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Abstract
This thesis presents a brief introduction to aerial road detection and semantic
segmentation of images. Datasets based on aerial imagery is often automatically
generated from existing map data, which causes the dataset to be afflicted by
label noise. Supervised training with datasets containing inconsistent labeling
will penalize the classifier for making correct predictions, and can impact the
resulting performance. The thesis investigates different approaches to decrease
the impact of noisy labels in deep neural networks. This includes the bootstrap-
ping method which modifies the loss function, and adjusting the training regime
through the use of curriculum learning.

The bootstrapping method incorporates the predictions of the model in the cross-
entropy loss function. This loss function modifies the label targets through a
convex combination between the prediction and the label.

The thesis investigates curriculum learning and its impact on classifier accuracy.
A curriculum strategy is first defined, which estimates the difficulty of every
example. The classifier is then trained by presenting “easier” examples at the
beginning, and then gradually introduce “harder” examples to the training set.
This thesis proposes a curriculum strategy based on estimating inconsistency be-
tween a prediction made by a teacher model and the corresponding label.

The results from this thesis demonstrate that curriculum learning can improve
generalization accuracy for the road detection task, and that a curriculum strat-
egy based on estimating inconsistency is valid. Applying the bootstrapping
loss function showed some robustness to the label noise present in aerial image
datasets. However, this result was not statistically significant.
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Sammendrag
Denne masteroppgaven undersøker temaer som deteksjon av veier fra flyfoto og
semantisk segmentering av bilder. Datasett basert p̊a flyfoto er ofte generert auto-
matisk fra eksisterende kartdata. Dette kan føre til datasett som inneholder feil
i m̊albildene. Veiledet læring med slike datasett vil potensielt føre til at klas-
sifieringsalgoritmen blir straffet for korrekte prediksjoner, noe som kan p̊avirke
ytelsen til algoritmen. Oppgaven undersøker derfor ulike m̊ater å redusere de neg-
ative konsekvensene som kan oppst̊a ved bruk av motsigende m̊albilder, spesielt
for dype nevrale nettverk. Den første metoden er kalt bootstrapping og endrer p̊a
tapsfunksjonen til nettverket. Den andre metoden, curriculum learning, struktu-
rerer treningssettet som læringsalgoritmen trener p̊a.

Bootstrapping metoden tar i bruk klassifieringsalgoritmens egne prediksjoner i
tapsfunksjonen. Den modifiserte tapsfunksjonen produserer et nytt m̊al basert
p̊a prediksjonen og m̊albildet.

Videre tester oppgaven ut curriculum learning og hvordan dette p̊avirker nøy-
aktigheten til et dypt nevralt nettverk. Først m̊a en strategi for hvordan man
strukturer treningssettet bli utformet. Denne strategien m̊a kunne sortere tre-
ningssettet fra lette til vanskelige eksempler. I denne oppgaven blir vanskelig-
hetsgraden til et eksempel estimert ved å se p̊a ulikheten mellom et m̊albilde og
en prediksjonen gjort av en lærer-algoritme.

Ut ifra oppgavens resultater ser man at curriculum learning kan øke den generelle
nøyaktigheten til en algoritme trent til å gjenkjenne veier i flyfoto. Sorterings-
strategien ser ogs̊a ut til å fungere bra. Resultatene fra bootstrapping metoden
var derimot mindre overbevisende. Selv om metoden viste seg å være en anelse
mer robust mot motsigende m̊al, var det ikke statistisk signifikans i resultatene.



iii

Preface

This project is the author’s master thesis at the Department of Computer and
Information Science, Norwegian University of Science and Technology.

I would like to thank my supervisor, Professor Keith Downing, at the Depart-
ment of Computer and Information Science, Norwegian University of Science and
Technology, for his helpful advice and guidance throughout this project.

I would also like to thank my girlfriend, friends and family for all their support.
Special thanks to Ingvild Olaussen for proofreading, and Torgeir Haaland and
K̊are Vatne for their insights and critiques.

Olav K̊are Vatne
Trondheim, May 31, 2016



iv

List of Abbreviations

CNN convolutional neural network

CPU central processing unit

CRF conditional random fields

GIS geographic information system

GPU graphics processing unit

GSD ground sampling distance

SGD stochastic gradient descent

MAP maximum a posteriori

MSE mean squared error

ReLU rectified linear unit

SLR structured literature review

SPL self-paced learning

SPLD self-paced learning with diversity

SVM support vector machines



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Theory and Motivation 7
2.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 7
2.1.2 Label Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Road Extraction by Machine Learning . . . . . . . . . . . . 12
2.1.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Structured Literature Review . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Identification of Research . . . . . . . . . . . . . . . . . . . 15
2.2.2 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Other Resources . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Road Extraction Systems . . . . . . . . . . . . . . . . . . . 17
2.3.2 Dealing with Noisy Labels . . . . . . . . . . . . . . . . . . . 25
2.3.3 Learning by a Curriculum . . . . . . . . . . . . . . . . . . . 30

2.4 Background Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Methods 37
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Semantic Segmentation with CNN . . . . . . . . . . . . . . . . . . 38

3.2.1 Patch-based Approach . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



vi CONTENTS

3.2.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Bootstrapping Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Massachusetts Roads Dataset . . . . . . . . . . . . . . . . . 51
3.5.2 Norwegian Roads Dataset . . . . . . . . . . . . . . . . . . . 53

3.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Experiments and Analysis 59
4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Bootstrapping for Datasets with Noisy Labels . . . . . . . . 70
4.3.2 Curriculum Learning with Aerial Imagery . . . . . . . . . . 72
4.3.3 Road Detection System . . . . . . . . . . . . . . . . . . . . 78

4.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 The Effect of Bootstrapping . . . . . . . . . . . . . . . . . . 80
4.4.2 Curriculum Learning by Using an Artificial Teacher . . . . 82
4.4.3 Performance of the Road Detection System . . . . . . . . . 83

5 Conclusion 87
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendices 95
A System Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B Experiment Tools Overview . . . . . . . . . . . . . . . . . . . . . . 96
C Experiment Population Normality Assumption . . . . . . . . . . . 97
D Experiment E2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 99
E Random Noise Experiment . . . . . . . . . . . . . . . . . . . . . . 100
F Road Detection Results . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103



List of Figures

1.1 Aerial image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Convolution example . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example from the Norwegian Roads Dataset . . . . . . . . . . . . 13
2.4 Patch dataset examples . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Shallow neural network . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Noise matrix Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Input patch and prediction . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Components of the system . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Visualization of feature maps . . . . . . . . . . . . . . . . . . . . . 40
3.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 The Massachusetts Roads Dataset . . . . . . . . . . . . . . . . . . 52
3.6 Inconsistent labeling in the Norwegian Roads Dataset N50 . . . . . 54
3.7 Road centerline vector quality of Vbase . . . . . . . . . . . . . . . 55
3.8 Example from Norwegian Roads Dataset N50 . . . . . . . . . . . . 56

4.1 E1 - Robustness of bootstrapping in the Massachusetts Roads
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 E2 - Robustness of bootstrapping in the Norwegian Roads Dataset 71
4.3 E3 - Comparison of loss functions using the Norwegian Roads

Dataset Vbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 E4 - Performance of curriculum learning with the Massachusetts

Roads Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 E4 - Difficulty distribution . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 E5 - Performance of curriculum learning with the Norwegian Roads

Dataset Vbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 E6 - Results from experiments with a less experienced teacher . . 77

vii



viii LIST OF FIGURES

4.8 E7 - Performance of the M1 road detection system trained with
the Massachusetts Roads Dataset . . . . . . . . . . . . . . . . . . . 79

4.9 E7 - Qualitiative results of the road extraction system . . . . . . . 85
4.10 Examples of ill-suited line thickness . . . . . . . . . . . . . . . . . 86

1 Normal Q-Q plot examples . . . . . . . . . . . . . . . . . . . . . . 98
2 E2 - Test loss comparisons for several levels of omission noise . . . 99
3 E2 - Precision and recall plots for several levels of omission noise . 99
4 Artifical noise examples . . . . . . . . . . . . . . . . . . . . . . . . 100
5 Label flipping results . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Norwegian Roads Dataset extraction results . . . . . . . . . . . . . 102
7 Massachusetts Roads Dataset extraction results . . . . . . . . . . . 103



List of Tables

2.1 The terms and groups . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Inclusion and quality criteria for the selection process . . . . . . . 17

3.1 Hyperparameters for the CNN . . . . . . . . . . . . . . . . . . . . 42
3.2 Percentage of road pixels in the dataset . . . . . . . . . . . . . . . 46
3.3 Hyperparameters for bootstrapping loss . . . . . . . . . . . . . . . 48
3.4 Hyperparameters for curriculum learning . . . . . . . . . . . . . . . 50
3.5 Raster line thicknesses for the Norwegian Roads Dataset . . . . . . 56

4.1 Experiments overview . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Parameters of Experiment E1 . . . . . . . . . . . . . . . . . . . . . 64
4.3 Parameters of Experiment E2 . . . . . . . . . . . . . . . . . . . . . 65
4.4 Parameters of Experiment E3 . . . . . . . . . . . . . . . . . . . . . 66
4.5 Parameters of Experiment E4 . . . . . . . . . . . . . . . . . . . . . 66
4.6 Parameters of Experiment E5 . . . . . . . . . . . . . . . . . . . . . 67
4.7 Parameters of Experiment E6 . . . . . . . . . . . . . . . . . . . . . 69
4.8 Parameters of Experiment E7 . . . . . . . . . . . . . . . . . . . . . 69
4.9 Bootstrapping results . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Curriculum learning results . . . . . . . . . . . . . . . . . . . . . . 78
4.11 Road detection system results . . . . . . . . . . . . . . . . . . . . . 80

ix



x LIST OF TABLES



Chapter 1

Introduction

This chapter aims at giving an introduction to this thesis. This includes a brief
presentation of the field of photogrammetry, road extraction from aerial imagery
and an introduction to the thesis’ research questions. Section 1.1 outlines the
background and motivation, and in Section 1.2 goals and research questions are
presented. Next, the research methods are described in Section 1.3. The con-
tributions of this thesis are outlined in Section 1.4, and Section 1.5 presents an
overview of the thesis structure.

1.1 Background and Motivation
Photogrammetry, or remote image sensing, is a field occupied with obtaining
measurements about object or areas from overhead imagery, typically captured
from an airplane or satellite. Common tasks in remote image sensing are land
cover classification or road extraction. In land cover classification, each pixel of
an aerial image is assigned a land cover label, such as grass, water, building or
road. Road extraction1 is a binary land cover classification task where each pixel
is categorized as being a road or a non-road pixel.

Aerial and satellite images contain a variety of different features. Identification
of these features is often done by a human expert, which can be expensive, both
in terms of cost and time. Additionally, there is an increasing availability of
high-resolution overhead imagery, which makes a machine learning approach for
automatic land cover classification compelling.

1Also referred to as road segmentation or road detection in this thesis.

1
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Figure 1.1: An aerial image captured above NTNU.

Feature extraction from aerial images is a non-trivial task because of the complex-
ity presented by images. An array of pixel intensities might represent natural land
covers such as terrain, vegetation, or artificial objects such as roads or buildings.
Each type can look very different in terms of shape and texture. Additionally,
aerial images are exposed to different variations of illumination such as objects
casting shadows or changes in brightness. There is also the issue of occlusion.
Roads can, for example, be partly occluded by cars and trees. The result is that
extraction of information from aerial or satellite images can be challenging for an
automatic extraction system.

A machine learning approach to land cover classification is typically formulated
as a semantic segmentation task. Given an aerial image as seen in Figure 1.1, an
algorithm should segment the image into disjoint regions, such as water, road,
building, grass or tree. Alternatively, the algorithm could do a binary classifi-
cation of the image, where each pixel is either a member or non-member of a class.

A convolutional neural network (CNN) is a special variant of a neural network,
where connectivity between units have been constrained and parameter sharing
is employed. This will reduce the number of parameters in the model. CNNs
can, therefore, have many hidden layers, which enables the network to learn a
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hierarchical representation of the input data. By having a large dataset and con-
ducting normal backpropagation, the network can learn to extract informative
features from raw pixel values.

This might be well suited for a road extraction system, where there is an abun-
dance of aerial images available covering large areas. Labels can easily be gen-
erated for these areas from digital maps stored in a geographic information sys-
tem (GIS) database. However, a large issue with utilizing aerial images for train-
ing a machine learning algorithm is the presence of noise in the labels. For most
purposes, maps can be created without pixel level accuracy and still retain their
usefulness. The result is that datasets created from digital maps have some degree
of label noise, which can have negative consequences for the accuracy achieved
by a machine learning algorithm. Mnih and Hinton [2012] have identified two
types of label noise present in aerial images: Omission and registration noise.
The former occurs when an object in an aerial image is missing in the label, and
the latter happens when there is a misalignment between the object in the image
and in the ground truth of the label.

One way of reducing the impact of noisy labels is by modifying the loss function.
Cross-entropy loss assumes that the labels are correct, which results in noisy
labels incorrectly penalizing an accurate classifier. The bootstrapping method
proposed by [Reed et al., 2014], utilizes the classifier’s implicit knowledge about
the task by incorporating the classifier’s predictions in a convex combination with
the labels. The quality of these modified targets improves as the classifier’s ac-
curacy increases, which is why the method is called bootstrapping.

Another compelling way of improving generalization accuracy of a machine learn-
ing algorithm, is the use of curriculum learning [Bengio et al., 2009]. The method
involves organizing the dataset according to a curriculum, where examples are
sorted based on a criterion of “easiness”. The examples considered “easy” are
presented early on in the optimization process, whereas “harder” examples are
presented later on.

1.2 Goals and Research Questions
In this section, the goal and research questions of this thesis are presented, as
well as a brief motivation for each research question.

Goal statement:
The goal of this thesis is to create a convolutional neural network that can
extract roads from aerial images.
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The thesis will investigate how to further improve road extraction by considering
the two research questions defined below. A system consisting of a convolutional
neural network will be created, and experiments will reveal how well the system
performs.

Research question 1:
Does the bootstrapping loss function give a significant improvement of pre-
cision and recall for datasets with noisy labels?

Because of the costs involved in creating accurate datasets, the thesis will look
at techniques to reduce the effect of inconsistent labeling. For datasets related
to aerial images, it is common to find omission and registration noise. Small and
private roads are often unmarked on maps, and roads might be incorrectly placed
on them.

Research question 2:
How can curriculum learning improve results in deep learning, and does
this improve precision and recall for aerial images?

The thesis will also investigate the benefits of curriculum learning for a machine
learning algorithm. By sorting examples from easy to hard, the learner can po-
tentially be guided to a more advantageous area of parameter space and result
in the learner finding a better local minimum, as well as reducing the time of
convergence. This can be beneficial for deep learning, which often involves op-
timization of a lot of parameters. The challenge is to find ordering criteria that
are applicable for aerial images.

1.3 Research Method
To address the research questions outlined in Section 1.2, a CNN has been devel-
oped. An aerial image dataset containing ground truth for roads have been ac-
quired from [Mnih, 2013], and is publicly available under the name Massachusetts
Roads Dataset. Additionally, a new dataset containing parts of the Norwegian
road network has been created using aerial images and road centerline vectors
provided by Kartverket.

These datasets will be used for training and testing the performance of the system,
as well as evaluating the research questions. Furthermore, by utilizing a publicly
available dataset, the system presented in the thesis can be compared to the
performance of other similar systems [Mnih, 2013][Saito and Aoki, 2015].
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1.4 Contributions
The thesis’ main contribution to the field of machine learning is the examina-
tion of different approaches that can reduce the impact of inconsistent labeling.
This involves experiments conducted on semantic road labeling task which has a
high rate of naturally occurring inconsistent labeling. Experiments demonstrated
that curriculum learning improved the generalization accuracy of a deep neural
network, trained with real-world datasets. Furthermore, the thesis shows that a
curriculum teacher based on estimating the inconsistency between a model pre-
diction and a label can be an effective approach for curriculum learning. Whether
the bootstrapping loss function can reduce the effect of inconsistent labeling is
unclear. Experiments testing the bootstrapping loss function were, unfortunately,
inconclusive.

1.5 Thesis Structure
The thesis is divided into five chapters. This chapter presents the motivation and
research questions. In Chapter 2, sections describing the background theory, the
structured literature review, and related work can be found. Chapter 3 outlines
the methods and implementation, as well as presenting details about the datasets.
Experiment results and analysis can be found in Chapter 4. The final chapter,
Chapter 5, concludes the thesis by summarizing the results, outlining future work
and presenting the thesis’ contributions.
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Chapter 2

Background Theory and
Motivation

This chapter presents background theory and related works relevant to the re-
search goal and questions. In Section 1.1 topics such as CNN, label noise and
road detection are briefly introduced. The structured literature review is outlined
in Section 2.2. The relevant research found by the structured literature review
are then presented in Section 2.3. Finally, Section 2.4 concludes the chapter by
a background discussion.

2.1 Background Theory

2.1.1 Convolutional Neural Networks
A CNN is a special kind of neural network, and it was one of the first deep learning
models to perform well in commercial applications. A CNN is loosely based
on principles drawn from neuroscience. According to [Goodfellow et al., 2016,
Chapter 9], local connectivity and parameter sharing are properties characteristic
for CNNs. These properties and the architecture of CNNs will be explored further
below.

Convolution

In mathematics, convolution is a mathematical operation on two real-valued func-
tions that express the amount of overlap of one function as it is shifted over an-
other function. For machine learning applications, the data is usually discretized.
The operation is therefore a discrete summation over the data, and is used to

7



8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.1: Example of 2D convolution without kernel-flipping.

calculate the weighted sum between the activations and the connection weights
in a CNN. The discrete convolution operation without kernel-flipping:

(x ∗ w)(t) =
∞∑

a=−∞
x[a]w[t+ a].

For aerial images we extend the convolution operation to two dimensions, and
limit the summation to a finite number of pixels. To convolve an image I, a
two-dimensional kernel K containing the weights is shifted across the image:

(I ∗K)[i, j] =
∑
m

∑
n

I[i+m, j + n]K[m,n].

This operation is visualized in figure 2.1 where a 2 × 2 kernel of weights is con-
volved with a 3× 3 matrix of input values, and produces 2× 3 outputs.

Local Connectivity

In a traditional neural network, each layer is typically fully connected. Each unit
has connections to every unit in the previous layer. In a CNN, however, a unit
interacts only with a small region of units in the previous layer. This region is
often referred to as the unit’s local receptive field. This kind of local connectivity
can be very practical for high-dimensional data, such as images where meaningful
features can be extracted using only a small area of the total image.

Local connectivity can be achieved by using a small kernel as seen in Figure 2.1.
Instead of each unit being connected to all inputs, the unit only depends on a
2× 2 input region.
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If there are m inputs and n units, a matrix multiplication for a fully-connected
network would require m×n parameters, as well as having a runtime of O(m×n).
By using a kernel we limit the number of connections each unit may have to k.
This requires only k × n parameters and a runtime of O(k × n). For image
applications, the kernel size can be relatively small and still achieve good results,
which can give big improvements in efficiency.

Parameter Sharing

The number of model parameters is further reduced by using parameter sharing.
Each weight in the kernel is applied to every position of the input. In contrast,
a neural network which is fully connected will have a separate weight for every
connection. This can be redundant for high-dimensional data, where most of the
features are localized. In images, for example, an important feature to extract
are edges. A kernel with weights that are good at detecting edges at one location,
will be equally good at detecting them in other locations.

The use of parameter sharing further reduces the storage requirement to k pa-
rameters. Usually, one kernel per layer is not enough, so several kernels with tied
weights convolve the input. The layer will then produce output activations for
different features. The outputs of several kernels are often referred to as feature
maps.

Pooling

The pooling function is another operation typically associated with CNNs. A
pooling function modifies the output of a layer in some way. It replaces a rect-
angular region of the output by a single value that has been determined by a
summary operation. A common pooling function is the max pooling operation,
which outputs the maximum within a rectangular neighborhood. The reason for
utilizing pooling is that it helps the representation become invariant to small
translations in the input. For example, a network created to classify whether an
image depicts a cat or not will benefit from pooling, since the location of the cat
in the picture is irrelevant. For tasks where the location of a feature is important,
such as semantic segmentation, applying pooling should be done with restraint.
Additionally, pooling reduces the number of input parameters for the next layer.

