Effect size calculator. http://www.
polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html. Accessed:
May 24th, 2016.

[Wik] Wikipedia. Snake (video game) – Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Snake_(video_game). Accessed: April 20th, 2016.

[Win] Scott R. Winters. Score Normalization as a Fair Grading Practice. ERIC Di-
gest. http://www.ericdigests.org/2003-4/score-normilization.html. Ac-
cessed: May 10th, 2016.

http://www.universitetsavisa.no/campus/2016/02/05/Vraker-Itslearning-til-fordel-for-amerikanske-Blackboard-55052.ece
http://www.universitetsavisa.no/campus/2016/02/05/Vraker-Itslearning-til-fordel-for-amerikanske-Blackboard-55052.ece
http://www.universitetsavisa.no/campus/2016/02/05/Vraker-Itslearning-til-fordel-for-amerikanske-Blackboard-55052.ece
http://www.real-statistics.com/free-download/real-statistics-resource-pack/
http://www.real-statistics.com/free-download/real-statistics-resource-pack/
http://www.socscistatistics.com/tests/mannwhitney/Default2.aspx
http://www.socscistatistics.com/tests/mannwhitney/Default2.aspx
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
https://en.wikipedia.org/wiki/Snake_(video_game)
https://en.wikipedia.org/wiki/Snake_(video_game)
http://www.ericdigests.org/2003-4/score-normilization.html

AppendixAjson2excel

This appendix documents the setup and usage of the Python-application we created in
order to extract results from CMB to Excel, called json2excel, which is compatible
with both Python 2.7 and Python 3.

A.1 Setup

Our application makes use of an external library called openpyxl [GC]. One must
therefore install this library using pip, Python’s package manager [Fou]. This can
be done in the command line with the following command:

$ pip install openpyxl

A.2 Usage

Using the program simply requires a JSON-file with group data from CMB. Running
the application from the command line can be done with the following command,
where data.json should be replaced with the name of the JSON-file.

$ python json2excel.py data.json

This produces an .xlsx-file with the same name as the CMB group from which the
data is obtained, located in the same directory as where the code was run.

A.3 JSON Object Structure

As its name implies, the json2excel application is based on JSON group data from
CMB, structured as exemplified in Figure A.1.

103

104 A. JSON2EXCEL

group = {
"description": "Group description",
"id": 1,
"members": [

{
"group_id": 1,
"id": 1,
"role": "leader",
"user_id": 1,
"username": "thea"

}
],
"name": "Test Group",
"problems": [

{
"group_id": 1,
"id": 1,
"problem_id": 1,
"problem_name": "The shortest path problem",
"submissions": [

{
"edp": 5614.3759737,
"energy": 124.68079,
"goodness": null,
"id": 1,
"msg": null,
"name": "shortPath.zip",
"problem_id": 1,
"state": "finished",
"time": 45.03,
"user_id": 1,
"user_name": "thea",
"visible": true

}
]

}
],
"public": false

}

Figure A.1: Example of JSON group data from CMB.

It is very important that the data is structured this way; if not, one would have to
modify the source code, which is presented below in Appendix A.4.

A.4. SOURCE CODE 105

A.4 Source Code

1 import json
2 import sys
3 from openpyxl import Workbook
4

5 def read_json(filename):
6 with open(filename, ’r’) as data:
7 return json.loads(data.read())
8

9 def find_best_submissions(submissions):
10 best_submissions = {}
11 for submission in submissions:
12 username = submission[’user_name’]
13 if (username in best_submissions):
14 prev_submission = best_submissions[username]
15

16 if not submission[’time’]:
17 continue
18

19 if not prev_submission[’time’]:
20 best_submissions[username] = submission
21

22 elif prev_submission[’time’] > submission[’time’]:
23 best_submissions[username] = submission
24 else:
25 best_submissions[username] = submission
26

27 return best_submissions
28

29 def fill_cell(ws, col, row, val):
30 ws.cell(column = col, row = row, value = val)
31

32 def write_excel_file(json_data):
33 wb = Workbook()
34 ws = wb.active
35

36 user_rows = {}
37

38 # Setup user column
39 ws[’A1’] = ’USER’
40 row_counter = 2

106 A. JSON2EXCEL

41 for user in json_data[’members’]:
42 fill_cell(ws, 1, row_counter, user[’username’])
43 user_rows[user[’username’]] = row_counter
44 row_counter += 1
45

