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Chapter 1

Problem Description

A nondeterministic finite state acceptor (NFSA) can be described by a regu-
lar expression and vice versa. This can be used to implement regular expres-
sion matching in hardware with dynamic reconfiguration. Regular expression
matching implemented this way proved to be feasible and shows good perfor-
mance/flexibility relation [1]. When an NFSA is extended to allow outputs
on each state transition, we will refer to it as a nondeterministic finite state
machine (NFSM), it becomes possible to implement control logic using regular
expressions plus information about outputs. The advantage of an NFSM over
a deterministic finite state machine (DFSM) is that an NFSM can have much
less states than an equivalent DFSM [2], but since execution of an NFSM in-
volves copying of it on each nondeterministic state transition and its further
parallel execution (an NFSM should execute faster than a DFSM), the number
of copies can grow very fast. To execute an NFSM on a FPGA, we need to
know maximum possible number of copies of the NFSM that can be created
during execution. If the maximum number of copies is less or equal to the num-
ber supported by the FPGA, then we say that the NFSM is executable on the
FPGA. The main task of this thesis is to develop a software program which
will accept a regular expression, transform it to the NFSM, and compute the
maximum number of NFSM copies (bound) which may be created when the
NFSM is executed.

The subtasks include a research on NFSMs and DFSMs, adaptation and
implementation of the Thompson’s transformation algorithm, development and
implementation of a bound computation algorithm, execution of an NFSM in
software, visualization of an NFSM transformed by the Thompson’s algorithm.
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Chapter 2

Abstract

Dynamically reconfigurable hardware receives more and more attention these
days. This is on no account by accident, but due to very useful characteristics,
such as high flexibility and performance. In this work we consider dynamically
reconfigurable hardware as means to execute an NFSM.

Execution of an NFSM is performed by making a copy of it on each non-
deterministic state transition and executing all the copies in parallel. Parallel
execution achieves high processing performance, but requires more hardware.

In this work a software program is developed which accepts a regular ex-
pression, transforms it to the corresponding NFSM, saves its structural rep-
resentation in a file, computes the bound on copies, and executes the NFSM.
The program has been tested with different types of regular expressions, and it
showed to be correct in the transformation and the bound computation. For
visualization of an NFSM diagram a free open source software GraphViz is used.
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Chapter 3

Preface

Writing the master thesis was quite a great experience. Developing the software
program, which is approximately 2500 lines of code in size, presented many
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Many thanks goes to Prof. Kjetil Svarstad for guidance and support provided
during writing of the master thesis. Also I would like to thank all those people
who share their experience on Stackoverflow website stackoverflow.com.

8



Chapter 4

List of Abbreviations

DFSA Deterministic Finite State Acceptor
DFSM Deterministic Finite State Machine
NFSA Nondeterministic Finite State Acceptor
NFSM Nondeterministic Finite State Machine
FPGA Field-programmable Gate Array
POSIX Portable Operating System Interface for UNIX
BRE Basic Regular Expressions
ERE Extended Regular Expressions
MFC Microsoft Foundation Classes
GUI Graphical User Interface
MSDN Microsoft Developer Network
STL Standard Template Library
ID Identifier
UI User Interface
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Chapter 5

Introduction

Regular expressions and equivalent to them NFSMs are extensively used in soft-
ware applications ranging from compilers [3] to text editors and programming
languages [4]. The usage of a regular expression is primarily to search for a set
of substrings in a string. A ”string” can be a text file, user input, Ethernet
packets etc. Implementation of an NFSM on an FPGA in some cases can offer
considerable speed-up of regular expression matching. This finds its use in In-
ternet traffic monitoring, where processing speed is important. Another usage
of NFSMs on an FPGA is meta-computations and control logic implementation.

5.1 Motivation

When an NFSM is executed, i.e. a regular expression matching is performed, it
is copied on non-deterministic state transitions, so that copies represent different
possibilities of a non-deterministic transition. A string is accepted if one of the
NFSM copies reach the accept state. Since FPGAs have limited resources, it
is required to know maximum number of copies of NFSM before it is executed.
As an example, let us consider the FPGA depicted in figure 5.1. The FPGA
implements an NFSM, which occupies certain amount of hardware resources. In
our case, the FPGA supports 15 copies of the NFSM. The number of supported
copies of an NFSM depends on the hardware resources of an FPGA and on the
size of the NFSM. When the FPGA stars execution of the NFSM, it has only one
NFSM implemented in hardware. As the execution progresses, the number of
copies of the NFSM grows due to non-deterministic state transitions. This leads
us to the conclusion that the FPGA reconfiguration logic should check that the
NFSM will not exceed the limit on copies when it is in executing, no matter
what input arrives. This check should occur before the NFSM is executed.

In this master thesis we aim, given a regular expression, transform it to the
corresponding NFSM, compute the bound on copies, and execute it. Execution
of an NFSM is performed in software in this work.

10
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Figure 5.1: Example of an FPGA implementing an NFSM.

5.2 Objectives

The objectives of the thesis are following:

1. Perform research on properties of NFSM and DFSM, and their transfor-
mation algorithms.

2. Adapt and implement in software Thompson’s transformation algorithm.

3. Develop and implement in software an algorithm for computation of bounds.

5.3 Contribution

The following have been achieved in the thesis:

1. Classification of NFSMs as having regular and irregular structure based
on their construction algorithms.

2. Prove that the NFSMs constructed by the adapted Thompson’s transfor-
mation algorithm together with the execution rules always have bound on
copies independent of the string length to be matched.

3. Development of the bound computation algorithm.

4. Implementation in software and testing of the Thompson’s transformation
algorithm and the bound computation algorithm.
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5.4 Method

During the work different approaches to solving the problems have been taken.
In the case of proving the properties of NFSMs constructed by the adapted
Thompson’s transformation algorithm, the method based on induction is used,
though the inductive step is not distinctively present due to the nature of the
problem.

In the development of the bound computation algorithm, try-and-error method
is followed, with initial solution based on inductive thinking. The try-and-error
method is conducted based on software implementations of the bound compu-
tation algorithm. It took two iterations to reach the most accurate (as time
allowed) bound computation algorithm. Performance is the second in impor-
tance.

5.5 Thesis Overview

During the work on the thesis, a great deal of effort has been spent on program-
ming, debugging, and testing of the software program. The source code and
the compiled program is supplied with the thesis. The Microsoft Visual Studio
Community 2015 used for the development is available for free on the official
website.

The chapter 2 presents the automata theory and related topics on sets and
graphs. At the end of the chapter, execution of an NFSM is explained and
adaptation of the Thompson’s transformation algorithm is presented. In the
chapter 3, an algorithm for computing bounds on number of NFSM copies,
which are created when an NFSM executes, is developed. It is shown that NF-
SMs constructed by the adapted Thompson’s algorithm have regular structure,
and together with the execution rules, presented in the same chapter, signifi-
cantly simplify the development of the bound computation algorithm. In fact,
such regular NFSMs always have bound. Chapter 3 contains description of the
program architecture. It documents classes and their members. At the end of
the chapter, a class diagram and an object diagram can be found. The class
digram shows composition and relations of the classes in the program to each
other. The class diagram is static representation of the program structure. The
object diagram is dynamic (run-time) representation of the program structure.
It shows how objects instantiated from the classes interact with each other.



Chapter 6

Theory and Background

6.1 Mathematical Preliminaries and Notation

6.1.1 Sets

A set is a collection of elements without any structure other than membership.
Expression x ∈ S indicates that x is an element of the set S. To indicate that x
is not an element of the set S, we write x /∈ S. To specify a set, a description of
its elements is enclosed in curly braces, for example

S = {0, 1, 2, 3, ...} = N (6.1.1)

(a set of all natural numbers). The description of a set of all even natural
numbers is

S = {x : x ≥ 0, x is even} (6.1.2)

The universal set U is a set which contains all the elements (all natural numbers
for example). An empty set Ø, is a set which contains no elements [5].

The following operations are defined for sets:

• union (∪)
S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2} (6.1.3)

• intersection (∩)

S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2} (6.1.4)

• difference (-)
S1 − S2 = {x : x ∈ S1 and x /∈ S2} (6.1.5)

• complementation (S̄), if universal set U is given then

S̄ = {x : x ∈ U and x /∈ S} (6.1.6)

13
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For example, U can be a set of all natural numbers and S is a set of all even
natural numbers, then S̄ is the set of all odd natural numbers. The following
relations hold for sets:

¯̄S = S, Ø̄ = U, S ∩ U = S, S ∩Ø = Ø, S ∪ U = U, S ∪Ø = S (6.1.7)

The Demorgan’s laws [5]:

S1 ∪ S2 = S1 ∩ S2, S1 ∩ S2 = S1 ∪ S2 (6.1.8)

A set S1 is a subset of S2, denoted S1 ⊆ S2, if every element of S1 is also an
element of S2. If S1 is a subset of S2 and S2 contains some elements not in S1

, then S1 is a proper subset, denoted S1 ⊂ S2. Two sets S1 and S2 are said to
be disjoint if they have no elements in common (S1 ∩ S2 = Ø) [5].

