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Problem Description

We want to look into how bio-inspired methods such as genetic
programming can be used in the game industry. Specifically, we will
investigate how these methods can be used in conjunction with
behaviour trees to increase the quality of AI in games.
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abstract

Video games are a source of fun and enjoyment for millions of
people across the globe. Artificial Intelligence (AI) is an essential
part of many games and there is an increasing demand for ever
more realistic computer controlled players. There are many
methods and approaches for creating AI for games, with state
machines and scripting featured in the majority of projects.
Behaviour trees have emerged as a recent competitor, combining
features of final-state machines and hierarchical task networks. As
the available computational powers increase, the feasibility of using
evolutionary computations in the development of game AI rises.

This project explores evolving behaviour trees using bio-inspired
methods. This is done by tailoring genetic programming to
represent individuals as behaviour trees which control a bot that
plays a real-time strategy game. The individuals were evaluated by
having them compete against each other, a hand-written behaviour
tree and an AI bot implemented using traditional methods. Five
experiments were conducted using a variety of parameters in order
to explore the suitability of using these techniques conjointly.

The results from this project demonstrate that evolving behaviour
trees is an interesting technique for automatically generating AI
players which can consistently beat ones produced by humans using
the same components, although evolving solutions that are serious
competitors of traditional AI bots proved more difficult.

ii



sammendrag

Dataspill er en underholdingskilde for millioner av mennesker
verden over. Kunstig intelligens er en vesentlig del av mange spill,
og det er en økende etterspørsel for mer realistiske datastyrte
spillere. Det finnes mange metoder og teknikker for å lage
datastyrte spillere, der state machines og scripting brukes i
majoriteten av tilfellene. Behaviour trees er blitt en gradvis mer
populær metode som kombinerer egenskapene til final-state
machines og hierarchical task networks. Når databehandlingskraft
øker, blir det mer nærliggende å bruke evolusjonære metoder i
utviklingen av datastyrte spillere.

I dette prosjektet utforsker vi en teknikk for evolusjon av behaviour
trees gjennom biologi-inspirerte metoder. Det blir utført ved å
skreddersy individ-representasjonen i genetisk programmering til å
følge samme notasjon som behaviour trees. Disse individene blir
dermed brukt til å kontrollere enkelte aspekter i et
sanntidsstrategispill. Deretter blir de evaluert gjennom interne
kamper mot hverandre, samt en mer tradisjonell datastyrt
motstander, standard motstanderen som følger med det utvalgte
spillet og en menneske-designet versjon basert på samme system.
Fem eksperimenter ble utført som tok i bruk en variasjon av
parametere med hensikt å utforske hvorvidt genetisk
programmering er en egnet metode til å utvikle behaviour trees.

Resultatene fra dette prosjektet viser at evolusjon av behaviour trees
er en interessant teknikk for å automatisk generere datastyrte spillere.
Disse spillerne har konsekvent utkonkurrert håndskrevne behaviour
trees. Det har derimot vist seg å være vanskelig å generere spillere
med denne teknikken, som slår spillere produsert ved hjelp av mer
tradisjonelle metoder.
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Chapter 1

Introduction

This report documents research into the use of Genetic
Programming(GP) for evolving Behaviour Trees(BT) in order to create
an Artificial Intelligence(AI) player for a real-time strategy(RTS)
game.

This chapter introduces the rest of the report. Section 1.1 outlines
the motivation and background, section 1.2 defines the research
questions, section 1.3 presents the research method, section 1.4
describes the contributions of this research and section 1.5 outlines the
thesis structure.

1.1 Motivation

The field of artificial intelligence is a large branch of computer science
that contributes to many other fields of science. A common testbed for
AI techniques are video games and the reason behind this is described
succinctly by Marvin Minsky in the quote below.

“It is not that the games and mathematical problems are
chosen because they are clear and simple; rather it is that
they give us, for the smallest initial structures, the greatest
complexity, so that one can engage some really formidable
situations after a relatively minimal diversion into
programming.” — Marvin Minsky

AI research for games has mostly focused on games of perfect
information like checkers [J. Schae er and Bryant., 1996] or chess,
rather than more modern video games. Modern games often involve
both long and short-term planning as well as complex decision-making.
As Sid Meier put it;
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“A good game is a series of interesting decisions. The
decisions must be both frequent and meaningful.” — Sid
Meier

Generally, AI for games come in the form of AI-bots which refer to
automated players that can play a video game in place of a human player.
The most common techniques for developing AI-bots are knowledge-
intensive techniques like Finite State Machines (FSMs) or rule-based
scripting.

An interesting technique in game AI currently gaining popularity is
behaviour trees [Champandard et al., 2010]. BTs hold several advantages
over traditional methods like FSMs for larger systems, specifically in the
areas of design simplicity, scalability, modularity and reusability. Its
hierarchical and goal-oriented approach make BTs a powerful method
for describing complex behaviours.

Game AI development often revolves around giving the impression
of intelligence with simple and cheap techniques rather than developing
something more advanced. The downside of this is that human players
can easily identify and exploit the weaknesses and adapt their strategy
to match it, resulting in a game that is less fun to play through another
time. Another trick that game developers use is to give the AI player
significantly more information and resources which some players find
detrimental to the experience as they want to compete against the AI
player on as equal terms as possible.

As the available computational power increases, evolutionary
techniques offer potential improvements to the development of game
AI. In recent years, there has been much research based on RTS games
like Starcraft. These are games where a player consolidates resources,
constructs buildings and recruits units in order to destroy other
player’s assets. An advantage of an approach using evolutionary
techniques is that it could produce a large set of AI players, offering
the human player a varied selection of opponents to play against.
Another advantage is that it requires less domain knowledge from the
developer as the AI will effectively learn the game while evolving.

We believe the combination of evolutionary algorithms and
behaviour trees will prove a good fit, providing a powerful tool for AI
developers to evolve behaviour for autonomous agents in video games.
Evolving AI for games in this manner might also be useful for finding
bugs and unintended exploits in the game environment. It can exhaust
edge-cases and combinations human players might not, seeking an
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advantage in the game. Designing behaviour for complex games can be
very time consuming as it often involves a lot of manual work and
therefore evolving AI could provide a useful alternative.

A few studies have addressed the idea of evolving BTs through
evolutionary algorithms and some of the results looks promising. We
want to explore these techniques further by applying them to a more
complex game. In this project we wish to explore using genetic
programming to evolve behaviour trees with the purpose of
automatically generating AI players for RTS games.

1.2 Goal and Research Questions

This section defines the goal and the research questions pursued in this
thesis.

Goal statement: Explore the automatic generation of
artificial intelligence opponents for a real-time strategy game
using genetic programming to evolve behaviour trees

We will explore the use of genetic programming to evolve behaviour trees
with the purpose of generating artificial intelligence players for a real-
time strategy game by answering the three research questions defined
below.

Research Question 1: How well does genetic programming
work in concert with behaviour trees?

Genetic programming revolves around automatically generating
computer programs, usually represented in syntax tree form.
Behaviour trees are a popular approach for designing AI players for
games that use a similar tree notation. We want to investigate whether
this coupling of techniques is particularly suited to working conjointly.

Research Question 2: Given the same components, how do
behaviour trees evolved using genetic programming compare
with ones designed by humans?

Behaviour trees are usually carefully hand-crafted by designers and
domain experts. We will investigate if behaviour trees evolved using
this technique can produce better results than humans, given the same
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amount of environment abstraction in a RTS game. Additionally, we
will examine how the evolved BTs are structured, and if any
interesting structural patterns or clever uses of the provided
nodes/components are evident.

Research Question 3: Can using genetic programming to
evolve behaviour trees simplify or improve the development of
AI players for games?

Specifically we will evaluate the following questions. How does using
genetic programming to evolve behaviour trees compare with more
traditional approaches? Can this technique be used by developers to
improve or assist in the creation of AI players? Does this method
produce better AI opponents than regular approaches?

1.3 Research Method

In order to investigate the outlined research questions, we developed a
system that evolves AI players in the form of behaviour trees, using
genetic programming, for the real-time strategy game Zero-K.
Experiments were then conducted by modifying the parameters
governing the evolutionary algorithm. Five such experiments were
performed and evaluated by comparing them against each other as well
as the default AI player that the game was shipped with and a
hand-written behaviour tree. The results were then analysed in respect
with the stated research questions. Finally, additional lines of enquiry
were outlined in the form of a future work section.

1.4 Contributions

This project contributes to two fields of science; game intelligence and
evolutionary computation. For the former, the contribution is in the
form of exploring methods for creating AI for games that are
potentially faster and results in more complex and dynamic
behaviours. For the latter, it is about finding new potential
applications for established methods.
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1.5 Thesis Structure

This thesis is divided into six chapters. Chapter 2 describes the
background theory. Chapter 3 outlines how relevant literature was
identified in the form of a structured literature review and describes
related systems and projects. Chapter 4 explains how the experiments
were conducted and which tools were used and developed as part of
that goal. Chapter 5 outlines the experiments, then presents and
discusses the results. Chapter 6 contains the the conclusions of this
project as well as suggestions for further work.
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Chapter 2

Background

In this chapter, we present a selection of information gathered as part
of the literary review which will provide a deeper understanding of the
subject matters. Section 2.1 contains a brief introduction to real-time
strategy games and the methods commonly employed when developing
AI for them. Behaviour trees, a mathematical model of plan execution
widely used in the games industry is described in section 2.2. In section
2.3 and 2.4, the biological inspiration of evolutionary algorithms and
genetic programming are introduced respectively. Section 3.1 outlines
how the literature review was conducted. Lastly, section 3.2, describes
similar projects that have had an influence on this project.

2.1 Game Intelligence

The purpose of this project is exploring a combination of techniques for
generating non-player characters(NPCs) for a real-time strategy game.
This section defines what a real-time strategy game is and what the
common challenges and solutions are.

2.1.1 RTS Games

Real-time strategy is a genre of computer games where the player
positions and manoeuvres units and structures under their control in
order to secure areas of the game environment, or map as it is
colloquially known, and destroy their opponents assets. Furthermore,
this is all done in real-time, contrary to turn-based games. Generally
speaking, RTS games consist of gathering resources and using them to
create soldiers to engage the enemy. Consequently, the player’s
attention is divided between the economical and the military aspects of
the game. Economy and base-building can be described as long-term
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planning strategy whereas the military is more of a tactical challenge
consisting of micro-management, the task of controlling combat units
in detail while in combat. Two of the more famous RTS games are
Starcraft and Age of Empires.

2.1.2 Challenges and Common Solutions

There are several challenges with developing AI for RTS games and we
will describe some of them in this section. For an in-depth description
see [Millington and Funge, 2009].

RTS games require the player to deal with imperfect information
and randomness while at the same time formulating a winning strategy.
Games of imperfect information are games where the players may be
unaware of the actions chosen by other players. This aspect makes it
significantly harder to predict an opponents actions as opposed to a
game of perfect information like chess where a player can figure out
all of the opponents possible moves in any state. A common way of
handling this is simply giving the AI more information and resources
than the player, which is sometimes referred to as cheating AI. Some
players feel competing against an AI opponent with an unfair advantage
detracts from the gaming experience.

An RTS AI often needs to use spatial reasoning to effectively use
terrain to their advantage. Most RTS games contain some form of
terrain, often in the simple form of varying height which may affect the
movement and performance of units. There are also larger terrain
obstacles like mountains, seas and forests which may have a great
effect on strategy and tactics, for example a narrow valley between two
mountains might be a perfect location for fortifications. If the terrain
is represented using a height map, it is relatively simple to analyse it
depending on the complexity of the game. A common way is to look at
the neighbouring values in a height map and based on the variance of
values determining the ruggedness of the terrain. For more complex
games, one might need to analyse the effect that traversing heavy
terrain has on equipment and so on.

A good game AI needs to adapt to its opponents. A human player
can quickly form an understanding of the strategy employed by a bot,
but it is a considerable task to design an AI that can intelligently
adapt to opponents or even give the appearance of doing so. There are
many techniques for performing decision making in games; decision
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trees, finite state machines, behaviour trees, fuzzy logic, rule-based
systems and scripting to name a few. If complex enough, each of these
techniques can be used to give the appearance of intelligence. It does
however take a considerable amount of work to get to that point,
especially with a technique like scripting, where a game designer
manually encodes the behaviour or parts of behaviour of an AI entity.
In order to reduce the workload a developer can use learning to
automatically determine behaviour for aspects of a game. Common
techniques are decision tree learning, action prediction, reinforcement
learning and evolutionary algorithms.

Lastly, creating game AI is not just about making it as strong as
possible, it also needs to be at the right challenge level to entertain the
human players. The mapping between challenge and fun varies greatly
between people. The most common way of solving this is letting the
player choose a difficulty from a list, but there have also been attempts
at adjusting this automatically based on the player’s behaviour, for
example the game Rimworld by Ludeon Studios which uses an AI
storyteller [Studios, 2016].

Developing artificial intelligence for games is by no means a
straightforward task. There are many techniques to choose from and
each has advantages and disadvantages. The most important job of
game AI is to increase the entertainment value of the game for the
player. Both by making the game more entertaining and the challenges
more rewarding, but also by increasing the replayability of the game.

2.2 Behaviour Trees

The field of Game AI has a constant need for new solutions to keep up
with the demand for the ever increasing realism in modern games. The
most popular approaches for writing AI is time consuming and lacking
in modularity, especially for the development of Non-Player Characters.

Finite State Machines with their simple layout are extensively used
within the game industry. They are very useful for simple action
sequences but quickly become illegible as the task grows more complex
due to state explosion. State explosion is a problem which occurs when
the traditional state machine formalism inflicts repetition causing the
FSMs to grow much faster than the complexity of the system it
describes. This complexity makes it difficult for developers to modify
and maintain the behaviour of the autonomous agents. For larger
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systems Hierarchical FSMs (HFSM) provides reusable transitions
between states and a higher level of scalable logic. Their main
shortcoming are that they do not provide modularity nor reusability of
states, thus demanding a rewrite for different behaviours.

The concept of the behaviour tree was originally suggested by R. G.
Dromey in [Dromey, 2003] as a method to formally define system design
requirements, the framework was later adapted by the computer game
industry to control NPCs [Isla, 2005]. They offered a more modular
and scalable approach than the methods used at the time. BTs differ
by not having transitions to external states; they are simply collections
of actions that execute and terminate. In a search through the tree
structure the flow of the decision making is controlled. BTs are depth-
first, ordered Directed Acyclic Graphs (DAGs), G(V,E) with |V | nodes
and |E| edges. This means that each edge is directed, leading from
one node to another in such a way that starting from the root node
there are no execution sequences that lead back to the root. We call the
outgoing node of a connected pair the parent and the incoming node the
child. Additionally, child-less nodes are referred to as leaves while other
non-leaves are described as control-flow nodes. The only deviant is the
unique parent-less node root often labelled Ø.

2.2.1 Structure

The trees are often structured by having a hierarchical level of goals
created by recursively simplifying the goals into subtasks similar to
that seen in hierarchical task networks. They can be deep, with nodes
calling subtrees, allowing the developer to create whole libraries of
behaviours. These can be chained to solve the AI entity’s goals
through very convincing AI behaviour in a structured and fairly
human-readable manner. This gives the developer the opportunity to
work in an iterative fashion. Starting with low level behaviour, then
providing alternative methods of achieving small goals, see figure 2.2.
These goals are ordered according to their desirability and cost, giving
the AI entity fallback tactics should it fail. Repeating this process
recursively and solving higher level goals for the entity with an ever
growing behaviour library, both the development process and results,
many will argue, are far superior to other alternatives. By introducing
some randomness to the flow in the tree, an AI entity might be
perceived as more human and therefore more convincing. Because of
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their traits, BTs are a popular approach in the gaming industry having
being used in many high profile video games such as Spore [Hecker,
2009], Bioshock [Champandard et al., 2010] and multiple entries in the
Halo series [Isla, 2005, 2008].

2.2.2 Flow

The flow of the tree is determined by three states common to all nodes
within the structure, which are; success, failure and running. They are
used to give the parent abstracted information of the state of their
children; what the result of its termination was, or that it has not been
determined yet. Consequently individual nodes have very strict
contracts of communication, and any tree can be assured that the
given set of statuses propagate through its branches. Most behaviour
tree implementations will have three different node groups. Composite,
decorator and leaf-nodes.

Composite

The composite nodes are the ones that to the largest degree determine
the structure and in what way a BT is executed. They have two or
more children and will execute them in a particular order. When the
processing of the composite node is finished it will pass on either succeed
or failure to its parent. While waiting for its children the node will return
running to the parent. This applies to all nodes in the tree. The most
common composite nodes are selector, sequence and parallel.

Sequence might be the simplest commonly used composite node. It
will, as the name suggests, process each child in sequential order. If a
child fails, the processing stops and the sequence node fails. Only if all
children succeed will the sequence return success to its parent, making it
analogous to the AND gate. This provides a range of useful applications.
The most obvious of them that it can consist of subtasks that must all
complete for the main task to succeed. Look at the example in figure 2.1
where the task “enter house” only succeeds if all subtasks do. Sequences
may also function as an if-statement when it has conditions followed by
actions. The actions will only process if the conditions are met.
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Figure 2.1: Example: enter house problem solution in the form of a behaviour tree.

