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Abstract

The content of this thesis concerns the development and evaluation of a robotic cell used for

automated assembly. The automated assembly is made possible by a combination of an eye-in-

hand 2D camera and a stationary 3D camera used to automatically detect objects. Computer

vision, kinematics and programming is the main topics of the thesis. Possible approaches to

object detection has been investigated and evaluated in terms of performance. The kinematic

relation between the cameras in the robotic cell and robotic manipulator movements has been

described. A functioning solution has been implemented in the robotic cell at the Department

of Production and Quality Engineering laboratory.

Theory with significant importance to the developed solution is presented. The methods used

to achieve each part of the solution is anchored in theory and presented with the decisions and

guidelines made throughout the project work in order to achieve the final solution.

Each part of the system is presented with associated results. The combination of these results

yields a solution which proves that the methods developed to achieve automated assembly

works as intended. Limitations, challenges and future possibilities and improvements for the

solution is then discussed.

The results from the experiments presented in this thesis demonstrates the performance of the

developed system. The system fulfills the specifications defined in the problem description and

is functioning as intended considering the instrumentation used.
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Sammendrag

Innholdet i denne avhandlingen dreier seg rundt utviklingen og evalueringen av en robotcelle

for automatisert montering. Den automatiserte monteringen blir muliggjort gjennom en kom-

binasjon av et håndmontert 2D kamera og et stasjonært 3D kamera brukt for automatisk

detektering av objekter. Datasyn, kinematikk og programmering er hovedtemaene i denne

avhandlingen. Mulige fremgangsmåter for objektdetektering har blitt undersøkt og evaluert

i forhold til ytelse. Den kinematiske sammenhengen mellom kameraene i robotcellen og de

robotiserte manipulatorene blir presentert. En fungerende løsning implementert i verkstedet

ved NTNU Trondheims Institutt for produksjons- og kvalitetsteknikk blir presentert.

Teori med betydningsfull verdi for løsningen er presentert. Videre er metodene som er benyttet

for å oppnå hver del av den endelige løsningen forankret i teori og presentert sammen med

avgjørelser og rettningslinjer som har blitt bestemt gjennom arbeidet med oppgaven for å

kunne nå den endelige løsningen.

Hver del av det utviklede systemet er presentert sammen med tilhørende resultat. Ved å

kombinere disse resultatene oppnåes en løsning som beviser at de utviklede metodene for å

oppnå automatisert montering fungerer som tiltenkt. Begrensninger, utfordringer, fremtidige

muligheter og forbedringer for løsningen blir deretter diskutert.

Resultatene fra eksperimentene utført gjennom denne avhandlingen blir presentert. Disse resul-

tatene demonstrerer ytelsen til det ferdige systemet. Systemet oppfyller spesifikasjonene som er

definert i problembeskrivelsen og fungerer som forventet tatt i betraktning instrumenteringen

som blir benyttet for løsningen.
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Chapter 1: Introduction

1.1 Background

The topic of this thesis is to investigate the viability of using a visual detection system consisting
of both a traditional camera and a 3D camera. The long term goal of this work is to produce
a robotic cell capable of automatic assembly of a wide variety of parts (within physical tooling
limitations). Achieving this would increase the number of use cases where robotic assembly
is viable, and provide industries that focus on low volume but highly versatile production a
flexible automated solution.

In recent years, 3D camera technology has become commercially available through the Mi-
crosoft Kinect™ camera. This is an inexpensive camera, and is not intended for industrial
use. Throughout this thesis, we explore the viability of using such a sensor in an industrial
application. Knowing this, the camera is used in this thesis as a fast and reliable way to achieve
an initial position estimation for a part. The limitations of the sensor in terms of accuracy is
dealt with using an additional sensor to detect the refined position of the part.

The long term goal of creating a robust and flexible robotic cell for assembly stems from the
need to increase the flexibility of traditional automation in industry. Norwegian production
industries are typically based on producing a low volume of parts, where each produced product
has a high price. In addition to low volume, it is typical to create a variety of different versions
of the same product. This increases the difficulty of automating production in a cost effective
manner even more. Because of this a more dynamic and flexible automation solution is wanted.
This thesis sets out to create a basis for a vision detection system used in such an application.

It was of great interest to develop the vision detection system in a way that allows expansion
in terms of parts to be assembled, and provide a simple way of defining the object that is to
be detected. The goal was to successfully detect and assemble given parts at random positions
and orientations. The motivation to reach the goal was driven from thorough investigation
and extensive testing of different approaches of object detection.

1.2 Problem description

An eye-in-hand camera is useful in order to gain good image information in robotic assembly
tasks. Such a camera also has the benefit of being positionable and can be aimed at a given
point. This will be combined with a stationary 3D camera in this task. The 3D camera is
meant to give a rough, but reliable positioning of a given part, while the eye-in-hand camera
is meant to give an accurate positioning. The system will be tested at the Department of
Production and Quality Engineering laboratory.

1. Describe the kinematics of a robotic cell consisting of a fixed 3D camera and an eye-in-
hand 2D camera.
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2. Create a system able to detect objects using an eye-in-hand 2D camera.

3. Create a system able to detect 3D models in a scene captured using a 3D camera.

4. Implement a system that utilizes both 2D and 3D computer vision to estimate an accurate
position of a physical part.

5. Carry out a practical experiment where the object detection system is used for robotic
assembly.

1.3 Thesis structure

This thesis is structured in the following way:

Chapter 1. Introduction - The background and motivation for this thesis is presented to-
gether with the problem description.

Chapter 2. Theory - The theory for all the technical aspects of this thesis is presented.

Chapter 3. Method - Methods used to perform tests and develop the different solutions is
presented.

Chapter 4. Result - All test results and solutions are presented.

Chapter 5. Discussion - A discussion regarding the different solutions and test results ob-
tained is made. Some personal thoughts regarding the different solutions are presented.

Chapter 6. Conclusion - The thesis work is concluded.
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Chapter 2: Theory

2.1 Kinematics

Kinematics is defined as: The branch of mechanics that deals with pure motion, without ref-
erence to the masses or forces involved in it (dictionary.com, 2016). A more descriptive way
of describing kinematics is the study of movement, position, velocity and acceleration. Using
kinematics, one can create a mathematical model of links and joints, and describe the relation
between rigid bodies in a model (Siciliano et al., 2010).

2.1.1 Orientation

The orientation of an object describes the objects rotation about a reference frame. Figure
2.1, 2.2 and 2.3 shows the three elementary rotations available in R3 space.

Figure 2.1: Elementary
rotation about the X
axis.

Figure 2.2: Elementary
rotation about the Y
axis.

Figure 2.3: Elementary
rotation about the Z axis.

There are multiple ways of describing a rotation. Among these are:

• Euler Angles

• Quaternions

• Angle Axis Description

• Rotation Matrix

A comprehensive description of the above mentioned rotation notations is available in Corke
(2013). Equations 2.1, 2.2 and 2.3 shows the rotation matrices used to describe the elementary
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rotations about the coordinate axes (Siciliano et al., 2010).

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (2.1)

Ry(β) =

 cosβ 0 sin β
0 1 0

− sin β 0 cosβ

 (2.2)

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (2.3)

2.1.2 Transformation

A transformation in kinematics, is a combination of change in both orientation (rotation) and
translation (position). In the context of transformation, the rotation is often described using
rotation matrices, and the translation is described using a column vector. The orientation and
translation can be combined to a single matrix describing both aspects. This matrix is called
the homogeneous transformation matrix. Equation 2.4 shows how the translation vector tmn
and the rotation matrix Rm

n is combined to the homogeneous transformation matrix Tmn :

Tmn =
[

Rm
n tmn

0 0 0 1

]
(2.4)

The homogeneous transformation matrix is a powerful tool because it fully describes the com-
plete pose of an object in operational space. This matrix is commonly used in combination with
the Denavit-Hartenberg convention to describe a systems forward kinematics, and to create
numerical inverse kinematics solvers.

2.1.3 Denavit-Hartenberg convention

The Denavit-Hartenberg convention is a tool used in robotics to define the relation between
the links that a robotic manipulator consists of. The Denavit-Hartenberg convention defines
link i in connection with link i − 1 in terms of rotations about and translations along the x-
and z-axes of the joint frame. The resulting table defines the robotic manipulators forward
kinematics. The following is a simplified recipe for constructing a Denavit-Hartenberg table
for a link chain as illustrated in Figure 2.4. A more comprehensive approach of defining the
Denavit-Hartenberg table is described in Siciliano et al. (2010).

• Rotation about joint i is always about the z-axis of the corresponding joint frame. The
rotation is denoted θi.

• Rotation about the x-axis is denoted αi and refers to the next joint frame i+ 1.

• Translation ai applies along the joint x-axis.
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• Translation di applies along the joint z-axis.

Figure 2.4: Denavit-Hartenberg kinematic parameters (Siciliano et al., 2010).

Table 2.1 shows the connection between the values shown in figure 2.4 and the actual Denavit-
Hartenberg table.

Link i ai αi di θi

Table 2.1: Link i in connection with link i− 1.

Table 2.2 shows an example of a complete Denavit-Hartenberg table. This table shows the
Denavit-Hartenberg parameters for a KUKA KR 6 R900 sixx (GmbH, 2016) robotic manipu-
lator. This manipulator is illustrated in figure 2.5.

Link ai[m] αi[rad] di[m] θi[rad] Note
0 0 π 0 0 Rotate z − axis downwards
1 0.025 π/2 -0.400 θ1
2 0.455 0 0 θ2
3 0.035 π/2 0 θ3 Offset: θ3 = θ3 − π/2
4 0 −π/2 -0.420 θ4
5 0 π/2 0 θ5
6 0 0 -0.080 θ6

Table 2.2: Denavit-Hartenberg parameters of KUKA KR 6 R900 sixx.
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Figure 2.5: Rotational directions about the joints of a KUKA KR 6 R900 sixx (GmbH, 2016).

2.1.4 Forward kinematics

Forward kinematics is one of the two basic problems in robotics: Given a set of joint values
for a manipulator, what is the resulting position and orientation of the end effector? Thus,
forward kinematics is a way of mathematically expressing the position and orientation of the
end effector frame (manipulator pose) as a function of the joint values of the manipulator
arm. For a typical open chain manipulator consisting of n links, the forward kinematics can
be expressed as a resulting homogeneous transformation matrix from the following equation:

T 0
n =

n∏
i=1
T i−1
i (θi) (2.5)

Equation 2.5 establishes the functional relationship between the joint variables of the manipu-
lator and the end effector position and orientation (Siciliano et al., 2010). This means that the
forward kinematics problem can be calculated as long as the joint values of the manipulator
are known.

2.1.5 Inverse kinematics

Inverse kinematic is the second basic problem in robotics: Given a target position and orienta-
tion of the manipulator end effector, what are the joint values? This problem is often seen as
the opposite of the forward kinematics problem, and is usually harder to solve. What makes
this problem harder to solve than forward kinematics is the fact that forward kinematics gives
a singular solution for a given set of joint values. This is not the case in inverse kinematics,
where a given pose (position and orientation) of the end effector might have unlimited different
valid solutions.
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There are several ways of solving the inverse kinematics problem. One might use a pure
linear algebraic approach, geometric algebra or numerical solvers. Most numerical solvers are
based on the differential kinematics of a system, which defines a relationship between the joint
velocities and the corresponding end-effector linear and angular velocities.

2.1.6 2D computer vision

In order to convert pixel coordinates from the 2D image matching process to 3D coordinate
that is useful in robotic applications, a mathematical model of the camera setup is used. One
typical camera model is called the central-projection model and is commonly used in computer
vision (Corke, 2013). This model of a camera places the image plane in front of the camera
at a depth z = f , which results in a non-inverted image. As seen in Figure 2.6, the wanted
position in space P = (X,Y, Z) is projected on the image plane at point p = (x, y) by:

x = f
X

Z
, y = f

Y

Z
(2.6)

Figure 2.6: Central-projection camera model. Image from Corke (2013).

This is a perspective projection, and it gives us a simple connection between the pixel-
coordinates of the object in the image p = (u, v), the image coordinates p = (x, y) and
the actual position in space P = (X,Y, Z). The camera parameter matrix K is expressed:

K =


f
ρw

0 u0

0 f
ρh

v0
0 0 1

 (2.7)

where f is the focal length, ρw = ρh is the pixel size and u0 and v0 is the optical center in
pixels. The conversion from pixel coordinate p = (u, v) to point in space P = (X,Y, Z) is done
using the following:

p =
(
u
v

)
, p̃ =

 u
v
1

 (2.8)
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The normalized image coordinate vector s̃ is defined as:

s̃ = Z

 x
y
1

 (2.9)

The relation between the pixel coordinate p̃ and the normalized image coordinate s̃ is:

p̃ = Ks̃ (2.10)

s̃ = K−1p̃ (2.11)

2.2 3D computer vision

3D computer vision is the process in which a 3D image (often referred to as a point cloud)
containing pixels with positional values (x, y and z) is used as a tool, allowing a computer
to interpret reality. The main difference between 3D and 2D computer vision is that a depth
sensor is used for 3D in stead of a regular camera. The 3D image produced by a depth sensor
is dimensionally correct, and represent each point in the cloud with a position in relation to
the sensors optical reference frame. This technology was, for a long time, not available on the
consumer market. In recent years, this technology has been made available to consumers by
Microsoft and their depth sensor that is used as a video game input device.

Depth sensors are used in a wide variety of different applications ranging from video game
input to environmental mapping. Typical industrial applications for depth sensors and 3D
computer vision is object detection and quality control.

There are multiple different types of depth sensors, but the majority operates based on either
the principle of time of flight or structured light. Microsoft’s first Kinect™ sensor operated on
the principle of structured light, but their newest version (Microsoft Kinect™ One) operates
on the time of flight principle. These operating principles are explained in section 2.2.1 and
2.2.2.

2.2.1 Time of flight

Time of flight cameras record the depth of a scene using the time of flight principle. In the
depth measuring operation, the depth of a pixel in the scene corresponds with the flight time
of light. This technology is used in many other applications like sonar, spectrometry and
spectroscopy. Advances in hardware technology now allows this technology to be used for close
range applications where the detectable delay between electrical signals is in the time order of
100 picoseconds (Kadambi et al., 2014).

Some time of flight depth sensors operate by measuring the depth of one pixel at the time,
scanning the whole scene. This is the typical operating principle of a light detecting and ranging
(LIDAR) sensor. 3D cameras use a different operating principle in order to achieve a higher
data acquisition rate and, as a result, higher frames rate of the camera (Kadambi et al., 2014).
Figure 2.7 illustrates the working principle of Microsoft’s second generation Kinect™ sensor.
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Figure 2.7: The working principle of a Microsoft Kinect™ One sensor.

The camera operate by modulating a light source periodically on the form:

e(t) = 1 + s0 cosωt

The light reflected by an object assumes the form:

r(t) = ρ(1 + s0 cos (ω
(
t− 2d

c

)
)

where the fraction 2d
c contains the depth information for the pixel. The phase between the

emitted and reflected light corresponds to the depth, and is calculating using cross-correlation
(Kadambi et al., 2014).

2.2.2 Structured light

Structured light cameras work by projecting a known pattern onto a subject of interest. The
distortion in the projected pattern is then used to calculate the depth information for each
pixel in the scene. These systems operate using regular high resolution cameras, and thus
have the ability for a high spatial resolution. Figure 2.8 illustrates the working principle of a
structured light system.

Figure 2.8: The working principle of a structured light camera. Figure from Gaskell (2014).
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2.3 Processing point clouds

2.3.1 Passthrough filtering

A passthrough filter is used to section out a part of the point cloud. Usually this is done to
remove unwanted parts of the scene. A typical implementation of a passthrough filter lets you
set minimum and maximum limits in each axis. All the points that is contained within these
limits are kept, the rest are discarded. The limits are set in relation to a reference coordinate
frame. This frame is, in most cases, the optical frame of the depth sensor.

Passthrough filtering is often the first step when processing a point cloud. This is because it
often drastically reduces the amount of data necessary to process. Figure 2.9 and 2.10 shows
the result of a passthrough filter operation.

Figure 2.9: Point cloud before passthrough
filtering.

Figure 2.10: Point cloud after passthrough
filtering.

2.3.2 Voxel grid filtering

Voxel grid filtering is one way of down-sampling a point cloud. Down-sampling is done to
reduce the number of data points and, as a result, the processing time is reduced. In addition,
a down-sampling process often results in a uniform point cloud, where the density of points
is constant trough out the cloud. A uniform cloud is important when estimating descriptors,
since the descriptor contains data about a group of points.

This filter works by virtually sectioning the cloud into voxels with definable size. The average
position for all points contained within a voxel is calculated and a new point is created at the
resulting position. All the original points are discarded and the only point left within a voxel
is the newly created average point.

The number of points left after a voxel grid operation is defined by the voxel size defined before
the operation. A voxel is defined by its width, height and depth. Figure 2.11 and 2.12 shows
the result of a voxel grid filter operation.
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Figure 2.11: Point cloud before voxel grid fil-
tering.

Figure 2.12: Point cloud after voxel grid fil-
tering.

2.3.3 Bilateral filtering

A bilateral filter is a filter commonly used in computer graphics in order to smooth noise while
still preserving edge discontinuities. A version of this filter transposed to work on 3D point
clouds is often used in 3D computer vision for just the same purpose. In addition, the bilateral
filter used in 3D computer vision also serves the purpose of filling holes generated during the
depth measuring process of the sensor (Kadambi et al., 2014). Holes are quite common in the
output of a depth sensor and is caused by missing depth data from the sensor. Equation 2.12
shows the formula used in bilateral filtering of 3D point clouds.

Dp
f = H(Cmap,Ωp)

kp

∑
q∈Ωp

D̂qf(p, q)h(‖Ip − Iq‖) (2.12)

Figure 2.13 shows the process of bilateral filtering of a point cloud. The process goes from
left to right with a noisy input point cloud filtered to a less noisy output while still preserving
sharp edges.

Figure 2.13: Input cloud to the left is noisy, but has a sharp edge. The filtered output (to
the right) preserves the edge while smoothing the point cloud. Figure from (Kadambi et al.,
2014).
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2.3.4 Outlier removal filtering

Outlier removal filters is used to remove, as the name suggest, outliers. Outliers are points that
are not considered as part of an object. Figure 2.14 shows a scene with some outliers (floating
points above the table with objects). These outliers have been removed in Figure 2.15 using
an outlier removal filter.

Figure 2.14: Point cloud before outlier re-
moval filtering.

Figure 2.15: Point cloud after outlier removal
filtering.

A typical implementation of a outlier removal filter calculates the average distance to each
points k nearest neighbours. The resulting data set is assumed to be Gaussian distributed with
a mean and standard deviation. All points with a mean distance to its k nearest neighbours
greater than the mean and standard deviation obtained on the complete data set are considered
to be outliers and removed from the point cloud (PCL, e).

2.3.5 Model segmentation

Model segmentation is the process of separating a part of a point cloud scene. This is done using
random sample consensus (RANSAC) in conjunction with a mathematical model of the object
to segment. The random sample consensus approach uses parameters for the mathematical
model set by the user to fit the largest possible number of points and marks them as inliers
(inliers are points that are considered to be part of the model). These points can then be
extracted to an individual point cloud, or removed.

A typical application for model segmentation is using a model of a plane in order to remove
large unwanted features from a scene like a roof, floor, walls or a table surface. Doing this
makes it possible to use cluster extraction in order to separate all parts located on a large
surface.

Figure 2.16 shows a typical scene consisting of three objects placed on a table. The table is
detected in Figure 2.17 using planar model segmentation (the plane inliers are marked with
the colour red). Figure 2.18 shows the scene when the table surface have been segmented and
removed.
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Figure 2.16: A scene with multiple objects
placed on a table.

Figure 2.17: The table surface is detected
using random sample consensus.

Figure 2.18: The scene after removing the segmented table.

2.3.6 Cluster extraction

Cluster extraction when working with 3D point clouds is the process of separating different
parts of a scene into individual point clouds. A common application for this is object detection,
where multiple objects might be present in a scene. By separating the different objects the task
of recognizing each object is simplified. Figure 2.19 shows a scene containing three individual
objects. Note that the table in this scene have been removed using model segmentation in order
to better illustrate cluster extraction. Figure 2.20 shows the result of the cluster extraction
where each object have been given a distinct colour for illustrative purposes.

Figure 2.19: A scene with multiple objects
placed on a table before cluster extraction.

Figure 2.20: Scene after cluster extraction.
Note, the table in the scene was removed
using model segmentation before the clus-
ter extraction process.

The cluster extraction process works by first defining a random point as part of a cluster. A
virtual sphere is used to search for neighbouring points within a given distance. All points
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within this sphere are also considered to be part of the same cluster. This is repeated for all
newly added points until there are no new points found. Next, a new point, not contained in
the first cluster, is defined as a part of a new cluster. The process is repeated for all points in
the data set. The final step is to reduce the number of clusters caused by noise. This is done
by limiting the minimum and maximum amount of points allowed in a cluster. The resulting
clusters are separated into individual point clouds (PCL, c).

Due to the ability to limit the minimum amount of points in a cluster. Cluster extraction also
serves the purpose of removing outliers.

2.4 Point cloud features

2.4.1 Normal estimation

The problem of estimating surface normals for a point cloud can be approximated by the
problem of estimating the normal of a plane tangent to the surface. This problem is reduced
to an analysis of a covariance matrix created from a points nearest neighbours where the
covariance matrix’s eigenvectors and eigenvalues are the point of interest. This is called a
Principal Component Analysis (PCL, b).

The covariance matrix C is constructed for each point pi as shown in equation 2.13.

C = 1
k

k∑
i=1
·(pi − p) · (pi − p)T , C · −→vj = λj · −→vj , j ∈ {0, 1, 2} (2.13)

The sign value of the normal vector resulting from the principal component analysis is am-
biguous, thus further calculations are needed. This is done by orienting all the surface normals
towards the viewpoint vp of the point cloud. The surface normal −→ni is oriented towards the
viewpoint when the following equation is satisfied:

−→ni · (vp − pi) > 0 (2.14)

Figure 2.21 and 2.22 shows the result of a normal estimation on a scene.

Figure 2.21: A scene with multiple objects
placed on a table.

Figure 2.22: Shows the scene with the cor-
responding surface normals.
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2.4.2 Keypoint selection

Keypoints in 3D computer vision serves the same purpose as in traditional computer vision.
The total number of points is reduced to only the ones that contain the most information.
The selection of good keypoints is critical to achieve well performing object detection and
registration when working with point clouds. This is because most features calculated for
the point cloud are based on keypoints, and not the full data set. Features are descriptive
properties that are used to identify a particular region or area of a point cloud.

The most commonly used keypoint detectors are:

• Harris3D (Harris and Stephens, 1988)

• SIFT3D (Rusu and Cousins, 2011)

• SUSAN (Smith and Brady, 1997)

• ISS3D (Zhong, 2009)

A study conducted by Filipe and Alexandre (2014) set out to compare these 3D keypoints
detectors and concluded that SIFT3D and ISS3D are the most stable keypoint selectors based
on repeatability.

The Scale Invariant Feature Transform (SIFT) keypoint detector was proposed by Lowe (2004).
This keypoint detector is described in detail in section 2.6.1. The modified algorithm used for
SIFT on 3D data sets was presented by Rusu and Cousins (2011). The most notable difference
between the two algorithms are that SIFT3D uses a 3D version of the Hessian to select interest
points, and that the intensity of a pixel is changed to the principal curvature of a given point.

2.4.3 Local descriptor estimation

A local descriptor is an object that describes the local geometrical area for one single point
in a point cloud. This type of descriptor is typically calculated for each point in a 3D point
cloud, or for a selected number of points like keypoints. The goal of a local descriptor is to
create a description of a point and its surroundings that is not limited to the data contained
in the point cloud (which is only a points cartesian coordinate x, y and z). Local descriptors
were specifically created for tasks like registration (see section 2.5.4) and object detection (see
section 2.5.5).

There are multiple ways of creating a description based on a points geometrical surroundings.
These methods use different mathematical principle to encode a description of a point.

Notable local descriptors are

• Point Feature Histogram (Rusu, 2009)

• Fast Point Feature Histogram (Rusu et al., 2009)

• Signature of Histogram of Orientation (Tombari et al., 2010a)

• 3-D Shape Context (Frome et al., 2004)

• Spin Images (Johnson, 1997)
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• Unique Shape Context (Tombari et al., 2010b)

The operating principle of the three most commonly used local descriptors is explained below.

Point feature histogram

The Point Feature Histogram (Rusu, 2009) captures the surrounding geometrical information
by analyzing the difference between the normals of the points in a surrounding area of a selected
point. Firstly, points within the same vicinity are paired. Then a fixed coordinate system is
calculated based on the normals for each point pair. The fixed coordinate frame is used as a
reference to encode the difference between the normals in the three angular values α, φ and θ.

Figure 2.23: Shows how a point pq is paired with the neighbouring pkn points. Image from
Rusu (2009).

Figure 2.23 shows how a point pq is paired to the neighbouring pkn points. Equation 2.15
shows how the reference frame uvw used to encode the angular differences is calculated. This
is also illustrated in Figure 2.24

u = ns, v = u× pt − ps
‖pt − ps‖2

, w = u× v (2.15)

Figure 2.24: Illustrates two paired points and the fixed reference frame uvw. Image from Rusu
(2009).
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The angular values α, φ and θ are calculated using the following equations.

α = v · nt, φ = u · pt − ps
‖pt − ps‖

, θ = arctan(w · nt, u · nt) (2.16)

For a given point cloud with n points and k number of neighbours used when pairing, the
computational complexity for this descriptor is nk2.

Fast point feature histogram

The Fast Point Feature Histogram (Rusu et al., 2009) is a simplification of the Point Feature
Histogram. It is simplified in a way that reduces the computational complexity of a point
cloud with n points and k neighbours considered from nk2 to nk. Because of this, the FPFH
descriptor requires less computational time, allowing it to be used for real-time applications.

The mathematical concept used for the FPFH descriptor is the same as for the PFH descriptor.
There is however a big difference in how the final result is prepared. The simplification is done
after point pairs are created and the values α, φ and θ are calculated. Next, all k neighbouring
points are re-determined and the initially calculated α, φ and θ are weighted by the distance ωk
between the query point pq and the neighbouring points pk. The initially calculated α, φ and θ
are called the Simplified Point Feature Histogram (SPFH) resulting in the following formula:

FPFH(pq) = SPFH(pq) + 1
k

k∑
i=1

1
ωk
· SPFH(pk) (2.17)

For a query point pq and its neighbouring point pk with k neighbouring points and a distance
ωk between the points.

Figure 2.25: Shows the influence region for a query point using a Fast Point Feature Histogram.
Image from Rusu (2009).

By comparing Figure 2.23 to Figure 2.25 a clear difference is apparent. The FPFH descriptor
has a much larger influence region, but each point has, in general, less connections than a
query point using the Point Feature Histogram descriptor.
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Unique signature of histograms

The Unique Signature of Histograms (SHOT) descriptor (Tombari et al., 2010a) differs from
both PFH and FPFH. Both PFH and FPFH utilizes the surface normal to encode data describ-
ing the geometrical area surrounding a point. The SHOT descriptor uses a different approach.
Here a virtual sphere is created around each query point. For each query point, the surround-
ing points location within the virtual sphere is used to encode the topological traits in the
area. The virtual sphere used is shown in Figure 2.26.

Figure 2.26: Shows the virtual sphere used to encode topological data for the Signature of
Histogram of Orientations. Image from Tombari et al. (2010a).

The SHOT method focuses on developing a reliable way of creating a repeatable reference
frame. This frame is used to encode data regarding a query points neighbouring points (those
contained in the virtual sphere). This reference frame is created using the same mathematical
principle as the one used for Normal Estimation (see section 2.4.1), using eigenvector decom-
position of a covariance matrixM created by the k nearest neighbouring points pi surrounding
the query point p. This is shown in equation 2.18

M = 1
k

k∑
i=0

(pi − p̂)(pi − p̂)T , p̂ = 1
k

k∑
i=0

pi (2.18)

This equation is modified slightly in order to achieve a weighting of points based on distance.
This is done to improve robustness and repeatability in presence of clutter. This change is
shown in equation 2.19

M = 1∑
i:di≤R(R− di)

∑
i:d1≤R

(R− di)(pi − p)(pi − p)T (2.19)

Where di is the distance between two points ‖pi − p‖2.
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Next, the sign of the coordinate axes are calculated in a way to achieve high repeatability. The
following shows how this is done for the x axis.

S+
x
.= {i : di ≤ R ∧ (pi − p) · x+ ≥ 0} (2.20)

S−x
.= {i : di ≤ R ∧ (pi − p) · x− > 0} (2.21)

x =
{
x+, |S+

x | ≥ |S−x |
x−, otherwise

(2.22)

The z axis is calculated using the same equations as for the x axis, and the final axis (y) is
obtained by: z × x

2.4.4 Global descriptor estimation

A global descriptor is, in many ways, similar to a local descriptor. The main difference is
that while a local descriptor describes a single point and the local area around it, a global
descriptor describes a cluster of points. Because of this, the global descriptor is highly suitable
for applications like object detection and object classification, where a description of a full
object is useful.

Similar to the local descriptor, the purpose of the global descriptor is to describe an area
with more detail than what is available in the point cloud (x, y and z coordinates). Multiple
different implementations of global descriptors are available, and they use different operating
principles.

Notable global descriptors are

• Viewpoint Feature Histogram (Rusu et al., 2010)

• Clustered Viewpoint Feature Histogram (Aldoma et al., 2011)

• Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram (Aldoma et al.,
2012b)

• Ensemble of Shape Functions (Wohlkinger and Vincze, 2011)

• Global Radius-based Surface Descriptor (Marton et al., 2011)

The operating principle of the two most commonly used global descriptors is explained in the
following two sections.

Viewpoint feature histogram

The Viewpoint Feature Histogram (Rusu et al., 2010) describes a cluster of points using a
combination of an extended Fast Point Feature Histogram component and a viewpoint direction
component. The extended Fast Point Feature Histogram is a modified version of the Fast
Point Feature Histogram local descriptor that allows the descriptor to be estimated for an
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entire object cluster. This is done by creating point pairs between the surface points and the
centroid of the object. The encoded variables for this global version is the same as in the local
version (α, φ and θ). The same equations are used:

α = v · nt, φ = u · pt − ps
‖pt − ps‖

, θ = arctan(w · nt, u · nt) (2.23)

Figure 2.27 illustrates the point pairs between the surface points and the objects centroid.

Figure 2.27: Shows the pairing of points between the clusters surface points and the clusters
centroid c. Figure from Rusu et al. (2010).

The second component in the Viewpoint Feature Histogram is the viewpoint direction compo-
nent. This component is calculated as the relative angles between each surface normal for the
cluster and the central viewpoint direction. This is illustrated in Figure 2.28.

Figure 2.28: Shows the central viewpoint direction vp used to calculate the relative angles
between each surface normal and it. Figure from Rusu et al. (2010).

These two components are combined to a single histogram containing both the viewpoint data
(viewpoint direction component) and the surface normal data (extended fast point feature
histogram component). A complete Viewpoint Feature Histogram is shown in Figure 2.29.
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Figure 2.29: Shows a complete VFH histogram. The two separate component are marked.
Figure from Rusu et al. (2010).

Clustered viewpoint feature histogram

The Clustered Viewpoint Feature Histogram (Aldoma et al., 2011) builds on the Viewpoint
Feature Histogram in order to capture a higher level of detail. This is done by dividing the
object cluster into multiple stable and smooth regions. The separation is done using region
growing segmentation. For each region, a separate Viewpoint Feature Histogram is calculated.
Figure 2.30 shows the result of the region growing on a typical household object.

Figure 2.30: The different regions resulting from a region growing is illustrated with different
colours. Figure from Aldoma et al. (2011).

The benefits of using Clustered Viewpoint Feature Histogram (CVFH) instead of Viewpoint
Feature Histogram (VFH) is that the CVFH descriptor is more robust to occlusion than the
more basic VFH descriptor. This is because the CVFH will allow detection of an object as long
as one of the regions of the object is visible to the depth sensor. Note that in order for this
descriptor to function properly, it is essential that the matching model and the object cluster
are quite similar. This is important in order to assure that the region growing process used
for this descriptor produces the same regions for both the object cluster and the model point
cloud. If the process of region growing results in different regions for the two point clouds, the
descriptors can not be compared.
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2.4.5 Creating training sets

A typical 3D object detection setup usually consists of a depth sensor mounted on a known
location. The output of the depth sensor produces a scene from the viewpoint of the camera.
This means that three dimensional objects is not fully visible to the camera. Figure 2.31
illustrates this effect.

Figure 2.31: Shows the point cloud of a box from the view port of the depth sensor (right) and
from the side (left) to illustrate the missing part of the model.

The alignment method used for 3D object detection uses a brute force approach (this is ex-
plained in section 2.5.2). Because of this, the model used for matching should be as close as
possible to the object captured using the depth sensor. This means that only the parts of a
model visible from a specific viewpoint should be included in the model. This can be achieved
using two main approaches.

The first method is using a rotating pan-tilt platform and a depth sensor at a known location.
The object is placed on the platform and several scenes are captured from multiple different
viewpoints (the object is rotated about all three axes). Figure 2.32 shows a typical physical
setup. This approach requires some post processing of the scene after capture in order to
isolate the model in the scene. The isolated model is stored along with the orientation of the
part for each capture.
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Figure 2.32: Illustrates a typical setup for creating a training set based on a physical model.
Image from (PCL, a).

The second method is a virtual process that simulates the physical approach. The object that
is to be found in the scene is modelled using CAD (computer aided design). This model is
then rendered to a point cloud using a virtual camera. A typical approach places the model
in the center of a tessellated sphere where the model is rendered to a point cloud with the
virtual camera placed at the intersecting points of the faces of the tessellated sphere. Figure
2.33 illustrates the position of the virtual camera in relation to the object. The position of the
camera for each rendered point cloud is stored along side with the point cloud rendering of the
model.

Figure 2.33: Illustrates the virtual position of the model and the camera when rendering a
model from different view ports. Image from (ROBOTICA, 2015).

Both the physical and virtual method results in the same output, which is a set of point
clouds of the object from different viewpoints with corresponding orientation data for each
point cloud. In addition to this, it is typical to calculate a complete set of features for each
point cloud (features include local keypoints, local descriptors, global descriptors and surface
normals). This reduces the processing time required for the actual object detection pipeline
later on. The resulting files are saved to disk for future use. A complete training set will
contain multiple point clouds with corresponding:

• Object pose

• Surface normals
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• Local descriptors

• Global descriptor

2.5 Aligning point clouds

2.5.1 Pipelines

A pipeline in the context of 3D computer vision is a suggested sequence of operations used to
fulfill a particular goal. Typical goals for 3D computer vision is object detection, registration
and object classification. Pipelines are usually divided into two different categories: global and
local. The separation is done based on the type of descriptors used (local or global).

It is important to note that it is fully possible to use both local and global pipelines for object
detection, whereas registration is typically done using a local pipeline. In addition, it is possible
to use different parts of both types of pipeline in combination (an example of this is using global
descriptors for object matching, and local descriptors for initial alignment).

The versions of both pipelines described in the sections below were originally presented by
Aldoma et al. (2012a). Note that if the goal is 3D object detection, one additional step not
included in the model is required. This is the creation of a training set (described in section
2.4.5).

Local pipeline

Figure 2.34 shows a graphical representation of a typical local pipeline.

Figure 2.34: Illustrates a typical pipeline using local descriptors.

The following is a short description of the different steps in the local pipeline.

1. Keypoint Extraction - Keypoints are selected for both the source point cloud and the
target point cloud.

2. Description - Local descriptors are calculated for all keypoints in both the source and
target point cloud.

3. Matching - The descriptors for the source and target point clouds are matched, creating
correspondences. Correspondences are point pairs between the source and target point
cloud, effectively matching regions from the source point cloud with regions in the target
cloud.

4. Correspondence Grouping - This step is only used for object detection. The corre-
spondences found in the previous step are grouped based on geometric constraints. This
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is done to group all correspondences that applies for one particular object. This step is
essential when using the local pipeline for object detection.

5. Initial Alignment - A rigid transform between the point pairs contained in the cor-
respondences is estimated. This is typically done using a Random Sample Consensus
approach (RANSAC).

6. Refined Alignment - The alignment between the source and target point cloud is
refined using a brute force approach (Iterative Closest Point). The output from this step
is the final transformation between the source and the target point cloud.

7. Hypothesis Verification - This step is not always necessary and mainly used when
the goal is to detect objects in cluttered or heavily occluded scenes. This is an algorithm
that applies geometrical constraints to the positive matches between the source and target
cloud, minimizing the number of false positives.

Global pipeline

Figure 2.35 shows a graphical representation of a typical global pipeline.

Figure 2.35: Illustrates a typical pipeline using global descriptors.

The following is a short description of the different steps in the global pipeline.

1. Segmentation & Cluster Extraction - The scene is segmented and clusters are ex-
tracted in order to isolate one or more object clusters.

