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Summary 
 

In the present study the influence of standardized safety factors in large and heavy structures, 

where the major loading arises from self-weight of the structure itself, is considered. For this 

purpose, a reliability analysis of the Hardanger Bridge is performed. The loading is assumed 

to originate from the self-weight of the bridge deck, hangers and main cables only, i.e. all 

other loads are neglected.  

The reliability analysis is performed by comparing axial loading and resistance capacity in the 

main cables and hangers. The loading is calibrated by interpolation between a simulated 

influence surface and estimated values of the self-weight and its location. Calibrations and 

estimations of the axial loading are performed by taking advantage of a data simulation tools 

and programs, such as MATLAB and ABAQUS. The resistance capacities are estimated from 

obtained test data performed by the manufacturer, along with tabulated values in codes and 

manuals.   

Notice, simplifications and assumptions are made in this thesis in order to estimate input 

variables in the analysis and to be able to perform the analysis itself. It is assumed that 

uncertainties related to these simplifications and assumptions are negligible.   

Use of ordinary numerical simulations for the reliability analysis is not possible due to low 

failure probability. Hence, an Enhanced Monte Carlo method (developed at NTNU) is 

applied. The method consists of parameterization of the limit state function 𝑀 = 𝑅 − 𝑆, thus 

true probability of failure is found by extrapolation of the obtained failure probability data 

from the parameterized limit state function. Results from the method give values for the 

reliability index 𝛽 in the range of {12.5 − 14.6}, corresponding values for the probability of 

failure per year is equal to {1 ∙ 10−48 − 5 ∙ 10−36}. However, it is important to notice the 

inherent uncertainties in this results, due to the lack of available information in the 

extrapolation work, along with uncertainties related to the portion of subjective assumptions 

and simplifications. More simulations 𝑛 should be performed in order to reduce the amount of 

uncertainties. Despite the uncertainties, the results show significant higher safety level than 

required in codes.     

In order to strengthen the results, code calibration of partial safety factors corresponding to 

axial loading and resistance capacity are carried out. The calibration process is performed by 

using an iterative second-moment reliability method, along with a load and resistance factor 

design format (LRFD).  The calibration process was performed by taking advantage of the 

useful data tools MATLAB and Excel. Results for the partial safety factors calibration are 

compared to standardized safety factors from codes. By inserting standardized safety factors, 

value for the reliability index 𝛽 = 12.64 is obtained. This gives a probability of failure equal 

to 𝑝𝑓 = 6.76 ∙ 10−37, which is in agreement with the result from Enhanced Monte Carlo 

method.  
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Sammendrag 
 

I denne masteroppgaven er det sett på virkningen av standardiserte sikkerhetsfaktorer i 

konstruksjoner hvor den største delen av belastningen kommer fra egenvekten til 

konstruksjonen selv. Til dette formål er det gjennomført en pålitelighetsanalyse av 

Hardangerbrua hvor all annen belastning enn egenvekten er neglisjert. 

Pålitelighetsanalysen er gjennomført ved å sammenligne aksial belastning og kapasitet i 

hoved- og hengerkablene. Belastningen som påføres konstruksjonen som følger av 

egenvekten er beregnet ved å modellere en «innflytelses flate», som estimerer aksial 

belastning i kablene ut ifra påførte krefter og deres posisjon. De påførte kreftene, som fører til 

belastning i kablene, er antatt å stamme kun fra egenvekten til brodekket og kablene. 

Datasimulering og programmering er benyttet til å estimere de aksiale belastningene. 

Kapasitetene til kablene er beregnet ut ifra tester og målinger gjort hos fabrikanten, samt 

standardiserte verdier gitt i Eurokode og håndbøker. 

Det er også grunn til å nevne at forenklinger og subjektive antagelser er gjort i arbeidet med å 

estimere verdiene til variablene, samt i gjennomføringen av analysen. Det er dog antatt at 

disse antagelsene vil gi holdbare resultater. 

På grunn av lave sviktsannsynligheter var det ikke mulig å gjennomføre analysen ved bruk av 

vanlige numeriske metoder. Det ble derfor benyttet en forbedret Monte Carlo metode, utviklet 

ved NTNU. Metoden består i å parametrisere grensetilstandsfunksjonen 𝑀 = 𝑅 − 𝑆, noe som 

gjør det mulig finne sviktsannsynligheter ved å bruke færre simulering. Sann 

sviktsannsynlighet finnes ved ekstrapolering av fremstilte sviktsannsynligheter fra den 

parametriserte grensetilstandsfunksjonen. Metoden gir resultater for pålitelighetsindeksen i 

intervallet {12.5 − 14.6}. Dette tilsvarer sviktsannsynlighet per år på {1 ∙ 10−48 − 5 ∙ 10−36}. 
Det er viktig å være klar over at det er stor usikkerhet knyttet til disse verdiene, både på grunn 

av usikkerhet i ekstrapoleringsarbeidet, men også som følger av mange subjektive antagelser. 

Flere simuleringer 𝑛 burde benyttes for å redusere usikkerheten. På tross av stor usikkerhet, 

indikerer størrelsen på resultatene et mye høyere sikkerhetsnivået enn hva som kreves i 

Eurokode.  

For å styrke resultatene er det også gjennomført en kalibrering av sikkerhetsfaktorer knyttet til 

påført belastning og kapasitet. Kalibreringen er gjennomført ved å benytte et last og resistans 

faktor utformings format (LRFD) og en «Second-Moment» pålitelighetsmetode for estimering 

av sviktsannsynlighet. Resultatene fra kalibreringen av sikkerhetsfaktorene er deretter 

sammenlignet med standardiserte sikkerhetsfaktorer fra Eurokode. Ved innsetting av 

standardiserte sikkerhetsfaktorer beregnes pålitelighetsindeksen til 12.64, dette tilsvarer en 

sviktsannsynlighet per år på 6.76 ∙ 10−37. Resultatene fra kalibreringen samsvarer bra med 

resultatene fra Monte Carlo simuleringen. 

I alle fasene av prosjektet, det vil si parameterestimering av inn og ut data, samt Monte Carlo 

simuleringen i seg selv, er verktøyet MATLAB benyttet. Til kalibrering av sikkerhetsfaktorer 

er Excel benyttet. I tillegg er dataprogrammet ABAQUS benyttet til å simulere 

Hardangerbroen og estimere «innflytelses flaten».  
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1  Introduction 
 

1.1  Background 
 

The main content in this master thesis relay on prediction of failure probability and partial 

safety factor estimation of large bridges, in order to study reliability of large civil engineering 

structures. Technology is constantly changing and environmental requirements rise 

increasingly. This causes considerations about how to improve the utilization of the resources.  

Large and heavy constructions with a high self-weight relative to other loads tend to have a 

low variation in the loading. The reason is that the variation in self-weight is extreme low 

compared to other loads, as will be discussed in chapter 3 (Self-weight estimation).  

Nowadays, structural calculations are based on standards and code calibrations, this involve 

use of standardized partial safety factors. The partial safety factors are included in 

calculations to handle the uncertainties related to the variability in loads and resistances. Since 

the codes are supposed to be a general tool, i.e. used in all kinds of structural problems, 

standardized partial safety factors may therefore become too conservative, consequently cost 

economic increases and environmental inefficiency occurs.  

From the facts stated above following hypothesis can be stated and will be covered in this 

master thesis: 

“In structures where the loading only (or nearly only) consist of self-weight, partial 

safety factors from codes and standards will lead to oversizing and inefficiency, due to 

low variance in the self-weight.”  

The comprehensive and well-known E39 project consist of engineering and construction of 

several long and heavy bridges in order to achieve a ferry free road from Trondheim to 

Kristiansand. Structural codes of today may be limiting and lead to unnecessary large costs, as 

follows from the hypothesis stated above. Hence, the scope of this thesis is of high importance 

in current and upcoming structural projects. For more information about the project, see [1]. 

 

1.2  Objective of work 
 

Operational modal analysis of the Hardanger Bridge exposed to wind loads and reliability 

analysis of the Hardanger Bridge with respect to flutter instability, have been considered in 

previous studies, see [2], [3]. This thesis takes another point of view, and investigate the 

effectiveness of design calculation from codes by providing reliability analysis of the 

Hardanger Bridge exposed to self-weight loading. Hence, estimation of safety factors for 

loading and the resistance capacity with respect to the bearing system are carried out and 

compared with standardized partial safety factors.   
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The analysis is divided into four main steps. Firstly, estimation of the self-weight related to 

the construction. Secondly, transformation of the self-weight loading into axial loading in the 

cables of the suspension bridge is performed. Thirdly, estimation of the resistance capacities 

with respect to the considered components is done. In the last part of the analysis, 

comparisons between the previous estimates are done in order to provide results for the 

reliability and effect of code based design calculations. 

In the analysis, two modelling approaches are used to investigate the effect of self-weight 

loading and the use of standards and codes. The first method (Second-Moment) provides 

results and comparisons between calibrated partial safety factors and standardized safety 

factors, along with results for the reliability index and the probability of failure. The second 

method (numerical simulation) provides results for the reliability of the structure. 

The thesis is organized into seven chapters, which will be described briefly in the following 

section.   

 

1.2.1  Organization of work 
 

Chapter 2 consists of important theory behind structural reliability analysis and code 

calibration. This theory is necessary for the further understanding of the aspect.   

Chapter 3 consists of self-weight estimation of the Hardanger Bridge, along with important 

assumptions and simplifications in the self-weight estimation. 

Chapter 4 consists of resistance capacity estimation based on values from codes, standards, 

manuals and available strength data. Important assumptions and simplifications of the 

capacity estimation is included in this chapter. 

Chapter 5 consists of strategies and procedures for the reliability analysis implementation and 

code calibration process. 

Chapter 6 consists of results and discussion from the previous chapters. The chapter is 

subdivided into several sections, where each section present results from the above chapters. 

Figures and plots from the analysis are included in this part of the thesis.  

Chapter 7 consists of conclusion from the analysis performed in this thesis. In addition, 

suggestions for further work of this subject are posted. 

 

1.3  Hardanger Bridge 
 

In this subsection, a brief introduction of the Hardanger Bridge is presented, along with 

valuable information regarding the dimensions and costs of the project and engineering phase.  

The Hardanger Bridge crosses the Eidfjord from Bu to Vallavik, and is the longest suspension 

bridge in Norway. The bridge has a main span of 1310 𝑚 and a total length of 1380 𝑚. It 

takes place at the west coast of Norway and has the purpose of decreasing the running time by 
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replacing the ferry between Bruravik and Brimnes, which has been a bottleneck at the 

distance Odda-Voss. Figure 1.1 shows the location of the bridge. 

 

Figure 1.1: Map of the location bridge [4]. 

As can be seen from the map in figure 1.1, the bridge connects the north and south part of the 

west coast and makes it possible to drive from Voss to Odda without any need for ferry. 

The bridge has two pylons, which consist of two concrete columns and three transverse 

girders called rigel. The steel box girder (part of the bridge deck) is a closed steel frame, with 

geometry as shown in figure 1.2. The steel box girder was produced in 12 𝑚 lengths, which 

were welded together in 60 𝑚 sections. The sections were installed by uplifting from a boat 

and then fastened with the cables.   
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Figure 1.2: Cross-section of the steel box girder [4]. 

The main cables consist of 19 bundles of 528 wires, each wire with a diameter equal to 

5,3 𝑚𝑚. The 19 cable bundles are compacted together in a way that gives a circular cross-

section of the main cables. The main cables were installed by cable spinning from Bu to 

Vallavik.  

130 hangers connect the steel box girder to the main cables. All the hangers are installed in 

the main span, with 65 hangers on each side of the steel box girder. The hangers are a “closed 

cable” consisting of 7 layers of wire and has a diameter of 70 mm. Notice, due to the volume 

of air in the hangers, effective cross-section area is obtained to be 3200 mm2, see appendix A.  

 

Figure 1.3: Complete picture of the entire bridge with pylons, cables and steel box girder [4]. 

The construction of the bridge was carried out in three stages: 

1. Work of excavating and blasting the anchorage system 
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2. Installing the pylons with transverse girders (concrete work) 

3. Installing the main cables, hanger cables and steel box girder (steel work) 

Total economic cost of the bridge was 1350 mill. NOK, where cables and steel box girder 

were the main cost. In addition, cost for supply routes, tunnels and client costs makes the 

project a total cost of 2300 mill. NOK.  
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2 Statistics and structural reliability 
 

This chapter includes important statistics and probability theory, which are fundamental in 

structural reliability analysis. In the first sections of this chapter a brief introduction of the 

fundamentals of probability theory take place. Secondly, theory behind statistical analysis are 

presented, where main statistical concepts and formulas to determine the values of statistical 

variables and parameters are explained and derived. Different distribution functions are also 

included in this review. The latter part of the chapter contains different methods to estimate 

the reliability of a structure. The reliability analysis performed in this thesis rely on the 

methods and statistics presented in this chapter.  

Examples from structural problems are used in order to give a better understanding of the 

different methods for calculation of structural reliability. 

 

2.1  Fundamentals of probability theory  
 

Probability theory is of high importance in order to perform a reliability analysis. Probability 

theory is a wide and extensive theme, which include a lot of axiom, terminology and theorem.  

Important concepts for the understanding of probability theory:  

- Event, which is the case considered.  

- Outcome space, which is the possible outcome of an event.  

- Sample space Ω, which describe the area in where all the possible outcome of the 

events will occur.  

The probability concept can be divided into three different parts: classical probability, 

frequency and subjective probability.  

 Classical probability: the number of cases where the event occurs divided by the 

sample space, see (2.1). 

 𝑃(𝐴) =
# 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛𝑡 𝐴

# 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒
 (2.1) 

 Frequency: the relative frequency in which an event will occur, given many 

independent recurrences under the same condition.  

 Subjective probability: related to the degree of belief or confidence of an event to 

occur. This is often used in statements, where the chance of the event to occur is 

quantified by a subjective degree of belief.   

It is important to know the differences between probability and frequency. Probability 

describe the inherent chance of an event to occur. Frequency probability count the amount of 

occurrence events given many repetitions with under the same condition(s). 

Fundamental axioms of the probability theory according to axioms of Kolmogoroff (1933) [6]: 
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1. The probability of event A, denoted 𝑃(𝐴), is dimensionless and has an outcome 

between 0 and 1.  

2. The probability of the sample space 𝑃(Ω) is equal to 1, since this is the space in where 

all the possible outcome will occur.   

3. If the events 𝐸𝑖 do not possess any common elements, i.e. the events are mutually 

exclusive (disjoint), then the probability of the union of the events is equal to the sum 

of the probabilities of the individual events. (2.2) shows this axiom. 

 𝑃 (⋂ 𝐸𝑖

𝑛

𝑖=1

) = ∅ ⇔ 𝑃(⋃ 𝐸𝑖)

𝑛

𝑖=1

= ∑ 𝑃(𝐸𝑖)

𝑛

𝑖=1

 (2.2) 

 

Two other important concepts, used in following calculations, are the degree of independence 

and conditional probability. The first concept states the dependency between events, i.e. the 

fact that the occurrence of one event influences the occurrence of another event. The latter 

concept is related to the influence of known information. What is the probability of an event 

to occur given that another event already has occurred or not?  This is called conditional 

probability 𝑃(𝐸1|𝐸2) and is shown in (2.3). 

 𝑃(𝐸1|𝐸2) =
𝑃(𝐸1 ∩ 𝐸2)

𝑃(𝐸2)
 (2.3) 

 

For more extensive elaboration of probability rules, concepts and theories, see [6], [7], [8]. 

 

2.2  Fundamentals of statistical analysis 
 

Usually the probability of an event is not a quantified value. This is the truth in most 

structural probability issues.  

When throwing a dice, the probability for each outcome in the sample space is equal to 1/6. 

This is an inherent probability, because the dice has six sides and every side is as much likely 

to occur as another. In structural probability calculations different kind of variables need to be 

quantified. These variables are not always known and need to be estimated by statistical 

analysis.  

Estimation of the variables needed in the probability calculations, is usually done by tests of 

specimens or by data from observations. A set of values from tests or observations are 

collected in a sample. Each sample is then investigated statistically, to make an assumption of 

the behaviour of the variable. The static may be interpreted to predict values or parameters 

needed in further calculations. 

 

2.2.1  Probability density function 
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Assume a sample of values for the variable X obtained from a strength test of steel specimens. 

The values from the test can be collected in a diagram, which shows the values of the 

variables on the horizontal axis, and the number of occurrence for each values on the vertical 

axis. The diagram shows the probability of occurrence for each value of the variable.  

If the variable can take all values within a given outcome space, the diagram can be plotted as 

a continuously curve. The curve is described by the probability density function (pdf), 

denoted 𝑓(𝑥). Where, 𝑥 represents a given random value of the variable, while the curve 

represents the probability of the value to occur.  

 

Figure 2.1: Example of a probability density function for normal distributed variable with 

zero mean and unit variance. 

The probability density function predict the probability for all possible outcomes, 

consequently 𝑃(𝑋 = 𝑥) = 𝑓𝑋(𝑥).  

When the sample space is infinite, the probability for an outcome need to be considered as the 

probability of 𝑋 takes a value within a given interval ∆𝑥. Using mathematic expressions, the 

probability in such case can be estimated as: 

 𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥

𝑏

𝑎

 (2.4) 

 

The probability of 𝑋 taking values on the entire sample space is equal to the probability of the 

entire sample space: 

 𝑃(−∞ < 𝑋 < ∞) = ∫ 𝑓𝑋(𝑥) 𝑑𝑥 = 1

∞

−∞

 (2.5) 

 

It is important to note that the density function is not equal for all kinds of variables. There 

exist several kinds of distributions; a couple of them are explained in following sections. 
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2.2.2 Cumulative distribution function 
 

The area under the probability density function curve is equal to the sample space. By 

integrating this area, the cumulative distribution function (cdf) is found.  

The cumulative distribution function, 𝐹(𝑥), gives the probability of 𝑋 taking a value less than 

a certain number 𝑥, consequently 𝑃(𝑋 < 𝑥) = 𝐹𝑋(𝑥). The capital letter 𝑋 is an index for a 

given variable, which can take a value on the entire sample space.  

 

Figure 2.2: Example of a cumulative distribution function for normal distributed variable 

with zero mean value and unit variance. 

Mathematically the expression for the cumulative distribution function is given as: 

 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑡) 𝑑𝑡

𝑥

−∞

 (2.6) 

Where t is a dummy variable.  

 

2.2.3  Distribution parameters 
 

Random variables are usually estimated from the distribution functions and parameters. 

Important parameters in estimation of random variables are: 

- Mean 

- Variance 

- Coefficient of variation 

Mean is the average value of a sample and is denoted 𝜇. The general equation for calculating 

the mean value is given in (2.7).  
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 𝜇𝑋 = 𝐸[𝑋] = ∫ 𝑥 ∙ 𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 (2.7) 

Where 𝐸[𝑋] is the expected value of the random variable 𝑋.    

