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SUMMARY:
The purpose of the thesis is to investigate methods that may be used for assessing the reliability in large concrete
structures in combination with non-linear finite element analyses (NLFEA).
Reliability methods are applied to a simple beam with various lengths, and evaluated with respect to applicability,
accuracy and feasibility. The reliability is assessed by a response surface method in combination with a first order
reliability method (RSM-FORM), and a small-sample Monte Carlo type using Latin hypercube sampling with curve fitting
to a normal distribution (LHS-fit). For greater insight, these methods are investigated using both NLFEA and analytic
limit state function evaluations (LSFE). Analytic Monte Carlo simulations are used as benchmarks. For very strong or
weak material parameters, NLFEA yield inconsistent results.
Only two stochastic variables are introduced, namely the concrete in-situ compressive strength and steel yield strength.
Thus, only material uncertainties are implemented in the reliability assessments. Since load effects are treated
deterministically, this study only regards reliability of the resistance.
In the region where NLFEA is consistent and when only bending failure mode is prevalent, results from NLFEA RSM-
FORM yield quite similar results compared to the benchmarks. Similarly, NLFEA LHS-fit provides decent, conservative
results although less accurate than RSM-FORM. Analytic results show two important findings: (1) RSM-FORM accuracy
decreases with two failure modes, and (2) the choice of distribution seems important for LHS-fit, however an optimal
choice may still not provide as accurate results as RSM-FORM.
RSM-FORM shows promising results for a simple beam with one failure mode. However, for large concrete structures
with several failure modes, this method might struggle to create an accurate response surface. This is further impeded by
the difficulties in producing consistent NLFEA response. In terms of feasibility, RSM-FORM normally requires 10-25
LSFEs for one reliability assessment, while LHS-fit with 50 LSFEs provide the full picture of the structural reliability. LHS-
fit is not as accurate as RSM-FORM, however, it is simpler to grasp and results show that it provides reasonable accuracy
for preliminary reliability assessments.
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Large concrete shell structures like dams and offshore oil and gas platforms are nor-

mally designed using global linear finite element analyses and specially developed post-

processing software. This method allows us to use the principle of superpositioning,

which is necessary in order to design for the possible large number of load combinations.

In order to achieve this, reinforced concrete is treated as a linear elastic material. This de-

sign procedure enables engineers to verify the reliability of a reinforced concrete structure.

Cracking of concrete and yielding of reinforcement results in a non-linear behavior, and in

order to capture the true structural behavior, non-linear finite element analyses should be

performed. In such analyses, all sections contribute to the global capacity of the structure.

The capacity control should thus be based on a global resistance method in contrast to the

local control on sectional level which is most commonly used. Global resistance methods

have been developed and demonstrated for simple structures with simple arrangements,

but the extension to large structures as mentioned in the introduction is still not fully

explored.

The question becomes: Can non-linear finite element analyses be used for reliability

purposes?
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Abstract

The purpose of the thesis is to investigate methods that may be used for assessing the

reliability in large concrete structures in combination with non-linear finite element anal-

yses (NLFEA).

Reliability methods are applied to a simple beam with various lengths, and evaluated with

respect to applicability, accuracy and feasibility. The reliability is assessed by a response

surface method in combination with a first order reliability method (RSM-FORM), and

a small-sample Monte Carlo type using Latin hypercube sampling with curve fitting to

a normal distribution (LHS-fit). For greater insight, these methods are investigated us-

ing both NLFEA and analytic limit state function evaluations (LSFE). Analytic Monte

Carlo simulations are used as benchmarks. For very strong or weak material parameters,

NLFEA yield inconsistent results. Only two stochastic variables are introduced, namely

the concrete in-situ compressive strength and the steel yield strength. Thus, only material

uncertainties are implemented in the reliability assessments. Since load effects are treated

deterministically, this study only regards reliability of the resistance.

In the region where NLFEA is consistent and when only bending failure mode is prevalent,

results from NLFEA RSM-FORM yield quite similar results compared to the benchmarks.

Similarly, NLFEA LHS-fit provides decent, conservative results although less accurate

than RSM-FORM. Analytic results show two important findings: (1) RSM-FORM accu-

racy decreases with two failure modes, and (2) the choice of distribution seems important

for LHS-fit, however an optimal choice may still not provide as accurate results as RSM-

FORM.
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RSM-FORM shows promising results for a simple beam with one failure mode. However,

for large concrete structures with several failure modes, this method might struggle to

create an accurate response surface. This is further impeded by the difficulties in produc-

ing consistent NLFEA response. In terms of feasibility, RSM-FORM normally requires

10-25 LSFEs for one reliability assessment, while LHS-fit with 50 LSFEs provide the full

picture of the structural reliability. LHS-fit is not as accurate as RSM-FORM, however, it

is simpler to grasp and results show that it provides reasonable accuracy for preliminary

reliability assessments.

The literature provides a variety of optimizations and improvements on the methods,

which might increase their applicability for large scale reliability assessments. Results

herein are promising, and should be further investigated on more complex models using

improved RSMs found in the literature.
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Sammendrag

Formålet med masteroppgaven er å se nærmere p̊a hvordan ikke-lineære elementanalyser

kan brukes sammen med p̊alitelighetsmetoder for å undersøke p̊aliteligheten til store be-

tongkonstruksjoner.

Hovedsakelig to p̊alitelighetsmetoder er blitt brukt p̊a en fritt opplagt bjelke med forskjel-

lige lengder og vurdert etter anvendbarhet, nøyaktighet og gjennomførbarhet. Metodene

er response surface method i kombinasjon med first order reliability method (RSM-FORM),

og en small-sample Monte Carlo sammen med Latin hypercube sampling og kurvetilpas-

ning (LHS-fit). For større innsikt i metodene, benyttes b̊ade ikke-lineære elementanalyser

og analytiske funksjoner. Siden de analytiske funksjonene gir en respons som er ganske

lik den fra de ikke-lineære analysene, benyttes Monte Carlo simuleringer med analytiske

formler som et referanseniv̊a. Resultater fra ikke-lineære analyser er imidlertid unøyaktige

for høye- eller lave materialparametere.

To stokastiske variabler er inkludert, in-situ betong trykkfasthet og flytespenning i st̊al.

Det betyr at bare materialusikkerheter er implementert i p̊alitelighetsanalysene. Lasten

er ikke modellert som en stokastisk variabel, hvilket betyr at p̊alitelighetsanalysene bare

vektlegger kapasiteten.

Resultater for RSM-FORM fra de ikke-lineære analysene er ganske like referanseniv̊aet

dersom det kun er én opptredende bruddmode. Resultatene for LHS-fit fra de ikke-

lineære analysene viser at metoden er konservativ, men samtidig mer unøyaktig enn RSM-

FORM. Analytiske resultater viser to interessante funn: (1) To opptredende bruddmoder

kan p̊avirke nøyaktigheten til RSM-FORM, og (2) kurvetilpasningen kan p̊avirke LHS-fit

nøyaktigheten. Videre må det presiseres at en optimal kurvetilpasning vil trolig fortsatt

v



ikke gi nøyaktighet p̊a niv̊a med RSM-FORM.

RSM-FORM viser lovende resultater for en fritt opplagt bjelke med én bruddmode. For

større betongkonstruksjoner med flere, og mer komplekse bruddmoder, kan metoden f̊a

problemer med å lage en nøyaktig responsflate. Dette forsterkes ytterligere grunnet

vanskelighetene med å lage gode modeller for ikke-lineære analyser av store konstruk-

sjoner. Med hensyn til gjennomførbarheten trenger RSM-FORM vanligvis mellom 10-25

analyser for én p̊alitelighetsanalyse, mens LHS-fit krever bare 50 analyser for å dekke hele

p̊alitelighetsomr̊adet. LHS-fit er ikke like nøyaktig som RSM-FORM, men er imidlertid

enklere å bruke og gir gode nok resultater til at metoden kan benyttes som et grovt første

overslag.
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C Coefficient for shear flexure capacity

GC Compressive fracture energy of concrete

GF Tensile fracture energy of concrete

Ec Concrete Young’s modulus

Ehar Steel hardening modulus

Es Steel Young’s modulus

L Beam length

K Stiffness matrix

Mr Moment resistance

N Number of stratifications in LHS

P Load

R Resistance

Rd Design resistance

Rm Resistance with mean or modified material parameters

Rk Resistance with characteristic material parameters

S Load

Vi Coefficient of variation in material i

Vr Shear flexure resistance

VR Coefficient of variation for resistance

Vf Coefficient of variation in material uncertainties

Vg Coefficient of variation in geometric uncertainties

Vm Coefficient of variation in modelling uncertainties

Z N(0,1) variable

xv



Greek letters

αi Influence factor of parameter i, unless stated otherwise

αcf Factor for the modified mean material strength in the global safety

factor format

β Reliability index

βminσ Minimum reduction factor due to lateral cracking

γ Safety factor

εc Concrete strain

εc,par Strain for maximum concrete strength in the parabolic stress-strain

model

εcu Concrete ultimate strain

εFORM FORM Convergence criteria

εRSM RSM Convergence criteria

εsu Steel ultimate strain

εsy Steel yield strain

η Factor for effective compression strength

λ Factor for effective compression zone height

µ First moment in a distribution

νc Concrete Poisson’s ratio

νp Platen Poisson’s ratio

ξ Factor for transforming to concrete in-situ strength

ρ Reinforcement ratio

σ Second moment in a distribution

σσσ Stress vector

σs Reinforcement stress

ψ Factor for transforming to concrete in-situ strength

ω Relative factor between top-neutral axis and top-As

xvi



Chapter 1

Introduction

Structures and technical systems need to satisfy requirements in regards to safety and

serviceability for a given period of time. Such requirements describe high-risk events like

total collapse of a structure, and also events less severe such as maximum deflection or

vibration requirements. In traditional design today, safety and serviceability is ensured

using safety factors which account for uncertainties and reflect a desired reliability level for

the design. In the design of concrete components, linear finite element analyses (LFEA)

are normally conducted to find critical sections and the forces acting in those sections.

Next, the design resistance and the design loads of the critical sections are calculated

using safety factors. The check is then to compare the design resistance with the limit

state requirements stated in the codes. This procedure using LFEA together with hand

calculations and sectional checks is how most codes are utilized in the design of struc-

tural components. Although the partial factor method is quite robust, there are some

drawbacks to the method. Partial factors are general and do not accurately account for

the stochastic properties of the variables [35]. Local checks do not give any insight to the

global safety of the structure, only whether or not the design resistance is greater than the

design load for a given section. This is one motivation for trying to incorporate non-linear

finite element analysis (NLFEA) in the design of components and in structural reliability

assessments. A NLFEA is a global check, implying that it assesses all failure modes, and

hence there is no need for separate sectional checks as with the traditional design strategy.

Additionally, NLFEA provide more realistic results and accounts for force redistribution

and intricate interplay between components.
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When modelling a structure there is always a question of how to incorporate uncertainties.

Uncertainties can be related to the modelling itself, and/or material and geometric proper-

ties. The input parameters are uncertain and should therefore be represented as stochastic

variables. The aforementioned partial safety factor method is a semi-probabilistic level I

method, meaning that it does not explicitly account for uncertainties. Level II and level

III methods, e.g., first order reliability method (FORM) and the Monte Carlo method,

respectively, are more accurate and include stochastic parameters and distribution func-

tions in the calculation of failure probabilities. The objective of reliability assessments is

to compute a failure probability for the whole system. However, finding analytic formu-

lations of the limit state function (LSF) of a complex structure is not straightforward.

Hence, NLFEA is used to evaluate the LSF due to its global nature and superior represen-

tation of real structural behavior. This is where the problem arises. Reliability methods

often require repeated analyses with different input parameters. Considering that a sin-

gle NLFEA is time consuming, methods like Monte Carlo that require a large number of

these become unfeasible. Advances in computer science and computational mechanics has

led to comprehensive research trying to find efficient ways of merging stochastic analysis

with advanced finite element analysis (FEA). Common remedies are to apply sampling

techniques to reduce the amount of simulations, or to create response surfaces that other

reliability methods can be applied to [43].

Can NLFEA be used for reliability assessment of large concrete structures? In this study,

the reliability methods are evaluated with respect to feasibility, applicability and accuracy.

Feasibility regards whether the methods are viable, if it is worth the time spent making the

solution strategy and post-processing. This must be done with care, since many analyses

are needed and the model at hand must be applicable for a range of input parameters,

and able to cope with several failure modes. A model should be able to do all this

without compromising the accuracy of the solution to a large extent. In probabilistic

reliability assessments using FEA, there is always an issue of feasibility vs. accuracy. For

the procedures to be feasible, time spent analyzing and needs for modification should be

minimized. The reliability methods investigated are meant to be performed on regular

computers without aid from any advanced computers.

This study focused on reliability of a simply supported beam with a mid-span point load,
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CHAPTER 1. INTRODUCTION

evaluated analytically and using NLFEA. The Monte Carlo method is the most accurate

reliability method, but is unfeasible with NLFEA. Thus, the main objective of this pa-

per is to use an alternative approach, by employing a response surface method (RSM)

in combination with FORM (RSM-FORM). Another reliability method investigated is a

small sample Monte Carlo type using Latin hypercube sampling (LHS). This method is

used with either curve fitting or with simple counting to provide reliability levels, de-

noted LHS-fit and LHS-count, respectively. Furthermore, these methods were applied to

a modified analytic LSF for comparative reasons. The performance of a partial and a

global safety format according to fib Model Code 2010 [10] are evaluated with NLFEA.

The reliability methods are summarized in Table 1.1.

Table 1.1: Summary of reliability methods

Reliability method Analytic NLFEA

Monte Carlo x

RSM-FORM x x

LHS-fit x x

LHS-count x

In Chapter 2, the beam configuration and its input variables are presented first. Further,

the NLFEA theory and the implemented solution strategy is described. Then, the analytic

method is introduced, before we delve into reliability. Within reliability, general theory is

presented, as well as the following reliability methods: Monte Carlo, LHS, RSM-FORM

and the safety formats, followed by a section on uncertainties. The last section in Chapter

2 presents a summary of the method for limit state function evaluations (LSFEs) applied

in this study. Chapter 3 presents the results, starting with a summary of the optimization

procedure of the method for NLFEA LSFEs, followed by the results from the reliability

analyses of RSM-FORM and LHS. The results are discussed and compared in Chapter

4. First, the method for NLFEA LSFEs, then the discussion regarding the RSM-FORM

and LHS methods, respectively. Chapter 5 presents conclusions based on the discussion,

and finally Chapter 6 presents a few proposals for further study.
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Chapter 2

Theory and method

First, the case configuration is presented with the beam model and its stochastic variables.