Layer Structure

A typical convolutional layer in a network consists of three stages. First, convo-
lution sums the weighted inputs for every unit in the layer. Second, an activation
function is applied to the resulting values. The rectified linear unit (ReLU) is a
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Figure 2.2: Convolutional neural network.

popular choice, and outputs either 0 or the weighted sum, depending on which
is biggest: f(x) = max(0, x). Finally, the pooling function modifies the output
of the layer.

Network architecture

A CNN usually consists of both convolutional layers and fully-connected layers.
The input layer and the initial hidden layers are convolutional layers, with fully
connected layers attached at the end. Figure 2.2 shows a convolutional neural
network configuration. The input layer and the two first hidden layers are convo-
lutional layers. During training, the kernel weights for these layers are adjusted
by backpropagation. Each feature map defines a set of kernel weights that are
applied to all input pixels or activations. Usually, a CNN will reduce the ne-
cessity of feature engineering because it learns what suitable features to extract
from input data. In images, a CNN is able to learn from raw pixel values without
the use of feature extraction techniques found in computer vision.

2.1.2 Label Noise
There are several reasons for the presence of inconsistent labels in real-world
datasets. For instance, the labeler was presented with insufficient information,
or the dataset was automatically generated from a source with poor quality la-
bels. Additionally, the samples could be ambiguous and therefore hard to label
correctly by a human expert. Label noise, can in many cases, lead to negative
consequences for a classifier. This can include reduced accuracy, increased model
complexity, and more samples required for learning a target concept. Approaches
for dealing with noisy labels can generally be divided into three groups: Data
cleansing methods, noise-robust models, and noise-tolerant algorithms [Frénay
and Verleysen, 2014]. These three groups are presented below.
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Data Cleansing Methods

Data cleansing methods are filtering techniques applied to the training data in
order to remove noisy samples before training. Noisy labels are first identified and
then either relabeled or removed. An obstacle encountered by these methods is
that harmful mislabeled samples can be difficult to distinguish from informative,
but hard samples. Another problem is that filtering often relies on classifier pre-
dictions to automatically identify mislabeled samples. Such filtering techniques
also run the risk of removing too many samples from the training set, which can
also cause harm to the accuracy. Voting ensembles of several classifiers have been
suggested to further improve classification filtering.

Another filtering technique is to simply remove the class label of samples deemed
suspicious, and employ semi-supervised learning. This way, the distribution of
samples are preserved while simultaneously reducing the consequences of incon-
sistent labels.

Noise-robust Models

Noise-robust models are algorithms that are naturally robust against label noise.
Many algorithms have been shown to be less sensitive to label noise than oth-
ers, especially to small amounts of label noise. This approach requires no noise
modeling nor cleansing of the training set beforehand, because the algorithm is
assumed to offer some robustness to mislabeled samples.

Algorithms that utilize regularization techniques to avoid overfitting, can be con-
sidered more robust to label noise. This can include convolutional networks
that utilize regularization schemes such as dropout or weight decay. For ensem-
ble methods, bagging often gives better results than boosting when faced with
noisy labels [Dietterich, 2000]. The boosting algorithm AdaBoost, for example,
combines many weak classifiers by iteratively re-weighting the training set to tar-
get samples the previous classifier had trouble predicting. Because mislabeled
samples can be harder to predict, AdaBoost tends to put larger emphasis on mis-
labeled samples in later stages of learning, which can lead to increased sensitivity
to label noise. In bagging methods, however, different subsets of the training
data are used to create a diverse set of classifiers that are employed in a voting
scheme. In this case, mislabelled samples can impact the performance positively,
due to the increased variability in the classifiers.
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Noise-tolerant Algorithms

In noise-tolerant approaches, existing algorithms are modified to be more robust
towards label noise. This is often done by explicitly modeling a noise model dur-
ing training. This way, a classifier learns to classify samples according to their
true uncorrupted label, instead of the observed noisy label. Typically, the noise
distribution and the model parameters are estimated simultaneously when train-
ing the classifier.

Techniques that incorporate label noise tolerance, such as particle competition,
noise model estimation, bootstrapping, and co-training, will be further discussed
in Section 2.3.

2.1.3 Curriculum Learning
Curriculum learning is inspired by how humans learn, and that learning typi-
cally is highly organized. For instance, by the use of a curriculum in educational
institutions. Easier concepts tend to be introduced first. In terms of machine
learning, this means presenting the classifier with easier samples first while train-
ing. To do so, a curriculum strategy has to be defined, which sorts the training
set from easy to hard. Samples that are not near the decision boundary could
be considered easy, for instance. Utilizing curriculum learning might lead to a
faster convergence time, and help the algorithm reach a better local minimum.
Different works show that curriculum learning can achieve better generalization
for many tasks [Bengio et al., 2009] [Kumar et al., 2010] [Jiang et al., 2014].

A challenge for curriculum learning is defining a sorting measure that enables
a curriculum strategy of gradually introducing harder training samples to the
learner. This issue, and works related to curriculum learning, is further explored
in Section 2.3.

2.1.4 Road Extraction by Machine Learning
Road extraction is a part of the field of photogrammetry, and involves technology
for map production and measurements of objects in images. As digital acquisition
systems for capturing aerial images have become commonplace, the availability
of high-resolution aerial images have increased. Coupled with the increasing need
for detailed spatial information in GIS databases and production of digital maps,
a lot of approaches for automatic object extraction from aerial imagery have been
suggested. A reliable and accurate detection system could be beneficial in terms
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(a) Aerial image. (b) Label image.

Figure 2.3: Image and label example from the training set of the Norwegian
Roads Dataset.

of increased levels of details, while reducing the cost associated with map pro-
duction.

There are three distinctive approaches for extracting objects from aerial imagery.
Manual, semi-automatic and automatic methods. The semi-automatic approach
integrates computer vision techniques and machine learning into the workflow
of skilled human labelers. For instance, Google’s Ground Truth project employs
skilled operators that utilize advanced software tools to improve the accuracy of
Google’s map products [Google, 2013].

To do automatic road detection, supervised learning is often employed. This re-
quires a training dataset of aerial images and labels. The labels for road detection
are usually binary images that show the ground truth of roads. Creating the la-
bel images by manually labeling aerial imagery would be prohibitively expensive,
which is why ground truth labels are often generated from existing map data.
Figure 2.3 shows an example of an aerial image and a label typically found in a
road segmentation dataset.

From these large training set images, smaller training set patches are extracted.
The supervised learning algorithm is given a patch dataset d containing N train-
ing examples in the form d = {(s1,m1), ..., (sN ,mN )}, where si is an aerial image
patch and mi is the corresponding ground truth label. Examples of aerial image
patches and labels can be found in Figure 2.4. The learning algorithm’s task is
to learn a suitable mapping from the input space of aerial images to the output
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Figure 2.4: Aerial image and label examples from a patch dataset. The patches
originate from the Norwegian Roads Dataset. Each label depicts the road ground
truth from the center location of the aerial patch.

space of road ground truth. In neural networks, this mapping is typically learned
by minimizing the cross-entropy loss by gradient descent optimization.

The resulting classifier has hopefully extracted some useful patterns from the
training data, which enables it to generalize to the task of road extraction. This
is verified by computing the mean squared error (MSE) on a test set, contain-
ing examples not seen during training. The machine learning approach for road
extraction should therefore be able to train algorithms which can predict the
ground truth reasonably well for new unseen aerial image patches.

2.1.5 Evaluation Metrics
A common way to evaluate road extraction systems is by the quality measures,
correctness and completeness [Wiedemann et al., 1998]. These are closely related
to precision and recall. Precision measures the fraction of true roads that are
correctly detected, while recall is the fraction of predicted roads that are true
roads. Because the label maps are not perfectly aligned with the images, it is also
common to use a relaxed measure of precision and recall. This is accomplished
by treating predicted road pixels within p pixels of a true road pixel as being
correctly detected. True roads within p pixels of a predicted road pixel are
considered correctly recalled. The slack parameter p is often set to 3 pixels
[Mnih and Hinton, 2010].
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2.2 Structured Literature Review
The purpose of conducting a structured literature review (SLR) is to get an
overview of the field of remote image sensing, as well as the research related to
curriculum learning and dealing with noisy labels. The SLR method has been
chosen to investigate these topics, and provides a formal way of identifying the
information available.

2.2.1 Identification of Research

This section outlines the strategy that was utilized to search for primary studies.
By utilizing a search strategy, literature relevant to the defined research ques-
tions can be identified and collected. Search terms have been defined, as well as
literature resources.

Literature Resources

The following resources were searched in order to identify and collect relevant
material:

• ACM digital library

• IEEExplore

• ScienceDirect

• CiteSeer

• Springer Link

• ECCV (conference)

• NIPS (conference)

Key Terms and Groupings

Table 2.1 describes the different word groups employed by the search strategy.
Each group specifies a number of terms that are either synonyms or related to
each other. Additional terms have been appended, as a result of a search strategy
validation.
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Table 2.1: The terms and groups.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

T1 Aerial
images

Curriculum
learning

Noisy labels Neural network Segmentation Roads

T2 Satellite
images

Guided
learning

Missing
labels

Convolutional
neural network

Classification

T3 Remote
sensing

Example
ordering

Semi-
supervised

Machine
learning

T4 Images Noisy data
(appended)

Deep neural
networks (ap-
pended)

Search Strategy

Based on Table 2.1 several search expressions were devised. These expressions
were run for each of the resources listed in the literature resources section.

• (aerial images OR satellite images) AND (segmentation OR classification)

• (remote sensing OR aerial images) AND (noisy labels OR missing labels
OR semi-supervised OR noisy data)

• (neural network OR machine learning OR convolutional neural networks)
AND (aerial images OR satellite images)

• (curriculum learning OR guided learning) AND (machine learning OR neu-
ral networks OR deep neural networks OR convolutional neural network)

• (segmentation OR classification) AND (roads)

• (Noisy labels OR missing labels OR semi-supervised OR noisy data) AND
(machine learning OR neural network OR convolutional neural network)

• (aerial) AND (noisy labels OR missing labels OR semi-supervised OR noisy
data) AND roads

2.2.2 Selection Process
The search expressions resulted in a large number of hits for each resource. The
top 15 results for each expression were stored, and a selection process was created
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to reduce the over 400 studies to a more manageable number. At first, the title
of each study was evaluated. If the title seemed unrelated to the research goal
or the research questions found in Section 1.2 the study was removed. Then the
title and the abstract were evaluated using the inclusion criteria defined in Table
2.2. Finally, the remaining studies were read while considering both the inclusion
and quality criteria.

Table 2.2: Inclusion and quality criteria for the selection process.

Id Criteria Screening step

IC 1 The study’s main concern is curriculum learning,
dealing with noisy labels or road extraction systems

1

IC 2 The study is presenting empirical results 1

IC 3 The study preferably involves machine learning 1

QC 1 The research has a clear aim 2

QC 2 Is there an adequate description of related works? 2

QC 3 How rigorously has the method or technique been
tested?

2

QC 4 Is there a future work section? 2

2.2.3 Other Resources
By conducting a SLR, a number of relevant studies were identified. Additional lit-
erature was discovered by finding works citing the SLR papers on Google Scholar,
and reading survey papers on road extraction systems [Mena, 2003] [Trinder,
2009] and label noise [Frénay and Verleysen, 2014]. The surveys provided a com-
prehensive overview of these topics and enabled further identification of relevant
literature.

2.3 Related Work
2.3.1 Road Extraction Systems
There is a large amount of literature regarding proposed methods for automatic
road extraction systems. This includes segmentation, edge detection, knowledge
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based methods, fuzzy classification methods, and region growing methods. For a
thorough review of different road extraction systems, see [Trinder, 2009] [Mena,
2003]. The main aim of this section is to present approaches based on machine
learning.

Types of Aerial Imagery

Aerial and satellite imagery are captured using a whole range of sensors. A lot
of approaches found in remote sensing are developed for certain types of sensor
data. Below is a list of different types of aerial imagery:

• Monochromatic (single channel or grayscale) images

• Infrared band

• Color images (Red, green and blue channel)

• Hyper-spectral images

• Synthetic aperture radar images (SAR)

• Laser images (LIDAR)

The focus of this review is approaches for color images, which is the most common
type of aerial imagery.

Machine Learning

In the previous two decades, the availability of high-resolution images covering
large areas has increased. These images can have a resolution of around 1 square
meter per pixel or higher. At this resolution, finer details such as cars, buildings
and trees can be distinguished. Having a higher resolution for images also result
in much more variability in terms of shape, texture and illumination. Machine
learning algorithms that can learn highly non-linear decision boundaries have
therefore become more common for aerial imagery applications. To successfully
discriminate between object classes, more spatial context has been used to create
a richer feature representation, as well as more data being used for training. Addi-
tionally, structured prediction methods such as conditional random fields (CRF),
have become popular for smoothing in semantic segmentation applications.

Classifiers

High-resolution aerial imagery has created a need for more sophisticated classi-
fiers. A classifier must encode knowledge of shape and context in order to dis-
criminate between similar objects. In a road extraction system for high-resolution
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imagery, the classifier should, for example, be able to distinguish between roads
and gray rooftops. The classifier is therefore required to learn highly non-linear
decision boundaries. This can include support vector machines (SVM), ensemble
methods and deep neural networks.

In Mayer et al. [2006] six road extraction approaches were compared on both
aerial images and satellite images. The approaches were based on image pro-
cessing techniques, especially line detection. Many of the approaches rely on
characteristics specific to roads, such as identifying parallel lines in images. In
addition, some approaches utilized fuzzy classification or unsupervised cluster-
ing. Both scenes from urban and rural areas were used for the comparison. The
authors defined a minimum of 0.6 and 0.75 in precision and recall, in order for a
road extraction system to be of any practical use. In summary, most of the ap-
proaches performed well for images with limited complexity, such as rural areas.
None of the methods performed above the defined threshold for images contain-
ing suburban or urban scenes. The low performance for urban areas reinforces
the need for classifiers that can learn complex decision boundaries.

A hybrid approach for road extraction using SVM and image processing tech-
niques was proposed by Song and Civco [2004]. First, a SVM classifies images
into a road and a non-road set. Second, the images in the road set are segmented
into homogeneous areas by utilizing the region growing technique.

The SVM did not perform sufficiently well for areas that appear similar to roads,
especially for urban areas, with structures such as parking areas and roof tops.
Therefore, they extracted shape descriptions from the segmented regions, and
exploited road characteristics to remove areas not corresponding to roads. This
is done by a threshold operation on shape descriptions such as smoothness and
density.

The approach was tested experimentally on IKONOS satellite images. The ap-
proach performed well. However, road segments obscured by shadows or over-
hanging trees were a problem, as well as narrow roads and intersections.

Ensemble methods have also been applied to tasks involving aerial imagery. In
[Kluckner et al., 2010], randomized forest was used for land cover classification on
high-resolution imagery. Training a randomized forest involves training several
binary decision trees on subsets of the training data. The result is an ensemble of
weak classifiers that together can provide robust and accurate predictions. Dollar
et al. [2006] proposed a supervised edge detection method, which was tested for
road detection. This method trains a boosted tree classifier, which is similar to
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a decision tree, except that boosted classifiers are used to split the data at each
node in the tree.

Mnih and Hinton [2010] proposed an automatic road extraction approach for
large real-world datasets. The system consists of a neural network with millions
of weights that is trained on a large dataset of aerial images. A graphics process-
ing unit (GPU) was utilized to train the network.

They formulated detection of road pixels from aerial images as a patch-based
semantic segmentation problem. The goal of the model is to predict whether
or not pixels belong to a road class, given an image patch. This is achieved by
having the neural network model the distribution:

p(N(M(i, j), wm) | N(S(i, j), ws),

where S is an aerial image andM is a corresponding road label image. M(i, j) = 1
if S(i, j) is a road pixel and 0 otherwise. N(I(i, j), w) denotes a w×w large patch
of pixels centered at location (i,j) of a large image I. Using smaller image patches
instead of entire images for modeling the distribution, limits the image context
which the model use to make predictions. This approach is less computationally
expensive, and by retaining a relatively large ws × ws can still provide enough
image context to create a competent road detector.

The network consisted of a single hidden layer with 12288 units, an input layer
of 4096 units, and 256 output units. This enables the network to predict 16 x
16 road prediction patches given 64 x 64 aerial image patches. The network was
trained by stochastic gradient descent (SGD) to minimize the cross-entropy loss
between training labels and the predicted map patches. Furthermore, unsuper-
vised pre-training was used to initialize the parameters of the network.

Experiments were conducted on two large aerial image datasets, and the network
achieved good performance both in terms of precision and recall. A problem
identified by Mnih and Hinton [2010], is that the model is penalized for correct
predictions because of noisy labels. Smaller roads or paved areas have often not
been marked in the dataset. Additionally, the road labels in the dataset have
been generated from road centerline vectors with a fixed width, which results in
some roads not being covered by the ground truth. This may lead to a decrease in
model performance, since the model is penalized for correctly labeling the roads
when minimizing the cross-entropy between predictions and inconsistent labels.

The problem with inconsistent labels in the context of aerial images was inves-
tigated in [Mnih and Hinton, 2012]. Two loss functions were proposed to deal



2.3. RELATED WORK 21

with label noise found in aerial images. This model resembles the patch-based
approach used in Mnih and Hinton [2010]. However, a deep neural network con-
sisting of three hidden layers was used. The first two hidden layers are locally
connected layers, while the final hidden layer is fully connected. Unlike CNNs,
there are no parameter sharing involved.

The proposed deep neural network performed significantly better in terms of pre-
cision and recall, compared to the shallow neural network in [Mnih and Hinton,
2010]. By utilizing the robust loss functions, performance was further improved.

In addition, CNNs have been used to do road detection. Both Mnih [2013] and
Saito and Aoki [2015] have tested this type of network, on the publicly available
datasets, Massachusetts Roads Dataset and Massachusetts Buildings Dataset.
The networks consisted of 5 layers, three convolutional layers and two fully con-
nected layers. The networks utilized stride and max-pooling, but only in the
first layer. They did, however, choose different kernel sizes for the convolutional
layers. For instance, Mnih [2013] used a first layer kernel size of 16× 16, whereas
Saito and Aoki [2015] used a kernel size of 9 × 9. Both networks were trained
on patches of 64 × 64 pixels. However, Saito and Aoki [2015] extended the de-
tection task to simultaneously prediction road and building footprint pixels, by
training the network on a merged version of the previously mentioned datasets.
Predictions were made by an output layer of 768 units, which represent a three
channel 16×16 prediction patch. Each prediction patch pixel has three probabil-
ity values which indicate whether an input pixel belongs to the non-road, road,
and building class.

Datasets

Learning complex decision boundaries and the variations present in the high-
resolution aerial imagery requires a lot of training data. In previous studies,
much smaller datasets have been used [Mokhtarzade and Zoej, 2007] [Song and
Civco, 2004]. Only eight test images ranging from 1600 to 4000 pixels in width
and height were utilized to evaluate automatic road extraction approaches in
[Mayer et al., 2006]. The trend in road extraction and land cover classification
literature is to use increasingly larger datasets.

A high-resolution aerial dataset used to optimize the randomized forest algorithm
in [Kluckner et al., 2010], contains 155 images and covers an area of about 85
square kilometers. Each of these images is 11500 x 7500 pixels in size and have
a ground sampling distance (GSD) of 8 centimeter.
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Figure 2.5: Pixel neighborhood and shallow neural network used for road detec-
tion by Mokhtarzade and Zoej [2007].

In both [Mnih and Hinton, 2010] and [Mnih and Hinton, 2012], two large datasets
were used to optimize neural networks with many parameters. These datasets
cover 500 square kilometers at GSD of around 1.20 meters per pixel.

The Massachusetts Roads Dataset introduced by Mnih [2013], consist of 1171
aerial images, each with a height and width of 1500 pixels. The dataset covers
an area of over 2600 square kilometers, and contains a variety of regions, such as
urban, suburban and rural areas. The GSD is 1 meter per pixel.

Feature Representation

Another trend in road detection is to extract features from larger contexts or
pixel neighborhoods. In addition to increasing the classifiers ability to discrimi-
nate between objects sharing similar texture and shape, using larger contexts are
necessary for images with a low GSD.

Mokhtarzade and Zoej [2007] proposed using a shallow neural network for road
detection. For this approach, a normalized 3 × 3 neighborhood of pixel values
was used as input features to a neural network. The neural network is illustrated
in Figure 2.5.

