@NTNU

Norwegian University of
Science and Technology

Knowledge Based Engineering for
Human Body Modeling and Simulation

Martha Risnes

Mechanical Engineering
Submission date: June 2016
Supervisor: Bjgrn Haugen, IPM

Norwegian University of Science and Technology
Department of Engineering Design and Materials

NTNU - NORWEGIAN UNIVERSITY

OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERING DESIGN
AND MATERIALS

MASTER THESIS SPRING 2016
FOR
STUD.TECHN. MARTHA RISNES

SPECIFY AND IMPLEMENT KBE FOR HUMAN BODY MODELING AND SIMULATIOM

Spesifisere og implementere KBE for modellering og simulering av
menneskekroppen

The human body topology is usually equal for all individuals, but sizes and dimensions vary
Some differences are natural from birth, but some are born with handicaps. Variations may
come from injuries, but may also be desired by athletes from training over time. The human
body i1s 2 mechanical system suited for computer simulation

The partners in this effort have comprehensive and complementary competences for
building and simulating the human body:

TechnoSoft Inc. with 30 years research experience with automation in design (developing
tools and applications for industry worldwide), a key knowledge for modelling variations in
the human body

NTNU with 30 years research experience with developing simulation software for
mechanical systems, especially mechanisms, based on the Finite Element method and
control engineering

This master assignment is based on the report from the candidate’s preproject assignment
conducted during the autumn 2015 and other recent work in this area.

Part of the work will be to investigate if this activity could be integrated with ongoing or new
European projects on related problems

The assignment include:

1. Study the simulation program FEDEM as a potential tool for human body simulation

2. Investigate if there are running EU projects we could seek integration with or
announcement of funding in this area that could have potential for & project proposal

3. Test existing AML code for human body modeling and mechanism modeling in
generzal 10 decide If it has potential for further development based on the preprojects

specifications

4 Specify software for modeling and simulation capabilities based on the conclusion
from point 3 above

5 Asfar as time allow, implement and test AML code for human body modeling and
simulation based on the specifications developed in point 4 above

Formal requirements:

Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed
in A template for this presentation is available on the IPM's web site under the menu
“Masteroppgave” (https //www ninu edu/webipm/master-thesis) This sheet should be
updated one week before the master's thesis 1s submitted

Risk assessment of experimental activities shall always be performed. Experimental work
defined in the problem description shall be planed and risk assessed up-front and within 3
weeks after receiving the problem text Any specific experimental activities which are not
properly covered by the general nsk assessment shall be particularly assessed before
performing the experimental work Risk assessments should be signed by the supervisor
and copies shall be included in the appendix of the thesis

The thesis should include the signed problem text, and be written as a research report with
summary both in English and Norwegian, conclusion, literature references, table of
contents, etc. During preparation of the text, the candidate should make efforts to create a
well arranged and well written report To ease the evaluation of the thesis, it is important to
cross-reference text, tables and figures For evaluation of the work a thorough discussion of
results is appreciated.

The thesis shall be submitted electronically via DAIM, NTNU's system for Digital Archiving
and Submission of Master's theses.

The contact person is:
Ole Ivar Sivertsen, IPM

/E’j ot Bﬁfw\ \40416914

%V Torgéir Welo Bjern Haugen

Head of Division Associated professor/Supervisor

NTNU

B MNorges teknisk-
naturvitenshapel ige universitet
Inststut for produkhavikiing
of materialer

Preface

This paper is based on the work done in the spring 2016 semester. The project is
conducted in the Department of Engineering Design and Materials(IPM) of NTNU
with Professor Bjorn Haugen as supervisor.

The thesis is continuation of the project thesis conducted the fall 2015 based
on a literature study on modeling and simulations of the musculoskeletal system.

The author would like to to thank Professor Ole Ivar Sivertsen and Professor
Bjgrn Haugen for their time, support and discussions throughout the master thesis
work.

Trondheim

June 2016

Martha Risnes

Abstract

This thesis has been written to demonstrate the development of a Knowledge-
Based Engineering (KBE) application of the musculoskeletal system of the human
body. One of the main goals has been to establish what advantages musculoskeletal
modeling could have in a KBE modeling framework.

The model has been created in Adaptive Modeling Language (AML) developed
by Technosoft to show how a multibody model of the human anatomy can be
modeled in a finite element representation. Furthermore, the possibilities of using
the AML models to perform simulations in the multibody software Fedem are
investigated.

In summary, the goal of this thesis is to develop a conceptual AML model
of the human skeleton for future development along with a potential framework
for simulations. The challenge is to model the cross field of bio-mechanics and
mechanical engineering, to discover possible alternative applications of AML that
could benefit musculoskeletal modeling.

Sammendrag

Denne oppgaven er skrevet for a vise utviklingen av et Knowledge Based Engi-
neering (KBE) applikasjon av en muskelskjelett-modell av menneskekroppen. Et
av hovedmalene har veert a se hvilke fordeler muskelskjelett-modellering kan dra
nytte av i et KBE modellerings-rammeverk.

Modellen har blitt laget ved bruk av Adaptive Modeling Language (AML)
utviklet av Technosoft for a vise hvordan en multibodymodell av den menneske-
lige anatomi kan modelleres i en elementmetode-representasjon. Videre har mu-
lighetene til a bruke AML-modellen for a foreta simuleringer i programvaren Fedem
blitt undersgkt.

Oppsummert er malet med denne avhandlingen a utvikle en konseptuell AMLmod-
ell av det menneskelige muskelskjelett-system for fremtidig utvikling, og fremstille
et potensielt rammeverk for simuleringer. En av utfordringene er forst og fremst
a modellere et kryssfelt mellom biomekanikk og tradisjonell mekanikk. Motivasjo-
nen for a gjgre dette er undersgke mulige alternative anvendelser av AML som kan
veere til nytte i muskel- og skjelettmodellering

Contents

1 Introduction

1.1 Background
1.2 Research questions,
1.3 Related worko
1.4 Structure
Theory
2.1 Knowledge-Based Engineering
2.2 Adaptive Modeling Language
2.3 Musculoskeletal anatomyo 0oL
2.3.1 Skeletal anatomy Lo
2.4 Multibody systemo
241 OpenSim e
2.5 Contact modelingo
2.6 OpenSim scaling tool oL
2.7 OpenSim simulation tools
2.8 OpenSim XML format and VTK formats
2.8.1 Wrapping functions and via points
2.8.2 The VTK format used in surface geometry
2.9 Finite element method and meshing
2.9.1 Rigid Body Elements,
2.10 Horizon 2020o
Methodology
3.1 The OpenSim software
3.1.1 OpenSimmodels
3.2 Matlabo
3.3 XML-Element Tree with Python
3.4 Adaptive Modeling Language
3.4.1 Source code management
3.5 Fedem

10
12
13
13
14
14
14
16
18
18
19
19
20

3.6 Meshing and boundary conditions
3.6.1 Bone meshing 0L
3.6.2 Boundary conditions and RBE2s

Development process
4.1 OpenSim data pre-processing with Python
4.2 Geometry modelling in AML
4.3 Joint modellingo
431 KneelJoint. oo
4.4 Muscle modelling L
4.5 Meshing and analysis oL
451 RBE2
4.6 Userinterface
4.7 Fedem system files
4.8 Coderefinement

Results

Discussion

6.1 Modelling
6.2 Simulations
6.3 EU projects

Conclusions
Further work

Fedem files
A1 Fedem fmm file
A.2 Femur fedem .bdf file

Matlab and python scripts

B.1 Matlab script for body seperation
B.2 Matlab script for spine investigation
B.3 Python joint class XML to AML parser
B.4 Python body classes XML to AML parser
B.5 Python surface geometry class XML to .dat file parser

AML source code

C.1 Body-part-class from code refinement
C.2 Meshing and analyse classes
C.3 Muscleclasses

27
28
31
33
35
37
39
40
41
42
42

47

55
95
o8
o8

61

63

67
67
69

71
71
72
74
75
79

C.4 Body-class 89
C.5 Femur scaling example 92
C.6 Thoracolumbar joint classes 93
C.7 Joint classes from gait model 104
C.8 Gait2392 body classes 108
C.9 Thoracolumbar body classes 113
C.10 Datamodel class 130
C.11 Web-surface-classes 132

10

List of Figures

2.1 Knowledge-based engineering 5t
2.2 Caption from the AML model tree 7
2.3 AML sphere superior example 9
2.4 AML inspect tool of the little-spherel 10

2.5 Components of the musculoskeletal model visualized. The bursa
and the synovium (also called synovial membrane) consist of syn-
ovial fluid. Mlustrations by Lauren Baker and Lizet Sosa (HSTE

Project) 11
2.6 Skeletal anatomy 12
2.7 Bodies in the gait2392 model, from the OpenSim navigator 13
2.8 OpenSim Scale tool and gait2392 model scaled 15
2.9 Marker trajectory. Illustrations by OpenSim 16
2.10 Definition of RBE2 from MSC Nastran user guide [8] 19

3.1 OpenSim models used in the development (Thoracolumbar and gait2392) 23

4.1 Opcat figure illustrating the file flow and processes in the develop-

ment process. The AML files are part of the :musculoskeletal-system. 28
4.2 Opcat figure illustrating the input and output to the python scripts 29
4.3 Femur example of class inheritance (blue arrow) and object tree

hierarchy (green arrow) 31
4.4 Topology view from OpenSim gait2392 model. Bodies are repre-

sented by boxes with the joint name written in between 34
4.5 Class to enable visualisation of movement in AML 36
4.6 Matlab investigation of knee-joint 37
4.7 Class inheritance and object hierarchy 38
4.8 AML graphics display of femur-scale-example 41
4.9 AML work area user interface L. 42
4.10 AML femur scaling example 44
5.1 AML model with details of the spine 48
5.2 AML model with details of the muscle 49

11

2.3

5.4

2.5
0.6
5.7
2.8

6.1

AML fine meshing of the femur and the dependent- and independent

nodes 50
Ground joint and hip joint in Fedem. A spring is added to visualize

how a muscle could look like., 51
Pelvis free joint RBE2 in Fedem 51
Muscle RBE2 in Fedem 52
The gait model without arms in Fedem 53
AML knee-joint investigation with the new joint-center 54
Heel caption from Fedem 57

12

Nomenclature

Musculoskeletal system The muscular and skeletal system
AML Adaptive Modeling Language

CAD Computer Aided Design

CAE Computer Aided Engineering

FEA Finite Element Analysis

GUI Graphical User Interface

KBE Knowledge Based Engineering

Chapter 1

Introduction

1.1 Background

Musculoskeletal modeling is a challenge because of how the muscles and the skele-
ton move and function are for the time being not fully understood. The fact that
every individual is different does not make it easier. Today’s imaging technology
makes it possible to learn more about the human body, but this is still expensive
and time-consuming.

Modeling the musculoskeletal system is similar to the modeling methodology
used in reverse engineering processes. Reverse engineering can be defined as the
process of extracting knowledge about a design in order to understand it. This is a
term used when analyzing mechanical structures or software. Because of the nature
of reverse engineering, the knowledge gained is based on capturing knowledge in
a non-destructive way, e.g. by using imaging techniques. Furthermore, the data
captured can be translated into computer-aided models.

Knowledge-Based Engineering (KBE) is used to re-use knowledge about de-
signs to generating CAD models to automate design processes. Hence, the KBE
framework is a good starting point for creating a musculoskeletal model.

The objective of this thesis is to explore the possibilities of making a generic
human muscle and bone model to be used in simulations in the software Fedem.
Simulations performed in Fedem could potentially be used to contribute to un-
derstanding of clinical problems with bone and muscle diseases, rehabilitation and
the design of medical devices such as prostheses.

In musculoskeletal modeling there are especially two domains used to carry
out such simulations: finite element modeling simulations and rigid multibody
simulations. Often there is a need to perform both types of simulations to model
the situation accurately, due to the complexity of the materials and movements.
This process can be time-consuming, because the different fields require different

software and the data are in different formats.

For this reason there is a need to bridge the gap between the two domains,
which would lead to more accurate modeling of the musculoskeletal system, and
time saved when switching between the two domains.

Current and previous work on creating such models include an NIH-funded
collaboration to make a foot model including all mass, not only muscles and bones
[1]. The aim of this research is to create a complete finite element model to use in
a full gait cycle. Other projects are demu2neck [2], which is a finite element model
of the neck.

1.2 Research questions

RQ1: Can a finite element model created in a Knowledge Based Engineering
(KBE) framework improve musculoskeletal modeling?

RQ2: How can Fedem be used to perform musculoskeletal simulations?

1.3 Related work

The work carried out on this master thesis is based on the models and documen-
tation provided by the open-source software OpenSim and the models provided by
the OpenSim community.

1.4 Structure

The scope of this master thesis is based on the assignment tasks specified by the
supervisor. After discussion with the supervisor the assignment point task number
two regarding EU projects have not been prioritized, but is briefly presented in
chapter 2 and discussed in chapter 6.

Chapter 2 presents the underlying theory of how to build a KBE system and an
AML application. Furthermore, it will cover the anatomy of the musculoskeletal
system and existing musculoskeletal modelling. Lastly, the data formats used will
be presented.

Chapter 3 is a review of the methods and tools used when developing the Adap-
tive Modeling Language (AML) application. Chapter 4 presents the development
process of the musculoskeletal program. In chapter 5 the results are presented,
while chapter 6 consists of a discussion. Chapter 7 presents the conclusions, and
in chapter 8 further work can be found.

Chapter 2

Theory

2.1 Knowledge-Based Engineering

Knowledge-based engineering is described by Technosoft as the merger between
object-oriented programming, artificial intelligence and computer aided design.

computeraided
design (CAD)

computer

artificial programming

intelligence (AI)

Figure 2.1: Knowledge-based engineering

Furthermore, KBE systems can be used automate the design process by taking
advantage of flexible geometry handling and the re-use of knowledge. Processes
such as iterations of geometry or "routine design” are examples of tasks with po-
tential for automation. Other uses are reversed engineering applications where the
geometry is defect after wear. By determining the accurate state of the geometry,
the analysis can be re-done, whereas before approximations to fit standards had
to be followed.

2.2 Adaptive Modeling Language

Adaptive modeling language (AML) is developed by Technosoft and is a knowledge-
based engineering modeling language. AML programing is based on the program-
ming language lisp.

One of the main advantages of using AML is the available methods for au-
tomating finite element modeling and mesh generation. The graphical user in-
terface makes it possible to visualize geometry modeling and create custom made
front-end to the AML applications.

The basic building-blocks when making an AML application are the use of:

e Objects
e (lasses

e Inheritance

The objects in the program are similar to what we think of as an object in the
real world, and therefore in AML objects is the representation of a real world entity.
Objects can also consist of other objects in an object /sub-object relationship. One
example of this could be a human body model where the legs could consist of bones
and muscles.

Classes can be viewed as the "template” of an object. Hence, the classes can be
reused to create new objects, with the same attribute name (state) and methods
(behavior). Each of these new objects is an instance of the class.

Methods are defined on classes and are used for the objects to send information
from one to another. Defining methods are similar to defining functions, only that
methods can only be used on classes which it is defined upon. Another method of
retrieving information about an object is using the-referencing.

The-referencing will look up the object tree for a property or an object with the
same name. In comparison the use of default functions is similar to the-referencing.
A property set as default will look up the tree for a property with the same name.
The default function is encouraged because of its many functional advantages. By
setting a property as default, generic classes can be made that enable reuse of class
properties and methods. It also makes it easier to define properties for an instance
in only one place, which makes it easier to get an overview of the code.

The-referencing has other applications, such as referencing down the object tree
instances. Hence, in this case the structures of the instances need to be known.
Whereas if methods are used, the object that is calling the method does not know
how the objects are arranged. Also, methods are more flexible to use if the code
is changed, because not every path has to be changed.

6

An example of using the-referencing to find an object underneath” the starting
point, using the lower-body as an example could look something like this (the
lower-body leg knee). A shortcut for the-referencing is the use of the /. The same
example done again would look like this: /lower-body leg knee. 1t is important to
be aware of that the brackets are built in when using the shortcut.

When the-referencing is used to find an object or property “above” the object,
it is not necessary to specify the path. Using the same example, but changing it
to defining a property in the knee but needing the lower-body property, one can
simply put /lower-body.

Model Tree

—I- = objectabe-test-class
—t = object]

¢ sub-object
¢ ohjecta
¢ objecth

Figure 2.2: Caption from the AML model tree

An example which illustrates this is the object tree in figure 2.2. The sub-
objectl can reach everything in the tree by using the standard the-referencing.
Objecta can only reach the objects on the same level, which means everything
except sub-objectl. Below is the code for the model from figure 2.2. What might
be not so intuitive is that in the properties of the initiated class objectabc-test-class
can reach the sub-objects objectl, objecta and objectb even though it is visually
underneath the object.

Listing 2.1: The-referencing example AML code.

(define—class sub—object1—class
:inherit—from (
object
)
:properties (
sub—object1—property ’sub—1la—properties
)
:subobjects (
(sub—objectl :class ’object
test2 lobjecta
)

)
)
(define—class objectl—class
:inherit—from (
object

)

:properties (
objectl—property 'la—properties

)
:subobjects (
(objectl :class ’sub—objectl—class
testl !objecta
)

)
)

(define—class objectabc—test—class
:inherit—from (
objectl—class

)

:properties (
object—a—b—list (list !objecta !objectb)
testl !objectl

)

:subobjects (
(objecta :class ’object
object—id ’a

(objectb :class ’object
object—id 'b
testl !object—a—b—list
test2 lobject—id
test3 (the object—id (:from !objecta))
test4 lobjectl
testb lobjecta

Because the-referencing will search for the first object or property with the
same name, it is important to be aware of this when writing code. The-referencing
an unwanted object or property can be avoided by making sure that the object
that is referred to has a name that cannot be mistaken or already be a default
property of the above objects.

Other built-in keywords for the-referencing are Superior and superior superior.
Superior starts the the-referencing relatively one and two levels up. This is prac-
tical in order to avoid circular dependency if built-in properties are demanded
from the same object. This could easily be avoided if different names are used.
However, to use the superior function, superior superior has to be used.

An illustration of this can be seen in the example below of tree spheres, with
id’s defined descending with the red big sphere with id 3. Figure 2.3 shows the
AML model tree and the graphics display of the system.

By using the inspect tool by right-clicking in the model tree on an object, the

8

Model Tree

=l — sphere-class
=l big-sphere
=l = middle-sphere
& litle-zpherel

Graphics Display

Figure 2.3: AML sphere superior example

properties of the objects can be seen and changed by pressing the green checked
button. This is a great tool to use when developing and debugging the code.
Figure 2.4 shows the properties of little-spherel. The test properties show the
id’s chosen when using the-referencing and the superior keyword. As can be seen,
the superior superior (AA) starts only one object up.

Listing 2.2: AML object little-spherel.

(little—spherel :class ’little—sphere—class
orientation (translate (list 100))
reference—object !middle—sphere
id 1
the—test !id
superior—test “id
superior—superior—test ~"id

As can be seen from figure 2.4 the test properties defined in the class have
taken the value of the id’s. A triple superior is needed to get the id of the red
sphere.

Another the-referencing keyword is :from. As well as the-referencing :from
also need to have brackets. The function :from is defined in the same way as the
word from, by setting the starting point, in this case the starting point of the the-
referencing. An example using the :from with the leg example is (the knee (:from
(the lower-body leg))). :from is a much simpler keyword then counting superior to

9

I Inspect Object

Object little-spherel Class: little-sphere-class
4}‘- I 1 + 'JI}' ?’ & '+' m Y |A||F‘r0perﬁes j
Property ‘F |V |D' |3=-=- |Va|ue
added-objects 0 "nil
color < Unbound =
diameter < Unbound =
display? < Unbound =
geom > < Unbound »
id 0 1
layer < Unbound =
line-type < Unbound =
line-width < Unbound =
arientation < Unbound =
origin < Unbound =
positicn = < Unbound =
psuperior-superior-test < Unbound =
psuperior-test < Unbound =
pthe-test < Unbound =
reference-coordinate-system < Unbound =
reference-ohject < Unbound =
render < Unbound =
solid? 't |
Superior-superior-superior-test 1 3
superior-superior-test 1 2
superior-test 1 1
the-test 1 1

Figure 2.4: AML inspect tool of the little-spherel

avoid the-referencing reference to the wrong object or property. :from is also used
to start the-referencing in a different object tree.

Inheritance is an important feature of the classes. A sub-class inherits the
attributes and operations of the super-class. Object should only inherit from one
class, while classes can have multiple inheritance.

2.3 Musculoskeletal anatomy

Next some general terms of human anatomy and an introduction to the bio-
mechanical properties will be presented. This is the basis for modeling the human
body and the basic terminology for the thesis.

The human bone consists of compact bone covering the surface, while on the in-
side the bones are spongy and have a marrow cavity. As a consequence, the bones’
ability to restrain various types of forces such as tension, torsion and bending is
dependent on the direction of the applied force.

10

HUSC@_ Bursa Tendon Cartilage

Ligament Synovium

Figure 2.5: Components of the musculoskeletal model visualized. The bursa and
the synovium (also called synovial membrane) consist of synovial fluid. Illustra-
tions by Lauren Baker and Lizet Sosa (HSTE project)

The bone is a biological material and will grow and change, depending on many
factors such as training, gender, age and lifestyle. Different parts of the bone will
grow depending on these factors.

Cartilages’ main functions are to allocate the pressure from the bones and make
sure the friction is small. The collagen fibers in the cartilage molecular matrices
make the cartilage able to resistant tension, while the proteoglycans (protein) and
water make the cartilage able to handle compression

The synovial fluid has the mechanical properties of making the movement of
bones on the cartilage as frictionless as possible and of absorbing shock.

The muscles are on average half of the body’s total mass [3]. The force that
the muscle can produce is dependent on the fibers in the muscles. The way the
muscle works is that in each fiber there is a contractive element called a cross-
bridge formation that is activated by an electrical potential, sent by the neural
control system.

The tendons are what connect the muscle to the bones. Thus, the tendons have
important nonlinear properties as transfer force from muscle to bone, and storage
of elastic strain energy.

Ligaments Are similar to tendons, and the main difference is that they are con-

nected to bones on both sides. The fibers in the ligaments are not as parallel
to each other as the tendons. This makes the ligaments able to handle stress in

11

several directions.

2.3.1 Skeletal anatomy

Figure 2.6 shows some of the main anatomical terms of the human body. Details
of the skull, neck, hands and toe are not included.

Skull / Neck

Clavicle Sternum

Scapula | Ribs
Humerus Thoracic
'| vertebrae
Radius |
' Lumbar
Ulna | vertebrae
™
\ \"\ .
| Pelvis
Sacrum
| Femur
Tibia
/| Tallus
- Calcaneus

Figure 2.6: Skeletal anatomy

12

2.4 Multibody system

A multibody system is a collection of rigid or deformable bodies interconnected
by kinematic joints, which undergo extensive translational and rotational displace-
ment. The dynamic equations that govern the motion of these systems are non-
linear and require in most cases numerical solutions.[4]

A multibody system bodies can be either flexible or rigid. The bodies are
considered rigid if deformations have no relevant contribution to the system.

2.4.1 OpenSim

OpenSim is a multibody open source software from the National Center for Simu-
lation in Rehabilitation Research (NCSRR). The bodies in OpenSim are modeled
as rigid bodies. It is easy to confuse the bodies in the OpenSim model with the
bone segments, partly because they are called the same as the bone in many cases.
One body is actually the whole body segment and not just the bone. This means
that more bones can be in one body. An example of this is the hand. When inves-
tigating walking for instance, there is no need to model all the joints and bones in
the hand as separate bodies. Different models have different bodies depending on
the wanted complexity of the model.