There is a section on NLFEA, describing and presenting analysis procedures, discretization

and meshing options. In addition, material models for modelling concrete and steel are

presented. The next section includes general concepts of reliability and presents some

methods to estimate reliability. Then, uncertainties of FEA and reliability are presented,

along with estimations found in the literature. The last section summarizes the method

for LSFEs using either NLFEA or analytic formulas.

2.1 Case configuration

In this section, the case configuration as well as the stochastic variables are presented.

2.1.1 Beam model

The analyses in this report were performed on a simply supported beam with a mid-span

point load. The cross-section is shown in Figure 2.1, with height h = 400 mm and width

b = 200 mm. The cover to the center of reinforcement bars was c = 50 mm, resulting in

an effective depth d = 350 mm. The beam only had longitudinal reinforcement with area

As = 350 mm2.
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Figure 2.1: Cross-section, lengths in mm

This cross-section was applied on three different beam lengths: 1.5 m, 2.3 m and 5.0 m.

These lengths were chosen to induce shear, shear-moment, and moment failure modes.

An overhang of 200 mm on each side was used on all beam lengths. Figure 2.2 illustrates

the static model for the 5.0 m beam. The supports are denoted R1 and R2, and the load

is denoted P1. Gravitational loads were neglected for all the beams.

Figure 2.2: Geometry for the 5.0 m beam, lengths in mm

2.1.2 Stochastic variables

In this study, only the concrete in-situ compressive strength, fc,situ, and steel yield

strength, fsy, were considered stochastic variables. All other material properties of the

structure were treated deterministically related to these, and properties not related to

the materials were considered deterministic. The concrete was set to C30/37, where 30

denotes the cylinder strength and 37 the cubic strength. The reinforcement steel was set

to B500NC.

In the following, the concrete cylinder strength is transformed to concrete in-situ strength.

Concrete cylinder strength, fc is log-normally distributed. Its first and second moments

relate to the cylinder strength by

fc = eµc+Zσc (2.1)
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where fc is in MPa, Z is N(0,1), and the first moment, µc, and the second moment, σc,

are the mean and standard deviation of the natural logarithm of fc, respectively. Since

concrete has different behavior in a lab than in the field, concrete in-situ strength was

used to better model the actual behavior. The relation between concrete cylinder and

in-situ strength is collected from JCSS [22] and expressed by

fc,situ = ξfψc (2.2)

where fc,situ is in MPa, ψ was set to 0.96 and ξ is a factor taking into account age at first

loading, and duration of loading. ξ was set to 0.8 for loading at 28 days. Using (2.2), the

concrete in-situ strength distribution was calculated from realizations of fc, and fitted to

a log-normal distribution. From this, the first and second moments of the concrete in-situ

strength were calculated. These results, for a selection of concrete grades are summarized

in Table 2.1.

Table 2.1: The log-normal parameters of fc and fc,situ [22]

Concrete grade C15/19 C25/30 C35/45 C45/55

µc 3.40 3.65 3.85 3.98

σc 0.192 0.164 0.123 0.096

µc,situ 3.04 3.28 3.47 3.60

σc,situ 0.184 0.158 0.118 0.092

By manipulating the numbers in Table 2.1, it was found that a linear relation between

the concrete cylinder and in-situ strength distribution parameters could be expressed by

µc,situ = µc
1.1114 and σc,situ = σc

1.0417 (2.3)

with standard deviations of 5.2 · 10−3 and 2.8 · 10−14, respectively. With such small stan-

dard deviations, the relations were assumed appropriate for this study.

Note that fc,situ is still dependent upon the concrete grade, and Figure 2.3 shows this

dependency. Here, fcm is the mean cylinder strength, fcmd is the median cylinder strength,

fcm,EC2 is the mean cylinder strength by Eurocode 2 [2], fcm,situ is the mean in-situ

strength and fcmd,situ is the median in-situ strength of the concrete. Eurocode 2 relates

the mean cylinder strength and the characteristic strength by fcm,EC2 = fck,EC2 + 8 MPa.
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Figure 2.3: Various concrete strengths by the concrete grade

For the purpose of calculating material properties used in the NLFEA, the characteristic

concrete in-situ strength was needed, fck,situ. A log-normal probability density function

(PDF) of fc,situ was made with realizations of fc by (2.2). The 5th percentile value

corresponding to the actual characteristic concrete in-situ strength, fck,situ,actual was then

found. In order to express fck,situ in the same manner as Eurocode 2, the following

simplified relation was proposed:

fcmd,situ = fck,situ + 6 MPa (2.4)

Figure 2.4 illustrates fcmd,situ, fck,situ,actual and fck,situ with this relationship.

Figure 2.4: Approximation of fck,situ by the concrete grade
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The proposed calculation of fck,situ lies close to the fck,situ,actual. Conservative inaccura-

cies occur at high concrete grades, with a maximum error of 4.4%. A non-conservative

inaccuracy is located about C25/30, with 0.1% at the most.

In this study, concrete C30/37 was used and expressed by fc,situ with stochastic parame-

ters logN(3.37,0.138).

For steel, the statistical properties of fsy were collected from JCSS [22] in the same manner

as for the concrete. Since steel is prefabricated, its strength does not change from a lab

to the field, and in-situ parameters are not relevant. The standard deviation for the yield

stress came from three partial variables, representing variations from mill to mill, batch

to batch and within the batch itself.

σs =
√
σ2
mill + σ2

batch + σ2
within (2.5)

where σbatch = 22 MPa and σwithin = 8 MPa. In this study, σmill was set to zero, al-

though JCSS recommends σmill = 19 MPa. The standard deviation for steel then became

σs = 23.4 MPa. It is worth noting that the reinforcement ultimate strength fsu is pre-

sented in JCSS with a larger standard deviation, although without a mean value.

Steel was assumed N(Snom + 60, σs) where Snom denotes steel grade in MPa. For B500NC

this became N(560, 23.4).

2.2 Non-linear finite element method

When performing both LFEA and NLFEA, there are many options to consider, and the

choice of these can majorly affect the output. Numerous analysis procedures, discretiza-

tion and mesh options, as well as material models can be applicable. In this section,

relevant theory and the options used are presented. Unless stated otherwise, options were

chosen as recommended by the Guidelines for NLFEA [6]. For more in depth theory, the

reader is referred to Bell [4] and Cook et al. [12].
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2.2.1 General finite element method

In general, the objective of a FEA is to solve the equation

Ku = R (2.6)

with respect to the global nodal displacements u. K is the global stiffness matrix, and

R is the global nodal forces. For a LFEA, there is a linear relation between load and

displacement. In other words, K is constant, and R represents both the internal forces,

Rint, and external forces, Rext. There is a one-to-one relationship, and the solution

is trivial. The global nodal displacements, u, will through kinematic and constitutive

relations give rise to strains, stresses, and displacements inside the elements. To assess

the non-linear nature in materials, a NLFEA can be performed. Here, the stiffness, K,

and forces, R, become a function of the displacements, u. Then, the equilibrium equation

depends on the displacement history:

K(u)u = R(u) (2.7)

Now, the internal and external forces are not equal. Instead of defining the internal forces

as a function of stiffness and displacement as in (2.6), they are now defined based on an

integration of the internal stresses over the volume

Rint =
∫
V

BTσdV (2.8)

where B is the strain-displacement matrix, and σ is the internal stress matrix [27]. Next,

a residual force, Rres, is defined as the difference between external and internal forces

Rres = Rext − Rint (2.9)

To solve this equation, some form of analysis procedure is needed [12, 26].

2.2.2 Analysis procedure

One way to solve a non-linear problem is to use an incremental-iterative solver. There are

several methods to increment the external effects e.g. load control, displacement control,

or the updated normal plane arc-length method (UNP) as seen in Figure 2.5 [26].
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(a) Updated normal plane arc-length method [25] (b) Load and displacement control [26]

Figure 2.5: Incrementation procedures

With load control, the external effects are applied with load incrementation. A drawback

with this method, is that it cannot go beyond limit points as seen in Figure 2.5b [28].

Cracking in reinforced concrete may lead to such limit points, making load control a sub-

optimal incrementation technique for reinforced concrete.

Displacement control applies the external effects with displacement incrementation. It

can go past limit points, but not turning points. UNP can go beyond both these points

by combining both load and displacement control. UNP, as shown in Figure 2.5a, is an

arc-length method where the perpendicular iterative increment is updated for every iter-

ation. For all incrementation procedures the incrementation specification can be manual

or automatic [25].

For each incremental step in a NLFEA, the residual forces are rarely zero. Without cor-

rection, this can lead to inaccurate response. To improve the solution, an iterative solver

can be used to reduce the residual. The user can allow the iterative solver to stop if a

convergence criterion is met, or a maximum number of iterations are reached. Examples

of convergence criteria include force and energy norms. Divergence can also stop the it-

erative solver, and a divergence criterion is needed.

Regular Newton-Raphson (N-R) is illustrated in Figure 2.6a, and is an iterative solver

where the tangent stiffness is calculated for each iteration. When concrete cracks, the
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tangent of regular N-R can oscillate, leading to a non-converged step [27]. Another it-

erative solver is the modified N-R, illustrated in Figure 2.6b. Modified N-R uses the

initial stiffness on all iterations within one incremental step. This is cheaper per iter-

ation, but may require more iterations per incremental step for convergence. A third

option is Quasi-Newton, which uses the secant stiffness.

(a) Regular Newton-Raphson (b) Modified Newton-Raphson

Figure 2.6: Newton-Raphson methods [25]

In FEA, the structure is discretized into finite elements. The choice of elements depends

upon the FE formulation and the number of dimensions, and is crucial for an adequate

solution. Some elements have defects that can substantially reduce the accuracy of the

solution. For a 2D, non-isoparametric formulation, the Guidelines for NLFEA [6] states

that the eight-noded serendipity element, Q8, provides adequate results. According to

the Guidelines for NLFEA [6], the recommended maximum element size for a 2D beam is

min
(
L

50 ,
h

6

)
(2.10)

where L is the length of the span and h is the depth of the beam. A coarse mesh may lead

to inaccurate results. It is recommended to use full Gauss integration on this element,

which corresponds to a 3x3 integration scheme.

Reinforcement in NLFEA can be modelled as an embedded reinforcement bar. This means

that the material properties from the reinforcement is added to the mother element it lies

within. The mother element and the reinforcement share some degrees of freedom. For

both the mother element and the reinforcement, the strain state is found at integration

points [25].
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The Guidelines for NLFEA [6] also recommends that boundary constraints are modelled

with the use of platens to reduce the effect of spurious high stress concentrations. This

is especially a problem for fine meshes. These platens are very stiff compared to the

concrete, which creates a changed stress/strain field due to friction. To overcome this,

interface elements can be used to separate the element edges, making sure that no friction

occurs.

In this thesis, the Q8 element with width and height h
6 = 66.7 mm was used, as rec-

ommended by the Guidelines for NLFEA [6]. However, the concrete elements over the

platens had a width of 75 mm. All elements were used with reduced integration which

corresponds to a 2x2 integration scheme, although the Guidelines for NLFEA [6] recom-

mends full 3x3 integration. The solution method was Sparse Cholesky using factorization

and substructuring when profitable. The convergence tolerance here was set to 10−8, both

for solving the incremental step equilibrium and the iteration equilibrium. To apply the

reference load, P1 = 100 kN, user specified sizes were applied with UNP using regular

control type. The unloading determination was done by sign change. The iterative solver

was a regular N-R procedure. This was applied with line search with a lower and upper

bound of 0.1 and 1, respectively. The maximum number of searches was set to 5, the

energy psi criterion was set to 0.8, and the regula falsi interval delta eta was set to 0.1.

100 iterations were allowed in each incremental step, and the analysis was set to continue

even if convergence was not reached. The incremental step converged for an energy norm

< 0.001 or a force norm < 0.01. The analysis would stop due to divergence for a value in

either norm > 10000.

2.2.3 Material models

For a mathematical model to describe the real problem in the best way, it is important

to choose a proper material model and properties for the problem at hand.

Concrete

Concrete is a highly non-linear material, and many effects need to be modeled to replicate

the real behavior.
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The tensile behavior of concrete includes a crack model and a stress-strain relationship.

Cracking in concrete can be modelled as smeared, which makes the concrete continuous,

and the stiffness matrix is only updated after cracking [25]. A smeared approach recom-

mended by the Guidelines for NFLEA, is the total strain-based crack model, where the

cracks can be considered fixed or rotating [6]. In the rotating crack model, the cracks

co-rotate with the principal stress directions. Due to the rough nature of concrete, some

stresses can be transferred over the cracks [39]. For the total strain-based rotating crack

model, there are a variety of tensile curves to model the tensile behavior. One of these

is the exponential curve [25]. As Figure 2.7 shows, this stress-strain relationship has a

softening effect after the maximum tensile strength, ft, is reached.

Figure 2.7: Exponential tensile stress-strain model [6]

The material parameters included in the exponential softening model are the tensile

strength of concrete, ft, the fracture energy, GF , and Young’s modulus, Ec, for the elastic

region [19]. heq is an equivalent element length dependent on the mesh discretization. By

the Guidelines for NLFEA [6], GF and ft can be calculated by

GF = 73 f 0.18
cm and ft = 0.3 f 2/3

ck (2.11)

where fcm is the mean concrete compressive strength and fck is the characteristic com-

pressive strength in MPa. GF is in Nmm/mm2, and ft is in MPa.

The concrete behavior in compression is complex. The Guidelines for NLFEA [6] suggests

a parabolic stress-strain relationship in compression, as illustrated in Figure 2.8.
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Figure 2.8: Parabolic compressive stress-strain model. Modified to our notations [25]

The parabolic model is dependent upon the compressive fracture energy, GC , the maxi-

mum compressive strength, fc, the Young’s modulus, Ec, the strains, ε, and the element

size, h [16, 25]. GC is in Nmm/mm2 and can be calculated from

GC = 250 GF (2.12)

Instead of a sudden decrease to zero compressive strength, the model contains a softening

effect after the maximum compressive strength, fc, is reached. The strain at maximum

compressive stress, εc,par, is defined in TNO [25] as

εc,par = −5
3
fc
Ec

(2.13)

The maximum compressive strength of concrete depends on the multi-directional stress

state. The strength increases with confined compressive stresses in the lateral directions,

and decreases with tensile stresses. This can be modelled by a 1993 Selby and Vecchio

model [39]. In general, the concrete has reduced compressive strength when lateral crack-

ing occurs. One of the models for lateral cracking is model B, suggested by Vecchio and

Collins [42] and is illustrated in Figure 2.9. Here, the compressive strength of the concrete,

fc, is reduced by a reduction factor, βσcr [25].
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Figure 2.9: Model B suggested by Vecchio and Collins [25]

Poisson’s ratio, νc, dictates how stresses and strains in different directions are affected

by each other. For a cracked and discontinuous volume, this relationship changes, and

νc changes with cracking. This can be modeled with a damage-based approach, where

νc is gradually reduced to zero as cracking occurs [25]. The Guidelines for NLFEA [6]

recommends the following relation to approximate Ec:

Ec = Ec0

(
fcm
10

)1/3

(2.14)

where Ec0 = 21500 MPa, and fcm is in MPa.

