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Abstract

Actuator faults are critical to detect as they reduce the ability of the controller to influence
the system, in addition to causing unwanted system behaviour. Incipient actuator faults
are therefore important to detect at an early stage in order to rectify the fault before losing
the ability to do so as the fault increases in severity.

Detection algorithms using parameter estimation are well suited for detecting incipient
faults, as they are able to detect small deviations from the normal dynamics. However, all
estimation algorithms needs sufficiently descriptive data in order to correctly estimate the
system parameters.

This thesis proposes an active fault detection algorithm using parameter estimation, which
aims at increasing the detectability of incipient actuator faults. The estimate used in the
fault detection algorithm is improved upon, by ensuring the input sufficiently excites the
system, and this is achieved by constructing a persistently exciting controller. The pro-
posed controller uses the framework provided by model predictive control, and includes
the previously applied input in the constraints used within the optimization problem in the
controller.

Numerical simulations were done where the proposed persistently exciting controller is
compared to using a nominal controller with Gaussian white noise added to the input as
an auxiliary excitation signal. The persistently exciting controller reduces the amount of
false alarms when compared to using white noise for excitation, but is not able to detect
the fault at an earlier stage.
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Samandrag

Feil i pådragsorgana er særs viktige å oppdage sidan dei reduserar evna til å styre systemet
i tillegg til å forårsake uønska atferd. Gradvis aukande feil i pådragsorgan er difor kritisk
å oppdage på eit tidleg stadium, for å kunne vere i stand til å motverke feilen før evna til å
gjere det forsvinn.

Feildetekteringsalgoritmar som gjer bruk av parameterestimering er godt skikka til å de-
tektere gradvis aukande feil, sidan dei er i stand til å oppdage små avvik frå den nor-
male systemdynamikken. Men, alle estimeringsalgoritmar er avhengige av å ha tilgang på
tilstrekkeleg beskrivande data for å kunne gje eit korrekt estimat av systemparameterane.

Denne oppgåva føresleg ein aktiv feildetekteringsalgoritme basert på parameterestimering,
som har som mål å kunne forbetre evna til å detektere gradvis aukande feil i pådragsorgan.
Parameterestimatet brukt i detekteringsalgoritmen er forbetra ved å sørge for at pådraget
eksiterar systemet i tilstrekkeleg grad, og det er gjennomførd ved å konstruere ein konstant
eksiterande regulator. Den føreslegne regulatoren tek i bruk rammeverket gitt av modell
prediktiv regulering, og gjer bruk av tidlegare pådrag for å definere nokre av avgrensin-
gane i optimeringsproblemet i regulatoren.

Numeriske simuleringar blei gjennomførde der den føreslegne, konstant eksiterande regu-
latoren blei samanlikna mot ein vanleg regulator som bruker kvit Gaussisk støy for å sørge
for at systemet er tilstrekkeleg eksitert. Den konstant eksiterande regulatoren utløyser
færre falske alarmar enn den vanlege regulatoren, men den er ikkje i stand til å oppdage
feil på eit tidlegare stadium.
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Chapter 1
Introduction

As technology advances and the complexity of industrial plants increases, so increases the
amount of potential faults and failures. All systems susceptible to faults need to be fault
tolerant to make use of cutting-edge technology in a safe manner. The concept of fault
tolerance is to minimize the impact faults can have on a system. Fault tolerance can be
divided into three distinct parts: detecting the fault once it enters the system, correctly
diagnosing and identifying the fault, and implementing the correct countermeasures in
order to either maintain acceptable performance while guaranteeing a satisfactory safety
standard, or performing a controlled shut down of the plant. All three components of fault
tolerance clearly needs to be well functioning in order for the whole procedure to succeed.
The primary goal of this thesis is to provide a well performing fault detection algorithm.

Many different approaches to fault detection exist, from having a human operator ob-
serving the system and look for abnormalities, to fully automated methods that are able
to detect and identify faults completely without human assistance. The automated tech-
niques have been researched and developed thoroughly over the last decades resulting in
a wide array of algorithms employing different techniques to achieve the same goal, fault
tolerance. The reader is referred to (Venkatasubramanian et al., 2003c), (Venkatasubrama-
nian et al., 2003a) and (Venkatasubramanian et al., 2003b) for an extensive list over fault
detection and identification algorithms.

For systems with very high demands to safety and security, for example nuclear power
plants, it is often acceptable to endure a loss in nominal performance in exchange for fault
tolerance. The lowered demands to performance opens up the possibility to make use of
more sophisticated fault detection algorithms like active fault detection. In active fault
detection the input to the system is generated with two, sometimes conflicting, goals in
mind: maximising the performance of the plant, and ensuring satisfactory fault detection.

A way to implement fault detection is to use the input and output data available to
estimate a model of the system. And the system is declared faulty if the disparity between
the estimated model and the nominal model is large. Correctly estimating the system
model needs sufficient variation in the input and output data. In this thesis a fault detection
algorithm using parameter estimation is proposed, and an heuristic approach for increasing
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Chapter 1. Introduction

the variation in the input is employed and tested through simulations.

1.1 Linear system example
A linear time invariant model is used to illustrate the methods and algorithms presented
in this thesis, due to the fact that LTI models works very well in conjunction with MPC.
And most non-linear systems can, in the neighbourhood of the linearisation point, safely
be approximated as a linear system. The following system model is used when developing
all algorithms to be presented in this thesis

x[t+ 1] = Ax[t] +Bu[t] + υ (1.1)
y[t] = Cx[t] (1.2)

υ is the process noise corrupting the system in the form of a Gaussian random variable.
Sensor noise is not included in order to simplify the detection problem, and make the
relation between excitation and noise more transparent.

1.2 Faults and failures
The following definitions of faults and failures are taken from (Isermann and Ballé, 1997)

• Fault - a non-permitted deviation of at least one characteristic property or parameter
of the system from the acceptable/usual/standard condition.

• Failure - a permanent interruption of a systems ability to perform a required func-
tion under specified operating conditions.

In this context it is clear that the purpose of a fault-tolerant controller is to ensure that a
fault does not induce a failure. Failures lead to a reduction in performance, and can require
a shut-down of the system. In this report a failure will refer to the more severe scenarios
that makes the system go unstable.

1.2.1 Incipient actuator faults
Incipient faults typically start out as a tiny deviation from the normal dynamics, and the
fault gradually grows until its effect on the system becomes clear. These faults are typically
hard to detect before the fault reaches a critical point. The small deviations are be discarded
as noise, or simply not considered a fault as the impact is negligible to begin with.

The fault detection algorithm presented in this thesis is designed to detect incipient
faults, with an extra focus on incipient faults in actuators. Actuator faults are crucial since
the only way to control the system is through its actuators. Not only will the fault lead
to unwanted system behaviour, but an actuator fault will also limit the ability to rectify
the situation. The worst case scenario is losing control of the system due to failing actu-
ators, resulting in a system failure. By using LTI models it is possible to model actuator
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1.3 Model Predictive Control

faults as a change in the gain matrix B. One class of incipient actuator fault will reap-
pear throughout this thesis, and that is those faults characterized by an increasing loss of
actuator power. A gradual loss of power in an actuator can be expressed as diminishing
values in the elements of B associated with the faulty actuator. Note that all incipient
faults are time varying by definition, and therefore it is not possible to model all stages of
an incipient fault by a single time invariant model.