Figure 2.7 shows the bodies that are in the gait2392 model.

Navigator > |

=-() 3DGaitModel2392
S % Bodies
G ground
G pelvis
G femur_r
G tibia_r

talus_r

calen_r

toes _r

ceceeeceeee

mur_|
ibia_|
us_|

=

g g B
g8 g

Figure 2.7: Bodies in the gait2392 model, from the OpenSim navigator

13

2.5 Contact modeling

In OpenSim there are options to model contact forces, however this is not included
in the thoracolumbar or the gait 2392 model. The available methods of doing this
are using the Hunt-Crossly modelling or the elastic foundation modelling.

The Hunt-Crossly model represents the contact dynamics of a viscoelastic sys-
tem, based on Hertz’s elastic theory with a nonlinear damper. The simulations
can be done with both discrete methods and continuous methods, like the finite
element method. Example of scenario where the Hunt-Crossly modelling is used
is when simulating the ground contact force during walking, instead of using ex-
perimental ground force values. [5]

Elastic foundation contact model or also called rigid body spring model. Ex-
amples of scenarios using elastic foundation model is to find the contact pressure
in the knee joint. [6][7]

2.6 OpenSim scaling tool

The scaling done in OpenSim is based on fitting experimental marker tracking
on the subject to the virtual model. The experimental marker data input is in
a .trc (Track Row Column) file format, while the virtual markers are in a XML
marker set file called Scale_MarkerSet. In the marker set file the name of the
marker and location in parent can be found. After the virtual model is scaled
to fit experimental markers, other properties such as mass inertia, body segment
dimensions, muscle actuators and wrapping objects are also scaled based on these
scale factors.

The automatic way of finding the scale factor is to take the average distance
between the experimental and virtual markers over the time frames specified in
the .trc file. When the scale factor is found, the rest of the properties can be
scaled. The available gait2392 model with scaling data available uses 49 markers
and 300 frames. Figure 2.8 shows the scaling tool and the applied markers to the
subject01, which are scaled from the gait2392 model. The markers are visualized
by the pink dots.

2.7 OpenSim simulation tools
In OpenSim there are different tools available to simulate motion. OpenSim has
mostly focused on gait-related motion. A summary of some of the different tools

available in OpenSim will be presented next.

14

{0} Scale Tool

Settings Scale Factors Static Pose Weights

Subject Data Generic Model Data
Model name |subjectd1 Model name |subjectd1

Mass 72.6 kg Mass
Add markers from file j0dy\gait2392_Scale_MarkerSet.xml | = Marker set |39 markers

Resulting marker set |39 markers

Scale Model
Preserve mass distribution during scale
Marker data for measurements ibody\subjectd1_static.trc |

Average measurements between times 1| and 2

Adjust Model Markers
Marker data for static pose | 392_Simbody\subject01_static.trc | (5
Average markers between times 1| and
[] Coordinate data for static pose

[] Preview static pose {no marker movement)

Figure 2.8: OpenSim Scale tool and gait2392 model scaled

The Inverse Kinematics tool minimizes a sum of weighted squared errors be-
tween experimental markers and model markers by varying the joint angle, see
figure 2.9 . The output is a file containing the joint angles and translations. The
inverse kinematic tool is necessary in order to use the Static Optimization, Resid-
ual Reduction Algorithm, and Computed Muscle Control tools, which are other
simulation tools.

Inverse dynamics are using the inertia of the model to calculate the forces based
on the joint angles and Newton’s 2nd law. However, in OpenSim the geometry is
only for visualization purposes, and the mass is represented as point mass. The
mass includes the whole body segment, including muscles.

The static optimization tool is an extension of the inverse dynamics tool. It
is used to get results such as muscle activations at each time step by minimizing
the sum of squared muscle activations.

15

Figure 2.9: Marker trajectory. Illustrations by OpenSim

Forward Dynamics is used when the muscle activations are known to drive a
forward simulation to generate additional data to the analysis.

Residual Reduction Algorithm (RRA) is a tool to minimize the effect of
residuals. Residual can be described as the difference between the observed value
and the estimated value, which can come from marker data processing errors.
These errors can lead to great nonphysical forces. The RRA alters the mass center
of a subject-specific model and permits the kinematics to be more dynamically
consistent.

Computed Muscle Control (CMC) computes a set of muscle excitations based
on the motion kinematics. Hence, the computed muscle control gives a set of data
that could be used to control the muscle actuators.

2.8 OpenSim XML format and VTK formats

The OpenSim models are in the Extensible Markup Language (XML) format,
which is practical for storing data in a structural way. In the osim file the main tags
at the first level are the < BodySet > and < ForceSet >. Under < BodySet >
are all the bodies, and under < ForceSet > are all the forces.

Underneath is an example from the femur body, showing a caption of the femur
joint.

Listing 2.3: A caption of the gait2392.0sim XML file

<Body name="femur_r” >

<!——Joint that connects this body with the parent body.——>

<Joint>
<CustomJoint name="hip_r” >

16

<Spatial Transform>

<parent_body>pelvis< /parent_body>
<location_in_parent>—0.0707 —0.0661 0.0835< /location_in_parent>
<orientation_in_parent> 0 0 0</orientation_in_parent>
<location> 0 0 0</location>
<orientation> 0 0 0< /orientation>
</Joint>
</Body>

The spatial transform gives first the rotation in the tree axis and the trans-
lations in the tree axis. If the < coordinates >< /coordinates > is empty, the
default function is set as constant 0. On the other side, if coordinates are defined
< coordinates > hipflexionr < /[coordinates >, the function can be found under

< CoordinateSet > where the joint constraints are saved.

Listing 2.4: A caption of the gait2392.0sim XML file

<CoordinateSet>
<Coordinate name="hip_flexion_r” >

<!——Coordinate can describe rotational, translational, or coupled motion. Defaults to
rotational . ——>

<motion_type>rotational</motion_type>

<!——The value of this coordinate before any value has been set. Rotational coordinate
value is in radians and Translational in meters.——>

<default_value>0< /default_value>

<!——The speed value of this coordinate before any value has been set. Rotational
coordinate value is in rad/s and Translational in m/s.——>

<default_speed_value>0< /default_speed _value>

<!——The minimum and maximum values that the coordinate can range between.
Rotational coordinate range in radians and Translational in meters.——>

<range>—2.0943951 2.0943951< /range>

<!——Flag indicating whether or not the values of the coordinates should be limited to
the range, above.——>

<clamped>false</clamped>

<!——Flag indicating whether or not the values of the coordinates should be
constrained to the current (e.g. default) value, above.——>

<locked>false< /locked>

<!——1If specified, the coordinate can be prescribed by a function of time. It can be

any OpenSim Function with valid second order derivatives.——>
</Coordinate>

In the thoracolumbar spine model some of the geometry positioning is defined
under the visual object tag because the origin of the geometry is not defined as

the joint center and there is no independent joint connecting the geometry.

Listing 2.5: A caption of the gait2392.0sim XML file

<GeometrySet>
<objects>
<DisplayGeometry>

17

<!——Name of geometry file .vtp, .stl, .obj——>

<geometry_file>pisiform.vtp</geometry file>

<!——Color used to display the geometry when visible——>

<color> 1 1 1< /color>

<!——Name of texture file .jpg, .bmp——>

<!——in body transform specified as 3 rotations (rad) followed by 3 translations rX
rY 17 tx ty tz——>

<transform> —0 0 —0 —0.013388 —0.009886 —0.010593< /transform>

<!——Three scale factors for display purposes: scaleX scaleY scaleZ——>

<scale_factors> 1 1 1< /scale_factors>

<!——Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded——>

<display_preference>4< /display_preference>

<!——Display opacity between 0.0 and 1.0——>

<opacity>1< /opacity>

< /DisplayGeometry >

2.8.1 Wrapping functions and via points

In OpenSim there are tree alternative ways to represent the muscle tendon path.
What is similar for all of them is that the starting (origin) and ending (insertion)
point are fixed in the parent body. However, during movement the path of the
muscle will change.

The first and simplest method is the use of via points. These points are also
fixed to a body, but during a defined certain motion they are used to change the
path of the muscle.

Another method is the wrap points, which are constrained by principal geo-
metrical shapes that the wrap point will automatically wrap around during motion

The last method is the moving muscle points, which are used if the wrap point
is not suitable. The moving muscle points’ position is also relative to the parent
body but is defined by a function related to the motion.

In the OpenSim models there are approximately 26 and 665 moving muscle
points found under the XML tag < Conditional PathPoints >.

In the thoracolumbar here are 8 wrapping objects in the abdomen and pelvis
under the tag < wrap-object >.

2.8.2 The VTK format used in surface geometry

The Visualization Toolkit (VTK) is an open source software system for 3D com-
puter graphics, image processing, and visualization!. VTK is used to pre-process
the geometry surface of the OpenSim models. As a result the surface data is
stored in an XML format in a VTK file. The structure has three main tags under

'WTK http://www.vtk.org/

18

the header < PointData >, < Points > and < Polys >. The < PointData >
consists of all the normals of a point or the element of a polygon mesh. Next is
the < Points >, which consists of all the point coordinates of the model. Lastly
the < Polys > consists of the points that connect to an element.

2.9 Finite element method and meshing

When having a multibody system with flexible bodies, one approach is using the
finite element method to find the deformation. The method takes advantage of
finding approximations for partial differential equations on a small element in the
body. An essential part of the model is therefore dividing the geometry into small
elements called a mesh.

2.9.1 Rigid Body Elements

RBE2 is one of several rigid body elements used in MSC Nastran, used to connect
nodes, see figure 2.10.

“Dependent degrees of freedom at an
arbitrary number of GRIDS”

“Independent degrees of
freedom at one GRID”

Figure 2.10: Definition of RBE2 from MSC Nastran user guide [8]

There is no relative motion between the dependent nodes of one RBE2 which
gives it additional stiffness. Independent nodes in the RBE2 can not share depen-
dent nodes. RBE3 is a different RBE and is used to distribute applied loads and
mass in a model. Unlike the RBE2, the RBE3 does not add additional stiffness to
the model, but allows translation between the dependent nodes. [8].

19

2.10 Horizon 2020

Horizon 2020 is the biggest EU Research and Innovation programme. Over the
time frame 2014 until 2020 the program will be funding with nearly 80 billion euro.
The overall goal is to drive economic growth, create jobs and break down barriers
to contribute to collaboration between nations.

There are three main categories for calls; Excellent Science, Industrial Leader-
ship and Societal challenges. The main categories is divided into smaller topics,
where on the online “participant portal”? one can search for calls for proposals.

2Participant portal http://ec.europa.eu/research/participants/portal/desktop/en/
home.html

20

Chapter 3

Methodology

OpenSim was closely reviewed in the literature study in the project thesis prior
to the master thesis, and a work-shop in Bologna, Italy was attended to learn
more about the modeling and simulations in the software. The workshop was held
at the Rizzoli Orthopaedic Institute and led by OpenSim fellows. By attending
the workshop practical experience with using the OpenSim software and models
was achieved. Based on this it was decided to use the OpenSim models and
simulations as a benchmark of the muscular modeling and simulation. Because
of the knowledge and experience in the KBE language AML and finite element
modeling in Fedem by the supervisor, it was reasonable to combine the different
software when making the musculoskeletal model.

The focus of this thesis is on technical development of a KBE application.
Previous to the thesis work the course “Introduction to automation with KBE”
(TMM4270) was taken at NTNU. This course has been the basis and the back-
ground for developing the AML model. All development was performed on a 64-bit
computer running Microsoft Windows 10.

Human physiology and bio-mechanics are based on the project thesis[9], and
educational literature used in physiotherapy education. [3][10].

3.1 The OpenSim software

OpenSim version 3.3 software was downloaded from the SimTK web page. SimTK
is a sister site of OpenSim and is a community of hundreds of biomedical research
teams and projects. The program was downloaded and installed on the com-
puter.The program and models are well documented on the simtk-confluence web
page, and this is also the references of the OpenSim software and model’s used in
this thesis.!

!simtk-confluence http://simtk-confluence.stanford.edu:8080/dashboard.action

21

3.1.1 OpenSim models

Along with the OpenSim software it is possible to download a few models that are
maintained by the OpenSim project. The model gait2392 used in this thesis is one
of these available models.

When developing the AML models, all surface geometry from the OpenSim
model is based on the OpenSim geometry file library. This provides a good starting
point for importing the geometry to the AML body. The joints in the model are
somewhat different from each other depending on the desired complexity of the
model and the definition of the body segments. In this thesis the AML model has
been based on the surface geometry, the positioning of joints and muscle origin
and insertion point from the model gait2392 and thoracolumbar spine. Figure 3.1
shows the two models in the OpenSim graphical user interface. The green/blue
elliptical shape in figure 3.1, is part of the body abdomen, and consist mainly of
wrapping objects for the muscles.

The gait2392 model was created by Darryl Thelen (University of Wisconsin-
Madison) and Ajay Seth, Frank C. Anderson, and Scott L. Delp (Stanford Univer-
sity). The model was created to investigate gait, and is unscaled, 1.8 m tall and
has a mass of 75.16kg.

The thoracolumbar spine model is part of a project aiming to create advances
in the field of modeling the thoracolumbar spine from 2015. The model is available
for download on SimTK homepage. The full documentation of the model can be
found in the publication by Bruno et al. [11]. The skeletal anatomy is based on the
CT scan of a 25-year-old male obtained from the OpenSim geometry file library.

The arms, head and neck from the thoracolumbar model is part of the available
models from the OpenSim project. The upper extremity model is by Holzbaur et
al. [12] and the neck model by Vasvada et al. [13].

3.2 Matlab

Matlab version 7.12.0 (R2011a) was used in this thesis to investigate splitting
geometry that consist of different parts and to investigate and find the center of
the knee joint.

When investing the splines that were originally used to represent motion of
the joints in OpenSim, the built-in natural cubic spline function (cscvn) was used.
Documentation of this function can be found on Matlab’s documentation page
online. The circle-fit function by Izhak Bucher (1981) was used to find the center
for the knee joint.

22

Figure 3.1: OpenSim models used in the development (Thoracolumbar and
gait2392)

3.3 XMUL-Element Tree with Python

At the time there was unfortunately little or no documentation on xml parsing
in the reference manual available from Technosoft. Because of the easily available

23

documentation on xml parsing in Python, the xml tree extension was used to
pre-process the OpenSim xml files. Python 2.7.0 was used along with the IDLE
editor.

3.4 Adaptive Modeling Language

After taking the class “Introduction to automation with KBE” in the previous
semester, where the programming language Adaptive Modeling Language (AML)
was used, it was natural to continue using AML.

AML version 6.31 was downloaded along with the XEmacs editor used to com-
pile and interface with the running AML process. The AML/Pantran, AML/Anal-
ysis and AML/Nastran interface are not included in the standard release. Hence,
the aml-analysis-module-pack-type-3-01-06 was downloaded from Technosoft to
perform the meshing and analysis. In addition, Nastran needed to be downloaded,
and the nastran program path and the file which the nastran data would be written
to needed to be added to the logical-path-file (logical.pth).

Listing 3.1: Part of logical path file in AML directory describing Nastran paths

nastran—data 7 C:\FedemWorkspace\”
:nastran—path 7 C:\ProgramFiles\Siemens\NX8.0\NXNASTRAN\bin\”

Technosoft provides documentation for most of the features in AML in the
AMUL-Reference-Guide. Unfortunately, some classes and topics were only partly
documented, and this was often the bottleneck in the development. The AML-
Basic-Training manual covers the basic AML development and contains good ex-
amples.

3.4.1 Source code management

For the application to run properly, the files have to be compiled in the right
order, and the right classes have to be initiated in order. In this thesis there is one
musculoskeletal-system which consists of the possibility to use the geometry of the
thoracolumbar with the spine modeled in detail and one based on the gait2392.
Both geometries can be initiated by the body-mesh-analysis class.

Listing 3.2: AMI system.def file

(DEFINE—SYSTEM :Musculoskeletal—System
files (
” web_surface_class .aml”
” joint_class_gait .aml”
” joint_class .aml”
”sub_geometry _class_gait.aml”
”sub—geometry_class.aml”

24

”muscles.aml”
”body_class.aml”
”meshing—analysis.aml”

Listing 3.3: Part of logical path file in AML directory describing system path
:Musculoskeletal—System 7 C:\ AML_workspace\”

A system is defined by the system.def file and a folder containing the sources
files. To be able to compile or load the system from the editor, the path of the
system.def needs to be added to the logical path file. If the source code is changed,
the system needs to be compiled to accommodate the changes

Listing 3.4: XEmacs command line to compile system

(compile—system :My—Body—System)

3.5 Fedem

Fedem is multibody dynamics licensed software for mechanical systems. Software
version 7.0 was used in this thesis for the possible use as a simulation tool. After
the model is created in AML the .bdf files are printed. Each .bdf file contains the
elements of the body, a list of the grid points, and the RBE2s from the muscles
and joints. The bodies are currently in the thesis added manually by the add
part button. When the whole system is put together with joints either manually
in Fedem or automatically in AML, this is saved in a .fmm system file. The
documentation used in this thesis is from the reference manual available in the
software.

3.6 Meshing and boundary conditions

3.6.1 Bone meshing

In this thesis a triangular mesh was chosen with a prescribed thickness. The bone
is made up by different materials, and this simplification is meant to represent the
compact bone that is covering the surface. The purpose of the mesh generation is
to show the automatic mesh capability in AML, and further refinement is necessary
to model more realistic properties of the bone.

25

3.6.2 Boundary conditions and RBE2s

The boundary conditions in the models are the joints that connect the bodies
together. The joints in the OpenSim are mainly free joints with constraints in the
rotational range and translation. In this thesis the joints are represented in the
AML model, but due to time constraints they are not printed to be represented in
the data output. However, the rigid body elements (RBE2) that connect the joint
node to the slave nodes in the body are implemented.

26

Chapter 4

Development process

The goal of the development process of the AML application is to create a code
that can be reused to model different persons with individual measurements. To
achieve this type of reuse of knowledge, it is important that the variables related
to individual sizes can be changed without having to change the code significantly.

Another aspect when developing is to create an application that can automate
the process of modeling, simulating and analyzing musculoskeletal models.

Figure 4.1 illustrates parts of the whole development process, followed by a
more detailed elaboration of each step.

As described in the theory chapter, the bodies in the OpenSim file are indepen-
dent of the geometry files, which are only for visualization purposes. In the AML
file each body consist of rigid bone geometry. As a consequence of this, OpenSim
bodies have to be reconstructed into the desired AML-bodies. In more practical
terms, this means splitting up OpenSim bodies into AML bodies and creating new
joints for the new unconstrained bodies.

This process is easy when the geometry for these new bodies are stored in
separate data files. For example, the tibia body in OpenSim consists of the two
geometry files tibia.vtp and fibula.vtp. If, on the other hand, they are stored in
the same file such as the toe body which consists of the bofoot.vtp that contains
all the toes it is a little more complicated.

The difference in how the bodies are defined in the two systems leaves two
options. Separate the geometry files into smaller bodies and connect them with
rigid connections. Separating the geometry is tested in Matlab by separating
groups of elements that are not connected to each other. Because of the work
required and the added complexity of adding the rigid connections, this option
was not further investigated. The Matlab script can be found in the appendix B.1,
for the purpose of further work on creating a more detailed model.

Option number two is leaving the geometry “floating” in air with the intention
of finding a method in AML that can “glue” the bone part together into a more

27

gait2392.0sim thoracolumbar.osim Geometry VTF file

Musculoskeletal-system

joint-class.aml : web-surface-class.aml sub-geometry-class.aml
‘Musculoskeletal-systen|T :Musculoskeletal-system ‘Musculoskeletal-system

i
Lt

AML nastran interface
analysing and meshing

Body-part. bdf <

Fedem assemhbeling

Figure 4.1: Opcat figure illustrating the file flow and processes in the development
process. The AML files are part of the :musculoskeletal-system.

more stable rigid body.

4.1 OpenSim data pre-processing with Python

The element tree module in Python is an effective way to store hierarchical data
structures. For this reason, the module is used in this thesis by simply looping
trough the xml structure, assuming that the structure of the xml file and the
wanted information is well-known.

Listing 4.1: Python element tree loop to get OpenSim bodies and geometry files

import xml.etree.ElementTree as ET
from os import path

#input path
path_input ={

‘gait’: ' C:\ OpenSimWorkspace\Models\ Gait2392_Simbody\ gait2392_simbody.osim’,
"thoracolumbar’:’C:\ OpenSimWorkspace\Models\ Thoracolumbar_ OSIM_V1
\Thoracolumbar_Spine_With_RibCage.osim’}

#input: gait or thoracolumbar
model= "gait’

28

tree = ET.parse(path_input[model])
root = tree.getroot ()

#function that prints body name and corresponding geometry files
def geometryfiles ():
for body in root. findall (*.//Body’):
print ’ ’
print body.get('name’)
for geometry file in body.findall(’.//geometry file’):
geometry_file = geometry file.text
if geometry_file is not None:
print geometry_file

Python was mainly used for two processes, see figure4.2 .Firstly, pre-process
the data files with points and connectivity into text files formatted so that the
AML web-surface-class can use it as input. Secondly, to print the list of sub-
objects that initiates the different bodies and joints. The initiated object need to
consist of property constants that define the objects as position, orientation and
reference to local or global reference system.

CipenSim_body vtp OpenSimModel.osim

FPython Enviroment

Running geometry_class. py

part_connectivit.dat /
part_point.dat

joint-class.aml part-web-surface.aml | | sub-geometry-class.aml body-class.aml

Figure 4.2: Opcat figure illustrating the input and output to the python scripts

In AML it is practical to have more than two levels in the body hierarchy.
Mostly, because of the amount of bodies especially in the spine where there are
17 bodies. For this reason the pre-processing of the osim file bodies needed to be
printed to the aml file in a way that ensured a tree structure. With this intention
the python dictionary was practical when storing the structure of the bodies, see
Pyton script below.

Listing 4.2: Python dictionary used to create aml tree structure

#input: treestructure of bodies Thoracolumbar

29

ground=[ground’; ’sacrum’, ’ pelvis’]

lumbar=["lumbar3’, "lumbar4’, ’lumbar3’, ’lumbar2’, ’lumbarl’, 'lumbar5’]

thoracic=["thoracic12’, ’thoracicll’, ’thoracic10’, ’thoracic9’, ’thoracic8’, ’thoracic7’,
"thoracic6’, ’thoracich’, ’thoracic4’, ’thoracic3’, ’thoracic2’, ’thoracicl’]

rib=['sternum’,’rib12_R’, ’rib11_R’, ’rib10_R’, 'rib9_R’, ’'rib8 R’, ’rib7_R’, ’rib6_R’,
'rib5_R’, ’rib4_R’, ’rib3_R’, 'rib2_R’, ’rib1_R’, ’rib12_L’, ’rib11_.L’, ’rib10_L’,
‘rib9_L’, ’rib8 L7, ’rib7_L’, ’'rib6_L’, ’rib5_L’, ’rib4_L’, 'rib3_L’, ’rib2_L’,
‘ribl L’]

abd=[’Abdomen’,’Abd_L_L1’, ’Abd_L_L2’, ’Abd_L_L3’, ’Abd_L_L4’, ’Abd_L_L5’, ’Abd_R_L1’,
"’Abd R_L2’, ’Abd_R_L3’, ’Abd_R_L4’, ’Abd_R_L5’]

arm=["clavicle R’, ’scapula_R’, "humerus_R’, 'ulna_R’, 'radius_R’,’ clavicle L ’,
‘scapula_L’, "humerus_ L, 'ulna_I’, ’'radius_L’]

hand=[hand_R’, hand_L’]

headneck=["head neck’]

body _structure_thoracolumbar={"ground’:ground, 'lumbar’:lumbar,’thoracic’:thoracic,
'rib’:rib, ’abd’:abd, ’arm’:arm,’hand’:hand, headneck’:headneck }

#input: treestructure of bodies gait2392

ground=["pelvis’]

upper_body=["torso’]

feet=["talusr’, ’calenr’, ’toesr’, ’talusl’, ’calenl’, ’toes1’]
legs=["femur_r’, ’ tibia_r >, 'femur1’, ’ tibial’]

body structure_gait2392={"ground’:ground, "upper_body :upper_body, feet’:feet, ’legs’:legs }

body _structure={gait’:body_structure_gait2392,
"thoracolumbar’:body _structure_thoracolumbar }
body _structure= body_structure[model]

By creating a loop trough this structure and by creating the two functions write-
sub-geometry-class (structure, part, element-tree-root) and write-body-class(structure,
element-tree-root), the sub-geometry and body-class aml files were generated.