For this report, a parabolic stress-strain model was used in compression, and an exponen-

tial stress-strain model was used in tension. The total strain-based rotating crack model

was used with automatic crack bandwidth. The Vecchio and Collins 1993 model was used

for reduction due to lateral cracking, with a minimum reduction factor βminσ = 0.6 as

used by Belletti et al. [5], although the Guidelines for NLFEA recommend βminσ = 0.4.

Poisson’s ratio was modeled with a damage based reduction, and the stress confinement

effect used a Selby and Vecchio model. Input material parameters were calculated based

on relations from the Guidelines for NLFEA [6] and are presented in Table 2.2. fcm is

adapted to fc,situ, and fck is adapted to the expression presented in (2.4).
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Table 2.2: Concrete properties

Property Value

Initial Poisson’s ratio νc = 0.15

Tensile strength fct,situ = 0.3(fc,situ − 6)2/3

Fracture energy GF,situ = 73f 0.18
c,situ

Compressive fracture energy GC,situ = 250GF,situ

Young’s modulus Ec,situ = Ec0
(
fc,situ

10

)1/3

Reinforcement steel

The material model recommended by the Guidelines for NLFEA [6] for reinforcement is

rather simple compared to that of concrete. An isotropic bi-linear elasto-plastic stress-

strain relationship, as illustrated in Figure 2.10, is sufficient.

Figure 2.10: Bilinear stress-strain relationship for reinforcement [6]

This is a form of von Mises plasticity, where Hooke’s law is valid for the linear part, as

εsy = fsy
Es

(2.15)

where εsy is the yield strain, Es is Young’s modulus, and fsy is the yield strength. The

ultimate strain, εsu, and ultimate strength, fsu, are needed to define the elasto-plastic

part. The following relationship is used:

εsu = fsu − fsy
Ehar

+ εsy (2.16)

where Ehar is the hardening modulus.
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There are several ways to create a complete stress-strain relation for reinforcement. For

a class C reinforcement, the Guidelines for NLFEA [6] provide recommendations for the

ultimate and yield stress relation, fsu
fsy k

, as well as a characteristic ultimate strain limit,

εuk:

1.15 ≤ (fsu
fsy

)k ≤ 1.35 and εuk ≥ 7% (2.17)

The steel parameters used in this report are summarized in Table 2.3. Note that Ehar
is not a fixed parameter, but depends upon fsy, εsy and fsu. Perfect bonding between

concrete and reinforcement was assumed.

Table 2.3: Reinforcement properties

Property Value

Young’s modulus Es = 200 000 MPa

Ultimate strain εsu = 7.5%

Yield strain εsy = fsy

Es

Ultimate stress fsu = 1.25 fsy

Platen

The platens were modeled as steel plates with a linear elastic behavior and material

properties as in Table 2.4.

Table 2.4: Platen properties

Property Value

Young’s modulus Ep = 200 000 MPa

Poisson’s ratio νp = 0.3

The properties for the interface elements are given in Table 2.5. These stiffnesses are

collected from a benchmark experiment similar to the beam under consideration, as used

by Belletti et al. [5].
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Table 2.5: Interface properties

Property Value

Normal stiffness Kn = 36 300 N/mm3

Shear stiffness Ks = 3.63 · 10−8 N/mm3

2.3 Reliability

In a reliability assessment, the probability of failure within a lifetime of a structure is

sought. Calculating failure probabilities exactly is difficult, hence many approximate

methods have been developed. This is a topic highly relevant for design codes as they

carry the responsibility of ensuring certain safety levels. This section presents general

concepts of reliability, as well as reliability methods to estimate failure probabilities.

2.3.1 General concepts

A structure or a technical system needs to meet certain requirements in regards to safety

and serviceability. These can be assessed with ultimate limit state or service limit state.

Mathematically, this can be expressed as a limit state condition on the form

G(x) > 0 (2.18)

where x is the vector of random variables xi. For a structural problem, xi can represent

properties like dimensions of components, stiffness values, loads, etc. A structure failing

to meet the limit state requirements can be expressed as G(x) < 0. The equality G(x) = 0

is defined as the limit state function (LSF). A LSF separates the failure domain from the

safe domain, and is used to express a structure’s probability of failure:

pf = P (G(x) < 0) =
∫
D

fx(x1, ..., xn)dx1...dxn (2.19)

where fx(x1, ..., xn) is the joint PDF for all random variables, and D is the failure domain

defined by G(x) < 0. Computing this integral is in many ways what reliability theory is

about.
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In order to elucidate the methodology of reliability assessment, the method of Basler is

presented using Cornell’s notation [38]. A LSF of the following form is presented

G = R − S (2.20)

where R represents resistance, and S denotes the load. Normally these will depend upon

many variables, and are likely to be somewhat related, i.e., a thicker beam will give more

resistance, but also increase the self-weight. Here, it is assumed that these two variables

are independent of each other. Further, G < 0 physically means that the load exceeds

the resistance of the system.

Schneider [38] refers to the LSF as the safety margin, M , a stochastic variable with an

associated PDF that originates in the distributions of S and R. The reliability index,

β, is defined in terms of the first and second moment of M . For a normally distributed

variable, this will be

β = µM
σM

(2.21)

where µM is the mean of the marginal distribution function and σM is the standard

deviation. In Figure 2.11, the probability of failure is represented by the gray area in the

PDF of M , and can be found from standard normal tables as pf = Φ(−β). If R and S

are normally distributed, so is the safety margin, and the probability of failure is exact.

A more intuitive way of interpreting the reliability index is as the distance from µM to

the unsafe region defined by M < 0, relative to σM .

Figure 2.11: Safety margin [38]
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For non-linear LSFs and other distributions of the variables, it can be advantageous to

transform the variables’ PDFs to N(0,1) [18, 38]. A step-by-step procedure for trans-

forming normal and log-normal distributions to standard normal space is presented in

Appendix C. Finding β can be extended to create a design condition. See Schneider [38]

for details.

Influence factors, αi, indicate how much each variable in a LSF contributes to the relia-

bility. These can be expressed mathematically as

αi = σi√
n∑
i=1

σ2
i

and
∑

α2
i = 1 (2.22)

where σi denotes the standard deviation. In the design condition, typically partial safety

factors (PSF) are used, here denoted by γi. These can be calculated using the influence

factors, the desired reliability level and the coefficient of variation, Vi, in the following

way for a normally distributed variable:

γi = 1 + αiβVi (2.23)

β prescribes a certain safety level for the assessment. If the desired safety level is high,

this yields a low probability of failure and consequently a high PSF. αi ensures that the

PSFs for the different variables are scaled according to their relative importance. Coeffi-

cient of variation accounts for the scatter in a random variable. If a variable has a large

coefficient of variation, the more uncertain are the realizations of the variable, therefore

requiring a higher PSF.

Based on the problem at hand, PSFs are uniquely described through the specific αi and

Vi. This means that for every change in the case configuration, whether it is a varia-

tion in dimension or reinforcement layout, the PSFs change. However, since model codes

need to be pragmatic and safe, some general values for the PSFs are carefully chosen.

For a consequence class 2 and reference period of 50 years, Eurocode 0 [1] recommends

a system reliability of β = 3.8. Adjusting for the influence factors of resistance and

load, the target reliability is βR = αRβ = 3.04 for the resistance. Note that αR = 0.8 is

not case-specific, but a general value for the dominating variable on the resistance side [1].

21



2.3. RELIABILITY

There are several methods proposed to assess reliability, and the methods can be cate-

gorized in three levels depending on the level of precision and complexity of the method.

The categorization used in this report is by Schneider [38], Waarts [43]. Level I methods

are semi-probabilistic, meaning that they do not address uncertainties of a given problem

specifically, only generally through safety factors. These methods do not provide fail-

ure probabilities explicitly, but verify whether the level of reliability is sufficient. Such

methods are found in structural codes like Eurocode 2 and fib Model Code 2010. Level II

methods include the first- and second moment of the stochastic variables and can calculate

β. Methods included at this level are FORM and second order reliability method (SORM)

[43]. Level III assessment is a fully probabilistic analysis including accurate PDFs and

human errors. These are considered most accurate in the calculation of β. Monte Carlo

methods are level III methods.

2.3.2 Reliability assessment methods

In this study, different methods of assessing reliability are applied, including full proba-

bilistic and semi-probabilistic methods, used in conjunction with NLFEA. Full probabilis-

tic methods included in this study are a Monte Carlo method with analytic LSFs, and a

small-sample Monte Carlo type using LHS with analytic and NLFEA LSFs. Furthermore,

RSM-FORM is evaluated both with analytic and NLFEA LSFs. The semi-probabilistic

approaches included are the global resistance factor method and the partial factor method.

One LSFE is the same as performing a virtual experiment, either using NLFEA or ana-

lytically. The accuracy of the reliability methods rely on the quality of the method for

LSFEs.

Monte Carlo

The intuitive and robust method of Monte Carlo is deemed the most exact way of finding

failure probabilities. The idea is to do virtual experiments on random sets of the non-

deterministic input values, and simply count the number of failures. Dividing the number

of failures by the total number of evaluations yields the failure probability.
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In the Monte Carlo method, random sampling is applied to create a set of realizations.

In structural reliability, low failure probabilities are sought, which require many analyses

in order to reduce statistical errors [29]. For a typical target probability of failure of a

structure pf = 0.0001 with a coefficient of variation vpf
= 10%, the number of evaluations

needed to ensure appropriate accuracy is about one million [38]. The number of samples

required in a Monte Carlo simulation is independent of the number of variables [43]. For

structural engineering, a single NLFEA is time consuming. This combined with the num-

ber of samples required makes the Monte Carlo method infeasible. To remedy the high

number of evaluations, other sampling techniques exist that demand fewer evaluations,

like different variations of importance sampling [34, 36].

In this study, Monte Carlo was only used with analytic LSF. Depending on the target

reliability, the number of samples was in the range 104 to 108. The sample size was

chosen such that at least fifteen LSFEs failed. β was calculated by using the inverse of a

normal cumulative distribution function. Three Monte Carlo simulations were performed

for each load on the three beam lengths to reduce statistical errors, and the mean number

of failures was chosen to calculte the resulting β.

Latin hypercube sampling

LHS was first described by Mckay et al. [29], and has later been applied in various ways

in several engineering fields [13, 17, 23, 33, 35]. LHS is a sampling technique that falls

within the category of stratified sampling. The key feature of LHS is the stratification

of the probability distribution of each variable xi into N equiprobable intervals, as illus-

trated in Figure 2.12. For each variable, one realization from each of the N intervals are

chosen, either at random or systematically as the mean value or the value representing

the middle of the interval. The realizations are taken from the inverse transformation of

the cumulative distribution functions of the variables.
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Figure 2.12: Depicting stratification into equiprobable intervals for N = 10

Next, the N realizations of each variable are combined through random permutations of

numbers from 1 to N where each interval is only represented once. Thus, the total number

of simulations is equal to the number of intervals, N . Figure 2.13 illustrates how samples

are generated from two variables that are both divided into five intervals. The figure

depicts how dividing the range into intervals that are only used once, reduces the risk of

clustering. Analogous to this simple example with two variables and five intervals, the

method is also applicable to several variables with many intervals. Further, the method

can match target correlations between variables and the reader is referred to Iman and

Conover [20] for more information. Although each interval is used only once, there is a risk

of spurious correlation between variables as illustrated in Figure 2.14. There are various

forms of LHS including spurious correlation removal techniques, importance sampling,

and transformed importance LHS. See Florian [17] and Olsson et al. [33] for an overview.

Figure 2.13: LHS applied to two variables

with N=5. Extract from Olsson et al. [33]

Figure 2.14: Example of spurious

correlation. Extract from Olsson et al. [33]

In this study, a simple form of LHS, as it has been described in this section, was applied.

Hereon LHS is written with a suffix to indicate the reliability method used, i.e., LHS-fit
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denotes the reliability method where curve fitting of load capacities is used, and LHS-

count denotes the method where counting the number of failures is used. Five sample sets

of N = 50, generated from a MATLAB script written by B. Minasny [30], were analyzed

using NLFEA on the 5.0 m beam. Additionally, for comparative reasons LHS-fit and

LHS-count were performed on analytic LSFs for all beam lengths.

Obtaining β from LHS-fit for a resistance Ri is done using stochastic parameters from the

curve fit in the following way

β = µ−Ri

σ
(2.24)

RSM-FORM

The basic idea of a RSM is to approximate the real LSF by a polynomial based on LSFEs in

selected points. Next, a reliability method, e.g. FORM, can be used to find β by lineariz-

ing the response surface (RS) polynomial. Applying a RSM in conjunction with FORM

will from hereon be referred to as RSM-FORM. This is considered a level II reliability

method, since it considers information about the probability distributions of the variables.

The RS polynomial can be found in many ways, Bucher and Bourgund [8] recommend to

create a second order polynomial without mixed terms. This can be on the form

ḡ(x) = a+
n∑
i=1

bixi +
n∑
i=1

cix
2
i (2.25)

where the constants a, bi and ci are determined by evaluations of the LSF. The location

of the sample points, xi, are typically taken as the variable mean and varied with the

product of a factor, f , and the standard deviation. This yields the following coordinates:

xi = µi and xi = µi ± fσxi
. It is beneficial for the programming algorithm to transform

the variables into standard normal space. Then, the sample points will be located on the

origin axes with coordinates: ui = 0 and ui = ±f . The f -factor, can take any value,

however f = 3.0 is recommended, and also to keep it constant within the variables [7].

The RS in (2.25) is used to find an estimate of the design point, u*, which corresponds

to the point on the RS that is closest to the center point. The next step is to perform

a second round of RSM, but now use the updated design point as the center point for
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evaluations, and again vary each variable in standard normal space with ±f to find a new

RS. A new center point is found, and is compared to the previous one. If these are suffi-

ciently close, the iteration procedure has converged. Otherwise, a new RSM iteration is

initiated. For a case with two stochastic variables, this is illustrated in Figure 2.15. Here

three RSM iterations were performed, and each design point was optimized using FORM

which will be described next. In this figure, SP represents the starting point located at

the median values of the variables. The first RSM iteration yields the first design point,

DP 1. Then a new RS is found from here, with a new design point, DP 2. The location

of the design points were compared, and a third RSM iteration was needed. The last two

design points were sufficiently close, so RSM converged.