1.3 Model Predictive Control
Model predictive control is an input-generating algorithm popularly used for controlling
multivariable systems. It makes use of the dynamics of the system, and takes future states
into account when calculating the current control-move. The popularity of MPC is due
to its ability to effectively generate input for large multivariable systems with constraints
on both the states and the input. The algorithm works as follows: at time-instant t the
MPC optimizes the state and input of the system, with respect to a cost-function J , over
a time-horizon N . From the calculated input-sequence umpc, the first element is selected
and applied to the plant. At time t + 1 the procedure is repeated. Even though the input-
sequence calculated at each time-instant is of length N , it is only the first element that is
applied to the plant.

Consider a discrete linear system

x[t+ 1] = Ax[t] +Bu[t] (1.3)

Subject to constraints on the states and input defined by

x[t] ∈ X ⊂ Rn

u[t] ∈ U ⊂ Rm
(1.4)

with n and m being the dimension of the states and the input, accordingly. The optimiza-
tion problem in the MPC for this system would be

min
x,u

J(x,u) =

N−1∑
k=0

l(x[k],u[k]) (1.5a)

s.t. x[k + 1] = Ax[k] +Bu[k], ∀k = 0, . . . , N − 1 (1.5b)
x[0] = xinit, (1.5c)
x[k] ∈ X, ∀k = 0, . . . , N − 1 (1.5d)
u[k] ∈ U, ∀k = 0, . . . , N − 1 (1.5e)
x[N ] ∈ Xterminal (1.5f)

l(x, u) is normally the squared difference from a reference trajectory, but it could be ex-
panded to include aspects of the system that are not explicitly formulated in the constraints.
For example the economic profit, or the emissions of environmental harmful gases. The
reference trajectory comes from the real-time optimization (RTO) layer, whenever MPC is
used in conjuction with RTO. RTO uses a higher fidelity model and longer time-horizon
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than MPC, and optimizes the economical profit of the plant. xinit is the current state of
the system at the time of optimization. Constraint 1.5f defines a terminal constraint for
x, and is in place to ensure stability of the scheme, for a detailed proof see (Mayne et al.,
2000).

Let (x∗,u∗) denote the solution to 1.5. With u∗ = [u[0]∗ u[1]∗ . . .u[N − 1]∗]T , the
input to be applied to the plant is then u[0]∗.

1.4 Active Fault Detection and Isolation
Active fault detection and isolation stems from the fact that the input applied to the system
can improve the ability to correctly detect and identify faults happening in the system.
The main principle of active fault detection and isolation methods is to modify the con-
troller such that the inputs the controller generates increases the performance of the fault
detection and isolation unit. When the input is generated with this additional objective in
the controller, it will usually lead to a reduction in the system performance. System per-
formance is usually measured by the economic profit achieved by the plant, and is often
related to the amount of units produced.

There are two main approaches to generating inputs when using active techniques. One
is to first generate the primary input u, and then based on u try to find an auxiliary signal,
v, that improves fault detection and isolation when applied in union with u. The signal that
is applied to the system is the sum of the two, ū = u+v. The other approach is to generate
the complete input signal in one operation. Both approaches requires augmentation of the
controller. How the controller is modified depends on the choice of algorithm in the FDI
unit. There are many different techniques used for detecting and identifying faults, but
not all of them are able to improve by changing the algorithm from begin a passive one to
becoming an active one. And not all faults becomes noticeably easier to detect and identify
through an active method.

Choosing an active method over a passive one should only be done in systems with
strict demands to fault tolerance, and only in the cases where an active method offers
a significant increase in fault detection and isolation capability. For example when the
system is susceptible to faults that are either undetectable or not isolable when using a
passive method.

1.4.1 Active Fault Detection
A fault detection algorithm is measured by how well it meets its primary and secondary
objectives: minimizing the time the system is faulty but the fault remains undetected, and
minimizing the amount of false alarms. Detecting faults will always be the main priority
of any fault detection algorithm, but being able to remove the sources for false alarms will
increase the overall productivity of the plant. Applying an active method is usually aimed
at increasing the fault detectability. Some faults can be unobservable due to the state of
the system, or the irregularity caused by the fault is otherwise indistinguishable without
the use of active detection. A fault occurring in an unused actuator is the classic example
where an active method is needed to detect the fault. The usage of active detection is
not limited to such scenarios, but it is clearly a major benefit to employ it when faced
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with these hard-to-detect faults. The biggest drawback of using active fault detection is
the persistent loss in system performance. In order to maximise the advantage gained by
using active fault detection the system needs to be permanently excited. Guaranteeing that
a fault will not remain undetected longer than a given time limit relies on the worst case
fault detection time. Employing an active method will improve the worst case detection
time, but this improvement is lost if the active part of AFD is turned off in certain time
intervals. This is due to the fact that faults can occur at any time during normal operations,
and thus it is not possible to turn of the active part of the AFD without, at the same time,
reducing the ability of the FDI unit to detect faults.

(Campbell and Nikoukhah, 2015) gives a thorough introduction to the use of auxiliary
signals in the context of fault detection, and (Šimandl and Punčochář, 2009) proposes a
unified formulation for active fault detection using an optimization framework. The reader
is referred to both of these works for a more in depth exposition of active fault detection.

1.4.2 Active Fault Isolation

Using an active method can be applied to fault diagnosis. Active fault diagnosis avoids
the biggest downside that comes with active detection, disruption of nominal operations.
Since diagnosis always follows fault detection the disruption caused by employing an ac-
tive diagnosis method is limited to the time where the system is already disrupted due
to the fault. Applying an active method should speed up the isolation process, allowing
the system to resume nominal operations earlier compared to a scenario where a passive
isolation scheme is used.

A popular way to implement active isolation is to use a multi-model framework. N
different fault scenarios are considered resulting in N + 1 distinct system models, one for
each fault in addition to the nominal model. The input is then chosen such that the fault
is distinguishable by inspecting the output from the physical plant and comparing it to
the output from the N + 1 models. This technique have been applied in many forms in
fault isolation strategies for aerial vehicles. In (Bateman et al., 2008) the authors applied
active diagnosis to an aircraft with redundant actuators. The redundancy would render
faults in actuators detectable but not isolable when using passive diagnosis, illustrating an
important advantage gained by using an active method. The method suffers from the need
to adequately model allN fault-scenarios with high enough fidelity to ensure the algorithm
is working correctly. (Ducard and Geering, 2006) employs extended Kalman filters in
order to model the faults, leading to accurate models but a high demand to computational
power needed. This is improved on in (Ducard, 2013) and (Ducard and Geering, 2010)
where the authors presents an active fault isolation algorithm for actuator faults in a small
aircraft, without using N + 1 system models, resulting in a highly efficient FDI able to
run on microcontrollers with low computational resources. An active isolation method
using MPC is presented in (Tabatabaeipour et al., 2009) where the optimization problem
is extended to include N + 1 different models. Each model describes the system during
a particular fault, and the input is chosen in order to separate the outputs of the different
models by a threshold d.
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Chapter 1. Introduction

1.5 Report framework
This report is organized into 8 chapters. In Chapter 2 the original passive fault detection
algorithm is presented along with suggestions to improve the algorithm. The heuristic PE
MPC is detailed in Chapter 3. Integrating the FDI unit and the controller is discussed in
Chapter 4. Chapter 5 holds the results from the simulations, and Chapter 6 includes the
discussion. Finally in Chapter 7 comes the conclusion, and finally the future work needed
is shown in Chapter 8.
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Chapter 2
Fault Detection Algorithm