A set is finite if it contains a finite number of elements, otherwise it is infinite.
The size of the finite set S equals to the number of its elements, denoted | S |.
A set of all subsets of a set S is called a power set of the set S and is denoted
2S . Empty set Ø is included in a power set [5].

The Cartesian product of two sets is defined as [5]:

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2}. (6.1.9)

The Cartesian product of n sets is defined as [5]:

S = S1 × S2 × · · · × Sn = {(x1, x2, ..., xn) : xi ∈ Si}. (6.1.10)

6.1.2 Functions

A function f assigns a unique element from a set A to one or more elements
of a set B, written f : B → A, where B is the domain and A is the range of
the function f , written Domain(f), Range(f). The function f is called partial
function if Domain(f) ⊂ B, otherwise if Domain(f) = B, the function f is
total function [5].

In some cases we are only interested in the growth rate of a function when
its arguments become very large. Common order of magnitude notation is
used to relate growth rate of one function to growth rate of another function.
Considering two functions f(n) and λ(n) with n ∈ N, the following growth rate
relations possible [5]:

• f(n) has order at most the order of λ(n), denoted f(n) = O(λ(n)), if

| f(n) |≤ c | λ(n) |,

• f(n) has order at least the order of λ(n), denoted f(n) = Ω(λ(n)), if

| f(n) |≥ c | λ(n) |,
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• f(n) has the same order as λ(n), denoted f(n) = Θ(λ(n)), if

c1 | λ(n) |≤| f(n) |≤ c2 | λ(n) |,

where c, c1, and c2 are constants.

In the order of magnitude notation, multiplicative constants and lower order
terms are ignored, since they become negligible as n increases.

Relation is more general concept than function: relation can assign to an
element from the domain many elements in the range, where as function assigns
only one element in its range. Equivalence, which is a generalization of the
concept of equality, is a relation. To indicate that x is equivalent to y, we write
x ≡ y.

equivalence has the following properties [5]:

• reflexivity
∀x : x ≡ x,

• symmetry
if x ≡ y then y ≡ x,

• transitivity
if x ≡ y and y ≡ z, then x ≡ z.

6.1.3 Graphs and trees

A directed graph is a construct defined by two sets: the set V = {v1, v2, ..., vn} of
vertices and the set E = {e1, e2, ..., em} of edges, where each edge is a pair of ver-
tices from V. For example ei = (vj , vk) is an edge from vj to vk. Graphs are visu-
alized by diagrams in which the vertices are represented as circles and the edges
as lines with arrows connecting the circles [5]. For example, the directed graph
with vertices {v1, v2, v3} and edges {(v3, v1), (v2, v3), (v3, v2), (v2, v2), (v2, v1)} is
depicted in the figure 6.1.

Figure 6.1: Example of a directed graph.

A walk from vi to vn is a sequence of edges (vi, vj), (vj , vk), ..., (vm, vn). A
length of a walk is the total number of edges of the walk. A path is a walk
in which no edge is repeated. A simple path is a path in which no vertex is
repeated. A cycle is a path form vertex vi to itself, where vi is the base of the
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cycle. A simple cycle is a cycle in which no vertex is repeated except the base.
A loop is an edge from a vertex to itself [5].

A tree is a directed graph without cycles and loops, it has a root which is a
vertex, such that there is exactly one path from the root to every other vertex.
A leaf of a tree is a vertex which has no outgoing edges. If there is an edge
ei = (vi, vj) in a tree, then vi is said to be the parent of vj , and vj is the child of
vi. The level of a vertex is he number of edges in the path from the root of the
tree to the vertex. The height of a tree is the largest level among the vertices.
An ordered tree is a tree where there is an ordering associated with the vertices
at each level of the tree. An example of a tree is depicted in the figure 6.2 [5].

Figure 6.2: Example of a tree.

6.1.4 Formal languages

An alphabet is a finite, nonempty set Σ of symbols from which strings are formed.
Strings are finite sequences of symbols from the alphabet. Let Σ = {r,m},
s1 = rmrmrr, and s2 = mmmmmr be an alphabet, and two strings formed
from that alphabet respectively, then concatenation of the two strings, written
s1s2, will be also a string:

s1s2 = rmrmrrmmmmmr, (6.1.11)

which is done by appending symbols from s2 to the right end of the string s1 [5].
The reverse of a string s1 is a string sR1 formed by writing the symbols of

the string s1 in reverse order: sR1 = rrmrmr. The length of a string s, written
| s |, is the number of symbols in the string. An empty string λ is a string with
no elements. Concatenation of any string with the empty string has no effect.
If s is a string, then sn is a string obtained by concatenation of s to itself n− 1
times. A special case is s0 = λ. If Σ is an alphabet, then Σ∗ is a set of all strings
obtained by concatenating zero or more symbols from Σ. The set Σ∗ contains
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λ. The Σ+ = Σ∗ − {λ} is defined for convenience. Σ+ and Σ+ are infinite. A
language L is a subset of Σ∗. Operations for sets, such as union, intersection,
difference and complements are valid for languages [5]. The complement of L is

L = Σ∗ − L. (6.1.12)

The reverse of a language L is a set LR of the reversed strings of L:

LR = {sR : s ∈ L}. (6.1.13)

The concatenation of languages defined as follows

L1L2 · · · Ln = {s1s2 · · · sn : s1 ∈ L1, s2 ∈ L2, ..., sn ∈ Ln}. (6.1.14)

A grammar G is defined as G = {V, T, S, P}, where

• V is a finite set of objects called variables,

• T is a finite set of objects called terminal symbols,

• S ∈ V is the start variable,

• P is a finite set of productions.

If G = {V, T, S, P} is a grammar, then

L(G) = {s ∈ T ∗ : S ⇒G.P∗
s} (6.1.15)

is the language generated by G. S ⇒G.P∗
s denotes that starting from the

start variable S, we successively apply productions of G and arrive at the s
sentence [5]. If s ∈ L(G), then the sequence

S ⇒ s1 ⇒ s2 ⇒ · · · sn ⇒ s (6.1.16)

is a derivation of the sentence s. The strings S, s1, s2, ..., sn, which contain
variables and terminals, are sentential forms of the derivation.

6.2 Deterministic Finite Accepters

A deterministic finite accepter is defined by the quintuple

A = (Q,Σ, ξ, q0, F ),

where

• Q is a finite set of states,

• Σ is a finite set of input symbols (alphabet),

• ξ : Q× Σ→ Q is the transition function,
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• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of final states.

A deterministic finite acceptor operates (DFA) as follows: DFA starts at the
initial state q0 and is ready to accept an input symbol. When an input symbol
from Σ arrives, transition function ξ determines the next state and the acceptor
makes a transition to that state. When the whole input string is consumed and
the acceptor is in one of the final states, the string is accepted, otherwise, it
is rejected. The set of all strings on Σ accepted by A = (Q,Σ, ξ, q0, F ) is the
language of acceptor A:

L(A) = {ω ∈ Σ∗ : ξ∗(q0, ω) ∈ F},

where ξ∗ is a recursive application of ξ : ξ(ξ(q0, ω(0)), ω(1)) · · · [5].

6.3 Nondeterministic Finite Accepters

A nondeterministic finite acceptor (NFA) is defined by quintuple

A = (Q,Σ, ξ, q0, F ),

where

• Q is a finite set of states,

• Σ is a finite set of input symbols (alphabet),

• ξ : Q× (Σ ∪ {λ})→ 2Q is the transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of final states.

There are a few differences between NFA and DFA. The transition function
of NFA has range in 2Q, so that its output may include more than one state in Q.
This corresponds to nondeterministic transition to one of a few possible states.
NFA can make a transition on an empty string λ. Range of the transition
function ξ is 2Q which includes an empty set, meaning that for some input
symbols, next state may be undefined. For an input string to be accepted by
NFA, there should be at least one possible path to one of the final states. The
language of NFA defined as follows

L(A) = {ω ∈ Σ∗ : ξ∗(q0, ω) ∩ F 6= ∅},

where ξ∗ is a recursive application of ξ [5].
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6.4 Equivalence of Deterministic and Nondeter-
ministic Finite Acceptors

Two acceptors are said to be equivalent if they accept the same language:
L(A1) = L(A2). As any particular language can have many acceptors, an ac-
ceptor has many equivalent acceptors [5].

In [5], an algorithm is presented to build DFSA from corresponding NFSA.
The idea behind the algorithm is that if NFSA performs nondeterministic state
transition to one of the possible states, we create a state in DFSA which includes
these states form NFSA. If a state in the DFSA created in this way includes
one or more final states of the NFSA, we mark this state as final.

In figure 6.3 an example of NFSA is represented, which has the nondeter-
ministic state transition from the state q0.

Figure 6.3: Example of NFSA.

The NFSA depicted in figure 6.3 can be described by so called transition
table 6.2

Table 6.1: Transition table for the NFSA in figure 6.3.

Current state/Input a b
q0 {q1, q4} { }
q1 { } {q2}
q2 {q4} {q3}
q3 (Accept state) { } or we can de-

fine that after a string
has been accepted the
NFSM goes to the ini-
tial state and is ready
to accept new strings

{ }

q4 { } {q0}

In figure 6.4 a DFSA is represented, which corresponds to the NFSA depicted
in figure 6.3.



