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Sammendrag

Statens vegvesen utreder mulighetene for kryssing av fjordene på vestlandet i forbindelse
med prosjektet Fergefri E39. For den 5 km brede Bjørnafjorden vurderes en flytende tre
spenns hengebru hvor to tårn står på plattformer festet med strekkstag til bunnen (TLP).
En parametrisert modell av en flerspenns hengebru har blitt utviklet, hvor dimensjonene
fra konsepttegninger til den planlagte Bjørnafjord brua har blitt implementert. En gener-
alisert metode for å finne systemmatrisene og last i modale koordinater, har blitt utviklet.
Buffeting teori og lineær potensial teori har blitt brukt til å finne lastene fra vind og bølger
på strukturen.

Modal-, response- og bevegelsesindusert ustabilitets analyser har blitt utført i frekvens-
planet, hvor hydrodynamisk masse, demping og stivhet, og aerodynamisk demping og
stivhet har blitt tatt høyde for. Miljøeffektene førte til betydelig lavere egenfrekvenser for
systemet. Effekten av forskjellig kombinasjoner av stasjonære parametere for vind og bøl-
ger har blitt undersøkt. Vind ga størst bidrag på responsen i horisontal retning, og bølger i
vertikal og torsjonell retning. Fra modal analyse, responsspektre og standardavvik ble det
funnet at den første moden i horisontal og vertikal retning vil være den dominerende re-
sponsen i broen. Aerodynamisk bevegelsesindusert ustabilitet grense ble funnet til å være
88 m/s for 1.5217 rad/s.

v



vi



Abstract

The Norwegian Public Road Administration has been investigating the possibilities of
crossing the fjords on the west coast of Norway for the coastal highway E39 project.
For the 5 km wide Bjørnafjorden a floating three span suspension bridge with two py-
lons standing on tension leg platforms (TLP), is considered. A parametrized model of a
floating multi-span TLP suspension bridge has been created, where the parameters have
been given the planned geometry of the Bjørnafjorden bridge concept. A hydrodynamic
analysis conducted on a FE-model of a pontoon where added mass, damping, restoring
forces and the wave transfer function were obtained. Buffeting theory and aerodynamic
derivatives were used to obtain the buffeting forces, stiffness and damping terms. A gener-
alized method was developed to couple system matrices and forces from wind and waves
in modal coordinates.

Modal-, response- and motion induced instability analyses, all accounting for hydrody-
namic added mass, damping and restoring forces and aerodynamic damping and stiffness,
have been conducted in the frequency domain. The environmental effects resulted in sig-
nificantly lower eigenfrequencies. A response analysis was carried out for combinations of
different stationary parameters for wind and waves. It was evident that wind governed the
response in transversal- and waves for the vertical and rotational directions for modes with
higher corresponding eigenfrequenciees. The most participating modes was the first mode
in transversal direction and the first mode in vertical direction, obtained from the modal
analysis, frequency response spectra and standard deviations. An aerodynamic motion
induced instability limit was found to de 88 m/s at 1.5217 rad/s.
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Chapter 1
Introduction

The Norwegian Public Road Administration (NPRA) is investigating the possibilities for
crossing the fjords on the west coast of Norway for the ferry free E39 project, where
the 5km wide Bjørnafjorden south of Bergen, being one of them. Several concepts are
under development for this particular crossing such as submerged tunnel, floating bridge
and floating suspension bridge, all with different possible sub solutions. In this thesis,
the concept of a floating three span suspension bridge where two pylons stand on tension
leg platforms (TLP) that are moored to the sea bed has been analysed. The technology
has been used on oil rigs since the 1980s but has never before been used on a suspension
bridge.

1.1 Scope of thesis

The scope of this thesis is to create a parametrized finite element model of a TLP moored
floating suspension bridge and to conduct modal, response and instability analysis in the
frequency domain. Environmental effects are to be accounted for from wind and wave
loads.

This master thesis aims to create a parametrized model of a multi-span TLP bridge geom-
etry. Since the model is parametrised the geometry and structural properties of the bridge
can easily be changed, making the model relevant to use in other similar studies. In this
thesis, the parameters will render the Bjørnafjorden TLP concept bridge. Environmental
conditions of wind and wave loading are to be added to the model, i.e. motion induced
hydrodynamic added mass damping and restoring force, and aerodynamic damping and
stiffness. MATLAB will be used to write an input file to the finite element software,
ABAQUS. Complex modal analysis will be conducted for the model, and a method has to
be developed to handle the frequency dependent environmental effects on the eigenvalues
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Chapter 1. Introduction

in a satisfying way.

Hydrodynamic effects on the pontoons will be obtained outside of ABAQUS. A CAD
model of the pontoon in the software GeniE will be created. GeniE is compatible with the
finite element software HydroD where a hydrodynamic analysis will be conducted. The
hydrodynamic restoring force, the wave transfer function and the frequency dependent
added mass and added damping will be output. A sea state representative for the fjord will
be estimated. The sea state will be converted to load through the use of linear potential
theory.

Aerodynamic coefficients, for the girder section planned to be used on the Bjørnafjorden
bridge, is not available. Since aerodynamic wind tunnel tests all ready had been conducted
for the Hardanger bridge girder it will be used instead. This girder cross section is smaller
but shape wise similar. A wind field will be created in frequency domain. The wind
spectrum will be the basis for the wind load, applied to the bridge through the use of the
buffeting theory.

A response analysis of the bridge will be conducted in the frequency domain using MAT-
LAB, where both hydrodynamic and aerodynamic effects will be accounted for. The re-
sponse will be presented as spectral densities and standard deviation for selected nodes on
the bridge. Wind and wave load participation on the response will be investigated.

Instability analysis due to aerodynamic motion induced self excited loading will be inves-
tigated. A methodology to find the critical mean wind velocity at the onset of an instability
will be established and the mode shapes participating in the instability will be searched for.
Hydrodynamic effects will also here be taken into account.

1.2 Structure of the report

Chapter 2 - Theory The theory describing the problem and solution strategies for the
problem at hand. Basic structural dynamic theory, aerodynamic and hydrodynamic
effects on a structure and motion induced instability limits are discussed in detail.

Chapter 3 - Initial design Initial design of the Bjørnafjorden concept bridge and its loca-
tion based on reports from TDA is described.

Chapter 4 - Modelling A detailed description of the modelling of the parametrized bridge
in ABAQUS and CAD modeling of the pontoon in HydroD/WADAM is presented.
Hydrodynamic forces were obtained from WADAM for chosen sea parameters.

Chapter 5 - Analysis Eigenvalues and eigenvectors are obtained from the ABAQUS
model. A generalized method for response analysis when accounting for both hydro-
dynamic and aerodynamic effects is developed. It is then applied on the case study
of Bjørnafjorden. The algorithm from a MATLAB script is presented and applied for
the Bjørnafjorden bridge.
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1.2 Structure of the report

Chapter 6 - Results and discussion A modal analysis is carried out with emphasis on
the mode with significant pontoon motion. Results from the response analysis is
discussed in detail. Motion induced instability conditions and instability modes from
a 300 mode analysis is presented

Chapter 7 - Conclusion A summary of the main results and finding is presented.
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Chapter 2
Theory

The theory chapter will present the fundamental theory of structural models coupled with
forces from wind and waves in a finite element formulation. It is assumed the reader has
basic knowledge in structural dynamics and statistics [8]. These topics are therefore only
addressed in brief to identify the main ideas of this matter. A detailed description of wave
theory, with modeling of a stochastic directional and frequency independent sea surface,
is presented. Fluid structure interaction given a sea surface is thoroughly gone trough.
Aerodynamic effects on a structure is derived for the buffeting theory and motion induced
forces. A mathematical derivation of motion induced instabilities due to self exciting
forces is given.

2.1 Dynamics

Response of large complicated structures are comprehensive to solve analytically and are
therefore discretized in a finite element (FE) formulation describing the motion of the
structure with a finite number n of degrees of freedom (DOF). The equation of motion
(EOM) in time domain for such a discrete system is given as following:

Mr̈(t) +Cṙ(t) +Kr(t) = R(t) (2.1)

M ,C and K are the n × n mass stiffness and damping matrices and R is the n × 1
loading vector. The left hand side of this equation consist of the forces related to the
system motion, denoted r. R(t) is the exciting forces independent of the system motion.
Further in this thesis, the terms describing the right hand side will be referred to as the
flow-induced forces, while the left hand side
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Chapter 2. Theory

As the damping force in equation of motion is difficult to describe for a coupled MDOF
system, a frequently used method is to use the Rayleigh damping. Using a finite element
program, representative matrices for M and K within the structure are developed.

C = αM + βK (2.2)

where α and β are the Rayleigh coefficients determined from two eigenfrequencies of
the system. The eigenfrequencies are determined from a solution were the damping is
assumed to have negligible effect on the eigenfrequency.

The general solution to a homogeneous second order differential equation in matrix form,
such as the homogeneous solution of Equation (2.1) for r is assumed to be

r(t) =

n∑
i=1

αiφie
λit (2.3)

where α is a scaling factor between modes determined by the initial conditions. φ is the
eigenvector and λ is the eigenvalue. Inserting Equation (2.3) back into the homogeneous
form of the EOM an eigenvalue problem is obtained

(
Mλ2 + Cλ+ K

)
Φ = 0 (2.4)

By using e.g. a state space method, n complex eigenvalues of the discrete system can be
found.

λi = µi + iωi (2.5)

An analytical system has infinitely many eigenfrequencies, and a discretised system has n
number of eigenfrequencies concurrent with the number of DOFs in a FE representation.
The number n number of eigenfrequencies of the system is the imaginary part of λ. From
the n eigenvalues, n corresponding orthogonal eigenvectors can be determined.

The EOM matrix system becomes large when considering systems with many DOFs. Ex-
pressing Equation (2.1) in modal coordinates instead of DOFs is often computationally
much more efficient, as the response is represented with a finite number n of eigenvec-
tors. The response solution can be written as a superposition of mode shapes φ times a
generalized displacement η. Thus,

r(t) =

Nmod=n∑
i=1

φiηi(t) ≈
Nmod<n∑
i=1

φiηi(t) (2.6)
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2.1 Dynamics

By inserting (2.6) into EOM and pre-multiplying with Φ transpose the EOM is obtained
in its modal form.

M̃η̈(t) + C̃η̇(t) + K̃η(t) = R̃(t) (2.7)

where

Modal mass matrix : M̃ = ΦTMΦ

Modal damping matrix : C̃ = ΦTCΦ

Modal stiffness matrix : K̃ = ΦTKΦ

Modal load vector : R̃ = ΦTR

(2.8)

The computational advantage lies in that a sufficient response analysis will be obtained by
only superposing a small number of modes compared to the number of DOFs, n, depend-
ing on the frequency of the load. If the matrices for M, C and K are symmetric, one will
obtain diagonal matrices in modal form due to the properties of orthogonal eigenvectors.
This will result in uncoupled equations of motions and the equations can be treated as
Nmod SDOF systems.

The frequency domain representation of the equation of motion can be obtained by sim-
ply making a Fourier transform of the time-dependent processes. This implies taking the
Fourier transform of Equation (2.1).

Where ar(ω) is the Fourier amplitude to r(t) and aR(ω) is the Fourier amplitude to the
time dependent load R(t), the equation of motion in frequency domain can be expressed as
following:

(
−ω2M + iωC + K

)
aη(ω) = ar(ω) (2.9)

The content within the large paranthesis on the left hand side of equation 2.9 is the transfer
function matrix, denoted H.

H(ω) =
(
− ω2M + iωC + K

)−1
(2.10)

Equation (2.9) can be reformulated to

ar(ω) = H(ω)aR(ω) (2.11)

where the response is a function of the frequency dependent transfer function times the
spectral load amplitude. The transfer function will give an indication on how a system
react to unit loads and is the connection between load and response in frequency domain.
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2.2 Wave theory

The objective of the following section is to mathematically model the wave surfaces, using
traditional assumptions of the sea. A general wave surface is considered random in time
and space and can be modeled as a stochastic process. Wave height, frequency of the waves
and wave direction can be considered as random parameters that describe the random sea
wave surfaces. A frequency domain formulation of wave height accounting for correlation
between two arbitrary spatial points, randomness in wave direction, wave elevation and
wave frequency will be derived.

Linear potential theory will briefly be applied in the description of added mass, hydrody-
namic damping, restoring forces and wave transfer functions. These will be further assem-
bled together with the stochastic wave surface description to obtain wave exciting forces.
A frequency domain representation of hydrodynamic contribution in a system equation of
motion can thus be derived and presented.

2.2.1 Sea surface as stochastic processes

Sea waves are essentially generated by wind and can be modelled as a physical surface with
harmonically varying amplitude. Wave height, frequency of the waves, wave direction,
crest length and wave surface location are often the key parameters that are needed to
describe sea behavior; and are essential when considering wave interaction on structures.
Traditionally, waves are modelled statistically using measured data of each key parameter
for different sea locations. Sufficient measurements of the key parameters over time can
give a clear notion of sea behavior for a specific sea location.

The amplitude of a sea wave surface is traditionally denoted η. This can be modeled as a
function of time t, spatial location r = [x, y] and wave number κ.

η(t) = a cos(ωt) η(x) = cos(κx+ ϕ) (2.12)

Where a is the wave amplitude, ϕ is the wave phase, and κ is the wave number associ-
ated with the wave propagation direction and wave frequency; the two one-dimensional
formulations for sea surface with elevation η can be assembled to a three-dimensional sea
surface. A developed expression for a a single three-dimensional wave on a sea surface is
expressed in Equation (2.13).

η(x, y, t) = a · cos(k · r − ωt+ ϕ) (2.13)

κ is the wave number for two dimensions [κx, κy] that accounts for directionality and
wave frequency, phase angle, and time. Knowing that cosα = 1

2 (exp(iα) + exp(−iα)),
the relation in 2.13 can be further developed and decomposed in to Equation (2.14).
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2.2 Wave theory

η(x, y, t) = {1

2
a · exp(iϕ)}

{
exp(i(κ · r − ωt) + exp(−i(κ · r + ωt))

}
(2.14)

The first term { 12a·exp(iϕ)} is often denoted the complex amplitude, here denoted c; as the
wave amplitude a is found by Fourier transform, corresponding to κx, κy and frequency
ω.

η(r, t) =
∑
κx

∑
κy

∑
ωy

c(κx, κy, ω)
{

exp(i(κ · r − ωt)− exp(−i(κ · r + ωt)
}

(2.15)

The linear superposition can be illustrated in Figure 2.1. The figure shows waves at a
specified time t, propagating towards the same direction but with different scalar values of
κ = κy and using a random phase angle for each wave surface. The obtained expression in
Equation (2.15) illustrates the randomness of the sea, having a random complex amplitude
wrt. the wave directions and wave frequency. This expression can account for the varying
elevation on the sea surface as a stationary and homogeneous stochastic process over the
defined surface.

Figure 2.1: Harmonic wave surfaces with one-directional propagation

Using the assumptions that the wave surface is a stationary and homogeneous stochastic
field with zero mean, Equation (2.15) can be written in a continuous form as in equatinon
(2.16). The following formulation of the stochastic sea wave surface is based a paper from
Ragnar Sigbjörnsson [6], for stochastic sea surface modeling, using higher order statistics.

η(r, t) =

∫ ∞
−∞

exp
{
i(ωt− κ · r)

}
dB(κ, ω) (2.16)

where B(κ, ω) is the spectral process associated with wave elevation, including the com-
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plex conjugates that have been written in the equations above. If one is to consider corre-
lation in two points, e.g point n and m with corresponding x- and y-coordinates one can
find the cross-correlation as shown in Equation (2.17

Rηrηs = E[η(rr, tr) · η(rs, ts)
H ] (2.17)

To fulfil the assumptions of stationarity and homogeneity for the wave surface, Equation
(2.18) and (2.19) need to be satisfied for the spectral process dB(κ, ω). The condition
shown in Equation (2.18) describes zero correlation between the individual wave surfaces
(e.g k and l) while Equation (2.19) is the condition of zero mean of spectral process asso-
ciated with the wave elevation.

E(dB(κ, ω)) = 0 (2.18)

E
[
dB(κk, ωk) · dB(κl, ωl)

H
]

= IkldGηη(κl, ωl) (2.19)

Gηη(κ, ω) gives the correlation function for the spectral process B(κ, ω) for two points k
and l in a wave-number and-frequency space. Ikl in Equation (2.19) is the Kronecker delta
(k × l-matrix of 1’s where k = l and 0 elsewhere).

Where Gηrηs(κ, ω) is a three-dimensional wave spectral distribution, Sηrηs is the corre-
sponding cross-spectral density. The relation between the wave spectral distribution and
corresponding wave cross-spectral density for two correlating points on the wave plane
can be described as following:

Gηrηs(κ, ω) =

∫
κ

Sηrηs(κ, ω)dκdω (2.20)

When Equation (2.18) is fulfilled, the expression in (2.17) can be further developed by
applying (2.19), and the correlation function can be expressed as following:

Rηη(τ) =

∫
∞

∫
θ

∫
κ

Sηη(κ, θ, ω) exp
{
iωτ
}
·exp

{
− iκ(∆x cos θ+∆y sin θ)

}
dκdθdω (2.21)

where ∆ denotes the distance between points m and n in x- and y- position between e.g
distance points ym and yn on the wave surface plane. The time-variable τ denotes tm− tn
in time-space. Using the Wiener-Khintchine relation; one can express the cross-spectral
density and the correlation function as a Fourier-transform pair. The Fourier transform of
the correlation function gives the cross-spectral density

Sηrηs(ω) =
1

2π

∫ ∞
−∞

Rηmηn(τ) exp
{
− iωτ

}
dτ (2.22)
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By substituting equation [2.21] into Equation (2.22), the following is obtained

Sηrηs(ω) =

∫
θ

∫
κ

Sηη(κ, θ, ω) exp
{
− iκ(∆x cos θ + ∆y sin θ)

}
dκdθ (2.23)

To account for, but simplifying the complexity of the three-dimensional spectral density
function for wave elevation, the Dirac delta function can be used for a condition of when
κ is equal to a one-to-one mapping of the absolute value of κ into frequency f(ω) for the
three-dimensional Sηη projection on the κ−ω-plane. This implies that Sηrηs(κ, θ, ω) will
be zero for any κ 6= f(ω). The three-dimensional mathematical expression for spectral
density can accordingly be reduced to two-dimensions for all κ = f(ω). If one is to
assume that the wave directions are independent of the wave elevation, a two-parametric
spectral density can be further expressed as a auto-spectral density function

Sηη(ω, θ) = Sηη(ω) ·D(θ) (2.24)

Equation (2.24) defines the two-dimensional spectral density function as two one-parametrized
functions for respectively direction wrt. θ and a wave elevation wrt. ω. It is general prac-
tice to use the dispersion relation to determine κ from Airy wave theory and the second-
order Stoke wave theory, given in Equation (2.25).

ω2 = gκ tanh(κh) (2.25)

h is here the water depth. For large h, i.e deep water waves, tanh(κh) = 1. Given that κ
corresponds to value f(ω) on the κ−ω projection of the three-dimensional spectral density
Sηrηs(κ, θ, ω), the above relations can be used to derive a wave elevation spectrum that
accounts for randomness of wave direction, two points with given spatial directions, and
the extent of wave depth in the stochastic process. This can be shown in Equation (2.26).