The parameter estimation detection algorithm presented next is identical to the one used
in (Cimpoeşu et al., 2013). Faults in a LTI system of the form given in 1.1 can be detected
by continuously estimating the state-space matrices A,B and C. Recursive least squares
is an easily implementable estimation algorithm suitable for this task. It is important to
note that the RLS needs sufficient diverse data to be able to converge to the true values.
For systems with little to no noise it is important to excite the system through input vari-
ation in a manner that produces such data. One way is to add white noise with negligible
magnitude to the input before applying it to the system. It is assumed that system states
are available at any given time, which is a reasonable assumptions when only faced with
actuator faults. Some notation is needed to write the algorithm in the preferred, compact
form. The estimated system matrices Â[t], B̂[t], Ĉ[t] are gathered in a matrix with the
following structure:

Θest[t] =

[
Â
T

[t]Ĉ
T

[t]

B̂
T

[t]Ĉ
T

[t]

]
(2.1)

and together with the vector containing the states and inputs at the previous time-instant

ψ[t] =

[
x[k − 1]
u[k − 1]

]
(2.2)

it is possible to write the error on the following form

e[t] = y[t]−ΘT
est[t]ψ[t] (2.3)

Estimation is done by minimizing the weighted sum of squared errors

V [t] =

t∑
k=1

w[k]eT [k]e[k] (2.4)

By choosing
w[k] = λt−k , 0 < λ < 1 (2.5)
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the weights decrease exponentially in i. The previous measurements are thus given ex-
ponentially less impact the older they are. Using least-squares optimization results in the
following update equation for Θest

Θest[t+ 1] = Θest[t] + γ[t]
[
yT [t+ 1]−ψT [t+ 1]Θest[t]

]
(2.6)

where γ[t] is a correction vector given by

γ[t] =
1

ψT [t+ 1]P [t]ψ[t+ 1] + λ
P [t]ψ[t+ 1] (2.7)

with P defined as

P [t] =

(
t∑

k=1

ψ[k]ψT [k]

)−1

(2.8)

and

P [t+ 1] =
[
I − γ[t]ψT [t+ 1]

]
P [t]

1

λ
(2.9)

Initialise the algorithm by setting

Θest[0] = 0

P [0] = αI
(2.10)

with α being a large scalar value, typically between 102 and 103, and 0 is the null matrix.
Detecting faults is done by comparing Â[t], B̂[t], Ĉ[t] to A,B and C. This is done by
creating a matrix of similar structure to 2.1.

Θn =

[
ATCT

BTCT

]
(2.11)

The norm of the difference between the two matrices are computed and then compared to
a threshold T

‖Θn −Θest[t]‖2 < T (2.12)

If 2.12 is true then it is concluded that a fault has occurred within the system.
The algorithm has two adjustable parameters, λ and T , that needs tuning in order

to achieve desired performance. λ expresses the memory of the algorithm with respect
to previous measurements. A high λ leads to slowly decreasing weights and thus older
measurements are given a higher priority. This results in a slower convergence, but a less
erratic estimate as it is based on measurements over a large time-horizon. Choosing λ
small gives very high impact on the newest measurements, leading to fast convergence
at the cost of large fluctuations in the estimate due to a higher sensitivity to noise. T is
chosen in a way that ensures detection, and at the same time minimizes amount of false
alarms. Choosing T is typically done by extensive simulations under varying conditions
in which the system is subject to different faults.
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2.1 Detecting incipient and abrupt faults

2.1 Detecting incipient and abrupt faults

Abrupt faults will result in an instantaneous and prominent increase in ‖Θn −Θest[t]‖2
that exceeds and stays above the fault detection threshold T for an extended time period
following the fault. This response will never be triggered by noise that is persistently in
the system, meaning that such alarms are very unlikely to be false. Slowly varying faults
have a vastly different impact on the system than an abrupt faults, and this is reflected in
‖Θn −Θest[t]‖2. An incipient fault will be marked by a trend in ‖Θn −Θest[t]‖2 where
it will grow gradually over time, just like the fault itself. This makes it harder to detect the
fault early on, since the threshold must be high enough to avoid sounding false alarms. But
these trends developing in ‖Θn −Θest[t]‖2 during an incipient fault can be exploited by
employing a more sophisticated method for deciding if a fault has occurred. The original
test is based of ‖Θn−Θest[t]‖2 values at a single time instance and does not make use of
previous values of ‖Θn −Θest[t]‖2. A test more aligned to detect incipient faults would
be to use the m most recent values of ‖Θn −Θest[t]‖2 to decide whether or not there is a
consistent increase in ‖Θn−Θest[t]‖2. This can be done by using a lower threshold value,
T̃ < T , and see if a themmost previous ‖Θn−Θest[t]‖2-values are above that threshold.
But using only this test delays the detection of an abrupt fault by m − 1 time steps, so in
systems susceptible to both abrupt and incipient faults both tests on ‖Θn −Θest[t]‖2 are
necessary to ensure the best fault detection performance possible.

Figure 2.1: The figure shows ‖Θn − Θest[t]‖2 during two simulations of the same system. In
simulation one an abrupt fault takes place while in simulation two the fault is incipient. Both systems
use Gaussian white noise with standard deviation 0.1 for excitation, and process noise with standard
deviation 0.01 is present in both systems.
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Figure 2.2: The progression of the two different faults occurring in the simulations used to generate
the graphs in Figure 2.1.

Figure 2.1 shows how the different types of fault affect ‖Θn − Θest[t]‖2. By using
Equation 2.12 with T = 0.3, the abrupt fault is detected instantly as it occurs, and the
incipient fault is detected at t = 250. It is however possible to detect the incipient fault
earlier by using the test described in this section with the appropriate parameters as ‖Θn−
Θest[t]‖2 is growing from approximately t = 225 and onwards.

2.2 Value of a precise estimate
When parameter estimation is implemented the goal is normally the parameters them-
selves, and thus the most important criteria is that the estimation algorithm is able to
precisely estimate the true parameters. This is normally the case when used in conjunc-
tion with MPC, as the estimated parameters are often used to describe the system model
utilized in the optimization problem which is the core of MPC. The model parameters
can drift over time, and MPC relies heavily on an accurate model of the physical plant
to be able to generate an optimal input sequence. But when used as a module in an fault
detection algorithm this is no longer the most important requirement. The most impor-
tant requirement is then that the estimate quickly reflects a change occurring in the true
parameters.
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2.3 Improving the fault detection algorithm

An important note is that a precise parameter estimate is able to speed up the fault
diagnosis that follows fault detection. This is the best argument for advocating the need of
a precise estimate from a fault detection and diagnosis point of view. But the estimation
technique employed in this thesis is a recursive least squares algorithm that tries to estimate
a linear time invariant system, but from the fault enters the system until it is detected the
nature of the plant is time variant, due to the fault itself being time variant. This results in
a poor estimate during the faulty period. One way to improve the estimate is to make the
algorithm put more weight on the newer data, and this is easily implemented by simply
lowering the λ value in the estimation algorithm. However, this leads to the estimate
being heavily influenced by noise, resulting in larger fluctuations in ‖Θn − Θest[t]‖2
during the time the system is fault free. The larger fluctuations will have a negative impact
on the fault detection itself, since it will result in an increase of false alarms. Avoiding
these false alarms is a matter of increasing the threshold, T , but this also allows a bigger
discrepancy between the estimate and the nominal model before the system is deemed
faulty. So avoiding false alarms by increasing T results in a slower best case detection.
To put it in other terms, decreasing λ could ease the the diagnosis of the fault, but would
hinder the detection of the it.