CHAPTER 6. THEORY AND BACKGROUND 20

Figure 6.4: DFSA built form NFSA.

The construction of the DFSA depicted in figure 6.4 is performed as follows:

1. Initial state q0 from the NFSA is added to the DFSA as initial state q0.

2. From state q0 in the NFSA on input ”a” there is nondeterministic state
transition to the states q1 and q4. To represent that in the DFSA we
add state {q1, q4}, which is reached from state q0 when input ”a” arrives
(figure 6.4).

3. Transition from q0 of NFSA on input ”b” is not defined. We represent
that with the state ∅ in the DFSA. Which, in essence, acts as a trap state.

4. Now we consider our newly created state {q1, q4}. This state represents
that the corresponding NFSA can be in q1 or q4. Form q1 the NFSA can
make a transition to q2 on input ”b”, and from q4 to q0 on input ”b”. We
create a new state {q0, q2} in the DFSA to represent this. The transition
is performed from the state {q1, q4} to the state {q0, q2} on input ”b”.
From the state {q1, q4} there is no transition defined on input ”a”, so we
add a transition from it to the sate ∅.

5. At the last step, we created the state {q0, q2}. Let us determine where
from this state the DFSA can make a transition. We repeat what we did in
the previous step. First, we consider the state q0. It has nondeterministic
transition on input ”a” to the states q1 and q4, transition on input ”b” is
undefined. Then we consider the state q2. It has transition to the state q4
on input ”a”, and transition to the sate q3 on input ”b”. To reflect that in
our DFSA, we add transition from the state {q0, q2} to the state {q1, q4}
on input ”a”, and transition to the final state q3 on input ”b”.

6. The construction is complete, since for all created sates transitions are
defined.

The NFSA and the DFSA, depicted in figures 6.3 and 6.4 respectively, are
equivalent.
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6.5 Comparison between NFSM and DFSM

In the previous sections, we formally defined and discussed NFSA and DFSA.
Their main purpose is to represent regular expressions by performing regular
expression matching [6]. For the purposes of this work, it is needed to extend
NFSA with outputs on state transitions. The extended version of NFSA we will
call Nondeterministic Finite State Machine NFSM. It is defined by

M = (Q,Σ, ξ, q0, F,Ψ, γ), (6.5.1)

where

• Q is a finite set of states,

• Σ is a finite set of input symbols (alphabet),

• ξ : Q× (Σ ∪ {λ})→ 2Q is the transition function,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of final states,

• Ψ is a finite set of output symbols,

• γ : Q× Σ→ Ψ is the output function.

This is a Mealy machine, since the output depends on current state and input,
as opposed to a Moore machine, where output depends only on current state.
In section ”Equivalence of Deterministic and Nondeterministic Finite Accep-
tors”, it is stated that nondeterministic and deterministic finite state acceptors
are equivalent (which generate no outputs). But when we introduce outputs on
state transitions, the equivalence is no longer valid. It can easily be seen from
the figures 6.3 and 6.4. For example, if we apply input ”ab” to the NFSM, it
will be either in state q0 or q2. If then we apply input ”b”, the NFSM will be
either in the final state q3 or in the trap state ∅. The output is generated nonde-
terministically, but it is know what possibilities be have. Now lets consider the
corresponding DFSM. After we apply input ”ab”, the DFSM is in state q0, 12,
and after we apply input ”b”, it goes to the final state. There is no possible
transition to ∅, the information is lost.
Further on, we will work only with NFSM.

6.6 Execution of NFSM

Now that we have defined NFSM by 6.5.1, we can consider its execution.
Let us consider the NFSM depicted in figure 6.5.
As can be seen from figure 6.5, there are outputs defined on each transition.
Fo example, if the NFSM is in the initial state q0 and input ”a” occurs, the
possible outputs are ”x” and ”z”. The output alphabet is {x, y, z}, and the
input alphabet is {a, b}. For an NFSM to accept a string, after reading the
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Figure 6.5: Example of NFSM.

string there should be at least one path leading to the accept state. When
executing an NFSM in a software or in hardware, each nondeterministic state
transition produces one or more copies of the NFSM, which run in parallel. A
string is accepted when one of the NFSM reaches accept state.
As an example, we execute the NFSM depicted in figure 6.5. Initially there is
just of copy of NFSM in the current sate q0 represented by the filled circle in
figure 6.6. Then input ”a” is applied, and one copy is created with the current
state q1. The initial NFSM is in the state q4.

Figure 6.6: Execution of NFSM, input ”a”.

Continuing the execution, after input ”b” arrives the two copies of the NFSM
are depicted in figure 6.7.
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Figure 6.7: Execution of NFSM, input ”ab”.

As can be seen in figure 6.7, one copy of the NFSM is in the state q3, and
if input ”b” occurs, it will accept the string ”abb”. The other copy of the
NFSM is in the initial state q0, and on input ”a” will copy itself the same way
as depicted in figure 6.6. From that follows that a string ”abababab...” will
produce (number of ”a”)2 copies of NFSM. This observation does not apply,
of course, to an arbitrary string.
One of the main objectives of this thesis is to develop an algorithm which com-
putes maximum number of NFSM instances, given regular expression and limit
on input string length.

6.7 Regular Expressions

In this section, regular expression syntax is introduced. We use regular ex-
pressions to describe control logic. For this purpose we need to extend regular
expressions with actions (output in NFSM). But first, we consider regular ex-
pressions without actions. A regular expression represents a pattern of strings.
The set of strings that fit the pattern defined by a regular expression form
a regular language. Throughout this thesis, we will work with some features
of POSIX basic regular expressions (BRE) and extended regular expressions
(ERE). According to [7], [8], and [9], POSIX BRE and ERE syntax is defined
as follows. POSIX BRE and ERE is composed of characters (a-z, A-Z, 0-9,
etc.) and/or meta-characters. Characters in a regular expression match the
same characters in a string. For example, the regular expression ”a” matches
the string {a}; regular expression ”abcd” matches the string {abcd}. In the
table 6.2, POSIX BRE and ERE meta-characters are listed, which are used in
this work.
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Table 6.2: POSIX BRE and ERE meta-characters

Meta-character Description Example
”.” Matches any single charac-

ter.
For example, ”a.b” matches
{aab, abb, acb, ... }.

”|” Represents a choice between
two patterns. Logical OR.

”ab|cd” matches either {ab,
cd}.

”()” Defines a subexpression. ”ab(c|d)ef” matches either
{abcef} or {abdef}.

”*” Matches the preceding char-
acter or subexpression zero
or more times.

”abc*d” matches {abd,
abcd, abccd, abcccd, ...}.

”+” Matches the preceding char-
acter or subexpression one
or more times.

”abc+d” matches {abcd,
abccd, abcccd, ...}.

”?” Matches the preceding char-
acter or subexpression zero
or one times.

”abc+d” matches {abd,
abcd}.

Now we will extend the regular expression syntax with actions.

6.8 Thompson’s algorithm: From regular ex-
pression to NFSM.

Ken Thompson in his paper [10] proposed an algorithm, which converts a given
regular expression to the corresponding NFSM. In [10], the Thompson’s algo-
rithm is adapted for implementation in a compiler. The adaptation (trans-
formation to reverse Polish form, etc.) is not relevant for the purpose of this
work, so it is presented here in a simplified version. We will present the same
example used in [10]. Let us convert the regular expression a(b|c)∗d to the
corresponding NFSM using a simplified version of Thompson’s algorithm. The
algorithm iteratively constructs the NFSM from a regular expression. First, the
NFSMs matching each single non-metacharacter of the regular expression are
constructed (figure 6.8) [11].
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Figure 6.8: Thompson’s algorithm: first iteration.

In the second iteration, the algorithm goes up the regular expression hierarchy
and constructs the NFSM for b|c using the NFSMs for b and c constructed
in the previous iteration. The NFSM for a|b is depicted in figure 6.9. Note,
that there is just one final state. Here λ transitions have been used. As is
described in the section ”Formal languages”, λ− transitions consume no input
symbol. Now the question may arise as to how to implement λ − transitions.
The answer to this is simple: λ − transitions are always executed. If there is
λ − transitions and another ordinary transition coming from the same state,
it will be considered a nondeterministic transition if the ordinary transition is
performed. Nondeterministic transitions are executed as described in the section
”Execution of NFSM”.

Figure 6.9: Thompson’s algorithm: second iteration.

Lets us, for example, execute the NFSM depicted in figure 6.9. The execution
is depicted in figure 6.10.



CHAPTER 6. THEORY AND BACKGROUND 26

Figure 6.10: Execution of the NFSM matching the regular expression c|b.
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In the third recursion, the NFSM for (b|c)∗ is constructed (figure 6.11).

Figure 6.11: Thompson’s algorithm: third iteration.

In the figure 6.11, the λ-transition from q10 to q11 corresponds to zero of (b|c)
matched as defined for the ”*” metacharacter (see table 6.2). The λ-transition
from q9 to q8 corresponds to (b|c) matched many times.
In the fourth iteration, the algorithm concatenates the constructed NFSMs in
previous iterations together producing the final NFSM depicted in figure 6.12.
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Figure 6.12: Thompson’s algorithm: fourth iteration, final.
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Above we constructed NFSMs for |, (), and ∗ meta-characters. Now we will
construct NFSMs for the rest of meta-characters. In figure 6.13 the NFSM for
the a+ regular expression is depicted.