Sηrηs(ω) = Sηη(ω)

∫
θ

D(θ) exp
{
− if(ω)(∆x cos θ + ∆y sin θ)

}
dθ (2.26)

The cross-spectral wave elevation spectrum is accordingly obtained, assuming deep water
wave and inserting f(ω) = κ(ω) = |ω|ω

g . The auto-correlation function Sηη and D(θ)
is obtained by measurements for the two given parameters done over time for specific
sea locations and transformed into spectral densities. To summarize, the cross-spectral
density function for wave elevation has been developed for two spatial points r and s on the
surface, taking into account both the wave direction, single point wave elevation and water
depth. Accordingly, the wave elevation function accounting for higher order statistics
has been decomposed into components that usually are known or given for specific ocean
locations.
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2.2.2 Sea state parameters and wave spectra

Sea states define the stationary conditions for the sea and are often input data to e.g chosen
directional distribution of D(θ) and auto-spectral density Sηη that depend on sea loca-
tions. The traditional sea state parameters used to describe the wave surfaces as stochastic
processes are significant wave height, mean zero crossing frequency/period, mean water
level, mean wave propagation direction and crest length. The significant wave height is
the mean of the 1/3rd highest wave heights that will occur in a time interval. The relevant
statistical parameters for the stochastic process can be calculated assuming that the sea fol-
lows the behavior of a chosen auto-spectral wave elevation function Sηη . Expressions for
variance, mean zero crossing period and the significant wave height are developed using
the relations in Table 2.1. Tidal and current levels and swell are also stationary parameters
that should be taken into account for wave loading.

Description Relation

Spectral moments (n = 0, 1, 2...) mk =
∫ b
a
fnS(f)df

Variance σ2 = m0

Significant wave height Hs ≈ 4σ

Mean zero crossing period Tz =
√

m0

m2

Table 2.1: Relations between stationary parameters and Sηη

As variance, significant wave height and mean zero crossing periods traditionally are de-
rived using spectral moments, the choice of an auto-spectral wave elevation spectrum will
affect the results using the given stationary parameters for simulation of waves. The cross-
spectral density function, derived in Equation (2.26) is also directly dependent on this
choice.

2.2.3 Auto-spectral density for wave elevation

The spectra that give the auto-spectral density function of wave elevation show how sea
wave elevation energy is distributed over different frequencies for one arbitrary point on
the homogeneous sea surface. These spectra are physically intuitive and obtainable as they
in principle are the Fourier-transform of wave elevation measurements over a longer period
of time. Over the last decade, several sea wave spectra have been developed for different
oceans that directly depend on the mean zero wave period/frequency and a significant wave
height.

One-parametric Pierson-Moskowitz spectrum
The one-parametric Pierson-Moskowitz spectrum is one of the auto-spectral wave eleva-
tion spectra that are derived using wave elevation measurements. It is based on measure-
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ments in the North Atlantic from 1964 by Pierson and Moskowitz. The spectrum has how-
ever been used for many other sea locations. A relation for a one-parametric PM-spectrum
can be given as in Equation (2.27) with Hs as parameter.
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Sηη(ω) =
αg2

ω4
· exp

(−B
ω5

)
(2.27)

Figure 2.2: Pierson Moskowitz spectrum for different values of parameter significant wave
height Hs

The components can be denoted B = 3.11/H2
s , where α = 0.0081, g is the gravitational

acceleration and Hs the significant wave height. The relation in (2.27) is equivalent with
the relation for wave spectral density in Table 2.1 by S(ω) = S(f)/2π. It is evident from
Figure 2.2 that the peaks are shifted wrt. different frequencies for higher Hs. There are
many other spectra that take into account more parameters, such as the multi-parametrical
spectra of Pierson-Moskowitz, Bretdtschneider, JONSWAP and Torsethaugen. These will
not be emphasized for further analysis in this thesis.

2.2.4 Directionality function

As waves propagate in many different directions, wave spreading functions are developed.
The directionality functions fulfil Equation (2.28).

∫
θ

D(θ, ω)dθ = 1 (2.28)

A traditional expression used for the directionality function has the stationary parameter
mean wave direction. The Cos2s-function is frequently used to express this spreading and
is shown in Equation (2.29).

D(θ) = C cos2s
(θ − θ0

2

)
(2.29)

θ is the wave direction to a fixed referential axis in the sea, θ0 is the angle of the mean
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wave direction, while s is a parameter for the wave crest length. C is the constant such that
Equation (2.29) will be fulfilled. Larger s gives a larger crest length and a more narrowly
spread function around the mean wave direction. The effect of the directionality function
will be evident when considering Equation (2.24) and (2.26).

0 0.5 1 1.5 2 2.5 3
3 [rad]

0

0.5

1

1.5
D

(3
)

s=1
s=3
s=10
s=100
s=1000

Figure 2.3: Directional spectrum for different values of crest length s

2.2.5 Wave forces

In the above sections, it has been shown that irregular seas can be modeled using a linear
superposition of multiple waves. By using linear potential theory, one can obtain forces
and response on a structure by taking the superposition of the force and response from
multiple single waves. An approach of obtaining structure response using linear potential
theory will be described in this subsection.

Obtaining wave forces for a structure requires mathematical models to describe the fluid
and the fluid-structure interaction. These models can be obtained using potential theory
where the water is assumed incompressible and the fluid motion is irrotational. The prob-
lem can be sub-divided into two problems. One of the sub-problems is to obtain the forces
when the structure is fixed and restrained from oscillating. The second of the two sub-
problems is to obtain the wave forces on the structure when it is forced to oscillate with
the wave frequency. This is illustrated in Figure 2.4. Solving these two problems result
in wave- and motion induced forces. The wave-induced forces acting on a submerged
structure, can be described as a sum of incidential and diffractional wave effects. The
incident wave effects are the wave forces from undisturbed waves, not accounting for the
diffraction when waves hit the structure.

Hydrodynamic forces are usually calculated for a submerged reference node, e.g the Cen-
ter of buoyancy for motion on the submerged structure; accounting for 3 translative and 3
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Figure 2.4: Flow/wave- and motion- induced forces

rotational DOFs, (x, y and z and rotation about corresponding axes for a fixed coordinate
system). Each of these rigid body motions can be denoted ηj with j from 1 to 6.

2.2.6 General sea water assumptions, potential theory

Fluid particles in sea water can be described using velocity potential and Bernoulli’s equa-
tion. Firstly, the conditions that all three conditions need to be explicitly satisfied for, will
be denoted as φ.

It follows that assumptions of irrotational fluid motion, flat seabed, and sea water in-
compressibility are conditions that must be satisfied to make linear wave potential the-
ory applicable. The two sub-problems of obtaining wave forces are to consider the forces
when the structure is standing still and when it is forced to oscillate. The total potential
considering linear wave potential can be expressed as following:

φ(x, y, z, t) = φ0(x, y, z, t) + φD(x, y, z, t) + φR(x, y, z, t) (2.30)

φ0, φD and φR are respectfully the incidential, diffractional and radiational velocity po-
tentials. φ0 and φD assemble the wave excitation forces. The corresponding forces of
these velocity potentials can be calculated separately.

2.2.7 Wave excitation forces

The wave excitation forces are results of forces from incident waves and from diffracted
waves, whereas the velocity potentials to these can be denoted φ0 and φD. The inciden-
tial velocity potential, based on assumptions of a sea without obstacles/structures can be
expressed using Airy wave theory.

φ0 = −Ag
ω

cosh(κ(z + h))

cosh(κh)
exp {iκ(x cos θ + ysinθ)} (2.31)
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In Equation (2.31),A denotes amplitude, κ the wave number, h the water depth, θ the wave
direction and z the vertical direction with positive direction upwards. The diffractional
velocity potential can be expressed as following:

V = ∇φD = i
∂φD
∂x

+ j
∂φD
∂y

+ k
∂φD
∂z

(2.32)

As sea water is assumed incompressible and irrotational, meaning ∇ · V = 0 and ω =
∇ × V = 0, the governing equation for wave potential for radiation can therefore be
expressed as following:

∇ · V =
∂2φD
∂x2

+
∂2φD
∂y2

+
∂2φD
∂z2

(2.33)

Equation 2.33 is equivalent with showing that the equation needs to satisfy the Laplace
equation. By applying Bernoulli’s equation for constant fluid pressure and the dynamic
free-surface condition, meaning that the water pressure is equal the atmospheric pressure
on the free-water surface, and using only the linear terms, Equation (2.34) is obtained [2].

∂2φD
∂t2

+ g
∂φD
∂z

= 0 (2.34)

As incidential waves are traversing through a structure and the diffracted waves diffract
from the structure, the following boundary condition is accordingly applied for the inci-
dential and diffractional forces.

∂φD
∂n

= −∂φ0
∂n

giving
∂(φ0 + φD)

∂n
= 0 (2.35)

By also assuming a horizontal sea bottom where h is the water depth:

∂φD
∂z

= 0 for z = −h (2.36)

The diffractional potential is not always necessary to calculate explicitly for finding the
total exciting force including the incidential and diffractional force effects. Industry soft-
ware calculate the total exciting force using Haskind’s relation by applying Green’s second
identity to calculate the total wave force [5]. The following relation can then be applied:

Fexc,k = −iωρ
∫
SB

(nkφ0 −
∂φ+
∂n

φR)dS (2.37)

As Equation (2.37) often is calculated with a unit wave amplitude, one can simply denote
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the total wave exciting force as the given relation times a wave amplitude. The wave
transfer function Fexc can be further denoted as Qr, for a wave surface position r.

2.2.8 Radiation forces

With radiation, one assumes a submerged structure forced to oscillate with the wave fre-
quency. As a radiation force describes the forces in an oscillating system or a structure,
it is reasonable to decompose the force into a mass, damping and stiffness force compo-
nents. By applying the explicit boundary conditions for radiation, the radiation force can
be expressed as a function of the obtained radiation velocity potential φR.

The radiation velocity potential φR needs to explicitly fulfil the conditions of free surface
and a flat seabed with zero fluid motion at the water bottom, and structure oscillation
towards wave direction. The radiation velocity potential is:

V = ∇φR = i
∂φR
∂x

+ j
∂φR
∂y

+ k
∂φR
∂z

(2.38)

Moreover, the conditions of irrotationality and incompressibility needs also to be satisfied
explicitly for the radiation potential, giving the governing equation:

∇V = i
∂2φR
∂x2

+ j
∂2φR
∂y2

+ k
∂2φR
∂z2

(2.39)

The dynamic free surface condition becomes

∂2φR
∂t2

+ g
∂φR
∂z

= 0 (2.40)

Also, the radiation potential needs to be satisfied for the boundary condition on the water
plane

∂φR,k
∂n

= nk (2.41)

Equation (2.41) is given such that the structure motion is driven with the wave direction.
Boundary values of zero water motion at the sea bottom and infinitely small waves at an
infinitely long distance from the structure need to be considered, where the latter can be
satisfied showing ∂φR,j

∂n = 0 at the sea bottom z = −h. The expression for the radiation
velocity can be further derived as in the equation below, [3].
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φR(x, y, z, t) = Re
[ 6∑
j=1

dηj
dt
· ϕj ] (2.42)

Using the boundary conditions Equation (2.42) can be obtained where j is the number of
the motions in j-th degree of freedom, where dηj

dt denotes the velocities of these, while ϕ
denotes the potential per unit velocity of the structure. Each of the unit velocities needs
to satisfy the body boundary condition dϕj

dn = nj . The motion induced force can hence
be derived as a function of the time-derivative of the velocity potential times the water
density, integrated over the wetted surface of the structure as shown below.

Frad,k = −
∫
S0B

ρ
∂φR
∂t

nkdS (2.43)

Equation (2.43) can be further decomposed as matrices times the double and single deriva-
tive wrt. time with two matrices with equivalent composition as one has in EOM.

Frad,k =

6∑
j=1

{
−Akj

d2ηj
dt2
−Bkj

dηj
dt

}
(2.44)

k denotes the force direction where the added mass and damping coefficients are denoted
Akj andBkj with 6x6 coefficients of j, k. One obtains accordingly the heave damping and
heave inertia force (z-direction) when the force direction k equals the motion direction j
using derivations from [2] and [3].

Akj = Re
[
ρ

∫
S0B

ϕjnkdS
]

Bkj = −ωIm
[
ρ

∫
S0B

ϕjnkdS
]

(2.45)

The motion induced forces are accordingly obtained using relation (2.45). Matrices A and
B will account for each regular wave with a frequency ω.

2.2.9 Restoring forces

There is also a hydrodynamic stiffness in the water, meaning that a rigid body motion of
a structure will cause a force striving to keep the structure in original position, as shown
in Figure 2.5. The hydrostatic force and moment can be derived by integrating along
the time-dependent submerged surface as shown in Equation (2.46). This is illustrated in
Figure 2.5.
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Figure 2.5: Hydrostatic restoring force in body motion.

Fk = −
∫
SB(t)

Pk · njdS Mk = −
∫
SB(t)

Pk(x× nj)dS (2.46)

Where Pk is the hydrostatic pressure Pk = −ρgz. Using relation (2.46), one can decom-
pose the force in motion ηj and a matrix with hydrostatic stiffness coefficients Ckj as in
the equation below. It is necessary to define the the wetted sea surface differently as the
restoring force in the floating equilibrium position should be zero, and displacements from
this position to restoring force lead to

Frestoring,k = −
6∑
j=1

Ckjηj (2.47)

If one is to show the restoring force when displacing the structure in downwards negative
direction for a structure as in Figure 2.5 with k and j = 3, the restoring force in heave
direction will be

Frestoring,3 = C33η3 = ρgAwp (2.48)

Awp will be the cross sectional area at the water plane. For e.g a cylinder, this area will be
the circular area of the cylinder.

2.2.10 Total wave force

The coefficients obtained for Akj , Bkj and Ckj have the same dimensions as the matrices
in mass, damping and stiffness matrices in equation of motion and are valid for one single
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sea state. If one is to sum up all the waves and the corresponding force components,
these three matrices can accordingly be denoted Mh(ω), Ch(ω) where Mh and Ch are
time/frequency dependent while Ckj can be denotedKh and only depends on the structure
geometry submerged under water as a linear superposition of multiple sea states. Using
the linear potential theory to develop expressions for these three terms, the developed
matrices will only in special cases be symmetrical. It is worth noting that the formulation
follows that added mass and damping should not be physically interpreted as added mass
on the structure and added damping. It will follow that the pressure fields (considering the
integrals) between fluid and structure generates propagating forces over the whole sea.

Ftot(ω) = Fexc(ω)− (
(
− ω2Mh(ω) + iωCh(ω) +Kh

)
·Bu(ω) (2.49)

These forces are decomposed such that they can be integrated in a FE formulation for
EOM; where added mass, damping and stiffness in practice can be added to obtain a
resultant mass, damping and stiffness from both the structure and the force effects from
the water.

In a frequency domain formulation, cross-spectral wave exciting forces between two spa-
tial points can be formulated as following, taking into account the cross correlation func-
tion for wave elevation:

Sprps(ω, θ) = lim
T→∞

1

Tπ

[
Qr(ω, θ) ·Qs(ω, θ)H ] · Sηr,ηs (2.50)

Sηrηs is the same function as derived in Equation (2.26). The expression in Equation
(2.50) needs to be integrated over the possible wave direction angles, and the resulting
exciting force of waves is obtained in the following formulation.

Sprps(ω) =

∫
θ

Qr(ω, θ)SηrηsQs(ω, θ)
Hdθ (2.51)

Qr and Qs will be the wave transfer function for two submerged structures or objects in
position r and s, the two points of which wave elevation correlation is accounted for.
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2.3 Aerodynamic theory

The objective of the following sections is to give a mathematical description of the wind
field and how it affects the response on line like structures [7]. The theory is focused
on slender bridges but is also applicable on other structures e.g. tall towers. The wind
field is first presented in the time domain before it is assumed a stochastic process and
transformed to the frequency domain. Interaction between the response of the bridge girder
and the oncoming flow is worked out in detail using quasi-static buffeting theory. A finite
element formulation will be obtained from buffeting forces. Moreover, motion induced
aerodynamic instability will be addressed

2.3.1 The wind field

The wind field is considered random in time and space. The wind direction is assumed to
be perpendicular to the bridge longitudinal direction,consisting of a mean and a fluctuating
part where the mean wind velocity is constant. The mean wind velocity profile varies with
height above ground, z. It is assumed zero at the ground due to friction and is increas-
ing and converging when z is large enough, zc. For bridges with girders high above the
water plane and the entire girder is at approximately the same height, such that Vmean is
considered constant.

U(x, t) = VMean + u(x, t) (2.52)

u is time and positional time dependent fluctuating part of the wind field and is assumed
much smaller than Vmean. By Equation (2.52) the wind field is only varying along the
longitudinal direction x of the bridge and in time. u(x, t) is the turbulent part of the wind
field with randomly fluctuating wind velocity and zero mean value. The fluctuating part
is split into three orthogonal components, u in the main flow direction, v in the bridge
direction and w in the vertical direction. The wind field has also its own coordinate system
where u, v, is parallel with xf , yf , zf

U(x, t) in Equation (2.52)is from wind measurments at the site. Measurements are typ-
ically done for short term, with 10 minutes intervals. For such a short time interval, the
stochastic wind field is assumed to be statistically stationary and homogeneous. By com-
puting the mean wind velocity and standard deviation, a Gaussian probability distribution
of the short term time series can be obtained. Having a large set of short term measure-
ments one can combine them and find the probability distribution for long term mean wind
velocity and standard deviation at the site. Investigating the maximum value from each
short term time series and create a probability distribution of maximas. Both the mean
and maxima long term probability distributions can be fitted to a Weibull or a Rayleigh
distribution [1]. The probability distribution of maximas is used when calculating extreme
response. When doing response simulations of a structure its impossible to test for all
stationary short term conditions, so one should choose cases from around the conditions
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with highest probability and from the extreme conditions.

Doing correlation and covariance calculations between two processes at different time
and/or space, or on the process itself at different time, will provide information about
relationships in the short term time domain ensemble data. The cross spectral density of
the wind can then be calculated from the covariance. Wind measurements for two different
point, a and b, separated in space and time, i.e

Ua =


u(s, t)

v(s, t)

w(s, t)

 Ub =


u(s+ ∆s, t+ τ)

v(s+ ∆s, t+ τ)

w(s+ ∆s, t+ τ)

 (2.53)

where ∆s = [∆x,∆y,∆z] is the spatial separation and τ is the time lag between the
measurements. u and w are in the wind directional coordinate system. The covariance of
the two wind measurements is given as

Cov(∆s, τ) =


Covuu Covuv Covuw

Covvu Covvv Covvw

Covwu Covwv Covww

 = E
[
Ua ·UT

b

]
=

1

T

∫ T

0

(
Ua ·UT

b

)
dt

(2.54)

where an element in the covariance matrix can be written as

Covmn(∆s, τ) m,n = u, v, w

∆s = ∆xf ,∆yf ,∆zf

where subscript f refers to the coordinate system of the oncoming flow. If only considering
wind on the girder of a bridge it can only be spatial separation in the x(= yf ) direction.
Covariance for y and z can be omitted for simplicity, i.e. s = x = yf . The ratio between
the covariance and the product of the standard deviation of the to time series in direction
n and m is

ρmn(∆yf , τ) =
Covmn(∆yf , τ)

σmσn
(2.55)

Where σk is
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σk =

√∫ T

0

m(t)2dt (2.56)

where k = m,n. For ρmn(∆yf = 0, τ = 0) = 1. The ratio is decaying for both
increasing τ and ∆yf . Equation (2.54) gives 27 components of Covmn(∆s, τ). The wind
in the along bridge deck direction, v, is of little interest in wind loading analysis and is
therefore omitted. By also assuming only ∆s = ∆yf Equation (2.54) is therefor reduced
to

Cov(∆yf , τ) =

Covuu(∆yf , τ) Covuw(∆yf , τ)

Covwu(∆yf , τ) Covww(∆yf , τ)

 (2.57)

Cross covariance of two processes is equal to cross correlation if the mean part of both the
processes are zero. Equation (2.57) can therefor be inserted into Equation (A.2), defining
the cross spectral density for wind velocities.

S(∆yf , ω) =

Suu(∆yf , ω) Suw(∆yf , ω)

Swu(∆yf , ω) Sww(∆yf , ω)

 (2.58)

Equation (2.58) is the cross spectral density of the wind field in any two point along the
girder in wind directions u and w (global coordinate directions, x and z).