2.3 Improving the fault detection algorithm

One way to improve fault detection is to minimize the amount of noise in the system. Fault
detection becomes trivial in the absence of noise since any divergent behaviour can not be
explained by noise, and thus it must be a fault. Unknown noise will also reduce the quality
of the estimated system matrices. This is due to the fact that the input-output relationship
in a noisy system can never be fully explained when using a deterministic model, which is
what the RLS algorithm is trying to do. However, reducing noise might not be an available
option, since the noise can be small non-linearities present in the system dynamics.

Another way to improve the performance of the fault detection algorithm is to make
sure the estimate is as precise as possible. In order to correctly estimate the current system
parameters it is important that the RLS algorithm receives sufficient data. This is achieved
by artificially exciting the system, instead of keeping it stationary at the optimal operating
point. Noise will ensure some perturbations, but the fact that the noise is unknown results
in a poorer estimation, as the input-output relationship can not be fully explained by using
a deterministic model. A better way is to make sure the known input excites the system
sufficiently. Ensuring that the input is persistently exciting can be seen as a variation of
active fault detection since it introduces a secondary goal in the controller and typically
reduces performance of the system while improving the performance of the FDI unit.

When the system has settled at the chosen operating point it becomes a matter to bal-
ance the unknown noise with a known excitation signal to make sure the fault detection
algorithm performs adequately. If the signal to noise ratio is low, the algorithm performs
poorly and the estimate it returns will be very fluctuating and differ greatly from the nom-
inal model. This results in large fluctuations in ‖Θn−Θest[t]‖2, with the consequence of
many false alarms.
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Figure 2.3: The figure shows ‖Θn−Θest[t]‖2 during two simulations of the same system. Process
noise corrupts the estimate in both simulations, and Gaussian white noise is added to the original
input generated by an MPC in order to improve the estimate. For simulation 1 the standard deviation
of the Gaussian white noise is 0.01, for simulation 2 it is 0.1. The process noise is Gaussian white
noise with standard deviation 0.01. An incipient actuator fault enters the system at t = 100.
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Figure 2.4: The development of the fault taking place in the simulations used to generate the graphs
in Figure 2.3. The fault starts at t = 100, but the actuator power remains above 95% until t = 219.

In Figure 2.3 it is obvious that the settings used in the first simulation is superior with
respect to fault detection. ‖Θn −Θest[t]‖2 remains consistently low during the fault free
period in simulation 1, and at approximately t = 235 it becomes clear that the estimate
is diverging from the nominal model, indicating that a fault is occurring. In the second
simulation there are large fluctuations during the fault free period making it very hard to
detect faults based on the value of ‖Θn −Θest[t]‖2 at a single time instant. Setting the
detection threshold T = 1 detects the fault at t = 240, but this detection threshold makes
the system prone to false alarms due to the fluctuations in ‖Θn −Θest[t]‖2.
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Chapter 3
Heuristic PE-MPC

The motivation for a PE-MPC is too ensure that the fault detection procedure, which re-
lies on a well-functioning parameter estimation algorithm, works as intended and is able
to detect incipient faults in the system. The intention is that the modified controller will
generate an input sequence that persistently excites the system in order for the parameter
estimation algorithm to produce estimates that correctly represents the current dynamics
of the system. This is attempted to be achieved through adding additional inequality con-
straints to the optimization problem in the MPC. The new constraints are applied to the
first element in the input sequence, u[0], used in the optimization problem, as it is the only
element that is actually applied to the system. The constraints is based of the euclidean
norm between u[0] and the last m inputs applied to the plant, which makes up the first
of the new constraints, and the euclidean norm between u[0] and the rest of the elements
in input sequence used in the optimization problem, which is the second constraint. The
purpose of the first constraint is to ensure that u[0] is distinctively different from atleast
one of the m previous inputs. While the second constraint uses the predictive nature of
MPC to try ensure some diversity in future inputs.

This is a heuristic approach in the sense that it is not based of the mathematical defi-
nition of a persistently exciting input, but rather tries to achieve this by ensuring the input
applied to the plant must be distinctly different from atleast one of the last m inputs.

The controller is in itself not fault tolerant as it takes no countermeasures once a fault
enters the system. This controller is for running nominal operations in systems with high
demands to security and fault detection.

3.1 Heuristic PE constraints
The previous input applied to the plant is passed to the MPC along with the current state
of the system. At time t and for actuator i the first new constraint is

αi,1 ≤
M∑
k=1

wi,k(ui[t]− ui[t− k])2 ≤ αi,2 (3.1)
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As all previous inputs at time t are realised as scalar values the only variable is u[t] and
the constraint can be rewritten as

αi,1 ≤
M∑
k=1

(wi,kui[t− k]2 + wi,kui[t]
2 − 2wi,kui[t]ui[t− k]) ≤ αi,2

αi,1 −
M∑
k=1

wi,kui[t− k]2 ≤
M∑
k=1

wi,kui[t]
2 −

M∑
k=1

2wi,kui[t− k]ui[t] ≤ αi,2 −
M∑
k=1

wi,kui[t− k]2

Simplifying further results in

¯αi,1 ≤ W̄i,1ui[t]
2 − W̄i,2ui[t] ≤ ¯αi,2 (3.2)

With the weights and lower and upper bounds given as follows

¯αi,1 = αi,1 −
M∑
k=1

wi,kui[t− k]2 (3.3)

¯αi,2 = αi,2 −
M∑
k=1

wi,ku[t− k]2 (3.4)

W̄i,1 =

M∑
k=1

wi,k (3.5)

W̄i,2 = 2

M∑
k=1

wi,kui[t− k] (3.6)

It is clear that this new constraint is simply a linear-quadratic inequality in the one variable
u[t]. Note that both the upper and lower limit and the weighting of the linear term are
dynamic in the sense that they might, and under normal conditions will, change from one
time step to the next. The second constraint is expressed in terms of all the elements of the
input vector in optimization problem

N∑
k=1

vi,k(ui[t]− ui[t+ k])2 ≥ βi (3.7)

This constraint can not be simplified in the same manner as the first one, as all the inputs
in this constraint are variables in the optimization problem.

3.1.1 Major Issues
There are two drawbacks to be considered to this controller. The first of is the increased
complexity in the optimization problem which leads to increased computational power
needed to solve it. The constraint in Equation 3.2 is non-convex, meaning that standard
QP-solvers cannot be used. Non-convex solvers must be used instead, and while non-
convex solvers are getting more and more sophisticated they are still not as fast as the LP-
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and QP-solvers used in industry today. In addition to having slower solvers, non-convex
optimization also suffers from the fact that the solution from the solver is not guaranteed
to be the global optimal point.

The second problem is the increased amount of wear and tear on the actuators, but
this will always be an issue when there is a need for a richer input. Assuming that wear
and tear in the actuators is tolerated up to some extent, then it should be possible, through
tuning of the new weights and bounds, to strike a good balance between minimizing the
stress on the actuators while ensuring the input remains persistently exciting.