2. Description - A global descriptor is calculated for both the object cluster (source point
cloud) and for all models in the training set (target point cloud).

3. Matching - The global descriptor from the source point cloud is matched to the descrip-
tors of the training set. This step selects the model from the training set that matches
the object point cloud the best.

4. Initial Alignment - This step is the same for both the local and global pipeline. A
rigid transform between the point pairs contained in the correspondences is estimated.
This is typically done using a Random Sample Consensus approach (RANSAC).

5. Refined Alignment - This step is the same for both the local and global pipeline.
The alignment between the source and target point cloud is refined using a brute force
approach (Iterative Closest Point). The output from this step is the final transformation
between the source and the target point cloud.
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6. Hypothesis Verification - This step is the same for both the local and global pipeline,
and is mostly used for applications where the scene is cluttered or heavily occluded. This
is an algorithm that applies geometrical constraints to the positive matches between the
source and target cloud, minimizing the number of false positives.

2.5.2 Iterative closest point

The Iterative Closest Point (ICP) algorithm is an iterative method for registration of two sets
of points. The registration is done by minimizing the distance between corresponding points.
This can be done using different mathematical approaches. A popular method, presented by
Arun et al. (1987) uses singular value decomposition to minimize the error in rotation R and
translation T between two sets of points. The problem that ICP set out to solve is described
in Arun et al. (1987) as follows:

Given a two set of 3D points {pi}; i = 1, 2, · · ·, N where pi is considered as 3×1 column vector.
The point set is modeled as a rigid object with a rotation R, a translation T and a noise vector
Ni:

p,i = Rpi + T +Ni (2.24)

The problem of minimizing the rotation R and translation T between the two sets is expressed
as:

Σ2 =
N∑
i=1
‖p,i − (Rpi + T )‖2 (2.25)

The least square solution is when the two sets of 3D points have the same centroid. This allows
for a simplification of the original problem to:

Σ2 =
N∑
i=1
‖q,i −Rqi‖

2 (2.26)

Where qi is pi−p because the least square solution is when the two sets of points have the same
centroid. This reduces the original problem to only find R to minimize Σ2. The translation T
can then be found using:

T = p, −Rp (2.27)

The iterative loop of an ICP algorithm can be summed up to the following steps:

1. Select point correspondences between the two data sets.

2. Minimize the rotation R and translation T .

3. Iterate 1. and 2. until the error Σ2 is within a user set threshold.

The ICP algorithm is commonly utilized as a final step when aligning two sets of point clouds.
An initial, less accurate alignment is calculated first, then used as the start point for the
iterative loop. This is done to reduce the number of ICP iterations.
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Figure 2.36 shows two point clouds before and after Iterative Closest Point alignment.

Figure 2.36: Illustrates two point separate point clouds (red and green) with correspondences
(drawn as a line between the points of the two clouds). The right most figure is a result of the
ICP algorithm. Figure from PCL (d).

2.5.3 Initial alignment

Initial alignment is done using local descriptor matching. This process is similar to the ICP
approac. The main difference is that this step is utilized as an initial alignment, and is not
meant to be highly accurate. Descriptor matching uses correspondences between the key points
of a source and target point cloud to estimate a rigid transform (rotation R and translation t).
This differs from the ICP method, since the ICP method estimates a rigid transform based on
all points in the two point clouds. The number of correspondences is reduced using methods
for bad correspondences rejection.

A typical descriptor matcher estimates the rigid transform between two point clouds based on
the Random Sample Consensus principle.

2.5.4 Registration

Registration is a broad term in the context of 3D computer vision. It refers to the action
of aligning two point clouds. The term is typically used when the goal of an alignment is
to build a model using multiple point clouds, like mapping a room. This is commonly done
using an implementation of some variant of the local pipeline (see section 2.5.1). Figure 2.37
shows a typical local pipeline applied to the registration task. This process takes two inputs,
point cloud A and point cloud B, and returns a single output: refined alignment. The refined
alignment represent a transformation TBA applied to point cloud B in order to register it with
point cloud A.

B registered to A = B × TBA
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Figure 2.37: A typical local pipeline applied to the registration task.

Figure 2.39 shows the result of registration of multiple point clouds to build a model of a room
(the multiple point clouds combined to the full model is shown in Figure 2.38).

Figure 2.38: Multiple scenes of the same room taken from different viewpoints. Figure from
Rusu (2009).

28



CHAPTER 2. THEORY 2.5. ALIGNING POINT CLOUDS

Figure 2.39: Multiple scenes registered to form a complete model of a room. Image from Rusu
(2009).

2.5.5 Object detection

Object detection is the act of aligning a model of some object to a section of a scene. The
model used for alignment is selected from a previously created training set. The goal of an
object detection procedure is to identify the objects present in a scene, and estimate the pose of
the object (both orientation and position). In the context of 3D computer vision, this is done
by acquiring the correct model from a training set, and register the model to the object located
in the scene. This task is preferably done using the global pipeline, since global descriptors
contain data describing the complete object cluster (in other words, the task of matching a
object cluster to a training model is simpler to fulfill using global descriptors). Figure 2.40
shows a typical global pipeline applied to the object detection task.

Figure 2.41 shows a scene containing multiple object. The result from a object detection on
this scene is shown in Figure 2.42 where the training set model is registered onto the original
scene, estimating the objects position and orientation.
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Figure 2.40: A typical global pipeline applied to the object detection task.

Figure 2.41: A scene with multiple objects
placed on a table.

Figure 2.42: A model from a training set is
registered onto a detected object, estimating
its position and orientation.

2.6 2D computer vision

Computer vision concerns the science and technology of making machines able to see and
automatically process visual data (sensed images) in the surrounding environment to recognize
objects, track and recover their shape and spatial layout (Cipolla et al., 2010). The goal is to
make useful decisions about real physical objects and scenes based on sensed images, as defined
by Shapiro and Stockman (2001). Furthermore, Forsyth and Ponce (2003) describes computer
vision as the act of extracting descriptions of the world from pictures or sequences of pictures.
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The following chapter focuses on algorithms related to object recognition and explains the
underlying mathematics and methods developed for different types of keypoint detectors, de-
scriptor extractors and descriptor matching between images.

2.6.1 Scale invariant feature transform

Scale Invariant Feature Transform (SIFT) is the classic approach to image matching. It is con-
sidered to be the original detector and descriptor, inspiring development of several alternatives
later on. It consists of four major stages of computation as stated in Lowe (2004):

1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint descriptor

Scale-space extrema detection

Detection of the scale-space of an image is defined from the function, L(x, y, σ). This function
is produced from the convolution of a variable-scale Gaussian, G(x, y, σ), with an input image,
I(x, y), and is expressed as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.28)

where * is the convolution operation in x and y, and

G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2 (2.29)

By using the scale-space extrema of a difference-of-Gaussian (DoG) function convolved with the
image, it is possible to detect stable keypoint locations in scale space. The proposed function
is chosen because every smoothed image, L, needs to be computed in any case for scale space
feature description. The DoG function can therefore be computed by image subtraction. This
function is defined as D(x, y, σ), and can be computed from the difference of two nearby scales
separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (2.30)
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Figure 2.43: Two Gaussian kernels with window size 41 × 41. Subtracting kernel one (left),
which has σ = 3.2, from kernel two (middle), which has σ = 6.4, results in the DoG between
them (right). Illustrations generated using Matlab.

The result from convolving these kernels with an actual image is shown below in Figure 2.44.

Figure 2.44: Convolution of an image with the kernels illustrated in Figure 2.43. Generated
using Matlab.

Another benefit from the function in equation 2.30 is the close approximation to the scale-
normalized Laplacian of Gaussian (LoG), σ2∇2G. This is beneficial because the normalization
of the Laplacian with the factor σ2 is required for true scale invariance. Moreover, the maxima
and minima of σ2∇2G produce the most stable image features compared to the gradient,
Hessian, or Harris corner function (Lowe, 2004).

To be able to understand the relation between D and σ2∇2G the heat diffusion equation
parametrized in terms of σ rather than t = σ2 can be used:

∂G

∂σ
= σ2∇2G (2.31)

The finite difference approximation to ∂G/∂σ can then be used to compute ∇2G, using the
difference of nearby scales at kσ and σ:

σ∇2G = ∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(2.32)
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and therefore,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (2.33)

The DoG function has scales differing by a constant factor. This implies that the function
already incorporates the σ2 scale normalization required for the scale-invariant Laplacian.

The approach proposed by Lowe (2004) in order to construct the DoG for all scales in every
octave is illustrated in Figure 2.45. Each scale in every octave is repeatedly convolved with
Gaussians to produce the set of scale space images as shown on the left. As seen on the right
in Figure 2.45, the DoG images are computed from subtraction of adjacent Gaussian images.
When the current octave has been finished, the Gaussian image is down-sampled by a factor
of two, and the process is repeated.

The next step in order to detect the local maxima and minima of D(x, y, σ), is to compare each
sample point to its eight neighbours in the current image and nine neighbours in the adjacent
scales. 3× 3 regions at the current and adjacent scales are used. The sample point is selected
as an extrema only if it is larger or smaller than all of its neighbours. See Figure 2.46.

Figure 2.45: Illustration of the DoG from different
scales and octaves. Image from Lowe (2004).

Figure 2.46: Detection of max-
ima and minima of the DoG im-
ages. Pixel marked X is the cur-
rent sample point. Image from
Lowe (2004).

Keypoint localization and rejection

The process of finding the minima and maxima determines which pixels that are candidates
for keypoints. The next step allows the rejection of bad candidates, assuring that only stable
keypoints are used. In Lowe (2004), the suggested approach uses the Taylor expansion of the
scale-space function, D(x, y, σ), shifted so that the origin is at the sample point. The Taylor
expansion is expressed as:

D(x) = D + ∂DT

∂x x + 1
2x

T ∂
2D

∂x2 x (2.34)
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The vector x = (x, y, σ)T is the offset from the sample point. D(x) and its derivatives are
evaluated at the the same sample point. The location of the extremum is of interest and can
be expressed by taking the derivative of D(x) with respect to x and setting it to zero:

x̂ = −∂
2D

∂x2

−1
∂D

∂x (2.35)

Finally the function value of the extremum is used for rejecting unstable extrema with low
contrast. Substituting equation 2.35 into 2.34 results in:

D(x̂) = D + 1
2
∂DT

∂x x̂ (2.36)

Lowe (2004) proposed that all extrema with D(x̂) returning a value less than 0.03 should be
discarded.

The rejection of extrema with low contrast alone is not sufficient for stability. Since the DoG
function will have a strong response along edges, a method based on a 2× 2 Hessian matrix is
proposed:

H =

Dxx Dxy

Dxy Dyy

 (2.37)

It is computed at the location and scale of the keypoint, and the derivatives are estimated
by taking differences of neighbouring sample points. The ratio of the eigenvalues of H is of
interest. The eigenvalue with the largest magnitude is denoted α and the smaller one is denoted
β:

Tr(H) = Dxx +Dyy = α+ β

Det(H) = DxxDyy − (Dxy)2 = αβ
(2.38)

The sum of eigenvalues is given from the trace of H and their product is given from the
determinant as expressed in equation 2.38. The determinant may be negative, although it is
unlikely. However, if this is the case, a point may be discarded as not being an extremum since
the curvatures have different signs. As already mentioned the ratio between the eigenvalue
with largest magnitude and the smaller one is of interest. It is expressed as α = rβ, where r
is the ratio. Using this in relation to equation 2.38 we get:

Tr(H)2

Det(H) = (α+ β)2

αβ
= (rβ + β)2

rβ2 = (r + 1)2

r
(2.39)

As evident from the above equation it is only dependable on the ratio of the eigenvalues and not
their actual individual values. This permits a rather efficient check of he principal curvatures:

Tr(H)2

Det(H) <
(r + 1)2

r
(2.40)
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When the two eigenvalues are equal the expression (r + 1)2/r is at a minimum. The value
increases with r. Lowe (2004) used a value of r = 10 in his paper. This means that the
keypoints with a ratio between the principal curvatures greater than 10 will be rejected.

Keypoint orientation

This step is important to achieve the invariance to image rotation. It is dependent on a
consistent orientation to each keypoint based on local image properties. The proposed approach
in Lowe (2004) is applied to a Gaussian smoothed image, L. The smoothed image is chosen to
have the closest scale to the scale of the keypoint. This is done to ensure that the computations
give scale-invariant results. The gradient magnitude m(x, y), and gradient orientation θ(x, y),
is precomputed using pixel differences. It is computed at the given scale, for each image sample
L(x, y):

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1
(
L(x, y + 1)− L(x, y − 1)
L(x+ 1, y)− L(x− 1, y)

) (2.41)

The gradient orientations of sample points within a region around the keypoint is then used
to generate an orientation histogram. The histogram is divided into 36 bins, one for every 10
degrees, covering the 360 degree range of orientations. To be able to determine the dominant
directions of the local gradients, each sample point is weighted by its gradient magnitude.
It is also weighted by a Gaussian-weighted circular window with a smoothing factor, σ =
1.5σkeypoint.

Peaks in the orientation histogram corresponds to dominant directions of the local gradients.
A histogram will in some cases have peaks of magnitude close to the dominant peak. If any
local peak is within 80% of the dominant peak, an additional keypoint with that orientation
is generated. As stated in Lowe (2004), this contributes significantly to the stability of match-
ing. For improved accuracy, a parabola is fit to the 3 histogram values closest to each peak,
interpolating the peak position.

Keypoint descriptor

At this final stage, a representation of the local image features is generated from the location,
scale and orientation of each keypoint. The descriptor is designed to be highly distinctive, yet
robust against significant levels of local shape distortion and change in illumination.

The keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location as previously described.
This is illustrated to the left in Figure 2.47 together with the Gaussian-weighted window,
indicated by the overlaid circle. The samples are then accumulated into orientation histograms
summarizing the contents over 4×4 subregions, with the length of each arrow corresponding to
the sum of the gradient magnitudes near that direction within the region. Figure 2.47 illustrates
a 2 × 2 descriptor computed from an 8 × 8 set of samples. The actual SIFT descriptor is a
4× 4 array of histograms computed from a 16× 16 sample array.
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Figure 2.47: Illustration of SIFT descriptor computed from gradient magnitude and orienta-
tion. Image from Lowe (2004).

The descriptor is formed from a vector containing the values of all the orientation histogram
entries, corresponding to the length of the arrows illustrated on the right side of Figure 2.47.
Lowe concluded from his experiments that every subregion in the 4 × 4 array of histograms
should have 8 orientation bins each. This results in a 4 × 4 × 8 = 128 element feature vector
for each keypoint.

2.6.2 Speeded-up robust features

Speeded-Up Robust Features (SURF) was introduced by Bay et al. (2006b) and thoroughly
explained in Bay et al. (2008). It entered the field of keypoint detectors and descriptors with the
goal to outperform the state-of-the-art alternatives, e.g. SIFT, both in terms of computational
speed and performance. SURF is, as SIFT, both a detector and a descriptor. It consists of
three steps:

1. Interest Point Detection

2. Interest Point Description

3. Matching between different images (see section 2.6.5)

Interest point detection

This step, also referred to as Fast-Hessian Detector (Bay et al., 2006b) is, as suggested from
the name, an approach based on the Hessian matrix. It is however, a very basic Hessian-
matrix approximation allowing the use of integral images, reducing the computational time
drastically. What this really means is the ability to quickly compute box type convolution
filters. The entry of an integral image IΣ(x) at a location x = (x, y)T represents the sum of
all pixels in the input image I within a rectangular region formed by the origin and x.

IΣ(x) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j) (2.42)
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Looking at Figure 2.48, there are four rectangles. The corners of rectangle Σ are marked
with letters. Each of these points in the image has a value formed from the sum of the pixel
intensities inside a rectangular region. Point D has the sum of pixel intensities inside rectangle
1, B has the sum from 1 + 2, C is the sum of 1 + 3 and A is from 1 + 2 + 3 +Σ. The intensity
inside rectangle Σ may then be calculated as: Σ = A−B−C + D.

Figure 2.48: Illustration of an integral image. Image from Bay et al. (2008).

Once the integral image has been computed, it is possible to calculate the sum of the intensities
over a rectangular area of any size, using only three additions and four memory accesses
(reading the intensity at four given points). This implies that the computational time is
independent of the size of the rectangular region.

As stated in Bay et al. (2008) the Hessian matrix approach for interest point detection was
chosen because of its good performance in accuracy. Structures in the image are chosen as
interest points at locations where the determinant of the Hessian (DoH) matrix is maximum.
The suggested approach also relies on the determinant of the Hessian for the scale selection.

The Hessian matrix in point (x, y) at scale σ in an image I is expressed as follows:

H(x, y, σ) =

Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

 (2.43)

Lxx(x, y, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 g(σ) with the image
I in point (x, y). Similarly for Lxy(x, y, σ) and Lyy(x, y, σ).

In comparison to the approximation to Laplacian-of-Gaussian by Difference-of-Gaussian as
performed in SIFT, an approximation is also carried out for the Hessian matrix used in SURF.
In addition, real filters are non-ideal in any case, introducing some limitations in practice. An
example is the Gaussian second order derivative, which has to be discretized and cropped,
leading to a loss in repeatability under image rotations around odd multiples of π

4 . This
weakness is valid for Hessian-based detectors in general.

37



2.6. 2D COMPUTER VISION CHAPTER 2. THEORY

As evident from Bay et al. (2008) the performance of the approximation, using box filters, is
comparable to, or better than the performance with discretized and cropped Gaussians. Fur-
thermore, this approximation of the second order Gaussian derivatives is very computationally
efficient because of the use of integral images.

Figure 2.49 illustrates the Gaussian second order partial derivative filters in comparison to the
approximation using box filters. The illustrated box filters are of size 9× 9 and approximates
a Gaussian with σ = 1.2, which represents the lowest scale, used in SURF, for determining the
location of interesting structures. This is called a blob response map (Bay et al., 2008). The
approximations are denoted by Dxx for Lxx, Dyy for Lyy and Dxy for Lxy.

Figure 2.49: The left half shows the discretized and cropped Gaussian second order partial
derivative in y- (Lyy) and xy-direction (Lxy). The right half shows the approximation for the
second order Gaussian partial derivative in y- (Dyy) and xy-direction (Dxy), using box filters.
Image from Bay et al. (2008).

The determinant of the approximated Hessian matrix is expressed as:

det(Happrox) = DxxDyy − (wDxy)2, (2.44)

where w ' 0.9 is a relative weight of the filter responses used to balance the expression for the
determinant of the Hessian. This value is kept constant, despite the theoretical incorrectness
of doing so. See Bay et al. (2008) for details.

The search of correspondences often requires their comparison in images where they are seen at
different scales. This implies that the interest points need to be found at different scales. Scale
spaces are typically implemented as an image pyramid, however, the implementation of this
in SURF differs from SIFT. As explained in Lowe (2004), the images are repeatedly convolved
with a Gaussian kernel for the current pyramid octave, then the image is down-sampled and the
process is repeated for the new octave. In SURF, the scale space is analysed by up-sampling
the filter size rather than iteratively reducing the image size, as illustrated in Figure 2.50. The
latter approach is possible because of the use of integral images, and was chosen because of
its computational efficiency. The computation time is constant independent of filter size (Bay
et al., 2008).
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Figure 2.50: Iteratively reducing the image size as in SIFT (left). The use of integral images
allows the up-sampling of the filter (right). Image from Bay et al. (2008).

As already mentioned, the initial scale layer of the scale space is the output of the 9× 9 filter,
approximating Gaussian derivatives with σ = 1.2, hereby referred to as scale s = 1.2 for the
approximation. Furthermore, the scale space is divided into octaves, consisting of a series of
filter response maps obtained from convolving the same input image with a filter of increasing
size. To ensure the existence of the central pixel, the filter mask size must increase by a total
of 6 pixels from one layer to the next as illustrated in Figure 2.51 (Bay et al., 2008). The first
octave therefore consists of images filtered with mask sizes 9× 9, 15× 15, 21× 21 and 27× 27.
However, for each new octave, the filter size increase is doubled, going from 6 to 12 to 24 to
48. The filter sizes in three successive octaves are illustrated in Figure 2.52. See Bay et al.
(2008) for more details.

Figure 2.51: The length of the dark
lobe can only be increased by an even
number of pixels to guarantee the
presence of the central pixel. Mask
size 9 × 9 (left) and 15 × 15 (right).
Image from Bay et al. (2006a).

Figure 2.52: Graphical representation of the
filter side lengths for three successive octaves.
The octaves are overlapping in order to cover
all possible scales seamlessly. Image from Bay
et al. (2008).

With the complete scale space in place, the interest points can be localized by applying a
non-maximum suppression in a 3×3×3 neighbourhood as illustrated in Figure 2.46 in section
2.6.1. The maximum of the determinant of the Hessian matrix are then interpolated in scale
and image space due to the relatively large difference in scale between the first layer of every
octave (Bay et al., 2008). The interpolated location of the interest point is computed in the
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same way as in SIFT using equation 2.34 and 2.35 where x = (x, y, s). See Bay et al. (2006a)
for more details.

Interest point description

The proposed descriptor, Speeded-Up Robust Features (SURF), describes the distribution of
the intensity content within the interest point neighbourhood. This is similar to the gradient
information extracted by SIFT, however, the descriptor is built on the distribution of first
order Haar wavelet responses in x and y rather than the gradient (Bay et al., 2008).

The Haar wavelet responses within a circular neighbourhood of 6s (s is the scale of the approx-
imate Gaussian filter) around the interest point is used to identify a reproducible orientation
of the point. This has to be done in order to make the descriptor invariant to image rotation.
Note that s is the scale at which the interest point was detected. The sampling step is scale
dependent and chosen to be equal to s. The size of the wavelets are also scale dependent and
set to a side length of 4s. Again, the use of integral images for fast filtering is possible, fulfilling
the goal of keeping the computational time low compared to previously proposed schemes.

Calculation of the wavelet responses in x and y direction is performed by filtering the images,
using Haar wavelet filters illustrated in Figure 2.53. The responses are smoothed with a
Gaussian σ = 2s around the interest point and represented as points in space with horizontal
and vertical response strength. A sliding orientation window of size π

3 is used to find the
dominant orientation of the interest point. From each circle segment the (x, y) components
are summed up, yielding a local orientation vector as illustrated in Figure 2.54.

Figure 2.53: Haar wavelet filters to compute
the responses in x (left) and y (right) direction.
The weights of the dark and bright parts are
illustrated.

Figure 2.54: The dominant orienta-
tion of the Gaussian weighted Haar
wavelet response is detected within
a sliding orientation window. Image
from Bay et al. (2008).

At this point the descriptor can be extracted. A square region is centred around the interest
point oriented along the computed dominant orientation of the interest point. This window
has a size of 20s. This region is then split up regularly into 4 × 4 = 16 square sub-region,
as illustrated in Figure 2.55. For each sub-region at 5 × 5 regularly spaced sample points,
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Haar wavelet responses are computed. The Haar wavelet responses in horizontal and vertical
direction, in relation to the selected interest point orientation, is denoted dx and dy. To increase
robustness the responses are first weighted with a Gaussian σ = 3.3s centred at the interest
point. The wavelet responses, dx and dy, are then summed up over each sub-region to form
the first set of entries in the feature vector. Each sub-region has a four-dimensional descriptor
vector expressed as v = (

∑
dx,

∑
dy,
∑
|dx|,

∑
|dy|). This applies to all 4 × 4 sub-regions,

resulting in a vector of length 4 × 4 × 4 = 64. The remaining two vector elements, |dx| and
|dy|, is the sum of the absolute values of the responses. These entries are needed in order to
include information about the polarity of the intensity changes. See Figure 2.56.

Figure 2.55: Left: An oriented quadratic grid with 4 × 4 square sub-regions centred around
the interest point. Right: The actual fields of the descriptor, the sums dx, dy, |dx| and |dy|,
are computed for each sub-region relatively to the orientation of the grid. The sub-regions in
this figure are 2× 2 instead of 5× 5 for reasons of illustration. Image from Bay et al. (2008).

Figure 2.56: Illustration of the nature of a SURF descriptor. Left: A homogeneous region will
make all values relatively low. Middle: Frequencies in x direction will make the value of

∑
|dx|

high, but all others remain low. Right: In the case of a gradually increasing intensity in x
direction, both values

∑
dx and

∑
|dx| are high. Image from Bay et al. (2008).
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2.6.3 Binary robust invariant scalable keypoints

Binary Robust Invariant Scalable Keypoints (BRISK) is a relatively new keypoint detector
and descriptor. It was proposed at the International Conference on Computer Vision (ICCV)
in 2011 by Leutenegger et al. (2011). As SURF was developed to outperform SIFT in terms
of computational cost and performance, BRISK seeks to improve on the computational time
needed and still deliver high performance under a variety of image transformations. Evaluation
on benchmarks show that BRISK can be computed at an order of magnitude faster than SURF
at comparable matching performance in some cases (Leutenegger et al., 2011). The contents
of this section will focus on the theory and methods behind the detection and description of
BRISK keypoints, divided in two steps:

1. Scale-space keypoint detection

2. Keypoint description

Scale-space keypoint detection

Leutenegger et al. (2011) proposed a detection methodology with the goal of achieving an
efficient computation of keypoints. It is inspired by a detector by Mair et al. (2010) called
Adaptive and Generic Corner Detection Based on the Accelerated Segment Test (AGAST).
This is an extension for accelerated performance of a detector called Features from Accelerated
Segment Test (FAST) by Rosten and Drummond (2006). Scale invariance is crucial for high-
quality keypoints. However, FAST and AGAST is not invariant to scale. To overcome this
drawback Leutenegger et al. (2011) introduces the search for maxima not only in the image
plane, but also in scale-space using the FAST score s as a measure for saliency.

The scale-space pyramid layers consist of the following for i = {0, 1, ..., n − 1} and typically
n = 4:

• n octaves ci, which are formed by progressively half-sampling the original image c0

• n intra-octaves di, which are located in-between layers ci and ci+1

By down-sampling the original image c0 by a factor of 1.5 the first intra-octave d0 is obtained.
The rest of the intra-octaves are derived by successive half-sampling. Therefore, if t denotes
scale then t(ci) = 2i and t(di) = 2i · 1.5. See Figure 2.58 for an illustration of the octaves and
intra-octaves.

As already mentioned, the BRISK detector is based on the ideas from FAST and inspired
by the computational efficiency of AGAST. In both these detectors, corners are detected by
checking the intensity of pixels in a circle around a current sample pixel p illustrated in Figure
2.57. A typical mask is the FAST 9-16 mask, which requires at least 9 of the 16 pixels in the
circle to be either brighter or darker than pixel p by a given threshold. This mask provides the
best performance according to Rosten and Drummond (2006), and is the mask used for most
of the detection in BRISK (Leutenegger et al., 2011). The exception is for detection of interest
points below the first octave. In this case the FAST 5-8 mask is used to obtain FAST scores
as a virtual layer below this octave. These scores are only needed in order to fit a parabola for
scale refinement (Fan et al., 2015), not for non-maxima suppression in the first octave.
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Figure 2.57: Illustrates a segment test corner detection using a 12-16 mask. The dotted arc
indicates 12 pixels which are brighter than pixel p by more than a given threshold. Image from
Rosten and Drummond (2006).

To detect potential regions of interest, each octave and intra-octave is processed with the FAST
9-16 detector separately using the same threshold T . The points belonging to these regions
are then evaluated by applying a non-maxima suppression in scale-space. This means that
the FAST score s of the current sample point needs to be larger than the FAST score of its
8 neighbouring points in the same layer. In addition the FAST scores in the layer above and
below needs to be lower than the current sample point. See Rosten and Drummond (2006) for
an in depth explanation of the FAST score. The check is performed inside equally sized square
patches of 2 pixels side-length in the layer with the suspected maximum. The neighbouring
layers are discretized differently, which is dealt with by interpolation at the boundaries of
the patch. See Figure 2.58. Furthermore, to determine the true scale of the keypoint, the
local saliency maximum in all three layers of interest is sub-pixel refined (by fitting a 2D
quadratic function in the least-squares sense to each of the three score-patches) before a 1D
parabola is fitted along the scale-axis. This is illustrated in Figure 2.58. Finally, the location
of the keypoint is re-interpolated between the patch maxima closest to the determined scale
(Leutenegger et al., 2011).

Keypoint description

Compared to SIFT and SURF, this descriptor is different, especially in terms of matching.
Matching will be explained in section 2.6.5. The difference is present mainly because the
descriptor is composed as a binary string. Given a set of keypoints, the string is generated
by concatenating the results of simple brightness comparison tests. The approach is inspired
by a descriptor called Binary Robust Independent Elementary Features (BRIEF) by Calonder
et al. (2010), which is efficient to compute, but not invariant to scale or rotation.

The detected keypoints as detected in scale-space described in section 2.6.3 needs to be pro-
cessed before building the descriptor bit-string. A sampling pattern with N locations equally
spaced on circles concentric with the keypoint is used. Each of these locations are points pi
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in the pattern. Every point pi is smoothed with a Gaussian σi proportional to the distance
between the points on the respective circle. This smoothing is performed to avoid aliasing
effects when sampling the image intensity of a point (Fan et al., 2015). Figure 2.59 illustrates
the sampling pattern.

Figure 2.58: Scale-space interest point detec-
tion illustrated. The 1D parabola is fitted
along the scale-axis to determine the true (in-
terpolated) scale of the keypoint. Image from
Leutenegger et al. (2011).

Figure 2.59: A sampling pattern with
N = 60 sampling points including
the center point, equally spaced on
four concentric circles around the key-
point. For clarity, only one point in
each circle is marked with a circle de-
noting the radius σ of the Gaussian
kernel used to smooth the intensity
values of the sampling points. Image
from Fan et al. (2015).

For a keypoint k in the image, we consider one of the N · (N − 1) /2 = 1770 sampling-point
pairs (pi,pj). The local gradient is expressed as:

g(pi,pj) = (pj − pi) ·
I(pj , σj)− I(pi, σi)
||pj − pi||2

(2.45)

where I(pi, σi) and I(pj , σj) are the smoothed intensity values at the points pi and pj . A set
of all sampling-point pairs is expressed as:

A = {(pi,pj) ∈ R2 × R2 | i < N ∧ j < i ∧ i, j ∈ N} (2.46)

From set A a subset of short-distance pairings S and another subset of L long-distance pairings
L is defined. The threshold distances determining which subset a sampling-point pair belongs
to is set to δmax = 9.75t and δmin = 13.67t where t is the scale of keypoint k. The subsets are
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illustrated in Figure 2.60 and expressed mathematically as:

S = {(pi,pj) ∈ A | ||pj − pi|| < δmax} ⊆ A
L = {(pi,pj) ∈ A | ||pj − pi|| < δmin} ⊆ A

(2.47)

Figure 2.60: The set of short-distance pairs, S, of sampling points used for constructing the
descriptor is illustrated to the left. The set of long-distance pairs, L, of sampling points used
for computing orientation is illustrated to the right. Each colour indicates a pair. Image from
Fan et al. (2015).

The subset of L long-distance point pairs are then used to determine the overall characteristic
pattern direction of the keypoint k. The computation is done by iterating through subset L,
and is expressed as:

g =
(
gx
gy

)
= 1
L
·

∑
(pi,pj)∈L

g(pi,pj) (2.48)

In order to build up the descriptor, the sampling pattern as explained above is applied with
a rotation by α = atan2(gy, gx) around the keypoint k. Then the bit-vector descriptor dk
is computed by processing all the short-distance intensity comparisons of point pairs in the
rotated pattern (pαi ,pαj ) ∈ S. Determining the state of each bit is performed as follows

b =
{

1, I(pαj , σj) > I(pαi , σi)
0, otherwise

(2.49)

where:

∀(pαi ,pαj ) ∈ S
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The above equations (2.45-2.49) are used to generate a BRISK descriptor, differing from BRIEF
by being both scale- and rotation invariant. The more in depth differences are explained in
the original paper (Leutenegger et al., 2011). Usage of the method as explained in this section
yields a descriptor bit-string of length 512.

2.6.4 Oriented FAST and rotated BRIEF

Oriented FAST and Rotated BRIEF (ORB) was proposed at ICCV in 2011 by Rublee et al.
(2011). Like BRISK, this is also a detector and descriptor developed to outperform SIFT in
terms of computational cost. The authors claim that ORB is an efficient alternative to SIFT
or SURF. It is evident from Rublee et al. (2011) that the computational time is over two orders
of magnitude faster than SIFT. This boost in processing speed is a result of using FAST and
BRIEF as base for detection and description, respectively. ORB is, like BRISK, invariant to
scale and rotation. Scale-invariance is achieved by employing a scale pyramid of the image.
Rotation invariance is achieved by using a measure of corner orientation called the intensity
centroid, originally presented in Rosin (1999). Furthermore, the binary descriptor is built by
comparing intensities between two sampling patterns, similar to BRISK. Moreover, ORB does
this by using a different sampling and feature selection strategy. This section will present the
theory and methods behind this strategy, in two parts:

1. FAST Keypoint Orientation (oFAST)

2. Rotation-Aware BRIEF (rBRIEF)

FAST keypoint orientation (oFAST)

Features from Accelerated Segment Test (FAST) as proposed by Rosten and Drummond (2006)
is the method of choice for finding keypoints with minimal computational cost. By evaluating
a circle of 16 pixels around a center pixel, it can be determined if this center pixel is a corner
or not. If the intensities of the pixels in the circle are brighter or darker compared to the
central pixel, by a given threshold, it is considered to be a corner. See Figure 2.57. Typically,
at least 9 or 12 of these pixels must fulfill this test, referred to as FAST 9-16 and FAST 12-16
respectively.

As already mentioned, FAST is the base for the ORB detector, and in order to acquire invari-
ance to scale, a simple scale pyramid is used. Depending on the implementation, this pyramid
may vary in number of levels and scale factors between each level. For example n levels with a
scale factor equal to 1.2 will result in a pyramid where the original image is first down-scaled
by a factor of 1.2, then the result from this is down-scaled by a factor of 1.2 and so on until
the pyramid has been filled with n images, as illustrated in Figure 2.61. For each level of the
pyramid, FAST features are produced and then filtered. The detector of choice in ORB is the
FAST 9-16. To filter out unstable features, a Harris corner measure is employed (Harris and
Stephens, 1988). This is done by setting a threshold of N keypoints. The threshold must be set
low enough so that N is lower than the total amount of keypoints in the image. The detected
keypoints are ranked and ordered according to the Harris measure, and the top N points are
retained. Figure 2.62 shows an image that has been processed with the ORB detector over a 5
level pyramid with scale factor 1.2. The detected keypoints were then filtered with a threshold
N = 200.
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The proposed approach to assign an orientation to each keypoint uses a measure of corner
orientation called the intensity centroid. This measure assumes that the intensity of a corner
is offset from its center. A vector from corner center to this offset point may be used to assign
an orientation. The moments of an image patch is expressed as presented in Rosin (1999):

mpq =
∑
x,y

xpyqI(x, y), (2.50)

which is used to define the centroid as:

C =
(
m10
m00

,
m01
m00

)
(2.51)

A vector from the corner keypoint center O, to the centroid C, is then denoted −−→OC. The
orientation of the patch is:

θ = atan2(m01,m10) (2.52)

To further improve the rotation invariance of the above measure, Rublee et al. (2011) proposed
to compute the moments within a circular region of radius r corresponding to the patch size.
This means that x and y run from [−r, r]. The orientation of keypoints is illustrated in Figure
2.62.

Figure 2.61: Pyramid with 5 levels.
A scale factor close to 1 will need
more pyramid levels to cover a large
scale range, thus increasing the com-
putational cost. A large scale factor
will on the other hand weaken the in-
variance to scale.

Figure 2.62: Keypoints detected with the
ORB detector. The cyan rings denote key-
points with its respective orientation. No-
tice that some keypoints of differing scale
overlaps each other in a concentric manner,
which means they are detected from differ-
ent levels of the pyramid.
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Rotation-aware BRIEF (rBRIEF)

As mentioned in the introduction to this section, BRIEF is the base for description in ORB.
Providing a set of keypoints with detected scale and rotation as previously explained, the ORB
descriptor can be computed by first extracting a scale and rotation normalized local patch.
The descriptor is then computed on the patch. The standard way of computing a BRIEF
descriptor is by randomly selecting 256 test pairs in a smoothed image patch. The intensity
of the two pixels in a pair is then compared to each other yielding the bit value of that test
pair. However, this approach is not a good choice for ORB. As explained in Fan et al. (2015),
the orientation of ORB keypoints is computed based on the intensities of the described patch.
Therefore, the intensity relationship between the rotated pairs of positions used in BRIEF will
move toward some fixed pattern. This implies that there are correlations among these position
pairs that are used for computing the binary descriptor. To reduce the correlations among the
binary tests, Rublee et al. (2011) has developed a learning method for choosing a good subset
of binary tests.