2.3.2 Wind Loading - Buffeting theory

Different types of wind forces dominate the response at different mean wind velocities for
slender structures. The static response is due to the mean wind velocity for low to high
mean wind speeds. At very high mean wind velocity (depending on the structure) motion
induced loads will dominate the response. The standard deviation of the response is govern
by vortex shedding at fairly low mean wind velocities, buffeting forces at intermediate
wind speeds and motion induced loads at high wind velocities. This is illustrated in Figure
2.6.[7]

Buffeting forces and motion induced forces will be derived in the following. Vortex shed-
ding is not within the scope of this thesis.

Wind loading is the sum of two main contributions

qtot = q(x, t) + qae(x, t, r, ṙ, r̈) (2.59)
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Figure 2.6: Typical response variation with mean wind velocity

where qae are the motion induced forces, and q(x, t) is the flow induced forces due to the
instantaneous wind velocity pressure at a point. The buffeting wind load includes the load
by the mean and fluctuating part of the wind field on a structure. The oncoming flow is
given in Equation 2.52). The mean height of the bridge is assumed large and constant along
the span. Additional wind felt by the structure comes from the movement of the structure
relative to the oncoming flow. It is in the following assumed that the response in the x
direction of the structure due to wind loading is small compared to the y and z direction,
and is therefor neglected. The buffeting theory is based on the use of the instantaneous
velocity pressure, using Bernoulli’s equation

q(t) =
1

2
ρ[U(t)]2 (2.60)

where ρ is the air density. Furthermore, load coefficients obtained from static wind tunnel
tests and the linearization of nonlinear phenomena will render satisfyingly accurate results.
It is further assumed that Vmean is much larger than u(x, t) and w(x, t) and that the cross
sectional displacement and rotations are small, and can be split into a mean and fluctuating
part. The structure is assumed to be approximated as a line-like structure. A bridge will
have response in the vertical, translational and torsional direction of the girder.

Figure 2.7 shows the displacements and rotations done by a cross section due to: 1. U = 0
still air (zero displacement and rotation), 2. U = Vmean mean wind velocity and 3.
U = Vmean + u(t) mean wind velocity and fluctuating wind. The instantaneous forces
and moments are by definition in flow axis given by
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Figure 2.7: Displacements and rotations of cross section at position x


qD(x, t)

qL(x, t)

qM (x, t)

 =
1

2
ρV 2

rel ·


D · CD(α)

B · CL(α)

B2 · CM (α)

 (2.61)

where CD, CL and CM are the drag coefficients in drag, lift and moment, respectfully,
Vrel is the instantaneous relative velocity and α is the angel between Vrel and the bridge
relative y directional cross section. B and D is the width and thickness of the girder
section, respectfully. The dimensions are newton (or newton meters for qM ) per unit
length. Transforming the equating above into structural axis gives

qtot(x, t) =


cosβ −sinβ 0

sinβ cosβ 0

0 0 0

 ·

qD

qL

qM

 (2.62)

where

β = arctan

(
w − ṙz

V + u− ṙy

)
(2.63)

Linearizing the system by making two assumptions.

1. The fluctuating flow component u(x,t) and w(x,t) are much smaller than Vmean, and
that crossection rotation and displacement are small. i.e. (See Figure 2.7)
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cosβ ≈ 1

sinβ ≈ tanβ ≈ β ≈ w − ṙz
V + u− ṙz

≈ w − ṙz
V

V 2
rel = (V + u− ṙy) + (w − ṙz)2 ≈ V 2 + 2V u− 2V ṙy

α = rθrθ + β ≈ rθ + rθ +
w

V
− ṙz
V

(2.64)

2. Linearizing the nonlinear flow coefficients around an average rotational angle of
the cross section. This angle is set to rotation done by the mean wind conditions.
α = rθ

Figure 2.8: Linearization of drag, lift and moment coefficients


CD(α)

CL(α)

CM (α)

 =


CD(α)

CL(α)

CM (α)

+ αf


C ′D(α)

C ′L(α)

C ′M (α)

 (2.65)

where C ′D(α), C ′L(α) and C ′M (α) are the slopes at α, and αf = rθ + w
V −

ṙz
V is

the fluctuating part of the angel incidence. In the further we set Ci(α) = Ci and
C ′i(α) = C ′i, (i = D,L,M ) for simplicity.

Combining Equation 2.61 - 2.65) gives
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
qy

qz

qθ


tot

= ρV

(
V

2
+ u− ṙy

)

DCD

BCL

B2CM

+

(
rθ +

w

V
− ṙz
V

)
DC ′D

BC ′L

B2C ′M

+
wṙz
V


−BCL

DCD

0




(2.66)

Rearranging Equation (2.66) and disregarding higher over terms of quantities assumed
small, the following is obtained

qtot =


qy(x)

qz(x)

qθ(x)

+


qy(x, t)

qz(x, t)

qθ(x, t)

 = q + Bq · v + C(ae) · ṙ + Kae · r (2.67)

where

v(x, t) =
[
u w

]T
(2.68)

q(x) =


qy

qz

qθ

 =
ρV 2B

2


(D/B) · CD

CL

V CM

 =
ρV ”B

2
· b̂q (2.69)

Bq(x) =
ρV B

2


2(D/B)CD ((D/B)C ′D − CL)

2CL (C ′L + (D/B)CD)

2BCM BC ′M

 =
ρV B

2
· B̂q (2.70)

Cae(x) = −ρV
2B

2


2(D/B)CD ((D/B)C ′D − CL) 0

2CL (C ′L + (D/B)CD) 0

2BCM BC ′M 0

 (2.71)
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Kae(x) =
ρV 2B

2


0 0 (D/B)C ′D

0 0 C ′L

0 0 BC ′M

 (2.72)

Equation (2.69) represents the time invariant part of the load vector. This part gives rise
to the mean cross sectional displacements and rotations. The remaining part of Equation
(2.67) is the fluctuating, time varying part. Calculating deformatings or cross sectional
stress due to the constant q is assumed trivial and is left out for the rest of the derivations,
reducing Equation (2.67) to

q(x, t) =


qy(x, t)

qz(x, t)

qθ(x, t)

 = Bq · v + Cae · ṙ + Kae · r (2.73)

Bq · v is the dynamic loading from the turbulence in the oncoming flow. Cae · ṙ and Kaer
are the loads associated with the motion and displacement of the cross section. Linearity
has been obtained so the theory is applicable also in the frequency domain. By taking the
Fourier transform of Equation (2.73) the frequency domain amplitudes of the loads are
obtained.

aq = Bq · av + (iωCae + Kae)ar (2.74)

where

af (x, ω) =
[
aqy aqz aqθ

]T
ar(x, ω) =

[
ary arz arθ

]T
av(x, ω) =

[
au aw

]T (2.75)

where i is the imaginary unit. The structural model is easiest to handle in frequency
domain in modal coordinates. Introducing two adjustments to equation [2.75],
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1. Introduce frequency dependent flow induced dynamic loads to Bq(x), i.e.

Bq(x, ω) =
ρV B

2


2(D/B)CDAyu ((D/B)C ′D − CL)Ayw

2CLAzu (C ′L + (D/B)CD)Azw

2BCMAθu BC ′MAθw

 (2.76)

where A is a suggested cross sectional admittance functions.

Amn(ω) =
1

(1 + amnBω/V )bmn
(2.77)

where m = y, z, θ and n = u,w. Equation [2.77] is equal to one for ω = 0
and diverges towards zero when ω goes towards infinity. The function acts as a
filter to zero out loads at high frequencies. The admittance function is in general
determined from wind tunnel test of the cross section, and the one given above is
an approximation. As the Fourier transform of the flow induced wind load can be
denoted Bq(x, ω) · av(ω), the spectral density of the force becomes:

SQ(ω) = lim
T→∞

1

πT

[
Bq · av · a∗v ·B∗q ] (2.78)

As av = [auaw], the cross spectral density function for wind velocity for wind in
vertical and translative direction.

2. The coefficients in the Cae and Kae matrices are in reality frequency dependent. The
coefficients in Equation (2.71-2.72) are determined from the quasi static buffeting
theory and doesn’t consider changes in CD, CL and CM due to vibration of the
cross section. To get more accurate coefficients, doing wind tunnel tests of a cross
section turns out to give better results. These coefficients are called the aerodynamic
derivatives and are discussed below.

2.3.3 Aerodynamic derivatives

The frequency dependent versions of Equation (2.71-2.72) are [7]

Cae =


P1 P5 P2

H5 H1 H2

A5 A1 A2

 Kae =


P4 P6 P3

H6 H4 H3

A6 A4 A3

 (2.79)

30



2.3 Aerodynamic theory

The coefficients in Equation (2.79) are experimentally determined by wind tunnel test
of the cross section and are function of mean wind reduced velocity and cross sectional
properties. The matrices become significant to the system at high wind velocities in the
case of unstable motion. The testes are therefor only tested thereafter. The reduced wind
velocity is given as

V̂ =
V

ωi(V )B
(2.80)

where V is the mean wind velocity, ωi(V ) is the executed free vibrating eigenfrequency
due to the mean wind velocity and B is the width of the cross section. From the wind
tunnel test one will get several sets of experimentally determined aerodynamic derivatives
for the different reduced velocities. It is common to normalize Cae with ρB2ωi(V )/2
and Kae with ρB2[ωi(V )]2/2, where ωi(V ) is the mean wind velocity dependent reso-
nance frequency associated with mode shape i from from which the coefficients have been
extracted. Non-dimentionalizing of the coefficients, gives

Cae =
ρB2

2
· ωi(V ) · Ĉae Kae =

ρB2

2
· [ωi(V )]2 · K̂ae (2.81)

where

Ĉae =


P1∗ P5∗ BP2∗

H5∗ H1∗ BH2∗

BA5∗ BA1∗ B2A2∗

 K̂ae =


P4∗ P6∗ BP3∗

H6∗ H4∗ BH3∗

BA6∗ BA4∗ B2A3∗

 (2.82)

The coefficients (Pj , Hj , Aj , j = 1...6) are known as the aerodynamic derivatives. For
V 6= 0, Kae will change the EOM system matrix. The eigenfrequencies will change
and so will the response. The effect of Cae is most significant for wind velocity close to
instability. For lower velocities it is the Kae that has the largest effect on the EOM and the
response. Because of the presents of Kae and Cae the eigenfrequencies must obtained by
iteration when accounting for aerodynamic effects.

2.3.4 Motion induced instabilities

Motion induced instabilities response occur when a small increase in mean wind velocity
generates a large increase in structural response, and at the limit, an infinite response, like
illustrated in figure (2.6). The instability will occur for a critical response frequency, ωcr,
at a critical velocity, Vcr [7].[12]
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There are four types of response instabilities. 1) Stability limit for ωcr = 0 is a static
instability identified for Vcr. 2) Dynamic instability in the z direction, called galloping, 3)
Dynamic instability in the θx direction, and 4) Dynamic instability as a coupling of z and
θx direction response, called flutter.

When doing aerodynamic instability analysis the only forces considered are the self exited
forces induced by the flow for relatively high mean wind velocities, .i.e the Bq is neglected.

F = Caeṙ + Kaer (2.83)

Note that Cae and Kae are rarely symmetric matrices. These asymmetric matrices enable
unstable response to be coupled among natural modes of the considered structure. Moving
the motion induced forces over to the left hand side of the EOM, the homogeneous second
order differential equation is obtained as described in section 2.1. By again assuming the
solution from Equation (2.3) for the homogeneous EOM, repeated here, the eigenvalue
problem is obtained.

r(t) =

n∑
j=1

αjφje
λjt

Solving the quadratic eigenvalue problem will give 2n eigenvalue solutions(where n is
the number of DOFs). Complex conjugate eigenvalues λj = µj ± ivj render complex
eigenvectors of the form φj = ξj±iζj . One of the assumed solution from the superposition
of Equation (2.3) gives

rj = (αj + iβj)e
(µj+ivj)t(ξj + iζj) + i(α− iβj)e(µj−ivj)t(ξj − iζj) (2.84)

where αj and βj are arbitrary constants. If all the roots of the eigenvalue problem are
complex conjugates, there will be n solutions of the form in Equation (2.84). Equation
(2.3) can then be written as

rj =

n∑
j=1

eµt [−2(βjξj + αζj)sin(ωjt) + 2(αjζj − βjξj)cos(ωjt)] (2.85)

where vj ≡ ωj . If µj < 0 Equation (2.84) and (2.85) will render a converging oscillatory
solution, implying damping dissipates energy from the system. If µ > 0 the response will
have diverging oscillatory behavior with frequency ωj . Recalling that µ originated from
the complex conjugate solution of the eigenvalue problem, its value is determined by the
coefficients in the system matrix. It is when Cae becomes larger than C due to increasing
mean wind velocity µ becomes negative.

To better understand the physical meaning of µ, a one DOF system is used as an exam-
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ple. The eigenvalue problem in Equation (2.4) can then be solved using normal quadratic
function solution solver. The following is obtained

λ =
−C ±

√
C2 − 4MK

2M
(2.86)

where C = Cs − Cae(V ). Again complex conjugate solutions are assumed. The real part
is then, µ = −(Cs −Cae)/2M . Because Cae is increasing with increasing V , µ becomes
negative when Cstructural < Cae for the sDOF system.
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Chapter 3
Initial Design

The object of this chapter is to give an overview of the design of the Bjørnafjorden bridge
concept, with focus on the main structural components for the bridge that will be modeled
in chapter 4. Bridge components with the assumed largest mass and stiffness contributions
will be considered.

3.1 Overview

The Bjørnafjorden crossing is part of the Norwegian Public Road Administration’s (NPRA)
project for a ferry free E39 highway from Kristiansand to Trondheim. Bjørnafjorden is
south of Bergen and partially protected from the North Sea by island groups around the
fjord. A TLP-anchored floating suspension bridge to cross the 5 km wide fjord was one
of three concepts that were proposed for the Bjørnafjorden crossing, where the pontoon
solutions were developed by Teknisk Data (TDA). [10].

Figure 3.1: Overview of the entire TLP concept bridge
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Chapter 3. Initial Design

Figure 3.2: Left: map of Bjørnafjorden, Right: map of planed E39

3.2 General arrangement

The planed bridge concept consists of three spans, each being 1385 meters long. There will
be two fixed concrete towers and two floating tension leg moored pontoons with pylons.
There will also be a 600 meter concrete ramp onto the bridge from the north approach
due to the shallower water, and a short ramp from the south. The water depths beneath
northern- and southern pontoon are 450 and 550 meters, while the height of the towers
above sea level is 198 meter The floating pontoons are submerged 65 meters under water.

Floating towers

Several designs for the towers have been suggested. The design presented in this thesis
is the four legged tower. The floating towers consist of a 75 meter steel pontoon and a
188 meter steel pylon. The total height will be 263m and the bottom footprint, 96 by 75
meters. The total weight of a single tower are designed to 27000 tons. Figure 3.3 can be
seen for further details.

Fixed Towers

The fixed towers will be made of concrete with a hollow rectangular cross section. The
towers will be fixed to the ground out in the water. Detailed drawings of the fixed towers
have not been available other than the conceptual overview drawing given in figure 3.1.

Girder

The concept bridge girder is an aerodynamic steel box. The trapezoidal cross section gives
the girder high torsional stiffness and has advantageous aerodynamic properties against
motion induced instabilities, with wind conducted wind tunnel tests. The girder has a
radial curvature of 70’000m and will be a class H8 with two traffic lanes and one pedestrian
lane. It was changed from class H9 to H8 in February 2016 and was not available when
writing the thesis. In Figure 3.4, the class H9 section is presented. The H8 is very similar,
but narrower. [9]
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3.2 General arrangement

Figure 3.3: Sketch of floating towers

Figure 3.4: Cross section of class H9 design

Cable systems
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The two main cables will be prefabricated parallel wire strand (PPWS) cables. The chang-
ing of the girder box from class H9 to a narrower and lighter class H8 changed the required
cable strength from 1770 MPa to 1860 MPa when giving a reduction of the cross section
needed for the cables. The cross section of the cable will be a hexagonal shape as shown
in figure 3.5. The main cable geometry corresponding to the new H8 girder was not appli-
cable at the time of the writing of the thesis. The previously planned H9 cable consisted
of 94 strands of 127 wires with a nominal diameter of 5.96 mm. The total number of
wires would then be 11938. The sectional area of one main cable was then 0.333 m2.
To avid corrosion the cable is covered with elastomeric wrapping, making it airtight, also
around the hangers, so its possible to perform dehumidification. The cable has also been
compacted with hot galvanized s-shaped wrapping wires. The main cables will not hang
vertically. The top of the towers are narrower than the girder so the cable plane will be
tilted outwards at the mid-span to reach the width of the girder. [9]

Figure 3.5: Cross section of main cable and wrapping

Hangers

There should be a hanger every 24 meters along the girder, i.e. 57 hangers on each side
per span. The hanger ropes are designed as parallel wire strand (PWS). They are coated
with high-density polyethylene (HDPE) sheath or locked coil with HDPE sheath. The
hanger is fastened to sockets that are pin connected to the cable clamp and anchored with
a cylindrical socket in the the bridge deck.

Tension legs

The purpose of the tension legs is to pull the floating towers lower than there natural height
of buoyancy. This increases the stability of the bridge in all directions and maintains the
strong tensioning in the thether, which as a consequence could lead to jerks and possible
failure. The total tendon force at mean sea level is approximately 190MPa at each tower.
At each of the four corners of the base of the floating towers three tethers are are mounted,
each with a cross section area of 0.1239m2. The tension legs (tethers) will be tubular steel
sections with outer diameter of 1118mm and thickness of 38mm. The considered steel
yield limit is 420MPa. The length of the tethers are 550 and 450 meter for the south and
north tower, respectfully.
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Chapter 4
Modelling

This chapter gives a detailed description of the development of the parametrized TLP
multispan suspension, what assumptions have been made and the limitations of the model.

This chapter gives a detailed description of the process of developing and parametrizing a
TLP-based multi-span suspension bridge. The model is given the input parameters for the
dimensions, cross sectional and material properties of the Bjørnafjorden bridge, outlined
in 3. All the dimensioning input parameters can be seen in Table 4.1. The cross section
of the girder and its properties from the Hardanger bridge was used for convenience as
aerodynamic data and derivatives were available.

The submerged part of the floating towers, the pontoon, have been modeled using the
softwares GeniE and HydroD from the DNV Sesam package for hydrodynamic analysis
of the floating pontoons.

Moreover, the environment has been modeled using environmental data gathered by NPRA
and TDA and by using appropriate spectral models.

Figure 4.1: Numerical model of the Bjørnafjorden bridge
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4.1 Bridge modeling

MATLAB was used to generate .txt files with node lists with corresponding node x,y,z
coordinates and element lists with corresponding node numbers. An input file (.INP) for
ABAQUS was written in the language ABAQUS KEYWORDS using MATLAB to a text
file. The node- and elements lists were imported to the .inp file when needed. The advan-
tage of using MATLAB to generate the input file became evident for all iterative process,
e.g when creating 34 element sets with different cross sectional properties for the tower
legs.

(a) MATLAB code generating code for the .INP file for ABAQUS

(b) .INP file generated from MATLAB code

Figure 4.2: Sample of code generated for ABAQUS from a MATLAB file

Using an input file rather then a graphical interface was a more efficient way of creating
the parametrized bridge model if changes to the bridge geometry were to be made.

The global origin of the model was set to the intersection of the girder and the fixed left
tower; whereas the x-axis is along the girder, y-axis transversal to the girder and the z-
axis were set in the vertical direction. All geometry was modelled as wire elements and
assigned cross sections and material properties.

Table 4.1 shows the the input for the parametrized bridge, where all units are in meters.
Behind the name of the parameter is the indicated direction of the component, denoted
x,y or z. The program will return a node and element lists for a symmetric bridge about
the longitudinal direction and about the midspan. The floating towers and fixed towers
will be equal, and placed relative to the main cable given by the "Individual span length,
x". "Crosser height, z" gives the height of the horizontal beams on the fixed and floating
towers.
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If adding another tower is desirable one only has to put in the parameters for the extra
span, i.e. add an extra column to the main cable properties and "Number of hangers per
span per side".