Since the joint-class is only two levels, the script was more straightforward.
However, all the python script used the same approach to write to the AML file,
see code below.

Listing 4.3: Python code to write AML files

def write_class (class_name, cont):
with open(path.relpath(class_name + ".aml’), ’a’) as f:
f.write(cont)
print 'Class: 7’ + part + *” written to AML file.’

write_class (’sub—geometry_class_gait’ , aml_code) #aml _code is the string created from
functions defined to fit aml classes

30

4.2 Geometry modelling in AML

In AML the tree structure hierarchy reflects the object instances and can be created
by defining sub-objects of other object. In the development process the use of
inheritance is essential for reuse in terms of properties and methods, but it is also
used to inherit sub-objects. For instance, all the body parts have characteristics
as points and connectivity describing the surface, which are inherited from the
part-web-surface-class

Classes: Subobjects:

femur-web-surface

body-part-tagging-class
legs-sub-geometry-class
Femur
Tibia EEBo o
body-class X Legs

Figure 4.3: Femur example of class inheritance (blue arrow) and object tree hier-
archy (green arrow)

Figure 4.3 visualizes how the sub-object tree hierarchy is created by initiating
the body-class. The green arrow symbolizes the object hierarchy, while the blue
arrows illustrate which classes the sub-objects inherit from. The green arrow or
the object hierarchy is never specified; it is a consequence of the inheritance from
a class with sub-objects defined. For the system to run, the classes have to be
compiled in the order femur-web-surface and down. Since there is normally only
one level of sub-object in each class, this is how the object tree is populated.

Below is a caption of the code illustrated in figure 4.3. The code show parts
of the body-class, where the legs’ sub-object is defined.

Listing 4.4: The AML body-class.

:subobjects (
(joints :class ’gait—joint—class

)

(legs :class ’(legs—sub—geometry—class)
femur_r—reference—joint (the femur_r—joint (:from "~ joints
tibia_r —reference—joint (the tibia_r —joint (:from "~ joints
femur_l—reference—joint (the femur_l—joint (:from "~ joints
tibia_l —reference—joint (the tibia_l —joint (:from "~ joints

)
)
)
)

)

The legs are now initiated along with the properties of the reference-joint,
which was defined in the joint-class. Following the legs to the legs-sub-geometry-
class, the femur sub-object is initiated, and the orientation is set according to the
joint-reference. By setting the joint-reference as (default nil), the sub-geometry-
classes can be compiled before the body-class, providing flexibility when creating
the body structure. In the leg-sub-geometry-class the other bodies in the leg are
sub-objects as well, but for simplicity they are not shown in the example. The
complete source code can be found in the appendix C.8.

Listing 4.5: The AML legs-sub-geometry-class.

(define—class legs —sub—geometry—class
:inherit—from (
object
)
:properties (
max—elem—size 0.012
min—elem—size 0.003

femur_r—reference—joint (default nil)

tibia_r —reference—joint (default nil)

femur_1—reference—joint (default nil)

tibia_l —reference—joint (default nil)
)

:subobjects (

(femur :class ’(body—part—tagging—class femur—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)
(rotate (radians—to—degrees 0) :y—axis)

(rotate (radians—to—degrees —0) :z—axis)
(translate (list 00 0)))
reference —coordinate—system "~ femur_r—reference—joint

)

The body-part-tagging-class, see listing, is a class that all bodies inherit from
to be able to do the meshing and analysis at a later point. Hence, the body-
part-tagging-class has properties necessary for the meshing that all bodies inherit.
Furthermore, the size of the mesh is part of the property tag-attribute, which is a
built-in property of the tagging-class.

32

Listing 4.6: The AML body-part-tagging.
(define—class body—part—tagging—class
:inherit—from (

tagging—object
)
:properties (
max—elem—size (default nil)
min—elem—size (default nil)
tag—dimensions '(0 1 2 3)
tag—attributes (list “~“max—elem—size ~“min—elem—size 1 0.1 0 20.0 1.0e—5)

)
)

Lastly, the femur inherits the surface from the femur-web-surface class. The
femur-web-surface inherits from the generic built-in web-surface-class. This class
creates webs from either triangular or quadrilaterals, or both. The purpose of every
object instance having its own web-surface class is simply for the reason that it
was practical when testing positioning at an early stage. To save the amount of
code writing in the future, this class could easily be made generic and the path of
the point data could be defined at the body object instance.

Listing 4.7: The AML femur-web-surface-class.

(define—class femur—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\\PythonWorkspace\ \femur_points.dat”
con—file 7”C:\\PythonWorkspace\ \femur_connectivity.dat”
cleanup? nil
method 2

)

4.3 Joint modelling

In the AML model the joints are defined independently of the bodies. Each body
has a coordinate system which the body is orientated from. The standard joint
that the body references from is the slave joint. In OpenSim the joint is positioned
in the parent body as illustrated earlier. An example from OpenSim is the femur-
joint, which is positioned in the pelvis- or ground- parent body. However, even if
the definition of the joints differs a little, the body structure is built methodically in
the same way. Start at the ground-joint at the pelvis and add bodies by referring
to the previous part. The figure 4.4 shows this topology from the OpenSim
topology view.

The different joint-classes are simply a coordinate-system-object inheriting

33

ground

v

ground_pelvis

v

pelvis
1
hip_r/ hip_I hack
v vy
femur_r femur_l| forso
v v
knee_r knee_|
' v
tibia_r fibia_l
v v
ankle_r ankle_|
v '
talus_r talus_|

v v

subtalar_r subtalar_|

' '

calcn_r calen_|
mtp_r mtp_|
toes_r toes_|

Figure 4.4: Topology view from OpenSim gait2392 model. Bodies are represented
by boxes with the joint name written in between

from the coordinate system class. The joint movement constraint properties that
are necessary for finite element analysis or dynamical simulation will be defined at
a later point. The position of the bodies in the AML graphical user interface will
be the design position of the system.

34

Even so, a user interface was created to be able to visualize the positioning of
the joints when constraining the joint angle range. This test was helpful in making
sure that the bodies and reference systems were put together correctly or in the
same way as in the OpenSim model.

Again the femur will be used as an example. The design position angles of
rotation in all directions are set as a default 0. The femur joint or the more
commonly referred to as the hip joint, is defined in OpenSim as a free joint with
rotation around the axes defined as the hip-adduction-r, hip-rotation-r and hip-
flexion-r. By creating a user interface where the angle can be changed in a range
that will illustrate the constraints on the joints, the motion can be investigated.

Listing 4.8: Creating a simpler user interface with body-class data-model-node-
mixin.
(define—class body—-class—data—model—class
:inherit—from (body—class data—model—node—mixin)
:properties (
property—objects—list
(list
"Hip joint (range —120 — 120)”
(list (the superior hip—rotation—r self) ’(automatic—apply? t)

(list (the superior hip—aduction—r self) ’(automatic—apply? t)
)
(
)
(hip—flexion—r :class ’editable—data—property—class
label ”hip—flexion—1"
formula :inherit—formula
)
(hip—rotation—r :class ’editable—data—property—class
label ”hip—rotation—r”
formula :inherit—formula
)
(hip—aduction—r :class ’editable—data—property —class
label ”hip—aduction—r1”
formula :inherit—formula

)
Figure 4.5 shows how the work would look when adding the class to the body-
class that is used. To get the input angles to be redrawn, the current model has
to be undrawn and then redrawn.

list (the superior hip—flexion—r self) ’(automatic—apply? t)

4.3.1 Knee Joint

The knee-joint is one of the more complex joints to model because the relative
motions between the two bodies are both rotational and translational. In OpenSim

35

Work Area: Body-Class-Data-Model-Class

Hip joint [rangs -120- 120]

hip-ratatian-r | 0
hip-aduction-r | 0
hip-flexian-r | 0

K.ree jaint [range -120 - 10)

knee-angle-r | 0

Arkle joint [range -30 - 30]

ankle-angle-r | 0

Subtalar joint [range -30 - 90]

subtalar-angle-r | 0

Toe joint range [range -30 - 30]

mtp-angle-r | 0

Figure 4.5: Class to enable visualisation of movement in AML

there is a spline function to draw a spline between points, see listing, where x is
the input in radians and y is the translation in meters relative to the axis.

Listing 4.9: Simmspline from gait2392.osim.

<coordinates>knee_angle 1< /coordinates>

<!——Rotation or translation axis for the transform.——>
<axis>1 0 0</axis>
<!——Transform function of the generalized coordinates used to represent the amount of
transformation along a specified axis.——>
<function>
<SimmSpline>

<x> —2.0944 —1.74533 —1.39626 —1.0472 —0.698132 —0.349066 —0.174533 0.197344
0.337395 0.490178 1.52146 2.0944< /x>
<y> —0.0032 0.00179 0.00411 0.0041 0.00212 —0.001 —0.0031 —0.005227 —0.005435
—0.005574 —0.005435 —0.00525< /y>
< /SimmSpline>
< /function>

Accordingly, the knee joint is described by such a spline. Instead of giving the
knee joint six degrees of freedom, it is reduced to only one. If the knee angle is set
as the variable giving the translation in y and x direction, the motion of the tibia
relative to the femur will follow an elliptical curve.

To investigate whether a free joint or a cam joint should be used for modeling
the knee-joint, the cscvn function is used in Matlab. The cscvn is defined as

36

a natural interpolating cubic spline, which is created by letting the interpolated
points be a type of piecewise polynomial to create a smooth curve.

Due the fact that the elliptical shape was close to a circle, a free joint was
chosen. With that in mind, the coordinates for the joint RBE2 were found by
choosing the best fitted circle in Matlab. The Matlab script can be found in the
appendix B.2. Figure 4.6 shows the results of the best fitted circle and the origin
as well as the point generated from the cscvn curve.

Knee translation spline
-DBBE T T T T 1 T T _l

i ; ; !
2 points from cscvn function < &
RBEZ cordinates for free joint o
i i 2
a4k circlefit function |
(]

=
= o
[
& 0405+ o .
;.3_' M -0.0105
= . W -0, 4051 &
5 04f .
b o
o
=
= L
= 0415F .
- o

042+ % i

Q
|

| | | ! | |
002 002 -0OMAE 0 0O -0.005 a 0.005
[m] translation in x-diection

Figure 4.6: Matlab investigation of knee-joint

4.4 Muscle modelling

Muscle modeling is possibly the most complex part of the modeling. First of all,
a model describing the force output from the muscle is needed. Furthermore, the
muscle model is dependent on input such as the length of the model muscle as well
as which muscle is activated when performing a certain motion. Because of the

37

endless possibilities of motions and muscle activations, the muscles are the input
driving force as well as the stabilizing dampers in a closed loop control system.

To start with, the main focus of this thesis is to demonstrate how a generic
muscle geometry can be implemented in AML. Next, it will be creating a class
that creates RBE2 for the muscles’ origin and insertion point. A line will be
drawn between these points, which could be the input to the force generation of
the muscle. For this to be effective, the model would need more refinement to
imitate the path that the muscle is actually taking.

Classes: Subobjects:

Muscle-point-property-class

Muscle-property-class : _ N
Insertion- Muscle-line Origin-

point point

R-hip-abd-muscle-group-class |

glut maxl r

'

Body-class Miuscles

Figure 4.7: Class inheritance and object hierarchy

In figure 4.6 the generic classes for creating the muscles are visualized. Again,
the blue arrows show the inheritance, which creates the tree structure illustrated
by green arrows.

The class muscle-point-properties-class inherits from the class point object.
This class makes a point on a body by taking in a point coordinate relative to
the reference body. Both properties are set as default nil to be initiated at a later
point.

38

Muscle-properties-class is the generic class that all the muscles in the model in-
herit from. The class has three sub-objects and muscle-line-visualization. Muscle-
line-visualization inherits from line-object class and draws a line between pointl
and point2. Insertion-point and end-point both inherit from muscle-point-properties-
class.

The code underneath show the R-hip-abd-muscle-group-class that initiate ten
of the muscles in the hip. The example shows the first muscle in the group, where
the information about the point coordinates is taken from the gait2392 model.

Listing 4.10: Parts of the AML R-hip-abd-muscle-group-class.
(define—class R—hip—abd—muscle—group—class
:inherit—from (object)
:properties (
pelvis—muscle—ref (default nil)
femur_r—muscle—ref (default nil)
tibia_r—muscle—ref (default nil)

)

:subobjects (

(glut_max1.r :class ’'muscle—properties—class
; originally 4 points defining the muscle line
insertion—point—coordinates ’(—0.1195 0.0612 0.07)
ending—point—coordinates '(—0.0277 —0.0566 0.047)
insertion—point—reference—object ~“pelvis—muscle—ref
ending—point—reference—object ~“femur_r—muscle—ref
color ’yellow

4.5 Meshing and analysis

The first step of the meshing analysis part is tagging. Tagging is essential to be
able to grab information about the nodes in the part, and is also controlling the
element size in the mesh. When performing the meshing and analysis, the class
initiated is the body-mesh-analysis. The body-mesh-analysis-class is a generic
class, where the body object is the object that gets meshed and analyzed. The
body gets meshed, and a RBE2 is created in the joint referred to as the slave joint
and master-joint. Furthermore the muscle points that “belong” to the body needs
to inherit from the RBE2 class.

An essential part of the meshing and analysis is the body-analysis-class that
inherits from the built in analysis-model-class. In this class all the nodes that
need to be added to the output file are defined. In the musculoskeletal-system the
sub-object node-set which inherits from analysis-node-set-class needs to have all
the information about the added grid points in the pre-defined property query-

39

objects-list.
(node—set :class ’analysis—node—set—class
query—objects—list (append
(list " “node—mesh—entities)
(list (get—independent—node (“body—master—RBE2)))
(list (get—independent—node (“body—slave—RBE2)))
(list (get—independent—node (“muscle—RBE2)))

)
)

The get-independent-node method gets the independent nodes from the nodes
that are not already part of the body mesh included in the node-mesh-entities.
A node-query is used to get the nodes from the tri-mesh from the body, which is
defined as the node-mesh-entities. It is important that the nodes have a coordinate
property that has the position of the object.

4.5.1 RBE2

The class inherited from to create the RBE2s is the built-in analysis-rigid-body-
element-type-1-class. All the RBE2s inherit from the created generic class called
RBE2-rigid-node-class. The node query objects need to be included to be able to
write the RBE2 to the bdf files.

(define—class RBE2—rigid—node—class
:inherit—from (analysis—rigid—body—element—type—1—class)
:properties (
independent—node—query—object (get—independent—node “self)
dependent—nodes—query—object (get—dependent—nodes “self)
dependent—degrees—of—freedom—list '(1 23 4 5 6)
create—new—independent—node? nil ;;; Node already exists in part mesh.

)
)

The methods defined on RBE2-node-properties-class can be re-used to create
a generic class, which will be initiated in the body-mesh-analysis class. Figure
4.8 shows the model tree from the body-mesh-analysis-class, where the important
sub- objects to write the bdf file are the sub-objects of the analysis object. As
explained above, the RBE2s inherit from the built-in generic analysis-rigid-body-
element- type-1-class.

To perform the analysis and for the bulk data file (bdf) describing the body
to be printed to the designated folder, the property from run-nastran@ from the
nastran-interface object has to be called.

40

Model Tree

— Body-Mezh-Analysis

+[x body
= — mesh-db
¢ mesh-information
= = tri-meszh
& nhodes-querny
¢ elementz-querny
¢ suface-elementz-quen
¢ mesh-information
& part-mesh-2d-querny
= = analysiz
+ [+ matenial-catalog
¢ node-zet
¢ Z2d-elements
¢ 2d-property-zet
-} — body-master-rbes
¢ rheZ-independent-node
¢ interface-sphere
¢ rtheZ-dependent-nodes
-} — body-glave-be2
¢ rheZ-independent-node
¢ interface-sphere
¢ rtheZ-dependent-nodes
-t — muzcle-tbe
¢ rheZ-independent-node
¢ interface-sphere
¢ rtheZ-dependent-nodes
& hastrabeinterface

Figure 4.8: AML graphics display of femur-scale-example

4.6 User interface

A simple user interface is added to gain more flexibility, without manually having
to change the values. The class used to do this is the data-model-node-mixin,
which is created to represent a node of the data model. In this application the
most important property of this class is the property-object-list, which contains
the instances that define the data model properties of the node.

A user interface made is to decide whether to use the model based on the
gait2392 or the thoracolumbar. The difference between the two models is that the
gait model has the spine modeled as one body, while the thoracolumbar spine is
based on multiple bodies with joints between them. The class data-model-node-

41

mixin in use can be seen on the work area when initiating the body-mesh-analysis
to select the body and muscle point from the model in the graphics display, see
figure 4.9. Whenever a value is changed, the green check button has to be pressed
and the model has to be re drawn to see the changes.

Work Area: Body-Mesh-Analysis

Select Muszcle Point |0rigin-p0int

Select Body Object |pelvis

VX7 B4+ XENe

Figure 4.9: AML work area user interface

4.7 Fedem system files

In Fedem the main file with information about the system is the .fmm file. This file
explains how all the bodies are connected together by joints. To have a complete
joint two triads have to be connected to the joints. In this system the triades are
the master-RBE2 and the slave-RBE2. To get an impression in how the fmm file
should look like if generated in AML in the future, the model was put together
manually with free joints.

4.8 Code refinement
Some code refinement was performed at the end of the thesis work. Due to the

time constrains, this was not translated to the whole code but tested on parts of
the code.

42

By creating tree generic classes that inherit to body-part-class, which would
be a generic class that all bodies inherit from. For example, instead of the femur
sub-object inheriting from tagging-class and femur-web-surface class, it would only
inherit from body-part class.

(define—class body—part—tagging—class
:inherit—from (
tagging—object
)
:properties (
max—elem—size (default nil)
min—elem—size (default nil)
tag—dimensions ’(0 1 2 3)
tag—attributes (list !max—elem—size !min—elem—size 1 0.1 0 20.0 1.0e—5)
)
)

(define—class body—part—websurface—class
:inherit—from (
web—surface—object

)
:properties (
cleanup? nil
method (default 2)
geometry—file—name (default (object—name “self))
nodes—file (format nil ”"a~a"a” ”C:\\PytonWorkspace\\” (write—to—string
“geometry—file—name) " _points.dat”)
con—file (format nil ”"a"a"a” 7C:\\PytonWorkspace\\” (write—to—string
“geometry—file—name) 7 _connectivity.dat”)
)

)

(define—class body—part—class
:inherit—from (
body—part—tagging—class
body—part—websurface—class

)
:properties (
body—translation—list (default ’(0 0 0))
body—rotation—list (default (0 0 0))
orientation (list
(rotate (radians—to—degrees (first “body—rotation—list)) :x—axis)
(rotate (radians—to—degrees (second “body—rotation—list)) :y—axis)
(rotate (radians—to—degrees (third “body—rotation—list)) :z—axis)
(translate “body—translation—list)

)

43

reference—coordinate—system (default nil)
slave—RBE2—joint "reference—coordinate—system
master—RBE2—joint (default nil)

As a result of this, there would no longer be any need for the web-surface- class,
which alone would shorten the code by more than 1,000 lines and make it much eas-
ier to work with. The new sub-objects inheriting from body-part-class would only
need to have the properties: body-translation-list, body-rotation-list, reference-
coordinate-system, slave-RBE2-joint and master-RBE2-joint defined. This makes
the code much easier to read and make further changes to.

Graphics Display

Figure 4.10: AML femur scaling example

Figure 4.10 illustrates how scaling of the model can be done by making a
scale- property-class inherit from the built-in scale-object. The body-class inherits
from the web-surface-class. The scale-example-class has to be initiated to see the
geometry, where the tree femur sub-objects are defined by inheriting from the

44

scale-property-class. The scale-property-class used in the illustration of the femur
scaling looks like this:

(define—class scale —property—class
:inherit—from (scale—object)
:properties (

source—object “scale—object
scale —factor (default 2.0)

)

:subobjects (
(scale—object :class ’body—part—class

)
)
)

The whole code can be found in the appendix C.5. The red femur is scaled
with a scale-factor of 4, the orange with a scale-factor of 2, while the yellow is the
original femur.

45

46

Chapter 5

Results

The objective of the work in this thesis is to create a multibody musculoskeletal-
system in AML in order to perform further simulation in Fedem. Since the primary
focus of this thesis has been on the technical development of the AML system, the
results will represent this. The result of the work carried out on this thesis is firstly
successfully transferring the geometry and joint locations of two OpenSim models.
The two models is part of the system :musculoskeletal-system created. Figure 5.1
shows the thoracolumbar spine. The geometry of this model is scaled compared
to the original gait model, hence the femur joint is located differently than in the
original gait model. From the model tree, the names of the bodies in the spine are
listed. In red are the neck bodies, the orange bodies are the thoracic bodies, while
the lumbar bodies are in yellow. All of the bodies are connected with joints.

The information about the OpenSim joints is pre-processed in Python to create
a joint-class. The joint sub-object, which can be seen in figure 5.1, inherits from
this joint-class. Even though the ribs’ geometry is modeled as one rigid body, the
rib joints can be found in the joints’ sub-objects.

One muscle group was added in the gait model. More muscles could be added
using the same generic muscle-class. Since the scaling is different in the two models,
the muscle is scaled to the gait model’s scaled pelvis. As can be seen in figure 5.2
the muscle-line is inheriting form the built line-object-class and is just a line. The
line is set to go from the origin point to the insertion point and, as can be seen in
figure 5.2, the muscle will go through the bone, which is obviously undesired if
the length of the muscle is used to calculate the muscle force.

The next feature of the model is the meshing and analysis. In figure 5.3
you can see the femur meshed. The blue points are the independent nodes in the
RBEZ2s, while the lighter blue is the dependent nodes. The number of dependent
nodes can be adjusted in the RBE2-node-properties-class.