3.2 Finding a sufficient degree of excitation

It is important to remember that the richness of the inputs is not a goal in itself, but rather
a tool to achieve faster fault detection. To decide whether or not the system is sufficiently
excited is not a matter of looking at the perturbations in the states and inputs. Simula-
tions should be run instead, and the fault detection performance is really the only way to
judge what constitutes as a sufficient level of excitation. Furthermore, since the detection
algorithm relies solely on the norm of the difference matrix, ‖Θn −Θest[t]‖2, when con-
cluding whether or not a fault has occurred, one can determine the performance of the fault
detection algorithm by looking at the graph of ‖Θn −Θest[t]‖2 and see how clearly the
graphs reflect whether or not the system is faulty.

3.3 Multiple Inputs

When considering systems with multiple inputs a new question arises, should the addi-
tional heuristic constraints be applied to all inputs? Imposing the additional constraints on
all inputs at all times will increase the computational cost while it might not pay off in the
form of a better performing fault detection algorithm. Given that the system is not decou-
pled then the inputs not directly affected by the heuristic constraints in the MPC will also
exhibit fluctuations since the MPC will try to maintain the optimal steady state using all
inputs available. In strongly coupled systems, or systems where several inputs influence
the same state, this behaviour becomes more evident. The opposite is the case for weakly
coupled systems. For both cases it is valuable to identify the set of inputs which, when
subjected to the heuristic constraints, would make sure a sufficient level of overall richness
in the inputs to the system is maintained.
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Figure 3.1: The figure shows graphs for ‖Θn − Θest[t]‖2 during two simulations of the same
system. The system is a LTI system with two inputs and is controlled by the heuristic PE MPC. The
red graphs shows ‖Θn −Θest[t]‖2 when the new heuristic constraints were applied to both inputs,
and the green graph is from a simulation where the heuristic constraints were only applied to the
first actuator. An incipient fault takes place in the first actuator, the evolution of the fault is shown in
Figure 2.4. The simulation is stopped prematurely once the MPC is unable to find the next control
move due to the fault.

The system simulated in 3.1 is modelled as a LTI system with

A =

[
1.4 0.2
0.8 −0.6

]
, B =

[
1 0
0 1

]

the states of the system is clearly coupled, and the inputs only influence one state each.
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3.3 Multiple Inputs

Figure 3.2: States of the system when the heuristic constraints are applied to both actuators. The
system is suffering from process noise in the form of Gaussian white noise with standard deviation
0.01. Y-axis is dimensionless since it is a dummy system used to illustrate the concept.
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Figure 3.3: States of the system when the heuristic constraints is only applied to the first actua-
tor. The system is suffering from process noise in the form of Gaussian white noise with standard
deviation 0.01. Y-axis is dimensionless since it is a dummy system used to illustrate the concept.

The MPC controlling the system in the simulations tries to maintain the states at their re-
spective references: xref1 = 2 and xref2 = 2, but the states fluctuates around the operating
point due to the heuristic constraints. In Figure 3.2 the heuristic constraints were applied
to both inputs resulting in larger fluctuations than in Figure 3.3, particularly in x2 since the
second actuator have a direct impact on that state. Looking at Figure 3.1 it is clear that the
estimation algorithm works much better, i.e. the estimate is more consistent and closer to
the nominal model during the fault free period, when the heuristic constraints were applied
to both inputs. Figure 3.1 also shows how the detection threshold T depends heavily on
the quality of the estimate. T = 0.25 works well in the simulation with both actuators
constrained, with no false alarms and sufficiently early detection. But ‖Θn −Θest[t]‖2
in the other simulation is only occasionally below 0.25, a more suitable T value for that
configuration would be T = 1.5.

Towards the end of the simulation the MPC is no longer able to track the state refer-
ences sufficiently due to the fault and the simulation is stopped once the MPC is unable to
find a feasible solution. The optimization becomes infeasible due to the fact that there is
no fault handling procedure included in the simulation.

3.4 Final Formulation

The complete optimization problem looks like this in the end:
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3.5 Periodic excitation

min
x,u

J(x,u) =

N−1∑
k=0

l(x[k],u[k]) (3.8a)

s.t. x[k + 1] = Ax[k] +Bu[k], ∀k = 0, . . . , N − 1 (3.8b)
x[0] = xinit, (3.8c)
x[k] ∈ X, ∀k = 0, . . . , N − 1 (3.8d)
u[k] ∈ U, ∀k = 0, . . . , N − 1 (3.8e)
x[N ] ∈ Xterminal (3.8f)

¯αi,1 ≤ W̄i,1(ui[0])2 − 2W̄i,2ui[0] ≤ ¯αi,2, ∀i ∈ O (3.8g)
N∑
k=1

vi,k(ui[0]− ui[k])2 ≥ βi, ∀i ∈ O (3.8h)

With O being the set of actuators chosen to be the sources of excitation.

3.5 Periodic excitation
Since the increased excitation leads to reduced performance in the plant it is worth look-
ing into variations of the proposed MPC formulation that strike the best balance between
performance and fault detection. One approach is to only apply the heuristic constraints
during specified intervals. This would lead to the plant alternating between having high
economic performance, but lower fault detection capability, and high fault detection capa-
bility, but with reduced performance. The main problem with this dual mode approach is
the fact that faults can occur during the intervals with reduced fault detection capability.
If the switching between the two modes is based solely on time then there is no way to
avoid this problem. The challenge is to find a sophisticated switching logic that reduces
the possibility of a fault happening in the intervals with reduced detection capability. This
will be investigated further in the next chapter.
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Chapter 4
Integration of FDI and controller

Figure 4.1: The figure shows the typical flow of information in a fault tolerant system. Auxiliary
components like observers and filters are omitted to make the flow of information more apparent. f
is a signal that carries information about the health of the system, including the time of detection,
and the information of the fault available at the time. The system supervisor alters the controller
accordingly through the signal q, depending on f from the FDI. There is no direct channel of com-
munication between the FDI and the controller in the figure, as the system supervisor usually carries
all communication between the two in a sufficient manner.

The main difference between active and passive methods for fault detection and isolation
are not in the interface between the FDI and the controller. In most cases the active part
of the fault detection algorithm is built into the controller. The controller receives the
information it needs, the output data, directly from the plant, and the role of the FDI is as
it is in passive methods: to let the supervisor know when a fault is detected, and to isolate
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and identify the fault once it has occurred. There is no part in the definition of active fault
detection that requires an increase or change in the flow of information between the FDI
and controller.

4.1 Utilizing information flow better

Figure 4.2: The dotted red line indicates a potential communication line directly between the FDI
and the controller. It might be possible to improve fault detection and isolation further by making
use of information from the FDI directly in the controller.

In order to make use of the new line of communication shown in Figure 4.2, there needs to
be relevant data, for the controller, generated in the FDI. The relevant data does not include
the information usually sent to the system supervisor as it is not meant to remove the
supervisor from the loop. But instead it would be data detailing the behaviour of the system
during non-faulty operations. Whether or not the FDI have valuable information for the
controller depends largely on the choice of detection and isolation algorithm. Given that
the algorithm is in able to provide an indication that a fault is developing or that the system
otherwise is behaving abnormally, but still considered fault free, then this information
could be utilized through active detection methods in the controller.