Given an extracted local image patch of size m × m. All possible tests from the patch is a
pair of w × w sub-windows of the patch. The number of possible sub-windows is then given
by N = (m− w)2. Typically, m = 31 and w = 5. Pairs of two are selected from these
sub-windows, giving

(N
2
)
binary tests. Tests that overlap are eliminated, yielding a final set

of candidate bit features. It is important to smooth the image before performing the tests
(Rublee et al., 2011). Based on a training set, ORB selects at most 256 bits according to the
following algorithm:

1. Run each test against all training patches.

2. Order the tests by their distance from a mean of 0.5, forming the vector T.

3. Greedy search:

(a) Put the first test into the result vector R and remove it from T.

(b) Take the next test from T, and compare it against all tests in R. If its absolute
correlation is greater than a threshold, discard it; else add it to R.

(c) Repeat the previous step until there are 256 tests in R. If there are fewer than 256,
raise the threshold and try again.

The algorithm is a greedy search for a set of uncorrelated tests with means near 0.5. The result
is called Rotation-Aware BRIEF (rBRIEF). As evident in the paper by Rublee et al. (2011)
this algorithm clearly reduces the correlation between tests making each test contribute to the
result. It also raises the variance of binary tests yielding a more discriminative descriptor.

2.6.5 Descriptor matching

In terms of detection of an object in a scene using keypoints and descriptors, a matching
procedure is a must. This usually happens by comparing the descriptors from a query image
(object) with the descriptors from a training image (scene). Typically, some sort of distance
measurement of the descriptors is used for comparison. As previously presented in this thesis,
there are descriptors expressed as a string of bits generated from a pixel intensity test, referred
to as binary descriptors. The other type is descriptors expressed as a feature vector built from
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e.g. an orientation histogram or sums of Haar wavelet responses, referred to as real-valued
descriptors. The binary descriptors are those based on BRIEF, i.e. BRISK and ORB. The
real-valued descriptors are SIFT and SURF. The method of distance measurement used for
these two groups of descriptors differ. This thesis will not cover the details of these methods,
however they can be summarized as:

• Binary

– Hamming distance - Checks the amount of symbols that are different at corre-
sponding positions in two strings of equal length. As an example, the hamming
distance between the two bit-strings 01011100 and 01010101 is equal to 2.

• Real-valued

– Manhattan distance (L1norm) - Also known as Taxicab distance. It is a measure
of distance between two points in a rectilinear system. For a 2D plane the distance
between two points is therefore the distance in x direction added to the distance in y
direction. Considering descriptors, these points are actually vectors. Two descriptor
vectors describe a feature q in the query image and a feature t in the training image.
As expressed in Nixon and Aguado (2012), the Manhattan distance is the sum of
the modulus of the differences between the n element descriptor of q and t:

dM =
n∑
i=1
|qi − ti| (2.53)

This method is computationally more efficient than the Euclidean distance.

– Euclidean distance (L2 norm) - An alternative to the Manhattan distance. It
measures the straight line between two points and yields only one solution to the
shortest path. Considering two n element descriptors of feature q and t, the differ-
ence d between the descriptors is expressed as in Nixon and Aguado (2012):

dE =

√√√√ n∑
i=1

(qi − ti)2 (2.54)

This method is computationally more costly than the Manhattan distance.
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Figure 2.63: Distance measure in a 2D plane. Image from Nixon and Aguado (2012).

Brute-force

The idea of brute-force matching of descriptors is simply to match one feature in the query
image with all other features in the training image using one of the distance measurements as
described in the previous section. The closest one is returned as a match. A lower distance
means better match. However, this matching approach may accept some false positives. The
result can be improved by sorting the matches by distance (OpenCV, 2015a).

Brute-force matching can also return more than one match if that is desirable. The result is
then processed with a ratio test of k best matches as explained by Lowe (2004). Considering
k = 2, the two closest descriptors are returned as candidate matches based on their measured
distance. Given a distance ratio, the two candidates can be compared to one another. If the
measured distance is low for the best candidate, but much larger for the second best candidate,
the best candidate is accepted as a match. Both the candidates are rejected if the measured
distance is similar. Lowe (2004) proposed to reject all candidates in which the distance ratio is
greater than 0.8, which means that the distance of the second best candidate can not be closer
than 80% of the best candidate. This leads to an elimination of 90% of the false positives while
only discarding up to 5% of the correct matches. Figure 2.64 shows the difference between
brute-force matching with a distance ratio of 0.9 and 0.7. There are clearly fewer false positives
with a lower distance ratio.

Figure 2.64: Brute-force matching of SIFT descriptors using a distance ratio of 0.9 (left) and
0.7 (right). The cyan lines denote a match between the object and the scene. Notice that some
of the lines represents false positives as shown in the left half of the figure, while there are no
false positives clearly represented in the right half.
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FLANN

An alternative to brute-force matching is Fast Library for Approximate Nearest Neighbours
(FLANN). This library contains a collection of algorithms optimized for fast nearest neighbour
search in large data sets and for high dimensional features. FLANN is faster than brute-force
for matching across large data sets (OpenCV, 2015a). For matching between two images, brute-
force may in most cases be the best choice, however in case of a large database of descriptors
from numerous images to match across, FLANN is the clear choice. Just as with brute-force
matching returning k best matches, the best matches from a FLANN matching procedure may
also be processed with a ratio test.

2.6.6 Planar homography

In short, planar homography can be described as a projective transformation between the cor-
responding points in two planes. The two planes may for example be a set of points from an
image of the same object, but with different perspective, or position of the camera. This means
that there are world points or features corresponding in the two different camera projections
(Corke, 2013). Typically, homographies are computed by matching features between two im-
ages. The matched features of each image are then fitted to a plane using e.g. RANSAC, and
the homography is then the projective transformation between the two planes. Considering
a set of points in the two planes as 1pi and 2pi. The relationship between them are then
expressed as

2p̃i 'H 1p̃i (2.55)

where 2p̃i and 1p̃i is on the form (x, y, 1)T and (x′, y′, 1)T respectively. The homography matrix
is a non-singular 3× 3 matrix expressed as

H =

H11 H12 H13
H21 H22 H23
H31 H32 1

 (2.56)

The above matrix has 8 unknowns, which can be estimated from 4 world points and their
corresponding image points in the two planes (Corke, 2013).

2.7 Robot operating system

Robot Operating System or ROS for short, is a large, community developed framework that
works to make writing code for robots easier. ROS is a collection of tools, libraries and
conventions that is put together to aid the development of robot software. The goal of the
ROS project is to simplify the task of creating complex and robust robot behavior across a
wide variety of robotic platforms. In order to fully grasp the concept of ROS, a couple of key
elements needs to be explained further. Full documentation of ROS is available at (ROS.org,
2016a).
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2.7.1 The ROS architecture

The Robot Operating System project is, as the name implies, structured as an operating system.
It runs on a wide variety of Linux distributions, and let developers run self written programs.
The ROS framework implements conventions for:

• How programs should be written to run on ROS

• How different programs can communicate with each other

• How programs should log and report error messages

These conventions make it trivial to communicate cross-application, which is valuable when
programming complex systems. This means that a system can consist of smaller and self
sufficient programs instead of one large program. This has benefits both in the development
phase (the developer is allowed to focus on a single task, instead of trying to implement a
complete software solution for the entire system), and debugging phase.

Figure 2.65 attempts to illustrate the ROS node architecture. It illustrates how ROS is com-
municating with the robotic manipulator through a PLC (Wikipedia, 2015) and how different
nodes can communicate with each other and external input.

Figure 2.65: A simple illustration of the ROS architecture.

2.7.2 Nodes

An individual program (or executable) is referred to as a node in the ROS context. ROS
allows users to run many nodes simultaneously, and handles the communication between nodes
internally. This means that a complex robot setup can be run by several individual nodes
cooperating to achieve a wanted behavior. In order to run a node in ROS, the following
command is used:
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rosrun [ package name ] [ node name ]

2.7.3 Services

Services in the ROS context are comparable to program methods or functions. The key feature
of the ROS service is that ROS allows for publication of available services for a given node.
These services can then be called remotely from other nodes. The communication interaction
between nodes is illustrated in Figure 2.66. This allows for simple interaction between different
nodes. One important fact is that ROS handles all the cross-application communication,
making the process of communication between two applications extremely simple. The data
exchange in a service call (request and response) is predefined by the developer. This is done
using a file with the .srv extension. The content of the file is simple, and is structured as
request (function argument) and response (function return value). The request and response
are separated with a line containing the text "- - -". A simple service might be defined as
following.

1 int request ;
2 ---
3 int response ;

Paragraph Publishing a service and Calling a service in section 3.2.7 shows an example
of how to publish and call a service.

Figure 2.66: Illustrates the interaction between two nodes in a service call.

2.7.4 Topics

Topics in the ROS context are comparable to data streams. Like services, topics are methods
used for communication between different applications. ROS allows for both publication and
subscription of topics. The mechanics of this convention is that a node can publish data to
a topic, which is automatically sent to all nodes subscribed to that particular topic. This
mechanism is illustrated in Figure 2.67. Topics often see a different use case than services,
and is more suited for communication that is meant to be continuous (like sensor input data,
actuator control data, etc.). The data contained in a topic is defined in the message type of
that given topic (see section 2.7.5 for more info about messages)

ParagraphPublishing a topic and Subscribing to a topic in section 3.2.7 shows an example
of how to publish and subscribe to a topic.
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Figure 2.67: Illustrates the interaction between nodes when communication using topics.

2.7.5 Messages

Messages in the ROS context are comparable to structs in the C programming language. Like
structs, messages are developer defined data types often consisting of multiple variables of
different type. This means that a single message can contain many different variables with
different types. Like services, messages are defined in the ROS framework by the use of a file.
The file extension defining a message is .msgs. See paragraph Defining a message in section
3.2.7 for an example of how to define a message in ROS.
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3.1 Physical setup

3.1.1 Robotic cell setup

The robotic cell used for this assembly task consists of the following hardware:

• Two KUKA KR 6 R900 sixx (KR AGILUS) six axis robotic manipulator.

• Two KUKA KR C4 compact robotic controllers.

• Microsoft Kinect™ One 3D depth sensor.

• Logitech C930e web camera.

• Schunck PSH 22-1 pneumatic linear gripper.

• ROS Master computer.

• Intel NUC NUC5i5RYH mini computer.

Figure 3.1 shows a simulated view of the robotic cell setup. The actual robotic cell is shown
in Figure 3.2.

Figure 3.1: Shows a simulated view of the
robotic cell.

Figure 3.2: Picture of the robotic cell.

As illustrated by figure 3.1 and 3.2, the Schunk PSH 22-1 pneumatic linear gripper is mounted
on the left most robotic manipulator (hereby referred to as Agilus 1 ), and the Logitech web
camera is mounted on the right most robotic manipulator (hereby referred to as Agilus 2 ). The

55



3.1. PHYSICAL SETUP CHAPTER 3. METHOD

Microsoft Kinect™ depth sensor is located above the table, and behind the two robots. This
position was selected in order to produce a 3D point cloud where the whole table is clearly
visible without placing the 3D camera far away from the table. This is specifically important
when using the Microsoft Kinect™ depth sensor in order to keep the accuracy of the sensor as
high as possible because, as shown by Khoshelham and Elberink (2012), the accuracy of the
sensor is proportional to the distance between the camera and the object of interest.

Agilus 1 is used to manipulate the parts that is to be assembled using the linear pneumatic
gripper and Agilus 2 is used to position the Logitech web camera (called an eye-in-hand setup).
The flexible position of the web camera allows for a highly dynamic assembly setup, where the
initial position of the parts can be chosen at random.

In order to coordinate information from both cameras together with the two robots, four
reference frames have been established with known positions. These reference frames are
shown in Figure 3.3. The frames located at the tool of the two robots are fixed to the robots,
and move accordingly. The two remaining reference frames are fixed in space. The main origin
of the robotic cell is defined by the reference frame located at floor level between the two
robots. All movements, and object positions retrieved using object detection are transformed
into this reference frame, effectively making it the global origin of the robotic cell.

Figure 3.3: Illustrates the global origin of the robotic cell, as well as the tool and optical
reference frames for the robots and cameras.

A simulated view of the scene produced by the 3D depth sensor, and the web camera is shown
in figure 3.4 an 3.5. Note that the simulated image from the web camera is taken with the
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robot positioned above the table, and not in its home position.

Figure 3.4: A simulated view of the table
as seen from the 3D camera.

Figure 3.5: A simulated view of the table
as seen from the 2D web camera.

The purpose of the Intel NUC is to serve as a 3D camera data acquisition server. The Kinect
depth sensor is connected to the Intel NUC, and the data acquired from the depth sensor is
published on a ROS topic in order to access it on the main ROS computer. This was done
because of physical limitations, where the positions of the depth sensor and the ROS master
computer is to far apart to be able to connect them directly. The data is streamed over the
network by TCP/IP using the ROS framework.

3.1.2 Calibrating 3D camera position

In order to obtain usable information from the 3D depth sensor, its position in space needs
to be known. In order to calibrate the 3D cameras position in space in relation to the world
frame (robotic cell origin) an augmented reality tag with a known position is used. Figure 3.6
shows a typical augmented reality tag.

Figure 3.6: Shows three typical augmented reality tags. Image from Liebhardt (2016).

An augmented reality tag was placed on the table, directly above the world reference frame
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of the robotic cell. By measuring the height of the table ztable, a rigid transform between the
world reference frame and the augmented reality tag is defined as:

Tworldar−tag =


1 0 0 0
0 1 0 0
0 0 1 ztable
0 0 0 1

 (3.1)

The position of the augmented reality tag in relation to the 3D camera is found using a publicly
available ROS node called ar_track_alvar (Liebhardt, 2016). The ar_track_alvar program
runs in ROS, taking the 3D depth data as input, and returning the position and orientation
of the ar-tag in relation to the 3D camera reference frame. This output is in the form of a
homogeneous transformation matrix T ct .

The final step is to use the information acquired from the ar-tags position in the 3D camera
reference frame to obtain position of the 3D camera in relation to the world reference frame.
This is done using the following equations:

Twc = Twt × T tc , where T tc = (T ct )−1 (3.2)

The annotations used in equation 3.2 relate to the following

w - World reference frame.

t - Augmented reality tag reference frame.

c - 3D camera reference frame

3.1.3 Parts used for assembly

The automated assembly described in this thesis is meant to perform an assembly task of
two given parts, part A and part B as shown in Figure 3.7 and 3.8. The way these parts are
assembled is with part A placed into part B from a specific direction. The positional accuracy
needed for a successful assembly is approximately ±1mm in both the x and y axes. The
assembly tolerance when it comes to orientation is approximately ±1.5◦.

The two parts used will be denoted, from this point on, as part A and part B in this thesis.
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Figure 3.7: A 3D model of
part A.

Figure 3.8: A 3D model of
part B.

3.1.4 Calibrating 2D intrinsic parameters

Calibration of a 2D camera, also referred to as camera resectioning (The MathWorks, 2016), is
used in robotics for accurate computation of the position of objects in the image. As explained
in section 2.1.6, the camera parameter matrix is expressed as:

K =


f
ρw

0 u0

0 f
ρh

v0
0 0 1


and is actually the intrinsic parameters of the camera, defined by the focal length, pixel size
and the optical center in pixels. This matrix allows the computation of image coordinates from
pixel coordinates. This is needed to express the position of objects detected in the image.

Camera calibration will also allow correction for lens distortion. As modern day cameras use
lenses to create brighter images and allow focusing, they also introduce radial distortion of the
image. In order to flatten the image, representing the scene as it actually is, camera calibration
can be used to estimate the parameters of the lens and image sensor of the camera. Note that
the distortion is larger close to the image edges, and very small at the optical center.

Such calibration algorithms are available in numerous image processing toolboxes, e.g. mat-
lab and OpenCV. The approach in this thesis is implemented in OpenCV using C++. The
following list describes what is needed to perform the calibration:
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• A compatible camera (Logitech C930e)

• A chessboard of size e.g. 5× 7 printed on paper

• Compiled executable for calibration (available in the digital appendix as described in
Appendix D)

The code used allows the input of the camera resolution, chessboard size, path to parameter
storage after calibration and some other options like number of calibration images and delay
between image capture. The chessboard is then held in front of the camera with different
orientations and moved around to cover the whole field of view. Loading a set of already
captured images is also an option. The output is a file of type XML or YAML including the
following parameters:

• Camera intrinsic parameters

• Camera extrinsic parameters

• Camera distortion coefficients

This file can be loaded into other applications and used for correction of lens distortion and
computation of image coordinates.

Figure 3.9: Calibration procedure of camera parameters using a chessboard of size 5× 7.

3.1.5 Calibrating eye-in-hand transform

In order to perform correct vision-based robot control, the eye-in-hand system had to be
calibrated. This is crucial since the chosen approach for object assembly detects the center
of an object in the images captured with the eye-in-hand system. The robot is then moved
so that the optical center of the camera overlays the object center, thus minimizing the error
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between a current center point to a desired point. This approach is called Image-Based Visual
Servoing (IBVS) as described in Corke (2013). However, our approach is simplified in terms
of the following assumptions:

• The objects are detected with a measured distance from the camera lens.

• The camera orientation is fixed and always perpendicular to the table the object is placed
on.

This means that the distance in the xy-plane between the optical center of the camera and
a detected object is the main output from the detection algorithm presented in section 3.2.4.
Since the world frame and the camera frame in the robotic cell is orientated as illustrated in
Figure 3.10, a rigid transform between them must be established to represent the position of
objects detected in the camera frame relative to the world frame.

Figure 3.10: Illustration of the orientations of the camera frame C and world frame W.

The homogeneous transformation matrix (as described in section 2.1.2) of the camera frame C
relative to the world frame W is given from

TWC =
[

RWC tWC
0 0 0 1

]
(3.3)

where a typical translation between the frames is tWC = (x y z)T and the rotation is given

61



3.1. PHYSICAL SETUP CHAPTER 3. METHOD

from: RWC = Ry(π)Rz(−π
2 ), which results in:

TWC =


0 −1 0 x
−1 0 0 y
0 0 −1 z
0 0 0 1

 (3.4)

From the camera calibration method as explained in section 3.1.4, the camera intrinsic param-
eters K are also known. Lets say the camera parameters are given as:

K =

 750 0 640
0 750 360
0 0 1

 (3.5)

For an object detected in the image plane at pixel coordinate p̃ = (720 400 1)T , the normalized
image coordinates are given as explained in section 2.1.6:

s̃ = K−1p̃ =

 1
750 0 −640/750
0 1

750 −360/750
0 0 1


 720

400
1

 =

 0.1067
0.0533

1

 (3.6)

We denote an object frame O with the same orientation as the world frame, fixed to the
detected object center as illustrated in Figure 3.11. If the distance along the camera optical
axis to the detected object is λ = 0.2, the position t̃CCO of the object in the camera frame is:

t̃CCO =


tCx
tCy
tCz
1

 =
[
λs̃
1

]
=


0.0213
0.0107

0.2
1

 (3.7)

If we now include the homogeneous transformation matrix TWC , we will get the position of O
in the coordinates of the camera frame C relative to the world frame W expressed as:

t̃WCO = TWC t̃
C
CO =


0 −1 0 x
−1 0 0 y
0 0 −1 z
0 0 0 1



tCx
tCy
tCz
1

 =


x− tCy
y − tCx
z − tCz

1

 =


x− 0.0107
y − 0.0213
z − 0.2

1

 (3.8)

The variables x, y and z denote the position of C relative to W. This is actually the position
of the camera lens mounted on the manipulator end-effector. The relative movement from
current end-effector pose to the detected object in world coordinates is expressed in equation
3.8. If only the movement in the xy-plane is executed, the camera optical axis will be lined
up with the detected object center. The true position of the object in the world xy-plane can
then be retrieved by acquiring the manipulator pose from a move group as explained in 3.2.3.
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Figure 3.11: Shows the world frame W (floor), the object frame O (object center) and the
camera frame C (camera lens).

Furthermore, since the camera used to detect objects is mounted on a bracket at the manip-
ulator end-effector, the optical axis of the camera is most likely not properly lined up with
the z-axis of the manipulator end-effector. This is a problem when the second manipulator is
going to pick up the object at a detected position. To overcome this offset, the following steps
were performed:

1. An object was placed on the table in the robotic cell. The eye-in-hand (Agilus 2 ) robot
was then moved above the object and the detection algorithm was activated.

2. Based on the above method in equation 3.8, a relative movement of the robot to the
center of the object was computed and the robot moved accordingly in the xy-plane.

3. The camera bracket was then replaced with a calibration tool (a rod with a fine point)
for tool center point. With the new tool the robot was jogged close to the object along
the z-axis keeping the same xy-coordinates.

4. By iteratively moving the robot in x- and y-axes, the offset from the camera optical axis
to the end-effector z-axis was detected in relation to the world frame.

By adding the offset values to the detected coordinates of the object in the world frame, the
robotic manipulator with the gripper (Agilus 1 ) can accurately pick up an object detected
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from the eye-in-hand system.

3.2 Software development

The software used to process both 2D and 3D images, as well as control the robotic manip-
ulators is written using the C++ programming language. The actual development was done
using both the QT Creator and the CLion integrated development environment (IDE). The
following sections describes the different aspects of the software development in detail.

3.2.1 Acquiring 3D point clouds

The 3D point cloud produced by the Microsoft Kinect™ can be acquired and published through
a publicly available ROS node named kinect2_bridge (Wiedemeyer, 2016). This program
utilizes a data stream acquisition program called libfreenect2 (Xiang et al., 2016) to acquire the
data published by the 3D camera. The data stream is then converted to a ROS message. The
message used is sensor_msgs/pointcloud2 (ROS.org, 2016b). This message is made available
in ROS through a topic.

3.2.2 Acquiring 2D images

Setting up the video stream for 2D object detection was carried out using OpenCV (Open
Source Computer Vision) for C++ in ROS. To enable video capturing, one simply has to
instantiate an object of class cv::VideoCapture. This is a C++ API enabling video capture
from cameras. The class has numerous properties that can be tweaked, for instance the desired
resolution of the captured image frames. Once the class has been configured to match the
desired video properties a method called open(int index) is called. As suggested by the method
name, it will open a connection to the camera.

In order to actually acquire an image that can be processed, the object of cv::VideoCapture
is used to store the image data in an object of class cv::Mat. This class represents an n-
dimensional dense numerical single-channel or multi-channel array. It can be used to store
real or complex-valued vectors and matrices, grayscale or colour images, voxel volumes, vector
fields, point clouds, tensors or histograms (OpenCV, 2015b). The acquirement of an 2D image
is the first action in every iteration of the image processing ROS node at a given loop rate.
The image can then be processed as explained in section 3.2.4 and published as a ROS message
on a given topic using cv_bridge. Cv_bridge is an interface used to encode OpenCV images
into ROS image messages (Mihelich and Bowman, 2010). Any ROS node can now subscribe
to the topic and visualize the image.

3.2.3 Control the robotic manipulator

ROS is, as described in section 2.7, used for control of the two KR AGILUS manipulators in the
robotic cell. Included in ROS is a software package called MoveIt! (Sucan and Chitta, 2016).
This package has an inverse kinematic solver making it possible to control the manipulators
based on input of e.g. the end-effector pose. The robotic cell is already configured for use
with MoveIt! and typically, the MoveIt! Rviz (a visualization framework available in ROS)
plugin, a graphical user interface for manipulator control, is used to move the manipulators by
drag-and-drop of the end-effector. However, the MoveIt! software can also be used directly in
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any ROS node through a C++ API called move_group_interface (Sucan and Chitta, 2013).
It allows trajectory planning and current pose acquirement of move groups and is a powerful
tool when the goal is to control a manipulator from other ROS nodes.

In MoveIt! a move group consists of a given number of connected joints. Each group has a
defined name. In the case of this project they are called agilus1 and agilus2. One approach to
manipulator control is to create two objects of class moveit::planning_interface::MoveGroup,
one for each group, and interface directly with these groups in a control node. However, service
controlled manipulator movements were considered a "nice to have" functionality and chosen
as the desired approach. Therefore, the use of the move_group_interface was programmed
in a stand-alone ROS node. This node advertise two different services called plan_pose and
go_to_pose.

Through these services, any ROS node can plan a trajectory or move the manipulators by
calling the appropriate service. By specifying the goal pose of the end-effector a linearly
interpolated trajectory from start pose to goal pose is generated.

The following is a code example showing the use of the go_to_pose services. This service is
called using the Pose.srv service object (the Pose.srv service object definition is available in
Appendix C).

1 // The service client and service object is created .
2 goToClient = n. serviceClient < agilus_planner ::Pose >("/ robot_service_ag1 /

go_to_pose ");
3 agilus_planner :: Pose pose_service ;
4
5 // The content of the service object is populated with the home position of

Agilus 1.
6 pose_service . request . header . frame_id = "/world";
7 pose_service . request . relative = false;
8 pose_service . request . set_position = true;
9 pose_service . request . position_x = 0.445;

10 pose_service . request . position_y = -0.6025;
11 pose_service . request . position_z = 1.66;
12 pose_service . request . set_orientation = true;
13 pose_service . request . orientation_r = 0.0;
14 pose_service . request . orientation_p = 3.1415;
15 pose_service . request . orientation_y = 0.0;
16
17 // The service client is called with the populated service object .
18 goToClient .call( pose_service );

3.2.4 2D object detection

As already mentioned in section 3.2.2, OpenCV for C++ is used to acquire images. Before
these images add any value to the vision solution, they must be processed in terms of feature
detection. OpenCV is also used for this task as it implements very useful functionality for
2D object detection in a way that makes abstraction of code possible. The functionality of
interest in OpenCV is mainly the detection, description and matching of image features. This
can be done in numerous ways. However, based on theory about this type of object detection,
the following four algorithms are the most promising in order to solve the object detection
problem:
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SIFT The keypoint detector and descriptor extractor called Scale-Invariant Feature Transform
as presented in section 2.6.1 is implemented and available in OpenCV as a class named
cv::xfeatures2d::SIFT.

SURF Speeded-Up Robust Features as presented in 2.6.2 is also available in OpenCV. The
implemented class is named cv::xfeatures2d::SURF.

BRISK Binary Robust Invariant Scalable Keypoints as presented in 2.6.3 is a third alternative
for object detection. It is implemented in OpenCV named cv::BRISK.

ORB Oriented FAST and Rotated BRIEF is similar to BRISK as explained in 2.6.4. The
algorithm is implemented in OpenCV as cv::ORB.

All of the above algorithms are invariant to scale and rotation. The usage of each one is similar.
An object detection procedure consists of the following steps:

1. Load a query image of the object to be detected into an instantiated object of cv::Mat.

2. In the query image:

a. Detect keypoints and store them in an object of std::vector<cv::KeyPoint>.

b. Extract descriptors and store them in an object of cv::Mat.

3. Acquire a training image as described in 3.2.2.

4. For each training image obtained:

a. Detect keypoints and store them in an object of std::vector<cv::KeyPoint>.

b. Extract descriptors and store them in an object of cv::Mat.

c. Match the query descriptors with the training descriptors using either brute-force
or FLANN. Store the matches in a vector std::vector<cv::DMatch> and sort them
using the distance ratio-test as explained in section 2.6.5.

d. Compute the homography between the matched points in the query and training
image using RANSAC as described in 2.6.6. Transform the query object plane using
the homography and surround the detected object with four corner points in the
training image, supposedly as a rectangular box when lines are drawn between them.

e. Check that the inner angles of this box is close to 90◦ compared to an allowed
deviation.

f. If the box is not rectangular:

i. Cancel further processing and proceed with the next image.

g. If the homography transform is accepted:

i. Mark the object in the training image and publish the processed image using
cv_bridge as described in 3.2.2.

ii. Compute the image coordinates of the detected object center using the pixel
coordinates of the intersection between the object box diagonals as input.

iii. Compute the orientation of the detected object.
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iv. Publish the image coordinates and orientation data as a ROS message of type
geometry_msgs/Pose2D.msg.

Testing and evaluation of the available keypoint detectors and descriptor extractors is possible
by implementing this procedure in a C++ ROS node. Test procedures are presented in section
3.3.

Acquiring object orientation

As previously mentioned, if the homography between the query image and the match in the
training image results in a rectangular box surrounding the object, the match is good for further
processing. In order to successfully assemble part A into part B, the orientation acquirement
of both parts needs to be accurate. Section 3.1.5 points out that the orientation of the eye-in-
hand system is always fixed and perpendicular to the table where the objects are placed, thus
always perpendicular to the object seen from above.

With a known and fixed orientation of the camera frame, it is possible to accurately compute
the orientation of a given shape in the image using basic geometry. This shape is always a
simple square or rectangle because of the matching algorithm expressed above. An object is
detected at pixel coordinates p = (u, v) in the image plane as illustrated in Figure 3.12. The
pixel coordinates of the corners 0, 1, 2 and 3 is denoted p0, p1, p2 and p3. The image center
is denoted pc = (u0, v0). Given a rotation of the object box, there will be a right triangle with
hypotenuse between corner 0 and 1 as shown in the figure below.

Figure 3.12: Illustrates the simple computation of the objects orientation.

The angle of the object is then simply expressed as:

θ = atan2
(
y

x

)
(3.9)
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where the horizontal pixel length x and vertical pixel length y of the triangle is:

x = p1(u, 0)− p0(u, 0)
y = p0(0, v)− p1(0, v)

A testing procedure for the stability of this method is presented in section 3.3.5.

3.2.5 3D object detection

The 3D object detection used in this assembly task is implemented using the C++ programming
language in conjunction with the Point Cloud Library (PCL) (PCL, 2016). PCL implements
functionality useful to perform 3D object detection. The following is an explanation of the
steps performed in sequence in order to detect a wanted object using the 3D camera, and a
description of the PCL classes used to perform them. This is an implementation of a global
pipeline.

Passthrough filtering The first step in the object detection process is passtrough filtering
This is done to reduce the number of data points in the point cloud, but also to remove
any unwanted parts of the 3D scene. Passthrough filtering is explained in detail in section
2.3.1. The PCL class pcl::PassThrough is used to perform a passthrough filtering task.

Voxel grid filtering The voxel grid filtering is performed to ensure that the point cloud is
uniformly sampled. This is important in order to estimate accurate descriptors of the
scene that is comparable to the training set (the point clouds in the training set are all
sampled uniformly). Voxel grid filtering is explained in detail in section 2.3.2 The PCL
class pcl::VoxelGrid is used to perform a voxel grid filtering task.

Plane model segmentation Given that it is known that the parts that is to be assembled
will be located on a table surface, a model segmentation is performed. This is done
in order to remove the part of the point cloud that corresponds with the table surface.
Model segmentation is explained in detail in section 2.3.5. The model segmentation
is done using the PCL class pcl::SACSegmentation. In order to segment a plane, the
RANSAC model pcl::SACMODEL_PLANE is used.

Cluster extraction At this point in the process, the only points left in the point cloud will
correspond with the parts that is to be assembled and some random, scattered noise. The
purpose of the cluster extraction step is to separate the different objects in the scene into
their on individual point clouds. This step is critical in order to use global descriptors.
This is explained in detail in section 2.3.6. The cluster extraction is performed by the
PCL class pcl::EucledianClusterExtraction. All steps following the cluster extraction is
performed for all clusters extracted in this step.

Normal estimation Surface normals are estimated. The surface normals are instrumental
to the estimation of both local and global descriptors. The method used for estimating
surface normals is described in section 2.4.1. Normal estimation is performed using the
PCL class pcl::NormalEstimation.

Keypoint selection Keypoints used for local descriptor estimation is selected using SIFT3D.
As described in section 2.4.2, keypoints are selected to be points of interest that contain
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more information than its neighbouring points. Keypoints is explained in section 2.4.2.
The selection is done using the PCL class pcl::SIFTKeypoint.

Local descriptor estimation Local descriptors are estimated using the FPFH descriptor.
The local descriptors will be used to calculate an initial alignment at a later step. Local
descriptors is explained in section 2.4.3. The estimation is performed using the PCL class
pcl::FPFHEstimation.

Global descriptor estimation Global descriptors are estimated for all clusters extracted in
the cluster extraction step. As described in section 2.4.4, the global descriptor holds
information that describes a cluster of points. This descriptor is used for viewpoint
matching. The global descriptor estimation is done using the VFH (see section 2.4.4)
global descriptor which is implemented in the PCL class pcl::VFHEstimation.

Viewpoint matching In order to select the model from the training set with the correct
viewpoint of the part (that matches the viewpoint of the part captured by the 3D camera),
the global descriptors of all viewpoints in the training set is compared to the object cluster
using a nearest neighbour search. The best match is selected as the model that is used
for alignment. The nearest neighbour search is applied on a Kd-tree data structure which
is generated using the PCL class pcl::KdTreeFLANN. This class also implements nearest
neighbour search.

Initial alignment Initial alignment is done using the model found to be the best match
(previous step). The output of this step is a rigid transform that is close to registering
the model from the training set to the object cluster in the scene. The approach used
for initial alignment estimation is the sample consensus approach. A brief explanation is
available in section 2.5.3. This is implemented in the PCL class
pcl::SampleConsensusInitialAlignment.

Final alignment The final alignment is estimated using ICP (see section 2.5.2) with the
rigid transform estimated in the previous step as the starting point. The rigid transform
produced by the ICP algorithm is used in conjunction with the training set information
regarding the pose of the model as an estimate of the pose for the wanted object in
relation to the 3D camera reference frame T co . This pose is transformed to the world
reference frame Two using the rigid transform from the world reference frame to the 3D
camera Twc as follows:

Two = Twc × T co

The position of the part found using 3D object detection is the final output of this
sequence. The ICP algorithm is implemented in the PCL class pcl::IterativeClosestPoint.

3.2.6 Creating training sets

The training set used for 3D object detection was created using the virtual approach described
in section 2.4.5. A virtual tessellated sphere is used to position a virtual 3D depth sensor. The
sphere used when creating the training set produces 42 individual 3D point clouds, rendered
with a resolution of 200 × 200 pixels. Using this resolution, the rendered scene produced is
comparable to the 3D point cloud of an object captured by a 3D camera.
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In order to reduce the computation time for 3D object detection, a full set of features (key-
points, surface normals, local descriptors and global descriptor) are calculated for each of the
42 point clouds produced for a model. The point cloud, with its corresponding features are
saved to file on the computer, allowing for fast processing times during the 3D object detection
process.

3.2.7 ROS communication

This section demonstrates how the main communication framework available through ROS are
implemented and used.

Publishing a service

As mentioned in section 2.7.3, a service is defined in a separate file with the .srv extension. In
addition, the node publishing the service needs a callback method for the particular service.
The following code defines a callback for the service named test_service:

1 bool test( package_name :: test_service :: Request &req ,
2 package_name :: test_service :: Response &res)
3 {
4 // This service adds value a and b from the service request together and

return s the sum in the service response . This action is performed
whenever this service is called .

5 res.sum = req.a + req.b;
6 return true;
7 }

Once the service callback is defined, the node can publish the service. This is done in the
following way.

1 ros:: ServiceServer service = node_handler . advertiseService (" test_service ",
test);

The ServiceServer is defined with the service name and callback method. At this point, the
service is published and can be called from other nodes on the ROS system.

Calling a service

In order to call a service from a remote node, we first define a service client.
1 ros:: ServiceClient client = node_handler . serviceClient < package_name ::

test_service >(" test_service ");

Next, a service object is made, and the request is filled with data.
1 package_name :: test_service srv;
2 srv. request .a = 1;
3 srv. request .b = 2;

Finally, the service is called using the service client object.
1 client .call(srv);

70



CHAPTER 3. METHOD 3.2. SOFTWARE DEVELOPMENT

Publishing a topic

Publishing a topic is done trough the Node Handler. Each ROS node has a node handler,
which is used for controlling the node, and communicate with other nodes. In order to publish
a topic, a Publisher object is retrieved from the Node Handler.

1 ros:: Publisher topic_publisher = node_handler .advertise < std_msgs :: String >("
topic_name ", 1000);

The publisher is defined with a topic name and message type. Next, the message is generated
and filled with some data.

1 std_msgs :: String topic_message ;
2 std:: string stream message_data ;
3 message_data << "hello world ";
4 topic_message .data = message_data .str ();

Finally, the topic is published.
1 topic_publisher . publish ( topic_message );

Subscribing to a topic

Subscribing to a topic is handled similarly to publishing. First, a subscriber object is obtained
through the node handler.

1 ros:: Subscriber subscriber = node_handler . subscribe (" topic_name ", 1000 ,
topicCallback );

The subscriber object is defined with a topic name and a callback function that is called when
a new topic message is received. A callback method could look like the following:

1 void topicCallback (const std_msgs :: String :: Const Ptr& topic_message )
2 {
3 // Perform this action whenever the topic is updated .
4 ROS_INFO ("I heard: [%s]", topic_message ->data.c_str ());
5 }

The node is now configured to subscribe to the topic topic_name.

Defining a message

The following is an example of a struct declaration:
1 struct human{
2 int age;
3 double height ;
4 double weight ;
5 };

Now, this custom datatype can be defined as a message in the ROS framework using a .msgs
file containing the following lines of code:

1 int age;
2 double height ;
3 double weight ;
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As evident by the code examples above, the declaration of a struct and a message is very
similar. The use of messages in topics allows applications to wrap a high amount of data in a
single message. One important aspect of messages, services and topics is that they are globally
defined, meaning that any node running in the ROS framework can use these user defined
types.