From the figure it is also visible how the mesh refinement affects the selection
of the dependent nodes. The minimum and maximum mesh element sizes can easily

47

Model Tree Graphics Display

= |
—t = body
H- [jointz
+ [muscles
+ [feet
+[s legs
o[am
+[hand
+ > ground
= upper_body
= == headneck
¢ rotatedcere?
& cemnk
¢ cemd
¢ cemd
¢ cemd
¢ cemd
& cemnl
¢ |aw
¢ zhull
= thoracic
¢ thoracicl2_s
¢ thoracic11_s
¢ thoracic10_s
¢ thoracic9_s
¢ thoracicd_s
¢ thoracic?_s
¢ thoracicb_s
¢ thoracich_=
¢ thoracicd_s
¢ thoracicd_s
& thoracic?_s
Al Objects
=t ez umDar
¢ lumbarh
¢ lumbard
¢ lumbar3
¢ lumbar2
¢ lumbarl
+[» 1ibs
+- [mesh-db
+ = bi-mesh
¢ part-mezh-2d-queny
+ = analysiz

Figure 5.1: AML model with details of the spine

48

Model Tree

—t == body
+ [joints
= muscles
= — r-hip-abd
= alut_max1_r
& onigin-paint
& Inzertion-point
¢ muscle-line-visualization
glut_mmedl_r
glut_med2_r
glut_med3 1
glut_mind _r
glut_minZ_r
glut_min3_r
peri_r
zal_I
tr

[[

v v v v v

e
feet
legz

A

hand

ground
upper_body
mesh-db

tri-mesh
part-mesh-2d-query
analyziz

+ [+
- - [-
R

+

il vy

Figure 5.2: AML model with details of the muscle

be changed in the tagging-class or body-part-class. In the musculoskeletal system
the class that needs to get initiated is the Body-Mesh-Analysis, as can be seen in
the model tree in figure 5.2 this class is the root. This class is a generic class that
meshes the selected body. When the body is selected and meshed the independent
and dependent nodes can be evaluated.

The independent and dependent nodes can be seen in the femur joint in figure
5.3. Because the mesh elements are so small in this case, the ten closest nodes
are going to be very close to each other, causing the force from the joint to be
concentrated in one small area.

The bdf file that gets written by the body-mesh-analysis class can be imported
to Fedem by pressing the load part button and selecting the bodies. The bodies
will automatically be set in the design position as defined in the AML model. The
next step is adding the free joints in the joint center on the RBE2 and connecting
the bodies together. The appendix A.1 and A.2 contains a caption of the RBE2
bdf file and a caption of the hip joint from the fmm file.

Figure 5.4 shows the parts of the model in Fedem modeler window. The

49

Graphics Display

Figure 5.3: AML fine meshing of the femur and the dependent- and independent
nodes

different bodies are illustrated by different colors. On the left, the springs joints
and parts can be viewed. The connected joints are yellow and green when they
are connected properly, as can be seen in figure figure 5.4. The spring is also
connected properly, which can be seen from the same figure by the dependent
nodes in the attachment turning green. To be able to do simulations, the model
has to be connected to the ground. Equivalent to the OpenSim model, the pelvis
bodies and sacrum are connected to the ground.

Figure 5.5 shows the hip master RBE2. Since the element size of the mesh
is much bigger in this body, the independent nodes are spread out more evenly.
The goal, however, is to have a finer mesh but using a method that spreads out
the dependent nodes more realistically. Figure 5.6 shows the muscle RBE2 in
the Fedem modeler.

Figure 5.7 shows the full gait model as it is modelled in OpenSim except the
knee joint, which is changed to the coordinates of the knee-model investigation.
Obviously, the connection to ground with the RBE2 and connection from upper
body to ground is unrealistic compared to the thoracolumbar spine model. The

20

453 Objects [Results

E\ %Axia\ springs

P

- G loints

= QF:FFTEE joints
[1

- # Parts

[#-[1] pelvisgait
- [2] femurgait
[+-[3] tibizgait

[+~ [4] sacrumgait
[#-[5] |_pelvisgait
[6] |_femurgait
[#- || Reference planes

[ATriads

Modeler

Figure 5.4: Ground joint and hip joint in Fedem. A spring is added to visualize
how a muscle could look like.

Figure 5.5: Pelvis free joint RBE2 in Fedem

o1

Figure 5.6: Muscle RBE2 in Fedem

main focus is to show how AML can be used to mesh and create a model to use
in Fedem based on the OpenSim model.

Nevertheless, all the geometry and joints have been successfully meshed and
put together in Fedem. Fibula was not added since it has no functional joint in
the OpenSim and is only for visualization purposes. However, it could easily be
added due to the fact that it is meshed in the AML model, but no free joint is
added to connect it to the rest of the bodies, see figure 4.3 for the body and joint
structure of the gait2392 model.

Figure 5.8 shows the results of the new joint center of the knee joint, by using
the joint-class-data-model-class to change the angles in the knee joint. The figure
gives an indication of whether the new joint center have been implemented right.

To conclude, the result shows how the development of the body-structure has
been effective to create two models based on the OpenSim models. Meshing
and analysis classes have been developed to mesh the bodies and create RBE2s.
Muscle-classes have been created to show how the points defined in the XML osim
file can be transferred to the AML model, to be able to make the attachment rbe2
to the bodies. Lastly, it has been demonstrated that the model can easily be added
to Fedem, even though the system file is not automatically written.

52

Figure 5.7: The gait model without arms in Fedem

23

Model Tree Work Area: Joint-Class-Data-Model-Class Graphics Display

[joinks
Ho[» muscles
Hh[s feet
#H- [legs Hip joint [range -120 - 120)
: g ﬁ:ld hip-rotation-r |D
+[» ground hip-aduction-r |D
+- [+ upper_body
hip-lesion:1 Ell
Knee joint [range -120 - 10]
knee-angle-r |-SD
Ankle joint [range -90 - 90]
ankle-angle-r | 1]
Subtalar joint [range -90 - 90)
subtalar-angle-r | 1]
Toe joint range [range -90 - 90)
mtp-angle-r | 1]
Al Objects
vV X & B4+ XETLe
Mode

Figure 5.8: AML knee-joint investigation with the new joint-center

54

Chapter 6

Discussion

6.1 Modelling

RQ1:Can a finite element model created in a Knowledge Based Engineering (KBE)
framework improve musculoskeletal modeling?

Considering projects such as the NIH-founded finite element model of the foot
[1] and the demu2neck [2] ! founded by the 7FP (Seventh Framework Program,
European Union research and development funding program) there is a potential
for finite element method models of the musculoskeletal system. They state that
there is a need for modelling the muscle and motion interaction, as well as the
tissue and bone deformations.

In chapter 5 a finite element model of the bones and a muscle group is presented.
It is difficult to get an impression of whether this model could be the start of a
model that could be validated for simulation purposes. Nevertheless, what has
been shown is the ability of the AML language to use available surface data to
generate joints and finite element bodies. One of the challenges when performing
musculoskeletal modeling is exactly this translation. The process of changing be-
tween the OpenSim modeling software to use the results in a CAD model for finite
element methods is time-consuming.

Despite of this, finite element models of the whole body are not new. Full
body models have been created to be used in simulations such as car crashes to
investigate car safety [14]. The models are created to investigate high impact on
the body. However, muscular activity along with the joint motion is not accounted
for for in these simulations.

The most used muscle model is the hill-type model which is modeled as a spring

thttp://cordis.europa.eu/project /ren /95638, n.html

25

in parallel with a counteractive element, and in series with another spring [9]. One
of the geometry inputs of this model is the length of the muscle tendon along with
physical variables such as velocity and subject-specific variables.

In this thesis work the modelling of the positioning of the muscle’s starting and
ending points has been demonstrated in AML. The rest of the muscles are available
in the OpenSim model file. Adding them to the AML file is a matter of writing
the muscle-class in the same structure as presented in chapter 4. However, there
are some modelling issues that should be discussed before further implementation.

Firstly, the path of the muscle is important for the force generating capability
of the muscle. In OpenSim the path is modelled with via-points and a wrapping
function, as presented in chapter 2.7. The wrapping function accounts for the
movement of the muscle due to motion and other tissues. If the hill type model
is chosen a way to model the muscle path have to be found. The actual muscle
modelling needs to be investigated in terms of how the model should contribute
to the simulation. If the simulation is going to be stable, the passive muscles have
to give some kind of feedback in the simulation.

Another but much smaller issue is writing the code so that all the bodies are
inheriting from the analysis class automatically, including all the muscle points.The
muscle points that “belong” to each body need to be saved in a list in so they can
be saved as a RBE2 in the body mesh. This is necessary for the RBE2 nodes to be
included in the bdf file generated. A generic method for the body-part-class could
be created to avoid manually selecting all the muscle points, which coordinates are
fixed to the body.

The AML model should also have the ability to be scaled. In the chapter
4.8 a method for scaling the geometry was presented, which could be useful in
further development. However this scaling is not going to accommodate scaling
individual skeletal differences in the skeleton. As stated in chapter 2.3, the bones
do not grow evenly. In OpenSim the models are scaled with scale factors similar
to the scale factor used in the scaling example. Since the geometry is only used
for visualization purposes in OpenSim they do not need to account for whether
the bone geometry scaling will influence the bone properties.

One of the main advantages of using finite element bodies is the possibility to
model the joint force distributions. This is important when modeling the skeletal
to research skeletal diseases. To accommodate for this, RBE2’s have been created
to connect the joints, and for muscle attachments, see Figure 5.5 and Figure
5.6. By using the RBE2, the force on the joint from muscles will be distributed
into multiple nodes in the mesh. However, the added stiffness of the RBE2 will
force the body to hold its shape, while adding a RBES3 instead could possibly
give more realistic deformation of the joint connection. In this thesis work the
positioning of the dependent nodes has the intention of exploring methods rather

26

than representing the actual realistic pressure distribution in the joint.

Force and pressure distribution could be done by modeling the elastic tissue
in the joints, as presented in chapter 2.5. This would require more extensive
knowledge about the material, and the complex material properties would depend
upon state-of-the-art bio-mechanical tissue modeling. Another possible way of
doing this is allowing some translation in the joint type “free joint” controlled by
high stiffness spring. This simplification would be much easier to model and is the
reason why free joints are added instead of ball joints is the AML model. However,
the success of this would depend on what level of detail the model is going to be
used for.

Another issue faced with when merging the OpenSim framework with finite
element modeling is that the joints in OpenSim define the relative motion between
the bodies realistically, but do not represent the actual joint center. As a result
of this, some of the RBE2s connecting the bodies in the AML models go through
other bodies before connecting to the mesh. One example of this is in the foot of
the model where one of the joints is defined in the most distant point of the heel,
see figure 6.1.

Figure 6.1: Heel caption from Fedem

To improve the model it is needed to establish whether a more accurate joint
center representation needs to be used, or whether the OpenSim representation of
the joint center position is realistic.

57

6.2 Simulations

The second research question is as follows:
RQ2: How can Fedem be used to perform musculoskeletal simulations?

In the thesis work the possibility of performing all simulations in Fedem with-
out additional software has been investigated. Fedem is a validated software for
performing multibody dynamics simulations. The challenge when using Fedem to
carry out musculoskeletal modeling is to get the muscle output that can drive the
simulations. In OpenSim this is done by inverse kinematics, inverse dynamics and
static optimization, see chapter 2.6. In summary, these tools work by knowing
the motion from experimental input and working backwards to establish which
muscles are activated to produce the known motion.

From experience in doing OpenSim simulations, adding additional actuators in
the joints is necessary. The added to the OpenSim model to account for residuals
and additional muscle strength if the muscles cannot contribute enough. Similarly,
the added actuator in the joint will account for the passive forces such as tendons
in the model. In OpenSim there are possibilities to perform simulations with
feedback loop to account for the instabilities in the model. The ideal option would
be to model the passive forces in the model in a way that enables the tendons or
tissue to have a feedback response to the motion in order to avoid the instability.
One way of dealing with this issue could be to add some stiffness to the joints that
could resemblance the passive tissue.

One way of carrying out the inverse kinematics type simulation in Fedem is to
constrain the model and hence force it to follow the desired path. This is a major
challenge due to the large variations in possible ways of moving from one position
to another.

6.3 EU projects

Horizon2020 is the biggest EU research and innovation program. Funding can be
achieved by creating proposals in response to the proposal calls. As part of the
thesis work, some investigation has been carried out into whether there could be
any proposals that would match a potential development of an AML musculoskele-
tal model. To get a proposal approved it is important that it fits the proposal call,
but the proposed project must also have a health or economic impact for the EU.

One topic that could potentially be a good match is the “Personalised computer
models and in-silico systems for well-being” (SC1-PM-17-2017) which is a research
and innovation action call.

o8

A summary of the topic description is ”Proposals should aim at the devel-
opment of new integrative dynamic computer-models and simulation systems of
acceptable validity, with the potential to being reused, build on open service plat-
forms and with application in well-being, health and disease.” Furthermore, the
specific challenge focuses on reducing healthcare needs, by working on well-being,
prevention or rehabilitation. It is also stated in the scope of the topic that the
“proposals will focus on multi-disciplinary research in medicine, social sciences
and humanities(SSH) and information and communications technology (ICT) and
should take advantage when relevant of existing large databases”.

There are several qualities with the AML musculoskeletal system that makes it
applicable to the topic. The possibility to automate the processes associated with
CAD modelling, makes it possible to save time during the modelling process.

Based on the Norwegian population health report (Folkehelserapporten)[15]
from 2014 there are several clinical issues that could possibly benefit from more
knowledge about the musculoskeletal system.

Challenges related to the growing proportion percentage of older people result
in an increase in health issues related to old age. One example of such disease is
osteoporosis, which can cause bone fractures. A population that to a lesser degree
is in physical activity will contribute to an increase in musculoskeletal diseases in
the future. Another contributor to the social challenges is the increase of obesity
in the population, which again will cause skeletal problems.

Along with mental health, musculoskeletal diseases are the most common rea-
son for sickness and disability benefits by NAV? [16]. Even if the musculoskeletal
diseases do not often lead to death, the health and economic repercussions are
huge [17].

To have a strong proposal there should be some exemplification of how the
AML musculoskeletal system would contribute to the challenges mentioned above.
Feasible research fields could be rehabilitation, design of medical devices, ortho-
pedics and ergonomics.

One possible issue surrounding the probability of achieving funding is the open
service platform requirement, which is evidently not covered by current licenses of
the software. Hence, alternative software needs to be found, or some collaboration
plan has to be made.

2The Norwegian Labour and Welfare Administration

29

60

Chapter 7

Conclusions

A conceptual model of the musculoskeletal model has been created in AML. The
model takes advantages of the mesh analysis tools that are implemented in the
AML software. This could be a starting point for future development of muscu-
loskeletal modeling or just a showcase of the possibilities of the AML.

The model is based on the theory behind the OpenSim software and the geome-
try in the available models. Whereas some of the knowledge gained from OpenSim
has been extremely useful, other parts have not been applicable to the AML model.

A simulation framework in Fedem has been explored and discussed. No sim-
ulations tests have been carried out to validate the model for simulations, but a
Fedem model file has been created to continue the work in Fedem.

61

62

Chapter 8

Further work

Suggestions for further work are as follows: One main decision point is what muscle
model should be used for moving forward. If the hill-muscle model is chosen, it has
to be investigated how this can be represented in Fedem and it could be written
to the fmm file from the AML application.

The next step is for the AML application to write the fmm file automatically.
This is mainly an AML programing task only. All information required is saved
in the model, it just needs to be obtained by a method or a class to write the
file. The coordinates and the nodes are easily available. However, the file contains
other Fedem-specific information that it is important to get right for the file to
run in Fedem.

Scaling is an essential feature to the success of the application. If the model
is decided to be scaled the same way as in OpenSim, some research have to be
carried out to see how this will represent realistic bone properties. Furthermore,
the mesh used has to be refined. State-of-the-art bone meshing standards need to
be investigated to decide how to represent the different properties of the bone.

In AML the mesh attributes as element size could benefit from more auto-
mated mesh methods that could account for mesh refinement in sensitive areas
such as muscle origins and insertion points. The independent node should not
share the same dependent nodes, and this might be an issue where the muscle
points are laying close to each other.

The pressure distribution in the joint is an essential part of the model and thus
needs further research to create a realistic model. Tests should be conducted and
validated against existing validated models. Depending on what the model is used
for, the simplest scenario would be if the model was “good enough” without adding
additional tissues in the joint. Finding new joint centre to get a more realistic joint
and RBE2 should also be researched.

The issue of the floating geometry needs to be solved, either by creating rigid
connections between them or by representing the body geometry in a different

63

way. One option could be to add more tissue holding the bones together as seen in
the finite foot model mentioned earlier, which had most of the tissues represented.
This foot model is available to download and is in the iges format, for which AML
has classes and methods for importing.

To know the success of the AML model it would require some sort of validation.
Since the model is based on the OpenSim models, one way of starting the validation
could be to run the forward dynamics in Fedem. By using muscle activation input
computed using OpenSim in Fedem, the results should be similar to the results
from a forward dynamics simulation in OpenSim.

To be independent of other software, some alternative to inverse kinematics and
static optimization to find the muscle activation pattern should be further inves-
tigated in Fedem. The simulation output, which would be the muscle activation,
could be compared to the muscle output from the simulations in OpenSim.

Lastly, it would be an advantage if the development focused on an area to
model, possibly based on a clinical case. By doing this, one would avoid dealing
with multiple models, and it would be easier to decide upon the level of detail
necessary.

64

Bibliography

Jason P Halloran, Ahmet Erdemir, and Antonie J van den Bogert. “Adaptive
surrogate modeling for efficient coupling of musculoskeletal control and tissue
deformation models”. In: Journal of biomechanical engineering 131.1 (2009),
p. 011014.

S Howley, D Bonneau, and B Fréchede. “A framework towards personal-
isation and active muscle integration in a 3D finite-element neck model
for orthopaedic applications”. In: Computer methods in biomechanics and
biomedical engineering 17.supl (2014), pp. 74-75.

Olav Sand et al. Menneskets fysiologi. Gyldendal akademisk, 2014.

Ahmed A Shabana. Dynamics of multibody systems. Cambridge university
press, 2013.

Daniel A Jacobs and Kenneth J Waldron. “Modeling Inelastic Collisions
With the Hunt—Crossley Model Using the Energetic Coefficient of Restitu-

tion”. In: Journal of Computational and Nonlinear Dynamics 10.2 (2015),
p. 021001.

Jason P Halloran et al. “Comparison of deformable and elastic foundation
finite element simulations for predicting knee replacement mechanics”. In:
Journal of biomechanical engineering 127.5 (2005), pp. 813-818.

Benjamin J Fregly, Yanhong Bei, and Mark E Sylvester. “Experimental eval-

uation of an elastic foundation model to predict contact pressures in knee
replacements”. In: Journal of biomechanics 36.11 (2003), pp. 1659-1668.

MSC Nastran. MSC Nastran 2016 Linear Static Analysis User’s Guide. 2016.
URL: https://simcompanion.mscsoftware.com/resources/sites/MSC/
content/.

Martha Risnes. Project thesis, KBE for Human Body Modeling and Simula-
tion. 2015.

Wisnes AR. Lerebok i biomekanikk. Cappelen Damm Akademisk, 2013.

65

[11]

[12]

Alexander G Bruno, Mary L Bouxsein, and Dennis E Anderson. “Devel-
opment and validation of a musculoskeletal model of the fully articulated

thoracolumbar spine and rib cage”. In: Journal of biomechanical engineering
137.8 (2015), p. 081003.

Katherine RS Holzbaur, Wendy M Murray, and Scott L Delp. “A model of
the upper extremity for simulating musculoskeletal surgery and analyzing
neuromuscular control”. In: Annals of biomedical engineering 33.6 (2005),
pp. 829-840.

Anita N Vasavada, Siping Li, and Scott L Delp. “Influence of Muscle Mor-
phometry and Moment Arms on the Moment-Generating Capacity of Human
Neck Muscles”. In: Spine 23.4 (1998), pp. 412-422.

FS Gayzik et al. “Development of a full body CAD dataset for computational
modeling: a multi-modality approach”. In: Annals of biomedical engineering
39.10 (2011), pp. 2568-2583.

Camilla Stoltenberg. “Folkehelserapporten 2014. Helsetilstanden i Norge”.
In: (2015), p. 270. URL: http://hdl.handle.net/11250/277374.

NAV. Legemeldte sykefraverstilfeller 4 kv 2005-2014. Diagnose og kjonn.
Antall. URL: https://www.nav.no/no/NAV+og+samfunn/Statistikk/
Sykefravar+-+statistikk/Sykefravar.

Even Leerum et al. “Et muskel-og skjelettregnskap”. In: Forekomst og kost-
nader knyttet til skader, sykdommer og plager i muskel-og skjelettsystemet
[A Musculosceletal Accounting. Prevalence and Expenses Associated with In-
jguries, Diseases and Ailments of the Musculoskeletal System/ (2013).

66

Appendix A
Fedem files

A.1 Fedem .fmm file

Listing A.1: Caption of femur link and free joint from .fmm Fedem file
LINK

BASE_FTL_FILE = ”femurgait.ftl”’;

BASE_ID = 22;

BUOYANCY = false;

B_MATRIX_FILE = "femurgait_B.fmx”;
CACHED_CHECK_SUM = 1189717222 17902;
CENTER_OF_GRAVITY =

CART_X_Y_Z —0.06512261 —0.27253481 0.10048375
EUL_Z_Y _X 0.00000000 —0.00000000 0.00000000;
CENTER_OF_GRAVITY_POS_REF = 2 FcLINK;
CENTER_OF_GRAVITY_ROT_REF = 2 FcLINK;
COLOR =01 1;

CONDENSE_OUT_COG = false;

COORDINATE SYSTEM =

1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 1.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000;
DESCR = ”femurgait”;
EXPAND_MODE_SHAPES = true;
E_MATRIX FILE = ”femurgait_E.fmx”;
FACTORIZE_MASS_-MX_EIGENSOLV = true;
GEN_PART _STIFF_TYPE = DEFAULT_RIGID;
GEN_ROT_STIFF = 1000000000;
GEN_TRANS_STIFF = 1000000000;

G_MATRIX FILE = ”femurgait_G.fmx”;

ID = 2;

IMPORTED_REDUCED_MATRICES = false;
INERTIA_REFERENCE = POS_CG_ROT_CS;

67

LINE.COLOR =11 1;

LINK_CENTRIP_CORRECTION = MODEL_DEFAULT;

LINK_CS_POS_ALGORITHM = MODEL_DEFAULT;

LINK_RSD = <”femurgait”,1,” fedem_reducer.fco”,” fedem_reducer.fop”,

”fedem_reducer.res”,” femurgait. ft1 ”,” femurgait_1. frs”,” femurgait_B.fmx”,

”femurgait_E.fmx”,” femurgait_G.fmx”,” femurgait_M.fmx” ,” femurgait_S.fmx”,

”femurgait_SAM.fsm” >;

LOCATION3D_DATA = CART X_Y_Z EUL_Z_.Y X,

L_MATRIX_FILE = "femurgait_L.fmx”;

MASS = 0.00146718069806;

MASS_INERTTA = 3.68619832412e—05 2.13504724978e—06 3.67336836719¢—05
1.77639644289e¢—06 1.17176608381e—07 —2.03741157074e—06;

MASS_PROP_DAMP = 0;

MASS_SCALE = 1;

MESH_QUALITY = 2;

MESH_TYPE = FULL;

MINIMUM_MESH_SIZE = 0;

MODEL_TYPE = OFF;

M_MATRIX_FILE = "femurgait_M.fmx”;

NUM_EIGVALS_CALC = 0;

NUM_GEN_MODES = 12;

ORIGINAL FE _FILE = "nastran—interface\femurgait.bdf”’;

OUTLINE_ANGLE_THRESHOLD = 0.785398163397;

OVERRIDE_LINK_CHECKSUM = false;

POLYS_ON_POINTS_OFF = true;

RAM_USAGE_LEVEL = FULL_FE;

RECOVERY_MATRIX_SAVE_PRECISION = DOUBLE_PRECISION;

REDUCED_FTL_FILE = "femurgait.ft]”;

SAM _DATA FILE = ”femurgait_SAM.fsm”;

SHININESS = 0.8;

STIFFNESS_SCALE = 1;

STIF_PROP_DAMP = 0;

SUPPRESS_IN_SOLVER = false;

S_MATRIX_FILE = ”femurgait_S.fmx”;

TOL_EIGENVAL = 1e—08;

TOL_FACTORIZE = le—12;

TRANSPARENCY = 0;

