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Abstract
Weconsider a two-component interacting bosonic condensate with dominating intra-species
repulsive density–density interactions.We study the phase diagramof the system atfinite temperature
with rotation, using large-scaleMonte Carlo simulations of a two-componentGinzburg–Landau
model of the system. In the presence of rotation, the system features a competition between long-
range vortex–vortex interactions and short-range density–density interactions. This leads to a
rotation-driven ‘mixing’ phase transition in a spatially inhomogeneous state with a broken ( )U 1
symmetry. Thermal fluctuations in this state lead to nematic two-component sheets of vortex liquids.
At sufficiently strong inter-component interaction, we find that the superfluid and 2 phase
transitions split. This results in the formation of an intermediate state which breaks only 2 symmetry.
It represents two phase separated normal fluidswith a difference in their densities.

1. Introduction

Multi-component phase-coherent condensates, such asmulti-component superconductors and Bose–Einstein
condensates (BECs), have proven to be a rich ground for exploring quantumphenomena in condensedmatter
physics. In particular, BECs serve as a highly useful syntheticmodel systems for a wide variety of real condensed
matter systems, due to their tunable interactions usingmagnetic and optical Feshbach-resonances. By creating
mixtures of the same boson in different hyperfine states, one effectively createsmulticomponent condensates
[1–4]. Furthermore, by using crossed lasers, onemay set up latticemodel systemswith a vast combinations of
intersite hoppingmatrix elements, as well as intrasite interactions, both intra- and interspecies [5–10]. This
means that thesemodel systems, apart frombeing interesting in their own right, emulate various aspects of a
plethora of condensedmatter systems of great current interest, such asmulticomponent superconductors,
Mott-insulators, and even topologically nontrivial band insulators. The latter follows from the recent realization
of synthetic spin-orbit couplings in such condensates [11–13]. Of particular interest is the physics of these
systems in the strong coupling regime.

BECswith two components of the order parameter (two species of particles) represent afirst step away from
ordinary single-component condensates. This extension opens up awhole vista of physics which has no
counterpart compared to single-component condensates, due to thewide variety of interspecies couplings that
may be generated. Thus, these systems display physics which is beyondwhat is ordinarily seen in condensed
matter systems, butmay nevertheless serve as usefulmodel systems for future artificially engineered condensed
matter systems. As such, it is of interest to chart their physical properties to themaximumextent over awide
range of parameters.

The parameter rangewhere inter-component density–density interactions exceed intra-component
density–density interactions signals the onset of immiscibility, or phase separation, of the two components.
Numerical works solving theGross–Pitaevskii ground-state equations have also found interesting vortex lattices
in this regime [14–16, 19–24]. The effect of the repulsive inter-component density–density interactions
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overpowering the intra-component interactions causes the condensate to form intertwined sheets of vortices
when the condensate is subject to rotation [25]. The condition for immiscibility is readily realized
experimentally, usingmagnetic and optical Feschbach resonances [16, 26]. Several works have also focused on
the critical properties of the rotation-freemodel using RG,mean-field and quantumMonteCarlo
simulations [17, 18].

In the present paper, we focus on the regime of density–density interactionswhere the inter-component
interactions are larger than the intra-component interactions. This regime is qualitatively different from the case
inwhich the intra-component interactions dominate, in that immiscibility (phase-separation) of the condensate
components sets in. This leads to density-modulated non-uniform ground states. Previousworks have studied
the effect of an inter-component density–density interaction on the rotation-induced non-homogeneous
ground states. Theseworksweremostly limited to two spatial dimensions solving theGross–Pitaevskii ground-
state equations [14–16, 19–25], although certain aspects of the three-dimensional case were also studied at the
mean-field level [15, 24]. Here, we consider the case of three dimensions, taking fully into account the thermal
density- and phase-fluctuation of the condensate ordering fields.

2.Definitions

2.1.Model
Weconsider a general Ginzburg–Landau (GL)model of anN-component BECs, which in the thermodynamic
limit is defined as
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is theHamiltonian. Thismodel is a description of the condensate while the particle content of the systemoutside
the condensate is not captured by equation (2). Here, the fieldAμ formally appears as a non-fluctuating gauge-
field and parametrizes the angular velocity of the systemunder rotation. The condensate fields yi are
dimensionful complexfields which are allowed tofluctuate both in phase and amplitude. Importantly, the
phases are definedwith compact support p q p- < £ ,i leading to the appearance of topological defects in the
formof vortices (two dimensions) and vortex loops (three dimensions) in the condensate. Themodel is thus
capable of capturing all thermalfluctuations of the condensate, including vortex-fluctuations destroying long-
range phase coherence in the condensate.Moreover, i and j are indices running from1 toN denoting the
component of the order parameter (a ‘color’ index). The parameters ai and gij are chemical potentials and
interaction parameters of themodel, respectively. F0 is the coupling constant to the rotation-induced vector
potential, andmi is the particlemass of species i. Formixtures consisting of different atoms or different isotopes
of one atom, themasses will depend on the index i, while formixtures consisting of same atoms in different
hyperfine states, themasses are equal among the components i. The inter- and intra-component coupling
parameters gij are related to real inter- and intra-component scattering lengths aij, in the followingway
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Here, = +( )m m m m mij i j i j is the reducedmass. In this work, we focus on homonuclear condensates with
several components in different hyperfine states, i.e. = "m m i.i Note that when