Often distributions have its own separate equation for calculating the mean value. The mean 

value is then found by using constants related to each distribution.  

Values in a sample or a distribution often varies from the mean in one or more direction. 

Variance is a measure of the scatter in the values and is denoted 𝜎2. (2.8) shows the general 

formula for the variance.  

 𝜎𝑋
2 = 𝑉𝐴𝑅[𝑋] = ∫ (𝑥𝑖 − 𝜇𝑋)2 ∙ 𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 (2.8) 

 

The standard deviation is a measure of the amount of variation (deviation) in the sample 

values. The standard deviation is found by taking the square root of the variance and is 

denoted 𝜎.  

In a random sample, where the distribution function is not known, one may use other methods 

to calculate the parameters. The parameters are replaced by so-called moments. The first 

moment is the arithmerical mean 𝑚𝑋 , and is the middle value in the sample. The second 

moment, which is a measure of the scatter in the sample, is called the variance 𝑠𝑋
2. Formulas 

for the mean and the variance are given in (2.9) and (2.10), respectively.  

 𝑚𝑋 =
1

𝑛
∙ ∑ 𝑥𝑖

𝑛

𝑖=1

 (2.9) 

 

 𝑠𝑋
2 =

𝑛

𝑛 − 1
∙ ∑(𝑥𝑖 − 𝑚𝑋)2

𝑛

𝑖=1

 (2.10) 

Where 𝑛 is the number of values in the sample.  

This way of estimating parameters involves some uncertainties, because 𝑚𝑋  and 𝑠𝑋
2 are 

unbiased estimators of 𝜇𝑋 and 𝜎𝑋.  

Another important parameter in statistical analysis is the coefficient of variation 𝜌. The 

parameter is the ratio between the mean value and the variance for each variable. (2.11) and 

(2.12) gives the formula for the parameter when the distribution function is well-known and 

unknown, respectively.  

 𝜌𝑋 =
𝜎𝑋

𝜇𝑋
 (2.11) 

 

 𝑣𝑋 =
𝑠𝑋

𝑚𝑋
 (2.12) 
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2.2.4  Jointly distributed random variables and correlation 
 

Structural reliability calculations often consist of more than one variable. Values to calibrate 

the variables, used in structural reliability analysis, are often collected in pairs. Example of 

this could be estimation of the dimensions (𝑋) and the dead load (𝑌) of a beam. Collection of 

the dead load 𝑌 is dependent of the dimensions of the beam 𝑋, since the dead load 𝑌 is the 

product of the volume times the self-weight of the beam. The big question is whether there 

exists any interdependency between the two variables.  

By plotting pair of values for the two variables (𝑥𝑖, 𝑦𝑖) in a coordinate system, it is often 

easier to see how the variables affect each other.  

 

Figure 2.3: Plot of each pair of observations (𝑥𝑖 , 𝑦𝑖) as a point in the corresponding 

coordinate system and an isometric representation of the respective 2D histogram [6]. 

A probability distribution function consisting of several variables 𝑋𝑖, is called a joint 

distribution function. 

For an event consisting of two (or more) continuously random variables, the probabilities of 

occurrence given values of the variables are described by the joint cumulative distribution 

function: 

 𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃[(𝑋 ≤ 𝑥) ∩ (𝑌 ≤ 𝑦)] ≥ 0 (2.13) 

  

“The joint (bivariate) density function 𝑓𝑋,𝑌(𝑥, 𝑦) represent the probability that 𝑋 takes a value 

between 𝑥 and 𝑥 + ∆𝑥 and 𝑌 a value between 𝑦 and 𝑦 + ∆𝑦 as ∆𝑥 and ∆𝑦 each approaches 

zero.” [8]  

 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑃[(𝑥 < 𝑋 < 𝑥 + ∆𝑥) ∩ (𝑦 < 𝑌 < 𝑦 + ∆𝑦)] (2.14) 
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The joint density function for the two variables 𝑋 and 𝑌, consist of the marginal density 

functions 𝑓𝑋(𝑥), 𝑓𝑌(𝑦) and the conditional probability distribution between the variables 

𝑓𝑋|𝑌(𝑥|𝑦). 

 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋|𝑌(𝑥|𝑦) ∙ 𝑓𝑌(𝑦) = 𝑓𝑌|𝑋(𝑦|𝑥) ∙ 𝑓𝑋(𝑥) (2.15) 

 

If the two variables are independent, the joint density distribution is equal to: 

 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥) ∙ 𝑓𝑌(𝑦) (2.16) 

 

Figure 2.4 shows the joint, marginal and conditional probability density functions for the two 

variables 𝑋 and 𝑌.  

To measure the mutual dependence between the variables, two parameters covariance and 

correlation coefficient are used. 

The general formula for the covariance, when the distribution is known, is shown in (2.17).  

 𝐶𝑜𝑣(𝑋, 𝑌) = 𝜎𝑋,𝑌 = ∬(𝑥 − 𝜇𝑋) ∙ (𝑦 − 𝜇𝑌) ∙ 𝑓𝑋.𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

 (2.17) 

 

An important observation is that the covariance does not have the same dimension as the 

standard deviation. The covariance consists of the deviation between values and the mean 

value, for both of the variables.  

If 𝑓𝑿(𝒙) is a 𝑛-dimensional density function of correlated variables 𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑛]. The 

covariance of 𝑿 can be written on matrix form, and is equal to: 

Figure 2.4: Joint, marginal and conditional probability density functions [Wilson] Figure 2.4: Joint, marginal and conditional probability density 

functions [8]. 
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 𝑪𝑿 = [
𝑉𝑎𝑟(𝑋1) … 𝐶𝑜𝑣(𝑋1, 𝑋𝑛)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋𝑛, 𝑋1) … 𝑉𝑎𝑟(𝑋𝑛)

] (2.18) 

 

The correlation coefficient is dimensionless and is the ratio between the covariance and the 

product of the standard deviation for the variables: 

 𝜌𝑋,𝑌 ≡ 𝜌 =
𝜎𝑋,𝑌

𝜎𝑋 ∙ 𝜎𝑌
 (2.19) 

 

The correlation coefficient varies from -1 to 1. Where 1 is perfectly correlated and -1 is 

perfectly negative correlated. Usually the value of correlation coefficient is somewhere 

between these values. Figure 2.5 shows how the correlation coefficient affect the dependency 

between the variables. 

 

Figure 2.5: Plots for different values of the correlation coefficient. 

It is important to note that even though the figure 2.5 only shows linear correlation, 

correlation between two variables may also have non-linear behaviour.  

If 𝜌 is equal to zero the two variables do not depend on each other, they are uncorrelated.  

 
𝜌𝑋,𝑌 = 0    ⇔     𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥) ∙ 𝑓𝑌(𝑦) 

(2.20) 

 

If the values of the variables are found from random samples with unknown properties, the 

formulas for the covariance and the correlation coefficient is shown in (2.21) and (2.22).  

 𝐶𝑜𝑣(𝑋, 𝑌) = 𝑠𝑋,𝑌 =
1

𝑛 − 1
∙ ∑(𝑥𝑖 − 𝑚𝑋) ∙ (𝑦𝑖 − 𝑚𝑌)

𝑛

𝑖=1

 (2.21) 
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 𝑟𝑋,𝑌 ≡ 𝑟 =
𝑠𝑋,𝑌

𝑠𝑋 ∙ 𝑠𝑌
 (2.22) 

 

2.2.5  Regression 
 

Regression analysis is a useful tool in estimation of the correlation between two variables and 

makes it possible to express one variable as a function of another. From the diagram left in 

figure 2.5 it is possible to make a regression line between the two variables 𝑋 and 𝑌, as shown 

in figure 2.6.  

For every value of 𝑋 it is possible to estimate the true value of 𝑌, by using the formula:  

 𝑌 = 𝛼𝑋 + 𝛽 + 𝜖 (2.23) 

The stochastic variable ϵ, represent the error in the model, is independent and has a constant 

variance for all attempt, 𝜖 ~ 𝑁(0, 𝜎2). α and β are regression coefficients.  

The true value of the regression coefficients α and β are not possible to measure, they have to 

be obtained from the dataset. This is done by minimizing the error 𝑒𝑖 between the true 

regression line 𝑦 = 𝛼𝑥 + 𝛽, and the estimate of the linear regression �̂� = 𝑎𝑥 + 𝑏.  

The regression coefficients 𝑎 and 𝑏 are then estimated by using the method of least square: 

 𝑆𝑆𝐸 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − �̂�)2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)2

𝑛

𝑖=1

  (2.24) 

 

 
 

⇒ 𝑎 =  �̅� − 𝑏�̅�      ,      𝑏 =  
∑ (𝑥𝑖 − �̅�)𝑦𝑖

𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 (2.25) 

 

Figure 2.6: Linear regression line that best fit the obtained data point. 
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Where, �̅� and �̅� denote the mean value of the variable 𝑋 and 𝑌, respectively. 

 

2.3  Normal distribution 
 

Normal distribution is one of the most used and important distribution function and is defined 

as follows:  

 𝑓𝑋(𝑥) =
1

𝜎𝑋 ∙ √2𝜋
∙ 𝑒

(−
1
2

(
𝑥−𝜇

𝜎
)

2
)
 (2.26) 

 

 𝐹𝑋(𝑥) =
1

𝜎𝑋 ∙ √2𝜋
∙ ∫ 𝑒

(−
1
2

(
𝑥−𝜇

𝜎
)

2
)

𝑥

−∞

𝑑𝑥 (2.27) 

 

Normal probability density function is symmetric about the mean value at the horizontal axis. 

The distribution could be transformed into a standard normal distribution with mean value 

equal to zero and standard deviation equal to one. Such transformation is shown in the 

following equation: 

 𝑋 ~ 𝑁(𝜇, 𝜎)     ⇔      𝑍 =  
𝑋 − 𝜇

𝜎
 ~ 𝑁(0,1) (2.28) 

 

The cumulative distribution function for standard normal distribution is denoted Ф(𝑍). Values 

for standard normal probabilities are tabulated (see appendix B), hence is the transformation 

into standard normal space of high importance. The transformation is the crucial point in the 

Hasofer and Lind method (section 2.9.1). 

The standard normal probability density function is symmetric about the horizontal axis.  
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Figure 2.7: Plot of normal (green) and standard normal (blue) probability density function. 

When a parameter consists of a mix of variables with different distributions, it is valid to 

assume that the distribution function for the parameter is normal distributed. This assumption 

is valid due to the Central-Limit-Theorem according to Freeman and Benjamin and Cornell 

[11], [12]. Therefore, the normal distribution is of high importance, both in this thesis and for 

general reliability analysis.   

 

2.4  Lognormal distribution 
 

The lognormal distribution is similar to the normal distribution, except it never accepts 

negative values. 

In some cases, the needs for a distribution function which never reach negative values is 

required, e.g. in calibration of resistance. The strength of a structure will never reach negative 

values, hence gives the lognormal distribution a better estimation of the resistance than a 

normal distribution. 

The lognormal distribution is expressed as follows: 

 𝑓𝑋(𝑥) =
1

𝜁 ∙ 𝑥 ∙ √2𝜋
∙ 𝑒

(−
1
2

(
𝑙𝑛𝑥−𝜆

𝜁
)2)

 (2.29) 

 

 𝐹𝑋(𝑥) = ∫
1

𝜁 ∙ 𝑥 ∙ √2𝜋
∙ 𝑒

(−
1
2

(
𝑙𝑛𝑥−𝜆

𝜁
)

2

)
𝑑𝑥

𝑥

0

 (2.30) 

Where, 𝜁 and 𝜆 are lognormal distribution parameters. 
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2.5  Gumbel distribution 
 

Gumbel distribution is the type I extreme value distribution. The distribution takes only the 

largest extreme values, hence the upper tail of the distribution is the most interesting part of 

the distribution. The distribution is skewed as follows of the tail.  

In some cases, the need for a value which has a very little possibility of exceedance, is of 

great importance. In structural reliability analysis the chance of a load to exceed the resistance 

of a structure is investigated. Such studies need a large extreme value of the load to ensure the 

loading not being underestimating, thus collapse of the structure.  

The formulas for Gumbel distribution or extreme-value distribution are expressed in the 

following equations:  

 𝑓𝑋(𝑥) =  𝛼 ∙ 𝑒(−𝛼(𝑥−𝑢)−𝑒(−𝛼(𝑥−𝑢))) 
(2.31) 

 

 𝐹𝑋(𝑥) = 𝑒(−𝑒(−𝛼(𝑥−𝑢))) 
(2.32) 

Where, 𝛼 and 𝑢 are Gumbel distribution parameters. 

 

2.6  Characteristic and design values 
 

Values for the different resistance and load variables can be found from the probability 

distributions. The most common way to determine the values is to use the characteristic value 

of the variable. The characteristic value is determined on behaviour of the distribution 

parameters for the variables and safety aspects. (2.33) shows the formula for the characteristic 

value of variable 𝑋.  

 𝑥𝑘 = 𝜇𝑋 − 𝐾𝑋 ∙ 𝜎𝑋 (2.33) 

 

As the formula shows, the characteristic value consists of the two most important parameters 

from the distribution function: mean value and standard deviation. In addition, the 

characteristic value is affected by a factor 𝐾𝑋. 𝐾𝑋 is estimated on behaviour of the variable 

influence on the reliability.  

Resistance variables prevent the structure to fail, hence need for a low enough characteristic 

value to ensure satisfying safety is of high importance. To ensure satisfying safety, 

underestimation of the characteristic values for the resistance variables are performed. This is 

done by using a low fractile-value. For normal distributed resistance variables, NS 3490 (NS) 

assume 5% fractile-value [10]. 

The 5% fractile-value means that in 95% of the cases, the variable value falls above this 

limit. In other word, there are 5% chance that the value of the variable is lower than the 

characteristic value. 
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For normal distributed load variables, the same procedure as for the resistance variables is 

used except that a 95% fractile-value is now assumed according to NS 3490 [10]. In load 

cases it is important to satisfy a characteristic value with low probability of exceedance.   

When the fractile-value 𝑝 is clarified, the 𝐾𝑋 factor is estimated from the inverse cumulative 

distribution function for a standard normal distribution.  

 𝐾𝑋 = 𝛷−1(𝑝) = 𝐹𝑋
−1(𝑝) (2.34) 

 

Design value    

The most general form of checking a structure is to include some partial safety factors ϒ. The 

partial safety factor takes into account the fact that there might be some uncertainties related 

to the variables and that there is a 5% chance that the characteristic value is being exceeded.  

Another important effect related to the partial safety factor, is the ability to adjust the 

variables. The variables are increased or decreased by multiplied or divided by the partial 

safety factor. When a characteristic value is divided or multiplied by a partial safety factor it 

becomes a design value. 

 𝑟𝑑 =
𝑟𝑘

𝛾𝑅
 (2.35) 

 

 𝑠𝑑 = 𝛾𝑆 ∙ 𝑠𝑘 (2.36) 

 

2.7  Structural reliability analysis 
 

Structural Engineers’ main task is to construct structures within an acceptable safety level. 

For this purpose, codes and standards have been developed to decide whether the structure is 

on the safe side or not. Although the codes stats whether the structure is safe or not, it says 

nothing about the probability of failure for the structure. To get an insight in the probability of 

failure of a structure, structural reliability analysis is a well-applied tool.  

 

2.7.1  Reliability, Risk and probability of failure 
 

“Reliability is defined as the probability that an item or facility will perform its 

intended function for a specific period of time, under defined conditions.” [6] 

 This is a broad definition of the reliability concept, which indicate that the reliability concept 

is a useful tool in many areas. In a structural engineering context, the following statement 

better explains the definition of the structural reliability concept:  

“The probability that a structure will not attain each specified limit state (ultimate or 

serviceability) during a specified reference period.” [7] 
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The limit state is a failure mode deciding whether the structure is on the safe side or not, 

further explained in following sections.  

The reference period refers to the interval of time the structure is affected by the load or the 

estimated lifetime of the structure.  

The reliability of a structure is the complementary event of the probability of failure for a 

structure, or stated in another way the probability of failure for a structure is the opposite of 

the probability for a structure to maintain stable during loading. Hence, the expression for the 

reliability of a structure becomes: 

 𝑟 = 1 − 𝑝𝑓 (2.37) 

Where, 𝑝𝑓 denotes the probability of failure for a structure.   

Probability of failure 

The chance for a structure to fail is called the probability of failure. The calculation of the 

probability of failure is explained in the following sections and can be obtained by using 

different methods.  

(2.37) shows that the probability of failure is the complement of the reliability, i.e. the 

probability of failure for a structure is equal to the probability of the total outcome 

space Ω minus the probability of the structure to remain stable during loading or throughout 

the reference period.   

Risk 

Risk is a measure of the magnitude of hazard in connection with an event. The estimation of 

risk is a function of the probability of failure and the extent of damage: 

 𝑅 =  𝑝𝑓 ∙ 𝐸[𝐷] (2.38) 

Here, 𝑅 represent the term risk, while 𝑝𝑓 and 𝐸[𝐷] denotes the probability of failure and 

expected damage related to the event, respectively.  

The expected damage (expected costs), can be given as numbers of injured (dead) people per 

event or in monetary units. Since the probability of failure is dimensionless, the term risk gets 

the same unit as the expected damage. Another way of calculating risk is by using the 

frequency of failure ℎ𝑓 instead of the probability of failure 𝑝𝑓.  

 𝑅 =  ℎ𝑓 ∙ 𝐸[𝐷] (2.39) 

 

An example of this could be injured (dead) people in car accidents per year. If the number of 

accident on a specific road is equal to 10 per year and the expected numbers of injured (dead) 

persons per accident is 3, the risk related to the road is equal to: 𝑅 =

10 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 ∙ 3 𝑖𝑛𝑗𝑢𝑟𝑒𝑑 = 30 𝑖𝑛𝑗𝑢𝑟𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟.    

In some cases, the calculation of risk is affected by some difficulties. For example, the 

probability of failure for a structure is usually very small, typically in the order of 

magnitude {10−7 − 10−20}, while the expected damage related to the failure is extreme high. 
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By using (2.38) this result in a “zero-times-infinite” (0 ∙ ∞) calculation of risk. This means 

that the risk may have any value between zero and infinite. In such cases, an impact 

assessment of the measures is often necessary.  

In order to satisfy the requirement of structural reliability, the structure is classified into 

reliability classes. The classes depend on the consequences related to a failure and required 

security level. Different classes make different demands about the dimensioning. This is 

tabulated in codes and standards, see [10], [20]. This way, the risk (related to the structure) is 

included in the structural calculations.  