USE_CONSISTENT _MASS_MATRIX = false;

USE_EXTERNAL_RESULT_FILE = false;

USE_GENERIC_DATA = false;

USE_MASS_CALCULATION = true;

VISUALIZE3D = false;

}

TRIAD

{

BASE_ID = 25;

COORDINATE_SYSTEM =

1.00000000 0.00000000 0.00000000 —0.07070000

68

0.00000000 1.00000000 0.00000000 —0.06610000
0.00000000 0.00000000 1.00000000 0.08350000;
FE_NODE_NO = 777;

ID = 1;

LOCAL_DIRECTIONS = GLOBAL;
LOCATION3D_DATA = CART X_Y.Z EUL_Z_Y_X;
NDOFS = 6;

OWNER_LINK = 2;

}

FREE_JOINT

{

BASE_ID = 36;

COORDINATE_SYSTEM =

1.00000000 0.00000000 0.00000000 —0.07070000
0.00000000 1.00000000 0.00000000 —0.06610000
0.00000000 0.00000000 1.00000000 0.08350000;
FRICTION_DOF = 0;

ID = 1;

LOCATION3D_DATA = CART X_Y.Z EUL_Z_.Y X;
MASTER_TRIAD = 1;
MOVE_MASTER_TRIAD_ALONG = true;
MOVE_SLAVE_TRIAD_ALONG = false;
ROT_FORMULATION = FOLLOWER_AXIS;
ROT_SEQUENCE = ZYX;
ROT_SPRING_CPL = NONE;

SLAVE_TRIAD = 2;

TRAN_SPRING_CPL = NONE;
VAR_QUADRANTS =00 0;

X_ROT_STATUS = FIXED;
X_TRANS_STATUS = FIXED;
Y_ROT_STATUS = FIXED;
Y_TRANS_STATUS = FIXED;
Z_ROT_STATUS = FREE;
Z_TRANS_STATUS = FIXED;

}
A.2 Femur fedem .bdf file

Listing A.2: Caption of RBE2 in the femur .bdf file

GRIDx* 778 —0.0965 —0.0719
* 0.1362

$ Multipoint Constraints

RBE2,1,776,123456,386,362,387,766 411,

760,765,361,385,412

$ Multipoint Constraints

RBE2,2,777,123456,109,104,113,105,110,

108,88,114,100,106

69

$ Multipoint Constraints
RBE2,3,778,123456,478,485,230,231,484,
474,208,207,248,471

70

Appendix B

Matlab and python scripts

B.1 Matlab script for body seperation

Listing B.1: Matlab script for separating bodies in one vtp-file. The script can be
further developed by separating the elements with different body number (delnr)
and print this to new files.

fileID = fopen(’foot_connectivity .dat’);

C = textscan(fileID, %f32 %£32 %132 %£32’);
fclose (fileID);

celldisp (C);

en=C{1};

to=C{2};

tre=C{3};

fire =C{4};

mat=zeros(length(en),1); %matrix investigated to find witch elements that belongs to witch
body.

delnr=1;

for i=1:length(en);
element=[en(i)+1,t0(1)+1,tre(i)+1, fire (i)+1];

for j=1:4;
if isnan(element(j))==0;
if mat(element(j)) ==0;
mat(element(j))= delnr;
else
delnr=mat(element(j));
if isnan(en(i))==0;
mat(en(i)+1)=delnr;

71

end
if isnan(to(i))==0;
mat(to(i)+1)=delnr;
end
if isnan(tre(i))==0;
mat(tre(i)+1)=delnr;
end
if isnan(fire (i))==0;
mat(fire(i)+1)=delnr;
end
end
end
end
delnr=delnr+1;
end

B.2 Matlab script for spine investigation

x_spline_points =[—2.0944 —1.74533 —1.39626 —1.0472 —0.698132 —0.349066 —0.174533
0.197344 0.337395 0.490178 1.52146 2.0944;—0.0032 0.00179 0.00411 0.0041 0.00212
—0.001 —0.0031 —0.005227 —0.005435 —0.005574 —0.005435 —0.00525];

y-spline_points =[—2.0944 —1.22173 —0.523599 —0.349066 —0.174533 0.159149 2.0944;
—0.4226 —0.4082 —0.399 —0.3976 —0.3966 —0.395264 —0.396];

Ycurvex=fnplt(cscvn(x_spline_points));
Y%curvey=tnplt(cscvn(y_spline_points));
%plot(curvex(2,:),curvex (2,:) ,’0’)
Y%axis equal

steg=240;
dx=4.5742/steg;
x=0:dx:(stegxdx);
fy=cscvn(y_spline_points);
ypoints=fnval(fy,x);

dx=6.5193/steg;
x=0:dx:(stegxdx);
fx=cscvn(x_spline_points);
xpoints=fnval(fx,x);

rad=—(2/3)xpi:(pi/18):(pi/18);
kordinater=[J;

=1

for i=1:steg;

72

if j==15;
break;

elseif abs(xpoints(1,1)—rad(j))<0.009;
kordinater (1,j)= rad(j);
kordinater (2, j)= xpoints(2,i);
J=+L
end
end

=1

for i=1:steg;
if j==15;
break;

elseif abs(ypoints(1,i)—rad(j))<0.009;
kordinater (3,)= ypoints(2,i);
=it
end
end

i=1;
%for investigation of knee angle change vs. change of angle
for j=2:14;
deltax= kordinater(2,j)—kordinater(2,(j—1));
deltay=Xkordinater(3,j) —kordinater(3,(j—1));
hyp=((deltax) "2+ (deltay)"2)"0.5;
deltavinkel =acos(deltax/hyp);
kordinater (4,)= deltavinkelx(180/pi);

end

=L
for j=3:14

kordinater (5, j)=(kordinater(4,j) — kordinater(4,j—1));
end

plot (kordinater (2,:) ,kordinater (3,:) , 0”)
axis equal
hold on

x=kordinater(2,:); y=kordinater(3,:);
% circlefit function

[xc,yc,R,a] = circfit (x,y);

plot(xc,yc, g*’)
hold on

73

theta = linspace(0,2*pi);
x = Rxcos(theta) + xc;
y = Rasin(theta) + yc;
plot(x,y,’¢”)

title (’Knee translation spline’)
xlabel (’ [m] translation in x—diection’)
ylabel(’ [m] translation in y—direction’)

% file printing in case of cam joint use

%fileID = fopen(’kordinater.txt ’,” w’);

%for j=1:14;

Y% fprintf(fileID ,"%6.2f %12.8f %12.8f\r\n’,kordinater(1,j) ,kordinater (2, j),kordinater(3,j));
Y%end

Yofclose(fileID) ;

%fileID = fopen(’globalekordinater.txt ’)” w’);
ofor j=1:14;
%fprintf(fileID '%6.2f %12.8f %12.8f
%12.8f\r\n’ kordinater(1,j) ,kordinater(2,j)—0.0707 kordinater(3,j)—0.0661,0.0835);
Y%end
%fclose(fileID) ;

B.3 Python joint class XML to AML parser

import xml.etree.ElementTree as ET
from os import path

#input path
path_input ={

‘gait’: ?C:\ OpenSimWorkspace\Models\ Gait2392_Simbody\ gait2392_simbody.osim’,
"thoracolumbar’’C:\ OpenSimWorkspace\Models\ Thoracolumbar_ OSIM_V1
\Thoracolumbar_Spine_With_RibCage.osim’}

#input: gait or thoracolumbar
model= "gait’

tree = ET.parse(path_input[model])
root = tree.getroot ()

def write_class (class_name, cont):
with open(path.relpath(class name + ’.aml’), 'w’) as f:
f.write(cont)
print ’Class: 7’ + class_.name + 7 written to AML file.’
return ’'done’

74

aml_header = ’(in—package :aml)\n\n’

joint_class = ”(ground—joint :class ’coordinate—system—class\n” +\
Torigin (list 00 0)\n’ +\
N\n\n’

for body in root. findall (*.//Body’):
for location_in_parent in body.findall(’.//location_in_parent ’):
for orientation_in_parent in body.findall(’.// orientation in_parent "):
for parent_body in body.findall(’.//parent_body’):

X, y, z =orientation_in_parent.text. split ()

joint_class += (" 4+ body.attrib[’'name’] + '—joint :class
\’coordinate—system—class\n’ + \

”orientation (list (rotate (radians—to—degrees” + x + 7) :x—axis)(rotate
(radians—to—degrees 7 + y + 7) :y—axis)(rotate (radians—to—degrees ”
+ z + 7) iz—axis)(translate (list 7 + location_in_parent.text + ”)))\n”
+\

'reference —coordinate—system ~ "’ + parent_body.text + '—joint \n’+\

"display? " “display—coord—systems?\n’ +\

"length ““coordinate—system—length\n’ +\

\n\n’

class_definition =’(define—class joint —class\n’ + \
“inherit—from (\n’ + \
‘object\n’ + \
T+ \
":properties (\n’ + \
"display —coord—systems? (default nil)\n’ + \
'coordinate—system—length 0.1\n’ + \
DAL
“:subobjects (\n’ + \
joint_class + \

DAL

bl))

aml_code = aml_header + \
class_definition

write_class (7 joint_class_gait 7, aml_code)

B.4 Python body classes XML to AML parser

import xml.etree.ElementTree as ET
from os import path

#input path
path_input ={

75

‘gait’:’C:\ OpenSimWorkspace\Models\ Gait2392_Simbody\ gait2392_simbody.osim’,
"thoracolumbar’:’C:\ OpenSim Workspace\Models\ Thoracolumbar_ OSIM_V1
\Thoracolumbar_Spine_With_RibCage.osim’}

#input: gait or thoracolumbar
model= ’gait’

tree = ET.parse(path_input[model])
root = tree.getroot()

#functions to help making body_structure
def getbodies():
geometry_list_helper =]
for body in root. findall (’.//Body’):
geometry_list_helper .append(body.get('name’))
return geometry _list_helper

#function that prints body name and corresponding geometry files
def geometryfiles ():
for body in root. findall (’.//Body’):
print ’ ’
print body.get('name’)
for geometry file in body.findall(’.//geometry file’):
geometry_file = geometry _file.text
if geometry_file is not None:
print geometry _file

#input: treestructure of bodies Thoracolumbar

ground=["ground’, ’sacrum’, ’ pelvis’]

lumbar=[lumbar3’, 'lumbar4’, "lumbar3’, ’lumbar2’, ’lumbarl’, 'lumbar5’]

thoracic=["thoracic12’, ’thoracicll’, ’thoracicl0’, ’thoracic9’, ’thoracic8’, ’thoracic7’,
"thoracic6’, ’thoracich’, ’thoracic4’, ’thoracic3’, ’thoracic2’, ’thoracicl’]

rib=['sternum’,’rib12_R’, ’rib11_R’, ’rib10_R’, ’'rib9_R’, ’'rib8 R’, ’rib7_R’, ’rib6_R’,
‘rib5_R’, ’rib4_R’, ’rib3_R’, ’'rib2_R’, ’rib1_R’, ’rib12_L°, ’rib11_.L’, ’rib10_L’,
'rib9_ L7, ’rib8 L’, ’rib7_L’, ’rib6_L’, ’rib5_L’, ’rib4 L’, ’'rib3_L’, ’rib2_L’,
'1ibl.L"]

abd=[’Abdomen’,’Abd_L_L1’, ’Abd_L_L2’, ’Abd_L_L3’, ’Abd_L_L4’, ’Abd_L_L5’, "Abd_R_L1’,
"’Abd R_12’, ’Abd R _L3’, ’Abd_R_L4’, ’Abd_R_L5’]

arm=["clavicle_R’, ’scapula_R’, "humerus_R’, 'ulna_R’, 'radius_R’,’ clavicle_L ’,
’scapula_L’, "humerus_L’, 'ulna_I’, ’'radius_L’]

hand=[hand_R’, ’hand_L.’]

headneck=["head neck’]

body _structure_thoracolumbar={"ground’:ground, "lumbar’:lumbar, thoracic’:thoracic,
‘rib’:rib, ’abd’:abd, ’arm’:arm,’hand’:hand, headneck’:headneck }

#input: treestructure of bodies gait2392

ground=['pelvis’]
upper_body=["torso’|

76

feet=["talusr’, ’calenr’, "toesr’, ’talus1’, ’calenl’, ’toesl’]
legs=['femur_r’, ’tibiar’, 'femurl’, ’ tibia_l’]

body _structure_gait2392={"ground’:ground, "upper_body’:upper_body, feet’:feet, ’legs’:legs }

body_structure={’gait’:body_structure_gait2392,
"thoracolumbar’:body_structure_thoracolumbar }
body _structure= body_structure[model]

#function for writing sub—geometry—class
def write_sub_geometry_class(structure, part, root):

def write_class (class_name, cont):
with open(path.relpath(class name + ".aml’), 'a’) as f:
f.write(cont)
print ’Class: 7’ + part + 77 written to AML file.’

sub_geometry_class=" "
reference_object_list =" 7
for body in root. findall (*.//Body’):
if body.get('name’) in structure [part |:
reference_object_list +="" + body.attrib['name’] + ’—reference—joint (default
nil)\n’
for DisplayGeometry in body.findall(’.//DisplayGeometry’):
for geometry file in DisplayGeometry.findall(’.//geometry file”):
geometry_file = geometry _file.text
if geometry file is not None:
geometry_file= geometry_file.replace(”.vtp”,”” 1)
for transform in DisplayGeometry.findall(’.//transform’):
rX, Iy, 7z, X, y, z =transform.text.split ()
sub_geometry_class += 7 ("7 + geometry_file + 7 :class = 7 +
geometry_file + 7 —web—surface \n” + \
"orientation (list (rotate (radians—to—degrees’ + rx +)
:x—axis)(rotate (radians—to—degrees ’ + ry + ')
:y—axis)(rotate (radians—to—degrees ’ + rz +’)
:iz—axis)(translate (list '+ x +" '+ y 4+ +z+'))) \n’ + \
"reference —coordinate—system "’ + body.attrib['name’] +
'—reference—joint \n’ +\

)\’

class_definition = ’(define—class '+ part + —sub—geometry—class \n’ + \
“:dnherit—from (\n’ + \
"object\n" + \
Yo' +\
":properties (\n’ + \
reference_object_list +\
Yo' +\
“:subobjects (\n’ + \
sub_geometry_class + \

7

IR
DIVS

aml_code = class_definition

write_class (’sub—geometry_class_gait’ , aml_code) #aml_code is the string created from
functions defined to fit aml classes

#function for writing body—class
def write_body_class(structure, root):

def write_class (class_name, cont):
with open(path.relpath(class name + .aml’), 'a’) as f:
f.write(cont)
print ’Class: body—class written to AML file.’

class_definition = ’(define—class body—class \n’ + \
“:inherit—from (\n’ + \
‘object\n’ + \
T+
":properties (\n’ + \
N +\
“:subobjects (\n’ +\
7(joints : class ’joint —class \n” +\

DIV

aml_code = class_definition

write_class (’body_class_gait’, aml_code)
geometry list =77
for part in structure:

geometry_list = ”(” + part + 7 :class

reference_object_list =" "

for body in root. findall (*.//Body’):

if body.get('name’) in structure [part |:
reference_object list +="" + body.attrib['name’] + ’—reference—joint (the
" + body.attrib['name’] 4+ '—joint (:from "~ joints))\n’

)

7 + part +” —sub—geometry—class \n”

class_definition = geometry_list +\
reference_object_list +\

N

aml_code = class_definition

78

write_class (’body_class_gait’, aml_code)

#write to file . Remeber to comment out if you dont want to keep writing to file
write_body_class(body _structure, root)

#for body_part in body_structure:
#write_sub_geometry_class(body_structure, body_part, root)

B.5 Python surface geometry class XML to .dat
file parser

import xml.etree.ElementTree as ET
from os import path

#C:\ OpenSimWorkspace\Models\ Gait2392_Simbody\ gait2392_simbody.osim
#C:\ OpenSimWorkspace\Models\ Thoracolumbar_ OSIM_V1\
#Thoracolumbar_Spine_With_RibCage.osim

tree = ET.parse(’C:\OpenSimWorkspace\Models
\Thoracolumbar_OSIM_V1\ Thoracolumbar_Spine_With_RibCage.osim’)
root = tree.getroot ()

Print to shell

for body in root. findall (*.//Body’):
print ’ ’
print body.get(’name’)
for geometry_file in body.findall(’.//geometry_file”):
geometry_file = geometry _file. text
print geometry_file

Write to AML file (first level : Body parts)

def write_class (class_name, cont):
with open(path.relpath(class_.name + ".aml’), ’a’) as f:
f.write(cont)
print 'Class: 7’ + class.name + ' written to AML file.’
return ’'done’

aml_header = ’(in—package :aml)\n\n’

body_web_surface_class="

79

for body in root. findall (*.//Body’):
for geometry_file in body.findall(’.//geometry file’):
geometry_file = geometry _file.text
if geometry_file is not None:
geometry_file= geometry _file.replace(”.vtp”,”” 1)
body_web_surface_class += ’(define—class '+ geometry_file + '—web—surface \n’
+\
":inherit—from(web—surface—object) \n’ +\
":properties (\n’ +\
r’nodes—file ”C:\\PytonWorkspace\\” + geometry file +’_points.dat” \n’ +\
r’con—file ”C:\\PytonWorkspace\\’ + geometry_file +’_connectivity.dat”
\n’
‘cleanup? nil \n’ +\
‘method 2 \n’ +\
N\
Y\n\n’

aml_code = aml_header + \

body_web_surface_class
write_class (’ web_surface_class’, aml_code)

80

Appendix C
AML source code

C.1 Body-part-class from code refinement

Listing C.1: Code refinement classes of the body-part-class

(define—class body—part—tagging—class
:inherit—from (
tagging—object
)

:properties (
max—elem—size (default nil)
min—elem—size (default nil)
tag—dimensions ’(0 1 2 3)
tag—attributes (list "~ “max—elem—size ~“min—elem—size 1 0.1 0 20.0 1.0e—5)
)
)

(define—class body—part—websurface—class
:inherit—from (
web—surface—object

)
:properties (
cleanup? nil
method (default 2)
geometry—file—name (default (object—name “self))
nodes—file (format nil ”“a"a"a” ”C:\\PytonWorkspace\\” (write—to—string
“geometry—file—name) ”_points.dat”)
con—file (format nil ”"a"a"a” ”C:\\PytonWorkspace\\” (write—to—string
“geometry—file—name) " _connectivity.dat”)

81

(define—class body—part—class

:inherit—from (
body—part—tagging—class
body—part—websurface—class

)

:properties (
body—translation—list (default ’(0 0 0))
body—rotation—list (default (0 0 0))
orientation (list

(rotate (radians—to—degrees (first “body—rotation—list)) :x—axis)
(rotate (radians—to—degrees (second “body—rotation—list)) :y—axis)
(rotate (radians—to—degrees (third “body—rotation—list)) :z—axis)
(translate “body—translation—list)

)
)
)

(define—class arm—sub—geometry—class
:inherit—from (
object
)

:properties (
clavicle_R—reference—joint (default nil)
scapula_R—reference—joint (default nil)
humerus_R—reference—joint (default nil)
ulna_R—reference—joint (default nil)
radius_R—reference—joint (default nil)
clavicle_L—reference—joint (default nil)
scapula_L—reference—joint (default nil)
humerus_L—reference—joint (default nil)
ulna_L—reference—joint (default nil)
radius_L—reference—joint (default nil)

)

:subobjects (
(clavicle :class ’body—part—class

reference—coordinate—system "~

)

(scapula :class ’body—part—class
reference—coordinate—system "~
)

(humerus :class "body—part—class
reference—coordinate—system ~“humerus_R—reference—joint
)

clavicle_R—reference—joint

scapula_R—reference—joint

82

C.2 Meshing and analyse classes

Listing C.2: Classes for initiating the meshing and analysis

(define—class RBE2—node—properties—class

:inherit—from (object)

:properties (
RBE2—origin (default nil)
tri—mesh—entities (the surface—elements—query (:from “tri—mesh))
node—mesh—entities (the nodes—query (:from “tri—mesh))

)

:subobjects (
(RBE2—independent—node :class ’(mesh—node—class object)

mesh—database—object " “mesh—db

color "blue

line—width 10

coordinates (first (the position (:from “~"RBE2—origin)))

)

(interface—sphere :class ’sphere—object
diameter 0.01
reference—object "~ "RBE2—origin

)

(RBE2—dependent—nodes :class 'mesh—query—nodes—from—interface—class ;;; <——
INTERFACE PLANE

mesh—database—object ““mesh—db

interface—object " “interface—sphere

tolerance 10000 ;; Max allowable distance from plane to
nodes...

quantity 10 ;; —> get all nodes within tolerance

subset—mesh—query—object—list (list ~"tri—mesh—entities)

color "cyan

line—width 6

)
)
)

(define—method get—independent—node RBE2—node—properties—class()
'RBE2—independent—node
)

(define—method get—dependent—nodes RBE2—node—properties—class()
'RBE2—dependent—nodes
)

(define—class RBE2—rigid—node—class
:inherit—from (analysis—rigid—body—element—type—1—class)
:properties (
independent—node—query—object (get—independent—node “self)

83

dependent—nodes—query—object (get—dependent—nodes “self)
dependent—degrees—of—freedom—list '(1 23 4 5 6)
create—new—independent—node? nil ;;; Node already exists in part mesh.
)
:subobjects (
)
)

(define—class body—analysis—class

:inherit—from (analysis—model—class)

:properties (
property—set—objects—list (list “2D—property—set)
mesh—model—object (default nil)
analysis—type (default nil)
materials—list (list ’steel)
node—set—objects—list (list “node—set)
element—set—2d—objects—list (list “2d—elements)
rigid—body—element—objects—list (list “body—slave—RBE2 “body—master—RBE2

“muscle—RBE2) ; "body—master—RBE2 “muscle—RBE2)

material—catalog—object “material—catalog

selected—body (default nil)
node—mesh—entities (default nil)
)
:subobjects (
(material—catalog :class ’material—catalog—class
)
(node—set :class ’analysis—node—set—class
test (get—independent—node—coordinates (*“mesh—model—object))
testb (get—independent—muscle—node—coordinates
(get—muscle—mesh—model—object ~“mesh—model—object))
query—objects—list (append
(list "~ "node—mesh—entities)
(list (get—independent—node (“body—master—RBE2))) ;uncomment if body do
not have master joint
(list (get—independent—node (“body—slave—RBE2)))
(list (get—independent—node ("muscle—RBE2))) ;uncomment if body do not
have muscle point
)

)

(2d—elements :class ’analysis—element—set—2d—type—1—class
query—objects—list (list " “tri—mesh—entities)
property—set—object ~"2D—property—set

(2D—property—set :class ’analysis—property —set—2d —type—1—class
material—catalog—object " “material—catalog
material —name ” Steel”
thickness 0.1

84

)
(body—master—RBE2 :class '(RBE2—node—properties—class RBE2—rigid—node—class)

;uncomment if body do not have master joint
RBE2—origin " “master—joint—reference—object
)
(body—slave—RBE2 :class ’(RBE2—node—properties—class RBE2—rigid—node—class)
RBE2—origin " “slave—joint—reference—object
)
(muscle—RBE2 :class ’(RBE2—node—properties—class RBE2—rigid—node—class)
;uncomment if body do not have muscle point
RBE2—origin " “selected—muscle
)
(nastran—interface :class ’nastran—analysis—class
analysis—model—object “superior
body—name (format nil 7" { a"a"}” (list (append (object—name
" “selected—body))’gait.bdf))
nastran—file—name “body—name
nastran—version (nth 2 ’(:nei—nastran :msc—nastran :nx—nastran))

)