l= º > = ºg g g g g g ,12 21 11 22 i.e. l > 1, there is a strong tendency in the system to phase separate, leading to
two immiscible quantumfluids. For a homonuclear binarymixture, we have =m m 2.ij i Then, it suffices that

>a aij ii for the inter-component density–density interactions to dominate the intra-component density–
density interactions.

It is convenient to rewrite the potential (repeated indices are summed over) as follows [27]

a y y yº + ( )V g , 5i i ij i j
2 2 2

by introducing interaction parameters h w, , such that h w= +g , and l h w= -g , i.e. h l= +( )g 1 2,
w l= -( )g 1 2.Here,λ denotes the ratio between the inter- and intra-component interactions. Then,
equation (5) takes the form (up to an additive constant)
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For l > 1, w < 0,with the proviso that h w h w+ = - >∣ ∣ 0 for stability. Furthermore, wewill assume that
a a= ,1 2 a a¹1 2 acts as an externalfield conjugate to the pseudo-magnetization of the system.

We discretize themodel on a cubic lattice with sides L by defining the order parameter field on a discrete set
of coordinates y y( )r ,i ir, Î + + = ¼( ˆ ˆ ˆ∣ )i j k i j k Lr x y z , , 1, , .The covariant derivative is replaced by a
forward difference
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Here, the lattice version of the non-fluctuating gauge field is parametrized in Landau gauge, p=m ( )A fx0, 2 , 0 ,r,

where f is the number of vortices per plaquette, orfilling fraction. The lattice spacing, a, isfixed to be smaller than
the characteristic length scale of the variations of the order parameter, andm Îˆ (ˆ ˆ ˆ)x y z, , is a unit vector.

Thus, the lattice version of theHamiltonianwe consider is given by
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Here, we havewritten the order parameter fields as real amplitudes and phases, y y= qe .i i
i

r r, ,
ir, In addition,

we have defined an energy scale, a=J a g ,0 0
2 3

0
3 where a0 and g0 are the parameters of theGL theory atT= 0.

Throughout, wefix h = 5.0 and a h a h+ = + =2 2 0.1 2 This guarantees a non-zero ground state condensate
density for all values ofω.

2.2. Ground state symmetry
Equation (8) defines two superfluids coupled by density–density interactions.When there is no phase
separation, we have a ( )U 1 × ( )U 1 symmetry broken in the ground state.When the inter-component
interaction is equal to the intra-component interaction the systembreaks SU(2) symmetry.Here, we are
interested in the phase separated case. In this case, the systembreaks an additional 2 symmetry, corresponding
to interchanging y y« .1 2 That is, when w > 0, y y=∣ ∣ ∣ ∣1

2
2

2 is favored. This represents a 2 -symmetric
state. On the other hand, when w < 0, y y¹∣ ∣ ∣ ∣1

2
2

2 is favored, such that y y-∣ ∣ ∣ ∣1
2

2
2 may acquire a nonzero

expectation value, with equal probabilities that the expectation value is either positive or negative. This
corresponds to breaking an Ising-like 2 symmetry. Thus, the ground state breaks a composite ´( )U Z1 2

symmetry.

2.3.Observables
The equilibriumphases of themodel are characterized by several order parameters. To identify the Ising-like,
phase separated order of the systemwe define
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Afinite value ofΔ signals relative density depletion in either of the condensates. In addition to 2 order, it is
important tomonitor the ( )U 1 ordering of the system. The helicitymodulusmeasures phase coherence along a
given direction of the system. It is defined as
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Here, q¢[ ]F is the free energy with an infinitesimal phase twist, dm, applied along theμ-direction, i.e., wemake
the replacement
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dq q q ¢ = - · ( )r 12i i ir r r, , ,

in F.
We also identify the nature of the phases by computing thermal averages of real-space configurations of

densities yá ñ^∣ ( )∣ri
2 and vortices á ñ^∣ ( )∣n ri

2 in the system. These are computed by averaging the quantity along
the z-direction of the system,with subsequent thermal averaging. That is
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The vorticity, ni r, is calculated by traversing a plaquette with surface normal in the z-direction, adding the phase
difference q q- -m m+ ˆ Ai ir r r, , , on each link. If this plaquette sum turns out to have a value outside the primary
interval, p p-( ], , p p-( )n n2 2 is added to the sum,which inserts a vortex of charge+ -( )n n on the plaquette.