  

2.7.2  Structural reliability problems 
 

Basic structural problem 

Basic structural reliability problem consider one load variable S resisted by one resistance 

variable R, both with known probability density functions 𝑓𝑆( ) and 𝑓𝑅( ). Resistance is the 

structures ability to resist loading. Resistance can be bending capacity, stress capacity, 

deflection criterions, shear strength, etc. External or internal forces inflict loading on the 

structure. External forces can be loads cased from climatic conditions like snow, wind, rain or 

other loads applied from the outside. Internal forces apply to loads caused from interactions 

between different elements in the structure. For example, a roof beam supported by two 

columns, here the forces are transferred from the beam to the two columns.  

Failure of a structure may be determined from different criterion related to the reliability and 

serviceability of the structure, such as deflection, fractures, safety aspects, requirements for 

vibration, etc.  

In the following, failure of the structure is assuming to occur when the load S exceed the 

capacity R of the structure (element) considered. The probability of failure can be expressed 

as: 

 𝑝𝑓 = 𝑃(𝑅 ≤ 𝑆) = 𝑃(𝑅 − 𝑆 ≤ 0) (2.40) 

 

Or in a more general way  

 𝑝𝑓 = 𝑃[𝐺(𝑅, 𝑆) ≤ 0] (2.41) 
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Where, 𝐺( ) is the limit state function, which define the limit between the safe and failure 

domain of the structure considered. In the safe domain, the structure maintain stable during 

loading, while in the failure domain the structure exceeds the safety limit and is qualified as 

damaged and unstable. Consequently, probability of failure is equal to the probability of limit 

state violation.  

The probability of failure is equal to the integral of the joint density function (see sections 

2.2.2 and 2.2.4) over the area where the load 𝑆 exceed the resistance 𝑅, represented by the 

hatched failure domain D in figure 2.8. Hence, following equation for the probability of 

failure can be established: 

 𝑝𝑓 = 𝑃(𝑅 − 𝑆 ≤ 0) = ∫ ∫ 𝑓𝑅,𝑆(𝑟, 𝑠) 𝑑𝑟 𝑑𝑠

𝐷

 (2.42) 

 

If 𝑅 and 𝑆 are independent, i.e. 𝑓𝑅,𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟) ∙ 𝑓𝑆(𝑠), the probability of failure is equal to: 

 𝑝𝑓 = 𝑃(𝑅 − 𝑆 ≤ 0) = ∫ ∫ 𝑓𝑅(𝑟) ∙ 𝑓𝑆(𝑠) 𝑑𝑟𝑑𝑠

𝑠≥𝑟

−∞

∞

−∞

 (2.43) 

 

provided 𝑥 ≥ 𝑡,  and that the two variables 𝑅 and 𝑆 are independent, equation 2.43 can be 

further derived by using the formula of cumulative distribution function (2.6). 

Figure 2.8: Two random variable joint density function 𝑓𝑅𝑆(𝑟, 𝑠), marginal density functions 
𝑓𝑅  and 𝑓𝑆  and failure domain D [Wilson]. 
Figure 2.8: Two random variable joint density function 

𝑓𝑅𝑆(𝑟, 𝑠), marginal density functions 𝑓𝑅 and 𝑓𝑆 and failure domain D 

[8]. 
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 𝑝𝑓 = ∫ 𝐹𝑅(𝑥) ∙ 𝑓𝑆(𝑥)𝑑𝑥

∞

−∞

 (2.44) 

This integral is known as a convolution integral.  

The best way of explaining the integral in (2.44), is to look at the failure condition of the 

problem. The structure will fail if the load exceeds the resistance, hence will the probability of 

structural failure be equal to the probability that the value of 𝑆 exceeds the value of 𝑅.   

Let 𝑥 denote a given value of interest. If 𝑆 is equal to 𝑥, then failure will occur if 𝑅 is less than 

the given value 𝑥. The probability that 𝑆 is equal to 𝑥, is explained in section 2.2.1 and found 

by using the probability density function. While the probability that 𝑅 is less than a given 

value 𝑥, is found by using the cumulative distribution function as mention in section 2.2.2.  

 𝑃(𝑆 = 𝑥) = 𝑓𝑆(𝑥) (2.45) 

 

 𝑃(𝑅 < 𝑥) = 𝐹𝑅(𝑥) (2.46) 

 

To find the total probability of failure, the product of the two probabilities need to be 

evaluated along the entire outcome space. If the two functions are continuously, the 

probability of failure is equal to the integral of the product over the total outcome space 

[−∞, ∞]. Illustrated in figure 2.9. 

An alternative expression for the convolution integral is by using the concept of 

complementary events: 

 𝑝𝑓 = ∫ [1 − 𝐹𝑆(𝑥)] ∙ 𝑓𝑅(𝑥)

∞

−∞

𝑑𝑥 (2.47) 

 

 

Figure 2.9: Basic R-S problem: 𝐹𝑅 ∙ 𝑓𝑆 representation [8]. 
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Which is simply : 

“the sum of the failure probabilities over all the cases of resistance for which load 

exceeds the resistance”. [8] 

General structural problem 

In many structural problems, this simplification of the problem is not adequate to use since it 

may not be possible to reduce the system into a simple one-to-one random variable problem, 

with one independent load 𝑆 and one independent resistance 𝑅 variable.  

Resistance and load are often compound of more than one dependent variable. The bending 

capacity 𝑀𝑅𝑑 may for instance be found by using material strength 𝑓𝑚 and section modulus 

𝑊. While the design moment 𝑀𝐸𝑑 could follow from a uniformly distributed load 𝑄 over the 

length 𝐿. Both of the variables 𝑀𝑅𝑑 and 𝑀𝐸𝑑  depend on the dimensions of the structure, hence 

a dependency between the variables exists. There may also be cases where the loading or the 

resistance consist of more than one applied load or resistance component, e.g. the loading on a 

structure consist of both dead and live load.  

The need for a more generalized version of the probability of failure expression is present. For 

this purpose, a definition of the basic variables related to the structure need to be performed. 

Basic variables are fundamental variables, which define and characterize the behaviour and 

safety of a structure, e.g. dimensions, densities, material strength, etc. It is convenient to 

choose the basic variables so that they are independent, this is not always possible though.  

When the basic variables are proposed, the simple 𝑅 − 𝑆 form of the limit state function can 

be replaced by a generalized expression in terms of all the basic variables. Assume a vector of 

all the basic variables involved in the problem 𝑿, the simple variables for resistance 𝑅 and 

load 𝑆 expressed in terms of the basic variables may be established by the following 

equations: 

 𝑅 = 𝐺𝑅(𝑿) (2.48) 

 

 𝑆 = 𝐺𝑆(𝑿) (2.49) 

 

Since the basic variables may be dependent, the cumulative distribution function for the 

variables 𝑅 and 𝑆 need to be obtained by a multiple integration over the relevant basic 

variables. 

 𝐹𝑅(𝑟) = ∫ … ∫ 𝑓𝑿(𝑥)𝑑𝑥

𝑟

 (2.50) 

 

And similarly for the load variable.  

The expression for the 𝐹𝑅 and 𝐹𝑆 can be used in (2.44) and (2.47), respectively.  
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A more convenient way of estimating the probability of failure is by generalize the limit state 

function 𝐺(𝑅, 𝑆). In order to do this, expression for the variables 𝑅 and 𝑆 from (2.48) and 

(2.49) are used.   

 
𝐺(𝑅, 𝑆)

𝑿
⇒ 𝐺(𝐺𝑅(𝑿), 𝐺𝑆(𝑿)) ⇒ 𝐺(𝑿) 

(2.51) 

 

Example of a general limit state function: 𝐺 = 𝑓(𝑄, 𝐺, 𝐸, 𝐷, 𝑋𝑚, 𝑐). Where, the random 

variables 𝑿 are divided into variables of loads and actions 𝑄, permanent loads 𝐺, material 

properties 𝐸, geometrical parameters 𝐷 and model uncertainties 𝑋𝑚. The variable 𝑐 takes into 

account the influence of constants in the limit state function. 

With the limit state function expressed as 𝐺(𝑿), the generalization of the expression for the 

probability of failure becomes: 

 𝑝𝑓 = 𝑃[𝐺(𝑿) ≤ 0] = ∫ … ∫ 𝑓𝑿(𝒙)𝑑𝒙

𝐺(𝑿)≤0

 (2.52) 

Where, the joint density function 𝑓𝑿(𝒙), becomes integrated over the space of limit state 

violation 𝐺(𝑿) ≤ 0, as is equal to the failure domain D in figure 2.8.  

If the basic variables are independent, the expression for the joint density function is equal to 

the product of the marginal density function for all the variables, see (2.16).  

If the basic variables are dependent, the complexity increases and the concept of conditional 

probability needs to be included, see (2.15). 

There are essentially three ways of solving the multi-dimensional integration in (2.52): 

1. Direct integration: This is possible only for some few special cases.  

2. Transformation of the integrand to establish remarkable properties to determine 

(approximately) the probability of failure. So-called “First Order Second Moment” 

methods. 

3. Numerical integration: Simulate values to perform the integration required, such as the 

Monte Carlo simulation. 

In the following sections, the three methods are further explained and performed by analysing 

structural problems.  

 

2.8  Direct integration 
 

For some special cases, the convolution integral (2.44) is possible to solve analytically. The 

method introduce a new parameter called the reliability index (safety index). The concept of 

reliability index 𝛽, was invented by the American Professor C. A. Cornell [13], hence the 

method is also named the method of Basler/Cornell (Basler invented the method in notation of 

Cornell). The index is a measure of the safety level for an element considered and has 

subsequently been improved in different ways. 
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The main concept of the method is to establish a random variable for the safety aspects with 

known distribution parameters. The random variable M, called the safety margin, is assumed 

to be normal distributed and is equal to the limit state function:  

 𝑀 = 𝐺(𝑿) (2.53) 

 

and can be seen in figure 2.10   

 

Figure 2.10: Shows the problem with its variables R, S and M [6]. 

The reliability index 𝛽, is the distance between the failure domain and the mean value of the 

structure measured in standard deviations, as can be seen in the lower diagram in figure 2.10. 

From this observation following formula for the reliability index can be derived: 

 𝛽 =
𝜇𝑀

𝜎𝑀
 (2.54) 

Where 𝜇𝑀 and 𝜎𝑀 are the mean values and standard deviation for the safety margin, 

respectively. These distribution parameters can be calculated by using computational rules 

and the distribution parameters for the basic variables.  

 𝜇𝑀 = 𝜇𝑅 − 𝜇𝑆 (2.55) 

 

 𝜎𝑀
2 = 𝜎𝑅

2 + 𝜎𝑆
2 − 2𝜌𝑅𝑆𝜎𝑆𝜎𝑅 (2.56) 

Where, 𝜌𝑅𝑆 is the correlation coefficient for the two variables. 

If the random variables are uncorrelated, i.e. 𝜌𝑅𝑆 = 0, the variance for the safety margin is 

equal to: 

 𝜎𝑀
2 = 𝜎𝑅

2 + 𝜎𝑆
2 (2.57) 
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From the reliability index 𝛽, the probability of failure can be estimated by using the following 

equation: 

 𝑝𝑓 = Ф(−𝛽) (2.58) 

Where Ф( ) is the standard normal distribution function, with zero mean and unit variance. 

Values for the cumulative distribution function, for different input values of 𝛽, are tabulated 

in appendix B. It is important to note that the probability of failure is obtained from the 

standard normal distribution, hence the results will only be exactly for normally distributed 

variables.  

In the following, an example is performed in order to give a better understanding of the 

procedure of the method.  

  

2.8.1  Example 2.1  
 

Consider a simple supported beam (shown in figure 2.11), applied by one single load variable 

𝑆 resisted by one resistance variable 𝑅. 

The random variables 𝑅 and 𝑆 are normally distributed, with mean value and standard 

deviation equal to: 

𝑅~𝑁(10𝑘𝑁𝑚, 2.25𝑘𝑁𝑚) 

𝑆~𝑁(3𝑘𝑁, 1𝑘𝑁) 

The structure fails if the bending moment from the load 𝑆 exceeds the bending capacity 𝑅. 

The applied bending moment can be estimated from following formula, see [10]: 

 𝑀𝐸𝑑 =
𝑆 ∙ 𝐿

4
 (2.59) 

Where 𝐿 is the length of the beam and is deterministic equal to 5 m.  

Figure 2.11: Simple supported beam with length L, loaded by a concentrated load S. 
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Consequently, following failure limit state equation can be established: 

 𝐺 = 𝑅 −
5 ∙ 𝑆

4
= 0 (2.60) 

 

The safety margin equals the limit state function, hence the safety margin equals: 

 𝑀 = 𝑅 −
5 ∙ 𝑆

4
 (2.61) 

 

With distribution parameters equal to:  

 𝜇𝑀 = 𝜇𝑅 −
5 ∙ 𝜇𝑆

4
= 10 −

5 ∙ 3

4
= 6.25 𝑘𝑁𝑚 (2.62) 

 

 𝜎𝑀
2 = 𝜎𝑅

2 + (
5 ∙ 𝜎𝑆

4
)2 = 2.252 +

25

16
∙ 12 = 3.81 𝑘𝑁𝑚 (2.63) 

From these distribution parameters, the safety index 𝛽 is estimated, hence the probability of 

failure is determined. 

 𝛽 =
𝜇𝑀

𝜎𝑀
=

6.25

√3.81
= 3.20    ⇔    𝑝𝑓 = 𝛷(−3.20) = 7 ∙ 10−4 (2.64) 

 

2.9  Second – Moment and Transformation Methods 
 

The integration of (2.52) cannot be solved analytically except for some special cases. In order 

to solve the integral, methods to simplify the integration process have developed. A dominant 

and well-known method is described in the following section. 

The method bypassing the integration of (2.52) by transforming the integrand 𝑓𝑿(𝒙) to a 

multi-normal probability density function, and then preform reliability estimations in 

accordance with the procedure stated in section 2.8.  

The reliability estimation is carried out by combining the first two moments of each variable 

i.e. mean value and standard deviation, hence the name Second-Moment method. This way of 

calculating the reliability index provides only exact probability of failure if the random 

variables are normal distributed. When the variables have other distribution, the procedure 

only provide a nominal failure probability.  

 

2.9.1  The method of Hasofer and Lind 
 

The method of Hasofer and Lind is a state-of-the-art in reliability analysis, because of the 

wide area of application.  
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The method relay on the work of Basler/Cornell, i.e. the reliability index estimation (section 

2.8). The main difference is that the method of Hasofer and Lind transform the limit-state 

function into a standard normal space before calculation of the reliability index. The 

transformation process is shown in (2.28). By doing the transformation, the ability to solve 

complex limit state functions are possible. The transformation is done by standardised the 

variables in the limit state function. See [14], for a more extended version of the method.  

An example is performed in order to illustrate the method. 

 

2.9.2  Example 2.2  
 

Again, consider the simple supported beam in figure 2.11.   

Now, assume that the limit state function consists of only two random variables 𝑅 and 𝑆: 

 𝐺 = 𝑅 − 𝑆 (2.65) 

Where 𝑅 is the resistance capacity and 𝑆 is the applied loading, both measured in [𝑘𝑁]. 

The variables 𝑅 and 𝑆 are transformed into standardised variables 𝑈1 and 𝑈2, by using the 

following formulas: 

 𝑈1 =
𝑅 − 𝜇𝑅

𝜎𝑅
        →         𝑅 = 𝑈1 ∗ 𝜎𝑅 + 𝜇𝑅 (2.66) 

 

 𝑈2 =
𝑆 − 𝜇𝑆

𝜎𝑆
        →         𝑆 = 𝑈2 ∗ 𝜎𝑆 + 𝜇𝑆 (2.67) 

 

The new variables 𝑈1 and 𝑈2 are standard normal distributed with mean value equal to zero 

and standard deviation equal to one. The expression for the variables 𝑅 and 𝑆 are inserted into 

the limit state function, which will lead to a limit state function consisting only of the standard 

normal distributed variables 𝑈1 and 𝑈2: 

 
𝐺 = 𝑅 − 𝑆 

                                              = (𝑈1 ∙ 𝜎𝑅 + 𝜇𝑅) − (𝑈2 ∙ 𝜎𝑆 + 𝜇𝑆) 

                                                = (𝜇𝑅 − 𝜇𝑆) + 𝑈1 ∙ 𝜎𝑅 − 𝑈2 ∙ 𝜎𝑆 

(2.68) 

 

The safety index 𝛽 can now be obtained analytical or graphic.  

Analytical estimation of 𝛽 is done by using the method of Basler/Cornell, see (2.54), where 

the moments of the safety margin is equal to: 

 𝜇𝑀 = (𝜇𝑅 − 𝜇𝑆) + 𝜇𝑈1
∙ 𝜎𝑅 − 𝜇𝑈2

∙ 𝜎𝑆 (2.69) 

 

 𝜎𝑀 = √(𝜎𝑈1
∙ 𝜎𝑅)2 + (𝜎𝑈2

∙ 𝜎𝑆)2 (2.70) 
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Since the two random variables are independent and normal distributed and the limit state 

function is linear, no transformation is needed. Thus, the probability of failure can be 

calculated from (2.58). 

Graphic estimation of 𝛽 is best illustrated by figure 2.12.  

The limit state function is transformed into the standard normal space, represented with the 

standardised variables 𝑈1  and 𝑈2. The limit state equation 𝐺 = 0 separates the failure domain 

from the safety domain. The reliability index 𝛽 is defined as the shortest way from origin to 

the limit state equation 𝐺 = 0. Least square sentences are a helpful tool in finding the safety 

index 𝛽.  

The point at the limit state equation closest to the origin is called the design point. The 

coordinates for the design point can be estimated from the reliability index and the sensitivity 

index 𝛼 for each normal distributed variables 𝑈𝑖: 

 𝑢𝑖
∗ = 𝛽 ∙ 𝛼𝑖 

(2.71) 

Where, the sensitivity index 𝛼 is a measure of the contribution of each variable in the limit 

state function and may be establish from following formula: 

 𝛼𝑖 =
𝑐 ∙ 𝜎𝑖

𝜎𝑀
 (2.72) 

 

Notice, that the term 𝑐 in the formula represent the constant variable related to the variable 𝑖. 

In example 2.1, 𝑐 =
5

4
.  

 

Figure 2.12: Shows plot of the marginal and bivariate pdf, along with limit state 

function in standard normal space [6]. 
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In original coordinates, the design point is equal to: 

 𝑥𝑖
∗ = 𝑢𝑖

∗ ∙ 𝜎𝑖 − 𝜇𝑖 (2.73) 

 

The method explained above is only valid for linear limit state functions, with independent, 

normally distributed variables. For other limit-state functions, the method is just an 

approximation. In the upcoming sections, an extended version of the Hasofer and Lind 

method is presented.  