In Song and Civco [2004], shape description is generated from segmented im-
ages, and certain characteristics descriptive of roads, such as being lengthy and
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narrow, are used to remove objects that share spectral similarities with roads.
Each shape’s border length, area, pixel count and approximate radius are used
to measure the shape index and density. Road shapes should have a large shape
index value and a small density. Questionable shapes with measurements not
characteristic of roads are removed by a threshold operation.

A much larger neighborhood of pixels was utilized as features in [Mnih and Hin-
ton, 2012] and [Mnih and Hinton, 2010]. In this case, 64×64 pixels with minimal
pre-processing formed the input to both networks. Furthermore, the neural net-
work learns suitable features which enables it to distinguish road pixels from
non-road pixels. The large neighborhood is helpful when resolving ambiguities
often found in urban environments.

Combining images with height or elevation information can also increase clas-
sifier accuracy. For instance, height information makes gray rooftops easier to
distinguish from street areas. The effectiveness of combining images and height
maps was demonstrated by Kluckner et al. [2010] where both color and height
cues were integrated as features. The height information significantly improved
the performance of the classifier.

Conditional Random Fields

The smoothness assumption is a strong piece of prior knowledge we have about
images. Neighboring pixels tend to influence each other, and are more likely to
belong to the same object or class. CRF is a way to explicitly model dependencies
between neighboring pixels, and is often utilized in semantic segmentation tasks
to obtain a smoother segmentation result. The goal of semantic segmentation
is to split an image into disjoint regions, where each region is associated with a
certain class label.

In the study by Kluckner et al. [2010], an approach for land cover classification
given high-resolution aerial images was presented. Aerial images were segmented
according to five classes: Building, tree, waterbody, green area, and streetlayer.
Attributes such as color and edge response were extracted from aerial images,
and combined with height information to create an efficient feature representa-
tion based on covariance matrices. A randomized forest classifier was trained to
learn a conditional probability distribution over the possible class labels given
the feature representation. The CRF approach was tested in combination with
this classifier, and was shown to significantly improve accuracy for semantic seg-
mentation tasks.
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Normally, a classifier predicts each label independently. However, for structured
prediction tasks, such as segmentation, contextual information can be useful.
The CRF approach combines graphical modeling and classification. It involves
minimizing the cost of a label assignment for a pixel, as well as the cost of this
assignment in relation to the neighboring pixel assignments. The cost of a label
assignment, which is called the unary potential can be estimated from a pre-
diction made by a classifier. The neighborhood cost is calculated through the
pairwise class potentials between an output pixel and its neighbors.

CRF is often formulated as a graph with V nodes, where each node represents
a pixel, and can be assigned a label l from a discrete set of classes, such as
grass, tree, and roads. The edges are represented by the set E, and models
the relationship between neighboring pixels or nodes. The energy of a label
assignment is modeled by:

E(y) =
∑
i∈V

Ψi(li, xi) +
∑
i,j∈E

Ψij(li, lj),

where Ψi(li, xi) is the unary potential modeling the likelihood of pixel x having a
label assignment l. These estimates can be obtained from a classifier. Ψij(li, lj)
is the pairwise potential modeling the coherence of neighboring pixels. The final
label assignment ŷ, which takes the label assignments of neighboring pixels into
account, is obtained by minimizing the energy: ŷ = argminyE(y). Whereas the
first term of E(y) prefers the label assignment with the lowest cost, the pairwise
potentials prefer pixel neighborhoods to have similar label assignments. This re-
sults in the most probable label assignment ŷ given the neighborhood.

CRF is also commonly used for semantic segmentation tasks involving general
scene understanding. Alvarez et al. [2012] investigated road scene understanding
by utilizing semantic segmentation for images found in environments encountered
by vehicles. In this approach, a CNN is trained to extract features and predict
image patches. These class predictions are in turn utilized by the CRF as unary
potentials.

The proposed method was tested on Cambridge-driving Labeled Video Database,
which contains high-resolution images of roads, signs, pedestrians and other ob-
jects found in a driving vehicle environment. The use of CRF did improve the
overall accuracy, especially for large classes such as roads. For classes with less
presence in the dataset the accuracy decreased.

Improvements in classification accuracy is further shown empirically by Schindler
[2012]. Several random field techniques were tested on different aerial image
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datasets with low ground sampling distance. Enforcing a smoothness prior sig-
nificantly improved accuracy.

An approach similar to CRF is proposed by Mnih and Hinton [2010], where a
post-processing step is introduced to improve the predictions produced by the
neural network by incorporating knowledge about nearby predictions. This is
achieved by training another neural network that predicts 16 × 16 map patches
given 64 × 64 patches of predictions. The approach was applied to reduce the
amount of gaps and disconnected road present in the predictions of the base
network.

2.3.2 Dealing with Noisy Labels
Supervised learning works well for applications where there are a lot of labeled
data available. For object recognition, the large-scale image database ImageNet
has often been utilized. This database provides millions of manually annotated
and quality controlled images, organized in a semantic hierarchy [Deng et al.,
2009]. However, for some tasks, such as semantic segmentation and object de-
tection, manually labeled data are expensive and time consuming to create, and
high quality datasets can be hard to obtain. Automatically creating large datasets
from internet resources, such as image search engines, GIS databases, and user
annotated images can be very practical in terms of reducing the costs of creating
very large datasets.

Unfortunately, such datasets will often contain noisy or weak labels. User an-
notation for images are usually incomplete, image search engines often return
images unrelated to the search term, and GIS databases might be outdated and
missing important object information. This can have negative consequences for
a supervised algorithm, which in most cases assume that the labels are correct.
These consequences are more evident in datasets containing substantial amounts
of inconsistent labels.

There are three main approaches to dealing with noisy label, as outlined in Sec-
tion 2.1. However, in this section only noise-tolerant algorithms are explored,
and especially methods that explicitly introduce noise tolerance into deep neural
networks.

Learning to Label Aerial Images from Noisy Data

The problem with inconsistent labels in aerial images was investigated in [Mnih
and Hinton, 2012]. In this work, two types of label noise were identified, which
datasets constructed from maps are especially susceptible to. Omission noise is
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defined as objects that appear in the aerial image, but not in the map. Reg-
istration noise occurs when the location of the object in the map is inaccurate.
Considering that the presence of label noise might negatively impact the classifier
accuracy, Mnih and Hinton [2012] proposed two robust loss functions that can
be incorporated in a deep learning framework.

The first loss function proposed explicitly models asymmetric noise, and is de-
signed to deal with omission noise. It treats label ỹ as a noisy observation gener-
ated from true label y, according to a noise distribution p(ỹ | y). This distribution
is determined by two parameters, set before training. The noise model modifies
the derivatives produced by the loss function, which results in the neural network
being penalized less for making confident, but incorrect predictions.

The second loss function is an extension of the first, and considers both omission
and registration error. The noise distribution model is combined with a genera-
tive model, where different crops of an unobserved, perfectly registered map are
generated. These crops are used by an expectation–maximization like algorithm
to estimate the true label, which can reduce the effect of local registration errors.

The loss functions were evaluated on two large aerial road detection datasets.
There was a significant improvement in precision and recall for both loss func-
tions, compared to the baseline deep neural network and the network in [Mnih
and Hinton, 2010]. The second loss function performed slightly better than the
first for one of the datasets. This dataset had substantial amounts of registration
errors.

Training Convolutional Networks with Noisy Labels

Sukhbaatar and Fergus [2014] demonstrate robustness towards label noise in a
modified CNN. The method models the noise through an additional noise layer
which is estimated alongside the network parameters during SGD training. The
combined model is optimized to predict the noisy labels. The goal of the noise
layer is to approximate the noise distribution of the data and thereby forcing the
base model to predict the true labels. Experiments were conducted for several
datasets, and showed that the approach does well for higher levels of label noise.

Like other noise-tolerant methods, the algorithm involves learning a noise dis-
tribution, where the examples observed by the algorithm have been altered by
noise. The noise distribution is parameterized by a matrix Q, where each value
specifies the probability of observing noisy label ỹ given the true label y: qji :=
p(ỹ = j | y = i).
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Figure 2.6: Noise matrix Q is inserted between loss function and output layer of
the model.

The matrix Q is implemented by a constrained linear noise layer, which is added
to the base model. This is illustrated in Figure 2.6. The weights between the
output layer of the base model and the noise layer correspond to probabilities
found in Q. These conditional probabilities qji are usually unknown, but an ap-
proximate noise distribution can be estimated by conventional backpropagation.

The training procedure starts with Q fixed to the identity matrix, while the base
model is trained. After a number of epochs, the weights in the linear noise layer
will also be adapted by backpropagation. To ensure that Q captures the noise
properties of the data, a regularization term is used to make it converge to the
true noise distribution. Effectively, the prediction of the combined model will be
given by:

p(ỹ = j | x) =
∑
i

qjip(y = i | x),

where the noisy predictions are made by the conditional probabilities encoded in
q and the prediction of the base model. Hopefully, the base model will learn to
predict the true labels y instead of the noisy labels ỹ.

The approach was tested using the Google street-view house number, CIFAR10
and ImageNet dataset. Noisy labels were synthesized by switching labels of ex-
amples with a fixed probability defined by a probability matrix.

The noise layer extension consistently achieved better accuracy compared to the
baseline network, and also displayed more robustness to inconsistent labeling.
Furthermore, the performance of the modified network decreased slower with
increasing noise levels. This approach was also efficient in learning the noise dis-
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tribution.

For the ImageNet dataset, the labels were switched on half of the examples in
the dataset. The approach did better than the baseline model. Additionally, the
approach also outperformed the baseline model trained on the clean unaltered
subset of the dataset, showing that the noisy examples carry useful information.

Training Deep Neural networks on Noisy Labels with Bootstrapping

In Reed et al. [2014], a generic approach to handling noisy and incomplete labels
in supervised deep learning was presented. The approach incorporates a notion
of perceptual consistency in the loss function. A prediction is consistent if the
same prediction is made given similar percepts. The learner is allowed to disagree
with inconsistent labels by using its own implicit knowledge stored in the network
parameters.

They present two ways of incorporating perceptual consistency in a network.
The first involves a reconstruction loss and a noise distribution model. The other
method is introduced as bootstrapping, and avoids directly modeling the noise
distribution, by using a combination of training labels and the current model’s
prediction to generate targets.

The bootstrapping approach tweaks the loss function to be a convex combination
of the model prediction q and the label y. The β parameter decides the predic-
tion’s contribution to the convex combination, and is usually set to a relatively
low value. The bootstrapping loss function is denoted:

L(q, y) = −
L∑
k=1

[βyk + (1− β)zk]log(qk),

where zk is assigned a value of 1 only for the most probable class l ∈ L, ac-
cording to the class prediction probabilities qk. This is denoted zk := 1[k =
argmax qi, i = 1 . . . L], and is the maximum a posteriori (MAP) estimate of q
given the data x.

This approach was tested on several image tasks, and yielded substantial im-
provements for several datasets. For all tasks, deep neural networks were trained
and used as the baseline. The networks that were modified to include perceptual
consistency were trained by fine-tuning the baseline networks.

The developed method performed better than the baseline. For MNIST handwrit-
ten digits dataset, artificial label noise was added. The bootstrapping performed



2.3. RELATED WORK 29

better than the baseline for noise fractions above 35 percent.

In the task of emotion recognition using Toronto Faces Database, bootstrapping
performed better than the baseline and other approaches. This dataset contains
over 4000 face images with emotion labels. This kind of labeling can be subjective
and the dataset might therefore contain mislabeled samples.

Overall, bootstrapping improves the robustness of a model and is fairly simple
to implement. The bootstrapping approach achieved comparable performance to
the loss function that requires a noise distribution model.

Semi-supervised Learning

Literature for semi-supervised learning has also covered noisy labels. In semi-
supervised learning, a fraction of the dataset is assumed to be correctly labeled
or clean, while the remaining data either have no label or is weakly labeled. For
tasks where labels are expensive to produce, semi-supervised learning can be ad-
vantageous. Furthermore, label noise can have a big impact on semi-supervised
learning, since only a small subset of the dataset is labeled. The approaches de-
scribed below takes an active role in the learning process by iteratively improving
the quality of the dataset, which is similar to the bootstrapping technique.

Self-training has been suggested as an approach to training a classifier when
there is a considerable amount of missing or weak labels present in the dataset
[Rosenberg et al., 2005]. A classifier is trained using an initial set of fully labeled
examples, which is then used to predict weakly labeled examples. The set of fully
labeled examples is expanded by adding a selection of the predicted examples.
The selection can be based on the prediction confidence of the model. The pro-
cess is repeated, which will incrementally increase the number of fully labeled
examples until the entire dataset has been assigned a label.

In co-training, proposed by Blum and Mitchell [1998], two classifiers are trained
on separate views of the data. This requires two feature sets that are condi-
tionally independent given the class, and that each feature set is sufficient for
label predictions. The training set is iteratively expanded by adding unlabeled
examples both classifiers can predict with a high confidence.

In [Breve et al., 2015], particle competition and cooperation is used to address
noisy labels in a semi-supervised setting. A graph is constructed from the dataset
where each example has a node, and edges connect similar examples. Each la-
beled example has an associated particle, which will traverse the graph, cooperate
with other particles of the same class, and compete with other particle teams.



30 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Each particle visits different nodes according to simple rules and will, for each
visit, increase the probability of the node belonging to the particle’s own class.
When the algorithm converges, each node or example is labeled according to the
particle team or class that has the largest node probability. The structure of the
graph and the particle dynamics will in effect classify unlabeled examples and
discover inconsistent labeling.

Most of these approaches require an initial dataset that contains clean labels,
which, in many cases, require precise manual labeling. For road extraction, a
fully labeled, but noisy dataset, can be generated from existing map data. The
problem is that we cannot assume that a subset of this dataset contains clean
labels, without a thorough inspection. Therefore, techniques that treat the entire
dataset as noisy are better suited for this task.

2.3.3 Learning by a Curriculum
Inspired by how humans learn in an organized fashion, Bengio et al. [2009] pre-
sented curriculum learning and investigated how machine learning can benefit
from modifying the training regime. In curriculum learning, a learner is grad-
ually presented with harder training samples. In order to do this, an ordering
criterion that can identify easy samples must be devised. Experiments showed
that a simple multi-stage curriculum reduced convergence time and increased ac-
curacy.

A study conducted by Erhan et al. [2010] investigated why supervised learning
tasks benefit from unsupervised pre-training. It showed that examples presented
early on in training have a disproportionate influence on the outcome of the
training procedure. Earlier training can trap the SGD in a basin of attraction,
which can be hard to escape from. By using a curriculum strategy the learner
can potentially be guided to better areas in parameter space and lead to better
local minima.

Curriculum learning shares similarities with boosting algorithms such as Ad-
aBoost. This algorithm trains several weak classifiers by iteratively re-weighting
the training set, which gradually puts more emphasis on difficult samples. Un-
like boosting, curriculum learning starts off training by considering the easiest
examples found in the dataset.

Active learning [Cohn et al., 1996] is also considered related to curriculum learn-
ing. In active learning, the learner participates in selecting samples for training.
Contrary to a curriculum strategy, an active learner prefers a strategy of picking
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examples close to the decision boundary, in order to reduce the number of exam-
ples necessary for learning a target concept.

Formally, training by a curriculum can be seen as gradually increasing the influ-
ence of difficult examples, and shares similarities to continuation methods [Bengio
et al., 2009]. Let P (z) be the target training distribution, and Wi(z) be a weight
applied to example z at step 1 ≤ i ≤ N . The weight Wi(z) is reweighted at each
step, until WN (z) = 1 for all examples. The training distribution Qi(z) at step
i:

Qi(z) ∝Wi(z)P (z)∀z.

At each step, examples are reweighed, which changes the training distribution
Qi(z). The weights are first increased on examples considered easy. At i = N
all weights W1(z) are set to one, and the target training distribution P (z) is re-
covered. This process should iteratively increase the entropy of the distribution
Qi(z). For instance, curriculum learning could be achieved by two steps N = 2.
At step 1 the influence of harder examples h is eliminated by setting W1(h) = 0.
Whereas, in step 2 the target training distribution P (z) is recovered by setting
all weights W2(z) = 1.

An experiment was conducted on the task of shape recognition, where images of
geometrical shapes were classified. Two artificially generated datasets consisting
of 32x32 grayscale images were constructed. The simpler dataset contained only
squares, circles, and equilateral triangles, while the complex dataset was com-
posed of all types of rectangles, circles, and triangles. Two neural networks were
trained for 256 epochs by SGD to classify these shapes. The network trained us-
ing a curriculum strategy would start by training only on easier examples found
in the simple dataset, and switch to the complex dataset after a certain number
of epochs. The baseline network would only train using the complex dataset.
The best generalization was obtained by the network using a curriculum, where
half of the total epochs was spent on easier examples.

Another experiment was conducted on a language modeling task, where a learner
predicts the most fitting word that can follow a given sentence. The curriculum
strategy in this case, was to iteratively grow the allowed vocabulary. Only sen-
tences in the dataset where all words were present in the vocabulary would be
included in the training set. The network that utilized curriculum learning per-
formed better than the baseline for this task as well.

A considerable challenge with curriculum learning is to define an appropriate
curriculum strategy that can work well for a task. In this study, the strategies
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were task specific, and not generally applicable. Furthermore, the tasks presented
were fairly simple, and curriculum strategies were easy to identify. This may not
be the case for datasets containing images where a measure of easiness can be
harder to define.

Curriculum learning’s main challenge is to find a sequence of samples that are
meaningful, and can facilitate learning. This requires ordering criteria that can
sort samples based on some measure of “easiness”. The criteria presented by Ben-
gio et al. [2009] were problem-specific. To address this issue, Kumar et al. [2010]
proposed self-paced learning (SPL). Instead of a teacher providing the algorithm
with a fixed curriculum, the algorithm iteratively selects samples based on its
own abilities.

SPL is an iterative approach, where the learner both selects easy samples and
updates its parameters at each iteration. The number of samples is determined
by a weight that is gradually annealed. At the start of training, only easy samples
are considered. In self-paced learning, easy samples are defined as samples that
have labels that are easy to predict. The algorithm finishes when all samples
have been considered by the learner, or at convergence.

Specifically, SPL integrates curriculum learning by modifying the loss function
of the model. The model parameters w and binary variables vi are simultane-
ously estimated by minimizing the modified loss function. The binary variables
vi, indicate whether the model considers sample i easy or not. A parameter K
is gradually annealed to modify the learning pace by increasing the effect of a
regularization term. As K is cooled, harder samples are included in order to
minimize the loss.

The SPL approach was tested on several tasks, including hand-written recogni-
tion and object detection. The self-paced learning approach was implemented
for a latent structural support vector machine. Predicting digits found in the
MNIST dataset, self-paced learning performed significantly better on most runs.
In the task of object detection, self-paced learning also produced better results.

According to Jiang et al. [2014], the self-paced learning approach is limited be-
cause it does not consider diversity in sample selection. They therefore, proposed
an extension to SPL called self-paced learning with diversity (SPLD). In this
approach, a new regularization term is introduced which encourages selecting di-
verse samples. SPLD was evaluated on different tasks, such as multimedia event
detection and video action recognition, and compared against SPL and three
other baseline methods. In the task of event detection, the SPLD method out-



2.3. RELATED WORK 33

performed both SPL, RandomForest, and AdaBoost. This was also the case for
action recognition.

A human behavioral study was conducted by [Khan et al., 2011], in which par-
ticipants were tasked with teaching a robot a target concept. The goal of the
study was to explore what teaching strategies humans employ. Empirical results
suggest that human teachers follow the principles of curriculum learning.

There are two prominent teaching models in computational teaching. The teach-
ing dimension and the curriculum learning principle. The former is based on
showing samples closest to the decision boundary, in order to minimize the num-
ber of samples needed to reveal a target concept. The latter suggests an easy-to-
hard teaching strategy.

The experiment involved 31 participants, each tasked with teaching a robot the
concept of graspability. The robot would not learn anything but followed motions
with its gaze. This provided a consistent environment for the trials. Participants
were first asked to sort images of common objects based on how easy they are
to hold with one hand. The images were placed along a ruler. The participants
then assigned a binary value indicating whether an object is graspable or not
to each object. Finally, the participants would act as teachers by showing the
robot images and giving a description about the depicted object’s graspability.
The participants could choose any order, and use as few images that they felt
were needed to teach the robot the target concept. The task represents a simple
one-dimensional machine learning problem of binary classification, where partic-
ipants assigned an x and y value to each example.