To further characterize vortex structures, we examine the structure factor of the vortices, defined as
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This is simply the Fourier-transform of the z-averaged vorticity. To improve the resolution of the interesting
q-vectors, we remove the =q̂ 0 point from thefigures.We also calculate
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in order tomonitor the development of peaks in the structure factor across transition points.
We also compute the specific heat capacity

b
= á - á ñ ñ( ) ( )C L

H H . 17V
3

2
2

as ameans of precisely locating the various transition points.

2.4.Details of theMonte-Carlo simulations
Weconsider themodel on a lattice of size ´ ´L L L ,x y z using theMonte-Carlo algorithm, with a simple
restricted update scheme of each physical variable, andMetropolis–Hastings [28, 29] tests for acceptance. Here,
Li is the linear extent of the system in theCartesian direction Î ( )i x y z, , . In all our simulation, we have used
cubic systems = = =L L L L,x y z with Î { }L 32, 64, 96 .At each inverse temperature, 106Monte-Carlo steps
are typically used, while 105 additional sweeps are used for equilibration. EachMonte-Carlo step consists of an
attempt to update each amplitude and phase separately in succession, at each lattice site. To improve acceptance
rates, we only allow each update to change a variable within a limited interval around the previous value, the size
of which is chosen by approximatelymaximizing acceptance rates andminimizing autocorrelations. The
Mersenne–Twister algorithm is used to generate the pseudo-randomnumbers needed [30]. To ensure that the
state is properly equilibrated, time series of the internal energymeasured during equilibration are examined for
convergence. To avoidmetastable states, wemake sure that several simulations with identical parameters and
different initial seeds of the randomnumber generator anneals to the same state.Measurements are post-
processedwithmultiple histogram reweighting [31]. Error estimates are determined by the jackknife
method [32].

3.Mixing and superfluid phase transitions in the presence of rotation

In this sectionwe consider the effect of imposing afinite rotation on the condensate. Ourmain results are
presented for a system size of L= 64 and =f 1 32, butwe have considered system sizes Î { }L 32, 64, 96 .

Introducing afinite amount of (rotation-induced) vortices in the ground state significantly alters the simple
arguments regarding the expected ground state symmetry presented above. The effect of the vortices is to
suppress the parameter regimewhere a broken 2 symmetry is found,D ¹ 0.Recall that for f= 0, the ground
state the broken 2 symmetry will reduce the condensate to a single component condensate with a single broken

( )U 1 symmetry in the ground state. Afinite amount of vortices alters this. Vortices interact via long range
current–current interactions. It is energetically favorable tomaximize the distance between vortices, subject to

4
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the constraint that a specific number of themhas to be containedwithin a given area perpendicular to the
direction of rotation. This effect leads to a uniformdistribution ofminima (equivalentlymaxima) in the
condensate densities. On the other hand, density suppression by vortices in one component in general allows the
densities in the second component to nucleate. The short-range repulsive inter-component density–density
interaction h w y y y y- +( )(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
2

2
2

2
1

2 (which exceeds the intra-component density–density interaction
h w y y y y+ +( )(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ )1

2
1

2
2

2
2

2 for w < 0), tends to produce regionswhere the density one component is
largewhile the other is small, and vice versa. Below a critical value of w w- = - » + 0.6,c we donot see any
onset ofD ¹ 0 at any value ofβ as the system is cooled froma uniform state. That is, the interface tension
between the phases is sufficiently low and the overall free energy, which includes long range inter vortex
interaction, isminimized by the state withD = 0.

For the subsequent discussion, it helps to consider a schematic phase diagramof the systemwith ¹f 0,
whichwe have obtained through large-scaleMonte-Carlo simulations. The phase diagram is shown infigure 1.
Region I denotes the simple translationally invariant high-temperature 2 - and ( )U 1 × ( )U 1 -symmetric two-
component phase with equal densities of both condensate components. Region II shows the 2 -symmetric
striped phase. Region III is a regionwith broken 2 -symmetry, with one high-density condensate component in
a uniformhexagonal vortex lattice phase, and one low-density component in a uniform vortex liquid phase. The
gray region separating Region II and III represents upper and lower bounds of the transition betweenRegion II
and III. Region IV is a regionwith broken 2 -symmetry, butwith the two condensates both in a vortex-liquid
phase. Thus, the phase transition separating Region I fromRegion II is a phase-transition line separating a two-
component isotropic vortex liquid from a two-component striped (nematic) vortex liquid. The line separating
Region I fromRegion IV is onewhere a 2 -symmetry is broken, and the line separating Region II fromRegion
IV is onewhere a translational symmetry is broken and the system acquires non-zero helicitymodulus

3.1. Transition fromRegion I to Region II
Wefirst consider the thermally driven transition from the high-temperature symmetric two-component vortex
liquid phase, Region I, to the low-temperature two-component striped (nematic) phase, Region II, forfixed
negativeω, but where w w<∣ ∣ ∣ ∣,c i.e. to the left of the splitting point where Region IV opens up.