The model was put under gravity load and a temperature gradients on the main cables were
used to restore the deformation. Three models were created accounting for respectfully
structural properties, structural and hydrodynamic properties and structural, hydrodynamic
and aerodynamic properties.

The parameters were given the values from the geometry, cross section and material prop-
erties of the Bjørnafjorden bridge concept, outlined in chapter 3. A complete table of cross
sectional, material properties and element types used is given in the appendix, Table B.1.

All the components have been assigned material- and cross sectional properties. These
parameters are easy to change in the script generating the input file for ABAQUS. In figure
4.3 is an example of what the code looks like for the left main cable.

Figure 4.3: Code defining the cross section and material properties for the left main cable

4.1.1 Main Cable

The two main cables consists of three spans and side cables from the fixed towers to
ground. Each cable is sagging in the z direction and tilted outwards in the y direction, as
illustrated in figure 4.4. The left cable for one span was created using a second degree
polynomial functions in both the z-x plane and the x-y plane using the three point method.
Tower height and mid span height was used in the x-z plane, and tower top width and
girder width at mid span for the x-y plan. This is illustrated in figure 4.5. The procedure
was repeated for the two other left spans before the right main cable was generated by
mirroring the left cable over the z-x plane.

Figure 4.4: Shape of main cable in x-z plane (top) and x-y plane (bottom)
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Table 4.1: Inputs to the parametrized model

Main Cable [m]

Individual span length, x 1385 1385 1385

Main cable height at span midpoint, z 34 34 34

Main cable width at midpoint, y 10 10 10

Side cable on ground, x,y,z -220 -20 0

Hangers [-]

Number of hangers per span per side 57 57 57

Girder [m]

Girder height at midpoint, z 32

Connector node rel. girder, z 3

Connector node rel. girder, y 9

Floating tower [m]

Width of tower top, y 20

Width of base of tower, x 60

Length of base of tower, y 80

Tower height over water plan, z 188

Tower depth under water plane, z 65

Crosser height, z 95 35 -35

Center of buoyancy, z -85.22

Fixed tower [m]

Tower top width, y 20

Tower base width, y 58

Crosser height, z 153 50 0

Tension legs [m]

Water depth under tower, z -550 -450
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4.1 Bridge modeling

Figure 4.5: Distances used to calculate the cable shape in x-z plane (top) and x-y plane
(bottom)

The side cables at one end of the bridge, are symmetric about the z-x plane. The input for
one of the side cables were the x,y and z coordinate of the ground position, as illustrated
in figure 4.6. The side cables at the other end are created by mirroring the first end.

Figure 4.6: Distances used to calculate side cable shape in x-y-z plane

Since the nodes for the spans were generated separately, duplicate nodes between spans at
the tower tops had occurred. They were deleted because it would be easier to handle one
unique node list for the main cable later in the modeling. No data for the cable geometry
was applicable i.e sag of the cables, so it was assumed to be close to tangential to the girder
at middle span.

To avoid moment forces on the floating towers the three cable spans were given the same
geometry. The distance from the cable at mid spans to the girder was therefore shorter for
the center span than for the the side spans.
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4.1.2 Girder

The girder was modeled using a second degree polynomial in the x-z plane to approximate
the 70000m radius [9]. The girder was therefore 30m higher at midpoint than at the fixed
towers. The mechanical properties and cross sectional area of the girder was set equal to
the girder used on the Hardanger bridge. It was chosen because aerodynamic derivatives
were available for the further aerodynamic analysis. When aerodynamic derivatives are
available for the correct cross section one simply need to change the numbers in the code
to initiate them.

Figure 4.7: Distances used to calculate girder shape in the x-z plane

4.1.3 Connector nodes

Since the girder is modeled with a 1D wire element, it could not be able to represent
torsional motion properly. Nodes relative to the girder nodes were added, called connector
nodes, as shown in figure 4.8. Kinematic coupling constraints of the displacement and
rotation between a girder node and the closes connector node was used.

Figure 4.8: Connector nodes off sett to the girder by distances y1 and z1 with kinematic
constraints

4.1.4 Hangers

The number of hangers per span is an input. With equal length of the spans it is reasonable
to have equally many hangers, and was set to 57 per side per span for all spans with equal
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24m spacing. A hanger is modeled as a single element between the connector nodes and
nodes on the main cable, as illustrated in figure 4.9.

Figure 4.9: The hangers are single elements from the girder nodes to the connector nodes

4.1.5 Floating towers

The drawing in figure 3.3 is used as a basis for the modeling dimensions. Each floating
tower consists of a pylon, pontoon-pylon connection and a pontoon, as shown in figure
4.10. The tower was created in a local coordinate system, making it easy to duplicate and
transform to the right global coordinates, relative to the positions of the tops of the main
cables. The tilting angle of one tower leg in the x-z and y-z plane is input, and is generated
by first degree polynomial functions. It is then mirrored about the x-z and y-z plane to
generate the three other legs. The number of horizontal beams on the pylon is input and
the diagonal beams were generated automatically from the intersection of diagonal beams
and tower legs. The diagonal beam are not part of TDAs tower design but were added for
additional stiffness, with advice from Bjørnafjorden Expert Panel participant, Ole Øiseth.
The pylon legs have a linearly varying cross section, and were modeled such that each
element at each height on the leg is constant. The pontoon-pylon connector and pontoon
have constant cross section. The cross section of the horizontal beams are each constant
but different for each height. The X on the middle of the pontoon, seen in figure 4.10
is the center of buoyancy, 24.78m above the tower base, calculated with HydroD and is
kinetically coupled in displacement and rotation to the base corners of the pontoon.

Due to the lacking information on cross sections of the components on the floating tower,
these had to beestimated. The weight of the tower is important for the response analysis
such that the density of the material would be adjusted to meet the weight of 27’000 tons.
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Figure 4.10: Floating tower

4.1.6 Tension legs

In the original design there are three tethers in each corner of the pontoon, but they have
been modeled as one in each corner with the accumulated cross section. The corner nodes
of the bottom of the towers are used as reference points when the tension leg nodes are
created. The length of the tension legs are equal for each tower but can differ between
towers. They are set to 550m and 450m as the original design is. 20 element per leg were
considered enough.

4.1.7 Fixed tower

Since detailed drawings of the fixed towers were not available, they are modeled as the
Hardanger bridges towers. The towers are created in a local coordinate system making it
easy to translate to the beginning and end of the main cable. The leg angle in y-z plane
is generated by first degree polynomial function. The second leg is mirrored about the
x-z plane, see figure 4.11. The pylon legs have a linearly varying cross section. This was
modeled by each separate element in the leg had constant cross section but decaying for
each element closer to the top of the pylon. The placement height and cross section of each
horizontal beam are also input. The tower is given the same width as the floating towers at
the top.

4.1.8 Component interaction

Since the geometry of the components described above were created separately, these have
to be connected in a way that models the real world interaction. The ABAQUS function
"*KINEMATIC COUPLING" was used, to specify which DOFs that would be constrained
between a reference node and a surface. Table 4.2 shows which DOFs that are constrained
between which sections.
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Figure 4.11: Fixed concrete tower based on the Hardanger bridge design

Table 4.2: Component interaction

Interacting components Constrained DOFs

Girder-Fixed tower x, y, z, θx, θy ,θz

Girder-Floating tower x, y, z, θx, θy ,θz

Main cable - Towers x, y, z

Pontoon - Tensionlegs x, y, z

Connector nodes - Girder x, y, z, θx, θy ,θz

The rigid connections between the girder and the towers add stiffness to the system. A
translation or rotation in a tower would directly result in corresponding movements in the
girder. A displacement and rotational damper system has been suggested for the connec-
tion but is not considered here for simplicity. The cable saddles are not modeled but the
main cables are free to rotate from the tower tops.

4.1.9 Boundary conditions

The boundary conditions set on the model are shown in Table 4.3.

In addition to the boundary conditions in Table 4.3 the floating towers were initially fixed
in all directions and rotations, so the tensioning of the tethers and correct bouncy force
could be applied. More about this in section 4.1.12.
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Table 4.3: Boundary conditions on the model

Components Constrained DOFs

Fixed Tower legs x, y, z, θx, θy ,θz

Side Cabels x, y, z, θx, θy ,θz

Tensionlegs at sea bed - Towers x, y, z

4.1.10 Structural damping

Rayleigh damping was used for structural damping on the model. The complete model
ran a frequency analysis and the two first eigenfrequencies where used to calculate the
Rayleigh damping coefficients, α and β.

β =
2ζ

ωi + ωj
α = ωiωjβ

where ζ is the critical damping ratio, set to 0.005 here. The calculation resulted in α =
0.3076 and β = 0.008

4.1.11 Environmental effects

The bridge concept in Bjørnafjorden is subjected to both varying wind and sea waves. To
see environmental effects on the eigenfrequencies, both aerodynamic and hydrodynamic
properties were added to the finite element model by applying *USER ELEMENTS. It
was first attempted to use springs and dash pods, but ABAQUS did not give the option
of coupling directional response (for the off diagonal terms in the added mass, damping,
aerodynamic stiffness and damping matrices) so user elements were used instead. Three
models were created for modal analyses

1. Only structural properties and the average buoyancy force were included. This
model was the basis for all the other models. In the further this model will be
refereed to as the structural model.

2. Two pontoon reference nodes were chosen and specified to apply the hydrodynamic
added mass, damping and restoring forces. This was consistently chosen as the
center of buoyancy, where the properties were added using the ABAQUS feature
*USER ELEMENT. The user element does not have the option to specify damping.
Hydrodynamic damping was added to the model by use of a wire element, connected
to a fixed point in space, referred to as "ground" in ABAQUS. The wire elements
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were assigned coupled damping coefficients of the added damping matrix for the
given degrees of freedoms.

3. Structural, hydrodynamic and aerodynamic effects. Hydrodynamic effects were
modeled as described in the hydro model. Aerodynamic damping- and stiffness
were added to the girder nodes, the same way the corresponding hydrodynamic ef-
fects, added damping and restoring force, were added to the pontoon reference nodes
with *USER ELEMENTS. The aerodynamic effects are given per unit length and
was therefore multiplied with the girder element length. This model will further be
referred to as the coupled model.

4.1.12 Loading the model

The model was put under load and final geometry was restored after deformations due
to gravity in the steps described below. The steps listed below correspond to the steps
performed in ABAQUS.

Initial Conditions: The complete geometry of the bridge was set up, with all material
and cross sectional properties. BCs were added to the tension legs, side cables and fixed
towers, and component interactions were put i place. The floating towers where also held
in place by fixed translational and rotational BCs at the nodes in the pontoon reference
node at each tower. The temperature on the whole model was set to 0.

Step 1, Pre- tensioning of main cables: A temperature change of -25 was set on the main
cables to increase initial tension, because ABAQUS struggled to find a solution if gravity
load was the fist loading step. This temperature was changed in step 3, so it would not
affect the geometry, loading or stress on the final model.

Step 2, Gravity load: Gravity was added to all structural components of the model. The
deformed shape of the girder and main cables was after this step sagging several meters
below the desired geometry of the bridge.

Step 3, Temperature: A change in temperature was put on the main cables to restore
the geometry to its initial shape. The temperature was different for each span to get the
most accurate restored shape. It resulted in lifting the girder back up, close to its original
position. The maximum deviation of the girder, from the perfect second degree curve to
the deformed under gravity and restored with temperature, was 0.6m at about 200 meters
from each of the fixed towers. This was considered acceptable for the purpose of fre-
quency response analysis when considering the bridge length of 4155 meters The correct
temperature of -260,-205 and -260 for each span respectfully was found by iteration. A
temperature of -60.85 was also set on the tension legs calculated by Equation (4.1) to get
the right tensioning of the tethers of 190MPa per tower.

σ = Eα∆T (4.1)
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σ is the stress, E is youngs modulus and α material temperature coefficient.

Step 4, Removing BCs: The first three steps were run once. The force in the z-direction at
the BCs on the floating towers were read from the resulting .dat file from ABAQUS. This
force corresponded to the average buoyancy force at each tower, equal to the downward
force from the tension legs and gravity load of the bridge. The BCs at the floating towers
were replaced with a concentrated force in the vertical direction in the pontoon reference
node node, representing the buoyancy force. The towers were then free to move.

Step 5, Frequency analysis: A modal frequency analysis was performed, giving the
eigenfrequencies of the system and showing the eigenmodes in ABAQUS viewer. Output
for node displacement and rotation of the girder nodes and the pontoon reference nodes
were obtained, giving the eigenmodes, used for further analysis in MATLAB.

Step 6, Complex frequency analysis: The same was done as in step 5, but now the
complex eigenvalues were collected, accounting for damping in the system.

4.2 Pontoon modeling

To model the fluid-structure interaction for the two pontoons, the proposed concept of a
4-legged steel floater from the TDA reports was used. The modeled draft for the given
structure was 65 meters. When modelling the submerged floating structure, it was there-
fore only necessary to include the bottom 65 meters of the structure as shown in figure 3.3.
The frequency dependent added mass, added damping, hydrodynamic restoring force and
the transfer function of the wave exciting forces was numerically obtained using the hy-
drodynamic analysis software WADAM, integrated in HydroD. A computer-aided drawing
(CAD) with finite element properties was input, created using the software GeniE. As the
pontoons were double symmetric, 1/4th of the model could be created and mirrored as a
part of the panel FEM method used in HydroD/WADAM.

4.2.1 Modeling in GeniE

From the drawings from figure 3.3, the center-to-center distance for the elliptical legs
were 60 meters in the x-direction and 81 meters in y-direction. TDA proposed a constant
diameter of 15 meter for the tilted circular steel legs, and were connected to the bottom
frame, consisting of 4 parallelepiped (3D- paralellogram) crossers in x- and y-direction as
one can see in figure 4.12. Both the crosser panels and the circular legs were tilted. The
crosser panels were tilted towards, in either the zx- or yz-plane, while the cross sectional
circular legs were tilted in three-dimensions as shown in figure 4.12.

The model was created using guiding planes in GeniE. This technique is simply to create
drawings on 2D planes with defined grids and sweep shell elements between 1- and 2D
lines to obtain 3D-shell-like structures. Using boolean operations and creating intersecting
geometries followed by deleting the unwanted parts caused errors and geometrical discon-
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Figure 4.12: Full CAD model of the pontoons, extracted from HydroD

tinuities in the model and was therefore avoided. Using guiding planes resulted also in a
good mesh using the mesh generator in GeniE.

As the legs were drawn with a constant diameter of 15 meters in figure 3.3 and the mod-
eling technique was using guiding planes, it became necessary to draw ellipses in the xy
plane. The ellipses corresponded to the projection of the cross section of the legs in the x-y
plane at three z plane heights. The leg shell was created by sweeping through the ellipses.
Two planes were created to obtain the tilted crosser panels at (z=0 and z=15).

Design assumptions

The designed model was based on the data given in figure 3.3. Where the drawing was
insufficiently accurate design assumpions were made. Figure 4.13 and 4.14 illustrate the
design assumptions in detail.

Ellipses were drawn on the guiding planes and the necessary calculations for rotating the
ellipses about the vertical axis and obtaining the major diameter is evident in the right sub
figure in figure 4.13. The rotational angle was obtained by finding the x- and y-direction
distance from the leg center in xy-plane (elliptical center) for the leg at z=0 and z=65
meters; obtaining 8.5 and 11.9 meters as shown in the left sub figure of figure 4.14.

Creating the FEM-file

The GeniE-model consisted of 1/4th of the final geometry, with meshed shells of the struc-
ture. After the geometry was made, the wet surface was to be defined. The wet surface
would be the whole outer surface of the created structure as the draft was 65 meters. As
GeniE does not allow meshes with more than 15000 elements, the mesh size 0.63 meters
was chosen, giving 14900 elements. Different mesh sizes were however also tested and
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Figure 4.13: Pontoon design, bottom plane

Figure 4.14: Pontoon design, bottom plane

convergence was seen by plotting added mass coefficients wrt. frequency for mesh sizes
of 0.63, 1, 1,2 and 2 with 25 frequencies from 0.2 to 5 rad/s as shown in figure 4.15 for the
results that were to be obtained. Convergence for these results meant that the FEM model
was valid and viable for further analysis. The convergence test was done for a vertical
DOF. Dummy hydrodynamic pressure was then applied on the meshed wet surface. The
hydrodynamic pressure was necessary for a hydrodynamic analysis in HydroD where a
panel FE-model would be used.
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Figure 4.15: Mh22

4.2.2 Hydrodynamic analysis in WADAM

In HydroD, the hydrostatic and hydrodynamic forces were to be calculated in frequency
domain for different directions and frequencies using the sub program WADAM. In WADAM,
a panel method was used, exploiting the dummy hydrodynamic pressure and the mesh for
a hydrodynamic FE method using linear potential theory. The panel method will be used
in WADAM for numerical execution of the linear potential theory shown in section 2.2.

The wave frequencies were defined from 0.02-6 rad/s with a 0.02 rad/s step between 0.02
and 3.6 and a 0.04 rad/s between 3.64 and 6 rad/s; with 240 frequencies in total. Wave
directions were chosen from 0-90 degrees with a 5 degrees increment. The model had a
direction such that 0 corresponded to a direction parallel to the x-axis (corresponding to the
global x-axis of the ABAQUS model). 90 degrees would accordingly mean a force parallel
to the y-axis. The water depth was defined to be 550 meters, as is for the tower position
with the deepest water beneath. Test analyses showed that the difference in water depth
under the two towers (550m− 450m = 100m) had no impact on the obtained results.

HydroD through WADAM found the center of buoyancy (COB) given a defined water line
relative to the figure. As the whole hydrodynamic model in figure 4.12 was modeled as the
part submerged under water, the water line was defined at the very top of the structure. The
Center of buoyancy could then be calculated in WADAM. The COB-position was used as
a user-specified motion reference position with 6 DOFs representing 3 translational and
3 rotational DOFs. The position of this node would be used consistently for the total
bridge model and is referred to as pontoon reference node. Added mass and hydrodynamic
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damping, were as known from potential theory frequency dependent. The restoring force
was dependent on the area in water plane and the submerged surface. Wave excitation
forces included the force due to frequency dependent incidential waves, and would be both
wave frequency and directional dependent. As of data described in this section, the results
would give 240 results for frequencies and for the hydrodynamic damping and added mass
and [6× 72× 240] results for the wave transfer function. The output from WADAM was
a text file, so a MATLAB script was created extract the matrices.

4.3 Environmental modeling

Standards for environmental load modeling [1], recommends environmental measurements
for key parameters over 20 years for long term analyses. As Bjornafjorden is a new bridge
concept, it has a limited amount of measurements for modeling the coupled environmental
loads with a longer return periods or extreme responses. From the engineering reports [11]
and [10], environmental data for wind is taken from SINTEF, "Bridge across Bjørnafjor-
den Metaocean conditions, version 2". The engineering reports from TDA in [11] and [10]
refer moreover to the DNV Recommended Practices as references, e.g DNV RP-C205 that
is frequently used for ocean-based structures.

TDA has however assembled sea states with 100 year return period, a 100 year mean wind
velocity and a coupled extreme response for a coupled 100 year return period environmen-
tal loading (wind and wave), using environmental contours, as mentioned briefly in [10].
If one is to assume that industry methods from e.g the RP-C205 have been used, it seems
that the DNV models for long-term distributions of key parameters such as Hs and Vmean
and then joint probability distributions of these have been used to obtain the environmental
contours.

In the TDA reports, environmental data were used to apply environmental loads on the
modeled bridge for a dynamic response analysis. Of the data TDA have gathered, the
extreme response from 100 year return period environmental loading has been used for the
modeled bridge.

4.3.1 Chosen parameters

By using relations from section 2.2 about wave theory, the environmental conditions in
figure 4.4 are directly related to the short-term stationary environmental conditions. This
means that these data can be used as direct inputs for chosen spectra of direction, auto-
spectral density for wave elevation and for aerodynamic load analysis of the bridge in
frequency domain. To simplify the environmental model, tidal levels and current speed
have been negliged and wave- and wind direction directed towards the same direction. for
a cos2s-directional spectrum.