Based on the ordering each participant chose, three major human teaching strate-
gies were observed. A large percentage of the participants employed the curricu-
lum learning approach, by gradually presenting samples approaching the decision
boundary. 20 of the participants started by showing the most graspable object,
and 6 started with the least graspable. None of the subjects started by showing
samples close to the decision boundary, which the teaching dimension model sug-
gests.

The experiment showed that there is evidence of curriculum learning being em-
ployed by humans in a teacher role. This might indicate that this is an intuitive
and efficient way to learn, and might be beneficial in machine learning as well.
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2.4 Background Discussion

This chapter has given a brief introduction to several topics. This includes road
extraction systems based on machine learning, convolutional neural networks,
curriculum learning and label noise. In this section, these topics will be summa-
rized.

Manual labeling of aerial imagery for map purposes is a laborious task. Further-
more, the surface depicted in aerial imagery is always changing. These changes
should preferable be reflected in the map data in a timely manner. Automatic
object extraction has therefore become a compelling area of research.

The increasing spatial detail of aerial imagery is reflected in the choice of learn-
ing algorithm. The latest iteration consists of deep neural networks, which are
capable of learning complex decision boundaries, and extract suitable image fea-
tures by learning. This is necessary, since the decreasing GSD has lead to more
features being distinguishable from aerial imagery and increased the complexity
of the data. The use of learning algorithms with high model capacity have also
resulted in the usage of larger datasets. Another trend is the increasing context
window. For instance, Mnih and Hinton [2010] used a pixel neighborhood of
64× 64 to distinguish road from non-road pixels in a 16× 16 center area. There
are also many examples of systems that have combined various input features to
increase accuracy.

Furthermore, CRF and post-processing neural networks have been used to in-
crease the performance of various systems. In structured output learning, such
as semantic segmentation, smoothness between neighboring predictions is an im-
portant consideration when performing a label assignment. For road extraction,
these methods can reduce prediction artifacts such as disconnected roads, and
can result in a more even segmentation.

Training deep neural networks to extract roads from images require large datasets.
The labels in these datasets are often automatically generated from existing map
data. Unfortunately, these labels are often affected by label noise, which can
affect the performance of supervised learning. The types of label noise in aerial
imagery have been identified by Mnih and Hinton [2012] as registration and omis-
sion noise.

The first research question involves reducing the effect of inconsistent labels when
training a classifier. The bootstrapping approach presented by Reed et al. [2014]
was, therefore, evaluated for road detection in Chapter 4. Whereas the loss func-
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tions presented by Mnih and Hinton [2012] model the noise distribution, boot-
strapping utilizes a convex combination of the classifier’s prediction and the label.
Furthermore, the method was tested on several datasets, and achieved good re-
sults. To test this method for road extraction, the robustness of this method can
be evaluated on aerial image datasets with increasing levels of artificial omission
and registration noise. Similar experiments of increasing noise levels have been
conducted in [Sukhbaatar and Fergus, 2014] and [Reed et al., 2014].

The studies involving curriculum learning demonstrated that a curriculum strat-
egy which gradually introduce “harder” examples while training, resulted in an
improved generalization accuracy and faster convergence. However, the curricu-
lum strategies that Bengio et al. [2009] used to estimate the difficulty of each
example were domain specific. This was rectified by SPL [Kumar et al., 2010],
where curriculum learning is internalized in the classifier. The model simulta-
neously estimates the difficulty of the examples and the loss. Jiang et al. [2014]
extended this method by also considering the diversity of the examples. The
curriculum learning approach is also compliant with how humans prefer to teach,
as demonstrated by Khan et al. [2011].

The second research question, therefore, investigates what effect a curriculum
strategy can have on the road extraction system’s precision and recall. Aerial
image datasets often contain label noise, which could be considered harder in the
context of curriculum learning. The learner would most likely create unnecessar-
ily complex decision boundaries to fit the inconsistent examples. Postponing the
introduction of these examples could be beneficial for a road extraction system.
An interesting curriculum strategy, mentioned by Bengio et al. [2009], is creating
an easy-to-hard ordering of samples according to how noisy the examples are. A
potentially valid curriculum strategy is to estimate the degree of noise in exam-
ples, by measuring disagreement between labels and predictions.
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Chapter 3

Methods

This chapter will describe the architecture and the methods that were needed in
order to investigate the research questions presented in Section 1.2. An overview
of the system and its components can be found in Section 3.1. Section 3.2 presents
the architecture, regularization, optimization, and data preprocessing utilized by
the convolutional neural network. Furthermore, the methods specifically related
to the research questions can be found in Section 3.3 and Section 3.4. These sec-
tions outline curriculum learning and bootstrapping loss in detail. The datasets
used are described in Section 3.5, and implementation details can be found in
Section 3.6.

3.1 System Overview
The objective of the system is to detect and segment roads found in aerial color
images. A supervised learning algorithm that works well for images is a CNN, and
it has therefore been chosen for this task. CNNs have been applied to many com-
puter vision tasks lately, with results outperforming other approaches [Krizhevsky
et al., 2012]. As discussed in Section 2.1, these networks reduce the need for fea-
ture engineering by having the network learn suitable feature detectors, which
are a necessity for tasks involving images. Additionally, an important part of cre-
ating a competent road detection system from supervised learning is by having
a large dataset containing aerial images and label images showing exactly which
pixels represent roads.

The system shares many similarities with the patch-based deep neural network
presented by Mnih and Hinton [2012]. Their system produces a patch of pre-
dictions given a patch of pixel values, where each value indicate the probability

37
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Figure 3.1: Output prediction patch superimposed on input aerial image patch.

Figure 3.2: Components of the system.

of the input pixel representing a road. Given a 64 × 64 aerial image patch, the
system computes a 16 × 16 patch of probabilities. These probabilities indicate
the presence of road for the pixels found in the center of the aerial image patch.
An example of an input image patch and an output prediction patch can be seen
in Figure 3.1.

The actual implementation consists of two primary components, and an optional
storage and graphical user interface web server component. The components,
and how they are related, can be seen in Figure 3.2. The storage and user in-
terface component is not integral to the task of road detection, but has been a
helpful aid when conducting experiments. Additionally, the patch dataset cre-
ator component is interchangeable, and can easily accommodate other varieties
of segmentation datasets. In relation to the research questions, the patch dataset
creator component is altered when investigating curriculum learning, and the loss
function of the CNN component is replaced when bootstrapping is tested.

3.2 Semantic Segmentation with CNN

This section presents the architecture of the convolutional neural network, as well
as the details surrounding the optimization and regularization of the network.
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3.2.1 Patch-based Approach
This thesis formulates the problem of road segmentation in aerial images in the
same manner as Mnih and Hinton [2010] did. This patch-based approach is
presented in detail in Section 2.3. In short, the convolutional neural network
should learn the label distribution:

p(m|s) =
w2

m∏
i=0

p(mi|s),

where p(m|s) denote a conditional probability of a label map patch given an aerial
image patch. The patches m and s have been extracted from label image M and
aerial image S. Therefore, the patches can be defined as m = N(Mi,j , wm), and
s = N(Si,j , ws), where an area of wm×wm and ws×ws centered at location (i, j)
have been extracted from M and S. By having a label patch m, the model can
simultaneously make several predictions from the same context s, which is more
effective than making a separate prediction per aerial image patch. Furthermore,
limiting the size of each example by creating patch examples (s,m), reduces the
number of operations needed to convolve the input and subsequent layers. This
is achieved without losing too much of the image context.

3.2.2 Network Architecture
The network is based on the deep neural network outlined by Mnih [2013]. See
Section 2.1.1 for background theory about CNN. The network has three convo-
lutional layers and two fully connected layers. It predicts whether or not roads
are present in a 16×16 pixel area from the center of a 64×64 aerial image patch.
The input patch is considerably larger than the output patch, so that the network
can utilize the surrounding image context when making predictions. The default
network architecture used for experiments is depicted in Figure 2.2.

The first layer convolves the input using 13 × 13 kernels. Only the first layer
utilizes stride and max pooling. The first controls how the kernel should move
spatially across the input. A stride of 2×2 makes the kernel perform convolution
for every second pixel, making the receptive fields overlap less. As a result, this
decreases the number of connections between the input and the first layer. The
second reduces the number of inputs to the next layer, as well as introducing
some translational invariance in the model. In the default configuration, a stride
of 4 × 4 and max pooling of 2 × 2 are used. In addition, the pooling step uses
a stride of 2 × 2, which results in non-overlapping pooling regions. The default
kernel size in the second and third layer is 4 × 4 and 3 × 3, respectably. The
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Figure 3.3: Visualization of feature maps from the first convolutional layer of a
trained network.

output of the third convolutional layer is used as input to a fully connected hid-
den layer with 4096 units. Finally, the fully connected output layer contains 256
units, where each output is the probability of a pixel representing a road.

The convolutional layers each have 64, 112 and 80 different feature maps, re-
spectably. During training, these feature maps or kernels typically learn to re-
spond to common local patterns in the input. The kernels in the first convolu-
tional layer, for example, will learn to detect low-level features in the aerial image,
such as edges, colors, and textures. This happens because the CNN employ pa-
rameter sharing by convolving the same kernel across the input data, forcing
the model to find local image features that are present throughout the image.
A visualization of the 64 feature maps from the first layer of a trained model
can be viewed in Figure 3.3. Many of the kernels seem to have developed into
something similar to Gabor filters, that are effective at detecting edges at certain
orientations. Coincidentally, oriented two-dimensional Gabor functions are often
used to model the response from simple-cell receptive fields in the primary visual
cortex [Ringach, 2002].

Common for both convolutional layers and fully connected layers are the use
of non-linear activation functions, which allow the network to learn non-linear
decision boundaries. To compute the outgoing activation of any unit in the
network, the incoming weights are first summed with the activations coming
from either the input or the previous layer. Then, a bias is added, before feeding
the result through the activation function. This is typically denoted:

y = σ(aw + b),

where a and w are the unit’s incoming activations and weights, b is the bias and
σ is the non-linear activation function.
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In the default hyperparameter configuration of this system, the output layer ap-
plies the logistic activation function, while the ReLU activation function is used
by the input and hidden layers. The logistic activation function is appropriate
for the output layer, because it squashes any input to be between the value of
0 and 1. This is useful for the road detection system, where the activation of
each output unit should predict a probability of whether the corresponding aerial
image patch pixel belongs to the road class or not. The ReLU, however, has been
used for all other layers. This activation function has been shown to train deep
neural networks faster. This non-linear activation function does not suffer from
the gradient vanishing problem because it is non-saturating [Krizhevsky et al.,
2012]. The activation functions are displayed in Figure 3.4.

y = 1
1 + e−x

(a) Logistic.

y = max(0, x)

(b) Rectified linear unit.

Figure 3.4: Activation functions.

The specific network configuration values described in this section is the default
configuration used in experiments found in Chapter 4. However, the network
architecture can easily be changed through a configuration file. All configurable
parameters related to the CNN and their default values are listed in Table 3.1.

3.2.3 Optimization
The model parameters are optimized with a special form of SGD, called Nes-
terov’s accelerated gradient descent, and has an improved stability and faster
convergence compared to standard SGD [Bengio et al., 2013]. The standard mo-
mentum approach extends the gradient update step by introducing velocity. The
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Table 3.1: Hyperparameters for the CNN.

Parameter Description Value

K(l) Number of kernels for convolutional
layer l

64, 112, 80

CLF (l) Filter size of convolutional layer l (13,13),(4,4),(3,3)

CLS(l) Stride size of convolutional layer l (4,4),(1,1),(1,1)

CLP (l) Pool size of convolutional layer l (2,2),(1,1),(1,1)

L Loss function Cross-entropy

Epochs How many epochs of training 100

σ(l) Activation function for each layer l ReLU x4, sigmoid x1

h Number of neurons in hidden layer 4096

p(l) Dropout rate for layer l 1.0, 0.9, 0.8, 0.5, 1.0

ESinit Initial early stopping patience in it-
erations

100 000

ESinc Increase factor for patience 2

ESthres Necessary improvement of valida-
tion loss before increasing patience

0.997

a Learning rate 0.0014

adecrease learning rate decrease factor 0.95

λ L2 weight decay strength 0.0001

m Momentum 0.9

b Batch size 64
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loss can be interpreted as a hilly error surface, where loss optimization can be
viewed as a ball gaining and losing velocity while interacting with the landscape.
When the loss optimization has gained velocity, it will stop doing purely steep-
est decent, which results in a smoother decent with fewer oscillations. Basically,
instead of directly using the gradient to move in the landscape, the gradient will
influence the velocity. The only hyperparameter associated with momentum is
the decay coefficient m, which damps the velocity.

Nesterov momentum is a variation of momentum. Unlike standard momentum,
the Nesterov method first makes a step in the direction of the accumulated ve-
locity, and then makes a correction of the velocity based on the new location. In
standard momentum, a correction to the velocity is made before taking a step.
The Nesterov gradient is defined by the following update rule:

vt = mvt−1 − a∇f(θt−1 +mvt−1)
θt = θt−1 + vt,

where θt is the model parameters, vt the velocity, m the momentum decay, a the
current learning rate, and ∇f(z) is the gradient.

An important hyperparameter for gradient descent optimization methods is the
learning rate a. In this implementation, the learning rate is annealed over time
by step decay. The learning rate is decreased in a regular interval of epochs by
some factor adecrease during optimization.

The default loss function of the system is cross-entropy loss, which in the context
of the patch-based approach is denoted:

Lcross-entropy(q, y) =− 1
w2
m

w2
m∑

i=1
[yi log(qi) + (1− yi) log(1− qi)],

where q and y are the prediction and label patch. Each of the patches has w2
m

probabilities and label values, that are used for computing the element-wise cross-
entropy. Cross-entropy loss is non-negative and moves towards 0 as the network
improves at the task. Given a training label and a predicted output, the loss
function measures how well a neural network fits the training data. In addition,
the backpropagation computes gradients based on the output of this loss func-
tion. At each iteration of training, the loss is minimized by slightly adjusting the
weights of the network in the direction of these gradients.
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3.2.4 Regularization
To avoid overfitting the training data, and hopefully achieve better generaliza-
tion, different regularization schemes are applied during optimization, such as L2
weight decay, early stopping, and dropout. The classifier’s task is to learn the
regularities found in the mappings between the data and labels in the training set.
However, the training set also contains sampling errors and accidental patterns
not relevant to the task at hand. Without regularization, a classifier will learn
the useful, but also the erroneous regularities a bit too well, and can, therefore,
start to overfit the data.

L2 regularization is a weight decay method which applies a loss function penalty
to prevent weights in the network from growing large. This is achieved by adding
an extra term, λ

∑|w|
i=0 w

2
i to the loss function, which penalizes large valued

weights, and encourages a smoother parameter configuration [Hinton, 2014]. The
strength of the weight decay is controlled by the λ hyperparameter, which is often
set to a low value.

Early stopping interrupts the optimization process when performance on the val-
idation set starts to consistently decrease. When the validation loss stagnates or
starts to increase in value, the method waits for a certain number of iterations
before stopping the training process. There are three parameters that control
the early stopping behavior, ESinit, ESthres, and ESinc. The first parameter
controls how many iterations the training should run for, regardless of valida-
tion loss performance. The second parameter dictates the required amount of
improvement of the current validation loss compared to the best previously seen
validation loss, before incrementing the patience variable. The latter parameter
decides the increment factor of the patience. The patience is first initialized to
wait for ESinit iterations. If there is an improvement of validation loss above the
ESthres, the patience is set by patience = max(patience, iteration× ESinc).

The dropout method forces the units to rely less on each other by randomly
disabling units in the network during training. This encourages units to encode
independently useful information, since dropout penalizes co-adaptation between
units [Srivastava et al., 2014]. Dropout can also be viewed as an ensemble method
approximation. By randomly removing subsets of units from the network, an ex-
ponential number of parameter sharing subnetworks are trained simultaneously.
This is less computationally expensive than training an ensemble of many indi-
vidual deep neural networks. At test time, the predictions of these subnetworks
are combined by an approximate averaging method. This is done by having the
neural network produce predictions without dropping any units. Because all units
make a contribution at test time, the weights of the network have to be scaled
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down. If a unit is retained with a probability of p during training, the outgoing
weights of that unit should be multiplied by p at test time. Each layer l has a
unique dropout rate parameter p(l), which controls the probability of dropping a
unit at that layer. In the CNN implementation, dropout has been implemented
with some minor tweaks:

y = 1
p(l) r ◦ σ(W (l)x+ b(l)),

where W and b are the weights and biases of layer l, x denotes the input poten-
tials, and σ(z) is the activation function. r is a vector of independent Bernoulli
random variables, each having a probability of p(l) being 1 (and otherwise 0).
The element-wise multiplication of this vector and the output vector of σ(z),
causes the activation of randomly picked units to be nullified. These units are
essentially dropped out. Instead of scaling the outgoing weights at test time, the
output activations are divided by p(l) during training, which should essentially
give the same scaling effect.

3.2.5 Data Preprocessing
The datasets used in this thesis contains aerial images and road label maps that
are very large. Each image is typically around 1500× 1500 pixels in size, which
is arguably too large for the model to use directly as input. Smaller patches of
examples are therefore extracted from these larger images. From each image, a
certain number of data patches and label patches of 64 × 64 and 16 × 16 are
extracted randomly and added to a patch dataset.

However, before extracting patches, each aerial image and road label map pair
is rotated by a random number of degrees between 0 and 360 degrees. This is
necessary because of orientation bias in the datasets. In many cities, the road
network is often constructed in a grid pattern, which leads to roads having certain
orientations more often than not. Without random rotations of the training data,
the model might become better at detecting roads only at certain orientations
[Mnih and Hinton, 2010]. Each image is therefore rotated by a random angle
before extracting patches, which results in a patch training set that encourages
the model to learn invariance to road orientation.

Another data augmentation method utilized when constructing the patch train-
ing set is flipping. This is a commonly used method to artificially increase the
size of the dataset [Krizhevsky et al., 2012]. Since the dataset contains aerial
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images that depict landscape from a top-down perspective, the patches can both
be flipped vertically and horizontally.

Contrast normalization is also applied to every patch. Each patch is normalized
by subtracting the mean pixel value from the pixels of the patch. The result is
then divided by the standard deviation found for all pixels in the dataset.

Additionally, the datasets exhibit some class imbalance [Japkowicz, 2000], which
can be problematic since the optimization might prioritize loss minimization of
classes that frequently occur in the training set and ignore rare classes. Random
sampling of the patch datasets leads to a large imbalance between road examples
and non-road examples. According to the label maps, the proportion of patches
containing any road pixels, ranges between around 8% and 25%, depending on
the dataset. This is solved by artificially increasing the proportion of road exam-
ples when sampling the patch dataset. Normally, a distribution of around 50%
road patches and 50% non-road patches are used. However, this method is not
applied to the test and validation patch set, which means that these sets will
retain their natural class distribution. In Table 3.2 the percentage of road pixels
for each dataset is listed.

Table 3.2: Percentage of road pixels in the datasets used by this thesis.

Set Massachusetts Norwegian Vbase Norwegian N50

Test 4.70 4.60 2.76

Validation 6.90 4.06 2.45

Training 4.77 4.60 2.78

3.3 Bootstrapping Loss
Normally, the loss function calculates the loss assuming the labels are correct.
Yet, many datasets contain label noise, which will result in the learner being
penalized for making a correct prediction if the label happens to be inconsistent.
According to Reed et al. [2014], tweaking the loss function by incorporating the
network’s own predictions can yield improved robustness to inconsistent labeling.
Whereas other approaches [Mnih and Hinton, 2012][Sukhbaatar and Fergus, 2014]
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explicitly model the noise distribution, the proposed loss function utilizes the im-
plicit knowledge acquired by the network during optimization. The bootstrapping
method computes the loss by a convex combination of the model prediction q and
the label y. Additionally, this thesis proposes a variation of the bootstrapping
loss function, which only incorporates confident predictions.

The bootstrapping loss function uses the current model prediction q and the
noisy training label y in a convex combination, which results in a modified target.
Apart from that, the loss function is similar to the cross-entropy loss function.
The prediction’s contribution to the convex combination is decided by the β
parameter. The bootstrapping loss for the aerial road detection system is defined
below:

Lhard(q, y) =−
w2

m∑
i=1

[βyi + (1− β)1qi>0.5] log(qi)

−
w2

m∑
i=1

[β(1− yi) + (1− β)(1− 1qi>0.5)] log(1− qi),

where 1qi>0.5 = 1 if the road prediction probability qi for pixel i is above 0.5.
For the task of road detection, it is simply a threshold operation. In multi-class
classification, 1qi>0.5 is replaced by the MAP estimate, as described in Section
2.3. This is also the reason why this loss function is denoted hard. A soft version
of bootstrapping, where the predictions qi are used directly, has also been tested
by Reed et al. [2014], but generally performed worse than the bootstrapping hard
variant.

