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Abstract 

 

Large amplitude roll motion in realistic seas is a serious threat to ship stability because 

it can lead to damage or even capsizing of the vessel. For the excessive roll motion in 

random seas, the nonlinear effects and dynamics associated with damping and restoring 

terms should be considered. Currently, the criteria of the International Maritime 

Organization (IMO) for evaluation of the intact stability are based on both hydrostatics 

and dynamics (IMO, 2008). However, due to the stochastic nature of the ocean 

environment and the randomness of the roll response, the assessment of extreme rolling 

should inevitably be based on dynamic considerations and probabilistic methods. With 

the awareness of the deficiencies of the current criteria for intact stability evaluation, 

the IMO is currently developing the next generation (also second generation) of such 

criteria with a certain consideration of the physics associated with the dynamics of 

nonlinear roll motion and the randomness of the ocean environment and roll response. 

 

In this work, probabilistic methods are proposed for studying the nonlinear behavior of 

the random roll motion as well as for evaluating the dynamic stability of the vessel in 

random seas. The problems of dead ship condition in random beam seas and parametric 

roll in random head seas are studied. For the first problem, the Markov theory is applied 

in order to study the stochastic nonlinear roll response. Specifically, the rolling behavior 

is described by a single-degree-of-freedom (SDOF) model which incorporates the 

nonlinearities associated with the damping and restoring terms as well as the 

randomness of the wave excitation. The linear filter technique is employed to 

approximate the random external excitation and then the SDOF model is extended into 

a four-dimensional (4D) Markov system whose probabilistic properties are governed 

by the Fokker-Planck (FP) equation. Based on the Markov property of the coupled 

dynamic system, the 4D path integration (PI) method is introduced in order to solve the 

high-dimensional FP equation. The numerical robustness and high efficiency of the 4D 

PI method are evaluated by comparing with the results from Monte Carlo simulation 

(MCS). 

 

Based on the PI method and the MCS method, the feasibility of applying the second-

order linear filter and the Gaussian white noise to approximate the random external 

excitation are studied. The 4D dynamic system is shown to be an appropriate model for 

studying the stochastic roll response. With the assistance of the 4D PI method, the 

influence of ship parameters and wind excitation on the stochastic roll response are 

investigated. Furthermore, the reliability evaluation associated with high response 

levels is studied and long-term extreme response is predicted by combing the 4D PI 

method with the metocean description.  

 

In the second part of the thesis, the Grim effective wave model is introduced in order 
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to approximate the variation of the restoring moment in random head seas. Based on 

the Grim effective wave approximation, the mathematical model for describing the 

rolling behavior is established. The linear filter technique and an efficient MCS method 

are applied to predict the extreme roll response of a vessel sailing in random head seas. 

It is demonstrated that the efficient MCS method is able to provide satisfactory 

estimation of the extreme roll response with a dramatic reduction of computation time, 

which is important for the subsequent long-term statistical evaluation. 

 

The probabilistic methods mentioned above and the results and conclusions obtained in 

this work hopefully can provide a useful reference for the second generation IMO intact 

stability criteria which are currently being developed as well as for stochastic dynamic 

analysis of nonlinear systems.   
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1 Introduction 

1.1  General Background 

 

Ship stability is a fundamental requirement for naval engineers since it relates to ship 

safety and integrity. For intact vessels, there are two types of stability failures, i.e. total 

intact stability failure and partial stability failure (ITTC, 2014). Ship capsizing is 

classified as the first category and it can be defined as the transition from a position of 

equilibrium that is considered safe, or from periodic motions near such an equilibrium, 

to another position of equilibrium that is intrinsically unsafe (Belenky et al., 2008). The 

latter is associated with occurrence of large or extreme roll angles, which would impair 

the normal operations or even lead to damage of the ship. Basically, loss of ship stability 

in random seas is most frequently associated with excessive roll motion, which is 

nonlinear by nature and inherently random. 

 

Even though the current criteria of the International Maritime Organization (IMO) for 

evaluation of the intact stability are based on both on hydrostatics and dynamics (IMO, 

2008). There is not enough consideration with respect to the dynamics associated with 

the nonlinear roll motion as well as the randomness of the ocean environments and the 

roll response, which are important for stability assessment. The deficiencies of the 

current criteria for dynamic stability evaluation have been reflected by a considerable 

number of stability failure accidents every year (MAIB, 2014). 

 

The IMO is currently developing the next (second) generation of intact stability criteria 

with a certain consideration of the nonlinear dynamic behavior in realistic seas. The 

second generation intact stability criteria apply a multi-tiered vulnerability criteria in 

three levels of complexity in order to assess the vessel’s capacity to withstand different 

modes of stability failures, such as: dead ship condition (resonant roll in beam seas), 

parametric roll, pure loss of stability, broaching and excessive acceleration (SLF, 2011). 

 

In this work, only the failure modes of the dead ship condition and the parametric roll 

are considered. The dead ship condition means that when a ship loses power or has 

maneuvering problems, the ship will be turned into beam wave scenario and large 

oscillations occurs if a resonance is encountered. On the other hand, parametric roll is 

caused by sufficient large oscillation of the roll restoring moment occurring within 

certain frequencies of wave encounter (nearly twice the natural roll frequency). Even 

though the mechanisms for these two failure modes are different, the excessive roll 

motion caused by these two failure modes will lead to damage or even capsizing of the 

vessel. 
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For the random wave scenario, the large amplitude roll motion, either caused by 

parametric roll or under dead ship condition, is a stochastic process and the dynamic 

stability should be evaluated by means of a probabilistic approach. However, assessing 

the stochastic responses of such nonlinear dynamic systems has been a demanding 

challenge in the past decades since elaborate theoretical model as well as appropriate 

mathematical techniques are required for such kinds of problems (Ellermann, 2009). 

 

In this dissertation, the problem of dead ship condition in random beam seas and the 

parametric roll in random longitudinal seas will be studied separately. For each failure 

mode, relevant assumptions and simplifications will be made and dedicated 

mathematical techniques will be applied in order to estimate the stochastic roll response 

and evaluate the dynamic stability of the vessel. The study with respect to probabilistic 

methods for dynamic stability evaluation and stochastic analysis of the roll response in 

this work will hopefully provide useful references for the second generation of intact 

stability criteria which are under development as well as for stochastic dynamic analysis 

of nonlinear systems.  

 

1.2  Stochastic Analysis and Reliability Evaluation 

 

1.2.1 Dead ship condition in random beam seas  

 

The dead ship condition is assumed to be the most classic stability failure mode and 

studies of ship rolling in beam waves were derived from Froude’s time. Since then, a 

variety of methods, both analytical and numerical, have been derived to study the 

nonlinear roll motion in regular waves. These techniques are referred to as deterministic 

methods and conclusions about these methods have been given in Falzarano (1990), 

Jiang et al. (1996) and Roberts and Vasta (2000), etc. Even though the nonlinear 

phenomenon associated with excessive roll motion is considered more or less by these 

methods, the randomness of the wave excitation and the roll response in the nonlinear 

roll motion problem can not be incorporated. 

 

In order to analyze the stochastic response of roll motion in random beam seas, the 

rolling behavior of the vessel is generally assumed to be decoupled from other motions 

and described by a single-degree-of-freedom (SDOF) model in which the nonlinearities 

associated with the damping and restoring terms as well as the randomness of the wave 

excitation are all incorporated (Roberts and Vasta, 2000). And also, various 

probabilistic strategies have been proposed. Among these strategies, the methodology 

based on the Markov diffusion theory is attractive because the probabilistic property of 

the roll motion is governed by the Fokker-Planck (FP) equation. 

 

However, the Markov model is only valid for a system which is driven by white noise 

or filtered white noise. Fortunately, the random roll excitation moment in the SDOF 

model is a stationary Gaussian process with appropriate spectral density which can be 

modeled as filtered white noise by introducing the shaping filter technique. 
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Subsequently, the original SDOF model, also a second order differential equation, is 

coupled with the filter model and then extended to a Markov dynamic system. For such 

a coupled system, a host of useful response statistics can be obtained by solving the 

corresponding FP equation. 

 

Coupling of the SDOF model and the filter model leads to another challenge. Analytical 

solutions of the FP equations are only available for some linear systems and a very 

limited class of nonlinear systems. Direct numerical methods aiming to solve the low-

dimensional FP equations, such as the finite element method (Spencer Jr and Bergman, 

1993) and the finite difference method (Wojtkiewicz et al., 1999), are hardly feasible 

for the nonlinear extended system with high-dimensional FP equations. In this regard, 

the so-called “curse of dimension” comes into play which means that difficulties arise 

due to the processing capacity as well as the storage needed for the computation 

increases dramatically with the dimension of the FP equation. Therefore several 

alternative techniques are developed to provide approximate solutions to the FP 

equations. These approaches include the stochastic averaging method (Dostal et al., 

2012; Kougioumtzoglou and Spanos, 2014; Roberts, 1986), the moment closure 

technique (Francescutto and Naito, 2004; Su, 2012; Su and Falzarano, 2011), the local 

statistical linearization method (Dostal and Kreuzer, 2011), etc. 

 

The path integration (PI) method is an efficient approximation for solving the FP 

equation and providing the stationary or non-stationary response probability density 

function (PDF) of the dynamic system. The method is based on the Markov property of 

the dynamic system and the evolution of the response PDF is computed in short time 

steps via a step-by-step solution technique. Specifically, based on the Chapman-

Kolmogorov equation, the response PDF at a given time instant can be obtained when 

the response PDF at an earlier close time as well as the conditional PDF are already 

known. Prior to the research work in current dissertation, only low-dimensional PI 

procedures have been applied to the area of nonlinear ship rolling in random beam seas 

(Chai et al., 2013; Falzarano et al., 2012; Lin and Yim, 1995; Pirrotta and Santoro, 

2011). In these studies, the external wave excitation was simplified as Gaussian white 

noise and then two-dimensional (2D) PI techniques were applied to estimate the 

stochastic roll response. However, as shown in Section 5.3, unsatisfactory results have 

been found in the Gaussian white noise approximation and it is inappropriate to be used 

for simulating the nonlinear roll motion in random seas. In this work, a second-order 

linear filter is applied to approximate the random excitation moment in the SDOF model 

and then a four-dimensional (4D) PI procedure is developed to address the challenge of 

determining the response of a vessel in random beam seas. The feasibility of the linear 

filter (sharping filter) technique as well as the rationality and high efficiency of the PI 

approach will be demonstrated in the following work. 

 

As for the dynamic stability evaluation, ship capsizing caused by large amplitude roll 

motion is a rare event that also exhibits complex nonlinear features. Accordingly, the 

traditional approaches to address this challenging task are generally based on time 
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domain simulations (Ayyub et al., 2006). Other methods based on different assumptions 

have been carried out for studying ship capsizing, which include the Melnikov method 

(Jiang et al., 1996; Liu et al., 2016; Su and Falzarano, 2013), the split-time method 

(Belenky et al., 2010; Belenky et al., 2012) and the first-passage method (Dostal et al., 

2012; Roberts, 1986; Su and Falzarano, 2013), etc. 

 

For evaluation of the partial stability failure, conventional reliability theory can be 

applied if the partial stability failure event is associated with a Poisson distributed 

crossing event. In this work, the reliability associated with high-level response is 

considered. For one thing, the response statistics obtained by the 4D PI method, 

especially in the high-level response region, can directly be applied in the relevant 

reliability evaluation procedure. Also, prediction of the extreme roll responses and the 

associated risk assessment of ship stability in random seas are crucial for reliability 

based design and operation in practice. Furthermore, the roll response is narrow-banded 

due to the light roll damping and the performance of the Poisson estimate for the 

reliability evaluation will be discussed in this work. 

 

1.2.2 Parametric roll in random longitudinal seas  

 

For ships sailing in longitudinal waves, even though there is no direct excitation for the 

roll motion, large oscillation of the roll restoring moment within certain regions of wave 

encounter frequencies combined with insufficient roll damping could induce parametric 

roll, which is another failure mode discussed in this dissertation. The onset of 

parametric roll in regular waves can be predicted by applying the Mathieu instability 

criteria with the simplification that the roll motion is described by a SDOF model 

(Francescutto et al., 2004; Shin et al., 2004). For the actual seaway, the regular wave 

condition is hardly encountered and investigation of the parametric roll in irregular 

waves is therefore more realistic and more appropriate. 

 

Similar to the dead ship condition in random beam seas, for the parametric roll in 

random longitudinal waves, the variation of the restoring moment as well as the 

subsequent roll response are stochastic. Therefore, appropriate numerical model and 

probabilistic approach are required in order to evaluate the dynamic stability of vessel 

which is suffering from the parametric roll. 

 

In order to study the parametric roll behavior in random seas and estimate the risk of 

an associated large or extreme roll response, several powerful codes have been 

proposed (e Silva and Soares, 2013; France et al., 2003; Shin et al., 2004). In these 

procedures, the restoring moment is calculated at every time step by using the 

instantaneous wetted surface and therefore, these procedures are time consuming and 

difficult to apply during the early design stage. The computation time is depend on the 

number of DOFs as well as on the method for approximation of the restoring moment. 

On the other hand, the effect of time dependent restoring term, which is the main cause 

of parametric roll, should be correctly modeled. Several approximation procedures have 
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been proposed to describe the restoring term in a simplistic way, such as the Volterra 

series approach (Hua et al., 1999; Moideen et al., 2014), fluctuation of the metacentric 

height (GM) term by linear transfer functions (Song et al., 2013), the Grim effective 

wave method and other methods mentioned in Vidic-Perunovic (2011). 

 

Grim (1961) introduced the effective wave model with the main idea that the 

instantaneous irregular wave surface can be replaced by an effective (or equivalent) 

regular wave with the wave length equal to the ship length and its crest or trough always 

positioned amidships. The equivalent wave is assumed to be fixed with respect to the 

vessel, but its amplitude is a random process. The concept of Grim effective wave 

model has been applied by several authors to study the parametric roll behavior of 

vessels with conventional hull forms (Bulian, 2006; Chang, 2008; Kröger, 1986). In 

this work, the Grim effective wave model is applied to approximate the time-varying 

roll restoring moment of the vessel sailing in random longitudinal waves. In such 

approach, heave and pitch motions are assumed to be quasi-static and the roll motion is 

approximated as a SDOF model with the restoring term fitted by a nonlinear expression 

with regard to the effective wave amplitude process and the roll angle. 

 

Furthermore, for such a SDOF model, the random effective wave amplitude process 

serves as the driving term of the dynamic system and the shaping filter technique is 

applied in order to model the effective wave amplitude process. In this work, a fourth 

order linear filter is applied to approximate the driving process in the SDOF model and 

then the dynamic system is extended into a six-dimensional (6D) Markov system. For 

this coupled system, even though the probabilistic properties are governed by the FP 

equation, the PI procedure which works well for the 4D dynamic system, does suffer 

from a curse of the dimensionality and the PI technique is hardly applicable for solving 

the 6D FP equation. 

 

Nonetheless, the Monte Carlo simulation (MCS) does not critically suffer from the 

curse of the dimensionality problem since the statistics of the response are obtained 

directly from the realizations. Basically, the MCS is the simplest and most versatile way 

to determine the response statistics of dynamic, although this simplicity is paid for by 

the random sampling uncertainty in the approach. For marine structures, the mean 

upcrossing rate for high-level responses and the associated probabilities of exceedance 

are of central importance in evaluation of the response statistics. However, the 

computation burden for the conventional MCS may be prohibitive for estimation of the 

high-level responses and the associated low levels of probability. In this work, a 

computationally efficient MCS (Naess and Gaidai, 2008; Naess and Moan, 2012), 

which is based on the regularity behavior of the upcrossing rate in the tail region, is 

applied in order to circumvent the above obstacle. In the efficient MCS approach, an 

extrapolation procedure is applied for prediction of the upcrossing rate in the far tail 

(which is nearly impossible to determine by means of the conventional MCS) on the 

basis of estimations obtained at more moderate levels. By taking advantage of the time-

saving extrapolation technique, the efficient MCS method does give a reasonable 
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estimation of the extreme response with a dramatic reduction of the computation time. 

 

 

1.3  Scope and Objectives of the Thesis 

 

The main goal of this thesis is to study the nonlinear behavior of the roll motion in 

random waves, analyze the stochastic roll response and predict the extreme responses. 

To realize these objectives, the following sub-objectives have been achieved: 

 

 To develop a 4D Markov system for describing the roll behavior in random beam 

seas and to develop a 4D PI procedure used to solve the high-dimensional FP 

equation, evaluate the stochastic response of the roll motion in random beam seas. 

The PI method is verified by the MCS results (paper 1).    

 To verify the feasibility of the 4D extended system used for studying the stochastic 

roll response. Specifically, the random wave excitation is modeled by a second-

order linear filter and a fourth-order linear filter, respectively (paper 2). The 

response statistics obtained from the 4D system are compared with those calculated 

by 6D MCS. The random wave excitation term is also approximated by an 

equivalent Gaussian white noise (paper 3) in order to study the rationality and 

accuracy of the corresponding 2D dynamic system used for studying the stochastic 

response of the roll motion in random beam seas.     

 To investigate the influence of ship parameters, such as the roll damping 

coefficients and roll restoring coefficients on the stochastic roll response (paper 1). 

The effect of different nonlinear damping models on the stochastic roll response is 

also investigated (paper 4).  

 To study the rolling behavior of the vessel under the action of beam wind and waves 

and investigate the influence of the steady heeling angle on the stochastic roll 

response (paper 4).  

 To evaluate the exceedance probabilities for high level responses by applying the 

Poisson estimate and investigate its performance (paper 1). 

 Predict the long-term extreme response in combination with the metocean 

information (additional paper 1).  

 To predict the extreme roll response in random head seas by applying the linear 

(shaping) filter technique and an efficient MCS technique (paper 5).     

 

This thesis is written in the form of a collection of 5 journal papers. Figure 1.1 shows 

how the scope of the papers is interconnected in this thesis. The 5 journal papers are 

included in Appendix A and summarized as follows: 

 

Paper 1: This paper presents a four-dimensional (4D) path integration (PI) approach to 

study the stochastic roll response and reliability of a vessel in random beam seas. The 

theoretical principle and numerical implementation of the current state-of-the-art 4D PI 

method are presented. The numerical robustness and accuracy of the 4D PI method are 
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evaluated by comparing with the results obtained from the MCS method. The influence 

of the restoring terms and the damping terms on the stochastic roll response are 

investigated. Furthermore, based on the well-known Poisson estimate and the response 

statistics yielded by the 4D PI technique, evaluation of the reliability associated with 

high-level response is performed. The performance of the Poisson estimate is evaluated 

by the versatile MCS technique. 

 

Paper 2: In this paper, a second order linear filter and a fourth order linear filter are 

applied in order model the random wave excitation. In this regard, a 4D dynamic system 

and a six-dimensional (6D) dynamic systems are established to evaluate the statistics 

of high-level roll responses when subjected to random wave excitation. For the 4D 

system, the response statistics can be obtained by the 4D PI method, while the response 

statistics for the 6D system are evaluated by the MCS technique. It is proved that, the 

4D dynamic system can serve as an effective alternative to the 6D dynamic system in 

terms of determining the important response statistics, such as the upcrossing rates and 

exceedance probabilities for the specific high levels. Moreover, the feasibility of this 

simplification has been verified by various cases corresponding to different sea states.    

 

Paper 3: In this paper, the random wave excitation is approximated by an equivalent 

Gaussian white noise and a two-dimensional (2D) PI technique is applied in order to 

obtain the response statistics of the dynamic system driven by this Gaussian white noise. 

The rationality and accuracy of applying the equivalent Gaussian white noise to 

simulate nonlinear ship rolling in random beam seas is studied. 

   

Paper 4: In this paper, the 4D PI method is applied in order to study the effects of 

different damping models (i.e. the linear-plus-quadratic damping (LPQD) model and 

the linear-plus-cubic damping (LPCD) model) and the steady heeling angle on the 

response statistics of the roll motion in random beam seas. It has been found that the 

dynamic system with the LPCD model provides a less conservative estimate of the 

stochastic roll response. Furthermore, the existence of the steady heeling angle has a 

significant influence on the stochastic roll response and leads to a deterioration of the 

ship stability in random waves.  

 

Paper 5: The main accomplishment of this paper is to study the parametric roll 

behavior in random head seas as well as to estimate the associated large or extreme roll 

response by means of probabilistic approaches. Specifically, the Grim effective wave 

model is applied in order to approximate the variation of the restoring moment in 

random head seas. The linear filter technique and an efficient MCS method, which is 

based on the combination of a standard MCS approach and an extrapolation technique, 

are applied in order to estimate the extreme roll response. It has been found that the 

efficient MCS technique gives a satisfactory estimation of the extreme response with a 

dramatic reduction of computation time.   



Chapter 1: Introduction  8 

 

Verification of the 4D 

system for response 

prediction (papers 2, 3)
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Figure 1.1: Scope of thesis and interconnection between the papers 

 

1.4  Thesis Outline 

 

The summary part of this thesis consists of the following chapters: 

 

Chapter 1 includes the background, motivation and objectives of this thesis. 

 

Chapter 2 introduces the ship motion in time domain as a six-degree-of-freedom 

(6DOF) model. The single-degree-of-freedom (SDOF) model used to describe the roll 

motion in random beam seas is presented and a SDOF model based on the Grim 

effective wave approximation is applied in order to describe the rolling behavior of the 

vessel sailing in random head seas. 

 

Chapter 3 presents the basic stochastic processes, i.e. the Markov process, the white 

noise process and the Weiner process. The principle of the linear filter technique and 

the derivation of Forkker-Planck equation are included. 

 

Chapter 4 addresses the methodologies used to calculate the response statistics of the 

roll motion in random seas. The principle and numerical implementation of the path 

integration method (PI), the standard Monte Carlo simulation method used to calculate 

mean upcrossing rate and the efficient MCS technique for extreme value prediction are 

introduced.    

 

Chapter 5 summarizes the numerical results, relevant analysis and discussions are 

presented in this chapter.            
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Chapter 6 summarizes the work in the thesis and recommendations for the future work.   
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2 Ship Dynamics and Roll Motion in Waves 

 

This chapter starts with the equation of linear ship motion in regular waves and then a 

six-degree-of-freedom (6DOF) system is built up to describe the ship motion in time-

domain. In Section 2.2, a single-degree-of-freedom (SDOF) model is introduced in 

order to describe the rolling behavior of the vessel for the dead ship condition. For the 

cases of ship rolling in random head seas, the Grim effective wave model is introduced 

and the principle for this approximation is describe in Section 2.3.         

 

2.1  Ship Motion in Time-domain 

     

In the context of linear wave theory, the ship motion in regular waves (with frequency 

ω) is written as (Faltinsen, 1993): 

6

,k

1

( ( )) ( ) ( ) ( ) ( ) ( ), 1,2, ,6kj kj j kj j kj j exc

j

M A t B t C t F t k    


          (2.1) 

where ηj represent the displacements of the vessel, Mkj are the components of the 

generalized mass matrix for the intact ship. Akj(ω) and Bkj(ω) are hydrodynamic 

coefficients of added mass and damping term, respectively. Ckj denote the components 

of the matrix for restoring coefficients. Fexc,k represent the wave excitation load, i.e. the 

sum of the Froude-Krylov force (moment) and the diffraction force (moment).         

 

However, the added mass and damping term in equation (2.1) is frequency-dependent 

and this equation is valid only for steady state sinusoidal motions, limitations will be 

encountered when studying the linear transient behavior or nonlinear problems. 

Therefore, equation (2.1) should be modified to describe the cases where the time-

dependence is more general. 

 

The impulse response function method (Cummins, 1962) can be applied to determine 

the radiation force Frad,k , which can be transformed as: 

 
6

,
0

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) , 1,2, ,6
t

rad k kj j kj j kj j

j

F t A t B t K t d k     


          (2.2) 

where Akj(∞) and Bkj(∞) are the infinite added mass and the frequency-independent 

damping, respectively. Kkj(t) is the retardation function, which can be given as (Ogilvie, 

1964): 
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0

0

2
( ) ( ( ) ( ))cos( )

2
( ( ) ( ))sin( )

kj kj kj

kj kj

K t B B t d

A A t d

  


   






  

   





 (2.3) 

Finally, the ship motion in time-domain is written as: 

6

0
1

,k

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ), 1,2, ,6

t

kj kj j kj j kj j kj j

j

exc

M A t B t K t d C t

F t k

      


         
  

 

 
 (2.4) 

 

2.2  Roll Motion in Random Beam Seas 

 

The ship motion in waves is represented by a six-degree-of-freedom (6DOF) system 

(2.4), but the roll motion for dead ship condition is the most critical mode since large 

amplitude roll motion can lead to damage or even capsizing of the vessel. In order to 

understand the nonlinear behavior of the roll motion under random external excitation, 

the rolling behavior is assumed to be decoupled from other motions and described by 

the following single-degree-of-freedom (SDOF) model (Jiang et al., 2000; Ogilvie, 

1964):  

44 44 44 44 44
0

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t

I A t B t K t d C t M t               (2.5) 

where θ(t) and 𝜃̇(t) are the roll angle and the roll velocity, respectively. I44 is the 

moment of inertia in roll, K44(t) and C44 are the retardation function and restoring 

coefficient for the roll motion, respectively. M(t) represents the roll excitation moment 

due to external waves.  

 

For the dead ship condition in random beam seas, the assumption of the above 

decoupling is reasonable for qualitative studies (Roberts and Vasta, 2000). However, 

the SDOF model (2.5) is based on the linear wave theory with linear retardation 

function and linear restoring moment, which are valid for the small amplitude (i.e. 

linear) roll motion. For large amplitude roll motion in random beam seas, the 

nonlinearities associated with the damping and restoring terms as well as the 

randomness of the wave excitation term should be considered in the SDOF model. 

 

For nonlinear roll motion, the roll damping normally has three kind of components: the 

wave damping (linear) due to radiation; the damping caused by vortex shedding and 

flow separation as well as the viscous friction damping. In general, these terms are 

coupled with each other and the quantitative evaluation of roll damping is difficult. 

Nevertheless, the empirical linear-plus-quadratic damping (LPQD) model, which has 
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been verified by numerous studies of experimental data, is selected to describe the 

damping term. This damping model is given as (Himeno, 1981): 

44 44( ) ( ) ( )D qM B t B t t     (2.6) 

where MD is the roll damping (moment), B44 and B44q are the linear and quadratic 

damping coefficients, respectively. In addition to the LPQD model, the linear-plus-

cubic damping (LPCD) model, given as equation (2.7), is infinitely differentiable and 

mathematically preferable to the LPQD model.    

3

44 44
ˆ ( ) ( )D cM B t B t    (2.7) 

in which 𝐵̂44 and B44c are the linear and cubic damping coefficients for the LPCD model.  

 

As mentioned above, the dependence of the restoring moment on the roll angle θ(t), has 

a nonlinear character for large amplitude roll motion. The restoring term is given by the 

following equation: 

( ( ))RM GZ t   (2.8) 

in which MR is the restoring moment and Δ is the displacement of the vessel. The 

restoring arm GZ, which can be obtained from standard hydrostatic software, is usually 

given by nonlinear odd function of the roll angle, e.g. 

3

1 3( )GZ C C     (2.9) 

where C1 and C3 are the linear and nonlinear roll restoring coefficients which are 

associated with the restoring arm. 

 

The restoring arm in equation (2.9) is calculated in calm water. Theoretically speaking, 

for the rolling vessel, when the water is not calm, its surface experience a wave 

defamation and taking this effect into consideration could be a more accurate way to 

calculate the restoring moment. However, for the roll motion in beam seas as well as 

for the qualitative study, it is reasonable to treat the restoring arm the same as that in 

calm water (Belenky and Sevastianov, 2007). But when the ship is sailing in 

longitudinal waves, the change in the restoring moment is quite significant and this will 

be discussed in Section 2.3. 

 

As for the random roll excitation moment, M(t), it can be calculated by linear 

hydrodynamics and the roll excitation moment spectrum, SMM(ω) is related to the wave 

energy spectrum, Sζζ(ω), by the following relationship (Hsieh et al., 1994): 

2( ) | ( ) | ( )MM rollS F S    (2.10) 

in which |Froll(ω)| represents the wave excitation moment amplitude per unit wave 
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amplitude at frequency ω. Moreover, the sea state is assumed to be stationary during a 

short-term period. Therefore, the wave elevation and the roll excitation moment can be 

assumed to be stationary Gaussian processes.  

 

Due to the presence of the convolution integral in equation (2.5), time-domain 

simulations of the roll response may be computationally demanding and it also 

introduces additional difficulties for applying the stochastic dynamic methods (Su, 

2012). For simplicity, the frequency-dependent added mass and damping in equation 

(2.5) can be replaced by constant coefficients (Taghipour et al., 2008). Considering the 

nonlinear damping moment in equation (2.6) (or equation (2.7)) and nonlinear restoring 

moment described in equations (2.8) and (2.9), the SDOF model used to describe the 

roll motion in random beam seas is given as: 

3

44 44 44 44 1 3( ( )) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )qI A t B t B t t C t C t M t              (2.11) 

The added mass and linear damping coefficients, A44(𝜔̃) and B44(𝜔̃) are evaluated at 

some representative fixed frequency and considered as constants. That is, for narrow-

banded wave excitation, values are evaluated at the peak excitation frequency, while 

for wide-banded excitation, values at the natural frequency of the roll motion, ω0, are 

recommended. In addition, the linear damping coefficient B44(𝜔̃) can be regarded as 

B44l in equation (2.6). 

 

Dividing equation (2.11) by (I44 + A44), the final form of the differential equation is 

obtained as: 

3

44 44 1 3( ) ( ) ( ) | ( ) | ( ) ( ) ( )qt b t b t t c t c t m t           (2.12) 

where 

44 44 44 44( ) ( ( ))b B I A    (2.13) 

44 44 44 44( ( ))q qb B I A    (2.14) 

44 44( ( )) 1,3i ic C I A i     (2.15) 

44 44( ) ( ) ( ( ))m t M t I A    (2.16) 

are relative roll parameters. The natural frequency of the roll motion, ω0, is determined 

as: 

0 1 44 44 1( ( ))C I A c      (2.17) 
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The spectrum of the relative roll excitation moment, Smm(ω), can be expressed as: 

2 2

44 44( ) ( ) ( ) ( ( ))mm rollS F S I A      (2.18) 

Finally, the SDOF model (2.12) can be transformed into the following state-space 

equation which is written as: 

1 2

3

2 44 2 44 2 2 1 1 3 1 3( | | )q

dx x dt

dx b x b x x c x c x x dt




     

 (2.19) 

where x1= θ(t), x2=𝜃̇(t) and x3=m(t). 

 

2.3  Roll Motion in Random Head Seas 

 

For the cases of ship rolling in longitudinal (head or following) waves, large amplitude 

roll motion could be possible even through there is no direct excitation for the roll 

motion. This phenomenon is referred to as parametric roll and it is caused by 

sufficiently large oscillation of the roll restoring moment occurring within certain 

frequencies of wave encounter (approximately twice the natural roll frequency). 

Generally, parametric roll is coupled with heave and pitch motions, the following model 

given by Lewis (1988) can be considered for studying the rolling behavior: 

33 3 33 3 33 3 3( ) ( ) ( ) ( ) ( )m A t B t C t F t       (2.20) 

44 44 4 44 4 44 4 4 3 4 5 4( ) ( ) ( ) ( ) ( ) ( ( ), ( ), ( )) ( )qI A t B t B t t GZ t t t M t            (2.21) 

55 55 5 55 5 55 5 5( ) ( ) ( ) ( ) ( )I A t B t C t M t       (2.22) 

in this coupled system, the restoring arm GZ(η3, η4, η5) is a nonlinear function of heave 

(η3), roll (η4 or θ) and pitch (η5) motions. The analysis of the coupled motions can only 

be done by numerical computations and some approximations should be introduced in 

order to study the parametric roll in random waves. 

 

When the ship is rolling in unidirectional head seas and assume that a quasi-static 

behavior in relation to the heave and pitch motions, the roll dynamics for the ship in 

irregular longitudinal long-crested waves can be represented by the following SDOF 

model (Bulian, 2006; Roberts, 1982; Roberts and Vasta, 2000): 

3

44 44 44 44
ˆ( ) ( ) ( ) ( ) ( ( ), ( ( , ))) ( )c xI A t B t B t GZ t A x t M t          (2.23) 

where ΔGZ(θ(t), Ax(ξ(x,t))) is the restoring moment in random longitudinal waves, 

Ax(ξ(x,t)) represents the effect of wave elevation process ξ(x,t) along the vessel 
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(coordinate x) at time t, and M(t) denotes a roll excitation moment. 

 

The roll excitation moment M(t) is small if the ship travels in about the same direction 

as the incident waves. It acts as an additive disturbance for the dynamic system and can 

be approximated by application of a linear strip method (Dostal and Kreuzer, 2014). 

For pure head (or following) seas, its influence can be neglected. 

 

Regarding the most important time-varying restoring moment, it is expressed in terms 

of the displacement Δ and restoring arm GZ(θ(t), Ax(ξ(x,t))) of the vessel. The restoring 

arm is an instantaneous quantity which is difficult to estimate due to its nonlinear 

relationship with the instantaneous irregular wave surface ξ(x,t). The restoring moment 

can be obtained by integration of the external pressure over the instantaneous wetted 

surface. However, such direct integration requires a significant computation effort and 

the much simpler Grim effective wave concept is applied herein in order to approximate 

the complicated restoring term. The derivation and principle of the effective wave 

method for approximation of the restoring term are given below, while more details on 

the relevant theoretical background are given by Grim (1961).  

  

Assume that a right-hand ship fixed coordinate system oxyz is placed at amidships with 

the positive z axis oriented vertically upwards. For a ship sailing with constant speed V 

in random head seas, the encounter frequency in the ship fixed frame is then given as: 

( ) cose V       (2.24) 

where χ is the heading angle (for head seas χ=180°), κ(ω) is the wave number with κ(ω) 

=ω2/g for the deep water case. For head sea condition, the wave spectrum with respect 

to the encounter frequency is formulated as: 

( ) ( )
( )

1 (2 ) cos 1 (2 )
e

S S
S

g V g V

 



 


  
 

   
 (2.25) 

In general, the irregular long-crested wave surface can be described by the following 

linear superposition scheme with deterministic spectral amplitudes if the corresponding 

wave spectrum is given. 

,

1

( , ) cos( ) 2 ( )e n n n n

n

x t t x S     




     (2.26) 

where ωn is the discretized wave frequency and ωe,n is the corresponding encounter 

frequency, κn and εn are the corresponding wave number and random phase angle. 

Moreover, εn is a random variable and uniformly distributed over(0, 2𝜋)and Δω is a 

constant difference between successive frequencies. 

 

The main idea of the effective wave model is that the irregular wave surface ξ(x, t) can 

be approximated by an equivalent (or effective) regular wave ξeff(x, t). It is assumed that 
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the largest fluctuation of the restoring term occurs when the regular longitudinal wave 

have a length close to the ship length, L. Although this is not always true, it is a 

reasonable approximation for qualitative study. Therefore, an equivalent regular wave 

with a wave length which is equal to the length of the vessel represents the most serious 

case: 

2 2
( , ) ( )cos( ) ( )sin( )

2
( )cos( ( )), .

2 2

eff c s

eff

x t t x t x
L L

L L
t x t x

L

 
  


 

 

    

 (2.27) 

where L is the length of the effective wave (which is also equal to the ship length), 𝜉̅eff 

is the effective wave amplitude process. ξc(t) and ξs(t) are random amplitude processes 

and φ(t) is the random phase.                     

    

The equivalence between the irregular wave surface (2.26) and the effective regular 

wave (2.27) can then be implemented by minimizing the following square error 

function: 

2
2 2

2
( , ) ( ( , ) ( , ))

L

c s eff
L

x t x t dx    


   (2.28) 

By introducing the basic property that 
𝜕𝛿2(𝜉𝑐−𝜉𝑠)

𝜕𝜉𝑐
=

𝜕𝛿2(𝜉𝑐−𝜉𝑠)

𝜕𝜉𝑠
= 0 , the Gaussian 

random processes ξc(t) and ξs(t) can be determined and given as: 

,

1

,

1

( ) f ( )cos( ) 2 ( )

( ) f ( )cos( ) 2 ( )

c c n e n n n

n

s s n e n n n

n

t t S

t t S





     

     









  

  





 (2.29) 

in which the transfer functions fc(κn) and fs(κn) are 

2 2

2 2

2 sin
f ( )

2 sin
f ( )

c n

s n

R R

R

R

R















 (2.30) 

where R=(L/2) κn and κn is the wave number associated with the n-th wave component 

with physical frequency ωn. 

 

If we set the random phase φ(t)=0 (i.e., the random amplitude ξs(t)=0 and 𝜉̅eff =ξc(t)), 

equation (2.27) is the original Grim effective wave model which is widely used for 

ships with conventional hull forms. Otherwise, it is the improved model described in 

Bulian (2008) and Jensen (2007), which can provide good results in terms of restoring 

variations, also for unconventional vessels. As for the former model, the crest or trough 
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of the equivalent regular wave is always situated amidships, the wave is assumed to be 

a standing wave (unmovable) with random amplitude ξc(t). The latter model relates to 

a traveling wave and gives a much better approximation of the irregular wave surface. 

In this work, the simpler former model is applied since it works well for conventional 

ships and Figure 2.1 shows an example of this model, which includes the irregular wave 

surface ξ(x, t) and the corresponding equivalent (effective) wave approximation ξeff (x, 

t). 

 

 

Figure 2.1: Example of effective wave model with the actual irregular surface ξ(x,t) and 

the corresponding equivalent (effective) wave approximation ξeff (x,t)  

 

In the following, the random amplitude process ξc(t) is referred to as the effective wave 

amplitude process and the spectrum of effective wave amplitude process, also known 

as the effective wave spectrum, ( )
c

S  can be obtained as: 

2 2
2

2 2 2

4 sin ( )
( ) ( ) f ( ( )) ( ) ( )

( )c eff
c

R R
S S S S

R
  
     


    


 (2.31) 

and the corresponding encounter spectrum for the effective wave amplitude process for 

the head seas conditions is given as: 

2f ( ( )) ( )
( )

1 (2 )c

c

e

S
S

g V





  







 
 (2.32) 

With the simplifications from the effective wave model, the restoring arm can be 

rewritten as follows: 
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   


 

 

 

 (2.33) 

where GZ0 is the restoring arm in calm water, C0m(m=1, 3, 5…) is the related roll 

restoring coefficient for the nonlinear odd function GZ0 and δGZ is the variation of the 

restoring arm in waves. The restoring term GZ(θ(t), ξc(t)) is a binary function with 

respect to the effective wave amplitude process ξc(t) and the roll angle θ(t). By means 

of a standard hydrostatic software, this function is computed by applying the equivalent 

regular waves of the same length as the ship length but with different wave amplitudes 

amidships. Specifically, for an equivalent regular wave with a given value of the wave 

amplitude being located at amidships, the corresponding restoring arm for different 

heeling angles and for this wave amplitude can be calculated hydrostatically. In addition, 

the wave amplitude ξc >0 means a wave crest case and ξc <0 represents an equivalent 

wave with wave trough positioned amidships. Subsequently, the restoring arms for 

different values of the wave amplitude can be obtained and the restoring arm in equation 

(2.33) can be expressed by a set of couples of heeling angles and effective wave 

amplitudes. 