Selectors are often referred to as the opposite of the sequence node.
Where the sequence needs all its children to succeed, selectors
terminate as soon as one child succeeds. If all children fail, it too will
fail. Again using the analogy of logic gates, selectors can be likened to
OR gates. Because of these properties selectors are well suited to
create fallbacks for unsuccessful tasks. Supplementing the example in
figure 2.1, figure 2.2 shows a deeper behaviour tree providing fallback
behaviour using selectors. The open door action is replaced with a
subtree with alternative routes if simply opening the door fails. This
subtree provides multiple ways to open the door sorted based on
desirability. If the door is reinforced and even breaking it fails, the
enter house behaviour may have higher level fallbacks, like enter
window. Layering tasks and goals with backup routes like this is the
core of designing a successful BT. Even by just utilising sequences and
selectors, powerful behaviour can be designed. It’s important to note
that though selectors usually process children from left to right, some
implementations might do it in a random order so as not to make the
behaviour too predictable. This is the case for the other composite
nodes as well. It is not uncommon to both include a standard and a
random implementation.
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Figure 2.2: Example: enter house BT providing fallbacks options.

Parallel nodes work in a fundamentally different way from the other
composite nodes. They handle concurrent behaviour, starting or
resuming all its children every time. Some implementations will only
simulate concurrency and not actually use multi-threading, but as long
as the desired behaviour is achieved the semantics are not that
important. Parallel nodes will behave differently based on their policy.
The policy of the node tells it when it should terminate and what state
to return to the parent. Usually the policies are based on sequence and
selector termination, where the sequence-policy make it fail as soon as
a child fails while the selector-policy succeeds when a child succeeds.
This enables more reactive behaviour where tasks can be aborted in
favour of reacting to changes in the environment.

Decorator

The second category of nodes are decorators which differ from other
nodes by only allowing a single child. Decorators do not execute any
behaviour directly but still greatly affect the behaviour of the entity.
Their function is to either repeatedly run the child until the desired
propagating result is received, terminate it, or most commonly,
transform the received result from the child before propagating it to its
parent. A good example of the latter, is the Inverter which as the
name suggests inverts the result. If the child succeeds the inverter will
return failure to its parent, and vice versa.
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Leaf

While the other categories are more general, leaf nodes are mainly
problem specific and do not have children. There are two types of leaf
nodes, actions and conditions. Actions will have the entity execute
some behaviour and return whether it was successful or not (e.g. Walk
to door in figure 2.2). Conditions run checks on the environment or
entity and return the result (e.g. Have key? in figure 2.2). These
nodes will to a large extent define the perceived environment and the
scope in which the entity can operate. An expressive set of leaf nodes
supplemented by composite and decorator nodes, allows for layered
and complicated behaviours.

2.3 Biological Inspiration

In biology and natural evolution, an individuals ability to reproduce is
essential to the success and even survival of its species. This ability is
determined by an individuals characteristics which are encoded as
genes in a genome. Changes in the genome can occur due to mutation
or sexual recombination of the parent’s genetic code. These changes
can be both beneficial and deleterious, for example by granting the
individual an improved resistance to decease. An individuals genome is
transmitted to its offspring and tends to propagate into new
generations. The offspring’s characteristics are partially inherited from
their parents and partially generated during the process of
reproduction in the form of mutation. The success of an individual can
be described as its ability to survive and reproduce in a specific
environment, also known as natural selection [Darwin and Bynum,
2009]. Natural selection is not synonymous with survival of the fittest
but instead refers to the individual that is best adapted, rather than in
the best condition, with respect to a specific environment.

2.3.1 Evolutionary Algorithms

In 1975 John Holland outlined the genetic algorithm which became the
foundation of the field of Evolutionary Computation (EC), defined by
the type of algorithms it is concerned with, namely Evolutionary
Algorithms(EA) [Holland, 1975]. There are many variants of EAs
which are based on the same foundation. Evolutionary pressure is
applied to a population of individuals, which causes natural selection
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to occur, resulting in a more fit population. Practically, this is
accomplished by starting from a high-level statement of what needs to
be done in the form of a quality function, then randomly generating a
set of candidate solutions to that problem. The quality function can
then be applied to the candidate solutions as a fitness measure. The
better solutions are chosen using a selection criteria to form the basis
of the next generation, which is created by applying one or more of the
genetic operators recombination, mutation, reproduction.
Recombination is the process of taking two individuals and creating
one or more new individuals from them that contains parts from both.
Mutation is a genetic operator that is applied to one individual and
gives rise to a single new one. Reproduction in this case, refers to
making a direct copy of an individual and adding it unchanged to the
next population. These operators are applied until a full new,
hopefully fitter, population has been created. This process continues
until either an acceptable solution is found or the process is stopped
based on a previously set criterion.

2.4 Genetic Programming

In 1992, John Koza wrote a book in which he outlined an extension to
Hollands genetic algorithm in which the population consists of
computer programs rather than bit strings [Koza, 1992]. This
extension is known as genetic programming and can be defined as an
EC technique that automatically solves problems without requiring the
user to know the form or structure of the solution in advance [Poli
et al., 2008]. Specifically, problems which require computer programs
as solutions. This section aims to give an introduction to genetic
programming as well as illustrate how it differs from other EAs.

2.4.1 Representation

In GP, individuals are generally represented as syntax trees, which is a
way of encoding computer programs in tree form, see figure 2.3. In
syntax trees variables and constants are leaf nodes or terminals as they
are also known, while the internal nodes are functions, usually
arithmetical in nature. The set of allowed functions and terminals in a
GP system is referred to as the primitive set. It can be implemented as
in the provided example where a single number is output from the root
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node, alternatively a leaf could be an action such as steering left or
accelerating in a racing simulator. Two common terms in genetics are
genotype and phenotype. Genotype is the set of properties of an
individual which can be mutated and altered. Phenotype refers to a
candidate solution(individual).

Figure 2.3: Example of a syntax tree generated by GP

2.4.2 Population

There are two main ways of implementing populations in GP;
generational and steady-state. Generational GP produces a new
population every generation whereas steady-state replaces individuals
from a constant, static population. Both methods and most other EAs
usually initialise their populations the same way, by generating it
randomly. In GP this is generally done by first setting a minimum and
maximum size of the initial trees, size being defined as the tree depth,
then using a combination of the grow method and the full method
known as ramped half-and-half [Koza, 1992]. The full method generates
trees of the maximum depth where all branches end at the same depth.
The grow method allows branches that end with a terminal before it
reaches the maximum depth. Ramped half-and-half is typically a
50/50 mix of grow and full and is used in order to get a population
containing as much variation as possible.

2.4.3 Selection

Selection is the way in which individuals are probabilistically chosen
based on their fitness to contribute to the next generation. In GP, the
three most common selection methods are tournament selection, fitness
proportionate selection and rank selection [Mitchell., 1997].

In tournament selection a number of individuals k, also known as
tournament size, are chosen from the population at random and
compared against each other in a tournament. The best individual in

15



the tournament is picked with probability p, the second best with
probability p ∗ (1 − p), third with p ∗ ((1 − p)2) and so on. As two
parents are needed for recombination, two tournaments are run for
each recombination event. The greater the tournament size the smaller
chance an individual with low fitness has of being chosen.

Fitness Proportionate Selection (FPS) is a method where the
probability of an individual i, with a fitness fi, of being chosen is
pi =

fi∑N
j=1 fj

, where N is the number of individuals in the population.
In Rank Selection, individuals are sorted in a list according to their

fitness. An individual’s probability of being picked is proportional to its
rank in the list, rather than its fitness.

2.4.4 Elitism

Elitism is a technique used to ensure the best individual or individuals
are not removed from the population. It works by copying over the best
individual from the current generation to the next before selection is
applied. This has the effect of always keeping the best individual found
so far in the population. Typically this is used for the one or two best
individuals depending on total population size.

2.4.5 Recombination

One of the large differences between GP and other classes of EAs is the
way in which recombination is performed. A common representation of
non-GP EAs are binary strings, where recombination is often performed
using the one point crossover technique. One point crossover takes two
individuals (binary strings) of equal size and chooses a crossover point at
random. Then all binary characters on the left side of the crossover point
is taken from one parent and the ones on the right are taken from the
other parent, see figure 2.4. In GP however, the most common method
of recombination is known as subtree crossover. Subtree crossover works
by choosing a crossover point (node) from both parents and replacing
the subtree rooted at that node in one parent with the subtree from the
other parent, see figure 2.5. The tree we are left with is the offspring
resulting from this recombination. It is also possible to configure it in
such a way that each recombination yields two children by having the
parents switch subtrees.
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Figure 2.4: Example of 1 point crossover as used with genetic algorithms in binary
representation.

Figure 2.5: Example of subtree crossover, with the parents on the left side and the
offspring on the right.

2.4.6 Mutation

In GP there are two main forms of mutation, subtree mutation and
point mutation. Subtree mutation works by randomly choosing a subtree
and performing crossover with a newly generated random tree. Point
mutation works by selecting a single node and replacing it with a similar
compatible node. e.g. replacing a + with a - or a 3 with a 11.
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2.4.7 Evaluation

In GP, evaluation can be performed in many ways depending on the
problem domain. When solving symbolic regression problems, where
the goal is to discover the best model for a given data-set, evaluation
is performed by providing input variables in the form of leaf nodes in
a syntax tree, and comparing the output from the root node with the
known answer. The mean error resulting from this is then used as the
fitness, with a low number indicating a fitter individual. In the case of
more complex problems requiring some form of simulations, evaluation
is generally performed by running a specific scenario in a simulation and
scoring the individual based on how well it performs.

2.4.8 Strongly Typed Genetic Programming

In some cases the complexity of the primitive set, such as a mixture of
data types, makes it difficult to achieve closure, which can be defined as

the assumption that any non-terminal should be able to
handle as an argument any data type and value returned
from a terminal or non-terminal[Montana, 1995].

Additionally in some cases it is desirable to enforce a particular
structure that is believed or known to be important [Poli et al., 2008].
A solution to both of these problems is Strongly Typed Genetic
Programming (STGP). STGP incorporates a type system into GP such
that every terminal has a type and every function has types for their
arguments as well as a type for the return value. This means that the
process that generates the initial trees, as well as the process for
crossover and mutation, must be implemented in such a way that it
does not violate the defined type constraints.

2.4.9 Competitive Coevolution

Coevolution is a population-based technique which revolves around
simultaneously evolving populations of solutions with a coupled fitness.
There are two categories of this technique; cooperative and competitive
coevolution. In cooperative two or more populations are evolved on
separate parts of a greater problem but are cooperatively evaluated to
determine fitness. In the case of competitive coevolution you pit
individuals against each other and fitness is based on how fit an
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individual is compared to other individuals rather than how well it
satisfies a quality function. This method is particularly suited to
evolving AI for games as the great range of potential opponents makes
it very difficult to define a fitness function that adequately covers all of
them [Rosin and Belew, 1995]. The absence of an advanced fitness
function also simplifies the setup of GP considerably as less knowledge
of the problem domain is required. A common method for determining
fitness in competitive coevolution is tournament fitness, defined as a
single elimination (see figure 2.6), binary tournament which determines
a relative fitness ranking [Angeline and Pollack, 1994]. All individuals
are randomly paired off and run against each other, the winners then
progress to the next round where the same process is repeated. Using
this metric an individual’s fitness is the level in the tournament
hierarchy they achieve.

Figure 2.6: Example of a single elimination tournament as used in tournament fitness
for competitive coevolution

2.4.10 Bloat

Bloat is a common problem in GP that [Poli et al., 2008] is defined as

program growth without (significant) return in terms of fitness

While the definition of bloat is agreed upon the explanation as to why it
occurs is not. There are three main explanations for this phenomenon.
Firstly there is the replication accuracy theory [McPhee and Miller, 1995]
which states that the success of an individual is determined by its ability
to replicate its parents functionality. The consequence of this is ever
more accurate replications of individuals in the form of bloated trees.

Another theory is the removal bias theory which states that over time
the subtrees inserted during crossover will end up being larger than the
parts they replace, thus leading to growth in the average program size
[Soule and Foster, 1998].

Finally there is the nature of program search spaces theory [Langdon
and Poli, 1997] which asserts that as there is a greater number of long
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programs, there will also be a greater number of long programs of a
given fitness than short programs of the same fitness. Because of this
GP will end up sampling more and more long programs for the simple
reason that there are more of them.

There are numerous proposed techniques for managing bloat, here is
a very short overview of three of them. The most obvious technique is
setting a depth limit, specifically not accepting new programs above a
specified size and choosing new parents when this occurs. This however
has the effect over time of creating a population with an average size that
is close to the depth limit, resulting in a less varied population [Koza,
1992]. Another method is size fair crossover which add constraints
during crossover so that the subtree chosen from the second parent is not
significantly larger than the first, consequently limiting the average size
growth of the population [Crawford-Marks and Spector, 2002]. Lastly,
a technique defined by [Poli, 2003] called the tarpeian method, which
modifies the selection probability of programs by randomly setting the
fitness of larger-than-average programs to 0.

2.5 Summary

In this chapter we have presented the background on which this project
is based. In section 2.1 we introduced some of the challenges of the
field. In section 2.2, the workings of behaviour trees and the motivation
for using them was presented. In sections 2.3 and 2.4 we explained the
inspiration and basics of genetic programming.
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Chapter 3

Related Work

3.1 Literature Review

Getting familiar with existing research is very important. Finding
similar research projects and exploring their shortcomings, restrictions
and future work often gives a solid base for new projects and a good
connection to the field.

3.1.1 Identification of Research

This section outlines the strategy for finding primary studies that was
employed in this project. During the first stages of the project we
conducted an examination of a set of resources, listed below, in order
to find relevant studies which would define the scope of the project and
form its foundation. The bibliographies of relevant literature were
examined in order to identify further potential sources. With the
purpose of forming an in depth understanding of the current state of
the relevant fields many combinations of the search terms 3.1 were
queried against the resources listed below.

Literature Resources

This is a list of resources which were searched in the process of identifying
relevant literature.

• IEEE Xplore

• Springer Link

• ResearchGate

• Google Scholar
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• ACM Digital Library

3.1.2 Selection and Grouping Strategy

After collecting a sufficient literary catalogue, pertinent studies and
other documentation were selected and grouped based on the
combination of terms applicable to the research scope. See table 3.1.

Category Search terms
EA Genetic Programming, Grammatical Evolution, Bio-inspired methods,

Competitive Coevolution
Game AI Behaviour Tree

Game RTS, Zero-K

Table 3.1: Terms in correlation to topics

The search queries resulted in a range of resources. Only a small set
of studies turned out to be directly related to our research goals, whereas
the bulk was only relevant to specific parts of the project but made good
background reading. As our scope covers a range of fields, we followed
a selection process to reduce the hundreds of studies into a manageable
set. The titles were evaluated, looking for correlations between the study
and our research questions, then grouped according the criteria specified
in table 3.2. Secondly, their abstracts were evaluated in order to decide
which should be examined further, resulting in a manageable pool of
studies.

Group Minimum requirement
1st Evolutionary algorithms in combination with behaviour trees
2nd Combination of two of the search term categories
3rd Exploring a relevant concept within one of the terms
4th Not directly relevant but containing applicable concepts or relateable

information

Table 3.2: Terms and group placement

3.2 Related Systems and Projects

This section contains descriptions of related work identified when
performing the literature review. It is divided into four subsections.
Firstly, section 3.2.1 which covers research projects where behaviour
trees have been used. Following that is section 3.2.2, describing
projects where GP or closely related techniques have been applied to
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games. Thirdly, the most relevant studies, namely those that relate to
evolving behaviour trees, are described, section 3.2.3. Lastly there is a
section describing the key takeways from these related project, see
3.2.4.

3.2.1 Behaviour Trees in Research

The current form of behaviour trees was developed within the computer
game industry [Isla, 2005; Champandard, 2007] as a more modular and
flexible alternative to FSMs. Their recursive structure, usability and
readability made them popular in the game industry, which in turn lead
to a increasing amount of attention in academia.

Behaviour trees have been postulated as a possible solution to the
control of Unmanned Aerial Vehicles (UAV) [Ogren, 2012]. According
to Ögren, Hybrid Dynamical Systems (HDS) are a common way of
writing controllers for robots which could benefit from being encoded
as BTs. HDS are systems that contain both continuous and discrete
dynamic behaviour. Large HDS often become quite complex leading to
a lack of modularity and scalability. Encoding a HDS as a behaviour
tree replaces the explicitly listed state transition functions of a classic
HDS with transitions that are implicitly given by the tree structure in
BTs. Ogren also lists readability as a great advantage of a behaviour
tree approach. On a side note, BTs have received a increased interest
from the field of robotics including multiple implementation for soccer
bots created for the RoboCup [Abiyev et al., 2013], displaying their
applicability to other fields of research.