Infigure 2we show the specific heat cV, helicitymoduli in the z-direction ¡z i, as the inverse temperatureβ is
varied, for =f 1 32 andω=−0.50. This corresponds to a value of w- to the left of the splitting point where
Region IV opens up (see figure 1). The longitudinal helicitymoduli ¡z i, of both components develop a finite
expectation value. The onset of this finite value is accompanied by an anomaly in the specific heat.

We note the sharp, δ-function anomaly in the specific heat and the discontinuous behavior of the helicity
moduli in both components. These features are all straightforwardly interpreted as signals of afirst-order phase
transition. This is furthermore borne out by performing a computation of the histogramof the free energy

Figure 1.The phase diagramof the two-component Bose–Einstein condensate atfinite rotation, ¹f 0, h = 5, and w < 0.Negative
ωmay lead to the breaking of the 2 -symmetry in the problem, in addition to the usual breaking of the obvious ( )U 1 × ( )U 1
-symmetry. Region I is a 2 - as well as ( )U 1 × ( )U 1 -symmetric two-component vortex-liquid phase. Region II is a 2 -symmetric
striped (nematic)phase consisting of a two-component vortex liquidwith broken translational symmetry in a direction perpendicular
to the stripes, but not in the direction parallel to the stripes. Region III is a phase with broken 2 -symmetry, andwith broken
translational symmetry in one condensate component, but not the other. Region IV is similar to Region III, except that no
translational symmetry is broken in either condensate component. The gray region represents upper and lower bounds of the
transition line betweenRegion II and III. Details are explained in themain body of the paper.
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versus internal energy of the system at precisely at the transition, see figure 3. This shows a double-dip structure
with a peak in between, the standard hallmark of two degenerate coexisting states separated by a surfacewhose
energy is given by the height of the peak between theminima. This surface energy clearly scales upwith system
size (more precisely it scales with the cross-sectional area of the system), while the difference between the
energies separating the two degenerate states approaches afinite value as the system size increases. The
histograms develop into two separate δ-function peaks as the system size increases, while the difference in the
internal energy between the two degenerate states of equal probability (equivalently of equal free energy) is the
latent heat of the system. The latter clearly approaches a finite value per degree of freedomas the system size
increases, demonstrating thefirst-order character of the transition.

To further characterize the transition I II, figure 4, shows the 2 order parameterΔ and the structure
functions Î^( ) ( )S iq , 1, 2i in a narrow range around the transition point. From the top panel, it is seen that
D = 0 for allβ considered.Moreover, we see that asβ is increased, themaximumvalue of the structure
function, corresponding to the developing Bragg peaks in the low temperature phase are significantly increased
at the transition temperature. Themaximum ismeasured by averaging themaximumof the structure function
at eachmeasurement, regardless of location, hence the actual valuemay differ fromwhat is seen in the bottom
panel offigure 4. The onset of the lattermarks the transition from a uniform two-component vortex liquid to a
two-component nematic vortex liquid, a striped phase. Themechanism for producing the striped phase is
described above. In the striped phase, it is difficult to equilibrate the system at each new temperature stepwith
only localMC-updates, as is evident from the noise in the structure functions seen on the low temperature side

Figure 2. Specific heat, cV, and helicitymoduli along the z-axis ,¡ ,z i, with =f 1 32 and w = -0.50, i.e as the system transitions from
Region I toRegion II infigure 1.

Figure 3.Histogramsof the probability distributionof the internal energyper site,U L ,3 at the transitionpoint w b=- »0.5, 0.9995,
separatingRegion I fromRegion II infigure 1, for = { }L 64, 96 .Multi-histogram reweightingwasused toobtainhistogramswith
approximately equal peak heights.

6
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of the top panel offigure 4. This noise wouldmost likely be improved by using different approaches, for instance
cluster algorithms.However, the noise does not alter our conclusions regarding the transition, or the nature of
the striped phase. Note that in the thermodynamic limit, isolated vortex sheets can be expected to be in the state
of one-dimensional (1D) liquid at anyfinite temperature in analogywith the absence of crystalline order in 1D
systems.

We thus conclude that the transition fromRegion I to Region II is afirst order phase-transition involving the
breaking of a composite ( )U 1 × ( )U 1 symmetry, from an isotropic two-component vortex liquid in Region I to
a two-component nematic phase of intercalated lattices of stripes of 1D vortex liquids in Region II.We next go
on to consider in somemore detail the structure functions, primarily to gainmore insight into the character of
the striped phase of Region II.

