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Abstract

Dedicated Short-Range Communications (DSRC) is a wireless commu-
nication technology used in Intelligent Transport Systems for road vehicles.
Applications utilizing DSRC are becoming more and more widespread,
and include both vehicle-to-vehicle and vehicle-to-infrastructure systems.
As this technology expands, it is important to keep security in mind.
New technologies can open up new opportunities for exploitation not
previously thought of. Several threats against the DSRC system for
Electronic Fee Collection (EFC) have recently been presented [CEN15].

In this thesis, the possibilities for communicating with DSRC applica-
tions using a Universal Software Radio Peripheral (USRP) are explored.
The open software toolkit GNU Radio is used to implement a DSRC
transmitter and receiver, aiming to imitate the communication between
a roadside unit (RSU) and an on-board unit (OBU). The functionality of
these programs were not completely verified, but the work gives a good
indication that DSRC communication should be possible with a USRP.

Additionally, this thesis studies the security of the EFC system. Calcu-
lations of access credentials and authentication values are described, and
weaknesses identified. The use of the Data Encryption Standard (DES)
for computing these values is especially in focus. Attacks against the DES
keys in EFC are presented, where customized DSRC devices are used
for obtaining the values needed. To crack the encryption and retrieve
the access credential and authentication keys, a modified brute-force
attack is necessary. This attack is explained in detail, and an example
implementation is provided. Time-memory trade-off algorithms to speed
up the brute-forcing are also presented and compared.





Sammendrag

Dedikert kortholdslink (DSRC) er en type trådløs kommunikasjons-
teknologi brukt i intelligente transportsystemer (ITS) for landkjøretøy.
Applikasjoner som anvender DSRC blir stadig mer utbredt, og inkluderer
både kjøretøy-til-kjøretøy- og kjøretøy-til-infrastruktur-systemer. Etter
hvert som denne teknologien utvikler seg og tas mer i bruk, er det viktig
å tenke på sikkerhet. Nye teknologier kan åpne for nye typer misbruk,
som tidligere ikke har vært nødvendig å ta stilling til. I en nylig trus-
selanalyse ble en mengde svakheter ved DSRC-systemet for elektronisk
bompengeinnkreving (EFC) påpekt [CEN15].

Denne masteroppgaven undersøker mulighetene for kommunikasjon
med DSRC-applikasjoner ved hjelp av den programvaredefinerte radioen
Universal Software Radio Peripheral (USRP). Det frie rammeverket GNU
Radio blir brukt til å implementere en DSRC-sender og -mottaker, i
et forsøk på å imitere kommunikasjonen mellom en veikantenhet og
en bilbrikke. Funksjonaliteten til disse programmene ble ikke fullstendig
verifisert, men arbeidet gir en god indikasjon på at DSRC-kommunikasjon
burde være mulig gjennom en USRP.

I tillegg blir sikkerheten i EFC-systemet studert i denne oppgaven.
Utregninger av verdier for tilgangskontroll og autentisering beskrives, og
svakheter blir identifisert. Bruken av Data Encryption Standard (DES)
for beregning av disse verdiene er spesielt i fokus. Angrep mot DES-nøkler
i EFC blir presentert, hvor tilpassede DSRC-innretninger brukes for å
få tak i de nødvendige verdiene. For å knekke krypteringen og hente ut
nøklene, er det nødvendig med et modifisert brute-force-angrep. Dette
angrepet er forklart i detalj, og en eksempelimplementasjon er gitt. Såkalte
«time-memory trade-off»-algoritmer for å effektivisere brute-force-søket
blir også presentert og sammenlignet.





Preface

This Master’s thesis is carried out at the Norwegian University of Science
and Technology in Trondheim, in the 10th semester of my Master of
Science degree in Communication Technology. The thesis is written under
the supervision of Professor Stig Frode Mjølsnes from the Department of
Telematics (ITEM) and Tord Ingolf Reistad from the Norwegian Road
Administration (Statens Vegvesen).

I would like to thank Professor Stig Frode Mjølsnes and Tord I. Reistad
for their valuable guidance and feedback during the work with this thesis.

Trondheim, June 2016

Jonathan Hansen





Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Intelligent Transport Systems . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Dedicated Short-Range Communications . . . . . . . . . . . . . . . . 3
2.3 Electronic Fee Collection . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Security in EFC . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Universal Software Radio Peripheral . . . . . . . . . . . . . . . . . . 8

2.4.1 USRP Hardware Driver . . . . . . . . . . . . . . . . . . . . . 9
2.5 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Data Encryption Standard . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 13
3.1 USRP and DSRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Breaking DES With Trade-Off Algorithms . . . . . . . . . . . . . . . 14

3.2.1 Hellman’s Original Method . . . . . . . . . . . . . . . . . . . 14
3.2.2 Rivest’s Distinguished Points . . . . . . . . . . . . . . . . . . 16
3.2.3 Rainbow Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Wireless USRP Test-bed 19
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Hardware and Software . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 RFID Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



4.1.4 Creating the DSRC Program . . . . . . . . . . . . . . . . . . 25
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 DSRC Module . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Transmitter Flow Chart . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Receiver Flow Chart . . . . . . . . . . . . . . . . . . . . . . . 35

5 Brute-Force Attacks on DES Keys from EFC 37
5.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Attacks on EFC using customized DSRC devices . . . . . . . . . . . 37

5.2.1 Obtaining MAC Values . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Obtaining Access Credentials . . . . . . . . . . . . . . . . . . 39
5.2.3 Brute-force Attack against Access Credential and MAC Keys 40

6 Conclusion 45

References 47

Appendices
A DSRC Module 51

A.1 NRZI to NRZ block . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2 NRZ to NRZI block . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.3 Pulse shaper block . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B GNU Radio Flow Charts 59
B.1 DSRC Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 DSRC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C Brute-Force Example 61
C.1 modified_bruteforce.py . . . . . . . . . . . . . . . . . . . . . . . . 61



List of Figures

2.1 Illustration of the authenticator calculation. . . . . . . . . . . . . . . . . 7
2.2 Illustration of the access credentials transactions. . . . . . . . . . . . . . 7
2.3 Illustration of the calculation of access credentials. The input I is a

concatenation of the 4-octet RndOBU and 4 zero octets. . . . . . . . . . 8
2.4 Illustration of the DES block cipher computation, taken from [NIS99]. . 11

3.1 Illustration of the hash chain generation, where Ki,j is key number j in
chain number i, E(P ) is the encryption of plaintext P , C is the ciphertext,
and r is the reduction function. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Illustration of the hash chain generation, where Ki,j is key number j

in chain number i, and f is the combined function of encryption and
reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Complete overview of the USRP N200 architecture. Image taken from
the product datasheet found at [N20]. . . . . . . . . . . . . . . . . . . . 20

4.2 The N200 with GPS, VERT2450 antennas, Ethernet cable and power
cable attached. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Screenshots of the output from the RFID reader . . . . . . . . . . . . . 25
4.4 The signal processing blocks from the GRC transmitter flow chart. . . . 28
4.5 The variables and GUI entries from the GRC transmitter flow chart. . . 30
4.6 The signal processing blocks from the GRC receiver flow chart. . . . . . 32
4.7 The variables and GUI entries from the GRC receiver flow chart. . . . . 33
4.8 Screenshot of the transmitter program running. . . . . . . . . . . . . . . 34

5.1 The procedure for obtaining access credentials with a fake OBU. The
GET.request may also be a GET_STAMPED.request or SET.request. . 39

5.2 Illustration of the DES encryption for a modified brute-force attack on
MAC and access credential keys in EFC. . . . . . . . . . . . . . . . . . 40

B.1 The GRC transmitter flow chart. . . . . . . . . . . . . . . . . . . . . . . 59
B.2 The complete GRC receiver flow chart. . . . . . . . . . . . . . . . . . . . 60

ix





List of Tables

2.1 DSRC Layer 7 services and EFC functions . . . . . . . . . . . . . . . . . 4
2.2 OBU data elements for security level 0 . . . . . . . . . . . . . . . . . . . 5
2.3 OBU data elements for security level 1 . . . . . . . . . . . . . . . . . . . 5

5.1 Overview of parameters in a GET_STAMPED.request . . . . . . . . . . 38
5.2 The parameters used as input for the MAC computation, when an empty

attribute list is requested. The 4 bytes for the RndRSE nonce can be
chosen by the attacker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi





List of Acronyms

ADC analog-to-digital converter.

AES Advanced Encryption Standard.

BST Beacon Service Table.

CBC Cipher Block Chaining.

CEN European Committee for Standardization.

CFB Cipher Feedback.

DAC digital-to-analog converter.

DES Data Encryption Standard.

DSRC Dedicated Short-Range Communications.

ECB Electronic Codebook.

EFC Electronic Fee Collection.

EPC Electronic Product Code.

FIPS Federal Information Processing Standard.

FPGA field-programmable gate array.

GPS Global Positioning System.

GPSDO GPS Disciplined Oscillator.

GPU graphics processing unit.

GRC GNU Radio Companion.

GUI Graphical User Interface.

xiii



IBM International Business Machines Corporation.

ISO International Organization for Standardization.

ITS Intelligent Transport Systems.

MAC Message Authentication Code.

NBS National Bureau of Standards.

NI National Instruments.

NIST National Institute of Standards and Technology.

NRZ non-return-to-zero.

NRZI non-return-to-zero-inverted.

NTNU Norwegian University of Science and Technology.

OBU on-board unit.

OFB Output Feedback.

OSI Open Systems Interconnection.

QA quality assurance.

RF Radio Frequency.

RFID Radio-frequency identification.

RSU roadside unit.

SDR Software Defined Radio.

UHD USRP Hardware Driver.

USRP Universal Software Radio Peripheral.

V2I vehicle-to-infrastructure.

V2V vehicle-to-vehicle.

VST Vehicle Service Table.

XML Extensible Markup Language.



Chapter1Introduction

The use of Intelligent Transport Systems (ITS) is increasing in line with the technolog-
ical advances in our society. Especially within vehicular transport this is noticeable,
where new services emerge constantly. Dedicated Short-Range Communications
(DSRC) is a wireless communication technology used in such systems. This type
of technology is expected to only keep developing in the years to come. Electronic
Fee Collection (EFC) is one of the oldest and most widespread types of ITS using
DSRC. In systems like this, which has been in use for several years, it is especially
important to keep the security in mind. New technologies can emerge and create
threats not previously thought of, and increasing computational power can make
previously unfeasible attacks more feasible.