Figure 6.13: Thompson’s algorithm: NFSM for ”a+”.

The NFSM for the ”a?” regular expression is depicted in figure 6.14.

Figure 6.14: Thompson’s algorithm: NFSM for ”a?”.

Let us now construct the NFSM for the ”a.” regular expression (figure 6.15). In
this case, we cannot use λ-transition, since it does not consume input symbols,
and we need to consume one. The solution is simple, but not elegant: we create
transitions for each symbol in the input alphabet from the state reached after
reading symbol ”a” to the final state. The more elegant and easy implementable
in software solution is to use the λ-transition, which consumes one symbol.
Let us identify it as β-transition. The NFSM for the ”a.” regular expression
constructed using the β-transition is depicted in figure 6.16.

Figure 6.15: Thompson’s algorithm: NFSM for ”a.”.
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Figure 6.16: Thompson’s algorithm: NFSM for ”a.”, using β-transition.

Note, that the resulting FSM is deterministic.



Chapter 7

Computing bounds for
NFSM execution

In the previous chapter, we demonstrated some examples of execution of
an NFSM. In figure 6.3 it can be seen that when the infinite input string
”ababababab...” is applied, there is infinite number of NFSM copies, consid-
ering that on each nondeterministic state transition a new copy is created. In
this chapter, we will develop an algorithm which computes maximum number of
NFSM copies that can be created during its execution, given a regular expres-
sion. This is very important for the other master project where we implement an
NFSM on an FPGA, since an FPGA has limited number of hardware resources.
The fact, that during execution some copies are deleted (undefined transition
for the current input symbol) makes the work more complicated. There are
two common approaches to this task. First, we can use simulation to determine
the maximum number of copies. Simulation can give the most accurate results,
but requires substantial amount of time to perform. Second, we can use some
formal technique. The approach based on simulation is pretty straight-forward.
For the purpose of computations of bounds, a computer program has been devel-
oped as a part of this work. The program accepts a regular expression, performs
checks on correctness of the regular expression, and transforms the regular ex-
pression into the corresponding NFSM. After transformation is complete, the
program can perform the following actions:

• Perform matching on a single string entered by user.

• Simulate NFSM with random strings of specific length, giving as a result
maximum number of NFSM copies.

• Apply formal method (algorithm) to compute maximum number of NFSM
copies.

The user interface of the program is depicted in figure 7.1.

31
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Figure 7.1: User interface.
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In figure 7.1, the text-field named ”Regular expression” is used to enter a regu-
lar expression for conversion. After a regular expression is entered, the button
”Check” is pressed, which triggers checking procedure. The procedure performs
syntactical analysis of the regular expression. If the regular expression is syn-
tactically correct, the button ”Transform” becomes active, and when pressed,
runs the modified Thompson’s transformation algorithm on the regular expres-
sion. As a result the program contains an NFSM for the regular expression.
The NFSM is stored in the memory of the program as a set of states connected
by pointers. At this stage, the program does not have an option to save NFSMs
between runs, though it has ability to save the graph of the NFSM in a ”DOT”
format. After the regular expression has been transformed to the corresponding
NFSM, we can perform matching of strings with it. In the program (figure 7.1),
there is the text-field named ”String to check”, which accepts one string upon
which matching is performed. After the button ”Run NFSM” is pressed we
should have the result of matching displayed after the text ”Result:”; It is ei-
ther ”accepted” or ”declined”. While performing checking, transformation, and
matching the program displays output in the text-field ”Output”. The most
important: the output contains information about the transformation process
on different stages:

• The first stage. NFSMs for each non-metasymbol in a regular expression
are constructed. After completion, the number of NFSMs constructed
that way is displayed, it should be equal to the number of distinct non-
metasymbols in the regular expression.

• The second stage. NFSMs for symbols followed by a metacharacter (*,
+, ?) are constructed. As with the first stage, at the end the number of
NFSMs is displayed. This stage uses the NFSMs constructed in the first
stage.

• Third stage. NFSMs for symbol{metacharacter}|symbol{metacharacter}
are built. After NFSM for one of the ”—” regular expressions is built, the
regular expression is substituted with ”%number%”. This can be seen
in ”Output” text-field in figure 7.1. For example, the regular expression
”a*|b” is substituted with ”%19%”.

• Fourth stage. NFSMs for pairs of brackets followed by a metacharacter
are built. The program is able to handle complex hierarchies of brack-
ets. After NFSM for a pair of brackets is built, the brackets with the
content inside is substituted with ”$number$”. For example, the regular
expression ”(abc*d)+” is substituted with ”$21$”.

• Fifth stage. NFSMs for ”(. . . )metacharacter|(. . . )metacharacter” are
built. The regular expressions are substituted with ”%number%”.

• Sixth stage. The final NFSM is built by concatenation of the previously
built NFSMs.
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Note: the stages can be repeated in a different order a few times during the
transformation. The need for this behavior is following. Consider regular ex-
pression (a(b|c)+|(m|n)+k)+. The first stage creates NFSMs for single symbols
a, b, c, m, n, and k. The second stage does nothing as there are no symbols fol-
lowed by metacharacter. The third stage creates NFSMs for ”b—c” and ”m—n”
and substitutes them in original regular expression with ”%24%” and ”%30%”,
correspondingly (figure 7.1, ”Output”-field). This creates the regular expression
(a(%24%) + |(%30%) + k)+. On this regular expression works the fourth stage,
which creates NFSMs for pairs of brackets followed by a metacharacter. But the
fourth stage can create NFSMs only for (%24%)+ and (%30%)+, since the out-
ermost pair of brackets cannot be constructed at this moment. The fifth stage
constructs NFSM for (%24%)+ |(%30%)+ and now the fourth stage resumes its
work and constructs NFSM for (a(%24%) + |(%30%) +k)+. The concatenation
(the sixth stage does nothing in this case).
When the transformation is complete, it is possible to check the correctness of
the transformation by examining the output. Since the most problematic part
is hierarchies of brackets combined with ”|”, it is worth while always to check
that substitution is performed in correct order.

7.1 Construction of graph diagram.

A graphical representation of an NFSM is very useful for checking correctness
of transformation and for other analytical purposes. In this section, we describe
the process of visualizing an NFSM and the tools used.
For drawing an NFSM diagram, we use free open source software GraphViz,
which accepts ”DOT” format [12]. After the program, developed in this work,
performed transformation of a regular expression to the corresponding NFSM,
it creates a file named ”output.txt” in the directory of the program, where it
writes the NFSM structure using ”DOT” format. ”DOT” format is very simple
and captures just structural information of an NFSM, It contains no information
about actual geometrical properties of the diagram.
After the ”output.txt” file has been generated, we use GraphViz program, which
reads this file, to draw the diagram.
The window of the GraphViz program is depicted in the figure 7.3. GraphViz
reads a file in ”DOT” format, performs necessary optimizations, and draws the
diagram. It is possible to save the diagram in many file formats, among them
.pdf, .svg, .png.
For the diagram depicted in the figure 7.4, the DOT-file has the contents de-
picted in figure 7.2.
The documentation and the user guide for GraphViz can be found on the website
[12].
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Figure 7.2: DOT-file contents.

In the diagram depicted in figure 7.4, it can be seen that there are some super-
fluous states, for example, 126 , 127, 128, etc. These states do not change the
NFSM, they are introduced by the transformation algorithm.
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Figure 7.3: GraphViz window.
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Figure 7.4: Graph constructed by the program. § represents lambda-transition,
”.” after the number of the state represents the final state.
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There is an option in the program to perform optimizing transformation, which
removes superfluous states from the final NFSM. To enable the optimizing trans-
formation, simply check the checkbox ”use optimizing transform”. The NFSM
diagram for the regular expression (a(b|c) + |(m|n) + k)+ constructed using the
optimizing transformation is depicted in figure 7.5. As can be seen in figure 7.5,
there are no superfluous states.

Figure 7.5: Graph constructed by the program (optimization is on). § represents
lambda-transition, ”.” after the number of the state represents the final state.
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In the following subsections, methods for computing maximum number (upper
bound) of copies of an NFSM in its execution are described.

7.2 Computing bounds using simulation

Computing bounds using simulation is straight-forward. Given a regular ex-
pression and a limit on string length, on which matching is performed, it is
required to determine the maximum number of copies of the NFSM when it
is run on the string. As is mentioned before, an NFSM is copied whenever a
non-deterministic state transition is performed. Moreover, a copy of an NFSM
is deleted either when there is no transition specified from the current state for
an input symbol read, or the transition leads to the final state, but there are
symbols still left to be read. A string is accepted only when the last symbol read
leads to the final state. This principle is implemented in the string matching
mechanism in the program developed in this work.
To determine the maximum number of copies of an NFSM by simulation, the
following steps are performed:

1. Generate a random string of specified length, which differs from previously
generated strings.

2. Simulate an NFSM with the random string generated in the first step.

3. Record maximum number of copies of the NFSM produced during simu-
lation in the second step.

4. If the maximum number of copies received in the third step is higher than
the number from the previous simulation, update the maximum, if not,
store the previous value.