Figure 2.15: Three iterations of RSM in standard normal space

There are several reliability methods that can be used in combination with RSM. FORM

is recommended in the literature [3, 8, 43]. The essence of FORM is to make a linear

approximation to the RS and find u*, which is repeated until a convergence criterion is

met. In a structural reliability analysis, one is searching for the smallest distance from

the design point to the origin in the standard normal space of the variables [24]. This

distance corresponds to β.

FORM linearizes the RS in the design point by making a Taylor series expansion and
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ignoring higher order terms [38]. This will lead to an approximate LSF of the form

G(x) ≈ a0 +
n∑
i=1

aixi (2.26)

where a0 and ai are constants. The mean and standard deviation of the linearization, G,

is found, and the reliability level can be found by (2.21). The influence factors of each of

the variables can be found by

αi = σi
σG
ai (2.27)

In standard normal space, the coordinate of the design point for variable i, is ui = αiβ.

The next step is to make a new linearization from the updated design point and calculate

β again. The relative difference between the last two βs is found and FORM converges

if this difference is below a certain convergence criterion. See Schneider [38] for further

details on how to develop FORM. The last design point is then transformed to real space

by

x∗
i = µi − αiβσi (2.28)

In a RSM-FORM analysis, FORM iterations are performed for every RSM iteration. The

β corresponding to the last converged design point from the previous RSM iteration is

compared to the one found in the current. If the relative difference between these are

below a certain level, the analysis has converged. The β corresponding to u* is used. u*

is the point along the LSF that has the highest probability of occurring.

Figure 2.16 depicts two FORM iterations performed on the third RSM iteration from

Figure 2.15. The FORM linearization and the approximated RS are illustrated in Figure

2.16a in standard normal space, and Figure 2.16b show the same in real space. It is clear

that the linearization is not linear in real space. Note that the two FORM linearizations

appear as one line since they are very close, and that the design points lie so close that

they appear as one point on the plot.
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(a) In standard normal space (b) In real space

Figure 2.16: Two iterations of FORM in standard normal space, with the last RS and

joint probability plot

As illustrated for a 2D case in Figure 2.17, the actual LSFs for different systems can take

various forms, e.g. linear, curved, irregular and piecewise linear.

Figure 2.17: Illustrating different shapes of LSFs in 2D [43]

FORM performs better when the LSF is smooth and linear, and will be accurate for a

linear LSF. If a highly curved LSF is expected, it is adviced to use a SORM, which takes

in second order terms in the Taylor series expansion. For the irregular and/or piecewise

linear LSF, FORM and SORM are inadequate, and a system analysis is advised, e.g. the

Branch-and-Bound method, [43]. See Thoft Christensen and Murotsu [41] for more details.

In this study, RSM-FORM was analyzed with both analytic and NLFEA LSFEs for the

5.0 m beam. On lengths 2.3 m and 1.5 m, only the analytic RSM-FORM was performed.
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The second order polynomial as described in (2.25) was used. The f -factor was set to

f = 3.0, such that the sample points had coordinates ui = 0 and ui = ±3 in standard

normal space. The convergence criteria were set to εFORM = 0.001 and εRSM = 0.01. In

addition, a side study was performed using analytic LSFEs, where the f -factor varied in

the range 0.5 ≤ f ≤ 5.0. Another side study was performed using the concrete cylinder

strength, fc, as a stochastic variable, rather than fc,situ.

Semi-probabilistic safety formats

The global resistance factor format by fib Model Code 2010 is a level I reliability assess-

ment method. It performs one NLFEA that inherently accounts for all failure modes and

possible load redistributions. The design resistance is calculated as

Rd = R(fm, ...)
γRγRD

(2.29)

where R is the resistance from NLFEA, where mean material properties, fm, serve as

input. γR is a global resistance factor and γRD is a factor accounting for modelling

uncertainties. These take the values 1.2 and 1.06, respectively, such that the global safety

factor γG = γRγRD becomes 1.27. The mean material properties for steel and concrete

are defined from their characteristic values in the following manner:

fym = 1.1fyk (2.30)

fcf = 1.1αcf
γs
γc
fcfk (2.31)

where fym is the mean yield stress of the reinforcement steel and fyk is the corresponding

characteristic value. fcf is the concrete strength parameter under consideration, and fcfk
is its characteristic value. In (2.31), αcf is a coefficient that accounts for long term effects

and unfavorable load effects, and γs and γc are safety factors regarding steel and concrete

strengths. Note from the expressions above, the material parameter for steel is increased

while concrete is reduced. The reason being that concrete is encumbered with higher un-

certainties and is therefore reduced in order to use a common global safety factor [11, 10].

For further details on the global factor method the reader is referred to fib Model Code

2010.
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The partial safety factor format is another level I reliability assessment method, and

accounts for uncertainties by means of design values. The nature of the design values

inherently consider the reliability level through material safety factors, γi.

fd,i = fk,i
γiγRD,i

(2.32)

where fk,i is a characteristic value, γi is a partial factor for material uncertainties and

γRD,i is a factor governing modelling uncertainties and geometric uncertainties for each

material. When material, geometric and modelling uncertainties are accounted for, the

total partial factors can commonly be taken as γC = 1.50 and γS = 1.15 for calculation

of design concrete cylinder strength and steel strength respectively. Here, the PSFs used

to assess the different aspects of uncertainty are summarized in Table 2.6.

Table 2.6: PSFs to assess uncertainty by fib Model Code 2010 [10]

Material Concrete Steel

Modelling uncertainty 1.05 1.025

Geometric uncertainty 1.05 1.05

Material uncertainty 1.39 1.08

PSF 1.50 1.15

The PSFs assessing modelling, geometric and material uncertainties are multiplied to cal-

culate the partial safety factor for each material. The design resistance is then calculated

by

Rd = R(fd) (2.33)

Where fd represents all the design input material parameters in the NLFEA. For a more

detailed description of the partial factor method the reader should consult with fib Model

Code 2010.

The safety formats were tested to check if they gave βs in the range 3-4. This was done

by using the stochastic parameters from NLFEA LHS-fit to calculate reliability levels for

Rd by P (R < Rd). R is the resistance from LHS-fit. A similar method of checking the

reliability levels of safety formats is presented by Schlune et al. [36].
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The method of estimation of a coefficient of variation (ECOV) is a third safety format

suggested by fib Model Code 2010. Here, the global safety factor is assessed using the

propagated material uncertainties. The design resistance, Rd, can be expressed in terms

of the mean resistance, Rm, which is the capacity from NLFEA using median material

parameters, and by a global safety factor for resistance, γR:

Rd = Rm

γR
(2.34)

For a log-normal resistance distribution, fib Model Code 2010 states that the safety factor

can be represented as

γR = eβRVR (2.35)

where βR is the target level of reliability of the resistance. VR is the coefficient of variation

of the resistance and can be expressed by

VR =
√
V 2
f + V 2

g + V 2
m (2.36)

where Vf denotes material variation, Vg is the geometric variation, and Vm represents

the variation in modelling uncertainties. A simplified method to estimate the material

uncertainty propagated in the resistance of a structure was proposed by Cervenka [11],

and can be expressed as

Vf = 1
1.65 ln

Rm

Rk

(2.37)

where Rk denotes the resistance from NLFEA using characteristic input values.

In this study, this third safety format was used to estimate an upper bound for the mod-

elling uncertainty. The design resistance was taken as the Eurocode 2 design capacity, and

the median and characteristic resistance was calculated with NLFEA using median and

characteristic material parameters. The target reliability level and variation of geometric

uncertainties were taken by Eurocode 0 and Eurocode 2, and the propagated variation

in material uncertainties was estimated by (2.37). The upper bound for the modelling

uncertainty was then back-calculated by the equations above.
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2.4 Uncertainties

There are several ways and opinions on how to sort and divide the uncertainties in a struc-

ture. Here, they are divided into three contributions: geometric, material and modelling

uncertainties.

Geometric uncertainties regard the physical structure, i.e., deviations in geometric di-

mensions from the planned structure to the constructed one. Some structures are more

sensitive to variations in dimensions, like columns and thin slabs. For structures that are

insensitive to geometric imperfections, a coefficient of variation Vg = 5% can be assumed

appropriate [36].

Material uncertainties concern variations in material properties and are commonly de-

scribed by PDF. The variation of each material is often divided into the variation between

suppliers, the variation within a factory and the variation within a produced batch. Ac-

cording to Engen et al. [15], the coefficient of variation in the cylinder strength of concrete

may range from 5 − 15%, and is dependent on the cylinder strength. Eurocode 2 assumes

a coefficient of variation of 15% for concrete. Both sources report a typical coefficient of

variation for steel to 5%.

Modelling uncertainties contain all uncertainties not covered by the two aforementioned.

This regards all uncertainties accumulated from a structure in real life to the one that

is used for calculations. This includes the selection of a static model, to a finite element

model, to the choice of input parameters like material model and solution method, and

the interpretation of the results. For a problem with many possible input variables, these

must be reduced to a feasible amount while still retaining the model’s ability to describe

the response accurately [14]. It is important to note the difference between errors in the

analysis procedure and errors concerning the idealization of physical response. Both as-

pects are complementary to the total accuracy, as a robust analysis procedure without a

proper description of the material behavior will not enhance the model [15]. Also included

is the uncertainty regarding the probabilistic model, and method of reliability assessment

[44].
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It is difficult to quantify the modelling uncertainty on a general basis, since one model

can perform differently when applied to different scenarios. One method of quantify-

ing the modelling uncertainties is proposed by fib Model Code 2010 by a model vari-

able m = RExp

RNLF EA
which takes the response from experiments, RExp, and response from

NLFEA, RNLFEA. This requires that the response from experiments are known. As

mentioned, the coefficient of variation is not a constant that can be widely applied for all

models. Engen et al. [15] performed 38 benchmark analyses, and suggested a log-normally

distributed modelling uncertainty with a mean µm = 1.10 with a coefficient of variation

of Vm = 12%. On the other hand, Schlune et al. [36] found that the modelling uncertainty

for under reinforced beams failing in bending had coefficients of variation from 5 − 15%,

whereas for shear failure this varied from 10−40%. Schneider [38] states that the analytic

calculation model of a reinforced concrete beam in bending is good, so the value of the

modelling coefficient is often just a few percent. Therefore for beams failing in bending,

the mean of m is often close to one, µm ≈ 1.

In other words, the modelling uncertainties vary greatly, and it is often the engineer’s

judgment to determine the modelling uncertainty, resulting in subjective results. There-

fore, when using NLFEA, the model should be validated for the problem at hand through

benchmark experiments.

2.5 Method for limit state function evaluations

In this section, the method for both NLFEA and analytic LSFEs are summarized.

2.5.1 Non-linear finite element analysis

The method for NLFEA LSFEs is a product of the optimization study shown in Appendix

A. The method for NLFEA LSFEs consists of the solution strategy and post-processing,

as illustrated in Figure 2.18.
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Figure 2.18: Method for NLFEA LSFEs

Diana was the chosen software for NLFEA in this study. The beam was modeled with a

reference load P1 = 100 kN. The mesh for the 5.0 m beam is shown in Figure 2.19.

Figure 2.19: FE model of the 5.0 m beam

The black elements in Figure 2.19 denoted Crush show where concrete strains were ex-

tracted, and the light gray elements Reinf show where reinforcement strains were ex-

tracted for post-processing. Platens, illustrated by dark gray elements, were used under

the point load and over the supports to avoid singularities. The load and support were

applied as point restraints to these platens, and details are are illustrated in Figure 2.20.

Interface elements were needed to get the wanted interaction between the concrete and

platen elements.

Figure 2.20: Platen details, lengths in mm

For the purpose of the reliability analyses in this study, about a thousand NLFEA were

performed, using a variety of concrete and steel strengths. To make this feasible, the

solution strategy was coded in a Python-script, where the only input values were the two

stochastic variables. To monitor failure, the principal strains in the integration points for

the element group named Crush, and the reinforcement stresses in the integration points
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for the element group called Reinf were printed to an output file. The displacement of

the bottom node in the mid-span, the reaction forces and the number of iterations in each

increment step were also printed. The output file was post-processed with a Matlab script.

In the following, the method for NLFEA LSFEs is summarized in tables. Options for the

model that are not specified here, were taken as default values in Diana defaults. The

NLFEA analysis procedure is presented in Table 2.7. Table 2.8 shows the options used

for the meshing of the 5.0 m beam. Failure was defined in the post-processing with the

fixed strain failure definition defined in Table 2.9. Table 2.10 and 2.11 summarizes the

reinforcement and concrete models, respectively. The material models for the platens and

interface elements are already presented in Table 2.4 and 2.5, respectively.

Table 2.7: NLFEA analysis procedure

Property Value

User defined load steps 0.1(100)

Arc-length method Updated Normal Plane

Control type Regular (no control set)

Unloading determination Sign change

Iterative solver Regular N-R

Max iterations 100

Line search:

Lower bound 0.1

Upper bound 1

Maximum number of searches 5

Energy criterion [Psi] 0.8

Regula Falsi interval Delta eta 0.1

Convergence norm (either):

Energy < 0.001

Force < 0.01

No convergence Continue

Abort criterion 10 000 for both

Solution method Sparse-Cholesky with convergence criterion 10−8
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Table 2.8: FE model

Property Value

Element Q8 with 2x2 Gauss integration

Element size 66.7 mm (75.0 mm)

Interface element CL12I with 3-point Newton-Cotes integration

Reinforcement Modelled as embedded

Table 2.9: Fixed strain failure definition (excerpt from Table A.3)

Failure definition Failure

Fixed strain failure The strain in the integration points in Crush limits the region

where the max converged load is searched for. The strain limit

was set to 1.8h, which is εc1 for the weakest concrete in Eurocode

2.

Table 2.10: Material model for the reinforcement

Property Value

Constant:

Material model Isotropic bi-linear elasto-plastic

Young’s modulus Es = 200 000 MPa

Ultimate strain εsu = 7.5 %

Poisson’s ratio νs = 0.0

Variable:

Yield strain εsy = fsy

Es

Ultimate stress fsu = 1.25 fsy
Ehar

fsu−fsy

εsu−εsy
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Table 2.11: Material model for the concrete

Property Value

Constant:

Crack model Total strain-based rotating crack

Crack bandwidth Automatic

Tensile behavior Exponential stress-strain relationship

Residual tensile strength 0 MPa

Compressive behavior Parabolic stress-strain relationship

Residual compressive strength 0 MPa

Reduction due to lateral cracking Vecchio & Collins 1993

Min. reduction factor due to lateral cracking βminσ = 0.6

Poisson’s ratio reduction Damage based

Stress confinement effect Selby and Vecchio

Initial Poisson’s ratio νc = 0.15

Variable:

Tensile strength fct,situ = 0.3(fc,situ − 6)2/3

Fracture energy GF,situ = 73f 0.18
c,situ

Compressive fracture energy GC,situ = 250GF,situ

Young’s modulus Ec,situ = Ec0
(
fc,situ

10

)1/3

2.5.2 Analytic

The beam was assumed to have two possible failure modes depending on its length, namely

moment and shear. Eurocode 2 capacity equations were modified to give median values,

meaning each observation has a 50 % change of being higher than this. Modified capacity

equations are derived and presented in Appendix B, as well as summarized in this section.