 

2.9.3  Extensions of the Hasofer and Lind method 
 

The extension of the Hasofer and Lind method includes the facts that a limit state function: 

1. May contain more than two variables 

2. May not be linear 

3. May contain variables with any kind of distributions 

More than two variables 

When a limit state function contains more than two variables, it is generally written as: 

 𝐺 = 𝑎0 + ∑ 𝑎𝑖 ∙ 𝑋𝑖 

𝑛

𝑖=1

 (2.74) 

Where, 𝑎0 denotes the constant term, while 𝑎𝑖 represent the factor multiplied with the random 

variable 𝑋𝑖. 𝑋𝑖 is a given basic variable with distribution parameters 𝜇𝑖 and 𝜎𝑖.  

The reliability index 𝛽 and the failure of probability 𝑝𝑓 are found by (2.54) and (2.58). Where 

𝜇𝑀 and 𝜎𝑀 are estimated from following equations: 

 𝜇𝑀 = 𝑎0 + ∑ 𝑎𝑖 ∙ 𝜇𝑖

𝑛

𝑖=1

 (2.75) 

 

 𝜎𝑀 = √∑(𝑎𝑖 ∙ 𝜎𝑖)2

𝑛

𝑖=1

 (2.76) 

 

Non-linear limit state function 

For non-linear limit state functions, the concept of Taylor series and iteration are used. The 

limit state function is approximate as a Taylor series. 

 𝐺 ≈ 𝐺(𝑥𝑖
∗) + ∑(𝑋𝑖 − 𝑥𝑖

∗) ∙
𝜕𝐺

𝜕𝑋𝑖
|∗ + ⋯

𝑛

𝑖=1
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 ≈ 𝐺(𝑥𝑖
∗) − ∑ 𝑥𝑖

∗ ∙
𝜕𝐺

𝜕𝑋𝑖
|∗

𝑛

𝑖=1

+ ∑ 𝑋𝑖 ∙
𝜕𝐺

𝜕𝑋𝑖
|∗

𝑛

𝑖=1

 (2.77) 

 

Further simplification of the equation leads to:  

 𝐺 ≈ 𝑎0 + ∑ 𝑎𝑖 ∗ 𝑋𝑖

𝑛

𝑖=1

 (2.78) 

 

Where the terms 𝑎0 and 𝑎𝑖 are expressed in the following equations: 

 𝑎0 = 𝐺(𝑥𝑖
∗) − ∑ 𝑎𝑖 ∙ 𝑥𝑖

∗

𝑛

𝑖=1

 (2.79) 

 

 𝑎𝑖 =
𝜕𝐺

𝜕𝑋𝑖
|∗ (2.80) 

 

Approximation of this kind, using only the first order term of the Taylor series, is called the 

First Order Reliability Method (FORM). Consequently, if approximation including the second 

order term as well, the method is known as the Second Order Reliability Method (SORM).  

The sensitivity factor α can be found by using the terms 𝑎𝑖 from the Taylor approximation and 

the standard deviations of the variable 𝑖. The safety margin 𝑀 = 𝐺:  

 𝛼𝑖 =
𝑎𝑖 ∙ 𝜎𝑖

𝜎𝑀
 (2.81) 

 

The sensitivity factor 𝛼 and the reliability index 𝛽 determine the fractile-value for the 

variable. Consequently, (together with the distribution parameters for the variable) design 

point values for the variables can be estimated by the following formula: 

 𝑥∗ = 𝜇𝑋 − 𝛼𝑋 ∙ 𝛽 ∙ 𝜎𝑋 (2.82) 

 

Notice, the sensitivity index is positive for load variables, while it is negative for resistance 

variables.  

After approximation of the non-linear limit state function, the iteration process in order to 

obtain the optimal design point starts. First the design point 𝑋∗ or the starting point for the 

iteration process is chosen. The mean or characteristic values of the variables are often used.  

From the design point it is possible to calculate the mean value and standard deviation of the 

safety margin, reliability index, sensitivity index, and hence a new design point from the 

formulas mention above. The iteration process becomes as follows: 

1. Determine design point (𝑋∗). Starting point values in first iteration. 



Ch. 2 Statistics and structural reliability 

 

33 
 

2. Calculate the values of 𝑎0 and 𝑎𝑖 by inserting values from step 1 into (2.79) and 

(2.80). 

3. Estimate 𝜇𝑀 and 𝜎𝑀  from (2.75) and (2.76) 

4. Calculate 𝛽 from estimates in step 3 and (2.54). 

5. Calculate 𝛼𝑖 from (2.81) and previously estimates of the parameters 𝜎𝑀, 𝜎𝑖 and 𝑎𝑖. 

6. Calculate a new design point from (2.82).  

The iteration process goes on until the deviation between prior and posterior reliability index 

β convergence against zero. When this is done the failure of probability is found from (2.58). 

Non-normally distributed variables 

Non-normally distributed variables are often entering in structural reliability analysis. There 

are two main approaches for estimating the reliability index, when the variables are non-

normally distributed:  

1. Tail approximation 

2. Transformation into standard-normal space 

The latter approach consists of a transformation of all variables into the standard normal 

space. This transformation is mentioned earlier in this section (2.9.1 and 2.9.2). Such 

transformation often results in complex non-linear limit state functions.  

The tail approximation replaces the original distribution by an equivalent normal distribution 

at the design point. To make the approximation valid, the equivalent normal density and 

distribution function needs to be equal to the origin distribution functions at the design point.  

 𝐹𝑋(𝑥∗) = 𝐹𝑋
𝑁(𝑥∗) (2.83) 

 

 𝑓𝑋(𝑥∗) = 𝑓𝑋
𝑁(𝑥∗) (2.84) 

 

The equivalent normal distribution parameters are obtained from the following formulas: 

 𝜇𝑋
𝑁(𝑥∗) = 𝑥∗ − 𝜎𝑋

𝑁(𝑥∗) ∙ 𝛷−1(𝐹𝑋(𝑥∗)) (2.85) 

 

 𝜎𝑋
𝑁(𝑥∗) =

1

𝑓𝑋(𝑥∗)
∙ 𝜑(𝛷−1(𝐹𝑋(𝑥∗))) (2.86) 

 

These normal distribution parameters are used in further calculation of the reliability index 

and failure probability. Such calculations are performed by using equations as mentioned 

previously in this section.   

 

2.9.4  Example 2.3 
 

Consider a beam loaded by a concentrated force 𝑃 as shown in figure 2.13.  
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Figure 2.13: Rigidly clamped beam loaded by concentrated load P. 

The beam fails if the maximum deflection 𝑢𝑚𝑎𝑥  from 𝑃 exceeds the deflection failure 

criterion [7]:  

 𝑢𝑚𝑎𝑥 ≥
1

30
𝑙 (2.87) 

 

The maximum deflection of the beam can be found from following formula, see [10]: 

 𝑢𝑚𝑎𝑥 =
5

48

𝑃𝑙3

𝐸𝐼
 

(2.88) 

Where, 𝑃 is the concentrated load, 𝑙 is the length of the span, 𝐸 is the modulus of elasticity 

and 𝐼 is the relevant moment of inertia. 

Assume that 𝑃, 𝐼 and 𝐸 are uncorrelated random variables with mean values and standard 

deviations equal to: 

𝑃~𝐺𝑢𝑚𝑏𝑒𝑙(4 𝑘𝑁, 1 𝑘𝑁) 

𝐸~𝑁𝑜𝑟𝑚𝑎𝑙(2 ∙ 107
𝑘𝑁

𝑚2
 , 0.5 ∙ 107

𝑘𝑁

𝑚2
) 

𝐼~𝑁𝑜𝑟𝑚𝑎𝑙(10−4 𝑚4, 0.2 ∙ 10−4 𝑚4) 

The length of the beam is deterministic and equal to 𝑙 = 5m. By inserting the length into 

(2.87) and (2.88), the limit state equation of the beam becomes: 

 𝐺 = 𝐸𝐼 − 78.12𝑃 ≤ 0 (2.89) 

 

The basic variables are then standardized by using Hasofer/Lind transformation as in example 

2.2. This lead to following limit state function: 

 𝐺 = (10−4 + 0.2 ∙ 10−4𝑈1)(2 ∙ 107 + 0.5 ∙ 107𝑈2) − 78.12(𝜇𝑃
𝑁 + 𝜎𝑃

𝑁𝑈3) = 0 (2.90) 

Where the standard normal distributed variables 𝑈1, 𝑈2 and 𝑈3 represent the basic variables 

𝐼, 𝐸 and 𝑃, respectively.  

The safety margin equals the limit state function obtained in (2.90), hence: 

 𝑀 = (10−4 + 0.2 ∙ 10−4𝑈1)(2 ∙ 107 + 0.5 ∙ 107𝑈2) − 78.12(𝜇𝑃
𝑁 + 𝜎𝑃

𝑁𝑈3) (2.91) 
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Distribution parameters of the safety margin, i.e. mean value and standard deviation, provides 

values of the reliability index according to (2.54).   

The basic variable P is Gumbel distributed, thus a transformation into a normal distributed 

variable with mean value 𝜇𝑃
𝑁 and standard deviation 𝜎𝑃

𝑁 is needed. The parameters are found 

by using the formula (2.85), (2.86) and value for the design point. Design point corresponding 

to the Gumbel distribution is estimated by inverting the formula in (2.32): 

 𝑢3
𝐺 = 𝐹𝑃

−1(𝐹𝑁(𝑢3)) = 𝐹𝑃
−1(Ф(𝑢3)) (2.92) 

 

and inserting the design point value for the standard normal distributed variable 𝑢3.  

96% and 4% fractile values are assumed to be the starting point for the standardized 

variables. This corresponding to stating point values equal to 𝒖 = ±1.74 (negative value for 

resistance variables, positive value for the load variable). From this starting point following 

parameter values for the normal distributed variable 𝑃 are obtained: 

 
𝑢3

𝐺 = 𝐹𝑃
−1(1.74) = 6.03 

𝜇𝑃
𝑁 = 3.05 

𝜎𝑃
𝑁 = 1.71 

(2.93) 

 

Since the problem consist of a non-linear limit state function an iterative process, with steps 

as stated in non-linear limit state function, it needs to be performed in order to estimate the 

reliability index. Values from the iteration process is shown in figure 2.14. 



Ch. 2 Statistics and structural reliability 

 

36 
 

The values tend to converge against a solution after approximately 6 iterations, as can be seen 

in figure 2.14. The reliability index becomes equal to approximately 3.32, which give a 

probability of failure of: 

 𝛽 = 3.32 →  𝑝𝑓 = Ф(−𝛽) = 4.5 ∙ 10−4 (2.94) 

Further, values of the sensitivity index 𝛼𝑖 becomes: 

Random variable Sensitivity factor 𝜶𝒊 

Moment of inertia, 𝐼 −0.18 

Modulus of elasticity, 𝐸 −0.96 

Concentrated load, 𝑃 0.20 

Table 2.1: Estimated values for the sensitivity factors 𝛼𝑖. 

The values of the sensitivity factors indicate that modulus of elasticity has a significant 

contribution of impact in the limit state function, while the relevant moment of inertia and the 

concentrated load have less contribution in the limit state function, provided values for the 

variables given in this example.   

 

2.10  Numerical iteration 
 

Numerical iteration may solve complex problems where more than two variables are involved 

and/or dependency between the variables exists. Still there is some cons related to the 

Figure 2.14: Excel script of the iteration process. Figure 2.14: Excel script from the iterative calculation. 
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numerical solution tool. Growth of round-off errors and excessive computation times when 

the dimensions of the integration increases. 

Since limit state functions tend to be more general than a linear function and that the variables 

rarely are normal distributed, methods to deal with this problem are developed. Because of the 

increase in dimensions causes increasing computational effort, numerical methods to deal 

with large integration problems are developed. These methods are simulations or Monte Carlo 

methods. In the following section, different Monte Carlo methods are explained. 

 

2.10.1 Monte Carlo Methods 
 

Monte Carlo methods are used in cases where the complexity makes the use of other methods 

too difficult and time-consuming. By using a high number of samples, the accuracy may 

increase as the estimation of failure of probability occurs. 

The Monte Carlo method is based on measurements of the limit state violation, i.e. when 

𝐺(𝑿 ≤ 0). In order to estimate the probability of failure, values for the basic variables are 

generated and inserted into the limit state function. An index 𝐼 is made to count for every 

violation of the limit state function.  

The probability of failure is found from the following equation. 

 𝑝𝑓 =
# 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

# 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
=

𝐼

𝑛
 (2.95) 

Where, 𝑛 is the number of simulations conducted. 

This way of estimating the probability of failure is called Crude Monte Carlo simulation and 

is the most familiar of the Monte Carlo methods. The method strongly depends on the 

computational effort of the computer programs in order to get accurate results (high number 

of simulations). Because of this, extensions of the method have been developed in order to get 

acceptable results with reduce computational effort.   

Important sampling 

Important sampling is a more efficient approach of the Monte Carlo method, which can bring 

enormous gains by reducing the number of simulations needed for an acceptable result. The 

essence of the method: 

 “… take draws from an alternative distribution whose support is concentrated in the 

truncation region.”[15]  

Principle is to drawn values from specific intervals that are more valuable than others are 

(they give greater function values), which result in a more accurate result. A probability curve 

𝑝(𝑥) may be established to indicate the intervals of greater impact. The principle is: 

 𝐼 = ∫ 𝑥 ∙ 𝑓(𝑥) 𝑑𝑥

𝐹

= ∫
𝑓(𝑥)

𝑝(𝑥)
𝑃

∙ 𝑝(𝑥)𝑑𝑥  (2.96) 

Where ∫ 𝑝(𝑥)𝑑𝑥 = 1. 
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Confidence interval 

Deviations of the obtained failure probability might occur, because of the inherent uncertainty 

related to the simulation method. The variation in the results, however, decreases as the 

number of simulations increases. In order to obtain result within acceptable limits confidence 

intervals for the estimator 𝑝𝑓 are applied. 

Confidence interval gives an upper and lower limit for the estimated parameter. An 

approximated (1 − 𝛼) ∙ 100% confidence interval for 𝑝𝑓 can be estimated from: 

 𝐶− ≤ 𝑝𝑓 ≤ 𝐶+ (2.97) 

 

The limits 𝐶± are established from: 

 𝐶± = 𝑝𝑓 ± 𝑧𝛼
2

𝜎𝑝𝑓
 (2.98) 

Where, 𝑧𝛼

2
 is a critical value in the standard normal distribution, values for the parameter is 

tabulated in appendix B. 

The standard deviation of the estimated probability of failure 𝜎𝑝𝑓
 can be found from: 

 
𝜎𝑝𝑓

= √
𝑝𝑓(1 − 𝑝𝑓)

𝑛
 

(2.99) 

 

The number of simulations 𝑛, needed in order to achieve acceptable results, might be obtained 

by taking advantage of the concept coefficient of variation (2.11) and rewrite the formula 

above: 

 𝑛 =
1 − 𝑝𝑓

𝑝𝑓 ∙ 𝐶𝑂𝑉2
 (2.100) 

 

It is assumed that the mean value of the probability of failure is equal to the estimated 

probability of failure, i.e. 𝜇𝑝𝑓
= 𝑝𝑓. In almost every large and complex structures, probability 

of failure is small enough to assume: 1 − 𝑝𝑓 ≈ 1. 

Consider a beam similar to figure 2.13. Assume that the estimated probability of failure is 

approximately equal to 𝑝𝑓 ≈ 10−7, and the coefficient of variation is equal to 𝜌𝑝𝑓
=  0.1. By 

using the formula in (2.100), 𝑛 ≈ 109 simulations are needed in order to achieve acceptable 

results of the standard deviation 𝜎𝑝𝑓
. 

Generation of basic variables 

The number generation described in this section is only valid for a single variable with known 

probability distribution and distribution parameters. 
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Values of the basic variable are generated by using a computer program with a random 

number generator, e.g. MATLAB or Excel. The random number generator produce random 

numbers 𝑛𝑖 between zero and one. Values for the variable are estimated by invert the 

cumulative distribution function 𝐹𝑋(𝑥) for the variable and make use of the produced random 

number 𝑛𝑖: 

 𝑥𝑖 = 𝐹𝑋
−1(𝑛𝑖) (2.101) 

 

Figure 2.15 shows this. 

The distribution function related to the variable account for the characteristics about the 

distribution, i.e. generated values for a normal distributed variable, with mean equal to zero, 

tend to be around zero. The reason for this is that the cumulative distribution function decide 

the outcome of the variable value. If the slope is steep at an interval [𝑎, 𝑏] at the vertical axis, 

all generated numbers within the interval will cause approximately the same values for the 

variable. Figure 2.16 shows the variation in values from the same generated number for two 

different distributions. 

Figure 2.15: Generation of random variables. The CDF fits the lognormal distributed variable R of the example 2.4 in sec. 
2.10.1 

Figure 2.15: Generation of random variables. The cdf fits the lognormal distributed variable 

R of the example 2.4 in section 2.10.1 
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Figure 2.16: Cdf for normal distributed variable X, with different variances (steep and gentle 

slope). 

 

2.10.2 Example 2.4 
 

Once more, a simply supported beam with load effect 𝑆 and resistance capacity 𝑅 is 

considered.  

 

Figure 2.17: Simply supported beam with concentrated load S and length L. 

Now assume that the resistance 𝑅 is Log Normal distributed and the load effect 𝑆 is Gumbel 

distributed, with following distribution parameters:  

𝑅~𝐿𝑜𝑔 𝑁(5.87 , 0.03) [𝑀𝑃𝑎] 

𝑆~𝐺𝑢𝑚𝑏𝑒𝑙(100 , 10)[𝑘𝑁] 
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The beam is assumed to fail if the moment from the applies load 𝑃 exceeds the resistance 

capacity, see [10]: 

 𝐺(𝑅, 𝑆) = 𝑅 ∙ 𝑊 − 
𝑆𝐿

4
≤ 0 (2.102) 

Where 𝑊 is the section modulus and 𝐿 is the length of the beam and is deterministic 𝐿 = 5𝑚.  

Values for the variables 𝑅 and 𝑆 are generated by using the method stated above (section 

2.10.1 generation of basic variables). The generalizations 𝑟 and 𝑠 are thus inserted in the limit 

state function: 

 𝐺(𝑟, 𝑠) = 𝑟𝑖 ∙ 𝑊 −
𝑠𝑖 ∙ 𝐿

4
 (2.103) 

 

This procedure is repeated 106 times. In 139 cases failure occur, hence the probability of 

failure becomes: 

 𝑝𝑓 =
139

106
= 1.39 ∙ 10−4 (2.104) 

 

2.10.3 Enhanced Monte Carlo method 
 

The method was presented by Næss et al. at Department of Mathematical Sciences, NTNU. 