5. Repeat from step one, until all combinations of strings of specified length
are simulated.

It is easy to see, that the simulation method is very slow, since the number of
strings to simulate grows exponentially with the string length. To reduce the
simulation time, some heuristics can be used. In this case heuristics will choose
some strings that produce the most copies of an NFSM, so the number of strings
to simulate will be reduced.
In this work, the method based on simulation is not implemented in the program,
because simulation takes long time to complete.

7.3 Formal method

By formal method, we mean a method which is not a brute-force one as simu-
lation and relies on structure of an NFSM diagram, which is directed graph, to
determine maximum number of an NFSM copies in execution.
NFSM diagrams can be divided into two categories:
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• Diagrams built using the Thompson’s algorithm.

• Diagrams which cannot be built by the Thompson’s algorithm.

In this section, we will create an algorithm for computing maximum number of
NFSM copies for an NFSM diagrams built using the Thompson’s algorithm.
The NFSM diagram depicted in figure 6.3 is an example of an NFSM diagram
which cannot be built using the Thompson’s algorithm. Devising a formal
method for computing bounds on number of copies for this kind of diagrams is
much more involved than for the other kind.
The Thompson’s algorithm works by connecting in parallel or in series limited
number of ”standard” NFSMs depicted in figures 6.13, 6.14, 6.15, etc. This
leads to the fact that NFSMs constructed by the Thompson’s algorithm have
regular structure and are simple for analysis. Let us further on refer to this kind
of NFSM diagrams ”regular NFSM”.
Let us examine a regular NFSM diagram depicted in figure 7.6
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Figure 7.6: Regular NFSM diagram. § represents lambda-transition, ”.” after
the number of the state represents the final state.

In the figure 7.6, the NFSM is constructed from the regular expression (a|b|c|d)∗
p. If we try to execute this NFSM, we get a bound on copies no more than five,
no matter what string length is. This is because of the regular structure of the
NFSM and execution rules, which for convenience presented bellow. Considering
the following execution rules:

• an NFSM is copied on nondeterministic state transitions.

• an NFSM copy is deleted when there is no specified transition for a current
state and a symbol read.

• an NFSM copy is deleted when the final state reached, but there are still
symbols to read.

• If there exists a §-cycle, the last §-transition returning to the initial state
of the cycle is not performed.
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• String is accepted when after reading all its characters one of the copies
of an NFSM reaches the final state.

We can analyze the NFSM depicted in figure 7.6 and determine that the bound
is indeed equal five. Starting from the initial state, we perform §-transitions
(also known as lambda-moves or epsilon-moves) and reach the following sates:
74, 76, 78, 79, and 86. So we have five copies of the NFSM, each of which is in
different current state. Then one symbol is read and two possibilities exist:

• There is a transition defined for this symbol from the one of the current
states.

• There is no such transition.

So if the symbol read is ”a”, then only one NFSM copy is left, which performs
transition and is in current state 82 (figure 7.6). Other NFSM copies are deleted.
If for example, symbol ”k” is read, then all NFSM copies are deleted and the
string is not accepted. As for the ”loop”-transition from the state 81 to the state
72, it does not present a problem. If we perform §-transitions from the current
state 82, we reach the same states 74, 76, 78, 79, and 86, which corresponds
to five copies of the NFSM. As there are no other possibilities to increase the
number of copies, we proved that the bound for the NFSM is five copies. The
idea here is that: since cyclic subgraphs in an NFSM diagram are the only
source of potential NFSM copies growth, and since in regular NFSMs they,
cyclic subgraphs, have regular structure, which does not allow copies growth,
there exist a bound on number of copies for any string length, if execution is
performed according to the rules.
Note: the above statement is true only if an NFSM does not have cyclic OR-
subgrapths with two or more transitions with the same symbol (figure 7.7).
If NFSM constructed by the Thompson’s algorithm has one or more cyclic OR-
subgrapths with two or more transitions labeled with the same symbol, we name
such NFSM pseudo-regular.
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Figure 7.7: Pseudo-regular NFSM diagram. § represents lambda-transition, ”.”
after the number of the state represents the final state.

In the case of NFSM depicted in figure 7.7, when ”a” symbol is read, three
NFSM copies are left. These three copies then each make §-transitions and
reach 74, 76, 78, 79, and 86 states, totaling in fifteen copies. If we match the
string ”aaaaap” with this NFSM, we get 405 copies. In this case bound is
dependent on string length. This kind of NFSMs are not considered in this
work.
Now lets us consider the regular NFSM diagram depicted in figure 7.8. The
diagram contains a §-loop between 86 and 95 states. According to the execution
rules if the §-transition from the state 86 to the state 95 is performed, the §-
transition from the state 95 to the state 86 is not performed for the same copy
of NFSM. But transitions from the state 86 through the state 95 to the state
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85 and transitions from the state 91 through the state 95 to the state 86 are
allowed by the execution rules. This rule avoids execution of infinite cycles.

Figure 7.8: Regular NFSM diagram, example. § represents lambda-transition,
”.” after the number of the state represents the final state.

From all the observations above, we can start building the bound computation
algorithm. The maximum number of NFSM copies equals to the maximum
number of reachable states by §-transitions from some state of the NFSM. In
the NFSM depicted in figure 7.8, the maximum number of reachable states by
§-transitions is six, and it is found at the first evaluation (starting at the initial
state 84). In more complex NFSMs, the maximum number of reachable states
by §-transitions may not be found at the first evaluation. From this follows that
the algorithm should traverse NFSM from initial to the final state to find the



CHAPTER 7. COMPUTING BOUNDS FOR NFSM EXECUTION 45

absolute maximum.
The algorithm has the following steps:

1. Starting from an initial state, perform all possible §-transitions.

2. Record the number of reached states in the step 1. At this point, all the
reached states have only non-§-transitions.

3. Create a set of symbols, which contain the symbols of the transitions of
the states reached in the step 1.

4. For each symbol of the set, make a copy of the NFSM with the current
states (one NFSM can have more than one current state here) that have
been reached in the step 1, and feed a symbol to the NFSM. After the
symbol is read, the NFSM performs transitions for the symbol and reaches
new current states, those current states that have no specified transitions
for the symbol read are marked as not current. NFSM is deleted if one
of the transition leads to a final state or it looses the last current state
(marked as non-current in the step).

5. Repeat from the step 1 for each NFSM until there is no NFSMs left.

Lets us perform this algorithm on the NFSM depicted in the figure 7.8.
First step, performing all §-transitions from the initial state 84, the following
states are reached: 88, 90, 92, 97, and 102. But since the state 102 is reached
by two different paths, we count it two times, and the number of reached states
is six, as of this iteration.
At the second step, the number of reached states at the first step is saved, which
is six.
Third step, the following set of symbols is created {a, b, n, k, p}. Note: symbols
cannot be repeated in the set.
Fourth step:

1. Copy of the NFSM is created with current states 88, 90, 92, 97, and 102,
and symbol ”a” is read. After the symbol ”a” is read, the NFSM has only
one current state 96.

2. Copy of the NFSM is created with current states 88, 90, 92, 97, and 102,
and symbol ”b” is read. After the symbol ”b” is read, the NFSM has only
one current state 101.

3. Copy of the NFSM is created with current states 88, 90, 92, 97, and 102,
and symbol ”n” is read. After the symbol ”n” is read, the NFSM has only
one current state 94.

4. Copy of the NFSM is created with current states 88, 90, 92, 97, and 102,
and symbol ”k” is read. After the symbol ”k” is read, the NFSM has only
one current state 91.



CHAPTER 7. COMPUTING BOUNDS FOR NFSM EXECUTION 46

5. Copy of the NFSM is created with current states 88, 90, 92, 97, and 102,
and symbol ”p” is read. After the symbol ”p” is read, the NFSM has
only one current state 103. This NFSM has reached the final state and is
deleted.

At this point, the algorithm makes new iteration starting from the first step.
The algorithm iterates until all possible paths are executed. This is insured by
the step four. The stoping condition is that all NFSMs either reach the final
state or make a cycle transition.
The formal method is implemented in the program. It has been tested with
different NFSM complexities and proved to be accurate. Bellow a few examples
are presented, where the formal method is used. The example NFSMs are chosen
to present implementation-specific regular expression syntax.
First example is for a|(b|v|g|nm|h∗)| c regular expression. The NFSM diagram
for this regular expression is depicted in figure 7.9.
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Figure 7.9: Formal method, example 1.
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The transformation algorithm implemented in the program handles the
a|(b|v|g|nm|h∗)| regular expression as the a|((b|v|g|n)(m|h∗))|. The two regular
expressions are equivalent, and if transformed by the transformation algorithm,
result in the same NFSM diagram depicted in figure 7.9.
Applying the formal method to determine the bound, results in maximum six
NFSM copies, which can be easily verified by examination of the NFSM di-
agram (figure 7.9). When performing string matching in the program, the
run-time number of NFSM copies is printed in the output window. This is
another mechanism to verify correctness of the formal method developed and
implemented in this work. Around dozen of strings have been matched against
the a|(b|v|g|nm|h∗)| regular expression, and maximum number of NFSM copies
have not exceeded six.
The second example is for the a|(b|v|g|(nm)|h∗)| regular expression. The corre-
sponding NFSM diagram is depicted in figure 7.10.
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Figure 7.10: Formal method, example 2.
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For the NFSM in the second example, the formal method computes the bound
to be seven, which can be verified by examination of the diagram depicted in
figure 7.10.
The third example demonstrates that the bound computation algorithm success-
fully escapes local maximums and finds correctly the global maximum. For this
example the ((a|b)c)|((d|e)f)(g|m|n|k|l|p|z) regular expression is used, which is
depicted in figure 7.11.
The bound computation algorithm gives the value seven as the bound for this
NFSM, which is correct as can be seen in the NFSM diagram (figure 7.11). As
is stated above, the bound computation algorithm starts from the initial state
of an NFSM. In the case of the NFSM depicted in figure 7.11, the first bound
it finds equals four, but it is not the global maximum.