Software Defined Radio (SDR) is one of the technologies that has emerged and
created countless new possibilities within the radio communication field. It makes
it possible to perform complex real-time signal processing on a general processing
platform, creating a flexible radio aiming to replace any kind of other radio. The
cost of such radios is decreasing, as the technology keeps evolving. The Universal
Software Radio Peripheral (USRP) family by Ettus is an example of SDR products
available at a reasonable price today.

1.1 Objectives

In this thesis, I will explore the possibilities of communicating with DSRC applications
using a USRP. The EFC system is especially in focus, and I aim to create software
programs able to imitate communication between a roadside unit (RSU) and an
on-board unit (OBU). Showing that direct communication from an SDR to actual
EFC entities is possible, would illustrate one of the security concerns with today’s
EFC standards.

This would also make other threats to the EFC system more evident. The use of
the Data Encryption Standard (DES) is an apparent weakness, which also will be

1



2 1. INTRODUCTION

discussed in this thesis. Possible brute-force attacks against DES keys are explored,
with a special focus on time-memory trade-off algorithms. I will present concrete
examples of how such attacks against EFC can be carried out, with the help of
customized DSRC devices like the ones attempted to create in this thesis.

During the work with the thesis, I found part one to be more time consuming than
anticipated, because of problems with the software implementation. This created a
shortage of time for the rest of the work, which resulted in part two becoming more
theoretical than originally planned.

1.2 Structure of the Report

This thesis is divided into 6 chapters, including this introduction chapter:

Chapter 2 provides background information about the topics discussed in the
thesis. This includes ITS, DSRC, EFC, USRP, GNU Radio, and DES.

Chapter 3 presents related work to this thesis. Other projects using USRP with
DSRC are introduced, before different time-memory trade-off algorithms used for
brute-force attacks on DES are explained.

Chapter 4 describes the approach for creating a wireless USRP test-bed for DSRC
applications using GNU Radio, and presents and discusses the results.

Chapter 5 looks at the security in current EFC standards and presents possible
attacks on these. A brute-force attack against the DES encryption using trade-off
algorithms is described.

Chapter 6 includes the conclusion of the work done in this thesis and proposals
for possible further work.



Chapter2Background

2.1 Intelligent Transport Systems

The term Intelligent Transport Systems (ITS) is used to describe information and
communication systems in road, rail, water and air transport. These systems are
intended to increase efficiency and safety, and include e.g. navigation systems,
emergency warning systems, traffic signal control systems, collision avoidance and
electronic fee collection.

2.2 Dedicated Short-Range Communications

DSRC is a wireless communications capability used in ITS. The technology is
used both for vehicle-to-vehicle (V2V) communication and vehicle-to-infrastructure
(V2I) communication. The DSRC systems used around the world vary a little in
e.g. frequency spectrum and protocols used, but in general the communication
channels lie around 5.8-5.9 GHz. In this thesis I will work with the European
standards developed by the European Committee for Standardization (CEN) and
the International Organization for Standardization (ISO):

– EN 12253:2004 Road transport and traffic telematics - Dedicated short-range
communication – Physical layer using microwave at 5.8 GHz [CEN04a]

– EN 12795:2002 Road transport and traffic telematics - Dedicated short-range
communication (DSRC) – DSRC data link layer: medium access and logical
link control [CEN03a]

– EN 12834:2002 Road transport and traffic telematics - Dedicated short-range
communication (DSRC) – DSRC application layer [CEN03b]

– EN 13372:2004 Road transport and traffic telematics (RTTT) - Dedicated
short-range communication – Profiles for RTTT applications [CEN04b]

3



4 2. BACKGROUND

The DSRC system is divided into layers, corresponding to some of, but not all,
the layers in the Open Systems Interconnection (OSI) model [ISO94]. Traditionally,
the model consists of seven layers: Physical, Data link, Network, Transport, Session,
Presentation, and Application. DSRC uses a simplified version of this model, including
only the two bottom layers and the top layer: Physical, Data link, and Application,
described in the first three standards listed above.

2.3 Electronic Fee Collection

One of the most common types of ITS using DSRC is Electronic Fee Collection (EFC).
How these systems should work in Europe is described in the following standards:

– EN ISO 14906:2011 Electronic fee collection - Application interface definition
for dedicated short-range communication [CEN11].

– EN 15509:2007 Road transport and traffic telematics - Electronic fee collection
- Interoperability application profile for DSRC [CEN07]

The standards describe EFC services and functions, on top of the underlying DSRC
standards. EFC functions and the related DSRC Layer 7 services from EN 12834 are
listed in Table 2.1:

DSRC-L7 service EFC function
INITIALISATION N/A

ACTION GET_STAMPED
GET N/A
SET N/A

ACTION SET_MMI
ACTION ECHO

EVENT-REPORT RELEASE

Table 2.1: DSRC Layer 7 services and EFC functions

INITIALISATION is used to establish communication between an RSU and OBU,
and select application and contract.

ACTION - GET_STAMPED is used to retrieve data from the OBU to the RSU,
with an authenticator. Can be used both with and without access credentials.

GET is used to retrieve data from the OBU to the RSU, without an authenticator.
Can be used both with and without access credentials.
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SET is used to write data to the OBU, with or without access credentials.

ACTION - SET_MMI is used to invoke an MMI function.

ACTION - ECHO makes the OBU echo received data.

EVENT-REPORT - RELEASE is used to terminate the communication.

2.3.1 Security in EFC

Two different levels of security are described in the standards, 0 and 1, where level
0 is mandatory and level 1 is optional. Level 0 includes message authentication,
while level 1 adds access control on top. Security level 0 requires the following data
elements in the OBU, listed in Table 2.2:

Name Length in octets
AuthenticationKey1 8
AuthenticationKey2 8
AuthenticationKey3 8
AuthenticationKey4 8
AuthenticationKey5 8
AuthenticationKey6 8
AuthenticationKey7 8
AuthenticationKey8 8

KeyRef 1
RndRSE 5 (1+4)

Table 2.2: OBU data elements for security level 0

KeyRef is a reference to the authentication key used for computation of the Authen-
ticators. The OBU must be able to calculate an Authenticator in order to validate
data integrity and origin of the application data. RndRSE is a random number
containing SessionTime, also used in the Authenticator computation. For level 1,
some more security data elements are required for the OBU, listed in Table 2.3:

Name Length in octets
AccessKey 8
AC_CR 5 (1+4)

AC_CR-KeyReference 2
RndOBU 5 (1+4)

Table 2.3: OBU data elements for security level 1
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At security level 1, the OBU must be able to calculate the Access Credentials AC_CR
using the random number RndOBU and the AccessKey. AC_CR-KeyReference is
a reference to the key generation and the diversifier for the key computation. The
RSU must also be able to calculate Authenticators at level 0 and Access Credentials
at level 1.

Authenticator Calculation

The procedure for calculating an Authenticator is explained in annex B.2 in [CEN07]
and presented in [Rei]. This algorithm includes the use of DES encryption in Cipher
Block Chaining (CBC) mode. The complete calculation is described below, copied
almost directly from the standard, and illustrated in Figure 2.1. Authenticators like
this are computed when a GET_STAMPED.request is received.

a) Let AuK be the OBU’s Authentication Key of a given generation k, referenced
by the KeyRef in the GET_STAMPED.request.

b) Let M be the Attributelist in the GET_STAMPED.response concatenated by
the octet string containing the RndRSE sent in the GET_STAMPED.request.
The RndRSE shall contain the Session Time.

c) Split M into 8-octet blocks D1 (octets 1 to 8), D2 (octets 9 to 16), ... , Dn−1
(octets 8(n-1) to 8n).

d) According to ISO/IEC 9797-1:1999 MAC Algorithm 1, the remaining bits shall
be left justified. To the right of these shall be appended zero value bits, so that
a final 8-octet block results Dn.

e) First Step: the first block I1 = D1 shall be encrypted with AuK:
O1 = e[AuK](I1)

f) The output O1 shall be XORed with D2 and this result shall be the input I2
of the next step:
I2 = [O1] XOR [D2]

g) Second Step: I2 shall be shall be encrypted with AuK:
O2 = e[AuK](I2)

h) The output O2 shall be XORed with D3 and this result shall be the input I3
of the next step:
I3 = [O2] XOR [D3]

i) This process shall continue with further 8-octet blocks Dx until the ultimate
step Dn.
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j) Finally the input In shall be encrypted with e[AuK].
On = e[AuK](In)

Figure 2.1: Illustration of the authenticator calculation.

Access Credential Calculation

Access Credentials are used in EFC transactions to keep sensitive user data protected,
and make sure no non-authorized operators are able to use the OBU. When com-
munication is initialized, the OBU responds to a Beacon Service Table (BST) from
the RSU with a Vehicle Service Table (VST), containing an access credential key
reference and a random number. The access credentials AC_CR are then calculated
at both sides. Next, the RSU sends a request for reading data from the OBU, with
the AC_CR included. If the access credentials match, the RSU is accepted and
allowed to read data. This procedure is illustrated in Figure 2.2. The calculation of

Figure 2.2: Illustration of the access credentials transactions.
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access credentials is described in annex B.3 in EN 15509 [CEN07], and replicated
below. Figure 2.3 depicts the computation.

a) The 4-octet RndOBU is sent from the OBU to the RSU in the VST. These
4-octet RndOBU shall be left aligned.

b) Let AcK be the derived Access Key.

c) To the right 4 zero octets shall be appended. The result shall be an 8-octet
string:
I = ‘RndOBU’ || ‘00 00 00 00’Hex.

d) The resulting 8-octet string I shall be encrypted using as follows:
O = e[AcK](RndOBU || ‘00 00 00 00’Hex).

e) The access credentials AC_CR shall be obtained by truncating the 8-octet
string output O and keeping the four left-most octets.

Figure 2.3: Illustration of the calculation of access credentials. The input I is a
concatenation of the 4-octet RndOBU and 4 zero octets.

2.4 Universal Software Radio Peripheral

Universal Software Radio Peripheral (USRP) is a family of Software Defined Radio
(SDR) products created by Ettus Research, which is owned by National Instruments
(NI). The products are designed for use with Radio Frequency (RF) applications from
0 to 6 GHz and support both single channel and multiple antenna systems [Ett].
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Each USRP contains a motherboard providing a field-programmable gate array
(FPGA), digital-to-analog converters (DACs), analog-to-digital converters (ADCs),
host processor interface, clock generation and synchronization, and power regulation.
Additionally, a daughterboard needs to be installed on the motherboard, in order to
provide the RF front end. Different daughterboards and antennas exist for different
frequency bands. A more detailed description of the USRP device used for this thesis
is given in 4.1.2.

2.4.1 USRP Hardware Driver

To connect the USRP to computer software, Ettus provides the USRP Hardware
Driver (UHD). A manual for this driver can be found online at [UHD]. The manual
includes information about installation, setting up the USRP and different ways to
use it.