4.1.1 Improving parameter estimation based fault detection

Using a fault detection algorithm based on parameter estimation, like the algorithm de-
scribed in Chapter 2, opens up the possibility to improve the detection by increasing the
communication between the FDI and the controller. The estimated parameters are clearly
valuable for the controller, but information from the decision unit in the FDI can also be
made use of. The decision unit calculates ‖Θn − Θest[t]‖2 and concludes whether the
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system is faulty or not by comparing it to a threshold T . ‖Θn −Θest[t]‖2 gives an indi-
cation of the health of the system, high values are alarming, but they could be the product
of noise in the system. An active method that aims to help fault detection by persistently
exciting the system, like the heuristic PE MPC proposed in Chapter 3, could impose in-
creased demands on the richness of the input if ‖Θn −Θest[t]‖2 exceeds some threshold
T̄ , with T̄ < T . Once the estimated matrices differ significantly from the nominal ma-
trices the system is either faulty, or noise is corrupting the estimate making the system
appear faulty when it is not. So when the input gets richer, the estimation algorithm either
returns an estimate closer to the nominal matrices, reassuring that the system is healthy, or
the estimate still remains distinctively different from the nominal matrices, confirming the
fault.

Figure 4.3: Using the fault detection algorithm presented in this thesis provides both an estimate of
the system model, and a measure of faultiness in the system. Both can be utilized in the controller
to improve the performance of the FDI.

The fault threshold T should be adjusted once the additional demands for richness
are imposed, the estimate will even under faulty conditions, given that the fault is an
incipient fault, grow closer to the nominal model when the input grows richer. This leads
to ‖Θn −Θest[t]‖2 decreasing and thus the fault would in fact be detected at a later stage
unless T is changed accordingly. The threshold for when to impose extra input richness, T̄ ,
should not be chosen to conservatively since the operational disruption is far less dramatic
than sounding a false alarm. Some fluctuations in input and system states is a small price
to pay to avoid a false alarm and the following fault handling measures. Setting T̄ low will
induce more periods with increased detection capability.

It is also possible to make the demand for richness a continuous function of ‖Θn −
Θest[t]‖2 and thus avoiding the need for a switching mechanism. This would also avoid
having several different T values since the estimate would be truer and truer, given the
premise that the estimation works better with a richer input, when ‖Θn −Θest[t]‖2 ap-
proaches T . Meaning that the divergence in the estimate from the nominal system is not
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due to noise, but due to a fault. The problem is to find a way to articulate the input richness
such that it could be expressed as a continuous function in ‖Θn −Θest[t]‖2. This has not
been implemented in this thesis, but the approach is outlined to show the potential benefits
of employing information from the FDI in the controller, and left as inspiration for future
work in this subject.
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Chapter 5
Results

In the simulations three systems were run in parallel, one with the heuristic PE MPC
described in Chapter 3, one with a standard MPC and known auxiliary excitation signal
added to the input, and the last one with a standard MPC but without additional excitation
of any kind. The same parameter estimation based fault detection algorithm, described
in Chapter 2, were used in all three systems, but with different detection thresholds. The
detection thresholds used in the two performance comparing experiments were set after
inspecting the results from an initial simulation. The states and inputs from the initial
simulation are shown, and the effect of the different controllers on both states and input is
evident.

5.1 Simulation model

The system used in the simulations is an LTI system described by these equations

x[t+ 1] =

[
1.4 0.2
0.8 −0.6

]
x[t] +

[
1 0
0 1

]
u[t] + υ

y[t] =

[
1 0
0 1

]
x[t]

(5.1)

The eigenvalues of the system are λ1 = 1.477 and λ2 = −0.677. This system was chosen
since an actuator fault occurring in the first actuator, coupled with a saturation constraint
on the second one can cause a critical failure. The states will grow unbounded unless they
are contained according to the procedure described in (Brusevold, 2015). υ is the process
noise affecting the system, it implemented as a Gaussian random variable with standard
deviation συ = 0.01 and mean value µυ = 0.
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Figure 5.1: A graph showing the fault occurring in the first actuator during simulations. The actuator
power decreasing from 100% to 75% corresponds to element b11 in the input-gain matrix B in
Equation 5.1 decreasing from 1 to 0.75.

The system designated to be excited using an auxiliary signal had the optimal input from
the MPC, umpc, modified before it was applied. The applied input was u = umpc + η,
where η is Gaussian white noise with standard deviation ση = 0.03. The memory factor,
λ, in the RLS estimation algorithm was chosen in order to minimize the impact of noise,
while still being responsive to new data. A balance was found with λ = 0.90.

5.2 MPC-settings
MPC is used to control all three systems, and the same settings are used in all of them to
make the results more comparable. The horizon is N = 10, the matrices used in the cost
function are

Q =

[
10 0
0 10

]
, R =

[
0.1 0
0 0.1

]
The cost function is

J(x,u) =

N∑
k=0

xTk+1Qxk+1 + uTkRuk
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5.3 Initial simulation

The states and inputs of the system are also constrained to X and U, respectively

X =

{
xk |

[
−5
−5

]
≤
[
x1
x2

]
≤
[
5
5

]
,∀k = 0, · · · , N

}
U =

{
uk |

[
−4
−4

]
≤
[
u1
u2

]
≤
[
4
4

]
,∀k = 0, · · · , N

} (5.2)

The heuristic PE MPC has, due to the new heuristic constraints, several additional param-
eters that needs to assigned values. The constraint involving previous input have dynamic
parameters when formulated as in Equation 3.8h, so the formulation given in Equation 3.1
is used instead. The subscript i denotes the actuator the parameter is associated with. The
parameters that needs to be specified are:

1. The previous input horizon, M

2. The lower and upper bound for the constraint involving previous input, αi,1 and αi,2

3. The lower bound for the constraint involving future input, βi

4. The weights used in both constraints, wk,i and vk,i

The following parameters were chosen after carefully tuning the MPC to get the level of
excitation wanted

α1,1 = 0.0001

α2,1 = 0.005

α2,2 = 1

α1,2 = 1

β1 = 0.2

β2 = 0.2

M = 5

wk,i = vk,i = 1 ∀k = 0, · · ·N, ∀i ∈ {1, 2}

5.3 Initial simulation
In the initial simulation an incipient fault enters the system at t = 100 and gradually grows
in severity. The fault occurs in the first actuator and follows a sigmoid curve from 0% to
100% power loss, the simulation is however stopped before the fault reaches its final stage
due to the MPC being unable to find a feasible solution. The infeasibility issues, usually
due to a breach in the constraints on either the states or the input, appears since no fault
handling procedure is implemented. Fault handling procedures were omitted from the
simulations since the simulations are done in order to judge the merit of the proposed
heuristic PE MPC. Any measures taken to reduce the impact of a fault will only appear
after the initial fault detection and therefore they have no impact on the performance of the
fault detection algorithm. For a fault tolerant controller designed with incipient actuator
faults in mind the reader is referred to (Brusevold, 2015). There are no units associated
with the Y-axis in all the plots concerning the states and inputs of the system, as the system
simulated is not based of an actual physical plant.

29



Chapter 5. Results

5.3.1 System states and inputs

Figure 5.2: Inputs generated by the heuristic PE MPC.

Figure 5.3: System states with the heuristic PE MPC controlling the system.
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5.3 Initial simulation

Figure 5.4: Inputs generated by a normal MPC, with added Gaussian white noise for excitation.

Figure 5.5: System states with the a normal MPC controlling the system and Gaussian white noise
added to the input for excitation.
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Figure 5.6: Inputs generated by a normal MPC, without any auxiliary excitation signal.