“The aim of this method is to reduce computational cost while maintaining the advantages of 

crude MC simulation…” [17] 

The main idea behind the method is to enable prediction of the probability of failure by 

utilizing available results, i.e. making a function in order to predict the probability of failure. 

A brief presentation of the method is presented in the this section.   

Probability of failure is equal to the probability of limit state violation, 𝑝𝑓 = 𝑃(𝑀 ≤ 0). In 

order to obtain the probability of failure, when large number of simulation is required, a 

“reduced” limit state function is created: 

 𝑀(𝜆) = 𝑀 − 𝜇𝑀(1 − 𝜆) (2.105) 

Where 𝜆 is a scaling factor between zero and one. Consequently, the probability of failure for 

the new limit state function is equal to: 

 𝑝𝑓(𝜆) = 𝑃[𝑀(𝜆) ≤ 0] (2.106) 

 

As can be seen from (2.105), 𝑀(1) = 𝑀, hence 𝑝𝑓(𝜆 ≠ 1) > 𝑝𝑓. This indicate that less 

simulations 𝑛 is needed in order to obtain failure probabilities for the reduced limit state 

function, provided that 𝜆 < 1.  

Crude Monte Carlo method often requires large number of simulations 𝑛 in order to achieve 

acceptable results, when the probability of failure are approaching zero (small values). This 
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makes the method time-consuming and comprehensive, hence Enhanced Monte Carlo method 

is preferred used.   

The probability of failure is assumed to behave as follows: 

 𝑝𝑓(𝜆) ≈ 𝑞 ∙ exp {−𝑎(𝜆 − 𝑏)𝑐} (2.107) 

 

When 𝜆 → 1, the probability of failure converge against the true solution. 𝑞, 𝑎, 𝑏, 𝑐 are 

unknown parameters, which can be estimated by using a number 𝑖 ∈ {1, … , 𝑚} of known data 

point for different values of 𝜆, i.e. (𝜆𝑖, 𝑝𝑓(𝜆𝑖)). The parameters are optimized by minimizing 

the mean square error function on the log level, i.e. minimizing the sum of following function 

for all data point 𝑚.  

 𝐹(𝑞, 𝑎, 𝑏, 𝑐) = ∑ 𝑤𝑖 (log (𝑝𝑓(𝜆𝑖)) − log(𝑞) + (𝑎(𝜆𝑖 − 𝑏)𝑐)2

𝑚

𝑖=1

 (2.108) 

 

𝑤𝑖 is a weighting factor, which emphasis more reliable data point and prevents the 

heteroscedasticity of the estimation problem at hand. In the following calculations, the 

weighting factor is assumed to be calculated by following equation: 

 𝑤𝑖 = (log 𝐶+(𝜆𝑖) − log 𝐶−(𝜆𝑖))−2 (2.109) 

 

𝐶±(𝜆𝑖) is the upper and lower limit related to the confidence interval for the estimator 𝑝𝑓. 

Formula for the confidence interval is given in (2.98).  

As follows from the mean square error function, if 𝑝𝑓(𝜆𝑖) = 0 the minimizing process will 

stop. Thus, lower values of 𝜆 need to be chosen. The minimization of the mean square error 

function is performed with a Levenberg–Marquardt least squares optimization method 

included in the MATLAB function lsqnonlin [18]. For a more extensive presentation of the 

Enhanced Monte Carlo method, see [16]. 

 

2.10.5 Example 2.5  
 

Assume a simply supported beam, as seen in figure 2.17, exposed to a concentrated 

force 𝑆~𝑁(50,5). The beam has a resistance capacity 𝑅~𝑁(100,10) and a correlation 

coefficient 𝜌𝑅𝑆 ∈  {0 , 0.3}.  

In order to obtain the reliability index and the probability of failure of the beam, an analytical 

solution as well as a Crude Monte Carlo simulation and an Enhanced Monte Carlo simulation 

are performed. 

Analytical solution 



Ch. 2 Statistics and structural reliability 

 

43 
 

Since the two random variables are normally distributed, an analytical solution of the 

convolution integral in (2.44) is possible in order to obtain the probability of failure. The 

calculation is straightforward according to the procedure stated in section 2.8. Result from the 

calculation is given in table 2.2. 

𝝆𝑹𝑺 𝟎 𝟎. 𝟑 

𝛽 4.47 5.13 

𝑝𝑓 3.85 ∙ 10−6 1.45 ∙ 10−7 

Table 2.2: Results for the reliability index and probability of failure from the analytical 

solution. 

The result shows that the probability of failure decrease with increasing positive correlation 

between the variables. With other words positive correlation reduces the chance of load 𝑆 

exceed the resistance 𝑅.  

Crude Monte Carlo 

Crude Monte Carlo simulation is performed according to section 2.10.1, by using a simple 

MATLAB script. MATLAB possess a random number generation tool, which generate values 

for the basic variables in the limit state function. 108 simulations are used and table 2.3 shows 

the results.  

𝝆𝑹𝑺 𝟎 𝟎. 𝟑 

𝛽 4.48 5.09 

𝑝𝑓 3.75 ∙ 10−6 1.8 ∙ 10−7 

𝐶𝐼95% ±10.1% ±46.2% 

Table 2.3: Reliability index, probability of failure and 95% confidence intervals calculated 

using 𝑛 = 108 simulations.   

The results from the Crude Monte Carlo simulations are consistent with the theoretical results, 

but 𝜌𝑅𝑆 = 0.3 give some deviations in the confidence interval.  

Enhanced Monte Carlo 

Enhanced Monte Carlo simulation is preformed according to the procedure stated in section 

2.10.3. 106 − 107 simulations are preformed in order to obtain result in accordance with 

theoretical and Crude Monte Carlo simulation. Accuracy might have been improved by 

increasing the number of simulations, but shows the advantages of computational effort 

related to the method. Results from the simulation are shown in table 2.4. 

𝝆𝑹𝑺 𝟎 𝟎. 𝟑 

𝛽 4.47 5.15 

𝑝𝑓 3.85 ∙ 10−6 1.31 ∙ 10−7 

𝐶𝐼95% ±99.8% > ±100% 

𝑁𝑠𝑖𝑚 106 107 

Table 2.4: Reliability index, probability of failure, 95% confidence interval calculated using 

𝑛 = 106 𝑎𝑛𝑑 107. 

The result clearly shows that the method provide result within acceptable limits with a smaller 

number of simulation than the Crude Monte Carlo simulation. When complex problems are 
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considered, this is a valuable property in order to obtain acceptable result without spending 

too much effort in computational work.  

The confidence interval, however, are much larger for the Enhanced Monte Carlo Method 

compared to the Crude Monte Carlo method. The reason for this is that the confidence 

intervals for the Enhanced Monte Carlo is not centred around the probability of failure, it is 

extrapolated in the same way as for the extrapolation curve. First confidence intervals for the 

different values of 𝜆𝑖 , 𝑖 ∈ {1, … , 𝑚} are estimated in order to calculate the weighting 

factor 𝑤𝑖 used in estimation of the parameters 𝑞, 𝑎, 𝑏, 𝑐. Then new confidence interval for the 

obtained extrapolation curve 𝐹(𝑞, 𝑎, 𝑏, 𝑐, 𝜆) are estimated for calibration of new extrapolation 

curves for the confidence intervals. Because of these repetitive procedures, values of the 

confidence intervals often become greater than the ordinary confidence intervals related to 

Crude Monte Carlo simulation.  

 

Figure 2.18: The extrapolation curve of the enhanced method, when 𝜌 = 0.3. Blue dots are 

𝑝𝑓(𝜆), black and red curves estimate failure probability and confidence limits, respectively. 

 

2.11  Deriving partial safety factors 
 

Structural reliability analysis involves many uncertainties and constraints. The safety factors 

consider these uncertainties when deriving reliability index or dimensions. Partial safety 

factors are denoted ϒ in reliability analysis, and is a tool to adjust the limit state function in a 

wanted direction.   

Partial safety factors are standardized in structural codes. The factors are derived from 

investigations and calculation, to make the structures satisfy the requirements related to the 

safety aspects. The partial safety factors are conservative, which may result in an ineffective 

use of resources by overestimating the necessary resistance of the structures.  
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The safety factors are included in the limit state function by using the design values of the 

variables. Design value is mentioned in section 2.6. Using the limit state function in (2.65) as 

an example, following limit state function can be obtained: 

 𝐺 = 𝑅 − 𝑆   →     𝑔 = 𝑟𝑑 − 𝑠𝑑 =
𝑟𝑘

𝛾𝑅
− 𝑠𝑘 ∙ 𝛾𝑆 (2.110) 

 

The partial safety factors can be derived in different ways. The estimation of the factors often 

depends on the method used in solving the reliability problem.  

By using the method of Hasofer/Lind, the factors are estimated from the values related to the 

design point 𝑥∗. The design point is supposed to converge against the right solution, hence the 

design value. This leads to following expressions for the partial safety factors: 

 

𝑥𝑑 = 𝑥𝑖
∗ 

𝛾𝑠 ∙ 𝑥𝑘 = 𝜇𝑖 − 𝛼𝑖 ∙ 𝛽 ∙ 𝜎𝑖 

𝛾𝑆 =
𝜇𝑖 − 𝛼𝑖 ∙ 𝛽 ∙ 𝜎𝑖

𝑥𝑘
 

(2.111) 

 

The expression above is for load/action variables. For a resistance variable, the partial safety 

factor is found by flipping the expression, i.e. 𝛾𝑅 = 𝛾𝑆
−1. 

Sensitivity factors 𝛼𝑖 = ±{0.7 − 1} are assumed recommended by The Nordic Committee on 

Building Regulations (NKB, 1978) [9]. This, however, provides a 5% fractile value for the 

resistance variable when 𝛽 = {1.645 − 2.35}.  

Another way of estimating the partial safety factors is by using a “safety level”. The “safety 

level” is consistent with a given level of failure probability or more precisely a target 

reliability index 𝛽𝑡. Iteration process are needed in order to obtain estimates of 𝛽 equal to 𝛽𝑡. 

The partial safety factors are continuously updated with new values to make the reliability 

index 𝛽 converges toward 𝛽𝑡.  

Values for the 𝛽𝑡 is stated in codes and standards, see [20]. 

Optimization algorithms may be used for this purpose. 

 

2.12  Series and parallel systems 
 

Structures are often simplified as systems or combination of systems, to make the reliability 

calculations possible. A system is a pairing of several elements. An element is a part of the 

entire construction, which is capable of existing as a single unit. To investigate the entire 

system as a combination of several elements, the probability of failure for each element is 

necessary to know. There are two types of system: series and parallel system. 

Series system 
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If the entire system fails if one element fails, the system is a series system. The probability of 

failure for the entire system is equal to the probability of the union of elements in the system. 

By using the law of de Morgan [7], the expression for the system probability of failure is 

obtained from following equations: 

 
𝑃𝑓 = 𝑃(𝐸1 ∪ 𝐸2 ∪ ⋯ ∪ 𝐸𝑖 ∪ ⋯ ∪ 𝐸𝑛) 

         = 1 − 𝑃(�̅�1 ∩ �̅�2 ∩ ⋯ ∩ �̅�𝑖 ∩ ⋯ �̅�𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                         = 1 − ∏ (1 − 𝑝𝑓𝑖)
𝑛
𝑖=1     

(2.112) 

Where 𝑝𝑓𝑖  is the probability of failure for the element 𝑖, while capital 𝑃𝑓 is the probability of 

failure for the entire system. 

Notice, this expression is only valid if the elements are statistical independent. 

If the elements are perfectly correlated, the probability of failure for the entire system is equal 

to: 

 𝑃𝑓 = max [𝑝𝑓𝑖] (2.113) 

 

Parallel system 

If the entire system fails when all the elements in the system have failed, the system is a 

parallel system. When the elements are statistical independent, the probability of failure for 

the entire system is equal to the intersection of the probability of failure for all elements. 

 𝑃𝑓 = 𝑃(𝐸1 ∩ 𝐸2 ∩ ⋯ ∩ 𝐸𝑖 ∩ ⋯ 𝐸𝑛) = ∏ 𝑝𝑓𝑖

𝑛

𝑖=1

 (2.114) 

 

When the elements are perfectly correlated, the probability of failure for the entire system is 

equal to: 

 𝑃𝑓 = min [𝑝𝑓𝑖] (2.115) 

 

Upper and lower bounds 

From the above expressions for the system probability of failure, following upper and lower 

bounds for series and parallel system are obtained, respectively: 

 

max[𝑝𝑓𝑖] ≤ 𝑃𝑓 ≤ 1 − ∏ 𝑝𝑓𝑖

𝑛

𝑖=1

 

∏ ≤ 𝑃𝑓 ≤ min[𝑝𝑓𝑖]

𝑛

𝑖=1

 

(2.116) 

 

In practice, constructions are usually combination of several series and parallel systems.  
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3 Self-weight estimation 
 

All structures are exposed to some kinds of actions. Actions are “forces”, which affect the 

structure in a way that causes internal or external effects, such as deformations, stresses, 

material deterioration, etc. Forces arise from the surrounding environment and can be of 

natural character: wind, snow, rain, earthquake, temperature, etc. or it can be associated with 

human activities.  

In structural calculations, it is more common to use the term load instead of action. The 

reason for this is that action is a rather general concept, while the expression load is related to 

structural concerns. Since this thesis is of structural affair, the term load is preferred.  

This thesis will include estimations connected to structural components exposed to self-

weight loading. In order to obtain reliable data for the self-weight, simplifications of the 

structures are made.  A more detailed description of the simplification is presented latter in 

this chapter.  

 

3.1  Characterizing load 
 

Loads can be categorized in many different ways. In structural context, the loads are often 

divided into classes of durability:  

 Permanent loads: loads that occur during the entire (or nearly entire) reference period. 

 Variable loads: loads that variate with a high frequency in time.   

 Accidental loads: loads that occur very rarely at time. (Earthquake, fire, hurricane, 

etc.)      

 

3.2  Self-weight 
 

The self-weight of a structure is the weight of the structure itself and is characterized by the 

following three statements:  

 The probability of the load to occur at an arbitrary point-in-time is close or equal to 

one. 

 The uncertainties related to the magnitude of the load is negligible. 

 The variability over time is negligible. 

Since the variability over time is negligible, the self-weight is considered as being a 

permanent load. Because of the small variation in magnitude and occurrence, the self-weight 

can be estimated as a normal distributed load.  

The self-weight of a given component (structure) is estimated from following equation [19]:   
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 𝐺 = ∫ 𝜌 ∙ 𝑔 𝑑𝑉
𝑉

 (3.1) 

Where 𝐺, 𝜌 and 𝑉 is the self-weight (measured in force [𝑁]), density and volume of the 

component, respectively. 

 

3.2.1  Uncertainties 
 

Even though the variations of the magnitude of the load are negligible at one point of the 

structure, uncertainties related to the self-weight over the entire structure (or several 

structures) may arise. These uncertainties concern about following variations: 

 Variation inside one component 

 Variation between different components in the same structure 

 Variation between different structures 

A component is a part of the entire structure in this context, for example a floor in an office 

building. 

 

3.2.2  Density 
 

The density of a component is found by doing investigations of the material in the component.  

Material  Mean value [kN/m3] Coefficient of variation 

Steel 77 0.01 

Concrete 25 0.03 

Timber (pine) 5.1 0.1 

Timber (spruce) 4.4 0.1 

Table 3.1: Mean value and coefficient of variation for weight density [19]. 

Densities in different points within a component or structure might vary. The correlation 

between two points in a structure or a component is in this thesis estimated from the following 

formula [19]: 

 
𝜌(∆𝑟) = 𝜌0 + (1 − 𝜌0) ∙ 𝑒−(

∆𝑟
𝑑

)
2

 
(3.2) 

Where 𝜌0, ∆𝑟 and 𝑑 is correlation between two points far away from each other (in the same 

member), distance between the two points and correlation length, i.e. measure of the 

correlation structure, respectively. 

Due to the difficulties related to the estimation process of correlation within a component 

(element), general formulas for the correlation are invented, as shown in (3.2). By using this 

method of estimating the correlation between points within a component uncertainties arise.  

Parameters, i.e. correlation between two points far away 𝜌0 and correlation length 𝑑, in the 

formula need to be assumed either from judgement or obtained data, e.g. from tests, 
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investigation, codes and standards, etc. Hence, the results relay on the accuracy in the 

judgements of the parameter estimations.  

In addition, uncertainties arise as follows from the assumption of the general formula itself. 

The correlation estimated from (3.2) is assumed to behave exponential, which may not be the 

case in every considered component.  

 

Figure 3.1: Curve for correlation coefficient for densities and dimensions for steel and 

asphalt deck. 

In absence of information related to the parameters following values for the correlation 

between two points far away from each other 𝜌0 and the correlation length 𝑑 can be used: 

Parameter Value 

 

𝑑 

10 𝑚 (𝑏𝑒𝑎𝑚 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛) 

6 𝑚 (𝑝𝑙𝑎𝑡𝑒) 

3 𝑚 (𝑣𝑜𝑙𝑢𝑚𝑒) 

𝜌0 0.85 

Table 3.2: Values for the parameters in the correlation function (3.2) [19]. 

 

3.2.3  Volume 
 

The volume of the component is determined from the dimensions. The mean values for the 

volume are assumed to be equal to the nominal values of the dimensions, while the standard 

deviations are a function of the values of the deviation in dimensions. 

Material  Mean value Standard deviation 

Steel 0.01*Anom 0.04*Anom 

Concrete (anom > 1000mm) 3 mm 10 mm 

Concrete (anom < 1000mm) 0.003*anom 4+0.006*anom 

Table 3.3: Mean values and standard deviations for deviations of cross-section dimensions 

from their nominal values [19]. 
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𝐴𝑛𝑜𝑚  and 𝑎𝑛𝑜𝑚 represent the nominal values of the cross-section area and dimensions, 

respectively.  

Deviation in dimensions at one point in the member might affect the dimensions in another. 

Correlation between two points in a member can be calculated by using (3.2), according to 

JCSS [19]. 

 

3.3  Self-weight estimation 
 

Structural calculations of today are carried out in accordance with structural codes and 

standards, supplemented by a National Annexes. The basis of calculations in codes and 

standard should be able to fit every purpose of design calculations and still remain within 

satisfactory safety limits. Because of the large size of application area, codes and standards 

have to take into account the uncertainties related to the applied load, e.g. the size of surface 

exposed to loading, load duration, variation in magnitude in load. For this purpose, different 

load coefficients are invented and developed.  

Deviations, however, in the magnitude of applied load may arise as follows discrepancies in 

expected values or unforeseen events and circumstances. Due to this fact, a factor 𝛾 is 

invented to ensure a safety level within acceptable limits. The safety factor is related to the 

loading case only, which lead to a partial safety factor for the loading 𝛾𝑆, where the capital 

letter 𝑆 represent the loading case.   