46 # Setup problem and submission data
47 col = 1
48 for problem in json_data[’problems’]:
49 fill_cell(ws, col + 1, 1, problem[’problem_name’])
50 ws.merge_cells(start_row = 1, start_column = col + 1,\
51 end_row = 1, end_column = col + 4)
52

53 best_submissions = find_best_submissions(problem[’submissions’])
54

55 for key in best_submissions.keys():
56 row = user_rows[key]
57 values = [0, 0, 0]
58 if best_submissions[key][’time’]:
59 values = [best_submissions[key][’time’],\
60 best_submissions[key][’energy’],\
61 best_submissions[key][’edp’]]
62

63 fill_cell(ws, col + 1, row, values[0])
64 fill_cell(ws, col + 2, row, values[1])
65 fill_cell(ws, col + 3, row, values[2])
66

67 col += 4
68

69 # Save Excel-file
70 wb.save(’{0}.xlsx’.format(json_data[’name’]))
71

72 def main():
73 input_filename = sys.argv[1]
74

75 data = read_json(input_filename)
76 write_excel_file(data)
77

78 main()

AppendixBMidterm

The following pages enclose the midterm questions used in the experiment, as well
as the solution to each question.

107

TDT4102 Midtsemesterprøve

Del 1 – Flervalg og kortsvar

1. (25 poeng) Flervalgsoppgaver.
Runde svarbokser indikerer at nøyaktig ett av svaralternativene er riktig. Firkantede
svarbokser indikerer at mer enn ett svaralternativ kan være riktig.

(a) (5 poeng) Hvilke av p̊astandene er true etter at følgende kodesnutt har kjørt?

1 int x = 5;

2 int y = 42;

3 int* ptr1 = &x; // ptr1 peker til x

4 int* ptr2 = ptr1; // ptr2 er en kopi av ptr1; ptr2 = &x

5 *ptr2 = y; // *ptr2 = x og y = 42; x blir satt til 42

� x == 5

� x == 42

� ptr2 == &y

� *ptr1 == y

(b) (5 poeng) Ifølge klassehierarkiet gitt i koden under, hvilke deklarasjoner er lovlige?

1 class A {};

2 class B: public A {};

3 class C: public B {};

4 class D: public A {};

� A a = C();

� C c = A();

� D d = B();

� B b = C();

TDT4102 Midtsemesterprøve - Side 2 av 6

(c) (5 poeng) En av måtene å sjekke om to C-string variabler er like, er å bruke oper-
atoren ==.

© Sant
⊗

Usant

Løsning: En C-string er i realiteten et array av char-instanser. Ved å skrive
cstring1 == cstring2 er det adressene til første element i hhv. cstring1 og
cstring2 som sammenliknes, ikke selve innholdet.

(d) (5 poeng) Hvordan kan vi deklarere en funksjon som skal returnere et int-array av
størrelse n?

© Det er ikke mulig.

© int[] createArray(int n);

⊗
int* createArray(int n);

© Begge er gyldige.

Løsning: Vi returnerer en peker til det første elementet i arrayet.

(e) (5 poeng) I hvilke tilfeller vil kopikonstruktøren til MinKlasse bli kalt? Anta at
minInstans er av typen MinKlasse.

� MinKlasse nyInstans = MinKlasse(minInstans);

� void minFunksjon(MinKlasse k);

� void minFunksjon(MinKlasse& k);

� MinKlasse nyInstans;

2. (5 poeng) Hva blir output av følgende program?

1 #include <iostream>

2 using namespace std;

3

4 int main() {

5 int x = 7;

6 int y = 5;

7 int c = y++ + --x;

8 cout << c;

9 }

Løsning: y inkrementeres etter at den evalueres og x dekrementeres før den eval-
ueres. 5 + 6 = 11.

TDT4102 Midtsemesterprøve - Side 3 av 6

3. (5 poeng) Hvilken char brukes for å terminere en C-string?

Løsning: ‘\0’ (null-character)

Del 2 – Programmering

4. (25 poeng) Overlasting av operatorer

I denne oppgaven skal du implementere en klasse MyInteger. Denne klassen skal kun
ha én medlemsvariabel, value, av typen int, samt følgende operatorer:

• addisjons-operatorene + og +=

• unær-operatoren - (brukes til å representere et negativt tall, f.eks. -10)

• insertion-operatoren <<

Lag en konstruktør for MyInteger som tar inn en tallverdi, og implementér operatorene.
Du kan bruke header-filen (oppgitt under) som utgangspunkt, men merk at du selv må
finne ut hvordan deklarasjonene til operatorene + og += skal se ut.