Tomai and Flores investigated how designer-created BTs could be
automatically modified in order to give the user a less repetitive
experience in a Massively Multiplayer Online Role-Playing Game
(MMORPG) [Tomai and Flores, 2014]. In order to gather data on how
players behave in a MMORPG, they created their own simple game
and observed the behaviour. Various unpredictable human behaviours
were found, including socialising, exploring and idling. Using designed
deterministic BTs that follow a simple combat/collect quest structure
as base, the discovered behaviour incorporated traits from human
players with decorators they call modifiers. In many cases this includes
not doing the optimal action, but the BT tree is automatically adapted
to explain the player’s choices and generally performed well.
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First described as powerful tools for designing NPC behaviour, later
studies have adapted the use of behaviour trees far beyond the gaming
industry by proposing having BTs control UAVs [Ogren, 2012], while
also having them contribute towards formal verifications of mission
plans [Klöckner, 2013]. Following an increase in interest, studies
seeking to contribute to this technology are on the rise. Suggestions for
new improvements include functionality to enable parameter passing
for increased flexibility [Shoulson et al., 2011]. BTs are mostly
designer-created and some studies try to achieve less predictable
behaviour. Some suggests automated modifications by learning from
human players [Tomai and Flores, 2014] and a few others, like
ourselves, suggest using BTs in combination with EAs. Other studies
take on more formal aspects of the growing field of behaviour trees by
suggesting a unified framework [Marzinotto et al., 2014] or compute
performance analysis [Colledanchise et al., 2014] to quantify other
advantages. Behaviour trees are a prevalent technique in the gaming
industry, and show little indication of receding.

3.2.2 Genetic Programming for Games

In this subsection we describe and discuss related research projects that
have used genetic programming or other EAs in conjunction with games.

Miles used used coevolution to evolve influence maps in order to
create tree based strategy game players [Miles et al., 2007]. Influence
maps (IM) is a technique used to facilitate decision-making in
computer games. It works by mapping the game world to a grid where
each square contains a value that describes some aspect of the game.
Game objects like units exert influence on the IM which is propagated
to nearby areas. The maps can be combined in order to condense more
information, for example figure 3.1, where there are two units, friendly
F and enemy E that each exert influence that cancels out each other.
In a game this could be used to find out where the battle lines are or
where there is the most tension. Miles used several IMs to condense
large amounts of information to a form more easily interpreted by the
AI. For example an IM that produces high values near vulnerable
enemies combined with one that produces high negative values near
powerful enemies, resulting in an IM where a high value indicates a
vulnerable enemy. In order to evolve this system IMs where
represented as leaf nodes, with arithmetical operations as the internal
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nodes, in a syntax tree. Miles used two-population co-evolution with
one population containing attacking strategies and the other defencive
strategies. The results were quite good, the evolved bot did well both
versus other bots as well as human players. Miles described future
work as increasing the evolutionary scope of the task as well as
performing more experimentation with the evolution parameters.

Figure 3.1: Influence map illustration. F stands for friendly unit and E for enemy
unit.

Garcia developed a GP system where the individuals can be used to
generate C++ classes which control aspects of the RTS game
StarCraft [Garcia-Sanchez et al., 2015]. He states that there are two
main forms of AI in RTS games, namely strategic and tactical. The
former takes decisions affecting the whole set of units in a game and
defines the high-level direction of a match whereas the latter controls a
specific unit or subset of units. Garcia chose to focus on the strategic
part of the game by evolving an AI that controls the construction
order of buildings in the game and the unit composition of military
squads. Two types of fitness functions were employed in this study;
victory-based and report-based. The former runs the evolving bot
against a set of bots developed by other researchers and scores it on
victories. The latter scores individuals on how well they perform in
terms of military, economy, relative destruction, game length and
relative economy in a single match. The latter was included to provide
a smoother slope towards good solutions. The resulting AI bot was
able to defeat hand-written bots 61% of the time. Garcia proposes
more experimentation with fitness functions and competitive
coevolution as future work.
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Agapitos applied two learning methods to the problem of evolving a
controller for a simulated racing game [Agapitos et al., 2007]. The first
method employed was GP, both with and without automatically
defined functions. The GP approach was compared with an evolved
neural network approach which used multi-layer perceptrons and
Elman-style recurrent neural networks. The sensor variables available
to the algorithms were all of the type that could realistically have been
retrieved by sensors placed on a car e.g. speed, angle and distance to
the next waypoint. The results indicated that GP found good solutions
faster whereas neural networks found better ones though after a
significantly longer time.

Alhejali investigated using training camps with GP in order to evolve
game playing agents [Alhejali and Lucas, 2011]. Training camp refers
to a technique where a problem is divided into a set of smaller problems
that can be solved easily on their own. The solutions to the sub-problems
are then combined into a larger solution which covers the whole problem.
Practically, this was done by running GP on each sub-problem and then
seeding the population of a larger GP run with the best individuals from
the sub-problems and letting evolution combine them as it sees fit. The
authors found that the training camp method outperformed a pure GP
approach. Additionally they found that it made the results of GP less
volatile and thus more predictable.

The articles described in this section provide background
information on how genetic programming can be used to generate AI
for video games. [Miles et al., 2007] described a way of abstracting
complex game situations into manageable numbers as well as
motivation for using co-evolution. [Garcia-Sanchez et al., 2015]
described several ways of affecting the high-level strategic behaviour of
an RTS agent. [Alhejali and Lucas, 2011] illustrated a way of splitting
up a complex problem in order to improve the results achieved with
GP. All in all, these papers show that GP has been used in conjunction
with games successfully on several occasions.

3.2.3 Evolving Behaviour Trees

In this subsection we describe and discuss the papers that are most
relevant to this project as they use a form of genetic programming to
evolve behaviour trees.
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In 2013 B.J. Oakes wrote his master dissertation on the practical
and theoretical issues of evolving behaviour trees for a turn-based
game [Oakes, 2013]. Oakes’ goal was to research how evolutionary
computing could be applied to behaviour trees in order to evolve AI
strategies and how this process could be improved. To this end he
developed a system using GP and BT for a simplified version of the
open-source game Battle for Wesnoth. The game revolves around
moving units around on a tile-based board to capture villages that
produce gold which the player needs in order to recruit more units.
Oakes implemented BT in such a way that the tree is run once to
control a whole set of units rather than a single unit. Furthermore,
Oakes uses a blackboard for most interactions between nodes. For
example the getUnits node which retrieves and places a list of available
units on the blackboard. Individuals were evaluated by playing them
against the game’s default AI. Oakes conducted three experiments;
evolving from a BT containing a single sequence node, evolving from a
randomly generated population and evolving from a population seeded
with three different hand-written BTs. The results were evaluated
against each other as well as the default AI. Oakes consequently found
that the evolved BTs outperformed the hand-written ones,
additionally, the BTs that were evolved in a more varied environment
outperformed the ones that were evolved in a static environment.

Perez et al. and Togelius wrote papers as part of their entries to the
Mario AI competition in 2012[Julian Togelius, 2012; Perez et al., 2011].
They evolved behaviour trees using grammatical evolution (GA), a type
of GP where you evolve grammar rather than code, in order to control
the player in a version of the game Super Mario. The results were mixed;
the developed agent showed good reactive capabilities, such as avoiding
obstacles at close range and neutralising enemies, however, it did not
do very well for path planning. They attributed part of their success to
the use of grammatical evolution in combination with behaviour trees
as well as the use of two point sub-tree crossover in GP.

In 2007 Robin Baumgarten developed an AI framework for the
commercial strategy game DEFCON [Baumgarten and Colton, 2007].
DEFCON is a nuclear war simulation strategy game where players
control a continent each and attempt to lose the least in a nuclear
conflict. The player controls naval fleets, nuclear silos, satellite arrays
and airports with the purpose of outwitting opponents. Baumgarten
used the developed framework to create a bot using several traditional
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AI techniques such as simulated annealing, decision tree learning and
case-based reasoning, with some success. Case-based learning was used
to find winning strategies from records of earlier games, these were
then used together with descision tree learning in order to create an AI
bot. The AI-bot used simulated annealing to prioritise targets in the
game. The resulting AI managed to win against DEFCON’s default AI
77% of the time.

In 2010, Baumgarten along with Chong-U Lim and Simon Colton
attempted to create AI for the same game, this time using a combination
of behaviour trees and genetic programming [Lim et al., 2010]. The
evolutionary scope of the game was restricted in order to simplify the
learning task. They used GP with a population of 100 individuals and
100 generations. They used FPS and a mutation rate of 5%. Four BTs
were evolved separately and evaluated on different aspects of the game.
The four resulting BTs were then stitched together manually to form a
larger tree, where the evolved BTs were placed as sub-trees, resulting
in a single BT that can play the whole game. The evolved BT beat
DEFCONs default AI in 55% of the battles.

Evolving BTs using EAs is an increasingly popular topic in the
academia. The research has been dominated by simulations in games,
like the ones described above. Researchers at MIT however recently
conducted the first application of the behaviour tree framework to a
real robotic platform using the evolutionary robotics methodology
[Scheper et al., 2015]. Utilising the 20-gram DelFly Micro Air Vehicle
as base, with on-board optical cameras using a StereoVision algorithm
called LonqSeq which extracts depth-information from the
environment. Individuals were given fitness based on their performance
at calculating the flight path in a simulation platform called
SmartUAV. The fitness function had its main performance metrics in
tree size and success rate for the task of navigating a square room
searching for a window to fly through.

The behaviour tree implementation consisted of generic sequence
and selector nodes with two conditions and one action; greaterThan,
lessThan and setRudder, respectively. The implementation revolves
around sharing information across the tree with the common
blackboard object. The blackboard contains a total of four variables,
the first four condition variables and the last is used to set the BT
action output. Human designed behaviour tree was used as a baseline
to judge the performance of the solution. The best individual was
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optimised by pruning the BT and removing redundant nodes, then run
with the same validation set as used with the human designed
behaviour resulting in a success rate of 88% for the problem beating it
by 6%. In evolutionary robotics, when moving from a simulated
environment to reality, the simulation will always wary from reality to
a degree resulting in artifacts known as the reality gap. When put to
practice the reality gap proved significant for multiple metrics and
considerable adjustments were needed. The test flights in the real
physical environment showed a success rate of 54% for the genetically
optimised tree, hence outscoring the user-designed who scored a 46%
success rate.

Since these studies have such a high degree of relevancy, they form
an important base for our research. Learning from their experiences
and taking the described future work into account is important. The
authors of both [Oakes, 2013] and [Lim et al., 2010] mention
competitive co-evolution as an interesting next step. The former
suggest using training camps to evolve various aspects of the game
separately could be beneficial. In several of the related projects the
authors refer to improving the fitness function as future work. [Lim
et al., 2010] also mentions the risk of over-fitting which exist in most
learning techniques, in his case, by focusing on too specific scenarios
when evolving.

3.2.4 Key Takeaways

There were several interesting related systems and projects, some
proved more relevant than others. In the case of behaviour trees, there
was not any single most relevant project but rather the general
impression of the state of the art of behaviour trees, which the study of
the described papers provided. The opposite is true for genetic
programming; we had a lot of knowledge of genetic programming from
before but it was the details of how it has been used in conjunction
with games that proved the most useful. The use of influence maps to
condense large quantities of information as described in [Miles et al.,
2007] has been a part of this project and will be described in the
chapter 4. We also took inspiration from the experimentation with
fitness functions in [Garcia-Sanchez et al., 2015] and the training camp
technique for splitting tasks to be learnt into smaller chunks as used
successfully in [Alhejali and Lucas, 2011]. The most inspiration
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however, was taken from the projects described in section 3.2.3 as
these projects effectively describe the current state of using evolution
to evolve behaviour trees for games. [Oakes, 2013] and [Lim et al.,
2010], as well as [Garcia-Sanchez et al., 2015], state competitive
coevolution as future work and as a consequence, an experiment
exploring it was included in this project.
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Chapter 4

Methodology

This chapter describes the way in which the research questions were
answered and which tools were used, and created to that end. The
chapter starts with a description of the system overview in Section 4.1.
Following that, Section 4.2 outlines the game-play of Zero-k, the game
for which we developed AI, as well as the special considerations
employed when working with it. Section 4.3 describes how the game
was connected programmatically to the behaviour trees and genetic
programming functionality as well as how we implemented a simple
traditional AI bot for Zero-k. Section 4.4 contains a description of how
behaviour trees were implemented for this project. Section 4.5 outlines
how genetic programming was performed using the ECJ library.
Following that, Section 4.6 describes how the various components of
the system work together. Finally, there is a brief summary of the
chapter.

4.1 System Overview

There are three main components in the system developed for this
project; EvolutionRunner, the behaviour tree library and a game
interface referred to as ZKGPBTAI(Zero-K Genetic Programming
Behaviour Tree Artificial Intelligence). EvolutionRunner uses the ECJ
framework [Luke et al., 2006] to run genetic programming. It generates
an initial population of BTs using the behaviour tree library and then
evaluates individuals by running a match of Zero-K using ZKGPBTAI.
The behaviour tree library is designed to be a reusable component
separate from the problem specific code. In the following sections each
component will be described in detail.

31



4.2 Zero-K

Zero-K is a RTS game developed on the open-source RTS game engine
known as Spring Engine. The gameplay consists of managing soldiers,
consolidating resources, constructing buildings, recruiting units and
outwitting your opponents. This game was chosen over others because
of its comprehensive AI framework as well as its community, who were
happy to answer questions about the source code.

4.2.1 Spring RTS Engine

Spring Engine is an open source 3D RTS game engine. The
development of the game engine was inspired by the game Total
Annihilation by Cavedog Entertainment, released in 1997. When
Cavedog Entertainment went bankrupt, a group of fans got together
and began development of a RTS engine that could replace the ageing
Total Annihilation engine. In April 2005 Spring was released under a
General Public License and has been in constant development since.

4.2.2 Gameplay

This section contains a description of the game mechanics that was
considered when evolving a bot to play Zero-K. See figure 4.1 for images
of the units described in this section.

There are two resources in Zero-K which the player must gather to
produce units and buildings; metal and energy. Metal is gathered using
metal extractors placed on metal spots, which are spread out on the
map. Energy can be made anywhere using a range of buildings, in this
project we consider only the solar panel. Metal is considered the more
important of the two as it can only be gathered from specific spots on
the map. Consequently, military expansion generally revolves around
capturing and consolidating metal spots. There are infinite amounts of
both resources; metal spots never run out of metal and the sun never
stops shining. Players can construct the storage building to increase
resource stockpiling capability, allowing the player to have a large
stockpile in case metal or energy production is interrupted. It is
important to have more energy than metal as the energy excess will be
used to overdrive the metal extractors resulting in greater metal
production. An additional way of acquiring metal is to reclaim it from
the wrecks of buildings, units as well as some environmental objects.
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Construction works a bit differently in Zero-K compared to most RTS
games. The common way of doing construction is that the player pays
all the necessary resources to construct a building upfront. In Zero-
K, the cost of the building is drained from the player’s resources while
the building is being built. This means that there is a constant inflow
and outflow of resources, in addition to the stored resources, both of
which must be considered when making decisions. A common beginners
mistake is to build too many buildings at once, effectively strangling
the economy by having too much outflow and not enough inflow. We
consider two types of construction units in this project; conjurer and
commander.

An important aspect of Zero-K as well as a recurring feature in
many games developed for the Spring Engine is the commander. The
commander is the single unit the player controls in the beginning of a
game. It is a strong all-round unit with a large health pool, offencive
and defencive capabilities, and the ability to construct buildings. It is
also possible to upgrade the commander during the game, but this
feature was not considered in this project.

The conjurer is a basic construction unit with the added benefit of
becoming cloaked when standing still. We do not consider the aspect of
cloaking in this project as it is outside the evolutionary scope. Conjurers
can be created using the the cloaky bot factory.

The factory is arguably the most important building in Zero-K. It is
in the factory that a player can recruit more construction units as well
as soldiers. There are 13 different factories in the game, however, for
this project we only consider the cloaky bot factory, which contains a
representative mix of unit types. As with construction, recruiting units
drains the resource cost from the player’s resource pool while building
the unit.

Zero-K is quite advanced compared to many RTS games when it
comes to physics simulations. The maps, the game environments you
play in, have full 3D terrain which can be actively terraformed by the
player. Where terraforming refers to dynamic modification of the game
world. We chose to ignore this aspect in order to simplify the task to
be learnt. All bullets fired by units have a chance of missing based on
the terrain it traverses. For example, it is fully possible for a unit to hit
other allied units while attempting to fire on an enemy. Additionally,
units with explosive firepower like artillery, deform the landscape with
their shots.
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As in most RTS games there is fog of war. Fog of War (FOW) is
a game concept that simulates the element of limited information in
real warfare. Areas of the map covered by FOW are hidden from the
player. In many cases, including this one, the player can see the lay of
the land but all enemy units and buildings are hidden. Each unit has
a line of sight (LOS), an area around them in which they remove the
FOW, revealing opponents in that area. In Zero-K there are two main
ways of managing this; the first is using units as scouts by sending them
to hidden areas of the map in order to reveal it. The second is building
radar towers. If a player has radar coverage over an area of the map
hidden by the fog of war, any enemy units in that area are revealed as
coloured dots on the map. The player can see that there are enemies
there but not what type. Additionally, radar towers have longer range
when placed on high terrain and the signal is blocked by obstacles or
heights in the area.