 

A nonlinear expression is applied in this work in order to fit the GZ surface. 

01,3,5 1
( ( ), ( )) ( ( )) ( )

N N l m

c m wml cm l
GZ t t C C t t

    
 

     (2.34) 

By combing the SDOF model (2.23) with the approximate restoring term (2.34), the 

complete expression can be obtained. Dividing it by (I44+A44), the final form of the 

differential equation is given as: 

3

44 44 01,3,5 1
( ) ( ) ( ) ( ( )) ( ) 0

N N l m

c m wml cm l
t b t b t c c t t

     
 

        (2.35) 

and the natural roll frequency can be determined as: 

0 01 44 44 01( )C I A c      (2.36) 

where 𝑏44 = 𝐵̂44/(𝐼44 + 𝐴44) and 𝑏44𝑐 = 𝐵44𝑐/(𝐼44 + 𝐴44). The coefficients C0m and 

Cwml (m=1,3,5…; l=1,2,3…) can be obtained from a least square fitting of GZ(θ(t),ξc(t)) 

and correspondingly c0m=ΔC0m/(I44+A44), (m=1,3,5…) and cwml = ΔCwml/(I44+A44). 

 

The state-space function of the SDOF model (2.35) is written as: 

1 2

2 44 2 44 2 2 0 3 11,3,5 1
( | | ( )) )

N N l m

q m wlmm l

dx x dt

dx b x b x x c c x x dt
 

 




       
 (2.37) 

where x1= θ(t), x2= ( )t and x3=ξc(t) denotes the driving process for the dynamic system.  
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3   Stochastic Theory 

 

This chapter describes the basic stochastic processes and the linear filter technique used 

to generate filtered white noise. The stochastic differential equations (SDE) used to 

describe the roll motion in random waves are developed by coupling the roll motion 

equation with the linear filter equation. The Fokker-Planck equation is derived to study 

the probabilistic evolution of the stochastic systems.    

 

3.1  Stochastic Process 

 

A stochastic process is a family of random variables describing the development in time 

or space of a stochastic phenomenon. In this Section, the concepts of Markov process, 

white noise process and Wiener process are introduced in order to build the stochastic 

dynamic systems for describing the roll motion in random seas. 

 

3.1.1 Markov process  

 

A stochastic process X(t) is said to be a Markov process if it satisfies the following 

conditional probability: 

1 1 2 2 1 1 1 1( , , ; , ; ; , ) ( , , )n n n n n n n n n nF x t x t x t x t F x t x t       (3.1) 

where F denotes the conditional cumulative distribution function (CDF), xn represent 

the state value at time tn and t1< t2 <…<tn-1 < tn. 

 

If X(t) is a time-continuous process, the relationship in equation (3.1) is equivalent to     

1 1 2 2 1 1 1 1( , , ; , ; ; , ) ( , , )n n n n n n n n n np x t x t x t x t p x t x t       (3.2) 

where p represents the conditional probability density function (PDF).  

 

From equations (3.1) and (3.2), it is shown that the conditional probability of the 

random process at time tn depends only on the immediate past value at time tn-1 and it 

is independent of the history of the process earlier than tn-1. A Markov process with 

continuous state, such as the process described by equation (3.2), is called as a diffusion 

process, and a Markov process with discrete states is referred to as the Markov chain.  

 

By applying equation (3.2), the joint density function can be written as: 
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1 1 1 1 1 1 1 1
2

( , ; , ; ; , ) ( , ) ( , , ), 2
n

n n n n i i i i
i

p x t x t x t p x t p x t x t i   


   (3.3) 

in which, the conditional PDF, p(xi, ti|xi-1, ti-1) is referred to as the transition probability 

density (TPD). The process is called homogeneous Markov process, if the TPD is only 

depend on the time interval Δt= ti -ti-1, and independent of time instants ti and ti-1, i.e. 

1 1 1( , , ) ( ; , )i i i i i ip x t x t p t x x     (3.4) 

 

3.1.2 White noise process  

 

The Markov model is only valid for the system excited by white noise or filtered white 

noise. In this thesis, the white noise process always represents Gaussian white noise. A 

stationary stochastic process X(t) is called as the Gaussian white noise if this process is 

governed by a (double-sided) spectrum with a constant spectral density: 

2

( )
2

S





  (3.5) 

where the constant σ > 0 is the noise level and X(t) is a standard Gaussian white noise 

when σ =1.0 and denoted as N(t). The constant spectral density implies that the energy 

of the process is uniformly distributed over the whole frequency region. 

 

The autocorrelation function of the white noise process is given as: 

2( ) ( )exp( ) ( )R S i d      



   (3.6) 

where δ(∙) is the Dirac delta function and R(τ)=0 for all τ ≠ 0 which means independence 

for the values of the stochastic process at two distinct time instants, i.e., N(s) is 

independent of N(t) if t ≠ s.   

 

3.1.3 Wiener process  

 

A stochastic process W(t) is said to be a Wiener process (or Brownian motion), if the 

following properties are satisfied: 

 W(t) is a continuous process with independent increments. 

 The distribution of increment W(t+dt)-W(t) is Gaussian. 

 W(0)=0. 

 The increment dW(t)=W(t+dt)-W(t) and E{W(t+dt)-W(t)} = 0, E{dW(t)dW(s)}= 0 for 

t ≠ s and E{dW(t)2}= dt. 

in which, dt represents the time increment and E{∙} denotes the expectation. Since the 

Wiener process has independent increments, it is a Markov process. In addition, from 
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conditions 2 and 4, it is found that the increment of the Wiener process satisfies the 

following condition: 

( ) ( )dW t N t dt  (3.7) 

i.e. formally, a Gaussian white noise is the derivate of a Wiener process. 

 

The Wiener process will be applied in the linear filter technique used to generate filtered 

white noise and then the dynamic systems (2. 19) and (2. 37) will be extended to 

Markov systems.  

 

3.2  Stochastic Differential Equation (SDE) 

 

3.2.1 Linear filter technique  

 

For the dynamic systems (2.19) and (2.37), the driving processes m(t) and ξc(t) are 

assumed to be stationary Gaussian processes and governed by specific spectra Smm(ω) 

and ( )
c

S  , respectively. Since the Markov model is valid for the system driven by 

white noise or filtered white noise, the linear filter technique, also known as the shaping 

filter technique, is applied in order to generate filtered white noise which complies with 

the required spectrum. 

 

Spanos (1983) was the pioneer in introducing the filter algorithms to approximate the 

wave elevation and wave kinematics. Due to its simplicity and practicality, the filter 

techniques were widely used to model the wave loads and evaluate the response of 

stochastic dynamic systems in the field of ocean engineering (Francescutto and Naito, 

2004; Su, 2012; Thampi and Niedzwecki, 1992). In general, the linear filter technique 

is applicable only for stationary stochastic process, therefore the driving process m(t) 

and ξc(t) can be adequately approximated by a suitable filter.  

 

Dostal et al. (2012) proposed a second-order linear filter and a fourth-order linear filter 

to model the narrow-banded target spectrum. In this thesis, these two linear filters are 

used to approximate the random driving process in the dynamic systems (2.19) and 

(2.37). The second-order linear filter is given as: 

3 4 3

4 3

( )dx x x dt dW

dx x dt

 



  


 
 (3.8) 

where x3 and x4 are the state variables in the filter equation with x3 representing the 

filter output, i.e. the driving process. dW(t)=W(t+dt)-W(t) is the increment of a Wiener 

process with E{dW(t)}=0, E{dW(t)dW(s)} = 0 for t ≠ s and E{dW(t)2}= dt. Furthermore 

α, β, γ are the parameters of the second-order linear filter. The spectrum generated by 

the differential equation (3.8) is given as: 
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2 2

2 2 2 2

1
( )

2 ( ) ( )
ndS

 


   


 
 (3.9) 

The fourth-order linear filter, which represents a more accurate approximation, is given 

by the following differential equation: 

5 6 1 5

6 7 2 5 1

7 8 3 5

8 4 5

( )

( )

( )

dx x x dt

dx x x dt dW

dx x x dt

dx x dt



 





 


  


 
  

 (3.10) 

where x5, x6 , x7 and x8 are variables introduced for the state-space representation and 

x5 represents the filter output. The spectrum generated by equation (3.10) will have the 

following form. 

2 4

1
4 2 2 2 2 2 2

1 1 2 2

1
( )

2 [( ) ( ) ][( ) ( ) ]
thS

 


        


   
 (3.11) 

in which, α1, α2, β1, β2 and γ1 are the parameters in the fourth-order linear filter and the 

parameters λ1, λ2, λ3, and λ4 in equation (11) can be determined by the following 

relationship: λ1=α1+α2, λ2=β1+β2+α1α2, λ3=α1β2 +α2β1, λ4= β1β2. 

 

 
Figure 3.1: Target spectrum and the corresponding second-order filtered spectrum 

 

The parameters α, β, γ in the second-order filter and α1, α2, β1, β2, γ1 in the fourth-order 

filter are determined by a least-square algorithm which is utilized for fitting of the target 

spectrum. The bandwidth and the peak frequency of the filtered spectra can be adjusted 

by changing the values of these parameters. It is worth emphasizing that the filtered 

spectra (3.9) and (3.10) are double-sided, while the wave spectrum and the wave 

excitation spectrum are physically single-sided. This difference must be considered in 

the practical simulation. Figures 3.1 and 3.2 shows two examples of the filtered spectra 



Chapter 3: Stochastic Theory   25  

 

generated by equation (3.9) and equation (3.11), respectively. 

 

 

Figure 3.2: Target spectrum and the corresponding fourth-order filtered spectrum 

 

3.2.2 Coupled dynamic systems 

 

In this part, the dynamic system (2.19) is taken as the example for presenting the 

extension of the dynamic system. By combing the SDOF model (2.19) with the linear 

filters (3.8) and (3.10), the dynamic system will be extended into the following four-

dimensional (4D) system described as  

1 2

3

2 44 2 44 2 2 1 1 3 1 3

3 4 3

4 3

( | | )

( )

q

dx x dt

dx b x b x x c x c x x dt

dx x x dt dW

dx x dt

 






     


  
  

 (3.12) 

and the the six-dimensional (6D) system is written as: 

1 2

3

2 44 2 44 2 2 1 1 3 1 5

5 6 1 5

6 7 2 5 1

7 8 3 5

8 4 5

( | | )

( )

( )

( )

q

dx x dt

dx b x b x x c x c x x dt

dx x x dt

dx x x dt dW

dx x x dt

dx x dt



 








     
  


  
  


 

 (3.13) 

The coupled dynamic systems (3.12) and (3.13) can be regarded as Markov systems 

and then expressed as the following Ito stochastic differential equation (SDE): 

( , ) ( ) ( )d t dt t d t x a x b W  (3.14) 

where x(t) is a state-space vector process (e.g. x(t) = (x1(t), x2(t), x3(t), x4(t))
T for the 4D 
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dynamic system), the vector a(x, t) represents the drift term and b(t)dW(t) is the 

diffusive term and dW(t) = W(t+dt)-W(t) represents a vector of increments of 

independent standard Wiener processes. 

 

3.2.3 Solution to the SDE 

The solution of a SDE is ambiguous, and basically, the strong solution and the weak 

solution concepts are used to define the solution from a mathematical view. Taking the 

Markov process x(t) in equation (3.14) as an example, the first definition reflects the 

interpretation that the process x(t) is determined by the governing equation and the 

exogenous input of the initial condition x0 at time t0 in combination with the path of the 

Wiener process W(t) which is given in advance. 

 

The other way of solving the SDE is to find the (conditional) response probability 

density function, p(x, t| x0, t0), for the process x(t) if only the functions of a(x, t) and 

b(t) are given. From a modelling point of view, the weak solution concept is more 

natural, since it does not specify the Wiener process W(t) beforehand. More specifically, 

the first interpretation can be considered as a deterministic interpretation (i.e. it deals 

with a generic single realization of the stochastic process), on the other hand, the second 

interpretation is based on the probabilistic properties of the process (i.e. the whole 

ensemble domain is considered).   

 

For the dynamic systems studied in this thesis, the weak solution concept is applied. 

The response PDF, p(x, t| x0, t0) will converge by increasing the time t to a stationary 

PDF, which is independent on the initial condition x0. Therefore, the response PDF can 

be written as p(x, t) and the influence from initial conditions can be neglected. 

 

3.3  Fokker-Planck Equation 

 

It is well known that Fokker-Planck equations describe the evolution of stochastic 

systems and the probabilistic properties of the Markov process x(t) is governed by the 

corresponding Fokker-Planck equation. In this Section, the Fokker-Planck equation for 

the process x(t) is derived and then the response probability density function of the 

dynamic system can be obtained by solving the Fokker-Planck equation. 

 

The PDF of the process x at time t, p(x,t), can be obtained by the basic equation, i.e. the 

well-known Chapman-Kolmogorov equation: 

( , ) ( , | , ) ( , )p t p t t p t d     x x x x x  (3.15) 

where x′ and p(x′, t′) represent the process and PDF at a previous time t′. 
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For the time interval Δt = t - t′, the characteristic function for the random increment x-

x′ is introduced: 

 ( ; ) exp( ( )) exp( ( )) ( , , )M u E iu iu p t t d        x x x x x x x x  (3.16) 

with the inverse function given as: 

1
( , , ) exp( ( )) ( ; )

2
p t t iu M u du


      x x x x x  (3.17) 

Substituting equation (3.17) into equation (3.15), the following expression can be 

obtained: 

1
( , ) exp( ( )) ( ; ) ( , )

2
p t iu M u p t dud


         x x x x x x  (3.18) 

According to the property of the characteristic function M(u; x′), it can be expressed as: 

1

( )
( ; ) 1 ( )

!

( ) ( )

j

j

j

j

j

iu
M u

j

E









  

    

x x

x x x

 (3.19) 

where μj represents the j-th moment of the increment x-x′. Therefore, equation (3.18) is 

transformed as: 

0

1 1
( , ) exp( ( )) ( ) ( ) ( , )

! 2

j

j

j

p t iu iu du p t d
j








        x x x x x x  (3.20) 

Because      

1 1
exp( ( ))( ) ( ) exp( ( ))

2 2

( ) ( )

j j

j

iu iu du iu du
 




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


  



 x x x x
x

x x
x

 (3.21) 

Since ∫ 𝛿(𝐱 − 𝐱′)𝜇𝑗(𝐱′)𝑑𝐱′ = 𝜇𝑗(𝐱)and we can find that 

0

1
( , ) ( , ) ( ) ( ) ( , )

!

j

j

j

p t p t p t
j







       

x x x x
x

 (3.22) 

Divding equation (3.22) by Δt and passing to the limit 0t  , the following expression 

can be obtained: 

0

( , ) 1
( ) ( ) ( , )

!

j

j

j

p t
K p t

t j





 
     


x

x x
x

 (3.23) 

in which   
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0

( )
( ) lim , 1,2, .

j

j
t

K j
t



 
 



x
x  (3.24) 

where Kj(x) represents the intensity coefficient and equation (3.24) is called the 

Kramers-Moyal expansion (Risken, 1989). 

 

Assume that the Markov process x(t) is continuous and the Kramers-Moyal expansion 

stops with the higher-order intensity K3, K4… equals to zero, the distribution p(x, t) of 

the diffusion process x(t) follows the Fokker-Planck equation which is written as: 

   
2

1 22

( , ) 1
( ) ( , ) ( ) ( , )

2

p t
K p t K p t

t

  
  

  

x
x x x x

x x
 (3.25) 

Given the initial distribution p(x, t0| x0, t0), it can be shown that the resulting probability 

density is just the TPD, p(x, t| x0, t0). Therefore, the transition probability can be found 

as the solution of the equation: 

2
0 0

1 0 0 2 0 02

( , , ) 1
( ) ( , , ) ( ) ( , , )

2

p t t
K p t t K p t t

t

  
           

x x
x x x x x x

x x
 (3.26) 

Furthermore, there is a close connection between the Fokker-Planck equation and the 

SDE equation, for one-dimensional case, the Fokker-Planck equation is given as: 

2
0 0

1 0 0 2 0 02

2
2

0 0 0 02

( , , ) 1
( ) ( , , ) ( ) ( , , )

2

1
( , ) ( , , ) ( ) ( , , )
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p x t x t
K x p x t x t K x p x t x t

t x x

a x t p x t x t b t p x t x t
x x
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           

 
         

 (3.27) 

in which a(x, t) represents the drift coefficient and b2(t) is the diffusion coefficient for 

the one-dimensional SDE, dx= a(x, t)dt + b(t)dW(t). 

 

For n-dimensional SDE (3.14), n > 1, the Fokker-Planck equation is written as: 
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a x x x

b b x x

 (3.28) 

Based on the derivation above, the Fokker-Planck equations for the one-dimensional 

and multidimensional SDE (14) are obtained. Furthermore, the Fokker-Planck equation 

can also be derived by other ways mentioned in Ochi (1990) and the methodologies for 

solving the Fokker-Planck equation will be described in Chapter 4.   
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4 Methodology 

 

In this chapter, two categories of methodology are introduced in order to calculate and 

evaluate the response statistics of the roll motion in random seas. The first is the 

Markov-based 4D path integration method used for calculating the stochastic roll 

response for a vessel in random beam seas, and the principle as well as the numerical 

implementation for this state-of-the-art technique are presented in Sections 4.1 and 4.2, 

respectively. The straightforward Monte Carlo simulation, i.e. the second methodology 

which is based on the numerical calculation of the differential equation and direct 

counting work is introduced to verify the results calculated by the efficient 4D PI 

method. Furthermore, an efficient extrapolation scheme is introduced to the MCS 

technique and the enhanced (efficient) MCS method is able to provide reasonable and 

accurate estimation of the extreme response with a dramatic reduction of computation 

time.                

 

4.1  Path Integration Method 

 

The path integration (PI) method based on the Markov property of the dynamic system, 

is an efficient approximation for solving the FP equation. The main advantage of the 

Markov dynamic system and the PI method is that a host of useful and accurate response 

statistics can be obtained within one calculation. Wehner and Wolfer (1983) were the 

first to apply the numerical PI method to solve nonlinear FP equations and then various 

PI procedures, e.g. Naess and Moe (2000), Pirrotta and Santoro (2011), Lin and Yim 

(1995), Wang (2014), etc., have been developed and applied to address certain problems 

in the area of engineering. In the field of ocean engineering, Naess and Johnsen (1993) 

developed a three-dimensional (3D) PI procedure to estimate the response statistics of 

moored offshore structures. This topic as well as the 3D PI approach have were 

extended in Karlsen’s (2006) work in order to calculate the response statistics of 

nonlinear, compliant offshore structures. In this dissertation, the PI algorithm is 

extended into four-dimensional (4D) in order to study the stochastic roll response in 

random beam seas. The main principle as well as the numerical implementation of the 

PI method will be introduced and described in Sections 4.1 and 4.2, respectively.   

 

4.1.1 Time discretization of the SDE  

 

In order to apply the numerical PI method, the SDE should be discretized with respect 

to time t. In this Section, the 4D dynamic system (3.12) is selected as the example case. 

The corresponding continuous SDE, i.e. equation (3.14), can be discretized as: 
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( , ) ( ) ( )t t t t        x x a x b W  (4.1) 

in which x = x(t), x′ = x(t′) and Δt = t- t′ is the finite positive time increment. ( , )t a x

and ( )tb are the transition functions of the discretization equation for the deterministic 

and stochastic parts, respectively. The time sequence 0 0
( )

k
t k t




 x is a Markov chain 

with initial time t0 and it can approximate the time-continuous Markov process x 

described in the SDE (3.14) when the time decrement Δt is sufficient small. Since W(t) 

is a Wiener process, the independent increment ΔW(t′)= W(t)-W(t′) is a Gaussian 

variable for every t′.  

 

There are several ways to choose the transition functions in equation (4.1), the simplest 

discretization scheme is the Euler-Maruyama approximation, which is expressed as.  

( , ) ( ) ( )t t t t        x x a x b W  (4.2) 

However, if we consider only the deterministic part of equation (4.2), the Euler-

Maruyama approximation reduces to the Euler approximation: x = x′+a(x′, t′)Δt with 

the accuracy only to the order of O(Δt2). Experiments have shown that, for Markov 

systems, the accuracy associated with approximating the deterministic terms is the most 

important (Mo, 2008). Therefore, a fourth-order Runge-Kutta scheme with the accuracy 

to the order of O(Δt5) should be implemented in order to improve the accuracy of the 

discretization process in following the time evolution of the deterministic part of 

equation (3.14). Then equation (4.2) can be replace by the following fourth-order 

Runge-Kutta-Maruyama (RKM) approximation: 

( , , ) ( ) ( )t t t t        x x r x b W  (4.3) 

where the vector r(x′, t′, Δt) is the explicit fourth-order Runge-Kutta (RK4) 

approximation. Generally, the RK4 scheme is given as: 
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( , ),
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( , ),

( , , ) ( 2 2 ).
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t t

t t

t

t

t

t t t

t t

 

 

    

 

   

   

     

      

x x r x

k a x

k a x k

k a x k

k a x k

r x k k k k

 (4.4) 

 

4.1.2 Principle of the PI method  

 

Unlike the direct numerical techniques, such as the finite element method and the finite 

difference method, aiming to calculate the response statistics by solving the FP equation 

directly, the PI method captures the probabilistic evolution of the process x(t) by taking 
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advantage of the Markov property described in Section 3.1. In principle, the PI method 

is an approximation method and the evolution of the response statistics is obtained by 

a step-by-step solution technique based on short time steps. 

 

If an initial PDF, p(x(t0), t0) is given, the distribution at time t1= t0 +Δt can be obtained 

by the Chapman-Kolmogorov equation:  

4

(1) (1) (0) (0) (0)

1 1 0 0( , ) ( , | , ) ( , )
R

p t p t t p t d x x x x x  (4.5) 

where x(0) = x(t0), x
(1) = x(t1). 

 

Similarly, for the distribution at time t2= t1 +Δt, it is given as: 

4

(2) (2) (1) (1) (1)

2 2 1 1( , ) ( , | , ) ( , )
R

p t p t t p t d x x x x x  (4.6) 

and inserting equation (4.6) into equation (4.5), it leads to:   

4 4

(2) (2) (1) (1) (0) (0) (0) (1)

2 2 1 1 0 0( , ) ( , | , ) ( , | , ) ( , )
R R

p t p t t p t t p t d d  x x x x x x x x  (4.7) 

Therefore, the time evolution of the PDF of x(t) can be determined by the iterative 

algorithm (4.8) when the initial PDF is given, 

4 4

( ) ( 1) (0) (0) ( 1)

1 0

1

( , ) ( , | , ) ( , )
n

k k k

k k
R R

k

p t p t t p t d d 





  x x x x x x  (4.8) 

where x = x(k), t = tk = t0 +(k-1)Δt and dx=∏ 𝑥4
𝑖=1 i for the 4D case.   

  

For the one time-step TPD, also known as the short-time conditional PDF, p(x(k), tk | x
(k-

1), tk-1) is only dependent on the time increment Δt, i.e. the stochastic process x(t) for 

the dynamic system (3.14) is a homogeneous Markov process. The one time-step TPD, 

p(x, t | x′, t′), is also governed by the Fokker-Planck equation, which is given as: 

4

1

24 4

1 1

( , , )
( , ) ( , , )

1
( ( ) ( )) ( , , )

2

i

i i

T

ij

i j i j

p t t
a t p t t

t x

t t p t t
x x



 

  
  

 


  

 





x x
x x x

b b x x

 (4.9) 

The one time-step TPD can be approximated by the following degenerate Gaussian 

distribution with the accuracy to the order of O(Δt2) (Risken, 1989):  

1 1 1 2 2 2

3 3 4 4 4

( , | , ) ( ( , , )) ( ( , , ))

( , | , ) ( ( , , ))

p t t x x r t t x x r t t

p x t x t x x r t t

 



              

        

x x x x

x
 (4.10) 

and 
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     

  

x
 (4.11) 

in which ri(x′, t′) Δt , i=1,2,3,4 are Runge-Kutta increments for the state space variables. 

 

For the one time-step integration (3.15) with the one time-step TPD given by equations 

(4.9) and (4.10), it can be expressed as: 

4

4 1 1 1 2 2 2

4 4 4 3 3

( , ) ( , | , ) ( , )

( ( , , )) ( ( , , ))

( ( , , )) ( , | , ) ( , )

R

R

p t p t t p t d

x x r t t x x r t t

x x r t t p x t x t p t d

 



    

            

           





x x x x x

x x

x x x

 (4.12) 

Due to the property of the delta function, δ(∙), equation (4.12) will reduce to the 

following one-dimensional integral: 

1 3 3 3( , ) ( , | , ) ( , )
R

p t c p x t x t p t dx     x x  (4.13) 

where c is a constant due to the integration of delta function and the PDF (4.13) follows 

the normalization function:  

4
( , ) 1

R
p t d  x x  (4.14) 

However, numerical calculation for equation (4.13) is difficult since the range of 

integration is difficult or even impossible to find. Therefore, a substitution g(x′) 

=x′+ri(x′,t′)Δt is introduced in order to simplify the integral and then the one-dimensional 

integral will be transformed as (Karlsen, 2006):    

11

1

3 3 1 2 3 4 3( , ) ( , | , ) ( ( , , , ), )
gR

p t J p x t x t p g x x x x t dx

  x  (4.15) 

where g-1( 1 2 3 4, , ,x x x x ) is the unique vector x′=( 1 2 3 4, , ,x x x x    ) and 1g
J  is a Jacobi 

determinant. 1g
J  is defined as: 
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 
 
 
 
 
 
  

 (4.16) 

and 3 3( , | , )p x t x t is given as  
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 (4.17) 

 

Equation (4.8) describes the mathematical principle of the PI approach and equations 

(4.13)-(4.17) provide the basic methods for the numerical integration. Moreover, 

assume that the dynamic system is stationary, which will be mentioned in Section 4.4, 

the stationary distribution f(x) for the random process x will be given as: 

( )( ) lim ( , ) lim ( , )k

k
t k

f p t p t
 

 x x x  (4.18) 

 

4.2  Numerical Implementation 

 

In this Section, the numerical implementation of the 4D PI method, including the 

computation grid, interpolation methods and the integration techniques will be 

introduced. 

 

4.2.1 Computation domain and grid  

 

Basically, the numerical methods aiming to find the probabilistic distribution of the 

SDE are based on some discretization with respect to time and space, i.e. cell-to-cell 

mapping. For such cell mapping methods, a reasonable computation domain and the 

corresponding computation grid have to be determined at first (Pirrotta and Santoro, 

2011). The computation domain is selected to be symmetrical in all dimensions and the 

size of the computation region in each dimension is identified by running a MCS with 

a low number of samples. For each dimension, the computation region is selected as: 

, 1,2,3,4i i i i ic x c i      (4.19) 

in which σi is the standard deviation for i-th dimension estimated by the above simple 

MCS and the parameter ci is a factor used to adjust the size of computation region. 

 

Then, dividing the computation region (4.19) in a number of ni -1 intervals uniformly. 

ni denotes the grid number (or grid points) for each dimension and the computation cost 

as well as the storage needed for computation depend heavily on the dimensionality of 

the system and the grid number in each dimension. 

 

For the numerical PI technique, the initial distribution p(x(0), t0) used for the iterative 

algorithm (4.8) should be selected based on the computation region and grid in each 

dimension. It is chosen as a 4D Gaussian PDF with zero mean and variances evaluated 

by the above straightforward MCS. 
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and the value of j-th grid point in i-th dimension, xij is given as: 

( 1)

2

( 1)

ij i i i

i i
i

i

x c j dx

c
dx

n





   




 (4.21) 

Since the simple MCS ensures the initial 4D Gaussian PDF include all the information 

corresponding to the selected parameters in the dynamic system (3.12) (Yurchenko et 

al., 2013), the initial distribution expressed by equations (4.20) and (4.21) could 

significantly improve the computational efficiency, even though the final stationary 

distribution f(x) is independent of the initial distribution p(x(0), t0). 

 

4.2.2 Back-stepping scheme  

 

For the numerical integration of equation (4.15), the substitution g(x′)=x′+ri(x′,t′)Δt 

makes another challenge since we have to find x′ and calculate p(g-1( 1 2 3 4, , ,x x x x ), t). 

However, the value of the distribution p is known only at the grid points, but x′ = g-1 

( 1 2 3 4, , ,x x x x ) is generally not in the grid, for which we store function values for the 

distribution p. A possible way is to use the values we already have for the distribution 

p at the former time t′ at the grid points to interpolate the values at x′, i.e. g-1 

( 1 2 3 4, , ,x x x x ). In order to find x′ at the former time-step, a back-stepping fourth-order 

Runge-Kutta scheme is introduced 
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 (4.22) 

in which 1 2 3 4( , , , )x x x xx .  

 

Since the back-stepping procedure (4.22) is accurate to the order of O(Δt5), it can 

provide satisfactory values of x′ at time t′, i.e., the corresponding backward-mapped 

points at time t′ for the grid points at time t.  

 

4.2.3 Interpolation methods  

 



Chapter 4: Methodology                35 

 

In the current work, B-splines are applied in order to find the distribution p at the 

backward-mapped points, i.e. x′ = g-1 ( x ) and some basic B-spline interpolation 

schemes on a generalized grid are herein introduced. 

 

The knots of the B-splines are assumed to be at the grid points, i.e. the knot sequence 

has constant increments due to the uniform grid described in equation (4.21). In one 

dimension, for the knot sequence of y1 < y2 <…< yl <…<ym, when the values of the 

function h(x) at the knot points are given, the interpolation can be performed as follows: 

,

1

( ) ( )
K

k k j l l

k

B y h y


   (4.23) 

in which m denotes the number of knot points (or the number of grid points). Γk, k = 1, 

2, …, K are spline coefficients or control points, Bk,j is the basis function and j represents 

the order of the B-spline. 

 

The linear system (4.23) can be written in a matrix form,    

SΓ v  (4.24) 

or 

1, 1 2, 1 , 1 11

1, 2 2, 2 , 2 22

1, 2, ,
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j j K j

j j K j

j m j m K j m mK

B y B y B y h y

B y B y B y h y

B y B y B y h y

    
    

     
    
    

      

 (4.25) 

where the vector v contains the values of the function h(y) at the knot points y1, y2 …ym, 

the vector Γ contains the spline coefficients and the matrix S is called collocation matrix 

defined by Slk = Bk,j(yl). 

 

The spline coefficients can be obtained by solving equation (4.24) and then the 

interpolating approximate function is given as: 

,

1

( ) ( )
K

k k j

k

h y B y


   (4.26) 

and the function values for the variable y which is not at the knot points (or grid points) 

can be approximated by this expression. 

 

When the knots of the B-splines are assumed to be at the grid points, it leads to cardinal 

splines, where all the basis functions Bk,j have the same shape and are just translated 

along the axis. A basis function can be expressed analytically in some reference domain, 

and then scaled and translated to give the complete basis of the cardinal splines (Mo, 
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2008). Cubic B-spline is the most widely used in spline interpolation, it is composed of 

four pieces which are given as follows in the reference domain[0,1] : 

 

31
1 6

3 21 1 1 1
2 2 2 2 6

3 21 2
3 2 3

3 21 1 1 1
4 6 2 2 6

, 0,1

p y

p y y y

p y y

p y y y y



    

  

     

 (4.27) 

Similarly, the parabolic B-spline with uniform knot points is constituted by three pieces 

in the reference domain 1 1
2 2

[ , ] , which are given as: 

21 1 1
1 2 2 8

2 3
2 4

21 1 1 1 1
3 2 2 8 2 2

, [ , ]

p y y

p y

p y y y
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  
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 (4.28) 

For the linear uniform B-spline, it has two pieces in the reference domain[0,1] , i.e 

1

2 1 , [0,1]

p y

p y y



  
 (4.29) 

It has been shown that the interpolation by using the linear B-spline is unable to provide 

good estimate for the PI calculation even if the grid resolution is extremely high (Skaug, 

2000). Cubic B-spline interpolation and parabolic B-spline interpolation works well in 

the PI calculations for a number of systems. Considering a cubic B-spline interpolation 

and that the function h in equation (4.23) is assumed to be zero outside the interpolated 

interval, the spline coefficients of equation (4.25) can be obtained by the following 

equation: 

AΓ v  (4.30) 

where the matrix A is given as (Mo, 2008): 

4 1 0 0 0

1 4 1 0 0

0 1 4 0 01

6

0 0 0 4 1

0 0 0 1 4

 
 
 
 

  
 
 
 
 

A  (4.31) 

Since the matrix A is simple and strictly diagonal-dominant, the LU factorization can 

be applied in order to solve the equation (4.30) quickly. Similarly, for the parabolic B-

spline, the corresponding matrix A has the following shape which is given as: 
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For multidimensional system, e.g. the 4D dynamic system (3.12), the interpolation 

should be based on the spline surface and the extension of splines from one dimension 

to multi-dimension has been described in De Boor et al. (1978). 

 

4.2.4 Numerical integration  

 

For the numerical integration of equation (4.15), it is build up by the product of the PDF, 

p(g-1( 1 2 3 4, , ,x x x x ), t), which can be obtained by numerical interpolation and the Gaussian 

distribution, 3 3( , | , ),p x t x t given in equation (4.17). It is known that, the most 

probability mass of the latter Gaussian distribution is centered on its mean value. 

Therefore, an integration region 3 3[ , ]x r x r  is chosen and r is a certain range beyond 

which the product value of the above two PDFs is assumed to be very small. In this 

work, the range r is selected to be 6 times the size of the standard deviation t  

(Karlsen, 2006). 

 

Subsequently, for a given integration region[𝑥3 − 𝑟, 𝑥3 + 𝑟 ], the Simpson’s rule (4.33) 

is applied in order to calculate the integration (4.15) 

1

3
3 3 3,
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p t F x dx F x
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
  x  (4.33) 

in which               

1

1

3 3 3( ) ( , | , ) ( ( ), )
g

F x J p x t x t p g t

   x  (4.34) 

where the parameter μ in the Simpson’s rule is given as: 

1, 0,

4, ( , 2) 1

2, ( , 2) 0

i N

mod i

mod i






 
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 (4.35) 

and the step length 3 3, 3 32 , ix r N x x r i x      .    

The numerical implementation of the PI method have been described above and the 

main steps for the numerical implementation is concluded and given in Figure 4.1 and 
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relevant explanation have been given in paper 1. 

 

Determine the initial 4D Guassian PDF 

and the computational grid   

Represent the 4D PDF as an interpolated 

spline space via parabolic B-spline

For each grid point, calculate the 

deterministic trajectorie backwards from 

t to t′ by the RK4 scheme   

Find the PDF values at the backward-

mapped points by using the spline 

surface

Calculate the new PDF at time t for each 

grid point by the integral equations 

(4.15) or (4.30)   

Check convergence until the 

descriptive critera is fulfilled

Post-processing of the results and 

computation of the response statistics   

 

Figure 4.1: Flowchart of the numerical implementation of the 4D PI method 

 

4.3  Mean Upcrossing Rate and Monte Carlo Simulation 

 

The mean upcrossing rate is a key parameter for estimation of the large and extreme 

response statistics as well as for evaluation of the associated reliability of marine 

structures (Naess and Moan, 2012). The calculation of the mean upcrossing rate of the 

roll angle process is usually based on the Rice formulation (4.36) and the joint PDF of 

the roll angle process and the roll velocity process, which can be obtained directly by 

the 4D PI technique. The mean upcrossing rate v+(ζ) is given as: 

0

( ) lim ( ; )

( ; ) ( , ; )

t
v v t

v t f t d


 

    

 








 
 (4.36) 
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where v+(ζ; t) denotes the expected number of upcrossing for the ζ-level per unit time 

at time instant t by the roll angle process θ(t). 

 

As mentioned in Section 4.2, the joint PDF of the random process x(t) can be obtained 

by the 4D PI technique. By integrating through the entire range of the third and fourth 

dimensions, the joint PDF of the roll angle process and the roll velocity process at time 

instant t, ( , ; )f t

  is determined. Due to the softening characteristic of the stiffness 

term, ship capsizing would be possible, but when the mean time to capsize is long 

enough, the dynamic system can be regarded as being highly reliable and the 

corresponding roll response reaches stationary conditions in an approximate sense 

(Roberts and Vasta, 2000). Therefore, the joint PDF can be represented by as a 

stationary joint PDF at a suitable reference point in time. 

 

Furthermore, the standard Monte Carlo simulation technique can also be applied to 

obtain the empirical values of the upcrossing rates. For the coupled dynamic systems, 

obtained by combing the SDOF model for the roll motion and the filter models, the 

fourth-order RKM method is applied in order to solve the corresponding SDE and then 

time series of the roll response are obtained. 

 

In practice, large amplitude roll motion or even ship capsizing may occur if the roll 

angle process exceeds the positive or negative angle of vanishing stability and then that 

particular realization is terminated since the subsequent roll angle process will exceed 

π/2 or - π/2 rapidly. A large number of realizations are required for the purpose of 

estimating the response statistics, especially for the high-level responses. The 

appropriate sample mean value of the upcrossing rate is given as: 
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where ( ; )i in T denotes the counted number of upcrossing of the level ζ during the time 

interval (0, Ti) for simulated time history No. i. Moreover, the practical simulation time 

Ti is not fixed for each realization, it is equal to the predetermined simulation time T if 

no capsizing occurs. Otherwise, it is the value of the termination time ti for each case 

where capsizing occurs. 

 

Moreover, the number of simulations, i.e. k, is selected according to the values of the 

upcrossing rates in the tail region and the length of the predetermined simulation time 

T. Usually, low upcrossing rates and short time periods T correspond to a large 

simulation number k. A fair approximation of the 95% confidence interval, CI0.95, for 

the value of the empirical upcrossing rate can be expressed as: 



Chapter 4: Methodology                40 

 

0.95

ˆ ˆ( ) ( )
ˆ ˆ( ) ( ) 1.96 , ( ) 1.96

s s
CI

k k

 
      

   
 

 (4.38) 

where the empirical standard deviation is given as: 
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4.4  Efficient Monte Carlo Simulation 

 

The conventional (or standard) MCS method is not very efficient for estimating the 

mean upcrossing rate with respect to the far tail region. The numerical calculation and 

the counting procedure in order to get ( ; )i in T in equation (4.37) require significant 

effort in connection with Monte Carlo simulation. Furthermore, the computation cost 

of the standard Monte Carlo simulation for calculating the response statistics with 

probability level lower than 10-7 is nearly formidable. In this Section, an efficient 

extrapolation scheme is introduced in order to provide a reasonable and accurate 

estimation of the extreme response with a dramatic reduction of the computation time. 