3.3 Testing setup

3.3.1 3D object detection accuracy

In order to test the positional accuracy of the 3D object detection output, a test was performed.
In this test, the two different parts that is to be assembled was positioned on the table at
known locations. The resulting position from the 3D object detection is compared to the
known position of the parts. Figure 3.13 shows the setup used, where a part is positioned in
different known positions on the table.

The grid used is measured to have 5cm by 5cm squares, and positioned so that the lower left
corner of the paper is located directly above the world origin reference frame. This allows
for easy positioning of the parts at 5cm increments in negative x direction, and positive y
direction. It is fair to assume that the positional accuracy of the camera is close to constant
for the entire field of view, thus only one section of the table was used to carry out this test.

Figure 3.13: Shows the test setup used to measure the positional accuracy of the 3D object
detection process.
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The expected result from this test is based on a couple of different factors:

1. The accuracy of the Microsoft Kinect™ is known to decrease quadratically with distance
as shown by Khoshelham and Elberink (2012). Also shown in this paper is an expected
positional accuracy of < 2mm for the particular working area used.

2. The accuracy of the camera position calibration. Given that the camera position cal-
ibration is performed using the 3D camera data, the accuracy of the sensor data will
also affect the calibration. The ar-tag used was placed approximately 1m away from the
sensor. This is within the area where the expected accuracy of the sensor is < 2mm as
shown by Khoshelham and Elberink (2012).

Given these two factors, the theoretical accuracy should be within 0.4cm, however we do not
expect to achieve such high accuracy. Adding for some margin of error, we expect the positional
accuracy for the 3D object detection process to be within 0.6cm.

3.3.2 Testing global descriptors

In an effort to investigate which global descriptors were most suited to this assembly task, a
test was performed. This test was done by taking a 3D depth picture of one of the parts that
is to be assembled. This image was processed as described in section 3.2.5. From this point
cloud, a VFH descriptor and a CVFH descriptor was estimated.

Two different training sets were created to perform this test. One using the VFH global descrip-
tor, and the other using the CVFH global descriptor. We choose to test these two descriptors
based on the previous work by Alexandre (2012). This comparative analysis shows that the
more complicated descriptors (such as CVFH and OUR-CVFH) have a higher recognition rate
than the more basic VFH descriptor. Because of this, we want to use a complex global de-
scriptor if this is possible. Figure 3.14 shows the 3D scene used for testing the different global
descriptors.

Figure 3.14: The scene used to test match the different global descriptors.
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The reason behind only testing the VFH and CVFH descriptor is that the OUR-CVFH de-
scriptor is based on the CVFH descriptor. This means that if the CVFH descriptor is not
usable, this will also apply to the OUR-CVFH descriptor.

The two different global descriptors were tested by performing descriptor matching. The
expected result is to see a better confidence value (a value that describes how good a match
is) for the more complex CVFH descriptor than the basic VFH descriptor.

3.3.3 2D object detection processing time

A test was performed in order to get knowledge of the difference in processing time between
SIFT, SURF, BRISK and ORB used in the developed object detection ROS node. The pro-
cessing time needed to detect keypoints, compute descriptors and match descriptors was of
interest individually and as a total. The camera was stationary at the table during all tests
pointing towards the same image taped to the wall as illustrated in Figure 3.15. OpenCV
has methods for timing implemented as cv::getTickCount() and cv::getTickFrequency(). The
following code is used to compute the detection time of keypoints in seconds:

1 double d = ( double )cv:: getTickCount ();
2 detector -> detect (video , keypoints_scene );
3 d = (( double )cv:: getTickCount () - d)/cv:: getTickFrequency ();

The method is similar for the descriptor extraction time and matching time.

Figure 3.15: The view from the camera during testing of SIFT.

It is expected to see a clear difference in total processing time between the binary descriptor
methods, i.e. BRISK and ORB, and the real-valued methods, i.e. SIFT and SURF.

3.3.4 2D object detection matching stability

Matching stability is important to ensure high rate of success when assembling part A and part
B. It is also desirable that this works under the conditions present in the robotic cell used for
assembly. In order to test the stability of the object detection procedure described in section
3.2.4 a simple test was performed in the robotic cell. It consisted of the following steps:
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1. Place the object to be tested at the table with a given orientation.

2. Move the eye-in-hand (Agilus 2 ) manipulator above the object at a chosen z-coordinate
in the world frame.

3. Start object detection with a chosen algorithm, like SIFT, against a chosen query image
of the object.

4. Move the manipulator closer to the object along the z-axis until matching fails.

The steps were repeated for both parts using all four algorithms. From this test we want to
map the range of different distances between object and camera lens where the matching is
stable enough to be used for the final assembly task.

3.3.5 2D object detection orientation stability

A very important part of the 2D pose of an detected object is the orientation. In order to
determine the stability of the orientation computation as described in section 3.2.4 using the
different algorithms of interest, a test was performed.

The steps performed to acquire test data is:

1. Place the object to be tested at the table with a given orientation.

2. Move the eye-in-hand (Agilus 2 ) manipulator above the object at a given z-coordinate
in the world frame. The specific coordinate has been determined from the matching
stability results as presented in 4.3.2.

3. Compute the mean of n acquired orientations until m data points is generated.

This test was repeated for each algorithm that showed to have sufficient matching stability
(tested as described in section 3.3.4), for both parts that is to be assembled. From each
detection cycle of the algorithm presented in 3.2.4 an orientation is published as an angle in
the range [−180, 180] degrees. The test data is more specifically formatted as:

• One data point in the series of test data is obtained by computing the mean of

– n = 10 acquired orientations when using SIFT

– n = 20 for the rest of the algorithms

• Each test consists of m = 25 of these data points.

This is chosen based on the results from the tests concerning processing time as presented in
section 4.3.1. From this orientation test we want to determine which approach is better for
stable orientation computation.
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Chapter 4: Result

4.1 Physical setup

4.1.1 Robotic cell networking

The physical components of the robotic cell is networked together in a way that allows the
ROS master computer to communicate with both the two robotic controllers and the Intel
NUC computer. A simple sketch of the network setup used for the robotic cell is shown in
Figure 4.1.

Figure 4.1: Shows the network connections between the critical hardware in the robotic cell.

4.1.2 Calibrating 3D camera position

Since the objective of this task is to combine the data acquired from a 3D depth sensor and a
traditional camera. The position of the 3D camera was calibrated using the approach described
in section 3.1.2. Figure 4.2 shows the detected ar-tag with the corresponding reference frame.
This reference frame is used to estimate the position of the 3D camera.

The calibration process resulted in the following homogeneous transformation matrix:

T ctag =


−0.0007 −0.9998 −0.0182 −0.1160
−0.5692 0.0154 −0.8220 −0.0416
0.8221 0.0097 −0.5691 1.0405

0 0 0 1
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Figure 4.2: Shows the output of the ar_track_alvar application used for position calibration
of the 3D camera.

This transformation matrix is used as shown in equation 3.2 to produce the following rigid
transformation from the world reference frame to the camera origin:

Twc = Twtag × (T ctag)−1

Twc =


1 0 0 0
0 1 0 0
0 0 1 0.87
0 0 0 1

×

−0.0007 −0.9998 −0.0182 −0.1160
−0.5692 0.0154 −0.8220 −0.0416
0.8221 0.0097 −0.5691 1.0405

0 0 0 1


−1

Twc =


−0.0008 −0.5692 0.8222 −0.8793
−0.9998 0.0155 0.0098 −0.1256
−0.0183 −0.8220 −0.5692 1.4258

0 0 0 1


Using the calibration approach described in section 3.1.2, the resulting camera position is ac-
curate to the point where the part is fully visible in the 2D camera when the robot manipulator
is positioned above the origin of the part. This means that any inaccuracies caused by the
calibration of the 3D camera position, and 3D object detection is negligible for the assembly
process from the point where the 2D object detection starts.

4.1.3 Calibrating eye-in-hand transform

In order to move the manipulators based on detected objects in the camera frame a calibration
step had to be performed. First, the camera intrinsic matrix and distortion coefficients were
determined using the method described in section 3.1.4:

K =

 781.585 0 640
0 781.585 360
0 0 1

 (4.1)
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distortioncoefficients = (k1, k2, p1, p2, k3)
= (0.088995,−0.21592, 0.0021548,−0.0039320, 0.095365)

(4.2)

Applying correction for the lens distortion of the image stream from the Logitech C930e web
camera using the distortion coefficients expressed in equation 4.2 yields a clear improvement
as shown in Figure 4.3.

Figure 4.3: Left: Image with lens distortion. Notice the curvature of the image along edges
compared to the red lines. Right: The same image, but with correction for lens distortion.
The curvature is minimized.

By using the method presented in section 3.1.5, image coordinates of detected objects are
computed and used to acquire a relative movement from the current manipulator pose to the
detected object in the xy-plane of W.

As previously stated in section 3.1.5, the camera frame is always fixed and perpendicular to
the table surface. Therefore, the rotation between the world frame W and the camera frame
C is constant. This means that the x-axis of C always corresponds to the negative y-axis of
W, and the y-axis of C always corresponds to the negative x-axis of W. Any image coordinate
computed as long as the orientation of C is fixed can be simplified to the following relative
manipulator movement in W:

xC = −yW
yC = −xW

(4.3)

This simplification is implemented in the final code (see digital appendix for the full source
code of the agilus_master_project application). As illustrated in Figure 4.4, this approach is
shown to be a viable solution. In this case the distance between the camera lens and object
is approximately λ =26.7cm. In the left image of Figure 4.4, the object is detected at pixel
coordinates p̃ = (480 48 1)T which in image coordinates scaled with λ =26.7cm is -5.47cm
along the x-axis and -10.66cm along the y-axis in the camera frame C. In the right image
of Figure 4.4, the manipulator has moved according to the relationship between the image
coordinates as expressed in equation 3.8 and simplified in equation 4.3, which in this case
means 10.66cm along the x-axis and 5.47cm along the y-axis in the world frame W.
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Figure 4.4: Illustrates the eye-in-hand robot control based on image coordinates. The optical
center of the image is marked with three concentric circles in red, green and blue. The object
center is marked with a thick red circle at the intersection of the diagonals.

With the eye-in-hand manipulator (Agilus 2 ) positioned above the object as shown to the right
in Figure 4.4, an accurate end-effector pose in world coordinates is acquired as described in
section 3.2.3.

4.2 3D Computer Vision

4.2.1 Accuracy test of 3D object detection

Using the test method described in section 3.3.1, the following data was obtained:

Testing Object Detection Accuracy Part A (measured in cm)
Actual X Actual Y Measured X Measured Y |4X| |4Y |

-5 5 -6.18 5.4 1.18 0.4
-5 10 -6.25 10.55 1.25 0.55
-5 15 -6.28 16.11 1.28 1.11
-5 20 -5.17 21.56 1.28 1.56
-10 5 -11.12 5.08 1.12 0.08
-10 10 -10.83 10.43 0.83 0.43
-10 15 -10.98 15.92 0.98 0.92
-10 20 -11.46 20.85 1.46 0.85
-15 5 -15.89 5.2 0.89 0.2
-15 10 -15.81 10.56 0.81 0.56
-15 15 -15.97 15.77 0.97 0.77
-15 20 -16.18 21.01 1.18 1.01
-20 5 -20.43 5.4 0.43 0.4
-20 10 -20.68 10.72 0.68 0.72
-20 15 -20.72 16.27 0.72 1.27
-20 20 -21.18 21.38 1.18 1.38
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The maximum and minimum positional deviations for the testing using Part A is shown in
table 4.1.

Min/Max Recorded Values
Max 4X [cm] 1.46
Max 4Y [cm] 1.56
Min 4X [cm] 0.43
Min 4Y [cm] 0.08

Table 4.1: Shows the minimum and maximum deviation for the testing using Part A.

Testing Object Detection Accuracy Part B (measured in cm)
Actual X Actual Y Measured X Measured Y |4X| |4Y |

-5 5 -5.76 5.16 0.76 0.16
-5 10 -6.12 10.8 1.12 0.8
-5 15 -5.98 15.94 0.98 0.94
-5 20 -6.17 20.88 1.17 0.88
-10 5 -10.65 5.47 0.65 0.47
-10 10 -10.62 10.21 0.62 0.21
-10 15 -10.73 15.81 0.73 0.81
-10 20 -10.91 20.79 0.91 0.79
-15 5 -15.22 5.46 0.22 0.46
-15 10 -15.46 10.62 0.46 0.62
-15 15 -15.71 16.2 0.71 1.2
-15 20 -15.85 21.14 0.85 1.14
-20 5 -20.1 5.43 0.1 0.43
-20 10 -20.73 10.06 0.73 0.06
-20 15 -20.26 16.35 0.26 1.35
-20 20 -21.43 21.96 1.43 1.96

The maximum and minimum positional deviations for the testing using Part B is shown in
table 4.2.

Min/Max Recorded Values
Max 4X [cm] 1.43
Max 4Y [cm] 1.96
Min 4X [cm] 0.1
Min 4Y [cm] 0.06

Table 4.2: Shows the minimum and maximum deviation for the testing using Part B.

It is important to note that there are uncertainties regarding this test. The parts that was
detected were manually placed on the table as accurately as possible. Even though this was
done using a reference grid, it is not guaranteed that the actual position of the part was 100%
accurate. One other uncertainty is the accuracy of the 3D camera position calibration. The
calibrated position of the camera will affect the position output for the parts when using the
3D object detection.
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The test results show that the maximum positional error for both the x and y axis is below 2cm.
This is well within the margin of error that is tolerated in order for the 2D object detection to
be performed based on this initial position, however, it does not meet the expected accuracy
as stated in section 3.3.1. A brief discussion regarding this result is found in 5.2.

Figure 4.5: Shows the view from the 2D object detection camera when Agilus 2 is positioned
in the initial position found using 3D object detection.

Figure 4.5 shows an image taken from the 2D camera when positioned in the initial position
found by 3D object detection. As is evident by the image, the position is not accurate enough
to be used on its own, but is more than adequate to be used as the starting point for 2D object
detection.

4.2.2 Testing and selecting global descriptor

The testing of global descriptors was carried out as described in section 3.3.2. The result from
the matching process is presented in table 4.3 and 4.4. A brief description of the different table
entries are described below.

Cluster nr. This number corresponds with the cluster number in the scene that is being
matched. The scene contains 4 different clusters, where cluster number two is known to
be the part we are searching for.

Segment nr. When using the CVFH descriptor, each cluster is separated into multiple seg-
ments. For each segment, a VFH descriptor is estimated. The CVFH descriptor is
matched with a set of CVFH descriptors from the training set, and the segment with
lowest confidence level is the best matching segment.

Best match This number corresponds with the best matching model from the training set.
We manually estimated that model number 6 should be the best match, since it is the
model closest to the object as seen in the 3D scene.

Confidence level This number corresponds with the difference between the descriptor of the
object in the scene, and the descriptor of the best matching model. The lower this number
is, the better the match is. Throughout this work, we found that a confidence level
between 0-4000 usually dictates a good match (when using the VFH global descriptor).
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Cluster nr. Best match Confidence level
1 41 14564.8
2 6 3043.06
3 32 33093
4 32 27204.6

Table 4.3: Shows the test result from a matching process using the VFH descriptor. The table
entry with the best matching result is indicated in green.

The result from the test using the VFH descriptor shows a predictable result. The cluster
that corresponds with the part we are searching for is cluster number two. This is the cluster
with the lowest confidence level. In addition, the best matching model is, as expected, model
number 6. However, the confidence level is quite high. This indicates a positive, but somewhat
unreliable match.

Cluster nr. Segment nr. Best match Confidence level

1
1 10 24495500
2 74 18602800
3 74 18928400

2
1 56 1637620
2 8 3139210
3 71 1320850

3 1 61 1089380
2 4 2965940

4 1 43 174401

Table 4.4: Shows the test result from a matching process using the CVFH descriptor. The
table entry with the best matching result is indicated in green.

The result from the test using the CVFH descriptor was unexpected. It was expected to
achieve a positive and decisive match between a segment of cluster number two and one of the
segments from model number six in the training set. This is not the case. The best matching
cluster is number 4, which in this scene is just a cluster of noise left behind from the model
segmentation step. In addition, the confidence level for this match is extremely high, and is
not a value that is indicative of a positive match at all.

The result from this test shows that using the basic VFH descriptor will provide us with the
best matching result, and overall reliability when it comes to the 3D object detection. The
main benefits the CVFH descriptor holds over the VFH descriptor is the robustness when it
comes to occluded scenes. This is not a part of our problem scenario, since the two parts that
is to be assembled will be placed in separate areas on the table. Based on this we selected to
use the VFH global descriptor.

4.2.3 Selecting keypoint and local descriptor estimator

The selection of the keypoint estimation method was done based on the work of Filipe and
Alexandre (2014). Their comparison of the most common 3D keypoint selectors show that
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both the SIFT3D and ISS3D method performs with equal repeatability. Based on this, we
chose to use the SIFT3D keypoint estimator. Throughout this thesis, the conclusion made by
Filipe and Alexandre (2014) has shown to be consistent and the use of SIFT3D as keypoint
estimator performed as expected.

The selection of local descriptors was also made on the basis of previous work. The work by
Alexandre (2012) shows that the PFH family of descriptors are the fastest to compute while
still maintain high robustness with regards to viewpoint differences. Because of this, we chose
to use the FPFH local descriptor. Throughout the work with this project, the FPFH local
descriptor was found to perform as reliable as expected, and no problems caused by this choice
was encountered.

4.2.4 Creating training sets

The C++ class used to generate training sets from 3D CAD models is called Modelloader.cpp
(source code available in Appendix A). The initial functionality of this class was created by
Adam Leon Kleppe. The class was modified to allow for feature estimation, and for the features
to be added to the training set. The initial functionality was limited to viewpoint specific point
cloud rendering and object pose information.

The resulting class is a useful tool for creating a training set, and also to load all the data in
a training set from disk to the system memory. This allows for faster processing times when
the 3D object detection routine is performed (since all features of the different point clouds
located in a training set is pre-calculated).

The data output from this class is saved to a directory created under the root directory of the
application using it. Each training set (each part) is located in its own sub directory under
this directory.

Multiple different training sets are available online at the Github repository used for the
software development (Larsen and Bjørkedal, 2016a). The training sets are located at "ag-
ilus_master_project/trace_clouds". The naming convention used for the training sets are
"name - number of viewpoints - render resolution". Example of a training set name is "cone-
42-200".

Figure 4.6 shows some of the different viewpoint point clouds generated from a part.
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Figure 4.6: A collection of different point clouds that illustrates the different viewpoints gen-
erated in the process of creating a training set.

4.2.5 3D object detection

The result from the 3D global descriptor testing described in section 4.2.2 made it clear that the
best option for 3D object detection using global descriptors was to use the Viewpoint Feature
Histogram (VFH) global descriptor. Based on this choice, the resulting pipeline used to perform
3D object detection is shown in Figure 4.7. This pipeline uses a combination of global and
local descriptors to perform a complete object detection and pose estimation process. The local
descriptors are used to estimate an initial position based on the Random Sample Consensus
approach, and the global descriptor is used for viewpoint matching (necessary to select the best
suited model from the training set). The code implementation of the pipeline can be found in
the object_detection method located in pcl_filters.cpp in Appendix A.

Figure 4.7: Illustrates the pipeline used for 3D object detection.

One problem that quickly became evident was the similarities of the two different parts. The
3D point cloud produced by the depth sensor lacks quite a lot of detail. The result of this is
that the point clouds for the two different parts are hard to distinguish from each other. Both
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parts have similar height, diameter and are equally featureless (both are symmetrical cylinders
with few detectable features). This made the task of distinguishing the different parts from
each other using global descriptor matching highly unreliable. In order to circumvent this
issue, we decided to divide the working surface (the table in the robotic cell) in two, equally
sized, working areas. We then assume that part A is always located in the first working area,
and similar for part B located in the second working area. The two different working areas are
illustrated in Figure 4.8.

Using this approach, we have yet to produce a scenario where the 3D object detection is unable
to detect and estimate the position of the two parts. An example of such an detection and
position estimation is shown in Figure 4.9. The best matching model for the two training sets
used for the matching is placed on the original 3D scene captured using the 3D depth sensor.

Given that the parts are both symmetrical cylinders, the detected orientation is ambiguous.
However, since the final position and orientation of the parts is detected using 2D object
detection, this does not cause any issues. The important information gained from the 3D
object detection is an approximate position of the parts in the xy-plane of the table.

A demonstration video produced to show the complete automated assembly of the two parts
is available online at Larsen and Bjørkedal (2016b) and through the digital appendix for this
thesis. The contents of the digital appendix is described in Appendix D. This video also show
the working 3D object detection process.

Figure 4.8: Illustrates the virtual separation of the two work areas used when performing the
3D object detection routine.
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Figure 4.9: Shows the result from a 3D object detection process.

4.3 2D computer vision

4.3.1 Processing time

The approach that is examined in this thesis is aimed at a flexible assembly task for use in the
industry. This means that there are, in many cases, defined limits for the cycle time of each
task. This may lead to a demand for lower processing time of object detection. For research
purposes this is not considered a problem, but it is of interest to determine if the assembly
task can be solved using faster methods and how they compare to the slower ones.

The testing of processing time was performed as described in section 3.3.3. The needed time
to detect keypoints and extract descriptors in the test scene is presented in Figure 4.10.

Figure 4.10: Left: Time needed to detect keypoints in a test scene. Right: Time needed to
extract descriptors from the detected keypoints.

As evident from Figure 4.10, SIFT is the slowest both at keypoint detection and descriptor ex-
traction. The result is as expected, where the convolution by integral images and determinant-
of-Hessian for detection of SURF features is faster than the difference-of-Gaussian approach for
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detection of SIFT features. Both BRISK and ORB are really fast at this task, mostly because
of the use of FAST as base for keypoint detection. In terms of descriptor extraction, the ones
represented by binary bit-strings from intensity tests, i.e. BRISK and ORB, are really fast to
compute. The use of Haar wavelet filters and integral images speeds up the SURF descriptor,
but it is still slower than the binary descriptors. SIFT and its approach using histogram of
oriented gradients for description is outperformed in terms of speed. As evident from Table
4.5 and Table 4.6, BRISK is faster than ORB at both tasks, marked with green cell colour.

Mean keypoint detection time [s]
SIFT SURF BRISK ORB

0.22467492 0.04927685 0.0084592534 0.009322315

Table 4.5: The mean keypoint detection time of the 50 cycles illustrated in Figure 4.10.

Mean descriptor extraction time [s]
SIFT SURF BRISK ORB

0.17505564 0.025696292 0.0033582588 0.012909806

Table 4.6: The mean descriptor extraction time of the 50 cycles illustrated in Figure 4.10.

The next part of the test determines the time needed to match descriptors between a query
image and the training images of the test scene. Figure 4.11 presents the test results and the
total processing time needed from detection to a final match is complete.

Figure 4.11: Left: Time needed to extract descriptor from the detected keypoints. Right: The
total time needed to detect keypoints, extract descriptors from the test scene and match the
descriptors with descriptors from a query image.

The matching method used during this test was brute-force matching with n = 2 best matches
sorted by a distance ratio test at threshold 0.9. The ratio test is described in section 2.6.5.
The distance measurement used for SIFT and SURF is the L1 norm - Manhattan distance,
and Hamming norm for BRISK and ORB. SIFT is once again the slowest. However, this is
not unexpected considering the descriptor type and size. Compared to a binary descriptor like
BRISK and ORB, SIFT is more demanding in terms of computational cost when matching
because of the different natures of the descriptors. A surprise from this test is the matching
time of the SURF descriptors, which is even faster than both BRISK and ORB. The mean
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matching time of the 50 test cycles is shown in Table 4.7. In total, BRISK is the fastest
algorithm in this particular test as evident from Figure 4.11 and Table 4.8.

Mean descriptor matching time [s]
SIFT SURF BRISK ORB

0.0105037502 0.0011120464 0.0044597802 0.0052647372

Table 4.7: The mean descriptor matching time of the 50 cycles illustrated in Figure 4.11.

Mean total detection time [s]
SIFT SURF BRISK ORB

0.4102343 0.07608519 0.016277292 0.027496862

Table 4.8: The mean total detection time of the 50 cycles illustrated in Figure 4.11.

Worth noticing is that the processing time is directly connected to the number of layers used
for scale pyramids, parameters for keypoint rejection and other parameters and thresholds for
each individual algorithm. The results from this test was produced using standard parameters
as specified by the OpenCV documentation, except slight adjustments of thresholds in order
to control the number of keypoints estimated. This is further discussed in section 5.1.

4.3.2 Matching stability

In order to make a choice about which algorithm to use for the 2D part of the assembly task,
a matching stability test was conducted. Each part was photographed from both ends at a
decided reference orientation, resulting in four query images to detect in the training scene.
These images are shown in Figure 4.12.

Figure 4.12: The query images used to detect the parts. From the left: Part A - top view, part
A - bottom view, part B - bottom view, part B - top view.

The test was carried out as explained in section 3.3.4 and yields the results shown in Table
4.9, 4.10, 4.11 and 4.12. Note that BRISK is not included in any of these tests, as it failed to
produce any matches with the parts shown in Figure 4.12. The data in the tables presented
below therefore only consists of data where an actual match was achieved.
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Part A - top view
Keypoint Descriptor Matcher RGB λmin [cm] λmax [cm] Note

SIFT SIFT Brute-force Yes 15.3 30.3 Stable
ORB ORB Brute-force Yes 15.3 - Low stability

Table 4.9: Matching stability of part A - top view. λ denotes the distance between the camera
lens and the object.

Part B - bottom view
Keypoint Descriptor Matcher RGB λmin [cm] λmax [cm] Note

SIFT SIFT Brute-force Yes 9.8 39.8 Stable
SURF SURF Brute-force Yes 9.8 35.3 Stable
ORB ORB Brute-force Yes 9.8 21.8 Low stability

Table 4.10: Matching stability of part B - bottom view. λ denotes the distance between the
camera lens and the object.

Part A - bottom view
Keypoint Descriptor Matcher RGB λmin [cm] λmax [cm] Note

SIFT SIFT Brute-force Yes 10.3 35.3 Stable
ORB ORB Brute-force Yes 12.3 18.3 Small range

Table 4.11: Matching stability of part A - bottom view. λ denotes the distance between the
camera lens and the object.

Part B - top view
Keypoint Descriptor Matcher RGB λmin [cm] λmax [cm] Note

SIFT SIFT Brute-force Yes 12.8 34.8 Stable
SURF SURF Brute-force Yes 12.8 34.8 Stable
ORB ORB Brute-force Yes 9.8 23.8 Low stability

Table 4.12: Matching stability of part B - top view. λ denotes the distance between the camera
lens and the object.

As evident from Table 4.9 and Table 4.11, part A is a difficult part to detect with satisfying
stability. SIFT is the only algorithm that managed to do this for both views of the part. ORB
did also achieve some matching results, but with low stability. Because of this, ORB is not
suitable for this specific assembly operation. Table 4.10 and Table 4.12 shows that SIFT is
the most stable algorithm for detection of part B. SURF is also a good candidate with stable
matching comparable to SIFT at the same distance range between camera and object. ORB
may be used, but it is not the best solution because of less stable results and a smaller range.

The parts can only be assembled in one way, because of the way they are designed. Based on
the previously presented results, part B - bottom view was chosen as the best view to detect
part B, thus part A needs to be detected using the top view (because of the particular way the
parts are assembled). Figure 4.13 shows the desired assembly pose of the parts.
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Figure 4.13: Shows the desired pose of the parts before assembly. Part A (right) is to be
assembled into part B (left).

Based on these results, SIFT was chosen for detection of part A - top view and part B - bottom
view at a distance of λ =15.3cm and λ =13.8cm (can be as low as 10.3cm), respectively.

4.3.3 Orientation stability

Matching stability is important and directly connected to the computation of the orientation
of the detected parts. Without a stable matching, the difference between each computed
orientation will be too large to assemble part A and part B with success. The desired result is
to minimize this difference and determine the orientation with certainty. To further test the
stability of the 2D object detection, a test was conducted as described in section 3.3.5 for part
A and part B individually.

As evident from the results in section 4.3.2, ORB is not stable for detection of part A. A combi-
nation of SIFT as keypoint detector and SURF as descriptor extractor, denoted SIFT/SURF,
was then added to the following orientation stability test of part A. The results are presented
in Figure 4.14.

Figure 4.14: Orientation of part A detected at approximately 0 degrees (left) and -90 degrees
(right). Each data point is the mean of 10 measurements.

As seen from Figure 4.14, SIFT is clearly more stable. SIFT/SURF works, but is not as stable
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as SIFT. The difference between the maximum and minimum measured orientations for part
A are presented in Table 4.13.

0 degrees -90 degrees
SIFT SIFT/SURF SIFT SIFT/SURF

1.746911 5.49935 1.1102 7.9095

Table 4.13: The difference between the maximum and minimum measured orientations for part
A, as presented in Figure 4.14.

As presented in section 4.3.2, SIFT, SURF and ORB are all usable for detection of part B.
The results of the orientation stability test are presented in Figure 4.15.

Figure 4.15: Orientation of part B detected at approximately 0 degrees (left) and -90 degrees
(right). Each data point is the mean of 10 or 20 measurements.

As evident from Figure 4.15, SIFT is once again the approach with highest stability. SURF
performs better than ORB, but does not compete with SIFT. ORB is shown to be highly
unstable compared to SIFT and SURF, thus resulting in measurement spikes that can not be
tolerated. The difference between the maximum and minimum value of each test is shown in
Table 4.14.

0 degrees -90 degrees
SIFT SURF ORB SIFT SURF ORB

0.078886 0.204128 0.275597 0.1721 0.1379 1.3109

Table 4.14: The difference between the maximum and minimum measured orientations for part
B, as presented in Figure 4.15.

The results presented in this section points towards SIFT for stable detection with consistently
low difference between the computed orientations. The final solution computes the mean of 20
detected orientations using SIFT.

4.3.4 2D object detection

Based on the results obtained from the test results presented in section 4.3.1, SIFT is the
slowest of the four algorithms examined in this thesis. It is on the other hand the most robust
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and stable choice for detection of both part A and part B. Since a stable object detection is of
great importance to successfully assemble the parts, SIFT is used to ensure this.

The final object detection algorithm is implemented in a C++ ROS application as described
in section 3.2.4. The class is named object_2D_matcher.cpp and is available in Appendix B.
It utilized a class named openCV_matching.cpp (available in Appendix B). This class is based
on OpenCV and implements all the methods needed in order to capture, process and visualize
image matching. Figure 4.16 illustrates the object detection procedure.

Figure 4.16: Illustrates the implemented object detection.

Object detection is obtained by acquiring a training image of the scene and a query image of
the object we are looking for in the scene. A set of keypoints are detected for both images.
From these sets of keypoints a set of descriptor feature vectors are extracted. The query
descriptors are matched with the training descriptors using brute-force. After the descriptor
feature vectors of the two images are compared, a set of good matches are returned. If the
number of good matches is higher than a given threshold the object detection is considered to
be successful and the position and orientation of the object is computed. As evident from the
code in Appendix B and the algorithm in section 3.2.4, the object detection runs in a loop for
each captured image of the training scene. The features of the query image is computed once
when the ROS node is launched and matched against each captured training scene. Figure
4.17 shows a successful detection of part A and part B using SIFT.

Figure 4.17: Successful detection of part A rotated approximately -30 degrees and part B
rotated approximately 180 degrees.
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4.4 Software solution

4.4.1 ROS communication

The software solution used to run the robotic cell is implemented in the Robotic Operating
System (ROS) framework. The full system is separated in multiple different applications that
run in parallel. The different applications used is shown in Figure 4.18, together with the
information that is sent between them.

Figure 4.18: Shows the different applications that run in the ROS framework in order to
perform the automated assembly task.

The following is an explanation of the purpose that each application serve, and what data is
being sent between them.

kinect2_bridge An instance of the Kinect 3D image grabber (Wiedemeyer, 2016). This ap-
plication publishes a topic called NUC2/SD/Points that contain the point cloud acquired
from the 3D camera. This topic is accessed by the agilus_master_project application
and used for 3D object detection.

image_processor This application acquires the video feed from the Logitech C930e web
camera and runs the 2D object detection. The output from this application is published
in two different topics. The object_2D_detected/image topic contains the image acquired
from the web camera with some added graphics that illustrates the optical center of the
camera and the detected object. The object_2D_detected/object1 topic contains the
positional and angular data about the detected object.

agilus_planner The purpose of this application is to publish services for controlling the
robotic manipulators. This is done to provide a simple interface for robotic control
that is easily accessible from within the ROS framework. The data provided to this
application through a service call is turned into actual motion planning for the two robotic
manipulators. This application outputs data to the kuka_rsi_hw_interface application.

kuka_rsi_hw_interface The kuka_rsi_hw_interface application is responsible for the move-
ment of the robotic manipulators. This is done through the Kuka Robot Sensor Interface
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(RSI). The input data to this application is the desired position of the robot, which is
sent to the robotic controllers over the network using the UDP/IP protocol.

agilus_master_project This is the main application that runs the entire assembly process.
This application receives input data from the kinect2_bridge and image_processor ap-
plications and runs further processing. This application runs the 3D object detection.
The graphical user interface used to control the assembly process is also produced by
this application.

4.4.2 Automated assembly sequence

The complete system produced for this thesis performs a series of actions in a particular
sequence in order to perform the automated assembly task. This sequence is carried out by
the agilus_master_project application. Figure 4.19 illustrates the sequence of events performed
in order to automatically assemble the two parts. The illustration uses simple colour codes to
identify what is performed in each step. Light blue illustrates 3D point cloud processing and
3D object detection, orange illustrates controlled movement of the robotic manipulators and
green illustrates operations using 2D object detection.

Figure 4.19: Illustrates the sequence used to perform an automatic assembly of two parts.
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4.4.3 Applications

The agilus_master_project application

The agilus_master_project program is the master application that runs the completed auto-
matic assembly task. This program was created to produce a polished product where the main
functionality is to perform the automated assembly task. A demonstration video showing the
functionality of the application, as well as a complete automated assembly task is available
online at Larsen and Bjørkedal (2016b) and through the digital appendix (the content of the
digital appendix is described in appendix D). In addition to perform the assembly task, some
useful features that are not specific for this task are included. These features are:

• Manual control of the two robotic manipulators. This can be done both as a relative
movement with relation to the home position of the robot, or as an absolute movement
with relation to the world reference frame.

• Visualizing any 3D point cloud feed published within ROS.

• Visualize any 3D point cloud saved to a .PCD file.

• Visualize any 2D camera image feed published within ROS.

• Manually select keypoint detector, descriptor extractor and matching method for 2D
object detection.

• Manually select the reference image used for 2D object detection.

• Open and close the pneumatic linear gripper mounted on Agilus 1.

• Create a training set with customizable parameters based on a 3D CAD model. The 3D
CAD model used must be of the .STL format.

• Manually run a 3D object detection process with a user selectable training set as the
reference model (the model we want to detect in the 3D scene).

This application consists of the following classes:

main.cpp - This is the main entry point of the application. The main class creates one
instance of the main_window.cpp which initializes the graphical user interface. The
source code is available through the digital appendix as described in Appendix D.

main_window.cpp - This class handles all the user interaction. The graphical user interface
is connected to this class, and all user actions performed in the user interface is defined
here. The source code is available through the digital appendix as described in Appendix
D.

modelloader.cpp - This class handles both the creation of new training set, and loading
pre-existing training sets to the system memory. Source code is available in Appendix
A.

pcl_filters.cpp - This class handles all 3D point cloud processing. It implements all the tools
necessary to perform a complete 3D object detection process. It also contains functions
that allows for easy visualization of 3D point clouds in the graphical user interface. This
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class was initially created for the qt_filter_tester application as a toolbox for handling
3D point clouds. Source code is available in Appendix A.

qnode.cpp - This class runs in a separate thread, and is responsible for all communication
within ROS. All data publication and acquisition in ROS is done through this class. The
source code is available through the digital appendix as described in Appendix D.

Figure 4.20 shows the graphical user interface for the agilus_master_project application as
presented when the application is launched.

Figure 4.20: The main window of the agilus_master_project application as displayed at launch.

The full source code for this application is available in the digital appendix. The digital
appendix is described in Appendix D. The following figures show a more detailed view of the
different actions available through this application.
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(a) Shows the user input re-
lated to the 3D point cloud vi-
sualization.

(b) Shows the user input re-
lated to creating a training set.

(c) Shows the user input re-
lated to the 2D image visual-
ization.

(a) Shows the user input re-
lated to the 2D object detec-
tion.

(b) Shows the user input re-
lated to manual control of the
robotic manipulators.

(c) Shows the user input re-
lated to manually running 3D
object detection.
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Figure 4.23: Shows the user input section that is used to run the automated assembly sequence.

The qt_filter_tester application

The qt_filter_tester program was initially created as a tool for working with 3D point
clouds. It contains graphical tools for performing the most common filtering and processing
tasks. This application was used to test different approaches for 3D object detection as well as
different parameters for all the different filters and algorithms used. The available functionality
in this application is the following:

• Create training sets from a user specified 3D CAD models (the specified models must be
of the .STL format).