2.5 GNU Radio

GNU Radio is a free open-source software development kit for Software Defined
Radios. The project was started by Eric Blossom, and the first package was published
in 2001. In 2004, he published [Blo04], describing the GNU Radio software and
its applications. Information about new releases, documentation, tutorials and the
GNU Radio community can be found at the project’s wiki page [GRw]. The toolkit
provides a variety of signal processing blocks for software radios, as well as the
possibility to create your own. These blocks are for the most part created in C++,
but can also be written in Python. GNU Radio programs are built as flow charts,
which can either be coded directly in Python or designed in a graphical interface
called GNU Radio Companion (GRC). When using GRC, the program compiles the
Python code automatically.

2.6 Data Encryption Standard

The Data Encryption Standard (DES) is a symmetric-key encryption algorithm,
originally developed by the International Business Machines Corporation (IBM) in
the 1970s. It was created after the National Bureau of Standards (NBS) published
requests for a standard encryption algorithm in 1973 and 1974. DES was approved
as a federal standard in 1976, and published as a Federal Information Processing
Standard (FIPS) in 1977. It has later been reaffirmed four times, latest in 1999
[NIS99], where the preferred use of Triple DES was specified. DES had by then been
proved insecure, and was no longer permitted in new systems. Some years later
the Advanced Encryption Standard (AES) was published, and in 2005 the National
Institute of Standards and Technology (NIST) (former NBS) withdrew their DES
publication.
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The DES algorithm design is described in [NIS99]. It is a typical block cipher,
which takes 64 plaintext bits and returns a 64-bit ciphertext. A DES key is also 64
bits, but eight of these are used for parity checks, so the actual key length used in the
algorithm is 56 bits. Every eighth bit is a parity bit, making sure that each byte is of
odd parity. The complete encryption computation is shown in Figure 2.4. The 64-bit
input block is first subjected to an initial permutation, before it is split into two
32-bit blocks. Then these blocks go through 16 iterations of a cipher function, where
16 different keys K1 to K16 are used. These keys consist of 48 bits derived from the
original 56-bit key through a key schedule. Finally, the output of the 16 iterations
are subjected to a new permutation, which is the inverse of the initial permutation.
A detailed description of these permutations, as well as the cipher function and the
key schedule, can be found in [NIS99].

This block cipher has to be used in a mode of operation, which is an algorithm
describing how to apply the block operation repeatedly to ensure confidentiality
and authenticity for a complete message consisting of several blocks. DES modes
of operation are described in FIPS publication 81 [NIS80], and the modes included
are Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), and Output Feedback (OFB).

2.6.1 Security Issues

Already around the time of publication, the DES algorithm received criticism re-
garding its security. The small key size of 56 bits was the main issue, making the
key vulnerable to brute-force attacks. Whitfield Diffie and Martin Hellman tried
to convince the NBS that the security of the standard was too weak, with their
paper "Exhaustive Cryptanalysis of the NBS Data Encryption Standard" in 1977
[DH77]. In this paper they proposed a DES-cracking machine with an estimated cost
of 20 million USD that could find a DES key within a day. Several such brute-force
machines were proposed later, and in 1997 the first one was implemented, by the
DESCHALL Project [DES]. Currently, the machine holding the DES brute-force
record is the COPACOBANA RIVYERA developed by SciEngines [RIV].

Besides brute-force, there also exist some other, faster attacks on DES. One
of these is differential cryptanalysis, described in [BS93] by Biham and Shamir.
Linear cryptanalysis [Mat93] and Improved Davies’ attack [BB97] are two others.
However, these attacks require a large amount of known plaintexts, 249, 243 and 250,
respectively. Therefore, brute-force attacks are a lot more effective in practice. The
brute-force attacks can be made even more efficient, by doing precomputations. This
is called a time-memory trade-off, and will be described more in detail under 3.2 in
Related Work.
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Figure 2.4: Illustration of the DES block cipher computation, taken from [NIS99].





Chapter3Related Work

3.1 USRP and DSRC

Even though programmable radios like the USRP is a relatively new technology,
there exist a variety of projects within this field. However, very few of these look at
the area of DSRC. One that does so is a master’s thesis from Norwegian University
of Science and Technology (NTNU) in 2009, by electronics student Einar Thorsrud
[Tho09]. The title of his thesis translated from Norwegian is "Software Defined Radio
- Possible off-the-shelf solutions for DSRC applications." In this project Thorsrud
looks at different open-source frameworks for SDRs, and discusses how these can be
used in relation to DSRC and electronic fee collection. He attempts to implement
parts of the physical layer for an EFC RSU using GNU Radio and a USRP. Testing
with an OBU test chip shows that this implementation is only partially successful.
The OBU wakes up, indicating it receives a modulated carrier wave, but it does not
recognize the signals and give any response.

Thorsrud created two GNU Radio flow charts for his thesis, called dsrc_rsu_tran
smitter.py and dsrc_rsu_receiver.py. In these programs he used some self-made
signal processing blocks, in addition to blocks from the standard GNU Radio library.
The blocks he created are collected in a module called dsrc.

This thesis has been helpful for my own thesis, as it has given me a starting point
for my work with GNU Radio. The signal processing blocks developed by Thorsrud
are not compatible with newer versions of GNU Radio and USRP, but it is possible
to attempt to recreate similar blocks. The hardware is also different from mine, as
he used a USRP 1 with USB connection, a different daughterboard and a specially
designed radio attachment instead of a usual antenna.

Another project working with USRP and DSRC is [KN13] from 2013, by A.
Kumar and S. Noghanian at the University of North Dakota. Their paper describes
how they used a USRP N210 to create a cost efficient test-bed for ITS. Specifically,

13
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they test the received signal power with different antenna positions for a V2V system.
The USRP is used in combination with NI LabVIEW to transmit a sine wave at 5.9
GHz through a highly directional antenna. This means that, unlike this thesis, they
did not have to consider any encoding or modulation of the signal.

3.2 Breaking DES With Trade-Off Algorithms

To break the DES encryption used in EFC, I will look at time-memory trade-off
algorithms to make the brute-force attacks more efficient. This section will present
previous work with such algorithms, and describe the different variants of the method.

3.2.1 Hellman’s Original Method

As described in 2.6.1, DES has been the target of cryptanalysis and brute-force
attacks since it was published. In 1980, Martin Hellman introduced the time-memory
trade-off to cryptanalysis [Hel80], making these attacks a lot more efficient. Hellman
uses DES as a specific example in his paper, and presents the following statements
in the introduction chapter:

"Breaking the 56-bit Data Encryption Standard (DES) with this method
is less complex than doing an exhaustive search on a 38-bit key system.
(...) the cost per solution of breaking the DES drops from approximately
$5000 for exhaustive search to approximately $10 using the time-memory
trade-off."

Hellman’s method works by doing precomputations, to trade search time with memory.
In these precomputations he creates tables containing ciphertexts (hashes) and their
corresponding keys. This is done by encrypting the same plaintext over and over
again with different keys. However, the tables are not built as usual look-up tables
where all the computed values are stored. He generates hash chains, and stores only
the starting point and end point of each chain. To produce these chains, something
called a reduction function is used. A reduction function is a function that takes a
hash output and reduces this to a usable key. In the case of DES, a 64-bit hash is
reduced to a 56-bit key. The function can be very simple, e.g. just dropping the
last 8 bits of the hash. Each chain begins with a starting point randomly chosen
from the key space, which is used as key in the first encryption. The output of this
encryption is then reduced to a new key, which is used in the next encryption, and so
on. This procedure is illustrated in Figure 3.1. Finally, after t rounds of encryption
and reduction, the end point is stored alongside the starting point. A complete table
will then contain m such entries, representing m hash chains, and the table is sorted
on the end points. The encryption and reduction steps can be looked at as one
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step, denoted as a function f . Figure 3.2 illustrates the table generation using this
denotation.

Figure 3.1: Illustration of the hash chain generation, where Ki,j is key number j in
chain number i, E(P ) is the encryption of plaintext P , C is the ciphertext, and r is
the reduction function.

Figure 3.2: Illustration of the hash chain generation, where Ki,j is key number j in
chain number i, and f is the combined function of encryption and reduction.

When the table is generated, it can be used to find a key with a chosen plaintext
attack. We assume the attacker has obtained a ciphertext C corresponding to the
plaintext P used to create the hash chains. The first step is then to apply the
reduction function to C, and check if the output Y1 matches any end points in the
table. If it does, the key is either the second to last point in that chain, Ki,t−1, or it
is a false alarm. To find Ki,t−1, you start at the corresponding starting point Ki,0
and apply f t-1 times. A false alarm can occur if the end point has more than one
inverse image. Therefore, a check needs to be performed to make sure the correct key
is found. This could for instance be to see if the key deciphers C correctly into P .
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If Y1 does not match any of the end points, f is applied to get Y2. Then the
same check is done for Y2; first see if it matches an end point, continue to Y3 if not.
Suppose that Y3 matches an end point, then the key would be Ki,t−3 in that chain.
This check is done all the way to Yt, and if no matching end points are found by
then, the precomputed table does not contain the key. The values t and m can be
chosen in different ways, depending on time and memory preferences. In [Hel80],
Hellman uses t = 106 and m = 105 for the DES-breaking machine he proposes.

3.2.2 Rivest’s Distinguished Points

Several improvements to Hellman’s time-memory trade-off has been proposed since
the method was published. In [Den82], a suggestion from Rivest about distinguished
points was mentioned. He had observed a way to reduce the search time, by forcing
the end points to satisfy some easily tested property. Typical properties could be
that the n first bits are all 0’s or all 1’s. This means that the chains would no longer
have a fixed length t, instead the iterations would simply run until a distinguished
point is reached. The search time is then drastically reduced, because it is no longer
necessary to do look-ups for points that are not distinguished. To avoid too long
chains, the property chosen should be expected to hold after t encipherments on
average. Then the expected number of entries in a precomputed table with m chains
would still be mt.

In addition to the reduced search time, using distinguished points also has some
other advantages. The method makes it possible to detect loops in the hash chains,
if no distinguished point is found after a improbable number of iterations. Then
the chain can be suspected to contain a loop and discarded. Next, it is also easy
to detect merging chains. This is because two merging chains will always reach the
same end point, the first distinguished point after the merge. The merging chain can
then also be discarded, which means we end up with a table without both loops and
merges.