The four bottompanels offigure 4 show the structure functions Î^( ) ( )S iq , 1, 2i at two values ofβ,
b = 0.990 and b = 1.010.Atβ= 0.990, both structure functions show ring-like structures characteristic of an
isotropic liquid.Notice also that the intensity of the rings are equal, which is a consequence of the fact thatΔ= 0.
Atβ= 1.010, both structure functions have developed Bragg peaks in one direction bot no Bragg peaks in the
corresponding perpendicular direction. This is indicative of a striped phase.

Thismay be further corroborated by correlating the structure functionswith real-space vortex structures for
various values ofβ. This is shown infigure 5.

One aspect of the structure functions shown in the two bottom rows offigure 5, is particularly important.
Consider first the case b = 0.900,well within Region 1 for w w< .c This is shown in the leftmost column of
figure 5. The real-space vortex configurations in both components are disordered.Moreover, Î^( ) ( )S iq , 1, 2i

both components feature ring-structures characteristic of an isotropic liquid phase. The value of ∣ ∣q at which the
rings appear is ameasure of the average inverse separation between the vortices in the isotropic liquids. The
intensities of both structure functions is the same. Consider next the caseβ= 0.995, shown in themiddle

Figure 4. 2 order parameterΔ and vortex structure functions Î^( ) ( )S iq , 1, 2i in the vicinity of the transition fromRegion I to
Region II,figure 1, with w= = -f 1 32, 0.50.The top panel showsΔ as a function ofβ, as well asmaxima of the structure functions

^( )( )S qmax .i The four bottompanels show the structure functions ^( )S q1 and ^( )S q2 for the two values b = 0.990 and b = 1.010.

7
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Figure 5.Tableaux showing detailed real space and reciprocal space pictures of the transition fromRegion I toRegion II. The inverse
temperature is varied between each column, b Î { }0.900, 0.995, 1.100 . Each row shows averaged vortex densities of each
component, á ñ^( )n r ,i averaged amplitude densities of each component, yá ñ^∣ ( )∣r ,i and vortex structure functions of each
component, ^( )S q .i The leftmost column corresponds to an inverse temperaturewell within Region I, themiddle column is at an
inverse temperature just below the transition intoRegion II, while the rightmost column iswell within Region II.
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columnoffigure 5. From the real-space pictures, one discerns a tendency towards stripe-formation. This is
reflected in Î^( ) ( )S iq , 1, 2 ,i where the ring-like structures now instead are anisotropic, developing peaks in
the direction perpendicular to the direction of the incipient stripes. At even lower temperatures b = 1.100,well
within Region II where stripes are fully developed, the tendency towards anisotropies in Î^( ) ( )S iq , 1, 2i is
evenmore obvious. This is shown in the rightmost columnoffigure 5. In this case, Bragg-peaks have fully
developed in the directions perpendicular to the stripes. There are, however, no Bragg peaks in the direction
parallel to the stripes. If the stripes were perfectly straight, therewould be twoweakBragg peaks in these
directions. This would be the 1D analog of the ring-like liquid structures of the isotropic liquid. The value of ∣ ∣q
at which this single weak peak occurs corresponds to the inverse average separation between vortices within the
stripes. The reason they are not observed in our calculations, is due to the slight fluctuations in the shape of the
stripes, whichwash the Bragg peaks out.

We thus conclude that Region II is a striped phasewhere the stripes form 1Dvortex liquids. Vortices in
quasi-1D systems have finite energy and cannot form a 1D solid at anyfinite temperature. This is consistent with
the structure factor we observe. On the other hand, the interaction between stripesmay not be negligible, so the
details of the phase diagram inRegion II warrant further investigation. A notable feature of this state is the finite
helicitymodulus in z-direction, even if the structure factors show absence of vortex orderingwithin stripes. This
highly unusual situation originates with the positive interface energy between the two condensates. That is,
consider a stripe-liquid in x-direction. A vortex line in the z-direction is free to execute transversemeanderings
in the x-direction. A superflow in the z-directionwould produce a y-component of theMagnus-force on the x-
components of thefluctuating vortex lines.However, vortex segments are restrained frommoving in y-direction
due to the stripe interface tension. This results in the observed finite helicitymodulus in z-direction. Similar
results are found for a number of otherω-valueswe have considered, for4 w- < 0.6.

3.2. Transition fromRegion I to Region III, via Region IV
Increasing w- further, such that the inter-species density–density interaction increases, eventually favors a
different pattern of phase-separation of the two components, despite the effect of long-range current–current
interactions between rotation-induced vortices promoting uniformdensity distributions. This leads to a broken
2 -symmetry. The condensate component with a globally suppressed density will therefore be in a vortex-liquid
phasewhile the condensate component with globally enhanced density will be in a vortex lattice phase. Thus, the
broken symmetries of the ordered phase are ( )U 1 × 2 , and the breaking of these symmetries are split into two
separate transitions. The splitting occurs because the ( )U 1 -sector directly couples to the rotation, while the 2

-sector does not. The phase-transition in the stiff ( )U 1 -sector, which is a vortex-latticemelting, is therefore
separated from the 2 -transition by an amountwhich depends on f.