An important aspect of the game is defence. In addition to building
soldiers to protect your buildings and to attack enemy buildings, a
player can build defencive, stationary units, commonly referred to as
turrets. In this project we consider two such units; the Lotus turret
and Gauss turret. The Lotus turret is a cheap all-round laser turret.
The Gauss turret is an expensive self-healing turret. The reasoning
behind including these two is to offer the bot both a cheap and an
expensive option to choose from. Both of the turrets can fire at ground
and air forces, which was an additional reason for choosing those two
turrets. Whereas we do not use any airborne units, CAI, the bot which
we use to evaluate individuals might.

The last building we chose to include is the caretaker. The
caretaker is a static constructor, meaning that it is a building that
functions as a construction worker. The most common way of using it
is to place it next to a factory and ordering it to assist the factory with
recruitment, effectively doubling the production speed of units. It is
also used to repair damaged units. It is important to build this unit in
the correct part of the game, because if it is built too early it will
consume resources at an accelerated rate by helping the factory
construct units faster, potentially strangling the economy.

An important thing to note is that whereas the bot evolved in this
project is bound to the limitations described in this section, the AI it is
evaluated against, is not. CAI, the AI shipped with the game uses the
full range of factories and most of the other buildings and units. For a
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full list of the excluded aspects of the game see table 4.2.5

4.2.3 Choice of Map

All the conducted experiments are run on a single map, which is small
in size and symmetrical. The reason for this is that a larger map
significantly adds to the duration of each battle, greatly increasing the
overall run time. A symmetrical map was chosen over an asymmetrical
one so that the bot would not become specialised at playing on one
side of the map. Additionally, the map does not contain any advanced
terrain obstacles like water, mountain ridges or lava. The reasoning
behind omitting maps containing these things is that it would require
the bot to use specialised units in order to perform well, effectively
adding another layer of complexity to the learning task. Ideally the
bot should have been evaluated on several maps, thus ensuring that
the BT that functions best on the largest variety of landscapes would
prevail. Sadly, the length of the run prohibited this in the time-frame
of the study.

4.2.4 First Factory

In Zero-K, the first factory is free of cost, and constructing it is usually
the first command of the game. All other observed AIs, as well as most
human players, start the game with this action. Consequently, it was
decided that hard-coding the construction command of the factory into
the bot as the default first action was acceptable. If this is not included
the BT bots generally lose to CAI very quickly as they are sometimes
not able to recruit workers nor soldiers.

4.2.5 Opponent

The development of AI opponents in the game is community driven, and
bots are constantly being developed. The most common is CAI. It is a
non-cheating bot that is currently the default AI players shipped with
Zero-K. CAI is a tough opponent to beat, especially for newer players. It
quickly builds a strong economy while scouting and raiding the enemy.
Making use of most of the functions of the game it has a big advantage
over the AI players developed in this project. Table 4.2.5 shows a list
of aspects of the game not considered. CAI does not necessarily make
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use of all possible functions of the game either, but it does it to a much
greater extent.

Aspects of the game not considered
– Commander upgrades
– Only 13 of 100 mobile units are considered
– Only 1 of 13 factories are considered
– Terraforming
– Only 2 of 23 turrets are considered
– Air and naval warfare
– Power flow mechanic (pylon grids)
– Only 1 of 5 energy generating buildings are considered
– Various specialised buildings
– Nuclear warfare
– Cloaking and shielding
– Unit transportation
– CeaseFires (Alliances) and Restricted Zones
– Resource allocation priority for construction
– Evolution is only run on one map

Table 4.1: A list of game aspects that was not considered in this project.

Figure 4.1: Starting in the upper left corner: a. Metal Extractor, b. Solar Panel,
c. Storage, d. Conjurer, e. Cloaky Bot Factory, f. Caretaker, g. Radar, h. Lotus,
i. Gauss

4.3 GameInterface

This section will cover how and why the game interface was
implemented and how it interacts with the behaviour trees. First there
is a section describing some of the design choices made when
developing the interface. After that, a description of the structure of
the code and the four managers it is divided into.
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4.3.1 Design Choices

An important design choice we made was to develop a tradition AI bot
for Zero-k while developing the game interface. This was a part of our
intention to use training camps, as described in [Alhejali and Lucas,
2011], in order to simplify the evolution task. The way it would work
is that the evolved BT behaviour would gradually assume command of
more and more aspects of the game. In other words, a training camp
would be likened to an aspect of the game. For example the recruiting
of units. Evolution of a BT to control the recruitment of units would
have access to only nodes governing that specific domain while letting
the implemented traditional AI player control the rest. When all major
aspects of the game had been evolved as BTs, they could be stitched
together to form a large tree that would be able to cover all parts of
the game, forming a complete AI player. However, due to time and
computation constraints we were only able to evolve a BT for one
major aspect of the game, the control of economy using workers and
construction. The traditional AI is also used to evaluate the
performance of the evolved solutions in the results section and will
from now on be referred to as B1.

4.3.2 Structure

When developing the Spring Engine the developers did not want to
spend a large amount of time developing AI opponents for the engine.
Instead they left this task to the community and provided interfaces
in a range of programming languages to build upon. These relay all
events and information from the game and provides a channel to issue
game commands. In the Java interface the AI implementation connects
and gets access to this functionality by extending the abstract class
Abstract00AI. In the rest of the report "the game interface" refers to
the provided AI interface, including the implemented AI as a whole
system.

The basis of this implementation is the Main class. Its purpose is to
initialise and load all necessary resources before further assigning all
gameplay decisions to the respective managers. The game interface has
four managers that each control a specific aspect of the game;
Influence Manager, Economy Manager, Military Manager and
Recruitment Manager. See figure 4.2. Additionally, it contains an
implementation of every behaviour tree node, which retrieve
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information from the various managers and executes commands
through them, in order to fulfil their function.

Figure 4.2: Class inheritance

4.3.3 Game Flow

The Zero-k AI framework calls the update function once per frame in the
game with a callback object which contains all information about the
game state. The update function calls its corresponding update function
in each of the four managers. This enables each manager to control how
often to execute behaviours from the different trees while keeping the
code modular.

4.3.4 Economy Manager

The economy manager handles everything to do with measuring the
state of the economy, affecting changes to it and the construction of
buildings using workers. The current state of the economy is measured
in terms of effective income, see algorithm 4.1, and expenditure, see
algorithm 4.2. These values are updated every fifth frame and are used
in many calculations throughout the game interface.

In B1, the decision of what building to construct is done by iterating
through a prioritised list of buildings and running a function consisting
of pre-conditions for each building. For example, for the bot to decide
to build a storage building, the effective income has to be above 15 and
the current levels of energy and metal has to be within 100 units of the
maximum limit. Whenever a worker finishes a task it is given a new one
immediately using this method. The code handling construction and
workers is called every 60th frame in order to minimise computation.
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An exception is data about the state of the economy which requires
practically no computation and is updated every fifth frame.

In the BT bots, all construction and worker movement is driven by
the action and leaf nodes in the BT. Note that all BTs are called
through the Main class, not the economy manager. They are called
with a higher frequency (ftick) than the economy manager in general,
ticking the behaviour trees every 20th frame.

When a building type has been chosen for construction, the bot
determines where to place it. Building placement is governed by a set
of rules; buildings cannot be placed too close together as this can
result in units being barricaded in by a wall of buildings, neither can
they be placed on top of metal spots as this would limit the amount of
metal resource the player could gather, finally factories may not be
placed too close to the edge of the map as that may prohibit units
from leaving the factory. Additionally the Zero-k AI framework
ensures buildings are not placed on impossible locations like cliff edges.

effectiveIncome = min(metalIncome, energyIncome) (4.1)

effectiveExpenditure = min(metalExpenditure, energyExpenditure)
(4.2)

4.3.5 Recruitment Manager

The recruitment manager determines which units are created in factories
as well as which factory type will be constructed next. This manager
is smaller than the others, seeing as we did not get further than using
a single factory type and the units it can produce. An important part
of this manager is the code for deciding how many workers the team
should have at any one time. To determine if the team needs another
worker the equation 4.3 is run, which determines the maximum worker
count from the effective income. The left side of the equation represents
the cardinality of workers present at the time.∣∣workers∣∣ ≤ ⌊effectiveIncome

4.5

⌋
(4.3)
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4.3.6 Influence Manager

As part of the game interface, a set of simple influence maps were
implemented which control the behaviour of soldiers and some of the
leaf nodes used in the BTs. See related work for a definition of
influence map.

In this project five influence maps are used; friendly, opponent,
standard, tension and vulnerability. Friendly is the influence exerted
by friendly units and conversely opponent is the influence exerted by
non-friendly units. Standard influence is defined as
friendly − opponent. Tension is friendly + opponent. The
vulnerability map is calculated by subtracting the absolute value of a
position in the standard influence map from the tension one,
tension − Abs(standardInfluence). The standard influence map is
used to detect the borders between players, the area where their
influence overlaps. The tension influence map is used to steer soldiers
toward the areas of the map where there is most conflict, additionally
it is used to decide which direction to build defence buildings in. The
vulnerability map shows which parts of the map is most vulnerable for
either team. It produces high values in locations where there is high
tension but the sides are quite equal, and it produces low values where
there is high tension but one side is superior to the other. This can
used to both decide where to build more defences and where to attack.

A simple GUI was developed in order to make sure the influence
manager work properly, see figure 4.3. The figure shows a standard
influence map where green represents positive values and red negative
values. As may be apparent, some units spread more influence than
others, this is because a unit’s influence value is determined by a unit
power metric which describes a units overall strength. This metric is
defined in the Zero-k framework and is based on a number of factors like
health, cost, weapon damage and so on. Units like soldiers or defencive
turrets which have a weapon range exert full influence within that area.
The influence spread from a unit also dissipates at varying distances,
this is called falloff distance and is determined by the movement speed
of a unit.
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Figure 4.3: Graphical representation of the influence map implemented in
ZKGPBTAI.

4.3.7 Military Manager

The military manager controls the movement and actions of soldiers as
well as monitoring of enemy units. As described in 4.3.6, the
movement of soldiers is determined by an influence map. However, not
all soldiers follow the same goal. In order to cover more tactical
options, the soldiers are split into squads which pursue different goals.
Squad size is determined by taking the metal value of a squad, the sum
of the metal value of every soldier in the squad, and if that number is
higher than effectiveIncome × 60 then the squad is of appropriate
size. The number 60 was determined through experimentation. This
has the effect of increasing the size of squads when the economy is
doing well. Squads are rallied in a safe location, determined by
influence map, until they reach full size at which time they are given
orders to move to one of the areas of the map with the most tension. If
a squad becomes too small due to loss of soldiers, it will be disbanded
and the leftover soldiers transferred to a new squad.

The military manager constantly monitors enemy units. An
important function of this monitoring is the identification of unit
types. When an enemy unit is in radar range, but not LOS, it is not
known what type of unit it is, it could be a building or a worker rather
than a soldier. If one of these unknown units enter LOS it is identified
and stored so that if it moves into the FOW we will still know what
type it is. This also helps the influence manager calculate the threat
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that a unit poses.

Though the military manager makes all the military decisions for this
project, the modular approach taken in its implementation ensures easy
integration for behaviour trees to control squads and make other military
decision in the future.

4.4 Behaviour Tree

Most of the time spent on this project revolved around implementation.
In order to lower the implementation-heavy threshold for future studies,
a library for behaviour trees was implemented with the goal of making
it as general and reusable as possible, thus providing a solid framework
on which to base further research. There are multiple open-source BT
libraries for game development and decision making, written in a variety
of programming languages. However, none of the ones we are aware of
are tailored to genetic programming by mapping the tree structures
like the one developed for this project. Not all of the implemented
features in the library were used in this project, and may therefore
require additional testing, but the library is open-source and can easily
be reused as well as supplemented with additional features, in order to
support further projects with more functionality. This section covers
the functionality of the library and a description of how it was used in
this project.

4.4.1 ECJ Integration

Tailoring the behaviour tree library to support ECJ was fairly simple.
Task, see figure 4.5, was made to extend the GPNode-class provided
by ECJ, constraints were defined and provided a few supplementary
methods were added. The internal control-flow nodes were implemented
as functions while the leaf nodes were mapped to terminals in the GP
syntax-tree.

As most control-flow nodes in behaviour trees behave like basic
logic gates, the structural difference between a GP tree representing a
multiplexer boolean function, often used for classification, and a fully
functional behaviour tree is minimal. Even with GP trees representing
regression problems, as in the left tree in figure 4.4 where it describes
the function (29 − X

18) + 7 cosY , there are significant similarities with
BTs making them a good fit.
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Figure 4.4: GP node mapping

The left tree in figure 4.4 shows a simple behaviour tree
representing the subtask of acquiring metal in Zero-K. In the BT
notation standard suggested by [Marzinotto et al., 2014],
questionmarks and single right pointing arrows represent selector- and
sequence nodes respectively. With this in mind, understanding the
subtree behaviour is fairly straightforward. If the bot has a large
amount of metal, it does nothing, propagating the success state to the
top. If not, it will build a metal extractor and a solar panel to give it a
power supply before returning success. If there are complications and
the construction fails in some way, the top selector node supplies a
fallback option, an alternate route which will also increase the metal
stock. This route consists of moving to a place with high tension and
reclaiming/extracting the metal from dead units in the area. See table
4.4.2 for details.

The most significant logical difference between trees in GP and
behaviour trees is the meaning of the data propagating through the
structure. In standard GP, the output of the root node is the the main
end product of the tree. In the BT representation however, the data
sent between nodes are mere guidelines for the order of execution and
invocation of the nodes. By traversing the tree the desired result has
already been achieved during the execution. Thus the output of the
root node is redundant and can be disregarded.

ECJ generates string representations of the individual behaviour
trees. A tree interpreter was created in order to instantiate valid BT
data structures from this representation. The tree interpreter is
included in the library and only needs the proper vocabulary, in the
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form of a list of all implemented leaf classes, to function.

4.4.2 Implementation

The setup and general structure of the BT implementation draws
inspiration from an article by Chris Simpson [Simpson, 2014] in
addition to following the standards suggested in [Marzinotto et al.,
2014]. Furthermore, some specifics were based on the Java behaviour
tree implementation in the libGDX framework [Badlogicgames, 2016].

Using the generics and polymorphic capabilities of Java the library
has a high degree of adaptability. The project is built upon layers of
inheritance, where all nodes extend a common class with the exception
of the GUI, the tree interpreter and a few utility classes. See figure 4.5.

Figure 4.5: Class inheritance

The GUI allows for a graphical representation of the tree traversal
by drawing the tree structure and colour-coding the nodes depending on
their state in real-time, see figure 5.8. The interface has a tabbed layout
for easy navigation between the tree instances.

Composite

This project uses selector and sequence nodes with two to five children
each. Additionally a random selector was included in order to achieve
less predictable behaviours. This node is fixed to three children and
executes them in a random order. The selector, rather than the
sequence, was chosen as base for this functionality since it often
functions as a decider of what goals to pursue due to its properties.
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Decorators

As far as behaviour trees go, this implementation uses a fairly
standard set of decorator nodes to accompany the composites and
terminals. There are three nodes for altering the results; an inverter
which inverts the result, failer and succeeder which return failure and
success respectively, no matter their input. Additionally, there are two
repeater nodes untilSucceed and untilFail, both continuously executing
until they receive desired results, success and failure respectively, see
algorithm 4. When running the evolution many illogical and
structurally flawed trees are created. Some of these will cause the
repeater decorators to perform an infinitely long execution, causing
overflow and excessive memory use. For this reason our
implementation deviates slightly from the algorithm in question by not
ticking itself when the result does not match the policy. It is rather
ticked by the parent with a frequency, ftick, to combat this issue.

Leaf nodes

Table 4.4.2 lists all problem specific leaf nodes created for this project.
The nodes extend an abstract leaf class in the BT library, either
Action or Condition marked as "type" in the table. These nodes
represent the knowledge of the environment and the action domain for
the behaviour tree, and inherently the evolution. Due to limitations in
time and resources the number of terminal-nodes was restricted in
order to conclude evolution within reasonable time.
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Name Type Description
buildMex A finds the nearest available metal spot and builds

metal extractor
buildSolar A builds a solar panel
buildRadar A builds a radar tower
buildGauss A builds a gauss turret towards tension
buildLotus A builds a lotus tower towards tension

buildCaretaker A builds a caretaker near a factory
buildFactory A builds a factory
buildStorage A builds a storage building
repairUnit A repairs buildings and units in the local area

reclaimMetal A reclaims rocks and wrecks in the local area
moveToMapCentre A moves half way to the centre of the map

moveToRandom A moves half way to a random location
moveToSafe A moves to a large concentration of friendly forces

moveToTension A moves to where there is most tension as per the
tension map

highEnergy C over 90% of energy storage full and effective
income is positive

highMetal C over 90% of metal storage full and effective
income is positive

lowMetal C less than 10% of metal storage full and effective
income is negative

lowEnergy C less than 10% of energy storage full and effective
income is negative

highTension C true if the area around the unit has tension over
50%

closeToFactory C true if within line of sight of a friendly factory
enemyBuildingNear C true if within line of sight of a enemy factory

building
inRadarRange C true if in friendly radar range

isAreaControlled C true if several towers in range and tension is low
lowHealth C true if less than 50% health

majorityOfMapVisible C true if more than 50% of map is directly visible
topOfHill C true if the surrounding elevation is slightly lower

than at the position

Table 4.2: A list of leaf nodes that make up the evolved behaviour trees. A refers
to action and C refers to condition
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4.4.3 Variable Abstraction

It was a balancing point in this project to keep the tailoring of trees to
a minimum, letting BTs evolve freely, while still being rigid enough to
maintain a decent structure. The BT should to a high degree be a
product of the evolution. This put a few restrictions on the behaviour
tree implementation and called for the nodes to be virtually
independent. All numeric variables like coordinates and quantities were
abstracted away from the leaf nodes, which then only issued higher
level commands of tasks to execute. If the node buildMex were to be
called, see table 4.4.2, the BT would issue the command to the game
interface, which would then provide all the details necessary for the
action to be completed. The game interface calculates the coordinates
for the nearest available metal spot, issues a move command, as well as
a build command for the specified coordinates when the unit reaches it.