3.2.3 Rainbow Tables

In 2003, Philippe Oechslin proposed a new way to do the precalculations, in order
to reduce the number of calculations needed [Oec03]. His method does not use
distinguished points, but uses a new type of chains that can handle collisions without
merging. This is done by using t different reduction functions in each chain, one for
each step. Then a collision will have to occur at exactly the same point in the chain
for a merge to happen. If this does happen, the chains will get the same end point,
making it easy to discard the merge. So just like with distinguished points, it is easy
to generate merge free tables. Furthermore, these tables are also free of chain loops.
Since each reduction function is only used once per chain, loops will never occur.
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This is clearly an advantage over the other tables, where loops have to be detected
and removed. The fact that the chains have a fixed length is also an advantage, as
Oechslin shows in [Oec03] that this reduces the number of false alarms. He called
this new type of chains "rainbow chains", and a table with these chains is called a
"rainbow table."





Chapter4Wireless USRP Test-bed

The first part of the project consisted of implementing a USRP test-bed for DSRC
applications, specifically EFC. I started by making myself familiar with the system
that was going to be simulated, all the way from the physical DSRC layer to the
application specific rules for EFC. Next, I focused at the hardware and software
tools available, and looked for similar projects that could be helpful. Finally, I
implemented the software and tested with the USRP.

4.1 Methodology

4.1.1 Literature Review

To begin the literature review for the first part of my thesis, I started by looking at
the DSRC standards described in 2.2 and 2.3. This was arguably the most important
literature for my thesis, as it described the complete system I aimed to implement.

Subsequently, I studied the master’s thesis by Einar Thorsrud from 2009 [Tho09],
introduced in 3.1. When going through his thesis, it was important to pick out
which parts that were useful for my own thesis. Since he was an electronics student,
his text contains a lot of theory about the signal processing related to the USRP,
which is not the main focus of my thesis. Thorsrud’s descriptions of the USRP and
GNU Radio were not very relevant for my work either, because of the big difference
between his versions in 2009 and my versions in 2016. The most interesting part for
me was where he described the GNU Radio software implementation, as this was
something I intended to do as well.

Other papers about USRP and DSRC were also studied, including [KN13], but
the main focus were given to those mentioned above.

19
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4.1.2 Hardware and Software

After the literature review, the next step was to get familiar with the available
hardware and software tools.

USRP

The USRP device used in this project is the N200, which is part of the USRP
Networked Series. It comes with a Gigabit Ethernet interface, allowing streaming up
to 50 MS/s. Additionally, the motherboard contains a Xilinx Spartan 3A-DSP 1800
FPGA, a 100 MS/s dual ADC, and a 400 MS/s dual DAC. A complete overview of
the N200 architecture is shown in Figure 4.1, and more details can be found at the
product home page [N20].

Figure 4.1: Complete overview of the USRP N200 architecture. Image taken from
the product datasheet found at [N20].

To provide the RF front end, a CBX daughterboard was attached to the moth-
erboard. This daughterboard was chosen because it covers a frequency band from
1.2 GHz to 6 GHz, meaning it supports DSRC communication at 5.8 GHz. The
USRP also needs antennas working at this frequency, so two VERT2450 antennas
were used. These antennas cover 2.4 to 2.5 GHz and 4.9 to 5.9 GHz. Furthermore,
a GPS Disciplined Oscillator (GPSDO) kit was installed to the motherboard and
connected to a Global Positioning System (GPS) antenna. The GPS clock is used to
provide increased accuracy for the internal USRP clock. In figure 4.2, you can see a
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picture of the N200 used in this thesis, with the VERT2450 antennas and the GPS
antenna attached.

Figure 4.2: The N200 with GPS, VERT2450 antennas, Ethernet cable and power
cable attached.

Computer

Together with the USRP an HP Compaq 8100 Elite CMT PC was used, with 64-bit
Linux Ubuntu 14.04 installed. The processor was an Intel Core i7-860 at 2.8 Ghz
with 4 cores and 8 threads, and the installed memory was 8 GB of RAM.
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Software Frameworks

The considered software frameworks for this project were GNU Radio, introduced
in 2.5, and NI LabVIEW Communications for USRP [Lab]. LabVIEW is a system
design suite developed by National Instruments, initially released in 1986. It provides
a graphical programming interface similar to GRC and many libraries with functions
for e.g. signal processing, data acquisition, mathematics and analysis.

Before deciding whether to use GNU Radio or LabVIEW, I did some research
for available open projects that could help me with my DSRC program. The first
observation worth mentioning is that there seems to be very few USRP projects
focusing on DSRC. Those mentioned in 3.1 were the only ones that looked really
relevant. I decided to use GNU Radio, because of the help I could get from Thorsrud’s
thesis [Tho09], and the fact that there seems to be a lot more support for GNU
Radio on the web in general. A likely reason for this is the fact that GNU Radio is
free, open-source and supports multiple platforms, while LabVIEW requires a licence
and the current version of the System Design Suite is only supported on Windows 7.

Installing UHD and GNU Radio

The different ways to install UHD are described in the online manual from Et-
tus [UHD]. For most Linux distributions UHD comes as a part of the package
management, and for Debian and Ubuntu it can be installed with the command

$ sudo apt−get install libuhd−dev libuhd003 uhd−host

GNU Radio can also be installed in several different ways, as explained in the
installation guide on the wiki page [GRw]. The guide recommends installation via
standard repositories, simply by executing

$ sudo apt−get install gnuradio

Since it seemed like the easiest way, I installed both UHD and GNU Radio with
these commands. However, when trying to run GNU Radio Companion after the
installation, I encountered some problems. The program would not start, and an
error message about a "segmentation fault" was shown. When running with the
"verbose" option, the output showed that the fault happened while trying to import
UHD packages. Some research told me that several others also had encountered this
problem1, but no solutions were given. Deleting the UHD packages causing the fault
made it possible to run GRC, but then the UHD modules would not be accessible
inside the program.

1One example at http://gnuradio.org/redmine/issues/796
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The only working solution to this problem seemed to be to reinstall the programs.
After uninstalling GNU Radio and UHD with the package manager, I first tried
building and installing the software from source instead. Unfortunately, the same
error kept occurring, and sometimes even new errors showed up when trying to build.
The problem appeared to be with compatibility between the GNU Radio and UHD
versions. Finally, I found a tip about using a script created to install both UHD and
GNU Radio, called build-gnuradio2. For this to work, it was important that all
other builds and installations of the programs were removed. Therefore, I decided to
reinstall a clean version of Ubuntu before running the script. This ultimately solved
the problem, and I was able to move on to developing in GNU Radio.

4.1.3 RFID Reader

As a start for my DSRC implementation, I was recommended to look at Radio-
frequency identification (RFID) programs, because of the similarities between the
technologies. Since RFID is a more common technology than DSRC, it would also be
easier to find existing implementations. One such implementation that matched well
with both my hardware and software, was a "Gen2 UHF RFID Reader" by Nikos
Kargas [Kar15]. This reader was created late in 2015, and used a USRP N200 and
GNU Radio v3.7.4. After following the instructions for installation and configuration,
I was able to run the program successfully. At this point I had no RFID tags to
test with, but the program ran as it was supposed to and worked with a test file.
Since RFID uses a lower frequency than DSRC, 910 MHz in this case, the reader
was tested with different USRP attachments than those described in 4.1.2. A SBX
daughterboard and VERT900 antennas were used, before the CBX daughterboard
and VERT2450 antennas were installed later for the DSRC program.

Kargas’ RFID reader was created with GNU Radio, but he had not used the
graphical interface GRC. To get familiar with GRC and hopefully create something
that could help me with the DSRC program, I wanted to make a graphical represen-
tation of the RFID reader. Since a textual version of the flow chart already existed,
this should be a pretty straightforward task.

I first started by making the blocks created by Kargas usable in GRC. Each
block is graphically represented through an Extensible Markup Language (XML) file,
which describes the name, key, parameters, input and output for the block. These
files are automatically created when you make a new GNU Radio block, so all I had
to do was to fill in the correct information. A guide for this and all other information
about creating your own blocks is available under the GNU Radio wiki [GRw]. An
example of how these XML files look is shown below, illustrated with rfid_gate.xml:

2http://www.sbrac.org/files/build-gnuradio
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<?xml version="1.0"?>
<block>
<name>gate</name>
<key>rfid_gate</key>
<category>rfid</category>
<import>import rfid</import>
<make>rfid.gate()</make>

<param>
<name>sample_rate</name>
<key>sample_rate</key>
<type>int</type>

</param>

<sink>
<name>in</name>
<type>complex</type>

</sink>

<source>
<name>out</name>
<type>complex</type>

</source>
</block>

When the XML files were edited, I ran "make install" from the project’s build
directory, and the blocks became available in GRC. I could then add all the blocks
used in Kargas’ reader.py file, and recreate the flow chart graphically. After including
variables and connecting the blocks, I was ready to compile a new python file and run
it just like reader.py. Thanks to GS1 Norway3, I was able to get hold of some RFID
tags to test the reader. However, the program was not able to communicate with any
of the tags. Neither Kargas’ original program or my GRC program could get any
answer when trying to read the tags. Since everything seemed to be working as it
should, and the reader was able to read offline test files correctly, it was difficult to
find the reason for this. Figure 4.3 shows the output from the RFID reader program
run both with the test file and with the USRP. As seen in (a), the reader was able to
decode 70 Electronic Product Codes (EPCs) correctly offline, but when testing with
the USRP in (b), no tags were found. After trying to get the RFID reader to work
with the tags for a while without success, I decided to move on to the DSRC module.

3http://www.gs1.no/
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(a) Output from the RFID reader run offline
with test file

(b) Output from the RFID reader run with
the USRP

Figure 4.3: Screenshots of the output from the RFID reader

4.1.4 Creating the DSRC Program

For the DSRC receiver and transmitter, I chose to try to recreate Thorsrud’s GNU
Radio programs from [Tho09]. His DSRC module and flow charts were written for
GNU Radio version 3.2, which is not compatible with version 3.7, so I could not use
any of it directly. Nevertheless, it would still be a great help to look at the source
code for his blocks, and customize this to my hardware when creating my own blocks.
Especially for the signal processing this was very helpful, as it would require a lot of
extra work for me to obtain all the necessary knowledge in that field. Thorsrud had
not used the graphical interface of GRC to create his flow charts either, which made
it a little more challenging for me to create these. All the necessary information
about blocks, parameters, connections and variables needed to be extracted from his
Python files dsrc_rsu_transmitter.py and dsrc_rsu_receiver.py.