Bootstrapping loss combined with gradient descent results in an EM-like algo-
rithm. In the E-step, the modified targets are generated, whereas in the M-step,
the network weights are adjusted to better predict the modified targets. The
goal is for the learner to rely less on the inconsistent labels, and develop more
consistent implicit knowledge, which in turn further improves the quality of the
modified targets.

Since the task involves the binary task of discriminating road pixels from non-
road pixels, a slightly modified version of bootstrapping is also tested in this
thesis. This approach is named confident bootstrapping, since all model predic-
tions between 0.2 and 0.8 are ignored. Only predictions that the learner has
a high confidence in are allowed to contribute in the convex combination. An
added benefit of this loss function is the possibility of increasing the factor β.
The confident bootstrapping loss function is denoted:
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Lconfident(q, y) =−
w2

m∑
i=1

[βyi + (1− β)1qi>0.8] log(qi)

−
w2

m∑
i=1

[β(1− yi) + (1− β)(1qi<0.2)] log(1− qi),

where 1qi>0.8 and 1qi<0.2 are threshold operations which only keep fairly confi-
dent predictions. In the context of road detection, this translates to saying pixel
predictions above 0.8 are most likely road pixels, and predictions below 0.2 are
likely to be non-road pixels.

In the actual implementation, the β parameter is annealed from the max value
βmax, down to the minimum value of βmin, starting from epoch M . This is
because the learner should have some implicit knowledge before using its predic-
tions to modify the target. The configurable parameters for bootstrapping can
be found in Table 3.3.

Table 3.3: Hyperparameters for bootstrapping loss.

Parameter Description Value

Cost function Modified cost function bootstrapping or confi-
dent boostrapping

βmax Mix factor 1.0

βmin Minimum mix factor 0.90

βdecrease Factor decrease rate 0.90

M When to start mixing 60

3.4 Curriculum Learning
The curriculum learning method presented by Bengio et al. [2009] showed that
presenting the dataset in a certain order yielded better generalization as well
as faster convergence. Similar to an educational curriculum, easier concepts are
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taught before harder concepts, which most likely is the preferred way of learning
for humans [Khan et al., 2011]. This translates to having the learning algorithm
do optimization on a dataset consisting of “easier” examples, before introducing
“harder” examples. Continuing this analogy, there is a teacher who decides the
curriculum by judging how easy concepts are to grasp. For some datasets, such
as language modeling datasets, the role of the teacher can easily be performed
by a human. In language modeling tasks, a viable curriculum strategy is to start
training using a simple dataset containing sentences with only a limited vocab-
ulary. During training, the vocabulary is gradually increased, which will allow
more complex sentences to enter the training set. However, similar curriculum
strategies are harder to identify in datasets involving images. The solution is
therefore to outsource the job of curriculum teacher to a supervised learning al-
gorithm.

This thesis utilizes aerial image datasets. Based purely on color image patches, a
supervised learning algorithm should be able to detect and segment roads found
in these patches. A curriculum strategy involving this type of data is harder
to identify. For instance, are there certain types of road segments a machine
learning algorithm would find less challenging? Are roads in rural scenes easier
to learn than roads in an urban setting? What configurations of pixel intensities
are easiest? It is hard for a human to identify features in images that a machine
learning algorithm would consider easier to learn.

Hence, a classifier is first trained on the available examples and given the role
of the teacher. The classifier, regardless of competence, will generate predictions
that are used in a difficulty estimation of each example. The difficulty estimation
is simply based on the amount of disagreement between the teacher’s prediction
and the example’s label. The difficulty estimator is defined below:

d(y, q) = 1
w2
m

w2
m∑

i=0
|yi − 1qi>r|,

where q is the curriculum teacher’s prediction, and y is the label. The 1qi>r is a
threshold operator, where r is the threshold value which gives the best precision
and recall breakeven for the curriculum teacher classifier. The operator essentially
creates a binary image patch from the prediction probabilities. The estimator
computes the average difference value from the wm × wm patch of label pixels
and prediction probabilities. Even though the estimator has been customized
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to the patch-based approach of aerial road detection, the method can easily be
adapted to other types of datasets. This curriculum strategy can probably be
considered generally applicable. The disagreement between a prediction created
by a trained classifier and a label can probably be computed for most datasets.

An interesting thing to note is that a very competent teacher classifier, comput-
ing a high difficulty score for an example, might indicate that the example’s label
is inconsistent.

The implementation of curriculum learning involves N training set stages. Each
stage θ only contains examples where d(y, q) < Dθ, in which the difficulty thresh-
old Dθ ≥ Dθ−1 for all stages θ > θ−1. Each subsequent stage, therefore, contains
examples with a wider range of difficulty estimates. In the final stage N , the
threshold DN is typically set to 1, which results in every example being added to
the patch dataset. This stage has a training distribution equal to what a patch
dataset created from random sampling would have had.

The supervised learning algorithm is gradually exposed to harder examples by
stage switching. The classifier is first optimized with the examples in the first
stage, which has the lowest difficulty threshold. At epoch tstart, the next stage
replaces the existing training set by assigning each new example to a random
index in the training set. The indices are sampled without replacement. Follow-
ing stages are mixed into the training set every tstage epoch, until the model has
trained with examples from all stages. The hyperparameters and default values
used by curriculum learning are listed in Table 3.4.

Table 3.4: Hyperparameters for curriculum learning.

Parameter Description Value

N Number of stages 2

Dθ Threshold value for difficulty estimate of stage θ 0.25, 1.0

tstart What epoch to load stage 1 50

tstage Load subsequent stage after every tstage epoch 50
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3.5 Datasets
When testing the bootstrapping loss function and curriculum learning, as well as
measuring the performance of the road detection system, two datasets have been
utilized. Both datasets involve the task of semantic segmentation of images, more
precisely, the task of extracting roads from aerial images. The first dataset, the
Massachusetts Roads Dataset, provided by Mnih [2013], has been used in sev-
eral works. The second dataset, the Norwegian Roads Dataset, was specifically
made for this thesis, and was generated from publicly available data. Differences,
similarities, and challenges of employing these datasets will be further discussed
below.

3.5.1 Massachusetts Roads Dataset

The Massachusetts Roads Dataset contains aerial images depicting urban, sub-
urban, and rural areas in the state of Massachusetts, USA. In all, the dataset
consists of 1171 aerial images, where each image is 1500×1500 pixels in size. 1108
of these images have been randomly assigned to the training set. The remaining
49 and 14 images can be found in the test and validation set. The dataset covers
an area of approximately 2600 square kilometers in total, which gives a GSD of
1.0 meter per pixel.

Each aerial image has an accompanying identically sized binary label image,
which indicates whether a pixel in the aerial image belongs to either the road
or non-road class. Road centerline vectors retrieved from the OpenStreetMap
project were used to generate the label images. The vectors were rasterized as
white lines with a line thickness of 7 pixels [Mnih, 2013], which, based on the
GSD, is equivalent to 7 meters on the ground. An aerial image and label image
pair from this dataset can be seen in Figure 3.5.

There are many reasons for using this dataset to conduct experiments related to
the research questions. The task involves semantic segmentation of roads based
exclusively on aerial color images. This is arguably a hard task, and might jus-
tify the use of a large model for training, such as a CNN. The dataset has also
been used in other works, which enables comparison of the results obtained in
this thesis to the results obtained in other works. Additionally, the labels have
been generated from existing map data, and therefore contain many instances of
naturally occurring inconsistent labeling. This is compelling in relation to the
research questions of this thesis.
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(a) Aerial image. (b) Label image.

Figure 3.5: Image and label example taken from test set in the Massachusetts
Roads Dataset.

Aerial image datasets typically suffer from two distinct types of label noise, which
Mnih and Hinton [2012] have named omission and registration noise. The dataset
is generated from existing map data, which can have some deficiencies when cou-
pled with supervised learning. There are many instances of omission noise in
this dataset, where smaller roads and parking areas have not been marked as
road class pixels in the label images. These omissions are most likely perfectly
acceptable for map purposes, but might negatively impact the performance of a
classifier. For instance, unlabeled paved areas that share a high spectral similar-
ity to roads could be considered inconsistently labeled. These label errors might
compel the classifier to minimize the loss by learning complicated distinctions
between surfaces that are essentially the same thing.

There are also instances of registration noise in this dataset. This happens when
there are misalignments between the roads found in the aerial images and the
road centerline vectors from the map data. Additionally, the road centerline
vectors have, in many cases, been rasterized with the incorrect line thickness,
which might cover too much or not enough depending on the road’s lane width.
The result is a lot of aerial image pixels that have been assigned the wrong class,
which might impact the learning procedure negatively. Slightly misaligned road
centerline vectors probably do not affect map products much, whereas they create
a lot of inconsistent examples in a machine learning dataset.
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3.5.2 Norwegian Roads Dataset
In addition to the Massachusetts Roads Dataset, the proposed methods have been
tested with the Norwegian Roads Dataset. This dataset was constructed from
aerial images retrieved from Kartverket, which depicts both rural, suburban, and
urban areas from different locations in Norway. The entire dataset consists of
1225 aerial images, each being 1536 × 1536 pixels in size. 1100 of them have
been randomly assigned to the training set, 75 to the test set, and the remaining
images were put in the validation set. Even though there are more aerial images
in this dataset compared to the Massachusetts Roads Dataset, it only covers an
area of around 1910 square kilometers. This is due to a much lower GSD of about
0.66 meters per pixel.

The label images in this dataset have been generated from road centerline vec-
tors found in the publicly available topographic vector database, N50, provided
by Kartverket [2001]. Unlike the Massachusetts Roads Dataset, the centerline
vectors have been rasterized with a variable line thickness. This is possible be-
cause all road segments in N50 have a set of properties, which can be utilized
to determine a custom line thickness. The actual thickness of each road type
has been based on numbers found in a road specification manual published by
the Norwegian Public Roads Administration [Vegdirektoratet, 2014]. The road
segment properties and line thickness for each road type are listed in Table 3.5.
Roads that are underground and cannot be seen from aerial imagery have also
been removed from the rasterized label images.

The aerial images have been taken from over 30 different locations in Norway, and
offers a large variety of topographical features. There are images depicting coast-
lines, rivers, mountain terrains, snow, cultivated land, and forests. Compared to
Massachusetts Roads Dataset, the aerial images of this dataset have been sam-
pled from a much larger area. Furthermore, the aerial images might present a
challenge in terms of image quality. Some of the images vary in terms of color
balance and image contrast. There are also aerial images that have been stitched
together from images captured by aerial surveys conducted at different occasions.

The quality of the generated label maps might also present a challenge to a ma-
chine learning algorithm. There are both omission and registration errors present
in many of the label images. Compared to the Massachusetts Roads Dataset there
is a much higher degree of registration noise. The road centerlines in N50 gen-
erally appear more coarse, and result in less overlap between roads in the aerial
image and the raster lines in the label image. This is especially evident in road
centerline vectors for divided highways. Instead of having centerline vectors for
both roadways, there is only one placed between the roadways on the median.



54 CHAPTER 3. METHODS

Visual examples of missing and misplaced labels can be seen in Figure 3.6.

(a) Divided highways. (b) Roundabout. (c) Private road.

Figure 3.6: Examples of inconsistent labeling found in the Norwegian Roads
Dataset N50.

In addition to the set of label images generated from N50, the dataset also in-
cludes an alternate set of label images generated from the road centerline vector
database, Vbase [Kartverket, 2006]. This database has more accurate road cen-
terline vectors. There are still omission and registration errors present in this
label image set, but to a less extent. Surfaces that share spectral similarities to
asphalt, such as private roads and parking areas, have not been marked, similar to
the Massachusetts Roads Dataset. The difference in accuracy between N50 and
Vbase can be seen by comparing Figure 3.6 and Figure 3.7. A minor downside of
using this alternate vector database is that Vbase provides fewer road segment
properties, which have resulted in a smaller set of line thicknesses applied to the
label images.

The dataset was constructed by using QGIS, an open source geographic infor-
mation system application. The application enables viewing and editing of map
data, but also provides a Python interface. A script to create label images was
developed, taking the map coordinates associated with each corner of an aerial
image, and generating a raster image of road centerline vectors found inside that
area. The resulting raster images can be used as target maps in supervised learn-
ing.

An aerial image and its corresponding label image from the Norwegian Roads
Dataset N50 can be seen in Figure 3.8. Figure 3.8c shows the same label image
superimposed on the aerial image. Observe that some roads are missing from the
label image, as well as the ground truth not covering the roads properly.
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(a) Divided highways. (b) Roundabout. (c) Private road.

Figure 3.7: Examples of road centerline vector quality in Vbase.

3.6 Implementation Details
The road detection system was written in the Python programming language,
and uses the open source library Theano [Bergstra et al., 2010]. Theano enables
the developer to define and evaluate mathematical expressions involving tensors.
The library implements several useful features to develop CNNs, such as back-
propagation, convolution, and max pooling. Training deep neural networks on a
GPU can be considerably faster than on a central processing unit (CPU), and
Theano can utilize both the CPU and GPU without making any modifications
to the code.

However, the use of a GPU was key in making the experiments feasible to run.
The system has a lot of adjustable parameters and requires a big dataset in order
to generalize well to the task of road detection. The experiments were conducted
on a machine with an Nvidia GTX 980 GPU with 4 gigabytes of video memory.

Because the size of the training set in many cases exceeded the capacity of the
video memory, the video memory only contains the model, validation set, test set,
and a subset of the training set at any given time during training. A switching
mechanism was implemented, where chunks of the training set residing in main
memory were loaded onto the GPU sequentially during an epoch of training.

The system also has a large number of hyperparameters which can be changed
by the user. This includes learning rate, network architecture, backpropagation
method, dropout rates, curriculum and bootstrapping specific parameters, and
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Table 3.5: Raster line thickness and road segment filtering rule for each type of
road. A margin of 10% is removed from the line thicknesses, which are based on
numbers found in the road specification manual.

Road type Road segment property Line thickness

Dirt road OBJTYPE=Traktorveg 2.50 m

Trail OBJTYPE=Sti 1.50 m

pedestrian road OBJTYPE=GangSykkelveg 2.25 m

Highway MOTORVEGTYPE=motorveg 10.80 m

International E-road network VEGKATEGORI=E 6.30 m

Norwegian national road VEGKATEGORI=R 5.85 m

municipal road VEGKATEGORI=K 4.95 m

Private road VEGKATEGORI=P 3.50 m

(a) Aerial image (b) Label image (c) Overlay image

Figure 3.8: Example from test set in Norwegian Roads Dataset N50.
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more. These values can be accessed and modified in the system’s config.py file.

The code for the road detection system, as well as the machine learning moni-
toring interface, are publicly available at https://github.com/olavvatne/CNN
and https://github.com/olavvatne/ml-monitor. The tools used to create the
Norwegian Roads Dataset can be found at https://github.com/olavvatne/
MapDataset. More details about these projects can be found in Appendix A.
Additionally, all experiments conducted for this thesis can be examined at http:
//www.interface.ml/experiments. All the projects above are licensed under
the MIT license.

https://github.com/olavvatne/CNN
https://github.com/olavvatne/ml-monitor
https://github.com/olavvatne/MapDataset
https://github.com/olavvatne/MapDataset
http://www.interface.ml/experiments
http://www.interface.ml/experiments
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Chapter 4

Experiments and Analysis

In the following sections, all experiments conducted to resolve the research ques-
tions will be presented and analyzed. Section 4.1 outlines the experimental de-
sign, and Section 4.2 presents the parameter configuration of each experiment.
In Section 4.3 the results are presented. The results are then further discussed
in Section 4.4.

4.1 Experimental Design
To resolve the research questions and test the performance of the road detection
system, a number of experiments were planned. Experiments related to the first
research question included testing the robustness of the bootstrapping loss func-
tion compared to a baseline loss function. For the other research question regard-
ing the performance of curriculum learning, the results from a network trained
according to a curriculum strategy were compared with a baseline network. The
baseline network was trained using an ordinary dataset with no particular exam-
ple ordering. In addition, tests measuring the performance of the road detection
system were conducted. The results of these tests were then compared to other
works.

Throughout the rest of this chapter, the experiments will be referred to by their
assigned ID. An overview of all experiments and their assigned IDs, can be found
in Table 4.1.

Each experiment found in Table 4.1 has been replicated and measured 10 times.
The experiments have many sources of variability, and averaging the measure-
ments improves the reliability of the results. The network, for instance, is ini-

59
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Table 4.1: Experiments overview.

ID RQ Dataset Description

E1 RQ1 Massachusetts Roads Dataset Bootstrapping versus baseline at
different levels of label noise.

E2 RQ1 Norwegian Roads Dataset Vbase Bootstrapping versus baseline at
different levels of label noise.

E3 RQ1 Norwegian Roads Dataset
N50/Vbase

Performance of bootstrapping
with a label set with large
amounts of label noise.

E4 RQ2 Massachusetts Roads Dataset Curriculum, baseline and anti-
curriculum comparison.

E5 RQ2 Norwegian Roads Dataset Vbase Performance of curriculum learn-
ing at different thresholds Dθ.

E6 RQ2 Massachusetts Roads Dataset Curriculum learning with an in-
experienced teacher.

E7 - Massachusetts Roads Dataset Best performing road detection
network. Larger patch datasets
and increased model capacity.
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tialized with random weights, and the patch dataset is constructed from random
sampling. These factors influence the optimization process and create measure-
ments that can fluctuate.

Most of the experiments listed in Table 4.1 compare results from a certain method
with a baseline. Running each experiment several times creates two independent
samples from these populations. By statistical hypothesis testing and Welch’s
t-test, it is possible to assert whether it is plausible that the samples were pro-
duced from two distinct populations. Population i can be described by mean µi
and variance σ2

i . The null hypothesis H0 : µ1 = µ2 is rejected in favor of the
alternate hypothesis H1 : µ1 6= µ2, based on the p-value found by the t-test. If
the p-value is below the significance level α of 0.05, H0 is rejected. This indicates
that it is unlikely that the samples came from the same underlying population.

Welch’s t-test is derived from the Student’s t-test, and is suitable in situations
where the variance and mean of the underlying populations are unknown [Walpole
et al., 2011, Chapter 10]. The mean and variance are estimated from the samples.
Unlike the Student’s t-test, Welch’s t-test does not assume that the variances of
the two populations are equal. However, both tests assume that the populations
are normally distributed. Visual interpretation of normal Q-Q plots created from
the measurements can give an indication of whether the populations are normally
distributed. Unfortunately, whether or not the underlying populations were nor-
mal could not be confidently asserted because of the small sample size. Any
inferences made in this chapter based on Welch’s t-test are therefore conditional
on the assumption of normality. In Appendix C, examples of normal Q-Q plots
can be found.

The proposed methods were tested on two different datasets. Despite the datasets
involving the same task of road segmentation, they do differ in many ways. The
datasets depict separate aerial regions, have different GSD, contain different to-
pography, and differ in label quality. Conducting experiments on both datasets
might give an indication of whether the methods can be generally applicable or
not.

For all experiments, most hyperparameters were kept constant. Only the param-
eters related to the research questions were varied. These hyperparameters are
presented in Section 4.2. Furthermore, all regularization methods were enabled
during testing. The proposed methods should provide some additional benefit
when used in combination with a typical configuration of a CNN.

To show that the bootstrapping loss function is effective at handling inconsistent
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labeling, it was compared with the cross-entropy loss function at different levels
of label noise. To do so, label errors in the form of omission noise were artificially
introduced to the label images. The label degradation involved removing between
0% and 40% of the road class pixels from the label images, before sampling the
patch datasets. The road removal involved iteratively setting randomly sized re-
gions of label pixels to 0. The experiment should show how well the various loss
functions cope with omission noise, and whether the bootstrapping loss function
is more robust than the cross-entropy loss function. Artificially introducing omis-
sion noise was tested with both road datasets in Experiment E1 and E2.

The bootstrapping loss function was further tested by Experiment E3, where the
training set consisted of labels from the label set N50. The more accurate label
set, Vbase, was used in the validation and test set. The N50 label set contains a
lot of naturally occurring registration error, which means that the robustness of
the different loss functions can be tested without artificial label degradation.