4.4.4 Execution

The tree is executed calling the tick function with frequency ftick. In
the implementation the parent node will always have control of which,
if any, child is running. The game interface will only tick the root node
which will then propagate through the chain of running children to the
currently executing terminal. For all other nodes, the tick is divided
into three disjoint methods; start, run and end. Start is executed when
the node is fresh, meaning that it has not been executed before in the
current tree traversal. Upon completion of the traversal, all nodes are
reset to fresh in preparation for a new behaviour search. Most nodes
ignore the start method, though the action nodes use it generously.
They often have complex prerequisites and calculations that have to be
included in the command before actually executing it, e.g. determining
coordinates. The end method is called when the game interface,
observed by the action node, flags the command completed. Some
action-implementations will use this to finalise the execution. Apart
from this the run method behaves like the tick function, by issuing
commands, invoking children or checking the condition, and then
returning the state of the node.
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Algorithm 1: Sequence

1 for i← 0 to |children| do
2 state← tick(child[i]);
3 if state = Running

then
4 return Running;
5 end
6 if state = Failure then
7 return Failure;
8 end
9 end

10 return Success;

Algorithm 2: Parallel

1 for i← 0 to |children| do
2 statei ← tick(child[i]);
3 end
4 if nSuccess ≥ S then
5 return Success;
6 end
7 if nFailure ≥ F then
8 return Failure;
9 end

10 return Running;

Algorithm 3: Selector

1 for i← 0 to |children| do
2 state← tick(child[i]);
3 if state = Running

then
4 return Running;
5 end
6 if state = Success then
7 return Success;
8 end
9 end

10 return Failure;

Algorithm 4: LoopDecorator

1 state← tick(child);
2 if state = Running then
3 return Running;
4 else
5 if policy 6= state then
6 tick(child);
7 end
8 end
9 return Success;

Algorithm 5: Root

1 return tick(child[0]);

Algorithm 1-5: In pseudocode, the algorithms for the node execution.
The variables S, F and policy are node parameters representing the
number of required successful child-nodes, maximum limit of failed child-
nodes and the node policy respectively.

4.5 GP

This section details how genetic programming was setup using ECJ,
how some of the GP specifics were implemented and how it was then
connected to the other two components.
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4.5.1 ECJ

ECJ is a Java-based evolutionary computation research system mainly
developed by Sean Luke[Luke et al., 2006]. It was designed for heavy-
weight experiments and provides tools for many of the common EC
algorithms, with a particular emphasis on GP.

The state of an evolutionary run is stored in a single instance of a
subclass of EvolutionState. There are two versions of EvolutionState;
generational and steady-state. Generational produces a new
population every generation whereas steady-state replaces individuals
from a constant, static population. Figure 4.6 illustrates the top-level
loop of the generational version of EvolutionState, which is the one
used in this project. The loop iterates between breeding and
evaluation, including an optional exchange period after each. Statistics
is called before and after each period of breeding, evaluation, exchange
as well as prior to and after initialisation of population and when
finishing, when a cleanup is performed prior to exiting the program.
All of these processes are implemented as singleton objects.

In order to set up a GP run with ECJ, one provides a parameter file
and implements a subclass of ec.SimpleProblemForm, which represents
the task. The parameter file defines which implementations of the
evolutionary processes will be used, for example the choice between
SimpleBreeder and MultiBreedingPipeline. Additionally, the
parameter file also contains all options to do with the run, options like
how many generations are to be used, population size, mutation rate
and so on. The purpose of implementing a subclass of
SimpleProblemForm is defining how evaluation will be performed for
the experiment at hand. In this project the subclass contains code that
runs a game of Zero-K by passing an individual to the game-adapter
and then listening to the output in order to determine the fitness of the
individual. See 5.1 for details on the parameters used in this project.
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Figure 4.6: An overview illustrating the program-flow of ECJ.

4.5.2 Fitness

As discussed in the background section fitness is a measure of how good
a solution is at solving the task at hand. In this project the fitness
measure is a number between 0 and 1. In the conducted experiments
the goal was to evolve a BT that mainly focused on economy as the
military aspects of the game were not directly under its control. This
is reflected in the fitness function. Forty percent of the total fitness is
directly derived from how well the bot did economically, specifically how
high the average income 4.7, the highest income peak 4.5 and how many
metal spots on the map was under the bots control on average 4.4. In
the two former, the highest observed value was used as the denominator
in their respective equation.
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The BT also controls the construction of factories and defences and
because of this it needs some measure of military success in order to
not neglect that aspect of the game. This prompted the addition of 4.6
which measures how much metal resource the opponent has lost in the
form of units and buildings divided by how much metal resource the BT
has spent. This accounts for ten percent of the fitness. The final part of
the fitness function is the reward for winning the game 4.8 which either
grants 0.5 fitness for victory or 0 for a loss. The total fitness equation
is the weighted sum of the fitnesses mentioned until now 4.9.

averageMex =
avgMexSpotsControlledThroughoutGame

totalMexSpotsOnMap
(4.4)

peakIncome =
highestIncome

50
(4.5)

killV SExpenditureInMetal =
enemiesKilledInMetalV alue

totalExpenditureInMetal
(4.6)

averageEco =
averageEffectiveIncome

50
(4.7)

victoryReward =

{
1 if victory achieved

0 otherwise
(4.8)

fitness =averageMex× 0.10 + averageEco× 0.25 + peakIncome× 0.05

+ killV SExpenditureInMetal × 0.10 + victoryReward× 0.50

(4.9)

4.5.3 SpringProblem

The implementation of SimpleProblemForm used in this project has
several functions; it writes individuals to files which can be read by the
game interface, it starts an evaluation by calling the game interface and
it interprets the results retrieved from the output provided by the game
interface to determine the fitness of the individual being evaluated. The
game interface writes the fitness of individuals to the game chat every
2000th frame which is then be processed by SpringProblem when the
match is over.
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Because of evaluations potentially taking very long time, as may be
the case if neither combatant builds anything military, functionality to
stop an evaluation after a specified time was developed. When an
evaluation is started, the EvolutionRunner no longer has
programmatic access to that process. In order to solve this a script
that ends all Zero-K processes is run when the time is up. When this
happens, the fitness of the individual being evaluated is set to be the
latest value written to the game chat before it was closed down. An
unfortunate effect of this is that parallel runs are not possible as this
method would kill all Zero-K processes.

4.5.4 CompetitiveSpringProblem

In the case of competitive coevolution CompetitiveSpringProblem is
used rather than SpringProblem. It is an implementation of
GroupedProblemForm, which means it considers more than one
individual at the same time. Often, only one individual is evaluated at
a time in competitive coevolution, however, due to time constraints we
decided that each evaluation will count for both of the competing
individuals. This means that in a competition between individual a
and b, the result will count towards the fitness of both. For example, if
a wins then it will receive a fitness score of 1 whereas b will receive a
score of 0.

In this project single-elimination tournament is used to assign fitness
to individuals when running competitive coevolution. Each battle of the
tournament is run up to three times; if a individual wins two times, it
is declared the winner. If there is no definite winner after three games
a random winner is picked.

4.5.5 Statistics and Logs

In order to preserve as much information as possible about each run, a
checkpoint is created after each generation. A checkpoint is a snapshot
of all data relating to a run, which can be used to resume a run. These
are used as backup in case a computer should crash, but are also useful to
go back and look at an especially interesting time frame of an evolution.
The data stored in the checkpoints is not human-readable and because
of this we also store all generated individuals, their fitnesses and meta
information, for example the best individual in each generation, in a
separate file. Additionally, this data is used to generate two graphs
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which we use to determine the effectiveness of a set of GP parameters.
The first graph plots average fitness, best fitness and normalised size for
every generation, see 5.1. The second is a bar chart which illustrates
how often the various node types are used, which was very useful to
determine if a specific node should be included or not.

4.5.6 Selection

All five experiments use tournament selection. There are three reasons
that tournament selection was chosen for this project. Firstly, it is
easy to adjust the selection pressure by changing the tournament size.
Secondly, the selection pressure on the population remains constant
because tournament selection does not take into account how much
better an individual is over another, only that it is better, which has
the effect of automatically rescaling fitness. Thirdly, because an
individual only has to be slightly better than the others in the
tournament, small differences are amplified which is important in this
project because the individuals are evaluated against CAI which is a
very strong opponent, especially early in the run. Through
experimentation it was determined that a tournament size of seven was
appropriate for this project. Tournament selection is used to decide
which individuals we will apply genetic operators to. This project used
the implementation of tournament selection provided in ECJ,
ec.select.TournamentSelection.

4.5.7 Genetic Operators

In this project we employed three forms of genetic operators; subtree
crossover, reproduction and mutation. First, selection is used to
determine which individuals genetic operators will be applied to, then
a genetic operator is chosen using the probabilities described in the
parameter file, thirdly, Koza node selector is used to determine which
node or nodes the genetic operator will be used on and lastly the
genetic operator is applied. Koza node selector is a method for picking
nodes from trees laid out in [Koza, 1992]. The method divides the
nodes that are possible to pick into four probability areas: terminal,
non-terminal, root node and random node. In this project only
terminal and non-terminal were used, which means that the root node
cannot be mutated nor used in crossover.
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Mutation is performed using the mutate one node method as outlined
in [Chellapilla, 1998] and implemented by Sean Luke in ECJ. It selects
a node using Koza Node Selector and replaces it with another randomly
chosen node of the same arity. This means that the original topological
structure will be the same but that specific node will have changed.

Subtree crossover is performed using ECJ’s strongly-typed
interpretation of Koza’s sub-crossover technique. First, two individuals
are selected, then a node is selected from each using Koza Node
Selector such that the return type in one tree is type-compatible with
the argument type of the parent in the other tree. Then a check is run
to see if the derived tree will violate the depth restraints. If it does
then the process is repeated. The variable tries in the parameter file
determines how many times the process will repeat in case of failure.

4.5.8 Strong Typing

We discovered early on that evolution often yielded BTs that contained
contradictions that made the trees highly inefficient. For example the
placement of a succeeder, which always returns true, as a child to an
untilFail node, creates an infinite loop. Using the functionality for strong
typing built into ECJ it was possible to remove situations like this.
Practically, this was accomplished by defining a list of types as in 4.5.8,
then a list of sets like 4.5.8, which are groups of types, which can be
used the same way as types. For example allExceptAction which, as
the name implies, contains all types except action. Following that, we
define a list of constraints, which can be better described as definitions
of types of nodes. These node constraints contain the return type of
the node, how many arguments it takes and what type those arguments
have, see 4.5.8. Finally we connect the type of a node with the path to
the Java implementation of that node, see 4.5.8. For a complete list of
all strong typing employed in this project see 4.5.8.
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Figure 4.7: An illustration of how strong typing works in ECJ.

Types

Explanation Code
size 3
type0 action
type1 leaf
type2 inverter

Table 4.3: Example of how types are defined in ECJ parameter files.

Sets

Explanation Code
size 2
set0 name any
set0 size 3
set0 member0 action
set0 member1 leaf
set0 member2 inverter
set1 name allExceptInverter
set1 size 2
set1 member0 action
set1 member1 leaf

Table 4.4: Example of how sets are defined in ECJ parameter files.
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Node Constraints

Explanation Code
size 3
name nc0_action
return type action
size 0
name nc0_condition
return type condition
size 0
name nc1_inverter
return type inverter
Number of children 1
child0 allExceptFailer

Table 4.5: Example of how constraints are defined in ECJ parameter files.

Node Definition

Explanation Code
implementation bt.leaf.action
type nc0_action
implementation bt.leaf.condition
type nc0_condition
implementation bt.decorator.inverter
type nc1_allExceptInverter

Table 4.6: Example of how node definitions are defined in ECJ parameter files.

Parent Child Reason
UntilSucceed UntilSucceed redundancy
UntilSucceed UntilFail redundancy

UntilFail UntilSucceed infinite loop
Succeeder Succeeder redundancy
UntilFail Succeeder infinite loop

UntilSucceed Failer infinite loop
UntilFail UntilFail infinite loop
Inverter Inverter cancels each other
Failer Failer redundancy

Table 4.7: A list of all the strong typing used in this project.
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4.6 Environment

This project requires a fair amount of work to set up and get running.
It contains multiple applications that need to communicate and execute
in parallel. This section will describe the data flow of the overall system
and how all the different parts communicate.

4.6.1 Information Flow

A GP run in the system implemented for this project is started from
EvolutionRunner, see figure 4.8. The main class retrieves a specified
parameter file and uses it as an argument to start ECJ. Most aspects
of the run are handled by ECJ according to the stated parameters.
ECJ uses an implementation of SimpleProblemForm or
GroupedProblemForm, in this case SpringProblem or
SpringProblemCompetitive, to evaluate individuals. In order to
evaluate an individual, a Zero-k match is run using ZKGPBTAI. The
result of the run is stored in a log which is interpreted by
SpringProblem to determine fitness.

To run a Zero-k match, SpringProblem first writes a file containing
the individual in string form. It then spawns a command line process
and executes a script which starts Zero-k with settings designed to
minimise game-play time and computation costs. Among these, a
setting that enables running Zero-k without graphics, significantly
reducing computation. These settings are retrieved from a specified
setup file. The setup file also defines which map and which players
that will be used for the match. Bots are added to the match; one
ZKGPBTAI instance and one instance of CAI. In case of competitive
coevolution there are two ZKGPBTAI instances. Individuals are read
from the file written by SpringProblem and are then used to generate
behaviour trees using the BehaviourTreeECJ library. Periodically
throughout the game it ticks the BT to make a search through the
structure to find an action to execute.

Zero-K is set to a high verbose level with additional information
conveyed from the bot though the game to the command line. All this
information is gathered by SpringProblem which analyses the game
and calculates the fitness of the individual when completed. When
multiple games are played, the fitness returned will be the mean across
all games. After setting the fitness, ECJ continues this cycle for all
individuals in need of a fitness calculation throughout the run. When
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the last generation has been evaluated and the GP run is concluded,
graphs are generated and detailed information including checkpoints
are stored in folder named after the seed used in the run. A lot of
tailoring was required to get the different parts of the system to
communicate properly. Figure 4.8 displays a very simplified diagram of
the different components making up the project.

Figure 4.8: System environment overview

4.7 Summary

Throughout this chapter the most essential features of the system have
been described while leaving out implementation details. The various
components that make up the system are allocated to sections in the
chapter, starting with the RTS game Zero-k. Zero-k is built upon the
Spring Engine which provides an AI interface for developing bots in
different languages. Our implementation is written in Java, section 4.3
describes how it was developed and the techniques that were employed.
This game interface functions as the base and connection point for the
behaviour trees outlined in section 4.4. The BTs make decisions and
issue commands for the game interface to execute. It is behaviour trees
which are the subject of the evolution in this project. The BTs are
evolved using genetic programming which is covered in section 4.5.
Through strong typing and use of the framework provided by ECJ, GP
was set up with a variety of settings and parameters for the different
experiments. These experiments are described in the subsequent
chapter. A large amount of implementation was needed to complete
the system, and specifics have been left out of this thesis. Most of this
information are available through the public Github repositories found
in appendix A.1 and should include nearly everything needed to
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recreate the experiments or expand the research with new or extended
experiments.
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Chapter 5

Results and Discussion

In this chapter we describe and discuss the conducted experiments.
Section 5.1 describes the experiments and the results they provided.
Section 5.2 outlines tests performed in order to compare the
experiments. In section 5.3 we discuss and explain the findings in the
previous two sections. Lastly, section 5.4 provides a summary of this
chapter.

5.1 Experiments

In this section we describe why and how the experiments were
conducted as well as the results obtained. Due to time-constraints, the
number of runs for each experiment was limited. This means that the
statistical significance of the experiments is fairly low, therefore,
hypotheses rather than conclusions can be drawn from the results. In
addition to descriptions of the experiments there is a subsection
covering a hand-written bot referred to as H1.