 

The efficient extrapolation approach for the purpose of extreme response prediction 

derives from the idea that for the marine structures being considered, the mean 

upcrossing rate as a function of level ζ is in general highly regular in a specific way in 

the tail region. In fact, for a large class of stochastic process, the mean upcrossing rate 

tail (e.g. ζ ≥ ζ0) behaves similarly to exp{-a(ζ-b)c}, where a > 0, b ≤ ζ0, and c > 0 are 

suitable constants. Therefore, as discussed in detail in Naess and Gaidai (2008), it may 

be assumed that the mean upcrossing rate is approximated as: 

0( ) ( )exp{ ( ) },cq a b           (4.40) 

where the function q(ζ) is slowly varying compared with the exponential function exp{-

a(ζ-b)c} in the tail region and the function q(ζ) can be replaced by a single constant q 

for large values of ζ. Equation (4.40) can be written as: 

0ln ln(( ( ) )) ln( ) ln ,q c b a          (4.41) 

in which, it is expected that an almost perfectly linear tail behavior will be obtained by 

plotting ln|ln((ν+(ζ)/q))| versus ln(ζ-b). 

 

In this Section, an optimized fitting scheme is introduced in order to find the optimal 

values of parameters a, b, c, q and these parameters can be determined by minimizing 

the following mean square error function: 
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where ˆ ( )jv 
, j =1, …, N denote a set of empirical mean upcrossing rates at different 

levels. ρj denotes a weight factor that puts more emphasis on the more reliable data 

points.   

 

The choice of weight factors is arbitrary to some extent. In this work, the weight factor 

ρj = (lnCI+(ζj)-lnCI-(ζj))-2 is used in combination with a Levenberg-Marquardt least 

squares optimization method (Gill et al., 1981), where CI+ and CI- are the bounds of the 

confidence interval determined by equation (4.38). Moreover, the Levenberg-

Marquardt method can be transformed into a more simplified and transparent two-

parameter optimization method. This is realized by considering the values of b and c in 

equation (4.42) are kept fixed and the optimization problem then reduces to a standard 

weighted linear regression problem. That is, with both b and c fixed, the optimal values 

of a and lnq are found by using closed form weighted linear regression formulas in 

terms of ρj, and xj=(ζj-b)c. The optimal values of a and q are given by the relations: 
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and  
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In order to calculate the final optimal set of parameters, the Levenberg-Marquardt 

method can now be applied to the function * *( ( , ), ( , ), , )F F q b c a b c b c to find the 

optimal values of b* and c*, and then the corresponding a* and q* can be calculated from 

equations (4.43) and (4.44). For estimation of a confidence interval for a predicted value 

of the upcrosing rate function provided by the optimal curve, the empirical confidence 

band is reanchored to the optimal curve. The weight factors ρj and the Levenberg-

Marquardt scheme mentioned above can also be applied to determine the optimal 

parameters for the confidence interval. The range of the fitted curves that stay within 

the reanchored confidence band will determine an optimized confidence interval of the 

predicted value.  

 

As a result of the efficient extrapolation, which is based on the assumption of regularity 

of mean upcrossing rate in the tail region, the empirical estimation of the upcrossing 

rate with respect to the far tail region can be achieved with sufficient accuracy for most 

practical prediction purposes with much less computational efforts than using the 

standard MCS method directly. 
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The efficient MCS method can be viewed as an important alternative of the PI method 

in order to evaluate the extreme response of the dynamic systems whose dimensions 

are greater than four. For the beam seas conditions, the SDOF model (2.11) is applied 

to describe the roll motion with the assumption that the influence of the other DOFs on 

the roll response can be neglected. When the assumption is invalid for some cases, the 

4D system (3.12) should be extended since more motion modes will be included and 

the PI method would be inapplicable due to curse of dimensionality problem. For these 

cases, the efficient MCS method could be possible to provide reliable estimation of the 

upcrossing rate in the tail region within acceptable computation cost. 

 

Furthermore, it should be noted that the efficient MCS method is based on the 

assumption that the response is a stationary process. It might not work very well for 

purely experiment results due to the discontinuous physical effects (Andersen and 

Jensen, 2014) since the assumptions for the stationary response as well as for the 

regularity of the mean upcrossing rate in the tail region will be less invalid. Moreover, 

for some commercial ships (such as the container carrier), a number of other damages 

will occur at large angles and the ship could probably start to fail before it reaches to 

the angle of vanishing stability. For such cases, the above assumptions could also not 

be guaranteed.           
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5 Numerical Results and Analysis 

In this chapter, the 4D PI approach is introduced to study the stochastic response of the 

nonlinear roll motion in random beam seas. In Section 5.1, the robustness of the 4D PI 

method is verified by comparing with the MCS method and the Gaussian distribution. 

The 4D dynamic system is proved to be an appropriate model used to study the 

stochastic roll response by relevant studies in Section 5.2 and 5.3. The influence of ship 

parameters and wind excitation on the stochastic roll response are investigated in 

Sections 5.4 and 5.5, respectively. The reliability evaluation associated with high 

response levels is studied and discussed in Section 5.6. Subsequently, in Section 5.7 the 

PI method is combined with metocean application in order to study the long-term 

extreme response. Furthermore, for the case of stochastic roll motion in random head 

seas, the linear filter technique and the efficient MCS method are introduced in order 

to predict the extreme response and relevant description is given in Section 5.8.            

 

5.1  Stochastic roll response in random beam seas 

 

In this Section, the stochastic response of the roll motion in random beam seas is studied. 

An ocean surveillance ship is selected as the ship model, the GZ curve for this model 

and the relevant parameters for the vessel are given in paper 1. 

 

The random stationary sea state is specified by the modified Pierson-Moskowitz 

spectrum, which is widely used for the fully developed sea states. The wave spectrum 

is given as: 
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in which Hs denotes the significant wave height, ωp is the peak frequency at which the 

wave spectrum Sξξ(ω) has its maximum value and Tp is the corresponding peak period. 

 

The sea state with Hs=4.0 m and Tp=11.0 s is selected for the subsequent study. The 

selected wave spectrum and the roll excitation moment per unit wave amplitude | 

Froll(ω)| are presented in paper 1 (Figure 4). Subsequently, the roll excitation moment 

spectrum SMM(ω) and the relative roll excitation moment spectrum Smm(ω) can be 

obtained by equations (2.10) and (2.18), respectively. 

 

After determining the target spectrum Smm(ω), which is shown in Figure 5.1, the 

parameters α, β, γ in the second-order linear filter (3.8) should be determined in order 

to establish the 4D dynamic system (3.12). In this regard, the least-square scheme is 
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available as a part of the curve fitting algorithms in MATLAB and the fitting result is 

shown in Figure 5.1. It can be readily seen that the filtered spectrum is reasonable in 

terms of bandwidth, peak frequency and peak value. 

 

In particular, for the roll motion cases, the transfer function between the roll excitation 

moment and the roll response in the SDOF model (2.12) is narrow banded and peaked 

near the natural roll frequency ω0 due to the light roll damping. Therefore, in Figure 5.1, 

for the selected ship model, the obvious discrepancies between the spectrum generated 

by the second-order linear filter and the target spectrum Smm(ω) in the low-frequency 

and high-frequency regions would not impact the subsequent roll response to a 

significant extent. However, a sight discrepancy between the above two spectra in the 

critical frequency region near ω0 can be observed. The fitting accuracy in the critical 

region is crucial for evaluating the roll response since the latter is sensitive to the 

variation of the external excitation in this frequency region. Therefore, a constant, c, 

should be introduced as a correction factor for the filtered spectrum in order to decrease 

the discrepancy in the critical region. Then, the filtered spectrum (3.9) is changed into: 
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Figure 5.1: Relative roll excitation moment spectrum Smm(ω), the corresponding filtered 

spectrum S2nd(ω) and the corrected filtered spectrum (part) for the sea state with Hs=4.0 

m and Tp=11.0 s, and spectrum of the equivalent Gaussian white noise, S0     

 

In this work, for the selected sea state and ship model, the correction factor c is taken 

to be 1.07 by considering the mean difference between the two spectral densities in the 

critical region. In addition, the corrected (or modified) spectrum in the critical region is 
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also presented in Figure 5.1. The 4D dynamic system (3.12) is established after the 

work of spectrum fitting, then the joint probability density function (PDF) of the roll 

angle process and the roll velocity process can be obtained directly by the 4D PI method. 

The joint PDF for the selected sea state calculated by the 4D PI method is presented in 

Figure 5.2. 

 

 
Figure 5.2: Joint PDF of the roll response obtained by the 4D PI method for the sea 

state with Hs=4.0 m and Tp=11.0 s. 

 

 
Figure 5.3: Marginal PDF of the roll angle process for the sea state with Hs=4.0 m and 

Tp=11.0 s. 
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Figure 5.4: Marginal PDF of the roll velocity process for the sea state with Hs=4.0 m 

and Tp=11.0 s. 

 

 
Figure 5.5: Marginal PDF of relative wave excitation process for the sea state with 

Hs=4.0 m and Tp=11.0 s. 

 

The marginal PDF of the roll angle process and the marginal PDF of the roll velocity 

process obtained by the 4D PI method and the corresponding empirical estimations 

evaluated by Monte Carlo simulation are plotted in Figures 5.3 and 5.4, respectively. In 

addition, the marginal PDF of the relative roll excitation process m(t), i.e., x3 in the 

dynamic system equation (3.12), obtained by the 4D PI method is shown in Figure 5.5. 
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The Gaussian distributions of the marginal PDFs in Figures 5.3-5.5 are obtained by 

using the variances evaluated by the straightforward Monte Carlo simulation. Actually, 

they are the marginal PDFs of the 4D Gaussian PDF, p(x(0), t0) in equation (4.20), which 

serves as the initial PDF in the 4D PI procedure. It is shown that the Gaussian 

distributions in Figures 5.3 and 5.4 give reasonable approximations of the statistics for 

the small amplitude motions. However, for the high-level responses, the distributions 

of the roll angle process and the roll velocity process are very different from the normal 

distribution, which underestimates the corresponding low probability levels. Moreover, 

it is shown in Figures 5.3 and 5.4 that the comparisons of the marginal PDFs obtained 

by the 4D PI method and Monte Carlo simulation demonstrate the high-level accuracy 

of the 4D PI method. As for the marginal PDF of the relative roll excitation process m(t) 

in Figure 5.5, which is a stationary Gaussian process, the result obtained by the 4D PI 

method is found to be in good agreement with the Gaussian distribution. Since the 

marginal PDF of m(t) determined by the 4D PI method is based on an iterative scheme 

(shown in Fig 4.1), the excellent agreement with the original Gaussian distribution, i.e. 

the distribution before the iterative procedure, provides another proof for the robustness 

and reliability of the 4D PI method.  

 

The upcrossing rate calculated by the 4D PI method and the Rice formula (4.36) for the 

selected sea state and the corresponding empirical estimation of the upcrossing rate as 

well as the 95% confidence interval obtained by the 4D MCS method are shown in 

Figure 5.6. For Monte Carlo simulation, long-time domain simulations are required to 

obtain upcrossing rate for high response levels. It can be readily seen that the 4D PI 

technique yields quite accurate and reliable result, even in the high roll response region. 

 

 

Figure 5.6: Upcrossing rate obtained by the 4D PI method and the empirical mean 

upcrossing rate evaluated by the 4D Monte Carlo simulation for the sea state with 

Hs=4.0 m and Tp=11.0 s. 
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5.2  Fourth-order Linear Filter 

 

Basically, the fourth-order linear filter (3.10) provides a better approximation of the 

target spectrum than the second-order linear filter (3.8), but the subsequent coupled 

dynamic system could be more complicated to tackle. However, the PI method does 

suffer from a curse of the dimensionality problem, and the associated computation of 

the PI technique applied for the 6D coupled nonlinear system (3.13) is unaffordable at 

present. 

 

On the other hand, it can be noted that the MCS method does not suffer critically from 

the curse of the dimensionality problem since the statistics of the response are obtained 

directly from the realizations. Even though the MCS method enables the empirical 

estimation of the response statistics to be determined, it is only a brute force alternative 

on the basis of straightforward counting. It cannot provide information at the same level 

of details as the PI method. Particularly, when the MCS method is applied to estimate 

the statistics of large roll response with low probability levels, the associated 

computation cost as well as the efficiency would be sacrificed in practice. 

 

 

Figure 5.7: Relative roll excitation moment spectrum Smm(ω) and the fourth-order 

filtered spectrum for the sea state with Hs=4.0 m and Tp=11.0 s. 

 

In this Section, the feasibility of simplifying the 6D system by the 4D system in terms 

of determining the statistics of high-level roll response will be discussed. For the 

selected sea state with Hs=4.0 m and Tp=11.0 s, the relative wave excitation moment 

spectrum and the spectrum generated by the fourth-order linear filter (3.10) are plotted 

in Figure 5.7. In addition, the parameters α1, α2, β1, β2, γ1 in the fourth-order linear filter 

can also be determined by minimizing the square errors between the filtered spectrum 
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and the target spectrum Smm(ω). It is seen in Figure 5.7 that the fourth-order linear filter 

provides excellent approximation to the target spectrum. 

 

Figure 5.8 presents the upcrossing rate obtained by the 4D PI method and the 

corresponding empirical estimation of the upcrossing rate as well as the 95% 

confidence interval evaluated by the 6D MCS method. Comparing the upcrossing rate 

calculated by the 4D PI method with the pertinent 6D MCS results demonstrate a 

satisfactory level of agreement, even in the large response region.  

 

In addition, Figure 5.9 shows the spectra of the roll responses generated by the 4D 

dynamic system and the 6D dynamic system. Specifically, the random seeds for 

generating random driving processes in the above two systems are kept the same for 

the selected sea state. The corresponding RKM algorithms are applied to solve the 

SDEs and generate the samples of roll response. Obviously, in Figure 5.9, the response 

spectra are narrow banded and peaked near the natural roll frequency due to the light 

roll damping. Even though there are slight discrepancies in some local regions, the 

agreement of these two spectra is acceptable on the whole. The satisfactory results in 

Figures 5.8 and 5.9 illustrate that the statistics of the roll responses generated by the 

two different systems exhibit satisfactory agreement. 

 

 

 

Figure 5.8: Upcrossing rate obtained by the 4D PI method and the empirical mean 

upcrossing rate evaluated by the 6D Monte Carlo simulation for the sea state with 

Hs=4.0 m and Tp=11.0 s. 
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Figure 5.9: Roll response spectra of the ship model for the 4D dynamic system and the 

6D dynamic system for the sea state with Hs=4.0 m and Tp=11.0 s. 

 

The good agreements of the response statistics obtained by the 4D PI method and the 

MCS method (either 4D or 6D) in Sections 5.1 and 5.2 demonstrate the conclusion that 

the 4D PI method is capable of providing reliable estimation of the response statistics, 

even for high level responses with low probability levels. The 4D PI method has its 

advantage since it obtains different sets of response statistics within one calculation, 

whereas for the MCS method, a large amount of repeated calculations and counting 

procedures have to be conducted for each set of response statistics. Moreover, the 

computation cost of the MCS for the probability level lower than 10-7 is nearly 

formidable. And also, it is observed in Figures 5.3-5.4, for the high-level response, the 

statistics obtained by the MCS method are suffering from uncertainties. 

 

Furthermore, as shown in Figures 5.8-5.9 and also more cases corresponding to 

different sea states presented in paper 2, the satisfactory agreements of the response 

statistics generated by the 4D dynamic system and the 6D dynamic system demonstrate 

that with the assistance of the correction factor, c, the 4D coupled system can serve as 

an effective alternative to the corresponding 6D extended system. In conclusion, the 4D 

dynamic system and the 4D PI method enables an appropriate theoretical model as well 

as an efficient numerical technique, respectively, to be applied for the study of 

stochastic roll response. 

 

5.3  Equivalent Gaussian White Noise 

 

In this Section, the random wave excitation is approximated by an equivalent Gaussian 
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white noise and the rationality and accuracy of applying the equivalent Gaussian white 

noise to simulate nonlinear ship rolling in random seas is studied. 

 

As mentioned in Sections 5.1 and 5.2 that the roll response spectrum is narrow-banded 

and peaked near the natural roll frequency ω0 due to the light roll damping. 

Theoretically speaking, Gaussian white noise may be serve as a simplification of the 

relative wave excitation spectrum Smm(ω) if its spectral density equals to the value of 

Smm(ω) at the frequency ω0. Assume that the value of Smm(ω) at the frequency ω0 is S0 

and the corresponding Gaussian white noise is referred to as the equivalent Gaussian 

white noise. The spectrum of the equivalent Gaussian white noise is shown in Fig. 5.1 

and the noise level σ can then be determined as: 

2

02 S   (5.3) 

The differential equation of the dynamic system (2.12) can then be simplified as: 
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Where N(t) is a standard Gaussian white noise process and the corresponding two-

dimensional (2D) state-space equation is given as: 
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Basically, low-dimensional cases, such as the dynamic system (5.5) are much easier to 

be tackled by the PI technique than the high-dimensional extended systems. For the 2D 

dynamic system (5.5), the time evolution of the PDF of the vector (x1(t), x2(t))
T is also 

determined by a time discrete approximation and an iterative algorithm similar to 

equations (4.3) and (4.8), respectively. The one time-step TPD described in equations 

(4.10) and (4.11) is simplified as: 
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The initial PDF for the 2D PI approach is selected as a 2D Gaussian PDF by Monte 

Carlo simulation and the subsequent numerical implementation procedure for the 2D 

dynamic system is similar to the procedure in Fig. 4.1.  
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Figure 5.10: Upcrossing rates of the roll responses excited by filtered white noise 

(denoted as 4D PI and 4D MCS) and equivalent Gaussian white noise (denoted as 2D 

PI and 2D MCS) for the sea state with Hs=4.0 m and Tp=11.0 s. 

 

Figure 5.10 provides relevant information about the roll responses for the 4D dynamic 

system and 2D dynamic system. In Figure 5.10, the mean upcrossing rates for these two 

systems are calculated by the 4D PI method and 2D PI method, respectively. MCS is 

applied in order to provide related empirical estimations of the upcrossing rates, which 

are also shown in Figure 5.10. The difference between the response statistics driven by 

filtered white noise and the equivalent Gaussian white noise is obvious. The equivalent 

Gaussian white noise results in weaker response than the filtered white noise and the 

2D dynamic system (5.5) underestimates the response statistics for the selected ship 

model and sea sate. 

 

This difference can also be observed in Figure 5.11, which provides the roll response 

spectra for the 4D dynamic system and 2D dynamic system, respectively. The response 

spectra of these two systems are obtained by means of Monte Carlo simulation and it is 

clearly seen that the roll response excited by the filtered white noise is much stronger 

than the response driven by the equivalent Gaussian white noise. Comparison of the 

response spectra illustrate that the discrepancy between the filtered spectrum generated 

by the second order linear filter and the spectrum of the equivalent Gaussian white noise 

in the critical frequency region the natural roll frequency ω0, which is shown in Figure 

5.1, would result in obvious differences of the roll responses. Moreover, in paper 3, 

another example given by a RoRo ferry model subjected to random wave excitation 

corroboration the above differences.         
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Figure 5.11: Roll response spectra of the ship model excited by filtered white noise and 

equivalent Gaussian white noise for the sea state with Hs=4.0 m and Tp=11.0 s. 

 

Based on the observations in this Sections 5.2 and 5.3, we can find that the excitation 

spectrum near the natural roll frequency is essential for estimating the response 

statistics. The second order linear filter, with the assistance of the correction factor, c, 

provides a satisfactory approximation of the target spectrum Smm(ω) in the critical 

region and thus the 4D dynamic system is recommended to be applied for studying the 

response statistics of the roll motion in random beam seas. In contrast, due to the 

unsatisfactory accuracy of the response statistics given by the 2D dynamic system, the 

equivalent Gaussian white noise cannot be recommended to approximate the random 

wave excitation as well as to study the nonlinear ship rolling in random seas. 

 

5.4  Influence of Ship Parameters 

 

The effects of the ship parameters, i.e. the restoring terms and the damping terms on 

the upcrossing rate are studied in this Section. Firstly, the influences of the restoring 

coefficients on the upcrossing rate, especially in the high response region are concerned. 

To highlight the effects of the linear and nonlinear restoring coefficients individually, 

the parameters as well as the parameters for the second-order linear filter for the 

selected sea state are assumed to be constant in the numerical simulations, except for 

the particular ship parameter whose effect is going to be studied. The original value of 

the relative linear roll restoring coefficient c1 is 1.153 s-2. We select 2% of the original 

value as the increment and decrement and then the range of c1 value is determined as: 

1.129, 1.153, 1.176 and 1.199 s-2. Similarly, with the variation of 0.05 s-2 (5.46% of the 
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original c3 value), the values of the relative nonlinear roll restoring coefficients for the 

subsequent study are: 0.815, 0.865, 0.915 and 0.965 s-2. 

 

For different c1 and c3 values, the upcrossing rates obtained by the 4D PI technique as 

well as the empirical estimation of the upcrossing rates obtained by the 4D Monte Carlo 

simulation (MCS) are plotted in Figs 5.12 and 5.13, respectively. It is seen that the roll 

response increases for decreasing c1 values and for increasing c3 values. This result is 

in accordance with common sense since large c1 values and small c3 values imply a 

large angle of vanishing stability and a large area under the GZ curve which correspond 

to enhanced intact stability against reliability failures. 

 

 

Figure 5.12: Influence of the relative linear roll restoring coefficient c1 on the 

upcrossing rate. 

 

In Figure 5.13, it is observed that the nonlinear restoring term c3 significantly influences 

the response statistics in the high roll response region, which means the nonlinear 

restoring term plays a crucial role in this region. However, the variation of the nonlinear 

restoring term has no significant influence on the response statistics of small amplitude 

roll motions. For the effects of the linear restoring term c1, it is seen in Figure 5.12 that 

the variation of c1 result in a wider range of influence on the roll response that that of 

the c3 values presented in Figure 5.13, e.g. one can observe that the variation of c1 

influences the stochastic roll response already from the low response region. In reality, 

the variation of the response statistics in the low roll response region (which is mainly 

caused by different c1 values in the current Section) would influence the response 

statistics in the high roll response region to some extent, but it is the nonlinear restoring 

coefficient c3 in all parameter sets in Figure 5.13 that plays a dominant role in this 

region. In practice, when a vessel is sailing in random seas, especially in longitudinal 

waves, the roll restoring curve (or the GZ curve) varies with time. Thus, the variation 
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of roll response induced by time-dependent c1 values and c3 values should be considered 

in dynamic stability analyses. 

 

 

Figure 5.13: Influence of the relative nonlinear roll restoring coefficient c3 on the 

upcrossing rate. 

 

As mentioned in Section 2.2, the quantitative evaluation of the roll damping is difficult 

due to the coupling effects of different sources of the damping moment. In this part, the 

commonly applied empirical LPQD model (2.6) is applied in order to describe the 

damping model. Subsequently, the linear damping and nonlinear damping terms are 

modified individually to study their influence with the values of the filter parameters 

for the selected sea state and the restoring coefficients are kept constant. The values of 

the relative linear damping coefficient b44 is varied linearly from 0.085 to 0.100 s-1. The 

variation of the relative nonlinear damping coefficients b44q is 20% of the original value, 

0.0519. Accordingly, the upcrossing rates obtained by the 4D PI method and empirical 

estimation of the upcrossing rates obtained by the 4D Monte Carlo simulation for 

different values of b44 and b44q are shown in Figures 5.14 and 5.15, respectively. 

 

The tendency observed in Figures 5.14 and 5.15 verify that the common knowledge 

that the presence of roll damping decreases the roll response and the vessels with small 

damping coefficients are much more prone to encounter stability failures than the 

vessels with large roll damping. Moreover, in Figure 5.15, the variation of b44q mainly 

affects the response statistics in the high roll response region, while its influence on the 

stochastic response of small amplitude roll motions is limited. For the low roll response 

region, the variation of the linear damping term, i.e. b44, would impact the distribution 

of the response statistics. As an extension of current study, different damping models, 

i.e. the LPQD model and the equivalent LPCD model have been proposed in paper 4 

in order to investigate the influence of different damping models on the stochastic roll 
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response (especially on the high level response).           

 

Figure 5.14: Influence of the relative linear damping coefficient b44 on the upcrossing 

rate. 

 

 

Figure 5.15: Influence of the relative nonlinear damping coefficient b44q on the 

upcrossing rate. 

 

Based on the observations in Figures 5.12-15 and the results above, we can draw the 

conclusion that the relative linear roll restoring coefficient c1 and the relative linear 

damping coefficient b44, mainly influence the response statistics in the low roll response 

region. On the contrary, for the high response region, the respective nonlinear terms, 

i.e. the relative nonlinear roll restoring coefficient c3 and the relative linear damping 
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coefficient b44q, have more significant and direct effects. Furthermore, the high-level 

agreements for the two classes of upcrossing rate, which are shown in Figures 5.12-

5.15, verify the capacity of the 4D PI technique in providing accurate and reliable 

response statistics of the roll motion for different sets of ship parameters.  

 

5.5  Roll Response under Wind and Irregular Beam Waves 

 

The action of wind has been considered in the weather criterion of the current code for 

intact stability (IMO, 2008). In this Section, we aim to study the stochastic response of 

the roll motion under the action of wind and (beam) wave excitation. Considering the 

beam wind action, the roll motion described by equation (2.11) will be modified as: 

44 44 44 44

3

1 3

( ( )) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( )

q

wind

I A t B t B t t

C t C t M t M t

     

 

  

   
 (5.8) 

in which Mwind(t) denotes the excitation moment caused by wind action and it can be 

calculated by the following formula: 

21
( ) ( ( ))

2
wind air w w W mM t C A l U U t   (5.9) 

where ρair is the mass density of air and Cw denotes a wind pressure coefficient. Um is 

the mean wind speed and U(t) is the fluctuating wind speed. Aw represents the lateral 

windage and lw is the wind moment arm. Generally, (U(t)/Um) << 1 and the wind 

excitation moment (12) can be expressed as: 

2

( ) ( )

1
( )

2

wind wind f

air w w W m air w w W m

M t M M t

C A l U C A l U U t 

 

 
 (5.10) 

in which 𝑀̅𝑤𝑖𝑛𝑑and Mf(t) denote the mean wind moment and fluctuating wind moment, 

respectively. The mean wind action results in a steady heeling angle θs and their 

relationship can be expressed as: 

3

1 3( ) ( )wind s s sM GZ C C        (5.11) 

As for the fluctuating wind moment, its spectral density is related to the wind spectrum 

SU(ω), by the following relationship (Naess and Moan, 2012): 

2( ) ( ) ( ) ( )
fM air w w W m US C A l U S        (5.12) 

where χ(ω) is the aerodynamic admittance function, which can be determined as: 

4/3
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

 (5.13) 
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and the wind spectrum, which governs the fluctuating wind speed, is given by the 

Davenport spectrum: 

2 2

2 4/3
( ) 4

(1 )

m D
U

D

U X
S K

X






 (5.14) 

where K=0.003 and the dimensionless variable XD is given by the equation (Bulian and 

Francescutto, 2004): 

600D

m

X
U




  (5.15) 

Dividing equation (5.8) by (I44 + A44), the final format of the differential equation is 

given as: 

3

44 44 1 3( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( )

q

f wind sum wind

t b t b t t c t c t

m t m t m t m t m

        

    
 (5.16) 

In which m(t), mf(t) and 𝑚̅𝑤𝑖𝑛𝑑are relative moments. The total relative random external 

excitation is denoted as msum(t), which is assumed to be the sum of the relative wave 

excitation m(t) and the relative fluctuating wind moment mf(t). Correspondingly, the 

spectrum of msum(t) is assumed to be given as the sum of the spectrum of the relative 

wave excitation moment and the spectrum of the relative fluctuating wind moment: 

2

44 44( ) ( ( ) ( )) ( ) ( ) ( )
f fsum MM M mm mS S S I A S S          (5.16) 

Finally, the SDOF model, i.e. equation (5.16) is transformed into the following state-

space equation: 

1 2

3

2 44 2 44 2 2 1 1 3 1 3( )q wind

dx x dt

dx b x b x x c x c x x m dt




      

 (5.17) 

where x1= θ(t), x2=𝜃̇(𝑡)and x3=msum(t).  

 

The sea state with Hs=4.0 m and Tp=11.0 s is selected to determine the spectrum of 

relative wave excitation moment and the mean wind speed Um is selected as 26 m/s 

according to the weather criterion of the IMO intact stability code and the wind pressure 

coefficient Cw=0.95 (Andersen, 2013). The spectrum of the relative wave excitation 

moment Smm(ω) for the selected sea state, the spectrum of the relative fluctuating wind 

moment spectrum Smf(ω) for selected Um and the corresponding spectrum of the total 

relative random external excitation, Ssum(ω) are shown in Figure 5.16. The value of 

Ssum(ω) in the critical region near the natural frequency ω0 dominates subsequent roll 

response. It can be seen that in Figure 5.16 that Smf(ω) is peaked in the low-frequency 

region and its value in the critical region is negligible when compared with the values 

of Smm(ω) and Ssum(ω). Therefore, the influence of the fluctuating wind moment on the 

stochastic roll response can be neglected in the simulation stage for the current ship 
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model.  

 

 

Figure 5.16: Relative wave excitation moment spectrum Smm(ω) for the sea state with 

Hs=4.0 m and Tp=11.0 s, relative fluctuating wind spectrum Smf(ω) for Um=26 m/s and 

the spectrum for the total relative random external excitation Ssum(ω), filtered spectrum 

and the corrected filtered spectrum (part). 

 

However, the effect of the mean wind action, which results in a heeling angle θs, on the 

response cannot be neglected. Relevant study with respect to the influence of steady 

heeling angle θs is given in paper 4. The dynamic system (5.17) can be extended to a 

4D system and then the response statistics can be obtained by the 4D PI method. For 

the vessel without mean wind action, the PDFs of the roll response obtained by the 4D 

PI method is presented in Figures 5.2-5.4 and it is seen that the distribution of the roll 

response is symmetric. The symmetry is reasonable since the distribution of the random 

excitation (or the filtered white noise process) as well as the vessel properties are 

symmetric with respect origin. For the vessel with 5 degrees steady heeling angle, it is 

seen in Figure 5.17 that the distribution of the roll angle process is approximately 

symmetry with respect to the steady heeling angle θs. However, when the marginal PDF 

of the roll angle process is plotted with a logarithmic scale along the vertical axis, 

shown in Figure 5.18, the symmetry is not valid in the high level response region, for 

which the nonlinear effects associated with the damping and restoring terms have a 

significant influence on the distribution of the roll response. 
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Figure 5.17: Contour lines of the joint PDF of the roll response for the vessel with 5 

degrees steady heeling angle for the sea state with Hs=4.0 m and Tp=11.0 s. 

 

 

Figure 5.18: Logarithmical scaled marginal PDF of the roll angle process for the vessel 

with 5 degrees steady heeling angle for the sea state with Hs=4.0 m and Tp=11.0 s 

 

The influence of the steady heeling angle on the upcrossing rate is presented in Figure 

5.19. It can be seen that the existence of the steady heeling angle leads to an increases 

of the upcrossing rate. This implies that the mean wind action would induce the roll 

angle process cross high levels more frequently than the condition without steady 

heeling angle. More importantly, earlier deterministic nonlinear dynamics work 

conducted in Thompson (1997) and Spyrou et al. (2002) noted that even a small bias 

(i.e. steady heeling) has a disproportionate diminishing effect on a ship’s safety margin. 

The stochastic analysis in this Section and the results presented in Figure 5.19 confirm 

and extend this statement for irregular sea conditions.     
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Figure 5.19: Upcrossing rates for the vessel with different steady heeling angles for the 

sea state with Hs=4.0 m and Tp=11.0 s. 

 

5.6  Reliability Evaluation 

 

In addition to the evaluation of stochastic roll response in the above Sections, estimation 

of the inherent reliability is also a closely connected research topic. In this Section, the 

reliability evaluation associated with high-level roll response is considered. For one 

thing, the response statistics obtained by the 4D PI method, especially in the high-level 

response region, can directly be applied in the reliability evaluation procedure. Also, 

prediction of the extreme roll response and the associated risk assessment of ship 

stability in random seas are crucial for reliability based design and operation in practice. 

 

Roll angles near or beyond the maximum of the GZ curve can be regarded as high 

response levels. If the assumption of statistically independent upcrossings is valid for a 

certain level in this region, the corresponding crossing events are Poisson distributed. 

Under the Poisson assumption, the reliability evaluation is usually phrased in terms of 

the probability that the roll angle process θ(t) exceeds the specific level ζ at least once 

during a time interval of length T. Therefore, the exceedance probability for a duration 

of exposure time T can be expressed by a widely used approach which is given as 

follows (Jensen, 2012; Naess and Moan, 2012): 

0
( ) 1 exp( ( ; ) ) 1 exp( ( ) )

T

P T v t dt v T           (5.18) 

where v+(ζ) represents the mean upcrossing for the level ζ at a suitable reference point 

in time, which can be determined directly by the 4D PI method and the Rice formula. 
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Moreover, for high response levels, let Θ(T)=max{θ(t): 0 ≤ t ≤ T} denote the largest (or 

extreme) value of the roll angle process θ(t) over the time interval of length T. The 

cumulative distribution function (CDF) of Θ(T) under the Poisson assumption is 

approximately given in terms of the mean upcrossing rate by the following relationship 

for a stationary short-term sea state: 

Prob( ) exp( ( ) )T       (5.19) 

Furthermore, the empirical estimation of the exceedance probability obtained by Monte 

Carlo simulation is given as: 

( ) 1 ( , )MC MCP F T     (5.20) 

where FMC(ζ,T) is the empirical CDF of the extreme value Θ(T) over the time interval 

T, which can be evaluated in terms of simulated maximum roll angles ranked in 

ascending order.  

 

The exceedance probability for the high-level response converges towards a normal 

distribution for a large number of realizations, Nt. Therefore, the 95% confidence 

interval of the exceedance probability during the exposure time T, ΔP(ζ, T) can be 

evaluated by the following equation: 

2
( , ) 1.96 ( , ) (1 ( , ))MC MC

t

P T P T P T
N

        (5.21) 

Finally, the range of error tolerance of the empirical exceedance probability is: 

 1 1
2 2

( , ) ( , ), ( , ) ( , )MC MCP T P T P T P T        (5.22) 

The reliability evaluation associated with high response levels for the selected sea states 

listed in paper 1 (Table 2) is conducted. The exceedance probabilities of high level 

response obtained by formula (5.18) for different sea states are presented in Figures 

5.20, 5.21 and 5.22, respectively. The Poisson-assumption estimates based on the 

upcrossing rates obtained by the 4D PI method are denoted by ‘‘4D PI’’ in these Figures. 

The corresponding empirical exceedance probabilities as well as the 95% confidence 

intervals evaluated by MCS are also plotted in order to verify the Poisson estimation. 

Moreover, the short-term sea states are considered and the exposure time T for each sea 

stae is selected to be 3 hours. 

 

Even though the proposed method based on the Poisson assumption usually leads to 

reliable predictions, it is seen in Figures 5.19-5.21 that its good performance for 

reliability evaluation associated with high level roll response would gradually decline 

as the roll response becomes serious. For the roll motion with light roll damping, the 

roll response is generally narrow-banded and the response maxima will have a tendency 

to occur in clumps when the external excitation strengthens or the exposure period T 
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increases. Under such circumstances, the assumption about independent upcrossings 

will tend to be less valid, which will influence the performance of the Poisson estimate. 

On the other hand, the Poisson estimate can take advantage of the reliable response 

statistics obtained by the 4D PI method. Its simplicity and accuracy, as presented in 

Figures 5.20-5.22, is attractive for practical applications, except for vessels with 

extremely light roll damping or under serious external excitation. For these cases, the 

highly reliable system assumption as well as the stationary approximation of the roll 

response mentioned in Section 4.3 would not be valid. 

 

 
Figure 5.20: Exceedance probability of the roll angle process for the sea state with 

Hs=4.0m, Tp=11.0s, number of realizations Nt=5000, exposure time T=3h. 

 

 
Figure 5.21: Exceedance probability of the roll angle process for the sea state with 

Hs=5.0m, Tp=12.0s, number of realizations Nt=2500, exposure time T=3h. 
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Figure 5.22: Exceedance probability of the roll angle process for the sea state with 

Hs=6.0m, Tp=13.0s, number of realizations Nt=2000, exposure time T=3h. 

 

5.7  Long-term Response Evaluation 

 

The short-term extreme response is evaluated by considering the vessel which is 

exposed to a particular sea state with a certain significant wave height and peak wave 

period. While, the long-term response analysis, which accounts for the occurrence rate 

and severity of the seaway, is a more general and more appropriate approach to evaluate 

the extreme roll response (Sagrilo et al., 2011). In this Section, the long-term extreme 

response of a vessel rolling in random beam seas is addressed. 

 

For the long-term analysis, which considers the contribution from each short-term sea 

state, it is evaluated by a formulation proposed by Naess (1984) and given as: 

( )
( ) exp( ( ) )

T
F v T 


    (5.23) 

where 
( )

( )
T

F 


represents the CDF of the global extreme value which accounts for the 

contributions from all short-term sea states. ( )  denotes the long-term mean 

upcrossing rate, which is given as: 

( ) ( , ) ( , )
s p

s p
s p H T s p s p

h t
v h t f h t dh dt       (5.24) 

in which ( , )
s pH T s pf h t is the joint PDF of Hs and Tp and ν+(ζ |hs, tp) denotes the mean 

upcrossing rate for the short-term contribution specified by the significant wave height 

Hs=hs and the peak period Tp= tp. 
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Generally, the number of occurrences of each sea state for a given sea area is recorded 

and described by a wave frequency table or wave scatter diagram that represents a 

discrete (empirical) joint distribution of Hs and Tp (Moan et al., 2005). However, the 

observations of some sea states, especially the extreme sea states are under the influence 

of uncertainty. It is necessary to fit and smooth the observed data by introducing a joint 

PDF model. In this work, the joint distribution of Hs and Tp is fitted by a conditional 

modelling approach (Haver, 2002), it consists of a marginal distribution of Hs and a 

conditional distribution of Tp given Hs: 

( , ) ( ) ( )
s p s p s

H T s p H s p sT H
f h t f h f t h  (5.25) 

The marginal distribution of Hs is described by a two-parameter Weibull distribution: 
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where αHs, βHs are scale and shape parameters for the Weibull distribution, respectively. 