(define—method my—object—selection—method body—part—tagging—class ()
self ;: returns the object itself

)

(define—method my—muscle—point—selection—method muscle—point—properties—class ()
self ;; returns the object itself
)
;5 This is the class where the object selection is needed
(define—class object—selection—class
:inherit—from(data—model—node—mixin)
:properties (
(selected—body :class ’object—selection—property —class
label ”Select Body Object”
formula nil
object—selection—method 'my—object—selection—method
)
(selected—muscle :class ’object—selection—property—class
label ” Select Muscle Point”
allowed —classes—list ’muscle—point—properties—class
formula nil
object—selection—method 'my—muscle—point—selection—method

)
)
)

(define—class body—mesh—analysis
:inherit—from (object—selection—class)

85

:properties (
selected—body (default (the model—manager body—mesh—analysis body ground pelvis
)
selected—muscle (default (the model—manager body—mesh—analysis body muscles
r—hip—abd glut_med2_r origin—point))
slave—joint—reference—object (the slave—RBE2—joint (:from “selected—body))
master—joint—reference—object (the master—RBE2—joint (:from “selected—body))

tri—mesh—entities (the surface—elements—query (:from “tri—mesh))
node—mesh—entities (the nodes—query (:from “tri—mesh))

)

:subobjects (
(body :class 'body—class

(mesh—db :class 'mesh—database—class

—~—

tri—mesh :class ’paver—mesh—class
element—shape :tri
mesh—database—object ~“mesh—db
object—to—mesh " “selected—body
color ’white
)
(part—mesh—2d—query :class 'mesh—elements—2d—query—class
tagged—object—list " “selected—body
mesh—object " “tri—mesh
color 'magenta

)

(analysis :class 'body—analysis—class
mesh—model—object ~“tri—mesh
analysis—type ’linear—static

)
)
)

C.3 Muscle classes

Listing C.3: Muscle classes

(define—class muscle—point—properties—class

:inherit—from (point—object)

:properties (
point—coord (default nil)
body—muscle—ref (default nil)
orientation (translate “~point—coord)
reference—coordinate—system ~body—muscle—ref
color ”orange”
line—width 10

86

)

(define—method get—body—muscle—rbe—list muscle—point—properties—class()

)

(define—class muscle—properties—class
:inherit—from (object)
:properties (
origin—point—coordinates (default nil)
insertion—point—coordinates (default nil)
origin—point—reference—object (default nil)
insertion—point—reference—object (default nil)

)

:subobjects(

origin—point :class ’muscle—point—properties—class
g
point—coord ~ “origin—point—coordinates
body—muscle—ref ~“origin—point—reference—object
global—coord (convert—coords (" “origin—point) ’(0 0 0) :from :local :to :global)
; “point—coord if orientation is used

)

(insertion—point :class ’muscle—point—properties—class
point—coord ~ “insertion—point—coordinates
body—muscle—ref " “insertion—point—reference—object
global—coord (convert—coords (”“insertion—point) (0 0 0) :from :local :to
:global) ; “point—coord

)

(muscle—line—visualization :class ’line—object
pointl (the global—coord (:from ""origin—point))
point2 (the global—coord (:from " “insertion—point))
color "red”
line—width 15

)

)
)

(define—method get—orgin—point muscle—properties—class ()
lorigin—point
)

(define—method get—insertion—point muscle—properties—class ()
!insertion—point
)

(define—class R—hip—abd—muscle—group—class
:inherit—from (object)
:properties (
pelvis—muscle—ref (default nil)

87

)

femur_r—muscle—ref (default nil)
tibia_r—muscle—ref (default nil)

:subobjects(

(glut-max1.r :class ’'muscle—properties—class
; originally 4 points defining the muscle line
origin—point—coordinates ’(—0.1195 0.0612 0.07)
insertion—point—coordinates ’(—0.0277 —0.0566 0.047)
origin—point—reference—object ~ " pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref
color ’yellow

)

(glut_med1_r :class ’muscle—properties—class
origin—point—coordinates ’(—0.0408 0.0304 0.1209)
insertion—point—coordinates ’(—0.0218 —0.0117 0.0555)
origin—point—reference—object ~“pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

(glut_med2_r :class ’'muscle—properties—class
origin—point—coordinates '(—0.0855 0.0445 0.0766)
insertion—point—coordinates ’(—0.0258 —0.0058 0.0527)
origin—point—reference—object ~“pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

(glut_med3_r :class ’'muscle—properties—class
origin—point—coordinates '(—0.1223 0.0105 0.0648)
insertion—point—coordinates ’(—0.0309 —0.0047 0.0518)
origin—point—reference—object ~“pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

)

(glut_minl r :class ’muscle—properties—class
origin—point—coordinates '(—0.0467 —0.008 0.1056)
insertion—point—coordinates ’(—0.0072 —0.0104 0.056)
origin—point—reference—object ~“pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

)

(glut_min2 r :class ’muscle—properties—class
origin—point—coordinates '(—0.0633 —0.0065 0.0991)
insertion—point—coordinates ’(—0.0096 —0.0104 0.056)
origin—point—reference—object " “pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

)

(glut-min3.r :class ’'muscle—properties—class
origin—point—coordinates '(—0.0834 —0.0063 0.0856)
insertion—point—coordinates ’(—0.0135 —0.0083 0.055)
origin—point—reference—object " "pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

88

(perir :class 'muscle—properties—class ;originally 3 points
origin—point—coordinates '(—0.1396 0.0003 0.0235)
insertion—point—coordinates ’(—0.0148 —0.0036 0.0437)
origin—point—reference—object ~ " pelvis—muscle—ref
insertion—point—reference—object ~ " femur_r—muscle—ref

)

(sarr :class ’muscle—properties—class ;originally 5 points
origin—point—coordinates '(—0.0153 —0.0013 0.1242)
insertion—point—coordinates ’(0.0243 —0.084 —0.0252)
origin—point—reference—object ~"pelvis—muscle—ref
insertion—point—reference—object " “tibia_r—muscle—ref

(tilr :class ’muscle—properties—class ;originally 4 points
origin—point—coordinates ’(—0.0311 0.0214 0.1241)
insertion—point—coordinates ’(0.006 —0.0487 0.0297)
origin—point—reference—object " "pelvis—muscle—ref
insertion—point—reference—object ~ “tibia_r—muscle—ref

)

)
)

(define—class muscle—class
:inherit—from(object)
:properties (

)
:subobjects (
(R—hip—abd :class 'R—hip—abd—muscle—group—class

)
)
)

C.4 Body-class

Listing C.4: Classes for structuring the bodies joint and muscle into one human
body class
(define—class thoracolumbar—sub—geometry—class
:inherit—from (
object

)

:subobjects (
(headneck :class ’headneck—sub—geometry—class

)

(thoracic :class ’thoracic—sub—geometry—class

)

89

(lumbar :class ’'lumbar—sub—geometry—class
)
(ribs :class ’rib—gait—sub—geometry—class
)

)

(define—class osim—model—data—model—class
:inherit—from (data—model—node—mixin)
:properties (

(osim—model—type :class 'option—property—class
label ”Model type”
mode 'menu
;formula :inherit—formula
options—list ’(gait2392 thoracolumbar)
labels—list ’(”Gait2392” ” Thoracolumbar”)

)
)
)

(define—class body—class

:inherit—from (
object
;osim—model—data—model —class

)

:properties (
;options are gait2392 thoracolumbar
osim—model—type (default ’gait2392)
;osim—model—type (default *thoracolumbar)

talus_r—reference—joint (the talus_r—joint (:from ~ joints))
calen_r—reference—joint (the calen_r—joint (:from joints))
toes_r—reference—joint (the toes_r—joint (:from " joints))
talus_l—reference—joint (the talus l—joint (:from " joints))
calen_l—reference—joint (the calecn_l—joint (:from ~joints))
toes_1—reference—joint (the toes_l—joint (:from " joints))
torso—reference—joint (the torso—joint (:from " joints))
femur_r—reference—joint (the femur_r—joint (:from " joints))
tibia_r—reference—joint (the tibia_r—joint (:from ~joints))
femur_l—reference—joint (the femur 1—joint (:from ~ joints))
tibia_l—reference—joint (the tibia_l—joint (:from " joints))
pelvis_gait—reference—joint (the pelvis_gait—joint (:from ~ joints))
knee—RBE2—reference—joint (the knee—RBE2—joint (:from “joints))
1—knee—RBE2—reference—joint (the l-knee—RBE2—joint (:from “joints))

thoracicl2—reference—joint (the thoracicl2—joint (:from " joints))
thoracicll—reference—joint (the thoracicll—joint (:from " joints))
thoracicl0—reference—joint (the thoracicl0—joint (:from ~joints))
thoracic9—reference—joint (the thoracic9—joint (:from " joints))
thoracic8—reference—joint (the thoracic8—joint (:from " joints))

90

thoracic7—reference—joint (the thoracic7—joint (:from “joints))
thoracic6—reference—joint (the thoracic6—joint (:from " joints))
thoracich—reference—joint (the thoracich—joint (:from “joints))
thoracic4—reference—joint (the thoracicd—joint (:from *joints))
thoracic3—reference—joint (the thoracic3—joint (:from ~joints))
thoracic2—reference—joint (the thoracic2—joint (:from *joints))

(()

thoracicl —reference—joint (the thoracicl—joint (:from " joints

head_neck—reference—joint (the head_neck—joint (:from “joints))
hand_R—reference—joint (the hand _R—joint (:from "joints))
hand _L—reference—joint (the hand L—joint (:from “joints))

lumbarb—reference—joint (the lumbar5—joint (:from “joints))
lumbar4 —reference—joint (the lumbar4—joint (:from “joints))
lumbar3—reference—joint (the lumbar3—joint (:from “joints))
lumbar2—reference—joint (the lumbar2—joint (:from “joints))
lumbarl—reference—joint (the lumbarl—joint (:from “joints))

clavicle_R—reference—joint (the clavicle_.R—joint (:from " joints))
scapula_R—reference—joint (the scapula_R—joint (:from “joints))
humerus_R—reference—joint (the humerus_R—joint(:from "joints))
ulna_R—reference—joint (the ulna_R—joint (:from “joints))
radius_R—reference—joint (the radius_R—joint (:from ~joints))
clavicle_L—reference—joint (the clavicle L—joint (:from " joints))
scapula_L—reference—joint (the scapula_L—joint (:from "joints))
humerus_L—reference—joint (the humerus_L—joint(:from “joints))
ulna_L—reference—joint (the ulna L—joint (:from " joints))
radius_L—reference—joint (the radius_L—joint(:from ~joints))

ground—reference—joint (the ground—joint (:from “joints))
sacrum—reference—joint (the sacrum—joint (:from “joints))
pelvis—reference—joint (the pelvis—joint (:from " joints))
)
:subobjects (
(joints :class ’(gait—joint—class joint—class)

)

(muscles :class muscle—class
pelvis—muscle—ref (the pelvis_gait—joint (:from "~ joints))
femur_r—muscle—ref (the femur_r—joint (:from " "joints))
tibia_r—muscle—ref (the tibia_r—joint (:from "~ joints))

)

(feet :class ’feet—sub—geometry—class

)

(legs :class ’legs—sub—geometry—class

)

91

(arm :class ’arm—sub—geometry—class

)

(hand :class "hand—sub—geometry—class

)

(ground :class (case !osim—model—type
(gait2392 ’gait—ground—sub—geometry—class)
(thoracolumbar ’ground —sub—geometry —class)

)
)

(upper_body :class (case !osim—model—type
(gait2392 ’upper_body—sub—geometry—class)
(thoracolumbar ’thoracolumbar—sub—geometry—class)

)

)
)
)

C.5 Femur scaling example

Listing C.5: Generic scaling class with femur example

(in—package :aml)

(define—class femur—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \femur_points.dat”
con—file ”C:\\PytonWorkspace\ \femur_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class body—part—class
:inherit—from (
femur—web—surface
object
)
:properties (
)
)

(define—class scale—property—class

92

:inherit—from (scale—object)
:properties (
source—object “scale—object
scale—factor (default 2.0)
color (default ”yellow”)

)

:subobjects (
(scale—object :class ’body—part—class

)
)
)

(define—class scale—example—class
:inherit—from (object)
:properties (

)

:subobjects (

(scale—referance—cordinate—system :class ’coordinate—system—class
origin (list 000)
display? nil

)

(femur—original :class 'body—part—class
color ”yellow”
orientation (list (translate (list 0.5 0 0)))
reference—coordinate—system " “scale—referance—cordinate—system

)

(femur—scale—factor2 :class ’scale—property —class
color ”orange”
orientation (list (translate (list 1 0 0)))
reference—coordinate—system " “scale—referance—cordinate—system
)
(femur—scale—factor4:class ’scale—property—class
color "red”
scale—factor 4
orientation (list (translate (list 1.5 0 0)))
reference—coordinate—system " “scale—referance—cordinate—system

)
)
)

C.6 Thoracolumbar joint classes

Listing C.6: Joint-classes from thoracolumbar model

93

(define—class joint—coordinate—system—class
:inherit—from (
coordinate—system—class
)

:properties (
display? nil
length 0.1
coordinate—system—length 0.1
body—translation—list (default ’(0 0 0))
body—rotation—list (default (0 0 0))
orientation (default
(list
(rotate (radians—to—degrees (first “body—rotation—list)) :x—axis)
(rotate (radians—to—degrees (second “body—rotation—list)) :y—axis)
(rotate (radians—to—degrees (third “body—rotation—list)) :z—axis)
(translate “body—translation—list)
)

)

(define—class joint—class
:inherit—from (
object
)

:properties (

)

:subobjects (
(ground—joint :class ’joint—coordinate—system—class
origin (list 000)
)

(sacrum—joint :class ’joint—coordinate—system—class
reference—coordinate—system " “ground—joint
)

(pelvis—joint :class ’joint—coordinate—system—class
body—translation—list ’(0 0.049 0)
reference—coordinate—system " “sacrum—joint

)

(Abdomen—joint :class ’joint—coordinate—system—class
body—translation—list ’(—0.078 0.071 —0)

reference—coordinate—system " “sacrum—joint

)

(lumbar5—joint :class ’joint—coordinate—system—class

94

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.36652)
:z—axis)(translate (list —0.098 0.071 0)))

reference—coordinate—system " “sacrum—joint

)

(lumbar4—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.31416)
:z—axis)(translate (list 0 0.039581 0)))
reference—coordinate—system "~ “lumbarb—joint

)

(lumbar3—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.20944)
:z—axis)(translate (list 0 0.036802 0)))
reference—coordinate—system ~“lumbar4—joint

)

(lumbar2—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.12217)
:z—axis)(translate (list 0 0.036764 0)))
reference—coordinate—system " “lumbar3—joint

)

(lumbarl—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.10472)
:z—axis)(translate (list 0 0.034054 0)))

reference—coordinate—system " “lumbar2—joint

)

(thoracic12—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.034907)
:z—axis)(translate (list 0 0.035497 0)))
reference—coordinate—system ~“lumbarl—joint

)

(thoracicll—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.069813)
:z—axis) (translate (list 0 0.033837 0)))
reference—coordinate—system " “thoracicl2—joint

)

(thoracicl0—joint :class ’joint—coordinate—system—class

95

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.087266)
:z—axis)(translate (list 0 0.029544 0)))

reference—coordinate—system " “thoracicll—joint

)

(thoracic9—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.069813)
:z—axis)(translate (list 0 0.029 0)))
reference—coordinate—system " “thoracicl0—joint

)

(thoracic8—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.087266)
:z—axis) (translate (list 0 0.025135 0)))
reference—coordinate—system " “thoracic9—joint

)

(thoracic7—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.10472)
:z—axis) (translate (list 0 0.024615 0)))
reference—coordinate—system " “thoracic8—joint

)

(thoracic6—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.10472)
:z—axis)(translate (list 0 0.025934 0)))
reference—coordinate—system " “thoracic7—joint

)

(thoracich—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.10472)
:z—axis)(translate (list 0 0.025672 0)))
reference—coordinate—system " “thoracic6—joint

)

(thoracic4—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.10472)
:z—axis) (translate (list 0 0.026267 0)))
reference—coordinate—system " “thoracich—joint

)

(thoracic3—joint :class ’joint—coordinate—system—class

96

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.069813)
:z—axis)(translate (list 0 0.024475 0)))

reference—coordinate—system " “thoracic4—joint

)

(thoracic2—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.05236)
:z—axis)(translate (list 0 0.02221 0)))
reference—coordinate—system " “thoracic3—joint

)

(thoracicl—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.017453)
:z—axis)(translate (list 0 0.020271 0)))
reference—coordinate—system " “thoracic2—joint

)

(head_neck—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.5236)
:z—axis)(translate (list —0.00684 0.020271 0)))
reference—coordinate—system " “thoracicl—joint

)

(rib12_.R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.2748)
:z—axis)(translate (list —0.022046 0.022058 0.021423)))
reference—coordinate—system ~“thoracic12—joint

)

(ribl1_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.34175)
:z—axis)(translate (list —0.01598 0.0188 0.01679)))
reference—coordinate—system ~“thoracicll—joint

)

(rib10_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.40034)
:z—axis) (translate (list —0.014883 0.029 0.01702)))
reference—coordinate—system " “thoracic10—joint

)

(rib9_R—joint :class ’joint—coordinate—system—-class

97

orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.45172)
:z—axis)(translate (list —0.011703 0.025135 0.014682)))
reference—coordinate—system " “thoracic9—joint

)

(rib8_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.49691)
7—axis) (translate (list —0.010496 0.024615 0.014582)))
reference—coordinate—system " “thoracic8—joint

)

(rib7_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.53682)
:z—axis)(translate (list —0.010069 0.025934 0.015672)))
reference—coordinate—system " “thoracic7—joint

)

(rib6_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.57221)
7—axis) (translate (list —0.0088519 0.025672 0.015663)))
reference—coordinate—system " “thoracic6—joint

)

(rib5_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.60373)
:z—axis)(translate (list —0.0078849 0.026267 0.016164)))
reference—coordinate—system " “thoracicb—joint

)

(rib4_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.63193)
:z—axis)(translate (list —0.0061241 0.024475 0.014919)))
reference—coordinate—system " “thoracic4—joint

)

(rib3_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.65727)
:z—axis) (translate (list —0.0044462 0.02221 0.013345)))
reference—coordinate—system ~“thoracic3—joint

)

(rib2_R—joint :class ’joint—coordinate—system—class

98

orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.68013)
:z—axis)(translate (list —0.0030697 0.020271 0.011998)))
reference—coordinate—system " “thoracic2—joint

)

(ribl_R—joint :class ’joint—coordinate—system—class

;; original orientation

;orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees 0.70085)
:z—axis)(translate (list —0.0033483 0.019498 0.018755)))

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.5)
:z—axis)(translate (list —0.0033483 0.019498 0.018755)))

reference—coordinate—system " “thoracicl —joint

)

(rib12_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.2748)
7—axis) (translate (list —0.022046 0.022058 —0.021423)))
reference—coordinate—system ~“thoracic12—joint

)

(ribl1_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.34175)
:z—axis) (translate (list —0.01598 0.0188 —0.01679)))
reference—coordinate—system ~“thoracicll—joint

)

(rib10_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.40034)
:z—axis) (translate (list —0.014883 0.029 —0.01702)))
reference—coordinate—system ~“thoracicl10—joint

)

(rib9_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.45172)
:z—axis)(translate (list —0.011703 0.025135 —0.014682)))
reference—coordinate—system " “thoracic9—joint

)

(rib8_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.49691)
:z—axis) (translate (list —0.010496 0.024615 —0.014582)))

99

reference—coordinate—system

)

(rib7_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.53682)
:z—axis)(translate (list —0.010069 0.025934 —0.015672)))
reference—coordinate—system " “thoracic7—joint

)

(rib6_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.57221)
:z—axis)(translate (list —0.0088519 0.025672 —0.015663)))
reference—coordinate—system " “thoracic6—joint

)

(rib5_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.60373)
7—axis) (translate (list —0.0078849 0.026267 —0.016164)))
reference—coordinate—system " “thoracich—joint

)

(rib4_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.63193)
:z—axis)(translate (list —0.0061241 0.024475 —0.014919)))
reference—coordinate—system " “thoracic4—joint

)

(rib3_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.65727)
:z—axis) (translate (list —0.0044462 0.02221 —0.013345)))
reference—coordinate—system " “thoracic3—joint

)

(rib2_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.68013)
:z—axis)(translate (list —0.0030697 0.020271 —0.011998)))
reference—coordinate—system "~ “thoracic2—joint

)

(ribl_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 1.5708) :x—axis)(rotate
(radians—to—degrees 3.1416) :y—axis)(rotate (radians—to—degrees —0.70085)
:z—axis) (translate (list —0.0033483 0.019498 —0.018755)))

thoracic8—joint

100

reference—coordinate—system ~“thoracicl—joint

)

(sternum—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0684394468871297 —0.0547530538394528
0.0147941171846263)))
reference—coordinate—system "~ “ribl_R—joint

)

(clavicle_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees —0.2618) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “sternum—joint

)

(scapula_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0.34907) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.01433 0.02007 0.13554)))
reference—coordinate—system " “clavicle_R—joint

)

(humerus_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees —0.087266) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.009595 —0.034 0.009)))
reference—coordinate—system " “scapula_R—joint

)

(ulna_-R—joint :class ’joint—coordinate—system—-class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0061 —0.2904 —0.0123)))
reference—coordinate—system ~~humerus_R—joint

)

(radius_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0004 —0.011503 0.019999)))
reference—coordinate—system " “ulna_R—joint

)

(hand_R—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)

101

:z—axis)(translate (list 0.018 —0.242 0.025)))
reference—coordinate—system " “radius_R—joint

)

(clavicle L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0.2618) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 —0.0670985961566419)))
reference—coordinate—system " “sternum—joint

)

(scapula_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees —0.34907) :y—axis)(rotate (radians—to—degrees 0)
z—axis) (translate (list —0.01433 0.02007 —0.13554)))
reference—coordinate—system " “clavicle_L—joint

)

(humerus_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0.087266) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.009595 —0.034 —0.009)))
reference—coordinate—system " “scapula_L—joint

)

(ulna_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0061 —0.2904 0.0123)))
reference—coordinate—system "~ ~humerus_L—joint

)

(radius_L—joint :class ’joint—coordinate—system—-class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0004 —0.011503 —0.019999)))
reference—coordinate—system "~ “ulna_L.—joint

)

(hand_L—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.018 —0.242 —0.025)))
reference—coordinate—system " “radius_L—joint

)

(Abd_L_L1—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.38397)

102

:z—axis)(translate (list 0 0 0)))
reference—coordinate—system "~ “lumbarl—joint

)

(Abd_L_L2—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.27925)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar2—joint

)

(Abd_L_L3—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.15708)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar3—joint

)

(Abd_L_L4—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.05236)
:z—axis)(translate (list 000)))
reference—coordinate—system " “lumbar4—joint

)

(Abd_L_L5—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.36652)
:z—axis)(translate (list 000)))
reference—coordinate—system " “lumbarb—joint

)

(Abd_R_L1—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.38397)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbarl—joint

)

(Abd_R_L2—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.27925)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar2—joint

)

(Abd_R_L3—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0.15708)

103

:z—axis)(translate (list 00 0)))
reference—coordinate—system " “lumbar3—joint

)

(Abd R _L4—joint :class ’joint—coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.05236)
:z—axis)(translate (list 000)))
reference—coordinate—system " “lumbar4d—joint

)

(Abd_R_L5—joint :class ’joint—coordinate—system—-class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0.36652)
:z—axis)(translate (list 000)))
reference—coordinate—system " “lumbar5—joint
)
)
)

C.7 Joint classes from gait model

Listing C.7: Joint-class from gait model

; Approximation to the SimSpline function from OpenSim
(defun get—knee—joint—translation(knee—angle)

(case knee—angle

(10 (list (rotate knee—angle :z—axis)(translate (list —0.00515263 —0.39523564 0))))

(0 (list (rotate knee—angle :z—axis)(translate (list ~ —0.00436810 —0.39571497 0))))

(—10 (list (rotate knee—angle :z—axis)(translate (list —0.00308293 —0.39663410 0))))

(—20 (list (rotate knee—angle :z—axis)(translate (list —0.00103582 —0.39763316 0))))
(=30 (list (rotate knee—angle :z—axis)(translate (list 0.00073763 —0.39898467 0))))

(—40 (list (rotate knee—angle :z—axis)(translate (list ~ 0.00212033 —0.40106284 0))))
(=50 (list (rotate knee—angle :z—axis)(translate (list 0.00333546 —0.40335643 0))))

(—60 (list (rotate knee—angle :z—axis)(translate (list 0.00411215 —0.40554767 0))))

(=70 (list (rotate knee—angle :z—axis)(translate (list 0.00436737 —0.40820478 0))))

(—80 (list (rotate knee—angle :z—axis)(translate (list 0.00408543 —0.41099947 0))))

(—90 (list (rotate knee—angle :z—axis)(translate (list 0.00408543 —0.41099947 0))))

(—100 (list (rotate knee—angle :z—axis)(translate (list 0.00183353 —0.41655753 0))))
(—110 (list (rotate knee—angle :z—axis)(translate (list —0.00045820 —0.41956626 0O

(
)

(—120 (list (rotate knee—angle :z—axis)(translate (list
)

—0.00320000 —0.42260000 0

(define—class gait—joint—class

104

:inherit—from (
object
)

:properties (
display—coord—systems? (default nil)
coordinate—system—length 0.1

hip—aduction—r (default 0)
hip—rotation—r (default 0)
hip—flexion—r (default 30)
knee—angle—r (default —80)
knee—angle—1 (default 0)
ankle—angle—r (default 0)
subtalar—angle—r (default 0)
mtp—angle—r (default 0)
)
:subobjects (
(ground_gait—joint :class ’coordinate—system—class
origin (list 000)
display? " “display—coord—systems?
length ~“coordinate—system—length

)

(pelvis_gait—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 000)))
reference—coordinate—system " “ground_gait—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

; spline investigation—joint

(knee—RBE2—joint :class 'coordinate—system—class
orientation (list (rotate (radians—to—degrees "~ “knee—angle—r) :z—axis)(translate

(list —0.0105 —0.4091 0)))

reference—coordinate—system "~ femur_r—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

; spline investigation—joint

(1-knee—RBE2—joint :class ’coordinate—system—class
orientation (list (translate (list —0.0105 —0.4091 0)))
reference—coordinate—system ~~femur_l—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

(femur_r—joint :class ’coordinate—system—class

105

orientation (list
(rotate " “hip—aduction—r :x—axis)(rotate "~ “hip—rotation—r :y—axis) (rotate
" “hip—flexion—r :z—axis)(translate (list —0.0707 —0.0661 0.0835))
)

reference—coordinate—system " “pelvis_gait—joint
display? " “display—coord—systems?