This is illustrated in figure 6, showingΔ, specific heatCV, and ¡ ¡,z z,1 ,2 as functions ofβ. The 2 order
parameterΔhas an onset at b ,

2
at which the specific heat has an anomaly. This transition is a transitionwhere

an Ising like order parameter is broken, and can be continuous. There is no onset of ¡ ,z,2 showing that
component 2 remains in a vortex liquid phase. Component 1 forms a vortex solid at lower temperature, as
evidenced by the onset of ¡ .z,1 This happens at a b ( )U 1 which is separated from b ,

2
as explained above. The

freezing of component one is effectively a freezing transition of a single component, and is therefore expected to
be afirst-order transition. Accompanying this onewould expect to see a second, smaller anomaly in the specific
heat, at a lower temperature. This is not observed in the simulations performed, as the small anomaly is
completely overshadowed by the large specific heat peak from the 2 transition.

Figure 7 shows the structure functions ^( )S q1 and ^( )S q2 atω=−4.0 at three different values ofβ, namely
b = ( )0.184, 0.190, 0.195 .These values correspond to Regions I, IV, and III infigure 1, respectively. Here again,
we see the freezing of one component across the transition, while the other component remains in the liquid
phase. The additional informationwe get out of these panels is that one component remains an isotropic vortex
liquid, while the other component freezes into a hexagonal vortex liquid. This sets the low-temperature Region
III (see figure 1) atω=−4.0 drastically apart from the low-temperature Region II (see figure 1) atω=−0.50.
The latter features a low-temperature two-component nematic vortex liquid phase with broken rotational
invariance, the former case features a low-temperaturemixed isotropic vortex liquid/hexagonal vortex lattice
phase.

Taking figure 1 andfigure 6 at face value, suggests that two separate transitions exist. However, one cannot
entirely rule outfinite-size artifacts associatedwith a single transitionwhere the onset of ¡z,1would coincide
with the onset ofΔ infigure 6. By examining the structure factors, examples of which are shown in themiddle
panel offigure 7 it is evident that a relatively large intermediate regime corresponding to Region IV is observed.
From the sharp onset ofΔ, accompanied by the specific heat peak, we determine the transition temperature for

4
We also observedmuch smaller but finite helicitymodulus in the direction perpendicular to stripes, whichwe interpret as a consequence of

weak standard geometric pinning of domainwalls.
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the 2 symmetry breaking to be b = ( )0.1850 5 .
2

The appearance of six sharply definedBragg peaks in the
structure factor, appear at a lower temperature b = ( )0.195 1 .The onset of ¡z,1prior to the appearence of the
Bragg peaksmay be afinite size effect. That being said, simulating larger system sizesmay also alter the details of
the transition temperatures.

On general grounds onemay expect that phase IV should exist. The simulations unambiguously identify a
state where one component has a vortex lattice while the other componentwith a suppressed density is in a state
of tensionless vortexmatter. Since a vortex liquid can formdue to positional disorder of tension-full vortex lines,

Figure 6.The phase transitions betweenRegion I andRegion IV, and betweenRegion IV andRegion III, for w= = -f 1 32, 4.0,
and L= 64.Note the separation between the onset ofΔ and ¡ .z i, The onset ofΔ signals the breaking of a 2 -symmetry, alongwith the
associated anomaly in specific heatCV. Thismarks the transition fromRegion I to Region IV infigure 1. In Region IV, we haveD ¹ 0,
while both components remain in isotropic vortex liquid states. In passing fromRegion IV toRegion III in figure 1, the onset of one of
the helicitymoduli, ¡z,1 say, signals the freezing of the vortex liquid in the corresponding component, while the absence of an onset of
the helicitymodulus, ¡z,2 say, in the other component shows that this component remains in a vortex liquid phase. The onset of ¡z,1

signals the breaking of a ( )U 1 -symmetry associatedwith vortex-liquid freezing.

Figure 7.The phase transitions of the system for w= = -f 1 32, 4.0. Structure functions ^( )S q1 and ^( )S q2 at three different
values ofβ, namely b = ( )0.184, 0.190, 0.195 , corresponding to Regions I, IV, and III infigure 1, respectively.
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it can be expected that the tension-full vortex liquid in the dominant component still suppresses the density of
subdominant component leading to the appearance of the state IV. Alternatively, suppose that one starts out
from a low-temperature phase-separated statewhere one components is in a vortex lattice state and the other
component effectively has amuch lower density. The vortex lattice of the dominant componentmaymelt
without affecting the density in this component, since vortex-latticemelting is driven by phase-fluctuations of
the superfluid order parameter, not density fluctuations. Further investigation of this part of the phase diagram
iswarranted.