GNU Radio Module and Blocks

The GNU Radio wiki [GRw] offers some great tutorials for creating your own out-
of-tree modules. Out-of-tree modules means modules that are not in the original
GNU Radio source tree, such as Thorsrud’s module and the module I was going to
implement. To begin, I followed the guide and used gr_modtool to create a new
module called dsrc_mod with the command

$ gr_modtool newmod dsrc_mod

Next step was to create the blocks. GNU Radio blocks can be written in either
C++ or Python. However, writing signal processing blocks in Python comes with
a performance penalty, according to the wiki. Therefore I decided to try to use
C++, even though this was a new programming language to me. This turned out to
be more trouble than expected, as I ran into problems already with the first block.
Debugging errors for a new program in a new language took a lot of time and effort,
so to avoid wasting unnecessary time I decided to write the blocks in Python after all.
Then, if I got the program working with Python blocks, more time could be spent
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improving the performance with C++ later if necessary. For this thesis, getting the
program to work was the most important priority.

To create a new block, the gr_modtool command “add” was used. I began with
the NRZI-to-NRZ block, and created this with the command

$ gr_modtool add −t sync −l python

The parameter “-t” decided the block type synchronized, and “-l” set the language
to Python. I then chose the name, identifier, arguments and whether to add quality
assurance (QA) code:

GNU Radio module name identified: dsrc_mod
Language: Python
Enter name of block/code (without module name prefix):
nrzi_to_nrz_bb
Block/code identifier : nrzi_to_nrz_bb
Enter valid argument list , including default arguments:
Add Python QA code? [Y/n] y
Adding file ’Python/nrzi_to_nrz_bb.py’...
Adding file ’Python/qa_nrzi_to_nrz_bb.py’...
Editing Python/CMakeLists.txt...
Adding file ’grc/dsrc_mod_nrzi_to_nrz_bb.xml’...
Editing grc/CMakeLists.txt...

The block was called nrzi_to_nrz_bb because the input and output types are both
byte, and as you can see from the empty argument list, it took no arguments.
Python QA code is a very smart and effective way to test new blocks, so I chose to
add this. For this block, I simply used the same tests in the QA file as Thorsrud.
The task performed by this block was to change from non-return-to-zero-inverted
(NRZI) to non-return-to-zero (NRZ) encoding, and the C++ code from Thorsrud’s
block was translated to Python without any big difficulties. The complete code for
nrzi_to_nrz_bb.py is attached in A.1. To make the block available in GRC, the
associated XML file was edited as explained for the RFID blocks above. In exactly
the same way, Thorsrud’s nrz_to_nrzi_bb block was recreated in Python for my
dsrc_mod module. This code can also be found in the Appendices, under A.2.

The next block was a more advanced block, called pulse_shaper_bs. This is a
combined block that does FM0 encoding, modulation and pulse shaping. It takes
four parameters: v_min, v_max, phase, and pulse_shaper_interpolation.
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– v_min and v_max represents the minimum and maximum signal values, Umin

and Umax.

– phase defines the last signal value given before the input data, which is needed
for the FM0 encoding.

– pulse_shaper_interpolation decides the samples-per-symbol rate.

Additionally, pulse_shaper_bs takes input of the type byte and gives output of
the type short, as indicated by the two last letters in the name. Inside this block I
have copied two tables with signal sample values used in Thorsrud’s block, half_sin
and half_sin2. These tables contain 256 samples each and are used to create two
different complete signal periods of 512 samples. The source code for my Python
version of pulse_shaper_bs is attached in A.3.

Transmitter Flow Chart

To begin the implementation of the transmitter flow chart, I first needed to find
all the GNU Radio blocks used in Thorsrud’s dsrc_rsu_transmitter.py and find
the equivalent blocks in my version of GNU Radio. Going through his code, the
following blocks were found:

– dsrc.pulse_shaper_bs: This out-of-tree block I had already created my own
version of, which could be found in the dsrc_mod module.

– gr.vector_source_b: This block is the same as blocks.vector_source_b.

– gr.file_source: This block is equivalent to blocks.file_source.

– grc_usrp.simple_sink_s: The corresponding block to this had to be
uhd.usrp_sink. However, the old block and the new USRP sink were not
identical, so some adjustments had to be made. The most obvious one was
that the old sink was able to take input of the type short, while the new could
only take the types "Complex float32," "Complex int16," or "VITA word32." I
therefore had to add another block, to convert from short to complex. This
could be done by a block called blocks.interleaved_short_to_complex.

– gr.file_sink: This is equivalent to blocks.file_sink.

In addition to these blocks, I added a Graphical User Interface (GUI) Time Sink,
to visualize the transmitted signal. The next step was to look at the connections in
the flow chart. This was pretty straightforward, as there were only two connections
needed: the source to the pulse shaper and the pulse shaper to the sink. In Thorsrud’s
dsrc_rsu_transmitter.py, the source and sink were decided through conditional
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statements reading textual input. Since I used GRC, I could simply disable and
enable the different sources and sinks in the flow chart depending on which one I
wanted to use. Therefore, connections were created from both the vector source and
the file source to the pulse shaper, and from the pulse shaper to both the USRP sink
and the file sink. The connected signal processing blocks are shown in Figure 4.4.
In this screenshot the file source and file sink are disabled, as the vector source and
USRP sink are used.

Figure 4.4: The signal processing blocks from the GRC transmitter flow chart.

Most of the variables in the program also needed to be represented in my flow
chart. In GRC, variables are added as simple blocks containing only an ID and a
value. These were the variables used in Thorsrud’s program:

– frequency: The center frequency for the USRP sink block. Thorsrud used 0
in his program, because of his specialized radio attachment that changed the
frequency later. I set this value to 5.8 GHz.

– gain: The USRP transmitter gain was set to 1.0.

– bit_per_second: The bit rate was 500 kbit/s, as decided by the DSRC
downlink parameters.

– usrp_samples_per_second: This variable is limited by the USRP DAC, which
handles 400 MS/s in my case. In Thorsrud’s program this was set to 128 MS/s.

– v_min: Minimum signal value for the pulse shaper. Set to 1000, which Thorsrud
used.



4.1. METHODOLOGY 29

– v_max: Maximum signal value for the pulse shaper. Also set to the same value
as in Thorsrud’s program, 25000.

– phase: For the pulse shaper, must be either 1 or -1. I set it to 1.

– pulse_shaper_interpolation: This variable decides the number of samples
per symbol for the pulse shaper. The USRP N200 with Gigabit Ethernet can
handle up to 25 MS/s, so with 16-bit samples and a bitrate of 500 kbit/s, this
gives the maximum pulse shaper interpolation

ps_interpolation = 25MS/sec

500kbit/sec
= 50samples/bit (4.1)

I set this value to 32, as it needed to be able to divide 512. To compare,
Thorsrud used 16 for this value.

– interpolation_rate: In Thorsrud’s transmitter, the interpolation rate is
calculated with the following equation:

interpolation = 2 ∗ usrp_samples_per_second

bit_per_second ∗ pulse_shaper_interpolation
(4.2)

However, in my version of GNU Radio, the USRP sink block did not take interpo-
lation as a parameter. Instead, it needed the sample rate directly. I chose to cal-
culate this as the bit_per_second times the pulse_shaper_interpolation,
which gave 16 MS/s.

Additionally, Thorsrud’s program took some input from the user as parameters
in the command line. All of these were not necessary for me, but the following
parameters were included as GUI entries in my GRC program:

– input_file: The file name of the input data file.

– output_file: The file name of the output data file.

Figure 4.5 shows all the variables and GUI entries used in the transmitter flow chart.
The complete GRC flow chart is attached in B.1.
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Figure 4.5: The variables and GUI entries from the GRC transmitter flow chart.

Receiver Flow Chart

For implementing the receiver flow chart, I used the same approach as with the
transmitter. First, all the blocks used in dsrc_rsu_receiver.py was identified:

– gr.mpsk_receiver_cc: The equivalent to this block in my version of GNU
Radio was digital.mpsk_receiver_cc. This block took a lot of parameters,
which were filled in directly instead of creating variable blocks. The following
parameters taken from Thorsrud’s receiver were entered:

◦ M = 2

◦ Theta = 0

◦ Min Freq = -0.00393

◦ Max Freq = 0.00393

◦ Mu = 0.5

◦ Gain Mu = 0.05

◦ Omega = samp_per_symb (a variable entered later)

◦ Gain Omega = (samp_per_symb * samp_per_symb) / 4

◦ Omega Relative Limit = 0.005
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– gr.complex_to_real: A type converter block that takes the complex signal
and removes the imaginary part, equivalent to blocks.complex_to_real.

– gr.binary_slicer_fb: A block used as a decision device, equivalent to
digital.binary_slicer_fb.

– dsrc.nrzi_to_nrz_bb: The encoder block I have implemented my own version
of, found in the dsrc_mod module.

– gr.freq_xlating_fir_filter_ccf: A channel filter that is used for down-
conversion to baseband and lowpass filtering. The block is identical in my
version of GNU Radio, located in the filter module. This filter takes another
block called lowpass_coeff as a parameter, containing the following filter taps
values:

◦ Gain = 1.0
◦ Sample Rate = input_rate
◦ Cutoff Freq = 100k
◦ Transition Width = 100k
◦ Window = Hamming
◦ Beta = 6.76 (Unchanged, as this value is not used with my window type)

– usrp.source_c: The USRP source block, corresponding to uhd.usrp_source.
Thorsrud used 0 as center frequency for his block, because of his radio attach-
ment, while I set this to 5.8 GHz.

– gr.file_source: A file source for reading an input file when not using the
USRP.

– gr.file_sink: One file sink for the decoded data, plus four file sinks used for
logging.

Next, the connections between the blocks were constructed, before the variable
blocks were created. The signal processing blocks and their connections are shown in
Figure 4.6. The following variables used in Thorsrud’s receiver needed to be included
in my program:

– gain: The USRP gain, set to 1.0.

– symbol_per_second: The bit rate, which was set to 250 kbit/s, following the
DSRC uplink parameters.

– usrp_samples_per_second: The samples per second limit for the ADC, which
is 100 MS/s for the N200.
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Figure 4.6: The signal processing blocks from the GRC receiver flow chart.

– input_rate: The sample rate from the ADC is decimated from 100 MS/s to
this input rate. I chose 5 MS/s, to get an even decimation rate of 20 and a
fitting number of samples per symbol.

– samp_per_symb: The samples per symbol could be calculated from input_rate
(Samples per second) and symbol_per_second, resulting in the value 20.
Thorsrud used 16 for this value, but stated that the synchronizing blocks
could work with as little as 2 samples per symbol.

Similarly to the transmitter, Thorsrud’s receiver took some parameters from the
command line. Most of these were not needed in my flow chart, but I added a GUI
entry for the parameter subcarrier_freq. The variable and GUI blocks from the
program are depicted in Figure 4.7. For the complete GRC receiver flow chart, see
B.2.
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Figure 4.7: The variables and GUI entries from the GRC receiver flow chart.