An auto-spectral wave elevation spectrum should reflect the energy content of wave heights
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wrt. frequencies in a ocean location. Lack of data and no suggestions of an auto-elevation
spectrum has lead to choosing the one-parametric Pierson-Moskowitz spectrum, not ac-
counting for swell. Moreover, the directional distribution function is not same as the one
recommended by RP-C205 that is used in the engineering reports. The cos2s-distribution
was used instead, as it was convenient.

Environmental load 100 year return period

Umean 29 [m/s]

Wind and wave direction West, 90◦ to girder

Hs[m] 3.75

Crest length parameter s 5

Table 4.4: Chosen environmental parameters
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Chapter 5
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Generalized procedures for obtaining modal analysis, response analysis and for motion
induced instability of a multi-span suspension bridge with floating towers have been cre-
ated [4]. The procedures will account for hydrodynamic and aerodynamic coupling with
a structure. Three flowcharts have been made for this purpose, in Figures 5.1, 5.2 and
5.6. These procedures assume the use of buffeting theory to obtain wind forces, account-
ing only for wind forces on the girder, and linear wave potential theory for properties for
fluid-structure interaction.

A case study is then considered for the Bjørnafjorden bridge model to apply the gener-
alized assumptions for both a coupled modal analysis, response and for motion induced
instabilities. The flowcharts related to the modal analysis can be converted to a MATLAB
script running ABAQUS iteratively for frequencies and solving the complex eigenvalue
problem, when iterating to obtain converged eigenvalues. Another MATLAB procedure
will follow the flowchart in 5.2 created to modalize and couple the load contributions with
the structure and to obtain the spectral response of the bridge. 5.6 will search for the lowest
mean wind velocity that will govern self excited instabilities.

5.1 Generalized method for modal analysis of a coupled
system

As the environmental terms for mass, damping and stiffness are frequency dependent, an
iterative procedure is necessary for conducting the modal analysis of a coupled model.
Frequency dependent hydrodynamic added mass, damping and restoring forces in addi-
tion to velocity- and frequency dependent aerodynamic damping and stiffness need to be
considered. Accordingly, a modal analysis has to be made such that the corresponding fre-
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quencies of the given environmental terms will correspond to an eigenfrequency solution.
The iterative procedure would require a fixed mean wind velocity.

The step by step iterative procedure can be described in a flowchart as in 5.1. Hydrody-
namic and aerodynmic environmental effects are found for an initial guess of frequency
ω. The procedure was made for the Bjørnafjorden case, and requires a program such as
MATLAB to generate frequency dependent mass and stiffness terms to the user defined el-
ements in ABAQUS as referred to in the previous chapter. Damping would be added using
the technique of using wire elements as mentioned in the previous chapter for modelling.
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5.1 Generalized method for modal analysis of a coupled system

Figure 5.1: Algorithm for obtaining ωn when accounting for hydrodynamic and aerody-
namic effects
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5.1.1 Generalized method for response analysis

The flowchart in Figure 5.2 shows a generalized procedure for calculating the spectral
response of a bridge subjected to wind and wave load. The boxes in the flowchart are
numbered and will be referred to in the following

The procedure uses input from a FE model analysis, Φ, ω, M̃ , as shown in box number
(1). Hydrodynamic mass, damping and restoring forces from a hydrodynamic analysis
program and aerodynamic stiffness and damping terms should be obtained from aerody-
namic derivatives from conducted wind tunnel testing, assuming buffeting theory (6)

The flow induced forces are determined statistically based on measurements at the site.
The procedure assumes coupling of aerodynamic buffeting theory and linear wave the-
ory in frequency domain in modal coordinates. The analysis depends on auto correlation
spectra for wave elevation, directional spectrum and reasonable buffeting coefficients and
aerodynamic derivatives given from wind tunnel testing.

1. Where the subscript notation s denotes structural, the eigenmodes Φs, eigenfre-
quencies ωs, and modal mass M̃s, are the result of a modal analysis in a finite
element software. Φs includes the modes from the girder, ΦG, and k pontoons so
that Φ = [ΦGΦC ] and ΦC = [φC,1, φC,2, ...φC,k].

2. K̃s can often be obtained as a relation of M̃s and ω while C̃s can be calculated
using the critical damping factor ζ, modal mass and frequency.

3. Hydrodynamic added mass, damping and restoring forces are obtained through a
hydrodynamic analysis using linear potential theory, for frequency domain. The
pontoon numbers are in the figure denoted k, where k=(1,2,3,nPontoons). Two pon-
toons would give k=2.

4. Mk, Ck and Kk are modalized for each pontoon k using the obtained pontoon
eigenvectors ΦC,k, for the different pontoon reference nodes.

5. The modal contributions from M̃k, C̃k and K̃s from the pontoons and can be added
together to account for the hydrodynamic mass, damping and restoring force in the
pontoons.

6. By applying buffeting theory and assuming a line-like structure, the wind velocity
and frequency dependent Kae(ω, V ) and Cae(ω, V ) can be obtained using aerody-
namic derivatives from conducted wind tunnel testings for a given bridge section.

7. The aerodynamic derivatives are defined for each unit length. Modalizing and in-
tegrating Kae(ω, V ) and Cae(ω, V ) over the longitudinal girder distance the total
contribution of modal motion induced aerodynamic K̃ae and C̃ae are obtained.

8. The wave transfer function Qr(ω, θ) for a submerged pontoon can be obtained from
the same hydrodynamic analysis by using linear potential wave theory.
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Figure 5.2: The flow chart shows how the spectral response is calculated
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9. An expression for the cross spectral density function Sηrηs(θ, ω) is either the auto-
or cross spectral density of wave elevation. If cross correlation is not considered, the
expression will be equivalent with e.g Sηrηr (θ, ω) = Sηrηr (ω) ·D(θ). Accounting
for cross correlation between pontoons, the relation D(θ) is nonetheless composed
of auto-spectral density function Sηη , and Equation 2.26 from theory Section 2.2.
Stationary input for this function will be e.g stationary inputs Hs, mean wave direc-
tion θ0; depending on the chosen wave models for direction and wave elevation.

10. The wave force spectra are developed using the relation that wave transfer function
from potential theory times wave amplitude gives wave force in frequency domain.
The relation between spectral process and spectral density, integrated over the angles
gives the wave force as in equation (10) in the flowchart.

11. If cross correlation is considered and 6 DOFs are taken into account for each tower,
a three dimensional matrix with [6 · ntowers × 6 · ntowers] wrt. frequencies will be
assembled.

12. The modal transfer function is obtained by using cross multiplication of the set of
eigenmodes to the cross correlation spectrum for wave force elevation.

13. From buffeting theory, the buffeting matrix Bq contains the cross sectional and ve-
locity dependent coefficients in frequency domain.

14. The cross spectral density function is established for wind velocity for transversal
and vertical fluctuating wind v = [u w], based on measurements at site.

15. The modal wind force spectrum is obtained by integrating twice over the length
of the girder to account for correlation between points on the girder. The modal
contributions are added together using the double integral.

16. All the modal contributions for mass, damping and stiffness in the system are added
together using correct signs.

17. The modal transfer function of the whole system is obtained from total M̃, C̃ and
K̃.

18. Recalling theory, spectral process of force times transfer function gives the response.
The spectral response is calculated in frequency domain by adding up the modal
contributions of spectral forces and multiplying with the pair of the modal transfer
function and the Hermittian conjugate of the modal transfer function.

19. The response in real coordinates can be obtained by de-modalizing the spectral re-
sponse with the eigenfrequency matrix for a specific node.
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Table 5.1: Input parameters

Input parameters Value range

Wave angles θ [5:5:360] degrees

Wave frequencies ωw
{

[0.02:0.02:3.6],[3.64:0.04:6]} rad/s

Interpolated frequencies ω [0:0.006:6] rad/s

Specified number of modes 70

5.2 Case: Dynamic response in frequency domain for the
Bjørnafjorden bridge

A coupled dynamic frequency domain response analysis was created in MATLAB by using
a case study for the Hardanger bridge [13] to obtain the aerodynamic damping and stiff-
ness as well as the buffeting forces. The scripts calculating the aerodynamic theory was
solely based on this, including the wind field velocity spectrum for the Hardanger Bridge
site. The hydrodynamic mass, damping, restoring force and wave transfer function were
calculated in HydroD/WADAM, assuming linear potential theory. Output from a modal
analysis of the modeled ABAQUS bridge without environmental properties from chapter
4 would then be used to modalize the system and to obtain the modal system matrices.
Input for generating response would be Vmean, significant wave height Hs. mean wave
direction θ0 and crest length s, given cos2s directional spectrum, and the one-parametric
Pierson-Moskowitz spectrum. Table 5.1 shows input parameters for the model. Interpo-
lated frequencies is the frequency interval accounting for 1000 frequencies between 0 and
6 and is the chosen frequency axis. The response analysis was conducted using the first 70
modes.

5.2.1 Modal analysis for a coupled system

The parameters for (1) was obtained from the ABAQUS model described in section 4.1.
The ABAQUS model was set up in three different ways. The first accounted only for
structural components, the second for structural and hydrodynamic contributions and the
third for structural, hydrodynamic and aerodynamic contributions. For all three cases the
model returned 70 eigenvalues. ABAQUS’ output was a text file (.dat file) so a MATLAB
script was created to read the text file and collect the data in matrices, for further use.

Structural model

The structural finite element bridge was modeled as described in section 4.1. No environ-
mental effects were added to the model except a static buoyancy force. This model also
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returned 70 generalized masses (M̃), 70 eigenmodes for the girder and 70 eigenmodes for
the two pontoons, respectfully.

C̃ and K̃ was not returned from ABAQUS. Since M̃ is a diagonal matrix and the effects
of damping on the eigenfrequencies are assumed negligible the following expression was
used to obtain the diagonal matrices K̃ and C̃.

K̃ = diag(ω2
i M̃i) (5.1)

C̃ = diag(2M̃iωiζi) (5.2)

where ζ is the eigenfrequency dependent critical damping ratio. ζ was set to 0.005 for all
modes in this calculation.

Coupled model

The iteration procedure for modal analysis of the coupled system was carried out as fol-
lowing in the MATLAB procedure; following the procedures of the generalized method
displayed in 5.1.

An initial frequency guess corresponding to the first eigenfrequency of the structural model
was used and denoted ωguess. Added damping and added mass matrices for frequencies
[0.02 : 0.02 : 3.6] and [3.64 : 0.04 : 6.00] was obtained from HydroD. Because Ch
and Mh matrices were for discrete frequencies, the matrices were linearly interpolated
to get more exact values for ωguess. A MATLAB function calculated the Kae and Cae
for ωguess, from the mean wind velocity and curve fitted aerodynamic derivatives from
the Hardanger bridge. The mean wind velocity was set to 40 m/s so the effects of the
aerodynamic contributions would be significant. A complex eigenfrequency analysis was
run in ABAQUS and returned a resulting .dat file. ωit was read from the .dat file only for
the specific mode. When |ωit − ωguess| is equal to or smaller than the tolerance value,
denoted ε = 0.001, ωit had converged. ωit was updated as the next eigenfrequency and
the next mode would be handled. If the absolute difference was larger than ε, the iteration
would continue. No more than two iterations were usually necessary for each mode. When
all 70 modes had ran through the 70 complex eigenvalues were saved to file. The process
took approximately 10 hours.

The complex eigenmodes accounting for the environmental damping effects were difficult
to obtain from the ABAQUS. This is left for further work.

5.2.2 Motion induced hydrodynamic forces

The hydrodynamic added mass, damping and restoring forces were obtained from Hy-
droD/WADAM based on linear potential theory using panel method of a FE-model cre-
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ated in GeniE. The frequency dependent added mass and damping were simulated for
240 wave frequencies between 0.02 and 6 rad/s. To make these matrices adaptable for
more frequencies, a linear interpolation was made to obtain added mass and damping for
1000 frequencies rather than 240. The three motion induced terms were modalized using
structural eigenvectors for the pontoons. The modalized terms were subsequently added
together for each pontoon to account for two towers in the modal formulation.

5.2.3 Motion induced aerodynamic forces

Aerodynamic contributions on the model (6), was only accounted for on the girders, not
on the towers or cables. Aerodynamic derivatives were obtained from conducted wind
tunnel tests of the Hardanger bridge girder section. 18 derivatives for 21 discrete reduced
velocities, for the range [0.5411 : 4.429], were curve-fitted such that an analytical function
was obtained, applicable for all reduced velocities within the range. Plots of C̃ae] and K̃ae

are found in the appendix (C.4 C.5).

In (7) the integration was done numerically, because ΦG is node wise discrete, by first
modalizing C̃ae] and K̃ae at node 1...N . This resulted in [Nmod × Nmod] matrix for one
node. The node by node modal C̃ae and K̃ae matrices where then multiplied with the
length between the nodes, ∆x and then added together to obtain K̃ae and C̃ae.

5.2.4 Flow induced hydrodynamic forces

The hydrodynamic wave transfer function (8) was obtained in HydroD for 240 frequencies
and 72 angles. The transfer function in tower 1 was set equal to the transfer function at
tower two. The 100 meter difference from 550 to 450 meters in water depth made no
difference for the transfer function coefficients. As 1/4th of the double-symmetric FE-
model was created, 18 angles were simulated for, and the wave transfer function values
were assembled for 72 angles; exploiting the double-symmetry of the structure. This saved
computation time. Surface plots of these are given in the appendix. The function for the
cross spectral density for wave elevation, Sη , with derivation and equation as shown in
Equation (2.26) in the wave theory section. Directionality and wave elevation are assumed
statistically independent, so the auto-spectral density function can be multiplied with the
one-parametric Pierson Moskowitz spectrum and the cos2s directionality function for the
wave frequencies.

The cross correlation function for wave elevation was applied to the case of having two
submerged floating towers for Bjørnafjorden[4]. The wave transfer function and the spec-
tral density functions accounted for wave elevation at two towers, the spectral forces Sprps
could accordingly be calculated. The expression from Equation (2.26) integrates over
wave directions θ. As the water depth of Bjørnafjorden for 450 and 550 meters for each of
the respective towers can be considered deep, the wave number κ = ω|ω|

g . The numerical
procedure is described briefly
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Numerically, the wave transfer function Q for each θn and ω becomes a [6× 1] vector, as
6 DOFs were accounted for. Sη is a [1 × Nθ]-vector, while the complex conjugate of Q
becomes a [6×1] vector. The numerical integral is carried out by adding the each resulting
[6 × 6] matrix multiplied by the angular step 5, for all frequencies along a dimension
representing the angular dependency of Sηr,ηs . The wave force spectrum for each ω and θ
at positions r and s could be expressed as follows.

SPrPs(ω, θn) = Qr(ω, θn)Sη(ω) ·D(θn) · exp (G(ω)) Qs(ω, θn)H

Where G is the content in the exponential of equation of the cross correlating wave spectral
density function from Equation (2.26)

G(ω) = −iω|ω|
g

(∆x cos θ + ∆y sin θ)

Such that

SPrPs =

Nθ∑
n=1

SPrPs(ω, θn)dθ

For the Bjornafjorden bridge, ∆y will be 0 as the bridge is assumed to be aligned with the
defined x-axis. ∆x is the distance between the towers in x-direction and will be zero for
the auto spectral terms Sηr,ηr and Sηs,ηs , the auto spectral relations for each tower, but
equal the span length, ∆x = 1385 for the cross spectral terms.

The wave force spectra was numerically integrated by multiplying pairs of wave transfer
function, where one is complex conjugate, with a unit of Sηη(ω, θ) for a corresponding
θ, multiplied with the unit angle. As the ∆x and ∆y were integrated in the formulation
of spatial point correlation for wave elevation, there would be 4 sets of cross/auto spectral
density [6 × 6] matrices for the wave force (11). Since Qr = Qs it follows that the auto
spectral density for each tower will be equal each other and same for the two cross spectral
densities, i.e Sprpr = Spsps , and Sprps = Spspr .

A plot for the wave load spectrum was obtained, consisting of [12×12] matrix coefficients
wrt. frequencies; accounting for cross correlation between towers and degrees of free-
doms. The real values were plotted of stationary parameters of Hs = 3.75 and Hs = 6m
at s=5. These two significant wave heights are to be considered very conservative.

The spectral wave force peaks account for peak frequencies from the Pierson Moskowitz
spectrum as well as the frequency dependent wave transfer functions obtained from Hy-
droD. A general trend in the curve in Figure 5.3 is higher amplitudes for lower frequencies
when Hs is bigger. The peak frequencies reside between 0.5 and 1.2 for most degrees of
freedoms.
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Figure 5.3: Hydrodynamic force spectrum for tower 1 for Hs = 3.75 and Hs = 6

S̃prps(ω) = [ΦCrΦCs ]
T

Sprpr (ω) Sprps(ω)

Spspr (ω) Spsps(ω)

 [ΦCrΦCs ] (5.3)

In the given equation, equivalent to (12) ΦCk are the eigenvectors for the tower reference
nodes of each tower. This would mean that the cross spectral terms were modalized using
two different eigenmodes corresponding to tower reference node in position r and s. Plot-
ting the cross-correlational coefficients between towers wrt. frequencies gave oscillating
values with equal amplitudes in positive and negative amplitudes around zero, which were
assumed to imply noise. Correlation could accordingly be assumed low for the given crest
length.

5.2.5 Flow induced aerodynamic forces

Buffeting forces are modeled to only act on the girder. To obtain the buffeting forces
matrix, Equation (2.76) was used, where Bq is dependent on mean wind velocity, cross
section and oscillating frequency of the girder through admittance functions. [13]
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Stationary wind conditions were taken into account for the flow induced wind force (14).
Relations from a case study [13] of the Hardanger bridge were used to calculate the auto-
and cross spectral density for the translative and vertical wind velocity

Suu(ω) =
40.58V zκ

(1 + 9.74ωz/V )5/3
exp

(
−1.4

∆xω

V

)
(5.4)

Sww(ω) =
0.82V zκ

(1 + 0.79ωz/V )5/3
exp

(
−1.4

∆xω

V

)
(5.5)

Suw(ω) = − 2.23V zκ

1 + 1.67ωz/V )7/3
exp

(
−1.4

∆xω

V

)
(5.6)

Assuming turbulence intensities and roughness of the Hardanger bridge site to be applica-
ble for Bjørnafjorden. κ is the roughness coefficient assumed to be 0.0031.
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Figure 5.4: Auto- and cross spectral wind spectrum for horizontal and vertical wind direc-
tion on girder

The modal spectral wind forces, S̃Q(ω, V ) were obtained by multiplying the cross spectral
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5.2 Case: Dynamic response in frequency domain for the Bjørnafjorden bridge

wind densities with the buffeting matrices.These were again modalized, and the modal
contributions were added up and assembled along the girder. The plotted wind velocity
spectrum, using case data of the wind spectrum wrt. frequencies and for a wind velocity
of 29 m/s gave the following wind spectrum as shown in Figure 5.4.

It is evident that the cross spectral functions of the wind velocity spectra have an expo-
nential trend for both the cross- and auto-spectral density functions. Swu is equal to Suw,
where the trend is an exponential growth, while the trend shows exponential stagnation
for the auto-spectral functions wrt. frequencies. Very dominant values for Suu, makes it
reasonable to assume a similar decaying wind load spectrum.

S̃Q(ω) =

∫
L

∫
L

φTGi(x1)Bq(ω, V )SvBq(ω, V )(ω)TφGj (x2)dx1dx2 (5.7)

φGi,j becomes the eigenvector for each girder node i and j.

5.2.6 Transfer functions

As all the motion induced components were modalized, the modal components could be
added together for respectively mass, damping and stiffness and the modal transfer func-
tion could be obtained. In an attempt of identifying eigenfrequencies, the absolute value
of all modal transfer function coefficients were summed up to be one scalar for each fre-
quency ω.