Figure 5.7: System states with the a normal MPC controlling the system without an auxiliary exci-
tation signal.
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5.3 Initial simulation

The system controlled without regards for sufficient excitation had, as anticipated, the least
perturbed states and inputs, and is therefore only used to illustrate the cost of applying extra
excitation through the means of modifying the MPC or adding Gaussian white noise to the
input. The inputs generated by the heuristic PE MPC shown in Figure 5.2 exhibit a more
oscillatory nature than those shown in Figure 5.4 where Gaussian white noise is added
for excitation. The biggest discrepancy between the two controllers lies in the u1-signal,
with the u1 generated by the PE MPC seemingly changing back and forth between a lower
and an upper bound and intermittently taking on other values. The u1-signal in Figure
5.4 does not show the same level of oscillation, but instead it remains in a neighbourhood
around the steady state value with erratic deviations due to the Gaussian white noise. This
behaviour translates directly to the states of the system due to the linearity of the model,
resulting in the states being in general more oscillatory in nature when controlled by the
PE MPC.

5.3.2 ‖Θn −Θest[t]‖2-values

Figure 5.8: Graphs showing how the different controllers affect ‖Θn −Θest[t]‖2,

The fault detection threshold values used in the next experiments are found by inspecting
Figure 5.8, and choosing an appropriate value such that the fault is detected early while
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at the same time minimizing the risk of a false alarm. For the system controlled without
an auxiliary excitation signal this proves to be a challenge. ‖Θn −Θest[t]‖2 have a very
similar development both during the fault free period, and after the fault has entered the
system.

Figure 5.8 shows that using Gaussian white noise as an auxiliary excitation signal
results in ‖Θn −Θest[t]‖2-values that is on average slightly higher during the fault free
period compared to ‖Θn −Θest[t]‖2 when using the PE MPC. This difference is almost
negligible as both graphs of ‖Θn −Θest[t]‖2 associated with the two controllers, have a
large gap from the max value of ‖Θn−Θest[t]‖2 up to the chosen detection threshold, T =
0.5. This changes once the impact from the incipient fault grows and the input from the
heuristic PE MPC causes ‖Θn−Θest[t]‖2 to grow faster compared to the controller using
Gaussian white noise for excitation. Both approaches gives estimates that are suitable to
use in fault detection. Not including any form of additional excitation results in ‖Θn −
Θest[t]‖2-values that are very similar both before and after the fault has entered the system,
as shown in Figure 5.8, making it unfit to use as a tool to detect faults.

The graphs also show that ‖Θn−Θest[t]‖2 needs some time to stabilize after start up.
This initialising phase last from t = 0 to t = 50, and fault detection is turned off during
this period.

5.3.3 Final estimate in a faulty scenario

At the end of the simulation the estimated matrices, when using heuristic PE MPC, were
as follows:

Aest =

[
0.9324 −0.1975
0.8188 −0.6220

]
, Best =

[
−0.2361 −0.2580
0.0100 1.0099

]
(5.3)

And for the system excited using Gaussian white noise

Aest =

[
1.1277 −0.1183
0.7844 −0.5751

]
, Best =

[
0.1271 −0.2009
−0.0071 0.9969

]
(5.4)

In the system controlled without any auxiliary excitation in the input, the estimated matri-
ces diverged at the end of the simulation. The final estimate was

Aest =

[
17 −1362
24 2202

]
, Best =

[
−1164 2092
1884 −3384

]
(5.5)

Comparing the final estimated matrices in Equation 5.3 and Equation 5.4 to the real matri-
ces during the fault which are given in 1.3 but with element b11 in B gradually changing
from 1 at t = 100 to 0.279 at t = 300 it is clear that both estimates are way of target. Not
only with regard to b11, but all elements associated with x1 and u1 are significantly more
inaccurate than the elements associated with x2 and u2. This is most likely due to the fact
that the fault directly affects the equation used to update x1 at every time step, while the
update equation for x2 is unaffected.
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5.4 Comparing fault detection times

5.4 Comparing fault detection times

In the first performance evaluating experiment 100 simulations identical to to the initial
simulation were done. This is done in order to compare the effect the different controllers
have on the fault detection algorithms ability to detect faults. The following histograms
shows the time of detection during the 100 simulations for each of the different controllers.
For the heuristic PE MPC two different fault detection threshold T are tested, both rather
conservatively chosen at T = 0.5 and T = 0.7. The system using Gaussian white noise
as an excitation signal has the fault detection threshold T = 0.5 while the system without
any auxiliary excitation uses T = 1.5.

Figure 5.9: Histogram showing detection times when using the heuristic PE MPC and T = 0.5.
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Figure 5.10: Histogram showing detection times when using the heuristic PE MPC and T = 0.7.

Figure 5.11: Histogram showing detection times when using Gaussian white noise as an excitation
signal.
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5.4 Comparing fault detection times

Figure 5.12: Histogram showing detection times when no excitation signal is used.

It is necessary to make a more detailed histogram in order to clearly make out the
difference in fault detection between using Gaussian white noise as excitation and the
heuristic PE MPC. The time interval the histogram is based of is shrunken in from covering
the entire simulation time, to the time interval where the majority of the detections take
place. Figure 5.12 shows that the fault detection algorithm running in the system without
any additional excitation detects the fault prior to it even entering the system at t = 100.
The detection algorithm is clearly suffering from the lack of excitation, and is it therefore
not deemed necessary to include another histogram from this system.
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Figure 5.13: Histogram for fault detections in the interval 220 ≤ t ≤ 250 when using the heuristic
PE MPC and T = 0.5.

Figure 5.14: Histogram for fault detections in the interval 220 ≤ t ≤ 250 when using the heuristic
PE MPC and T = 0.7.
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5.5 Comparing amount of false alarms

Figure 5.15: Histogram for fault detections in the interval 220 ≤ t ≤ 250 when using Gaussian
white noise as an excitation signal.

The histograms in Figure 5.9, 5.10 and 5.11 shows that the heuristic PE MPC and the
controller adding Gaussian white noise to the input perform comparably with respect to
fault detection times. The exception being the three early detections that occurred when
using Gaussian white noise as an auxiliary signal. The two controllers, and both detection
thresholds used when employing the PE MPC, were able to detect the fault prior to t = 250
in every simulation. Looking at the histograms in Figure 5.13, 5.14 and 5.15 the difference
between the two excitation methods becomes more evident. The detection times is more
consistent when the system is excited using the PE MPC compared to when Gaussian
white noise is added as an auxiliary excitation signal.

5.5 Comparing amount of false alarms

The second experiment is a simulation where no fault occurs, but the simulation time is
increased from 300 to 30 000 time steps. The purpose of this second experiment is to
observe how the different controllers affect the amount of false alarms sounded by the
detection algorithm. Fault detection is based on ‖Θn−Θest[t]‖2 values at each time step,
and ‖Θn−Θest[t]‖2 will, during fault free operations, not vary greatly from one time step
to the next. This is due to the memory in the RLS algorithm used for estimation, which
ensures consistency in the estimate. Detections happening in consecutive time steps are
therefore counted as one false alarm, and not one for each time step.

In the system without added excitation the estimated matrices started to diverge after
300 time steps, at t = 1195 the algorithm returned ‖Θn − Θest[t]‖2 = 1.698 · 105.
This highlights the need for excitation as the RLS algorithm used to estimated the system
matrices clearly malfunctions without the proper data. The alarms sounded in this system
are not included due to this reason.
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Fault alarms in system using Gaussian white noise
Time(s) Max ‖Θn −Θest[t]‖2-value during fault
84-88 0.7109
5078-5079 0.5321
8588-8589 0.5747
9917 0.5024
17728 0.5017
21849-21852 0.5546
22697-22699 0.5138
29020-29023 0.5490

Table 5.1: Table showing fault detections using Gaussian white noise as an excitation signal.