Beam load capacity is the minimum of

R = min[PM = Mr

4L , PV = 2Vr] (2.38)

where moment capacity, Mr, is expressed by (2.40) to (2.44), assuming concrete crushing

and steel strain above yield. Shear flexure capacity, Vr, is expressed by (2.39). L is the
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beam length. The capacity input variables were fc,situ and fsy as presented in 2.1.2. In

addition, the concrete ultimate strain was set to εcu = 3.5h and the tensile strength was

set to zero as recommended by Eurocode 2. For steel, the same bi-linear material model

as described in Table 2.10 was used. Note that (2.43) should be solved using iterative

methods, ranging εs from zero to εsu.

Vr = 0.20k(100ρlfc,situ)1/3bwd (2.39)

Mr = Fc(0.2 + 1
20.8)αd+ Ft(1 − α)d (2.40)

Fc = ηλωbdfc,situ and Ft = Es,modεsAs (2.41)

ω = εcu
εs + εcu

(2.42)

(Es,modρ)ε2
s + (Es,modρεcu)εs − ηλεcufc,situ = 0 (2.43)

Es,mod = fsy + Ehar(εs − εsy)
εs

(2.44)

Figure 2.21 show how the moment and shear parts of the analytic LSF by (2.38) looks

for the 2.3 m beam with a load of 105 kN. The failure domain is illustrated in gray.

Figure 2.21: Example of LSF
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Chapter 3

Results

In order to assess reliability using NLFEA, a general method for NLFEA LSFEs was

needed, and was hard to accomplish. Therefore, only the 5.0 m beam was analyzed with

NFLEA. This chapter presents a brief summary of the results of the optimization study on

the method for NLFEA LSFEs presented in Appendix A. Then, the results from reliability

analyses are presented. The analytic Monte Carlo analyses were regarded as benchmarks

to compare the other reliability analyses to. LHS-fit and RSM-FORM were performed

using both NLFEA and analytic LSFE, while LHS-count was only used with analytic

LSFs. The safety formats were assessed using NLFEA with specific material parameters.

Analytic LSFEs were applied to all beam lengths.

3.1 Optimization of the method for NLFEA LSFEs

As stated in Section 2.3.2, RSM-FORM performs better for a relatively smooth LSF. In

order to achieve this using NLFEA for LSFEs, optimization was needed. In this section,

an overview of this process for the 5.0 m beam is presented, as well as a briefing on the

1.5 m beam. A more thorough description is found in Appendix A.

Figure 3.1 illustrates two load capacity surface plots, one using manual load control and

one using the UNP method. The methods are summarized in Tables A.1 and A.2. Both

plots have the analytic evaluation overlayed with see-through green color. As seen in

Figure 3.1a, the manual load control provides an erratic load capacity surface. For higher
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material strengths, higher capacities are expected, however this is not always the case. In

Figure 3.1b, a surface plotted with results using the UNP method is shown. This is very

smooth compared to the manual load control, although some inconsistencies can be seen

relative to the analytic evaluations. Both methods used the fixed strain failure definition.

Other failure definitions were tested, and are presented in Appendix A.

(a) Manual load control (b) The UNP method

Figure 3.1: Load capacity surface plots using the fixed strain failure definition

To better illustrate the inconsistencies for the UNP method, results are also plotted in

Figure 3.2 for specified steel and concrete strengths.

(a) Load capacities depending on fc,situ (b) Load capacities depending on fsy

Figure 3.2: Load capacity plots extracted from the surface plot in Figure 3.1b. NLFEA

load capacity in black, and analytic in green
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Although the UNP method worked for the 5.0 m beam, this method was not applicable

when changing the beam length to 1.5 m. It resulted in highly inconsistent capacities.

Some efforts were done to remedy this by applying different failure definitions in the post-

processing. No general method was obtained for NLFEA LSFEs that was consistent and

accurate for a variation of material inputs.

3.2 Reliability methods

In this section, results from the reliability studies are presented. Firstly, a compilation

of βs are shown before results from each method is presented in greater detail. For each

beam length, the load corresponding to βR = 3.04 by the capacity equation in Eurocode

2 was applied. This corresponds to 40 kN for 5.0 m beam, and 73 kN for the 1.5 m and

2.3 m beam. In addition, other loads were also applied, such that the reliability indexes

calculated in this study were in the range 7.2 < β < −4.0.

The reliability analyses performed on the 5.0 m beam were: Analytic Monte Carlo,

analytic RSM-FORM, NLFEA RSM-FORM, analytic LHS-fit, analytic LHS-count and

NLFEA LHS-fit with N = 50. Table 3.1 summarizes the βs found with each method, as

well as their respective relative error to Monte Carlo. Due to the large number of analyses

required for high βs, the Monte Carlo method was not applied for a load of 40 kN. Note

the greater errors for NLFEA when subjected to higher loads.
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Table 3.1: Compilation of βs for Monte Carlo, RSM and LHS-fit simulations for analytic

and NLFEA LSFEs on the 5.0 m beam

LSFE type Load [kN] 404040 454545 505050 555555 606060

Analytic Monte Carlo β - 4.903 2.620 0.3686 -1.816

Analytic RSM-FORM β 7.232 4.913 2.621 0.3692 -1.832

β-Error [%] - 0.20 0.02 0.16 -0.90

NLFEA RSM-FORM β 7.196 4.917 2.616 0.2197 -2.055

β-Error [%] - 0.28 -0.15 -40.4 -13.1

Analytic LHS-fit β 7.031 4.810 2.588 0.3664 -1.855

β-Error [%] - -5.53 -4.93 -4.86 -1.43

NLFEA LHS-fit β 7.118 4.801 2.484 0.1676 -2.149

β-Error [%] - -2.08 -5.19 -54.5 -18.4

To further illustrate the βs for the 5.0 m beam, these are plotted against the load capacity

in Figure 3.3. The reliability methods included here are the Monte Carlo analytic as a

benchmark, as well as NLFEA RSM-FORM and NLFEA LHS-fit.

Figure 3.3: Load capacity vs β for the 5.0 m beam

In Table 3.2, βs are tabulated for analytic LSFEs. LHS-fit and LHS-count results were

taken as the mean of 10 runs, each with N = 106. βs are given for the three lengths, each

subjected to three loads so that the range of β is corresponding to engineering practices.

Note that RSM-FORM seem to overestimate β, while LHS-fit seems to underestimate β.
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Further, RSM-FORM errors are consistently below 0.5% for the 1.5 m and 5.0 m beam,

but for the 2.3 m beam the errors are larger at loads 100 kN and 105 kN for RSM-FORM.

LHS-fit results are most inaccurate for the 1.5 m beam.

Table 3.2: β using analytic LSF with Monte Carlo, RSM-FORM, LHS-fit and LHS-count

L [m] 1.51.51.5 2.32.32.3 5.05.05.0

Load [kN] 959595 100100100 105105105 959595 100100100 105105105 454545 505050 555555

Monte Carlo β 5.117 3.992 2.932 5.100 3.966 2.873 4.903 2.620 0.3686

RSM-FORM β 5.108 3.993 2.932 5.108 3.993 2.958 4.913 2.621 0.3692

β-error [%] -0.19 0.02 0.01 0.15 0.66 2.94 0.20 0.02 0.16

LHS-count β 5.095 3.993 2.932 5.113 3.964 2.877 4.891 2.617 0.3674

β-error [%] -0.44 0.02 0.01 0.26 -0.06 0.13 -0.25 -0.15 -0.33

LHS-fit β 4.568 3.665 2.762 4.950 3.901 2.853 4.806 2.589 0.3719

β-error [%] -10.7 -8.19 -5.80 -2.93 -1.64 -0.71 -1.97 -1.22 0.90

3.2.1 RSM-FORM

As mentioned, both analytic and NFLEA LSFEs were used with RSM-FORM for the

5.0 m beam. The location of their design points are shown in Figure 3.4 on the joint

probability contour plot.

Figure 3.4: Analytic and NLFEA design points for several loads on the 5.0 m beam

43



3.2. RELIABILITY METHODS

Figure 3.5a and 3.5b illustrate the analytic LSF, RSM approximations and design points

for analytic and NLFEA RSM-FORM, for a load of 40 kN and 60 kN, respectively. Note

the difference in accuracy of the RSM approximation and the distance from design points

to origo for the two different loads.

(a) For P = 40 kN (b) For P = 60 kN

Figure 3.5: RSM approximation and design points for NLFEA and analytic

RSM-FORM on 5.0 m beam. Also plotted is the analytic LSFs

Table 3.3 gives the reliability results obtained with NLFEA RSM-FORM. It is important

to note that for 55 kN, the εRSM is changed from 1% to 5% due to β being very close to

zero, resulting in large relative error between iterations.

Table 3.3: NLFEA RSM-FORM results for the 5.0 m beam

Load [kN] βββ αcαcαc αsαsαs Design point [MPa] # RSM iterations

40 7.196 0.2354 0.9719 23.1, 396 3

45 4.917 0.2701 0.9628 24.3, 449 4

50 2.616 0.2713 0.9625 26.0, 502 8

55 0.2197 0.2765 0.9610 29.0, 555 2

60 -2.055 0.3646 0.9312 32.4, 605 2

One NLFEA RSM-FORM was also performed with concrete cylinder strength, hereon

referred to as concrete non-in-situ strength, and a load of 40 kN. The analysis started

in the median values, as was done using fc,situ. Here, FORM ran 745 000 iterations in

the second RSM iteration without convergence, and was manually stopped. Then, a new

44



CHAPTER 3. RESULTS

RSM-FORM analysis was performed, this time starting in P0 = [25, 390] MPa. This

location was chosen based on results obtained using fc,situ. Figure 3.6 shows the location

of the design point in reference to the response surface and its FORM linearizations over

the joint PDF. Note that the RS approximation in Figure 3.6b curves the other way.

(a) Using in-situ values for concrete (b) Using non-in-situ values for concrete

Figure 3.6: Plots showing the design point, contour of joint PDF, the last response

surface and its linearizations

Table 3.4 shows the reliability results from the non-in-situ RSM-FORM analysis. Note

that β is higher using non-in-situ concrete, and that only two RSM iterations were needed.

Table 3.4: NLFEA RSM-FORM results for the 5.0 m beam using non-in-situ concrete

Load [kN] βββ αcαcαc αsαsαs Design point [MPa] # RSM iterations

40 7.894 0.3585 0.9335 28.5, 387 2

Figure 3.7 illustrates the analytic load capacity surface of the 2.3 m beam. The surface

consists of three smooth surfaces, separated by two white ridges. The surface located to

the right represents the shear load capacity and the possibility of a shear failure mode.

The two surfaces to the left represent different types of moment load capacities and the

possibility of a moment failure mode. The smallest of these two, located furthest left,

represents moment failure mode where the steel reaches its ultimate strain, and the larger

in the middle represents moment failure due to failure of the compressive zone. It’s notable

that using Eurocode 2 design capacities, the transition zone would be at 2.7 m instead of

2.3 m.
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Figure 3.7: Analytic load capacity surface for the 2.3 m beam with varying material

strengths

A selection of reliability results for the 5.0 m beam is given in Table 3.5 for analytic

RSM-FORM. This gives comparable βs to NLFEA RSM-FORM, but a notable difference

in α-values.

Table 3.5: Analytic RSM-FORM results for the 5.0 m beam

Load [kN] βββ αcαcαc αsαsαs Design point [MPa] # RSM iterations

40 7.233 0.3405 0.9403 20.8, 401 3

45 4.913 0.3791 0.9254 22.6, 454 3

50 2.621 0.4153 0.9097 25.1, 504 3

55 0.3692 0.4491 0.8935 28.5, 552 2

60 -1.832 0.4817 0.8764 33.0, 560 2

A selection of reliability results for the 2.3 m beam with different loads are given in Table

3.6. It is notable that α-values change drastically depending on the load.
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Table 3.6: Analytic RSM-FORM results for the 2.3 m beam

Load [kN] βββ αcαcαc αsαsαs Design point [MPa] # RSM iterations

73 10.23 0.2887 0.9574 19.4, 331 4

95 5.108 1.0000 0.0000 14.4, 560 7

100 3.993 1.0000 0.0000 16.8, 560 4

105 2.958 0.9892 0.1464 19.5, 550 5

A variational study was performed on the 2.3 m beam, varying the f -factor. The effect

of this on the RSM-FORM is shown in Figure 3.8, where the f -factor takes the values 1.0

and 3.0, respectively. For an f -factor of 1.0, all sample points were within the shear LSF,

while using an f -factor of 3.0 caused one sampling point to be affected by the moment

LSF, which results in the different RSs.

(a) Using an f -factor of 1.0 (b) Using an f -factor of 3.0

Figure 3.8: Showing the analytic moment and shear LSF, the analytic RS and its design

point for two f -factors

The effect of varying the f -factors is further illustrated in Figure 3.9. The two loads with

high errors from Table 3.2, 100 kN and 105 kN, were analyzed with varying the f -factors

from 0.5 to 5.0. The RSM-FORM βs from Table 3.2 are found at f = 3.0. Monte Carlo βs

are presented as dashed lines for each of their RSM-FORM counterpart, and are constant

for all f -factors. The figure illustrates systematic error discrepancy from Monte Carlo

β for the 100 and 105 kN loads, f -factor dependencies at higher f -factors, and sporadic
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erroneous convergence for 100 kN load at f -factors of 0.5 and 2.2.