The effectiveness of curriculum learning was tested by training the network on
two different patch datasets. The first was created according to a curriculum
strategy, where each stage θ only contained examples with a difficulty estimate
below Dθ. Subsequent stages have increasing difficulty thresholds, which results
in the network being gradually introduced to harder examples. The second patch
dataset was created with no regard to the difficulty, and sampled patches ran-
domly. Specifically, it was created with the difficulty threshold Dθ = 1.0 for all
stages θ. The performance from training the network on this dataset formed
the baseline that was compared to the performance of a network trained on the
curriculum dataset. Both datasets contained the same number of stages, and
therefore the same number of examples. The network configuration was also
identical. Essentially, the only difference was the ordering of the examples in the
patch datasets. Curriculum learning was tested with both aerial image datasets
in Experiment E4 and E5.

The approach of curriculum learning also raises some other interesting questions.
How well does a network perform if presented with the “harder” examples first?
In Experiment E4, anti-curriculum learning was therefore tested. This resem-
bles the teaching dimension method, as discussed in Section 2.3, in which harder
examples closer to the decision boundary are presented first in order to resolve
ambiguities quickly. Furthermore, Experiment E5 explored what happens when
setting the difficulty threshold D0 at different values.

In Experiment E6, the curriculum strategy was tested with a less experienced
curriculum teacher than in Experiment E4 and E5. This should test whether
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the proposed curriculum strategy is viable with a teacher that has trained with
a limited number of examples. The experiment also tested the effect of training
only on the first stage examples. In addition, a more gradual approach to chang-
ing the training set distribution was tested. This involved having several smaller
stages mixed into the training set by random replacement.

In addition to presenting the experimental results as MSE test loss per epoch
plots, the network performance is also presented as precision and recall curves.
This is a common metric used to evaluate road detection systems, as discussed
in Section 2.1.

A precision and recall curve is created by thresholding the network’s prediction
probabilities by values between 0 and 1, and then computing the precision and
recall using the binarized predictions and labels. The result is a curve that il-
lustrates the trade-off between precision and recall. As the recall increases, the
precision usually decreases. Similar to [Mnih and Hinton, 2012], this thesis uti-
lizes a relaxed measure of precision and recall, with a slack variable p set to 3.
The relaxed precision is denoted as the fraction of detected road pixels that are
within p pixels of a label road pixel. Whereas, the relaxed recall is defined as
the fraction of true pixels that are within p pixels of a detected pixel. All experi-
ments listed in Table 4.1 utilized the relaxed version of precision. However, only
Experiment E6 and E7 recorded results using the relaxed recall measure, which
means that most experiments have precision and recall values that are a bit more
sensitive to minor deviations between predictions and labels.

The reason for using the relaxed version of precision and recall is that the ma-
jority of the label maps exhibit a small amount of registration noise. Therefore,
it is unreasonable to count predictions that are slightly off target as errors. Con-
sequently, misalignments of 3 pixels or less between the prediction and label will
not affect the values of the relaxed precision and recall curve.

The results are also presented in tables that include the precision and recall
breakeven point, which is derived from the precision and recall curve. This is
the point on the curve where the precision and recall have an equal value. These
points are also marked in the figures by a black dot.

4.2 Experimental Setup
The network configuration used by most experiments is listed in Table 3.1. Any
deviations from this configuration will be detailed in this section. In addi-
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tion, the specific hyperparameters used for each experiment can be found at
http://interface.ml/experiments. Descriptions of tools used for conducting
and presenting the experiments can be found in Appendix B. The relevant pa-
rameters for each experiment are detailed below.

E1 - Bootstrapping with the Massachusetts Roads Dataset

In this experiment, the bootstrapping loss function was compared to the cross-
entropy loss function. The loss functions were compared by their performance on
patch datasets with several levels of label degradation. The network was trained
for 140 epochs and with 110800 examples. The learning rate was slightly de-
creased compared to the default configuration. The bootstrapping loss function’s
β parameter was set to 1.0, and was gradually decreased after epoch M = 90, to
βmin = 0.9, by multiplying β with βdecrease = 0.9 each epoch. The parameters
relevant for this experiment are listed in Table 4.2.

Label noise has been artificially added to the label images before constructing
the patch datasets. Specifically, areas of road pixels have been removed incre-
mentally by setting the label pixel values to zero. This process is continued until
a certain percentage of road class pixels have been removed. In the context of
aerial imagery, the artificially added label noise simulates omission noise. This
experiment utilized patch datasets where 0, 10, 20, 30, and 40 percent of roads
were removed from each label image. The top row of Figure 4 in Appendix E
displays examples of artificial omission noise being added to a label.

Table 4.2: Key parameters of Experiment E1.

Method Parameters

Baseline 100 epochs, s=110800, a = 0.0011, L = cross-entropy, omission
noise levels=0%, 10%, 20%, 30%, 40%

Bootstrapping 100 epochs, s=110800, a = 0.0011, L = bootstrapping, βmax=1.0,
βmin=0.9, M=60, omission noise levels=0%, 10%, 20%, 30%, 40%

http://interface.ml/experiments
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E2 - Bootstrapping with the Norwegian Roads Dataset VBase

Experiment E2 tested the robustness towards label noise for the Norwegian Roads
Dataset Vbase. This was done by comparing the performance of networks with
different loss functions at several levels of omission noise. The experiment shared
a very similar setup to Experiment E1. However, the parameter β was decreased
slightly more than in E1. The experiment configuration is displayed in Table 4.3.

Table 4.3: Key parameters of Experiment E2.

Method Parameters

Baseline 100 epochs, s=110000, a = 0.0011, L = cross-entropy, omission
noise levels=0%, 10%, 20%, 30%, 40%

Bootstrapping 100 epochs, s=110000, a = 0.0011, L = bootstrapping, βmax =
1.0, βmin = 0.8, M = 60, emission noise levels=0%, 10%, 20%,
30%, 40%

Confident
bootstrapping

100 epochs, s=110000, a = 0.0011, L = confident-bootstrapping,
βmax = 1.0, βmin = 0.8, M = 60, omission noise levels=0%, 10%,
20%, 30%, 40%

E3 - Bootstrapping with the Norwegian Roads Dataset N50/VBase

In contrast to Experiment E2, this experiment tested the effect bootstrapping
had on labels with a lot of registration noise. The training set consisted of exam-
ples from the Norwegian Roads Dataset N50. The label set N50 has coarser road
centerline vectors, which result in a lot of registration noise compared to the other
aerial image datasets. The experiment optimized models with s = 165000 patch
examples, for 140 epochs. The learning rate a was slightly lower than the de-
fault. The bootstrapping parameter β was gradually decreased from βmax = 1.0
at epoch M = 90, to βmin = 0.8. Essentially, the bootstrapping loss functions
incorporated its own predictions starting from epoch 90. Any improvements
should, therefore, be seen in the test loss after this epoch. In addition, the confi-
dent bootstrapping loss function was also tested in this experiment. A summary
of the experiment and key parameters can be found in Table 4.4.
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Table 4.4: Key parameters of Experiment E3.

Method Parameters

Baseline 140 epochs, s=165000, a = 0.0011, L = cross-entropy

Bootstrapping 140 epochs, s=165000, a = 0.0011, L = bootstrapping, βmax=1.0,
βmin=0.8, M=90

Confident
bootstrapping

140 epochs, s=165000, a = 0.0011, L = confident-bootstrapping,
βmax=1.0, βmin=0.8, M=90

E4 - Curriculum Learning with the Massachusetts Roads Dataset

This experiment involved measuring the performance between a baseline and a
curriculum patch dataset generated from the Massachusetts Roads Dataset. Both
datasets had N = 2 stages, where each stage included 110800 training examples.
Each stage θ contained examples where the difficulty estimate d(y, q) was less
than a threshold Dθ. The baseline patch dataset had a threshold Dθ of 1.0 for
both stages, which is equivalent to random sampling. When switching between
the first and second stage, the entire training set was replaced by examples from
the second stage. This occurred at epoch tstart = 50. An additional patch dataset
was also included, which tested the performance of anti-curriculum learning. In
this dataset, the first stage excluded patches containing road pixels with a dif-
ficulty estimate d(y, q) less than 0.25. Table 4.5 displays key parameters of this
experiment.

Table 4.5: Key parameters of Experiment E4.

Method Parameters

Baseline 120 epochs, s=220000, d(y, q) < Dθ, D0 = 1.00, D1 = 1.0, tstart =
50

Curriculum 120 epochs, s=220000, d(y, q) < Dθ, D0 = 0.25, D1 = 1.0, tstart =
50

Anti-curriculum 120 epochs, s=220000, d(y, q) > Dθ, D0 = 0.25, D1 = 0.0, tstart =
50
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The experiment’s curriculum teacher was trained with a patch dataset of 442800
examples, sampled from the Massachusetts Roads Dataset. The teacher classifier
was trained for 272 epochs. It achieved an MSE test loss of 0.0225, and a relaxed
precision and recall breakeven point of 0.79.

E5 - Curriculum Learning with the Norwegian Roads Dataset

Experiment E5 had a similar setup to Experiment E4. There were four different
patch datasets, each with two stages. The baseline patch dataset was created
by random sampling, whereas the others were created by a curriculum strategy.
Three different curriculum patch datasets were tested, where each stage 0 had a
different D0 threshold value.

The curriculum teacher that generated predictions for the difficulty estimation
was a previously trained model. The teacher classifier was trained with a dataset
consisting of 440000 examples for 174 epochs. The learning rate was multiplied by
0.85 every 50th epoch. Apart from that, the network parameters closely resem-
bled the default parameters listed in Table 3.1. The classifier’s final MSE test loss
was 0.0222, and the relaxed precision and recall breakeven point was around 0.71.

The networks trained on the patch datasets used the default network configura-
tion. Essentially, the only real difference between them was the first stage of the
datasets. The networks were trained for 120 epochs with a stage switch at epoch
50. Important parameters of this experiment are listed in Table 4.6.

Table 4.6: Key parameters of Experiment E5.

Method Parameters

Baseline 100 epochs, s=221600, D0 = 1.0, D1 = 1.0, tstart = 50

Curriculum 0.15 100 epochs, s=221600, D0 = 0.15, D1 = 1.0, tstart = 50

Curriculum 0.25 100 epochs, s=221600, D0 = 0.25, D1 = 1.0, tstart = 50

Curriculum 0.35 100 epochs, s=221600, D0 = 0.35, D1 = 1.0, tstart = 50
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E6 - Curriculum Learning with an Inexperienced Teacher

While Experiment E4 and E5 had teachers that were trained with over 400000
examples, this experiment assumed that there is a limited amount of patches
available. The teacher of this experiment was therefore only trained with 221600
examples, which is the same number of examples in each patch dataset. The
teacher classifier was trained for 156 epochs, and achieved an MSE test loss of
0.0253, and a relaxed precision and recall breakeven point of 0.79.

In the experiment involving gradually increasing the difficulty of the training set,
there were 326800 examples in total, split between N = 5 stages. The first stage
had 110800 examples, whereas the remaining stages had 54000 examples each.
In the baseline, the difficulty threshold Dθ was set to 1 for every stage. The first
stage of the curriculum patch dataset only allowed examples with a difficulty
below 0.25. The key parameters of Experiment E6, are displayed in Table 4.7.

E7 - Performance of the Road Detection System

The performance of the road detection system was tested in Experiment E7. The
M1 network utilized a patch dataset with 3985200 examples that were randomly
sampled from the Massachusetts Roads Dataset. The network was trained for 300
epochs, unless early stopping terminated the optimization at an earlier point. In
order to train with such a large dataset, the network trained with only a subset of
the examples at any given epoch. The training data was switched with another
subset at every epoch mod 30 = 0, starting from epoch 50. At any given epoch,
the network was optimized by a total of 442800 examples. Any discrepancies
from the default network configuration are listed in Table 4.8.

In addition to the M1 network, Network M2 and N1 further tested the road de-
tection performance on both road datasets. The default network architecture
was altered in both networks, as seen in Table 4.8. This resulted in a signifi-
cant increase in adjustable parameters compared to M1. Both networks utilized
the confident bootstrapping loss function, and were trained by curriculum patch
datasets. The curriculum teachers of Experiment E4 and E5 were used to create
the patch datasets.
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Table 4.7: Key parameters of Experiment E6.

Method Parameters

Baseline 120 epochs, s=221600, D0 = 1.0, D1 = 1.0, tstart = 60

Curriculum 120 epochs, s=221600, D0 = 0.25, D1 = 1.0, tstart = 60

Baseline,
First stage only

120 epochs, s=221600, D0 = 1.0

Curriculum,
First stage only

120 epochs, s=221600, D0 = 0.25

Baseline,
Gradual

120 epochs, s=326800, Dθ = 1.0, θ ∈ {0, 1, 2, 3, 4}, tstart = 60,
tstage = 15

Curriculum,
Gradual

120 epochs, s=326800, D0 = 0.25, Dθ = 1.0, θ ∈ {1, 2, 3, 4} ,
tstart = 60, tstage = 15

Table 4.8: Key parameters of Experiment E7.

Method Parameters

M1-
Massachusetts,
cross-entropy,
no-curriculum

300 epochs, s = 3985200, a = 0.0015, b = 128, L = cross-
entropy, ESinit = 400000

M2-
Massachusetts,
confident,
curriculum

85 epochs, s = 1772800, a = 0.0025,adecrease = 0.9 b = 128,
m = 0.93, L = confident bootstrapping, ESinit = 500000,
K(0) = 120, CLF (0) = (16, 16), CLF (1) = (8, 8), CLS(0) =
(2, 2), p0,1,2 = 0.85, D0 = 0.25, Dθ = 1.0, θ ∈ {1, 2, 3, 4, 5, 6} ,
tstart = 30, tstage = 15

N3 - Norwegian,
confident,
curriculum

85 epochs, s = 1760000, a = 0.0025, adecrease = 0.9, b = 128,
m = 0.93 L = confident bootstrapping, ESinit = 500000,
K(0) = 120, CLF (0) = (16, 16), CLF (1) = (8, 8), CLS(0) =
(2, 2), p0,1,2 = 0.85, D0 = 0.25, Dθ = 1.0, θ ∈ {1, 2, 3, 4, 5, 6} ,
tstart = 30, tstage = 15
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(a) MSE test loss. (b) Precision and recall breakeven.

Figure 4.1: E1 - Robustness of bootstrapping for increasing amounts of label
noise in the Massachusetts Roads Dataset.

4.3 Experimental Results

4.3.1 Bootstrapping for Datasets with Noisy Labels
The results from Experiment E1 and E2, comparing the bootstrapping methods
and the baseline method at several levels of label noise, are displayed in Figure
4.1 and Figure 4.2. The plots in the first figure show the performance of models
trained on patch examples from the Massachusetts Roads Dataset, whereas the
second figure displays results from training on patch examples from the Norwe-
gian Roads Dataset. Experiment E2 also includes the performance of confident
bootstrapping. The results from Experiment E3 are displayed in Figure 4.3. This
experiment did not add any artificial omission noise, but utilized the label set
N50.

Figure 4.1a displays the test loss at different levels of label noise. The baseline
test loss seems to increase slightly as the noise level is increased. The bootstrap-
ping loss function has a lower test loss compared to the baseline for noise levels
above 10 percent.

Figure 4.1b displays the precision and recall breakeven points for increasing levels
of label noise, and shows a trend of decreasing values. At around 20 percent, the
breakeven point of bootstrapping surpasses the baseline. However, the difference
in performance seems to be small.

In Figure 4.2a, the test loss of bootstrapping and confident bootstrapping is con-
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(a) MSE test loss. (b) Precision and recall breakeven.

Figure 4.2: E2 - Robustness of bootstrapping for increasing amounts of label
noise in the Norwegian Roads Dataset.

sistently lower than the baseline. The test loss plots do not seem to increase
as much as expected. However, the precision and recall breakeven points of the
baseline decrease with increasing levels of omission noise. This can be seen in
Figure 4.2b. Although the bootstrapping methods behave a bit more erratic, the
plots seem to be decreasing at a slightly slower rate. The plots also show that
the overall difference in performance is small. Detailed figures of the precision
and recall curves, and test loss per epoch plots of each level of label noise can be
found in Appendix D.

The difference between bootstrapping and confident bootstrapping is clear in
Figure 4.3a, which shows the test loss per epoch for Experiment E3. After epoch
90, the factor β is decreased in favor of the model predictions. The test loss of
confident bootstrapping sees an immediate decrease compared to the baseline,
whereas the bootstrapping test loss increases in value. In terms of test loss,
confident bootstrapping performed comparably to the baseline, while the regular
bootstrapping performed worse. However, this result is not evident from the pre-
cision and recall curve, displayed in Figure 4.3b. Both bootstrapping methods
have better relaxed precision values for every level of recall.

The results from Experiment E1, E2, and E3 are displayed in Table 4.9. The
table contains a row for every test, which includes the percentage of artificial
omission noise, precision and recall breakeven point, test loss, and a p-value.
The p-values were computed by the Welch’s t-test from test loss samples of two
different methods. For instance, the p-value of E1 - bootstrapping 0% are com-
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(a) MSE test loss (b) Precision and recall comparison.

Figure 4.3: E3 - Comparison of loss functions using the Norwegian Roads Dataset
Vbase. The training set consists of labels affected by omission and registration
noise.

puted by the test loss samples of E1 - Bootstrapping 0% and E1 - Baseline 0%.
If a p-value is below the significance level of 0.05, it is plausible that the samples
originate from a population different from the population of the baseline samples.
The bootstrapping test loss results were not statistically significant.

4.3.2 Curriculum Learning with Aerial Imagery

Curriculum learning was tested in Experiment E4, E5, and E6. Results from Ex-
periment E4 are displayed in Figure 4.4, whereas results from Experiment E5 are
displayed in Figure 4.6. In addition, Experiment E4 explored anti-curriculum
learning, while Experiment E5 tested patch datasets constructed with various
difficulty thresholds D0. Finally, Experiment E6 investigated gradual curriculum
learning and the performance of only training with the first stage of a curriculum
patch dataset. The results from this experiment can be found in Figure 4.7.

Experiment E4 was conducted using the Massachusetts Roads Dataset. In Fig-
ure 4.4a, the switch from stage 0 to stage 1 at epoch 50 is clearly visible for the
curriculum and anti-curriculum test loss plots. The network trained with the
curriculum patch dataset performed better than the baseline, as seen in Figure
4.4a and Figure 4.4b. The test loss gap between the baseline and curriculum is
largest before epoch 50, but is still maintained to a lesser extent after this epoch.
The precision and recall breakeven point of curriculum is above that of the base-
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Table 4.9: Bootstrapping results.

Experiment % Dataset Breakeven Test loss P-value

E1 - Baseline 0 Massachusetts 0.6949 0.0299 -

E1 - Baseline 10 Massachusetts 0.6910 0.0294 -

E1 - Baseline 20 Massachusetts 0.6795 0.0299 -

E1 - Baseline 30 Massachusetts 0.6825 0.0297 -

E1 - Baseline 40 Massachusetts 0.6663 0.0308 -

E1 - Bootstrapping 0 Massachusetts 0.6930 0.0290 0.15164

E1 - Bootstrapping 10 Massachusetts 0.6879 0.0297 0.64355

E1 - Bootstrapping 20 Massachusetts 0.6810 0.0292 0.25650

E1 - Bootstrapping 30 Massachusetts 0.6855 0.0289 0.22492

E1 - Bootstrapping 40 Massachusetts 0.6757 0.0299 0.15764

E2 - Baseline 0 Norwegian 0.6001 0.0265 -

E2 - Baseline 10 Norwegian 0.5930 0.0261 -

E2 - Baseline 20 Norwegian 0.5868 0.0256 -

E2 - Baseline 30 Norwegian 0.5792 0.0257 -

E2 - Baseline 40 Norwegian 0.5750 0.0263 -

E2 - Bootstrapping 0 Norwegian 0.6069 0.0251 0.09136

E2 - Bootstrapping 10 Norwegian 0.6014 0.0254 0.29272

E2 - Bootstrapping 20 Norwegian 0.5864 0.0252 0.48285

E2 - Bootstrapping 30 Norwegian 0.5976 0.0250 0.11260

E2 - Bootstrapping 40 Norwegian 0.5863 0.0247 0.00480

E2 - Confident 0 Norwegian 0.6032 0.0253 0.09433

E2 - Confident 10 Norwegian 0.5913 0.0257 0.43790

E2 - Confident 20 Norwegian 0.5961 0.0252 0.36447

E2 - Confident 30 Norwegian 0.5876 0.0251 0.09397

E2 - Confident 40 Norwegian 0.5869 0.0256 0.17952

E3 - Baseline 0 Norwegian 0.6114 0.0240 -

E3 - Bootstrapping 0 Norwegian 0.6186 0.0245 0.18114

E3 - Confident 0 Norwegian 0.6244 0.0240 0.90851
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(a) Comparison of test loss. (b) Precision and recall comparisons.