By plotting the sum of coefficients of the modal transfer function for all the mode×mode-
coefficients, one could get a notion of which frequencies would govern the responses; i.e
the eigenfrequencies. The figure, 5.5 shows the plot of sum of absolute values of modal
coefficients including structural, hydrodynamic and aerodynamic motion induced forces
wrt. frequencies against the same plot with modal coefficients only related to the structural
coefficients.

If assuming that peak frequencies in the plot represent the eigenfrequencies with corre-
sponding eigenmodes that will excite the highest response, general observations show that
many of the first eigenfrequencies are shifted towards lower frequencies for a mean wind
of 29 m/s.
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Figure 5.5: Absolute value of all modal Transfer functions
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5.3 Motion induced instability

5.2.7 Response

The modal response spectrum was then obtained by adding together the two modal spectral
force distributions multiplied the total modal transfer function (18). Demodalizing the
spectral response could give the spectral response in the wanted nodes for e.g a specific
eigenvector for a specific node (19).

S̃r(ω, V,Hs) = H̃(ω, V ) ·
(
S̃Q(ω, V ) + S̃P (ω,Hs)

)
H̃(ω, V )H (5.8)

The MATLAB script generates response for short term stationary conditions, where Hs,
s and the mean wave direction would define the stationary sea conditions, and the mean
wind V. The cross-spectral density function for wave elevation Sηrηs has been decomposed
such that Sηη and D(θ) with its stationary parameters Hs and s are input. The MATLAB
script will use these parameters as input for the function.

5.3 Motion induced instability

Motion induced instability will be investigated for, on the modeled bridge. The procedure
was based on the theory given in Section 2.3.4 from theory. MATLAB scripts developed
for the Hardanger bridge (by Ole Øiseth) were further developed to account for frequency
dependent hydrodynamic effects. The iterative process is described in the flowchart in
Figure 5.6 to also account for the coupling of mass, damping and stiffness contributions
from frequency dependent hydrodynamic and aerodynamic terms.

Obtaining instability limits for motion induced instability can be done in an iterative pro-
cess. The objective of a motion induced instability analysis is to find the lowest mean
wind velocity that would excite motion induced instabilities; theoretically meaning that
µ > 0 from theory in 5.3, and for what eigenmode it would be executed at. In further
explaination of the iteration process, the flowchart in Figure 5.6 will be referred to.

Parameters are firstly set to initial values, where V and VMax would be the lowest and
maximum mean wind velocity that would be investigated for. ωguess is set equal to the
first eigenfrequency from the structural model, itmax is the maximum number of iterations
for a converged eigenvalue a mode could be searched for, diff is the initial value for the
difference between ωguess and ωit, ε is the convergence criteria for the eigenvalues and µ
can be set to a negative number. Moreover, a velocity step for the iteration procedure, dV
needs to be defined and is set typically to lower values such as 1 or 2 m/s.

The modal mass, damping and stiffness can be obtained from ABAQUS. The third decision
box (in Figure 5.6) initiates a while loop that searches for a converged eigenfrequency for
mode i for a fixed mean wind velocity. The loop stops when |ωguess−ωit| = diff < ε or
when convergence is not reached for itmax number of iterations. The real and imaginary
part of the converged eigenvalue is saved, before one moves on to the the next mode, but
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for the same mean wind velocity. When converged eigenvalues (or reached itmax) for all
modes have been found, failing the second decision box, the first decision box checks if all
of the real parts of the eigenvalues are negative, µ < 0 and if V < VMax. If both options
are true, the mean wind velocity is increased and the entire process starts over. If µ > 0
(V < VMax) the program returns the mean wind velocity of which excites the motion
induced instability, and a corresponding critical frequency and mode can be obtained.

Not shown on the flowchart for simplicity is the refinement step of dV. When the mean
wind velocity is iterated to a value of which µ is positive, a refinement process is done
to reduce the velocity step for obtaining a more exact critical mean wind instability limit.
when reaching this condition, the iteration process will go one step back to previous V,
and runs it again with dV=dV/2. This is done to find a more exact VCR. The refinement
of dV is done as many times as specified in an input parameter.

To account for frequency dependent hydrodynamic mass, damping and stiffness and aero-
dynamic damping and stiffness from aerodynamic derivatives, the matrices needed to be
modalized before being coupled with the system to respectively M̃, C̃ and K̃ as shown in
the flowchart. To modalize these terms, the correct modes to use would be the modes from
the coupled system, also accounting for a changing mean wind velocity. Modalizing using
structural eigenvectors could instead be applied for modalization, reducing computational
effort. As an evident consequence, the results would deviate from the real coupled system.

The correct modes could in principle have been found by repeating the iterative process for
the fully coupled model from Section 5.2.1, but also iterated for mean wind velocity. Then
eigenvalues and eigenmodes for all modes for all mean wind velocities up to VCR could
have been obtained. This process would however require a large computational effort.
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Start V, VMax, ωguess, itmax, diff, ε, μ ෪ݏࡹ] ෩ݏ࡯][෪ݏࡷ][ ]

෩ࡹ ℎ(ωguess), ,෩ℎ(ωguess)࡯  ෩ࡷ  ℎ(ωguess)࡯෩ܽ݁(ωguess, V), ෩ࡷ ܽ݁(ωguess, V)

෩ࡹ (ωguess)= ݏࡹ෪ ෩ࡹ+ ℎ(ωguess)࡯෩(ωguess,V) = ݏ෩࡯ -෩ℎ(ωguess)࡯ + ෩ܽ݁(ωguess,V)࡯
෩ࡷ (ωguess,V) ෩ࡷ = ݏ ෩ࡷ + ℎ- ෩ࡷ ܽ݁(ωguess,V)

Solv complex eigenvalue problem for, 
෩ࡹ (ωguess),࡯෩(ωguess,V), ࡷ෩ (ωguess,V) = λit= μit+iωit

Sort [λit] by ascending order of ωit, Disregard ωit<0

diff = ωguess- ωit,iωguess= ωit,iiti = iti+1

Save λit,ii = i+1 (ModeNr) 

(V<VMax) && (μ<0)

VCR=V , ωCR=ωit,i

V=V+dV

End

ModeNri<ModeNrN

(diff>ε) || (itmax > iti)

T

T

F T
F

F

2

3

1

Figure 5.6: Flow chart showing algorithm used to find VCR for motion induced instability
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Chapter 6
Results

In this chapter, results will be presented based on the analysis procedures in Chapter 5
for the bridge model for Bjornafjorden. A modal analysis, identifying modes and eigen-
frequencies in addition to a response analysis has been carried out. Moreover, the bridge
model is investigated for motion induced instabilities due to wind.

The modal analysis with a detailed description of the modes will be displayed and de-
scribed with the corresponding eigenfrequencies. The modal analysis of the bridge takes
into account damping and stiffness contributions from wind, and hydrodynamic added
mass and added damping when solving the complex eigenvalue problem. The results from
this analysis will be divided into a group with modes with a more significant pontoon mo-
tion and a group of modes with insignificant pontoon motion, where only the girder and
cables participate.

For the response analysis, the bridge model will be tested for different stationary environ-
mental conditions in reference points on the girder and on the pontoons. The aim of this
analysis is to see the impact of wind and waves on the bridge response by connecting wind
and wave spectra with the modes of the structure. Response is as described in Chapter 5
carried out in frequency domain and will be presented in terms of standard deviation and
power spectral density functions of the response in chosen degrees of freedom.

The results from the motion induced instability analysis will also be presented in terms of
critical velocities, frequencies and corresponding modes.
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6.1 Modal Analysis

The natural frequencies and mode shapes were extracted from the structural model, the
fully coupled model and the model coupling only hydrodynamic and structural terms. The
eigenfrequencies are plotted in there ascending order for the three models in figure 6.1.
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Figure 6.1: Eigenfrequencies plottet against mode number in cornological order

The modes are mainly in the same order for the three models, but some modes have
changed places in regard to the other models. It can be seen when accounting for hydrody-
namic and aerodynamic effects the eigenfrequencies have been shifted to lower frequen-
cies. The difference between the eigenfrequencies of the hydrodynamic and fully coupled
model is small. Thus, it is evident that the contributions from the hydrodynamic matrices
have a much larger impact on the structural eigenfrequencies than the aerodynamic effects
for Vmean = 40.

A closer analysis of the mode shapes are conducted below. The fully coupled model
is the most realistic system and is therefore the one that will be presented in the modal
analysis. The analysis of the mode shapes are divided into two groups. The modes in the
first group will characterize the mode shapes with significant motion in the pontoons. The
second group characterizes the modes where the pontoon motion is much less significant
compared to the relative motion in the girder and cables.

The direction and rotation of motion is described in terms of the global coordinate system,
for the girder in each span, main cable pair in each span and the two floating towers.
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6.1 Modal Analysis

Motion in directions that are less dominating but are evident in the mode shapes are put
in parenthesis. The girder motion is also classified as symmetric or anti-symmetric modes
about the xz-plane in the bridge girder middle, in the middle span. Symmetric modes will
be denoted S, anti-symmetric, A, or neither, (-). The number of amplitudes peaks per span
in a direction is denoted e.g y2 for 2 peaks in the y direction which is a full sine curve.

6.1.1 Pontoon modes

Table 6.1 describes each mode with significant pontoon motion. The motion for the pon-
toon modes are described in terms of the girder in each span and the two pontoons. Re-
calling that the girder and towers are kinematically coupled in all 6 degrees of freedom
of translations and rotations; resulting in directly coupled motions. The cables for all the
tower modes follow the motion of the girder. Figure (6.14) shows all the modes of which
the pontoons have significant relative motion.
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Table 6.1: Modes with significant motion in the pontoons

Mode Frequency Girder Pontoon Symmetry

[rad/s] 1 2 3 1 2

1 0.0785 y y y y y S

2 0.1045 y y y y y A

3 0.3128 y1 y1 y1 θz θz S

4 0.3352 y1 (y2) y1 θz θz A

6 0.4919 y2 y2 y2 θz θz A

7 0.5425 y2 y3 y2 θz θz S

8 0.5581 y2, (z1) y3, (z1) y2, (z1) θz θz S

9 0.6433 z2, z2 z2 x, (θy) x, (θy) A

12 0.6869 z1 z2 z1 θy θy A

14 0.7521 y2 (y3) y2 θz θz S

15 0.7589 (z1) z2 (z1) θy θy A

16 0.8367 (y2) y2 (y2) θz θz A

17 0.8948 z3 z3 z3 θy θy S

18 0.9065 z3 z3 z3 θy θy S

40 1.5805 y3, θx1 (y3, θx1) - θx (θx) A

41 1.6381 (y3, θx1) (y3, θx1) y3, θx1 - θx -

45 1.709 θx1 - - θx - -

-

48 1.7622 (θx1) (θx1) θx1, (y4) (θx) θx -

49 1.8353 θx1 θx1 θx1 θx θx S

51 1.95 θx2, (y4) (y4) θx2, (y4) θx, θz θx, θz A

56 2.0761 θx3, (y4) θx3, y4 θx3, y4 (θx) θx A

61 2.1529 θx2 - θx2 θx θx A
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Printed using Abaqus/CAE on: Thu May 26 14:00:20 W. Europe Daylight Time 2016

Mode 1, ω = 0.0785

Printed using Abaqus/CAE on: Thu May 26 14:05:45 W. Europe Daylight Time 2016

Mode 2, ω = 0.1045

Printed using Abaqus/CAE on: Thu May 26 15:26:25 W. Europe Daylight Time 2016

Mode 3, ω = 0.3128

Printed using Abaqus/CAE on: Fri May 27 17:43:07 W. Europe Daylight Time 2016

Mode 4, ω = 0.3352

Printed using Abaqus/CAE on: Thu May 26 15:28:10 W. Europe Daylight Time 2016

Mode 6, ω = 0.4919

Printed using Abaqus/CAE on: Thu May 26 15:29:57 W. Europe Daylight Time 2016

Mode 7, ω = 0.5425

Printed using Abaqus/CAE on: Thu May 26 15:31:14 W. Europe Daylight Time 2016

Mode 8, ω = 0.5581

Printed using Abaqus/CAE on: Sat Jun 04 08:55:26 W. Europe Daylight Time 2016

Mode 9, ω = 0.6433
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Chapter 6. ResultsPrinted using Abaqus/CAE on: Sat Jun 04 08:56:41 W. Europe Daylight Time 2016

Mode 12, ω = 0.6870

Printed using Abaqus/CAE on: Thu May 26 15:32:58 W. Europe Daylight Time 2016

Mode 13, ω = 0.7200

Printed using Abaqus/CAE on: Thu May 26 15:33:14 W. Europe Daylight Time 2016

Mode 14, ω = 0.7521

Printed using Abaqus/CAE on: Thu May 26 15:33:35 W. Europe Daylight Time 2016

Mode 15, ω = 0.7589

Printed using Abaqus/CAE on: Thu May 26 15:33:52 W. Europe Daylight Time 2016

Mode 16, ω = 0.8367

Printed using Abaqus/CAE on: Sat Jun 04 08:59:25 W. Europe Daylight Time 2016

Mode 17, ω = 0.8948

Printed using Abaqus/CAE on: Sat Jun 04 08:59:53 W. Europe Daylight Time 2016

Mode 18, ω = 0.9066

Printed using Abaqus/CAE on: Fri May 27 17:45:01 W. Europe Daylight Time 2016

Mode 19, ω = 0.9193
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Printed using Abaqus/CAE on: Thu May 26 15:34:14 W. Europe Daylight Time 2016

Mode 40, ω = 1.5805

Printed using Abaqus/CAE on: Sat Jun 04 09:18:56 W. Europe Daylight Time 2016

Mode 41, ω = 1.6381

Printed using Abaqus/CAE on: Fri May 27 17:45:50 W. Europe Daylight Time 2016

Mode 45, ω = 1.7090

Printed using Abaqus/CAE on: Fri May 27 17:48:08 W. Europe Daylight Time 2016

Mode 48, ω = 1.7622

Printed using Abaqus/CAE on: Fri May 27 17:48:44 W. Europe Daylight Time 2016

Mode 49, ω = 1.8353

Printed using Abaqus/CAE on: Fri May 27 17:49:02 W. Europe Daylight Time 2016

Mode 51, ω = 1.9500

Printed using Abaqus/CAE on: Fri May 27 17:49:44 W. Europe Daylight Time 2016

Mode 56, ω = 2.0761

Printed using Abaqus/CAE on: Sat Jun 04 09:03:49 W. Europe Daylight Time 2016

Mode 61, ω = 2.1529

Figure 6.14: Mode shapes with significant motion in the pontoons
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Mode 1 and 2 are pure translative in the y direction. The tethers are 100m longer for the
left tower so the displacement is larger. For mode 1 the towers move in parallel making
it symmetric, while for mode 2 the towers mode in opposite directions, making it anti
symmetric with close to zero motion at midpoint of the girder.

Mode 3, 4, 6, 7, 8, 14 and 16 are all due to rotation about the z axis in the towers, trans-
lating into y displacements in the girder. Mode 3 is a half sine per span with opposite
rotating towers. Mode 4 is like mode 3 but symmetric. Mode 6 is a full sine per span with
symmetric rotating towers. Mode 7 is a full sine for span two and three, and one and a half
sine for the middle span with opposite rotating towers. Mode 8 is like mode 7 but with
some displacement in the z direction. Mode 14 is a symmetric mode with a full sine in
span one and three and one and a half sine in the middle span and opposite rotating towers.
Mode 16 is like mode 7 with a full sine in each span in the y direction but with a higher
amplitude in the middle span and parallel rotating towers.

Mode 9, 12, 15, 17 and 18 are modes with rotation in the pontoon about the y axis. Mode
9 also has some translation of the towers in the x direction, with the tower moving in
parallel. The girder moves asymmetrically with two amplitude peaks in all three spans.
Mode 15 is similar to mode 9 but with no translation of the pontoons in the x direction.
Mode 17 and 18 are similar with symmetric rotating pontoons about the y axis and three
peak amplitudes in the z direction in each span. In mode 17 the amplitude is slightly higher
for the side spans and in mode 18 they are slightly lower than the middle span amplitude.

Mode 40, 41, 45, 48, 49, 51, 56 and 61 have rotating motion about the x-axis. This motion
usually gives the girder torsion. Mode 40 has a larger rotation in the left tower than the
right, and the girder and cables are moving in opposite directions with one and a half sine
curve per span. There is also some torsion in the girder due to the opposite rotation of the
towers. The motions are largest in the left span, smaller in the middle and very small in
the right span. Mode 41 is very similar to 40 but with less displacements all over. Mode
45 is the same as 40 but with the significant motion in the other tower. Mode 45 has
rotation on the left pontoon and torsion in the girder in the first span. Mode 48 has more
rotation in the right than left tower and girder torsion in all spans. Mode 49 has parallel
rotation towers and significant symmetric rotation in all three spans. Mode 51, 56 and 61
has double torsion in the two side spans due to rotation of the towers about the x axis.
Mode 51 also has some rotation about the z axis.

Note that vertical pontoon modes, heave, are not within the 70 first modes. The reason is
assumed to be because of the tremendous tension in the tethers.

Amongst the modes with significant motion in the pontoons, there is a trend that mode
with horizontal motion in the girder occur before vertical motion. The torsional modes all
occur for a even higher frequency.
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6.1.2 Girder and Cable Modes

The modes were the movement in the pontoons are insignificant are listed in Table 6.2.
The notation is the same as in Table 6.1. The cables are given values in the table only
when they don’t follow the girder.

Table 6.2: Modes with insignificant pontoon movement

Mode Frequency Girder Cables Symmetry

[rad/s] 1 2 3 1 2 3

5 0.3707 y1 y1 y1 - - - S

10 0.6662 z2 - z2 - - - S

11 0.6693 z2 - z2 - - - A

13 0.7200 y2 y2 y2 - - - A

19 0.9193 - - - y1 - - -

20 0.9194 - - - - - y1 -

21 1.0244 z3 - z3 - - - A

22 1.0333 z3 z3 z3 - - - S

23 1.0521 θx1,(y1) - θx1,(y1) y1 - y1 S

24 1.0531 θx1,(y1) - θx1,(y1) y1 - y1 S

25 1.1629 (y2) - - y2 - - -

26 1.1687 - - - - - y2 -

27 1.1698 (y2) - - y2 - - -

28 1.1914 - - (y2, θx1) - - y2 -

29 1.2252 y3 y3 y3 - - - S

30 1.2469 y3 - y3 - - - A

31 1.2578 z3 z3 z3 - - - S
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32 1.2736 - - - - y1 - S

33 1.2824 - - - - y2 - S

34 1.3142 y3 θx1, y3 y3 - - - S

35 1.3355 - θx1, y2 - - y1 - -

36 1.3427 z4 - z4 - - - A

37 1.3433 z4 - z4 - - - S

38 1.3528 - θx1, y2 - - - - -

39 1.3753 - z4 - - - - A

-

42 1.6458 - - - y3 - (y3) -

43 1.6497 - - (y3) (y3) - y3 -

44 1.7000 z5 - z5 - - - A

46 1.7156 z5 (z5) z5 - - - S

47 1.7512 - z5 - - - - S

50 1.8588 θx1 - θx1 - - - S

52 1.9540 θx1 θx1 θx1 - - - S

53 1.9837 y4 (y4) y4 - - - S

54 2.0672 z6 - z6 - - - A

55 2.0683 z6 - z6 - - - S

57 2.0912 - - - y4 - (y4) -

58 2.0926 - - - (y4) - y4 -

59 2.1178 - z6 - - - - A

60 2.1315 y4 - y4 y - y S
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62 2.2126 θx2 - θx2 z2 - z2 S

63 2.2128 θx2 - θx2 z2 - z2 A

64 2.2315 - - - - y4 - S

65 2.2645 - θx2 - - z4 - A

66 2.2703 - - - - y4 - -

67 2.3935 tether - - - - - -

68 2.3947 tether - - - - - -

69 2.4331 z7 - z7 - - - A

70 2.4342 - y4, θx2 - - y4 - A

Vertical modes

The modes with main amplitudes in the z direction are mode 10, 11, 21, 22, 31, 36, 37,
39, 44, 46, 47, 54 and 55. They range from two peak amplitude per span (mode 10) to
six peak amplitudes per span (mode 55). The single peak per span modes are amongst the
pontoon modes. The first vertical mode shape

Horizontal modes

The modes with main amplitudes in the y direction are mode 5, 13, 25, 27, 29, 30, 34, 53
and 60.They range from single peak amplitude (mode 5) to four peaks (mode 60).