Figure 3.9: f -factor dependency of RSM-FORM β-results for the 2.3 m beam subjected

to loads 100 and 105 kN. Monte Carlo β for comparison

A selection of reliability results for the 1.5 m beam with different loads are given in Table

3.7. Note that only concrete influence the results.

Table 3.7: Analytic RSM-FORM results for the 1.5 m beam

Load [kN] βββ αcαcαc αsαsαs Design point [MPa] # RSM iterations

73 10.83 1.0000 0.0000 6.5, 560 3

95 5.108 1.0000 0.0000 14.4, 560 2

100 3.993 1.0000 0.0000 16.8, 560 2

105 2.932 1.0000 0.0000 19.5, 560 2

3.2.2 Latin hypercube sampling

Figure 3.10 shows load capacities for the 5.0 m beam obtained with NLFEA as histograms

with N = 50 samples. The load capacities were approximated with normal PDFs from

which βs were obtained. The fitting shows that normal PDF is just an approximation.
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(a) Sample set 1 (b) Sample set 2

(c) Sample set 3 (d) Sample set 4

(e) Sample set 5

Figure 3.10: Histograms fitted with normal PDF for N = 50

Table 3.8 shows βs averaged over five sample sets together with their standard deviations

for NLFEA and analytic LSFEs. Statistical parameters for the NLFEA load capacities

were µ = 55362 N and σ = 2167 N. Note that σβ decreases towards the mean value of the

load capacity.
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Table 3.8: β using Monte Carlo, and analytic and NLFEA LHS-fit using 5 sample sets of

N = 50 for the 5.0 m beam

LSFE method Load [kN] 404040 454545 505050 555555 606060

Analytic Monte Carlo β - 4.903 2.620 0.3686 -1.816

Analytic LHS-fit β 7.031 4.810 2.588 0.3664 -1.855

σβ 0.590 0.402 0.213 0.024 0.165

β-Error [%] - 5.53 4.93 4.86 1.43

NLFEA LHS-fit β 7.117 4.801 2.484 0.1676 -2.149

σβ 0.449 0.302 0.155 0.021 0.142

β-Error [%] - 2.08 5.19 54.5 18.4

Table 3.9 shows βs obtained from curve fitting and by counting failure outputs from

analytic LSFEs. These were calculated for three lengths and three sample sizes. Every β

has a corresponding standard deviation and these were found by performing the analyses

1000, 100 and 10 times for N = 50, N = 103 and N = 106, respectively.

Table 3.9: βs with standard deviations from LHS-fit and LHS-count

Length [m] 1.51.51.5 2.32.32.3 5.05.05.0

Load [kN] 105105105 105105105 505050

LHS type fit count fit count fit count

N = 50 β 2.737 - 2.839 - 2.595 -

σβ 0.072 - 0.147 - 0.161 -

N = 103 β 2.761 2.948 2.853 2.900 2.590 2.649

σβ 0.004 0.100 0.028 0.112 0.031 0.140

N = 106 β 2.762 2.932 2.853 2.877 2.589 2.617

σβ < 10−5 < 10−3 < 10−3 0.003 0.001 0.004

Figure 3.11 shows βs in the shear dominant region and in the transition zone. The load

capacities were calculated using analytic LSFs, and βs were found from both curve fitting

and counting for sample size N = 106 and subjected load equal to 105 kN.
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Figure 3.11: βs for different lengths subjected to a load of 105 kN

3.2.3 Safety formats

For both safety formats, input values in the NLFEA were calculated according to Section

2.3.2. βs were obtained for the design resistances of the formats by using the statistical

parameters obtained from NLFEA LHS-fit. The results are summarized in Table 3.10.

Table 3.10: Safety format results

Safety Concrete Steel γRDγRDγRD(concrete/steel) RdRdRd βββ

format [MPa] [MPa] [-] [N] [-]

Global factor fcm = 25.30 fym = 550.0 1.06 42 433 5.96

Partial factor fcd = 18.18 fyd = 402.6 1.10/1.08 40 330 6.93

3.3 Uncertainties

Since only two stochastic material parameters were used, the reliability results only in-

clude some material uncertainties, while geometric and modelling uncertainties were not

implemented. Here, attempts to estimate some of these are presented.
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3.3.1 Material uncertainties

Several methods are described in the literature to estimate material uncertainties. As

stated in Section 2.4, the Eurocode 2 commentary [21] gives a variation of 15% for con-

crete and a coefficient of variation for steel 5%. Their combined variation will then yield

a material uncertainty by the Eurocode [21] of Vf,EC = 15.81%. The actual coefficient of

variation in the steel and concrete probability distributions are respectively Vf,c = 10.53%

and Vf,s = 4.18%, which yields a total material uncertainty Vf,actual = 11.32%. The ECOV

method presented in (2.37) estimates the coefficient of variation of the resistance due to

the material to Vf = 7.83%. Since this variation is calculated based on the resistance, it

estimates the propagated material uncertainty.

Note that Vf,EC and Vf,actual are pure material uncertainties that can be used for material

PSFs, while the ECOV method for Vf indicates how the material uncertainty affects the

global resistance.

3.3.2 Modelling uncertainties

As stated in 2.4, the modelling uncertainties lie in the range of 5-15% for an under

reinforced beam failing in bending. An attempt to estimate the upper bound of the mod-

elling uncertainty for the 5.0 m beam failing in bending is done using (2.34) to (2.37).

The NLFEA capacity using the mean and characteristic values were Rm = 55510 N and

Rk = 48780 N, respectively. The design resistance was calculated by Eurocode 2 to,

Rd = 39884 N. From this, a global resistance factor was calculated to γR = 1.392, with a

corresponding coefficient of variation for the resistance to VR = 10.74%. The coefficient

of variation for the material was calculated by the ECOV method to Vf = 7.83%, and

the coefficient of variation for geometry was set to Vg = 5% in accordance with fib Model

Code 2010. Then the estimation of the upper bound of the modeling uncertainty results

in Vm = 5.4%.

It is important to understand the underlying assumptions of this method of estimating

the modelling uncertainties. First, Rd is the design capacity according to Eurocode 2

for beams failing in bending, and is not necessarily equal to the design resistance using

NLFEA. Moreover, the estimated upper limit indicates the allowable modelling uncer-
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tainties, while still expecting a design capacity equal to or larger than the Eurocode 2

design capacity. Also, it is assumed that the resistance is log-normally distributed.
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Chapter 4

Discussion

To make the reliability methods feasible, only fc,situ and fsy are represented as stochastic

variables. All other LSF parameters are considered deterministic or related to either of

the two stochastic variables. With this simplification, the geometric and modelling un-

certainties are not included in the LSF, and the material uncertainty is also affected. The

limited uncertainties included could be one of the reasons for the overall high βs compared

to the target βR from Eurocode 0. This also affects the influence factors for RSM-FORM,

especially for NLFEA.

4.1 Method for NLFEA LSFEs

As the load capacity surfaces for the 5.0 m beam in Figure 3.1a and 3.1b show, the

method for NLFEA LSFEs heavily affects the shape of the surface. In short, the results

in Appendix A primarily indicate four things; (1) for feasibility reasons, the method for

NLFEA LSFEs needs to be applicable for a wide variety of material parameters, meaning

that manual load control seems unfeasible for reliability studies of concrete, (2) some form

of post-processing should be used due to the imperfections of the NLFEA solution strat-

egy, (3) the UNP method with fixed strain failure definition could be used as a method

for NLFEA LSFEs when analyzing reinforced concrete failing in bending, although its

implementation in this study seems to have limited validity with concern to the range

of the stochastic variables, and (4) the method of NLFEA LSFEs gave slightly different

results on different computers using the same input.
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The error introduced by the method for NLFEA LSFEs to the exact load capacity sur-

face should be minimal and conservative. No experiment was done, and it is therefore not

possible to conclude whether the discrepancies were conservative or not. However, since

the modified analytic equation for bending capacity is derived from force and moment

equilibrium, it can be assumed to model bending failure with high accuracy. The method

for NLFEA LSFEs is compared to the analytic bending equation.

With this comparison, manual load control is very conservative, and at the same time the

load capacity surface is highly inconsistent. The UNP method with fixed strain failure

definition manages to replicate the analytic formulas for bending failure with only small

errors, although it calculates a higher load capacity for some material parameters. These

small errors indicate that the modelling uncertainty for the NLFEA is within reasonable

limits. To get the same capacities as Eurocode 2, the modelling uncertainty using NLFEA

needs to be below 5.4%, as calculated in Section 3.3.1. This is in the lower range of the

modelling uncertainty suggested by Schlune [36]. With the high resemblance to the an-

alytic formulas, this might be the case. However, the exact modelling uncertainty for

the method was not estimated. The results indicate that one might as well use analytic

bending equation on a simple bending failure problem.

Figure 3.1b shows that the NLFEA load capacity surface using the UNP method has

some local inconsistencies. They seem to happen for stronger material parameters. All

the capacities are taken from converged load steps. At the same time, UNP gets several

non-converged steps for even stronger materials. One reason for this, could be the steel

strength-dependent hardening modulus. Another explanation could be due to the fixed

failure definition used during post-processing. Eurocode 2 and the parabolic concrete

model states that the strain for maximum concrete compressive strength increases with

the concrete strength. Therefore, using a fixed strain to define failure is very conservative

for stronger concrete. This will affect the NLFEA LSFEs and can be one of the reasons for

the low NLFEA βs for a load of 60 kN. It is therefore important to note that the method

for NLFEA LSFEs is only applicable for a limited range of the stochastic variables. The

exact range is not determined in this thesis.
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For reliability methods using NLFEA there is a fine balance between applicability, feasi-

bility and accuracy. Different structures have different failure modes. To run a reliability

analysis on complex structures, the method for NLFEA LSFEs needs to be applicable

for several failure modes. It is therefore important that the method for NLFEA LSFEs

manages to account for all failure modes, or that they are known beforehand. Some form

of post-processing can help the method be applicable for several failure modes, but ul-

timately it is the NLFEA solution strategy which limits the number of detected failure

modes. A NLFEA solution strategy that is applicable for bending failure is not necessar-

ily applicable for other failure modes, e.g., shear failure. The results shown in Appendix

A clearly show that the solution strategy is not applicable for shear failure, but models

bending failure with adequate accuracy and feasibility when post-processing is applied.

To be applicable for shear failure, or other failure modes, the feasibility or accuracy of

the solution strategy are subject to change. A different solution strategy could change

the balancing between applicability, feasibility and accuracy.

4.2 RSM-FORM

When comparing the NFLEA and analytic RSM-FORM reliability indexes for the 5.0 m

beam, as seen in Table 3.1, these are very similar for loads between 40-50 kN, but deviate

some for 55 and 60 kN. One reason for the difference in β for higher loads, could be that

NLFEA LSFEs seem to have larger discrepancies compared to the analytic LSFEs for

higher material strengths. Another reason for the larger discrepancies for higher loads,

can be the closeness of the center in the joint PDF. A slight difference in the FORM

approximations will slice the volume differently, which will influence the reliability result

greater when the design points are closer to the median values. This can be visualized in

Figure 3.5, where the design point for 60 kN is located nearer the median values.

Although βs are similar when comparing the analytic and NLFEA RSM-FORM, the in-

fluence factors and thus also the design points, show some small differences. The concrete

has overall lower influence with NLFEA. This could be explained by the difference in
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concrete material model between NLFEA and analytic LSFEs.

The side study using concrete non-in-situ strength, rather than fc,situ, highlights the im-

portance of choosing a proper starting point for NLFEA RSM-FORM. A load of 40 kN was

applied, and the RSM-FORM started in the median values, fc = 42.52 MPa, fsy = 560

MPa. With this starting point, FORM did not converge. This could be due to the method

for NLFEA LSFEs not yielding consistent capacities for high material strengths. Based on

results from the in-situ analysis, a new starting point was chosen near what was expected

to be the design point. Now, RSM-FORM converged after two RSM iterations. Another

interesting feature of this RSM-FORM analysis, as seen in Figure 3.6b, is that the final RS

approximation curves the other way compared to all the other RS approximations plotted.

This is not necessarily wrong, although when the capacities are compared to other results

with similar material strengths, the capacities here seem somewhat underestimated. This

might be due to the strength dependent Ehar.

Constructing an approximation of the real RS is a vital part of the RSM-FORM method.

Output from the LSFEs influence the accuracy of the approximated RS, but is not an

error introduced by the construction scheme itself. Errors relating to RSM are mainly

due to the polynomial degree and the f -factors. A comprehensive optimization of the

construction procedure with respect to f -factors and polynomial degree is beyond the

scope of this study.

Firstly, a second order polynomial was chosen without mixed terms. Higher polynomial

degree or mixed terms could increase the accuracy, but then the number of analyses re-

quired to build the RS will increase. This is especially relevant for NLFEA as a single

analysis is time consuming. Further, higher order polynomials can lead to irregular be-

havior away from the sample points [3]. Results herein show that creating an accurate RS

becomes more difficult as the degree of non-linearity increases, i.e., when several failure

modes intersect. Figure 3.5a shows the approximated RS together with the actual LSF.

Since only the moment LSF governs the failure domain, the construction procedure of RS

applied in this study manages to accurately represent the real LSF. Now, for the 2.3 m

beam, two LSFs intersect and that complicates the construction of RS, as seen in Figure
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3.8b. This might explain why errors related to the 2.3 m beam are greater than for the

1.5 m and 5.0 m beam, as seen in Table 3.2.

Secondly, f -factors are equally important in constructing the RS approximation as they

define the size of the region for where the approximation is most accurate. If the f -factors

are too large, then important information might get lost between sample points. On the

other hand, choosing too small values provide accuracy in a limited region of the LSF.

In NLFEA small f -factors are not recommended unless the FE model is accurate enough

to account for small changes in input values. In Figures 3.8a and 3.8b it is clearly ob-

served how an f -factor of 3.0 is large enough to capture the moment LSF, while for an

f -factor of 1.0 only the shear LSF governs the failure region. For an f -factor of 1.0, the

FORM linearization of the RS coincides with the shear LSF resulting in a failure region

solely defined by the shear LSF. Thus, the additional failure region due to moment is not

included, and β should be overestimated. Figure 3.9 shows how β changes with different

f -factors. Notice how a large f -factor, which includes moment LSF more accurately, still

overestimates β and even more so than if the f -factor only covers the shear LSF. This

highlights the importance of choosing an adequate f -factor and the difficulty in doing

so when several failure modes are present. Intuitively, an f -factor accounting for both

failure modes seems like the best choice, but the 2.3 m beam indicates that this is not

necessarily the case.