 

For the conditional distribution of Tp given Hs, it is modelled by a lognormal 

distribution: 
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where the mean value μlnT and standard deviation σlnT of ln(Tp) are assumed to be 

dependent on the significant wave height hs by the following relationship. 
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 
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 (5.28) 

In this work, the environmental conditions are derived from historical data (2006-2014) 

available for the NDBC (National Data Buoy Center) buoy No. 42058, located at 

14°55'23" N and 74°55'4" W, as shown in Figure B1 (given in Appendix B). The 

probabilities of occurrence for each sea state are summarized in Table B1 based on the 

9 years data. On the basis of equations (5.25)-(5.28), the joint PDF of Hs and Tp for the 

selected location can be obtained. The joint PDF is presented in Figure 5.23 and the 

fitted occurrence rate for each sea state is given in Table B2. 

 

Theoretically, in order to get the average long-term upcrossing rates (5.24) for the high-

level responses, all the sea states in Tables B1 and B2 with nonzero occurrence rates 

should be considered. However, it is pointed in Sections 5.2 and 5.3 that the stochastic 

roll response, especially the high level response, is sensitive to the value of Smm(ω) in 

the critical frequency region near the natural roll frequency ω0. In addition, it is also 

observed in equations (2.18) and (5.1) that both of the significant wave height Hs and 

the peak period Tp have direct influences on Smm(ω). The former parameter enhance the 
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value of Smm(ω) in the critical region by intensifying the wave energy spectrum, while 

the influence of the latter parameter can be viewed as resonance. According to the short-

term response statistics, the upcrossing rates for the sea states with 2.5 m ≤ Hs ≤ 4.5 m 

and 7.5 s ≤ Tp ≤ 10.5 s dominates the subsequent long-term upcrossing rate. While, the 

contributions from the other sea states in Tables B1 and B2 can be neglected due to the 

negligible product values of the short-term upcrossing rate and the occurrence rate of 

the sea state. 

 

 

Figure 5.23: Fitter joint PDF of Hs and Tp at the site of the NDBC buoy, No. 42058 

based on 9 years (2006-2014) of data. 

 

On the basis of the short-term upcrossing rates for the sea states in the dominate region 

with 2.5 m ≤ Hs ≤ 4.5 m and 7.5 s ≤ Tp ≤ 10.5 s, the long-term analysis is executed. The 

long-term upcrossing rates in the high-level response region based on the empirical 

distribution of sea states (Table B1) and the fitted distribution of sea states (Table B1) 

are obtained and shown in Figure 5.24. The contribution of each sea state to the long-

term upcrossing rate at the level of 64 degrees (i.e. the angle of vanishing stability) are 

given in Table 5.1.       

 

It is observed in Fig. 5.24 that the value of the long-term upcrossing rate based on the 

fitted distribution of sea states is approximately 15% less than the value based on the 

empirical distribution, even though some extreme sea states with nonzero occurrence 

rates, such as Hs = 4.5 m, Tp =9.5 s and Hs = 4.5 m, Tp =10.5 s can be obtained in Tab 

B2. As for the contribution of each sea state to the long-term upcrossing rate, it depends 

on the value of the short-term upcrossing rate as well as on the occurance rate of the 

sea state. In the meantime, as it can be seen in Table 5.1, the sea states with Tp =8.5 s 

contribute the most to the final long-term upcrossing rate but the fitted model described 

by equations (5.25)-(5.28) provides a little smaller estimation of the distribution for the 
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condition with Tp=8.5 s when compared with the corresponding empirical value. The 

slight discrepancy results in the difference of the long-term upcrossing rates given in 

Figure 5.24. Theoretically, the long-term upcrossing rate based on the fitted distribution 

would be a better choice since the joint PDF model reduces inherent uncertainty of the 

observed data and it also considers the contributions of some extreme sea states which 

have not been observed in the wave scatter diagram. 

 

 
Figure 5.24: Long-term upcrossing rates based on the empirical distribution of sea states 

and the fitted distribution of sea states 

 

Table 5.1 Contributions to the long-term upcrossing rate at the level of 64 degrees from 

the important sea states (given as percentages), based on the fitted distribution 

summarized in Table B2 

 

  Tp (s) 
7.5 8.5 9.5 10.5 

Hs (m)   

2.5 4.07 0.87 0.01 0.00 

3.0 3.92 22.58 0.13 0.00 

3.5 0.51 50.88 3.95 0.01 

4.0 0.00 3.62 7.38 0.09 

4.5 0.00 0.00 1.72 0.25 

 

Furthermore, for the selected site, since only the sea states in the dominant region with 

2.5 m ≤ Hs ≤ 4.5 m and 7.5 s ≤ Tp ≤ 10.5 s are accounted for calculating the long-term 

extreme response, the 4D PI method is feasible for long-term analysis within acceptable 

computation cost and accuracy. 
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5.8  Extreme Roll Response in Random Head Seas 

This Section presents an efficient MCS technique and the linear filter approach in order 

to predict the extreme response of a vessel rolling in random head seas. In this work, a 

RoRo ship from Bulian (2006) is considered for the numerical simulation in the 

subsequent study. The main parameters of the vessel is given in paper 5 (Table 1). The 

concept of Grim effective wave model is applied herein in order to approximate the 

variation of the restoring moment in random waves. Based on the Grim effective wave 

approximation (2.33), the differential equation (2.35) is determined to describe the roll 

motion in random longitudinal seas.  

 

The random stationary sea state is described by the modified Pierson-Moskowitz 

spectrum (5.1). The peak frequency of the sea spectrum is selected to be the value which 

corresponds to a wave length equals to the Grim’s reference length (i.e. 2p g L 

=0.683 rad/s) and the significant wave height Hs is chosen to be 4.0 m for the subsequent 

study. The selected wave energy spectrum is presented in Figure 5.25. Assume that the 

ship is moving with a speed of V =2.5 m/s and the encounter spectrum for the effective 

wave amplitude process, i.e., the effective wave spectrum ( )
c eS  (which is determined 

by equation (2.32)) is also shown in Figure 5.25. 

 

 
Figure 5.25: Wave energy spectrum for the sea state with Hs=4.0 m, Tp=9.2 s, encounter 

spectrum for the effective wave amplitude process ξc(t) with vessel speed V=2.5 m/s in 

head seas and the filtered spectrum generated by the linear filter (3.11) 

 

After determining the target spectrum, i.e. ( )
c eS  , the parameters α1, α2, β1, β2, γ1 in 

the fourth-order linear filter (3.11) are obtained by minimizing the square error between 

the filtered spectrum and the desired spectrum. The fitting result for the linear filter is 

shown in Figure 5.25 and it can be readily seen that the spectrum obtained from the 

fourth order filter represents a good fitting. The SDOF model (2.35) is extended into a 

6D dynamic system given in paper 5 (equation (18)). In addition, it was shown in Vidic-
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Perunovic and Jensen (2009) and Bulian (2006) that the model based on the Grim 

effective wave model could tend to overestimate the roll response, therefore a 

correction factor kc is introduced in order to reduce the parametric excitation by 

correcting the effective wave spectrum as: 

2

, ( ) ( )
c c ck cS k S     (5.29) 

accordingly, the effective wave amplitude process is corrected as: 

, ( ) ( )
cc k c ct k t    (5.29) 

For the selected vessel, the correction factor kc is taken to be 0.7 by comparison with 

the experimental data (Bulian, 2006). Roll responses can be obtained by solving the 6D 

SDE. It is seen from the examples of roll responses shown in paper 5 (Figure 9) that 

parametric roll occurs for the selected sea state and vessel model. Empirical estimation 

of the mean upcrossing rate can be obtained by generating multiple realizations. 

 

 

Figure 5.26: Empirical upcrossing rate obtained by the direct MCS with 95% 

confidence interval based on the 10000 hours of response time histories and the efficient 

MCS for the empirical upcrossing rate and confidence interval with the starting point 

ζ0 =0.556, q= 0.0106, a= 23.253, b= 0.019, c= 3.887.  

 

The following efforts have been devoted to demonstrate the advantage of the efficient 

MCS for giving accurate estimation of the extreme roll response with a dramatic 

reduction of computation time. Firstly, a standard MCS with 10000 hours of response 

time histories is executed and the empirical upcrossing rate as well as the 95% 

confidence interval are plotted in Figure 5.26. In the numerical simulation, 3334 

realizations are generated for estimating the empirical mean upcrossing rate. Each 
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realization has a duration of 11,300 s with the first 500 s being removed to eliminate 

the transient effect of the roll response. The upcrossing rate in the far tail region as well 

as the corresponding confidence interval estimated by the efficient MCS are also 

presented in Figure 5.26. For a target crossing rate level of 10-8, which requires 

formidable efforts for the conventional MCS technique, the roll response obtained by 

the proposed 10000 hours simulation and the efficient MCS based on the extrapolation 

procedure is predicted to be 0.8946 rad and the confidence interval is estimated to be 

(0.8821 0.9051). 

 

Secondly, a standard MCS with only 100 hours of response time histories is executed. 

Figure 5.27 shows the corresponding empirical upcrossing rate and confidence interval. 

The 100 hours of simulated response time histories are constituted by 200 realizations. 

Each realization lasts 2300 s and the results of the first 500 s are neglected as the former 

case with 10000 hours of simulation. The expected roll response for the crossing rate 

level of 10-8 for this case is obtained as 0.9343 rad and the confidence interval is 

estimated to be (0.8757 0.9828).  

 

 

Figure 5.27: Empirical upcrossing rate obtained by the direct MCS with 95% 

confidence interval based on the 100 hours of response time histories and the efficient 

MCS for the empirical upcrossing rate and confidence interval with the starting point 

ζ0 =0.4625, q= 0.011, a= 27.515, b= 0.0075, c= 3.167.  

 

It can be seen from Figures 5.26-5.27 that the confidence interval becomes narrower 

when the ensemble simulation time increase. Generally, more realizations and longer 

simulation time provide more accurate distributions. Nonetheless, it seems that for the 

selected case, the good agreement of the predicted responses presented in Figures 5.26 

and 5.27 demonstrates that 100 hours simulation is available to provide good estimates 

of the extreme response and that the reduction of simulation time is feasible and 
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reasonable. More importantly, for the time domain simulation, the computational cost 

and accuracy for a short-term sea state could be crucial for the subsequent long-term 

statistics prediction.  

 

Furthermore, based on the Grim effective model, the phenomenon of parametric roll in 

random seas as well as the effect of vessel speed on the stochastic roll response are 

studied and relevant results are reported in paper 5.   
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6 Conclusions and Recommendations 

 

6.1 Conclusions  

The main conclusions of this thesis are described as follows. 

 

 The theory of Markov processes was used in modelling the roll motion in 

random beam seas as a state space formulation. The 4D PI approach based on 

the Markov property of the dynamic system was found to give satisfactory 

estimation for different sets of ship parameters as well as for various external 

excitations. Comparisons with the results from MCS and Gaussian distribution 

demonstrated the robustness and reliability of the 4D PI method.   

 The distributions of the roll response in random beam seas are very different 

from the Gaussian distribution. For the high-level responses, the Gaussian 

distribution will underestimate the stochastic roll response. It was found that the 

nonlinear effects associated with the restoring terms and the damping terms 

have a significant influence on the response statistics in the large roll response 

region. While, the linear damping and restoring terms mainly influence the 

response statistics in the low-response region. 

 The satisfactory agreements of the response statistics generated by the 4D 

dynamic system (3.12) and (3.13) for the same external excitation demonstrate 

that with the assistance of the correction factor, the 4D coupled system can serve 

as an effective alternative to the corresponding 6D extended system. The 4D 

dynamic system is an appropriate model used to study the stochastic roll 

response. In contrast, due to the unsatisfactory accuracy of the response 

statistics given by the 2D dynamic system driven by the equivalent Gaussian 

white noise, the latter cannot be recommended to approximate the random wave 

excitation as well as to study the stochastic roll motion in random seas. 

 The spectrum of the fluctuating wind moment is peaked in the low-frequency 

region, for the selected ship model, its influence on the stochastic roll response 

can be neglected since its value in the critical frequency region near the natural 

roll frequency is negligible. However, the effect of mean wind action, which 

results in a steady heeling angle, is important and cannot be neglected. The 

existence of the steady heeling angle leads to an increase of the upcrossing rate 

which implies that biased ship is much easier to encounter stability failures in 

random beam seas than the ship without steady heeling angles. 

 The Poisson estimate can take advantage of the reliable response statistics 

obtained by the 4D PI method. Its simplicity and high efficiency is attractive for 

the reliability evaluation of roll motion in random waves. But for the roll motion 

with light roll damping, the roll response is generally narrow-banded and the 
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response maxima will have a tendency to occur in clumps when the external 

excitation strength or the exposure time period T increases. Under such 

circumstances, the assumption about independent upcrossing will tend to be less 

valid, which will influence the accuracy and performance of the Poisson 

estimate. Based on the observations in Figure 5.20-5.22 and discussions above, 

we can draw a conclusion that the Poisson estimation is available for reliability 

evaluation except for the vessels with extremely light roll damping or under 

serious external excitation. 

 The long-term analysis was executed for predicting the extreme response. 

According to the products of the short-term upcrossing rates for specific sea 

states and the occurrence rate of the above sea states, it was found that for the 

selected site, the upcrossing rates for limited sea states (e.g. 2.5 m ≤ Hs ≤ 4.5 m 

and 7.5 s ≤ Tp ≤ 10.5 s in Section 5.7) dominate and determine the subsequent 

long-term upcrossing rate. Since only limited sea states are considered, the 4D 

PI method is feasible for long-term analysis within acceptable computation cost 

and accuracy.  

 On the basis of the Grim effective wave model, the mathematical model of roll 

motion was established in order to describe the rolling behavior in random 

longitudinal seas. The linear filter technique and an efficient MCS method 

(based on the combination of a standard MCS approach and an extrapolation 

technique) were applied in order to approximate the effective wave amplitude 

process and estimate the extreme roll response. It has been found that the 

efficient MCS technique gives a satisfactory estimation of the extreme roll 

response with a dramatic reduction of computation time. Moreover, for practical 

applications, the linear filter technique and the extrapolated MCS method can 

be applied for long-term stochastic applications due to satisfactory accuracy and 

efficiency.  

              

6.2 Recommendations for Future Work  

The following topics are well suited for future work. 

 

 The stochastic averaging method is widely used to tackle the high-dimensional 

Markov systems since it can lead to a dimension reduction. The FP equation can 

be solved if the dimension of averaged system is small enough. In this thesis, 

the 4D PI method is applied to solve the 4D FP equation without any techniques 

used for dimension reductions. Therefore, it is recommended to compare the 

response statistics calculated by the PI method with those obtained by the 

stochastic averaging method. The accuracy of the stochastic averaging method 

used for evaluating the response statistics of nonlinear high-dimensional 

systems will be studied. 

 The SDOF model (2.11) is very important for qualitative studies and 

understanding the nonlinear behavior under stochastic excitation. However, 
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multi-degree-of-freedom model is recommended for actual ship design since 

this model can provide more accurate and realistic estimations for the ship 

responses. The PI method is not available due to the “curse of dimension” 

problem, but the efficient MCS approach proposed in paper 5 could be a 

possible way to predict the extreme responses within acceptable computation 

cost. Moreover, the Grim effective wave model is just an approximation used 

for modeling the variation of restoring moment in random longitudinal waves. 

This model is used for qualitative studies as well as for early stage ship design. 

But for detailed ship design, multi-degree-of-freedom model is recommended 

and the efficient MCS method can be applied to predict the extreme roll 

response.  

 In Section 5.5, for the selected vessel model, the influence of the fluctuating 

wind moment on the stochastic roll response can be neglected because the 

spectrum of the fluctuating wind moment is peaked in the low-frequency region, 

which is far away from the critical frequency region near the natural roll 

frequency. But for the vessels with very large natural roll periods (e.g. 30 s), the 

effect of fluctuating wind action could be a possible critical problem and 

relevant studies are recommended.  

 The external wave excitation moment in equation (2.11) is determined by the 

linear hydrodynamic theory and limitations will be observed for modelling the 

severe roll motion. Improving the hydrodynamic modelling and approximate 

the forces as stochastic processes could be one of the goals in the future.    

 It was mentioned in Section 5.6 that the Poisson estimate could be invalid for 

vessels with extremely light roll damping or under serious external excitation. 

The average conditional exceedance rate method has been proved be to a 

reliable method for predicting the extreme response of narrow-banded processes 

(Naess et al., 2010). This method is recommended for the above cases for which 

the Poisson estimate is unavailable.     
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a b s t r a c t

In this paper, the shaping filter technique is introduced to study the stochastic roll response of a vessel in
random beam seas. Specifically, the roll motion is described as a single-degree-of-freedom (SDOF) model
in which the stationary random wave excitation term is approximated as the output of a shaping filter,
i.e. a filtered white noise process. Therefore, the original SDOF model can be extended into a four-di-
mensional (4D) and a six-dimensional (6D) dynamic system, respectively, when this second-order
nonlinear differential equation couples with the second-order linear filter and the fourth-order linear
filter used to model the random wave excitation. Basically, the fourth-order linear filter provides a better
approximation, but the subsequent dynamic system would be more complicated to tackle. In this regard,
the 4D coupled system can be viewed as a Markov system whose probability properties are governed by
the Fokker–Planck (FP) equation. Furthermore, the 4D path integration (PI) method, an efficient ap-
proximate technique based on the Markov property of the dynamic system, is applied to solve the 4D FP
equation and then the response statistics are derived. In contrast, the statistics of the roll response in the
6D extended system are evaluated directly by a 6D Monte Carlo simulation. The advantages of the 4D PI
method as well as the feasibility of simplifying the 6D system by the 4D system in terms of determining
the statistics of high-level roll response are demonstrated through various cases corresponding to dif-
ferent sea states. Furthermore, the influence of external excitations on the statistics of high roll response
levels is also illustrated by these cases.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Large amplitude roll motion in realistic seas is a serious threat
to ship stability because it can lead to damage or even capsizing of
the vessel. However, assessing the response statistics of large
amplitude roll motion excited by random wave excitations is a
challenging task. In this situation, the dynamic behaviors of the
roll motion, especially the high-level roll responses, are influenced
significantly by various effects which are nonlinear in nature or
inherently random. Principally, elaborate theoretical models as
well as appropriate mathematical techniques are essential to
analyze this kind of problem [1].

For the cases of beam seas, the roll motion can be treated as
decoupled from other motion modes and governed by a single-
degree-of-freedom (SDOF) model in which the nonlinear effects
associated with damping and restoring terms as well as the ran-
dom wave excitation term are all incorporated [2]. The metho-
dology based on the theory of Markov diffusion processes to

evaluate the stochastic roll response is attractive since the prob-
ability distribution of the roll response is governed by the Fokker–
Planck (FP) equation. However, the theory of Markov processes is
only valid for the dynamic systems excited by Gaussian white
noise. On the other hand, for the SDOF model of roll motion, the
external excitation is generally non-white.

Nevertheless, the random wave excitation term is a stationary
process with appropriate spectral density and it can be modeled as
filtered white noise or colored white noise via the shaping filter
technique. Spanos [3–5] was the pioneer in introducing the filter
algorithms to approximate the wave elevation and wave kine-
matics. Subsequently, the filter approaches were widely used to
model the wave loads and evaluate the responses of the nonlinear
systems in the field of ocean engineering (e.g. [6–11]). In this pa-
per, two different filter models, a second-order linear filter and a
fourth-order linear filter, are used to approximate the random
wave excitation process. Correspondingly, a four-dimensional (4D)
and a six-dimensional (6D) extended dynamic system are created
when the original SDOF model, a second-order nonlinear differ-
ential equation, is coupled with the filters used to generate filtered
white noise. In this regard, the coupled dynamic systems can be
viewed as excited by Gaussian white noise processes.
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However, analytical solutions of the FP equation are known
only for some linear systems and a very restricted class of non-
linear systems. Direct numerical methods aiming to solve the low-
dimensional FP equations, such as the finite-element method [12]
and the finite difference method [13] are hardly feasible for the
nonlinear extended dynamic systems with high-dimensional FP
equations. In these cases, the so-called “curse of dimension” comes
into play which means that difficulties arise due to the processing
capacity as well as the storage needed for the computation in-
creases dramatically with the dimension of the FP equations.
Therefore, several alternative techniques are developed to provide
approximate solutions to the FP equations, such as the stochastic
averaging method [2], the local statistical linearization method [9],
the Gaussian closure method [7,10], etc.

The path integration (PI) method is an efficient approximation
to find the stationary and non-stationary response probability
density functions (PDF) of the Markov dynamic systems. This
method is based on the Markov property of the dynamic system
and the evolution of the response PDF is computed in short time
steps via a step-by-step solution technique. Specifically, according
to the Chapman–Kolmogorov equation, the response PDF at a gi-
ven time instant can be obtained when the response PDF at an
earlier close time instant as well as the conditional PDF with a
Gaussian form are already known. The main advantage of the PI
method and the Markov dynamic system is that a host of accurate
and useful response statistics can be obtained within one calcu-
lation. Wehner and Wolfer [14] were the first to apply the nu-
merical PI method to solve nonlinear FP equations and then var-
ious PI procedures were developed and applied to address certain
problems in the area of engineering, e.g., [15–20] etc. In the field of
marine engineering, Naess and Johnsen [21] developed a three-
dimensional (3D) PI procedure to estimate the response statistics
of moored offshore structures and this research topic as well as the
PI technique were extended in Karlsen's research work [22]. In
their work, the PI method has been shown to be capable of pro-
viding satisfactory estimation of the stochastic response, even in
the tail region for low probability levels. Recently, this algorithm
was successfully extended to 4D for studying the stochastic roll
response of a ship in random beam seas [23,24].

Unfortunately, the PI method does suffer from a curse of di-
mensionality problem. Currently, some 4D problems can be ana-
lyzed by the PI method at an acceptable computational cost.
However, the associated computation for the 6D coupled non-
linear system is unaffordable at present. On the other hand, it may
be noted that the Monte Carlo simulation method does not suffer
critically from the curse of dimensionality problem since the sta-
tistics of the response are obtained directly from the realizations.
Basically, the Monte Carlo simulation is the simplest and most
versatile way to determine the response statistics of the dynamic
systems. For the cases of ship rolling, the nonlinear damping and
restoring moments as well as the time-dependent wave excitation
term can be directly dealt with. Even though Monte Carlo simu-
lation enables the empirical estimation of response statistics for
the 6D augmented system to be determined, this work, on the
basis of straightforward counting, is only a brute force alternative
and has its drawback at the same time. It cannot provide in-
formation at the same level of detail as the PI method [25]. Par-
ticularly, when the Monte Carlo method is applied to estimate the
statistics of large roll response with low probability levels or
evaluate different kinds of response statistics in one step, the as-
sociated computational cost as well as the efficiency would be
sacrificed in practice.

In this paper, the upcrossing rate for high-level roll responses
and the probabilities of exceedance are of central importance in
evaluation of the response statistics. The feasibility of replacing the
6D extended system by the 4D coupled system in terms of

determining the above two aspects will be discussed. The main
scheme of the proposed work is shown in Fig. 1. Specifically, for
different sea states, the response statistics calculated by the 4D PI
method will be compared with that evaluated by the pertinent 6D
Monte Carlo simulation. If the simplicity is practicable, the 4D
dynamic system and the efficient 4D PI method, with its advantage
in providing different kinds of response statistics within one cal-
culation, can be applied to address the challenge of determining
the stochastic roll response subjected to random wave excitation.
The numerical approaches as well as the results and conclusions
obtained in this work hopefully can provide useful references for
ship stability research and stochastic dynamic analysis of non-
linear systems.

2. Mathematical model of roll motion

By neglecting coupling, the rolling behavior of the vessel in
random beam seas can be represented by the following SDOF
equation:

I t B t C t M t 1θ θ θ¨( ) + ( (̇ )) + ( ( )) = ( ) ( )

where θ(t) and tθ(̇ ) are the roll angle and the roll velocity, re-
spectively. I is the virtual or total moment of inertia in roll, B is the
damping moment term, C is the restoring moment term and M(t)
represents the random wave excitation moment.

The virtual moment of inertia I, generally consists of two parts:
the moment of inertia in roll I44 and the added mass moment term
A44, i.e.

I I A 244 44= + ( )

The roll damping normally has three kinds of components: the
wave damping due to radiation at the free surface; the damping
caused by vortex shedding and flow separation as well as the
viscous friction damping. In general, these terms are coupled with
each other, hence the quantitative evaluation of the roll damping
is difficult. Nevertheless, the linear-plus-quadratic damping
(LPQD) model, which has been verified by numerous studies of
experimental data, is a good expression used in the SDOF Eq. (1).
This model is given as

Fig. 1. Main scheme of the work.
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B t B t B t t 3q44 44θ θ θ θ( (̇ )) = (̇ ) + (̇ ) (̇ ) ( )

where B44 and B44q are linear and quadratic damping coefficients,
respectively.

The restoring moment term is usually given by a nonlinear odd
function of the roll angle, i.e.

C t C t C t 41 3
3θ Δ θ θ( ( )) = ( ( ) − ( )) ( )

in which, Δ is the displacement of the vessel, C1 and C3 are the
linear and the nonlinear roll restoring coefficients of the restoring
arm, respectively. It should be noted that the roll motion has a
softening characteristic since the nonlinear stiffness term is ne-
gative. For the softening cases, ship capsizing would happen when
the roll angle exceeds the angle of vanishing stability beyond
which the restoring force becomes negative [19].

The random wave excitation moment M(t) can be described by
the wave excitation moment spectrum, SMM(ω). The latter is re-
lated to the wave energy spectrum, Sζζ(ω), by the following re-
lationship [10,26]:

S F S 5MM roll
2ω ω ω( ) = | ( )| ( ) ( )ζζ

where |Froll(ω)| represents the roll moment amplitude per unit
wave height at frequency ω. It is the transfer function between the
wave energy spectrum and the wave excitation moment spectrum
and it depends on ship geometry and frequency ω. Generally, for
beam seas, long waves with low frequencies are effective for roll
motion, but the excitation due to short waves with high fre-
quencies is almost negligible [27]. Moreover, the wave elevation
and the wave excitation moment are assumed to be stationary
Gaussian processes.

Dividing Eq. (1) by (I44þA44), the final form of the differential
equation is given as

t b t b t t c t c t m t 6q44 44 1 3
3θ θ θ θ θ θ¨( ) + (̇ ) + (̇ ) (̇ ) + ( ) − ( ) = ( ) ( )

where b44, b44q, c1, c3 are relative roll parameters [24]. In this case,
the spectrum of the relative wave excitation moment, Smm(ω), can
be expressed as

S F S I A/ 7mm roll
2

44 44
2ω ω ω( ) = ( ) ( ) ( + ) ( )ζζ

Moreover, the natural frequency of the roll motion, ω0, is de-
termined as

C I A c/ 80 1 44 44 1ω = Δ ( + ) = ( )

Finally, the SDOF model (6) can be transformed into the state-
space equation written as

⎪

⎪⎧⎨
⎩

dx x dt

dx b x b x x c x c x x dt 9q

1 2

2 44 2 44 2 2 1 1 3 1
3

3

=

= ( − − − + + ) ( )

where x1¼θ(t), x2¼ tθ(̇ ), and x3¼m(t).

3. Shaping filter technique

General filtering techniques are available only for the stationary
stochastic processes [6]. Thus, the relative wave excitation mo-
ment m(t) can be approximated quite satisfactory by a suitable
shaping filter. The linear filtering theory is widely used in the
engineering community due to its simplicity and practicality.
Dostal et al. [9] proposed a second-order linear filter and a fourth-
order linear filter to model the narrow-banded target spectrum
and these two filters are also available for the desired spectrum,
Smm(ω).

In this case, the relative wave excitation moment, Smm(ω) can

be approximated by the following second-order linear filter:

⎪

⎪⎧⎨
⎩

dx x x dt dW

dx x dt 10

3 4 3

4 3

β γ
α

= ( − ) +
= − ( )

where x3 and x4 are the state variables in the filter equation with
x3 representing the filter output m(t). dW(t)¼W(tþdt)�W(t) is
the increment of a Wiener process with E{dW(t)}¼0 and E{dW(t)
dW(tþdt)}¼δ(dt), δ( � ) represents the Dirac delta function. Fur-
thermore α, β, γ are the parameters of the second-order linear
filter. The spectrum generated by the differential equation (10) is
given as

S
1

2 11
2nd

2 2

2 2 2ω
π

γ ω
α ω βω

( ) =
( − ) + ( ) ( )

The fourth-order linear filter that represents a more accurate
approximation is given by the following differential equation:

⎧

⎨
⎪⎪

⎩
⎪⎪

dx x x dt

dx x x dt dW

dx x x dt

dx x dt 12

5 6 1 5

6 7 2 5 1

7 8 3 5

8 4 5

λ
λ γ

λ
λ

= ( − )
= ( − ) +

= ( − )
= − ( )

where x5, x6 ,x7 and x8 are variables introduced for the state-space
representation and x5 represents the filter output m(t). The spec-
trum generated by Eq. (12) will have the following form:

S
1

2 13
4th

1
2 4

1
2 2

1
2

2
2 2

2
2ω

π
γ ω

β ω α ω β ω α ω
( ) =

[( − ) + ( ) ][( − ) + ( ) ] ( )

where the parameters α1, α2, β1, β2 and γ1 are the parameters in
the fourth-order linear filter and the parameters λ1, λ2, λ3, and λ4
in Eq. (12) can be determined by the following relationship:
λ1¼α1þα2, λ2¼β1þβ2þα1α2, λ3¼α1β2þα2β1, λ4¼β1β2.

The parameters α, β, γ in the second-order filter and α1, α2, β1,
β2, γ1 in the fourth-order filter are determined by a least-square
algorithm which is utilized for fitting of the target spectrum,
Smm(ω). The bandwidth and the peak frequency of the filtered
spectra can be adjusted by changing the values of these para-
meters. It is worth emphasizing that the filtered spectra (11) and
(13) are double-sided, while the wave spectrum and the wave
excitation spectrum are physically single-sided. This difference
must be considered in the practical simulation.

By combining the governing equation of the roll motion (9)
with the second-order filter (10), the extended dynamic system is
formed. Therefore, the roll motion in random beam seas can be
described by the following 4D state-space equation:

⎧

⎨
⎪⎪

⎩
⎪⎪

dx x dt

dx b x b x x c x c x x dt

dx x x dt dW

dx x dt 14

q

1 2

2 44 2 44 2 2 1 1 3 1
3

3

3 4 3

4 3

β γ
α

=

= ( − − − + + )

= ( − ) +
= − ( )

The 6D state-space equation for modeling the stochastic roll
motion can be established in the similar way, i.e., by integrating
the SDOF model (9) and the fourth-order filter (12).

4. Path integration method

Eq. (14) represents a Markov dynamic system driven by Gaus-
sian white noise [28]. It can be expressed as an Itô stochastic dif-
ferential equation (SDE):

d t dt t d tx a x b W, 15= ( ) + ( ) ( ) ( )
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where x(t)¼(x1(t),…,x4(t))T is a four-dimensional state space vec-
tor process, the vector a(x,t) denotes the drift term and b(t)dW(t)
is the diffusive term. The vector dW(t)¼W(tþdt)�W(t) represents
independent increments of a standard Wiener process.

The solution x(t) to Eq. (15) is a Markov process and its tran-
sition probability density (TPD), also known as the conditional
PDF, p(x,t | x′,t′) satisfies the FP equation which is casted in the
following form:

t
p t t

x
a t p t t

x x
t t p t t

x x x x x

b b x x

, , , , ,

1
2

, ,
16

i i
i

i j i j

T
ij

1

4

1

4

1

4 2

∑

∑ ∑

′ ′

′

∂
∂

( | ′) = − ∂
∂

( ) ( | ′)

+ ∂
∂ ∂

( ( )⋅ ( )) ( | ′)
( )

=

= =

Unlike direct numerical techniques, such as the finite-element
method and the finite difference method, aiming to solve the FP
Eq. (16) and obtain the TPD directly, the PI method captures the
probabilistic evolution of the process x(t) by taking advantage of
the Markov property. In principle, the PI method is an approx-
imation approach and the PDF of the process x(t) can be de-
termined by the following basic equation, i.e., the well-known
Chapman–Kolmogorov equation:

p t p t t p t dx x x x x, , , , 17R4∫ ′ ′ ′( ) = ( | ′) ( ′) ( )

where
d dxx i i1

4′ = ∏ ′= .
Specifically, the value of the PDF at time t, p(x,t), can be cal-

culated by Eq. (17) with the value of previous PDF at time t′ as well
as the value of conditional PDF, p(x,t | x′,t′). For a numerical solu-
tion of the SDE (15), a time discrete approximation should be in-
troduced. Naess and Moe [15] proposed a fourth-order Runge–
Kutta–Maruyama (RKM) discretization approximation:

t t t t t t tx x r x b W, 18( ) = ( ‵) + ( ( ‵) ‵)Δ + ( ‵)Δ ( ‵) ( )

where the vector r(x(t′), t′) is the explicit fourth-order Runge–
Kutta approximation or Runge–Kutta increment. Since W(t) is a
Wiener process, the independent increment ΔW(t′)¼W(t)�W(t′)
is a Gaussian variable for every t′.

If we consider only the deterministic part of Eq. (15), the ap-
proximation (18) reduces to the fourth-order Runge–Kutta ap-
proximation x(t)¼x(t′)þr(x(t′),t′)Δt. Experiments have shown
that, for the Markov systems, the accuracy associated with ap-
proximating the deterministic terms is the most important [16]. In
this regard, the accuracy of the fourth-order RKM approximation is
satisfactory since the fourth-order Runge–Kutta approximation
follows the time evolution of the deterministic part of Eq. (15)
with an accuracy to the order of O(Δt5).

The time sequence i tx i 0{ ( ⋅Δ )} =
∞ is a Markov chain and it can

approximate the time-continuous Markov process solution of the
SDE (15) when the time increment Δt¼t�t′ is sufficiently small.
Moreover, the conditional PDF of the process x(t), p(x,t |x′,t′), fol-
lows a (degenerate) Gaussian distribution and it can be written as
(see also [21])

p t t x x r t x x r t

p x t x t x x r t

x x x x

x

, , , ,

, , , 19

1 1 1 2 2 2

3 3 4 4 4

δ δ

δ

‵ ‵ ‵

‵

( | ‵) = ( − ‵ − ( Δ ))⋅ ( − ‵ − ( Δ ))

⋅~( | ‵ ‵) ⋅ ( − ‵ − ( Δ )) ( )

where p x t x t, ,3 3˜( | ′ ′) is given by the relation

⎪ ⎪

⎧⎨
⎩

⎫⎬
⎭p x t x t

t

x x r t

t

x
, ,

1

2
exp

,
2 20

3 3 2
3 3 3

2

2πγ γ
‵~( | ‵ ‵) =

Δ
⋅ −

( − ‵ − ( Δ ))
Δ ( )

in which ri(x′, Δt), i¼1,2,3,4, are the Runge–Kutta increments
for the state space variables.

Since the expression for the conditional PDF is known, the time

evolution of the PDF of x(t) can be determined by the iterative
algorithm (21) if an initial PDF p(x(0), t0) is given

p t p t t

p t d d

x x x

x x x

, , ,

, 21

R R i

n
i

i
i

i

n

1

1
1

0
0

0 1

4 4∫ ∫ ∏( ) = ⋯ ( | )

⋅ ( ) … ( )
=

( ) ( − )
−

( ) ( ) ( − )

where x¼x(n), t¼tn¼t0þn �Δt.
Eq. (21) describes the mathematical principle of the PI ap-

proach. In this work, the initial PDF p(x(0), t0) is chosen as a qua-
ternary Gaussian PDF in four dimensions with zero mean and
variances evaluated by a simple Monte Carlo simulation [16]. The
straightforward Monte Carlo simulation ensures that the initial
quaternary Gaussian PDF includes all the information corre-
sponding to the selected parameters of the dynamic system, and it
also provides a rational computational domain for the subsequent
simulation [18]. As for the numerical implementation of the
iterative algorithm (21), it represents the PDF at the previous time
t′ as an interpolating spline surface via Parabolic B-spline and then
it evaluates the PDF at time t by several specific steps. The nu-
merical iterative algorithm and the associated specific computa-
tional steps have been systematically described by Iourtchenko
et al. [29] and Yurchenko et al. [30]. Furthermore, the capability of
the PI method in producing accurate and reliable solutions for the
stochastic dynamic systems has been demonstrated by numerous
examples [15,16].

5. Numerical results

In this section, the performance of the proposed 4D PI method
for roll response prediction and the feasibility of simplifying the
6D dynamic system by means of the 4D dynamic system in terms
of evaluating the important statistics of the roll response will be
presented.

5.1. Stochastic roll response in random seas

An ocean surveillance ship in Ref. [10] is considered for the
numerical simulation in order to study the stochastic roll response.
The main parameters of the vessel are stated in Table 1, and Fig. 2
presents the GZ curve of the real ship.

In this work, the random stationary sea state is specified by the
modified Pierson–Moskowitz (P–M) spectrum, which is widely
used for the fully developed sea states. The wave spectrum is given
as

S
g H

T

5.058
exp 1.25

22
s

p

p
2 2

4 5

4

4
ω

ω

ω

ω
( ) = ( − )

( )
ξξ

where Hs denotes the significant wave height, ωp is the peak fre-
quency at which the wave spectrum Sξξ(ω) has its maximum, and
Tp is the corresponding peak period.

The sea state with Hs¼4.0 m, Tp¼11.0 s is selected for the

Table 1
List of ship parameters.

Parameters Dimensional value

I44þA44 5.540�107 kg m2

Δ 2.017�107 N
b44 0.095 s�1

b44q 0.0519
c1 1.153 s�2

c3 0.915 s�2

ω0 1.074 rad/s
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subsequent study. Fig. 3 presents the selected wave energy spec-
trum, Sζζ(ω) and roll excitation moment per unit wave height, |
Froll(ω)|. Then the wave excitation moment spectrum, SMM and the
relative wave excitation moment spectrum Smm for the selected
sea state are determined by Eqs. (5) and (7), respectively.