Figure 4.4: E4 - Performance of curriculum learning and anti-curriculum learning
using the Massachusetts Roads Dataset.

line as well.

Training with an anti-curriculum strategy, where the first stage consists of harder
examples, seemed to do worse than both the baseline and curriculum. This is
especially evident in the test loss plot, where the test loss stagnates at around
epoch 25, and starts to overfit towards epoch 50. From epoch 50 when stage 1
examples entered the training set, there is a dramatic decrease in test loss. The
test loss decrease continues at a steady pace until epoch 85. Yet, the final perfor-
mance of anti-curriculum learning is substantially lower than both the baseline
and curriculum learning, as illustrated by the breakeven points in Figure 4.4b.

The training set difficulty distribution, according to the difficulty estimator d(y, q)
from Experiment E4, is illustrated in a histogram in Figure 4.5. The training
set of the Massachusetts Roads Dataset was sampled, and the difficulty estimate
was computed for every patch. Patches that contained no road label pixels were
counted separately from patches that contained road label pixels. The resulting
histogram for non-road patches in Figure 4.5b shows that the trained curriculum
teacher of Experiment E4 is excellent at predicting non-road patches, because
the predictions and labels match very well. This results in very low difficulty
estimates. This is not the case for road patches, illustrated by Figure 4.5a, where
the distribution is clearly skewed right and has a greater variance.

In Experiment E5, the road detection system was trained on four different patch
datasets created from the Norwegian Roads Dataset. A comparison of the test
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(a) Distribution of road patches. (b) Distribution of non-road patches.

Figure 4.5: E4 - Example difficulty distribution according to estimator d(y, q).

loss per epoch plots is displayed in Figure 4.6a, whereas the final performance of
each patch dataset is shown by a precision and recall curve in Figure 4.6b. The
network configuration used for the tests was identical, as well as the number of
training examples seen during training. Essentially, the gap between the baseline
and curriculum curve is the result of the different difficulty thresholds D0.

(a) Comparison of test loss. (b) Precision and recall comparisons.

Figure 4.6: E5 - Performance of curriculum learning at different thresholds, D0
using the Norwegian Roads Dataset Vbase.

Observing the plots in Figure 4.6a, the switch from stage 0 to stage 1 is clearly
visible at epoch 50. The increase in test loss is most severe in the datasets formed
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by a curriculum strategy. Leading up to epoch 50, the curriculum plots show an
increasing gap in test loss if compared to the baseline plot. After the switch,
the curriculum datasets still outperform the baseline dataset, even though the
example distribution of stage 1 are the same for all patch datasets.

In Figure 4.6b, the networks trained with a curriculum strategy show an im-
proved relaxed precision for all levels of recall compared to the baseline.

An interesting trend between the thresholds D0 and the test loss is that de-
creasing the difficulty threshold does not necessarily produce better results. The
patch dataset Curriculum 0.15 has the easiest first stage, yet performed worse
than Curriculum 0.25 and Curriculum 0.35.

Figure 4.7 displays the results from Experiment E6. The patch datasets in this
experiment were created with the use of a teacher classifier that was trained with
the same number of training examples as the patch datasets. Curriculum learn-
ing still achieved a higher test loss and gave better relaxed precision for all levels
of relaxed recall, compared to the baseline.

Figure 4.7a and 4.7b illustrate the performance of training with only the first
stage of the patch datasets. As expected, the first stage baseline has a lower
breakeven point than the two stage baseline. More surprisingly, the first stage
curriculum outperformed the baseline and the curriculum, both in breakeven
point and test loss. However, at recall levels less than 0.4, the precision of the
first stage curriculum decreases rapidly. The test loss of the curriculum and the
baseline plot increased substantially at epoch 60 when the stage switch occurred.

This was further explored by creating two additional patch datasets with smaller
stages that were gradually mixed into the training set. Subsequent stages re-
placed parts of the training set by assigning each example to a random position
in the training set. Because the positions are picked by random sampling with
replacement, only around 40% of the existing examples in the training set were
replaced at each switch. This results in a more gradual transition of the difficulty
distribution. As seen from Figure 4.7c, the test loss plots do not exhibit the
same test loss increase after a stage switch. The baseline plot even decreases sub-
stantially after epoch 60. The gradual approach also seems promising in terms of
precision and recall, as seen in Figure 4.7. The network trained with a curriculum
patch dataset achieved a breakeven point of 0.8088, compared to a breakeven of
0.7952 for the network trained with the baseline patch dataset.

The results from Experiment E4, E5, and E6, are listed in Table 4.10. Each row
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(a) Test loss for two stage dataset. (b) Precision and recall comparisons with
two stage dataset.

(c) Test loss with dataset with gradual stage
switching.

(d) Precision and recall for dataset with
gradual stage switching.

Figure 4.7: E6 - Results from experiments with an less experienced teacher model.
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Table 4.10: Curriculum learning results.

Experiment D0 Dataset Breakeven Test loss P-value

E4 - Baseline 1.0 Massachusetts 0.7211 0.0279 -

E4 - Curriculum 0.25 Massachusetts 0.7353 0.0267 0.01023

E4 - Anti-curriculum 0.25 Massachusetts 0.6904 0.0296 0.00057

E5 - Baseline 1.00 Norwegian 0.6105 0.0262 -

E5 - Curriculum 0.15 Norwegian 0.6264 0.0255 0.18160

E5 - Curriculum 0.25 Norwegian 0.6292 0.0240 0.00817

E5 - Curriculum 0.35 Norwegian 0.6269 0.0237 0.00017

E6 - Baseline 1.00 Massachusetts 0.7836 0.0258 -

E6 - Curriculum 0.25 Massachusetts 0.7880 0.0245 0.01519

E6 - Baseline, gradual 1.00 Massachusetts 0.7952 0.0267 -

E6 - Curriculum,
gradual

0.25 Massachusetts 0.8088 0.0250 0.00007

lists a test, and shows the difficulty threshold for that particular patch dataset,
precision and recall breakeven point, test loss, and a p-value. The p-values were
computed by the Welch’s t-test, using the test loss samples from a curriculum test
and the baseline. If a p-value is below the significance level of 0.05, it is plausi-
ble that the curriculum and baseline samples originate from distinct populations.
The curriculum tests that used a difficulty threshold of 0.25 and 0.35 have small
p-values well below 0.05. The results were probably not sampled from the same
underlying population. Therefore, it is plausible that curriculum learning can
improve the generalization accuracy of a CNN.

4.3.3 Road Detection System
In Experiment E7, the road detection network M1 was trained on a very large
patch dataset. In order for the patch dataset to fit in main memory, the examples
were split into nine separate stages, each containing 442800 training examples.
The content of the training set was switched during training. These switches
are noticeable in the training loss plot in Figure 4.8a, where the training loss
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(a) MSE loss. (b) Precision and recall.

Figure 4.8: E7 - Performance of the M1 road detection system trained with the
Massachusetts Roads Dataset.

increases slightly after a training set switch. The network converged to a test
loss of 0.0232. In Figure 4.8b the precision and recall curve of Network M1 is
displayed.

An additional road detection system was trained with a modified network archi-
tecture. This increased the number of adjustable model parameters considerably.
The trained network, M2, achieved a higher precision and recall breakeven point
than Network M1. The same architecture was also tested with a large patch
dataset constructed from the Norwegian Roads Dataset.

The precision and recall breakeven point of these networks and comparable ex-
periments conducted in other works are listed in Table 4.11. These systems have
been described in Section 2.3.

4.4 Experimental Analysis
In the following analysis, the results presented in the previous section will be ex-
plored more in-depth. Furthermore, qualitative results from the road detection
system are evaluated, and might illustrate why methods for dealing with noisy
labels are important for this type of dataset.

1The number of experiment runs is unclear.
2See footnote 1.
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Table 4.11: Road detection system results. The values in this table represent the
precision and recall breakeven points achieved by the systems.

System Dataset Breakeven Best network

Network M1 Massachusetts 0.8341 0.8413

Network M2 Massachusetts 0.8494 0.8627

Mnih [2013]1 Massachusetts 0.8873

Saito and Aoki [2015]2 Massachusetts 0.8866

Network N1 Norwegian 0.7508 0.7620

The CNN and the proposed methods are in some sense comparable to the three
groups of approaches for dealing with label noise, described in Section 2.1.2. The
bootstrapping loss function is clearly a noise-tolerant approach, where the loss
function is modified in an attempt to make the network more robust towards
label noise. The CNN and the regularization methods can be categorized as a
noise-robust model. Whereas, curriculum learning in some sense can be described
as a data cleansing method. The “simple” stages are created based on filtering
techniques, where inconsistency between label and prediction determines whether
an example is excluded or not. However, examples are not excluded from every
stage, but only from the initial stages of training.

4.4.1 The Effect of Bootstrapping

Unfortunately, the effect of employing the bootstrapping loss function is quite
small. However, the bootstrapping methods did perform nearly equal or slightly
better when observing the breakeven values in Experiment E1, E2, and E3, and
for increasing levels of omission noise, as seen in Figure 4.1 and Figure 4.2. It
seems that bootstrapping do exhibit some robustness towards label noise. Com-
pared to the performance of the baseline, the difference in both test loss and
breakeven seems to be increasing.

Even though up to 40% of the roads present in the label images were removed,
it did not particularly affect the baseline much. The baseline network seems to
be surprisingly robust towards label noise. However, the default patch dataset
sampling policy might be somewhat responsible for this.
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In Experiment E1, and E2, only omission noise was artificially added to the label
images. This simply removed road pixels from the label images, until a certain
percentage of road pixels had been removed. However, when the patch creator
sampled the aerial dataset, the preference for an even balance between patches
containing road pixels and patches not containing any road pixels were enabled.
Even for increasing levels of omission noise, the patch creator still sampled around
50% road patches with almost no noise added. The portion of non-road patches
in the patch dataset was of course affected by the increase in label noise. Adding
artificial, but realistic registration noise to the label images were not done in the
experiments. This would have affected the entire patch dataset. In Appendix
E, the results from increasing levels of label noise by flipping label pixels are
presented. In this scenario, bootstrapping is much more effective. Unfortunately,
this type of label noise is highly unrealistic for this type of dataset.

There is also the issue of seemingly contradictory results in Experiment E3. Even
though bootstrapping in Figure 4.3 shows an increase in the loss towards the end,
it still achieves a better precision and recall curve than the cross-entropy loss.
This is probably an indication of bootstrapping actually working. It seems that
the bootstrapping loss function slightly adjusts the predictions to be more consis-
tent between perceptually similar examples at the cost of an increasing test loss.
The Vbase test set labels are not perfect, and exhibit some registration and omis-
sion noise, which probably explains the increase in test loss. The bootstrapping
function might be reducing the impact of local registration noise by adjusting
the predictions to fit the road pixels better. These prediction adjustments will
be visible in the test loss plot, but will not affect the precision and recall curve
because of the relaxed measure of precision.

The confident bootstrapping loss function behaves slightly different compared to
bootstrapping, as demonstrated by the test loss figures 4.2a, and 4.3a. In these
figures, the confident bootstrapping seems to follow the general outline of the
baseline more closely than bootstrapping. The only difference between the two
loss functions is that confident bootstrapping modifies targets using only con-
fident pixel predictions. In addition, for the N50 label set in Experiment E3,
this loss function actually performed slightly better than bootstrapping and the
baseline in terms of precision and recall.

In summary, the experiments show that bootstrapping has a small positive effect
on the results. However, the performance gains were not statistically significant
for tests that involved omission and registration noise.
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4.4.2 Curriculum Learning by Using an Artificial Teacher
All experiments comparing a randomly sampled patch dataset and a patch dataset
constructed from a curriculum strategy, showed that presenting easier examples
first have a positive impact on the classifier’s ability to generalize. Furthermore,
the proposed curriculum strategy that is based on measuring disagreement be-
tween the labels and the predictions that were produced by a teacher classifier,
seems to be a viable approach for conducting curriculum learning.

A benefit of using this particular curriculum strategy is that it appears to be
generally applicable. As long as a teacher classifier is trained to a certain level
for an arbitrary dataset, it should be possible to create a curriculum dataset
using the difficulty estimator d(y, q). However, it does require training an ad-
ditional classifier, and the resulting quality of the curriculum dataset probably
corresponds to the achieved accuracy of the teacher classifier. For images this
strategy is compelling, since judging the perceived difficulty of examples based
on the actual image content is hard.

Experiment E4 and E5 demonstrated that the examples presented first do impact
the final performance of the network. This is evident from both the precision and
recall curve, as well as the test loss. It is conceivable that a less challenging train-
ing set distribution puts the network in an advantageous area of parameter space.
Even though the latter half of training for the curriculum tests were conducted
on a training set with the same example distribution as the baseline tests, the
starting advantage of curriculum learning was still preserved in the final perfor-
mance.

From Experiment E4 it is also clear that anti-curriculum learning does not pro-
vide the same advantage as curriculum learning. The performance in Figure
4.4a converges already at around epoch 25, with a test loss considerably higher
than the baseline. It is only able to approach the test loss of the baseline after
switching to the natural example distribution at epoch 50. The final test loss
converged to a level well above the baseline. This also illustrates that the ex-
amples presented first have a large influence on the outcome. It is possible that
early optimization on harder examples can guide the network to an unfavorable
local minimum, which is hard to escape from later on.

The results further show that the outcome of curriculum learning is sensitive to
the threshold parameter D0. Figure 4.6a reveals that decreasing threshold value
D0 diminishes the effect of curriculum learning. Decreasing the threshold value
results in a smaller pool of eligible examples that can be included in the first
stage of a training set, which, in turn, can reduce the training set variability.
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A bit surprising are the results from Experiment E6, which showed that training
with the first stage only, did better than curriculum learning. This indicates that
the inexperienced teacher model actually did a good job separating the very hard
and possibly inconsistent examples out from the first stage. It also shows that the
second stage probably contained a good amount of inconsistent examples, which
can penalize the network incorrectly and affect the outcome. Alternatively, this
might indicate that the threshold parameter D0 was set to a value which resulted
in sufficient example variation in the first stage training set. The network is
therefore able to generalize well to the task of road detection.

However, assuming that harder examples are inconsistent and exclude them en-
tirely from the training set should be done with caution. This could lead to hard,
but correctly labeled examples being excluded, as well as unfamiliar examples
that the curriculum teacher has not seen before. If the teacher classifier could
accurately detect inconsistent labeling, there would be no reason for doing cur-
riculum learning in the first place.

A potential reason for the large spike in test loss after a stage switch is that the
entire training set is suddenly replaced. As seen in the test loss of Figure 4.7c,
gradually mixing in examples from smaller subsequent stages seems to alleviate
this. The breakeven point for this test is also substantially higher than that of the
baseline, the first-stage-only curriculum, and the inexperienced teacher classifier.

In summary, the composition of the first stage has a considerable effect on the
outcome of training. Furthermore, the results demonstrate that the proposed
curriculum strategy works well in practice.

4.4.3 Performance of the Road Detection System
The images in Figure 4.9 illustrate qualitatively the performance of the network
with the best performance on the Massachusetts Roads Dataset. The prediction
image in Figure 4.9c has been stitched together from 16× 16 prediction patches.
For this particular test image, the model was able to identify the majority of the
roads present, except for an almost imperceptible dirt road on the right side of the
image. There are also some prediction errors, such as roads being disconnected,
and prediction artifacts in the forest areas. However, the majority of the forest
artifacts have low prediction probabilities, and can be removed by a threshold
operation applied to the probabilities. For instance, the threshold value which
results in the best precision and recall trade-off of the model was used to binarize
the predictions in Figure 4.9d.
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An interesting observation is that the model also correctly predicts small private
roads leading up to houses, as seen in Figure 4.9. Furthermore, the model detects
construction roads in the upper left corner. Since these roads are not present in
the label image, the model is penalized for making these predictions by the cross-
entropy loss function.

The prediction errors are displayed in Figure 4.9d, where the road label pixels
and road prediction pixels are superimposed on the aerial image. The road pixels
that are colored green have been correctly predicted, whereas the red and blue
colored pixels show the prediction errors. The red pixels indicate areas where the
system failed to predict road, and the blue pixels show areas where the system
incorrectly predicted road. Yet, the majority of the prediction errors are under-
standable, and arguably not actually errors at all. Most of the blue areas are
covering pixels that depict asphalt surfaces, and some of the red areas have trees
covering the road. However, a certain challenge is the amount of disconnected
roads, that especially occur at road junctions and highway ramps. Possible rea-
sons for these prediction errors can be the low frequency of junctions and ramps
in the dataset, or that the model capacity is inadequate. More results similar to
Figure 4.9 can be found in Appendix F.

One of the most compelling ways of reducing the number of disconnected roads
is by utilizing structured output prediction methods, as discussed in Section
2.3. Several studies [Kluckner et al., 2010] [Alvarez et al., 2012] [Mnih and Hin-
ton, 2010] have shown that employing a smoothness prior by taking neighboring
predictions into account can significantly improve generalization in semantic seg-
mentation tasks. This is unfortunately outside the scope of this thesis.

The precision and recall breakeven point of M1 is considerably lower compared
to other works, as seen in Table 4.11. The most likely explanation is the de-
fault configuration of this network. The configuration of the first layer in the
network trained by Mnih [2013] was different. Mnih [2013] used overlapping max
pooling in the first layer, whereas the max pooling of M1 was non-overlapping.
This resulted in fewer learnable parameters in M1, which could have affected the
network’s model capacity or ability to fit the data. The spatial reduction of the
input in the first convolutional layer especially affects the number of incoming
connections to the first fully connected layer of the network. The network by
Mnih [2013] has approximately 17.3 million adjustable weights.

This was tested in Network M2, which used a different stride and kernel sizing.
The number of adjustable weights in this network was around 5 million compared
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(a) Label image. (b) Aerial image.

(c) Model predictions. (d) Prediction hit and miss image.

Figure 4.9: E7 - Example of M2’s road detection performance. The aerial image
is part of the test set in the Massachusetts Roads Dataset.
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(a) Non-road pixels superimposed. (b) Road pixels superimposed.

Figure 4.10: Examples of ill-suited line thickness.

to around 1.6 million in Network M1. A large portion of the difference can be
traced back to the massive increase in incoming connections to the fourth layer.
The number of incoming connections in M1 was 80, compared to 720 in M2. This
network achieved a precision and recall breakeven point of 0.8494, even though
it was trained for fewer epochs, and with a smaller training set. In addition, this
network was trained using a gradual curriculum strategy, and used the confident
bootstrapping loss function.

The same network configuration, loss function, and training regime were tested
with the Norwegian Roads Dataset Vbase in Network N1. The precision and
recall breakeven point of this network was substantially lower. There are prob-
ably several reasons for this. First, the lower GSD of this dataset implies that
image patches of 64 × 64 pixels convey less context compared to similarly sized
patches from the Massachusetts Roads Dataset. This might reduce the network’s
ability to discriminate between road and non-road pixels in situations where sur-
rounding context is key. Second, the results from the two roads datasets cannot
be directly compared because they are different. The Norwegian Roads Dataset
has images of varying image quality, and depict a wide range of topographical
features. Furthermore, The Vbase label set has been rasterized with ill-suited
line thicknesses for roads that are particularly wide or narrow. The examples in
Figure 4.10 illustrate this.



Chapter 5

Conclusion

The goal of this thesis was to create a road detection system able to detect roads
from aerial images. This was achieved by utilizing a convolutional neural network
and training it on datasets created from existing map data. This thesis has given
a brief introduction to road extraction systems, and the related problem of label
noise often found in aerial image datasets. This chapter concludes this work, first
by giving a brief overview of the thesis in Section 5.1. Then, in Section 5.2, the
research goal and questions are resolved based on the results from Chapter 4.
Contributions made by this thesis are discussed in Section 5.3, and suggestions
for future work are presented in Section 5.4.

5.1 Overview
The research questions and motivations were introduced in Chapter 1. The task
of segmenting objects from aerial imagery was presented, as well as the related
problem of label noise.