For the 1.5 m beam failing in shear, one would expect to have negligible β-error compared

to the Monte Carlo simulations. This comes from that only the shear part of the LSF

governs the failure region, and the FORM linearization is equal to it. The moment LSF

does not contribute to the reliability since it is too far away from any significant volume

in the joint PDF. However, as seen in Table 3.2 there is still an error in the βs. This

difference might be due to the Monte Carlo simulations. Three runs were performed for

each load, and the mean was taken as β. Since the sampling sets are made from random

values of the PDF of the materials, slightly different sampling sets are produced each

time, which yield slightly different βs. If a larger sample was used, and performed more

than three times, hopefully this statistical error would go towards zero.
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4.3 Latin hypercube sampling

From Table 3.8, βs from NLFEA LHS-fit are generally different from Monte Carlo, but

more similar to analytic LHS-fit, except for loads equal to 55 kN and 60 kN. It is important

to emphasize that induction of any generalizations from such small samples comes with

great statistical uncertainty. However, the results indicate that the differences between

Monte Carlo simulations and NLFEA LHS-fit are due to the probabilistic model alone for

loads less than 55 kN, and a combined error of NLFEA and the probabilistic model for

loads greater than 55 kN. This is due to the imperfect method for NLFEA LSFEs. Ac-

cording to Novák et al. [32], the method of approximating PDFs to response outputs from

which failure probabilities are calculated is not very accurate. It seems reasonable that

a PDF created from only 50 samples for calculating failure probabilities of magnitudes

10−5, does not yield accurate values. More samples are required to properly account for

the tail of the PDF, as indicated by the larger standard deviations on the outskirts shown

in Table 3.8. An intuitive remedy is to increase the amount of samples, but that would

be infeasible with NLFEA. In order to find out if the error related to the probabilistic

model is caused by curve fitting or by the small sample size, larger samples are tested

on all three lengths to compare β from curve fitting with βs found from counting. Since

NLFEA LHS-fit and analytic LHS-fit are quite similar, the analyses are carried out on

analytical LSFs.

LHS-count does not give meaningful answers for small samples. Table 3.9 shows that

results from counting improve markedly by increasing the number of samples, while for

curve fitting the improvements are minor. This confirms what Novák et al. [32] stated;

curve fitting is not very accurate, regardless of the number of samples. However, the

results are sufficiently close to the Monte Carlo values, even for only 50 samples, which

means that curve fitting PDFs to relatively small samples can serve as a viable first esti-

mation. What is meant by first estimation is that since LHS-fit is simple to understand

and provides the full picture of the reliability of the structure, it can be applied first. Re-

liability levels for different loads can be extracted from the same curve fit and one can get

broader insight of the problem before proceeding with more accurate reliability strategies.
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Another uncertainty is the choice of distribution for the curve fitting. Schneider [38] states

that the resistance tends to a log-normal distribution, hence using a normal PDF can give

rise to errors. Table 3.2 shows less accurate results for the 1.5 m beam than for the 5.0 m

beam with LHS-fit. Further, Figure 3.11 shows that LHS-fit and LHS-count become very

similar after the beam length exceeds the transition zone. These observations indicate

that using a normal PDF for beam lengths where shear failure is prevalent yield inaccu-

rate results, while moment load capacity seems to be normally distributed.

An interesting discrepancy in the curve fitting results is depicted graphically in Figure

3.11. The error in β obtained from both calculation methods are constant up to length 2.2

m. This complies with shear failure being dominant in this region and independent of the

length of the beam. Beyond this length, the influence of moment failure increases. Hence,

one could expect the βs to drop in this region because the failure region is extended by

the moment LSF. While this occurs for βs obtained from counting, β from curve fitting

increases before it drops. The small increase might be attributed to the introduction of

another failure mode. Novak et al. [31] states that curve fitting is not appropriate for

highly non-linear LSF. Although Figure 2.21 shows that the combined analytic LSF of

shear and moment is not highly non-linear, it might be sufficiently non-linear to cause

the inaccuracy.

Curve fitting is not very accurate, but the results herein suggest that the method can

serve well as a feasible first estimation. However, for a more complex structure with

highly non-linear and intersecting failure modes, the method of curve fitting might be-

come too inaccurate even for first estimation purposes. Several complex LSFs give rise to

multiple peaks that complicates the curve fitting procedure.

4.4 Safety formats

Opposed to the global resistance factor method, the resistance obtained from NLFEA

in the partial factor method is not divided by a safety factor. Modelling uncertainties

are already included in the design values as indicated by (2.32). This can in some cases
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lead to very low design values which can result in completely different failure modes and,

for statically indeterminate structures, unrealistic load redistribution. However, that is

not the case in this study as the beam is statically determined. A drawback for both

formats is that the proposed values for modelling uncertainties to be applied are based

on simple failure modes and hence limits the range of application of the safety formats

[37]. If these formats are applied to more complex structures, without questioning the

modelling uncertainties, the results might become inaccurate.

Design resistances calculated according to the global resistance factor method and the

partial factor method are 42 433 N and 40 330 N, respectively. The difference between

design resistances is large and consequently reliability levels also differ. This may be a

result of how uncertainties are incorporated in the two formats. βs corresponding to the

design resistances from the safety formats are higher than what to be expected for design

values. This does not mean the safety formats yield overly conservative results, rather

LHS-fit provides too high resistances. The latter seems to be the case throughout the

study as the modelling uncertainties are not implemented in the safety assessment using

LHS-fit.
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Chapter 5

Conclusion

This report indicates that NLFEA can be used for reliability purposes. A single analysis

is time consuming, but RSM-FORM and LHS-fit only require a small number of analy-

ses. However, for the reliability methods to yield accurate results, great efforts must be

directed towards the method for NLFEA LSFEs. Results presented show that manual

load control yield inconsistent load capacities which further complicates RSM-FORM.

Moreover, manual load control is not able to trace the response beyond limit points. This

implies that one would have to adjust and optimize the specified load steps until maximum

capacity is detected. Doing this for repeated NLFEA is not feasible. The UNP method

has two key features that markedly improve the feasibility and accuracy of the reliability

assessments. (1) The method is able to trace the response beyond critical points, and

(2) it finds the optimal step sizes automatically. However, the UNP method alone still

does not suffice, and an additional failure definition implemented during post-processing

is pivotal. For both reliability methods, the inaccuracy may increase with the complexity

of the LSF. This is due to the inherent shortcomings of the reliability methods, and the

fact that creating NLFEA models becomes more challenging. This highlights that errors

in NLFEA and errors in the reliability methods are complementary, and must both be

mitigated in order to increase the accuracy.

RSM-FORM demands accurate outputs from NLFEA in order to converge. This is be-

cause the approximated RS and the following FORM analysis depend on the smoothness

of the load capacity surface. The more complex the LSF is, the more difficult it is to

create an approximated RS and perform FORM analysis. Large structures are likely to
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have intricate failure modes, which could affect the accuracy of the reliability method,

and thus making it less applicable.

Results from LHS-fit point out that curve fitting should be used only for preliminary

reliability analysis. The curve fitting approach seems invariant with respect to sample

size, hence a larger sample size would not increase the accuracy. Further, the accuracy

of LHS-fit is dependent on the choice of PDF. Large structures can have a complex LSF

that might make the process of curve fitting difficult, and thus affecting the applicability.

In terms of feasibility, RSM-FORM normally requires 10-25 LSFEs for one β, while LHS-

fit with 50 LSFEs provides the whole spectrum, meaning that βs for different loads are

calculated from the same curve fit. RSM-FORM is more accurate but also requires more

from the user as the concept of LHS-fit is simpler to grasp. Further, RSM-FORM seems

to overestimate β, while LHS-fit generally provides conservative βs.

It is important to emphasize that the results presented in this report do not necessar-

ily reflect the accuracy or the feasibility of the reliability methods in a general sense.

Results indicate that RSM-FORM has good feasibility and accuracy, but struggles with

applicability for several failure modes. LHS-fit has good feasibility, but the accuracy and

applicability seem to depend on the chosen PDF. Further, despite an optimal choice of

PDF, the accuracy may still not be satisfactory. LHS-count has applicability and accu-

racy comparable to Monte Carlo, but with greater feasibility. However, the feasibility is

still low in combination with NLFEA.
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Chapter 6

Further research

During the research and discussions, topics arose that could be interesting for further

research. In this chapter, the most interesting recommendations are presented.

First of all, it is important to keep in mind that this will hopefully be applied to struc-

tural engineering in the foreseeable future. To be applicable for large concrete structures

exhibiting several failure modes and a complex non-linear behavior, FORM might not be

the best reliability method. Other methods for reliability calculations that can be appli-

cable include SORM and system reliability methods, e.g., the Branch-and-Bound method

[43].

In addition to a different reliability method, another RS approximation technique could

be helpful. Allaix and Carbone [3] presents an improvement on how to construct the RS.

For a RS that is accurate in a larger area than just in the design point, one can run Monte

Carlo with LHS and importance sampling.

In this study, only two material parameters were considered stochastic variables. It would

be interesting to use more stochastic variables, and see how this affects the reliability.

However, due to feasibility, a wise choice regarding the number of variables must be done.

A suitable next choice could be to include the load as a stochastic variable.

A lot of information was discarded from NLFEA, e.g., cracks, deflections, that could have

been used in safety assessments focusing on service limit state. This information is valu-
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able in design of concrete structures and should be evaluated rather than just neglected.

The general use of reliability analyses for large concrete structures using NLFEA requires

a very robust solution strategy. As seen in this report, the method used was not able to

account for shear failure. Therefore, creating a general NLFEA method is a complicated

task that requires further study.
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Appendix A

Optimization of the method for

NLFEA LSFEs

In this appendix, the methods are summarized, the results are presented and the last

section provides a discussion and conclusion on the results.

A.1 Method

To get accurate results in a feasible way, an optimization of the method for NLFEA

LSFEs was needed. This optimization was done for the 5.0 m beam with the same FE

model and material models as described in Section 2.5. Since convergence in RSM-FORM

requires a certain degree of consistency in the method for NLFEA LSFEs, RSM-FORM

analyses were performed to test feasibility and accuracy. When inconsistent load capaci-

ties occur within one RSM iteration, the RS approximation becomes inaccurate. FORM

might still find the next estimation of the design point, but this estimation can be far

away from the real design point, and RSM-FORM does not converge. Inconsistent load

capacities between RSM iterations only give slow convergence. RSM-FORM is there-

fore used as a simple tool to check the level of consistency. To test the accuracy of the

method for NLFEA LSFEs, analyses can be compared to experimental results. Since no

experiment was conducted, these values were compared to the results using the modified

analytic formulas. Feasibility was assessed by comparing the computational time. To

test the applicability of the method for NLFEA LSFEs, the beam length was changed to

1.5 m, keeping other factors constant. The f -factor for RSM was set to 3.0 for all analyses.
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A.1. METHOD

Two NLFEA analysis procedures were tested; manual load control with modified N-R

iterations, hereby referred to as manual load control, and updated normal plane arc-

length method with regular N-R iterations, hereby referred to as UNP. The two analysis

procedures are summarized in Table A.1 and A.2, respectively. Automatic load control

and Quasi-Newton were also briefly tested, but showed little promise and were quickly

discarded. These results are not included.

Table A.1: Manual load control properties

Property Value

Load steps 0.1(3) 0.01(5) 0.002(150)

Iterative solver Modified N-R

Max iterations 1000

Line search No

Convergence norm (either):

Energy < 0.001

Force < 0.01

No convergence Continue

Abort criterion > 10000 for both
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Table A.2: UNP properties

Property Value

Load steps 0.1(100)

Arc-length method Updated Normal Plane

Control type Regular (no control set)

Unloading determination Sign change

Iterative solver Regular N-R

Max iterations 100

Line search:

Lower bound 0.1

Upper bound 1

Maximum number of searches 5

Energy criterion [Psi] 0.8

Regula Falsi interval Delta eta 0.1

Convergence norm (either):

Energy < 0.001

Force < 0.01

No convergence Continue

Abort criterion > 10000 for both

Three different failure definitions, defined in Table A.3, were applied in the post-processing

to both analysis procedures. Thus, six different methods for NLFEA LSFEs were com-

pared.
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Table A.3: Failure definitions for the 5.0 m beam

Failure definition Failure

Max load The maximum converged load the NLFEA software

finds.

Concrete strength depen-

dent strain failure (CSD

strain failure)

Failure occurs when the principal compressive concrete

strain, εc, in either of the integration points in the el-

ement group Crush, seen in Figure 2.19, exceeds the

strain for maximum compressive strength of the con-

crete defined in (2.13). The last step before this strain

is exceeded is taken as the capacity.

Fixed strain failure The strain, εc, in the integration points in Crush, seen in

Figure 2.19, limits the region where the max converged

load is searched for. The strain limit was set to 1.8h,

which is εc1 for the weakest concrete in Eurocode 2.

The reinforcement stresses, σs, in the integration points in Reinf, seen in Figure 2.19,

were also monitored to check if the reinforcement had yielded.

A.2 Results

The following tables present results from various RSM iterations. The first row corre-

sponds to the last estimated design point, while the four other are sample points for the

RSM procedure. A consistent result means that higher material parameters yield higher

capacities. Interesting results are marked with bold text.

A.2.1 5.0 m beam

Firstly, the results for the manual load control with the three failure definitions are pre-

sented. Manual load control gives highly inconsistent LSFEs for all failure definitions.

Secondly, the UNP method with the three failure definitions are presented. Using max

load as failure definition gives inconsistent LSFEs, while the other failure definitions im-

prove the consistency.
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Manual load control

A typical load-deflection plot using manual load control for the 5.0 m beam is shown in

figure A.1.

Figure A.1: Load-deflection curve for fc,situ = 29.1987 MPa and fsy = 560.0000 MPa

using manual load control

The result from the first RSM iteration using manual load control for the 5.0 m beam with

a load of 40 kN with the three failure definitions are shown in Table A.4, A.5 and A.6.

Note that for all failure definitions, material combination no. 1 and no. 3 are inconsistent.

Table A.4 shows two problems with manual load control with max load as the failure

definition: (1) convergence in the NLFEA software was found for extremely high concrete

strains and mid-span deflections, and (2) the load capacities are inconsistent.

Table A.4: Results for RSM iteration 1 for 40 kN using manual load control with max

load as the failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

29.1987 560.0000 54 200 14840.0 -69.6600 700.0

19.2991 560.0000 48 400 1378.0 -5.9940 700.0

44.1763 560.0000 53 200 270.6 -0.2470 638.0

29.1987 489.8000 46 400 5.97 ·1011 -2.15 ·109 612.3

29.1987 630.2000 51 000 67.8 -0.0822 638.9
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In an attempt to fix these unrealistic large strains and deflections, the CSD strain failure

definition was applied. Table A.5 shows the results with this failure definition. The

response is more realistic, but the load capacities are still inconsistent.

Table A.5: Results for RSM iteration 1 for 40 kN using manual load control with CSD

strain failure as the failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

29.1987 560.0000 53 200 32.2 -0.0015 561.9

19.2991 560.0000 39 800 17.7 -0.0012 425.2

44.1763 560.0000 52 600 58.7 -0.0014 569.2

29.1987 489.8000 45 000 31.5 -0.0015 494.9

29.1987 630.2000 49 000 32.1 -0.0015 584.0

In a final attempt to fix the inconsistencies, the third failure definition, fixed strain failure,

was applied. Table A.6 shows the results with this failure definition. The inconsistent

load capacities are still prevalent.