5.1.1 Experiment Overview

In the course of this project five experiments, referred to as E1 to E5,
were conducted. The first two experiments, E1 and E2, used the
genetic operators crossover and reproduction whereas E3, E4 and E5

used crossover and mutation. The reasoning behind this was that
[Koza, 1992, 1994] argue that mutation is not necessary to obtain good
results with GP. However, most of the projects reviewed in section
3.2.3 do use mutation. Therefore, we decided to investigate both
approaches.

In addition to exploring the use of different genetic operators, we
experimented with population size and the amount of generations. It has
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been argued that in some cases small populations with many generations
can outperform large populations with fewer generations [Gathercole
et al., 1997; Fuchs, 1999]. In order to explore both options, E1 and E3

had small populations with many generations whereas E2 and E4 had
larger populations with fewer generations. All in all, experiment E1 and
E3 have a total of 2000 evaluations whereas E2 and E4 have 2400. See
table 5.1 for an overview of the first four experiments. The effect of
having different population sizes for the experiments will be discussed
in section 5.3.4.
E5 uses competitive coevolution and the genetic operators crossover

and mutation. It was decided to use mutation rather than reproduction
because the best individual found after the first four experiments came
from an experiment with mutation.

No Mutation Mutation
Small Population(20) E1 E3

Large Population(50) E2 E4

Table 5.1: Experiment description matrix for experiments one through four.

5.1.2 General Parameters

Many of the parameters used in the experiments are the same, at least
across the first four. Behaviour trees that are generated through
initialisation or genetic operators may not be deeper than 17. This is
the standard max depth used in ECJ in order to reduce the
computational load a deep tree may create. As discussed in section 4.5,
tournament selection is used to choose which nodes genetic operators
will be applied to. Tournament selection used a tournament size of
seven which was determined to be appropriate through
experimentation. The initialisation method employed is Koza’s
ramped-half-and-half which is described in section 2.4. The initial
trees may not have a smaller depth than three nor a larger depth than
six. These values were determined to yield a good variety of trees by
studying the generated initial populations. When choosing which node
in a tree to apply a genetic operator to, Koza node selector will choose
terminals 20% of the time and non-terminals for the rest. The genetic
operators use tournament selection to choose parents and Koza node
selector to pick nodes. For a summary of the parameters see table 5.2.
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Max Depth of Tree 17 nodes
Selection Method Tournament
Tournament Size 7

Initialisation Method Ramped-Half-and-Half
M in-Depth: 3
Max-Depth: 6
Node Selection of Terminals: 0.2
Node Selection of non-Terminals: 0.8

Genetic Operators
Crossover Selects parents using Tournament Selection

Selects nodes using Koza node selector

Reproduction Selects individual using Tournament Selection

Mutation Selects individual using Tournament Selection
Selects node using Koza node selector
Performs mutation using ECJs MutateOneNodePipeline

Table 5.2: General Parameters used for all experiments.

5.1.3 Experiments 1: Small Population, no Mutation

E1 has a population size of 20 and evolves for 100 generations. It uses
crossover 85% of the time and reproduction for the rest. See table 5.1.3
for an overview.

Evaluation Fitness function and competition vs CAI
Population size 20
Generations 100
Evaluations per individual 2
Time limit 15 minutes
Genetic Operators

Crossover: 0.85
Reproduction: 0.15

Table 5.3: E1 (Small Population, no Mutation) parameters.

Analysing the nodes and structures of the individuals for the runs
performed give clear indication of low genetic diversity. As a run
progresses towards generation 100 the evolved individuals become
increasingly similar, until there are only minor differences separating
them. There is little similarity between the runs, not indicative of any
general tendencies.

The best run from the experiment is plotted in figure 5.1. The
average fitness of the population, represented in red, rises slightly the
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first third of the run then lies quite steady just below 0.2. Best fitness,
the green line, indicates the best individual found in each generation.
In this run, best fitness rises and falls sporadically, probably because
the best individual is subject to deleterious crossover operations. For
example, if the good features of an individual are moved to an inactive
branch of a tree through crossover the fitness will fall, however, in the
next generation the opposite might occur resulting in a good
individual. The average size, represented by the blue line, increases
steadily until generation 75 when it rises quickly then falls down to a
low value. The reason for this peak is that the best individual tripled
in size and because it is the best individual it will most likely
contribute a lot to the next generation. Additionally, because it is
large there is a higher chance for crossover to pick a large subtree
meaning that there is a higher probability of large individuals to be
generation for the next generation. In generation 79, the best
individual had a significantly lower size than the one before, this
gradually propagates into the rest of the population and by generation
83 the trend has turned and average population size is on the decline.

The best individual from the run displayed in figure 5.1, has a fairly
limited behaviour spectrum. Early in the game it looks promising,
building a balanced and strong economy. The problem however is that
it focuses too much on economy. It constructs no defencive buildings,
factories or caretakers making it a easy target for raids and limits the
unit-production. The tree is fairly large, but only a minor part of the
full tree is ever invoked with the majority being unreachable in actual
game-play. The other top individuals from this experiment suffer from
the same problem, namely not progressing after the initial economic
build up.
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Figure 5.1: The best run from E1 (Small Population, no Mutation)

5.1.4 Experiment 2: Large Population, no Mutation

Experiment two has a population size of 50 and evolves for 50
generations. It uses crossover 85% of the time and reproduction for the
rest. See table 5.4 for an overview.

Evaluation Fitness function and competition vs CAI
Population size 50
Generations 50
Evaluations per individual 2
Time limit 15 minutes
Genetic Operators

Crossover: 0.85
Reproduction: 0.15

Table 5.4: E2 (Large Population, no Mutation) parameters

E2 shows some promise after the three runs, achieving a best fitness of
0.89. From observing the results, the larger population seems to provide
the crossover algorithm with a more varied gene pool and the decrease in
average fitness growth is not as pronounced. The largest area of growth,
often including the best fitness of the run, occurs around a third of the
way through the runs.

The best run, see figure 5.1.4, produced a interesting graph which
contrasts with the one from E1. Very little happens in terms of fitness
before generation 15 when best fitness rises to a high plateau and stays
there the rest of the run. Average fitness follows suit and stays around
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0.4 which is very good as any number above 0.5 would indicate a victory
against CAI. The only significant point to mention about the average
size is that it moves from a low value to a high one when the best fitness
peak happens and then it mostly stays between 0.6 and 0.8.

The best individual from this run shows promise during gameplay
as well. Similarly to the highlighted individual from E1, it focuses
heavily on the economy, but the lack of defencive buildings leave it
vulnerable. If the bot does not get harassed by the opponent during
the economic boom, it will perform well, building caretakers and
produce a large army. However, it does not construct any radars, and
locating the enemy becomes an issue. The bot has to rely on the
enemy units leading it to their base. This naive strategy does pay off
occasionally given the mentioned favourable circumstances, which
probably have originated the high fitness, but in the majority of games
the opponent will exploit the fragile setup yielding a clear defeat.

fFigure 5.2, shows an individual with a very elegant structure. The
BT is divided into two clearly separated branches with fairly different
goal-oriented behaviours. What goal to pursue is decided by the node
highMetal. The up-most right part of the tree has a clear goal for
economic growth and is active when highMetal is not fulfilled. The
other side of this condition generally contains more advanced
behaviour, including a high number of expensive buildings and
complex strategies. This structure provides more reactive behaviour
compared to the handwritten BT which with its more iterative
conditions seems to follow an algorithm and does not react to the
environment to the same extent. An interesting point is that the
evolved BT uses the highMetal conditional node to divide between
resource providing and resource draining action nodes. This is similar
to how we used the highMetal node when creating hand-written
behaviour trees.
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Figure 5.2: The best individual from E2 (Large Population, no Mutation)
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Figure 5.3: The best run from E2 (Large Population, no Mutation)

5.1.5 Experiment 3: Small Population, Mutation

Experiment three has a population size of 20 and evolves for 100
generations. It uses crossover 98% of the time and mutation for the
rest. See table 5.1.5 for an overview.

Evaluation Fitness function and competition vs CAI
Population size 20
Generations 100
Evaluations per individual 2
Time limit 15 minutes
Genetic Operators

Crossover: 0.98
Mutation: 0.02

Table 5.5: E3(Small Population, Mutation) parameters

Of all experiments, E3 is the one which shows the clearest signs of
stagnation. Similarly to E1 the genetic diversity stagnates significantly
towards the end of the evolution for all three runs. Both the average
fitness and best fitness across all three runs are very similar to E1,
displaying the same tendencies, see figure 5.5 and 5.1. The run that
produced the best individual was the one with the lowest measured
diversity across all experiments. Both program variety and subtree
variety, see subsection 5.3.2, reached lows far below the ideal, see figure
5.4.
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Figure 5.4: Program and subtree variety of E3(Small Population, Mutation)

The best fitness of each generation in this run rises and falls
sporadically, similarly to the highlighted run from E1. The fitness
oscillates even though the best individual remains constant. The likely
explanation for these fluctuations is the highly stochastic nature of
most aspects of the game environment. Certain decisions might cause
the game to take a vastly different direction given the same
preconditions, as there are a lot of uncertainties to take into account.
This is why each individual should play a higher amount of games each
evaluation to get a more accurate and probable fitness value for the
individuals. This would also decrease the bad individuals with good
fortune dominating the evolution, with this run proving a prime
example. The goal is to evolve a versatile AI entity with a high degree
of adaptability. Having individuals progressing due to piggybacking on
good fortune will not help reach this goal.

For the general game-play, the individuals again lack middle and
endgame strategies only focusing on building economy before getting
beaten fairly fast with little resistance by the opponent (CAI). Some of
the individuals however build more advanced buildings, mainly
caretakers, at fairly appropriate times, something not seen in the
selected individuals from E1. This may be a coincidence since we have
no greater statistical data to draw any meaningful connections from.
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Figure 5.5: The best run from E3(Small Population, Mutation)

5.1.6 Experiment 4: Large Population, Mutation

E4 has a population size of 50 and evolves for 50 generations. It uses
crossover 98% of the time and mutation for the rest. See table 5.1.6 for
an overview.

Evaluation Fitness function and competition vs CAI
Population size 50
Generations 50
Evaluations per individual 2
Time limit 15 minutes
Genetic Operators

Crossover: 0.98
Mutation: 0.02

Table 5.6: E4(Large Population, Mutation) parameters.

E4 achieved a top score of 0.84 which, while not as good as E2,
is a very good score. The three runs were quite varied, two of them
showed similar plateau behaviour as described in experiment 2, while
the third stagnates only a few generations in at around 0.45 with only
small oscillation in fitness throughout. The runs generally had a good
amount of genetic diversity with few identical individuals and a high
amount of unique subtrees each generations.

The best run, see figure 5.1.6, is one of the more interesting ones
observed. Average fitness constantly rises throughout the run, evenly in
the first half and more sporadically in the second. Best fitness moves
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sporadically in the first quarter then stabilises around 0.4 before jumping
up to around 0.8 and eventually, stabilises in the last quarter. Average
size moves a lot in the first half then rises constantly in the second half.

The best individual from experiment four shows some interesting
characteristics. It focuses solely on economy in the first part of the
game then begins building caretakers and radars once the highMetal
and highEnergy nodes succeed. The combination of caretakers and
radars is quite effective as the caretakers ensure a higher unit
production rate and the radars gives the bot more information about
enemy locations, which means that the bot has a lot of soldiers and
knows where to send them. This bot is however vulnerable to raiding
attacks in the beginning of the game as it does not build any defences.
Another interesting point is that subsequent to building a caretaker,
which is usually built in a safe location, workers active the node
moveToTension which sends them to the front, where there is the most
conflict.
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Figure 5.6: Best run from E4(Large Population, Mutation).

5.1.7 Experiment 5: Competitive Coevolution

Competitive coevolution was included as one of the five experiments
because it has been shown to do well for competitive games, see [Rosin
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and Belew, 1995], and several of the related projects described it as
future work. In the previous four experiments, the fitness of evolving
bots was determined by how well it performed in a match against
CAI. This may have had a detrimental effect on the evolution as small
improvements might not register in the fitness score because CAI is a
too strong opponent. As described in section 2.4.9, competitive
coevolution works by evaluating individuals against each other rather
than against a fixed opponent. This has the effect of making the entire
population evolve in smaller increments as every little change might
give a single individual an advantage over the others.

The most common way of setting up competitive coevolution is with
two populations, where one population is evaluated against the other,
resulting in an arms race where both populations try to evolve faster
than the other. However, because of computational limits we opted
for a single population setup in this experiment. To further reduce
computation we chose single elimination tournament, which has a time
complexity of O(n), over methods like round robin, where all individuals
are tested against all individuals, which has a time complexity of O(n2).
Because the first four experiments were conducted with one bot facing
off against CAI, a tournament size of two was chosen for E5. In order
to make the tournament as fair as possible, a population size of 16
was chosen, which means the tournament tree forms a perfect binary
tree [Zou and Black, 2008], giving all individuals an equal chance. In
order to reduce computation further both individuals participating in a
battle are evaluated on their performance simultaneously. Each pairing
is evaluated up to three times to ensure there is always a clear winner.
Because many of the individuals in the beginning of a run are so poor, a
time limit of 250 seconds was added, which means that when a battle has
run for 250 seconds the individual with the highest fitness is chosen as
the winner. In the unlikely case of a tie, the winner is chosen randomly.

Additionally, we sought to remedy some of the problems discovered
in earlier experiments. To this end the tries parameter was increased
from one to ten, elitism with one individual was added and mutation
was run with a higher rate. Explanations of the problems referred to
here will be found in the discussion section, see 5.3.
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Evaluation Single Elimination Tournament
Population size 16
Generations 50
Tournament size 2
Max evaluations per grouping 3
Tie breaks Fitness function from the other experiments
Time limit 250 seconds
Tries 10
Elitism 1
Genetic Operators

Crossover: 0.95
Mutation: 0.05

Table 5.7: E5(Competitive Coevolution) parameters.

We logged data from competitive coevolution runs differently
compared with the other experiments. The average fitness of a
population in a single-elimination system is constant; there are always
the same amount of individuals with each ranking due to the nature of
the algorithm. This means that it is more difficult to present the
results in a meaningful way. It was decided to evaluate the best
individual from every second generation against CAI. This is however,
not optimal as the BTs were evolved in competition against each other,
not CAI, but it simplifies comparisons with the other experiments.
Each of the evaluation against CAI were run once.

In figure 5.7, the best individuals from all three runs are plotted.
When compared with the plots of the other experiments, these runs do
not look very successful. However, when run against other evolved bots
rather than CAI, they do a lot better. This will be discussed in further
detail in subsections 5.2.1 and 5.3.7.

The best individual from E5, run 2 in figure 5.7, achieved a low
score when evaluated against CAI, however, it had some interesting
characteristics. In the beginning of the game it focuses on economy,
building metal extractors and solar panels but in addition to this it uses
the reclaim action. Furthermore, some workers were observed using
reclaim as their first action after being recruited which indicates that
there is a conditional node high up in the tree, which when fulfilled calls
a reclaim node. Another interesting point is that it is the only observed
evolved bot which builds the storage building.
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Figure 5.7: Best run from E5(Competitive Coevolution). Size for all runs has been
normalised using 8 as the lowest value and 248 as the highest.

5.1.8 Hand-written BT

With the two-fold goal of evaluating the experiments and testing the
project setup, several hand-written behaviour trees were developed.
These were evaluated against each other and CAI in order to
determine which one to use. The best one is used to evaluate the
evolved bots and will henceforth be referred to as H1. See figure 5.8.
H1 is split into three main branches; economic construction, other

construction and movement. When it builds metal extractors it will
attempt to fortify the area by building a turret. There is also a chance
of the bot building a turret in the next branch which means that the
bot might end up building two turrets in a row making it a very
defencive bot. The central branch contains all construction not related
to economy. Inside it, there is functionality for building turrets, radars,
caretakers, factories and storage. The last main branch contains
movement related behaviours. If the worker has low health, is close to
enemy buildings or in a high tension area it will move to safety. If that
is not the case and the area it is in is safe it will instead move to a
random new area. All in all, it is a very defencive bot which takes and
consolidates metal spots.
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Figure 5.8: The best of the hand-written behaviour trees which is used to evaluate
evolved bots. Larger version can be found in appendix A.2.

5.2 Comparative Evaluation

This section describes the comparative evaluations performed in order
to determine the quality of the results obtained from the experiments.
To analyse the performance of the highlighted individual from each
experiment, we conducted three different evaluations. The first and
most extensive, described in subsection 5.2.1, involve running the
individuals against each other, as well as CAI, the traditional AI and
the hand-written BT bot, 100 times for each combination. The second
evaluation consists of comparing the first ten buildings constructed by
each bot, while the third briefly investigates how the top two evolved
bots fair against human players.
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5.2.1 Competitive Results

In order to compare the behaviour trees found in the experiments, the
BTs were run against each other as well as against H1, B1(the bot
developed as part of ZKGPBTAI) and CAI. The results are detailed
in table 5.8. Each combination in the table represents 100 evaluations
between two entities. The table should be read left to right, where the
number describes how many battles was won by the entity on the left.
To determine which individual from the three runs in each experiment
was to be used for this evaluation, the best scoring one from each run
was evaluated against CAI ten times and the one with the highest
fitness is the ones used in table 5.8. The entities below the double line
are the non-evolved bots.