4.2 Results and Discussion

4.2.1 DSRC Module

All the implemented GNU Radio blocks in the DSRC module have been tested with
QA test files. These files are included alongside the source code for the blocks in
the module’s Python folder. The input and expected output values for the tests
were taken from Thorsrud’s QA files, to make sure the recreated blocks behaved
as the original blocks. Thorough testing showed that the signal processing blocks
functioned properly as they were supposed to.

4.2.2 Transmitter Flow Chart

The DSRC transmitter flow chart was tested with the USRP and several different
input values. I had an AutoPASS OBU chip available, but this was difficult to use
for testing, as it gave no visual feedback to the signals. Thorsrud used a chip with
LED lights for testing, which showed when the chip received a modulated carrier
wave. This way he could get feedback even when the chip did not recognize any
message and send a reply. To be able to look at the signal my program sent, I added
a GUI sink to the flow chart. A screenshot of the transmitter program running is
included in Figure 4.8. In this screenshot the input was an alternating sequence of
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1’s and 0’s. The signal plot shows that the signal is FM0 encoded correctly, and the
similarities to Thorsrud’s signal plots in [Tho09] are clear.

Figure 4.8: Screenshot of the transmitter program running.

However, there were some difficulties with selecting the correct values for the
variables in used in the transmitter. The values related to the USRP had to be altered
from Thorsrud’s program, because of the different hardware. Additionally, many of
the used blocks were changed in the newer version of GNU Radio, so the parameters
needed were not always the same. For instance, the new USRP sink block required
"Samp Rate (Sps)" as a parameter, while the old block required "Interpolation." Both
values decide the USRP sample rate, but in different ways. Then the equations
used by Thorsrud were not applicable, the values needed to be calculated differently.
After a lot of experimenting and different calculations, I ended up with the values
presented, which seemed to be suitable.

It should also be mentioned that when running the GNU Radio flow chart for the
first time after booting the computer, the UHD warning messages displayed below
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showed up each time. This also happened for the receiver flow chart. The messages
warn about too small send and receive buffers, and the problem was fixed by running
the commands suggested.

UHD Warning:
The recv buffer could not be resized sufficiently .
Target sock buff size : 50000000 bytes.
Actual sock buff size : 1000000 bytes.
See the transport application notes on buffer resizing .
Please run: sudo sysctl −w net.core.rmem_max=50000000

UHD Warning:
The send buffer could not be resized sufficiently .
Target sock buff size : 1048576 bytes.
Actual sock buff size : 1000000 bytes.
See the transport application notes on buffer resizing .
Please run: sudo sysctl −w net.core.wmem_max=1048576

4.2.3 Receiver Flow Chart

The receiver was even more difficult to test than the transmitter, since it needed signals
from an OBU. QA tests of the blocks showed that they worked as they were supposed
to, and running the flow chart resulted in no errors. In order to get some signals
for the receiver, one thought was to run the transmitter simultaneously. The USRP
supports simultaneous signal transmission and reception, so this could be a way to
produce input for testing. However, only one GNU Radio flow chart can be connected
to a USRP at the time. Since I only had one USRP available with the correct
daughterboard, I needed to combine the transmitter and receiver in one GNU Radio
program. This was done by copying the GRC blocks from rsu_transmitter.grc
and rsu_receiver.grc into one chart called dsrc_transceiver.grc. The new flow
chart was tested with several different parameter values. Since the transmitter and
receiver were not created to communicate with each other, but with an OBU, some
additional modifications were necessary. The programs were originally set to use
different frequencies, bitrates, and encoding.

Some testing with these programs were done, but without producing any concrete,
conclusive results. Because of a shortage of time, I was then forced to move on with
the next part of the thesis. With more time it would have been possible to do more
thorough tests of both the transmitter and the receiver, and more modifications to
make them communicate with each other. Other equipment could also be helpful
for testing, for instance an oscilloscope for measuring the signals sent from the
transmitter. Similarly, a signal generator could be used for creating signals to the
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receiver.



Chapter5Brute-Force Attacks on DES Keys
from EFC

5.1 Literature Review

For the second part of the thesis, the literature review began by looking at the DES
algorithm. The history of the standard, the algorithm design and security issues
were studied, and presented in 2.6. Next, I looked at different types of brute-force
attacks against DES, to see which that could be used against the encryption in EFC.
The time-memory trade-off algorithms described in 3.2 were studied in particular, in
addition to papers comparing these methods.

Then the security weaknesses of the EFC standards were investigated, especially
the use of DES encryption. A CEN standard proposal from November 2015, called
"Electronic Fee Collection - Assessment of security measures for applications using
dedicated short-range communication" [CEN15], was helpful for this part. This
technical report includes a detailed threat analysis for EFC systems using DSRC.
Additionally, a draft paper from my supervisor Tord I. Reistad [Rei] was reviewed.
His paper focuses specifically on the EN 15509 standard, and looks at how the DES
encryption can be broken with brute-force attacks.

5.2 Attacks on EFC using customized DSRC devices

The available attack targets relevant to this thesis are the ones where DES encryption
is involved. Necessarily, this means the calculations of Message Authentication
Code (MAC) values and access credentials described in 2.3.1. The threat analysis
in [CEN15] also points out this, and identifies stolen access credential keys and
authentication keys by brute-force attacks as threat T1 and T2.

5.2.1 Obtaining MAC Values

MAC values can be obtained from an OBU by using a customizable RSU. The
attacker can then send a carefully constructed GET_STAMPED request, and receive
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the desired MAC value in the reply. Parameters required in a GET_STAMPED
request are described in EN 14906 [CEN11], and presented in Table 5.1. The most
important parameters to notice are ActionType, AccessCredentials, AttributeIdList
and Nonce. For this attack we use the value 0x00 for both ActionType and At-
tributeIdList, specifying the GET_STAMPED command and an empty attribute
list. AccessCredentials are not needed when AttributeIdList is set to zero.

Parameter name ASN.1 type
Element Identifier EID Dsrc-EID
ActionType INTEGER(0..127,...)
AccessCredentials OCTET STRING

ActionParameter

GetStampedRq ::= SEQUENCE {
attributeIdList AttributeIdList,
nonce OCTET STRING,
keyRef INTEGER(0..255) }

Mode BOOLEAN

Table 5.1: Overview of parameters in a GET_STAMPED.request

As presented in 2.3.1, the OBU computes the MAC value over a message M contain-
ing the AttributeIdList and the RndRSE nonce with padding. When choosing an
empty attribute list in the request, the MAC is calculated from the 8 bytes listed
in Table 5.2. This MAC value is then included as a part of the GET_STAMPED
response to the RSU.

Name Value
AttributeIdList 0x00
RndRSE length 0x04
RndRSE 4 arbitrary bytes
Padding 0x00 0x00

Table 5.2: The parameters used as input for the MAC computation, when an empty
attribute list is requested. The 4 bytes for the RndRSE nonce can be chosen by the
attacker.

Consequently, the attacker is able to obtain the ciphertext to a chosen plaintext. By
choosing different values for the 4 byte nonce, it is even possible to retrieve several
plaintext-ciphertext pairs. A chosen plaintext attack like this makes it possible to do
precomputations, to speed up a brute-force attack.
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5.2.2 Obtaining Access Credentials

By using a customizable OBU, it can be possible to obtain access credentials from a
legitimate RSU. This is done by making the OBU send a response to a BST. When
transmitting a customized, but still valid, VST, an attacker is able to receive a new
command from the RSU containing access credentials. This procedure is illustrated
in Figure 5.1, and can be recognized as part of the transaction from Figure 2.2.

Figure 5.1: The procedure for obtaining access credentials with a fake OBU. The
GET.request may also be a GET_STAMPED.request or SET.request.

As explained in 2.3.1, the access credential AC_CR is computed over the RndOBE
included in the VST. Annex B in EN 14906 [CEN11] provides a detailed example of
the contents of a VST. The most important parameter for this attack is the Applica-
tionContextMark. Since we want a response with access credentials, security level 1
is used. Then the ApplicationContextMark consists of a 6 byte EFC-ContextMark,
a 2 byte AC_CR-KeyReference, and a 4 byte RndOBE. The EFC-ContextMark
includes ContractProvider, TypeOfContract, and ContextVersion, and needs to be
recognized by the RSU in order to not be discarded. To make sure these values
are legitimate, the VST from an authentic OBU should be studied. If the RSU
acknowledges the message, it will respond with a GET, SET, or GET_STAMPED
request. This request will include the AC_CR, calculated from the RndOBE chosen
by the attacker concatenated with four zero-bytes. Similarly to the MAC value,
this method makes it possible to obtain chosen plaintexts and their corresponding
ciphertexts.
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5.2.3 Brute-force Attack against Access Credential and MAC
Keys

5.2.1 and 5.2.2 have explained how a chosen plaintext attack is feasible against both
the authentication keys and the access credential keys in EFC. For the authentication
keys, the plaintext must be of the format ’00 04 xx xx xx xx 00 00’H, where xx is a
freely chosen byte. Similarly, the plaintext for access credential keys must be of the
format ’xx xx xx xx 00 00 00 00’H. By combining these, we see that the plaintext
format ’00 04 xx xx 00 00 00 00’H is usable for an attack on both the key types.
This means that a precomputed hash table like those described in 3.2 can be used
for brute-forcing both authentication keys and access credential keys.

Figure 5.2: Illustration of the DES encryption for a modified brute-force attack on
MAC and access credential keys in EFC.
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However, a brute-force attack on the DES keys used in EFC is not as straightfor-
ward as a standard attack on DES. The reason for this is the truncation of the output
after the encryption, which results in a MAC value or access credential consisting of
only 4 bytes. Consequently, one plaintext/ciphertext pair is not enough to determine
the key. To make up for this, at least two pairs must be obtained, as explained
in [Rei]. This is possible, since the third and fourth bytes in the plaintext can be
chosen freely. Two DES encryptions with the same key are then performed, and the
two outputs are combined to get 64 bits. The input to the computation is 128 bits,
containing two 64-bit plaintexts. This procedure is illustrated in Figure 5.2 on the
previous page.