After determining the target spectrum Smm, the parameters α,
β, γ in the second-order filter (10) and the parameters α1, α2, β1,
β2, γ1 in the fourth-order filter (12) are obtained by minimizing the
square errors between the filtered spectrum and the desired
spectrum. In this regard, the least square algorithm is available in
the curve fitting applications of MATLAB. The fitting results for the
two linear filters are shown in Figs. 4 and 5. It can be readily seen
that both of the filtered spectra are satisfactory in terms of
bandwidth, peak frequency and peak value, while the fourth-order
linear filter in Fig. 5 represents a better fitting precision. Particu-
larly, for the roll motion cases, the transfer function between the
wave excitation term and the roll response in the SDOF model (1)
is narrow-banded due to the light roll damping. Therefore, in
Fig. 4, for the selected ship model, the obvious discrepancies be-
tween the spectrum generated by the second-order linear filter
and the target spectrum in the low-frequency and the high-fre-
quency regions would not impact the subsequent roll responses
significantly. Whereas, the fitting accuracy near the natural roll

frequency, ω0, is crucial for evaluating the roll response because
the latter is sensitive to the variation of the external excitation in
the critical frequency region near ω0.

In Fig. 4, a slight discrepancy between the two spectra in the
critical region can be observed. Thus, we introduce a constant, c,
which serves as a correction factor for the second-order filter in
order to decrease the discrepancy in this region. Then, the filtered
spectrum (11) changes to the following expression:

S
c1

2 23
2nd

2 2

2 2 2ω
π

γ ω
β ω αω

( ) = ( ⋅ )
( − ) + ( ) ( )

In this work, for the selected sea state and vessel model, the
correction factor c is taken to be 1.07 by considering the mean
difference between the two spectral densities in the critical region.
The corrected spectrum in the critical region is also presented in
Fig. 4. In addition, for the same ship model, the value of the cor-
rection factor c would vary slightly for different sea states and the
rationality of introducing the correction factor will be verified by
the following study with the assistance of Monte Carlo simulation.

Fig. 2. GZ curve for the selected vessel.

Fig. 3. Wave energy spectrum Sζζ(ω) and roll excitation moment per unit wave
height, |Froll(ω)| [10].

Fig. 4. Relative wave excitation moment spectrum and the second-order filtered
spectrum, the corrected filtered spectrum (part) for the sea state with Hs¼4.0 m,
Tp¼11.0 s.

Fig. 5. Relative wave excitation moment spectrum and the fourth-order filtered
spectrum for the sea state with Hs¼4.0 m, Tp¼11.0 s.
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As described in Section 3, the 4D dynamic system and 6D dy-
namic system are established after the work of spectrum fitting.
For the 4D system, the joint probability density function (PDF) of
the roll angle and the roll velocity can be obtained directly by the
4D PI method. The joint PDF of the roll response for the selected
sea state calculated by the 4D PI method is presented in Fig. 6,
while Fig. 7 displays the joint PDF evaluated by Monte Carlo si-
mulation. The joint PDF of the roll response yielded by the 4D PI
approach is found to be in good agreement with the results ex-
tracted from the 6D Monte Carlo simulation. It can be observed in
Figs. 6 and 7 that the PDF of the roll response is symmetric. Fur-
ther, the mean upcrossing rate of the roll response can be de-
termined by the Rice formula (24), benefiting from the joint PDF of
the roll response obtained by the 4D PI approach:

v t f t d; , ; 240
∫ζ θ ζ θ θ( ) = ̇ ( ̇ ) ̇

( )θθ
+

∞
̇

where vþ(ζ;t) denotes the expected number of upcrossing for the
ζ-level per unit time at time t by the roll angle process θ(t),

f t, ;θ θ( ̇ )θθ ̇ is the joint PDF of the roll angle and the roll velocity at
time t.

For nonlinear ship rolling in random beam seas, due to the
presence of negative nonlinear stiffness term in the SDOF model
(6), ship capsizing may happen when the predetermined simula-
tion time T is long enough or the intensity of the external excita-
tion is strong enough. We should note that the response of the
dynamic system with softening stiffness, e.g. the SDOF model (6)
with negative nonlinear stiffness term, is not strictly stationary.
Nevertheless, if the meantime to capsize is long enough, the dy-
namic system can be regarded as a highly reliable system and the
corresponding roll response reaches stationarity in an approx-
imate sense [2].

The advantage of the PI method is noticeable, i.e. sufficient
response statistics can be obtained within one simulation. How-
ever, the main drawback of this technique is that the computation
cost is unaffordable for the 6D nonlinear coupled system. Whereas,
the Monte Carlo simulation for the 6D system is attractive due to
its simplicity and versatility and the curse of dimension problem
does not influence it so much. The numerical calculation and the
counting procedure in order to obtain the response statistics re-
quire significant effort in connection with the Monte Carlo simu-
lation. Since we focus on the two important aspects of response
statistics, i.e., the upcrossing rate of high-level roll response and
the probability of exceedance for the specific high levels, the
Monte Carlo simulation can serve as an alternative way to evaluate
the above two aspects for the 6D system.

For the 6D dynamic system, the fourth-order RKM method is
applied to solve the corresponding SDE and then the time series of
the roll response are obtained. In the numerical simulation, ship
capsizing is assumed to occur if the roll angle process exceeds the
positive or negative angle of vanishing stability and then the single
realization is terminated because the subsequent roll angle pro-
cess θ(t) will exceed π/2 or �π/2 rapidly. A large number of rea-
lizations are required for evaluating the response statistics, espe-
cially for the high-level responses with low probability levels and
the appropriate sample mean value of the upcrossing rate can be
obtained as

v
n T

T

;
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=

where n T;i iξ( )+ denotes the counted number of upcrossing of the
level ζ within a time duration of length Ti for simulated time
history no. i. The practical simulation time Ti is not fixed for each
simulation, it is equal to the predetermined simulation time T if no
capsizing occurs. Otherwise, it is the value of the termination time
ti for each case where capsizing occurs [31].

Moreover, the number of realizations, k, e.g. k¼1000–5000, is
selected according to the values of the upcrossing rates in the tail
region and the length of the predetermined simulation time T.
Usually, low upcrossing rates and short time periods T correspond
to a large simulation number k. A fair approximation of the 95%

confidence interval, CI0.95, for the value of v ζ^ ( )
+

can be expressed
as (e.g. [32])
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where the empirical standard deviation s ξ^( ) is given as
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For the selected sea state, the marginal PDF of the roll angle
process calculated by the 4D PI approach and the empirical PDF

Fig. 6. Joint PDF of the roll response obtained by the 4D PI method for the sea state
with Hs¼4.0 m, Tp¼11.0 s.

Fig. 7. Joint PDF of the roll response obtained by the 6D Monte Carlo simulation for
the sea state with Hs¼4.0 m, Tp¼11.0 s.
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evaluated by the 6D Monte Carlo simulation are plotted in Fig. 8. In
Fig. 9, the mean upcrossing rate obtained by the 4D PI approach
and the Rice formula (24) and the empirical estimation of the
upcrossing rate v ζ^ ( )

+
as well as the 95% confidence interval pro-

vided by the Monte Carlo simulation are plotted. Moreover, both of
Figs. 8 and 9 are plotted with a logarithmic scale along the vertical
axis. In the 6D Monte Carlo simulation, the simulation number k is
selected to be 3000 and the predetermined simulation time T is
1.0�105 s (about 17,030 natural roll periods) for each simulation.
Comparing the marginal PDF of the roll angle process and the
upcrossing rate evaluated by the 4D PI method with the pertinent
6D Monte Carlo simulation results demonstrate a satisfactory level
of agreement, even in the large roll response region.

Fig. 10 shows the spectra of roll responses generated by the 4D
dynamic system and the 6D dynamic system. Specifically, the
random seeds for generating white noise processes are kept the
same in these two systems for the selected sea state. The white
noise processes are filtered and the corresponding RKM algo-
rithms are applied to solve the equations and generate the

samples of the roll responses. In Fig. 10, the response spectra are
narrow banded and peaked near the natural roll frequency due to
the light roll damping. Even though there are slight discrepancies
in some local regions, the agreement of these two spectra is ac-
ceptable on the whole. Moreover, the satisfactory result in Fig. 10
corroborates the fact observed in Figs. 6–9, i.e., that the statistics of
the roll responses generated by the two different systems exhibit
satisfactory agreements.

In conclusion, the acceptable agreements of the two sets of
response statistics obtained by the different approaches, as shown
in Figs. 6–9, verifies the capability of the 4D PI method in pro-
viding accurate and reliable results. The satisfactory results in
these Figures in combination with the good agreement in Fig. 9
also illustrate the rationality of introducing the correction factor c
into the second-order linear filter (11).

5.2. Influence of the wave excitations on the statistics of large roll
response

In this part, the research effort is devoted to study the up-
crossing rates for the large roll response angles as well as the
exceedance probabilities for the specific high level for different sea
states. As we can see in Eq. (22), for the selected modified P–M
spectrum, the wave energy spectrum is determined by two para-
meters, i.e., the peak period Tp and the significant wave height Hs.
Obviously, these two factors also influence the wave excitation
spectrum, SMM(ω) and the statistics of roll response. To highlight
the effects of these two parameters individually, the coefficients of
the ship model and the wave spectrum are assumed to be constant
in the numerical simulations except the parameter whose effect is
going to be studied.

Firstly, we investigate the effects of peak period by introducing
four sea states with the value of significant wave height fixed to
4.0 m. The peak periods increase linearly from 10.0 to 11.5 s (with
5% increment). The spectra for these four sea states are shown in
Fig. 11, while Fig. 12 displays the corresponding relative wave ex-
citation spectra. It can be seen in Figs. 11 and 12 that when the
peak frequency of the wave energy spectrum is close to the peak
frequency of the transfer function |Froll(ω)|, the subsequent wave
excitation spectrum has a large peak value as well as a large
spectral area, which means that the close peak frequencies of the
above two terms lead to intensive roll excitation energy. This
phenomenon can be viewed as a kind of resonance effect.

Fig. 8. Marginal PDF of the roll angle process θ(t) obtained by the 4D PI method and
the 6D Monte Carlo simulation (MCS), for the sea state with Hs¼4.0 m, Tp¼11.0 s.

Fig. 9. Upcrossing rates obtained by the 4D PI method and the 6D Monte Carlo
simulation (MCS), for the sea state with Hs¼4.0 m, Tp¼11.0 s.

Fig.10. Roll response spectra for the 4D dynamic system and the 6D dynamic
system for the sea state with Hs¼4.0 m, Tp¼11.0 s.
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Moreover, for the selected ship model, the resonance increases the
value of Smm in the critical frequency region near ω0. The fitting
results of the second-order filter and the fourth-order filter for
these relative excitation spectra are shown in Table 2.

When the roll angle is near or beyond the maximum of the GZ
curve, it can be regarded as a large roll response [33]. In addition,
the International Maritime Organization (IMO) has specific re-
quirements for the static stability in the large roll region. Referring
to the 2008 Intact Stability (IS) code [34], we select θ¼30–50° as

the large roll region for the subsequent study. Fig. 13 presents the
upcrossing rates in this region for these sea states with different
peak periods. The two sets of upcrossing rates are determined by
the 4D PI method and the 6D Monte Carlo simulation, respectively.
For each case, the correction factor c is introduced into the second-
order filter and it can be seen that the resonance effect increases
the intensity of external excitation and then leads to large roll
response. Obviously, the upcrossing rates of the large roll response
evaluated by the 4D PI approach experience a good agreement
with the pertinent 6D Monte Carlo simulation data.

Generally, there are two types of intact stability failures: total
intact stability failure and partial intact stability failure [35]. Ship
capsizing is defined as the former category, while the latter can be
associated with exceeding large or extreme roll angles, such as the
flooding angle θf, which may lead to damage of the vessel. In this
work, we set the value of flooding angle to 50°, as shown in Fig. 2.
If the assumption of statistically independent upcrossing or ex-
ceedance is valid for this specific high level, the stability failure
event can be evaluated by means of the Poisson estimate. There-
fore, for the 4D system with highly reliable property, the prob-
ability that the process θ(t) exceeds the specific high level, θf
during a time interval of length T can be approximated as

P T v t dt v T, 1 exp ; 1 exp 28PI f

T

f f
0

∫θ θ θ( ) = − ( − ( ) ) = − ( − ( )⋅ ) ( )
+ +

where vþ(θf) represents the mean upcrossing rate of the level θf at
a suitable reference point in time, which can be determined di-
rectly by the PI method and the Rice formula (24).

For the 6D dynamic system, the probability of exceeding the
level θf during the predetermined simulation time T, PMC(θf,T) can
be evaluated by the 6D Monte Carlo simulation, i.e., running a
sufficient number, Nt, of simulations with the same predetermined
simulation T and then ranked the simulated maximum roll angles
in ascending order [36]. The exceedance probability PMC converges
towards a normal distribution for a large number of realizations.
Thus, the 95% confidence interval of the exceedance probability,
ΔP, can be calculated by the following equation [37]:

P
N

P T P T1.96
2

, 1 ,
29t

MC f MC fθ θΔ = ⋅ ( )⋅( − ( ))
( )

Fig.11. Wave energy spectra for the sea states with different peak periods and roll
excitation moment per unit wave height.

Fig.12. Relative wave excitation spectra for the sea states with different peak
periods.

Table 2
Parameter values of the second-order filter (14) and the fourth-order filter (16) for
the sea states with different peak periods.

Sea states Second-order filter Fourth-order filter

Hs (m) Tp (s) α β γ λ1 λ2 λ3 λ4 γ1

4.00 10.0 0.561 0.370 0.0467 0.931 1.573 0.550 0.393 0.0390
4.00 10.5 0.527 0.371 0.0453 0.939 1.498 0.519 0.347 0.0379
4.00 11.0 0.495 0.366 0.0432 0.932 1.429 0.486 0.309 0.0362
4.00 11.5 0.457 0.366 0.0417 0.938 1.367 0.460 0.275 0.0350

Fig.13. Upcrossing rates of high-level roll responses for the sea states with different
peak periods determined by the 4D PI method and the 6D Monte Carlo simulation
(MCS), Case A: Hs¼4.0 m, Tp¼10.0 s; Case B: Hs¼4.0 m, Tp¼10.5 s; Case C:
Hs¼4.0 m, Tp¼11.0 s; Case D: Hs¼4.0 m, Tp¼11.5 s.
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Finally, the range of error tolerance of the exceedance prob-
ability can be given as follows:

P T P P P T P, /2 , /2 30MC f MC fθ θ( ) − Δ ≤ ≤ ( ) + Δ ( )

In this work, for each sea state, we run 10 groups of numerical
simulations to evaluate the probability of exceedance for the level
θf. Each group includes a sufficient number, Nt¼5000, of realiza-
tions as well as unique random seeds for generating the random
wave excitations (i.e., the filtered white noise processes). There-
fore, the exceedance probability evaluated by the 6D Monte Carlo
simulation is the ensemble average of the 10 exceedance
probabilities.

The time duration, T, for Eqs. (28) and (30) is selected to be 1 h.
Subsequently, the results for the exceedance probabilities esti-
mated by the two different methods are stated in Table 3 and the
estimated 95% confidence intervals are also given in the Table. It is
seen that the exceedance probabilities evaluated by the 4D PI
method based on the Poisson assumption of the exceedance
events agree with the empirical estimation of exceedance prob-
abilities obtained via the 6D Monte Carlo simulation. The fact that
resonance causes large roll response can also be observed in Ta-
ble 3, i.e. the resonance leads to a large exceedance probability for
the specific high level.

Secondly, the influences of the significant wave height Hs on
the wave excitation spectra and the statistics of large roll response
are considered. In this case, a similar analysis as previously stated
is conducted by keeping the peak period of the wave energy
spectra fixed to 11.0 s, while the values of the four significant wave
heights vary linearly through 4.50–3.75 m. Accordingly, the sub-
sequent relative wave excitation spectra are presented in Fig. 12
and the fitting results for the four relative wave excitation spectra
are shown in Table 4. It is worth pointing out that the four spectra
in Fig. 14 have the same peak frequency and the values of the
parameters in the filters are almost unchanged for these sea states
except the parameter γ in the second-order filter and γ1 in the
fourth-order filter which determine the peak values of the filtered
spectra. However, as shown in Table 2, for the previous case, most
of the parameters in the filters would change for the sea states
with different peak periods.

In Fig. 15, the upcrossing rates of high roll response levels, for
the sea states with different significant wave heights, obtained by
the 4D PI method and the 6D Monte Carlo simulation are plotted.
Further, for the selected sea states, the exceedance probabilities for

the specific high level evaluated by these two approaches are
presented in Table 5. The predetermined simulation time, the
realization numbers as well as the other parameters for the 6D
Monte Carlo simulation are kept the same as in the previous study.
As shown in Eqs. (22) and (7), the spectral density of the wave
energy spectrum and the spectral density of relative wave ex-
citation spectrum are proportional to the square of the significant

Table 3
Comparison of exceedance probabilities for the level θf for sea states with different
peak periods obtained by the 4D PI method and the 6D Monte Carlo method,
T¼1 h.

Hs (m) Tp (s) PPI PMC CI0.95

4.00 10.0 0.2186 0.2040 (0.1928, 0.2152)
4.00 10.5 0.0690 0.0656 (0.0587, 0.0725)
4.00 11.0 0.0192 0.0225 (0.0184, 0.0266)
4.00 11.5 0.0041 0.0047 (0.0028, 0.0066)

Table 4
Parameter values of the second-order filter (14) and the fourth-order filter (16) for
the sea states with different significant wave heights.

Sea states Second-order filter Fourth-order filter

Hs (m) Tp (s) α β γ λ1 λ2 λ3 λ4 γ1

4.50 11.0 0.495 0.365 0.0486 0.931 1.428 0.485 0.309 0.0406
4.25 11.0 0.495 0.367 0.0458 0.934 1.428 0.486 0.309 0.0388
4.00 11.0 0.495 0.366 0.0432 0.932 1.429 0.486 0.309 0.0362
3.75 11.0 0.495 0.368 0.0405 0.932 1.429 0.486 0.309 0.0340

Fig.14. Relative wave excitation spectra for the sea states with different significant
wave heights.

Fig.15. Upcrossing rate of the high-level roll responses for the sea states with
different significant wave heights, determined by the 4D PI method and the 6D
Monte Carlo simulation (MCS), Case a: Hs¼4.50 m, Tp¼11.0 s; Case b: Hs¼4.25 m,
Tp¼11.0 s; Case c: Hs¼4.00 m, Tp¼11.0 s; Case d: Hs¼3.75 m, Tp¼11.0 s.

Table 5
Comparison of exceedance probabilities for the level θf for the sea states with
different significant wave heights obtained by the 4D PI method and the 6D Monte
Carlo method, T¼1 h.

Hs (m) Tp (s) PPI PMC CI0.95

4.50 11.0 0.1706 0.1729 (0.1624, 0.1834)
4.25 11.0 0.0610 0.0618 (0.0551, 0.0685)
4.00 11.0 0.0192 0.0225 (0.0184, 0.0266)
3.75 11.0 0.0045 0.0046 (0.0027, 0.0067)
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wave height. Therefore, the increase in significant wave height
results in large roll response which can be observed in Fig. 15 and
Table 5. Moreover, the response statistics, i.e., the upcrossing rates
for high roll response levels in Fig. 15 and the exceedance prob-
abilities in Table 5, evaluated by the two different approaches
demonstrate satisfactory agreements.

The effects of the peak period and significant wave height on
the large roll response as well as on the exceedance probability for
the specific high level, θf have been investigated. Both of the two
parameters have significant influences on the wave excitation
moments and the subsequent roll response, but they are based on
different mechanisms. The former parameter enhances the roll
response by means of resonance, while the latter serves to in-
tensify the wave energy spectrum. It can also be observed that the
large roll response is sensitive to the variation of the wave ex-
citation. Moreover, the variations of the two parameters are linear,
whereas the variations of the corresponding roll response are
evidently nonlinear, which clearly illustrate the nonlinear char-
acteristics of the dynamic systems.

More importantly, the good agreements of the two sets of
statistics obtained by the 4D PI method and the 6D Monte Carlo
simulation, which can be observed in Figs. 13 and 15; Tables 3 and
5 demonstrate the same conclusion as stated at the end of Section
5.1, i.e., that the 4D PI method is capable of providing reliable
estimation of the response statistics, even for high level responses
with low probability levels. Furthermore, the satisfactory agree-
ments of the exceedance probabilities in Tables 3 and 5 illustrate
the rationality of the assumption of statistically independent up-
crossings and the Poisson estimate for the specific high level, θf.
The 4D PI method obtains the two sets of statistics within one
calculation, whereas, for the 6D Monte Carlo simulation, a large
amount of repeated calculations and counting procedures have to
be conducted for each set of response statistics. The computation
time for the 4D PI method with 644 nodes (i.e., the grid number is
64 in each direction) applied to a given 4D system is around 5 h on
a personal computer. As for the computational effort of the 6D
Monte Carlo simulation for determining all kinds of response
statistics, it depends on the probability levels in the tail region and
would be around 0.5–2.0 times of that for the 4D PI method.
Moreover, the computation cost of the Monte Carlo simulation for
the probability level lower than 10−7 is formidable. In the mean-
time, for the high-level response, the statistics obtained by the
Monte Carlo simulation are suffering from uncertainties.

On the basis of the calculations and results above, we can draw
the conclusion that with the assistance of the correction para-
meter, c, the 4D extended system (14) can serve as an effective
alternative to the corresponding 6D system in terms of de-
termining the important statistics of roll response. In this regard,
the 4D dynamic system and the 4D PI method enables an appro-
priate theoretical model as well as an efficient numerical techni-
que, respectively, to be applied for the study of stochastic roll
response.

6. Conclusions

In this paper, a second-order linear filter and a fourth-order
linear filter have been introduced to model the random wave ex-
citations associated in the roll motion. In this regard, a four-di-
mensional (4D) dynamic system and a six-dimensional (6D) dy-
namic system were established to evaluate the statistics of high-
level roll responses when subjected to random wave excitations.
Specifically, relying on the Markov properties of the 4D dynamic
systems, the 4D PI method was introduced to solve the FP equa-
tion of the 4D system and then the response statistics, such as the
upcrossing rates and the exceedance probabilities for the specific

extreme roll angle were derived. For the 6D system, the response
statistics were evaluated directly by 6D Monte Carlo simulations.

The main accomplishment of the present work is that the 4D
dynamic system can serve as an efficient alternative to the 6D
dynamic system in terms of determining the important response
statistics. In this regard, a correction factor, c should be introduced
in connection with the second-order filter. The idea is based on the
property of light roll damping and it aims to improve the fitting
accuracy of the second-order filter in the critical region near the
natural roll frequency. Sea states with different peak periods and
sea states with different significant wave heights were used as
examples to demonstrate the versatility of the simplification. The
influences of the peak period and significant wave height on the
wave excitation spectrum and the subsequent roll response have
also been investigated. The satisfactory agreement of the response
statistics obtained by the 4D PI approach and 6D Monte Carlo si-
mulation demonstrates the rationality and feasibility of the
simplification.

Furthermore, the high accuracy of the roll response statistics
provided by the 4D PI technique illustrates the great performance
and high efficiency of the 4D PI method in calculating the statistics
of the high roll response levels when subjected to random wave
excitation.
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a b s t r a c t

Nonlinear ship rolling in random seas is a serious threat to ship stability. In this work, the dynamic
stability of the vessel in random seas is evaluated by means of probabilistic methods. Specifically, the
Markov diffusion theory is applied in order to study the stochastic aspects of the roll motion driven by
random wave loads. The roll motion is modeled as a single-degree-of-freedom (SDOF) model in which
the nonlinear damping and restoring terms as well as the random wave excitation are all incorporated.
The stationary wave excitation moment in the SDOF model is represented as a filtered white noise by
employing a second order linear filter. Therefore, a four-dimensional (4D) Markov dynamic system is
established by combing the SDOF model with the linear filter model. Because the probabilistic property
of the 4D Markov system is governed by the Fokker–Planck (FP) equation, the response statistics of roll
motion can be obtained by solving the FP equation via an efficient 4D path integration (PI) method,
which is based on the Markov property of the coupled dynamic system. Furthermore, the random wave
excitation is approximated by an equivalent Gaussian white noise, and a two-dimensional (2D) PI
technique is applied in order to obtain the response statistics of the dynamic system driven by this
Gaussian white noise. The rationality and accuracy of applying the equivalent Gaussian white noise to
simulate nonlinear ship rolling in random seas is studied. Moreover, the accuracy of the response sta-
tistics computed by the 4D and 2D PI techniques is verified by means of the versatile Monte Carlo si-
mulation technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ship sailing in random beam seas is considered as the worst
condition with respect to navigation ability. Under such circum-
stance, roll resonance caused by wave excitation may lead to large
amplitude roll motion or even capsizing. Nonlinear roll motion in
random seas is one of the main reasons leading to stability failure.
However, the current criteria of the International Maritime Orga-
nization (IMO) for evaluation of the intact stability are simply
based on hydrostatic analysis [1]. There is no consideration with
respect to the dynamic behaviors associated with the non-
linearities of roll damping and restoring terms as well as the
randomness of wave excitation, which are important for stability
assessment. With the awareness of the deficiencies of the current
criteria for dynamic stability evaluation, the IMO is currently de-
veloping the next generation of intact stability criteria with a
certain consideration of the physics associated with the dynamics

of nonlinear roll motion and the randomness of wave excitation
and roll response. For the direct assessment of ship dynamic sta-
bility in the framework of the next generation of intact stability
criteria currently being developed, elaborate theoretical models as
well as appropriate mathematical techniques are essential.

In this work, the dynamic stability in random seas is evaluated
by means of a probabilistic approach, which means that the
nonlinear stochastic roll response is in focus. Actually, prediction
of the stochastic roll response is crucial for reliability based design
and operation in practice, and also the response statistics are
commonly used to characterize the dynamics of a random system.
For the case of beam seas, the rolling ship is described as a single-
degree-of-freedom (SDOF) system subjected to random external
forcing and the nonlinearities associated with the damping and
restoring terms are incorporated. However, for such nonlinear
models, assessing the statistics of high-level response and the
corresponding low probability levels is a difficult task, and limited
progress has been made in the past decades [2].

The methodology based on time domain Monte Carlo simula-
tion is the most commonly used technique for investigation of
random systems as well as for evaluation of the stochastic
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responses. For example, the versatile Monte Carlo simulation
technique can be applied to gain information about the spectral
components and probability density functions of the response [3],
to estimate the upcrossing rate and exceedance probabilities, etc.
Moreover, for nonlinear ship rolling in random seas, Monte Carlo
simulation is attractive in the sense that the nonlinear damping
and restoring terms as well as the time-dependent random wave
excitation can be directly dealt with. However, Monte Carlo si-
mulation is only a brute force method and its accuracy and asso-
ciated computational efficiency for prediction of the extreme re-
sponses would be a main drawback.

Besides the straightforward Monte Carlo simulation, Markov
diffusion theory is attractive and popular for stochastic dynamic
analysis of nonlinear systems since the probabilistic property of
the dynamic system is governed by the Fokker–Planck equation.
Because the Markov model is only valid for a system driven by
Gaussian white noise or filtered white noise processes, a second-
order linear filter is introduced in order to approximate the sta-
tionary wave excitation process [4]. Therefore, a four-dimensional
(4D) augmented dynamic system is created by coupling the ori-
ginal SDOF model, a second-order nonlinear differential equation,
with the linear filter employed to model the random wave ex-
citation process as a filtered white noise process. The justification
of applying the Markov diffusion theory for nonlinear dynamic
systems subjected to randomwave excitation has been mentioned
in Naess and Johnsen [5]. For the extended Markov system, a host
of useful response statistics can be obtained by solving the cor-
responding FP equation.

However, for the nonlinear coupled dynamic system associated
with the high-dimensional FP equation, direct numerical solutions
of the FP equation, e.g. by means of the finite-element method [6]
and the finite difference method [7], are hardly feasible because of
the so-called “curse of dimension” problem, i.e. difficulties arise
due to the processing and storage needed for the computation. In
addition the accuracy is hard to assess. As an alternative, the path
integration (PI) method is applied in order to calculate the sto-
chastic response of such extended dynamic systems. For the PI
method, which is based on the Markov property of the dynamic
system, no attempt is made to solve the FP equation directly and
the evolution of the response probability density function (PDF) is
calculated via a step-by-step solution technique invoking the total
probability law. Specifically, the response PDF at a given time in-
stant can be obtained when the response PDF at an earlier close
time instant as well as the conditional PDF are already known. The
PI method can provide high accuracy solutions to a range of pro-
blems, e.g. three dimensional (3D) PI procedures have been ap-
plied in Naess and Johnsen [5] and Karlsen [8] to estimate the
response statistics of moored structures subjected to randomwave
loads. Iourtchenko et al. [9] studied the response PDFs of strongly
non-linear SDOF systems excited by additive Gaussian excitation
via a two dimensional (2D) PI technique, etc.

So far, only low-dimensional PI procedures have been applied
to the area of nonlinear ship rolling. Lin and Yim [10] and Falzar-
ano et al. [11] treated the wave excitation as regular waves per-
turbed by Gaussian white noise and evaluated the probabilisty
distributions of roll response by 2D PI algorithms. Chai et al. [12]
studied the roll response and the associated reliability property of
a vessel excited by Gaussian white noise via a 2D PI procedure and
first-passage theory. Kougioumtzoglou and Spanos [13] recently
developed a one-dimensional (1D) path integral framework,
which is based on the statistical linearization and stochastic
averaging method, for determining the stochastic response and
the first-passage PDFs of ships rolling under random loads. How-
ever, these researches include certain simplifications in modeling
the random wave excitation. In this paper, the feasibility of sim-
plifying the random wave excitation as an equivalent Gaussian

white noise process for prediction of the stochastic roll response
will be studied.

In the present paper, the random wave excitation will be
modeled as a filtered white noise via a second-order linear filter
and an equivalent Gaussian white noise. Then, the 4D PI and 2D PI
methods will be applied in order to evaluate the stochastic roll
responses of the corresponding dynamic system. The comparison
of the statistics of roll response excited by the filtered white noise
with that excited by the corresponding equivalent Gaussian white
noise will demonstrate serious deficiencies in the application of
the latter excitation to simulate nonlinear ship rolling in random
seas.

2. Modeling aspects

2.1. Equation of rolling motion

For the uncoupled roll motion in random beam seas, the gov-
erning equation is given by the following SDOF model:

I A t B t t M t" GZ 144 44 θ θ θ( + ) ( ) + ( ̇( )) + Δ ( ( )) = ( ) ( )

where θ(t) and tθ ̇ ( ) are the roll angle and the roll velocity, re-
spectively. I44 is the moment of inertia, A44 represents the added
mass coefficient. B( tθ ̇ ( )) is the damping moment term and ΔGZ(θ
(t)) is the restoring moment term. M(t) denotes the random wave
excitation moment.

The damping moment term, consisting of wave radiation, vis-
cous and vortex shedding components, is difficult to quantitatify,
because these components are coupled with each other. Never-
theless, there are two empirical damping models commonly used
to describe the roll damping term [14].

The linear-plus-quadratic damping (LPQD) model has been
verified by numerous studies of experimental data [15] and it is
expressed as:

B t B t B t t 2l q44 44θ θ θ θ( ̇( )) = ̇( ) + ̇( ) ̇( ) ( )

where B44l and are B44q linear and quadratic damping coefficients,
respectively.

On the other hand, the LPQD model is only once continuously
differentiable and mathematically inferior to the linear-plus-cubic
damping (LPCD) model [16], which is infinitely differentiable and
given by the following cubic polynomial:

B t B t B t 3l c44 44
3θ θ θ( ̇( )) = ̇( ) + ̇ ( ) ( )

in which, B44c is the cubic damping coefficient.
The restoring term is expressed in terms of the displacement Δ

and the restoring arm GZ, which can be obtained from standard
hydrostatic software. The restoring arm is usually given by a
nonlinear odd function of the roll angle, i.e.

C CGZ 41 3
3θ θ θ( ) = − ( )

where C1 and C3 are the linear and nonlinear roll restoring coef-
ficients of the restoring arm. It should be noted that the roll mo-
tion has a softening characteristic since the nonlinear restoring
term is negative. For the softening cases, ship capsizing would
occur when the roll angle exceeds the angle of vanishing stability
beyond which the restoring moment becomes negative.

As for the wave excitation moment, it is a stationary Gaussian
process which is described by the wave excitation moment spec-
trum, SMM(ω). The latter is related to the wave energy spectrum,
Sξζ(ω), by the following relationship [17]:

S F S 5MM roll
2ω ω ω( ) = ( ) ( ) ( )ξξ
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where |Froll(ω)| represents the roll moment amplitude per unit
wave height at frequency ω. When the relevant information about
|Froll(ω)| (which can be obtained e.g. based on strip theory) is ab-
sent, the wave excitation moment can be approximated by the
following equation ([18,19]):

M t C t 61 0α η( ) = Δ ( ) ( )

where α0 is the effective wave slope coefficient, which can be
estimated by using strip theory or by experiments, and η(t) is the
wave slope process. Moreover, the wave slope spectrum, Sηη(ω), is
given as:

S
g

S
7

4

2ω ω ω( ) = ( )
( )

ηη ξξ

Dividing Eq. (1) by (I44þA44), the final form of the differential
equation is obtained as:

t b t c t c t m t 81 3
3θ θ θ θ¨ ( ) + ( ̇( )) + ( ) − ( ) = ( ) ( )

where b44l, b44q and b44c are relative damping coefficients, c1 and
c3 are relative roll restoring coefficients [2], and the relative wave
excitation moment, m(t), which is approximated by Eq. (6),
corresponds to the following spectrum:

S S I A S
g

S/
9

mm MM 44 44
2

0
4

0
2

0
4

0
2

4

2ω ω ω α ω ω α ω ω( ) = ( ) ( + ) = ( ) = ( )
( )

ηη ξξ

Moreover, the natural roll frequency, ω0, is given as:

C I A c/ 100 1 44 44 1ω = Δ ( + ) = ( )

Finally, the SDOF model (8) can be transformed into the state-
space equation written as:

⎪

⎪⎧⎨
⎩

dx x dt

dx b x c x c x x dt 11

1 2

2 2 1 1 3 1
3

3

=
= ( − ( ) − + + ) ( )

where x1¼ θ(t), x2¼ tθ ̇ ( ), x3¼m(t).

2.2. Shaping filter technique

The random wave excitation term in the SDOF model (8) is a
stationary process given by an approximate spectral density and it
can be modeled as a filtered white noise. Dostal and Kreuzer
proposed a second-order linear filter to represent the target
spectrum [20] and this filter is also available for the desired
spectrum, Smm(ω) in the present work. The filter is expressed by
the following differential equation:

⎧⎨⎩
dx x x dt

dx x dt

dW

12
3 4 3

4 3

β γ
α

= ( − ) +
= − ( )

where x3 and x4 are state variables in the filter equation with x3
representing the filter output m(t). dW(t)¼W(tþdt)�W(t) is the
increment of a Wiener process with E{dW(t)}¼0 and E{dW(t)dW
(tþdt)}¼δ(dt), where δ( � ) represents the Dirac function. The
spectrum generated by the differential Eq. (12) is given as:

S
1

2 13
Filter

2 2

2 2 2ω
π

γ ω
α ω βω

( ) =
( − ) + ( ) ( )

in which α, β, γ are the parameters of the linear filter and they
are determined by means of a least-square algorithm which is
applied in order to fit the desired spectrum, Smm(ω). It is worth
emphasizing that the filtered spectrum (13) is double-sided, while
the wave energy spectrum and the roll excitation spectrum are
physically single-sided. This difference must be considered in the
practical simulation.

By combining the state-space Eq. (11) with Eq. (12), the

extended dynamic system is formed. Therefore, the roll motion in
random beam seas can be described by the following 4D state
space equation:

⎧

⎨
⎪⎪

⎩
⎪⎪

dx x dt

dx b x c x c x x dt

dx x x dt

dx x dt

dW

14

1 2

2 2 1 1 3 1
3

3

3 4 3

4 3

β γ
α

=
= ( − ( ) − + + )
= ( − ) +
= − ( )

Furthermore, the roll response spectrum, which has a peak
near the natural roll frequency ω0, is narrow-banded due to the
light roll damping. Theoretically speaking, Gaussian white noise
may be able to serve as a simplification of the relative wave ex-
citation spectrum Smm(ω) if its spectral density equals to the value
of Smm(ω) at the frequency ω0. Assume that the value of Smm(ω) at
the frequencyω0 is S0 and the corresponding Gaussian white noise
is referred to as the equivalent Gaussian white noise. The noise
level, s, of the equivalent Gaussian white noise can then be de-
termined as:

S2 152
0σ π= ( )

The differential equation of the dynamic system (8) can then be
simplified as:

t b t c t c t N t 161 3
3θ θ θ θ σ¨ ( ) + ( ̇( )) + ( ) − ( ) = ( ) ( )

where N(t) is a standard Gaussian white noise process and the
corresponding 2D state-space equation is given as:

⎪

⎪⎧⎨
⎩

dx x dt

dx b x c x c x dt dW 17

1 2

2 2 1 1 3 1
3 σ

=
= ( − ( ) − + ) + ( )

3. Path integration method

Eqs. (14) and (17) represent two Markov dynamic systems
driven by Gaussian white noise [21]. In this Section, the main ef-
forts will be devoted to describing the mathematical principle of
the 4D path integration (PI) method for the dynamic system (14).
The 2D PI method for the dynamic system (17) will be briefly
introduced.

The dynamic system (14) can be expressed by an Itô stochastic
differential equation (SDE):

d a t dt b t d tx x W, 18= ( ) + ( ) ( ) ( )

in which x(t)¼(x1(t),…, x4(t))T is a 4D state space vector pro-
cess, the vector a(x,t) is the drift term and b(t)dW(t) represents the
diffusive term. The vector dW(t)¼W(tþdt)�W(t) denotes in-
dependent increments of a standard Wiener process.

The solution x(t) to Eq. (18) is a Markov process and its tran-
sition probability density (TPD), also known as the conditional
PDF, p(x,t | x′,t′) satisfies the FP equation, which is of the following
form:

t
p t t

x
a t p t t

x x
b t b t p t t

x x x x x

x x

, , , , ,

1
2

, ,
19

i i
i

i j i j

T
ij

1

4

1

4

1

4 2

∑

∑ ∑

′ ′

′

∂
∂

( | ′) = − ∂
∂

( ) ( | ′)

+ ∂
∂ ∂

( ( )⋅ ( )) ( | ′)
( )

=

= =

As mentioned in Section 1, for the PI method, no attempt is
made to solve the FP Eq. (19) directly. The PI method is based on
the Markov property of the dynamic system, and the PDF of x(t) is
obtained by exploiting the following basic equation:
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p t p t t p t dx x x x x, , , , 20R4∫ ′ ′ ′( ) = ( | ′) ( ′) ( )

where d dxx i 1
4

i
′ = ∏ ′= .