• Visualizing 3D point cloud images saved as .PCD format.

• Perform the following filtering and processing tasks:

– Passthrough filtering

– Voxel grid filtering

– Median filtering

– Shadow point removal filtering

– Normal estimation

– Statistical outlier removal filtering

– Plane model segmentation

– Euclidean cluster extraction

– Bilateral filtering

• Visualize the result from the above mentioned filtering and processing actions.
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• Save the filtering results as a .PCD file.

The application consists of the following classes:

main.cpp - This is the main entry point of the application. The main class creates one
instance of the main_window.cpp which initializes the graphical user interface. The
source code is available through the digital appendix as described in Appendix D.

main_window.cpp - This class handles all the user interaction. The graphical user interface
is connected to this class, and all user actions performed in the user interface is defined
here. The source code is available through the digital appendix as described in Appendix
D.

modelloader.cpp - This class handles both the creation of new training set, and loading
pre-existing training sets to the system memory. Source code is available in Appendix
A.

pcl_filters.cpp - This class handles all 3D point cloud processing. This class implements all
the tools necessary to perform a complete 3D object detection process. It also contains
functions that allows for easy visualization of 3D point clouds in the graphical user
interface. This class was initially created for the qt_filter_tester application as a
toolbox for handling 3D point clouds. Source code is available in Appendix A.

qnode.cpp - This class runs in a separate thread, and is responsible for all communication
within ROS. This application does not require any ROS communication, but it was
created from a ROS template application. This class was not removed in order to keep
the possibility of ROS communication open. Because of this, the content of this class is
limited to the basic initialization of a ROS node in the ROS framework. The source code
is available through the digital appendix as described in Appendix D.

This application is not used when running the robotic cell, but served its purpose as a test
platform when working with 3D point clouds. The full source code for this application is
available in the digital appendix. The digital appendix is described in Appendix D.

The image_processor ROS node

The image_processor ROS node was initially created for testing and evaluation of object
detection algorithms like SIFT, SURF, BRISK and ORB using OpenCV. Due to successful
detection of the parts to be assembled in this thesis the functionality of the node was extended
for further use in the final solution. The functionality of the node is:

• Capture the video stream from a USB web camera.

• Load any stored image of format .png or .jpg as reference matching image.

• Implements 7 keypoint detectors:

– SIFT, SURF, BRISK, ORB, STAR, FAST and AKAZE.

• Implements 7 descriptor extractors:

– SIFT, SURF, BRISK, ORB, FREAK, BRIEF and AKAZE.

• Descriptor matching by brute-force or FLANN.
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• Publish image data of the detected object via ROS.

• Publish the position and orientation of the detected object ROS.

• Controlled by ROS services.

The node consists of the following classes:

object_2D_matcher.cpp - This is the main entry point of the node. It initializes the
properties of the object detection algorithm such as keypoint detector, descriptor ex-
tractor, matching type and video resolution. In addition it advertises ROS services for
control. Callback methods for each service is implemented. Methods from an instance
of openCV_matching.cpp is utilized in an object detection loop. The source code is
available in Appendix B.

openCV_matching.cpp - This class handles all the crucial image processing using OpenCV.
It implements methods for object detection and computation of object image coordi-
nates and orientation needed to perform the object detection loop as implemented in
object_2D_matcher.cpp. Source code is available in Appendix B.

calibration.cpp - This is a stand-alone node for calibration of camera parameters. It is
not directly connected to the above classes. However, it is needed in order to provide
a K-matrix and distortion coefficients for use in the main object detection ROS node.
The code is originally a sample code from the OpenCV repository at Github (OpenCV,
2015c). It is used with slight modifications in order to calibrate images of resolution
1280 × 720 pixels. The source code is available in the digital appendix. The digital
appendix is described in Appendix D.

The agilus_planner ROS node

The agilus_planner program is created as a tool for simpler interfacing with the manipulators
via ROS. It advertise ROS services for trajectory planning and execution. This is used as the
main interface from agilus_master_project in order to move the manipulators based on
3D and 2D object detection. The node consists of the following classes:

robot_movement.cpp - This is the main entry point. It advertises two services, go_to_pose
and plan_pose. Callback methods for each service is defined. These methods utilize
the methods implemented in robot_planning_execution.cpp for trajectory planning.
This node may run for each move group available in MoveIt!, where an instance of
robot_planning_execution.cpp is created for each move group. The source code is
available in Appendix C.

robot_planning_execution.cpp - This class handles the computation of a linearly inter-
polated trajectory from a current pose to a target pose. The target pose may be specified
as relative to the current pose or in world coordinates. The trajectory is sent to MoveIt!
via the move group interface. This code is originally written by Adam Leon Kleppe.
Source code is available in the digital appendix. The digital appendix is described in
Appendix D.
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4.5 Automated assembly solution

By combining the 3D and 2D computer vision systems in a software solution as presented in
section 4.4, the parts are automatically assembled using robotic manipulators. A full assembly
is executed by detecting the approximated positions of the objects at the table using 3D object
detection. The eye-in-hand system is then positioned above each part in order to refine their
position using the computed image coordinates and orientation. This is illustrated in Figure
4.24. When both parts have been detected, the gripper is rotated about its end-effector z-
axis to the computed orientation of part A and the part is picked up. This is done to ensure
that part A is gripped approximately in the same way every time. Figure 4.25 illustrates the
orientation of the gripper before gripping the part.

Figure 4.24: Camera positioned
above part A using the position
acquired from the 3D system.

Figure 4.25: Gripper picking up part A at the re-
fined position and orientation acquired from the 2D
system.

The gripper holding part A is then positioned above part B and rotated about its z-axis to
the detected orientation of part B. The parts are then assembled as illustrated in Figure 4.26.
In order for this to work, it is important that the empirical calibration as explained in section
3.1.5 has been accurately conducted. It eliminates the offset between the camera optical axis
and the gripper end-effector z-axis. In addition, by performing this calibration for both part
A and part B individually, a center offset between the query images used for matching will
be minimized. This offset error affects the refined position acquired from the 2D system, and
must be eliminated. This is further discussed in section 5.1.
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Figure 4.26: Illustration of a successful assembly of part A into part B.

Another offset revealed itself during test assemblies. The query images used for 2D detection
is also rotated in-plane relative to each other. This is a constant offset and it was eliminated
by adding 3.5◦ of orientation about the gripper z-axis before deploying part A into part B.
Figure 4.27 shows the result from this. The positional accuracy is good in both cases, and the
orientation is corrected as seen to the right. This is discussed in section 5.1.

Figure 4.27: Left: Assembly operation conducted without correction for in-plane rotation
offset between query images. Right: Another assembly operation with correction for in-plane
rotation offset.

Testing performed in the robotic lab at the robotics lab at the Department of Production and
Quality Engineering showed that this assembly task was successful at 7/10 unique attempts
with different positions and orientations of the parts. A video showing 4 successful assembly
attempts and the graphical user interface used to control the assembly is available in the digital

103



4.5. AUTOMATED ASSEMBLY SOLUTION CHAPTER 4. RESULT

appendix. The digital appendix is described in Appendix D. The video is also available online
at Larsen and Bjørkedal (2016b).
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Chapter 5: Discussion

5.1 2D computer vision

The results presented in section 4.3 shows that object detection using SIFT keypoints and
descriptors is sufficient for the assembly task presented in this thesis. Based on results presented
in available literature regarding object detection, the expectations of SIFT and SURF were
high. BRISK and ORB were considered as alternatives worth testing, although they did not
fulfill the demands for stability as evident from the tests presented in 4.3. We believe that this
has to do with the lack of strong features at both part A and part B. Part A is particularly
difficult to detect, and the fact that SIFT managed to do this, proves the robustness of the
over 16 years old algorithm as originally presented by David G. Lowe in 1999.

Although our results show that SURF, BRISK and ORB is not capable of detecting part A
and part B, there is a possibility that they may do so if the parameters of the algorithms are
tweaked. This means that the number of layers in the scale pyramids may be increased with
a finer scale step between each layer, or thresholds for detection and rejection of keypoints
may be changed to allow more keypoint candidates to be acquired. This may yield a negative
impact on processing time. However, SURF, BRISK and ORB is already at a whole other level
than SIFT in total computational time needed, which justifies the sacrifice in computational
efficiency. This approach is not systematically tested, thus it may not yield the expected results.
On the other hand, a possibility is that the SURF descriptor and the binary descriptors based
on comparing pixel intensities used in BRISK and ORB is just not discriminative enough for
such objects as the two parts used in this thesis.

Considering the stability of computed object orientation as presented in section 4.3.3, SIFT
provides adequate stability. The orientation is computed using the corners of the object as
drawn in the training scene using the homography from the points matched in the query image
to the points matched in the training scene. If this homography is unstable due to unstable
matching, the marked object plane in the training scene will also be unstable. Since the angle of
orientation is computed using the corners of this plane, the difference between each computed
angle will increase with poor stability. The solution used in order to acquire a more stable
value is the mean value of 20 orientations. This is adequate in most assembly operations as
evident from section 4.5. However, it is not the optimal solution considering that one poor data
point of significant magnitude is enough to bring the mean value out of the accepted range.
More advanced filtering may eliminate such spikes of bad data, thus increasing the assembly
success-rate.

The computed orientation and positional accuracy when assembling the parts is also dependent
on the query image of the object we are looking for. Part A and part B were photographed at a
reference view representing zero degrees of orientation. This is the orientation that corresponds
with the configuration of the parts in order to perform a successful assembly. This will not be
fully accurate, and there will most likely be an offset in orientation between the query images,
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thus resulting in unsuccessful assembly. However, this offset is always constant and may be
handled. Because of the empirical calibration method used to detect the offset between the
optical axis and end-effector axis, the positional accuracy is adequate for robotic assembly as
evident from section 4.5. However, there is a clear error in orientation in order to assemble
part A and part B. This error was detected and corrected as described in section 4.5.

Considering that the error is constant, the main focus should be to photograph the parts at
approximately correct views, but under same conditions as the actual assembly task. This
means that light sources, camera used and distance to object should correspond to the con-
ditions in the actual process. This is to ensure that SIFT returns the most stable matching
possible, thus keeping a low difference between each measured orientation.

5.2 3D computer vision

The pipeline used to process the point cloud acquired from the 3D camera produces a consis-
tent result. The segmentation and cluster extraction process does not produce any unwanted
artifacts or noise, and we are consistently able to match the correct part of the point cloud
with a model from the training set. The one drawback with the currently implemented 3D
detection process is the fact that the detected orientation is somewhat ambiguous. We suspect
that this is caused by the fact that both parts are symmetrically shaped and has few detectable
features, but we can not conclusively say that this is the cause. The orientation ambiguity
does not cause any issue since the final position and orientation of the part is found using 2D
object detection.

Using more complex global descriptors might have improved the performance of the 3D match-
ing, but as shown in section 4.2.2 this was not feasible for the specific parts used in this thesis.
Exactly why the more complex global descriptors did not perform as expected is hard to con-
clusively say, but we believe it is caused by the fact that the object cluster extracted from the
point cloud lacks a lot of detail compared to the model used in the training set. The more
complex global descriptors works by segmenting the object cluster into multiple sections, and
estimating a basic global descriptor for each segment. The test results show that the global
descriptor for the object cluster and the training set model produce a different number of seg-
ments, and thus are incomparable. It is possible that using a different approach for creating
the training sets would allow the use of more complex global descriptors. This was not tested
since one of the prerequisites for this thesis is the use of 3D models for matching.

The level of accuracy achieved from the 3D point cloud matching is quite a bit higher than what
was expected. The maximum measured deviation is just below 2cm, which is not at all close
to the expected 0.4cm theoretical accuracy. We believe this is caused by two main reasons.
First, the accuracy testing was performed by manually placing the parts on a measured grid.
It is highly likely that the placement of the grid is not perfectly centered in the robotic cell.
This will lead to measurement errors. In addition, the manual placement of the parts on the
measured grid will also lead to some errors (the parts were placed as accurately as possible,
but it is still hard to guarantee a perfect placement). Second, the kinect2_bridge ROS node
used to acquire the 3D point cloud implements a bilateral filter (see section 2.3.3). This filter
will attempt to remove holes and noise from the point cloud at the cost of point accuracy. It
is not beyond reason to assume that using a 3D camera grabber that does not implement such
a filter might eliminate some of the inaccuracies.
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We intended the 3D object detection to be used as a rough estimate from the start of this
project based on the problem description. Because of this, the low positional accuracy achieved
using the 3D object detection process did not cause any issues in the final implementation of
the system. The position obtained through the 3D object detection process is used as a rough
estimate and a starting point for the 2D object detection. We found that the accuracy achieved
by the 3D object detection process was adequate to perform this task.

5.3 Combining 2D and 3D computer vision

Given the premise of the task, and the expected result from the 3D object detection process,
the Microsoft Kinect™ depth camera worked adequately. This thesis shows that given the
right expectations, the use of such a low cost sensor can yield reliable and usable results. It
is important to note that our results for the 3D object detection process did not show a level
of accuracy that would have been usable for automated assembly on its own. That said, 3D
object detection as used in our application works well as a mechanism to produce a rough
position estimate for the detected objects quickly.

The combination of the 2D and the 3D camera is what made it possible to complete an
automated assembly task with the parts used in this thesis. The 2D object detection provides
the high level of positional and orientation accuracy necessary to ensure a successful assembly.

5.4 Hardware

The fact that the Microsoft Kinect™ depth sensor is not a sensor well suited for industrial
applications is evident throughout this thesis. Low repeatability and accuracy limits the use
cases for this sensor and dictates that it is to be used in conjunction with some other form of
instrumentation (unless the task at hand does not demand high accuracy and repeatability).
The high data acquisition rate makes this sensor ideal as a tool to quickly estimate a rough
object pose. When utilized in this form, the sensor works well, as is shown throughout this
thesis.

The Logitech C930e web camera used for 2D object detection performed adequately, as evident
from the results. However, it is a consumer grade camera aimed at good quality video for e.g.
Skype-conversations and not for industrial applications. The auto-focus can not be disabled,
which in many cases blurred the image too much to be able to detect the objects. This was
a problem during many assembly operations. In addition, there is no need for a camera with
higher resolution than the C930e capable of 1920 × 1080, since our object detection runs at
1280× 720 to keep the frame rate at an acceptable level when using SIFT. If higher resolution
and high frame rate is needed, the processing unit must be upgraded, or the code must be
rewritten to support execution on a graphical processing unit (GPU). An alternative to the
C930e would be a proper camera aimed at industrial applications, with high quality optics
delivering sharp images with fixed focus. With that said, this thesis shows that a consumer
grade camera like the C930e can yield 2D object detection results usable for robotic assembly.

The linear pneumatic gripper used to manipulate the parts for assembly performed as in-
tended. The main issues caused by the gripper, was related to the finger extensions use (the
parts mounted on the linear cylinder that actually makes contact with the parts). The finger
extensions are made from 3D printed plastic, and is not designed with this specific assembly
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task in mind. This led to some minor inconveniences during the assembly process. We noticed
a slight shift in orientation (rotation about the z axis) of the part that was being gripped at
the time of contact between the finger extensions and the part. Even though this change in
orientation was consistent, and we were able to correct for the movement, this is not an ideal
situation. A set of finger extensions designed for this specific task could potentially eliminate
the orientation shift, and increase the success rate of the automated assembly.

The two robotic manipulators were controlled using the ROS framework. We did not encounter
any issues with this solution, and the control tools were easily implemented in our software
solution. This allowed us to control the robotic manipulators using code in a simple manner.
The only drawback encountered using this system, is the lack of a point to point movement
command. The only way to move the manipulators in the current version of the system is
to use linear interpolated trajectories. This did not cause any problems directly, but a point
to point option would be useful to achieve more efficient robotic movements. Such a point to
point command option would be quite simple to implement using the move_group_interface
API available through MoveIt!.
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This thesis presents the methods developed to solve a robotic assembly problem. The results
presented in Chapter 4 show how these methods perform when applied to an actual assembly
operation. As evident from the presented results, the assembly problem may be solved using
the presented approach for 3D and 2D object detection. In fact, it can successfully detect
two rather difficult objects with no clear geometric features, and assemble them with sufficient
accuracy in terms of position and orientation.

The kinematic relationship between the physical components in the robotic cell is described
using conventional kinematics, and is proven to be accurate to within a reasonable margin of
error. The kinematic description is a key aspect for successful robotic assembly and is used in
conjunction with the 2D and 3D computer vision systems to perform the assembly task.

Different aspects of the system developed to perform 2D object detection is investigated, and
all decisions related to choice of implementation is anchored in results achieved through test-
ing. The 2D detection implementation is shown to produce reliable results both in practical
experiments and synthetic tests.

This thesis presents different approaches for 3D object object detection, and shows an imple-
mented system working in a relevant use case. The different approaches are compared, and
tests were performed in order to choose the best combination of tools used to perform the
task. The implemented 3D object detection is shown to provide an excellent way of acquiring
a rough position estimate.

By combining the 2D and 3D detection systems, the issue caused by the relatively low accuracy
of the 3D object detection procedure is minimized. The results obtained from testing the full
solution shows that such a detection system is viable in an industrial use case.

To conclude, the methods developed to perform automated assembly has shown, through
practical experiments, to yield promising results for this type of automated assembly. The
complete solution is shown to fulfill the problem description as provided in Chapter 1. However,
there are still room for improvements. The main focus areas we feel could be improved is
presented in the following section.

6.1 Future work

In terms of future work, the following section describes a few key points that we feel could be
investigated to improve the performance of the robotic assembly.

Finger extensions for the gripper The current finger extensions for the pneumatic gripper
is not designed or suited to perform assembly of the parts used in this thesis. This did
lead to some inconsistencies and we believe that with finger extensions designed to grip
the parts used in a repeatable manner would improve the reliability of the assembly
setup.
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Training set The training set used for 3D matching in this work was generated virtually using
a 3D model of the part of interest. Throughout this thesis work this approach has proven
to be a simple and reliable way to produce a training set. We believe that the issue of
not being able to use the more complex CVFH and OUR-CVFH global descriptor over
the basic VFH descriptor is related to the difference in detail produced by the virtual
training set and the 3D camera. Because of this, investigating the viability of using a
physically created training set could produce quite useful results.

Upgrading the 2D image sensor The 2D camera currently used in the robotic cell is a
consumer grade web camera. Because of this, it lacks some features that simplify the ob-
ject detection process quite a bit. Such as a fixed focus, and little to no radial distortion.
The radial distortion is dealt with using a calibration and correction process, but using
a camera where this step is unnecessary could simplify the 2D object detection pipeline.
In addition, the auto focus feature of the current camera has a tendency to not select the
correct object to focus on, which leads to increased processing time and longer detection
time. This drawback can be fully negated by using an industrial grade camera with fixed
focus. Despite this, we do not believe a higher quality camera would drastically increase
the detection performance, but rather simplify and streamline the process.

Upgrading the 3D depth sensor The current 3D depth sensor does not provide the neces-
sary spatial accuracy or resolution needed to fully detect an accurate object pose using
the 3D camera alone. By replacing the current depth sensor with an industrial grade
sensor, it is possible that the automated assembly could be done using only a 3D camera,
which would drastically decrease the assembly time and system complexity needed. This
is, in our opinion, the biggest factor limiting the current setup and the area of the system
where the most improvement could be done.

Point to point motion The current robotic control system only allows for linearly inter-
polated trajectories. This does not cause any major problems for the assembly task.
However, a point to point command is considered as a "nice to have" functionality. We
believe that this could be implemented in the already functioning service-based system
quite easily using the move_group_interface available through MoveIt!.
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Appendix A: Software Tools Created

This appendix contain source code for the two toolbox classes created for this thesis. These
toolboxes are used in both the agilus_master_project and qt_filter_tester applications (full
source code available in this documents digital appendix). The following is a short description
of the two classes:

pcl_filters.cpp - This class handles all 3D point cloud processing. It includes functionality
to perform the most common and useful filtering tasks. In addition, functionality to
perform 3D object detection by matching a 3D point cloud acquired through a 3D depth
sensor to a training set generated from a 3D CAD model is also available.

pcl_filters.hpp - This is the Header file for the pcl_filters.cpp class. This file defines the
content of the .cpp file.

modelloader.cpp - This class is used to generate, and load, a training set based on a 3D
CAD model. As mentioned in section 4.2.4, the original code for this class was written
by Adam Leon Kleppe. This class has been modified to allow feature estimation to be a
part of the training set.

modelloader.hpp - This is the Header file for the modelloader.cpp class. This file defines the
content of the .cpp file.

pcl_filters.cpp

Listing A.1: Source file - agilus_master_project/pcl_filters.cpp

1 //
2 // Original author Kristoffer Larsen . Latest change date 01.05.2016
3 // pcl_filters .cpp is a toolbox that implements the most commonly used features

from PCL.
4 // In this application , pcl_filters .cpp is used for 3D point cloud processing .
5 //
6 // Created as part of the software solution for a Master ’s Thesis in Production

Technology at NTNU Trondheim .
7 //
8 # include "../ include / agilus_master_project / pcl_filters .hpp"
9

10 namespace agilus_master_project {
11
12 PclFilters :: PclFilters ( QObject * parent ):
13 QObject ( parent ){}
14
15 PclFilters ::~ PclFilters () {}
16
17 int PclFilters :: search_for_model (std:: vector <RayTraceCloud > clusters , std::

vector <RayTraceCloud > model){

1
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18 pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr search_tree =
generate_search_tree (model);

19 float min_distance = 10000;
20 int correct_cluster ;
21 std:: vector <float > search_result ;
22 for (int i = 0; i < clusters .size (); i++){
23 search_result = match_cloud ( clusters .at(i),search_tree );
24 if( search_result [1] < min_distance ){
25 min_distance = search_result [1];
26 correct_cluster = i;
27 }
28 }
29 return correct_cluster ;
30 }
31
32 void PclFilters :: ransac_recognition (std:: vector <RayTraceCloud > models ,

RayTraceCloud object ){
33 pcl:: recognition :: ObjRecRANSAC recognition (40.0 ,5.0);
34 std:: list < pcl:: recognition :: ObjRecRANSAC :: Output > matchingList ;
35 for(int i = 0; i< models .size (); i++){
36 QString name = " model_ ";
37 name. append ( QString :: number (i));
38 recognition . addModel (* models .at(i).cloud ,* models .at(i).normals ,name.

toStdString ());
39 }
40 recognition . recognize (* models .at (0).cloud ,* models .at (0).normals ,

matchingList ,0.99) ;
41 }
42
43 Eigen:: Mat rix4f PclFilters :: calculateInitialAlignment ( RayTraceCloud source ,

RayTraceCloud target , float min_sample_distance , float
max_correspondence_distance , int nr_iterations ){

44 pcl:: SampleConsensusInitialAlignment <pcl:: PointXYZ ,pcl:: PointXYZ ,pcl::
FPFHSignature33 > sac_ia ;

45 sac_ia . setMinSampleDistance ( min_sample_distance );
46 sac_ia . setMaxCorrespondenceDistance ( max_correspondence_distance );
47 sac_ia . setMaximumIterations ( nr_iterations );
48 sac_ia . setInputSource ( source . keypoints );
49 sac_ia . setSourceFeatures ( source . local_descriptors );
50 sac_ia . setInputTarget ( target . keypoints );
51 sac_ia . setTargetFeatures ( target . local_descriptors );
52 pcl:: PointCloud <pcl:: PointXYZ > registration_output ;
53 sac_ia .align( registration_output );
54 return ( sac_ia . getFinalTransformation ());
55 }
56
57 Eigen:: Mat rix4f PclFilters :: calculateRefinedAlignment ( RayTraceCloud source ,

RayTraceCloud target , Eigen:: Mat rix4f initial_alignment , float
max_correspondence_distance , float outlier_rejection_threshold , float
transformation_epsilon , float eucledian_fitness_epsilon , int max_iterations
){

58 pcl:: IterativeClosestPoint <pcl:: PointXYZ ,pcl:: PointXYZ > icp;
59 icp. setMaxCorrespondenceDistance ( max_correspondence_distance );
60 icp. setRANSACOutlierRejectionThreshold ( outlier_rejection_threshold );
61 icp. setTransformationEpsilon ( transformation_epsilon );
62 icp. setEuclideanFitnessEpsilon ( eucledian_fitness_epsilon );
63 icp. setMaximumIterations ( max_iterations );
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64 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr source_transformed (new pcl:: PointCloud
<pcl:: PointXYZ >);

65 pcl:: transform PointCloud (* source .cloud ,* source_transformed ,
initial_alignment );

66 icp. setInputSource ( source_transformed );
67 icp. setInputTarget ( target .cloud);
68 pcl:: PointCloud <pcl:: PointXYZ > registration_output ;
69 icp.align( registration_output );
70 return (icp. getFinalTransformation () * initial_alignment );
71 }
72
73 RayTraceCloud PclFilters :: calculate_features ( RayTraceCloud inputcloud ){
74 inputcloud . normals = get_normals ( inputcloud .cloud ,0.05) ;
75 inputcloud . keypoints = calculate_keypoints ( inputcloud .cloud ,0.001 ,3 ,3 ,0.0);
76 inputcloud . local_descriptors = calculate_local_descritor ( inputcloud .cloud ,

inputcloud .normals , inputcloud .keypoints ,0.15) ;
77 inputcloud . global_descriptors = calculate_vfh_descriptors ( inputcloud .cloud ,

inputcloud . normals );
78 return ( inputcloud );
79 }
80
81 pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr PclFilters :: generate_search_tree (

std:: vector <RayTraceCloud > models ){
82 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr global_descriptor (new pcl::

PointCloud <pcl:: VFHSignature308 >);
83 pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr search_tree (new pcl::

KdTreeFLANN <pcl:: VFHSignature308 >);
84 for(int i = 0; i< models .size (); i++){
85
86 RayTraceCloud model = models .at(i);
87 * global_descriptor += *( model. global_descriptors );
88 }
89 search_tree -> setInputCloud ( global_descriptor );
90 return ( search_tree );
91 }
92
93 std:: vector <float > PclFilters :: match_cloud ( RayTraceCloud object_model , pcl::

KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr search_tree ){
94 std:: vector <float > return values ;
95 std:: vector <int > best_match (1);
96 std:: vector <float > square_distance (1);
97 search_tree -> nearestKSearch ( object_model . global_descriptors -> points [0],1,

best_match , square_distance );
98 return values . push_back ( best_match [0]);
99 return values . push_back ( square_distance [0]);

100 return ( return values );
101 }
102
103 std:: vector <float > PclFilters :: temp_matching_cvfh ( RayTraceCloud object_model ,

pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr search_tree ){
104 std:: vector <float > return values ;
105 std:: vector <int > best_match (1);
106 std:: vector <float > square_distance (1);
107 int nr_of_descriptors = object_model . global_descriptors -> points .size ();
108 for(int i = 0; i< nr_of_descriptors ; i++){
109 search_tree -> nearestKSearch ( object_model . global_descriptors -> points [i

],1, best_match , square_distance );
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110 std:: cout << "loop nr: " << i << ", best match: " << best_match .at (0)
<< ", confidence level: " << square_distance .at (0) << std:: endl;

111 }
112 return values . push_back ( best_match [0]);
113 return values . push_back ( square_distance [0]);
114 return ( return values );
115 }
116
117 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: calculate_keypoints (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , float min_scale , int nr_octaves , int
nr_scales_per_octave , float min_contrast ){

118 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr rgbcloud (new pcl:: PointCloud <pcl::
PointXYZ RGB >);

119 pcl:: copy PointCloud (* cloud ,* rgbcloud );
120 for(int i = 0; i< rgbcloud ->size (); i++){
121 rgbcloud -> points [i].r = 255;
122 rgbcloud -> points [i].g = 255;
123 rgbcloud -> points [i].b = 255;
124 }
125 pcl:: SIFTKeypoint <pcl:: PointXYZ RGB , pcl:: PointWithScale > sift_detect ;
126 sift_detect . setSearchMethod ( pcl:: search :: Search <pcl:: PointXYZ RGB >:: Ptr (

new pcl:: search :: KdTree <pcl:: PointXYZ RGB >));
127 sift_detect . setScales (min_scale , nr_octaves , nr_scales_per_octave );
128 sift_detect . setMinimumContrast ( min_contrast );
129 sift_detect . setInputCloud ( rgbcloud );
130 pcl:: PointCloud <pcl:: PointWithScale > keypoints_temp ;
131 sift_detect . compute ( keypoints_temp );
132 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr keypoints (new pcl:: PointCloud <pcl::

PointXYZ >);
133 pcl:: copy PointCloud ( keypoints_temp , * keypoints );
134 return ( keypoints );
135 }
136
137 pcl:: PointCloud <pcl:: FPFHSignature33 >:: Ptr PclFilters ::

calculate_local_descritor (pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , pcl::
PointCloud <pcl:: Normal >:: Ptr normal , pcl:: PointCloud <pcl:: PointXYZ >:: Ptr
keypoints , float feature_radius ){

138 pcl:: FPFHEstimationOMP <pcl:: PointXYZ , pcl:: Normal , pcl:: FPFHSignature33 >
fpfh_estimation ;

139 fpfh_estimation . setNumberOfThreads (8);
140 fpfh_estimation . setSearchMethod ( pcl:: search :: Search <pcl:: PointXYZ >:: Ptr (

new pcl:: search :: KdTree <pcl:: PointXYZ >));
141 fpfh_estimation . setRadiusSearch ( feature_radius );
142 fpfh_estimation . setSearchSurface (cloud);
143 fpfh_estimation . setInputNormals ( normal );
144 fpfh_estimation . setInputCloud ( keypoints );
145 pcl:: PointCloud <pcl:: FPFHSignature33 >:: Ptr local_descriptors (new pcl::

PointCloud <pcl:: FPFHSignature33 >);
146 fpfh_estimation . compute (* local_descriptors );
147 return ( local_descriptors );
148 }
149
150 boost :: shared_ptr <pcl:: visualization :: PCLVisualizer > PclFilters :: visualize (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud){
151 viewer .reset(new pcl:: visualization :: PCLVisualizer ("3D Viewer ",false));
152 viewer ->add PointCloud <pcl:: PointXYZ > (cloud , " sample cloud");
153 viewer -> initCameraParameters ();
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154 return ( viewer );
155 }
156
157 boost :: shared_ptr < pcl:: visualization :: PCLVisualizer > PclFilters :: visualize_rgb (

pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr cloud){
158 viewer .reset(new pcl:: visualization :: PCLVisualizer ("3D Viewer ",false));
159 pcl:: visualization :: PointCloud ColorHandlerRGBField < pcl:: PointXYZ RGB > rgb(

cloud);
160 viewer ->add PointCloud <pcl:: PointXYZ RGB > (cloud , rgb , " sample cloud");
161 viewer -> initCameraParameters ();
162 return ( viewer );
163 }
164
165 boost :: shared_ptr < pcl:: visualization :: PCLVisualizer > PclFilters ::

visualize_normals ( pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , double radius ,
int numOfNormals ){

166 viewer .reset(new pcl:: visualization :: PCLVisualizer ("3D Viewer ",false));
167 viewer ->add PointCloud <pcl:: PointXYZ > (cloud , " sample cloud");
168 viewer ->add PointCloud Normals <pcl:: PointXYZ , pcl:: Normal > (cloud ,

get_normals (cloud , radius ), numOfNormals , 0.05 , " normals ");
169 viewer ->set PointCloud RenderingProperties (pcl:: visualization ::

PCL_VISUALIZER_COLOR , 1.0, 0.0, 0.0, " normals ");
170 viewer -> initCameraParameters ();
171 filteredCloud = cloud;
172 return ( viewer );
173 }
174
175 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > PclFilters :: cluster_extraction

(pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , double distance ){
176 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_f (new pcl:: PointCloud <pcl::

PointXYZ >), incloud (new pcl:: PointCloud <pcl:: PointXYZ >);
177 pcl:: copy PointCloud (* cloud ,* incloud );
178 pcl:: SACSegmentation <pcl:: PointXYZ > seg;
179 pcl:: PointIndices :: Ptr inliers (new pcl:: PointIndices );
180 pcl:: ModelCoefficients :: Ptr coefficients (new pcl:: ModelCoefficients );
181 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_plane (new pcl:: PointCloud <pcl::

PointXYZ > ());
182 seg. setOptimizeCoefficients (true);
183 seg. setModelType (pcl:: SACMODEL_PLANE );
184 seg. setMethodType (pcl:: SAC_RANSAC );
185 seg. setMaxIterations (100);
186 seg. setDistanceThreshold ( distance );
187 seg. setInputCloud ( incloud );
188 seg. segment (* inliers , * coefficients );
189
190 pcl:: ExtractIndices <pcl:: PointXYZ > extract ;
191 extract . setInputCloud ( incloud );
192 extract . setIndices ( inliers );
193 extract . setNegative (false);
194 extract . filter (* cloud_plane );
195 extract . setNegative (true);
196 extract . filter (* cloud_f );
197 * incloud = * cloud_f ;
198
199 pcl:: search :: KdTree <pcl:: PointXYZ >:: Ptr tree (new pcl:: search :: KdTree <pcl::

PointXYZ >);
200 tree -> setInputCloud ( incloud );
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201 std:: vector <pcl:: PointIndices > cluster_indices ;
202 pcl:: EuclideanClusterExtraction < pcl:: PointXYZ > ec;
203 ec. setClusterTolerance (0.01) ; // 1cm
204 ec. setMinClusterSize (300);
205 ec. setMaxClusterSize (25000) ;
206 ec. setSearchMethod (tree);
207 ec. setInputCloud ( incloud );
208 ec. extract ( cluster_indices );
209 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > clusters ;
210 for(int i = 0; i< cluster_indices .size (); i++){
211 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr tmpcloud (new pcl:: PointCloud <pcl::

PointXYZ >);
212 pcl:: copy PointCloud (* incloud , cluster_indices [i],* tmpcloud );
213 clusters . push_back ( tmpcloud );
214 }
215 filteredCloud = combine_clouds ( clusters );
216 return ( clusters );
217 }
218
219 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: plane_segmentation (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double distance ){
220 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr incloud (new pcl:: PointCloud <pcl::

PointXYZ >);
221 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_plane (new pcl:: PointCloud <pcl::

PointXYZ >);
222 pcl:: copy PointCloud (* cloud ,* incloud );
223 pcl:: ModelCoefficients :: Ptr coefficients (new pcl:: ModelCoefficients );
224 pcl:: PointIndices :: Ptr inliers (new pcl:: PointIndices );
225 pcl:: SACSegmentation <pcl:: PointXYZ > seg;
226
227 seg. setOptimizeCoefficients (true);
228 seg. setModelType (pcl:: SACMODEL_PLANE );
229 seg. setMethodType (pcl:: SAC_RANSAC );
230 seg. setDistanceThreshold ( distance );
231 seg. setInputCloud (cloud);
232 seg. segment (* inliers , * coefficients );
233
234 pcl:: ExtractIndices <pcl:: PointXYZ > extract ;
235 extract . setInputCloud ( incloud );
236 extract . setIndices ( inliers );
237 extract . setNegative (false);
238 extract . filter (* cloud_plane );
239 filteredCloud = cloud;
240 return ( cloud_plane );
241 }
242
243 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: get_filtered_cloud (){
244 return filteredCloud ;
245 }
246
247 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr PclFilters :: color_cloud (pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , int r, int g, int b){
248 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr rgb_cloud (new pcl:: PointCloud <pcl::

PointXYZ RGB >);
249 pcl:: copy PointCloud (* cloud ,* rgb_cloud );
250 for (int i = 0; i< rgb_cloud -> points .size (); i++)
251 {
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252 rgb_cloud -> points [i].r = r;
253 rgb_cloud -> points [i].g = g;
254 rgb_cloud -> points [i].b = b;
255 }
256 return ( rgb_cloud );
257 }
258
259 pcl:: PointCloud <pcl:: Normal >:: Ptr PclFilters :: get_normals (pcl:: PointCloud <pcl::

PointXYZ >:: Ptr cloud , double radius ){
260 pcl:: PointCloud <pcl:: Normal >:: Ptr normals_out (new pcl:: PointCloud <pcl::

Normal >);
261 pcl:: search :: KdTree <pcl:: PointXYZ >:: Ptr tree (new pcl:: search :: KdTree <pcl::

PointXYZ > ());
262 pcl:: NormalEstimationOMP <pcl:: PointXYZ , pcl:: Normal > norm_est ;
263 norm_est . setNumberOfThreads (8);
264 norm_est . setSearchMethod (tree);
265 norm_est . setRadiusSearch ( radius );
266 norm_est . setInputCloud (cloud);
267 norm_est . compute (* normals_out );
268 return ( normals_out );
269 }
270
271 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: passthrough_filter (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double min , double max , std:: string
axis){

272 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <
pcl:: PointXYZ >);