Partial safety factors for loading are determined to be 1.35, in the Norwegian Annex [20]. 

Consequently, following requirement for self-weight estimation based on structural codes is 

present: 

 𝑊𝐷 = 𝛾𝑆 ∙ 𝑊𝐶ℎ 

𝑊𝐷 = 1.35𝑊𝐶ℎ 
(3.3) 

Where, 𝑊𝐷 and 𝑊𝐶ℎ represent the design and characteristic self-weight, respectively. Design 

values are used in every design calculation, except for a few special cases. 

In the present work, self-weight estimation of the Hardanger Bridge is done in order to 

conduct a reliability analysis of the construction. The estimation is carried out based on 

formulas and values stated in this chapter, in addition to some simplification and 

measurements from the basis of calculation paper for the structure, see appendix A. 

 

3.4  Self-weight estimation of the Hardanger Bridge 
 

Self-weight is the only load considered in this thesis, and it is assumed that the self-weight of 

the Hardanger Bridge consist of the weight of the bridge deck, hangers and main cables only. 

The reason for this assumption is to reduce the complexity of the problem. In addition, these 

components constitute the major part of the self-weight loading of the structure, i.e. self-
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weight loading of the pylons is assumed to be carried by the pylon itself. Hence, the 

simplification is assumed to give a high enough accuracy.  

The self-weight of the main cables and hangers are applied to the components directly by 

including gravity and densities of the components in the simulation of the bridge.  

In order to obtain the self-weight of the bridge deck, a rectangular plate (1320 ∙ 14.5 𝑚2) 

equal to the bridge deck is simulated. Figure 3.2 illustrate this. 

 

Figure 3.2: Simulated mesh of the bridge deck. Yellow numbers indicate element numbers. 

Red arrows indicate self-weight of element and location. Black numbers indicate dimensions. 

This plate is meshed into 264 elements, where each element (10 ∙ 7.25 𝑚2) gives a force 

contribution to the self-weight by the formula: 

 𝐹𝑔𝑖 = 𝜌𝑖 ∙ 𝑔 ∙ 𝑉𝑖 (3.4) 

Where 𝑉𝑖 and 𝜌𝑖 is the volume and density of the element, respectively. 

For simplicity, the bridge deck is assumed to consist of an asphalt deck on top of the steel box 

girder. The steel box girder and the asphalt deck are simulated with a squared cross-section in 

order to reduce the complexity. Both of these assumptions are considered to give small 

enough uncertainties.  

For the asphalt deck thickness is assumed to variate along the cross-section and length of the 

bridge deck, while for the steel deck the cross-section is assumed to variate. Consequently, 

estimation of volume 𝑉𝑖 is assumed to consist of the random variables thickness 𝑡 and cross-

section 𝐴𝑠 for the asphalt and steel deck, respectively. 

The self-weight estimation of the simulated bridge deck is performed by using a MATLAB 

script. Embedded normal and multivariable distribution functions along with a random 

number generator are used in order to obtain characteristic values for the density and 

dimensions. 
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Both the density and dimension variables in the self-weight estimation are assumed to be 

normal distributed. This assumption may cause some uncertainties, but due to the Central-

Limit-Theorem, it is qualified as good enough, according to Freeman and Benjamin and 

Cornell [11], [12].  

Density correlation 

Correlation coefficients of the densities for the steel and asphalt deck are obtained from codes, 

according to (3.2) [19]. Values for the far away correlation and correlation length are assumed 

appropriate: 

 𝜌0 = 0.85 

𝑑 = 20𝑚 
(3.5) 

 

Value of the far away correlation 𝜌0 is obtained from table 3.2. Value for the correlation 

length 𝑑 is assumed higher than the standardized values in table 3.2, hence 𝑑 = 20 𝑚 is a 

good estimate for both deck. These assumptions are assumed to give uncertainties of little 

importance. 

Dimension 

Mean values and standard deviations of the deviation in the dimensions (see table 3.3), 

complicate the calculations. Consequently, calibration of the dimensions needs to be done in 

the following steps: 

For steel deck: 

1. Calculate the mean value and standard deviation of the deviation in the cross-section 

by inserting value for 𝐴𝑛𝑜𝑚 in table 3.3. 

2. Estimate the deviation of the cross-section from the calculated values in step 1, by 

using a 90% fractile-value. 

3. Use the value from step 2 and nominal value (mean value) to calibrate the cross-

section dimension. Assume normal distribution and correlation coefficient between the 

different cross-sections. 

90% fractile-value for standard deviation of the cross-section is assumed conservative, due to 

the fact that the elements are precast sections made by one manufacture. The fractile-value is 

found according to (2.34).   

For asphalt deck: 

1. Estimate the standard deviation of the deviation in the thickness, by assuming 

coefficient of variation equal to 10%.  

2. Obtain mean values for the deviation in thickness from manuals [27]. 

3. Use values from step 1 and 2 to calculate thickness dimensions by assuming normal 

distribution. Include correlation between the different thickness dimensions.  

According to table 3.3, coefficient of variation for dimensions of the concrete deck is assumed 

to be equal to 5%, when the dimensions are less than 1000𝑚𝑚 (𝑡 = 80𝑚𝑚). Since the 

variation in asphalt is assumed to be greater than a cast in situ concrete, a coefficient of 

variation equal to 10% is assumed to give values within an acceptable limit. Variation in 
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asphalt is assumed greater than variation in cast in situ concrete, because the formwork 

corresponding to cast in situ concrete provides a lower variance. Asphalting do not require 

any kind of formwork, thus greater variance. 

Values for the nominal dimensions (thickness and cross-section) are stated in the basis of 

calculation (see appendix A) and in manuals from Norwegian Public Roads Administration 

[27]: 

 𝐴𝑛𝑜𝑚 = 𝐴𝑠 = 0.5813𝑚2 (3.6) 

 

 𝑎𝑛𝑜𝑚 = 𝑡 = 0.08𝑚 (3.7) 

 

Dimension correlation 

Characteristic values for the dimensions are assumed correlated with correlation coefficients 

in accordance with the correlation coefficient for the densities (3.2) and table 3.2 [19]. 

Location of the self-weight loading 

The self-weight is assumed uniformly distributed over the entire bridge deck, since the bridge 

deck is assumed double symmetrical the coordinates for the resultant force for each element is 

set in the middle of each element.  
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4  Resistance capacity estimation 
 

The ability of a structure to withstand loading, is the resistance capacity of the structure. The 

magnitude of the resistance capacity for a structure depends on material properties and 

dimensions of the structure.  

Material properties determine whether the structure is ductile or brittle, have a high or low 

strength, the magnitude of strain due to increasing stresses, corrodes or not, etc. Dimensions 

of the structure determine how much of these material properties are available. In other 

words, to ensure a specific level of resistance capacity in a structure, the elements of the 

structure must consist of a material with satisfactory properties as well as right dimensions. 

This chapter comprises important comments and concepts related to the estimation process of 

resistance capacity. In the latter part, procedure for capacity estimation of the Hardanger 

Bridge along with assumptions and uncertainties are presented.  

 

4.1  Material properties 
 

Material properties are defined from test specimens, which have been investigated in 

laboratory by carefully exposure of increasing loads. Tests of specimens need to be carried 

out in a certain way in order to get reliable results, strict (standardized) rules and requirements 

for the implementation of the tests are therefore determined. 

Main characteristics of the mechanical behaviour of a material, such as modulus of elasticity 

and material strength, are described by a two dimensional stress-strain curve, as shown in 

figure 4.1. In addition, useful properties such as yield stress, limit of proportionality, strain at 

rupture and maximum stress, can be found from the diagram.    
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Figure 4.1: Stress-strain curve. 

Materials might possess different kind of properties, which may be used in various areas. 

Concrete for instance has low tensile strength because of brittleness in the material thus are 

concrete elements used in columns, where the major loading occurs in compression. 

Prestressed steel has a high tensile strength and is therefore very suitable for use as main 

cables in suspension bridges. Consequently, carefully selections of materials are of high 

importance in order to gain maximum resistance capacity.  

Materiale Strength properties  Coefficient of variation 

Prestressing steel 𝑓𝑝𝑘 = 1570 𝑀𝑃𝑎 0.025 

Structural steel S355 𝑓𝑦𝑘 = 355 𝑀𝑃𝑎 0.07 

Table 4.1: Material strength properties for different materials [21], [22], [23], [24].  

Where 𝑓𝑝𝑘 and 𝑓𝑦𝑘 are characteristic values for the tensile strength and yield strength, 

respectively.   

 

4.1.1  Variation and correlation 
 

Material properties might vary both in time and space. The variation of the material properties 

can be divided into three levels: 

1. Global (macro): variations primarily result of production technology or strategy, e.g. 

different manufactures. Global variations might also arise from statistical uncertainty. 

2. Local (meso): spatial correlation within the system, not too large distance between the 

considered points. 

3. Micro: rapidly fluctuating variations and inhomogeneity. Variation in pore size in the 

material might be an example. 
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Spatial correlation within the system (local variation) is of high impact when resistance 

capacity is estimated. Discrepancies in material properties for different element of the system, 

may cause under- or oversizing of the resistance capacity.  

Consider a suspension bridge with main cables consisting of a thousand wires. If several wires 

are damaged at same location, the resistance capacity of the main cable is lower in the area 

close to the damage than points far away. The reduction of the resistance may lead to lack of 

capacity (or in worst case collapse) when loading. Therefore, it is necessary to include 

correlation in resistance capacity estimation.   

Correlation between points in the material is not always defined in codes and standards or 

other manuals, due to the fact that investigations and tests of correlation within an element 

(component) of the same material are conducted in a very small extent. Use of information 

about the correlation for a given structure (or element) may also result in uncertainties when 

used in other structures, because of the differences between the structures.     

Because of the absence of information regarding the correlation coefficients, an exponential 

function (similar to the self-weight correlation function (3.2)) are used in the following 

calculations. This is only an assumption though.  

 

4.1.2 Uncertainties 
 

Spatial variation in strength from one point to another may occur. Variations in material give 

rise to uncertainties due to the fact that the material might behave different than expected.  

Uncertainties may also occur due to discrepancies between the measured properties in 

specimens and real structures. These uncertainties need to be accounted for: 

- Deviations in properties between observed structural properties and predicted 

properties 

- Deviations as follow variations in workmanship when incorporating the material in 

structures and laboratory 

- Deviations due to scaling 

- Uncertainties due to alterations in time 

There may also be other uncertainties related to the determination of material properties and 

behaviour (not mentioned here), which might have greater impact than the listed ones, that 

should be accounted for. 

 

4.2  Resistance capacity estimation 
 

Resistance capacity estimation of today is based on standardized construction calculation and 

tabulated data. Codes and standards are used to decide dimensions of structure elements in 

order to obtain a required safety level of the construction. For this purpose, different material 

and dimensions coefficients are developed and derived.  
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To ensure, however, an acceptable safety level within the elements, safety factors to deal with 

the occurrence of unexpected events within the material, such as bursts, ruptures, cracks, are 

developed. Similar to the partial safety factor for loading in section 3.3, the safety factor is 

related to estimation of the resistance capacity only. Hence, partial safety factor for resistance 

capacity 𝛾𝑅 are developed. 

Values for the partial safety factors differ for various kinds of materials. Table 4.2 gives 

Norwegian values of the safety factors for different materials. 

Material  𝜸𝑹 

Structural steel 1.05 

Wires and cables 1.20 

Table 4.2: Partial safety factors for the material resistance [21], [24].  

As can be seen from the table, nominal values for the resistance need to be divided by the 

partial safety factor, in order to account for uncertainties related to unexpected events. Hence, 

following equation for resistance capacity estimation can be obtained, see [10]: 

 𝑅𝐷 =
𝑅𝑘

𝛾𝑅
 (4.1) 

Where 𝑅𝐷 and 𝑅𝑘 are the design and characteristic resistance capacity, respectively. Design 

values are further used in almost every design calculation. 

In the following section, procedures and assumptions for estimation of the resistance capacity 

for the Hardanger Bridge are presented. In the latter part some important notes regarding the 

uncertainties involved are mentioned. 

 

4.3 Resistance capacity of Hardanger Bridge  
 

In the reliability analysis of the Hardanger bridge (considered in this thesis) resistance 

capacities are expressed in terms of characteristics values and distribution parameters, i.e. 

mean value and standard deviation.  

The Hardanger Bridge is a rather big and complex construction, with many components 

sharing the load. Because of the complexity, simplifications of the structure are assumed in 

order to quantify the resistance capacity more easily. 

The reliability analysis performed in this thesis includes comparisons of the axial loading and 

resistance capacity in the hangars and main cables. Consequently, calculation of the resistance 

capacity of the structure correspond to capacity estimation of the hangers and main cables 

only.    

The hangers and main cables are part of the entire bearing system of the bridge and are 

assumed to carry the loading obtained from the self-weight of the bridge deck, hangers and 

main cables (see section 3.4). The hangers and main cables are divided into 266 components 

(further explained in sections 5.2.1), thus resistance capacities and axial loading in each of the 

266 components are estimated in order to perform the reliability analysis.  



Ch. 4 Resistance capacity estimation 

 

59 
 

 

4.3.1  Resistance capacity of main cable 
 

The main cables consist of 528 parallel wires tied together in 19 bundles. Resistance capacity 

of the main cable consist of strength contribution from these 10032 wires. Even though the 

wire appears as a unitary element, variation along the wire may arise. Variation of this kind 

causes reduction in strength capacity due to length effect. The length effect is assumed to 

reduce the strength capacity by 10% [25], [26].  

The main cable, however, consist of several wires in parallel. The interaction between these 

wires are assumed to reduce the strength capacity due to the Daniel’s effect. The Daniel’s 

effect is assumed to reduce the strength capacity by 8% [25], [26]. 

The resistance (strength) capacity of the wires is calculated from obtained tensile strength data 

from the manufacturer, see [5] and appendix C. The data is interpreted by using statistical 

tools to calculate mean values and standard deviation (see section 2.2.3). The tensile strength 

data is measured as stress, with units MPa.  

In order to obtain resistance capacity of the main cables, values from the obtained strength 

data multiplied with the cross-section area of the main cable are performed.  

The cross-section area of the main cable can be estimated from following formula and 

obtained data for the cross-section dimension: 

 𝐴𝑚𝑎𝑖𝑛 = 𝐴𝑤𝑖𝑟𝑒 ∙ 𝑛𝑤𝑖𝑟𝑒 =
𝑑2

4
∙ 𝜋 ∙ 𝑛𝑤𝑖𝑟𝑒 

(4.2) 

Where 𝑑 and 𝑛𝑤𝑖𝑟𝑒  is the diameter and number of wires in the main cable, respectively. 

Hence, following formula for the resistance (strength) capacity of the main cables are found: 

 𝑅𝑀𝑎𝑖𝑛 = 𝐴𝑚𝑎𝑖𝑛 ∙ 𝑓𝑝𝑘𝑤𝑖𝑟𝑒
∙ 0.9 ∙ 0.92 (4.3) 

Where 𝑓𝑝𝑘𝑤𝑖𝑟𝑒
 is nominal value for tensile strength of the wires. 

Correlation between the components (or element of the main cable) are assumed to be 

exponential (similar to (3.2)), with variables equal to: 

 𝜌0 = 0.9 

𝑑 = 50𝑚 
(4.4) 

 

The reasons for this assumptions are due to the fact that each elements of the main cable 

consist of the same wires. In addition, all of the wires are produced by the same manufacture 

[5]. 

 

4.3.2  Resistance capacity of hanger 
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Estimation of the resistance capacity in the hanger elements are rather difficult to obtain since 

there is no tensile strength data from tests available. Tabulated strength values from codes and 

manuals, therefore, are used.  

The hangers are assumed to consist of prestressed steel, similar to the main cables. Table 4.1 

states nominal values and coefficient of variation for prestressed steel. 

The capacity values are multiplied with the cross-section of the hangers, in order to estimate 

the resistance capacity. 

Cross-section of the hangers 𝐴ℎ𝑎𝑛𝑔𝑒𝑟 = 3200𝑚𝑚2, see appendix A. This is lower than the 

expected area calculated from dimensions, due to the fact that the cable is coiled.  

Following equation for hanger capacity can be obtained: 

 𝑅𝐻𝑎𝑛𝑔𝑒𝑟 = 𝐴𝐻𝑎𝑛𝑔𝑒𝑟 ∙ 𝑓𝑝𝑘 (4.5) 

Where 𝑓𝑝𝑘 is nominal value for tensile strength of prestressing steel.  

Values for the correlation coefficient between the different hangers are not stated in the basis 

of calculation or other manuals/codes. Hence, an exponential curve for the correlation 

coefficient (similar to (3.2)), along with conservative assumptions for the variables are used. 

 𝜌0 = 0.5 

𝑑 = 30𝑚 
(4.6) 

 

Reasons for these assumptions are based on lower correlation between the hangers, due to 

separately production by different manufactures [5]. This might lead to a lower correlation 

coefficient than obtained by investigation, but it is assumed to be conservative.   

 

4.3.3  Uncertainties 
 

Tabulated resistance values from codes and standards are usually intended for use in code 

calibration and design calculations, therefore the values are often conservative. This means 

that the values are undersized in order to meet the safety margin.  

Tensile strength data from tests tend to shows a much greater resistance capacity than the 

tabulated values, as can be shown in the table 4.3. Provided similar tabulated values for the 

main cables as for the hangers. 

components Mean values Coefficient of variation 

Hangers (tabulated) 1570 MPa 0,025 

Main cables (measured)  1686 MPa 0,01 

Table 4.3: Estimated and obtained tensile strength data for the components [22], [23], [24], 

appendix C. 

Because of the deviations in main cables (measured) and hanger (tabulated data) strength 

data, uncertainties will arise. Measured data with low variation have a much smaller overlap 

area with the loading than the tabulated data with greater variation. Hence, probability of 
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failure for the hangers (tabulated data) tend to be larger than for the main cables (measured 

data). Low probability of failure is difficult to estimate, hence larger probability of failure will 

dominate in the reliability analysis. Figure 4.2 illustrates this. 

 

Figure 4.2: Pdf for the normal distributed variables R and S. Blue curve is load variable, red 

and green curves are resistance variables in hangers and main cables, respectively. Red and 

blue curve have a much greater area of intersection than blue and green curve, hence 

probability of failure for the hangers will dominate.  
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5 Reliability analysis of the 

Hardanger Bridge 
 

Review the hypothesis stated in the introduction: structures, where self-weight constitutes the 

major part of the loading, tend to be oversized as a result of the standardized design 

calculation.  

In order to test the validity of the hypothesis, a reliability analysis of the Hardanger Bridge, 

along with calibration of partial safety factors, are carried out. Strategies and procedures for 

implementation of the reliability analysis and the partial safety factor calibration are presented 

in the following sections.  