1 // MyInteger.h

2 #include <iostream>

3 using namespace std;

4

5 class MyInteger {

6 int value;

7 public:

8 MyInteger(int val);

9 int getValue() const;

10 MyInteger operator-() const;

11 friend ostream& operator <<(ostream& cout, const MyInteger &myInt);

12 };

Løsning: Se MyInteger.cpp og MyInteger.h i vedlagt .zip for løsning. Merk at
den digitale versjonen ba om implementasjon av flere operatorer (*= - / etc.), s̊a
disse er ogs̊a implementert i løsningen.

TDT4102 Midtsemesterprøve - Side 4 av 6

5. (40 poeng) Implementér en klasse med tilhørende metoder og hjelpefunksjoner

(a) (15 poeng) Implementér en funksjon split som splitter opp en tekststreng basert
p̊a et gitt tegn. Funksjonen skal ta inn en string (strengen som skal splittes)
og en char (tegnet som bestemmer hvor man skal splitte), og skal returnere en
vector<string> best̊aende av hver enkelt delstreng. Bruk vedlegget om vector-
klassen for hint om hvilke metoder du kan benytte deg av.

Eksempel: Funksjonskallet split("Ja vi elsker",‘ ’) skal returnere en vector

med elementene ["Ja","vi","elsker"].
Hint: string-klassen har en innebygget metode kalt substr(startPos, length).

Løsning: Se main-split.cpp i vedlagt .zip for løsning.

(b) (25 poeng) Roommates

1. Implementér klassen Person. En instans av Person-klassen skal ha et navn og
en liste med romkamerater. Implementér metoder for å aksessere feltene. Du
kan bruke følgende header-fil som utgangspunkt.

1 // Person.h

2 class Person {

3

4 string name;

5 vector<Person*> roomies;

6

7

8 public:

9 Person(string name);

10 void addRoomie(Person* roomie);

11 vector<Person*> getRoomies() const;

12 string getName() const;

13 };

2. Implementér metoden Person::addRoommate. Denne metoden skal ta inn en
instans av Person som skal legges til som romkamerat i listen over romkamer-
ater. Husk at dersom PersonA bor med PersonB og PersonB bor
med PersonC, impliserer det at PersonA bor med PersonC. Som et
lite utgangspunkt har vi lagt inn en for-løkke som forhindrer en potensiell evig
loop.

1 // Person.cpp

2 /* Metode for å legge til en roomie */

TDT4102 Midtsemesterprøve - Side 5 av 6

3 void Person::addRoomie(Person* roomie) {

4 /* LA STÅ: For å unngå evig loop */

5 for (int i = 0; i < roomies.size(); i++) {

6 if (roomies[i] == roomie || roomie == this) return;

7 }

8

9 // DIN KODE HER

10 }

3. Implementér funksjonen findPersonByName som tar inn et navn som en tekst-
streng og en vektor best̊aende av Person-instanser, og returnerer en peker til
det passende Person-objektet fra vektoren.

Løsning: Se Person.cpp og Person.h i vedlagt .zip for løsning.

TDT4102 Midtsemesterprøve - Side 6 av 6

Vedlegg 1 – vector

En vector<T> er en liste som kan endre størrelse dynamisk.
Metoder som kan være nødvendige:

• int size(): Returnerer antall elementer i vectoren.

• T at(int index): Returnerer elementet med indeks lik index

• push back(T element): Legger til objektet element til vektoren.

T er typen til objektet i vektoren.

AppendixCQuestionnaire

The following pages contains the questionnaire the participants received after the
midterm test.

115

Spørreskjema midtsemesterprøve i C++
Til dette spørreskjemaet finnes det ingen rette eller gale svar, vi ønsker bare at du gir din
ærlige mening til hvert spørsmål. Første del omhandler utførelsen av denne
midtsemesterprøven og kan besvares av alle. Andre del omhandler Climbing Mont Blanc
systemet og kan kun besvares av de som gjennomførte prøven digitalt.

*Må fylles ut

Utførelse av midtsemesterprøven

I hvilken grad...