273 passfilter . setKeepOrganized (true);
274 passfilter . setInputCloud (cloud);
275 passfilter . setFilterFieldName (axis);
276 passfilter . setFilterLimits (min ,max);
277 passfilter . filter (* cloud_filtered );
278 filteredCloud = cloud_filtered ;
279 return ( cloud_filtered );
280 }
281
282 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: voxel_grid_filter (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double lx , double ly , double lz){
283 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <

pcl:: PointXYZ >);
284 voxelfilter . setInputCloud (cloud);
285 voxelfilter . setLeafSize (lx ,ly ,lz);
286 voxelfilter . filter (* cloud_filtered );
287 filteredCloud = cloud_filtered ;
288 return ( cloud_filtered );
289 }
290
291 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: median_filter (pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , int window_size , double max_allowed_movement ){
292 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <

pcl:: PointXYZ >);
293 medianfilter . setInputCloud (cloud);
294 medianfilter . setWindowSize ( window_size );
295 medianfilter . setMaxAllowedMovement ( max_allowed_movement );
296 medianfilter . filter (* cloud_filtered );
297 filteredCloud = cloud_filtered ;
298 return ( cloud_filtered );
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299 }
300
301 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: shadowpoint_removal_filter (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , double threshold , double radius )
{

302 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <
pcl:: PointXYZ >);

303 shadowpoint_filter . setInputCloud (cloud);
304 shadowpoint_filter . setKeepOrganized (true);
305 shadowpoint_filter . setThreshold ( threshold );
306 shadowpoint_filter . setNormals ( get_normals (cloud , radius ));
307 shadowpoint_filter . filter (* cloud_filtered );
308 filteredCloud = cloud_filtered ;
309 return ( cloud_filtered );
310 }
311
312 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: statistical_outlier_filter (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , int meanK , double
std_deviation_threshold ){

313 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <
pcl:: PointXYZ >);

314 statistical_outlier . setKeepOrganized (true);
315 statistical_outlier . setInputCloud (cloud);
316 statistical_outlier . setMeanK (meanK);
317 statistical_outlier . setStddevMulThresh ( std_deviation_threshold );
318 statistical_outlier . filter (* cloud_filtered );
319 filteredCloud = cloud_filtered ;
320 return ( cloud_filtered );
321 }
322
323 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: combine_clouds (std:: vector <

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > input){
324 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cluster_cloud (new pcl:: PointCloud <

pcl:: PointXYZ >);
325 * cluster_cloud = *input.at (0);
326 for ( unsigned i=0; i<input.size (); i++){
327 * cluster_cloud += *( pcl:: PointCloud <pcl:: PointXYZ >:: Ptr) input.at(i);
328 }
329 return ( cluster_cloud );
330 }
331
332 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr PclFilters ::

calculate_cvfh_descriptors (pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud){
333 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr descriptors (new pcl:: PointCloud <

pcl:: VFHSignature308 >);
334 pcl:: search :: KdTree <pcl:: PointXYZ >:: Ptr kdtree (new pcl:: search :: KdTree <

pcl:: PointXYZ >);
335 pcl:: PointCloud <pcl:: Normal >:: Ptr normals = get_normals (cloud ,0.01) ;
336
337 pcl:: CVFHEstimation <pcl:: PointXYZ , pcl:: Normal , pcl:: VFHSignature308 > cvfh;
338 cvfh. setInputCloud (cloud);
339 cvfh. setInputNormals ( normals );
340 cvfh. setSearchMethod ( kdtree );
341 cvfh. setEPSAngleThreshold (5.0 / 180.0 * M_PI);
342 cvfh. setCurvatureThreshold (1.0);
343 cvfh. setNormalizeBins (false );
344 cvfh. compute (* descriptors );
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345 return ( descriptors );
346 }
347
348 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr PclFilters :: bilateral_filter (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double sigmaS , double sigmaR ){
349 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud_filtered (new pcl:: PointCloud <

pcl:: PointXYZ >);
350 pcl:: FastBilateralFilterOMP < pcl:: PointXYZ > bifilter ;
351 bifilter . setInputCloud (cloud);
352 bifilter . setSigmaR ( sigmaR );
353 bifilter . setSigmaS ( sigmaS );
354 bifilter . filter (* cloud_filtered );
355 filteredCloud = cloud_filtered ;
356 return ( cloud_filtered );
357 }
358
359 pcl:: PointCloud <pcl:: ESFSignature640 >:: Ptr PclFilters ::

calculate_esf_descriptors (pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud){
360 pcl:: PointCloud <pcl:: ESFSignature640 >:: Ptr descriptor (new pcl:: PointCloud <

pcl:: ESFSignature640 >);
361 pcl:: ESFEstimation <pcl:: PointXYZ , pcl:: ESFSignature640 > esf;
362 esf. setInputCloud (cloud);
363 esf. compute (* descriptor );
364 return ( descriptor );
365 }
366
367 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr PclFilters ::

calculate_ourcvfh_descriptors ( pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud ,
pcl:: PointCloud <pcl:: Normal >:: Ptr normal ){

368 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr descriptors (new pcl:: PointCloud <
pcl:: VFHSignature308 >);

369 pcl:: search :: KdTree <pcl:: PointXYZ >:: Ptr kdtree (new pcl:: search :: KdTree <
pcl:: PointXYZ >);

370 pcl:: OURCVFHEstimation <pcl:: PointXYZ , pcl:: Normal , pcl:: VFHSignature308 >
ourcvfh ;

371 ourcvfh . setInputCloud (cloud);
372 ourcvfh . setInputNormals ( normal );
373 ourcvfh . setSearchMethod ( kdtree );
374 ourcvfh . setEPSAngleThreshold (5.0 / 180.0 * M_PI);
375 ourcvfh . setCurvatureThreshold (0.1);
376 ourcvfh . setNormalizeBins (false );
377 ourcvfh . setAxisRatio (0.8);
378 ourcvfh . compute (* descriptors );
379 return ( descriptors );
380 }
381
382 pcl:: PointCloud <pcl:: GFPFHSignature16 >:: Ptr PclFilters ::

calculate_gfpfh_descriptors ( pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud){
383 pcl:: PointCloud <pcl:: PointXYZL >:: Ptr object (new pcl:: PointCloud <pcl::

PointXYZL>);
384 pcl:: PointCloud <pcl:: GFPFHSignature16 >:: Ptr descriptor (new pcl:: PointCloud <

pcl:: GFPFHSignature16 >);
385 pcl:: copy PointCloud (* cloud ,* object );
386 for ( size_t i = 0; i < object -> points .size (); ++i)
387 {
388 object -> points [i]. label = 1 + i % 4;
389 }
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390 pcl:: GFPFHEstimation <pcl:: PointXYZL, pcl:: PointXYZL, pcl:: GFPFHSignature16 >
gfpfh;

391 gfpfh. setInputCloud ( object );
392 gfpfh. setInputLabels ( object );
393 gfpfh. setOctreeLeafSize (0.01) ;
394 gfpfh. setNumberOfClasses (4);
395 gfpfh. compute (* descriptor );
396 return ( descriptor );
397 }
398
399 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr PclFilters ::

calculate_vfh_descriptors (pcl:: PointCloud <pcl:: PointXYZ >:: Ptr points , pcl::
PointCloud <pcl:: Normal >:: Ptr normals ){

400 pcl:: VFHEstimation <pcl:: PointXYZ , pcl:: Normal , pcl:: VFHSignature308 >
vfh_estimation ;

401 vfh_estimation . setSearchMethod (pcl:: search :: Search <pcl:: PointXYZ >:: Ptr (
new pcl:: search :: KdTree <pcl:: PointXYZ >));

402 vfh_estimation . setInputCloud ( points );
403 vfh_estimation . setInputNormals ( normals );
404 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr global_descriptor (new pcl::

PointCloud <pcl:: VFHSignature308 >);
405 vfh_estimation . compute (* global_descriptor );
406 return ( global_descriptor );
407 }
408
409
410 icpResult PclFilters :: object_detection (pcl:: PointCloud <pcl:: PointXYZ >:: Ptr

cloud , std:: vector <RayTraceCloud > model_a , std:: vector <RayTraceCloud >
model_b ){

411 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr section_a (new pcl:: PointCloud <pcl::
PointXYZ >);

412 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr section_b (new pcl:: PointCloud <pcl::
PointXYZ >);

413 pcl:: copy PointCloud (* cloud ,* section_a );
414 // Passtrough
415 section_a = passthrough_filter (section_a ,0.760 ,1.190 ,"z");
416 pcl:: copy PointCloud (* section_a ,* section_b );
417 section_a = passthrough_filter (section_a , -0.510 , -0.130 ,"x");
418 section_b = passthrough_filter (section_b , -0.130 ,0.270 ,"x");
419 // Voxelgrid
420 section_a = voxel_grid_filter (section_a ,0.001 ,0.001 ,0.001) ;
421 section_b = voxel_grid_filter (section_b ,0.001 ,0.001 ,0.001) ;
422 // Cluster extraction
423 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > clusters_section_a =

cluster_extraction (section_a ,0.005) ;
424 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > clusters_section_b =

cluster_extraction (section_b ,0.005) ;
425
426 // find the cluster that containes the part we are looking for.
427 RayTraceCloud part_a , part_b ;
428 if( clusters_section_a .size () != 1){
429 // more than one cluster , find the correct one
430 std:: vector <RayTraceCloud > cluster_a_models ;
431 for(int i = 0; i< clusters_section_a .size (); i++){
432 RayTraceCloud tmp_model ;
433 tmp_model .cloud = clusters_section_a .at(i);
434 cluster_a_models . push_back ( calculate_features ( tmp_model ));
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435 }
436 int tmp = search_for_model ( cluster_a_models , model_a );
437 part_a = cluster_a_models .at(tmp);
438 }
439 else{
440 part_a .cloud = clusters_section_a .at (0);
441 part_a = calculate_features ( part_a );
442 }
443 if( clusters_section_b .size () != 1){
444 // more than one cluster , find the correct one
445 std:: vector <RayTraceCloud > cluster_b_models ;
446 for(int i = 0; i< clusters_section_b .size (); i++){
447 RayTraceCloud tmp_model ;
448 tmp_model .cloud = clusters_section_b .at(i);
449 cluster_b_models . push_back ( calculate_features ( tmp_model ));
450 }
451 int tmp = search_for_model ( cluster_b_models , model_b );
452 part_b = cluster_b_models .at(tmp);
453 }
454 else{
455 part_b .cloud = clusters_section_b .at (0);
456 part_b = calculate_features ( part_b );
457 }
458
459 // from here , we assume that left and right part contains the correct

cluster for each of the parts.
460 std:: vector <float > result_a , result_b ;
461 result_a = match_cloud (part_a , generate_search_tree ( model_a ));
462 result_b = match_cloud (part_b , generate_search_tree ( model_b ));
463
464 // alignment part a
465 Eigen:: Mat rix4f initial_a = calculateInitialAlignment ( model_a .at( result_a .

at (0)),part_a ,0.01 ,1 ,50);
466 Eigen:: Mat rix4f final_a = calculateRefinedAlignment ( model_a .at( result_a .at

(0)),part_a ,initial_a ,0.1 ,0.1 ,1e -10 ,0.00001 ,50);
467
468 // alignment part b
469 Eigen:: Mat rix4f initial_b = calculateInitialAlignment ( model_b .at( result_b .

at (0)),part_b ,0.01 ,1 ,50);
470 Eigen:: Mat rix4f final_b = calculateRefinedAlignment ( model_b .at( result_b .at

(0)),part_b ,initial_b ,0.1 ,0.1 ,1e -10 ,0.00001 ,50);
471
472 // the following is just to produce a pleasing image showing the result .
473 // Transform the models
474 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr a_positioned (new pcl:: PointCloud <pcl::

PointXYZ >);
475 pcl:: copy PointCloud (* model_a .at( result_a .at (0)).cloud ,* a_positioned );
476 pcl:: transform PointCloud (* a_positioned ,* a_positioned , final_a );
477
478 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr b_positioned (new pcl:: PointCloud <pcl::

PointXYZ >);
479 pcl:: copy PointCloud (* model_b .at( result_b .at (0)).cloud ,* b_positioned );
480 pcl:: transform PointCloud (* b_positioned ,* b_positioned , final_b );
481
482 // Display the cloud and models
483 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr scene_copy , b_transformed ,

a_transformed ;
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484 scene_copy = color_cloud (cloud ,255 ,255 ,255);
485 b_transformed = color_cloud ( b_positioned ,255 ,0 ,0);
486 a_transformed = color_cloud ( a_positioned ,0 ,255 ,0);
487 * scene_copy += * b_transformed ;
488 * scene_copy += * a_transformed ;
489
490 icpResult result ;
491 result .cloud = scene_copy ;
492 result . partAFinal = final_a * model_a .at( result_a .at (0)).pose;
493 result . partBFinal = final_b * model_b .at( result_b .at (0)).pose;
494 return result ;
495 }
496 }
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pcl_filters.hpp

Listing A.2: Source file - agilus_master_project/pcl_filters.hpp

1 //
2 // Original author Kristoffer Larsen . Latest change date 01.05.2016
3 // This .hpp file defines the content of pcl_filters .cpp which is a toolbox

that implements the most commonly used features from PCL.
4 // In this application , pcl_filters .cpp is used for 3D point cloud processing .
5 //
6 // Created as part of the software solution for a Master ’s Thesis in Production

Technology at NTNU Trondheim .
7 //
8
9

10 # ifndef qt_filter_tester_PCLFILTERS_H
11 # define qt_filter_tester_PCLFILTERS_H
12
13 # include <QObject >
14 # include <iostream >
15 # include <boost/ thread / thread .hpp >
16
17 # include <pcl/ common / common_headers .h>
18 # include <pcl/io/ pcd_io .h>
19 # include <pcl/ visualization / pcl_visualizer .h>
20 # include <pcl/ console /parse.h>
21
22 // PCL Filters
23 # include <pcl/ filters / voxel_grid .h>
24 # include <pcl/ filters / shadowpoints .h>
25 # include <pcl/ filters / extract_indices .h>
26 # include <pcl/ filters / passthrough .h>
27 # include <pcl/ filters / median_filter .h>
28 # include <pcl/ filters / statistical_outlier_removal .h>
29 # include <pcl/ filters / fast_bilateral_omp .h>
30
31 // PCL Feature estimation
32 # include <pcl/ kdtree / kdtree_flann .h>
33 # include <pcl/ features / integral_image_normal .h>
34 # include <pcl/ features / normal_3d .h>
35 # include <pcl/ features / normal_3d_omp .h>
36 # include <pcl/ features /cvfh.h>
37 # include <pcl/ features /gfpfh.h>
38 # include <pcl/ features / our_cvfh .h>
39 # include <pcl/ features /esf.h>
40 # include <pcl/ features /fpfh.h>
41 # include <pcl/ features / fpfh_omp .h>
42 # include "pcl/ keypoints / sift_keypoint .h"
43
44 // PCL Registration and object detection
45 # include <pcl/ registration / ia_ransac .h>
46 # include <pcl/ sample_consensus / method_types .h>
47 # include <pcl/ sample_consensus / model_types .h>
48 # include <pcl/ ModelCoefficients .h>
49 # include <pcl/ segmentation / sac_segmentation .h>
50 # include <pcl/ segmentation / extract_clusters .h>
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51 # include <pcl/ registration /icp.h>
52 # include <pcl/ recognition / ransac_based / obj_rec_ransac .h>
53
54 /*!
55 * \brief The RayTraceCloud struct contain all the data related to a training

set model.
56 */
57 struct RayTraceCloud {
58 /*! The point cloud of the ray trace */
59 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud;
60
61 /*! The pose transformation from the camera to the mesh when the ray trace

was generated */
62 Eigen:: Mat rix4f pose;
63
64 /*! The amount of the whole mesh seen in the camera */
65 float enthropy ;
66
67 /*! The clouds keypoints */
68 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr keypoints ;
69
70 /*! The clouds surface normal */
71 pcl:: PointCloud <pcl:: Normal >:: Ptr normals ;
72
73 /*! The clouds local descriptors */
74 pcl:: PointCloud <pcl:: FPFHSignature33 >:: Ptr local_descriptors ;
75
76 /*! The clouds global descriptor */
77 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr global_descriptors ;
78 };
79
80 /*!
81 * \brief The icpResult struct contain all the important data derived from the

3D object detection procedure .
82 */
83 struct icpResult {
84 /*! A 3D point cloud that illustrates the 3D object detection result */
85 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr cloud;
86
87 /*! The estimated pose of part A */
88 Eigen:: Mat rix4f partAFinal ;
89
90 /*! The estimated pose of part B */
91 Eigen:: Mat rix4f partBFinal ;
92 };
93
94
95 namespace agilus_master_project {
96
97 class PclFilters : public QObject {
98 Q_OBJECT
99

100 public :
101
102 /*!
103 * \ brief Constructor for the PclFilters class.
104 * \ param parent Default 0.
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105 */
106 PclFilters ( QObject * parent = 0);
107
108 ~ PclFilters ();
109
110 /*!
111 * \brief Return the cluster that is most similar to the provided training

set.
112 * \param clusters Clusters that is to be searched .
113 * \param model The training set of the model that is searched for in the

scene.
114 * \ return The index that corresponds to the best matching cluster in the

input cluster vector .
115 */
116 int search_for_model (std:: vector <RayTraceCloud > clusters , std:: vector <

RayTraceCloud > model);
117
118 /*!
119 * \brief Method for testing an experimental 3D object detection

implementation . This implementation is based on RANSAC .
120 * \param models Training set that is to be searched for.
121 * \param object Object cluster .
122 */
123 void ransac_recognition ( std:: vector <RayTraceCloud > models , RayTraceCloud

object );
124
125 /*!
126 * \brief Estimates an initial alignment bewteen the source and target

model based on the Sigular Value Decomposition approach .
127 * \param source The source point cloud.
128 * \param target The target point cloud.
129 * \param min_sample_distance Mat hcing param eter used to limit

correspondences .
130 * \param max_correspondence_distance Mat ching param eter used to limit

correspondences .
131 * \param nr_iterations Maximum number of iterations run before return ing a

pose.
132 * \ return The estimated initial alignment .
133 */
134 Eigen:: Mat rix4f calculateInitialAlignment ( RayTraceCloud source ,

RayTraceCloud target , float min_sample_distance , float
max_correspondence_distance , int nr_iterations );

135
136 /*!
137 * \brief Estimates a final alignment between the source and target model

based on the Iterative Closest Point approach .
138 * \param source The source point cloud.
139 * \param target The target point cloud.
140 * \param initial_alignment The initial alignment between the models used

as a starting point.
141 * \param max_correspondence_distance Mat ching param eter used to limit

correspondences .
142 * \param outlier_rejection_threshold Parameter used to set the outlier

rejection threshold .
143 * \param transformation_epsilon Parameter that defines an acceptable

transformation epsilon .
144 * \param eucledian_fitness_epsilon Parameter that defines an acceptable
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eucledian fitness epsilon .
145 * \ param max_iterations Maximum number of iterations run before return ing

a pose.
146 * \ return The estimated final alignment .
147 */
148 Eigen:: Mat rix4f calculateRefinedAlignment ( RayTraceCloud source ,

RayTraceCloud target , Eigen:: Mat rix4f initial_alignment , float
max_correspondence_distance , float outlier_rejection_threshold , float
transformation_epsilon , float eucledian_fitness_epsilon , int
max_iterations );

149
150 /*!
151 * \ brief Generates a Kd -tree used for nearest neighbour search from a set

of global descriptors .
152 * \ param Training set containing global descriptors .
153 * \ return The generated Kd -tree.
154 */
155 pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr generate_search_tree (std::

vector <RayTraceCloud > models );
156
157 /*!
158 * \ brief Descriptor matching between the input model and a generated Kd -

tree based on the VFH global descriptor .
159 * \ param object_model The input model.
160 * \ param search_tree The input Kd -tree
161 * \ return A vector containing <index of best matching model , confidence

level of the match >.
162 */
163 std:: vector <float > match_cloud ( RayTraceCloud object_model , pcl:: KdTreeFLANN

< pcl:: VFHSignature308 >:: Ptr search_tree );
164
165 /*!
166 * \ brief Descriptor matching between the input model and a generated Kd -

tree based on the CVFH global descriptor .
167 * \ param object_model The input model.
168 * \ param search_tree The input Kd -tree.
169 * \ return A vector containing <index of best matching model , confidence

level of the match >.
170 */
171 std:: vector <float > temp_matching_cvfh ( RayTraceCloud object_model , pcl::

KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr search_tree );
172
173 /*!
174 * \ brief Calculated the keypoints of an input point cloud based on the

SIFT3D keypoint selector method .
175 * \ param cloud The input point cloud.
176 * \ param min_scale SIFT3D minimum scale param eter.
177 * \ param nr_octaves SIFT3D number of octaves calcualted param eter.
178 * \ param nr_scales_per_octave SIFT3D number of scales per octave

calculated param eter.
179 * \ param min_contrast SIFT3D minimum constrast param eter.
180 * \ return A point cloud containing the resulting keypoints .
181 */
182 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr calculate_keypoints (pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , float min_scale , int nr_octaves , int
nr_scales_per_octave , float min_contrast );

183
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184 /*!
185 * \brief Estimates the FPFH local descriptor for a 3D point cloud.
186 * \param cloud The input point cloud.
187 * \param normal The surface normals of the input point cloud.
188 * \param keypoints The keypoints of the input point cloud.
189 * \param feature_radius The feature radius FPFH param eter.
190 * \ return A point cloud containing a local descriptor for each keypoint of

the original input point cloud.
191 */
192 pcl:: PointCloud <pcl:: FPFHSignature33 >:: Ptr calculate_local_descritor (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , pcl:: PointCloud <pcl:: Normal >:: Ptr
normal , pcl:: PointCloud <pcl:: PointXYZ >:: Ptr keypoints , float

feature_radius );
193
194 /*!
195 * \brief Estimates the VFH global descriptor for a 3D point cloud.
196 * \param points The input point cloud.
197 * \param normals The surface normals of the input point cloud.
198 * \ return The VFH global descriptor for the input point cloud.
199 */
200 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr calculate_vfh_descriptors (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr points , pcl:: PointCloud <pcl:: Normal >::
Ptr normals );

201
202
203 /*!
204 * \brief Estimates surface normals , keypoints , local descriptors and

global descriptor for the input point cloud.
205 * \param inputcloud The input point cloud.
206 * \ return A struct containing all the calculated features .
207 */
208 RayTraceCloud calculate_features ( RayTraceCloud inputcloud );
209
210 /*!
211 * \brief Creates a PCL Visualizer containing the input cloud.
212 * \param cloud Input point cloud.
213 * \ return A pcl visualizer containing the input cloud.
214 */
215 boost :: shared_ptr <pcl:: visualization :: PCLVisualizer > visualize ( pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud);
216
217 /*!
218 * \brief Creates a PCL Visualizer to visualize a PointXYZ RGB point cloud.
219 * \param cloud Input point cloud.
220 * \ return A pcl visualizer containing the input cloud.
221 */
222 boost :: shared_ptr <pcl:: visualization :: PCLVisualizer > visualize_rgb ( pcl::

PointCloud <pcl:: PointXYZ RGB >:: Ptr cloud);
223
224 /*!
225 * \brief Creates a PCL Visualizer used to visualize a point clouds normals

.
226 * \param cloud Input point cloud.
227 * \param radius Double value for the search radius for the normal

estimation of a p.oint cloud.
228 * \param numOfNormals Integer value for the number of normals to display

in the visualizer .
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229 * \ return A pcl visualizer containing the input cloud and normals as
defined by the input param eters.

230 */
231 boost :: shared_ptr < pcl:: visualization :: PCLVisualizer > visualize_normals (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , double radius , int
numOfNormals );

232
233 /*!
234 * \ brief Segments out the biggest plane in the input point cloud.
235 * \ param cloud Input point cloud.
236 * \ param distance Double value for the maximum distance between points in

a plane.
237 * \ return A pcl point cloud containing the points of the segmented plane.
238 */
239 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr plane_segmentation ( pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , double distance );
240
241 /*!
242 * \ brief Creates a PCL Visualizer containing a point cloud of the clusters

extracted from the input cloud using Eucledian cluster extraction .
243 * \ param cloud Input point cloud.
244 * \ param distance Double value for the maximum distance between points in

a plane.
245 * \ return A pcl visualizer containing the extracted clusters from the

input cloud.
246 */
247 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >:: Ptr > cluster_extraction (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double distance );
248
249 /*!
250 * \ brief Returns the most recent point cloud handled by the class.
251 * \ return The most recent point cloud handled by the class.
252 */
253 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr get_filtered_cloud ();
254
255 /*!
256 * \ brief Colors all the points in a point cloud.
257 * \ param cloud Input point cloud.
258 * \ param r Integer value for the red component of the color.
259 * \ param g Integer value for the green component of the color.
260 * \ param b Integer value for the blue component of the color.
261 * \ return The input point cloud colored in the specified color.
262 */
263 pcl:: PointCloud <pcl:: PointXYZ RGB >:: Ptr color_cloud ( pcl:: PointCloud <pcl::

PointXYZ >:: Ptr cloud , int r, int g, int b);
264
265 /*!
266 * \ brief Returns the surface normals of a Point cloud.
267 * \ param cloud Input point cloud.
268 * \ param radius Double value for the search radius of the normal

estimation .
269 * \ return The surface normals of the input point cloud.
270 */
271 pcl:: PointCloud <pcl:: Normal >:: Ptr get_normals ( pcl:: PointCloud <pcl::

PointXYZ >:: Ptr cloud , double radius );
272
273 /*!
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274 * \brief Returns the a point cloud filtered using passthrough filtering .
275 * \param cloud Input point cloud.
276 * \param min Double value for the minimum value of the filter .
277 * \param max Double value for the maximum value of the filter .
278 * \param axis std:: string value for the axis of the filter (lower case).
279 * \ return A point cloud filtered using passthrough filtering as specified .
280 */
281 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr passthrough_filter ( pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , double min , double max , std:: string axis);
282
283 /*!
284 * \brief Returns the a point cloud filtered using voxel grid filtering .
285 * \param cloud Input point cloud.
286 * \param lx Double value for the voxel size in the "x" axis of the filter .
287 * \param ly Double value for the voxel size in the "y" axis of the filter .
288 * \param lz Double value for the voxel size in the "z" axis of the filter .
289 * \ return A point cloud filtered using voxel grid filtering as specified .
290 */
291 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr voxel_grid_filter ( pcl:: PointCloud <

pcl:: PointXYZ >:: Ptr cloud , double lx , double ly , double lz);
292
293 /*!
294 * \brief Returns the a point cloud filtered using median filtering .
295 * \param cloud Input point cloud.
296 * \param window_size Integer value for the window size of the filter .
297 * \param max_allowed_movement Double value for the maximum allowed movenet

of the filter .
298 * \ return A point cloud filtered using median filtering as specified .
299 */
300 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr median_filter ( pcl:: PointCloud <pcl::

PointXYZ >:: Ptr cloud , int window_size , double max_allowed_movement );
301
302 /*!
303 * \brief Returns the a point cloud filtered using shadow point removal

filtering .
304 * \param cloud Input point cloud.
305 * \param threshold Double value for the filter threshold .
306 * \param radius Double value for the filter search radius .
307 * \ return A point cloud filtered using shadow point removal filtering as

specified .
308 */
309 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr shadowpoint_removal_filter ( pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , double threshold , double radius );
310
311 /*!
312 * \brief Returns the a point cloud filtered using statistical outlier

removal filtering .
313 * \param cloud Input point cloud.
314 * \param meanK Integer value for the number of nearest neighbors to use

for mean distance estimation .
315 * \param std_deviation_threshold Double value for the standard deviation

multiplier for the distance threshold calculation .
316 * \ return A point cloud filtered using statistical outlier removal

filtering as specified .
317 */
318 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr statistical_outlier_filter ( pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud , int meanK , double
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std_deviation_threshold );
319
320 /*!
321 * \ brief Combines all clouds in an vector to one cloud.
322 * \ param input std:: vector containing all clouds to be combined .
323 * \ return A point cloud containing all clouds in the input vector .
324 */
325 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr combine_clouds (std:: vector <pcl::

PointCloud <pcl:: PointXYZ >:: Ptr > input);
326
327 /*!
328 * \ brief Generates the CVFH descriptors for an object ( cluster ).
329 * \ param object Input point cloud , cluster of the object .
330 * \ param normals Input normal cloud of the object .
331 * \ return The corresponding CVFH global descriptor .
332 */
333 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr calculate_cvfh_descriptors (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr object );
334
335 /*!
336 * \ brief Returns a pcl point cloud filtered using a bilateral filter .
337 * \ param cloud Input point cloud.
338 * \ param sigmaS Double value for the half size of the gaussian bilateral

filter window .
339 * \ param sigmaR Double value for the standard deviation param eter.
340 * \ return A point cloud filtered using a bilateral filter .
341 */
342 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr bilateral_filter (pcl:: PointCloud <pcl::

PointXYZ >:: Ptr cloud , double sigmaS , double sigmaR );
343
344 /*!
345 * \ brief Returns the esf descriptor for a pcl point cloud.
346 * \ param cloud Input point cloud.
347 * \ return ESDSignature640 descriptor for the input point cloud.
348 */
349 pcl:: PointCloud <pcl:: ESFSignature640 >:: Ptr calculate_esf_descriptors (pcl::

PointCloud <pcl:: PointXYZ >:: Ptr cloud);
350
351 /*!
352 * \ brief Returns the ourcvfh descriptor for a pcl point cloud.
353 * \ param cloud Input point cloud.
354 * \ return OurCVFH descriptor for the input point cloud.
355 */
356 pcl:: PointCloud <pcl:: VFHSignature308 >:: Ptr calculate_ourcvfh_descriptors (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , pcl:: PointCloud <pcl:: Normal
>:: Ptr normal );

357 /*!
358 * \ brief Returns the gfpfh descriptor for a pcl point cloud.
359 * \ param cloud Input point cloud.
360 * \ return GFPFH descriptor for the input point cloud.
361 */
362 pcl:: PointCloud <pcl:: GFPFHSignature16 >:: Ptr calculate_gfpfh_descriptors (

pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud);
363
364 /*!
365 * \ brief Detects two objects in an area of the point cloud and return s a

pointcloud showing the detected parts.
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366 * \param cloud Input point cloud.
367 * \param model_a A list of RayTraceCloud objects generated by the

ModelLoader class.
368 * \param model_b A list of RayTraceCloud objects generated by the

ModelLoader class.
369 * \ return Pointcloud showing the result .
370 */
371 icpResult object_detection ( pcl:: PointCloud <pcl:: PointXYZ >:: Ptr cloud , std::

vector <RayTraceCloud > model_a , std:: vector <RayTraceCloud > model_b );
372
373 private :
374 boost :: shared_ptr <pcl:: visualization :: PCLVisualizer > viewer ; //!< A pcl

viewer used to visualize pcl point clouds .
375 pcl:: PointCloud <pcl:: PointXYZ >:: Ptr filteredCloud ; //!< The product of a

filter operation .
376 pcl:: PassThrough <pcl:: PointXYZ > passfilter ; //!< A pcl passthrough filter

object .
377 pcl:: VoxelGrid <pcl:: PointXYZ > voxelfilter ; //!< A pcl voxelgrid filter

object .
378 pcl:: MedianFilter <pcl:: PointXYZ > medianfilter ; //!< A pcl median filter

object .
379 pcl:: StatisticalOutlierRemoval < pcl:: PointXYZ > statistical_outlier ; //!< A

pcl statistical outlier removal filter object .
380 pcl:: ShadowPoints <pcl:: PointXYZ , pcl:: Normal > shadowpoint_filter ; //!< A

pcl shadowpoints removal filter object .
381 pcl:: KdTreeFLANN <pcl:: VFHSignature308 >:: Ptr kdtree_ ;
382
383 public Q_SLOTS :
384 // Slots used to recieve events from one another class. All slots and

signals are connected in main_window .cpp
385
386 Q_SIGNALS :
387 // Signals used to emit event from one class to another . All signals are

connected in main_window .cpp
388 };
389 }
390 #endif
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modelloader.cpp

Listing A.3: Source file - agilus_master_project/modelloader.cpp

1 //
2 // Original code by Adam Leon Kleppe on 01.02.16 , modifiead by Kristoffer

Larsen .
3 // Latest change date 01.05.2016
4 // modelloader .cpp is a tool used to create training set used for 3D object

detection .
5 //
6 // Modified and used as part of the software solution for a Master ’s Thesis in

Production Technology at NTNU Trondheim .
7 //
8
9 # include "../ include / agilus_master_project / modelloader .hpp"

10
11 namespace agilus_master_project {
12
13 ModelLoader :: ModelLoader ( pcl:: PolygonMesh mesh , std:: string mesh_name ) :
14 ModelLoader ( mesh_name )
15 {
16 this ->mesh = mesh;
17 }
18
19 ModelLoader :: ModelLoader ( std:: string mesh_name ) :
20 QObject (0)
21 {
22 this -> mesh_name = mesh_name ;
23 this -> setCloudResolution (960);
24 this -> setPath (ros:: package :: getPath (" agilus_master_project ") + "/

trace_clouds /");
25 this -> setTesselation_level (1);
26 }
27
28 ModelLoader ::~ ModelLoader () {}
29
30 void ModelLoader :: populateLoader () {
31 if (! this ->load PointCloud s()) {
32 if(this ->mesh.cloud.data.size () == 0) {
33 ROS_ERROR ("There is no defined mesh to generate clouds from");
34 return ;
35 }
36 this -> generate PointCloud s();
37 this ->save PointCloud s();
38 }
39 }
40
41 std:: vector <RayTraceCloud > ModelLoader :: getModels (bool load){
42 // Populate the loader if empty
43 if(load && this -> ray_trace_clouds .empty ()) {
44 this -> populateLoader ();
45 }
46 return this -> ray_trace_clouds ;
47 }
48
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49 void ModelLoader :: generate PointCloud s() {
50 // Create mesh object
51 vtkSmartPointer < vtkPolyData > meshVTK ;
52 pcl:: VTKUtils :: convertToVTK (this ->mesh , meshVTK );
53
54 // Set up trace generation
55 ROS_INFO (" Generating traces ...");
56 ROS_INFO (" \033[32 m Current settings :");
57 ROS_INFO (" \033[32 m -mesh_name : %s", this -> mesh_name .c_str ());
58 ROS_INFO (" \033[32 m -cloud_resolution : %d", this -> cloud_resolution );
59 ROS_INFO (" \033[32 m -tesselation_level : %d", this -> tesselation_level );
60
61 pcl:: visualization :: PCLVisualizer generator (" Generating traces ...",false );
62 generator . addModelFromPolyData (meshVTK , "mesh", 0);
63 std:: vector <pcl:: PointCloud <pcl:: PointXYZ >, Eigen:: aligned_allocator <pcl::

PointCloud <pcl:: PointXYZ > > > clouds ;
64 std:: vector <Eigen:: Mat rix4f , Eigen:: aligned_allocator < Eigen:: Mat rix4f > >

poses;
65 std:: vector <float > enthropies ;
66
67 // Generate traces
68 generator . renderViewTesselatedSphere (this -> cloud_resolution , this ->

cloud_resolution , clouds , poses , enthropies , this -> tesselation_level );
69
70 // Generate clouds
71 this -> ray_trace_clouds .clear ();
72 for(int i =0; i < clouds .size (); i++)
73 {
74 RayTraceCloud cloud;
75 cloud.cloud = pcl:: PointCloud <pcl:: PointXYZ >:: Ptr(new pcl:: PointCloud <

pcl:: PointXYZ >);
76 *cloud.cloud = clouds .at(i);
77 cloud.pose = poses.at(i);
78 cloud. enthropy = enthropies .at(i);
79 std:: cout << " Calculating features for Cloud nr. " << i << std:: endl;
80 cloud = filters -> calculate_features (cloud);
81 this -> ray_trace_clouds . push_back (cloud);
82 }
83 }
84
85 bool ModelLoader :: save PointCloud s() {
86 if(this -> ray_trace_clouds .empty ()){
87 return false;
88 }
89
90 // Set saving path
91 std:: string save_path = this ->path + this -> mesh_name + "/";
92 ROS_INFO (" Saving ray traces ");
93 ROS_INFO ("\ tUsing %s", save_path .c_str ());
94
95 // Generate YAML node
96 YAML :: Node clouds ;
97 for(int i = 0; i < this -> ray_trace_clouds .size (); i++) {
98 RayTraceCloud ray_trace = this -> ray_trace_clouds .at(i);
99