Torsional modes

Relative torsion occurs in modes with significant relative motion in the pontoons. It fol-
lows that the rigid connection between the girder and the towers transfers (40, 41, 45, 48,
49, 51, 56, 61) due to the kinematic coupling of the girder and tower. The torsional modes
are from Table 6.2 are 23, 24, 50, 52, 62, 63 and 65. It can be seen that torsion mainly
occurs for modes for the frequency range of ω = 1.5805 (mode 40) to ω = 2.2645 (mode
65) for the first 70 modes. Most of the modes have one twisting along the girder per span.
Mode 62,63 and 65 has double torsion. The modes are often coupled with cable motion in
the z direction.
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Cable modes

The pure cable modes are mode 19, 20, 25, 26, 28, 32, 33, 42, 43, 57, 58, 64 and 66. All
the modes are in the motion of the main cables in the y direction. The reason there are
no pure z direction motion is that with vertical motion of the main cables comes girder
motion in z direction or torsion. Mode 67 and 68 are motion in one of the tethers.

Coupled modes

Modes 34, 35, 38 and 70 are coupled modes i.e. girder motion in vertical, horizontal and/or
torsional. All the directional coupled modes are coupled in y and x rotation.

Printed using Abaqus/CAE on: Sat Jun 04 20:35:16 W. Europe Daylight Time 2016

(a) Largest y displacements

Printed using Abaqus/CAE on: Sat Jun 04 20:34:48 W. Europe Daylight Time 2016

(b) Largest z displacements

Figure 6.15: Coupled mode 8

It is the modes with the fewest amplitude peaks for the bridge that usually contribute to
large response, in therms of standard deviation, also dependent on the load spectra. Theses
modes for the y direction is mode 1, with parallel translation of both towers, mode 2 with
opposite translation of both towers and mode 3, with opposite rotating towers and one peak
amplitude per span. In the z direction it is mode 8, with one peak amplitude per span. This
mode is also coupled with displacements in the y direction. Mode 11 has two peaks in the
z direction. In torsion mode 23 has one twisting in the side spans and mode 40 has torsion
in all spans.

6.2 Modal system vs. ABAQUS

The peaks from the sum of the modal transfer functions in figure 5.5 show some of the
eigenfrequencies of the system. These modal transfer functions are based on the mode
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shapes from the structural model. The mode shapes that would have been used to obtain
a theoretically more correct modal form of the transfer function, would have been the
complex mode shapes from the coupled system model. The eigenfrequenies obtained from
the peaks and the eigenfrequencies from the complex frequency analysis in ABAQUS are
plotted in figure 6.16a.
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Figure 6.16: Eigenfrequencies from peak picking of modal transfer function compared to
eigenfrequencies obtained from ABAQUS

The 28 peaks shown in the modal transfer function are not necessary the 28 first eigen-
frequencies. A MATLAB script compared the eigenfrequency obtained from the transfer
function peaks with the eigenfrequencies from ABAQUS, and assigned the mode number
for the closest value. This result in a best case scenario for obtaining a good fit of the trans-
fer function eigenfrequencies with the ABAQUS eigenfrequencies. The discrepancies in
rad/s is shown in figure 6.16b. For the first 7 modes it seems like all the eigenfrequencies
are present.

It can be seen that the use of structural eigenfrequencies resulted in accurate eigenfrequen-
cies from peak picking compared to the ABAQUS results, with the assumptions given
above. The plots show that the use of a modal approach using eigenvectors from a pure
structural model and then couple the system with the environmental effects, will govern
the same eigenfrequencies as in the fully coupled ABAQUS model. This seems true es-
pecially for the lowest eigenfrequencies. It will accordingly be fair to refer to the modal
analysis in ABAQUS when performing the response analysis in MATLAB in the following
results.
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6.3 Response

The bridge response was calculated using the procedures in chapter 5. A set of points on
the bridge with degrees of freedom are chosen to represent the response for a chosen set of
environmental conditions in terms of significant wave height Hs and mean wind velocity
Vmean.

Figure 6.17: Position of the reference nodes for the response investigation

The mid-girder node and the two pontoon reference nodes are chosen as reference nodes
for response representation.The largest responses can be expected to be in these nodes or
in nodes close to them. To represent also the anti-symmetric modes and local girder modes
in the side-spans in the response analysis, two nodes have been chosen at two symmetric
points in the third quarter of the first span and first quarter of the third span. These nodes
will be referred to as mid girder, pontoon 1 and q1 and q2. The node positions on the
bridge are shown in Figure 6.17.

The response will be represented in the degrees of freedom for y- and z-translation and θx-
rotation for the girder, and y, z, θx and θz-direction for the pontoon. Only the auto-spectral
forces for response in a given direction will be addressed. The notation Sr22−44 and Sr66
will be used to refer to the four degrees of freedom for the pontoon, while Sr11−33 will be
used as notation for the first three degrees of freedom in the girder wrt. global coordinates.

The emphasis of this dynamic response analysis is to see how the modeled bridge structure
responds to high wind and wave loads. From the previous chapter, the spectral wave forces
have high power spectral densities for frequencies around 0.4-1.2 rad/s, while wind energy
is exponentially decaying from low frequencies at zero to higher frequencies.

Coupled conservative stationary environmental conditions have been chosen to see re-
sponse effects. Presumed joint environmental short term conditions of Hs and mean wind
velocity are chosen in accordance with TDA engineering reports [10]. A more thorough
description of this response is given in Section 4.3.1. A crest length is chosen to be s=5 for
the spectral response analyses. The crest length s is typically between 4 and 9 according
to the recommended practice of DNV, RP-C205 [1]. Hs will be set to 3.75 meters and
Vmean to 29 m/s.

Moreover, the standard deviation response will be calculated for [25 × 29] environmental
conditions in surface plots, with 25 different Hs and 36 Vmean from 0 m to 6 meters
and from 0 to 29 m/s. The response will be calculated in standard deviation, integrating
over the given frequency interval of 0 to 6 rad/s, for three degrees of freedom and in the
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first span, the mid-girder node, and for one of the pontoon nodes. Three conditions will
subsequently be picked out for a standard deviation response calculation along the girder
and the two towers in the three chosen directions. These three conditions correspond to:

Table 6.3: Conditions tester for standard deviation

State Significant wave height [m] Mean wind velocity [m/s]

1 Hs 6 V mean 0

2 Hs 6 V mean 29

3 Hs 3.75 V mean 29

The response due to changing crest length s will be also be addressed by the effects of
standard deviation along the girder for conditions 2 and 3 where waves participate.

The standard deviation is the integral of the spectral response spectrum. One can not
accurately state the response from the magnitude of the y axis of the spectral plot, but
a high peak will usually indicate a larger value for the integral and the response. This
argument will be used to indicate if the response is small or significant in the spectral
analysis bellow.
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6.3.1 Mid-Girder response in y, z and θx-direction
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(a) Sr,11 Coupled response in y-direction
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(b) Sr,11 in y-direction due to hydrodynamic
load
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(c) Sr,11 in y-direction due to aerodynamic
load

Figure 6.18: y-DOF in mid-girder

Mid-girder node, y-direction
There is one peak of significance in the plot for the coupled response in y-direction for the
mid-girder. The peak frequency is 0.0782 rad/s, corresponding to mode 1. Figure 6.18c for
aerodynamic force contributions displays 100 times the highest peaks in the hydrodynamic
force contributions of respectively 0.5582 and 0.75 rad/s. As the energy content of wind is
high for the lowest frequencies, it seems evident that response in y-direction in the girder
will be driven by the wind.
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(a) Sr,22 Coupled girder response in z-direction

0 0.5 1 1.5 2 2.5 3
! [rad/s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
r2

2
 [m

2
s/

ra
d]

(b) Sr,22 in z-direction due to hydrodynamic
load
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(c) Sr,22 in z-direction due to aerodynamic
load

Figure 6.19: z-DOF in mid-girder

Mid-girder node, z-direction
In z-direction, the notable peaks of the coupled response is 0.582 and 0.91 rad/s. These
peaks are concurrent with the two peaks shown in 6.19b, showing hydrodynamic response
contributions. The wind spectrum excites also these frequencies, but with lower ampli-
tudes. The large peak at the lowest frequencies in the coupled response is clearly excited
by the wind. The two notable peak frequencies corresponds to mode 8 and 18 which have
large relative amplitudes in z-direction for the mid-girder node. As the wave load frequen-
cies for given Hs and crest length s at tower 1 have high relative amplitudes for the two
given frequencies, it seems evident that the waves will govern the response in z-direction
for the mid-girder node.
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(a) Sr,33 Coupled girder response in θx-direction

0 0.5 1 1.5 2 2.5 3
! [rad/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
r3

3
 [s

 r
ad

]

#10-3

(b) Sr,33 in θx-direction due to hydrody-
namic load
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Figure 6.20: θx-DOF in mid-girder

Mid-girder node, θx-direction
Notable peaks in the coupled response plot are at frequencies 0.5582 rad/s and at 0.76
rad/s; and correspond well to the notable peak frequencies in subfigure 6.20b. Mode 8
and mode 16 seem to govern this response. None of these modes were characterized as
torsional modes. However, both mode 8 and 16 are combined modes in z- and y-direction
which might give rise to torsion. Wave load peak frequencies are the highest in the interval
of 0.5-1.2 rad/s and will excite modes to response. Peaks from the coupled response sub
figure 6.20a consist of contributions from response of both wind and wave loads. From
the modal analysis, the purer torsional modes occurred for much higher frequencies. The
mode with the most significant torsion was at 1.9540 rad/s. This peak seems to be excited
of wind, and creates a minor contribution to the total response.
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6.4 Pontoon 1 response in y, z and θx-direction
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(a) Sr,11 in y-direction for combined loads
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(b) Sr,11 in y-direction due to hydrodynamic
load
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(c) Sr,11 in y-direction due to aerodynamic
load

Figure 6.21: y-direction in pontoon 1: Coupled response vs. response contributions from
hydrodynamic and aerodynamic loads.

Pontoon, y-direction
The peaks frequencies in the figure displaying coupled response for the pontoons are
0.0782 and 1.02 rad/s, which correspond to respectively mode 1 and mode 2. The peak
at 1.02 rad/s is however minor compared to the peak at 0.0782 rad/s. One could have
expected a higher peak at this frequency, as mode 1 and mode 2 lie closely in terms of
frequency and as mode 2 displays high relative motion in y-direction. The response con-
tributions from waves are low, seen in the magnitudes of the y-axis in sub figure 6.21b and
6.21. Wind will accordingly govern the response in y-direction in the pontoons.
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(a) Sr,33 in z-direction for combined loads
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(b) Sr,33 in Z-direction due to hydrodynamic
load
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(c) Sr,33 in Z-direction due to aerodynamic
load

Figure 6.22: z-direction in pontoon 1: Coupled response vs. response contributions from
hydrodynamic and aerodynamic loads.

Pontoon, z-direction
There is a decaying trend for the coupled response in z-direction for the pontoons. The
response is the highest for the very lowest frequencies, followed by peaks at 0.76 rad/s
and at 1.3 rad/s. The notable peak from the hydrodynamic response contribution lies at
0.76 rad/s, corresponding to mode 15. Peaks at around 1.25 rad/s are from the modal
analysis classified as a girder modes and do not either display significant relative motion
in z-direction. From wind, a peak at 1.3 rad/s is excited in addition to a decaying wind.
The magnitudes of both response contributions are at 10−5, implying low response in z-
direction. Recalling that the pontoons are moored to the sea bed with high tension-tethers,
it was evident that the pontoon stiffness in z-direction should contribute to few significant
modes in this direction for the pontoons for the lower frequencies.
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(a) Sr,44 in θx-direction for combined loads

0 0.5 1 1.5 2 2.5 3
! [rad/s]

0

0.5

1

1.5

2

2.5

3

S
r4

4
 [s

 r
ad

]

#10-7

(b) Sr,44 in θx-direction due to hydrody-
namic load
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(c) Sr,44 in θx-direction due to aerodynamic
load

Figure 6.23: θx-direction in pontoon 1: Coupled response vs. response contributions from
hydrodynamic and aerodynamic loads.

Pontoon θx-direction
The coupled response in torsion is distributed in the frequency range of 0.5-0.9 rad/s; these
correspond mainly to the response contributions from the waves. From wind, the response
contributions are lower. The magnitude is however 10−7; implying that the torsional re-
sponse in the tower is not significant. By looking at the peaks from sub figure 6.23b and
6.23c, the torsion might participate lowly in several modes in the whole frequency range.
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(a) Sr,66 in θz-direction for combined loads
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(b) Sr,66 in θz-direction due to hydrody-
namic load
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(c) Sr,66 in θz-direction due to aerodynamic
load

Figure 6.24: θz-direction in pontoon 1: Coupled response vs. response contributions from
hydrodynamic and aerodynamic loads

Pontoon θz-direction
The spectral response in θz-direction shows a significant peak at 0.5581, 0.7521 and at
0.843 rad/s and might correspond to load resonance with mode 14 and 16 that in Table 6.1
were observed to give large relative rotation about the z-axis. Waves seem to govern the
z-directional response.
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Figure 6.25: Comparing spectral response in mid-girder, q1 and q2 in y-direction
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Figure 6.26: Comparing spectral response in mid-girder, q1 and q2 in z-direction
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Figure 6.27: Comparing spectral response in mid-girder, q1 and q2 in θx-direction
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Response in mid girder vs. q1 and q2
The plots in figure 6.25, 6.26 and 6.27 show the spectral response in y- z. and θx-direction
for response in q1, the mid-girder and q2 on the girder. Mode 9, 12, 13, 14, 15, and 16
are anti-symmetric, giving relative motion in the q1 and q2 node of the first span but not
in the mid-girder node. This is evident in the spectral response plot 6.25 in the frequency
interval from 0.6433-0.8637 rad/s for z-direction, where spectral peaks have been excited
for q1 and q2 for given frequencies but not for the mid girder.

For the two symmetric points q1 and q2, the same modes seem seem to be excited, imply-
ing a symmetric behavior in the bridge span. The spectral response in q1 is higher than
for q2 for y-direction, which seems reasonable as the tethers for tower 1 are longer than
the ones for tower 2. For the given plot, the response in mid-girder seems much more
significant than for the response for q1 and q2.
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6.4.1 STD response for varying Hs and Vmean in mid girder

The standard deviation for different Hs and mean wind velocities were calculated using
spectral density functions for response in y, z and θx-direction for the mid-girder node and
the pontoon node. The TDA environmental data were based on measurements and envi-
ronmental contour, accounting for joint occurrence of wind and waves. The environmental
conditions using 26 different Hs and 29 mean wind velocities from 0-6 m Hs and Vmean
from 0-36 m/s. As 6 m significant wave height and 36 m/s wind can be considered conser-
vative conditions for a fjord, one can assume that the Hs and Vmean gives a representation
of the long term distribution of Hs and Vmean for wind driven waves.

0
40

0.5

1

30 7

<
r(V

m
ea

n,H
s) [

m
]

1.5

6

V
mean

[m/s]

5

2

20
4

H
s
 [m]

2.5

310 2
1

0 0

Figure 6.28: (a) Distributed response in mid-girder in y-direction

y-direction

The general trend of this surface plot is that wind creates significant response in standard
deviation for high mean wind velocities. Response due to waves is also significant com-
pared to the response due to wind. A descending curve for response of high significant
wave heights but with increasing wind is assumed to be due to increasing aerodynamic
damping for higher wind velocities. The motion induced wind forces are assumed to
damp out the response for wind velocities below a certain high-point where perhaps the
flow-induced wind forces overrides the motion induced damping contributions.

What is evident from the previously displayed wind and wave spectra is that wave loads
act with higher frequencies from 0.4-1.2 rad/s while the wind is strongly decaying from
lower to higher frequencies. As mode 1 governs the response in the y-direction, one can
assume that the response is driven by wind for in particular the first modes, consistent with
the results from the spectral density function plot in y-direction in the mid-girder in figure
6.18; for the TDA design condtions. The magnitude in the vertical axis shows STD at 2
meters, which can be considered notably high of a bridge with the given girder length.

99



Chapter 6. Results

0
40

0.5

30 7

<
r(V

m
ea

n,H
s) [

m
]

6

1

V
mean

 [m/s]

520
4

H
s
 [m]

1.5

310 2
1

0 0

Figure 6.29: (b) Distributed response in mid-girder in z-direction

z-direction

Figure (b) shows higher response in standard deviation due to waves. The decaying trend
due to higher wind is stronger. Wind are less significant for the response of the structure in
this direction, and one can assume that the extremes occurring for high Hs and low wind
are unrealistic as significant wave heights at this level do not occur for low wind velocities.
Standard deviation responses at above 1 meters is still high, as this means that the vertical
response can be more than half of the response in y-direction.

It is to be noted that peak frequencies from the load spectrum reside at frequencies around
0.4-1.2 rad/s; which might cause resonance with the e.g modes 8 and 16 that gave pure
relative amplitudes in z-direction for the mid-girder. Further, one can assume that the re-
sponse in z-direction is more governed by the waves than the wind for most environmental
conditions seen on the surface plot.
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Figure 6.30: (c) Distributed response in mid-girder in θx-direction
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θx-direction

The torsional response in standard deviation is of low magnitude, but follows trends from
both figure (a) and (b); a small decaying trend in response for higher mean wind velocities,
and high response for high Hs. The response can accordingly be assumed to be governed
by waves in larger extent than for the wind.

6.4.2 STD response for varying Hs and Vmean in in pontoon 1
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(a) Distributed response in pontoon 1 in y-direction

A general trend for the standard deviation in y-direction in the pontoons is that waves seem
to have insignificant impact on response. The fact that the modes with high relative motion
in y-direction corresponds to mode 1 and 2, and the wind spectra should have high energy
content for the lowest frequencies supports this argument. The y-direction displacement
in the pontoons seem to be solely driven by the wind. High velocities seem to damp out
the response for the lower mean wind velocities.
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(b) Distributed response in pontoon 1 in z-direction

The trend of response in z-direction in the pontoons is that response wrt. Hs and Vmean
will be driven by both wind and waves. High Hs implies high response, and so does
high Vmean. The decaying trend is strong for the z-direction, due to the aerodynamic
damping in this degree of freedom. When looking at the magnitude of these responses, it
is to be noted that the response are in 10−3, implying very low displacement. This seems
reasonable, consistent with the modeling assumptions with high tensioned tethers. One
can assume that a larger mixture of modes have been excited for these responses of Hs

and Vmean for the tether displacement in z-direction.
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Figure 6.31: (c) Distributed response in pontoon 1 θx-direction

Response in θx- direction for the pontoon shows high response for high waves and lower
response for higher wind velocities. The decaying trend is assumed to be due to the aero-
dynamic damping as addressed earlier. Torsional modes are distributed over the whole
frequency spectra. The torsional response was governed by frequencies corresponding to
the peak wave frequencies for the wave load spectrum from the plot of Hs=3.75 m. One
can accordingly assume that the response in larger extent is governed by wind
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Figure 6.32: (d) Distributed response in pontoon 1 θz-direction

Response in θz-direction is significant for high waves and less significant for high mean
wind velocities. The response is however much larger than for θx.

6.4.3 STD response along the girder

The standard deviation response is plotted for three different stationary environmental con-
ditions. One of these is wind and wave corresponding to 100 year design load parameters
of TDA, while the other is assuming conservative mean wind wind and conservative sig-
nificant wave height. As standard deviation is a measure of average fluctuating response,
and the plots are not direct representations of the response. Static response effects from
mean wind has not been taken into account. The plots are for y, z- and θx direction. The
three conditions will be described in the order of separate conservative mean wind wind,
separate conservative wave height and the combined coupled condition.
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Figure 6.33: STD of response in y-direction along the girder

For y-direction in figure 6.33 the response seems directly related to mode 1. Strongly de-
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caying wind spectrum from low to high frequencies supports this argument. The maximum
response is to be found between tower 1 and the mid girder.