Experiment E1 E2 E3 E4 E5 H1 B1 CAI Win %
E1 N/A 0 0 0 0 0 0 0 0
E2 100 N/A 86 0 57 0 0 8 36
E3 100 14 N/A 0 0 0 0 1 16
E4 100 100 100 N/A 71 100 0 9 69
E5 100 43 100 29 N/A 85 0 1 51
H1 100 100 100 0 15 N/A 0 2 45
B1 100 100 100 100 100 100 N/A 11 87
CAI 100 92 99 91 99 98 89 N/A 95

Table 5.8: Match statistics from running bots against each other. The bots are
Experiments 1-5, H1 (the hand-written BT bot), B1(the traditional AI bot described
in section 4.3) and CAI
.

Looking at the table 5.8, it is quite clear that the non-evolved
bots(H1, B1 and CAI) performed better overall than the evolved ones,
there are however a few interesting observations to be made. Firstly,
B1 seems to have performed better than CAI on average but lost
heavily when played against CAI. The matches were even, but CAI
had a good endgame counter against B1. Secondly, the experiments
with larger populations, E2 and E4, performed better than E1 and E3,
which had small populations. Thirdly, E4 won against H1 in all of the
conducted matches even though H1 won against all other evolved bots,
except E5, with the same margins. This means that E4 has a strategy
which proved especially useful against H1.

An interesting point is that E5 is the second best evolved bot and
yet it does badly against CAI, only winning one battle out of 100. The
other two good evolved bots, E2 and E4, both did eight and nine times
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better respectively. This could indicate that E5 has overfitted or at
least adapted to playing against BT bots. Additionally, B1 beats all the
evolved bots but does quite poorly against CAI whereas CAI has lost
some of the battles against the evolved bots. This could indicate that
the evolved bots have adapted to CAI.

The results in table 5.8 point toward the results not having a
transitive property. This is well illustrated by E2, E5 and H1. E2 beats
E5 57/100 and H1 0/100. E5 however, beats H1 85/100. This could
indicate that E5 has evolved a strategy which is more effective against
H1 than E2. This intransitivity is common in complex environments
like games or sports and makes determining the winner a nontrivial
decision. Based on the win percentage E4 is the most versatile of the
evolved bots racking up the largest amount of wins against all
opponents.

5.2.2 Build Order

All five experiments focused on evolving a behaviour tree that would
be able to handle the economic aspect of Zero-K proficiently. In order
to compare how evolution solved this in the various cases, each
candidate, including the non-evolved, were run three times and the
order in which the first ten buildings were constructed was recorded in
table 5.9. The first thing one notices when looking at 5.9 is that there

Bot 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

E1 mex mex solar mex solar solar solar solar mex mex
E2 mex solar mex mex solar solar mex solar mex mex
E3 solar mex solar mex solar mex solar mex solar mex
E4 mex solar mex mex solar solar mex mex solar mex
E5 solar solar mex mex solar solar mex solar mex mex
H1 solar mex gauss solar mex solar radar gauss solar solar
B1 mex solar mex solar mex mex solar solar radar radar
CAI solar mex radar mex wind lotus solar wind lotus mex

Table 5.9: This table contains the first ten buildings that each bot constructs. Mex
- Metal Extractor, Wind - Wind Generator(similar to solar), solar - Solar Panel.

are a lot of solar and mex entries. In fact, the evolved bots have not
been observed constructing anything other than solar panels and metal
extractors for their first ten buildings whereas the non-evolved bots use
a larger variety of buildings. H1 and CAI both build two defencive
turrets as well as radars in additional to resource generating buildings
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like metal extractors and solar panels. All the evolved bots build about
the same amount of each building, with a one point difference being
the maximum observed.

An important difference between B1 and the evolved bots is that B1

builds a lot of radars, two of the first ten buildings in fact. This may
contribute to explaining the results in table 5.8 which show that B1

wins all games against the evolved bots. Building radars is especially
important for bots using ZKGPBTAI as military units determine where
to attack using information about the location of enemies. Whereas a
human can look at a map and determine the likely starting points of the
opponent the bot needs to rely on accumulated information of enemy
locations. Though the use of radars may have played an important
part, it is by itself not enough to explain why B1 did so well against the
evolved bots.

The prevalence of mex and solar in table 5.9 is no coincidence. The
most effective strategy for the early game that we have observed for
Zero-K revolves around building a strong economy while harassing the
opponent using your soldiers as well as protecting against similar attacks.
The evolved bots have clearly employed the first point of that strategy
as they build a solid economy. Some of them have evolved strategies that
perform well in the mid-game, for example E4 which builds radars and
caretakers. A clear difference between the evolved and the non-evolved
is the use of turrets, which are important for protecting against enemy
advances and early game raids. CAI clearly uses this as evidenced
by table 5.9. Unfortunately, implementing action nodes that contain
behaviour for harassing the opponent fell outside the project scope. All
in all, the evolved bots have learnt how to build a strong economy.

5.2.3 Human Trials

In order to further investigate the two best individuals identified, E4

and E5, both authors played a game against each of them. E4 won one
of the games while the rest was won by the human players.

We discovered that E4 is quite a good bot player but it can be easily
countered if harassed constantly from the beginning of the game. If left
alone it will become very strong towards the middle of the game when
it starts building caretakers and radars. These two buildings have the
coupled effect of building a large army and directing said army towards
its opponent using the information provided by the radars. Additionally,

77



it was revealed that E5 will rebuild a factory if the first one is destroyed
which we had not been able to deduce from studying the behaviour tree.

5.3 Discussion

In this section we discuss and explain the findings presented in the
previous two sections. The topics are fitness function, stagnation,
mutation compared with reproduction, population size, bloat, strong
typing and evolutionary scope.

5.3.1 Fitness Function

The fitness function of a GP system has a substantial impact on the
results. In this project economical fitness accounts for 40% of the total
fitness, 50% is given for victory, which leaves only 10% for military.
This has had a clear effect on the results, as the best individuals from
all five experiments mostly build metal extractors and solar panels.
Additionally, as illustrated by the build order table 5.9, the evolved
bots all construct economic buildings for the first ten buildings
whereas the non-evolved use a more varied selection. Because
economic buildings increase the total fitness by such a large amount,
the effect that building radars and defencive turrets has on the success
of the military is overlooked. Some of the evolved bots construct
factories and caretakers in addition to resource buildings. An
explanation for this is that both of these buildings contribute to
producing more soldiers, resulting in a greater chance for victory.
Factories and caretakers have a much more explicit effect on the
victory chances of a bot than radars or defencive turrets. Another
underused building is the storage. Constructing more storage has a
very small effect on the economy fitness but may have a significant
effect on the behaviour of the lowMetal, highMetal, lowEnergy,
highEnergy condition nodes. These nodes are implemented in such a
way that highMetal requires the bot to have 90% of the storage full as
well as a positive inflow of resources in order to return success.
Because of this, building a new storage leads to highMetal no longer be
true, which can have unpredictable effects on the traversal of the tree.

Two potential ways of solving these problems are a better fitness
function and more strong typing. For the former, an improved fitness
function that awards more fitness based on military and especially
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defencive turrets, which the evolved AI has greatly underused. For
example, a score could be given based on how many enemy units
friendly turrets have killed. To increase the use of radar towers, a score
could take into account what average percentage of the map is in radar
range. All in all, a more complex fitness function with more points
being given to aspects relating to specific buildings. For the latter,
strong typing could be used to force each BT to include a variety of
buildings. For example by requiring every tree to contain both the
resource buildings, factory, radar and one of the defencive turrets. This
would have the effect of narrowing the search space which can be both
positive and negative. It would make the bot always have all the
building blocks of success close at hand.

Awarding 50% of the fitness points for winning a game has had a
detrimental effect on the runs. In these experiments each individual
is evaluated up to three times in a generation to determine fitness. If
the evolving bot wins one of the evaluations, its fitness is boosted by
a large amount. In order to evaluate a bot, it is run against CAI,
which is far from a stable benchmark. CAI chooses between several
strategies and will occasionally pick a sub-optimal one, thereby reducing
the difficulty of winning against it. This can have the effect of a mediocre
individual being awarded a large fitness and because of that having its
characteristics propagated into new generations.

5.3.2 Stagnation

Progress in evolution depends on variation in a population [McPhee and
Hopper, 1999]. A big problem in EC is loss of diversity which can lead to
stagnation. This usually takes the form of the system getting trapped in
a local optima which it lacks the genetic diversity to escape. There are
many proposed diversity measures, two popular measures are described
in [Koza, 1992; Keijzer, 1996]. In the former, Koza uses the term variety
to indicate the number of different genotypes a population contains. In
the latter Keijzer measures program variety as the ratio of the number of
unique individuals over population size and subtree variety as the ratio
of unique subtrees over total subtrees.

We decided to analyse the experiments using Keijzer’s measure for
variety. Calculating program variety revealed a big difference in values
across the runs, even within the same experiments. In figure 5.10 the
mean program variety across all runs for experiments E1 to E4 have
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been placed on a graph based on the program variety. While program
variety will reveal duplicates, the individuals might rely on a very small
subset of trees giving the metric little meaning. Subtree variety however
takes this into account.

In figure 5.9, the subtree variety of all five experiments has been
calculated. Extracting all possible DAGs from the individuals as their
subtrees is usually the better base for the measure. The layout and
structure of the output files however, made a recursive division by the
composite nodes the more practical approach, and was chosen for this
reason.

The subtree variety measures the amount of duplication in an
evolving population and tracing it is useful as it may reveal a loss of
diversity. This metric usually gives very low values, but it is important
to watch out that the variety of a generation does not drop to or below

1
numberOfPrograms , which would indicate that the population is
dominated by a small set of subtrees. This value is important since it
is the value one would get for a population filled with identical
individuals. Individual programs might contain duplicate subtrees
allowing the values to drop even further. When dropping below this
line it might be difficult for the evolution to explore new regions of the
search space possibly causing stagnation. Experiment E1 and E3 will
have this limit at 0.05 while E2 and E4 at 0.02 far below. As the graph
in figure 5.9 illustrates the average values were far above this. Only
one of the runs came close, the best individual from run 1802 of E3

with a few generations nearing 0.07 in subtree variety containing only
2 unique programs.

According to Koza [Koza, 1992] the first step in studying the
evolution of complex structures is studying the gross size of the
individual programs. Even though the subtree variety measurements
shows a big and continuing drop throughout the runs for all
experiments, this does not necessarily indicate a reduced amount of
unique subtrees. As illustrated by figure 5.13 the average size usually
increases throughout the run. Figure 5.11 displays the average amount
of unique subtrees and the total amount of identified subtrees across
all three runs in experiment E4. It illustrates the correlation between
the values making up the subtree variety measure and shows an
increase, rather than a decrease, in unique subtrees.
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Figure 5.9: Plot of the subtree variety in all five experiments. It is important to take
the population size into account when comparing the experiments as the tolerances
will be slightly different.
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Figure 5.10: Plot of the program variety in all five experiments, where the value
one indicates there are no duplicate individuals present after a given number of
evaluations.
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Figure 5.11: Plot of the average sub-tree and structural complexity for all runs in
E4(Large population, mutation).

A problem we discovered when interpreting the results was that in
some cases, at the end of a run, many individuals would be almost
identical with only minor differences, and then often in leaf nodes that
never get activated. In the worst case there were several identical
individuals in the population, and in all cases there were several
similar individuals. The latter is to be expected as the crossover
between trees can, depending on where the crossover is performed, lead
to increasing similarity over time. The former however, is a problem as
it can lead to stagnation as well as a lack of diversity in the
population. We have a threefold explanation for this.

The first explanation is the concept of hitchhiking. The main idea
is that not all placements of nodes have the same significance. This
means that individuals which have a few well placed nodes will do well,
this does not however mean that all nodes in that individual are placed
well nor beneficial but they will be propagated into the new population
nonetheless.

The second explanation is Genetic drift, which is a term describing
the gradual loss of a node type from the population through crossover.
Some nodes and subtrees will do better than others and as an effect
of this some nodes might be completely removed from the population.
However, if a mutation operator is used it is possible that an excised
node might reappear through mutation.

Lastly, a possible explanation is the tries-parameter used in the
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ECJ parameter files. Tries refers to how many attempts are allowed in
case crossover results in an illegal tree. If no legal tree is found when
the limit of allowed attempts is reached, an unmodified copy of one of
the parents is returned instead, arguably having the same effect as
reproduction. In this project we chose to use ECJ’s default value for
this parameter, which is one. Additionally we employ strong typing
which makes it even harder for crossover to generate a ’legal’ tree.
This in combination with the chance of a mediocre individual
propagating its characteristics as described in section 5.3.1 can cause
large distortions in the population that can lead to stagnation. In
experiment E5 the tries-parameter was increased to avoid this possible
issue. Across all three runs there were fewer cases of duplicate
program, see figure 5.10, strengthening our suspicion that the
parameter affected experiments E1 through E4.

Of the three possible explanations of the observed stagnation,
hitchhiking and the tries problem are the likely culprits. Genetic drift
can likely be ruled out as it should be negated by using mutation. This
is exemplified by there being no major observed differences between E1

and E3 nor E2 and E4, where E3 and E4 used mutation.
Hitchhiking is a plausible explanation for the low subtree variety in

nodes often observed at the end of a run. Whereas it does explain loss
of diversity, it cannot explain the nearly identical trees observed in some
of the runs which is better explained by the tries problem. The prime
example of this is E3 which had just two unique individuals present in
some generations, drastically reducing the likelihood of the run yielding
a good solution.

5.3.3 Mutation vs. Reproduction

The two most common genetic operators in GP and EC in general are
crossover and mutation. Crossover is a convergence operation which
pulls the population towards a local minimum/maximum. The role of
mutation is to break individuals out of local minimum/maximums in
order to discover possible better solutions. In [Koza, 1992] and [Koza,
1994] John Koza argued and demonstrated that mutation was not
necessary in order to get good results with GP. While Koza does not
view mutation as necessary, he did advice using a low level of mutation
in [O’Reilly and Oppacher, 1996]. There have also been papers where
pure mutation approaches have been demonstrated to outperform
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crossover ones [Harries and Smith, 1997]. In [Luke and Spector, 1997]
Sean Luke, the main contributor to ECJ, performed a comparison
study between crossover and mutation approaches. He found that
crossover was slightly more successful than mutating overall but with a
small margin. Additionally, mutation was found to be more effective
for smaller populations depending on the problem domain. All in all, it
would seem that good solutions can be found with both approaches,
with the results largely dependent on the genetic operators suitability
to the problem domain.

Figure 5.12 shows the average fitness achieved in each of the
experiments, E1 and E3 clearly follow a very similar trajectory though
the former uses no mutation and the latter does. The same can be
argued for the best fitness, see figure 5.14. There is a clear disparity
between the experiments with different population parameters but
mutation would seem to not have had any significant effect neither on
average nor best fitness. A possible explanation for this is that
mutation is not very suitable to this problem domain. Another
explanation is that the mutation rate employed was quite low at 2%
and its effect might have been negligible in the small population sizes
used. A third explanation is that the tries problem described in
subsection 5.3.2 might have interfered with the proper working of the
mutation operator. All in all, no single interpretation can be said with
certainty to be the right one as the reality of it may well be a
combination of several explanations.

5.3.4 Population Size

In this project it was decided to perform two experiments with small
populations, many generations and two with large populations, fewer
generations. The reasoning behind this is that there are proponents
for both approaches. On the one hand, it has been suggested to use
as large a population as computationally feasible [Koza, 1992], on the
other, it has been argued that for some problems, a smaller population
evolving over many generations will produce better results [Gathercole
et al., 1997; Fuchs, 1999]. As a compromise we tested both approaches.

It was found that the two experiments with larger populations
performed notably better than their smaller counterparts when it
comes to both average fitness and best fitness. In figure 5.12 and 5.14,
one can clearly see that experiments E2 and E4 performed better than
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Figure 5.12: Plot of the average fitness across all experiments where each line
represents the average of all three runs in a single experiment.

E1 and E3. At about 800 evaluations the latter stagnates whereas the
former keeps improving. The explanation for this might be rooted in
the loss of diversity described in section 5.3.2. Given that hitchhiking
and the tries problem may lead to stagnation over time, the
experiments with larger populations should take longer to stagnate as
they contain a greater variation of BTs to begin with.

Though no statistically valid conclusions can be drawn due to the low
amount of runs performed, the larger populations have performed better
than smaller ones in this project, both in terms of average fitness and in
terms of finding the best possible solution as evidenced when evaluating
the individuals against each other. While using a small population, E5 is
not comparable to the first four experiments as it is based on competitive
coevolution and was run for a lot fewer evaluations.