1. ...føler du at du har fått vist dine kunnskaper i C++? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

2. ...føler du at du har fått vist kjente metoder/teknikker i C++? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

3. ...synes du at å løse oppgavene på den formen du fikk tildelt en effektiv måte å løse
oppgaver? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

4. ...synes du at den formen du fikk tildelt motiverte deg til å løse oppgavene? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

5. ...føler du at den formen du fikk tildelt er en passende måte å løse
programmeringsoppgaver? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

6. ...føler du at den formen du fikk tildelt er en passende måte å bli evaluert på
programmeringsoppgaver? *
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

Hvor enig eller uenig er du i påstandene:

7. Min tildelte prøveform (pennogpapir eller digitalt) påvirket min prestasjon positivt.
*
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

8. Min tildelte prøveform (pennogpapir eller digitalt) påvirket min prestasjon
negativt. *
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

9. Av de to mulige formene for å løse oppgavene (på papir og digitalt) hvilken form
mener du er mest utsatt for juks? *
Markér bare én oval.

 Itslearning/CMB

 Pennogpapir

10. På hvilken form utførte du midtsemesterprøven? *
Markér bare én oval.

 Itslearning/CMB

 Pennogpapir Avslutt utfyllingen av dette skjemaet etter det siste spørsmålet.

11. Hvor god tid følte du at du hadde på å fullføre prøven?
Markér bare én oval.

1 2 3 4 5

Veldig dårlig tid Veldig god tid

Spørsmål angående itslearning/CMB

Hvor enig eller uenig er du i påstandene:

12. Digital evaluering (itslearning/CMB) vil bidra positivt til videre læring i faget. *
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

13. Digital evaluering (itslearning/CMB) vil bidra til en forbedret eksamensprestasjon. *
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

14. Jeg ønsker å ta i bruk digitale evalueringsformer (itslearning/CMB) fremfor dagens
evaluering av øvinger. *
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

15. Jeg ønsker å ta i bruk digitale evalueringsformer (itslearning/CMB) fremfor dagens
evaluering av eksamen som skjer ved å levere inn håndskreven kode. *
Markér bare én oval.

1 2 3 4 5

Helt uenig Helt enig

I hvilken grad...

Drevet av

16. ...føler du at en umiddelbar respons på innleveringer bidrar til å effektivisere
oppgaveløsning som for eksempel en øving eller eksamen?
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

17. ...føler du at en umiddelbar respons på innleveringer bidrar til å motivere i
oppgaveløsning som for eksempel en øving eller eksamen?
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

18. ...synes du at å levere oppgaver til CMB er mer effektivt enn å levere kode skrevet
på PC til en sensor (som man gjør idag)?
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

19. ...synes du at å levere oppgaver til CMB er mer effektivt enn å levere kode skrevet
for hånd på papir?
Markér bare én oval.

1 2 3 4 5

Svært liten grad Svært stor grad

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Assignment Interpretation
	Hypotheses
	Project Timeline
	Contributions
	Outline of Thesis

	Background
	TDT4102
	Learning Objectives
	Participant Statistics
	Exercises
	Final Exam

	Digital Assessment at NTNU
	Inspera Assessment
	itslearning

	Online Judge Systems
	Climbing Mont Blanc
	Adding Problems to CMB
	Solving Problems on CMB

	Hypothesis Testing
	Conclusion Validity

	Question Types
	LMS Question Types
	Multiple Choice (MC)
	Either/Or
	Multiple Response (MR)
	Open Answer
	Short Answer
	Fill in the Blank
	Select From a List
	Match
	Order
	Hotspot – Click the Picture
	Suitability

	CMB Question Types
	Complete the Code
	Fix the Code
	Topic Specific Programming Problems
	Suitability

	Midterm Experiment
	Experiment Description
	Planning and Preliminary Work
	CMB Workshop
	Participant Registration
	Pilot Run and Testing
	Constructing the Groups

	Midterm Assignment
	Multiple Choice Questions
	Short Answer Questions
	MyInteger
	Split
	Roommates

	Voluntary Midterm Experiment
	Experiment Execution
	Result Extraction
	Ensuring Anonymity
	Questionnaire

	Results
	Midterm Results
	Part 1 – Multiple Choice and Short Answer
	Programming Problems

	Questionnaire

	Discussion
	Reliability of CMB's Assessment
	Threats to Reliability

	Validity of CMB's Assessment
	Threats to Validity
	Attempts at Improving Validity

	Midterm Results
	Questionnaire
	Positive Experiences
	Negative Experiences

	Future Work
	Future Experiments
	Simulation of an Exam
	Exercises

	Five Year Plan
	New Functional Requirements for CMB
	Design Improvements for CMB

	Conclusion
	Evaluation of Subtasks
	Summary and Conclusion

	References
	json2excel
	Setup
	Usage
	JSON Object Structure
	Source Code

	Midterm
	Questionnaire