100 std:: string stream filename_cloud ;
101 std:: string stream filename_normals ;
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102 std:: string stream filename_keypoints ;
103 std:: string stream filename_local_descriptor ;
104 std:: string stream filename_global_descriptor ;
105
106 filename_cloud << this -> mesh_name << " _cloud_ ";
107 filename_cloud << setfill (’0’) << setw (4) << (i+1);
108 filename_cloud << ".pcd";
109 filename_normals << this -> mesh_name << " _normals_ ";
110 filename_normals << setfill (’0’) << setw (4) << (i+1);
111 filename_normals << ".pcd";
112 filename_keypoints << this -> mesh_name << " _keypoints_ ";
113 filename_keypoints << setfill (’0’) << setw (4) << (i+1);
114 filename_keypoints << ".pcd";
115 filename_local_descriptor << this -> mesh_name << " _ldescriptor_ ";
116 filename_local_descriptor << setfill (’0’) << setw (4) << (i+1);
117 filename_local_descriptor << ".pcd";
118 filename_global_descriptor << this -> mesh_name << " _gdescriptor_ ";
119 filename_global_descriptor << setfill (’0’) << setw (4) << (i+1);
120 filename_global_descriptor << ".pcd";
121
122 boost :: filesystem :: create_directories ( save_path );
123 pcl:: io:: savePCDFile ( save_path + filename_cloud .str (), * ray_trace .cloud

);
124 pcl:: io:: savePCDFile ( save_path + filename_normals .str (), * ray_trace .

normals );
125 pcl:: io:: savePCDFile ( save_path + filename_keypoints .str (), * ray_trace .

keypoints );
126 pcl:: io:: savePCDFile ( save_path + filename_local_descriptor .str (), *

ray_trace . local_descriptors );
127 pcl:: io:: savePCDFile ( save_path + filename_global_descriptor .str (), *

ray_trace . global_descriptors );
128
129 YAML :: Node node;
130 node["cloud"] = filename_cloud .str ();
131 node[" normals "] = filename_normals .str ();
132 node[" keypoints "] = filename_keypoints .str ();
133 node[" ldescriptor "] = filename_local_descriptor .str ();
134 node[" gdescriptor "] = filename_global_descriptor .str ();
135 for(int j = 0; j < 16; j++) {
136 node["pose"]. push_back ( ray_trace .pose(j / 4, j % 4));
137 }
138 node[" enthropy "] = ray_trace . enthropy ;
139
140 std:: string stream cloud_node ;
141 cloud_node << setfill (’0’) << setw (4) << (i+1);
142 clouds [ cloud_node .str ()] = node;
143 }
144
145 // Saving the YAML node
146 YAML :: Emitter out;
147 out << clouds ;
148 boost :: filesystem :: ofstream f( save_path + this -> mesh_name + ".yaml");
149 f << out.c_str ();
150 ROS_INFO (" \033[33 mSuccessfully saved %d ray traces ", (int)this ->

ray_trace_clouds .size ());
151 }
152
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153 bool ModelLoader :: load PointCloud s() {
154 // Set the save path
155 std:: string save_path = this ->path + this -> mesh_name + "/";
156 YAML :: Node clouds ;
157
158 // Try to load the files
159 try {
160 ROS_INFO (" Loading ray trace clouds ...");
161 ROS_INFO ("\ tUsing %s", save_path .c_str ());
162 clouds = YAML :: LoadFile ( save_path + this -> mesh_name + ".yaml");
163 }
164 catch ( const std:: exception & e) {
165 ROS_INFO (" \033[31 mFile not found .\033[0 m");
166 return false;
167 }
168
169 int i = 1;
170 std:: string stream cloud_node ;
171 cloud_node << setfill (’0’) << setw (4) << i;
172 this -> ray_trace_clouds .clear ();
173
174 // Populate ray_trace_cloud from the YAML node
175 while( clouds [ cloud_node .str ()]){
176 YAML :: Node cloud = clouds [ cloud_node .str ()];
177
178 RayTraceCloud ray_trace ;
179 ray_trace .cloud = pcl:: PointCloud <pcl:: PointXYZ >:: Ptr(new pcl::

PointCloud <pcl:: PointXYZ >);
180 ray_trace . normals = pcl:: PointCloud <pcl:: Normal >:: Ptr(new pcl::

PointCloud <pcl:: Normal >);
181 ray_trace . keypoints = pcl:: PointCloud <pcl:: PointXYZ >:: Ptr(new pcl::

PointCloud <pcl:: PointXYZ >);
182 ray_trace . local_descriptors = pcl:: PointCloud <pcl:: FPFHSignature33 >::

Ptr(new pcl:: PointCloud <pcl:: FPFHSignature33 >);
183 ray_trace . global_descriptors = pcl:: PointCloud <pcl:: VFHSignature308 >::

Ptr(new pcl:: PointCloud <pcl:: VFHSignature308 >);
184
185 pcl:: io:: loadPCDFile ( save_path + cloud["cloud"].as <std:: string >(), *

ray_trace .cloud);
186 pcl:: io:: loadPCDFile ( save_path + cloud[" normals "].as <std:: string >(), *

ray_trace . normals );
187 pcl:: io:: loadPCDFile ( save_path + cloud[" keypoints "].as <std:: string >(),

* ray_trace . keypoints );
188 pcl:: io:: loadPCDFile ( save_path + cloud[" ldescriptor "].as <std:: string >()

, * ray_trace . local_descriptors );
189 pcl:: io:: loadPCDFile ( save_path + cloud[" gdescriptor "].as <std:: string >()

, * ray_trace . global_descriptors );
190
191 for(int x = 0; x < 4; x++) {
192 for(int y = 0; y < 4; y++) {
193 ray_trace .pose(x, y) = cloud["pose"][( int)(x*4 + y)].as <float

>();
194 }
195 }
196 ray_trace . enthropy = cloud[" enthropy "].as <float >();
197 this -> ray_trace_clouds . push_back ( ray_trace );
198 cloud_node .clear ();

25



APPENDIX A. SOFTWARE TOOLS CREATED

199 cloud_node .str( std:: string ());
200 cloud_node << setfill (’0’) << setw (4) << ++i;
201 }
202 ROS_INFO (" \033[33 mSuccessfully loaded %d ray traces \033[0 m", i -1);
203 return true;
204 }
205 }
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modelloader.hpp

Listing A.4: Source file - agilus_master_project/modelloader.hpp

1 //
2 // Original code by Adam Leon Kleppe on 01.02.16 , modifiead by Kristoffer

Larsen .
3 // Latest change date 01.05.2016
4 // modelloader .cpp is a tool used to create training set used for 3D object

detection .
5 //
6 // Modified and used as part of the software solution for a Master ’s Thesis in

Production Technology at NTNU Trondheim .
7 //
8
9 # ifndef qt_filter_tester_MODELLOADER_H

10 # define qt_filter_tester_MODELLOADER_H
11
12 # include <QObject >
13
14 # include <ros/ros.h>
15 # include <ros/ package .h>
16
17 # include <pcl/ common / transforms .h>
18 # include <pcl_conversions / pcl_conversions .h>
19 # include <pcl/ point_cloud .h>
20 # include <pcl/ point_types .h>
21 # include <pcl/ surface / vtk_smoothing / vtk_utils .h>
22 # include <pcl/ visualization / pcl_visualizer .h>
23
24 # include <boost/ filesystem .hpp >
25 # include <boost/ filesystem / fstream .hpp >
26 # include <Eigen/Core >
27 # include <yaml -cpp/yaml.h>
28
29 # include <vector >
30 # include <string .h>
31 # include <sstream >
32 # include <iomanip >
33
34 # include " pcl_filters .hpp"
35
36 namespace agilus_master_project {
37
38 class ModelLoader : public QObject
39 {
40 Q_OBJECT
41
42 public :
43 /*!
44 * \brief Constructor for the ModelLoader class
45 * \param mesh Polygon Mesh that will be used to create a trining set.
46 * \param mesh_name The name of the training set.
47 */
48 ModelLoader ( pcl:: PolygonMesh mesh , std:: string mesh_name );
49

27



APPENDIX A. SOFTWARE TOOLS CREATED

50 /*!
51 * \ brief Constructor for the ModelLoader class
52 * \ param mesh_name The name of the training set to load.
53 */
54 ModelLoader ( std:: string mesh_name );
55
56 ~ ModelLoader ();
57
58 /*!
59 * \ brief Returns the models of the selected training set.
60 * \ param load Set true if the models are not loaded .
61 * \ return The models of the selected training set.
62 */
63 std:: vector <RayTraceCloud > getModels (bool load = false);
64
65 /*!
66 * \ brief Creates a complete training set for the input polygon mesh.
67 */
68 void populateLoader ();
69
70 /*!
71 * \ brief Sets the polygon mesh used for training set creation .
72 * \ param mesh The polygon mesh that is to be used.
73 */
74 void setMesh (pcl:: PolygonMesh mesh){
75 ModelLoader :: mesh = mesh;
76 }
77
78 /*!
79 * \ brief Sets the name of the training set.
80 * \ param mesh_name The name of the training set.
81 */
82 void setMeshName ( std:: string mesh_name ){
83 ModelLoader :: mesh_name = mesh_name ;
84 }
85
86 /*!
87 * \ brief Sets the wanted tesseltaion level for the viewpoint rendering .
88 * \ param tesselation_level Tesselation level , 1=42 , 2=162 ...
89 */
90 void setTesselation_level (int tesselation_level ){
91 ModelLoader :: tesselation_level = tesselation_level ;
92 }
93
94 /*!
95 * \ brief Sets the viewpoint rendering resolution .
96 * \ param cloud_resolution The wanted resolution .
97 */
98 void setCloudResolution (int cloud_resolution ){
99 ModelLoader :: cloud_resolution = cloud_resolution ;

100 }
101
102 /*!
103 * \ brief Sets the output path of the training set creation process .
104 * \ param path The wanted output path.
105 */
106 void setPath (const std:: string &path){

28



APPENDIX A. SOFTWARE TOOLS CREATED

107 ModelLoader :: path = path;
108 }
109
110 Q_SIGNALS :
111 // Signals used to emit events from one class to another . All signals are

connected in main_window .cpp
112
113 public Q_SLOTS :
114 // Slots used to recieve events from one another class. All slots and

signals are connected in main_window .cpp
115
116 private :
117 /*!
118 * \brief This function will generate the traces from a mesh and populate

the ray_trace_clouds variable .
119 */
120 void generate PointCloud s();
121
122 /*!
123 * \brief This function will load and populate the ray_trace_clouds

variable from the given path.
124 * \ return False if the loading failed .
125 */
126 bool load PointCloud s();
127
128 /*!
129 * \brief This function will save all the infromation from the

ray_trace_clouds variable to the given path.
130 * \ return False if the saving action failed .
131 */
132 bool save PointCloud s();
133
134 std:: string path; //!< The path for saving and loading files.
135 std:: string mesh_name ; //!< The name of the mesh. Used for saving and

loading file names.
136 std:: vector <RayTraceCloud > ray_trace_clouds ; //!< List of ray trace clouds .
137 pcl:: PolygonMesh mesh; //!< The mesh which is used for generation .
138 int cloud_resolution ; //!< The resolution camera when generating clouds .
139 int tesselation_level ; //!< The tesselation level of the sphere for the

camera .
140 PclFilters * filters ; //!< Object for calculating features of the raytraced

models .
141 };
142
143 }
144
145 #endif // MODELLOADER_HPP
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Appendix B: The image_processor Appli-
cation

This appendix contains the source code for the image_processor ROS node. This ROS node
is used to publish 2D object detection data required by the agilus_master_project.

object_2D_matcher.cpp - This class runs the main object detection. It initializes the
object detection and utilizes the methods implemented in openCV_matching.cpp in order
to process each image frame obtained from the connected camera. Furthermore, the
object detection data is published via ROS and the detection algorithm is controllable
via ROS services.

object_2D_matcher.hpp - This is the Header file for the object_2D_matcher.cpp class.
This file defines the content of the .cpp file.

openCV_matching.cpp - This class handles the image processing using OpenCV. It imple-
ments the needed methods in order to perform keypoint detection, descriptor extraction
and matching using different algorithms, e.g. SIFT and SURF. It also holds the meth-
ods used to visualize the results and compute image coordinates and orientations of the
detected objects.

openCV_matching.hpp - This is the Header file for the openCV_matching.cpp class. This
file defines the content of the .cpp file.

object_2D_matcher.cpp

Listing B.1: Source file - code/image_processor/object_2D_matcher.cpp

1 //
2 // Original author : Asgeir Bjoerkedal . Created : 10.03.16. Last edit: 30.05.16.
3 //
4 // Main application for 2D object detection . Communicates via ROS and utilizes

the methods defined in the header file
5 // openCV_matching .hpp.
6 //
7 // Created as part of the software solution for a Master ’s thesis in Production

Technology at NTNU Trondheim .
8 //
9 # include "../ include / image_processor / openCV_matching .hpp"

10 # include "../ include / image_processor / object_2D_matcher .hpp"
11
12 // Local variables
13 robotcam :: OpenCV Mat ching openCV Mat ching;
14 robotcam :: Current Mat ch match1 ;
15
16 // Video and reference images
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17 cv:: VideoCapture capture ;
18 cv:: Mat object1 ;
19
20 // Keypoints and descriptors
21 cv:: Ptr <cv:: Feature2D > detector , extractor ;
22 std:: vector <cv:: KeyPoint > keypoints_object1 , keypoints_scene ;
23 cv:: Mat descriptor_object1 , descriptor_scene ;
24
25 // Controls initialized
26 bool running = true;
27 bool binary = false;
28 bool bruteforce = true;
29 bool color = true;
30 bool undistort = true;
31 double lambda = 0.138;
32
33 int main(int argc , char ** argv) {
34 ros:: init(argc , argv , " object_2D_detection ");
35 ros:: NodeHandle n;
36 // cv_bridge for image transport .
37 image_transport :: ImageTransport it(n);
38 // ROS Topics for image and object data streams .
39 image_transport :: Publisher processed_pub = it. advertise ("/

object_2D_detected /image", 1);
40 ros:: Publisher pub1 = n.advertise < geometry_msgs :: Pose2D >("/

object_2D_detected / object1 ", 1);
41 // ROS Services for detection controls .
42 ros:: ServiceServer service1 = n. advertiseService ("/ object_2D_detection /

setProcessRunning ", setProcessRunningCallBack );
43 ros:: ServiceServer service2 = n. advertiseService ("/ object_2D_detection /

getProcessRunning ", getProcessRunningCallBack );
44 ros:: ServiceServer service3 = n. advertiseService ("/ object_2D_detection /

setBinary Mat ching", setBinary Mat chingCallBack );
45 ros:: ServiceServer service4 = n. advertiseService ("/ object_2D_detection /

getBinary Mat ching", getBinary Mat chingCallBack );
46 ros:: ServiceServer service5 = n. advertiseService ("/ object_2D_detection /

setKeypointDetectorType ", setKeypointDetectorTypeCallBack );
47 ros:: ServiceServer service6 = n. advertiseService ("/ object_2D_detection /

getKeypointDetectorType ", getKeypointDetectorTypeCallBack );
48 ros:: ServiceServer service7 = n. advertiseService ("/ object_2D_detection /

setDescriptorType ", setDescriptorTypeCallBack );
49 ros:: ServiceServer service8 = n. advertiseService ("/ object_2D_detection /

getDescriptorType ", getDescriptorTypeCallBack );
50 ros:: ServiceServer service9 = n. advertiseService ("/ object_2D_detection /

setVideoColor ", setVideoColorCallBack );
51 ros:: ServiceServer service10 = n. advertiseService ("/ object_2D_detection /

getVideoColor ", getVideoColorCallBack );
52 ros:: ServiceServer service11 = n. advertiseService ("/ object_2D_detection /

setBruteforce Mat ching", setBruteforce Mat chingCallBack );
53 ros:: ServiceServer service12 = n. advertiseService ("/ object_2D_detection /

getBruteforce Mat ching", getBruteforce Mat chingCallBack );
54 ros:: ServiceServer service13 = n. advertiseService ("/ object_2D_detection /

setVideoUndistortion ", setVideoUndistortionCallBack );
55 ros:: ServiceServer service14 = n. advertiseService ("/ object_2D_detection /

getVideoUndistortion ", getVideoUndistortionCallBack );
56 ros:: ServiceServer service15 = n. advertiseService ("/ object_2D_detection /set

Mat chingImage1 ", set Mat chingImage1CallBack );

32



APPENDIX B. THE IMAGE_PROCESSOR APPLICATION

57 ros:: ServiceServer service16 = n. advertiseService ("/ object_2D_detection /
setImageDepth ", setImageDepthCallBack );

58 ros:: Rate loop_rate (FREQ);
59 // Check camera
60 if (! capture .open (0)) {
61 ROS_ERROR (" --(!) Could not reach camera ");
62 return 0;
63 }
64 initialize Mat cher( VIDEO_WIDTH , VIDEO_HEIGHT );
65 // Check reference images
66 if (! object1 .data) {
67 ROS_ERROR (" --(!) Error reading image");
68 return 0;
69 }
70 ROS_INFO (" Loaded reference image :\n\t%s", temp_path1 .c_str ());
71 // Prepare the query image
72 detectAndComputeReference (object1 , keypoints_object1 , descriptor_object1 );
73 writeReferenceImage (object1 , keypoints_object1 , ref_path1 );
74 // Load camera matrix and distortion coefficients .
75 cv:: Mat camera Mat rix = openCV Mat ching. getCamera Mat rix( CAMERA_PARAMS );
76 cv:: Mat distCoeffs = openCV Mat ching. getDistortionCoeff ( CAMERA_PARAMS );
77 // ROS image message to be published .
78 sensor_msgs :: Image Ptr image_msg ;
79 // Loop object detection
80 while ( ros:: ok()) {
81 cv:: Mat video = openCV Mat ching. captureFrame (color , undistort , capture ,

camera Mat rix , distCoeffs );
82 if (video.empty ()) break ;
83 if ( running ) {
84 // Detect keypoints and compute time used
85 double d = ( double )cv:: getTickCount ();
86 detector -> detect (video , keypoints_scene );
87 d = (( double )cv:: getTickCount () - d)/cv:: getTickFrequency ();
88 // Extract descriptors and compute time used
89 double e = ( double )cv:: getTickCount ();
90 extractor -> compute (video , keypoints_scene , descriptor_scene );
91 e = (( double )cv:: getTickCount () - e)/cv:: getTickFrequency ();
92 // Mat ch descriptors of query and training scene and compute time

used
93 std:: vector <cv::DMat ch > good_matches ;
94 double m = 0.0;
95 if (! binary ) {
96 if ( bruteforce ) {
97 m = ( double )cv:: getTickCount ();
98 good_matches = openCV Mat ching. bruteForce ( descriptor_object1

, descriptor_scene , cv:: NORM_L1 );
99 m = (( double )cv:: getTickCount () - m)/cv:: getTickFrequency ()

;
100 } else {
101 m = ( double )cv:: getTickCount ();
102 good_matches = openCV Mat ching.knn Mat chDescriptors (

descriptor_object1 , descriptor_scene , 0.9f);
103 m = (( double )cv:: getTickCount () - m)/cv:: getTickFrequency ()

;
104 }
105 } else {
106 if ( bruteforce ) {
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107 m = ( double )cv:: getTickCount ();
108 good_matches = openCV Mat ching. bruteForce ( descriptor_object1

, descriptor_scene , cv:: NORM_HAMMING );
109 m = (( double )cv:: getTickCount () - m)/cv:: getTickFrequency ()

;
110 } else {
111 m = ( double )cv:: getTickCount ();
112 good_matches = openCV Mat ching.knn Mat chDescriptorsLSH (

descriptor_object1 , descriptor_scene , 0.9f);
113 m = (( double )cv:: getTickCount () - m)/cv:: getTickFrequency ()

;
114 }
115 }
116 // std:: cout << d << " " << e << " " << m << " " << d+e+m << std::

endl; // Print measured processing time.
117 // Publish image data at ROS topic.
118 if ((! keypoints_object1 .size () == 0 && ! keypoints_scene .size () ==

0) && good_matches .size () >= 0) {
119 match1 = openCV Mat ching. visualized Mat ch(video , object1 ,

keypoints_object1 , keypoints_scene , good_matches , true ,
homographyMethod );

120 image_msg = cv_bridge :: CvImage ( std_msgs :: Header (), sensor_msgs
:: image_encodings ::BGR8 , match1 . outFrame ). toImageMsg ();

121 processed_pub . publish ( image_msg );
122 } else {
123 image_msg = cv_bridge :: CvImage ( std_msgs :: Header (), sensor_msgs

:: image_encodings ::BGR8 , video). toImageMsg ();
124 processed_pub . publish ( image_msg );
125 }
126 } else {
127 image_msg = cv_bridge :: CvImage ( std_msgs :: Header (), sensor_msgs ::

image_encodings ::BGR8 , video). toImageMsg ();
128 processed_pub . publish ( image_msg );
129 }
130 // Publish object pose at ROS topic if the match is good.
131 if ( match1 . sceneCorners .size () == 4 && openCV Mat ching.

checkObjectInnerAngles ( match1 . sceneCorners , 80, 100)) {
132 double x = openCV Mat ching. getXpos ( match1 . sceneCorners );
133 double y = openCV Mat ching. getYpos ( match1 . sceneCorners );
134
135 object_pose_msg .theta = openCV Mat ching. getObjectAngle (video , match1

. sceneCorners );
136
137 Eigen:: Vector3d temp = openCV Mat ching. getNormImageCoords (x,y,lambda

, camera Mat rix);
138
139 object_pose_msg .x = temp (0);
140 object_pose_msg .y = temp (1);
141 pub1. publish ( object_pose_msg );
142 }
143 ros:: spinOnce ();
144 loop_rate .sleep ();
145 }
146 ROS_INFO (" Object detection shutting down");
147 return 0;
148 }
149
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150 void initialize Mat cher(const int video_width , const int video_height ) {
151 object1 = readImage ( temp_path1 );
152 capture .set( CV_CAP_PROP_FRAME_WIDTH , video_width );
153 capture .set( CV_CAP_PROP_FRAME_HEIGHT , video_height );
154 ROS_INFO (" Camera resolution : width =%f, height =%f", capture .get(

CV_CAP_PROP_FRAME_WIDTH ), capture .get( CV_CAP_PROP_FRAME_HEIGHT ));
155 detector = openCV Mat ching. setKeyPointsDetector ( DETECTOR_TYPE );
156 extractor = openCV Mat ching. setDescriptorsExtractor ( EXTRACTOR_TYPE , binary );
157 ROS_INFO (" Bruteforce matching : %d", bruteforce );
158 }
159
160 void detectAndComputeReference (cv:: Mat &object , std:: vector <cv:: KeyPoint > &

keypoints_object , cv:: Mat & descriptor_object ) {
161 detector -> detect (object , keypoints_object );
162 extractor -> compute (object , keypoints_object , descriptor_object );
163 }
164
165 void writeReferenceImage (cv:: Mat object , std:: vector <cv:: KeyPoint >

keypoints_object , std:: string ref_path ) {
166 cv:: Mat ref_keypoints ;
167 cv:: drawKeypoints (object , keypoints_object , ref_keypoints , CV_RGB (0, 255,

255) , cv:: Draw Mat chesFlags :: DRAW_RICH_KEYPOINTS );
168 cv:: imwrite (ref_path , ref_keypoints );
169 ROS_INFO (" Reference keypoints written to: %s", ref_path .c_str ());
170 }
171
172 cv:: Mat readImage ( std:: string path) {
173 cv:: Mat object ;
174 if (color) {
175 object = cv:: imread (path , CV_LOAD_IMAGE_COLOR );
176 } else {
177 object = cv:: imread (path , CV_LOAD_IMAGE_GRAYSCALE );
178 }
179 return object ;
180 }
181
182 bool setProcessRunningCallBack ( image_processor :: setProcessRunning :: Request &req

, image_processor :: setProcessRunning :: Response &res) {
183 running = req. running ;
184 return true;
185 }
186
187 bool getProcessRunningCallBack ( image_processor :: getProcessRunning :: Request &req

, image_processor :: getProcessRunning :: Response &res) {
188 res. running = running ;
189 return true;
190 }
191
192 bool setBinary Mat chingCallBack ( image_processor :: setBinary Mat ching :: Request &req

, image_processor :: setBinary Mat ching :: Response &res) {
193 binary = req. binary ;
194 return true;
195 }
196
197 bool getBinary Mat chingCallBack ( image_processor :: getBinary Mat ching :: Request &req

, image_processor :: getBinary Mat ching :: Response &res) {
198 res. binary = binary ;
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199 return true;
200 }
201
202 bool setBruteforce Mat chingCallBack ( image_processor :: setBruteforce Mat ching ::

Request &req , image_processor :: setBruteforce Mat ching :: Response &res) {
203 bruteforce = req. bruteforce ;
204 return true;
205 }
206
207 bool getBruteforce Mat chingCallBack ( image_processor :: getBruteforce Mat ching ::

Request &req , image_processor :: getBruteforce Mat ching :: Response &res) {
208 res. bruteforce = bruteforce ;
209 return true;
210 }
211
212 bool setKeypointDetectorTypeCallBack ( image_processor :: setKeypointDetectorType ::

Request &req , image_processor :: setKeypointDetectorType :: Response &res) {
213 DETECTOR_TYPE = req.type;
214 detector = openCV Mat ching. setKeyPointsDetector ( DETECTOR_TYPE );
215 detector -> detect (object1 , keypoints_object1 );
216 writeReferenceImage (object1 , keypoints_object1 , ref_path1 );
217 return true;
218 }
219
220 bool getKeypointDetectorTypeCallBack ( image_processor :: getKeypointDetectorType ::

Request &req , image_processor :: getKeypointDetectorType :: Response &res) {
221 res.type = DETECTOR_TYPE ;
222 return true;
223 }
224
225 bool setDescriptorTypeCallBack ( image_processor :: setDescriptorType :: Request &req

, image_processor :: setDescriptorType :: Response &res) {
226 EXTRACTOR_TYPE = req.type;
227 extractor = openCV Mat ching. setDescriptorsExtractor ( EXTRACTOR_TYPE , binary );
228 extractor -> compute (object1 , keypoints_object1 , descriptor_object1 );
229 return true;
230 }
231
232 bool getDescriptorTypeCallBack ( image_processor :: getDescriptorType :: Request &req

, image_processor :: getDescriptorType :: Response &res) {
233 res.type = EXTRACTOR_TYPE ;
234 return true;
235 }
236
237 bool setVideoColorCallBack ( image_processor :: setVideoColor :: Request &req ,

image_processor :: setVideoColor :: Response &res) {
238 color = req.color;
239 object1 = readImage ( temp_path1 );
240 keypoints_object1 .clear ();
241 descriptor_object1 . release ();
242 detectAndComputeReference (object1 , keypoints_object1 , descriptor_object1 );
243 writeReferenceImage (object1 , keypoints_object1 , ref_path1 );
244 return true;
245 }
246
247 bool getVideoColorCallBack ( image_processor :: getVideoColor :: Request &req ,

image_processor :: getVideoColor :: Response &res) {
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248 res.color = color;
249 return true;
250 }
251
252 bool setVideoUndistortionCallBack ( image_processor :: setVideoUndistortion ::

Request &req , image_processor :: setVideoUndistortion :: Response &res) {
253 undistort = req. undistort ;
254 return true;
255 }
256
257 bool getVideoUndistortionCallBack ( image_processor :: getVideoUndistortion ::

Request &req , image_processor :: getVideoUndistortion :: Response &res) {
258 res. undistort = undistort ;
259 return true;
260 }
261
262 bool set Mat chingImage1CallBack ( image_processor :: set Mat chingImage1 :: Request &req

, image_processor :: set Mat chingImage1 :: Response &res) {
263 temp_path1 = req. imagePath ;
264 object1 = readImage ( temp_path1 );
265 keypoints_object1 .clear ();
266 descriptor_object1 . release ();
267 detectAndComputeReference (object1 , keypoints_object1 , descriptor_object1 );
268 writeReferenceImage (object1 , keypoints_object1 , ref_path1 );
269 return true;
270 }
271
272 bool setImageDepthCallBack ( image_processor :: setImageDepth :: Request &req ,

image_processor :: setImageDepth :: Response &res) {
273 lambda = req. lambda ;
274 return true;
275 }
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object_2D_matcher.hpp

Listing B.2: Source file - code/image_processor/object_2D_matcher.hpp

1 //
2 // Original author : Asgeir Bjoerkedal . Created : 10.03.16. Last edit: 30.05.16.
3 //
4 // Main application for 2D object detection . Communicates via ROS and utilizes

the methods defined in the header file
5 // openCV_matching .hpp.
6 //
7 // Created as part of the software solution for a Master ’s thesis in Production

Technology at NTNU Trondheim .
8 //
9 # ifndef IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP

10 # define IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP
11
12 # include <ros/ package .h>
13 # include <geometry_msgs / Pose2D .h>
14 # include " image_processor / setProcessRunning .h"
15 # include " image_processor / getProcessRunning .h"
16 # include " image_processor / setBinary Mat ching.h"
17 # include " image_processor / getBinary Mat ching.h"
18 # include " image_processor / setKeypointDetectorType .h"
19 # include " image_processor / getKeypointDetectorType .h"
20 # include " image_processor / setDescriptorType .h"
21 # include " image_processor / getDescriptorType .h"
22 # include " image_processor / setVideoColor .h"
23 # include " image_processor / getVideoColor .h"
24 # include " image_processor / setBruteforce Mat ching.h"
25 # include " image_processor / getBruteforce Mat ching.h"
26 # include " image_processor / setVideoUndistortion .h"
27 # include " image_processor / getVideoUndistortion .h"
28 # include " image_processor /set Mat chingImage1 .h"
29 # include " image_processor / setImageDepth .h"
30 # include <image_transport / image_transport .h>
31 # include <cv_bridge / cv_bridge .h>
32
33 // Keypoint and descriptor type
34 std:: string DETECTOR_TYPE = "SIFT";
35 std:: string EXTRACTOR_TYPE = "SIFT";
36 // Resolution
37 const int VIDEO_WIDTH = 1280;
38 const int VIDEO_HEIGHT = 720;
39 // Path to camera param eters (K- matrix )
40 const std:: string CAMERA_PARAMS = ros:: package :: getPath (" image_processor ") + "/

resources / calibration_reserve_camera .yml";
41 // Path to reference image storage
42 const std:: string ref_path1 = ros:: package :: getPath (" image_processor ") + "/

resources / output / ref_keypoints1 .jpg";
43 // Path to initial matching image
44 std:: string temp_path1 = ros:: package :: getPath (" image_processor ") + "/ resources

/Lenna.png";
45 // Holds the object pose
46 geometry_msgs :: Pose2D object_pose_msg ;
47 // Homography method
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48 int homographyMethod = CV_RANSAC ; // CV_LMEDS
49 // Loop frequency
50 double FREQ = 60;
51
52 /*!
53 * \ brief Initializes the object matcher image , resolution , detector and

extractor .
54 * \ param video_width The horizontal video resolution (pixel).
55 * \ param video_height The vertical video resolution (pixel).
56 */
57 void initialize Mat cher(const int video_width , const int video_height );
58
59 /*!
60 * \ brief Detect and compute keypoints and descriptors for a given image matrix

.
61 * \ param object The query image.
62 * \ param keypoints_object Reference to the keypoints storage object .
63 * \ param descriptor_object Reference to the descriptor storage object .
64 */
65 void detectAndComputeReference (cv:: Mat &object , std:: vector <cv:: KeyPoint > &

keypoints_object , cv:: Mat & descriptor_object );
66
67 /*!
68 * \ brief Draws keypoints on a chosen image object and stores it to a desired

file path.
69 * \ param object The query image.
70 * \ param keypoints_object The keypoints .
71 * \ param ref_path The storage file path.
72 */
73 void writeReferenceImage (cv:: Mat object , std:: vector <cv:: KeyPoint >

keypoints_object , std:: string ref_path );
74
75 /*!
76 * \ brief Read an image from a desired file path.
77 * \ param path The file path.
78 * \ return The image matrix .
79 */
80 cv:: Mat readImage ( std:: string path);
81
82 /*!
83 * \ brief Callback method for toggling the object detection through ROS service

.
84 * \ param req The service request . True for image processed video stream . False

for raw video stream .
85 * \ param res The service response . Not in use.
86 */
87 bool setProcessRunningCallBack ( image_processor :: setProcessRunning :: Request &req

, image_processor :: setProcessRunning :: Response &res);
88
89 /*!
90 * \ brief Callback method for object detection running status through ROS

service .
91 * \ param req The service request .
92 * \ param res The service response . Returns the state of the image processing .

True if running . False otherwise .
93 */
94 bool getProcessRunningCallBack ( image_processor :: getProcessRunning :: Request &req
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, image_processor :: getProcessRunning :: Response &res);
95
96 /*!
97 * \brief Callback method for toggling of binary /non - binary matching through

ROS service .
98 * \param req The service request . True for matching of binary descriptors .

False for real - valued .
99 * \param res The service response . Not in use.

100 */
101 bool setBinary Mat chingCallBack ( image_processor :: setBinary Mat ching :: Request &req

, image_processor :: setBinary Mat ching :: Response &res);
102
103 /*!
104 * \brief Callback method for binary /non - binary matching status through ROS

service .
105 * \param req The service request .
106 * \param res The service response . Returns the state of the matching control

boolean .
107 */
108 bool getBinary Mat chingCallBack ( image_processor :: getBinary Mat ching :: Request &req

, image_processor :: getBinary Mat ching :: Response &res);
109
110 /*!
111 * \brief Callback method for toggling between bruteforce and FLANN matching

through ROS service .
112 * \param req The service request . True for bruteforce matching . False for

FLANN.
113 * \param res The service response . Not in use.
114 */
115 bool setBruteforce Mat chingCallBack ( image_processor :: setBruteforce Mat ching ::

Request &req , image_processor :: setBruteforce Mat ching :: Response &res);
116
117 /*!
118 * \brief Callback method for bruteforce /FLANN matching status through ROS

service .
119 * \param req The service request .
120 * \param res The service response . Return the status of matching approach in

use.
121 */
122 bool getBruteforce Mat chingCallBack ( image_processor :: getBruteforce Mat ching ::

Request &req , image_processor :: getBruteforce Mat ching :: Response &res);
123
124 /*!
125 * \brief Callback method for setting keypoint detector through ROS service .
126 * Sets the detector based on a string input. Detects keypoints in the query

image and outputs an image file with
127 * the new keypoints .
128 * \param req The service request . String as an acronym for wanted detection , e

.g. SIFT , SURF , BRISK , ORB.
129 * \param res The service response . Not in use.
130 */
131 bool setKeypointDetectorTypeCallBack ( image_processor :: setKeypointDetectorType ::

Request &req , image_processor :: setKeypointDetectorType :: Response &res);
132
133 /*!
134 * \brief Callback method for getting the keypoint detector type through ROS

service .
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135 * \ param req The service request .
136 * \ param res The service response . Return the keypoint detector in use.
137 */
138 bool getKeypointDetectorTypeCallBack ( image_processor :: getKeypointDetectorType ::

Request &req , image_processor :: getKeypointDetectorType :: Response &res);
139
140 /*!
141 * \ brief Callback method for setting descriptor extractor through ROS service .
142 * \ param req The service request . String as an acronym for wanted extractor , e

.g. SIFT , SURF , BRISK , ORB.
143 * \ param res The service response . Not in use.
144 */
145 bool setDescriptorTypeCallBack ( image_processor :: setDescriptorType :: Request &req

, image_processor :: setDescriptorType :: Response &res);
146
147 /*!
148 * \ brief Callback method for getting descriptor extractor type through ROS

service .
149 * Sets the extractor based on a string input. New descriptors are computed for

the matching image.
150 * Further matching with the new descriptor can be performed instantanously .
151 * \ param req The service request .
152 * \ param res The service response . Return the descriptor extractor in use.
153 */
154 bool getDescriptorTypeCallBack ( image_processor :: getDescriptorType :: Request &req

, image_processor :: getDescriptorType :: Response &res);
155
156 /*!
157 * \ brief Callback method for setting color/ grayscale video capture through ROS

service .
158 * \ param req The service request . True for color. False for grayscale .
159 * \ param res The service response . Not in use.
160 */
161 bool setVideoColorCallBack ( image_processor :: setVideoColor :: Request &req ,

image_processor :: setVideoColor :: Response &res);
162
163 /*!
164 * \ brief Callback method for getting current video color mode through ROS

service .
165 * \ param req The service request .
166 * \ param res The service response . Returns the color status of the video

stream . True for color. False for grayscale .
167 */
168 bool getVideoColorCallBack ( image_processor :: getVideoColor :: Request &req ,

image_processor :: getVideoColor :: Response &res);
169
170 /*!
171 * \ brief Callback method for setting video undistortion of video stream

through ROS service .
172 * Undistortion will use distortion param eters from .XML /. YAML file output from

camera calibration .
173 * \ param req The service request . True if correction for lens distortion .