For a numerical solution of the SDE (18), the TPD, p(x,t| x′,t′) can
always be given as an analytical, closed form expression if the time
increment Δt¼t�t′ is sufficiently small. Therefore, if an initial
PDF, p(x(0), t0) is given, the time evolution of the PDF of x(t) can be
determined by the following iterative algorithm:

p t p t t

p t d d

x x x

x x x

, , ,

, 21

R R i

n
i

i
i

i

n

1

1
1

0
0

0 1

4 4∫ ∫ ∏( ) = ⋯ ( | )

⋅ ( ) … ( )
=

( ) ( − )
−

( ) ( ) ( − )

where x¼ x(n), t ¼ tn ¼ t0þn �Δt.
The mathematical principle of the PI method has been for-

mulated in Eqs. (20) and (21). As for the specific numerical im-
plementation of the PI method for the dynamic system (18), a time
discrete approximation should be introduced. Based on the proper
time increment Δt¼t�t′, Naess and Moe [22] proposed a fourth-
order Runge�Kutta-Maruyama (RKM) approximation:

t t r t t t b t tx x x W, 22( ) = ( ′) + ( ( ′) ′)Δ + ( ′)Δ ( ′) ( )

where the vector r(x(t′), t′) is the explicit fourth-order Runge–
Kutta (RK4) approximation or Runge–Kutta increment. Because W
(t) is a Wiener process, the independent incrementΔW(t′)¼W(t)–
W(t′) is a Gaussian variable and the TPD, p(x,t | x′,t′) is a Gaussian
PDF for every t′.

With the introduction of the time discrete approximation, the
time sequence i tx i 0{ ( ⋅Δ )} =

∞ is a Markov chain and it can approx-
imate the time-continuous Markov solution of the SDE (18) when
the time increment Δt is sufficiently small. If only the determi-
nistic part of Eq. (18) is considered, the approximation (22) re-
duces to the RK4 approximation x(t)¼x(t′)þr(x(t′),t′)Δt. Experi-
ments have shown that, for the Markov systems, the accuracy
related to approximation of the deterministic terms is most im-
portant [23]. In this regard, the accuracy of the fourth-order RKM
approximation is satisfactory since the fourth-order Runge–Kutta
approximation represents the time evolution of the deterministic
part of Eq. (22) with an accuracy to the order of O(Δt5).

The conditional PDF of the process x(t), p(x,t | x′,t′), follows a
(degenerate) Gaussian distribution, which is written as:
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where p x t x t, ,3 3˜( | ′ ′) is given by the relation:
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For the numerical implementation of the 4D PI approach, a
reasonable computational domain and the corresponding com-
putational grid have to be determined at first. In this work, the
initial PDF, p(x(0), t0), is chosen as a 4D Gaussian PDF with zero
mean and variances in the four dimensions evaluated by a simple
Monte Carlo simulation [23]. The straightforward Monte Carlo si-
mulation ensures that the initial 4D Gaussian PDF includes all the
information corresponding to the selected parameters of the dy-
namic system, and it also provides a rational computational do-
main and computational grid for the subsequent calculation [24].
Then, for the implementation of the iterative algorithm (21) for
each grid point, the PDF at the previous time t′ is represented as an
interpolating spline surface via parabolic B-spline and the PDF at
time t can be evaluated by several specific steps. The numerical
iterative algorithm and the associated computational steps have

been systematically described by Iourtchenk et al. [9] and Yurch-
enko et al. [25].

For the 2D dynamic system (17), the time evolution of the PDF
of the vector (x1(t), x2(t))T is also determined by an iterative al-
gorithm and a time discrete approximation similar to Eqs. (21) and
(22), respectively. The conditional PDF described in Eqs. (23) and
(24) is simplified as:
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and
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Similarly, the initial PDF for the 2D PI approach is selected as a
2D Gaussian PDF by Monte Carlo simulation and the subsequent
numerical implementation procedures for 2D systems have al-
ready been described in Naess et al. [26]. Furthermore, the ability
of the PI method with respect to providing accurate and reliable
solutions for stochastic dynamic systems has been demonstrate by
numerous examples ([22,23]).

4. Mean upcrossing rate

The mean upcrossing rate is a key parameter for a detailed
assessment of the large and extreme response statistics of marine
structures subjected to stochastic load processes [27]. Calculation
of the mean upcrossing rate is usually based on the Rice formula
(27) if the joint PDF of the roll angle process and the roll velocity
process is known. The latter can be obtained directly by the PI
method, and then the upcrossing rate is given as:

t f t d; , ; 270
∫ν ζ θ ζ θ θ( ) = ̇ ( ̇ ) ̇

( )θθ
+

∞
̇

where vþ(ζ;t) denotes the expected (or average) number of up-
crossings for the ζ-level per unit time at time t by the roll angle
process θ(t), f t, ;θ θ( ̇ )θθ ̇ is the joint PDF of the roll angle process
and the roll velocity process at the time instant t.

Furthermore, the standard Monte Carlo simulation technique
can serve as a validation for the mean upcrossing rate obtained by
the numerical PI method and the Rice formula, even though ex-
tensive long simulations are required for estimation of the ex-
treme response statistics. As mentioned in Section 2, due to the
softening characteristic of the restoring term, ship capsizing would
occur when the predetermined simulation time T is long enough
or the intensity of the external excitation is strong enough. If the
mean time to capsize is long enough, the dynamic system can be
regarded as a highly reliable system and the corresponding roll
response reaches stationarity in an approximate sense [15,28].
Therefore, the practical time-variant upcrossing rate vþ(ζ;t) can
be approximated as a time-invariant parameter, i.e. the mean
upcrossing rate, vþ(ζ) at a suitable reference point in time.

For the 4D dynamic system (14) and the 2D dynamic system
(17), the fourth-order RKM method is applied to solve the SDEs
and then the time series of the roll response are obtained. For a
stationary sea state, the appropriate sample mean value of the
upcrossing rate can be obtained from the time series of the roll
response:
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wheren T;i iξ( )+ denotes the counted number of upcrossings for the
level ζ within a time duration of length Ti for simulated time
history no. i. The conditions for the roll angle process θ(t) to
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upcross the level ζ during the time interval (t, tþΔt) is given as
[27]:

t t t 29ζ θ Δ θ ζ− ̇( )⋅ < ( ) ≤ ( )

and

t 0 30θ ̇( ) > ( )

The practical simulation time Ti may not be fixed for each si-
mulation, but it is equal to the predetermined simulation time T if
no capsizing occurs. Otherwise, it is the value of termination time
for each case where capsizing occurs. Moreover, the number of
simulations, k, e.g. k¼1000–5000, is selected according to the
values of upcrossing rates in the tail region and the length of the
predetermined simulation time T. Usually, low upcrossing rates
and short time periods T correspond to a large simulation number
k.

From a practical point of view, a good approximation of the
exceedance probability and distribution of the extreme response
can be given in terms of the mean upcrossing rate if the upcrossing
event for the high response levels are statistically independent.
Under this assumption, the crossing events for the high response
levels are Poisson distributed, and the probability of exceedance
for a specific high level, ζ is given as:

P T t dt exp T; 1 exp ; 1 31exc

T

0
∫ζ ν ζ ν ζ( ) = − ( − ( ) ) = − ( − ( )⋅ ) ( )

+ +

Moreover, let Θ(T)¼max{θ(t): 0rtrT} denote the largest (or
extreme) value of the roll angle process θ(t) over the time interval
of length T. For a stationary short-term sea state (traditionally
taken as 3–6 h), the cumulative distribution function (CDF) of Θ(t)
under the Poisson assumption is approximately given as:

exp v TProb 32Θ ζ ζ( ≤ ) = ( − ( )⋅ ) ( )+

Eqs. (31) and (32) clearly indicate the crucial role of the mean
upcrossing rate in determining the extreme value distribution. It is
well known that the exact extreme value distribution is not
completely determined by the upcrossing alone. Nevertheless, the
Poisson estimate, which is expressed by the above two equations,
is a good approximation and widely used in reliability engineering
due to its simplicity and accuracy. However, for the dynamic sys-
tems with extremely light roll damping or under serious external
excitation, the high reliability assumption of the system as well as
the Poisson estimate for the high response levels would not be
valid.

5. Numerical examples

In this section, two different ship models are selected in order
to study the performance of the equivalent Gaussian white noise
for estimating the response statistics of ship rolling in random
beam seas. The feasibility and rationality of applying the equiva-
lent Gaussian white noise to simulate nonlinear ship rolling in
random seas will be illustrated by comparing with the response
statistics for the case that the excitation is represented by filtered
white noise.

5.1. Ship model 1

A RoRo ferry model used in Ref. [1] is selected as the first ship
model and the main parameters of the example vessel are given in
Table 1. The damping term for ship model 1 is given in terms of
the LPCD model. Due to lack of relevant information about
|Froll(ω)|, the wave excitation term M(t) in the SDOF model (1) and
the spectrum of relative excitation moment spectrum, Smm(ω) are

approximated by Eqs. (6) and (9), respectively. Moreover, the ef-
fective wave slope coefficient, α0 is selected to be 0.705 according
to a similar sample model in the relevant IMO report [29].

In this work, the modified Pierson–Moskowitz (P–M) spectrum,
widely used for fully developed sea states, is adopted in this
analysis:

⎛
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p
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where Hs denotes the significant wave height, ωp is the peak fre-
quency at which the wave spectrum Sξξ(ω) has its maximum, and
Tp is the corresponding peak period (or modal period). The specific
sea state with Hs¼8.0 m, Tp¼15.5 s is selected for the subsequent
study. The wave energy spectrum and the corresponding wave
slope spectrum, Sηη(ω) (which is determined by Eq. (7)) are pre-
sented in Fig. 1.

It can be observed that the wave slope spectrum, Sηη(ω) is more
broad-banded than the corresponding wave energy spectrum,
Sξξ(ω) and also the peak of the spectrum moves towards much
higher frequencies. The related relative roll excitation moment
spectrum, Smm(ω), which has the same spectral shape as Sηη(ω), is
plotted in Fig. 2. The second order linear filter usually exhibits
good performance for the narrow-banded target spectrum, e.g.
[20,30], but for the not narrow-banded spectrum, Smm(ω), the
overall fitting results would not be so good. Nevertheless, the roll
response spectrum is narrow-banded and peaked near the natural
roll frequency, ω0, due to the light roll damping, and the excitation

Table 1
Main parameters for the RORO ship.

Parameters Dimensional value

I44þA44 2.2�109 kg m2

Δ 1.68�108 N
b44 0.095 s�1

b44c 0.959 s
c1 0.265 s�2

c3 0.116 s�2

ω0 0.515 rad/s
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Fig. 1. Wave energy spectra for the sea state with Hs¼8.0 m, Tp¼15.5 s and the
corresponding wave slope spectrum.
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spectrum near ω0 is essential for estimating the response
statistics.

Therefore, for the current ship model, the main concern re-
garding the result of the fitting is focused on the accuracy in the
critical frequency region near ω0. The parameters α, β, γ in the
second-order filter (12) are determined by minimizing the mean
square errors between the filtered spectrum and the target spec-
trum, Smm in the critical frequency region. The result of fitting for
the selected sea state is shown in Fig. 2 and the obvious differ-
ences between the two spectra in the low-frequency and high-
frequency regions would not influence the subsequent roll re-
sponse to a significant extent. Moreover, the spectrum of the
equivalent Gaussian white noise with a constant spectral level, S0,
which is equal to the spectral density of Smm(ω) at the frequency of
ω0 is also plotted in Fig. 2.

The 4D dynamic system (14) and 2D dynamic system (17) are
established after the spectrum fitting has been performed. Monte
Carlo simulation is applied to gain information about the roll re-
sponse spectra excited by the filtered white noise as well as the
equivalent Gaussian white noise, which are shown in Fig. 3. It can
be clearly seen that both of the response spectra are narrow-
banded and peaked near ω0, i.e. at 0.515 rad/s. In the region with
frequencies greater than ω0, the discrepancies between the input
excitation spectra, shown in Fig. 2, do not influence the sub-
sequent response spectra to a significant extent. However, for the
frequencies lower than ω0, the intensity of the equivalent Gaus-
sian white noise is higher than the corresponding filtered white
noise, which results in a stronger roll response in the low fre-
quency region. Therefore, for this case, the equivalent Gaussian
white noise approximate overestimates the roll response to a
certain extent.

Furthermore, the joint PDFs of the roll angle and the roll ve-
locity for the 4D dynamic system and the 2D dynamic system can
be obtained by the PI methods directly. The joint PDF of the roll
response calculated by the 4D PI method for the selected sea state
is presented in Fig. 4, and Fig. 5 displays the joint PDF of the roll
response excited by equivalent Gaussian white noise via the 2D PI
method. From Figs. 4 and 5 it is clearly seen that the PDFs of roll
response are symmetric because the distributions of the external
excitation (filtered white noise and equivalent Gaussian white

noise) as well as the vessel properties are symmetric with respect
to the origin. Good agreement of the overall distributions is ob-
served in Figs. 4 and 5, since these two Figures mainly present the
probabilistic distributions in the low response region and not
enough information with respect to the distributions of high-level
responses are given.

In order to observe the statistics of high-level responses, the
marginal PDFs of the roll angle process and the upcrossing rates
for the two dynamic systems are plotted in logarithmical scale and
presented in Figs. 6 and 7, respectively. The response statistics
obtained by the PI techniques in these two Figures are denoted by
“4D PI” and “2D PI” and the corresponding empirical estimation of
the marginal PDFs and upcrossing rates are also included in
Figs. 6 and 7. It is seen that the roll response excited by the
equivalent Gaussian white noise can serve as a good approxima-
tion of the response excited by the corresponding filtered white
noise in the small amplitude response region, e.g., roll angle less
than 15°. However, the discrepancies between the response sta-
tistics, which are generated by different excitations, become
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Fig. 2. Relative roll excitation moment spectrum, Smm, for the sea state with
Hs¼8.0 m, Tp¼15.5 s, the filtered spectrum versus the spectrum of equivalent
Gaussian white noise, S0.
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W. Chai et al. / Probabilistic Engineering Mechanics 44 (2016) 43–5248



evident as the response level increases. The differences are even
more pronounced in the tail region, which illustrates that the
equivalent Gaussian white noise impels more energy into the
dynamic system than the corresponding filtered white noise.
Therefore, the 2D dynamic system generates stronger response in
the tail region and overestimates the extreme roll response.

5.2. Ship model 2

Next, an ocean surveillance ship described in Refs [2,31], is
considered and denoted as ship model 2. The parameters of the
ship model are listed in Table 2 and the damping term is expressed
by a LPQD model. The modified P–M spectrum (33) with
Hs¼4.0 m, Tp¼11.0 s is selected as the specific sea state for the
subsequent study.

With the specific energy spectrum Sξξ(ω) and the roll moment
amplitude per unit wave height |Froll(ω)| shown in Fig. 8, the roll

excitation moment spectrum for this case is determined by means
of Eq. (5). Then the relative roll excitation moment spectrum
Smm(ω) is obtained and presented in Fig. 9. It can be observed that
the bandwidth of the target spectrum Smm(ω) determined by Eq.
(5) with relevant information about |Froll(ω)| given by strip theory
is much lower than that of the desired spectrum Smm(ω) in Fig. 2,
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Fig. 5. Joint PDF of roll response excited by equivalent Gaussian white noise for
ship model 1.
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Table 2
Main parameters for the ocean surveillance ship.

Parameters Dimensional value

I44þA44 5.540�107 kg m2

Δ 2.017�107 N
b44 0.095 s�1

b44q 0.0519
c1 1.153 s�2

c3 0.915 s�2

ω0 1.074 rad/s
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Fig. 8. Wave energy spectra for the sea state with Hs¼4.0 m, Tp¼11.0 s and roll
excitation moment per unite wave height, |Froll(ω)|.
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which is approximated by Eq. (9). Therefore, the second order
linear filter (12) is introduced to fit the target spectrum Smm(ω)
from an overall perspective.

The result of fitting is shown in Fig. 9 and it can be readily seen
that the filtered spectrum is reasonable in terms of bandwidth,
peak frequency and peak value. However, a slight discrepancy
between the filtered spectrum and the target spectrum in the
critical frequency region near ω0 can be observed. Therefore, a
correction factor, c should be introduced in order to decrease the
discrepancies in the critical region. The filtered spectrum is then
changed into:

S
c1

2 34
Filter

2 2

2 2 2ω
π

γ ω
α ω βω

( ) = ( ⋅ )
( − ) + ( ) ( )

In this work, for ship model 2 and the selected sea state, the
correction factor c is take to be 1.07 by considering the mean
difference between the two spectral densities in the critical region.
The corrected filtered spectrum in the critical region and the
spectrum of the equivalent Gaussian white noise, S0 are also pre-
sented in Fig. 9. The response spectra of the 4D dynamic system
and the 2D dynamic system are then obtained by means of Monte
Carlo simulation and the results are presented in Fig. 10. Com-
parison of the response spectra for different systems illustrate that
the discrepancies between the filtered spectrum generated by the
second order linear filter and the spectrum of the equivalent
Gaussian white noise in the critical frequency region near ω0

would result in obvious differences of the roll response for ship
model 2. Moreover, it is clearly seen from Fig. 10 that the roll re-
sponse excited by the filtered white noise is much stronger than
the response driven by the equivalent Gaussian white noise.

This result can also be observed in Figs. 11 and 12, which pro-
vide information with respect to the joint PDFs of the roll response
for the 4D dynamic system and 2D dynamic system, respectively.
The joint PDFs are obtained by the 4D and 2D PI techniques and
the stronger roll response in Fig. 11 appears in terms of a lower
peak in the central region and a wider distribution of the joint PDF.
Similar to ship model 1, the marginal PDFs of the roll angle process
obtained by the PI techniques are plotted in Fig. 13 and the cor-
responding upcrossing rates are shown in Fig. 14. Monte Carlo
simulation is applied in order to provide related empirical esti-
mations of the marginal PDFs and the upcrossing rates, which are

also given in Figs. 13 and 14, respectively. The differences between
the response statistics driven by filtered white noise and equiva-
lent Gaussian white noise are even more distinct than the dis-
crepancies observed in Figs. 6 and 7 for ship model 1. For this case,
the equivalent Gaussian white noise results in weaker response
than the filtered white noise and the 2D dynamic system (17)
underestimates the response statistics.

Based on the study in this Section, some meaningful and va-
luable conclusions can be drawn. Firstly, it is observed in Figs. 6,7
and Figs. 13,14 that both the 4D PI technique and the 2D PI tech-
nique provide reliable and high-accuracy estimation of the re-
sponse statistics, even in the tail regions with low probability le-
vels. Moreover, in these figures, for the probability level of the
response statistics lower than 10�7, the computation cost for
Monte Carlo simulation is formidable. However, the PI approach
can provide nice results in the tail region within one calculation,
which demonstrates the superiority of the PI method. Secondly,
because the light roll damping of the SDOF model (8), the response
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spectrum is narrow-banded and the fitting results of the external
excitation moment spectrum in the critical frequency region near
ω0 is crucial for prediction of the response statistics. The dis-
crepancies between the filtered spectrum and the spectrum of the
equivalent Gaussian white noise in the critical region would in-
duce significant differences between the subsequent response
statistics, especially in the tail regions. Finally, for ship model 1, the
equivalent Gaussian white noise impel more energy into the dy-
namic system than the corresponding filtered white noise and
then overestimate the response statistics. But for ship model 2, the
roll response excited by filtered white noise is stronger than the
response driven by the equivalent Gaussian white noise, which
means that the latter underestimate the response statistics.
Therefore, the equivalent Gaussian white noise is unable to pro-
vide accurate estimation of the response statistics and it is in-
appropriate to be used for simulation of the nonlinear ship rolling
in random seas.

6. Conclusions

In this paper, the stochastic theory and probabilistic ap-
proaches have been applied in studying the nonlinear ship rolling
in random beam seas. The Markov diffusion theory served as the
basic principle in this work and the shaping filter technique was
employed to model the random wave excitation as well as to es-
tablish a Markov dynamic system with state space formulation for
description of the stochastic roll motion. Based on the property of
light roll damping and narrow-banded response spectrum, the
excitation spectrum near the natural roll frequency is essential for
estimating the response statistics and a second order linear filter
was introduced to approximate the target wave excitation spec-
trum. In this regard, the 4D PI method based on the Markov
property of the coupled dynamic system was applied to solve the
FP equation, which governs the probabilistic property of the
Markov system.

Moreover, the randomwave excitation was also simplified as an
equivalent Gaussian white noise and the corresponding response
statistics were calculated by the 2D PI procedure. To verify the
response statistics calculated by the 4D and 2D PI procedures,
comparisons have been made with the results obtained by the
straightforward Monte Carlo simulation technique. Excellent
agreement was observed and the superiority of the PI method in
providing high-accuracy results for the high level responses within
one calculation was also presented in the comparisons.

Furthermore, based on the study of two different ship models,
significant differences have been found between the response
statistics excited by filtered white noise and that driven by the
equivalent Gaussian white noise. Due to the unsatisfactory accu-
racy of the response statistics given by the 2D dynamic systems,
the equivalent Gaussian white noise cannot be recommended in
order to study nonlinear ship rolling in random seas.
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Fig. 14. Upcrossing rates for ship model 2 excited by filtered white noise (denoted
as 4D PI and 4D MCS) and equivalent Gaussian white noise (denoted as 2D PI and
2D MCS).
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a b s t r a c t

Loss of ship stability is most frequently associated with extreme roll motion. For the case of random
beam sea, a single-degree-of-freedom (SDOF) model is applied in the present study in order to represent
the stochastic rolling behavior. The randomwave excitation term in the SDOF model is approximated as a
filtered white noise process by applying a second order linear filter. Accordingly, the original SDOF model
is extended into a four-dimensional (4D) dynamic system. The coupled dynamic system can be viewed as
a Markov system whose probabilistic properties are governed by the corresponding Fokker–Planck
equation. Based on the convenient Markov property, a host of useful response statistics can be obtained
by an efficient path integration (PI) method. Different nonlinear damping models, i.e. the linear-plus-
quadratic damping (LPQD) model and the linear-plus-cubic damping (LPCD) model, and their effects on
the stochastic roll response are investigated and the influence of the steady heeling angle on the re-
sponse level associated with ship rolling in random seas is also studied. Furthermore, the accuracy of the
response statistics computed by the PI technique is verified by means of the versatile Monte Carlo si-
mulation (MCS) technique.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Excessive rolling motion is considered to be a major cause of
stability failure or even capsizing of ships exposed to ocean waves.
For large amplitude roll motion, the nonlinear effects associated
with the damping and restoring terms have a significant influence
on the high-level roll response. Currently, the criteria of the In-
ternational Maritime Organization (IMO) for evaluation of the in-
tact stability are based on both hydrostatics and dynamics (IMO,
2008). In addition, due to the stochastic nature of the ocean en-
vironment and the corresponding wave excitation, the assessment
of extreme rolling motion should inevitably be based on dynamic
considerations and probabilistic approaches. With the awareness
of the deficiencies of the current criteria for intact stability eva-
luation, the IMO is currently developing the next generation of
such criteria with a certain consideration of the physics associated
with the dynamics of nonlinear roll motion and the randomness of
wave excitation and roll response (Francescutto, 2016). In this
work, the dynamic stability is evaluated by means of a probabil-
istic approach, which may provide insight associated with the
nonlinear roll dynamics in random beam seas. Hopefully, this may

also serve as a contribution to the second generation IMO intact
stability criteria which are currently being developed.

The problem of estimating the stochastic response of such
nonlinear dynamic systems excited by random external loads has
been a demanding challenge in the past decades. For this type of
problem, elaborate theoretical model as well as appropriate
mathematical techniques are essential (Ellermann, 2009). In the
literature, the roll motion is generally assumed to be decoupled
from the other motions and governed by a single-degree-of-free-
dom (SDOF) model in which the nonlinearities associated with the
damping and restoring terms as well as the randomness of the
wave excitation are all incorporated (Roberts and Vasta, 2000).
Even though the SDOF model is not recommended for actual ship
design, it is a very important model for qualitative studies and
understanding of the nonlinear behavior under stochastic excita-
tion. The methodology based on the Markov model has been a
popular way to analysis the stochastic response of the nonlinear
roll motion in random seas (Francescutto and Naito, 2004; Su and
Falzarano, 2013; Chai et al., 2015b). Since the Markov model is only
valid for a dynamic system driven by white noise or filtered white
noise, a second order linear filter is introduced in order to ap-
proximate the random wave excitation as a filtered white noise
process. Subsequently, the original SDOF model, also a second
order differential equation, is extended into a four-dimensional
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(4D) Markov dynamic system. For the coupled system, the prob-
abilistic properties of the roll motion is governed by the Fokker–
Planck (FP) equation.

The extended dynamic system usually corresponds to a high-
dimensional FP equation, but analytical solutions to high-dimen-
sional FP equations are only available for some linear systems and
a very restricted class of nonlinear systems. As for numerical so-
lutions, the path integration (PI) method has been proved to be an
efficient approximation for solving the high-dimensional FP
equations. This method is based on the Markov property of the
dynamic system and the global solution, i.e., the evolution of the
response statistics, is calculated by linking the explicitly known
local solutions via a step-by-step solution technique (Mo, 2008). In
addition to its efficiency, the high-dimensional PI method is able
to provide reliable estimation of the response statistics, even for
high response levels which are associated with low probabilities
(Naess and Johnsen, 1993; Karlsen, 2006; Chai et al., 2015b).

As an alternative to the efficient PI method, Monte Carlo si-
mulation (MCS) is another approach that can be applied in order to
determine the response statistics of nonlinear systems subjected
to random external or parametric forcing. The nonlinear and time-
dependent terms in the dynamic system can then be easily dealt
with. However, the MCS approach is only a brute force alternative
and the associated computational efficiency will be sacrificed for
estimation of extreme responses with low probability levels. In
this work, the straightforward MCS method will serve as a ver-
ification tool to evaluate the response statistics obtained by the
efficient PI method.

The nonlinearity of the roll damping moment has been re-
cognized to be crucial for evaluating ship stability since Froude's
time, however, the dynamic effects of the damping term have not
been taken into consideration in the current intact stability cri-
teria. Moreover, for traditional ship motion analysis and the as-
sociated reliability-based design, the damping and restoring terms
are usually linearized for simplicity (Bulian and Francescutto,
2004). Generally, the damping moment has three kinds of com-
ponents: the damping caused by radiation at the free surface and
the damping caused by vortex shedding and flow separation as
well as the viscous friction damping. Since these terms are coupled
with each other, the quantitative evaluation of roll damping mo-
ment is difficult and empirical models are applied to describe the
roll damping term. The linear-plus-quadratic damping (LPQD)
model, which has been verified by numerous studies of experi-
mental data, is widely used to describe the damping term in the
SDOF model for the roll motion (Roberts and Vasta, 2000). On the
other hand, the LPQD model is only once continuously differenti-
able, while another empirical damping model, the linear-plus-
cubic damping (LPCD) model is infinitely differentiable and
mathematically preferable to the LPQD model. In this work, the
LPQD model is approximated by the LPCD model with the assis-
tance of a numerical procedure proposed by Bikdash et al. (1994)
and the effect of different damping models (i.e., the equivalent
LPQD and LPCD models) on the stochastic roll response, especially
on the high level response will be studied.

In practice, it has been observed that the stability properties of
vessels with steady heeling (i.e. roll bias) are worse than those
which correspond to upright conditions, i.e., vessels without such
a steady heeling angle. However, current intact stability criteria
only consider the influence of the heeling moment on the ship
stability in a hydrostatic manner. Generally, heeling moments can
be caused by wind load, by transverse displacements of masses or
by lateral pull during towing work, etc. (Biran and Pulido, 2013). As
for the most common mean wind action, the heeling moment is
proportional to the square of the wind velocity and it also depends
on the lateral projected area of the above-sea surface part of the
hull. The performance of a “biased vessel” in random beam seas

has been studied by stochastic linearization (Bulian and Frances-
cutto, 2004) and the Melnikov criterion (Jiang et al., 2000, 1996),
etc. Up to now, there seems to be no investigation with respect to
the effect of a steady heeling moment on the distribution of ran-
dom roll motion as well as on the stochastic roll response. By
application of the efficient PI method, the above effects can be
investigated directly since a host of useful response statistics can
be obtained by solving the corresponding FP equation.

The present paper is organized as follows. Section 2 describes
the SDOF model for the roll motion and the linear filter technique
used to approximate the randomwave excitation is also presented.
The principle and numerical implementation of the efficient PI
method are described in Section 3. Results from numerical simu-
lations are presented in Section 4 where the response statistics
obtained by the conventional MCS technique are also given. Fur-
thermore, in this Section, the influence of different damping
models and steady heeling angles on the stochastic roll response
are also illustrated.

2. Physical modeling

2.1. Mathematical model of roll motion

By neglecting the coupling with other modes of motion, the
rolling behavior of the vessel in random beam seas can be re-
presented by the following SDOF model for qualitative study
(Roberts and Vasta, 2000):

ϕ ϕ ϕ ϕ( + ) ( ) + ( ( )) + Δ( ( ) − ( )) = ( ) ( )I A t B t C t C t M t 144 44 1 1
3

where ϕ(t) and ϕ ̇ ( )t are the roll angle and the roll velocity, re-
spectively. I44 is the moment of inertia, A44 denotes the added
mass coefficient. B(ϕ ̇ ( )t ) is the damping moment term and Δ(C1ϕ
(t)�C3ϕ3(t)) is the restoring moment term. Δ is the displacement
of the vessel, C1 and C3 are the linear and nonlinear roll restoring
coefficients of the restoring arm, respectively. M(t) represents the
random wave excitation moment due to external waves.

It should be noted that the roll motion has a softening char-
acteristic since the nonlinear stiffness term is negative. For the
softening cases, ship capsizing would occur when the roll angle
exceeds the angle of vanishing stability beyond which the restor-
ing moment becomes negative.

The roll excitation moment is assumed to be a stationary
Gaussian process and it can be characterized by the roll excitation
moment spectrum, SMM(ω). The latter is related to the wave en-
ergy spectrum, Sξξ(ω), by the following relationship:

ω ω ω( ) = ( ) ( ) ( )ξξS F S 2MM roll
2

where |Froll(ω)| represents the roll moment amplitude per unit
wave height at frequency ω which can be obtained e.g. by appli-
cation of strip theory. The wave elevation process is governed by
the wave energy spectrum and it is also assumed to be a stationary
Gaussian process during a short-term period.

The LPQD model is widely used to describe the damping mo-
ment term, and the empirical model is expressed as:

ϕ ϕ ϕ ϕ( ̇( )) = ̇( ) + ̇( )| ̇( )| ( )B t B t B t t 3l q44 44

in which, B44l and B44q are the linear and quadratic damping
coefficients for the LPQD model, respectively.

However, the LPQD is only once continuously differentiable and
this is not very appealing for analytical treatment e.g. by applica-
tion of the perturbation method, bifurcation analysis and so on.
The LPCD model is infinitely differentiable and it is often applied in
order to approximate the LPQD model by the following expres-
sion:
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ϕ ϕ ϕ( ̇( )) = ^ ̇( ) + ̇ ( ) ( )B t B t B t 4l c44 44
3

where ^ ( )B tl44 and B44c are the linear and cubic damping coeffi-
cients for the LPCD model.

As for the equivalence of the above two damping models,
Dalzell (1978) proposed a least-square algorithm over a given fi-
nite range of roll velocities and suggested an iterative procedure to
determine this range. According to Dalzell's method, the coeffi-
cients in the above two models have the following relationship:

ϕ^ ≈ + ̇
( )B B B

5
16 5l l c q44 44 44

and

ϕ
≈ ̇ ( )

B B
35

48 6
c

c
q44 44

where ϕċ represents the range of roll velocity ϕ ̇ over which the
least-square algorithm is executed.

Dividing Eq. (1) by (I44þA44), the final form of the differential
equation is given as:

ϕ ϕ ϕ ϕ ϕ ϕ¨ ( ) + ̇( ) + ̇( )| ̇( )| + ( ) − ( ) = ( ) ( )t b t b t t c t c t m t 7l q44 44 1 1
3

where b44, b44q, c1 and c3 are roll parameters and m(t) is the cor-
responding wave excitation moment.

Moreover, large amplitude roll motion in beam seas is mainly
caused by resonance effects. Due to the light roll damping, the
value of Smm(ω) near the natural roll frequency, ω0 will be crucial
for the subsequent roll response and the natural roll frequency is
determined as:

ω = Δ ( + ) = ( )C I A c/ 80 1 44 44 1

Finally, the SDOF model (7) can be transformed into a second-
order state-space equation, which is written as:

⎪

⎪⎧⎨
⎩

=
= ( − − − + + ) ( )

dx x dt

dx b x b x x c x c x x dt 9l q

1 2

2 44 2 44 2 2 1 1 3 1
3

3

where x1¼ϕ(t), x2¼ ϕ ̇ ( )t , x3¼m(t).

2.2. Modeling the wave excitation moment

In the SDOF model (7), the wave excitation moment m(t) is a
stationary Gaussian process which is represented by an appro-
priate spectral density. Accordingly, the linear filter technique can
be applied in order to provide the required approximation
(Thampi and Niedzwecki, 1992). As mentioned above, the Markov
theory is valid only for the system driven by white noise or filtered
white noise and application of the linear filter guarantees the
Markov property of the dynamic system. In this work, a second-
order linear filter is introduced in order to approximate the target
spectrum, Smm(ω).

The second-order linear filter is given by the following differ-
ential equation (Dostal and Kreuzer, 2011):

⎧⎨⎩
β γ

α
= ( − ) +
= − ( )

dx x x dt dW

dx x dt 10
3 4 3

4 3

in which x3 and x4 represent the state variables in the filter
equation and the variable x3 is the filter output, that is, the relative
wave excitation process, m(t). dW(t)¼W(tþdt)�W(t) represents
an infinitesimal increment of a standard Wiener process with E
{dW(t)}¼0 and E{dW(t)dW(s)}¼0 for t≠s and E{dW(t)2}¼dt. The
spectrum generated by the second-order linear filter (10) is de-
noted as SFilter(ω) and given as:

ω
π

γ ω
α ω βω

( ) =
( − ) + ( ) ( )

S
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2 11
Filter

2 2

2 2 2

where α, β, γ are the parameters of the linear filter and they are
determined by minimizing the least square error between the
spectral density of the filtered spectrum SFilter(ω) and the spectral
density of the target spectrum, Smm(ω). It is worth emphasizing
that the filtered spectrum (11) is double-sided, while the wave
energy spectrum Sξξ(ω) and the corresponding relative roll ex-
citation spectrum Smm(ω) are physically single-sided. This differ-
ence needs to be reflected when performing the simulation itself.

Since the filtered white noise process x3 is the output of the
filter (10) and since it also represents “the driving process” of the
SDOF model (10), an extended dynamic system can be formed by
combing these two equations. Therefore, the roll motion in ran-
dom beam seas can be described by the following 4D state space
equation:

⎧
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It should be noted that the coupled dynamic system re-
presented by the stochastic differential equation (SDE) (12) is a
Markov diffusion process and the probabilistic property of this
random process can be obtained by the PI technique, which will be
presented in the next Section.

3. D PI method

The SDE (12) can be constructed as an ^Ito SDE which is given on
the following form:

= ( ) + ( ) ( ) ( )d t dt t d tx a x b W, 13

where the state space vector x(t)¼(x1(t),…, x4(t))T is introduced,
the vector a(x,t) is the drift term and b(t)dW(t) represents the
diffusive term. The vector dW(t)¼W(tþdt)�W(t), where W(t)¼
(0, 0, W(t), 0)T and b(t)¼(bij(t)) denotes a 4�4 matrix. From the
SDE (13) it can be obtained that x(t) is a Markov process and the
Markov property will be applied for the purpose of formulating
the PI procedure.

For the Markov process, its transition probability density, p(x,t|x
′,t′), also known as the conditional probability density function
(PDF) is governed by the FP equation, which is expressed as:

∑
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where x′ denotes the state space vector at time t′ and t′ot.
For high dimensional dynamic systems, such as the 4D dynamic

system (12), direct numerical methods for solution of the FP
equation will hardly be feasible. Under such circumstance, the
curse of dimensionality problem, i.e., difficulties which arise due to
the processing capacity as well as the storage needed for the
computation, will be magnified. The PI method, based on the
Markov property of the dynamic system, is applied in order to give
an efficient approximation for solving the high-dimensional FP
equation. The principle and numerical implementation of the PI
method are described below.

For numerical solution of the time continuous SDE in Eq. (13),
discretization of the equation with respect to time t is essential. In

W. Chai et al. / Ocean Engineering 120 (2016) 202–211204



this regard, Naess and Moe (2000) proposed a fourth-order Runge-
Kutta-Maruyama (RKM) approximation:

( ) = ( ′) + ( ( ′) ′ Δ ) + ( ′)Δ ( ′) ( )t t t t t b t tx x r x W, , 15

where Δt¼t�t′ is the time increment and the vector r(x(t′), t′)
denotes the explicit fourth-order Runge–Kutta (RK4) increment or
RK4 approximation. Since W(t) is a Wiener process, for short time
increment Δt, the independent increment ΔW(t′)¼W(t)�W(t′) is
a Gaussian variable for every t′ (a constant is considered to be a
Gaussian variable with zero standard deviation).

With the introduction of the time discrete approximation, the
time sequence { }( ⋅Δ )

=
∞i tx
i 0

is a Markov chain and it can approx-
imate the time-continuous Markov solution of the SDE (13) when
the time incrementΔt is sufficiently small. If the diffusion term b(t
′)ΔW(t′) is removed from the RKM approximation (15), the dy-
namic system is purely deterministic and the time discretization
scheme for the corresponding deterministic system is the RK4
scheme, which is given as: x(t)¼x(t′)þr(x(t′),t′, Δt) with an ac-
curacy to the order O(Δt5). Since the accuracy related to approx-
imation of the deterministic system is most important in order to
establish the corresponding Markov system (Mo, 2008), the ac-
curacy of the RKM approximation (15) is satisfactory for an ap-
propriate time increment Δt.

For a time increment Δt¼t�t′, the transition probability den-
sity of Eq. (15), p(x,t|x′,t′), is given as a (degenerate) Gaussian
distribution, which is written as:

δ
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where ˜( ′ ′)p x t x t, ,3 3 is given by the relation:
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in which ri(x′, t′,Δt)¼ri(x(t′), t′,Δt), i¼1,2,3,4 are the Runge–Kutta
increments for the state space variables.