The modification of the brute-force attack has to be considered also when doing
precomputations for time-memory trade-off algorithms. Because of the double
DES encryption, both the creation of hash tables and searching will require extra
calculations. However, if the calculations can be done in parallel, it does not
necessarily mean that much extra time will be used. To demonstrate how such an
attack can be implemented, I created an example using Python. In this example,
a method called double_encrypt performs the specialized encryption using two
plaintexts. The method takes the two 64-bit plaintexts and a 64-bit key as input,
and returns a 64-bit ciphertext:

def double_encrypt(p0,p1,key):
#Create DES object with the new key
k = des(key)

#First encryption
c0 = k.encrypt(p0)
#Truncate output
c0 = c0.encode("hex") [:8]

#Second encrytion
c1 = k.encrypt(p1)
#Truncate output
c1 = c1.encode("hex") [:8]

#Concatenate the two outputs
c = (c0+c1).decode("hex")

return c

In this code the Python package pyDes [Whi] is used for DES encryption. My code
is not written with speed and performance in mind, but rather to give a concrete
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example of how the modified brute-force attack against keys in EFC could look. The
example creates precomputed hash tables where both the number of chains and the
length of the chains can be chosen. This is done in the method create_table, which
takes length and chainlength as input:

def create_table(length,chainlength):

table = [None] ∗ length

for i in range(length):

#Randomly selected startkey for each chain
startkey = os.urandom(8)
key = startkey

for j in range(chainlength):
#Plaintexts for the two DES encryptions
p0 = ’\x00\x04\x00\x00\x00\x00\x00\x00’
p1 = ’\x00\x04\xff\xff\x00\x00\x00\x00’

c = double_encrypt(p0,p1,key)
key = c

#Add startkey and endkey to the table
table [ i ] = (startkey,key)
print table

#Sort table by endkeys
table = sorted(table, key=lambda pair: pair[1])
return table

In this implementation it is worth noticing that no defined reduction function is
used. The 64-bit output is used directly as the next key. This is possible because
the DES implementation from pyDes does not consider the parity bits. It requires a
64-bit key, and the 8 parity bits are simply not used in the computation. A reduction
from 64 to 56 bits is therefore automatically done, as those 8 bits are removed in
practice. The plaintexts p0 and p1 are entered directly in the code. They are both
valid plaintexts for an attack against access credentials and MAC values, as explained
previously. To choose the random startkey for each chain, the Python module os
is used to pick 8 random bytes. After the complete table is created, is it sorted on
the endkeys. For an implementation focusing on speed, the sorting should be done
directly when a new table entry is added.
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The last method in my example is reverse_hash, which takes a ciphertext hash
and searches through a precomputed table to find the corresponding key. Along with
the hash, the table and the chainlength are also taken as input.

def reverse_hash(hash, table,chainlength):

#Plaintexts for the two DES encryptions
p0 = ’\x00\x04\x00\x00\x00\x00\x00\x00’
p1 = ’\x00\x04\xff\xff\x00\x00\x00\x00’

nexthash = hash

#If no matching endkey is found within the chainlength,
# the table does not contain the wanted key
for y in range(chainlength):

key = nexthash

#Search through all the endkeys
for i in range(len(table)):

if key==table[i ][1]:
#Matching endkey found
endkey = key
startkey = table[ i ][0]

#Recreate chain from startkey to the wanted key
for j in range(chainlength−y−1):

c = double_encrypt(p0,p1,startkey)
startkey = c

#The wanted key is found
return c

nexthash = double_encrypt(p0,p1,key)

print("Key not found")
return None

This method implements the search procedure explained in 3.2.1. Similarly to
the last method, the two plaintexts are entered directly in the code. Since the
reduction function is automatically done at encryption, the search can start by
directly comparing the given hash against the endkeys. It then continues encrypting
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with double_encrypt, until a matching endkey is found. When this happens, the
hash chain is recreated until the wanted key is reached, and this key is then returned.
The complete code for the example is attached in C.1. This code includes more prints
for feedback, and the hex values are encoded to be more readable. Additionally, a
small precomputed table and a hash from one of the chains are included for testing.
The table is of size 100x100 and was cut from this appendix because of space, but is
included in the source code accompanying this thesis.

Making The Attack Faster

If an actual attack against these DES keys are to be carried out, the implementation
will have to be optimized for speed and performance. Because of all the DES
computations involved, the chosen DES implementation is extremely important when
it comes to speed. The fastest implementation known is the Bitslice DES [Kwa],
which was first presented by Eli Biham in 1997 [Bih97]. This specialized variant of
the encryption standard has been improved repeatedly since it was introduced, and
people are still working with making faster implementations.

Another element critical for the speed, is the platform the program is implemented
for. To achieve the desired performance for an attack like this, it is definitely recom-
mended to use hardware like a graphics processing unit (GPU) or an FPGA. GPU
programming is popular for performance dependent implementations, and several
guides and frameworks exist for this. NVIDIA CUDA [CUD] is a platform for parallel
computing with GPUs, which would be suitable for creating this implementation.

Finally, the optimal time-memory trade-off algorithm to use with the brute-force
attack should be chosen. As presented in 3.2, both the distinguished points method
and rainbow tables are great improvements to the standard precomputed tables.
There exist a lot of research comparing the algorithms to see which method is the most
efficient, where the most recent paper is [LH15] from 2015. This article concludes
that the perfect rainbow table trade-off is advantageous over perfect distinguished
points and the other algorithms. Perfect tables means tables without any identical
end points.
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This Master’s thesis has looked at the possibilities of using a USRP to create a
wireless test-bed for DSRC applications. Software programs for transmitting and
receiving DSRC messages have been implemented using the GNU Radio framework.
Custom signal processing blocks for these programs have been created, and tests
show that these blocks function properly. The transmitter seems to be working when
looking at the created signal, but this has not been confirmed with actual DSRC
equipment. Similarly, I have not been able to test the receiver with original DSRC
signals, so no clear conclusion about the program can be made. Even though no
definite results regarding communication with EFC entities have been produced, the
work with these programs has given the impression that such communication should
definitely be possible. With enough knowledge of signal processing and the DSRC
specifications, a USRP in combination with a framework like GNU Radio is all that
is needed.

Furthermore, the EFC system and its security has been especially focused on in
this thesis. Security weaknesses have been pointed out, concentrating on the use of
DES encryption. The DES algorithm design has been presented, and it has been
explained why this standard is not secure. Previous brute-force attacks against DES
keys have been introduced, and time-memory trade-off algorithms to speed up such
attacks are thoroughly described in 3.2.

Chapter 5 specifies concrete attacks against EFC, which take use of customized
DSRC transmitters and receivers posing as RSUs and OBUs. These attacks make it
possible to perform chosen plaintext attacks against the DES keys used for MAC
and access credential calculation in EFC. A specially modified brute-force attack
against these keys is described, and a code example implementing a simple version
of this attack is presented. Time-memory trade-off algorithms making the attack
more efficient are also discussed.

Further work would be to continue testing and development of the DSRC trans-
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mitter and receiver, to verify their functionality. As mentioned in 4.2, additional
equipment like an oscillator and a signal generator could be helpful for this. For
the second part with DES cracking, a possible next step could be to attempt a
more substantial implementation of the brute-force attack focusing on speed and
performance, using hardware programming and faster trade-off algorithms.
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AppendixADSRC Module

The following copyright declaration is included at the beginning of all of the created
GNU Radio files. It has been excluded from the code in the appendices to save space.

#
# Copyright 2016 Jonathan Hansen.
#
# This is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation;
# either version 3, or (at your option) any later version.
#
# This software is distributed in the hope that it will be
# useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
# PURPOSE. See the GNU General Public License for more
# details .
#
# You should have received a copy of the GNU General Public
# License along with this software; see the file COPYING.
# If not, write to the Free Software Foundation, Inc., 51
# Franklin Street, Boston, MA 02110−1301, USA.
#
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A.1 NRZI to NRZ block

#!/usr/bin/env python
# −∗− coding: utf−8 −∗−

import numpy
from gnuradio import gr

class nrzi_to_nrz_bb(gr.sync_block):
"""
docstring for block nrzi_to_nrz_bb
"""
def __init__(self, preload):
self .preload = preload

gr.sync_block.__init__(self,
name="nrzi_to_nrz_bb",
in_sig=[numpy.int8],
out_sig=[numpy.int8])

def work(self , input_items, output_items):
in0 = input_items[0]
out = output_items[0]

prev_nrzi_bit = self.preload
nrzi_bit = 0
nrz_bit = 0

for i in range(len(out)):
nrzi_bit = in0[i ]
#Convert NRZI to NRZ
if (nrzi_bit != prev_nrzi_bit):

nrz_bit = 0
else:

nrz_bit = 1
out[ i ] = nrz_bit
prev_nrzi_bit = nrzi_bit

return len(output_items[0])
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A.2 NRZ to NRZI block

#!/usr/bin/env python
# −∗− coding: utf−8 −∗−

import numpy
from gnuradio import gr

class nrz_to_nrzi_bb(gr.sync_block):
"""
docstring for block nrz_to_nrzi_bb
"""
def __init__(self, preload):
self .preload = preload

gr.sync_block.__init__(self,
name="nrz_to_nrzi_bb",
in_sig=[numpy.int8],
out_sig=[numpy.int8])

def work(self , input_items, output_items):
in0 = input_items[0]
out = output_items[0]

nrzi_bit = 0
nrz_bit = 0
prev_nrzi_bit = self.preload

for i in range(len(out)):
nrz_bit = in0[i ]

#Convert NRZ to NRZI
if (nrz_bit == 0):

nrzi_bit = prev_nrzi_bit ^ 1
else:

nrzi_bit = prev_nrzi_bit
out[ i ] = nrzi_bit
prev_nrzi_bit = nrzi_bit

return len(output_items[0])



54 A. DSRC MODULE

A.3 Pulse shaper block

#!/usr/bin/env python
# −∗− coding: utf−8 −∗−

import numpy
from gnuradio import gr

class pulse_shaper_bs(gr.interp_block):
"""
docstring for block pulse_shaper_bs
"""
def __init__(self, v_min, v_max, phase, pulse_shaper_interpolation):

gr.interp_block.__init__(self,
name="pulse_shaper_bs",
in_sig=[numpy.int8],
out_sig=[numpy.short], interp=pulse_shaper_interpolation)

self .min = v_min
self .max = v_max
self .phase = phase
self .ps_interpolation = pulse_shaper_interpolation

def work(self , input_items, output_items):
in0 = input_items[0]
out = output_items[0]

ninput_items = len(output_items[0]) / self.ps_interpolation

#print "ps_interpolation = "+str(self .ps_interpolation)
#print "ninput_items = "+str(ninput_items)