CHAPTER 7. COMPUTING BOUNDS FOR NFSM EXECUTION 51

Figure 7.11: Formal method, example 3. Escaping local maximums.
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The following example demonstrates the limitations of the bound computation
algotirhm. Let us consider the NFSM depicted in figure 7.12. The NFSM is con-
structed for the ((a|b|c∗|d|e)(fu|(mt|d)+ |(x|j|f |n|b)∗(k∗t|p+ |o|e)|y)?)|((g|h+
|m|n|(o|z|d|a|b))(w(k|d+ |y?)|z(fn|h|u)|t|q ∗ |e)) regular expression.
Running the formal bound computation algorithm on the NFSM gives 21 copies
as a result. Closely examining the NFSM diagram (figure 7.12), reveals that
the actual bound is lower than is computed. Starting from the initial state
1566 the following 15 states are reached by the §-transitions (also known as
lambda-transitions): 1592, 1593, 1609, 1571, 1575, 1591, etc. This big OR-
subgraph converges to the two states 1584, and 1623. We can divide the this
OR-subgraph into two smaller OR-subgraphs: one converging to the state 1584,
the other to 1623. The two OR-subgraphs have common transition symbols
”b”, and ”d”, which meads that two NFSM copies, one with the current state
1584, the other with 1623, are left after reading, for example, symbol ”d”. But
after that, there are tree possibilities: symbol ”f”, or symbol ”w”, or some other
symbol is read. If symbol ”f” is read, the NFSM copy with the current state 1623
is deleted, the NFSM copy with the current state 1584 performs the transition
to the state 1620. From the state 1620 , 13 states are reachable. If symbol ”w”
is read, only NFSM copy with the current state 1623 is left, and it performs
the transition to the state 1629. From the state 1629, 8 sates are reachable. If
other than ”f” and ”w” symbol is read, then all NFSM copies are deleted. The
real bound is 15 copies.
It is obvious that the bound computation algorithm is unable to find the mutual
exclusion of the two NFSM copies left after the big OR-subgraph.
The improved version of the bound computation algorithm has been developed,
which is able to track NFSM copies for mutual exclusion. For example, it is
impossible, considering the execution rules, to have an NFSM copy with the
current state 1620, and an NFSM copy with the current sate 1629 in the NFSM
diagram depicted in figure 7.12.
The improved bound computation algorithm has the following steps:

1. Starting from an initial state, perform all possible §-transitions (for all
NFSM arrays, in case there is more that one array). On each reached
state create an NFSM copy with the current state, which equals to the
reached state. Newly created NFSMs are put into the array for which the
processing is performed.

2. Record the number of reached states in the step 1 for each array of NFSMs
individually. Because the arrays correspond to the symbols from the set
created in the step 3, the maximum number of reached states for each
array corresponds to the specific paths taken in the NFSM diagram with
the consideration of possible mutual exclusion of NFSM copies. At this
point, all the reached states have only non-§-transitions.

3. Create a set of symbols, which contain the symbols of the transitions of
the states reached in the step 1 (It is created each time anew).
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4. For each symbol of the set, make a copy of the NFSMs that have been
created in the step 1, and feed a symbol to the NFSMs. After the symbol
is read, the NFSMs perform transitions for the symbol and reach new cur-
rent states (new NFSMs created on non-deterministic transitions). Those
NFSMs with current states which have no specified transitions for the
symbol read are deleted.

5. Repeat from the step 1 for each NFSMs array (array for each symbol of
the set created in the step 3) until all arrays are empty.

The improved bound computation algorithm has been implemented in software
and tested. It shows correct results for the above examples.
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Figure 7.12: Formal method, example 4. Limitations of the bound computation
algorithm.



Chapter 8

Architecture of the
Computer Program

The computer program for converting regular expressions to NFSMs and com-
puting bounds on number of NFSM copies is developed in this work. Copies of
an NFSM are created when nondeterministic transitions are performed in execu-
tion. Since practical interest of NFSMs is in their implementation on an FPGA
for fast string matching [1] or meta-computation [13], computing bounds on
maximum number of copies of an NFSM, further on just ”bounds”, is required
to stay withing limited resources of an FPGA.
The program is developed in Microsoft Visual Studio Community 2015 using
C++ language and Microsoft Foundation Classes (MFC). The program has the
Graphical User Interface (GUI) depicted in figure 7.1. During the work, a great
amount of information and guidelines is accessed on the Microsoft Developer
Network (MSDN) [14]. In the implementation of the program, the Standard
Template Library (STL) is extensively used. The STL is a software library
which offers tested, well designed and implemented, the most commonly used
containers and algorithms. Information on how to use STL and examples have
been accessed on the website [15]. By containers in STL are meant storage
elements like arrays, linked lists, sets and others. Algorithms in STL perform
operations on the containers like searching, sorting, etc.
The program code is divided into separate files. The idea is to write all the
algorithms created in this work to be cross-platform and put them into separate
files containing only platform-independent code. These files named ”nfsm.cpp”
and ”nfsm.h”. Other source-code files contain platform-dependent code using
mostly MFC for the GUI.
The debugging of the program is performed using a built into Visual Studio
debugger.
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8.1 Classes

In this section, the classes used in the program are described. The implemen-
tation details are mostly omitted, since the code is self describing and easy to
follow. Some parts of the implementation are described, as author sees them
rather vague.

8.1.1 NFSM Class

The NFSM class represents a complete NFSM. It has the following data mem-
bers:

• m 1 structure contains pairs of a symbol and initial and final states of
an NFSM for the regular expression represented by this symbol. This
STL container is map, which means that if supplied with a symbol, it will
return corresponding initial and final states of the NFSM for the symbol.

• m 2 structure contains pairs of a string and initial and final states of an
NFSM for the regular expression represented by this string. This STL
container is also map and if supplied with a string, will return the corre-
sponding initial and final states of the NFSM. This container is used to
store initial and final states of NFSMs for a symbol followed by one of the
metacharacters ∗,+, ?.

• m 3 structure contains pairs of a string and initial and final states of an
NFSM for the regular expression represented by this string. This is map
container. Initial and final states of NFSMs for brackets are stored in this
container.

• m 4 structure contains pairs of a string and initial and final states of an
NFSM for the regular expression represented by this string. This is map
container. In this container initial and final states of an NFSM for the
hole regular expression are stored.

• m or structure contains pairs of a string and initial and final states of
an NFSM for the regular expression represented by this string. In this
container initial and final states of NFSMs for OR regular expressions are
stored.

• m states contains objects of State class. It is array of size
MAX NUMBER OF STATES, currently it is 5000. The reason be-
hind fixed size array for the storage of State objects is that pointers to
them should be valid throughout the construction of NFSM. The STL
containers with growing-on-demand size do not guarantee that pointers
stay valid after growth of container size.

• m current stores the pointer to the current state of an NFSM. In execution
each NFSM can have only one current state.
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• m constructed stores a boolean value. If true, the NFSM is constructed,
otherwise it is not.

• m valid stores a boolean value. If true, the NFSM should not be deleted,
otherwise it is deleted because it reached the final state when there are
still symbols to read or there are no transitions specified for a current state
and a symbol read.

• m regexpr stores a regular expression from which the NFSM is con-
structed.

• m output stores a pointer to the MFC output window. It is used to display
output of the program.

• m s id is an integer representing the ID of a state. It is incremented
whenever a new state is created ensuring that all states have unique IDs.

• m t id is an integer representing the ID of a transition. It is incremented
whenever a new transition is created ensuring that all transitions have
unique IDs.

The NFSM class has the following methods (functions):

• NFSM() is the default class constructor.

• NFSM(std :: string regexpr, CWnd ∗ output) is a class constructor
taking a regular expression and a pointer to the MFC output window.

• friend int RUN :: make transition(char input, bool last ch) is a friend
(has access to the private data members of the NFSM class) function
which performs transitions for the symbol input in NFSMs from a current
state. First, this function performs all the §-transitions from a current
state making copies of the NFSM on each nondeterministic transition,
and then for all available copies of the NFSM it performs transitions for
the symbol provided in input. After §-transitions are performed again.
If an NFSM reaches the final state and last ch is not true, the NFSM is
deleted, otherwise the string is accepted. If for a current state of the NFSM
there are no transitions defined for the symbol, the NFSM is deleted. The
function belongs to the class RUN.