For the PI method, the evolution of the response statistics, such
as the PDF of the random process (also a Markov process) x at time
t can be obtained by the following basic equation:

∫( ) = ( ′ ′) ( ′ ′) ′ ( )p t p t t p t dx x x x x, , , , 18R4

where ′ = ∏ ′=d dxx i i1
4 .

Since the expression for the TPD is obtained (i.e., the (Eqs. (16)
and 17)), the PDF of x(t) can be obtained by the following iterative
algorithm if an initial PDF (i.e. at time t0) is given:
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where x¼x(n)¼x(tn), t¼tn¼t0þn �Δt, x(s)¼x(ts) and ts¼t0þs �Δt.
Eq. (19) describes the mathematical principle of the PI method

and it can be seen that the global evolution of the response sta-
tistics is obtained by linking local solutions via a step-by-step
solution technique. As for the numerical implementation of the 4D
PI approach, discretization should also be introduced with respect
to the four state space variables. A reasonable computational do-
main and the corresponding computational grid have to be de-
termined at first. In this work, the initial PDF, p(x(0), t0), is chosen
as a 4D Gaussian PDF with zero mean and variances in the four
dimensions evaluated by a simple MCS (Mo, 2008). The straight-
forward MCS ensures that the initial 4D Gaussian PDF includes all
the information corresponding to the parameters of the dynamic

system, such as the roll parameters in Eq. (7) and the parameters
of the linear filter in Eq. (11) and it also provides a rational com-
putational domain and computational grid for the subsequent
calculation.

For the numerical implementation of the iterative algorithm
(19) for each grid point, the PDF at the previous time t′, p(x′, t′) is
represented as an interpolating spline surface via parabolic
B-splines. The PDF at time t, p(x, t) can be evaluated by several
specific steps. The numerical iterative algorithm and the asso-
ciated computational steps have been systematically described by
Yurchenko et al. (2013) and Chai et al. (2015b).

4. Numerical simulation results

4.1. Stochastic roll response and MCS

In this work, an ocean surveillance ship which is described in
Su (2012) is selected to study the stochastic response of the roll
motion in random beam seas. The main parameters of the selected
vessel are presented in Table 1 and the roll restoring arm (i.e. the
GZ curve) for the ship is presented in Fig. 1.

The random stationary sea state is represented by the modified
Pierson-Moskowitz spectrum, which is widely used for fully de-
veloped sea states. The wave energy spectrum is given as:

⎛
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where g¼9.81 m s�2, Hs denotes the significant wave height, ωp

represents the peak frequency at which the wave spectrum Sξξ(ω)
has its maximum value, and Tp is the corresponding peak period.

For the present analysis, three different sea states, i.e., different
external excitations, are considered. The wave energy spectra for
the different sea states and the roll excitation moment per unit
wave height, |Froll(ω)| are presented in Fig. 2.

As mentioned above, the parameters α, β, γ of the second-order
linear filter (11) can be determined by the least square scheme
which is available as part of the curve fitting algorithms in MA-
TLAB. The parameters of the linear filter for the target spectrum
Smm(ω) which correspond to different sea states are given in Ta-
ble 2 and the fitting result of the relative wave excitation spectrum
for sea state 1 with Hs¼4.0 m and Tp¼11.0 s is shown in Fig. 3. It
can be seen in Fig. 3 that the filtered spectrum is reasonable with
regards to the bandwidth, peak frequency and peak value.

However, due to the light damping of the roll behavior, the
fitting accuracy in the critical frequency region near the natural
roll frequency ω0 is essential for estimating the stochastic roll
response. In order to decrease the discrepancy between the
spectral density of the filtered spectrum SFilter(ω) and the spectral
density of the target spectrum, Smm(ω) in the critical region, a
correction factor, c, is introduced. The filtered spectrum (11)
changes to the following expression:

Table 1
List of ship parameters.

Parameters Dimensional value

I44þA44 5.540�107 kg m2

Δ 2.017�107 N
b44 0.095 s�1

b44c 0.0519 s
c1 1.153 s�2

c3 0.915 s�2

ω0 1.074 rad/s
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Correspondingly, the driving process x3 in the dynamic system
(12) will be the corrected value, i.e., c � x3. For the selected sea state
and vessel model, the correction factor c is taken as 1.07 by con-
sidering the mean difference between the two spectral densities in
the critical region. Moreover, for the same vessel model, the cor-
rection factor would vary slightly for different sea states. The
corrected spectrum in the critical region is also shown in Fig. 5.
The rationality of introducing the correction factor has been ver-
ified in Chai et al. (2015a) and the obvious discrepancies between
the two spectral densities in the low-frequency and high-fre-
quency regions, which are far away from the critical frequency

region, would not influence the roll response to a significant
extent.

Having performed the spectrum fitting, all the parameters in
the 4D dynamic system (12) are determined. As mentioned in
Section 3, the joint PDF of the random process x(t) can be obtained
by the 4D PI technique. By integrating through the entire range of
the third and fourth dimensions, the joint PDF of the roll angle
process and the roll velocity process at time instant t, ϕ ϕ( ̇ )ϕϕ ̇f t, ; is
determined. Due to the softening characteristic of the stiffness
term, ship capsizing would be possible, but when the mean time
to capsize is long enough, the dynamic system can be regarded as
being highly reliable and the corresponding roll response reaches
stationary conditions in an approximate sense (Roberts and Vasta,
2000). Therefore, the joint PDF ϕ ϕ( ̇ )ϕϕ ̇f t, ; can be represented by

ϕ ϕ( ̇ )ϕϕ ̇f t, ; as a stationary joint PDF at a suitable reference point in
time. The joint PDF of the roll response for the sea state with Hs

¼4.0 m and Tp¼11.0 s is shown in Fig. 4, while Fig.5 presents the
contour lines of the joint PDF.

For marine structures subjected to random wave excitation, the
mean upcrossing rate is a key parameter for estimation of extreme
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Fig. 1. GZ curve for the selected vessel.

Fig. 2. Wave energy spectra for different sea states and the rolling excitation mo-
ment amplitude per unite wave height |Froll(ω)|.

Table 2
Parameters of the second-order linear filter which correspond to different sea
states with target spectrum Smm(ω) for the excitation moment.

Sea States Hs (m) Tp (s) α β γ

Sea state 1 4.0 11.0 0.495 0.366 0.0432
Sea state 2 5.0 12.0 0.441 0.364 0.0498
Sea state 3 6.0 13.0 0.390 0.365 0.0555
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Fig. 3. Relative roll excitation moment spectrum Smm(ω), the corresponding filtered
spectrum and the corrected filtered spectrum (part) for sea state 1 with Hs¼4.0 m
and Tp¼11.0 s.

Fig. 4. Joint PDF of the roll response obtained by the 4D PI method for sea state
1 with Hs¼4.0 m and Tp¼11.0 s.
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response statistics (Naess et al., 2006). Calculation of the mean
upcrossing rate for the roll angle process is usually based on the
Rice formula (22) by application of the joint PDF of the roll angle
process and the roll velocity process (which can be obtained by the
4D PI method). The Rice formula is given as:

∫ζ ϕ ζ ϕ ϕ( ) = ̇ ( ̇ ) ̇
( )ϕϕ

+
∞

̇v t f t d; , ; 220

where vþ(ζ; t) denotes the expected number of upcrossing for the
ζ-level per unit time at time t by the roll angle process ϕ(t).

The mean upcrossing rate is important for assessment of op-
eration safety and also for reliability based design approaches. For
high response levels, the reliability evaluation is usually based on
the probability that the roll angle process ϕ(t) exceeds the specific
level ζ at least once during a time interval of length T. If the as-
sumption of statistical independence between the upcrossings is
valid for that specific level, the corresponding exceedance prob-
ability can be expressed by the Poisson estimate:

⎛
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( )
ζ
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23
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where vþ(ζ) represents the mean upcrossing for the level ζ at a
suitable reference point in time.

Furthermore, the standard MCS technique can serve as a vali-
dation of the mean upcrossing rate obtained by the 4D PI method
and the Rice formula. It should be noted that this direct-counting
method has its main drawback with respect to the computational
efficiency and accuracy associated with estimation of the extreme
response levels (which correspond to low values of the prob-
ability). However, this obstacle will not be encountered when
applying the PI method based on the Markov assumption.

For the 4D dynamic system (12), the fourth-order RKM method
is applied in order to solve the corresponding SDE and then time
series of the roll response are obtained. In the numerical simula-
tion, ship capsizing is assumed to occur if the roll angle process
exceeds the positive or negative angle of vanishing stability and
then that particular realization is terminated since the subsequent
roll angle process will exceed π/2 or �π/2 rapidly. A large number
of realizations are required for the purpose of estimating the re-
sponse statistics, especially for the high-level responses. The ap-
propriate empirical mean value of the upcrossing rate is based on
MCS and given as:
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where ξ( )+n T;i i denotes the counted number of upcrossings of the
level ζ during the time interval (0, Ti) for simulated time history
No. i. Moreover, the practical simulation time Ti is not fixed for
each realization, it is equal to the predetermined simulation time T
if no capsizing occurs. Otherwise, it is the value of the termination
time ti for each case where capsizing occurs.

The number of realizations, k, e.g. k¼1000–5000, is selected
according to the value of the upcrossing rate in the tail region and
the length of the predetermined simulation time T. Generally, a
low upcrossing rate and short time periods T correspond to a large
number of simulations, i.e. k. A fair approximation of the 95%
confidence interval (CI), CI0.95, for the empirical estimation of the
mean upcrossing rate (24), is given by a normal distribution (Naess
and Moan, 2012):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ζ ζ ζ ζ ζ( ) = ^ ( ) −

^( ) ^ ( ) +
^( )

( )
+ +

v
s

k
v

s

k
CI 1.96 , 1.96

25
0.95

where the empirical standard deviation ξ^ ( )s is given as
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For the selected sea state, the marginal PDF of the roll response
obtained by the 4D PI method and the corresponding empirical
estimation obtained the 4D MCS technique are shown in Fig. 6.
Fig. 7 presents the mean upcrossing rate calculated by application
of the 4D PI method and the Rice formula versus the empirical
value of the upcrossing rate v̂þ(ζ) as well as the 95% confidence
interval provided by the 4D MCS method. For the MCS results in
Figs. 6 and 7, the number of realizations, k, is selected to be 3000
and the predetermined simulation time T is 1.0�105 s for each of
the realizations. It can be seen from Figs. 6 and 7 that the com-
parison of the marginal PDF and the upcrossing rate obtained by
the 4D PI method and the standard MCS technique demonstrates
satisfactory agreement. The 4D PI method can provide good results
for the response statistics, even in the tail region with very low
probability levels, but the response statistics obtained by the MCS

Fig. 5. Contour lines of the joint PDF of the roll response for the sea state with Hs

¼4.0 m and Tp¼11.0 s.
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Fig. 6. Marginal PDF of the roll angle process obtained by the 4D PI method and the
corresponding empirical estimation obtained by the 4D MCS method, for the sea
state with Hs¼4.0 m and Tp¼11.0 s.
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method are suffering from uncertainties in this region.

4.2. Influence of different nonlinear damping models

In this work, we focus on the influence of two damping models
which are equivalent in a least square sense (i.e., the LPQD and
LPCD models) on the statistics of the roll motion, especially for
high roll response levels. The equivalence of the above two
damping models is determined by a least-square algorithm de-
scribed by Eqs. (5) and (6). The equivalence of the LPQD and LPCD
models is shown in Fig. 8 and it is illustrated that the two damping
models have a good agreement in the least-square sense. More-
over, decay tests are performed for the dynamic system (12) by
application of these two damping models and the results are
presented in Fig. 9. The decay tests are started with the same in-
itial condition, i.e., ϕ¼15° and ϕ ̇¼0.5°/s. It can be seen that the
free decay curves for the dynamic system with different damping
models are almost the same.

Next, the performance of these two damping models is in-
vestigated with respect to the response statistics of roll motion
when the ship is excited by a random wave process. Fig. 10

presents the upcrossing rates for the roll motion which is de-
scribed by the dynamic system (13) with the LPQD and LPCD
models for the case of sea state 1 in Table 2. The mean upcrossing
rates are calculated by the 4D PI method and the corresponding
empirical estimates are obtained by the 4D MCS technique. Simi-
larly, for sea states 2 and 3 in Table 2, the upcrossing rates ob-
tained by the above two approaches are shown in Figs. 11 and 12,
respectively. It is illustrated by Figs. 10–12 that the 4D PI method is
able to provide high-accuracy results for both of the damping
models when compared with the corresponding empirical esti-
mates. More importantly, it has been observed in the above three
figures that the upcrossing rates for the roll motion (when sub-
jected to the same sea state) which correspond to different
damping models are quite different, even though these two
damping models match well in a least–square sense as well as in
the decay tests.

The discrepancies between the upcrossing rates, especially in
the tail region, illustrate that the equivalent LPCD model de-
termined by the proposed least-square algorithm leads to a less
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conservative estimate of the extreme response for the dynamic
system. Therefore, the least-square algorithm cannot guarantee
the accuracy of the stochastic response of the roll motion in ran-
dom seas. The stochastic roll response in the tail region is sensitive
to the value of roll damping moments as well as to the selection of
roll damping models. Furthermore, the method of stochastic lin-
earization is the most frequently used method for analyzing the
stochastic responses of many nonlinear dynamic systems sub-
jected to random excitation (Roberts and Spanos, 2003). The sto-
chastic linearization method can provide reasonable estimates for
the mean square response. However, when this technique is ap-
plied to linearize the nonlinear LPQD model (3), it can be antici-
pated that even more significant discrepancies will be observed
with respect to the upcrossing rate in the tail region.

4.3. Influence of the steady heeling angle

The mean wind action M̄wind results in a heeling angle ϕs of the
vessel and the relationship between these quantities can be ex-
pressed as:

ϕ ϕ¯ = Δ( − ) ( )M C C 27wind s s1 1
3

Then, the SDOF model (7) is changed into (Chai, 2016):

( )ϕ ϕ ϕ ϕ ϕ ϕ¨ ( ) + ̇( ) + ̇( ) | ̇ ( ) | + ( ) − ( ) = ( ) + ¯ 28t b t b t t c t c t m t ml q wind44 44 1 1
3

where m̄wind is the mean wind moment which will also be added
into the dynamic system (12).

For the selected vessel model with a mean wind heeling action,
the corresponding mean wind heeling lever and the heeling angle
ϕs are presented in Fig. 1. It can be seen that the area under the GZ
curve decreases with the existence of a wind heeling moment.
That implies a reduced capacity with respect to ship stability
failure. Currently, the intact stability criteria only apply the hy-
drostatic weather criterion in order to evaluate the stability of a
vessel with a wind heeling arm. The present Section is on the
other hand devoted to studying the effect of a wind heeling mo-
ment, i.e., the steady heeling angle, on the distribution of the roll
motion in random seas as well as on the stochastic roll response.

For the vessel with 5° steady heeling angle under the sea state
with Hs¼4.0 m and Tp¼11.0 s, the joint PDF of the roll response
can be calculated by the 4D PI method. Fig. 13 displays the contour
lines of the joint PDF of the roll response, and the marginal PDF of
the roll angle process is presented in Fig. 14. It can be observed in
Figs. 4–6 that the distribution of the roll response is symmetric
when a steady heeling angle is not present. The symmetry is
reasonable since the distribution of the random excitation (or the
filtered white noise process) as well as the vessel properties are
symmetric with respect to the origin. For the vessel with a 5°
steady heeling angle, it is seen in Figs. 13–14 that the distribution
of the roll angle process is approximately symmetric with respect
to the steady heeling angle. However, when the marginal PDF of
the roll angle process in Fig. 14 is plotted with a logarithmic scale
along the vertical axis in Fig. 15, the symmetry is not valid in the
high level response region, for which the nonlinear effects asso-
ciated with the damping and restoring terms have a significant
influence on the distribution of the roll response.

The influence of the steady heeling angle on the upcrossing
rate is presented in Fig. 16 for the case that sea state 1 in Table 2 is
selected for the analysis. It can be readily seen that the existence of
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the steady heeling angle leads to an increases of the upcrossing
rate. This implies that when a vessel has steady heeling angle, the
roll response would cross high levels more frequently than for the
condition without a steady heeling angle. According to the Poisson
estimate (23), an increase of the upcrossing rate indicates that the
existence of the initial heeling angle leads to a reduction of the
capacity of the vessel with respect to stability failure. More im-
portantly, earlier deterministic nonlinear dynamics work con-
ducted in Thompson (1997) and Spyrou et al. (2002) noted that
even a small bias (i.e. steady heeling) has a disproportionate di-
minishing effect on a ship's safety margin. The stochastic analysis
in this work as well as the results presented in Fig. 16 confirm and
extend this statement for irregular sea state conditions. Further-
more, in Figs. 15 and 16, the satisfactory agreement of the sto-
chastic responses obtained by the 4D PI method and the 4D MCS
approach demonstrate that the 4D PI procedure can provide reli-
able results for dynamic systems where a mean wind heeling ac-
tion is present.

5. Conclusions

In this article, an efficient 4D PI method, based on the Markov
property of the dynamic system as well as the 4D MCS were ap-
plied in order to study the influence of nonlinear damping models
and the steady heeling angle on the response statistics of the roll
motion in random beam seas. The good agreement of the response
statistics obtained by the proposed numerical procedure and the
MCS results demonstrate that the 4D PI method can provide reli-
able and satisfactory calculations for such dynamic systems in the
case of different damping models (i.e. the LPQD model and the
LPCD model) as well as for SDOF models with a meanwind heeling
action being present.

The LPCD model can serve as an equivalent damping model for
the LPQD model by applying a least-square scheme. Even though
this equivalence exhibits a good performance for the decay test,
the dynamic system with the LPCD model provides a less con-
servative estimate of the stochastic roll response in random seas.
The discrepancies of the upcrossing rates, especially in the high-
level response region, should not be ignored when performing a
dynamic analysis.

Furthermore, the existence of the steady heeling angle has a
significant influence on the stochastic roll response and leads to a
deterioration of the ship stability. The probabilistic distribution of
the roll angle process for the vessel with a steady heeling angle is
approximately symmetric with respect to the steady heeling angle.
However, in the high-level response region, the response statistics
are influenced by nonlinear effects associated with the damping
and the restoring terms. This implies that the symmetry properties
no longer apply.
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a b s t r a c t

In this paper, a computationally efficient Monte Carlo simulation (MCS) approach is introduced in order
to estimate the extreme response statistics of parametric rolling in random longitudinal seas. Basically,
parametric roll is caused by sufficiently large oscillations of the roll restoring moment occurring within
certain frequencies of wave encounter (approximately twice the natural roll frequency). The concept of
the Grim effective wave is applied herein in order to approximate the variation of the restoring moment
in randomwaves. A fourth order linear filter is introduced to model the random effective wave amplitude
process, which is assumed to be the driving process for the variation of the restoring term as well as for
the stochastic nonlinear system of the roll motion by application of the Grim effective wave approx-
imation. For the stochastic dynamical system, the roll response is a random process and an extrapolation
procedure is developed for estimating the extreme values of the response statistics by assuming regular
behavior in the tail region of the mean upcrossing rate. The rationality of the linear filter model and the
feasibility of an efficient MCS method based on extrapolation techniques for predicting the extreme roll
response are illustrated. Furthermore, the phenomenon of parametric roll in random seas as well as the
effect of vessel speed on the stochastic roll response are investigated.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Parametric roll in longitudinal (head or following) waves is a
phenomenon possibly leading to the occurrence of excessive roll
motion, which may represent a serious threat to ship stability.
Even though there is no direct excitation for the roll motion of a
vessel sailing in pure head or following seas, large oscillation of
the roll restoring moment within certain regions of wave en-
counter frequencies combined with insufficient roll damping, and
thus limited dissipation capabilities, could induce parametric roll
response (Paulling, 2011). The onset of parametric roll in regular
waves can be predicted by applying the Mathieu instability criteria
with the simplification that the roll motion is descried by a single
degree-of-freedom (SDOF) model (Francescutto et al., 2004; Shin
et al., 2004; Spyrou, 2000). For the SDOF model, when the wave
encounter frequency is approximately twice the natural roll fre-
quency with the corresponding wave length being of the order of

the ship length, large amplitude roll motion can be observed if the
wave height is large enough. This phenomenon is referred to as
principal resonance or low cycle resonance. However, the regular
wave condition is an ideal condition which is hardly encountered
in an actual seaway and investigation of the parametric roll con-
sidering irregular waves is therefore more appropriate for a rea-
listic and accurate evaluation of the ship safety at sea.

For the random wave scenario, the primary mechanism leading
to the inception of parametric roll is also the variation of the re-
storing moment. It needs to be noted that the time-varying re-
storing term and the subsequent roll response are stochastic.
Therefore, the dynamic stability of the vessel and the large or
extreme response induced by the parametric roll have to be
evaluated by means of probabilistic approaches. Furthermore, the
nonlinearities associated with the damping and restoring terms
should also be considered in the large amplitude roll motion (Chai
et al., 2015b). For nonlinear stochastic dynamic systems, such as
the parametric roll in random seas, elaborate theoretical model as
well as appropriate mathematical techniques are essential (Eller-
mann, 2009).

In order to study the parametric roll behavior in random seas
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and estimate the risk of an associated large or extreme roll re-
sponse, several 6-DOF nonlinear simulation tools such as LAMP
(Shin et al., 2004), FREDYN (France et al., 2003) and a nonlinear
strip theory model proposed by e Silva and Soares (2013) etc. have
been applied for the numerical simulation. Moreover, several other
tools are mentioned by Peters et al. (2011) and relevant bench-
mark studies regarding parametric roll have been described by
Spanos and Papanikolaou (2009). However, these powerful simu-
lation codes, which calculate the restoring moment at every time
step by using the instantaneous wetted surface, are time con-
suming and are difficult to be applied for predicting the extreme
roll response with very low probability levels. Therefore, some
simplifications are required in order to reduce the computation
time which depends on the number of DOFs as well as on the
method for approximation of the restoring term. On the other
hand, the effect of time-varying restoring moment, the main cause
of the parametric roll, should be correctly modeled. Generally, the
restoring term is included in the nonlinear model for the roll de-
gree of freedom in a simplistic way (Vidic-Perunovic and Jensen,
2009) and several approximation procedures have been proposed,
such as the Volterra series approach (Hua et al., 1999; Moideen
et al., 2014), fluctuation of the metacentric height (GM) term by
linear transfer functions (Song et al., 2013), the Grim effective
wave method and other methods mentioned in Vidic-Perunovic
(2011), etc.

Grim (1961) introduced the effective wave concept with the
main idea that the instantaneous irregular sea surface can be re-
placed by an equivalent (or effective) regular wave with the wave
length equal to the ship length and its crest or trough always
positioned amidships. The equivalent wave is assumed to be fixed
with respect to the vessel, but its amplitude is a random process.
Even though use of the effective wave concept is an approxima-
tion, its simplicity could be sufficiently accurate for engineering
calculations (Umeda and Yamakoshi, 1992). The concept of the
Grim effective wave has been applied by several authors to study
the parametric roll behavior of vessels with conventional hull
forms (Bulian, 2006; Chang, 2008; Kröger, 1986) and the ver-
ification work with respect to applying the Grim effective model
for calculating the response of parametric rolling have already
executed and reported by Bulian. To improve the accuracy of the
original approach and in order to allow the use of the concept also
for unconventional ships, the Grim effective wave has been ex-
tended into a traveling effective wave whose amplitude and phase
are described by stochastic processes (Bulian, 2008). The same
type of improved equivalent wave was also used previously, in a
numerical framework by Jensen (2007).

In this paper, we approximate the time-varying roll restoring
moment according to Bulian (2006) in order to simulate the sto-
chastic roll response in the time domain. In such an approach,
heave and pitch motions are assumed to be quasi-static and the
roll motion is approximated as a SDOF model with the restoring
term fitted by a nonlinear expression with regard to the effective
wave amplitude process and the roll angle (Bulian, 2006). Fur-
thermore, the stability boundaries of a vessel sailing in irregular
waves can be approximately established by means of the sto-
chastic linearization technique. However, the main interest of the
present study is the large or extreme roll response near or beyond
the stability boundaries, which is important for reliability based
design and operation in practice.

The effective wave amplitude process, which serves as the
driving term of the stochastic nonlinear system, is assumed to be
Gaussian and governed by a specific spectrum. Traditionally, the
linear superposition method with deterministic spectral ampli-
tude or stochastic spectral amplitude is applied in order to gen-
erate the Gaussian process (Tucker et al., 1984). In this paper, we
introduce a fourth order linear filter to approximate the effective

wave amplitude process (Chai et al., 2015a). The linear filter
technique uses a white noise process to generate a Gaussian ran-
dom process which complies with the required spectrum and the
advantages of the filter technique will be described in Section 3 in
detail. By combing it with the filter model, the SDOF model of the
roll motion can be extended into a high-dimensional Markov
system since the extended dynamic system can be viewed as being
driven by a white noise process. Therefore, the probabilistic
properties of the Markov system is governed by the corresponding
Fokker-Planck (FP) equation. However, numerical methods for the
solution of FP equations do suffer from a curse of dimensionality
and they are hardly applicable for obtaining the response statistics
by solving the high-dimensional FP equation.

On the other hand, the Monte Carlo simulation (MCS) method
does not critically suffer from dimensionality problems, since the
response statistics are obtained directly from the realizations in-
stead of by solving the FP equation. Basically, it is the simplest and
most versatile way to determine the response statistics of sto-
chastic dynamic system, although this simplicity is paid for by the
random sampling uncertainty inherent in the approach. For ships
and marine structures, the mean upcrossing rate for high-level roll
responses and the associated probabilities of exceedance are of
central importance in evaluation of the response statistics (Naess
et al., 2007a). However, the computational burden of this
straightforward method may be prohibitive for estimation of the
high-level responses and the associated low levels of probability.
In this paper, a computationally efficient MCS method is proposed
in order to circumvent this obstacle. In the efficient MCS approach
presented herein, an extrapolation procedure is applied for pre-
diction of the upcrossing rate in the far tail (which is nearly im-
possible to determine by means of the conventional MCS) on the
basis of the estimations obtained at more moderate levels and
assuming further a regular behavior of the mean upcrossing rates
in the tail regions (Naess and Gaidai, 2008). It has been shown
that, with the advantage of the time-saving extrapolation techni-
que, the efficient MCS method does give an accurate estimation of
the extreme responses with a dramatic reduction of the compu-
tation time (Naess et al., 2007b).

The aim of the work reported in this paper is to predict the
extreme response of parametric roll in random longitudinal seas
by application of the filter technique and the efficient MCS
method. The paper is organized as follows. In Section 2, a math-
ematical model based on the Grim effective wave approximation
for the parametric roll in random longitudinal seas is presented.
Section 3 describes a linear filter model for the random effective
wave amplitude process which is governed by the effective wave
spectrum based on the Grim effective wave approximation. In
Section 4, the principle of the efficient MCS by utilization of an
extrapolation procedure is presented and Section 5 illustrates the
performances of the efficient MCS and the linear filter by numer-
ical simulations. The feasibility of these two techniques for the
purpose of predicting extreme response levels associated with
parametric roll is also demonstrated in Section 5.

2. Mathematical model of ship motion

By assuming a quasi-static behavior in relation to the heave and
pitch motions, the roll dynamics for the ship in irregular long-
itudinal long-crested waves can be represented by the following
SDOF model (Bulian, 2006; Dostal et al., 2012):

θ θ θ ξ( + ) ¨ ( ) + ( ̇( )) + Δ ( ( ) ( ( ))) = ( ) ( )I A t B t GZ t A x t M t, , 1x44 44

where θ(t) and θ ̇ ( )t are the roll angle and the roll velocity, re-
spectively. I44 is the moment of inertia of the vessel, A44 represents
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the added moment of inertia. B(θ ̇ ( )t ) is the damping moment term
of the roll motion andΔGZ(θ(t), Ax(ξ(x,t))) is the restoring moment
in random longitudinal waves. where ξ( ( ))A x t,x accounts for the
effect of wave elevation process ξ(x,t) along the vessel (coordinate
x) at time t, and M(t) denotes a roll excitation moment.

The damping moment normally has three kinds of compo-
nents: the free surface radiated wave damping, the damping
caused by vortex shedding and flow separation as well as the
viscous friction damping. Furthermore, at forward speed, lift
contributions to roll damping also arises. Generally, the quantita-
tive evaluation of the roll damping is difficult because these terms
are coupled with each other. Nevertheless, an empirical damping
model can be applied in order to describe the roll damping mo-
ment. This model is expressed as:

θ θ θ θ θ( ̇( )) = ̇( ) + ̇( ) ̇( ) + ̇ ( ) ( )B t B t B t t B t 2q c44 44 44
3

where B44 is the linear coefficient damping coefficient, B44q and
B44c are quadratic and cubic damping coefficients, respectively.

The roll excitation moment M(t) is small if the ship travels in
about the same direction as the incident waves. It acts as an ad-
ditive disturbance for the dynamic system and can be approxi-
mated by application of a linear strip method (Dostal and Kreuzer,
2014). For long-crest head seas, its influence can be neglected.

Regarding the most important time-varying restoring moment,
it is expressed in terms of the displacement Δ and restoring arm
GZ(θ(t), Ax(ξ(x,t))) of the vessel. The restoring arm is an in-
stantaneous quantity which is difficult to estimate due to its
nonlinear relationship with the instantaneous irregular wave
surface ξ(x,t). The restoring moment can be obtained by integra-
tion of the external pressure over the instantaneous wetted sur-
face. However, such direct integration requires a significant com-
putation effort and the much simpler Grim effective wave concept
is applied herein in order to approximate the complicated restor-
ing term. The derivation and principle of the effective wave
method for approximation of the restoring term are given below,
while more details on the relevant theoretical background are
given by Grim (1961) and Bulian (2008).

For a ship sailing with constant speed V in random long-crest
head seas, it is convenient to describe the sea state in a coordinate
which is fixed to the ship. Assume that a right-hand ship fixed
coordinate system (oxyz) is placed at amidships with the positive z
axis oriented vertically upwards, while the positive x direction
points to the bow. The encounter frequency in the ship fixed frame
is then given as:

ω ω κ ω χ= − ( ) ( )V cos 3e

where χ is the angle between the vessel heading and the direction
of wave propagation (for head seas χ¼180° and for following seas
χ¼0°), κ(ω) is the wave number with κ(ω)¼ω2/g for the deep
water case. For head sea condition, the wave spectrum with re-
spect to the encounter frequency is formulated as:

ω ω
ω χ

ω
ω

( ) = ( )
− ( )⋅

= ( )
+ ( )⋅ ( )

S
S
g V

S
g V1 2 / cos 1 2 / 4

e

where S(ω) is the wave spectrum, also known as the wave energy
spectrum. In general, the irregular long-crested wave surface can
be described by the following linear superposition scheme with
deterministic spectral amplitudes if the corresponding wave
spectrum is given.

∑ξ ω κ ω ω( ) = ( − + ϵ ) ( )Δ
( )=

∞

x t t x S, cos 2
5n

e n n n n
1

,

where ξ(x,t) represents the randomwave elevation process, which
is evolving in space x (measured in the ship-fixed reference sys-
tem) and time t. ωn is the discretized wave frequency and ωe,n is

the corresponding encounter frequency, κn and ϵn are the corre-
sponding wave number and random phase angle. Moreover, ϵn is a
random variable and uniformly distributed over π[ )0, 2 and Δω is
a constant difference between successive frequencies.

The main idea of the effective wave model is that the irregular
wave surface ξ(x,t) can be approximated by an equivalent (or ef-
fective) regular wave ξeff(x,t). It is assumed that the largest fluc-
tuation of the restoring term occurs when the regular longitudinal
wave have a length close to the ship length. Although this is not
always true, it is a reasonable approximation for the most common
cases. Therefore, an equivalent regular wave with a wave length
which is equal to the length of the vessel (as given below) re-
presents the most serious case (Bulian, 2008; Dostal et al., 2012;
Jensen, 2007):

ξ ξ π ξ π

ξ π φ

( ) = ( ) + ( )

= ¯ ( ) + ( ) − < <
( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x t t
L

x t
L

x

t
L

x t
L

x
L

, cos
2

sin
2

cos
2

,
2 2

.
6

eff c s

eff

where L is the length of the effective wave (which is also equal to
the ship length), ξ̄ ( )teff is the effective wave amplitude process. ξc
(t) and ξs(t) are random amplitude processes and ϕ(t) is the ran-
dom phase. In Eq. (6), the average value of the equivalent wave has
been neglected since it is irrelevant to roll motion if quasi-static
heave and pitch motions are assumed.

The equivalence between the irregular wave surface (5) and the
effective regular wave (6) can then be implemented by minimizing
the following square error function:

∫δ ξ ξ ξ ξ( ) = ( ( ) − ( ))
( )−

x t x t dx, , ,
7c s

L

L

eff
2

/2

/2
2

By introducing the basic property that = =δ ξ ξ
ξ

δ ξ ξ
ξ

∂ ( )
∂

∂ ( )
∂

0, ,c s

c

c s

s

2 2
,

the Gaussian random processes ξc(t) and ξs(t) can be determined
and given as:

∑

∑

ξ κ ω ω ω

ξ κ ω ω ω

( ) = ( ) ( + ϵ ) ( )Δ

( ) = ( ) ( + ϵ ) ( )Δ
( )

=

∞

=
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in which the transfer functions fc(κn) and fs(κn) are

κ
π

κ π
π

( ) =
−

( ) =
− ( )

f
R R

R

f
R

R

2 sin

2 sin
9

c n

s n

2 2

2 2

where R¼(L/2)κn and κn is the wave number associated with the
n-th wave component with physical frequency ωn.

If we set the random phase ϕ(t)¼0 (i.e., the random amplitude
ξs¼0 and ξ ξ¯ ( ) = ( )t teff c ), Eq. (6) is the original Grim's effective
wave model which is widely used for the ships with conventional
hull forms. Otherwise, it is the improved model described in Bu-
lian (2008) which can provide good results in terms of restoring
variations, also for unconventional vessels. As for the former
model, the crest or trough of the equivalent regular wave is always
situated amidships, the wave is assumed to be a standing wave
(unmovable) with random amplitude ξc(t). The latter model re-
lates to a traveling wave and gives a much better approximation of
the irregular wave surface. In this paper, a RORO ship from Bulian
(2006) is selected for the subsequent study and the simpler former
model is applied since it works well for conventional ships. In the
following, the random amplitude process ξc(t) is referred to as the
effective wave amplitude process ξ̄ ( )teff and the spectrum of ef-
fective wave amplitude process, also known as the effective wave
spectrum (Bulian, 2006; Dostal et al., 2012; Grim, 1961), can be
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obtained as:

ω ω κ ω ω
π

ω( ) = ( ) = ( ( ))⋅ ( ) = ( )
( − )

⋅ ( )
( )ξ ξ̄S S f S

R R
R

S
4 sin

10c
2

2 2

2 2 2c eff

and the corresponding encounter spectrum for the effective wave
amplitude process for the head seas conditions is given as:

ω
κ ω ω

ω
( ) =

( ( ))⋅ ( )
+ ( )⋅ ( )ξS

f S

g V1 2 / 11
e

c
2

c

With the simplifications from the effective wave model, the
restoring arm can be rewritten as follows:

∑

θ ξ θ ξ

θ ξ

θ δ θ ξ

θ δ θ ξ

( ( ) ( ( ))) ≈ ( ( ) ( ( )))

= ( ( ) ( ))

= ( ( )) + ( ( ) ( ))
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c

c

m

N
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c

0

1,3,5 0

where GZ0 is the restoring arm in still water which is usually given
by a nonlinear odd function of the roll angle, C0m(m¼1,3,5…) is
the related roll restoring coefficient and δGZ is the variation of the
restoring arm in waves. The restoring term GZ(θ(t), ξc(t)) is a
binary function with respect to the effective wave amplitude
process ξc(t) and the roll angle (also referred to as heeling angle) θ
(t). By means of a standard hydrostatic software, this function is
computed by applying the equivalent regular waves of the same
length as the ship length but with different wave amplitudes
amidships. Specifically, for an equivalent regular wave with a given
value of the wave amplitude being located at amidships, the cor-
responding restoring arm for different heeling angles and for this
wave amplitude can be calculated hydrostatically. In addition, the
wave amplitude ξc40 means a wave crest case and ξco0 re-
presents an equivalent wave with wave trough positioned amid-
ships. The restoring arms for different values of the wave ampli-
tude can then be obtained and the restoring arm in Eq. (12) can be
expressed by a set of couples of heeling angles and effective wave
amplitudes. A nonlinear expression is applied in this work in order
to fit the GZ surface.

(∑ ∑θ ξ ξ θ( ( ) ( )) = + ( ) ⋅ ( )
( )= ⋯ =

θ ξ ⎟⎞⎠GZ t t C C t t,
13c m
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N
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l m
1,3,5 0 1

By combining the SDOF model (1) with the damping model (2)
and the approximate restoring term (13), the complete expression
can be obtained. Diving it by (I44þA44), the final form of the dif-
ferential equation is given as:

(∑ ∑
θ θ θ θ θ

ξ θ

¨ ( ) + ̇( ) + ̇( ) ̇( ) + ̇ ( )

+ + ( ) ⋅ ( ) =
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14
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N
m l
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44 44 44
3

1,3,5 0 1

and the natural roll frequency can be determined as:

ω = Δ ( + ) = ( )C I A c/ 150 01 44 44 01

where b44¼B44/(I44þA44); b44q¼B44q/(I44þA44); b44c¼B44c/(I44
þA44). The coefficients C0m and Cwml (m¼1,3,5…; l¼1,2,3…) can
be obtained from a least square fitting of GZ(θ(t), ξc(t)) and cor-
respondingly com¼ΔC0m/(I44þA44), (m¼1,3,5…) and cwml ¼ΔCwml

/(I44þA44).

3. Linear filter technique

In this Section, a linear filter is introduced in order to model the
effective wave amplitude process ξc(t) whose governing spectrum
is given by Eq. (11). The techniques based on the linear

superposition procedures with deterministic spectral amplitude or
stochastic spectral amplitude are simple and commonly used if the
target spectrum is given. For the superposition technique with
deterministic amplitudes, such as the Eqs. (5) and (8), the FFT
technique can be applied for generating the time series with a
significant reduction of computation time. However, it has to be
noted that the quality of this simulation depends on the value of
Δω and the generated time series will smoothly repeat itself after
the duration time T¼2π/Δω. An alternative method is to sum
components with stochastic amplitudes and the series repeats it-
self only after a long time. The drawback of this method is that the
standard FFT algorithm could be unavailable and the generation of
time series will be time consuming. On the other hand, Park et al.
(2013) mentioned that caution is need for the linear superposition
procedure since the parametric roll response is greatly sensitive to
the method of discretization of the spectrum as well as the
number of components in the linear superposition procedure.