Fault alarms in system using heuristic PE MPC
Time (s) Max ‖Θn −Θest[t]‖2-value during fault
21983-21984 0.5173

Table 5.2: Table showing fault detections using heuristic PE MPC.

The amount of false alarms during the extended simulation are shown in Table 5.1 and
Table 5.2. With 8 false fault alarms in the system using Gaussian white noise compared
to the one sounded when using the heuristic PE MPC it is clear that the PE MPC is the
superior controller with respect to minimizing false alarms. Looking at the one alarm
when using heuristic PE MPC and the ‖Θn −Θest[t]‖2 value during the fault it is clear
that the false alarm could easily be avoid be increasing T by a small amount, the detection
times shown in Figure 5.13 and Figure 5.14 it is clear that you can increase T to avoid
false alarms without sacrificing much with regards to fault detection times.

5.5.1 Final estimate in a fault free scenario
At the end of the simulation the estimated matrices, when using heuristic PE MPC, were
as follows:

Aest =

[
1.4323 0.1957
0.7782 −0.5633

]
, Best =

[
1.0572 −0.0143
−0.0095 0.9627

]
(5.6)

And for the system excited with Gaussian white noise

Aest =

[
1.3971 0.2582
0.7935 −0.5508

]
, Best =

[
1.0443 −0.1047
0.0298 0.9263

]
(5.7)

The estimates given in Equation 5.6 is closer to the true matrices in Equation 5.1 than the
matrices given in Equation 5.7. This corresponds well with ‖Θn−Θest[t]‖2-values being
slightly lower when using the PE MPC during the fault free period as is shown in Figure
5.8.
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Chapter 6
Discussion

This thesis describes an active fault detection algorithm using an MPC-type controller
modified through heuristic means to ensure persistent excitation. The persistent excitation
is meant to increase the performance of the fault detection unit by ensuring that the data
used in the estimation algorithm, which is the core of the fault detection algorithm, is
sufficiently diverse leading to a more precise algorithm. This chapter includes a discussion
of the results and an assessment over how applicable the controller is.

6.1 Reduction in system performance using the heuristic
PE MPC

To judge the merit of an active detection method it is necessary to observe the negative
impact the method has on plant performance, and how it improves the performance of
the fault detection algorithm, mainly by looking at the increase in detection capability
and/or the reduction in the amount of false alarms. By assuming that any divergence from
the optimal operating point reduces the overall performance of the plant it is possible to
conclude that applying the PE MPC will reduce performance by a significant margin. This
will however always be the case when there is a need for additional excitation in order
to improve an estimation algorithm running within the system. The divergence from the
chosen operating point in Figure 5.3 is marginally greater than in Figure 5.5, but the most
distinct difference between the two is oscillatory behaviour in the system states when the
system is controlled by the PE MPC. Oscillatory behaviour tend to be a problem in many
systems, especially in mechanical ones, and so the fact that the PE MPC can lead to this
behaviour should be kept in mind. An important point is that the increased excitation in the
system states can lead to constraints of said states to be violated if the system is operating
close to the constraints. This must be taken in regard when choosing the operating point,
and to ensure that the system states remains within its constraints, the operating point must
be chosen sufficiently far away from the state constraints.

Wear and tear on the actuators is important to keep in mind when applying methods
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to increase the excitation of the system, and it is a useful tool to look at the difference
between u[t] and u[t+ 1] when considering the stress the controllers put on the actuators.
Of the controllers used it is the PE MPC that has the biggest issues related to wear and
tear, as the input generated by this controller frequently changes between the two bounds
from one time step to the next, leading to a significant difference between u[t] and u[t+1].

When only considering the disturbance in system states during fault free operations,
which remains bounded and at an acceptable level, the author believes that proposed con-
troller is viable in systems with the high demands to fault tolerance. In such systems the
need for a high-performing fault detection will usually outweigh loss in system perfor-
mance caused by employing an active fault detection method.

6.2 Viability of heuristic PE MPC
The PE MPC did reduce the amount of false alarms compared to using white noise as an
auxiliary detection signal, but it did not lead to earlier fault detection times. It remains
discussable if the improvement is enough to justify the increased complexity in the con-
troller, and the fact that the optimization problem in the model predictive controller went
from being convex to being non-convex. The non-convexity of the optimization problem
is a major issue as the solvers for this class of problems are not as efficient as solvers for
convex problems.

The author also believes that the real world applications of the current controller is
limited due to its heuristic nature, and the fact that only a limited amount of simulations
verifying its usefulness have been run. The concept however, is sound. Ensuring persis-
tent excitation by using a modified controller is a good way to increase the performance
of a fault detection unit when the detection algorithm is based of parameter estimation.
(Marafioti et al., 2014) presents a model predictive controller modified to ensure persistent
excitation by using the mathematical definition of PE, and not by heuristic means as is
done in this thesis. The resulting controller is able to guarantee persistent excitation under
the assumptions given, which is necessary in order to guarantee that the performance of
the fault detection capability within the system is improved upon. This approach shows
more promise than the heuristic method used in this thesis.
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Chapter 7
Conclusion

This thesis describes a heuristic model predictive controller which aims at ensuring the
system is persistently excited in order to increase the performance of the parameter es-
timation based fault detection algorithm. Persistent excitation is achieved by including
several new constraints, some of which include the previous inputs applied to the system,
in the optimization problem used in model predictive control. The resulting optimization
problem is non-convex. The fault scenario considered is an incipient fault occurring in an
actuator, but the detection algorithm will also detect abrupt actuator faults.

Numerical simulations were carried out in order to observe how the heuristic model
predictive controller improves the performance of the fault detection algorithm compared
to using white noise as an auxiliary excitation signal. The results show that the proposed
controller is able to reduce the amount of false alarms while still being able to detect the
fault at a consistent time during the fault evolution. This however comes at the cost of
increased wear and tear on the actuators, and constantly perturbed system states.
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Chapter 8
Future Work

The fault detection algorithm was only tested on incipient actuator faults, and for the detec-
tion algorithm to be viable in an industrial setting it needs to be able to detect all different
types of faults. This includes both abrupt and incipient faults and faults occurring in ac-
tuators, sensors or the system itself. More work is needed to show that this approach to
fault detection is able to detect every fault mentioned, and in addition the stability of the
controller needs to be proved before it can be used in real world applications.

A tuning methodology needs to be developed in order to easily achieve the level of ex-
citation wanted in the system. The new constraints aimed at increasing the excitation in the
system includes many new parameters which needs to be assigned values in a meaningful
manner. Thus making the controller more accessible.

In Chapter 4 a connection between ‖Θn−Θest[t]‖2-values generated in the FDI-unit,
and the specifications in the controller with regards to additional excitation is outlined.
Implementing this is left as future work along with implementing a more sophisticated
detection test according to the principle of including previous values of ‖Θn −Θest[t]‖2,
and not solely base the detection on ‖Θn −Θest[t]‖2-values from the current time step.
This is discussed in Chapter 2, and the author believes that both of these measures will
increase the ability to detect incipient faults.

And finally the approach should be extended to include non-linear systems, as most
physical phenomena in industrial plants are governed by non-linear dynamics. This needs
considerably work to be done, as the fault detection is currently based on an estimate of
the system matrices used in a linear time invariant system.
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