• friend int run lambda(RUN ∗ obj, bool last ch) performs §-transitions.
It is used in make transition function. The function implements a §-
transition-cycle avoidance mechanism.

• std :: string read or(std :: string :: iterator it) takes a string iterator it
which points to the ”%” symbol in the regular expression string, and reads
and returns a substring of the format ”%number%”, which then can be
used to access a corresponding NFSM from m or structure.
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• std :: string read bracket(std :: string :: iterator it) takes a string itera-
tor it which points to the ”$” symbol in the regular expression string, and
reads and returns a substring of the format ”$number$”, which then can
be used to access a corresponding NFSM from m 3 structure.

• int construct() launches construction of an NFSM.

• int formal method() launches computation of the bound on copies of an
NFSM.

• void write nfsm(std :: string file name) writes the structure of a con-
structed NFSM into the file file name using the DOT format. The file is
created in the same directory as the executable of the program.

• StateCouple make star NFSM(State ∗ s init, State ∗ s final) takes
as parameters the initial and final states of an NFSM and creates a new
NFSM for a symbol or brackets (represented by the passed as parameters
NFSM) followed by ”*” metacharacter, and returns the initial and final
states of the created NFSM. So the function makes the following transfor-
mation: NFSM -¿ (NFSM)*. States of the NFSM passed as parameters
are copied.

• StateCouple make plus NFSM(State ∗ s init, State ∗ s final) takes
as parameters the initial and final states of an NFSM and creates a new
NFSM for a symbol or brackets (represented by the passed as parameters
NFSM) followed by ”+” metacharacter, and returns the initial and final
states of the created NFSM. The function makes the following transfor-
mation: NFSM -¿ (NFSM)+. States of an NFSM passed as parameters
are copied.

• StateCouple make question NFSM(State ∗ s init, State ∗ s final)
takes as parameters the initial and final states of an NFSM and creates a
new NFSM for a symbol or brackets (represented by the passed as param-
eters NFSM) followed by ”?” metacharacter, and returns the initial and
final states of the created NFSM. The function makes the following trans-
formation: NFSM -¿ (NFSM)?. States of an NFSM passed as parameters
are copied.

• StateCouple make or NFSM(State ∗ s init 1, State ∗
s final 1, State ∗ s init 2, State ∗ s final 2) takes as parame-
ters initial and final states of two NFSMs, NFSM1 and NFSM2, and
creates a new NFSM for ”NFSM1|NFSM2” , and returns the initial
and final states of the created NFSM.

• StateCouple make simple NFSM(State ∗ s init, State ∗ s final) cre-
ates an NFSM for brackets not followed by any of the ”*”, ”+”, ”?”
metacharacters, and returns the initial and final states of the created
NFSM. States of NFSMs passed as parameters are copied.
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• StateCouple make one symbol NFSM(char ch) takes as parameter a
symbol, creates an NFSM for the symbol, and returns the initial and final
states of the created NFSM.

• StateCouple connect NFSM(State ∗ s init 1, State ∗ s final 1, State ∗
s init 2, State ∗ s final 2) takes initial and final states of two NFSMs,
NFSM1 and NFSM2, connects the final state of NFSM1 with the initial
state of NFSM2, returns initial and final states of the resulting NFSM.
States of NFSMs passed as parameters are copied.

• StateCouple make bracket NFSM(std :: string :: iterator i, std ::
wstring & outputws, char type) takes as parameters an iterator i pointing
to the symbol ”)” in the regular expression string, reference to the out-
put string, and a symbol representing the type of an NFSM to be created
(”*”, ”+”, ”?”), creates an NFSM for brackets, and returns initial and
final states of the created NFSM. This function uses make star NFSM,
make plus NFSM, make simple NFSM, or make question NFSM depend-
ing on the type parameter value to perform transformations.

• StateCouple copy nfsm(State ∗ init, State ∗ final s) takes as parame-
ters initial and final states of an NFSM to be copied, copies all the states of
the NFSM creating new state IDs, and returns the initial and final states
of the copied NFSM.

• std :: wstring third it m() performs the third iteration of the transfor-
mation process. The third iteration creates NFSMs for simple OR regular
expressions. The return value is the output of the function to be printed
in the ”Output” field of the User Interface (UI).

• std :: wstring fourth it() performs the fourth iteration of the transfor-
mation process, which creates NFSMs for brackets. The return value is
the output of the function to be printed in the ”Output” field of the User
Interface (UI).

• std :: wstring fifth it() performs the fifth iteration of the transformation
process, which creates NFSMs for complex OR regular expressions. The
return value is the output of the function to be printed in the ”Output”
field of the User Interface (UI).

• void set invalid() sets an NFSM to the invalid state, meaning that it
should be deleted.

• bool is valid() checks whether an NFSM is valid, and returns boolean true
if it is valid, otherwise it returns false.

• void optimize() performs optimization on the created NFSM. Optimiza-
tion consists in removing superfluous states. This function is turned on
by checking the ”Use optimizing transform” checkbox in the UI.
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8.1.2 State class

The State class represents a state in an NFSM. It has the following data mem-
bers.

• std :: vector < Transition > m out contains Transition objects that
represent out-coming transitions of the State object.

• std :: vector < Transition > m in contains Transition objects that
represent in-coming transitions of the State object.

• int mid unique ID of State object.

• bool m init state. If true, the State object is the initial state of an NFSM.

• bool m final state. If true, the State object is the final state of an NFSM.

• bool mempty. If true, the State object is not initialized.

The State class has the following methods.

• State() is the default constructor of the State class.

• State(int id, bool initial = false, bool finals = false) is a custom con-
structor of the State class. The first parameter is the unique ID of the
State object, the second parameter which has the default boolean value
false, specifies if the State object is the initial state of an NFSM, the third
parameter with the default boolean value false, specifies if the State object
is the final state of an NFSM.

• friend int RUN :: make transition(char input, bool last ch) is a friend
function, meaning that it has access to all the private members of the
State class. The function is used in execution of an NFSM. It performs
transitions for a symbol, passed in the input parameter, from a current
sate. If after performing transitions, the final state is reached and the
last ch is false, the NFSM is deleted, otherwise, string is accepted. The
last ch is true if the symbol passed in the input parameter is the last
symbol of the string.

• friend int run lambda(RUN ∗ obj, bool last ch) has already been de-
scribed in the NFSM class methods.

• void set transition(int id, char symbol, State ∗ in) sets up a transition
for the State object. The id parameter is the unique ID of the Transition
object, the symbol parameter is the input symbol on which the transition
is performed, the in parameter is the pointer to a State object to which
the transition leads.

• void set final(bool b) sets the State object as final state of an NFSM.

• void set initial(bool b) sets the State object as initial state of an NFSM.
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• bool is final() checks whether the State object is the final state of an
NFSM, and returns boolean true if it is final, otherwise it returns false.

• bool is initial() checks whether the State object is the initial state of an
NFSM, and returns boolean true if it is initial, otherwise it returns false.

• void set id(int id) sets the ID of the State object.

8.1.3 Transition class

The Transition class represents transitions of states. It has the following data
members.

• int m id is a unique ID of the Transition object.

• State ∗ m from is a pointer to a State object, from which the transition
starts.

• State ∗ m in is a pointer to a State object, to which transition leads.

• char m symbol is an input symbol on which the transition is triggered.

The Transition class has the following methods.

• Transition() is the default constructor of the Transition object.

• Transition(int id, char symbol, State ∗ from, State ∗ in) is the custom
constructor of the Transition object. The id parameter is a unique ID
of the Transition object, the symbol parameter is a symbol on which the
transition is triggered, the from parameter is a pointer to State object
from which the transition starts, the in is a pointer to State object to
which the transition leads.

• int get id() returns the unique ID of a Transition object.

• State ∗ get from state() returns a pointer to a State object from which
the transition starts.

• State ∗ get in state() returns a pointer to a State object to which the
transition leads.

8.1.4 RUN class

The RUN class represents an execution of an NFSM. It has the following mem-
ber functions.

• RUN(NFSM machine) is the custom constructor of the class.
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• int make transition(char input, bool last ch) performs a transition for
the input symbol passed in input parameter. If the last ch parameter is
false and after the transition an NFSM reaches the final state, the NFSM
is deleted, otherwise the complete string is accepted. The return values
are:

– V ALID TRANSITION means that a valid transition has been per-
formed.

– INV ALID TRANSITION means that an invalid transition was
encountered, the NFSM is deleted.

– FINAL STATE means that the final state has been reached.

– NON D TRANSITION means that a non-deterministic transition
has been performed.

• friend int run lambda(RUN ∗ obj, bool last ch) described in the sub-
section ”Helper functions”.

The RUN class has the following data members.

• std :: vector < NFSM > m nfsms contains copies of an NFSM created
while execution.

• CWnd ∗ m output is a pointer to the MFC’s CWnd object, which rep-
resents the output window in the GUI.

8.2 Helper Functions

The following helper functions are used in the program source code:

• bool is meta char(char ch) takes as an argument a character and returns
boolean true if the character equals to one of the characters in the set
{”(”, ”)”, ” + ”, ” ∗ ”, ”?”, ”.”, ”|”}.