HALF_SIN_LENGTH = 256
half_sin = (0, 25, 50, 75, 100, 125, 150, 175, \
200, 225, 250, 275, 300, 325, 349, 374, \
399, 423, 448, 472, 497, 521, 545, 569, \
593, 617, 641, 665, 688, 712, 735, 759, \
782, 805, 828, 851, 874, 896, 919, 941, \
963, 985, 1007, 1029, 1050, 1072, 1093, 1114, \
1135, 1155, 1176, 1196, 1216, 1236, 1256, 1276, \
1295, 1315, 1334, 1352, 1371, 1389, 1408, 1426, \
1443, 1461, 1478, 1495, 1512, 1529, 1545, 1561, \
1577, 1593, 1608, 1624, 1639, 1653, 1668, 1682, \
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1696, 1710, 1723, 1736, 1749, 1762, 1774, 1786, \
1798, 1810, 1821, 1832, 1843, 1853, 1863, 1873, \
1883, 1892, 1901, 1910, 1919, 1927, 1935, 1942, \
1949, 1956, 1963, 1970, 1976, 1981, 1987, 1992, \
1997, 2002, 2006, 2010, 2014, 2017, 2020, 2023, \
2025, 2027, 2029, 2031, 2032, 2033, 2034, 2034, \
2034, 2034, 2033, 2032, 2031, 2029, 2027, 2025, \
2023, 2020, 2017, 2014, 2010, 2006, 2002, 1997, \
1992, 1987, 1981, 1976, 1970, 1963, 1956, 1949, \
1942, 1935, 1927, 1919, 1910, 1901, 1892, 1883, \
1873, 1863, 1853, 1843, 1832, 1821, 1810, 1798, \
1786, 1774, 1762, 1749, 1736, 1723, 1710, 1696, \
1682, 1668, 1653, 1639, 1624, 1608, 1593, 1577, \
1561, 1545, 1529, 1512, 1495, 1478, 1461, 1443, \
1426, 1408, 1389, 1371, 1352, 1334, 1315, 1295, \
1276, 1256, 1236, 1216, 1196, 1176, 1155, 1135, \
1114, 1093, 1072, 1050, 1029, 1007, 985, 963, \
941, 919, 896, 874, 851, 828, 805, 782, \
759, 735, 712, 688, 665, 641, 617, 593, \
569, 545, 521, 497, 472, 448, 423, 399, \
374, 349, 325, 300, 275, 250, 225, 200, \
175, 150, 125, 100, 75, 50, 25, 0)

half_sin2 = (25, 50, 75, 100, 126, 151, 176, 201, \
226, 251, 276, 301, 325, 350, 375, 400, \
424, 449, 473, 498, 522, 546, 570, 595, \
619, 642, 666, 690, 714, 737, 760, 784, \
807, 830, 853, 876, 898, 921, 943, 965, \
988, 1009, 1030, 1052, 1073, 1095, 1116, 1137, \
1158, 1178, 1199, 1219, 1239, 1259, 1279, 1298, \
1318, 1337, 1356, 1374, 1393, 1411, 1429, 1447, \
1465, 1482, 1499, 1516, 1533, 1550, 1566, 1582, \
1598, 1614, 1629, 1644, 1659, 1673, 1688, 1702, \
1716, 1729, 1743, 1756, 1768, 1781, 1793, 1805, \
1817, 1828, 1839, 1850, 1861, 1871, 1881, 1891, \
1901, 1910, 1919, 1927, 1936, 1944, 1951, 1959, \
1966, 1973, 1979, 1986, 1992, 1997, 2003, 2008, \
2012, 2017, 2021, 2025, 2028, 2032, 2035, 2037, \
2039, 2041, 2043, 2045, 2046, 2046, 2047, 2047, \
2047, 2046, 2046, 2045, 2043, 2041, 2039, 2037, \
2035, 2032, 2028, 2025, 2021, 2017, 2012, 2008, \
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2003, 1997, 1992, 1986, 1979, 1973, 1966, 1959, \
1951, 1944, 1936, 1927, 1919, 1910, 1901, 1891, \
1881, 1871, 1861, 1850, 1843, 1834, 1826, 1818, \
1810, 1802, 1793, 1784, 1776, 1769, 1761, 1753, \
1745, 1738, 1731, 1726, 1720, 1714, 1709, 1704, \
1698, 1693, 1688, 1682, 1677, 1672, 1667, 1662, \
1657, 1652, 1648, 1643, 1638, 1633, 1629, 1624, \
1620, 1616, 1611, 1607, 1603, 1599, 1595, 1591, \
1587, 1583, 1580, 1576, 1572, 1569, 1565, 1562, \
1559, 1555, 1552, 1549, 1546, 1543, 1540, 1538, \
1535, 1532, 1530, 1527, 1525, 1523, 1520, 1518, \
1516, 1514, 1512, 1511, 1509, 1507, 1506, 1504, \
1503, 1502, 1500, 1499, 1498, 1497, 1496, 1495, \
1495, 1494, 1494, 1493, 1493, 1492, 1492, 1492)

#print half_sin
#print half_sin2

step_length = (HALF_SIN_LENGTH ∗ 2) / self.ps_interpolation
#print "Step length (128): "+str(step_length)
TABLE_LEVEL = 2047
scaling = float( self .max − self.min) / (TABLE_LEVEL ∗2)
#print "Scaling(1): "+str(scaling)
DC_offset = float(self.min) + TABLE_LEVEL ∗ scaling + 0.5
#print "DC_offset(0.5): "+str(DC_offset)

#Verify that the interpolation factor is within range
assert ( self .ps_interpolation >= 4 and self.ps_interpolation <= 512)
#Verify that the interpolation factor is dividable by 2
assert ( self .ps_interpolation % 2 == 0)
#and that (HALF_SIN_LENGTH ∗ 2) / interpol_fac is a valid int
assert ((HALF_SIN_LENGTH ∗ 2) % self.ps_interpolation == 0)
#Verify that "sign" has a correct value
assert ( self .phase == −1 or self.phase == 1)

# <+signal processing here+>

for i in range(ninput_items):
if (in0[ i]==0):

for j in range(self.ps_interpolation/2):
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out[ self .ps_interpolation∗i+j] = half_sin[step_length∗j] ∗
self .phase ∗ scaling + DC_offset

if (out[ self .ps_interpolation∗i+j] < 0):
out[ self .ps_interpolation∗i+j] = out[ self .ps_interpolation∗i+j]

− 1
for j in range(self.ps_interpolation/2, self .ps_interpolation):

out[ self .ps_interpolation∗i+j] = −half_sin[step_length∗j −
HALF_SIN_LENGTH] ∗ self.phase ∗ scaling + DC_offset

if (out[ self .ps_interpolation∗i+j] < 0):
out[ self .ps_interpolation∗i+j] = out[ self .ps_interpolation∗i+j]

− 1
elif (in0[ i]==1):

for j in range(self.ps_interpolation/2):
out[ self .ps_interpolation∗i+j] = half_sin2[step_length∗j] ∗

self .phase ∗ scaling + DC_offset
if (out[ self .ps_interpolation∗i+j] < 0):

out[ self .ps_interpolation∗i+j] = out[ self .ps_interpolation∗i+j]
− 1

for j in range(self.ps_interpolation/2, self .ps_interpolation):
out[ self .ps_interpolation∗i+j] =

half_sin2[HALF_SIN_LENGTH∗2 − step_length∗j −1] ∗
self.phase ∗ scaling + DC_offset

if (out[ self .ps_interpolation∗i+j] < 0):
out[ self .ps_interpolation∗i+j] = out[ self .ps_interpolation∗i+j]

− 1
self .phase = −self.phase

#out[:] = in0
#print out

return len(output_items[0])
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B.1 DSRC Transmitter

Figure B.1: The GRC transmitter flow chart.
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B.2 DSRC Receiver

Figure B.2: The complete GRC receiver flow chart.



AppendixCBrute-Force Example

C.1 modified_bruteforce.py

from pyDes import ∗
from time import time
import os

def double_encrypt(p0,p1,key):
#Create DES object with the new key
k = des(key)
print ("Key: %r" % key.encode("hex"))

#First encryption
c0 = k.encrypt(p0)
#Truncate output
c0 = c0.encode("hex") [:8]
print("c0: %r" % c0)

#Second encrytion
c1 = k.encrypt(p1)
#Truncate output
c1 = c1.encode("hex") [:8]
print("c1: %r" % c1)

#Concatenate the two outputs
c = (c0+c1).decode("hex")
print("Ciphertext: %r" % c.encode("hex"))

return c
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def create_table(length,chainlength):

table = [None] ∗ length

for i in range(length):

#Randomly selected startkey for each chain
startkey = os.urandom(8)
print("Random startkey: %r" % startkey)
key = startkey

for j in range(chainlength):
#Plaintexts for the two DES encryptions
p0 = ’\x00\x04\x00\x00\x00\x00\x00\x00’
p1 = ’\x00\x04\xff\xff\x00\x00\x00\x00’

c = double_encrypt(p0,p1,key)
key = c
print("")

#Add startkey and endkey to the table
table [ i ] = (startkey.encode("hex"),key.encode("hex"))
print table

#Sort table by endkeys
table = sorted(table, key=lambda pair: pair[1])
print("")
print table
return table

def reverse_hash(hash, table,chainlength):

#Plaintexts for the two DES encryptions
p0 = ’\x00\x04\x00\x00\x00\x00\x00\x00’
p1 = ’\x00\x04\xff\xff\x00\x00\x00\x00’

nexthash = hash

#If no matching endkey is found within the chainlength,
# the table does not contain the wanted key
for y in range(chainlength):
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key = nexthash
print (’Trying key nr %r: %r’ % (y+1,key))

#Search through all the endkeys
for i in range(len(table)):

if key==table[i ][1]:
#Matching endkey found
print(’Endkey found: %r’ % key)
endkey = key
startkey = table[ i ][0]
print(’Startkey: %r’ % startkey)
startkey = startkey.decode("hex")

#Recreate chain from startkey to the wanted key
for j in range(chainlength−y−1):

c = double_encrypt(p0,p1,startkey)
startkey = c

#The wanted key is found
return c.encode("hex")

nexthash = double_encrypt(p0,p1,key.decode("hex")).encode("hex")

print("Key not found")
return None

# This 100∗100 table is added for testing ,
# together with the hash value ’e15ed48ca2ab8752’
# and the corresponding key ’1945d0157aabb5ea’.
# This hash is located in chain number 76,
# which has the endkey ’c54f238e17ba1fed’.
table = # Cut to save space. Included in the source code with the thesis .
hash = ’e15ed48ca2ab8752’

#t0 = time()
#table = create_table(100,100)
#t1 = time()
#tabletime = t1−t0
#print (’Table created in %ds’ % tabletime)

t1 = time()
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key = reverse_hash(hash,table,100)
t2 = time()

keytime = t2−t1
print(’Key found: %r, in %ds’ % (key,keytime))
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