The condition with conservative wave, creates a very different behavior in the girder. As
the spectral wave load spectrum in figure 5.3 gives peaks at higher frequencies than the
first mode and is high in the interval of 0.5-1.2 rad/s, and has two peaks in 0.58 rad/s and
0.9 rad/s, it seems evident that the response shape of the girder is driven by wave resonance
in modes between these frequencies.

For the coupled condition, the STD plot shows another combination of modes that resonate
with wind and wave. The spectral distribution plot for both the mid-girder and quarter span
node in figure 6.18 shows that response governed by mainly wind resonating with mode
1. Combinations of mode contributions from modes with higher frequencies could also be
evident as there are mode amplitudes in y-direction for the girder for frequencies of where
the wave spectral forces are high. These can be considered far less significant than the
response contributions from wind.
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Figure 6.34: STD of response in z-direction along the girder

Standard deviation in z-direction gives low response in the girder at the towers. High
wind does not imply high response in the girder. Recalling that frequencies causing high
vertical response are at higher frequencies; e.g 0.558 and 0.91 rad/s for mode 8 and 16
were of significance. This might explain high STD response at the girders for high wave,
as where the response is much lower for the conservative wind and coupled condition.
Higher significant wave height causes a shift in the peaks, and it is possible that a higher
resonance occurs due to this shift, causing a standard deviation three times higher than the
other two conditions.

A low response for the conservative wind and the coupled conditions can accordingly
be reasoned by two previously stated observations; that aerodynamic damping has a sig-
nificant effect on the vertical response for higher wind velocities in the girder, and that
response contributions to the vertical modes from wind are low.
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6.4 Pontoon 1 response in y, z and θx-direction
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Figure 6.35: STD of response in θx-direction along the girder

The torsional standard deviation response plot follows the same tendencies as in figure for
response in z-direction, where the case of high wave is much higher than for conservative
wind and coupled conditions. Torsional modes are difficult to identify for a slender bridge
structure. Spectral plots of response in mid-girder and in the node of the first span in figure
6.26 shows higher response contributions from higher frequencies.

High wind excites mode 1, where both the girder and the towers are translated in y-
direction. Considering the response in the tower from conservative wave and from con-
servative wind, it is fair to assume that the motion of the girder drives the motion in the
pontoons in y-direction. Moreover, it is to be noted that the difference in response from
the two towers are due to the difference in lengths in the mooring lines.

6.4.4 Response due to different crest lengths for two environmental
conditions in y-direction

STD plots for response in y-direction were made to display effects of a different crest
length s. The plots in Figure 6.33 showed STD response in y-direction for s=5. New plots
were made for response in y-direction for two of the above stationary conditions, Hs = 6
and Vmean = 0, and for the coupled condition with Hs = 3.75 and Vmean = 29, with
effects of different crest lengths. s=1, s=10, s=1000 are investigated for in addition to s=5.
s=1 represents accordingly a short crested wave while s=1000 can represent a crest length
of which waves excite the two towers in phase.
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Chapter 6. Results
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Figure 6.37: Parameters Hs = 3.75m, Vmean = 29m/s
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Figure 6.36: Parameters Hs = 6m, Vmean = 0m/s

Figure 6.36 displays higher response for lower crest lengths. The curve s=1000 has a
flatter curve in the mid girder span, meaning that it might prohibit the anti-symmetric
mode resonance with the loads. Crest length parameter set to s=1 gives however lower
response than for the response of s=5 and s=10, where the latter two are close to equal
along the girder.

For the coupled condition where the waves are set to be lower and wind velocity higher, it
seems evident that a high crest length prohibits the anti-symmetric modes to participate in
the response. As wind might dominate the response in y-direction for both the pontoons
and the towers in coupled environmental conditions, the response effects of higher crest
lengths will be relatively small but still significant for given points on the girder.
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6.5 Motion induced instabilities

6.4.5 Response analysis discussion

A general trend from the response plots is that the wind governs the response in y-direction
for the whole bridge, while the waves govern the response in z- θx and -direction. This
is due to lateral modes in y-direction having low frequencies resonating with the wind
spectrum which is high for lower frequencies. The frequencies governing high spectral
densities of wave forces are between 0.5-1.2 rad/s. Several vertical modes are within
this interval and waves govern therefore the response in z-direction. The response in the
pontoons are minimal due to waves alone. It seems accordingly evident that motion in
girder due to wind resonance with the first modes will excite the largest response in the
towers.

The largest responses will be in y-direction, and the wind will accordingly govern the
largest responses for the bridge structure. Seeing the distributed plots of response vs.
Hs and mean wind, a general trend is that the aerodynamic damping will damp out the
response for wind velocities below the higher velocities above 20 m/s. Long or short crost
lengths have the effect of either prohibiting or enhancing the anti-symmetric modes and
should be taken into account when designing similar bridges corresponding bridge for its
environment.

6.5 Motion induced instabilities

The analysis described in section 5.3 resulted in the lowest mean wind velocity, VCR
that would generate motion induced instability for a specific mode, ωCR. The analysis
generated a plot for the real and imaginary part of the eigenvalues, i.e. 300 lines in each
plot. The figure is shown in the appendix D.1. Recalling that the search for a motion
induced instability would stop when the real part of the eigenvalue got larger than zero,
µ > 0, with increasing mean wind velocity. In figure 6.38 µ for the critical mode is
presented.
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Figure 6.38: Extracted the development of the real part of the eigenvalue as function of
mean wind velocity
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Chapter 6. Results

The reason for the change is due to the mean wind dependent Kae(V, ω) and Cae(V, ω).
At higher wind velocities it is the damping that is most effected. The critical mean wind
velocity, frequency and mode is given in table (6.4)

Table 6.4: Conditions for motion induced instability

Critical condition Value Unit

VmeanCR 88.7188 [m/s]

ωCR 1.5217 [rad/sec]

ModeCR 40 [ ]

To verify the result the fully coupled ABAQUS model was set up to run for the first 40
modes, the initial guess for the frequency was sett to 1.5217 rad/s and the mean wind
velocity was set to 88.7 m/s. The goal of the simulation was hopefully to obtain the real
part of the eigenvalue equal to zero, and the critical damping ratio equal to zero. Determine
how the instability mode behaves from ABAQUS Viewer, and investigate if it was flutter,
galloping or a torsional instability was desired.

Unfortunately, the ABAQUS model crashed and a solution was not found within the time
frame of the writing of the thesis. ABAQUS crashed at the static step of applying gravity
load to the model. A possible explanation for the crash at the static step is that the aerody-
namic stiffness weakens the structure in a numerical way and a to large deformations are
obtained so ABAQUS cant find a solution. A solution strategy was to add the user- and
wire elements for the aerodynamic damping and stiffness after the static steps of gravity
loading and temperature geometry regaining, but the result was unsuccessfully. This is left
for further work.
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Chapter 7
Conclusion

A parametrized FE bridge model for a TLP-based multi-span suspension bridge was cre-
ated from scratch and applied for the case of Bjørnafjorden. A response analysis was then
developed to calculate the dynamic response and an instability analysis was conducted in
an attempt of finding instability limit of critical mean wind velocity, frequency and corre-
sponding mode.

An iterative procedures was carried out for the modal analysis accounting for the full
coupling of frequency dependent environmental terms. User defined elements and wire
elements were used to account for the coupled mass, damping and stiffness from the en-
vironmental contribution. Assumptions of buffeting theory and aerodynamic derivatives
from the Hardanger bridge were used to obtain aerodynamic stiffness and damping. Lin-
ear wave potential theory was applied using WADAM/HydroD for the pontoons to obtain
the hydrodynamic mass, damping, stiffness as well as the wave transfer functions. Wave
transfer functions were subsequently used with the stochastic sea surface elevation func-
tion accounting for spatial correlation to obtain the wave exciting forces. Eigenvectors
from a purely structural model were used to modalize and couple the terms from wind,
waves and structure.

The iterative coupled modal analysis procedure in general lower frequencies, where e.g
mode 1 was shifted from 0.1202 to 0.0782 rad/s. Plots from Figure 6.16 showed low
impact from the aerodynamic motion induced terms, such that the shift in eigenfrequencies
were due to the sole impact of hydrodynamic motion induced terms for Vmean = 40m/s.
Modes for the coupled model in y-direction were mostly for lower frequencies 0.0782-
0.5581 rad/s between mode 1 and mode 8. Modes higher than these were mostly torsional
or vertical in the girder.

Response was investigated for in the first pontoon reference node, and on the girder for
25×29 combinations ofHs and Vmean. Response due to crest length was also investigated
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Chapter 7. Conclusion

for. Conclusions drawn from the response analysis was that wind governed the response
for the whole bridge in y-direction due to load resonance with mode 1. For response in
z,- torsional and θz direction along the girder, the waves were more governing. Impact of
aerodynamic damping was evident for the standard deviational plots, and so was the effect
of crest length, prohibiting the anti-symmetric modes to participate in the response.

A motion induced instability analysis was carried out using coupled system matrices from
wind and waves in modal coordinates. Structural eigenvectors were assumed sufficient for
this analysis and critical mean wind of 88 m/s and a critical frequency of 1.5217 rad/s for
mode 40 was found. Seen in comparison with the estimated hundred year return period
stationary mean wind of 29 m/s, 88 m/s is extremely high of which the bridge will not be
subjected to.

110



7.1 Further work

7.1 Further work

Further work that should be conducted in the extent of this master thesis is suggested
below.

1. Use the intended girder for the Bjørnafjorden bridge and corresponding aerody-
namic derivatives to perform a modal and response analysis.

2. Modalizing and coupling the environmental and structural terms, using complex
eigenvectors from a fully coupled modal analysis instead of the non-complex struc-
tural eigenvectors.

3. Find the corresponding mode shape for the critical mode at the instability limit, by
further adjusting and improving the parametrized ABAQUS model.

4. Investigate and account for vortex induced vibrations in a dynamic response analysis
of a structure

5. Develop a generalized procedure for restoring of the deformed bridge shape in
ABAQUS after gravity has been put on the model to obtain the initial shape
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Appendix A
Supplementary Theory

A.1 Stochastic processes

Observed outcomes of a physical process that occur randomly can be represented as
stochastic processes, meaning that it is possible to determine the numerical outcome
with a certain probability. Inversely, stochastic processes can be evolved over time
following predefined statistical distributions and statistical parameters. Examples of
these physical processes are wind and wave fields modeled as stochastic and homo-
geneous processes. Homogeneous, as the stochastic process accounts for units in a
defined field. Common practice is to distinguish between short term and long term
processes [7]; where environmental parameters are stationary for given short time
intervals; following predefined statistical behavior based on measurements. Long-
term processes are often defined by a statistical representation of a larger amount
of short term processes. The short termmeasurements are often represented in fre-
quency domain as (cross) spectral dencities.

A.2 Spectral density functions

The correlation of two stochastic processes is how a statistical parameter in one spa-
tial position of a stochastic process correlates with a statistical parameter in another
spatial position. The Cross power spectral density (CPSD) gives the power of the
correlation of two signals, x(t) and y(t), distribution over the frequency band. The
cross correlation function between two signals, x and y, is defined as the expected
value of the product of the signals with a time delay, τ [7]:

Rxy(τ) = E [x(t)y(t+ τ)] (A.1)
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Using the cross-correlation theorem and the convolution relation [7], the cross-
spectral density of the cross correlation function in A.1,

Sxy(ω) =

∫ ∞
−∞

Rxy(τ)e−iωtdt (A.2)

If x = y, such that Rxx = E[x(t)x(t + τ)], the auto-spectral density function for
x, Sxx, is obtained. The auto spectral density function defines the energy content
of one independent frequency dependent process, while the cross-spectral density
function defines the frequency domain process accounting for correlation of two
variables; i.e a mathematical special case of A.2. If a spectral process in frequency
domain already is obtained, the cross- and auto-spectral density can be denoted as
follows for given spectral processes

Sxy(ω) = lim
T→∞

1

πT
[ax(ω)ay(ω)H ] (A.3)

The spectral processes ax(ω) and ay(ω) are obtained by taking the Fourier transform
of respectively the time-dependent x and y. Similarly to the formulation in equation
A.2, the auto-spectral density can be obtained when x = y.

A.3 Response in frequency domain

Auto spectral density can be obtained for the response by inserting equation (2.11)
into equation with equation (A.3), where ar is the spectral process for response. The
response in frequency domain can be obtained as below [7]

Srr = lim
T→∞

1

πT

[
H(ω)aR(ω) · (aR(ω)H(ω))H ] (A.4)

The standard deviation (STD) in addition to the mean deformations gives the to-
tal linear response. The mean displacement is due to loading such as mean wind
velocity. Obtaining the mean displacement is considered trivial. The variance of
the spectral response is obtained by integration over the frequencies from zero to
infinity as follows

σ2
r =

∫ ∞
0

Srrdω (A.5)

By taking the square root of the variance, i.e σ on obtains the STD. The STD is the
statistical property of average deviation from the mean displacement. Together with
an obtained mean response one can use the standard deviation to calculate linear
response in physical units.
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Appendix B
Modeling Details

B.1 Properties of the components of the bridge
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Table B.1: Properties of the components of the bridge model

E
le

m
en

t
A

re
a

Ix
x

Ix
y

Iy
y

J
E

v
G

Te
m

p.
co

ef
f.

A
lp

ha
B

et
a

D
en

si
ty

Sh
ea

r,y
y

Sh
ea

r,
zz

M
ai

n
C

ab
le

B
31

0.
33

3
6.

00
E

-0
5

0
6.

00
E

-0
5

1.
20

E
-0

4
2.

00
E

+1
1

3.
00

E
-0

1
7.

69
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
86

76

Si
de

C
ab

le
B

31
0.

33
3

6.
00

E
-0

5
0

6.
00

E
-0

5
1.

20
E

-0
4

2.
00

E
+1

1
3.

00
E

-0
1

7.
69

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

86
76

H
an

ge
rs

B
31

0.
03

2
9.

00
E

-0
9

0
9.

00
E

-0
9

1.
80

E
-0

8
2.

00
E

+1
1

3.
00

E
-0

1
7.

69
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
83

51

G
ir

de
r

B
32

0.
56

78
0.

97
2

0
15

.3
26

2.
46

2.
10

E
+1

1
3.

00
E

-0
1

8.
08

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

0.
00

E
+0

0

To
w

er
fix

ed

m
in

B
31

5.
00

6
14

.8
93

0.
01

14
.8

9
22

.2
26

4
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

6.
48

E
+1

0
6.

48
E

+1
0

m
ax

B
31

17
.1

81
17

2.
65

5
0.

01
12

4.
66

22
4.

89
67

4
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

1.
23

E
+1

1
1.

01
E

+1
1

C
ro

ss
be

am
so

n
fix

ed
to

w
er

to
p

B
31

10
.5

26
23

.2
19

0.
01

46
.2

48
.7

24
76

9
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

5.
76

E
+1

0
8.

64
E

+1
0

m
id

de
l

B
31

14
.4

8
47

.8
3

0.
01

13
0.

83
11

2.
84

46
4

4.
00

E
+1

0
3.

00
E

-0
1

1.
20

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

2.
50

E
+0

3
6.

76
E

+1
0

1.
24

E
+1

1

bo
tto

m
B

31
15

.2
17

90
.3

29
0.

01
11

6.
78

16
0.

79
65

3
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

9.
23

E
+1

0
1.

08
E

+1
1

To
w

er
flo

at
in

g
3.

00
E

-0
1

m
in

B
31

5.
00

6
14

.8
93

0.
01

14
.8

9
22

.2
26

4
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

6.
48

E
+1

0
6.

48
E

+1
0

m
ax

B
31

17
.1

81
17

2.
65

5
0.

01
12

4.
66

22
4.

89
67

4
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

1.
23

E
+1

1
1.

01
E

+1
1

C
ro

ss
be

am
so

n
to

w
er

sfl
oa

tin
g

to
p

B
31

10
.5

26
23

.2
19

0.
01

46
.2

48
.7

24
76

9
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

5.
76

E
+1

0
8.

64
E

+1
0

m
id

de
l

B
31

14
.4

8
47

.8
3

0.
01

13
0.

83
11

2.
84

46
4

4.
00

E
+1

0
3.

00
E

-0
1

1.
20

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

2.
50

E
+0

3
6.

76
E

+1
0

1.
24

E
+1

1

bo
tto

m
B

31
15

.2
17

90
.3

29
0.

01
11

6.
78

16
0.

79
65

3
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

9.
23

E
+1

0
1.

08
E

+1
1

To
p

be
am

on
to

w
er

sfl
oa

tin
g

B
31

14
.4

8
47

.8
3

0.
01

13
0.

83
11

2.
84

46
4

4.
00

E
+1

0
3.

00
E

-0
1

1.
20

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

2.
50

E
+0

3
6.

76
E

+1
0

1.
24

E
+1

1

D
ia

go
na

lb
ea

m
so

n
to

w
er

s

flo
at

in
g

B
31

14
.4

8
47

.8
3

0.
01

13
0.

83
11

2.
84

46
4

4.
00

E
+1

0
3.

00
E

-0
1

1.
20

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

2.
50

E
+0

3
6.

76
E

+1
0

1.
24

E
+1

1

Po
nt

un
e

le
gs

B
31

16
.4

47
10

6.
14

7
0.

01
78

.1
6

13
6.

81
64

3
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

9.
82

E
+1

0
8.

76
E

+1
0

Po
nt

un
e

cr
os

se
r

be
am

s
B

31
14

.4
8

47
.8

3
0.

01
13

0.
83

11
2.

84
46

4
4.

00
E

+1
0

3.
00

E
-0

1
1.

20
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
2.

50
E

+0
3

6.
76

E
+1

0
1.

24
E

+1
1

Po
nt

un
e

to
py

lo
n

co
nn

ec
tio

n
B

31
16

.4
47

10
6.

14
7

0.
01

78
.1

6
13

6.
81

64
3

4.
00

E
+1

0
3.

00
E

-0
1

1.
20

E
+1

0
1.

00
E

-0
5

0.
00

08
0.

03
07

2.
50

E
+0

3
9.

82
E

+1
0

8.
76

E
+1

0

Te
ns

io
nl

eg
s

B
31

0.
37

17
9.

00
E

-0
9

0
9.

00
E

-0
9

1.
86

E
-0

8
2.

10
E

+1
1

3.
00

E
-0

1
8.

08
E

+1
0

1.
00

E
-0

5
0.

00
08

0.
03

07
1.

00
E

+0
3

118



Appendix C
Analysis Details

C.1 Load spectrum
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Figure C.1: Cross-spectral density functions between tower 1 and tower 2
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Figure C.2: Hydrodynamic added mass
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Figure C.3: Hydrodynamic damping
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Figure C.4: Aerodynamic damping as function of frequency and mean wind velocity for
y,x and θx direction
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Figure C.5: Aerodynamic stiffness as function of frequency and mean wind velocity for
y,x and θx direction
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TDA: Extreme response from 100 year return period load

Wind

1h mean wind speed 29 m/s

Direction west

Wind-generated sea

Hs 3.75 m

Tp 6s

Direction West-northwest

Tide - 1.3 m

Current speed 0 m/s

Swell

Hs 0.39 m

Tp 13 s

Table C.1: Environmental conditions giving extreme responses for 100 year return period
environmental load from TDA [10]
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Appendix D
Additional Results

D.1 Motion induced instability
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Figure D.1: Real and imaginary of eigenvalues as function of mean wind velocity
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D.2 Spectral response in q1, z-direction
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Figure D.2: z-direction in q1: Coupled response vs. response contributions from hydro-
dynamic and aerodynamic loads
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D.3 Spectral response in q2, z-direction
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Figure D.3: z-direction in q2: Coupled response vs. response contributions from hydro-
dynamic and aerodynamic loads
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