5.3.5 Bloat

As described in section 2.4, the most common definition for bloat is
“program growth without (significant) return in terms of fitness” [Poli
et al., 2008]. This definition is quite vague as "significant return" can
be interpreted differently and as a consequence there have been several
attempts at defining a metric for bloat. In [Vanneschi et al., 2010], the
authors define bloat as an expression between the average growth and the
average fitness improvement in generation g compared with generation
zero, see equation 5.1. The term δ(g) refers to the average program size,
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Figure 5.13: Plot of the average size across all experiments where each line represents
the average of all three runs in an experiment.
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Figure 5.14: Plot of the best fitness across all experiments where each line represents
the average of all three runs in an experiment.
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while f(g) refers to the average fitness at generation g.

bloat(g) =
(δ(g)− δ(0))/(δ(0))
(f(0)− f(g))/(f(0))

(5.1)

We decided to measure bloat across all experiments using this
technique, this resulted in figure 5.15. There are a few observations to
be made here; firstly, there is a large spike in the very beginning of two
of the experiments, which is most likely due to selection picking what
seems like a good individual in the first generation but after crossover
turns out to be undesirable. Secondly, E3 goes quite far into the
negative values in the first 600 evaluations. This means that the
average size has decreased while the average fitness has increased
which is very good. Thirdly, E4s bloat seems to grow towards the end
of the run which matches the plateauing curve in figure 5.12 and the
increase in size seen in figure 5.13.

Avoiding bloat is important when evolving behaviour trees as large
BTs will take up more memory. Traversal through behaviour trees is
relatively efficient, compared to alternatives like FSMs, though when
many large trees are introduced it may cause performance issues. When
performing the experiments, those runs with a large average size took
noticeably longer time to run than smaller ones. Consequently avoiding
bloat is highly preferable and important for the results to be considered
successful. Though we have found instances of bloat in this project, it
is not prevalent enough to be considered an issue. If more generations
were introduced to the experiments it is likely that bloat would become
a bigger problem as indicated by the upwards curve of E4.
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Figure 5.15: A plot of the bloat of the experiments calculated using equation 5.1.

5.3.6 Strong Typing

Strong typing was mainly used to remove situations that caused
crashes and to limit redundancy. It proved successful in reducing
redundancy by removing situations where a decorator node would have
another decorator node as a child, for example the pair
inverter→inverter. It was also beneficial for removing situations that
could lead to crashes like infinite loops, e.g. the connected pair,
untilSucceed → failer. Strong typing could probably have been used
more in order to restrict the search space and accelerate evolution, for
example by requiring that each individual contains all or a subset of
the construction nodes. However, we wanted to keep evolution as
general and unrestrained as possible in order to make it transferable to
another problem domain. Additionally, when restricting the search
space using strong typing, one might inadvertently remove too much
and near-optimal solutions might end up outside the scope of the
algorithm. In this case we have acquired a significant amount of
domain knowledge and can therefore say with certainty that the
optimal solution to this problem requires the use of a wider selection of
buildings than what the best solutions found use.

5.3.7 Competitive Coevolution

Competitive coevolution resulted in the second best individual found in
all the experiments. Experiment five was the last of the experiments
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to be run and because of several factors we had to shorten its run time
by reducing the population size to 16. Despite this the experiment
performed well and was the only one to evolve behaviour that used the
reclaim node correctly.

As discussed in 5.3.4, larger populations have achieved better results
and that may be the case for competitive coevolution as well. With
only 16 individuals evolving over 50 generations, the experiment only
consisted of about 800 evaluations compared with the 2000 to 2500 in the
other experiments. Having achieved second place in so few evaluations
could indicate that competitive coevolution converges on good solutions
faster than the setup used with the other experiments, though further
experimentation is needed to determine if this is the case.

5.3.8 Evolutionary Scope

It was originally our intention to evolve several aspects of the
game(economy, military, recruitment) separately, then integrate them
gradually into a complete bot where BT would be responsible for all
non-trivial decisions. However, due to time constraints only evolution
of the first aspect was completed. It is likely that if all aspects were
evolved the bot would perform notably better as it would have a more
complete perception of the problem domain.

The evolutionary scope has had a large impact on several aspects of
this project, most evidently in the fitness function. The fitness function
used for all of the experiments was written with the purpose of evolving
an AI that would create a good economic base which the military and
recruitment behaviour branches could make use of to achieve a military
victory. The other major game aspects would have their fitness functions
tailored to their respective tasks.

The evolutionary scope had a large effect on which condition and
action nodes were included. The condition nodes define what the bot
can perceive of the game environment and as such fulfil a very
important function. As the the BT controls a unit that moves around
in the game world many of the nodes relate to the environment e.g.
topOfHill and closeToFactory. There are a few nodes that relate to
enemies in the vicinity of the worker unit, for example
enemyBuildingNear and highTension, but none that relate to the
opponents strength in general. This means that the defined military
condition nodes only allow for reactive behaviour and not planning
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behaviour when it comes to military matters. Additionally, the
decision to leave out the parallel node effectively slowed down the
reaction as the BT in a worst case scenario would need to complete a
whole tree traversal in order to react to the environment.

We have not considered what military actions a worker unit could
accomplish and this is reflected in the selection of action nodes. A
worker can moveToSafe, repairUnit or construct a building but there
are no nodes that define more explicit military actions such as attacking.

This project uses 26 BT nodes which is far greater than what has been
used in similar projects [Perez et al., 2011; Lim et al., 2010]. To include
the improvements mentioned above, along with more units, actions and
conditions would have exponentially increased the complexity and hence
the computation and time requirements. Zero-K has a far more complex
environment than what is considered in related projects, requiring great
abstractions and reductions of what the bot can perceive of the game
world. These modifications have the added effect of putting the evolved
bot at a disadvantage compared with traditional AIs and human players.

All in all, this means that evolving bot can only perceive economic
aspects of the game and is almost only judged on how it performs in
terms of economy. Given these caveats, GP has found a very good
solution in E4 as the best individual both builds a good economy and
constructs caretakers and radars in the middle of the game which
indirectly has the result of constructing a large army and telling it
where to go.

5.4 Summary

This chapter has given an overview of the conducted experiments as
well as a detailed discussion of the results and the most important
aspects which affected them. Experiment four produced an individual
capable of beating our best hand-written BT every time, the best
individual does however lose to the two non-BT bots most of the time.
The fitness function has had a significant effect on the outcome by
outlining what defines a good solution. An unfortunate side effect of
this is that it pushed the individuals towards excessive construction of
resource buildings effectively restricting the use of other construction
nodes. There has been some stagnation of diversity in the experiments
but not uncommonly high, except in the case of one run from
experiment three where the genetic diversity reached notably low
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measures. This was almost certainly due to the the tries problem but
hitchhiking likely also played a role. No significant difference in results
was found between the experiments using mutation and those that did
not. Experiments with large populations was found to have performed
better than those with smaller ones, most likely due to having access
to more varied subtrees in the form of a larger initial population.
Though some instances of bloat were found, it was not prevalent
enough to be considered an issue. The large abstractions of the
perceived game environment reduced the chances of evolving a bot
which could challenge the best traditional AIs and human players.
However, despite the circumstances the best two individuals performed
quite well by beating the hand-written BT bot in most games.
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Chapter 6

Conclusion

This chapter begins with a brief summary of the chapters of this
report. Following that, section 6.1 contains a discussion of results of
this project in relation to the research questions. In section 6.2 the
contributions of this thesis to the fields of evolutionary computation
and game development are discussed. In section 6.3, limitations of this
project and suggested future work is presented. Lastly, section 6.4
contains a few closing remarks.

In Chapter 2 we gave an overview of the theories and techniques that
form the base of this project. Some of the challenges of the game
intelligence field were briefly discussed. The behaviour tree technique
was outlined in detail. Finally, genetic programming and its roots in
biological evolution was explained.

Chapter 3 describes how related work was identified and the most
relevant of them were discussed in detail. There were several interesting
related systems and projects, some proved more relevant than others.
In the case of behaviour trees, there was not any single most relevant
project but rather the impression of the state of the art of behaviour
trees, which the study of the described papers provided. The opposite
is true for genetic programming; we had a lot of knowledge of genetic
programming prior to this project but it was the details of how it has
been used in conjunction with games that proved the most useful.

Chapter 4 covers how the system on which the experiments were
run was developed. Zero-K is built upon the Spring Engine which
provides an AI interface for developing bots in different languages. Our
implementation is written in Java, section 4.3 describes how it was
developed and the techniques that were employed. This game interface
functions as the base and connection point for the behaviour trees
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outlined in section 4.4. The BTs make decisions and issue commands
for the game interface to execute. It is behaviour trees which are the
subject of the evolution in this project. The BTs are evolved using
genetic programming which is covered in section 4.5. Through strong
typing and use of the framework provided by ECJ, GP was set up with
a variety of settings and parameters for the different experiments.

In Chapter 5 the conducted experiments were described, compared
and discussed. The important factors that affected the results were
discussed in detail. The most important factors were the fitness function,
stagnation, population size and the evolutionary scope.

6.1 Goal Evaluation

The goal of this project was to explore a method for automatically
generating artificial intelligence players for RTS games using genetic
programming and behaviour trees. This was accomplished by creating
a system for evolving behaviour trees for the RTS game Zero-k,
performing a series of experiments while answering the research
questions. This section contains a discussion of the answers found to
the research questions.

Research Question 1: How well does genetic programming
work in concert with behaviour trees?

There are striking similarities in the representation of behaviour trees
and GP syntax trees. We encountered few issues when mapping them
together by tailoring the GP implementation to represent the programs
using the BT syntax.

This technique has been used in similar projects. The studies
described in [Baumgarten and Colton, 2007; Lim et al., 2010] also
investigated representing GP individuals as behaviour trees and
evolving them in game environments. In this project we used a greater
amount of nodes to represent a more complex game environment than
done previously, in order to further explore the viability of this
approach. The individual BTs were tasked with controlling an
important aspect of the game effectively determining the strategy as
well as making many major decisions. Given a restricted selection of
ways of sensing and acting (condition and action nodes) on the the
environment, compared with a human or traditional AI player, the
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experiments produced behaviour trees with goals clearly matching
their relative importance as defined in the fitness function. Some of the
examined individuals evolved clever patterns utilising a range of
features provided by the behaviour tree framework, as well as
developed different behaviours depending on the state of the game.
These results indicate that this method holds merit, even when given a
task of greater complexity than demonstrated in previous projects.

The coupling of behaviour trees and genetic programming shows
promise. We assess the technique to be viable based on the results
obtained through this study and our assessment of related research,
described in subsection 3.2.3.

Research Question 2: Given the same components, how do
behaviour trees evolved using genetic programming compare
with ones designed by humans?

The solution generated by the most successful experiment beat the
best hand-written tree every time, however, the quality of the results
from the five experiments varied greatly. Experiment one produced a
solution that was not able to beat any of the best solutions from the
other experiments nor the hand-written AI. Due to the exploratory
nature of this study and the stochastic environment we cannot
statistically conclude what experiment will provide the best results. It
does however, provide a useful indicator for future research.

The most successful experiment had a large population and used
the genetic operators crossover and mutation. The selected individual
from this experiment won against the best hand-written BT every time.
It evolved behaviour that creates a strong economy in the beginning
of a game, then constructs buildings that have the effect of recruiting
and directing a large army that can overwhelm the opponent. This
strategy proved quite good, consistently beating the results of the other
experiments and even occasionally defeating the AI that came with the
Zero-K.

The best individual from experiment two contains an especially
interesting behaviour tree structure. It evolved two clearly separated
branches with fairly different goal-oriented behaviours. The structure
provided the individual with reactive behaviour through clever use of
BT nodes. More impressively, it is a composition which we had not
conceived of when designing the hand-written BT. This means that
this technique is not only applicable as a way of generating an AI
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player but also as a tool for finding useful patterns and strategies in
the game environment.

All in all, evolving behaviour trees using genetic programming
resulted in a much better BT solution than the authors were able to
design manually.

Research Question 3: Can using genetic programming to
evolve behaviour trees simplify or improve the development of
AI players for games?

Whereas the evolved BTs did very well against the hand-written BTs
they did not do very well against the traditional AI bot developed in
this project (B1) nor the AI shipped with Zero-k (CAI). All evolved
BTs lost every game against B1 and the best evolved BT managed to
win only 11% of the matches against CAI.

Traditionally, creating AI for games has revolved around giving the
appearance of intelligence using techniques that are as simple to
implement as possible, and that uses the least amount of
computational power. This is because developing better AI takes time
and does not always yield noticeably better results. Due to the
computational power available, it is only in recent years that using
techniques like machine learning and evolutionary computation for
modern games has become feasible. In this study the development of
the traditional AI required drastically less time compared with the
implementation required to evolve BTs. Consequently, we cannot argue
that replacing traditional AI with the proposed technique would
significantly simplify AI development for games.

One of the advantages that this technique could provide is the
automatic generation of a larger variety of AI opponents in games.
Typically, games are shipped with one AI player which can be made
more difficult or easier by giving it access to more computational
power or in game resources. Some games contain AI that exhibit
different personalities, for example Civilization 5 [2kGames, 2010],
where the player can choose to play against AIs that exhibit varying
levels of aggressiveness. Evolving BTs could provide similar
functionality by tailoring the evaluation of the individuals based on the
presence of certain desirable traits.

Based on the results obtained in this study we cannot conclude that
evolving behaviour trees is a serious competitor to traditional AI
methods. However, we believe that when techniques like evolving

95



behaviour trees have had time to mature and if commercial tools to
simplify their use become available, they might be useful tools in the
process of developing AI for games.

6.2 Contributions

The current research on evolving behaviour trees using evolutionary
algorithms, as described in section 3.2.3, has shown this method to be
applicable to a range of tasks, and has had a large impact on our
research. This study builds upon these results and extend its use to a
more complex environment in the form of the RTS game Zero-K. Our
research has yielded some positive results, though not of statistical
significance, indicating that the method is applicable to such a
problem domain.

Few publicised studies are researching the possibility of evolving
behaviour trees through genetic programming. This thesis will provide
additional background in the field and contribute by exploring the
possible applications of these methods. By providing a behaviour tree
library tailored to ECJ our contributions also include lowering the
implementation overhead for similar projects in the future.

6.3 Limitations & Future Work

In this section we outline further lines of enquiry identified in this
project. There are three main points we consider as future work;
extending the evolutionary scope, technical improvements and the
development of a tool for simplifying the application of evolutionary
methods to behaviour trees.

6.3.1 Extend Evolutionary Scope

We believe research question one should be investigated further by
extending the evolutionary scope to cover more aspects of the
gameplay. In most of the identified related work, the authors have had
to reduce the evolutionary scope in order for evolving behaviour trees
to be feasible with the resources at hand [Oakes, 2013; Lim et al.,
2010]. Similarly as stated in subsection 5.3.8, this project only covers
one aspect of playing a real-time strategy game. It is our belief that if
all aspects were to be evolved, the result would be greatly improved.
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Another important aspect to consider in future work is the
avoidance of overfitting by evolving individuals in a variety of
environments (game maps) and against a more varied selection of
opponents, alternatively more competitive coevolution. This would
make it possible for the individuals to discover strategies and
tendencies that transcend a single environment and therefore become
more adaptable to novel challenges. Other researches have had the
same experience; Lim et al. "considering other starting positions" as
future work and also discusses evolving against a variation of
opponents.

6.3.2 Technical Improvements

The biggest way to improve the results of this project and similar
projects would be to get access to more computational power so that
one could both perform more experimentation and get results with
statistical significance.

More computational power would make it possible to run
competitive coevolution properly with only wins and losses counting
towards an individuals fitness. Running genetic programming like that
would mean that the search space would be larger and consequently
the algorithm would explore more potential strategies than it currently
does. Additionally, the developer would need far less domain
knowledge of the game and its strategies, thus simplifying the
application of the technique to new games.

6.3.3 Behaviour Tree Library

As mentioned in the goal evaluation, the introduction of a tool for
simplifying the application of evolutionary approaches to game AI and
behaviour trees might greatly advance the use of techniques like the
one explored in this project. As part of this research we created a
general behaviour tree framework for evolving BTs with ECJ, however,
it does at this time only include the most basic features required for
this project, but can provide a solid base for further implementation.
Extension of this library to support more advanced features, or the
development of new similar tools, would simplify the application to
new problems and lower the implementation overhead.
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6.4 Closing Remarks

Overall, we feel that this project has been successful when considered
as an exploratory research project. We developed a system which
automatically generated an AI player that consistently beat the best
hand-written AI we were able to produce using the same markup. We
were able to achieve these results only using the computational power
of two regular desktop computers, far less than what a commercial
developer might have access to. However, the results fell short of our
expectations in terms of being competitive with traditional AI
methods. All in all, we hope this project provides valuable insight for
future research into this area and for pioneering game developers
attempting to bring more advanced AI into the game industry.

In closing;

Evolving behaviour trees is an interesting technique for
automatically generating AI players that has shown that it
can produce solutions that consistently beat ones produced by
humans using the same components. Based on the findings
in this study it is at present not a solid competitor of
traditional AI methods. However, given well-defined
components and sufficient computational power this
technique has the potential of being a very useful tool for
game AI developers.
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Appendix A

Additional Resources

A.1 Repositories

ZKGPBTAI:
https://github.com/elusivedelusive/ZKGPBTAI

EvolutionRunner:
https://github.com/hajoch/EvolutionRunner

BehaviourTreeECJ:
https://github.com/hajoch/BehaviourTreeECJ

A.2 Hand-written BT
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