• State ∗ find initial(std :: vector < State > ∗) takes as a parameter a
vector of pointers to State objects, finds among them one that represents
the initial state of an NFSM (m init state is true) and returns a pointer
to it.

• State ∗ find final(std :: vector < State > ∗) takes as a parameter a
vector of pointers to State objects, finds among them one that represents
the final state of an NFSM (m final state is true) and returns a pointer
to it.

• bool is numeric(char ch) takes as a parameter a character, and returns
boolean true if the character is a digit (0, 1, 2, 3, ..., 9).

• bool is bracket(char ch) takes as a parameter a character, and returns
boolean true if the character equals ”(” or ”)”.
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• bool is meta char nb(char ch) returns true if the character passed in the
ch parameter equals to one of the set {” + ”, ” ∗ ”, ”?”, ”.”, ”|”}.

• bool is star plus quest(char ch) returns boolean true if the character
passed as a parameter equals to ”+” or ”*” or ”?”.

8.3 Class diagram

The class diagram is depicted in figure 8.1. There are four classes: RUN, NFSM,
State, Transition, RUN. From the Class diagram depicted in figure 8.1, it can
be seen that the following relations exist between the classes: RUN contains
NFSM, NFSM contains State, State contains Transition.
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Figure 8.1: Class diagram.
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The class diagram of the Thompson’s transformation algorithm implementation
is depicted in figure 8.2. The NFSM’s construct(TransformAlgorithm&) method
takes as a parameter a reference to the TransformAlgorithm abstract class. The
TransformAlgorithm abstract class provides an interface, so that any transfor-
mation algorithm which implements this interface can be used by the NFSM’s
construct(TransformAlgorithm&) method. This allows for an easy addition of
other transformation algorithms, maintaining modular structure of the overall
design.
The same approach is taken in the implementation of the optimization and
saving algorithms.
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Figure 8.2: Class diagram of the Thompson’s transformation algorithm imple-
mentation.

The class diagrams of the NFSM saving and optimizing algorithms implemen-
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tation are depicted in figure 8.3. In the same figure, the class diagrams of the
logger and the custom exceptions are depicted.

Figure 8.3: Class diagrams of the NFSM saving and optimizing algorithms im-
plementation, as well as class diagrams of the logger and the custom exceptions.
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8.4 Run-time Object Diagram

During the design process of the software, considerable attention has been given
to the problem of how NFSM objects, which are identical copies except the
current state (which is a pointer to a State object), should be copied: either
copy all the State objects or share them. Copying all State objects when copying
an NFSM object is expensive in terms of memory and performance. Because
of this performance considerations, it has been chosen to share State objects
between NFSM objects. This design decision has its benefits in that creating a
copy of an NFSM object is fast, but care should be taken not to corrupt shared
State objects. During the programming phase, the most trickiest corruption
of shared State objects was erroneous manipulation of transitions, which are
pointers, between State objects. The run-time object diagram is depicted in
figure 8.4. There is only one object of RUN class. According to [16], the RUN
class is a singletone. Singletone class can have only one object present. To
ensure this, special arrangements needs to be performed. In C++ this can be
done by making the constructor of a singletone class private. This ensures that a
signeltone object cannot be copied or created more that once [16]. Considerable
amount of advice on the C++ software design has been taken from [17] and [18].
The RUN object can have many copies of NFSM object. The copies of NFSM
object are identical and differ only by a current state they are in. NFSM object
has many State objects, which in turn, can have many Transition objects.
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Figure 8.4: Object diagram.



Chapter 9

Results

In this chapter the results achieved in the thesis are presented in a concise form.
Starting from the ”Theory and Background” chapter, the work naturally pro-
gresses through development of the algorithmic solutions for the transformation
and bound computation algorithms to the implementation of the developed al-
gorithms in software. The theoretical work in the thesis is represented mainly in
the ”Theory and Background”, and ”Computing bounds for NFSM execution”
chapters. This includes the research on NFSMs and DFSMs, and their trans-
formation algorithms, proving by logical induction that NFSMs constructed by
the adapted Thompson’s algorithm always have a finite bound when executed
in accordance with the execution rules presented in the ”Computing bounds for
NFSM execution” chapter. The practical part of the thesis is in development of
the software program. The development included many iterations of design and
implementation phases to improve code quality. The quality here is measured in
modularity, code reuse, error handling, and maintainability. The measurements
are relative to the previous version of the code. If the mentioned parameters
are higher than ones of the previous version, the new version is accepted. This
way, the first working ad-hoc version of the program is improved by increasing
modularization and code reuse. After addition of ”nice-to-have” functionality
like logging, error checking and optimizations, the code size is not increased. For
testing purposes and for ease of an NFSM reading, the graphical representation
of NFSMs is implemented using the open source software GraphViz. The de-
veloped software program transforms a regular expression to the corresponding
NFSM, and performs the bound computation. The NFSM is saved in a DOT-
format file, which can be read and visualized by GraphWiz. The final version of
the program is tested with regular expressions of different complexities designed
to perform full code coverage.
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Chapter 10

Discussion

In this chapter results that have been achieved in the thesis are discussed.
After research on NFSMs and DFSMs, it has been noted that an NFSM imple-
ments a regular expression with less states than an DFSM, and offers speed-up
by parallel execution. The mentioned speed-up is theoretical and haven’t been
proved by running benchmarks. It is obvious that the speed-up is strongly de-
pendent on implementation, and that there should inevitably be performance
penalties of managing parallel execution. Some analogy can be drawn to man-
aging threads in an operating system: time required to create a thread, and
if the execution time of a thread is comparable to the creation time, there is
no speed-up, but speed-down. So the same principle applies to NFSMs. If an
NFSM is small, and it’s corresponding DFSM’s execution time is comparable
to the time required to create a copy of the NFSM, there is no speed-up.
The other, apart from simple substring matching, usage of NFSMs is in meta-
computation. The concept, as to my knowledge, is rather informally presented
in the literature. This concept also relates to a control logic being implemented
as an NFSM. The idea is quite simple: to each subexpression in a regular
expression an action is attached. For example, consider the regular expression
(ab)@2(h|p)@5. The regular expression is composed of two subexpressions (ab)
and (h|p) to which actions are attached. Here the @ symbol is used to denote
an action, and the number after it is the ID of an action, which can be just
a function. If the ”ab” substring is matched, then the action with the ID 2 is
performed, which can take arguments ”a” and/or ”b”, and perform some action
on them. The practical value of such meta-computation is a question. But due
to possible application of such technique, I left possibility in the architecture of
the program to extend it for meta-computations. The regular expression syntax
implemented does not allow digits to be a simple symbol, neither they are
meta-characters. They used by the transformation algorithm for subexpression
substitution. For example, . . . | . . . is substituted with %number%, and (. . . ) is
substituted by $number$. It is easy to modify the transformation algorithm, so
that it can handle actions attached to subexpressions, where a number represents
a function ID. The ID of a function can be a number of array element which is
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a function pointer.
The more practical use of NFSMs on an FPGA is for network traffic monitoring.
It can be used for statistic purposes or to prevent hacker attacks.
During the work, it is found that NFSMs created by the adapted Thompson’s
algorithm are regular in structure. They are composed of limited number of sub-
NFSMs which are connected together in a limited number of ways. The regular
structure together with the execution rules guaranties that NFSMs constructed
that way always have finite bound on number of copies when executing.
The software program developed in this thesis proved to be stable handling
complex regular expressions. The formal method for computing bounds is in
agreement with test runs of NFSMs. The speed of the algorithm implementation
is within 5 seconds for a maximum length regular expression on a medium class
laptop computer.



Chapter 11

Conclusion

In this work NFSMs and DFSMs have been studied. It has been shown, that NF-
SMs constructed by the adapted Thompson’s algorithm and executed following
the execution rules, always have a finite bound on copies, which is not dependent
on input. The Thompson’s transformation algorithm has been adapted and im-
plemented in software. The bound computation algorithm has been developed
and implemented in software based on reachability of states in an NFSM state
diagram, which is directed cyclic graph. The software solution has been tested
and showed consistent results. To verify the correctness of the transformation,
the visualization of an NFSM state diagram has been employed. The free and
open-source GraphViz v. 2.38 is used for visualization of NFSM diagrams. The
software program, developed in this thesis, saves structure of a constructed
NFSM in a DOT-format file which is read by GraphViz.
Other algorithmic solutions concerning NFSMs, developed and implemented
during the work on the thesis, are following:

• A regular expression syntax checking. Numbers are not allowed, but not
checked (they are reserved for actions performed on subexpressions, im-
plementation of which is left for the future work ).

• An optimization algorithm for removing superfluous states from a con-
structed NFSM. It does not change functionality, but makes it easier to
view NFSM diagrams.

• User-friendly user interface.

11.1 Future work

For future work it is left to implement actions on subexpressions, a good syntax
for this is introduced in [19].
The other possibility for improvement is in extending functionality of the pro-
gram to perform string and sub-string matching on input data from files or
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other sources. As of now it accepts a string and matches it entirely and not
substrings of it. The matched substrings then could be saved in a database for
other manipulations.
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