Table A.6: Results for RSM iteration 1 for 40 kN using manual load control with fixed

strain failure as the failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

29.1987 560.0000 53 200 32.2 -0.0015 561.9

19.2991 560.0000 40 400 19.0 -0.0017 438.7

44.1763 560.0000 52 600 58.7 -0.0014 569.2

29.1987 489.8000 45 000 31.5 -0.0015 494.9

29.1987 630.2000 49 400 32.8 -0.0017 589.2

To visualize the inconsistencies for the manual load control with fixed strain failure defi-

nition, the load capacity surface is shown in Figure A.2. Some plots for specific material

strengths were made to better show the inconsistencies. The plots show another prob-

lem with manual load control: slightly different material strengths yield the same load

capacities due to the discrete load steps for all material combinations.
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(a) Load capacity surface plot

(b) Load capacities for varying fc,situ (c) Load capacities for varying fsy

Figure A.2: Load capacities of the 5.0 m beam using manual load control with the fixed

strain failure definition

Updated normal plane arc-length method

To overcome the shortcomings found for manual load control, the UNP method was tested.

A typical load-deflection plot with the arc-length method is shown in Figure A.3
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Figure A.3: Load-deflection curve for fc,situ = 29.1987 MPa and fsy = 560.0000 MPa

using the UNP method

Table A.7 shows the results using the UNP method with max load as the failure definition

for RSM iteration 2 for a load of 40 kN. This method yields relatively large concrete strains

and deflections, in addition to the capacities being inconsistent. RSM-FORM converged

for a load of 45 kN, but did not converge for other loads.

Table A.7: Results for RSM iteration 2 for 40 kN using UNP with max load as the

failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

18.0669 410.6832 42 580 72.3 -0.0078 444.8

11.9415 410.6832 39 060 17.8 -0.0012 414.1

27.3344 410.6832 42 250 26.3 -0.0017 426.7

18.0669 340.4832 36 570 55.0 -0.0056 367.0

18.0669 480.8832 48 530 64.8 -0.0078 512.7

The different concrete strains at the load capacities gave the idea of limiting the allowed

strain. Once again, the CSD strain failure definition was tested in an attempt to get

RSM-FORM convergence for several loads. As shown in Table A.8, this failure definition

is conservative compared to the max load failure definition for low concrete strengths.
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Table A.8: Results for RSM iteration 2 for 39 kN using UNP with CSD strain failure as

the failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

16.9163 437.4890 42 280 17.8 -0.0009 439.1

11.1810 437.4890 35 460 14.9 -0.0008 361.2

25.5937 437.4890 43 820 21.1 -0.0013 449.4

16.9163 367.2890 36 490 15.2 -0.0009 371.8

16.9163 507.6890 47 130 20.5 -0.0011 502.3

To remedy the conservative load capacity of the weak concrete, the fixed strain failure

definition was applied to the UNP method. This gave no inconsistencies within RSM

iterations, and RSM-FORM converged for two to four RSM iterations for loads of 40, 45,

55 and 60 kN, but needed eight RSM iterations for a load of 50 kN. RSM-FORM failed

to converge for 65 kN due to shortcomings of the NLFEA solution strategy. The results

from 65 kN is seen in Table A.9. Here, combination no. 5 does not have a converged

capacity. This solution strategy does not seem to be applicable for high reinforcement

strengths.

Table A.9: Results for RSM iteration 2 for 65 kN using the UNP method with fixed

strain failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

34.8700 658.9307 63 420 32.3 -0.0012 659.0

23.0476 658.9307 61 980 28.6 -0.0015 659.4

52.7568 658.9307 66 210 44.4 -0.0011 665.3

34.8700 588.7307 60 100 53.7 -0.0016 610.9

34.8700 729.1307 61 390 32.9 -0.0012 628.8

For a load of 50 kN, the NLFEA results were consistent within each RSM iteration. How-

ever, inconsistencies between RSM iterations occurred. Small increases in both material

strengths gave lower capacity. This is seen in Table A.10. RSM-FORM converged, but
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more iterations were needed than for other RSM-FORM analyses.

Table A.10: Results for material combination no. 2 in RSM iteration 5 and 6 for 50 kN

using the UNP method with fixed strain failure definition

RSM iteration fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

### [MPa] [MPa] [N] [mm] [-] [MPa]

5 17.2007 504.3560 48 390 22.3 -0.0013 510.0

6 17.6348 506.9042 48 300 21.1 -0.0011 507.9

The first RSM iteration for 40 kN using the UNP method with fixed strain failure definition

is shown in Table A.11. This shows consistency, as opposed to Table A.4, and implies the

importance of a proper method for NLFEA LSFEs.

Table A.11: Results for RSM iteration 1 for 40 kN using the UNP method with fixed

strain failure definition

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

29.1987 560.0000 55 510 27.7 -0.0016 572.1

19.2991 560.0000 52 130 23.2 -0.0017 560.4

44.1763 560.0000 57 260 42.2 -0.0018 592.0

29.1987 489.8000 49 390 25.8 -0.0015 502.0

29.1987 630.2000 61 580 29.8 -0.0017 639.7

As seen on the load capacity surface plot using the UNP method with fixed strain failure

definition in Figure A.4, the accuracy is improved. However, this method still shows some

inconsistencies. These are smaller than those of manual load control, but can still lead to

slow convergence.
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(a) Load capacity surface plot

(b) Load capacities for varying fc,situ (c) Load capacities for varying fsy

Figure A.4: Load capacities of the 5.0 m beam using the UNP method with fixed strain

failure definition

Different computers were used when analysing the results. It was noticed a slight different

in the output from Diana. Table A.12 shows the difference for RSM iteration 1 with a

load of 40 kN.
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Table A.12: Results for RSM iteration 1 for 40 kN using the UNP method with fixed

strain failure definition for a different computer

fc,situ fsy Load capacity Deflection εcεcεc σsσsσs

[MPa] [MPa] [N] [mm] [-] [MPa]

29.1987 560.0000 55 470 27.8 -0.0015 572.1

19.2991 560.0000 52 220 23.2 -0.0017 560.4

44.1763 560.0000 56 900 39.0 -0.0018 592.0

29.1987 489.8000 49 410 25.8 -0.0015 502.0

29.1987 630.2000 61 530 28.9 -0.0013 639.7

A.2.2 1.5 m beam

Load-deflection plots for three analysis in the first RSM iteration are shown in Figure

A.5. Since the longitudinal reinforcement did not contribute to the capacity, only the

plots for varying fc,situ are shown. Three different failure definitions were applied to the

1.5 m beam; (1) max (converged) load, (2) limiting the deflection to 0.3 mm, and (3)

using the first peak in the load deflection plots. All failure definitions underestimated the

load capacity when compared to the analytic equation. Only the results with max load

as the failure definition are presented.
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(a) fc,situ = 29.1987 MPa and fsy = 560.0000

MPa

(b) fc,situ = 19.2991 MPa and fsy = 560.0000

MPa

(c) fc,situ = 44.1763 MPa and fsy = 560.0000

MPa

Figure A.5: Load-deflection curves for the UNP method using max load as the failure

definition

The results from the first RSM iteration for 73 kN load using max load as the failure

criterion is shown in Table A.13. It is evident that the longitudinal reinforcement does

not contribute for the shorter beam, as material combination no. 1, 4 and 5 yield the

same capacity. Max load shows inconsistencies with combinations no. 1 and 3.
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Table A.13: Results for RSM iteration 1 with 85 kN using UNP with max load as the

failure definition

fc,situ fsy Load capacity Deflection

[MPa] [MPa] [N] [mm]

29.1987 560.0000 83 280 0.78

19.2991 560.0000 74 830 0.64

44.1763 560.0000 80 410 0.66

29.1987 489.8000 83 280 0.78

29.1987 630.2000 83 280 0.78

A.3 Discussion and conclusion

The greatest obstacle using NLFEA for large structure reliability analyses is to balance

accuracy and feasibility. Having to manually check all outputs is unfeasible, and the

method for NLFEA LSFEs should be able to detect failure somewhat automatically. The

same solution strategy should also be used for all the analyses. With that said, manual

load control falls short of the UNP method in regards to both feasibility and accuracy.

As seen in Figure A.2, manual load control gives low accuracy compared to the analytic

formulas for the 5.0 m beam for all failure definitions. It seems the manual load control

is simply not able to surpass the limit points for concrete cracking, even with specify-

ing the analysis procedure to continue for no convergence in the iterative solver. At the

same time, manual load control gives discrete capacities. The problem could be remedied

in two ways: (1) changing the load incrementation between analyses or (2) automatic

load control. Having to change the load incrementation manually is simply unfeasible for

repeated NLFEAs. The brief testing on automatic load control encountered problems.

More optimization could be done to improve load control, but the UNP method showed

more promise.

As shown in Figure A.4, the UNP method with fixed strain failure seems very accurate

compared to the analytic formulas for the 5.0 m beam. The other failure definitions yield

80



APPENDIX A. OPTIMIZATION OF THE METHOD FOR NLFEA LSFES

less accurate results. This highlights that proper post-processing can improve the accu-

racy of the method. Arc-length methods have automatic incrementation, hence the UNP

method can be applied to several material parameters without major modifications. This

makes it more feasible for design purposes. Moreover, the computational time is lower

than the manual load control method. The UNP method seems like the better choice

when analyzing bending problems with NLFEA.

Compared to analytic load capacities, the UNP method give low load capacities for the

1.5 m beam. Other failure definitions gave consistency, but the low capacities cannot be

fixed with post-processing. The solution strategy with the UNP method is not applicable

for shear flexure failure. Modifications to the solution strategy are needed to properly

model this failure mode.

One important thing to note is that the UNP method gave different load capacities be-

tween several computers. The reason is unknown. This means that the load capacity

found with the UNP method can be treated a stochastic variable that needs to be taken

into account for a full probabilistic reliability analysis.
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Appendix B

Analytic capacity equations

The analytic LSF in this study was expressed by either bending moment or shear flexure

failure. Both capacity equations originated from Eurocode 2 [2], and are modified to

exclude the code-provided safety.

B.1 Moment capacity

To derive the moment part of the LSF, moment capacity must be calculated. This is done

using strain and stress assumptions along with force and moment equilibrium. Figure B.1

illustrates a rectangular cross-section of the assessed beam.

Figure B.1: Beam section, material strains, stresses and forces [21]

As illustrated strains were assumed linear over the height, with εcu at the top. Effec-

tive concrete compressive stress is assumed to be the product of a factor, η = 1.0, and

maximum strength, fc, which is set to fc,situ. The product is constant over an effective
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compressive zone height expressed by

y = λx (B.1)

Where x represents the compressive height, and λ a reduction factor of 0.8. Force equi-

librium gives

Fc = Ft (B.2)

Where Fc is the compressive force in the concrete and Fs is the tensile force in the

reinforcement. These can be expanded to

Fc = ηλωbdfc,situ and Ft = Es,modεsAs (B.3)

where b is the cross-sectional width, d is the effective depth, εs is the reinforcement strain,

As is the reinforcement area, ω is x/d in Figure B.1, and Es,mod is a modification of steel’s

Youngs Modulus due to the use of a bi-linear stress-strain curve, expressed by

Es,mod = fsy + Ehar(εs − εsy)
εs

(B.4)

where Ehar is the hardening modulus attained from (2.16).

According to Sørensen [40], there are two failure criteria for beam failing in bending:

By compressive fracture of the concrete, or when the tensile strain in the reinforcement

reaches an ultimate value. In the case of steel reaching its ultimate strain, εsu, (B.2) and

(B.3) is combined to calculate ω. In the case of steel not reaching its ultimate strain,

strain linearity gives an expression for ω by

ω = εcu
εs + εcu

(B.5)

where εs is solved with iterative methods using the following second order equation:

(Es,modρ)ε2
s + (Es,modρεcu)εs − ηλεcufc,situ = 0 (B.6)

where ρ = As

bd
is the reinforcement ratio. Once ω is known, the moment capacity can be

found by moment equilibrium of the cross-section:

Mr = Fc(0.2 + 1
20.8)ωd+ Ft(1 − ω)d (B.7)
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B.2 Shear flexure capacity

The equation for calculating the shear flexure capacity of the concrete is empirical. This

can be found in Eurocode 2 on the following form:

Vr = Ck(100ρlfc)1/3bwd (B.8)

where C accounts for several dependencies, k = 1 +
√

200
d

is the scale factor, ρl denotes

the longitudinal reinforcement ratio, fc is the concrete cylinder strength in MPa, bw is the

minimum beam width in mm, and d is the effective depth in mm. One of the dependencies

that the C-factor accounts for is concrete strength. From the Eurocode 2 Commentary

[21] and fib Bulletin 2 [9], a sample of shear beam capacities were used to calculate the

C-factor dependencies, as illustrated in Figure B.2.

Figure B.2: C-factor of a shear beam sample dependent upon fc variable [21]

The C-factor is on the Y-axis, with a dotted line representing the Eurocode 2 design

value C = 0.12 [2]. The unfilled annotations signify a set of special cases which may not

have been included in the sample calculations. Assessing standard deviations and median

value when assuming normal and log-normal distribution of C, the distribution type is

found to be negligible within 1%. Median values of cylinder strength C-factor for total

and partial sample is found to be 0.178 and 0.183, respectively.

Due to the dependencies of C, the shear capacity will have a PDF. The median capacity

can be defined as the capacity corresponding to 0.5 on its cumulative distribution function.
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To achieve a median shear flexure capacity and also account for fc,situ, a new value for

C is needed. The axes on Figure B.2 are transformed from using fc to fc,situ The entire

transformed sample is illustrated in Figure B.3

Figure B.3: C-factor of a shear beam sample dependent upon fc,situ. The total

population from Figure B.2 is included [9]

The new population is also found to give negligible differences whether normal or log-

normal distribution is assumed. Median values of the new C-factor for a total and partial

sample is found to be 0.200 and 0.205, respectively. The new C-factor is set to 0.20. The

median shear flexure capacity, dependent upon fc,situ, can now be expressed as

Vr = 0.20k(100ρlfc,situ)1/3bwd (B.9)
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Appendix C

Transformation to standard normal

space

A standard normally distributed variable has mean µ = 0 and variance σ = 1, denoted

N(0,1). A normally distributed variable is typically denoted N(µ,σ). To transform a

normally distributed variable, xn into a standard normally distributed variable u, the

mean, µx, and variance, σx, must be known. Each number, xn, in the population is

transformed by

u = xn − µx
σx

(C.1)

A log-normally distributed variable can be denoted logN(µ,σ). In the case of a log-

normally distributed variable, xln, first this has to be transformed to a normally dis-

tributed variable, xn. This can be done by

xn = ln(xln) (C.2)

Then, the transformation into standard normal space can be performed by (C.1).
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