Nevertheless, the above obstacles can be circumvented by in-
troducing the filter technique. Spanos (1983, 1986) was the pio-
neer in applying the filter technique in order to approximate the
wave elevation and the wave kinematics. Subsequently, the filter
algorithms were widely used to model random processes and to
evaluate the response of nonlinear systems in the field of ocean
engineering (Alevras and Yurchenko, 2013; Francescutto and Nai-
to, 2004; Su, 2012; Thampi and Niedzwecki, 1992). In general, the
filter technique is applicable only for stationary stochastic pro-
cesses. Therefore, the effective wave amplitude process can be
adequately approximated by a suitable filter. The input of the filter
is a Gaussian white noise and the corresponding output, also
known as the filtered white noise can be applied in order to ap-
proximate the target random process with specific spectral
characteristics.

Due to the simplicity and practicality of the linear filter ap-
proach, it has been widely used by the engineering community. In
this study, a fourth-order linear filter is introduced to model the
target spectrum (11) and approximate the effective wave ampli-
tude process ξc(t).

λ
λ γ
λ

λ

= ( − )
= ( − ) +
= ( − )
= − ( )

⎧

⎨
⎪⎪

⎩
⎪⎪

dx x x dt

dx x x dt dW

dx x x dt

dx x dt 16

3 4 1 3

4 5 2 3 1

5 6 3 3

6 4 3

where x3, x4, x5 and x6 are variables introduced for the state-space
representation and x3 represents the filter output ξc(t). dW(t)¼W
(tþdt)�W(t) represents an infinitesimal increment of a standard
Wiener process with E{dW(t)}¼0, E{dW(t)dW(s)}¼ 0 for t≠s and
E{dW(t)2}¼dt.

The double-sided spectrum generated by Eq. (16) for the output
x3 will have the following form:

ω
π

γ ω
β ω α ω β ω α ω
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2 17
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2 2
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where, the parameters α1, α2, β1, β2 and γ1 are the parameters of
the fourth-order linear filter and the parameters λ 1, λ2, λ3, and λ4
in Eq. (17) can be determined by the following relationship: λ1¼α1

þα2, λ2¼β1þβ2þα1α2, λ3¼α1β2 þα2β1, λ4¼β1β2. In addition,
α1, α2, β1, β2, γ1 for the fourth-order filter are determined by a
least-square algorithm which is utilized for fitting of the target
spectrum. The characteristics of the filtered spectra, such as the
bandwidth and the peak frequency can be adjusted by changing
the values of these parameters.

It can be seen that the principles of the linear filter model (16)
and the linear superposition schemes are different. The former
method generate a Gaussian process by means of the input
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Gaussian white noise and the linearity of the system (16), while
the latter is based on the well-known central limit theorem that
requires a discretization of the spectrum as well as a large number
of harmonic components. The periodic repetition or the high nu-
merical cost problem encountered when applying the linear su-
perposition approaches is not encountered by the filter technique.
Moreover, the filtered spectrum (17) is double-sided, while the
target spectrum is physically single-sided and this difference must
be considered in the practical simulation.

By combining the governing equation of the roll motion (14)
with the fourth-order filter (16), the extended dynamic system is
formed. Therefore, the roll motion for random longitudinal sea can
be described by a 6D state-space equation.
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where x1¼θ(t), θ= ̇( )x t2 , ξ= ( )x tc3 .

4. Extreme response prediction

The dynamic system represented by the stochastic differential
equation (SDE) (18) is a Markov system driven by Gaussian white
noise. The advantage of the Markov dynamic system is that a host
of accurate and useful response statistics can be obtained by sol-
ving the governing equation, i.e. the FP equation. However, for the
nonlinear extended system (18), the so-called “curse of di-
mensionality” comes into play which means that difficulties as-
sociated with the numerical methods arise due to the fact that
processing capacity as well as the storage needed for computation
will increase dramatically with the dimension of the FP equations.
Nevertheless, the straightforward MCS method, which estimates
the response statistics by direct counting work could be a possible
approach. However, the associated computational cost as well as
the efficiency would be sacrificed when the direct MCS technique
is applied in order to estimate the statistics of large roll response
and the associated low levels of probability. In this Section, we
describe the procedure based on the conventional MCS method for
estimation of the empirical mean upcrossing rate and also elabo-
rate the crucial role of this quantity in order to determine the
extreme value distribution. An extrapolation scheme which takes
advantage of the assumed regularity behavior of the mean up-
crossing rate in the tail regions is then introduced in combination
with the MCS method in order to predict the mean upcrossing rate
in the far tail region which is hardly accessible by the traditional
MCS method.

4.1. Mean upcrossing rate

The mean upcrossing rate is a key parameter for estimation of
the large and extreme response statistics as well as for evaluation of
the associated reliability of marine structures (Naess and Moan,
2012). As mentioned above, the standard MCS method can be ap-
plied in order to estimate the empirical mean upcrossing rate of the
roll response in random longitudinal seas. For the dynamic system
which is represented by Eq. (18), the corresponding MCS usually
includes two parts: generate a sample of the random effective wave
amplitude process and a numerical solution of the differential
equation. The fourth-order Runge-Kutta approximation method is

applied to the deterministic part of the SDE. It is combined with the
Maruyama approximation for the stochastic part of the SDE (Naess
and Moe, 2000), whereby the Maruyama approximation is of weak
order one, there may seem to be a disparity in approximation or-
ders of our numerical solution procedure. This approach is applied
to solve the SDE (18) and time series of the roll response are then
obtained.

In practice, large amplitude roll motion or even ship capsizing
may occur when the simulation time T is long enough or the
parametric roll response caused by the variation of the restoring
moment is intense enough. Moreover, if the mean time to capsize
is long enough, the dynamic system can be regarded as a highly
reliable system (Roberts and Vasta, 2000) and the practical time-
variant upcrossing rate νþ(ζ, t) can be approximated as a time-
invariant parameter, i.e., the mean upcrossing rate, νþ(ζ) at a
suitable reference point in time.

For a stationary process (in the present case of roll motion), the
appropriate sample mean value of the upcrossing rate can be ob-
tained from the time series of the roll response:
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where ζ( )+n T;i i denotes the counted number of upcrossing of the
level ζ within a time duration of length Ti for simulated time
history no. i. The practical simulation time Ti is not fixed for each
simulation, it is equal to the predetermined simulation time T if no
capsizing occurs. Otherwise, it is the value of the termination time
ti for each case where capsizing occurs.

Moreover, the number of simulations, i.e. k, is selected ac-
cording to the values of the upcrossing rates in the tail region and
the length of the predetermined simulation time T. Usually, low
upcrossing rates and short time periods T correspond to a large
simulation number k. A fair approximation of the 95% confidence
interval, CI0.95, for the value of ζ^ ( )+

v can be expressed as:

ζ ν ζ ζ ν ζ ζ( ) = ^ ( ) −
^( ) ^ ( ) +

^( )
( )

+ +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟CI

s

k

s

k
1.96 , 1.96

20
0.95

where the empirical standard deviation ξ^ ( )s in this particular case,
is calculated by the expression:
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Roll angles near or beyond the maximum of the still water
restoring arm GZ0 can be regarded as high-level responses. If the
assumption of statistically independent upcrossing is valid for a
certain level in this region, it is reasonable to assume that the
random number of upcrossings in an arbitrary time interval of
length T is approximately Poisson distributed. For high response
levels, let Θ(T)¼max{θ(t): 0rtrT} denote the largest (or ex-
treme) value of the roll angle process θ(t) over the time interval of
length T. The cumulative distribution function (CDF) of Θ(T) under
the Poisson assumption is approximately given in terms of the
mean upcrossing rate by the following relationship for a stationary
short-term sea state (Naess and Moan, 2012):

Θ ζ ν ζ( ( ) ≤ ) = ( − ( )⋅ ) ( )+T exp TProb 22

Moreover, under the Poisson assumption, the reliability mea-
sure is usually expressed in terms of the probability that the roll
angle process θ(t) exceeds the specific level ζ at least once during a
time interval of length T. Therefore, the exceedance probability for
a duration of exposure time T can be approximated by a widely
used approach given as follows:

ζ ν ζ( ) = − ( − ( )⋅ ) ( )+P T T; 1 exp 23MC
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Eqs. (22) and (23) clearly indicate the crucial role of the mean
upcrossing rate in determining the extreme value distribution. The
exceedance probabilities for extreme values and evaluation of the
CDF for the extreme responses have already been applied in
McTaggart (2000) and Kim et al. (2014), respectively, by invoking
asymptotic extreme value distributions. It can be seen that, the
Poisson estimate, which is expressed Eqs. (22) and (23), can pro-
vide values for the above two aspects directly without resorting to
the use of asymptotic distributions, whose validity is hard to
verify.

The Poisson estimate is a good approximation and widely used
in reliability engineering due to its simplicity and accuracy. In
addition, relevant study with respect to its performance for ran-
dom roll motion in Chai et al. (2015b) demonstrated that the
Poisson estimate can provide satisfactory results for stochastic roll
responses, except for the vessel characterized by extremely light
roll damping. In such a case the ACER method can be applied to
estimate the extreme value distribution (Naess and Moan, 2012).

4.2. Efficient monte Carlo simulation

The conventional (or standard) MCS method is not very effi-
cient for estimating the mean upcrossing rate with respect to the
far tail region. In this part, an efficient extrapolation scheme is
introduced in order to provide an accurate and reasonable esti-
mation of the extreme response with a dramatic reduction of the
computation time. The combination of the MCS method and the
extrapolation procedure is referred to as the efficient MCS method
in this work.

The efficient extrapolation approach for the purpose of extreme
response prediction derives from the fact that for the ships being
considered, the mean upcrossing rate as a function of level ζ is in
general highly regular in a specific way in the tail region. In fact,
for a large class of stochastic process, the mean upcrossing rate tail
(e.g. ζZζ0) behaves similarly to exp{-a(ζ-b)c}, where a40, brζ0,
and c40 are suitable constants. Therefore, as discussed in detail in
Naess and Gaidai (2008), it may be assumed that the mean up-
crossing rate is approximated as:

ν ζ ζ ζ ζ ζ( ) ≈ ( ) { − ( − ) } ≥ ( )+ q exp a b , 24c
0

where the function q(ζ) is slowly varying compared with the ex-
ponential function exp{�a(ζ�b)c} for the tail values of ζ and the
function q(ζ) can be replaced by a single constant q for large values
of ζ.

In order to find the optimal values of parameters a, b, c, q, an
optimized fitting on the log level is selected. These parameters can
be determined by minimizing the following mean square error
function,

∑ ρ ν ζ ζ( ) = ^ ( ) − + ( − )
( )=

+F q a b c lnq a b, , , ln
25j

M

j j j
c

1

2

where ζ^ ( )+
v j , j ¼1, …, N denote a set of empirical mean upcrossing

rates at different levels. ρj denotes a weight factor that puts more
emphasis on the more reliable data points. The choice of weight
factors is arbitrary to some extent. In this work, we use
ρj¼(lnCIþ(ζj)� lnCI�(ζj))�2, where CIþ and CI� are the bounds of
the confidence interval determined by Eq. (20), combined with a
Levenberg-Marquardt least squares optimization method (Gill
et al., 1981). This method has usually worked well provided rea-
sonable initial values for the parameters were chosen. It should be
noted that there is a level ζj beyond which the weight factor ρj is
no longer defined. Therefore, the summation in Eq. (25) has to stop
before such a scenario happens. Also, the data of the empirical
mean upcrossing rates should be preconditioned by establishing
the tail maker ζ0 in a sensible way.

Although the Levenberg-Marquardt method, as described
above, generally works well, it can be transformed into a more
simplified and transparent two-parameter optimization method.
This is realized by considering Eq. (25) when the values of b and c
are kept fixed. The optimization problem then reduces to a stan-
dard weighted linear regression problem. That is, with both b and
c fixed, the optimal values of a and lnq are found using closed form
weighted linear regression formulas in terms of ρj, ν ζ= ^ ( )+y lnj j

and xj¼(ζj-b)c. The optimal values of a and q are given by the
relations:

ρ

ρ
*( ) = −

∑ ( − ¯)( − ¯ )

∑ ( − ¯) ( )

=

=

a b c
x x y y

x x
,

26

j
N

j j j

j
N

j j

1

1
2

and

*( ) = ¯ + *( ) ¯ ( )q b c y a b c xln , , 27

where ρ ρ¯ = ∑ ∑= =x x /j
N

j j j
N

j1 1 and ρ ρ¯ = ∑ ∑= =y y /l
N

j j l
N

j1 1 .
In order to calculate the final optimal set of parameters, the

Levenberg-Marquardt method can now be applied to the function
˜ = ( *( ) *( ) )F F q b c a b c b c, , , , , to find the optimal values of b* and c*,
and then the corresponding a* and q* can be calculated from Eqs.
(26) and (27). For estimation of a confidence interval for a pre-
dicted value of the upcrosing rate function provided by the opti-
mal curve, the empirical confidence band is reanchored to the
optimal curve. The weight factors ρj and the Levenberg-Marquardt
scheme mentioned above can also be applied to determine the
optimal parameters for fitting to the boundary curves of the re-
anchored confidence band. This provides the optimal fitted
bounding curves to the confidence band. Extrapolation of these
bounding curves will determine an optimized confidence interval
of the predicted value. As a final point, the predicted value is not
very sensitive to the choice of tail maker ζ0, provided it is chosen
with some care.

As a result of the efficient extrapolation, which is based on the
assumption of regularity of mean upcrossing rate in the tail region
(i.e. no abrupt variations of the mean upcrossing rate for the sys-
tem in the extrapolation region), the empirical estimation of the
upcrossing rate with respect to the far tail region can be achieved
with sufficient accuracy for most practical prediction purposes
with much less computational efforts than using the standard MCS
method directly.

5. Numerical results

In this Section, the performances of the linear filter technique
and the efficient MCS method will be studied. Specifically, the
feasibility of the linear filter approach, which is applied to model
the random effective wave amplitude process, will be investigated.
The rationality and efficiency of the enhanced MCS method based
on the extrapolation technique for prediction of the extreme re-
sponses will be illustrated by numerical simulations. Moreover,
the principle of the parametric roll in random seas and the effects
of some parameters, such as the vessel speed on the stochastic roll
response will also be discussed.

5.1. Random effective wave amplitude process

A RORO ship from Bulian (2006) is considered for the numerical
simulation in the subsequent study. The main parameters of the
vessel are given in Table 1 and Fig. 1 shows the body plan of the
reference vessel. The restoring arm in still water GZ0(θ), is pre-
sented in Fig. 2. In this Section, the ship is assumed to be moving
with a speed of V¼2.5 m/s in pure head seas. The values of
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damping coefficients, in principle, depend on vessel speed V, but
herein constant coefficients are used (see Table 1), which are
considered to be sufficiently representative for the range of speeds
used in this study. Fig. 3 gives an example of irregular wave surface
ξ(x,t) with the corresponding equivalent (effective) wave approx-
imation ξeff(x,t). Based on the Grim's effective wave approximation
(12), the time-varying restoring arm in random seas is fitted by
means of a nonlinear polynomial Eq. (13) with respect to the
heeling angle and the effective wave amplitude. The coefficient of
determination (denoted as R2), which indicates the goodness of fit
for the GZ surface data (which are obtained by means of a stan-
dard hydrostatic software by using the nonlinear expression (13))

is 0.9995. The fitted GZ surface is plotted in Fig. 4 and GZ curves
for waves with different amplitudes amidships can then be cal-
culated by the nonlinear expression (13) where the coefficients are
determined by means of the least square error method. Fig. 2 also
shows the GZ curves for wave crest case (ξc40) and for wave
trough case (ξco0). It is observed in Fig. 2 that the slope of the GZ
curve with respect to the roll angle, i.e. the GM value, and the area
under the GZ curve vary with the effective wave amplitude ξc.
Generally, for the wave trough case, the GM value as well as the
area under the GZ curve are greater than the still water values and
those for the wave crest cases. This implies enhanced initial ship
stability for the wave trough case and conversely, decrease of the
initial ship stability for the wave crest condition.

In this work, the random stationary sea state is specified by the
modified Pierson-Moskowitz spectrum, which is widely used for
fully developed sea states (Naess and Moan, 2012). The sea spec-
trum is given as

Table 1
List of ship parameters.

Parameters Dimensional value

L 132.2 m
Δ 7.75�107 N
b44 0.012 s�1

b44q 0.0
b44c 1.06 s
C01 0.865 m
ω0 0.396 rad/s
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Fig. 1. Frames of the reference RORO ship (Bulian, 2006).
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where Hs denotes the significant wave height, ωp is the peak fre-
quency (or the modal frequency) at which the wave spectrum S(ω)
has its maximum, and Tp is the corresponding peak period. The
peak frequency of the sea spectrum is selected to be the value
which corresponds to a wave length equals to the Grim's reference
length (i.e., ω π= =g L s2 / 0.683 rad/p ) and the significant wave
height Hs is chosen to be 4.0 m for the subsequent study.

The selected wave energy spectrum is presented in Fig. 5 and
then the encounter spectrum for the effective wave amplitude
process, i.e., the effective wave spectrum ω( )ξS ec (which is de-
termined by Eq. (11) with the vessel speed V¼ 2.5 m/s) is also
shown in Fig. 5. After determining the target spectrum ω( )ξS ec , the
parameters α1, α2, β1, β2, γ1 in the fourth-order linear filter (17) are
obtained by minimizing the square error between the filtered
spectrum and the desired spectrum. The fitting result for the linear
filter is shown in Fig. 5 and it can be readily seen that the spectrum
obtained from the fourth order filter represents a good fitting. It is
satisfactory in terms of band width, peak frequency and also the
peak value. Even though there is a slight discrepancy between the
target spectrum and the filtered spectrum near the frequency
1.2 rad/s, it would not impact the subsequent roll response since
the parametric roll would not be induced by the frequencies
within that region.

For the numerical implementation of the linear filter (16) in the
time domain, the fourth-order Runge-Kutta-Maruyama (RKM)
method is applied in order to solve the SDE (16) and an example of
the random wave amplitude process is presented in Fig. 6. More-
over, the spectrum obtained by the FFT technique based on the
time series of random wave amplitude process is introduced in
order to compare with the theoretical filtered spectrum (17). The
spectrum determined by the FFT technique is averaged over 50 h
time series and the satisfactory agreement between the two
spectra, which is shown in Fig. 7, verifies the feasibility of using
the linear filter in time domain simulations for generation of the
random input.

In addition, the Gaussian property of the random effective wave
amplitude process ξc(t), i.e., the output of the linear filter can be

used in order to verify the efficiency and accuracy of the extra-
polated MCS method. The empirical upcrossing rate of the random
effective wave amplitude process can be obtained based on direct
counting (i.e. the MCS technique) and the practical simulation time
Ti in Eq. (19) will be the same for each realization. The empirical
upcrossing rate as well as the 95% confidence interval obtained by
the direct MCS method are plotted in Fig. 8. Generally, the com-
putation cost of the direct MCS for estimation of the mean up-
crossing rate which is associated with probability level lower than
10�7 is formidable. Nevertheless, the extrapolation procedure
described in Section 4.2 is applied in order to predict the up-
crossing rate in the far tail region within a reasonable and ac-
ceptable computation cost.

Since the output of the linear filter (16) is a Gaussian process
govern by the spectrum (17), the theoretical upcrossing of the
process ξc(t) is given by the following expression:

ν ζ
π

σ
σ
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where s1 is the standard deviation of the Gaussian process ξc(t)
and it can be determined as: ∫σ ω ω= ( )

∞
S dth1

2
0 4 and s2 is the

standard deviation for the stochastic process dξc(t)/dt, which is
given as ∫σ ω ω ω= ⋅ ( )

∞
S dth2

2
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The upcrossing rate obtained by the efficient MCS technique
and the theoretical upcrossing rate of this Gaussian process ξc(t)
are also presented in Fig. 8. In addition, CI- and CIþ denote the
lower and upper limits of the 95% confidence interval calculated
by Eq. (20), respectively. Comparing with Eq. (29), the theoretical
values of the parameters q, a, b, c for the upcrossing rates of the
effective wave amplitude processes in the formula (24) can be
obtained. Moreover, for different vessel speeds, the theoretical
values of the parameters q, a, b, c and the corresponding values
determined by the corresponding Levenberge-Marquardt optimi-
zation technique in the efficient MCS are shown in Table 2. On the
basis of the satisfactory agreements of the upcrossing rate in Fig. 8
as well as the parameters in Table 2, the conclusion can be drawn
that the efficient MCS method based on the extrapolation tech-
nique is able to provide a reliable estimation of the upcrossing rate
for Gaussian processes in the far tail region within an acceptable
computation time. Moreover, the good performances of the effi-
cient MCS method for some nonlinear (non-Gaussian) processes
have been reported in Naess and Gaidai (2008).

5.2. Selection of simulation time

In Bulian (2006), the stochastic linearization technique was
used, with application to the damping and restoring terms of the
nonlinear roll motion equation, in order to determine an approx-
imation of the stochastic stability boundaries for the inception of
parametric roll. However, when parametric roll is excited, large
amplitude motions can arise and in such cases nonlinear effects

associated with the restoring terms and the damping terms have a
significant influence, particularly with respect to the high response
levels (Chai et al., 2015b, 2016). Accordingly, these terms should be
taken into account more explicitly.

The versatile MCS technique can be applied in order to address
the above mentioned difficulty since it allows us to account for the
effect of nonlinear damping and restoring terms directly in the
time domain simulation. For a selected vessel speed, the high re-
sponse levels for sea states near or beyond the corresponding
stability boundary should be considered in practice. However, in
relation to the time domain simulation, the computation cost and
accuracy for a short-term sea state case would be important for its
practical applications since they determine the computation time
and accuracy associated with the subsequent prediction of long-
term statistics prediction. These long-term statistics are based on
response calculations for a number of short-term sea states as well
as on the wave data (e.g. the scatter diagram for the sea states).

In this part, empirical estimation of the mean upcrossing rate of
the roll response for the selected sea state (i.e., Hs¼4.0 m and Tp
¼2π/ωp¼9.2 s) with a vessel speed V¼2.5 m/s as obtained by the
efficient MCS technique will be presented. It was shown by Bulian
(2006) and Vidic-Perunovic and Jensen (2009), that the SDOF
model based on the Grim effective wave concept could tend to
overestimate the roll response. In order to compensate this effect,
in Bulian (2006) it was proposed to introduce a correction factor kc
in order to reduce the parametric excitation by correcting the ef-
fective wave spectrum as follows:

ω ω( ) = ⋅ ( ) ( )ξ ξS k S 30k c,
2

c c c

The effective wave amplitude process is accordingly corrected
as:

ξ ξ( ) = ⋅ ( ) ( )t k t 31c k c c, c

For the selected vessel, the correction factor kc is taken to be
0.7 by comparison with the experimental data (Bulian, 2006).
Correspondingly, the driving process for variation of the restoring
term, x3 in the dynamic system (18) will be the corrected effective
wave amplitude process. Subsequently, roll responses can be ob-
tained by solving the SDE (17) with several examples of roll re-
sponse being shown in Fig. 9. In addition, it should be noted that
the selection of empirical correction factor kc depends on the
broadness of the wave spectrum, for example, kc¼0.8 for the
narrow-banded wave spectrum and kc¼0.7 for the current case
with modified Pierson-Moskowitz spectrum (28). The value of kc
will influence the intensity of the subsequent roll response, this
limitation may prevent the Grim effective wave model being em-
ployed at the early design process. Nevertheless, the simple Grim
effective wave model is still recommended for the following
quantitative study in this work. It can be seen in Fig. 9 that
parametric roll occurs for the selected sea state and vessel speed.
In order to overcome the fact that for parametrically excited roll
motion, in some cases, too long single realizations would be ne-
cessary for obtaining sufficiently accurate statistical estimators

0.5 1 1.5 2 2.5 3 3.5 4

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ξc [m]

U
pc

ro
ss

in
g 

ra
te

MCS
CI

CI

Efficient MCS
Theoretical result

Fig. 8. Empirical mean upcrossing rate of the effective wave amplitude process ξc(t)
obtained by the direct MCS method with 95% confidence intervals based on 3000 h
of time series, upcrossing rate obtained by the efficient MCS technique and the
corresponding theoretical value.

Table 2
Theoretical values of the parameters q, a, b, c in expression (24) for the mean upcrossing rates of the effective wave amplitude processes under different vessel speeds and
the corresponding values determined by the Levenberge-Marquardt optimization method in the efficient MCS.

Parameters V¼2.5 m/s V¼4.0 m/s V¼5.5 m/s

Theoretical Practical Theoretical Practical Theoretical Practical

q 0.142 0.133 0.153 0.154 0.166 0.173
a 0.955 1.005 0.955 0.971 0.955 0.890
b 0.000 0.040 0.000 0.005 0.000 �0.051
c 2.000 1.963 2.000 1.993 2.000 2.039
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(Bulian et al., 2006; Song et al., 2013), it is advisable, as an alter-
native, to perform multiple realizations. In the numerical simula-
tion, therefore, 3334 realizations are generated for estimating the
empirical mean upcrossing rate. Each realization has a duration of
11,300 s with the first 500 s being removed to eliminate the

transient effect of the roll response. Fig. 10 shows the corre-
sponding empirical mean upcrossing rate and the 95% confidence
interval obtained by the direct MCS. The upcrossing rate in the far
tail region as well as the corresponding confidence interval esti-
mated by the efficient MCS technique (denoted as −CI extra and +CIextra)
are also presented in Fig. 10. For a target crossing rate level of
10�8, which requires formidable efforts for the conventional MCS
technique, the roll response obtained by the proposed 10,000 h
simulation and the efficient MCS based on the extrapolation pro-
cedure is predicted to be 0.8946 rad and the confidence interval is
estimated to be (0.8821 0.9051).

As mentioned above, the reduction of simulation time would
be important for the subsequent long-term prediction of extreme
responses in practice. Therefore, the effort in the present part,
which is devoted to illustrate that good accuracy can also be ob-
tained by much shorter records of time-domain simulation, can
provide valuable references for the practical applications. Fig. 11
shows the result of using only 100 h of simulated response time
histories constituted by 200 realizations. Each realization lasts
2300 s and the results of the first 500 s are neglected as the former
case with 10,000 h of simulation. The expected roll response for
the crossing rate level of 10�8 for this case is obtained as
0.9343 rad and the confidence interval is estimated to be (0.8757
0.9828). Furthermore, similar calculations, such as the cases with
500 h and 2000 h of simulation, have been made to obtain the
expected roll responses for the target crossing rate level of 10�8 as
well as the confidence intervals which are given in Table 3. It can
be seen from Table 3 and Figs. 10 and 11 that, the confidence in-
terval becomes gradually narrower when the ensemble simulation
time increase. Generally, more realizations and longer simulation
time provide more accurate distributions. Nonetheless, it seems
that for the selected case, the good agreement of the predicted
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Fig. 9. Time series of the roll response for the sea state with Hs¼4.0 m, Tp¼9.2 s and vessel speed V¼2.5 m/s.
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Fig. 10. Empirical mean upcrossing rate obtained by the direct MCS with 95%
confidence interval based on 3334 realizations ( 10,000 h of response time his-
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Sea state with Hs¼4.0 m, Tp¼9.2 s and vessel speed V¼2.5 m/s.
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responses presented in Figs. 10 and 11 demonstrates that 100 h
simulation is available to provide good estimates of the extreme
response and that the reduction of simulation time is feasible and
reasonable. Moreover, the parameters and the starting value, ζ0
used in the extrapolation scheme of the efficient MCS for the
above two sets of data are given below.

5.3. Influence of vessel speed

It is well known that, for a selected sea state, the vessel speed
determines the subsequent encountered wave spectrum (4) and
the effective wave spectrum (11). For the head sea condition (and,
in general, for conditions with encounter wave angle
90°oχo270°), the increase of the vessel speed reduces the peak
value and increase the spectral bandwidth of the encountered
wave spectrum and the corresponding effective wave spectrum.
The influence of vessel speed on the effective wave spectrum is
shown in Fig. 12 and the spectra generated by the linear filter (17)
for different speeds are also presented.

For the regular wave scenario, when the encountered wave
frequency is approximately twice that of the natural roll frequency
ω0 and when the corresponding wave length is on the order of the
ship length, the principal parametric roll resonance occurs if the
parametric excitation is large enough. Similarly, for random seas,
the occurrence of parametric roll is correlated to the components
of the effective wave amplitude process with frequencies in the
critical frequency region near 2ω0. According to Belenky et al.
(2011), the critical frequency region, which is essential for

inducing the parametric roll, is selected to be 1.9–2.1 times that of
the natural roll frequency ω0. This empirical critical frequency
region is indicated in Fig. 11 and it is seen that for the selected sea
state and head sea condition, the increase in vessel speed results in
weaker “energy” (i.e., the area under the effective wave spectrum)
in the critical frequency region. Generally, for the head sea con-
dition, roll damping would increase with the vessel speed and
such an increment will decrease the stochastic roll response since
the amplitudes of the roll motion are limited due to the presence
of damping. In this work, the roll is assumed to be constant for
different vessel speeds in order to concentrate on the investigation
of the influence of parametric excitation energy in the critical
frequency region on the roll response.

The empirical mean upcrossing rate of the roll response and the
95% confidence intervals obtained by the direct MCS method as
well as the response tails and confidence intervals predicted by
the efficient MCS technique for the selected seas state with vessel
speeds V¼4.0 m/s and V¼5.5 m/s are presented in Figs. 13 and 14,
respectively. The simulation time is determined to be 100 h and
the procedure which is applied in order to get the required re-
sponse statistics is similar to the case with vessel speed V¼2.5 m/s
mentioned in Section 5.2. The information related to the para-
meters and the starting values used in the extrapolation schemes
of the efficient MCS for the above two cases are also mentioned in
Figs. 13 and 14.

The estimated roll responses for the target crossing rate level of
10�8 and the corresponding confidence intervals are given in Ta-
ble 3. It can be seen in Figs. 11, 13 and 14 as well as in Table 4 that
the decrease of parametric excitation energy (i.e., the area under
the effective wave spectrum in the critical frequency region) in the
critical frequency region results in decreasing roll response. The
occurrence of parametric roll in random seas is sensitive to the
parametric excitation energy in this critical region and it can also
be seen in Figs. 5 and 12 that the linear filter model (17) provides
satisfactory approximation of the effective wave spectrum in the
critical region. Hence, the slight discrepancies between the filtered
spectrum and the effective wave spectrum in Fig. 11 would not
influence the subsequent roll response since this discrepancy is far
away from the critical frequency region. Furthermore, for some
commercial ships (such as the container carrier), a number of
other damages will occur at large angles and the ship could
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Fig. 11. Empirical mean upcrossing rate obtained by the direct MCS with 95%
confidence interval based on 200 realizations (100 h of response time histories)
and the efficient MCS for the empirical upcrossing rate and confidence interval
with the starting point ζ0¼0.4625, q¼0.011, a¼27.515, b¼0.075, c¼3.167. Sea state
with Hs¼4.0 m, Tp¼9.2 s and vessel speed V¼2.5 m/s.

Table 3
Expected roll responses for the target upcrossing rate level of 10�8 and the cor-
responding confidence intervals for the sea state with Hs¼4.0 m, Tp¼9.2 s and
vessel speed V¼2.5 m/s for different simulation time.

Simulation time (h) Estimated value (rad) CI0.95

10,000 0.8946 (0.8821 0.9051)
2000 0.9223 (0.9074 0.9370)
500 0.9457 (0.8964 0.9699)
100 0.9343 (0.8757 0.9828)
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Fig. 12. Influence of the vessel speed V on the effective wave spectrum for the sea
state with Hs¼4.0 m, Tp¼9.2 s, the corresponding filtered spectra and the critical
frequency region (1.9–2.1ω0).
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probably start to fail before it reaches to the angle of vanishing
stability. For such cases, the rationality of the applying the simple
SDOF model (1) to describe the roll dynamics of the vessel and the
regularity of the mean upcrossing rate in the tail region (presented
in Figs. 10, 11, 13 and 14) could not be guaranteed. The above
limitations for the mathematical model of the roll motion as well
as for the efficient MCS method should be considered in practice.

Based on the observations and the discussions above, it can be
confirmed that the occurrence of parametric roll in random seas is
directly related to the parametric excitation energy in the critical
frequency region near 2ω0. When the parametric excitation en-
ergy in this region is large enough to overcome a threshold which
is determined by the ship parameters (such as the damping and
stiffness coefficients, etc.), the parametric roll phenomena with
excessive roll motion in random seas would probably be observed.
Moreover, it can be predicted that parametric roll in following seas
would be more dangerous. Since the vessel speed in following seas
will increase the peak value and decrease the bandwidth of the
effective wave spectrum, this implies that parametric excitation
energy will concentrate in a narrower frequency band than for the
head sea cases. Dangerous effects of spectral narrowing with re-
ference to ship motions have been discussed by Takaishi (1982).
Once parametric roll occurs in following seas, the roll response
could become serious due to the concentration of parametric ex-
citation energy in the critical region. Moreover, the stochastic roll
response is sensitive to the variation of energy in the critical re-
gion and reducing the parametric excitation energy in this region
is a practical and effective way to decrease the stochastic roll re-
sponse or even keep it absent from the parametric roll.

6. Conclusions

The main accomplishment of the present work is to study the
parametric roll behavior in random longitudinal seas and to esti-
mate the associate large or extreme roll response by means of
probabilistic approaches.

Specifically, the mathematical model of roll motion was es-
tablished on the basis of the Grim effective wave approximation
which was introduced in order to model the variation of the re-
storing moment in random longitudinal seas. The linear filter
technique and an efficient MCS method (based on the combination
of a standard MCS approach and an extrapolation technique) were
applied in order to approximate the effective wave amplitude
process and estimate the extreme roll response, respectively. The
feasibility and rationality of these two techniques has been shown
by numerical simulations. Furthermore, the phenomenon of
parametric roll in random seas as well as the effect of vessel speed
on the stochastic roll response were studied. The parametric ex-
citation energy in the critical region which is located near twice of
the natural roll frequency has a great effect on the occurrence of
parametric roll. The associated stochastic roll response is sensitive
to the variation of parametric excitation energy in this critical
region (i.e., variation of the restoring moment for certain fre-
quencies in this region).

Based on the numerical simulations and the discussions above,
it has been found that the efficient MCS technique gives a sa-
tisfactory estimation of the extreme roll response with a dramatic
reduction of computation time. Moreover, for practical applica-
tions, the linear filter technique and the extrapolated MCS method
can be applied for long-term stochastic predictions due to the
satisfactory accuracy and efficiency.
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Fig. 13. Empirical mean upcrossing rate obtained by the direct MCS with 95%
confidence interval based on 200 realizations (100 h of response time histories)
and the efficient MCS for the empirical upcrossing rate and confidence interval
with the starting point ζ0¼0.381, q¼0.0071, a¼27.4848, b¼0.0427, c¼2.8359. Sea
state with Hs¼4.0 m, Tp¼9.2 s and vessel speed V¼4.0 m/s.
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Fig. 14. Empirical mean upcrossing rate obtained by the direct MCS with 95%
confidence interval based on 200 realizations (100 h of response time histories)
and the efficient MCS for the empirical upcrossing rate and confidence interval
with the starting point ζ0¼0.1875, q¼0.0068, a¼23.1275, b¼0.0337, c¼1.4629. Sea
state with Hs¼4.0 m, Tp¼9.2 s and vessel speed V¼5.5 m/s.

Table 4
Expected roll responses for the target upcrossing rate level of 10�8 and the cor-
responding confidence intervals for the sea state with Hs¼4.0 m, Tp¼9.2 s for
different vessel speeds.

Speed Estimated value (rad) CI0.95

V¼2.5 m/s 0.9343 (0.8757 0.9828)
V¼4.0 m/s 0.8206 (0.7472 0.8763)
V¼5.5 m/s 0.7234 (0.6481 0.7714)
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Figure B1: Site of the NDBC buoy, No. 42058 in the Caribbean Sea. 

 

Table B1: Empirical probability of occurrence of sea states at the location of the NDBC 

buoy, No. 42058 based on 9 years (2006-2014) of data. 
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 Total

<0.5 0.000 0.000 0.030 0.139 0.100 0.172 0.078 0.018 0.000 0.000 0.000 0.54

0.5 0.000 0.000 0.959 5.558 2.645 0.793 0.142 0.003 0.000 0.000 0.000 10.10

1.0 0.000 0.000 0.202 6.846 10.559 1.405 0.148 0.006 0.003 0.000 0.000 19.17

1.5 0.000 0.000 0.000 1.089 18.243 6.560 0.078 0.021 0.012 0.000 0.000 26.00

2.0 0.000 0.000 0.000 0.075 3.996 19.458 0.745 0.006 0.021 0.000 0.000 24.30

2.5 0.000 0.000 0.000 0.000 0.293 8.683 5.450 0.015 0.045 0.000 0.000 14.49

3.0 0.000 0.000 0.000 0.000 0.015 0.766 3.743 0.121 0.015 0.000 0.000 4.66

3.5 0.000 0.000 0.000 0.000 0.000 0.024 0.422 0.262 0.000 0.000 0.000 0.71

4.0 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.030 0.000 0.000 0.000 0.04

4.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

5.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

5.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

0.00 0.00 1.19 13.71 35.85 37.86 10.81 0.48 0.10 0.00 0.00 100.00

Tp (s)

Hs (m)

Total

 

Table B2: Fitted distribution of sea states at the site of the NDBC buoy, No. 42058 

based on 9 years (2006-2014) of data. 

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 Total

< 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

0.5 0.000 0.006 0.880 4.135 2.868 0.645 0.069 0.005 0.000 0.000 0.000 8.61

1.0 0.000 0.000 0.055 5.590 13.398 3.346 0.196 0.004 0.000 0.000 0.000 22.59

1.5 0.000 0.000 0.000 0.524 17.394 11.058 0.539 0.005 0.000 0.000 0.000 29.52

2.0 0.000 0.000 0.000 0.001 3.435 18.129 1.832 0.013 0.000 0.000 0.000 23.41

2.5 0.000 0.000 0.000 0.000 0.058 7.143 4.259 0.066 0.000 0.000 0.000 11.53

3.0 0.000 0.000 0.000 0.000 0.000 0.407 2.950 0.246 0.001 0.000 0.000 3.60

3.5 0.000 0.000 0.000 0.000 0.000 0.003 0.367 0.267 0.005 0.000 0.000 0.64

4.0 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.054 0.007 0.000 0.000 0.07

4.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.00

5.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

5.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

0.00 0.01 0.94 10.25 37.15 40.73 10.22 0.66 0.02 0.00 0.00 100.00Total

Tp (s)

Hs (m)
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