)

; Knee joint
(tibia_r—joint :class ’coordinate—system—class

orientation (get—knee—joint—translation ~“knee—angle—r)

;orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list get—knee—joint—translation "~ “knee—angle—r)))

reference—coordinate—system "~ femur_r—joint

display? " “display—coord—systems?

length ~“coordinate—system—length

)

; Ankle joint orientation
(talusr—joint :class ’coordinate—system—class
orientation (list
(list (rotate ~“ankle—angle—r ’(—0.10 —0.17 0.9799))(translate (list 0 —0.43 0

)
)

reference—coordinate—system ~ “tibia_r—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

; Subtalar joint orientation
(calenr—joint :class ’coordinate—system—class
orientation (list
(list (rotate "“subtalar—angle—r ’(0.78 0.6 —0.18))(translate (list —0.04877
—0.04195 0.00792)))
)

reference—coordinate—system ~ “talus_r—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

;3 Toe joint orientation
(toesr—joint :class ’coordinate—system—class
orientation (list
(list (rotate "~ “mtp—angle—r ’(—0.58 0 0.8))(translate (list 0.1788 —0.002
0.00108)))
)

reference—coordinate—system ~“calcn_r—joint

106

display? " “display—coord—systems?
length ~“coordinate—system—length

)

(femur_1—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.0707 —0.0661 —0.0835)))
reference—coordinate—system " “pelvis_gait—joint
display? " “display—coord—systems?
length "“coordinate—system—length

)

(tibia_l—joint :class ’coordinate—system—class

;orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 000)))

orientation (get—knee—joint—translation " “knee—angle—1)

reference—coordinate—system " femur_l—joint

display? " “display—coord—systems?

length ~“coordinate—system—length

)

(talus_l—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 —0.43 0)))
reference—coordinate—system ~ “tibia_l—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

(calen_l—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.04877 —0.04195 —0.00792)))
reference—coordinate—system " “talus_l—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

(toes1—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0.1788 —0.002 —0.00108)))
reference—coordinate—system " “calcn_1—joint
display? " “display—coord—systems?
length "“coordinate—system—length

)

107

(torso—joint :class ’coordinate—system—class
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.1007 0.0815 0)))
reference—coordinate—system ~ “pelvis_gait—joint
display? " “display—coord—systems?
length ~“coordinate—system—length

)

)
)

C.8 Gait2392 body classes

Listing C.8: Body classes from gait model

(define—class body—part—tagging—class
:inherit—from (
tagging—object
)

:properties (
max—elem—size (default nil)
min—elem—size (default nil)
tag—dimensions ’(0 1 2 3)
tag—attributes (list "~ “max—elem—size ~“min—elem—size 1 0.1 0 20.0 1.0e—5)
reference—coordinate—system (default nil)
slave—RBE2—joint "reference—coordinate—system
master—RBE2—joint (default nil)

)

)

(define—class feet—sub—geometry—class
:inherit—from (
object
)

:properties (
max—elem—size 0.012
min—elem—size 0.003

talus_r—reference—joint (default nil)
calcn_r—reference—joint (default nil)
toes_r—reference—joint (default nil)
talus_1—reference—joint (default nil)
calen_1—reference—joint (default nil)
toes_1—reference—joint (default nil)
)
:subobjects (
(talus :class ’(body—part—tagging—class talus—web—surface)

108

)
)

orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “talus_r—reference—joint
master—RBE2—joint "~ “calcn_r—reference—joint
)
;calcanus
(foot :class ’(body—part—tagging—class foot—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“calcn_r—reference—joint
master—RBE2—joint " “toes_r—reference—joint
)
;toe
(bofoot :class ’(body—part—tagging—class bofoot—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “toes_r—reference—joint
)
(Ltalus :class ’(body—part—tagging—class 1_talus—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0 0 0)))
reference—coordinate—system " “talus_l—reference—joint
master—RBE2—joint " “calcn_l—reference—joint
)
(1foot :class ’(body—part—tagging—class 1 foot—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~calcn_l—reference—joint
master—RBE2—joint " “toes_1—reference—joint

(Ibofoot :class ’(body—part—tagging—class l_bofoot—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “toes_l—reference—joint

)

; rib sub—geometry—class for full body—model
(define—class rib—gait—sub—geometry—class
:inherit—from (

)

object

109

:properties (
max—elem—size 0.012
min—elem—size 0.003

torso—reference—joint (default nil)
)
:subobjects (
(hat_ribs :class ’(body—part—tagging—class hat_ribs—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “torso—reference—joint

)
)
)

(define—class upper-body—sub—geometry—class
:inherit—from (
object
)
:properties (
max—elem—size 0.012
min—elem—size 0.003

torso—reference—joint (default nil)
)
:subobjects (
(hat_spine :class ’(body—part—tagging—class hat_spine—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “torso—reference—joint
)
(hat_jaw :class ’(body—part—tagging—class hat_jaw—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “torso—reference—joint
)
(hat_skull :class ’(body—part—tagging—class hat_skull—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “torso—reference—joint

(hat_ribs :class ’(body—part—tagging—class hat_ribs—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))

110

)
)

reference—coordinate—system ~“torso—reference—joint

)

(define—class legs—sub—geometry—class
:inherit—from (

)

object

:properties (

)

max—elem—size 0.012
min—elem—size 0.003

1—knee—RBE2—reference—joint (default nil)
knee—RBE2—reference—joint (default nil)
femur_r—reference—joint (default nil)
tibia_r—reference—joint (default nil)
femur_l—reference—joint (default nil)
tibia_l—reference—joint (default nil)
talus_r—reference—joint (default nil)

:subobjects (

(femur :class ’(body—part—tagging—class femur—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " femur_r—reference—joint
master—RBE2—joint ~“knee—RBE2—reference—joint
)
(tibia :class ’(body—part—tagging—class tibia—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
;reference—coordinate—system ~“knee—RBE2—joint
reference—coordinate—system " “tibia_r—reference—joint
slave—RBE2—joint ~"knee—RBE2—reference—joint
master—RBE2—joint " “talus_r—reference—joint
)
(fibula :class ’(body—part—tagging—class fibula—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “tibia_r—reference—joint

(Ifemur :class ’(body—part—tagging—class 1_femur—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))

111

reference—coordinate—system "~ femur_l—reference—joint
master—RBE2—joint " "1—knee—RBE2—reference—joint
)
(Ltibia :class ’(body—part—tagging—class l_tibia—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “tibia_l—reference—joint
slave—RBE2—joint " "1—knee—RBE2—reference—joint
master—RBE2—joint " “talus_l—reference—joint

(Lfibula :class ’(body—part—tagging—class l_fibula—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “tibia_l—reference—joint
slave—RBE2—joint "~ "knee—RBE2—reference—joint
master—RBE2—joint " “talus_l—reference—joint

)
)
)
(define—class gait—ground—sub—geometry—class
:inherit—from (

object

)

:properties (
max—elem—size 0.012
min—elem—size 0.003

pelvis_gait—reference—joint (default nil)
femur_r—reference—joint (default nil)

torso—reference—joint (default nil)
femur_l—reference—joint (default nil)
)
:subobjects (
(sacrum :class ’(body—part—tagging—class sacrum—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “pelvis_gait—reference—joint
master—RBE2—joint ~"torso—reference—joint
)
(pelvis :class ’(body—part—tagging—class pelvis—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))

reference—coordinate—system "~ pelvis_gait—reference—joint

112

master—RBE2—joint "~ femur_r—reference—joint

(Lpelvis :class ’(body—part—tagging—class l_pelvis—web—surface)
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0 0 0)))

reference—coordinate—system ~ " pelvis_gait—reference—joint
master—RBE2—joint ~"femur_l—reference—joint

)
)
)

C.9 Thoracolumbar body classes

Listing C.9: Body classes from thoracolumbar model

(define—class headneck—sub—geometry—class

:inherit—from (
object

)

:properties (
head_neck—reference—joint (default nil)
color (default ”white”)

)

:subobjects (
(rotatedcerv? :class ’ rotatedcerv7—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “head_neck—reference—joint

)

)

(cerv6 :class ’ cerv6—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0.0038 0.0164 0)))

reference—coordinate—system " ~head_neck—reference—joint
)
(cervh :class ’ cervb—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.008 0.0343 0)))
reference—coordinate—system "~ ~head_neck—reference—joint

)

)

(cerv4d :class ’ cervd—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0114 0.0535 0)))
reference—coordinate—system "~ ~head_neck—reference—joint

)

113

)

(cerv3 :class ’ cerv3—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.014 0.0689 0)))
reference—coordinate—system ~ “head_neck—reference—joint
)
(cerv2 :class ’ cerv2—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0139 0.0852 0)))

reference—coordinate—system " ~head_neck—reference—joint
)
(cervl :class ’ cervl—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list —0.0217 0.103 0)))
reference—coordinate—system " ~head_neck—reference—joint
)
(jaw :class ’ jaw—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0.0216 0.1179 0)))
reference—coordinate—system " ~head_neck—reference—joint

9
)

(skull :class ’ skull—web—surface

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0.0216 0.1179 0)))

reference—coordinate—system " ~head_neck—reference—joint

)
)
)

(define—class thoracic—sub—geometry—class
:inherit—from (
object
)

:properties (
color (default "white”)

thoracicl2—reference—joint (default nil)
thoracicll—reference—joint (default nil)
thoracicl0—reference—joint (default nil)
thoracic9—reference—joint (default nil)
thoracic8—reference—joint (default nil)
thoracic7—reference—joint (default nil)
thoracic6—reference—joint (default nil)
thoracich—reference—joint (default nil)
thoracicd—reference—joint (default nil)

)

thoracic3—reference—joint (default nil)
thoracic2—reference—joint (default nil)
thoracicl—reference—joint (default nil)

:subobjects (

(thoracicl2_s :class ’ thoracicl2_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“thoracicl2—reference—joint
)
(thoracicll_s :class ’ thoracicll_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracicll—reference—joint
)
(thoracicl0-s :class ’ thoracicl0_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“thoracicl0—reference—joint
)
(thoracic9-s :class ’ thoracic9_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracic9—reference—joint
)
(thoracic8-s :class ’ thoracic8_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracic8 —reference—joint

(thoracic7_s :class ’ thoracic7_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracic7—reference—joint
)
(thoracic6_s :class ’ thoracic6_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0 0 0)))
reference—coordinate—system ~ “thoracic6—reference—joint
)
(thoracich_s :class ’ thoracich_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate

115

)

(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracich—reference—joint
)
(thoracic4_s :class ’ thoracic4d_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “thoracic4d—reference—joint
)
(thoracic3_s :class ’ thoracic3_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))

reference—coordinate—system " “thoracic3—reference—joint

)

(thoracic2_s :class ’ thoracic2_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0 0 0)))
reference—coordinate—system " “thoracic2—reference—joint
)
(thoracicl_s :class ’ thoracicl_s—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “thoracicl—reference—joint

)

(define—class abd—sub—geometry—class
:inherit—from (

)

object

:properties (

)

Abdomen—reference—joint (default nil)
Abd_L_L1-reference—joint (default nil)
Abd_L_L2—reference—joint (default nil)
Abd_L_L3—reference—joint (default nil)
Abd_L_L4—reference—joint (default nil)
Abd_L_L5—reference—joint (default nil)
Abd_R_L1-reference—joint (default nil)
Abd_R_L2-reference—joint (default nil)
Abd_R_L3—reference—joint (default nil)
Abd_R_L4—reference—joint (default nil)
Abd_R_L5—reference—joint (default nil)

:subobjects (

)

116

)

(define—class hand—sub—geometry—class
:inherit—from (
object
)
:properties (
hand_R—reference—joint (default nil)
hand_L—reference—joint (default nil)
)
:subobjects (
(pisiform :class ’ pisiform—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
z—axis) (translate (list —0.013388 —0.009886 —0.010593)))
reference—coordinate—system ~“hand_R—reference—joint
)
(lunate :class ’ lunate—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“hand_R—reference—joint

(scaphoid :class ’ scaphoid—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.012345 —0.004464 —0.001254)))
reference—coordinate—system ~“hand_R—reference—joint
)
(triquetrum :class ’ triquetrum—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.010784 —0.007499 —0.001289)))
reference—coordinate—system "~ “hand_R—reference—joint
)
(hamate :class ’ hamate—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list —0.006977 —0.017549 0.001577)))

reference—coordinate—system "~ “hand_R—reference—joint
)
(capitate :class ’ capitate—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.003992 —0.015054 0.002327)))

reference—coordinate—system "~ “hand_R—reference—joint

)
(trapezoid :class ’ trapezoid—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)

117

:z—axis)(translate (list 0.013135 —0.019116 —0.000137)))
reference—coordinate—system "~ “hand_R—reference—joint
)
(trapezium :class ’ trapezium—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.019285 —0.019623 —0.007981)))
reference—coordinate—system ~“hand_R—reference—joint

(Imc :class > lmc—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.026485 —0.025023 —0.010481)))
reference—coordinate—system ~“hand_R—reference—joint
)
(2mc :class ’ 2mc—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.018677 —0.052674 0.007359)))
reference—coordinate—system ~“hand_R—reference—joint
)
(3mc :class > 3mc—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.004469 —0.054293 0.009704)))
reference—coordinate—system ~“hand_R—reference—joint

(4mc :class ’ 4mc—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.008054 —0.055573 0.00584)))
reference—coordinate—system "~ “hand_R—reference—joint
)
(5me :class ’ Smc—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.017904 —0.049737 —0.001891)))
reference—coordinate—system ~“hand_R—reference—joint
)
(thumbprox :class ’ thumbprox—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.042985 —0.054223 —0.023181)))
reference—coordinate—system "~ “hand_R—reference—joint

(thumbdist :class ’ thumbdist—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.056985 —0.080123 —0.033281)))

118

reference—coordinate—system "~ “hand_R—reference—joint

(2proxph :class > 2proxph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.022178 —0.080917 0.010979)))
reference—coordinate—system "~ “hand_R—reference—joint
)
(2midph :class ’ 2midph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.029695 —0.12219 0.018305)))
reference—coordinate—system ~“hand_R—reference—joint

(2distph :class ’ 2distph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.033028 —0.14708 0.019525)))

reference—coordinate—system ~“hand_R—reference—joint
)
(3proxph :class ’ 3proxph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.004709 —0.080583 0.011482)))
reference—coordinate—system ~“hand_R—reference—joint
)
(3midph :class ’ 3midph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.006359 —0.12479 0.017712)))
reference—coordinate—system ~“hand_R—reference—joint

(3distph :class ’ 3distph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
z—axis) (translate (list 0.007724 —0.15384 0.019666)))
reference—coordinate—system ~“hand_R—reference—joint
)
(4proxph :class ’ 4proxph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.009884 —0.079262 0.005667)))
reference—coordinate—system ~“hand_R—reference—joint
)
(4midph :class ’ 4midph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.013412 —0.11952 0.007012)))
reference—coordinate—system "~ “hand_R—reference—joint

119

)

(4distph :class ’ 4distph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.015729 —0.14431 0.007575)))
reference—coordinate—system ~“hand_R—reference—joint

(5proxph :class ' Sproxph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.019501 —0.071168 —0.003387)))

reference—coordinate—system " “hand_R—reference—joint
)
(5midph :class * Smidph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.02478 —0.10673 —0.006266)))
reference—coordinate—system " “hand_R—reference—joint

(5distph :class ’ 5distph—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list —0.027651 —0.12741 —0.008509)))
reference—coordinate—system ~“hand_R—reference—joint

(pisiform_1 :class ’ pisiform_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
7—axis) (translate (list —0.013388 —0.009886 0.010593)))
reference—coordinate—system ~“hand_L—reference—joint
)
(lunatel :class ’ lunate_ l—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system "~ “hand_L—reference—joint

(scaphoid_l :class ’ scaphoid 1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.012345 —0.004464 0.001254)))
reference—coordinate—system ~“hand_L—reference—joint
)
(triquetrum_1 :class ’ triquetrum_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.010784 —0.007499 0.001289)))
reference—coordinate—system ~“hand_L—reference—joint

)

120

(hamate_l :class ’ hamate_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list —0.006977 —0.017549 —0.001577)))
reference—coordinate—system ~“hand_L—reference—joint
)
(capitatel :class ’ capitate_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.003992 —0.015054 —0.002327)))
reference—coordinate—system ~ “hand_L—reference—joint

)

(trapezoidl :class ’ trapezoid_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.013135 —0.019116 0.000137)))

reference—coordinate—system "~ “hand_L—reference—joint
)
(trapezium.l :class ’ trapezium_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.019285 —0.019623 0.007981)))
reference—coordinate—system "~ ~hand_L—reference—joint

(Ime :class > 1lmc_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.026485 —0.025023 0.010481)))

reference—coordinate—system "~ “hand_L—reference—joint
)
(2me :class ’ 2mc_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.018677 —0.052674 —0.007359)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(3mel :class ’ 3mc_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.004469 —0.054293 —0.009704)))
reference—coordinate—system "~ “hand_L—reference—joint

(4mc] :class ’ 4mc l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
7—axis) (translate (list —0.008054 —0.055573 —0.00584)))
reference—coordinate—system "~ “hand_L—reference—joint

)

(5me :class ’ bme_l—web—surface

121

orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list —0.017904 —0.049737 0.001891)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(thumbprox_1 :class ’ thumbprox_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.042985 —0.054223 0.023181)))
reference—coordinate—system ~“hand_L—reference—joint
)
(thumbdist 1 :class ’ thumbdist_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.056985 —0.080123 0.033281)))
reference—coordinate—system ~“hand_L—reference—joint

(2proxph_l :class ’ 2proxph_l-web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.022178 —0.080917 —0.010979)))
reference—coordinate—system ~“hand_L—reference—joint
)
(2midph 1 :class ’ 2midph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.029695 —0.12219 —0.018305)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(2distphl :class ’ 2distph_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list 0.033028 —0.14708 —0.019525)))
reference—coordinate—system "~ “hand_L—reference—joint

(3proxph_l :class ’ 3proxph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.004709 —0.080583 —0.011482)))
reference—coordinate—system ~“hand_L—reference—joint
)
(3midph 1 :class ’ 3midph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.006359 —0.12479 —0.017712)))
reference—coordinate—system ~“hand_L—reference—joint

(3distph_l :class ’ 3distph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate

122

)

(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis) (translate (list 0.007724 —0.15384 —0.019666)))
reference—coordinate—system "~ “hand_L—reference—joint

(4proxph 1l :class ’ 4proxph_ 1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.009884 —0.079262 —0.005667)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(4midph 1 :class ’ 4midph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.013412 —0.11952 —0.007012)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(4distph.l :class ’ 4distph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.015729 —0.14431 —0.007575)))
reference—coordinate—system ~“hand_L—reference—joint

(5proxph.l :class ’ 5Sproxph_l-web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.019501 —0.071168 0.003387)))

reference—coordinate—system ~ “hand_L—reference—joint
)
(5midph-l :class ’ 5midph_l—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.02478 —0.10673 0.006266)))
reference—coordinate—system "~ “hand_L—reference—joint
)
(5distphl :class ’ 5distph_1—web—surface
orientation (list (rotate (radians—to—degrees —0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees —0)
:z—axis)(translate (list —0.027651 —0.12741 0.008509)))

reference—coordinate—system "~ ~hand_L—reference—joint

)

(define—class lumbar—sub—geometry—class
:inherit—from (

)

object

:properties (

color (default ”white”)

123

)

lumbar5—reference—joint (default nil)
lumbar4 —reference—joint (default nil)
lumbar3—reference—joint (default nil)
lumbar2—reference—joint (default nil)
lumbarl—reference—joint (default nil)

:subobjects (

)

(lumbarb :class ’ lumbar5—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar5—reference—joint
)
(lumbar4 :class ’ lumbar4d—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar4—reference—joint

(lumbar3 :class ’ lumbar3—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar3—reference—joint

(lumbar2 :class ’ lumbar2—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbar2—reference—joint
)
(lumbarl :class ’ lumbarl—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “lumbarl—reference—joint

)

(define—class rib—sub—geometry—class
:inherit—from (

)

object

:properties (

rib12_R—reference—joint (default nil)
rib11_R—reference—joint (default nil)
rib10_R—reference—joint (default nil)
rib9_R—reference—joint (default nil)
rib8_R—reference—joint (default nil)