For amore detailed overview of the transition, figure 8 shows the evolution of á ñ^( )n r ,i yá ñ^∣ ( )∣r ,i and

^( )S qi across the three Regions, I, IV, and III. If one follows the evolution of the vortex densities in each
component, it is seen that the componentwhich acquires a low stiffness in Region IV and III is virtually
unchanged, i.e. it remains in a completely uniform state. The other component, on the other hand, evolves from
a uniform state in Region I, through being close to freezing into a hexagonal lattice in Region IV, and finally into
a hexagonal structure in Region III. The amplitude densities corroborate this picture. In Region I they are on
average equal and uniform,while in Region IV the difference in stiffness is clearly seen.Here some
inhomogeneities arise in the stiff component as the vortices are close to entering a hexagonal phase, which is also
reflected in the soft component simply because of the local intercomponent repulsion. In Region III, the

Figure 8.Tableaux showing detailed real space pictures of the transition fromRegion I toRegion III, via Region IV. The inverse
temperature is varied between each column, b Î { }0.184, 0.190, 0.195 , and w = -4. Each row shows, from top to bottom, averaged
vortex densities of each component, á ñ^( )n r ,i and averaged amplitude densities of each component, yá ñ^∣ ( )∣r .i Note the vortex-
ordering in one of the components, and the lack of vortex-ordering in the other component, as the system transitions from the
symmetric phase Region I (b = 0.184) to the low-temperature phase Region III (b = 0.195). Note also the disparity in density-
amplitudes in the two components in the intermediate regimeRegion IV (b = 0.190), due to the 2 -symmetry breaking.
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amplitude density of the stiff component is high and uniformwith small dips corresponding to each vortex. The
soft component is low anduniformwith small peaks, again due to intercomponent interactions.

3.3. Transition fromRegion II to Region III
Finally, we consider the transition fromRegion II to Region III. In Region II, we haveD = 0,while in Region
III,D ¹ 0.Therefore the Regions II and III are separated by a 2 -symmetry breaking. Stripe-forming systems
in general have complicated structural transitions.Wefind an intermediate regimewhere the lattice of stripes
has disordered, butwhere the hexagonal lattice/isotropic liquid-mixture has not yet fully developed. This results
inmultiplemetastable, but robust coexisting phases of vortices in components 1 and 2 residing in different parts
of the condensate. These two coexisting phases are separated by a surface of positive surface energy. This surface
constrains themotion of vortex systems. As a result, in the finite systemswhichwe simulate, the helicity
modulus ¡z i, acquire nonzero values in both components in this intermediate regime.

As w- is increased further, such that one component becomes dominant and the other is suppressed, the
minor component becomes normal. Note thatwhen the inclusions of the normal component become isolated,
they represent quasi-1D subsystems.Quasi-1D systems are superfluid only at zero temperature. However,
simulations onfinite systemsmay still display finite helicitymodulus. As the density of the component increases,
the corresponding intra-component current–current interaction between the rotation-induced vortices in this
component increases. Hence, the intra-component long-range interaction for this component dominates, and a
hexagonal vortex-lattice results. Consequently, the helicity-moduli in the two components have quite different
behavior as w- increases. In the component that eventually takes up a vortex lattice state, it increases
monotonically with w- . In the other component, it is non-monotonic as a function ofω, eventually
approaching 0 deep into Region III.

Typical examples of the vortex structures that appear betweenRegion II andRegion III infigure 1 are shown
infigure 9. These are allmetastable, long-lived states which prevent equilibration of the system.Wehave been
unable to locate the sharp separatrix between these two regions, andwhether there are other stable intermediate
phases due to the lack of equilibration.Note that this problem is known in other stripe-forming systemswhere
phases are separated bymetastable and glassy states [41, 42]. The gray area infigure 1 represents upper and lower
bounds for the transition. The boundswere determined by determining the parameter rangewhere the
simulation equilibrates to either striped or hexagonal/liquid separated configurations, exclusively.

4. Conclusions

In this paper, we have considered the states of a two-component BEC in the situationwhere inter-component
density–density interactions dominate the intra-component density–density interactions. The two components
of the condensate are assumed to be comprised of homonuclear atoms in two different hyperfine states. The
problem features an Ising-like symmetry. This Ising (or 2 ) symmetry emerges from the dominance of the
inter-component interactions over the intra-component ones. The spontaneous breaking of this Ising-
symmetry corresponds to a spontaneously generated, interaction-driven, imbalance between condensates in
different hyperfine states.