The reliability analysis and calibration process are carried out by taking advantage of the 

computer programs MATLAB, Excel and ABAQUS. In addition, simplifications of the 

problem are assumed to make the calculations more easily feasible and still maintain reliable 

accuracy.  

 

5.1  Short on solution strategy 
 

A brief review of the solution strategy for reliability analysis and partial safety factor 

calibration is presented in the following steps: 

1. Simulation of the bridge in ABAQUS with respect to force estimation. 

2. Estimation of the self-weight of the construction (stated in chapter 3) 

3. Calibration of the component force due to self-weight loading (MATLAB) 

4. Estimation of the resistance capacity of the structure (stated in chapter 4)  

5. Reliability analysis of the structure and partial safety factor calibration (MATLAB and 

Excel) 

Notice, the reliability analysis and the partial safety factor calibration are performed by 

simply analysing the reliability in the main cables and hanger components only. This 

simplification is stated in section 4.3, as well as in the following sections.     
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Figure 5.1: Flow-chart of the solution strategy for the reliability analysis and partial safety 

factor calibration. 

 

5.2 Simulation in ABAQUS 
 

ABAQUS CAE is a simulation tool, to solve complex problem and FEM analysis with 

reduced running time at low costs. ABAQUS makes it possible to simulate complex and 

difficult systems and models for all kinds of industrial applications, see [28], [29] for more 

information.   

In this thesis, ABAQUS is used to simulate the Hardanger Bridge and its applications. The 

Hardanger Bridge is, as can be seen in section 1.3, a complex structure with many important 

components of high impact. In order to solve this kind of problems by using the method 

described in section 5.1, several simplifications are made.   

 

5.2.1  Components 
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The bridge is simulated by using solid elements of the main components, i.e. pylons, cables, 

hangers and steel box girder. The table 5.1 gives the number of element and numbering of the 

elements of each component: 

Structural element Number of element Numbering 

Pylon 145 elements at each pylon At Vallavik: 20 000-series 

At Bu: 30 000-series 

                     

Main cable 66 elements in main span at 

each cable 

2 element in side span at 

each cable 

North side: 1000-1067  

(1000 and 1067 in side span) 

South side: 2000-2067 

(2000 and 2067 in side span) 

Hanger 65 elements at each side North side: 5002-5066 

South side: 6002-6066 

Box girder 328 elements 1-328 

Table 5.1: Bridge components with corresponding numbering of elements. 

 

Figure 5.2: Simulated Hardanger Bridge in ABAQUS. 

The bridge deck (steel box girder) is simulated as a simple beam, with simplified geometry. 

Assumptions of the geometry are done in order to obtain the effect from the applied loading 

only. Equipment and tools such as lifts, construction machinery, workers, lightning, railing, 

signs, etc., (used under and after construction) are not included in this simulation.  

The hanger cables are simulated as 65 equally spaced elements along each sides of the bridge 

deck between the pylons, 130 elements in total. The cross section of the hangers is modelled 

in accordance with the information given in section 1.3 and basis of calculation (appendix A).  

The main cables are divided into 134 elements. 132 elements are simulated in the main span, 

with length equal to the distance between the hangers, while 4 elements are simulated in the 

side span (between the pylons and the anchoring at Vallavik/Bu). As for the hangers, the 

cables are modelled in accordance with the specification given in appendix A and in section 

1.3.  
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In further calculation, the concept component comprises the considered components only, i.e. 

the hangers and main cables. In all 266 components are considered in the analysis. 

 

Figure 5.3: Illustration of the components. Drawings of the bridge are obtained from 

Norwegian Public Roads Administration [4]. Numbering done in accordance with the 

simulation. 

The bridge deck is assumed to be a part of the loading carried by the components, while the 

pylons are assumed to only carry its own self-weight. These assumptions may lead to 

uncertainties, but the accuracy is assumed to be high enough.  

Notice, the bridge deck may also achieve failure due to the fact that the bridge deck is 

carrying the self-weight loading between the hangers, but this is not included in this thesis. 

The bridge, however, is assumed linear behaviour after construction. 

 

5.2.2  Influence surface 
 

In order to include the loading in the simulation, an influence surface is modelled. Since this 

thesis concern about the self-weight loading only, it is assumed that the loading take place at 

the bridge deck. Hence, the influence surface is modelled as an approximation of the bridge 

deck.  

As a simplification, the loading is assumed to be applied only at the top of the bridge deck. 

This simplification may involve uncertainties due to the fact that loads may be applied at 

several other locations, but since the self-weight of the bride deck, which is high compared 

with others loads, takes place at the bridge deck discrepancies are assumed negligible.  

The influence surface is modelled by a 1320𝑥14,5 𝑚2 rectangular plate with 67 nodes 

equally spaced at each long side, as shown in figure 5.4.  
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One at a time, a unit load is placed in each of the 134 nodes and the corresponding forces in 

the 266 components (hangers and main cables) are measured in order to obtain the influence 

surface.   

 

Figure 5.4: Influence surface with node numbers (red) and dimensions (black). 

When the self-weight loading of the bridge deck is applied, corresponding axial forces in each 

of the 266 components are calibrated by using interpolation formulas between the loading and 

locations of the loading and the influence surface. For this purpose, the computer program 

MATLAB is used.  

 

5.3  Calibration of axial loading in MATLAB 
 

MATLAB is a programming language used in calculation of several iteration and complex 

mathematical problems. The program has a wide range of embedded codes, which is of high 

importance in more complex mathematical calculations, see [30] for more information. 

In the reliability analysis and the partial safety factor calibration, MATLAB is used for four 

purpose: 

 Self-weight estimation  

 Transformation of the self-weight loading into axial forces in each component 

 Estimation of distribution parameters related to the loading forces 

 Estimation of the failure probability of the Hardanger bridge 

 

5.3.1 Axial load calibration 
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The calibration process of the axial loading in the components due to the self-weight loading 

of the bridge, are divided into two main parts. 

Firstly, the self-weight of the Hardanger Bridge is estimated, in accordance with section 3.4.    

Secondly, axial loading is calibrated by transformation of the self-weight loading into applied 

axial loading in each of the 266 components.  

When the self-weight and its coordinates are estimated as described in sections 3.4, axial 

forces in the components (hangers and main cables) are obtained by interpolation between the 

self-weight forces and its coordinates and the influence surface.   

This simulation is done 𝑛 times in order to increase the accuracy, i.e. 𝑛 characteristic values 

for the axial forces (due to the applied self-weight) are obtain. The simulations 𝑛 are collected 

in a matrix for further calculations. 

Due to high running time 3 ∙ 105 simulations of the transformation process are performed. 

 

5.4  Reliability analysis 
 

The reliability analysis of the Hardanger Bridge is performed by using the Enhanced Monte 

Carlo method elaborated in section 2.10.3.  

The method was carried out by using a MATLAB script and estimated values for the 

resistance capacities and the axial loading from sections 4.3.1, 4.3.2 and 5.3.1, respectively. 

It is assumed that the components work as a series system, due to the fact that redistribution 

of forces will cases significant deformation or in worst case collapse. Hence, if one 

component fail, the structure is assumed to become unstable, i.e. series system according to 

section 2.12.  

 

5.5  Calibration of partial safety factors  
 

Calibration of partial safety factors is performed on behaviour of estimated distribution 

parameters for the axial loading and the resistance capacity. 

 

5.5.1 Parameter estimation 
 

Loading, S 

When the axial loading forces in the components are found (section 5.3.1), distribution 

parameters for the loading, i.e. mean value and standard deviation, are determined by 

assuming normal distributed loading. The self-weight loading is a sum of contributions from 
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all elements of the structure, which is assumed to behave normal distributed according to the 

Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11], [12].  

The embedded function fitdist (MATLAB) is used to obtain mean values and standard 

deviations for each of the 266 components. Because the force simulation is done 3 ∙ 105 

times, the fitdist function will provide values within an acceptable limit.  

Resistance, R 

Distribution parameters for the resistance capacities are assumed normal distributed, due to 

contribution of resistance capacity from all components. This assumption is valid according to 

the Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11], [12].  

Distribution parameters for the resistance capacity, however, are obtained from test and 

tabulated data as elaborated in chapter 4.3.1 and 4.3.2.  

 

5.5.2 Calibration process  
 

The calibration of the partial safety factors comprises an iterative process for minimizing 

deviation between a wanted reliability level 𝛽𝑡 and the estimated reliability index 𝛽, as 

mentioned in the last part of section 2.11.  

The minimization of the deviation is done by optimizing values of the partial safety factors 

(𝛾𝑆, 𝛾𝑅). The optimization process is performed by taking advantage of problem solver, which 

is an optimization tool in the computer program Excel.  

Estimated reliability is found by considering the violation of the limit state function of the 

structure (in accordance to section 2.7.2). In the following sections equations for the limit 

state function and the reliability index are stated. 

Limit state function 

Since the main cable and hanger components are assumed to behave as a series system, failure 

in each of the 266 components need to be considered. Consequently 266 limit state functions 

need to be developed.  

Each of the components are assumed to be loaded by only one axial tensile force, related to 

the self-weight loading. From this assumption following limit state function for each of the 

266 components can be obtained: 

 𝐺𝑖 = 𝑅𝑖 − 𝑆𝑖 
(5.1) 

Where 𝑅𝑖  and 𝑆𝑖 are the resistance capacity and axial loading for each component, 

respectively. 

Reliability index  

The formula for the reliability index is stated in section 2.8 and equal to: 



Ch. 5 Reliability analysis of the Hardanger Bridge 

 

70 
 

 𝛽 =
𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2
 (5.2) 

Provided limit state function equal to (5.1). 

By using the concepts of design and characteristic values, the expression can be rewritten. 

 𝛽 =

𝛾𝑅𝛾𝑆

1 + 𝑘𝑅𝐶𝑂𝑉𝑅
−

1
1 + 𝑘𝑠𝐶𝑂𝑉𝑆

√(
𝐶𝑂𝑉𝑆

1 + 𝑘𝑆𝐶𝑂𝑉𝑆
)

2

+ (
𝐶𝑂𝑉𝑅𝛾𝑅𝛾𝑆

1 + 𝑘𝑅𝐶𝑂𝑉𝑅
)

2

 (5.3) 

Where 𝐶𝑂𝑉𝑅 and 𝐶𝑂𝑉𝑆 are coefficient of variation for the resistance capacity and the loading, 

respectively, see (2.11). 

Target reliability index 

A target reliability index of 𝛽𝑡 = 5.2, is obtained in order to estimate a structure within a 

reasonable limit. A reference period of 1 year is assumed, this is conservative and will give a 

higher safety level. The target reliability is found in codes by considering the consequences 

related to a failure of the structure and assumption regarding the reference period, see [20].   

In the optimization process, partial safety factors for the loading and the resistance will 

become equal. This is true based on the fact that the partial safety factors are acting together 

as a product in the formula (5.3), hence the problem solver would not be able to distinguish 

between the two partial safety factors.  
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6  Results and discussion 
 

Based on estimated input parameters in chapter 3 and 4, a reliability analysis on the 

Hardanger Bridge is performed according to the procedure elaborated in chapter 5. In 

addition, partial safety factors for the loading and resistance are estimated. For this purpose, 

important and valuable statistical tools and methods elaborated in chapter 2 are used.  

Results and discussion of the estimated input parameters are presented in the first part of this 

chapter. In the latter part, results and discussion of the reliability analysis and the partial 

safety factor calibration take place. At the end of this chapter, a comparison between the two 

methods of estimating reliability index and probability of failure are presented. 

Notice, since the reliability analysis of the bridge is carried out by considering the main cable 

and hanger components only (according to previous assumptions), estimated input parameters 

of the applied loading and resistance capacities for the corresponding components are carried 

out.  

Methods and procedures for the estimations and calibrations are performed in accordance to 

previously elaborated theory (see chapter 2).  

The aim of this thesis is to show the oversizing of large structures with self-weight as the 

major loading. In order to state the validity of the hypothesis, comparisons of measured and 

tabulated values of the variables for the components are proposed.  

 

6.1  Load calibration 
 

The procedure for load calibration in this thesis (accounted for in chapter 3 and 5) relay on 

estimates of the considered explicit loading, namely the self-weight. The self-weight is used 

in calibration of the axial loading, corresponding to the main cables and hanger components 

of the structure.  

 

6.1.1  Self-weight 
 

The self-weight is a product of the density, gravity and the volume of the structure, see (3.1).  

The self-weight of the structure is assumed to consist of the weight of the bridge deck, along 

with self-weight of the components. The axial loading caused by the self-weight of the 

components itself is included in the simulation in ABAQUS. Self-weight estimation of the 

bridge deck is performed according to section 3.4.  
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Estimated values for dimensions, densities and self-weights for the elements (see figure 3.2) 

are presented in the followings. The length of each elements is assumed to equal 10m, 

consequently estimates for the length are not presented. 

Dimension 

Estimations of the dimensions for the steel and asphalt deck are made in accordance with the 

procedure mentioned in section 3.4. For asphalt deck, the width of the cross-section is 

assumed constant equal to the width of the simulated bride deck (14.5 m), while the thickness 

𝑡 variate. For the steel deck the cross-section of the simulated bridge deck 𝐴𝑠, is assumed to 

variate. 

Distribution parameters for the variables (𝐴𝑠, 𝑡), are obtained from manuals and basis of 

calculation (appendix A), along with assumption stated in section 3.4. Results of the 

parameter estimation is stated in table 6.1. 

Deck Mean value Standard deviation 

Steel (Cross-section area) 0.5813 m2 0.0356 m2 

Asphalt (Thickness) 0.08 m 0.008 m 

Table 6.1: Mean values and standard deviation for the dimension variables 𝐴𝑠 and 𝑡. 

Figure 6.1 shows histograms of the generated values for the steel cross-section and asphalt 

thickness, given the normal distributed parameters from table 6.1.  

 

Figure 6.1: Probability density plot for (a) steel cross-section (b) asphalt thickness for 

element 1 (according to figure 3.2). 

As expected from the tabulated data in table 6.1, most of the values for the cross-section and 

thickness of the steel and asphalt deck (𝐴𝑠, 𝑡) respectively, tend to become approximately 

equal to the mean values, i.e. little variance. The reason for this is due to the low standard 

deviations in the measurements.  

Figure 6.2 shows bivariate density function for two adjacent elements in the simulated bridge 

deck and for two “far away from each other” elements. Two adjacent element have a distance 
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∆𝑟 = 10𝑚, while two “far away from each other” elements have a distance ∆𝑟 = 1310𝑚, as 

can be seen in figure 3.2.    

 

Figure 6.2: Joint pdf for (a) steel deck ∆𝑟 = 10𝑚, (b) asphalt deck ∆𝑟 = 10𝑚, (c) steel deck 

∆𝑟 = 1310𝑚, (d) asphalt deck ∆𝑟 = 1310𝑚. 

As seen in figure 6.2, positive correlation between two adjacent elements appear in both 

asphalt thickness and steel cross section. For “far away from each other” elements, 

discrepancies between the values of the two elements increases, i.e. the dependency between 

the values decrease. The reason for the increasing discrepancies is most likely to originate 

from the assumed correlation coefficient.  

The correlation coefficient for the interaction between elements within a structure are carried 

out by using an exponential function (3.2) and section 3.4 (dimension correlation). The 

exponential function give decreasing values of correlation for increasing distance ∆𝑟, hence 

increasing discrepancies between elements when ∆𝑟 increase, given all other values remain 

constant.    

Densities  

Estimation of the densities for the steel and asphalt deck in each element are carried out by 

using a multivariable distribution function and distribution parameters from table 3.1. 

Deck Mean value Standard deviation 

Steel 77 kN/m3 0.77 kN/m3 

asphalt 25 kN/m3 0.75 kN/m3 

Table 6.2: Mean values and standard deviations of the density values for each deck. 

The standard deviations are obtained from the numbers noted in table 3.1 and the formula for 

coefficient of variation (2.11). 

Values for the densities are assumed to correlate after formula (3.2), with associated input 

values stated in section 3.4 (density correlation)  

Figures 6.3 shows plots of the density distribution for the steel and asphalt deck.  
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Figure 6.3: Probability density plot of the density for element 1 (see figure 3.2) for (a) steel 

deck, (b) asphalt deck. 

Distribution of the density values are as for the dimensions characterized by low variation, 

due to low variance from the estimated distribution parameters in table 6.2. 

Figure 6.4 shows plots of the joint probability distribution between different elements for both 

steel and asphalt deck. 

 

Figure 6.4: Joint pdf of the densities for (a) steel deck ∆𝑟 = 10𝑚, (b) asphalt deck ∆𝑟 =
10𝑚, (c)  steel deck ∆𝑟 = 1310𝑚, (d) asphalt deck ∆𝑟 = 1310𝑚. 

Just like the dimension values, greater scatter is obtained in the density values for the “far 

away from each other” elements than for adjacent elements. Reason for this is due to the 

identical correlation coefficient curve used for the dimensions and densities, i.e. justification 

for the increasing discrepancies in density values (when elements are far from each other) is 

the same as for the dimensions.    
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Self-weight 

Self-weight estimation of the steel and asphalt deck for the element are done in accordance 

with the method described in sections 3.4 and 5.3.1. 

Plots of the self-weight distribution for the steel and asphalt deck, along with the self-weight 

distribution for the entire deck as well, are shown in figures 6.5 and 6.6. 

 

Figure 6.5: Probability density plot for the self-weight of (a) steel deck, (b) asphalt deck. For 

element 1 (see figure 3.2). 

 

Figure 6.6: Probability density plot for the entire bridge deck. For element 1 (see figure 3.2). 

Due to the fact that self-weight of the entire bridge deck is the sum of the two deck layer 

(steel and asphalt), observations and characteristics detected in the previous results is valid for 

the self-weight estimation as well.  

One important note from this observation is the little variance in the values. As the hypothesis 

in the introduction states, oversizing of structures occur due to little variance in loading. The 
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structure considered in this thesis (Hardanger Bridge), therefore, meet the constraints stated in 

the hypothesis.  

 

6.1.2  Component force estimation 
 

The force calibration, with respect to the components, is performed in accordance with the 

procedure stated in section 5.3.1.  

From the calibrated force values, found by using the procedure stated in section 5.3.1, normal 

distributed parameters for the axial loading (corresponding to each component) are estimated 

by using the method described in the section 5.5.1 (Loading, 𝑆). 

Table 6.3 shows mean values of the mean values and coefficients of variation for the hanger 

and main cable components, respectively. 

component Mean value Coefficient of variation 

Hanger 114 655 𝑘𝑁 0.028 

Main cable 887 𝑘𝑁 0.043 

Table 6.3: Mean values of the mean values and coefficients of variation for the axial loading 

in the hanger and main cable components. 