In Chapter 2, the thesis presented background theory and related works. The
components of a CNN was briefly introduced, as well as topics such as curricu-
lum learning and approaches for dealing with noisy labels. The related works pre-
sented studies involving road detection systems, semantic segmentation, methods
for dealing with noisy labels, and curriculum learning. The issue of label noise
was influential in the choice of a curriculum strategy, and the studies inspired the
testing methodology used in Chapter 4.

Chapter 3 presented a detailed description of the selected methods and the aerial
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image datasets. This included a presentation of the default hyperparameters, the
architecture, the optimization and regularization methods used by the CNN, the
bootstrapping loss function, and the curriculum strategy. The chapter also de-
scribed how the Norwegian Roads Dataset was constructed from aerial imagery
and existing map data, and why it is compelling to test the proposed methods
with this type of dataset.

Experimental results from the proposed methods and the road detection system
were presented in Chapter 4. First, the design of each experiment was described.
Then, the specific details and parameters for each experiment were listed. Fi-
nally, the results were presented and then analyzed.

5.2 Evaluation
The goal of this thesis was to segment road pixels from aerial images using a
CNN. This network shares many similarities to the networks employed by Mnih
and Hinton [2012] and Mnih [2013]. Experiments demonstrated that the best
architecture trained on the Massachusetts Roads Dataset achieved an averaged
precision and recall breakeven point of 0.8494. This is a bit below comparable
results from other works. The most likely explanation is that the network archi-
tecture constrained the capacity of the model. From the qualitative analysis, the
classifier seemed to have generalized fairly well to the task of road segmentation.

The research questions of this thesis are related to this goal. Automatically
generated aerial image datasets often suffer from label noise, and the research
questions involve methods that can possibly alleviate the negative effects of in-
consistent labeling. This section will attempt to resolve the research questions
defined in Section 1.2 by a brief discussion based on the results from Chapter 4.

Research question 1:
Does the bootstrapping loss function give a significant improvement of pre-
cision and recall for datasets with noisy labels?

Mnih and Hinton [2012] showed that performance could be improved for aerial
imagery by having the loss function model the noise distribution. They also
found two particular breeds of label noise in aerial image datasets, which they
called omission and registration noise. The bootstrapping loss function proposed
by Reed et al. [2014] has also shown promising results for several noisy datasets.
In this thesis, this particular loss function was therefore tested on aerial image
datasets, to see if it provided robustness towards omission and registration noise.
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Furthermore, a proposed variation of bootstrapping was also tested.

The experiments demonstrated that the bootstrapping method did provide some
robustness towards label noise. For increasing levels of omission noise, the gap
in performance between the cross-entropy and the bootstrapping loss function
seemed to be somewhat increasing. However, the results were not statistically
significant. The loss function was not tested on artificially increasing levels of
registration noise, which could make the results more convincing. This would
require some sort of image morphing, and local skewing of the roads present in
the label images.

Tests performed on the Norwegian Roads Dataset N50 showed that both boot-
strapping methods had precision and recall values slightly better than the base-
line. In summary, the bootstrapping loss function seemed to have a slightly
positive effect on noisy labels. Unfortunately, the effect was not statistically
significant for increasing levels of omission noise.

Research question 2:
How can curriculum learning improve results in deep learning, and does
this improve precision and recall for aerial images?

Curriculum learning proposed by Bengio et al. [2009] demonstrated compelling re-
sults for several tasks. The method increased generalization accuracy and resulted
in faster convergence, by organizing each dataset according to the estimated diffi-
culty of each example. The classifier was trained by gradually introducing harder
examples to the training set. However, the curriculum strategies used for sorting
the datasets were specific for each task, and were not particularly adaptable to
road detection. This challenge was addressed by SPL [Kumar et al., 2010], where
the curriculum strategy is internalized in the model. The model simultaneously
optimizes the objective function and determines what examples to consider at
each iteration. Examples that are easily predicted are considered “easy” by this
approach.

The proposed curriculum strategy in this thesis does not alter the classifier al-
gorithm. Instead, the example difficulties are estimated based on inconsistencies
between labels and predictions. A curriculum dataset is built based on these esti-
mates. The examples of the curriculum dataset are then mixed into the training
set during training. A limitation of this method is that its effectiveness is based
on the predictions generated from a curriculum teacher classifier, which has to be
trained beforehand. However, the method is not task specific and can probably
be applicable to any domains. This curriculum strategy can also be applied to
any supervised algorithm, since the strategy primarily affects the dataset and not
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the algorithm.

The experiments demonstrated consistently better generalization accuracy when
utilizing curriculum learning. The resulting precision and recall curves from
experiments conducted with both the Norwegian Roads Dataset and the Mas-
sachusetts Roads Dataset, showed that networks trained on the curriculum datasets
performed better than those trained on the baseline datasets. The experiments
used a two stage training set, with the first stage containing examples with low
difficulty estimates. The entire training set was replaced mid-training.

The baseline and curriculum tests had the same network configuration and the
same second stage difficulty distribution. The only variable between the tests
was the content of the first stage. The experiments revealed that the first stage
did impact the final accuracy of the classifier. The performance advantage of a
simple first stage did not vanish in later stages of training. This might indicate
that the examples presented early exert a larger influence on the outcome than
the examples presented later in the optimization process. This is also evident
from results of anti-curriculum learning, which converged to a generalization ac-
curacy worse than that of the baseline.

However, it is unclear whether the approach of simply excluding inconsistent la-
bels is better than delaying the presentation of inconsistent labels. Compared to
data cleansing methods, curriculum learning is a safer approach since it does not
accidentally remove correct examples that are difficult to predict. The switch
between stages also resulted in an immediate and significant increase in test loss.
This was alleviated by gradually mixing in harder examples.

There is also uncertainty about whether the advantage of curriculum learning is
present for very large training sets. The size of the training sets was limited to
around 200000 examples because of runtime concerns. Experiments did show that
curriculum learning can be advantageous for domains where a limited amount of
data is available. Increased accuracy with curriculum learning was observed when
the teacher classifier had been trained with a training set of limited size. The
gradual curriculum learning approach even outperformed the teacher classifier in
terms of precision and recall.

In conclusion, improved precision and recall were observed for both aerial image
datasets when using curriculum learning. The curriculum strategy of measuring
inconsistency between a label and a prediction works well, and can easily be
combined with deep learning.
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5.3 Contributions

The thesis sought to test approaches for dealing with noisy labels in real-world
datasets. This is a compelling inquiry in the field of machine learning, where the
trend of using deep neural networks with a huge number of adjustable parameters
requires large training sets to generalize well. There is an abundance of existing
data available online that can be used for learning. Unfortunately, this data can,
in many cases, lack accurate labels for supervised training. To manually label
the data can be expensive and very time-consuming in many domains, such as
transcribing speech for speech recognition, and tracing ground truth for semantic
segmentation. Automatically generating datasets from existing data sources are a
quick and economical solution, but can result in datasets with a lot of label noise.

The problem with label noise was therefore tackled in this thesis by testing two
different methods: bootstrapping and curriculum learning. Bootstrapping mod-
ifies the loss function in order to reduce the impact of inconsistent labels. Cur-
riculum learning, on the other hand, modifies the training regime by sorting
the training set into stages from “easy” to “hard” examples. The sorting mech-
anism, or curriculum strategy, is based on measuring inconsistencies between
labels and teacher predictions. Coincidentally, “hard” examples often have in-
consistent labeling, and are therefore more likely to be presented at a later stage
of optimization if the dataset is organized according to this curriculum strategy.
In effect, inconsistent examples are a less frequent occurrence in the first stage
of the curriculum dataset.

The curriculum strategy can most likely be applied to tasks in other domains,
since the example difficulty estimator d(y, q) does not rely on any intrinsic fea-
tures of image data. However, the effectiveness of this curriculum strategy has
not been verified in other domains than road detection in aerial images.

The thesis found that bootstrapping did not show much robustness towards omis-
sion noise compared to the baseline. The effect was not of any statistical signif-
icance. Furthermore, the base network also performed surprising well for very
high rates of omission noise.

Curriculum learning demonstrated consistently improved generalization accuracy
in the experiments. The improved accuracy was observed both for the Mas-
sachusetts Roads Dataset, as well as for the Norwegian Roads Dataset. The ex-
periments also showed that adjusting the example distribution in the first stage
of the training set affected the final outcome of the training procedure.
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5.4 Future Work

This section presents future work, such as how to further verify the proposed
curriculum strategy and bootstrapping loss function. In addition, this section
will suggest further improvements of the road detection system.

The most compelling improvement of the road detection system is by incorporat-
ing CRF or a post processing neural network, as described in Section 2.3. This
was tested by Kluckner et al. [2010] and Mnih and Hinton [2012], and yielded
accuracy improvements. These methods can also result in a smoother image seg-
mentation.

To use the road predictions further in GIS applications the binary prediction
images should be converted into road centerline vectors. To do this, the predic-
tion images have to be combined, and the resulting segmentation image must
be cleaned. Methods from computer vision might be applicable for this work.
For instance in [Song and Civco, 2004], shape descriptions were extracted from
the segmentation images, which can be used to measure density and shape in-
dex. Based on these values, shapes, which have measurements not characteristic
of roads, can be removed by a threshold operation. In addition, morphological
operations, such as thinning or skeletonization, can be applied to reduce the seg-
mented road regions down to one pixel thick lines.

Another potential improvement of the results is by finding better hyperparame-
ters. For instance, the experiments testing the performance of the road detection
system showed that the model capacity was initially constrained. Increasing the
number of adjustable weights in the network improved the precision and recall
breakeven point substantially. Combining dropout with max-norm regulariza-
tion instead of L2 weight decay could also be interesting, since this configuration
achieved better test classification error in [Srivastava et al., 2014].

The bootstrapping methods did not improve performance significantly. This
might be related to ill-suited parameters. Further testing of parameter config-
urations could be considered. In addition, the bootstrapping method could be
tested with increasing levels of registration noise. The confident bootstrapping
loss function could also be explored further. An interesting comparison of the
bootstrapping methods is mapping the relationship between a decreasing param-
eter β and their resulting performances. Based on the experiments conducted,
it seems that confident bootstrapping might be less sensitive to decreasing the
βmin parameter.
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There are also some unresolved questions regarding curriculum learning, and the
proposed curriculum strategy. For instance, is it worth including examples with
a very high difficulty estimate? How do the data cleansing approaches described
in Section 1.1 compare to curriculum learning? The thesis also does not properly
determine how experienced a teacher classifier has to be in order to create an
effective curriculum dataset. Further tests could illuminate the relationship be-
tween the teacher classifier’s competency and the effectiveness of the curriculum
strategy.

The curriculum learning approach should also be tested on a network trained on
a very large dataset. This could alternatively be tested by mapping the impact
of curriculum learning for increasing training set sizes. The proposed strategy
should also be compared to SPL [Kumar et al., 2010], which internalizes the cur-
riculum learning mechanism in its loss function.

Furthermore, Jiang et al. [2014] illustrated the need for balancing diversity and
easiness in curriculum learning. The SPL approach is extended by a preference for
both easy and diverse examples. This could potentially be done for the proposed
curriculum strategy as well. For instance, unsupervised learning techniques, such
as clustering, could organize the image patches into groups based on their similar-
ity. The curriculum dataset can then be constructed with an equal representation
of every cluster group. This might allow a reduction of the difficulty threshold
D0 without negatively impacting the performance.

The current version of the curriculum strategy was effective for two different
datasets containing aerial imagery. However, the method should be tested on
tasks in other domains as well. This might properly determine whether the pro-
posed curriculum strategy can be generally applicable.
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Appendices

A System Instructions
In order to run the core system the following dependencies are required:

• Python 2.7

• Theano

• Numpy

• Unirest

• Python Imaging Library (PIL)

The system has only been tested with Ubuntu 14.04, but it should be possible
to run on both Windows and Linux as long as the listed dependencies have been
installed. Ubuntu is highly recommended because of a more convenient installa-
tion process.

A Nvidia GPU is also highly recommended for running the system. In most
instances a GPU can give considerable speed improvements when training com-
pared to a CPU. This is critical when having to deal with large datasets and
models with millions of parameters. In order for Theano to efficiently use your
GPU while training, CUDA Toolkit has to be installed.

A graphical user interface can also be utilized for monitoring the training. Run-
ning experiments can be stopped from this user interface, as well as a debugging
option which displays examples and model predictions. In addition all experiment
data and results are stored as JSON, and can be viewed in the user interface.
This includes, a loss per epoch plot, precision and recall curve and hyperparam-
eter configuration.
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The monitoring system can either be run locally, or installed on a server. All
communication between the core system and the monitoring system is done by
HTTP messaging. To enable monitoring, enable gui must be set to true in the
core system’s config file. Furthermore, the url to the monitoring system’s api has
to be set for the endpoint parameter. Utilizing this monitoring system requires
these dependencies:

• Node.js

• MongoDB

For installation instructions, please read the included README files of the repos-
itories. The URL of these repositories are listed below:

• https://github.com/olavvatne/CNN

• https://github.com/olavvatne/ml-monitor

B Experiment Tools Overview
Important tools that were created for this thesis are listed below. The source code
can be found inside the tools module of the road detection system’s repository.

• measurement.precisionrecall.py
The tool creates the precision and recall curve. Command line options can
be supplied.

• visualize.aerial.py
The tool stitches together model predictions and creates the prediction error
images seen in the qualitative analysis.

• layer.visualize.py
Opens a params.pkl file containing the weights and hyperparameter config-
uration of a trained network. It creates a visualization of the kernels in the
network’s input layer.

• distribution.curriculum diff.py
Samples patch examples and creates a histogram showing the patch dataset
difficulty estimate distribution. Useful for setting the threshold Dθ when
conducting experiments. Also useful for verifying the content in a curricu-
lum patch dataset stage.

• distribution.dataset std.py
Tool for finding an estimate of a dataset’s standard deviation. This value
is used by the contrast normalization in the pre-processing step.
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• distribution.label dist.py
Counts the percentage of true label pixels in a dataset.

• curriculum.dataset create.py
Tool for pre-generating a curriculum patch dataset. Command line options
can be supplied to select a teacher, the thresholds Dθ, the teacher’s optimal
threshold value, and dataset. The tool comes with a baseline option that
generates a staged patch dataset without curating the content of each stage.

• distribution.statistics.py
The tool performs the Welch’s t-test between two populations and Shapiro-
Wilk normality test for each population. The tool also displays normal Q-Q
plots generated from the samples of the experiment runs.

• figure.average compare.py
Averages experiment runs, and plots the averaged MSE loss and precision
and recall curve from the test dataset. The tool also marks the precision
and recall breakeven point of each plot. The resulting figures are used for
comparison purposes in this thesis.

• figure.average loss.py
Averages the test, validation and training loss of experiment replicates and
plots the result in a loss per epoch plot.

• figure.average noise levels.py
Averages the test losses of experiments’ final epoch. It also averages the
precision and recall breakeven point of each noise level. The figures created
by this tool shows the MSE test loss and breakeven point over increasing
levels of label noise.

C Experiment Population Normality Assumption
The Welch’s t-test assumes that the samples are independent, and drawn from an
approximately normal distributed population. In this appendix, the assumption
of normality is explored further.

One way of verifying that a population does not violate the normality assump-
tion is to create a normal Q-Q plot. These plots plot each sample based on its
quantile and the corresponding theoretical quantile expected from a normal dis-
tribution. The population samples are normally distributed if the plotted points
approximately fit a 45 degree line. The normal Q-Q plots comparing the test loss
populations of Experiment E1 - 0% omission noise to normal distributions can
be found in Figure 1c and Figure 1d. The plots are clearly affected by sample
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(a) 100 samples from a normal
distribution.

(b) 10 samples from a normal dis-
tribution.

(c) Baseline samples from Exper-
iment E1.

(d) Bootstrapping samples from
Experiment E1.

Figure 1: Normal Q-Q plots generated by samples from a normal distribution
and from the baseline and curriculum population of Experiment E1 - 0% omission
noise.

variability caused by the small sample sizes. This can be seen in Figure 1b, where
samples randomly picked from a normal distribution are plotted. This plot is cre-
ated from 10 randomly drawn samples from a normal distribution with mean and
variance equal to that of the baseline population. Figure 1a displays the normal
Q-Q plot of 100 random samples drawn from a similar normal distribution. This
plot fits the line more closely than 1b. Because of the small sample sizes, it can be
hard to confidently assess whether the experiment populations are normally dis-
tributed or not. At least there does not seem to be any compelling evidence in the
available sample data to suggest that the populations are clearly deviating from a
normal distribution. This was also confirmed by the Shapiro-Wilk normality test.
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D Experiment E2 Results
The results from Experiment E2 were summarised by plotting the final test loss
and precision and breakeven point for increasing levels of omission noise. In this
appendix, the test loss figures for every noise rate is shown in Figure 2, while the
precision and recall curve figures are depicted in Figure 3.

(a) 0% (b) 10% (c) 20%

(d) 30% (e) 40%
Figure 2: E2 - Test loss comparisons for several levels of omission noise.

(a) 0% (b) 10% (c) 20%

(d) 30% (e) 40%
Figure 3: E2 - Precision and recall plots for several levels of omission noise.
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E Random Noise Experiment
This appendix presents an additional experiment that tested the robustness of
the different loss functions on labels with increasing levels of random noise. The
noise was artificially added by flipping random label pixels until a certain per-
centage of label pixels had been flipped. The bottom row of Figure 4 displays
a label image with different levels of random noise. Furthermore, comparable
omission noise examples can be found in the top row of this figure.

Networks were trained on 221600 examples for 100 epochs, with a learning rate
of 0.0025, no curriculum learning, number of kernels in first layer K0 = 64, and
a batch size of 64. Apart from that, the network architecture is similar to that
of Network M2 in Experiment E7.

The results in Figure 5a, show a steeper increase in test loss for increasing levels

(a) 0% (b) 20% (c) 40%

(d) 0% (e) 20% (f) 40%

Figure 4: Examples of different levels of artifical noise added to a label image.
The top row shows increasing levels of omission noise, while the bottom row
illustrates increasing levels of random label flipping noise.
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(a) Test loss for increasing label noise (b) Test loss per epoch at 20% label noise

Figure 5: The test loss results of artificially increasing the level of random noise
in labels.

of noise, compared to Experiment E1 and E2. With no random label noise, the
baseline performed slightly better than the bootstrapping methods. However, the
test losses at 20% and 40% show that bootstrapping has a considerably lower test
loss compared to the baseline. The gap in test loss also seems to be increasing.
The confident bootstrapping has a test loss comparable to bootstrapping at 20%
label noise. However, this test loss improvement is not maintained towards 40%
label noise.

In Figure 5b, test loss per epoch plots are displayed. These show the aver-
aged training run achieved at 20% label noise. The bootstrapping plots and the
baseline have similar results until epoch 60. At epoch 60, the test loss of both
bootstrapping methods decreases rapidly, to a level well below the baseline. This
epoch is also when the β parameter was gradually decreased from 1.0 to 0.8. The
results shows that bootstrapping seems to provide robustness against random
label flipping. This is evident from the decrease in test loss after epoch 60 when
the loss function starts modifying the labels using the model predictions. Figure
5a also shows an increasing gap between the test losses of bootstrapping and
the baseline. Whereas the results of Experiment E1 and E2 were inconclusive,
these results are significant. However, this type of label noise is unrealistic in
the aerial image datasets used in this thesis. The label maps are often generated
from existing map data. This process would not produce this type of label noise.
however, this experiment suggests that bootstrapping can be applicable in some
domains.



102 CHAPTER 5. CONCLUSION

F Road Detection Results
In this appendix results from the best performing convolutional neural networks
are displayed. The precision and recall breakeven point of the model trained on
the Massachusetts Roads Dataset is 0.8627. Whereas, the breakeven point of the
best model trained on the Norwegian Roads Dataset is 0.7620.

(a) Image. (b) Label. (c) Prediction. (d) Hits.

(e) Image. (f) Label. (g) Prediction. (h) Hits.

(i) Image. (j) Label. (k) Prediction. (l) Hits.

(m) Image. (n) Label. (o) Prediction. (p) Hits.
Figure 6: Road extraction results from the Norwegian Roads Dataset.
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(a) Image. (b) Label. (c) Prediction. (d) Hits.

(e) Image. (f) Label. (g) Prediction. (h) Hits.

(i) Image. (j) Label. (k) Prediction. (l) Hits.

(m) Image. (n) Label. (o) Prediction. (p) Hits.
Figure 7: Road extraction results from the Massachusetts Roads Dataset.
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