Atfinite rotation, wefind four regions, denotedRegions I, II, III, and IV, of thermodynamically stable states,
see figure 1. Region I is a high-temperature regimewhere the system remains in a two-component isotropic
vortex liquid phase with equal densities of both components. Region II is a nematic phase (broken rotational
symmetry)with ordered stripes of 1D vortex liquids, andwith equal densities in different components. This state
features a spontaneously broken composite ( )U 1 × ( )U 1 -symmetry, but is 2 -symmetric. In addition it
spontaneously breaks translation symmetry in one direction due to formation of periodicmodulation of
condensate densities. Region III is amixed state with one component in a ( )U 1 -symmetric isotropic vortex
liquid phasewhile the other component resides in a hexagonal vortex lattice phasewith broken ( )U 1 -symmetry.
The origin of the different behaviors of the two components is that Region III also features a spontaneously
broken 2 -symmetry, i.e. a difference in the densities of the two components. The componentwith a large
density has higher phase stiffness than the componentwith the lower density, hence the discrepancy in their
vortex states. Finally, Region IV is a region intermediate betweenRegion I andRegion III, inwhich ( )U 1
-symmetry is not broken in either of the components, but where a spontaneously generated imbalance between
densities of hyperfine states exists. Both components are in an isotropic and disordered vortex state.

The phase transition fromRegion I to Region II infigure 1 is afirst-order composite ( )U 1 × ( )U 1 transition.
The phase transition betweenRegion I andRegion IV is associatedwith a spontaneous 2 symmetry breaking
where a difference in densities of the two condensates sets in. The phase-transition betweenRegion IV and
Region III is a first order ( )U 1 transition associatedwith the freezing of an isotropic vortex liquid in one
component into a hexagonal vortex lattice in the same component, while the other component (the onewith
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Figure 9.Tableaux showing detailed real space and reciprocal space pictures of the transition fromRegion II to Region III. The
parameterω is varied between each column, w Î - - -{ }0.300, 0.500, 0.700 ,while the inverse temperature isfixed, b = 1.2. Each
row shows, from top to bottom, averaged vortex densities of each component, á ñ^( )n r ,i averaged amplitude densities of each
component, yá ñ^∣ ( )∣r ,i and vortex structure functions of each component, ^( )S q .i The first column shows a configuration close to a
pure Region II configuration, the second column is a configuration from the highlymetastable crossover region, while the last column
shows a configuration close to a pure Region III configuration.Note that we consider both thefirst and the last column to be inRegion
II and III, respectively, as they consist of purely of domains with configurations from either region, not amixture of the two.
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depleted density due to the 2 -symmetry breaking) remains in the isotropic vortex liquid phase. The phase
transition fromRegion II to Region III, driven by increasing the dominance of inter-component density–density
interactions over intra-component density–density interactions, involves at the very least a spontaneous
breaking of a 2 -symmetry as the two condensate components pass from anematic state of intercalated lattices
of 1D vortex liquids into amixed state of an isotropic vortex liquid in one component and a hexagonal vortex
lattice in the other component. This transition is characterized by a broad regime ofmetastable states with
inhomogeneous phase separation.

Figure 8 suggests that the rotation frequency ismuch smaller than the second critical frequency W .c2 A crude
estimate for the rotation frequencymay be obtained as follows. If the rotation frequencywere to be set at upper
critical rotation frequency W ,c2 the vortex cores would start overlapping, thus covering the plane perpendicular
to the rotation. The actual rotation frequencyΩmay thus be estimated in terms of the upper critical rotation as
W W = c,c2 where c is a numerical factor given by the fraction of the area of the plane perpendicular to the
rotationwhich is covered by vortex cores. Thus, an estimate, based on core size, gives W µ W0.1 .c2 This puts the
systemwell outside the regime of lowest-Landau level physics. The system is therefore indeed in a regimewhere
itmakes sense to talk about vortex-degrees of freedom rather than zeroes of the order parameter as the relevant
degrees of freedom. For this rotation frequency, we have found the critical value ofω (one of our interaction
parameters) to observe phase IV to be w » - 0.6.c This requires scattering lengths >a a 1.3.12 11 Since these
scattering lengths a priori are similar, and can bemanipulatedwith Feshbach resonances, it seems feasible to be
able to observe phase IV. In order to see the striped ground states phase II, the requirement is only that

>a a 1,12 11 which certainly seems to bewithin the realms of possibility.
In this paperwe have studied the system in the thermodynamic limit. Nonetheless, the results also yield

insights into certain aspects of the physics offinite systemswith phase separation of species inwhich the total
numbers of particles arefinite and independently conserved. For instance, for conserved total number of
particles and in the absence of rotation, afinite two-component system can form a bi-domain in the low
temperature state in the parameter regimewe have considered in this paper. In our case, the ground state is a
mono-domain. In both cases, however, the system evolves into similarmixed states at increased temperature.
Thus, although the thermodynamic limit calculations provide insights into the phases and phase transitions in
the systems, it also calls for further investigation offinite systems of this kind in the presence of a trap.
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