Plots of distribution of axial forces in the hangers and main cables, related to the self-weight 

loading is shown in figure 6.7. Notice, values for the distribution parameters, stated in table 

6.3, are estimated from the distribution of forces in figure 6.7, assuming normal distribution. 

 

Figure 6.7: Probability density plots for the axial loading forces in component (a) 1000 

(main cable), (b) 5002 (hanger). Figure 5.3 illustrate the components. 

As can be seen from the figure 6.7, values for the axial loading in the components tend to 

variate within a range of {9.2 ∙ 102𝑘𝑁 , 10.4 ∙ 102𝑘𝑁} for the hanger (element 5002), and 

within a range of {1.1 ∙ 105𝑘𝑁 , 1.4 ∙ 105𝑘𝑁} for the main cable (element 1000). Figure 6.7 

gives higher values for the hanger loading, than the tabulated mean values in table 6.3. This 
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deviation may arise from the fact that the tabulated values consists of contributions from all 

the hanger components, while the figure only provide values for hanger component 5002.  

Normal distribution, however, is assumed for both the hanger and main cable loading, which 

is consistent with the plot in figure 6.7. 

Figure 6.8 shows plots of the dependency between different components. Number of the 

components are stated in table 5.1. 

 

Figure 6.8: Joint pdf for the axial loading forces in components (a) 1000 and 1001 (main 

cable), (b) 5002 and 5003 (hanger), (c) 1000 and 2067 (main cable), (d) 5002 and 6066 

(hanger). Figure 5.3 illustrates the components. 

The plots show that the discrepancies between axial loading barely exist for the main cables, 

while there is a slight occurrence of discrepancies between hanger components, with 

increasing distance between the components. From these results, it is reasonable to believe 

that a higher correlation coefficient between the main cable components than for the hangers 

exists. The reason for this may be due to the fact that the axial loading in the main cable 

components are distributed into all main cable components, thus all components are assumed 

to carry approximately the same loading and the correlation is high. While the axial loading in 

the hanger components arises from loading near or close to the hanger component, hence 

different hangers do not carry the same loading and have a smaller correlation. 

 

6.2  Resistance estimation 
 

Estimation of the resistance capacity of the components are performed in accordance to the 

rules and procedure stated in chapter 4. Estimation of the hanger capacities need to be carried 

out by the use of codes, because of the lack of available information. Main cable capacities 

are estimated from tensile test data.  

Values of the resistance capacities are shown in table 6.4. 
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Component Mean value 

(Yield stress) 

Standard 

deviation (Yield 

stress) 

Area of the 

cross-section 

Coefficient of 

variation 

Main cable 1686 𝑀𝑃𝑎 18.2 𝑀𝑃𝑎 0.2213 𝑚2 0.011 

Hanger 1570 𝑀𝑃𝑎 40 𝑀𝑃𝑎 0.0032 𝑚2 0.025 

Table 6.4: Mean value, standard deviation, area of cross-section and coefficient of variation 

for the resistance capacity for the hanger and main cables components. 

Density plot of the resistance capacity for components 1000 (main cable) and 5002 (hanger), 

are shown in figure 6.9. The different components are illustrated in figure 5.3. 

 

Figure 6.9: Probability density plot of the resistance capacity for component (a) 1000 (main 

cable), (b) 5002 (hanger).  

Provided similar tabulated values of the material properties for the hanger and main cable 

components. Coefficient of variation are smaller for the main cables than the hangers. This 

means that the uncertainties related to the variation in capacity estimation are lower for 

estimates obtained from tests than from codes. 

A higher mean value gives a higher resistance capacity, due to the fact that the resistance 

capacity is a function of the material properties 𝑓𝑝𝑘, see (4.3) and (4.5). Hence, resistance 

capacities from codes tend to be smaller than capacities estimated from test data. 

A lower variance and a higher mean value indicates that the estimated capacities from test 

data have a higher capacity and less uncertainties, while capacities estimated from codes have 

a lower capacity with a greater uncertainty. Hence, the resistance capacity estimated from 

codes tend to be undersized compared with the capacities obtained from the test data. 

With a lower resistance capacities and greater variance, the area of the probability of failure 

becomes bigger, due to the fact that the area for overlap with the loading curve increase. 

Lower variance and a higher capacity decrease the area of failure, i.e. decrease the area of 

intersection between loading and resistance, as can be seen in figures 4.2 and 6.10. This 

means that the failure of probabilities will increase with the use of code estimation process, 

higher probability of failure lead to higher degree of dimension needed.  
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It is important to notice that the resistance capacity also depend on the cross-section of the 

component. The hanger components have smaller cross-sections than the main cables 

components, consequently resistance capacity in the hanger components will be less than 

resistance capacity in the main cable components. 

 

Figure 6.10: Curves for normal distributed variables with high and low variance and pdf for 

axial loading. Grey and yellow areas show the respective 𝑝𝑓 .   

Figure 6.11 shows plots of the dependency between different components. Figure 5.3 and 

table 5.1 illustrate the different components.  

 

Figure 6.11: Joint pdf of resistance capacities between components (a) 1000 and 1001 (main 

cable), (b) 5002 and 5003 (hanger), (c) 1000 and 2067 (main cable), (d) 5002 and 6066 

(hanger).  

The plots in figure 6.11 show that the discrepancies between resistance capacities increases 

with increasing distance between the components. This is in agreement with the assumptions 
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made in section 4.3. Notice, the assumptions result in a rather low correlation between the far 

away from each other components, i.e. inner distance ∆𝑟 = 1350 𝑚 and ∆𝑟 = 1290 𝑚 for the 

main cable and hanger components, respectively. The main cable components consist of the 

same wires and most of the hanger components are produced by the same manufacturer, this 

may lead to a higher correlation coefficient than the assumed correlation coefficient in this 

thesis.   

 

6.3  Reliability analysis  
 

The reliability analysis was carried out according to the procedure stated in section 5.4. 

Table 6.5 shows values for the reliability index, probability of failure and confidence intervals 

for 𝑛 ∈ {104 , 105 , 3 ∙ 105} iterations of the Enhanced Monte Carlo method. 

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔  𝜷 𝒑𝒇 𝑪+ 𝑪− 

104 12.46 5.86 ∙ 10−36 7.08 ∙ 10−30 1.30 ∙ 10−36 

105 14.36 4.83 ∙ 10−47 3.83 ∙ 10−41 1.65 ∙ 10−56 

3 ∙ 105 14.61 1.285 ∙ 10−48 4.83 ∙ 10−44 −1.40 ∙ 10−60 

Table 6.5: Values for the reliability index, probability of failure, confidence limits for 

𝑛 simulations. 

Figure 6.12 shows plot from the calculation process. 

 

Figure 6.12: The extrapolation curve of enhanced method. Blue dots are obtained pf from 

data points. Black and red curves estimate probability and confidence limit, respectively. 

Number of simulations, 𝑛 = 105. 
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As can be seen from the figure 6.12 and table 6.5, the probability of failure 𝑝𝑓 ∈

{10−36 , 10−48} when 𝜆 → 1. This leads to a reliability 𝑟 = 1 − 𝑝𝑓 ≈ 1, which indicate that 

the structure satisfy the safety requirement far too well.  

Even though the results state a way too high reliability, there is some uncertainties that need 

to be mentioned. Because of the low probability of failure, estimation of the probability of 

failure related to λ cannot be obtain for values of λ close to 1, i.e. 𝑃(𝜆𝑖) =

𝑁𝑎𝑁 (𝑁𝑜𝑡 𝑎 𝑁𝑢𝑚𝑏𝑒𝑟)  {𝜆 ≥ 0.16}. Estimation of the probability of failure function, (2.106), 

may therefore become uncertain as follows from lack of information for 𝜆 ∈ {0.16 , 1.0}.  

The confidence interval, illustrated in figure 6.12 as dashed red lines and tabulated in table 

6.5, cover a wide range of values due to the lack of obtained data 𝑃(𝜆𝑖) from estimations. 

Calculation of the confidence interval is explained in section 2.10.1 (confidence interval). 

Provided assumption done in previous sections, limit state violation tend to occur in the 

hanger components only as 𝜆 → 1. This indicate that the main cables have a higher safety 

level than the hangers, hence the hanger capacities need to be improved in order to obtain a 

higher safety level.   

 

6.4  Code calibration (Second-Moment) 
 

By using the results from section 6.1 and 6.2, along with the calibration strategy elaborated in 

section 5.5, calibration of the partial safety factors is possible.  

Results of the partial safety factors calibrated in this master thesis for 𝑛 = 3 ∙ 105 simulations, 

along with partial safety factors found in codes and standards are presented in the table below. 

Partial safety factor Calibrated from reliability 

analysis 

Current norm of EC 

standards 

𝜸𝑹 1.05 1.20 

𝜸𝑺 1.05 1.35 

Table 6.6: Partial safety factors for the resistance capacity and loading. Calibrated from the 

reliability analysis performed and obtained from codes [20], [24]. 

Figure 6.13 shows the code calibration process. 
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Figure 6.13: Estimation of the partial safety factors by using problem solver in excel. 𝑛 =
3 ∙ 105 simulations are performed. 

The results show that the partial safety factors from standards and codes causes oversizing of 

the applied loading and the resistance capacity, according to (2.35) and (2.36) and section 

2.11. Partial safety factors for loading gives the highest deviation between calibrated and 

tabulated values, as can be seen in the table 6.6. Hence, partial safety factor for loading 

contribute most to the oversizing.   

It is important to note that the code calibration does not consider the differences between the 

two partial safety factors, and thus will the partial safety factors be equal. As discovered in 

section 6.2, codes and standards are underestimating the resistance capacities, consequently, 

partial safety factors from codes and standards will lead to under estimation of the resistance 

capacity and oversizing of the loading.   

By inserting partial safety factors from codes (table 6.6) into the formula (5.3), following 

values for the reliability index and the probability of failure are obtained: 

𝛽 = 12.64 

𝑝𝑓 = 6.76 ∙ 10−37 

Notice, it is assumed that the system is a series system, hence minimum value of 𝛽 is obtained 

in order to be conservative. The variables, however, are assumed normal distributed in order 

to use (2.58) for estimation of the failure probability.  

The lowest values of the reliability index 𝛽 appear in the hanger components only, low values 

of the reliability index result in a higher value of the failure probability, according to (2.58). 

This indicate that provided assumptions made in previous sections failure tend to occur in the 

hanger components, similar to the results from the Enhanced Monte Carlo method. 

The results show that partial safety factors from codes and standard gives high reliability 

indexes and low failure probabilities.  

 

6.5  Comparisons 
 

By comparing the two reliability analyses of the Hardanger Bridge for 𝑛 = 3 ∙

105 simulations, following result is obtained: 
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 𝑝𝑓𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑀𝐶
< 𝑝𝑓𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡

 (6.1) 

 

Hence: 

 𝛽𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑀𝐶 > 𝛽𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 (6.2) 

 

The Enhanced Monte Carlo method provides confidence intervals with great range, due to the 

uncertainties related to the lack of information.  

The Second-Moment method assume normal distribution of the resistance capacities and a 

target reliability index of 5.20, in order to obtain values for the partial safety factors and 

estimation of failure probability.  

Failures tend to occur in the hanger components in results from both of the methods.  

The components are assumed to act as a series system and simplifications of the structure in 

order to reduce computational effort are done.  

Assumptions about the resistance capacity values for the hangers are made from obtained data 

and exponential function of the correlation coefficient are proposed for the resistance 

capacities.  

In order to perform reliability analysis of the structure, assumptions and simplifications are 

done for both of the method, which lead to uncertainties in the results for both of the methods.  

The results, however, from the two different approaches indicate that the structure is heavily 

oversized. Requirements for the reliability index related to structure with high amount of 

expected damage are equal to:  

 𝛽 ∈ {4.30 − 5.20} (6.3) 

Where the range in value correspond to the value of the reference period [20]. 

Because the estimated reliability indexes from both of the reliability analysis is way above 

this requirement, the analyses together state an oversizing of the structure.  
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7  Conclusion 
 

In the present study, a reliability analysis of the Hardanger Bridge has been performed using 

two different methods:  

1. Second-Moment method based on load and resistance factor design format (LRFD) 

2. Enhanced Monte Carlo simulation 

The analysis was separated into three main parts. Firstly, calibration of the lading, secondly 

estimation of the resistance and at last comparisons of the results from the two previously 

parts.  

Results from the Second-Moment method gave partial safety factors for the resistance and 

loading equal to 1.05, which is much lower than the standardized partial safety factors from 

codes equal to {1.20 , 1.35} for the resistance and loading, respectively. By taking advantage 

of the standardized partial safety factors, estimates for the reliability index {12.6} and failure 

probability {10−37} were obtained. 

Enhanced Monte Carlo method gave estimates of the reliability index in the range {12.4 , 

14.6}, which corresponds to a probability of failure in the range {10−36 , 10−48}. These 

results involve a lot of uncertainties due to the fact lack of information when 𝜆 → 1. Even 

though the confidence interval indicate a huge amount of uncertainties related to these results, 

the estimates show a significant higher safety level than required in codes and standards. 

The results of the failure probability showed that hanger components tend to fail during 

estimation, hence the hanger components seemed to be the weakest one, i.e. ratio between 

capacity and loading is lower for hangers compared to main cable components. Provided 

consideration due to the assumptions made in previous chapters.   

Both of the solution strategies show that the reliability of the bridge is widely oversized. The 

Second-Moment method showed that standardized partial safety factor for the loading 

contribute most to the oversizing of the structure. The main reason for this is due to the fact 

that the standardized partial safety factors ensure reliable results for all kind of structural 

problems. Stated in another way, to ensure reliable results for structures exposed to all kind of 

action forces, i.e. safety requirements are fulfilled, overestimation of the partial safety factors 

appears. Results from the load calibration showed that structures exposed to dead load only 

have a rare occurrence of large deviations, in other words dead load have a low variance. 

Standardized partial safety factors for loading account for high a variance, thus a high 

oversizing of the self-weight loading. 

The conclusion of the reliability analysis is in agreement with the stated hypothesis: 

Structures, where the main loading consist of dead load, tend to be oversized due to the low 

variance in the loading.  

The effects of the use of codes and standard use in design calculation, in structures where self-

weight is the major loading, are oversizing and inefficiency use of resources. Oversizing leads 
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to excessive use of materials and resources, thus the structure becomes cost inefficient and 

harming the environment.   

In order to conduct the reliability analysis in an acceptable manner, several assumptions were 

made. Firstly, the limit state function was assumed to consider axial loading and resistance for 

the hangers and main cables only, consequently reliability analysis and code calibration were 

performed on the hanger and main cable components. In addition, the structure was assumed 

to behave as a series system.  

The loading in each component was calibrated by taking advantage of an influence surface, as 

mentioned in sections 5.2.2 and 5.3, and by estimating the self-weight of the bridge deck 

chapter 3.  

The resistance was estimated on behaviour of codes, manuals and available data from tensile 

tests. Assumptions of the correlation between the components may cause uncertainties related 

to the results, but within acceptable limit for the total conclusion.  

Both the loading and the resistance capacities were assumed to behave normally distributed, 

due to the effect of the Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11], 

[12].  

All assumptions made in the analysis are considered to include some uncertainties. The 

uncertainties are assumed to be within acceptable limits of accuracy compared to the 

magnitude of the results, which is way above safety requirements from codes.  

Further, the reliability analysis is carried out by using two different methods, both of the 

methods are well-known and often used methods in reliability analysis. The Second-Moment 

method uses the two first moments of each random variable in the limit state function to 

derive the reliability index, hence the name Second-Moment. In this analysis, the method uses 

the strength based terminology Load and Resistance Factor Design (LRFD) format, which 

compare required strength to actual strength by including several safety factors ϒ in the 

calculations, see [31]. 

The second method is a Monte Carlo method, which involve repetitive iterations. The method 

generate 𝑛 simulations of the random variables included in the limit state function and count 

the occurrence of limit state violation, when the generations are applied. Due to the large 

number of iterations needed in order to obtain good results, the Crude Monte Carlo method 

tend to be too time consuming. Hence, the Enhanced Monte Carlo method was applied in 

order to reduce the number of iteration needed. The Enhanced Monte Carlo method is 

elaborated in section 2.10.3.  

 

7.1  Further work 
 

In further work, reliability analysis with more attention to reduction of the uncertainties 

should be performed. 
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As stated in the previous section, assumptions and simplifications due to reduction of the 

complexity of the problem where made. Considerations and investigation of following steps 

should be accounted for in order to increase the accuracy of the results: 

- More consideration of the entire bearing system. Include contribution from pylons, 

bridge deck, fundaments, etc. in the resistance and loading estimation.  

- Consider taking advantage of other distribution. For instance, Gumbel distributed 

loading and Log-Normal distributed resistance capacity. 

- Further investigation of the correlation coefficient and estimation of characteristic 

values for the loading and resistance capacity. 

- Taking advantage of more advanced computational tools in utilization of the Enhanced 

Monte Carlo method, i.e. gather more data points (𝜆𝑖, 𝑝𝑓(𝜆𝑖)), especially for higher 

values of 𝜆𝑖.   

In addition, in order to increase the reliability of the analysis other steps not mentioned here 

should also be considered, e.g. uncertainties due to the statistical tools used, simplifications of 

the structure, human error, etc.  

Attention of other loads acting simultaneously and cooperation of loading should be 

considered. In this thesis, the major loading is assumed to consist of the self-weight of the 

structure. Investigation and research about the validity of this assumption should be made in 

order to increase the reliability of the statement “…where the loading only (or nearly only) 

consist of self-weight…” (hypothesis). In addition, reliability analysis of similar structures, i.e. 

major loading consist of self-weight, should be performed in order to strengthen the 

credibility of the conclusion in this study.   
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Basis of calculation 
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Figure A.1: Basis of Calculation.  
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Figure A.2: Basis of Calculation.   
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Figure A.3: Basis of Calculation.   
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Figure A.4: Basis of Calculation.   
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Figure A.5: Basis of Calculation.   
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Figure A.6: Basis of Calculation.   
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Statistic tables 
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Table B.1: Tables of Standard Normal Probabilities for negative Z-scores.   
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Table B.2: Tables of Standard Normal Probabilities for positive Z-scores. 
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Table B.3: Critical values in standard normal distribution. 
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Figure C.1: Tensile test data from Bridon. 

 

Figure C.2: Tensile test data from Bridon. 

 

Figure C.3: Tensile test data from Bridon. 
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Figure C.4: Tensile test data from Bridon. 

 

Figure C.5: Tensile test data from Bridon. 

 

Figure C.6: Tensile test data from Bridon. 
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Figure C.7: Excel script of obtained tensile test data from Bridon. 

 

Figure C.8: Statistical interpretation of the obtained tensile test data. 

 

 