124

)

rib7_R—reference—joint (default nil)
rib6_R—reference—joint (default nil)
rib5_R—reference—joint (default nil)
rib4_R—reference—joint (default nil)
rib3_R—reference—joint (default nil)
rib2_R—reference—joint (default nil)
ribl_R—reference—joint (default nil)
rib12_L—reference—joint (default nil)
rib11_L—reference—joint (default nil)
rib10_L—reference—joint (default nil)
rib9_L—reference—joint (default nil)
rib8_L—reference—joint (default nil)
rib7_L—reference—joint (default nil)
rib6_L—reference—joint (default nil)
rib5_L—reference—joint (default nil)
rib4_L—reference—joint (default nil)
rib3_L—reference—joint (default nil)
rib2_L—reference—joint (default nil)
ribl_L—reference—joint (default nil)
sternum—reference—joint (default nil)

:subobjects (

(Rib12R :class * Rib12R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system "~ “rib12_R—reference—joint
)
(Rib11R :class * Ribl11R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib11_R—reference—joint
)
(Rib10R :class * Rib10R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib10_R—reference—joint

)
(RibIR :class > Rib9R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib9_R —reference—joint
)
(Rib8R. :class > Rib8R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)

125

:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib8_R —reference—joint
)
(Rib7R :class > Rib7R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib7_R—reference—joint

)
(Rib6R :class * Rib6R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib6_R—reference—joint
)
(Rib5R :class * Rib5R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib5_R—reference—joint
)
(Rib4R :class * Rib4R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib4_R—reference—joint

)
(Rib3R :class * Rib3R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib3_R—reference—joint
)
(Rib2R :class * Rib2R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib2_R—reference—joint
)
(Rib1R :class > Rib1R—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “ribl_R—reference—joint

(Rib12L :class ’ Rib12L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))

126

reference—coordinate—system ~“rib12_L—reference—joint
(Rib11L :class * Ribl1L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“rib11_L—reference—joint
)
(Rib10L :class > Rib10L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“rib10_L—reference—joint

)
(RibIL :class > Rib9L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis) (translate (list 0 0 0)))
reference—coordinate—system " “rib9_L—reference—joint
)
(Rib8L :class ’ Rib8L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib8_L—reference—joint
)
(Rib7L :class > Rib7L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib7_L—reference—joint

)
(Rib6L :class * Rib6L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib6_L—reference—joint
)
(Rib5L :class * Rib5L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “rib5_L—reference—joint
)
(Rib4L :class ’ Rib4L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“rib4_L—reference—joint

127

)
(Rib3L :class ’ Rib3L—web—surface

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))

reference—coordinate—system " “rib3_L—reference—joint

(Rib2L :class ’ Rib2L—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“rib2_L—reference—joint
)
(RiblL :class * RiblL—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~“rib1l_L—reference—joint

(Sternum :class ’ Sternum—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “sternum—reference—joint

)
)

(define—class arm—sub—geometry—class
:inherit—from (
object
)

:properties (
clavicle_R—reference—joint (default nil)
scapula_R—reference—joint (default nil)
humerus_R—reference—joint (default nil)
ulna_R—reference—joint (default nil)
radius_R—reference—joint (default nil)
clavicle_L—reference—joint (default nil)
scapula_L—reference—joint (default nil)
humerus_L—reference—joint (default nil)
ulna_L—reference—joint (default nil)
radius_L—reference—joint (default nil)
)
:subobjects (
(clavicle :class ’ clavicle—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “clavicle_R—reference—joint

9

128

)

(scapula :class ’ scapula—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “scapula_R—reference—joint

)

(humerus :class ’ humerus—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “humerus_R—reference—joint
)
(ulna :class ’ ulna—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “ulna_R —reference—joint

)

(radius :class ’ radius—web—surface

orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “radius_R—reference—joint
)
(claviclel :class ’ clavicle 1—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “clavicle_L—reference—joint

b

)

(scapulal :class ’ scapula_l—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “scapula_L—reference—joint

)

(humerus 1 :class ’ humerus_1—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~~humerus_L—reference—joint
)
(ulnal :class ’ ulna_l—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system "~ “ulna_L.—reference—joint

)

)

129

)

(radiusl :class ’ radius_l—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " “radius_L—reference—joint

)
)
)

(define—class ground—sub—geometry—class
:inherit—from (
object
)

:properties (
ground—reference—joint (default nil)
sacrum—reference—joint (default nil)
pelvis—reference—joint (default nil)
)
:subobjects (
(sacrum :class ’ sacrum—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system ~ “sacrum—reference—joint

9

)

(pelvisrv :class ’ pelvis_rv—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " pelvis—reference—joint

(pelvisdlv :class ’ pelvis_lv—web—surface
orientation (list (rotate (radians—to—degrees 0) :x—axis)(rotate
(radians—to—degrees 0) :y—axis)(rotate (radians—to—degrees 0)
:z—axis)(translate (list 0 0 0)))
reference—coordinate—system " pelvis—reference—joint

)
)
)

C.10 Data model class

Listing C.10: Movement data-model-mixin

(define—class joint—class—data—model—class
:inherit—from (data—model—node—mixin body—class)
:properties (

property—objects—list
(list
"Hip joint (range —120 — 120)”

130

list (the superior hip—rotation—r self) ’(automatic—apply? t)

(

)

(list (the superior hip—aduction—r self) ’'(automatic—apply? t)
)

(list (the superior hip—flexion—r self) ’(automatic—apply? t)
)

”Knee joint (range —120 — 10)”

(list (the superior knee—angle—r self) ’(automatic—apply? t)

” Ankle joint (range —90 — 90)”
(list (the superior ankle—angle—r self) ’(automatic—apply? t)

”Subtalar joint (range —90 — 90)”

(list (the superior subtalar—angle—r self) ’(automatic—apply? t)
)

”Toe joint range (range —90 — 90)
(list (the mtp—angle—r self) ’(automatic—apply? t)

)

(hip—flexion—r :class ’editable—data—property—class
label ”hip—flexion—1"
formula :inherit—formula

)

(hip—rotation—r :class ’editable—data—property—class
label ”hip—rotation—r”
formula :inherit—formula

9

(hip—aduction—r :class ’editable—data—property —class
label ”hip—aduction—r”
formula :inherit—formula

)

(knee—angle—r :class ’editable—data—property—class
label "knee—angle—r1”
formula :inherit—formula

(ankle—angle—r :class ’editable—data—property—class
label ”ankle—angle—r”
formula :inherit—formula

)

(subtalar—angle—r :class ’editable—data—property—class
label ”subtalar—angle—r”
formula :inherit—formula

)

(mtp—angle—r :class ’editable—data—property—class
label "mtp—angle—r”
formula :inherit—formula

131

C.11 Web-surface-classes

Listing C.11: Web-surface-classes

(define—class treadmill—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\ \PytonWorkspace) \ treadmill_points.dat”
con—file ”C:\\PytonWorkspace\ \treadmill_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class sacrum—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \sacrum_points.dat”
con—file ”C:\\PytonWorkspace\ \sacrum_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class pelvis—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace)\ \pelvis_points.dat”
con—file 7C:\\PytonWorkspace\ \pelvis_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1_pelvis—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \l_pelvis_points.dat”
con—file ”C:\\PytonWorkspace\\l_pelvis_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class femur—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \femur_points.dat”
con—file ”C:\\PytonWorkspace\ \femur_connectivity.dat”

132

cleanup? nil
method 2

)
)

(define—class tibia—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \tibia_points.dat”
con—file ”C:\\PytonWorkspace\ \tibia_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class fibula—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \fibula_points.dat”
con—file ”C:\\PytonWorkspace\ \fibula_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class talus—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \talus_points.dat”
con—file ”C:\\PytonWorkspace\ \talus_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class foot—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \foot_points.dat”
con—file ”C:\\PytonWorkspace\ \foot_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class bofoot—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \bofoot_points.dat”

133

con—file ”C:\\PytonWorkspace\\bofoot_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1_femur—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \l_femur_points.dat”
con—file ”C:\\PytonWorkspace\\l_femur_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1_tibia—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \l_tibia_points.dat”
con—file 7C:\\PytonWorkspace\\l_tibia_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1 fibula—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \l_fibula_points.dat”
con—file 7C:\\PytonWorkspace\\l_fibula_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1 talus—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \l_talus_points.dat”
con—file ”C:\\PytonWorkspace\\l_talus_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1 foot—web—surface
:inherit—from(web—surface—object)
:properties (

134

nodes—file ”C:\\PytonWorkspace\ \l_-foot_points.dat”
con—file ”C:\\PytonWorkspace\\l-foot_connectivity.dat”
cleanup? nil

method 2

)
)

(define—class 1-bofoot—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\ PytonWorkspace\ \l_bofoot_points.dat”
con—file ”C:\\PytonWorkspace\\l-bofoot_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class hat_spine—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \hat_spine_points.dat”
con—file ”C:\\PytonWorkspace\ \hat_spine_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class hat_jaw—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \hat_jaw_points.dat”
con—file ”C:\\PytonWorkspace\ \hat_jaw_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class hat_skull—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ hat_skull_points.dat”
con—file ”C:\\PytonWorkspace\ \hat_skull_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class hat_ribs—web—surface
:inherit—from(web—surface—object)

135

:properties (
nodes—file ”C:\\PytonWorkspace\ \ hat_ribs_points.dat”
con—file 7C:\\PytonWorkspace\ \hat_ribs_connectivity.dat”
cleanup? nil
method 2

)
)

(in—package :aml)

(define—class sacrum—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \sacrum_points.dat”
con—file ”C:\\PytonWorkspace\ \sacrum_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class pelvis_rv—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace)\ \pelvis_rv_points.dat”
con—file ”C:\\PytonWorkspace\ \pelvis_rv_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class pelvis_lv—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \pelvis_lv_points.dat”
con—file 7C:\\PytonWorkspace\ \pelvis_lv_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class lumbar5—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \lumbar5_points.dat”
con—file ”C:\\PytonWorkspace\ \lumbar5_connectivity.dat”
cleanup? nil
method 2

136

(define—class lumbar4d—web—surface

)

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\ \PytonWorkspace\ \lumbar4_points.dat”
con—file ”C:\\PytonWorkspace\\lumbar4_connectivity.dat”
cleanup? nil
method 2

)

(define—class lumbar3—web—surface

)

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\ \PytonWorkspace\ \lumbar3_points.dat”
con—file ”C:\\PytonWorkspace\ \lumbar3_connectivity.dat”
cleanup? nil
method 2

)

(define—class lumbar2—web—surface

)

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\ \PytonWorkspace\ \lumbar2_points.dat”
con—file ”C:\\PytonWorkspace\ \lumbar2_connectivity.dat”
cleanup? nil
method 2

)

(define—class lumbarl—web—surface

)

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\ \PytonWorkspace\ \lumbarl_points.dat”
con—file ”C:\\PytonWorkspace\ \lumbarl_connectivity.dat”
cleanup? nil
method 2

)

(define—class thoracic12_s—web—surface

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\\PytonWorkspace\ \thoracic12_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic12_s_connectivity.dat”
cleanup? nil
method 2

137

)

(define—class thoracicll_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \thoracicl1_s_points.dat”
con—file ”C:\\PytonWorkspace\\thoracicll_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracicl0_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \thoracic10_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic10_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic9_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \thoracic9_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic9_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic8_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ thoracic8_s_points.dat”
con—file 7C:\\PytonWorkspace\ \thoracic8_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic7_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracic7_s_points.dat”
con—file 7C:\\PytonWorkspace\ \thoracic7_s_connectivity.dat”
cleanup? nil
method 2

138

)
)

(define—class thoracic6_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \thoracic6_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic6_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracich_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracic5_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracich_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic4_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracic4_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic4_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic3_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracic3_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic3_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thoracic2_s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracic2_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracic2_s_connectivity.dat”
cleanup? nil

139

method 2

)
)

(define—class thoracicl _s—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thoracicl_s_points.dat”
con—file ”C:\\PytonWorkspace\ \thoracicl_s_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class rotatedcerv7—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \rotatedcerv7_points.dat”
con—file 7C:\\PytonWorkspace\ \rotatedcerv7_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class cerv6—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \cerv6_points.dat”
con—file ”C:\\PytonWorkspace\ \cerv6_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class cervb—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\\PytonWorkspace\ \cerv5_points.dat”
con—file ”C:\\PytonWorkspace\ \cerv5_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class cervd—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\\PytonWorkspace\ \cerv4_points.dat”
con—file ”C:\\PytonWorkspace\ \cerv4_connectivity.dat”

140

cleanup? nil
method 2

)
)

(define—class cerv3—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ cerv3_points.dat”
con—file ”C:\\PytonWorkspace\ \cerv3_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class cerv2—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ cerv2_points.dat”
con—file ”C:\\PytonWorkspace\ \cerv2_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class cervl—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \cervl_points.dat”
con—file ”C:\\PytonWorkspace\ \cervl_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class jaw—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \jaw_points.dat”
con—file ”C:\\PytonWorkspace\ \jaw_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class skull—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace)\ \skull_points.dat”

141

con—file ”C:\\PytonWorkspace\ \skull_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib12R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib12R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib12R _connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib11R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib11R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib11R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib10R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib10R_points.dat”
con—file 7C:\\PytonWorkspace\\Rib10R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib9R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib9R _points.dat”
con—file 7”C:\\PytonWorkspace\\Rib9R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib8R—web—surface
:inherit—from(web—surface—object)
:properties (

142

nodes—file ”C:\\PytonWorkspace\ \Rib8R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib8R_connectivity.dat”
cleanup? nil

method 2

)
)

(define—class Rib7R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib7R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib7R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib6R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib6R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib6R _connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib5R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib5R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib5R _connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib4R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib4R _points.dat”
con—file ”C:\\PytonWorkspace\\Rib4R _connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib3R—web—surface
:inherit—from(web—surface—object)

143

:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib3R_points.dat”
con—file 7C:\\PytonWorkspace\ \Rib3R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib2R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib2R _points.dat”
con—file 7C:\\PytonWorkspace\ \Rib2R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib1R—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib1R_points.dat”
con—file ”C:\\PytonWorkspace\\Rib1R_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Ribl12L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib12L_points.dat”
con—file 7C:\\PytonWorkspace\\Rib12L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Ribl11L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib11L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib11L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib10L—web—surface

144

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib10L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib10L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib9L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib9L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib9L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib8L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib8L _points.dat”
con—file ”C:\\PytonWorkspace\\Rib8L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib7L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib7L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib7L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib6L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib6L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib6L_connectivity.dat”
cleanup? nil
method 2

145

(define—class Rib5L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib5L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib5L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib4L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib4L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib4L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib3L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \Rib3L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib3L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib2L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib2L_points.dat”
con—file 7C:\\PytonWorkspace\ \Rib2L_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class Rib1L—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Rib1L_points.dat”
con—file ”C:\\PytonWorkspace\\Rib1L_connectivity.dat”
cleanup? nil
method 2

146

(define—class Sternum—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \Sternum_points.dat”
con—file ”C:\\PytonWorkspace\ \Sternum_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class clavicle—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace)\ \clavicle_points.dat”
con—file ”C:\\PytonWorkspace\ \clavicle_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class scapula—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace) \scapula_points.dat”
con—file ”C:\\PytonWorkspace\ \scapula_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class humerus—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \humerus_points.dat”
con—file ”C:\\PytonWorkspace\\humerus_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class ulna—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ulna_points.dat”
con—file ”C:\\PytonWorkspace\ \ulna_connectivity.dat”
cleanup? nil
method 2

147

)

(define—class radius—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \radius_points.dat”
con—file ”C:\\PytonWorkspace\ \radius_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class pisiform—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace) \pisiform_points.dat”
con—file ”C:\\PytonWorkspace\ \pisiform_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class lunate—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \lunate_points.dat”
con—file ”C:\\PytonWorkspace\ \lunate_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class scaphoid—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\\PytonWorkspace\ \scaphoid_points.dat”
con—file ”C:\\PytonWorkspace\ \scaphoid_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class triquetrum—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ triquetrum _points.dat”
con—file 7C:\\PytonWorkspace\ \triquetrum_connectivity.dat”
cleanup? nil
method 2

148

)
)

(define—class hamate—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \hamate_points.dat”
con—file ”C:\\PytonWorkspace\\hamate_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class capitate—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ capitate_points.dat”
con—file ”C:\\PytonWorkspace\ \capitate_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class trapezoid—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \trapezoid_points.dat”
con—file ”C:\\PytonWorkspace\ \trapezoid_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class trapezium—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \trapezium_points.dat”
con—file ”C:\\PytonWorkspace\ \trapezium_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1lmc—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ lmc_points.dat”
con—file ”C:\\PytonWorkspace\\ lmc_connectivity.dat”
cleanup? nil

149

)
)

method 2

(define—class 2mec—web—surface
:inherit—from(web—surface—object)
:properties (

)
)

nodes—file ”C:\ \PytonWorkspace\ \ 2mc_points.dat”
con—file ”C:\\PytonWorkspace\ \2mec_connectivity.dat”
cleanup? nil

method 2

(define—class 3mc—web—surface
:inherit—from(web—surface—object)
:properties (

)
)

nodes—file ”C:\\PytonWorkspace\ \3mc_points.dat”
con—file 7C:\\PytonWorkspace\\3mc_connectivity.dat”
cleanup? nil

method 2

(define—class 4mc—web—surface
:inherit—from(web—surface—object)
:properties (

)
)

nodes—file ”C:\\PytonWorkspace\ \4mc_points.dat”
con—file ”C:\\PytonWorkspace\\4mec_connectivity.dat”
cleanup? nil

method 2

(define—class 5mc—web—surface
:inherit—from(web—surface—object)
:properties (

)
)

nodes—file ”C:\\PytonWorkspace\ \bmc_points.dat”
con—file ”C:\\PytonWorkspace\\bmc_connectivity.dat”
cleanup? nil

method 2

(define—class thumbprox—web—surface
:inherit—from(web—surface—object)
:properties (

nodes—file 7 C:\\PytonWorkspace\ \thumbprox_points.dat”
con—file ”C:\\PytonWorkspace\ \thumbprox_connectivity.dat”

150

cleanup? nil
method 2

)
)

(define—class thumbdist—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thumbdist_points.dat”
con—file ”C:\\PytonWorkspace\ \thumbdist_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2proxph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ 2proxph_points.dat”
con—file ”C:\\PytonWorkspace\ \2proxph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2midph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 2midph_points.dat”
con—file ”C:\\PytonWorkspace\\2midph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2distph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 2distph_points.dat”
con—file ”C:\\PytonWorkspace\ \2distph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3proxph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 3proxph_points.dat”

151

con—file ”C:\\PytonWorkspace\ \3proxph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3midph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \3midph_points.dat”
con—file ”C:\\PytonWorkspace\\3midph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3distph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 3distph_points.dat”
con—file ”C:\\PytonWorkspace\ \3distph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 4proxph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \4proxph_points.dat”
con—file ”C:\\PytonWorkspace\ \4proxph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 4midph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \4midph_points.dat”
con—file 7C:\\PytonWorkspace\\4midph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 4distph—web—surface
:inherit—from(web—surface—object)
:properties (

152

nodes—file ”C:\ \PytonWorkspace\ \4distph_points.dat”
con—file ”C:\\PytonWorkspace\ \4distph_connectivity.dat”
cleanup? nil

method 2

)
)

(define—class 5proxph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 5proxph_points.dat”
con—file ”C:\\PytonWorkspace\ \5proxph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class bmidph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \5midph_points.dat”
con—file ”C:\\PytonWorkspace\\bmidph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 5distph—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 5distph_points.dat”
con—file ”C:\\PytonWorkspace\ \5distph_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class clavicle_ 1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \clavicle_1_points.dat”
con—file ”C:\\PytonWorkspace\ \clavicle_1_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class scapula_l—web—surface
:inherit—from(web—surface—object)

153

:properties (
nodes—file ”C:\\PytonWorkspace\ \scapula_l_points.dat”
con—file 7C:\\PytonWorkspace\ \scapula_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class humerus_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \humerus_l_points.dat”
con—file 7C:\\PytonWorkspace\ \humerus_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class ulna_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ulna_l_points.dat”
con—file ”C:\\PytonWorkspace\\ulna_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class radius_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \radius_l_points.dat”
con—file ”C:\\PytonWorkspace\ \radius_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class pisiform_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \pisiform_l_points.dat”
con—file ”C:\\PytonWorkspace\ \pisiform_|_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class lunate_l—web—surface

154

:inherit—from(web—surface—object)

:properties (
nodes—file ”C:\\PytonWorkspace\ \lunate_l_points.dat”
con—file ”C:\\PytonWorkspace\ \lunate_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class scaphoid_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \scaphoid_l_points.dat”
con—file ”C:\\PytonWorkspace\ \scaphoid_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class triquetrum_l1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ triquetrum_1_points.dat”
con—file ”C:\\PytonWorkspace\ \triquetrum_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class hamate 1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \hamate_l_points.dat”
con—file ”C:\\PytonWorkspace\ \hamate_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class capitate_|—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \capitate_1_points.dat”
con—file ”C:\\PytonWorkspace\ \capitate_l_connectivity.dat”
cleanup? nil
method 2

155

(define—class trapezoid 1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ trapezoid_1_points.dat”
con—file ”C:\\PytonWorkspace\ \trapezoid_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class trapezium_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace) \ trapezium_1_points.dat”
con—file ”C:\\PytonWorkspace\ \trapezium_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 1mec_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ 1mc_1_points.dat”
con—file ”C:\\PytonWorkspace\\ 1lmec_1_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2mec_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \2mc_l_points.dat”
con—file 7C:\\PytonWorkspace\\2mc_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3mc_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \3mc_1_points.dat”
con—file ”C:\\PytonWorkspace\ \3mec_l_connectivity.dat”
cleanup? nil
method 2

156

(define—class 4mc_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \4mc_1_points.dat”
con—file ”C:\\PytonWorkspace\\4mc_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class bmc_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \bmc_1_points.dat”
con—file ”C:\\PytonWorkspace\\5mc_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thumbprox_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thumbprox_1_points.dat”
con—file ”C:\\PytonWorkspace\ \thumbprox_1_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class thumbdist_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \thumbdist_1_points.dat”
con—file ”C:\\PytonWorkspace\ \thumbdist_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2proxph_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \ 2proxph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \2proxph_l_connectivity.dat”
cleanup? nil
method 2

157

)

(define—class 2midph_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \2midph_l_points.dat”
con—file ”C:\\PytonWorkspace\\2midph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 2distph_1-web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file 7 C:\\PytonWorkspace\ \2distph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \2distph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3proxph_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \3proxph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \3proxph_1_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3midph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \3midph_1_points.dat”
con—file ”C:\\PytonWorkspace\\3midph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 3distph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \3distph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \3distph_l_connectivity.dat”
cleanup? nil
method 2

158

)
)

(define—class 4proxph_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \4proxph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \4proxph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 4midph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \4midph_1_points.dat”
con—file ”C:\\PytonWorkspace\\4midph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 4distph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \4distph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \4distph_l_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 5proxph_l—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \5proxph_1_points.dat”
con—file ”C:\\PytonWorkspace\\5proxph_1_connectivity.dat”
cleanup? nil
method 2

)
)

(define—class 5midph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\\PytonWorkspace\ \bmidph_1_points.dat”
con—file ”C:\\PytonWorkspace\\bmidph_1_connectivity.dat”
cleanup? nil

159

method 2

)
)

(define—class 5distph_1—web—surface
:inherit—from(web—surface—object)
:properties (
nodes—file ”C:\ \PytonWorkspace\ \ 5distph_l_points.dat”
con—file ”C:\\PytonWorkspace\ \5distph_l_connectivity.dat”
cleanup? nil
method 2

160