False for no correction .
174 * \ param res The service response . Not in use.
175 */
176 bool setVideoUndistortionCallBack ( image_processor :: setVideoUndistortion ::

Request &req , image_processor :: setVideoUndistortion :: Response &res);
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177
178 /*!
179 * \brief Callback method for getting undistortion status through ROS service .
180 * \param req The service request .
181 * \param res The service response . Get the status of lens correction .
182 */
183 bool getVideoUndistortionCallBack ( image_processor :: getVideoUndistortion ::

Request &req , image_processor :: getVideoUndistortion :: Response &res);
184
185 /*!
186 * \brief Callback method for setting the image to match with in the video

scene through ROS service .
187 * Reads the new image , detects keypoints and computes descriptors , and outputs

an image with keypoints .
188 * \param req The service request . Path as string to the new query image.
189 * \param res The service response . Not in use.
190 */
191 bool set Mat chingImage1CallBack ( image_processor :: set Mat chingImage1 :: Request &req

, image_processor :: set Mat chingImage1 :: Response &res);
192
193 /*!
194 * \brief Callback method for setting the image depth ( lambda ), used for

scaling the normalized image coordinates
195 * through ROS service .
196 * \param req The service request . Double value of distance from camera lens to

object along the optical axis.
197 * \param res The service response . Not in use.
198 */
199 bool setImageDepthCallBack ( image_processor :: setImageDepth :: Request &req ,

image_processor :: setImageDepth :: Response &res);
200
201
202 #endif // IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP
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openCV_matching.cpp

Listing B.3: Source file - code/image_processor/openCV_matching.cpp

1 //
2 // Original author : Asgeir Bjoerkedal . Created : 10.03.16. Last edit: 30.05.16.
3 //
4 // The class implements methods from OpenCV and is designed for use in an

object detection application .
5 // It encompasses capturing of video frames , processing video frames by

numerous keypoint
6 // detectors and descriptor extractors , matching algorithms , visualization and

computation
7 // of object image coordinates and orientation .
8 //
9 // Created as part of the software solution for a Master ’s thesis in Production

Technology at NTNU Trondheim .
10 //
11 # include "../ include / image_processor / openCV_matching .hpp"
12
13 namespace robotcam
14 {
15 cv:: Mat OpenCV Mat ching :: getCamera Mat rix(const std:: string path) {
16 cv:: Mat temp;
17 cv:: FileStorage fs(path , cv:: FileStorage :: READ);
18 fs[" camera_matrix "] >> temp;
19 fs. release ();
20 return temp;
21 }
22
23 cv:: Mat OpenCV Mat ching :: getDistortionCoeff ( const std:: string path) {
24 cv:: Mat temp;
25 cv:: FileStorage fs(path , cv:: FileStorage :: READ);
26 fs[" distortion_coefficients "] >> temp;
27 fs. release ();
28 return temp;
29 }
30
31 std:: string OpenCV Mat ching :: type2str (int type) {
32 std:: string r;
33 uchar depth = type & CV_MAT_DEPTH_MASK ;
34 uchar chans = 1 + (type >> CV_CN_SHIFT );
35 switch (depth) {
36 case CV_8U:
37 r = "8U";
38 break;
39 case CV_8S:
40 r = "8S";
41 break;
42 case CV_16U :
43 r = "16U";
44 break;
45 case CV_16S :
46 r = "16S";
47 break;
48 case CV_32S :
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49 r = "32S";
50 break;
51 case CV_32F :
52 r = "32F";
53 break;
54 case CV_64F :
55 r = "64F";
56 break;
57 default :
58 r = "User";
59 break;
60 }
61 r += "C";
62 r += (chans + ’0’);
63 // USAGE
64 // std:: string ty = type2str ( H.type () );
65 // printf (" Mat rix: %s %dx%d \n", ty.c_str (), H.cols , H.rows );
66 return r;
67 }
68
69 cv:: Mat OpenCV Mat ching :: captureFrame (bool color , bool useCalibration , cv::

VideoCapture capture , cv:: Mat camera Mat rix , cv:: Mat distCoeffs ) {
70 cv:: Mat inFrame , outFrame ;
71 capture >> inFrame ;
72 if (color == false && useCalibration == false ) {
73 cv:: cvtColor (inFrame , outFrame , CV_RGB2GRAY ); // grayscale
74 } else if (color == false && useCalibration == true) {
75 cv:: Mat temp;
76 cv:: undistort (inFrame , temp , camera Mat rix , distCoeffs );
77 cv:: cvtColor (temp , outFrame , CV_RGB2GRAY ); // grayscale
78 } else if (color == true && useCalibration == false ) {
79 outFrame = inFrame ;
80 } else {
81 cv:: undistort (inFrame , outFrame , camera Mat rix , distCoeffs );
82 }
83 return outFrame ;
84 }
85
86 cv:: Mat OpenCV Mat ching :: captureFrame (bool color , cv:: VideoCapture capture )

{
87 cv:: Mat inFrame , outFrame ;
88 capture >> inFrame ;
89 if(color) {
90 outFrame = inFrame ;
91 } else {
92 cv:: cvtColor (inFrame , outFrame , CV_RGB2GRAY );
93 }
94 return outFrame ;
95 }
96
97 std:: vector <cv::DMat ch > OpenCV Mat ching :: knn Mat chDescriptors (cv:: Mat

descriptors_object , cv:: Mat descriptors_scene , float nnratio ) {
98 cv:: FlannBased Mat cher matcher ;
99 std:: vector <std:: vector <cv::DMat ch > > matches ;

100 // Find the 2 best descriptor matches
101 matcher .knn Mat ch( descriptors_object , descriptors_scene , matches , 2);
102 // Ratio test the matches
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103 std:: vector <cv::DMat ch > good_matches ;
104 good_matches . reserve ( matches .size ());
105 for ( size_t i = 0; i < matches .size (); ++i) {
106 if ( matches [i]. size () < 2) continue ;
107 const cv::DMat ch &m1 = matches [i][0];
108 const cv::DMat ch &m2 = matches [i][1];
109 if (m1. distance <= nnratio * m2. distance ) good_matches . push_back (m1

);
110 }
111 return good_matches ;
112 }
113
114 std:: vector <cv::DMat ch > OpenCV Mat ching :: knn Mat chDescriptorsLSH (cv:: Mat

descriptors_object , cv:: Mat descriptors_scene , float nndrRatio ) {
115 cv:: FlannBased Mat cher matcher (new cv:: flann :: LshIndexParams (20, 10, 2))

;
116 std:: vector <std:: vector <cv::DMat ch > > matches ;
117 // Find the 2 best descriptor matches
118 matcher .knn Mat ch( descriptors_object , descriptors_scene , matches , 2);
119 // Ratio test the matches
120 std:: vector <cv::DMat ch > good_matches ;
121 good_matches . reserve ( matches .size ());
122 for ( size_t i = 0; i < matches .size (); ++i) {
123 if ( matches [i]. size () < 2) continue ;
124 const cv::DMat ch &m1 = matches [i][0];
125 const cv::DMat ch &m2 = matches [i][1];
126 if (m1. distance <= nndrRatio * m2. distance ) good_matches . push_back (

m1);
127 }
128 return good_matches ;
129 }
130
131 std:: vector <cv::DMat ch > OpenCV Mat ching :: matchDescriptors (cv:: Mat

descriptors_object , cv:: Mat descriptors_scene ) {
132 cv:: FlannBased Mat cher matcher ;
133 std:: vector <cv::DMat ch > matches ;
134 // Mat ch descriptors
135 matcher .match( descriptors_object , descriptors_scene , matches );
136 // Compute the max and min distance of the matches in current

videoFrame
137 double max_dist = 0;
138 double min_dist = 100;
139 for (int i = 0; i < descriptors_object .rows; i++) {
140 double dist = matches [i]. distance ;
141 if (dist < min_dist ) min_dist = dist;
142 if (dist > max_dist ) max_dist = dist;
143 }
144 // Filter out the good matches
145 std:: vector <cv::DMat ch > good_matches ;
146 double k = 2;
147 for (int i = 0; i < descriptors_object .rows; i++) {
148 if ( matches [i]. distance <= cv:: max(k * min_dist , 0.02)) {
149 good_matches . push_back ( matches [i]);
150 }
151 }
152 return good_matches ;
153 }
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154
155 std:: vector <cv::DMat ch > OpenCV Mat ching :: bruteForce (cv:: Mat

descriptors_object , cv:: Mat descriptors_scene , int normType ) {
156 cv:: BF Mat cher matcher ( normType );
157 std:: vector <std:: vector <cv::DMat ch > > matches ;
158 // Find the 2 best descriptor matches
159 matcher .knn Mat ch( descriptors_object , descriptors_scene , matches , 2);
160 // Ratio test the matches
161 std:: vector <cv::DMat ch > good_matches ;
162 for (int i = 0; i < matches .size (); ++i) {
163 const float ratio = 0.9; // 0.8 in Lowe ’s paper on SIFT. Can be

tuned
164 if ( matches [i][0]. distance < ratio * matches [i][1]. distance ) {
165 good_matches . push_back ( matches [i][0]);
166 }
167 }
168 return good_matches ;
169 }
170
171 cv:: Ptr <cv:: Feature2D > OpenCV Mat ching :: setKeyPointsDetector ( std:: string

typeKeyPoint ) {
172 cv:: Ptr <cv:: Feature2D > detector ;
173 if ( typeKeyPoint == "SURF") {
174 detector = cv:: xfeatures2d :: SURF :: create (1000 ,4 ,5 , false , false);
175 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
176 } else if ( typeKeyPoint == "SIFT") {
177 detector = cv:: xfeatures2d :: SIFT :: create (0 ,5 ,0.04 ,10 ,1.6);
178 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
179 } else if ( typeKeyPoint == "STAR") {
180 detector = cv:: xfeatures2d :: StarDetector :: create (45 ,30 ,10 ,8 ,5);
181 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
182 } else if ( typeKeyPoint == "BRISK") {
183 detector = cv:: BRISK :: create (30 ,3 ,1.0f);
184 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
185 } else if ( typeKeyPoint == "FAST") {
186 detector = cv:: FastFeatureDetector :: create (10, true ,cv::

FastFeatureDetector :: TYPE_9_16 );
187 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
188 } else if ( typeKeyPoint == "ORB") {
189 detector = cv:: ORB :: create (1000 ,1.2f,8,31,0,2, cv:: ORB :: FAST_SCORE

,31 ,20);
190 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
191 } else if ( typeKeyPoint == "AKAZE") {
192 detector = cv:: AKAZE :: create (cv:: AKAZE :: DESCRIPTOR_MLDB ,0 ,3 ,0.001f

,4,4, cv:: KAZE :: DIFF_PM_G2 );
193 ROS_INFO (" Keypoint detector : %s", typeKeyPoint .c_str ());
194 } else {
195 ROS_ERROR ("Could not find keypoint detector : %s\n\ tChoosing default

: SURF", typeKeyPoint .c_str ());
196 detector = cv:: xfeatures2d :: SURF :: create (1000) ;
197 }
198 return detector ;
199 }
200
201 cv:: Ptr <cv:: Feature2D > OpenCV Mat ching :: setDescriptorsExtractor ( std:: string

typeDescriptor , bool & binary ) {
202 cv:: Ptr <cv:: Feature2D > extractor ;
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203 if ( typeDescriptor == "SURF") {
204 binary = false ;
205 extractor = cv:: xfeatures2d :: SURF :: create (1000 ,4 ,5 , false , false);
206 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
207 ROS_INFO (" Binary matching : %d", binary );
208 } else if ( typeDescriptor == "SIFT") {
209 binary = false ;
210 extractor = cv:: xfeatures2d :: SIFT :: create (0 ,5 ,0.04 ,10 ,1.6);
211 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
212 ROS_INFO (" Binary matching : %d", binary );
213 } else if ( typeDescriptor == "BRISK") {
214 binary = true;
215 extractor = cv:: BRISK :: create (30 ,3 ,1.0f);
216 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
217 ROS_INFO (" Binary matching : %d", binary );
218 } else if ( typeDescriptor == "FREAK") {
219 binary = true;
220 extractor = cv:: xfeatures2d :: FREAK :: create (true ,true ,22.0f ,4);
221 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
222 ROS_INFO (" Binary matching : %d", binary );
223 } else if ( typeDescriptor == "ORB") {
224 binary = true;
225 extractor = cv:: ORB :: create (1000 ,1.2f,8,31,0,2, cv:: ORB :: FAST_SCORE

,31 ,20); // WTA_K = 3-4 -> HAMMING2
226 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
227 ROS_INFO (" Binary matching : %d", binary );
228 } else if ( typeDescriptor == "AKAZE") {
229 binary = true;
230 extractor = cv:: AKAZE :: create (cv:: AKAZE :: DESCRIPTOR_MLDB ,0 ,3 ,0.001f

,4,4, cv:: KAZE :: DIFF_PM_G2 );
231 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
232 ROS_INFO (" Binary matching : %d", binary );
233 } else if ( typeDescriptor == "BRIEF") {
234 binary = true;
235 extractor = cv:: xfeatures2d :: BriefDescriptorExtractor :: create (32,

true);
236 ROS_INFO (" Descriptor : %s", typeDescriptor .c_str ());
237 ROS_INFO (" Binary matching : %d", binary );
238 } else {
239 binary = false ;
240 ROS_ERROR ("Could not find keypoint detector : %s\n\ tChoosing default

descriptor : SURF", typeDescriptor .c_str ());
241 extractor = cv:: xfeatures2d :: SURF :: create (1000) ;
242 }
243 return extractor ;
244 }
245
246 Current Mat ch OpenCV Mat ching :: visualized Mat ch(cv:: Mat searchImage , cv:: Mat

objectImage , std:: vector <cv:: KeyPoint > keypointsObject , std:: vector <
cv:: KeyPoint > keypointsScene , std:: vector <cv::DMat ch > good_matches ,
bool showKeypoints , int homographyType ) {

247 cv:: Mat image_matches ;
248 if ( showKeypoints ) {
249 cv:: drawKeypoints ( searchImage , keypointsScene , image_matches ,

CV_RGB (0 ,0 ,255) , cv:: Draw Mat chesFlags :: DRAW_RICH_KEYPOINTS );
250 } else {
251 image_matches = searchImage .clone ();
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252 }
253 std:: vector <cv:: Point2f > obj;
254 std:: vector <cv:: Point2f > scene;
255 for ( size_t i = 0; i < good_matches .size (); i++) {
256 // Retrieve the keypoints from good matches
257 obj. push_back ( keypointsObject [ good_matches [i]. queryIdx ].pt);
258 scene. push_back ( keypointsScene [ good_matches [i]. trainIdx ].pt);
259 }
260 // Perform Homography to find a perspective transformation between two

planes .
261 cv:: Mat H;
262 if (! obj.size () == 0 && !scene.size () == 0) {
263 H = cv:: findHomography (obj , scene , homographyType ); // CV_LMEDS //

CV_RANSAC
264 }
265 // Put object corners in a vector
266 std:: vector <cv:: Point2f > objectCorners (4);
267 objectCorners [0] = cvPoint (0, 0); // Upper left corner
268 objectCorners [1] = cvPoint ( objectImage .cols , 0); // Upper right corner
269 objectCorners [2] = cvPoint ( objectImage .cols , objectImage .rows); // Lower

right corner
270 objectCorners [3] = cvPoint (0, objectImage .rows); // Lower left corner
271 // Find the corresponding object corners in the scene perspective
272 std:: vector <cv:: Point2f > sceneCorners (4);
273 if (!H.rows == 0 && !H.cols == 0) {
274 cv:: perspectiveTransform ( objectCorners , sceneCorners , H);
275 if ( checkObjectInnerAngles ( sceneCorners , 60, 120)) {
276 // Draw lines surrounding the object
277 cv:: line( image_matches , sceneCorners [0], sceneCorners [1], cv::

Scalar (0, 255, 0), 2); // TOP line
278 cv:: line( image_matches , sceneCorners [1], sceneCorners [2], cv::

Scalar (0, 255, 0), 2); // RIGHT line
279 cv:: line( image_matches , sceneCorners [2], sceneCorners [3], cv::

Scalar (0, 255, 0), 2); // BOTTOM line
280 cv:: line( image_matches , sceneCorners [3], sceneCorners [0], cv::

Scalar (0, 255, 0), 2); // LEFT line
281 // Draw diagonals
282 cv:: line( image_matches , sceneCorners [0], sceneCorners [2], cv::

Scalar (0, 255, 0), 1); // DIAGONAL 0-2
283 cv:: line( image_matches , sceneCorners [1], sceneCorners [3], cv::

Scalar (0, 255, 0), 1); // DIAGONAL 1-3
284 // Center
285 cv:: Point2f cen (0.0 , 0.0);
286 if ( intersection ( sceneCorners [0], sceneCorners [2], sceneCorners

[1], sceneCorners [3], cen)) {
287 cv:: circle ( image_matches , cen , 10, cv:: Scalar (0, 0, 255) ,

2);
288 }
289 }
290 }
291 // Draw circles in center pixel of the video stream
292 if ( searchImage .rows > 60 && searchImage .cols > 60) {
293 cv:: circle ( image_matches , cv:: Point( searchImage .cols / 2,

searchImage .rows / 2), 5, CV_RGB (255 , 0, 0));
294 cv:: circle ( image_matches , cv:: Point( searchImage .cols / 2,

searchImage .rows / 2), 10, CV_RGB (0, 255, 0));
295 cv:: circle ( image_matches , cv:: Point( searchImage .cols / 2,
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searchImage .rows / 2), 15, CV_RGB (0, 0, 255));
296 }
297 Current Mat ch cm;
298 cm. outFrame = image_matches ;
299 cm. sceneCorners = sceneCorners ;
300 return cm;
301 }
302
303 bool OpenCV Mat ching :: intersection (cv:: Point2f o1 , cv:: Point2f p1 , cv::

Point2f o2 , cv:: Point2f p2 , cv:: Point2f &r) {
304 // The lines are defined by (o1 , p1) and (o2 , p2).
305 cv:: Point2f x = o2 - o1;
306 cv:: Point2f d1 = p1 - o1;
307 cv:: Point2f d2 = p2 - o2;
308 float cross = d1.x * d2.y - d1.y * d2.x;
309 if (fabsf(cross) < /* EPS */1e -8) return false;
310 double t1 = (x.x * d2.y - x.y * d2.x) / cross;
311 r = o1 + d1 * t1;
312 return true;
313 }
314
315 int OpenCV Mat ching :: innerAngle (cv:: Point2f a, cv:: Point2f b, cv:: Point2f c)

{
316 cv:: Point2f ab(b.x - a.x, b.y - a.y);
317 cv:: Point2f cb(b.x - c.x, b.y - c.y);
318 double dot = (ab.x * cb.x + ab.y * cb.y); // dot product
319 double cross = (ab.x * cb.y - ab.y * cb.x); // cross product
320 double alpha = atan2(cross , dot);
321 int angle = (int) floor(alpha * 180. / PI + 0.5);
322 return abs(angle);
323 }
324
325 bool OpenCV Mat ching :: checkObjectInnerAngles (std:: vector <cv:: Point2f >

scorner , int min , int max) {
326 bool out = false;
327 int c0 = innerAngle ( scorner [3], scorner [0], scorner [1]);
328 int c1 = innerAngle ( scorner [0], scorner [1], scorner [2]);
329 int c2 = innerAngle ( scorner [1], scorner [2], scorner [3]);
330 int c3 = innerAngle ( scorner [2], scorner [3], scorner [0]);
331 if (c0 > min && c0 < max && c1 > min && c1 < max && c2 > min && c2 <

max && c3 > min && c3 < max) out = true;
332 return out;
333 }
334
335 double OpenCV Mat ching :: getXoffset (cv:: Mat frame , std:: vector <cv:: Point2f >

scorner ) {
336 cv:: Point2f cen;
337 double xOffset = 0.0;
338 if ( intersection ( scorner [0], scorner [2], scorner [1], scorner [3], cen))

{
339 xOffset = cen.x - frame.cols / 2;
340 }
341 return xOffset ;
342 }
343
344 double OpenCV Mat ching :: getYoffset (cv:: Mat frame , std:: vector <cv:: Point2f >

scorner ) {

49



APPENDIX B. THE IMAGE_PROCESSOR APPLICATION

345 cv:: Point2f cen;
346 double yOffset = 0.0;
347 if ( intersection ( scorner [0], scorner [2], scorner [1], scorner [3], cen))

{
348 yOffset = cen.y - frame.rows / 2;
349 }
350 return yOffset ;
351 }
352
353 double OpenCV Mat ching :: getXpos ( std:: vector <cv:: Point2f > scorner ) {
354 cv:: Point2f cen;
355 intersection ( scorner [0], scorner [2], scorner [1], scorner [3], cen);
356 double x = cen.x;
357 return x;
358 }
359
360 double OpenCV Mat ching :: getYpos ( std:: vector <cv:: Point2f > scorner ) {
361 cv:: Point2f cen;
362 intersection ( scorner [0], scorner [2], scorner [1], scorner [3], cen);
363 double y = cen.y;
364 return y;
365 }
366
367 double OpenCV Mat ching :: getObjectAngle (cv:: Mat frame , std:: vector <cv::

Point2f > scorner ) {
368 double centerX = frame.cols / 2;
369 double diffX = centerX - scorner [1].x;
370 double x = ( centerX - diffX) - scorner [0].x;
371 double y = scorner [0].y - scorner [1].y;
372 double angle = atan2(y, x) * 180 / PI;
373 return angle;
374 }
375
376 Eigen:: Vector3d OpenCV Mat ching :: getNormImageCoords ( double x, double y,

double lambda , cv:: Mat camera_matrix ) {
377 Eigen:: Vector3d pixelCoords ;
378 Eigen:: Vector3d normCoords ;
379 Eigen:: Mat rix3d cam Mat;
380 cam Mat << camera_matrix .at <double >(0 ,0) ,0, camera_matrix .at <double >(0 ,2)

,
381 0, camera_matrix .at <double >(1 ,1) ,camera_matrix .at <double >(1 ,2)

,
382 0,0,1;
383 pixelCoords (0) = x;
384 pixelCoords (1) = y;
385 pixelCoords (2) = 1;
386 Eigen:: Mat rix3d icam Mat = cam Mat. inverse ();
387 normCoords = icam Mat* pixelCoords ;
388 return lambda * normCoords ;
389 }
390 }
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openCV_matching.hpp

Listing B.4: Source file - code/image_processor/openCV_matching.hpp

1 //
2 // Original author : Asgeir Bjoerkedal . Created : 10.03.16. Last edit: 30.05.16.
3 //
4 // The class implements methods from OpenCV and is designed for use in an

object detection application .
5 // It encompasses capturing of video frames , processing video frames by

numerous keypoint
6 // detectors and descriptor extractors , matching algorithms , visualization and

computation
7 // of object image coordinates and orientation .
8 //
9 // Created as part of the software solution for a Master ’s thesis in Production

Technology at NTNU Trondheim .
10 //
11 # ifndef IMAGE_PROCESSOR_OPENCV_MATCHING_HPP
12 # define IMAGE_PROCESSOR_OPENCV_MATCHING_HPP
13
14 # include <iostream >
15 # include <math.h>
16 # include <ros/ros.h>
17 # include " opencv2 /core.hpp"
18 # include " opencv2 / imgcodecs .hpp"
19 # include " opencv2 / highgui .hpp"
20 # include " opencv2 / features2d .hpp"
21 # include " opencv2 / calib3d .hpp"
22 # include " opencv2 / imgproc .hpp"
23 # include " opencv2 / xfeatures2d .hpp"
24 # include <eigen3 /Eigen/Dense >
25
26 # define PI 3.14159265
27
28 namespace robotcam {
29
30 struct Current Mat ch {
31 /*! The frame with visualized keypoints and matching . */
32 cv:: Mat outFrame ;
33 /*! The corners of the matched object in the scene. */
34 std:: vector <cv:: Point2f > sceneCorners ;
35 };
36
37 class OpenCV Mat ching {
38 public :
39 /*!
40 * \brief Get a camera matrix from XML or YAML file.
41 * \param path The path of the file.
42 * \ return The camera matrix .
43 */
44 cv:: Mat getCamera Mat rix(const std:: string path);
45
46 /*!
47 * \brief Get the distortion coefficients from XML or YAML file.
48 * \param path The path of the file.
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49 * \ return The distortion coefficients .
50 */
51 cv:: Mat getDistortionCoeff ( const std:: string path);
52
53 /*!
54 * \brief Check the actual type openCV cv:: Mat.
55 * \param type The type of a matrix .
56 * \ return The matrix type as string .
57 */
58 std:: string type2str (int type);
59
60 /*!
61 * \brief Capture a frame from a connected web camera .
62 * \param color True for RGB. False for grayscale .
63 * \param undistort True for correction for lens distortion . False for

no correction .
64 * \param capture The object capturing a frame from the web camera .
65 * \param camera Mat rix The camera matrix (K- matrix ) of the web camera .
66 * \param distCoeffs The distortion coefficients of the web camera .
67 * \ return The current video frame.
68 *
69 * Capture a frame in color/ grayscale and with or without lens

distortion .
70 */
71 cv:: Mat captureFrame (bool color , bool undistort , cv:: VideoCapture

capture , cv:: Mat camera Mat rix , cv:: Mat distCoeffs );
72
73 /*!
74 * \brief Capture a frame from a connected web camera .
75 * \param color The boolean determining RGB or grayscale video frame.
76 * \param capture The object capturing the video stream from the camera

.
77 * \ return The current video frame.
78 *
79 * Capture either with color or grayscale .
80 */
81 cv:: Mat captureFrame (bool color , cv:: VideoCapture capture );
82
83 /*!
84 * \brief Flann based nearest neighbour matching .
85 * \param descriptors_object The descriptors of the query image.
86 * \param descriptors_scene The descriptors of the training scene image

.
87 * \param nnratio The nearest neighbour ratio for distance filtering .
88 * \ return The good matches .
89 */
90 std:: vector <cv::DMat ch > knn Mat chDescriptors (cv:: Mat descriptors_object ,

cv:: Mat descriptors_scene , float nnratio );
91
92 /*!
93 * \brief Flann based nearest neighbour with LSH index for binary

matching .
94 * \param descriptors_object The descriptors of the query image.
95 * \param descriptors_scene The descriptors of the training scene image

.
96 * \param nndrRatio The nearest neighbour ratio for distance filtering .
97 * \ return The good matches .
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98 */
99 std:: vector <cv::DMat ch > knn Mat chDescriptorsLSH (cv:: Mat

descriptors_object , cv:: Mat descriptors_scene , float nndrRatio );
100
101 /*!
102 * \brief Flann based matching .
103 * \param descriptors_object The descriptors of the query image.
104 * \param descriptors_scene The descriptors of the training scene image

.
105 * \ return The good matches .
106 */
107 std:: vector <cv::DMat ch > matchDescriptors (cv:: Mat descriptors_object ,

cv:: Mat descriptors_scene );
108
109 /*!
110 * \brief Bruteforce nearest neighbour matching .
111 * \param descriptors_object The descriptors of the query image.
112 * \param descriptors_scene The descriptors of the training scene image

.
113 * \param normType The distance type , e.g. NORM_L1 , NORM_L2 ,

NORM_HAMMING .
114 */
115 std:: vector <cv::DMat ch > bruteForce (cv:: Mat descriptors_object , cv:: Mat

descriptors_scene , int normType );
116
117 /*!
118 * \brief Set a keypoint detector based on a input string .
119 * \param typeKeyPoint The input string as an acronym for wanted

algorithm , e.g. SIFT , SURF.
120 * \ return The keypoint detector .
121 */
122 cv:: Ptr <cv:: Feature2D > setKeyPointsDetector (std:: string typeKeyPoint );
123
124 /*!
125 * \brief Set a descriptor extractor based on a input string .
126 * \param typeDescriptor The input string as an acronym for wanted

algorithm , e.g. SIFT , SURF.
127 * \param binary Reference to a matching control boolean . True if real -

valued descriptor , False if binary .
128 * \ return The descriptor extractor .
129 */
130 cv:: Ptr <cv:: Feature2D > setDescriptorsExtractor (std:: string

typeDescriptor , bool & binary );
131
132 /*!
133 * \brief Visualize a object matching using homography .
134 * \param searchImage The training scene image.
135 * \param objectImage The query image.
136 * \param keypointsObject The keypoints of the query image.
137 * \param keypointsScene The keypoints of the training scene image.
138 * \param good_matches The good matches between query and training

image.
139 * \param showKeypoints True for visualized keypoints . False for no

drawn keypoints .
140 * \param homographyType The homography type , e.g. CV_RANSAC or

CV_LMEDS .
141 * \ return The current match holding an image with visualized matching
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and the object corners in training scene.
142 */
143 Current Mat ch visualized Mat ch(cv:: Mat searchImage , cv:: Mat objectImage ,

std:: vector <cv:: KeyPoint > keypointsObject , std:: vector <cv:: KeyPoint
> keypointsScene , std:: vector <cv::DMat ch > good_matches , bool
showKeypoints , int homographyType );

144
145 /*!
146 * \brief Check if the inner angles of a square or rectangle is within

min and max angle.
147 * \param scorner The training scene corners of the matched object .
148 * \param min The minimum angle in degrees .
149 * \param max The maximum angle in degrees .
150 * \ return True if angle is within min and max. False otherwise .
151 */
152 bool checkObjectInnerAngles ( std:: vector <cv:: Point2f > scorner , int min ,

int max);
153
154 /*!
155 * \brief Get the pixel offset in x- direction of the matched object

center related to the image frame center .
156 * \param frame The training scene image.
157 * \param scorner The scene corners of the matched object .
158 * \ return The object offset in x- direction .
159 */
160 double getXoffset (cv:: Mat frame , std:: vector <cv:: Point2f > scorner );
161
162 /*!
163 * \brief Get the pixel offset in y- direction of the matched object

center related to the image frame center .
164 * \param frame The training scene image.
165 * \param scorner The scene corners of the matched object .
166 * \ return The object pixel offset in y- direction .
167 */
168 double getYoffset (cv:: Mat frame , std:: vector <cv:: Point2f > scorner );
169
170 /*!
171 * \brief Get the pixel coordinate x of the matched object center .
172 * \param scorner The scene corners of the matched object .
173 * \ return The pixel coordinate x.
174 */
175 double getXpos (std:: vector <cv:: Point2f > scorner );
176
177 /*!
178 * \brief Get the pixel coordinate y of the matched object center .
179 * \param scorner The scene corners of the matched object .
180 * \ return The pixel coordinate y.
181 */
182 double getYpos (std:: vector <cv:: Point2f > scorner );
183
184 /*!
185 * \brief Get the angle of in -plane rotation of the matched object .
186 * \param frame The training scene image.
187 * \param scorner The scene corners of the matched object .
188 * \ return The object angle in degrees .
189 */
190 double getObjectAngle (cv:: Mat frame , std:: vector <cv:: Point2f > scorner );
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191
192 /*!
193 * \brief Get the normalized image coordinates of the matched object

scaled with lambda .
194 * \param x The pixel coordinate x.
195 * \param y The pixel coordinate y.
196 * \param lambda The depth to object along optical axis from camera

lens.
197 * \param camera_matrix The K- matrix of the camera .
198 * \ return The normalized image coordinates scaled with lambda .
199 */
200 Eigen:: Vector3d getNormImageCoords ( double x, double y, double lambda ,

cv:: Mat camera_matrix );
201
202 private :
203 /*!
204 * \brief Get the intersection point of two lines.
205 * \param o1 The origin point of the first line.
206 * \param p1 The end point of the first line.
207 * \param o2 The origin point of the second line.
208 * \param p2 The end point of the second line.
209 * \param r The intersection point referenced .
210 * \ return The boolean whether an intersection was found. True if found

. False otherwise .
211 */
212 bool intersection (cv:: Point2f o1 , cv:: Point2f p1 , cv:: Point2f o2 , cv::

Point2f p2 , cv:: Point2f &r);
213
214 /*!
215 * \brief Get the inner angle using three points .
216 * \param a The first point.
217 * \param b The origin of the angle.
218 * \param c The second point.
219 * \ return The angle in degrees .
220 */
221 int innerAngle (cv:: Point2f a, cv:: Point2f b, cv:: Point2f c);
222 };
223 }
224 #endif // IMAGE_PROCESSOR_OPENCV_MATCHING_HPP
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Appendix C: The agilus_planner Applica-
tion

This appendix contains the source code for the agilus_planner application.

robot_movement.cpp - This class advertises the services used for robotic manipulator con-
trol.

Pose.srv - This is the .srv file that is used to define the pose service object used to control
the robotic manipulators.

robot_movement.cpp

Listing C.1: Source file - code/agilus_planner/robot_movement.cpp

1 //
2 // Original author : Adam Leon Kleppe . Last edit by: Asgeir Bjoerkedal at

30.05.16.
3 //
4 // A ROS node advertising the trajectory planning and execution , as defined in

robot_planning_execution .hpp ,
5 // as ROS services for simple interfacing with other ROS nodes.
6 //
7 # include " agilus_planner /Pose.h"
8 # include "../ include / agilus_planner / robot_planning_execution .hpp"
9

10 ih:: RobotPlanningExecution *robot;
11
12 /*!
13 * \ brief Callback method for planning of a trajectory . The plan will only be

visualized in MoveIt !.
14 * \ param req The service request . Set the desired pose of the manipulator .
15 * \ param res The service response . Returns the fraction of the trajectory

which is feasible .
16 */
17 bool planPoseService ( agilus_planner :: Pose :: Request &req , agilus_planner :: Pose ::

Response &res) {
18 if (( bool) !req. relative ) {
19 if (( bool) req. set_position && (bool) !req. set_orientation ) {
20 res. progress = robot -> planPoseByXYZ (
21 ( double ) req.position_x , ( double ) req.position_y , ( double )

req. position_z );
22 }
23 if (( bool) !req. set_position && (bool) req. set_orientation ) {
24 res. progress = robot -> planPoseByRPY (
25 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
26 }
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27 if (( bool) req. set_position && (bool) req. set_orientation ) {
28 res. progress = robot -> planPoseByXYZRPY (
29 ( double ) req.position_x , ( double ) req.position_y , ( double )

req.position_z ,
30 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
31 }
32 }
33 else {
34 if (( bool) req. set_position && (bool) !req. set_orientation ) {
35 res. progress = robot -> planRelativePoseByXYZ (
36 ( double ) req.position_x , ( double ) req.position_y , ( double )

req. position_z );
37 }
38 if (( bool) !req. set_position && (bool) req. set_orientation ) {
39 res. progress = robot -> planRelativePoseByRPY (
40 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
41 }
42 if (( bool) req. set_position && (bool) req. set_orientation ) {
43 res. progress = robot -> planRelativePoseByXYZRPY (
44 ( double ) req.position_x , ( double ) req.position_y , ( double )

req.position_z ,
45 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
46 }
47 }
48 }
49
50 /*!
51 * \brief Callback method for planning and execution of a trajectory . The

trajectory be executed .
52 * \param req The service request . Set the desired pose of the manipulator .
53 * \param res The service response . Returns the fraction of the trajectory

which is feasible .
54 */
55 bool goToPoseService ( agilus_planner :: Pose :: Request &req , agilus_planner :: Pose ::

Response &res) {
56 if (( bool) !req. relative ) {
57 if (( bool) req. set_position && (bool) !req. set_orientation ) {
58 res. progress = robot -> goToPoseByXYZ (
59 ( double ) req.position_x , ( double ) req.position_y , ( double )

req. position_z );
60 }
61 if (( bool) !req. set_position && (bool) req. set_orientation ) {
62 res. progress = robot -> goToPoseByRPY (
63 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
64 }
65 if (( bool) req. set_position && (bool) req. set_orientation ) {
66 res. progress = robot -> goToPoseByXYZRPY (
67 ( double ) req.position_x , ( double ) req.position_y , ( double )

req.position_z ,
68 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
69 }
70 }
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71 else {
72 if (( bool) req. set_position && (bool) !req. set_orientation ) {
73 res. progress = robot -> goToRelativePoseByXYZ (
74 ( double ) req.position_x , ( double ) req.position_y , ( double )

req. position_z );
75 }
76 if (( bool) !req. set_position && (bool) req. set_orientation ) {
77 res. progress = robot -> goToRelativePoseByRPY (
78 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
79 }
80 if (( bool) req. set_position && (bool) req. set_orientation ) {
81 res. progress = robot -> goToRelativePoseByXYZRPY (
82 ( double ) req.position_x , ( double ) req.position_y , ( double )

req.position_z ,
83 ( double ) req. orientation_r , ( double ) req. orientation_p , (

double ) req. orientation_y );
84 }
85 }
86 }
87
88 int main(int argc , char ** argv) {
89 ros:: init(argc , argv , " robot_movement_service ");
90 ros:: NodeHandle node_handle ("~");
91
92 // Initializing robot arguments used if ROS server has no param eters
93 std:: string group_name = " manipulator ";
94 double max_vel_scale_factor = 0.1;
95 int planning_time = 10;
96 int num_planning_attempts = 5;
97 int options = 2;
98
99 // Get or set group_name

100 if ( node_handle . hasParam (" group_name ")) {
101 node_handle . getParam (" group_name ", group_name );
102 ROS_INFO ("Got group_name : %s", group_name .c_str ());
103 }
104 else {
105 node_handle . setParam (" group_name ", group_name );
106 ROS_INFO ("No group_name found. Default used: %s", group_name .c_str ());
107 }
108 // Get or set max_vel_scale_factor
109 if ( node_handle . hasParam (" max_vel_scale_factor ")) {
110 node_handle . getParam (" max_vel_scale_factor ", max_vel_scale_factor );
111 ROS_INFO ("Got max_vel_scale_factor : %f", max_vel_scale_factor );
112 }
113 else {
114 node_handle . setParam (" max_vel_scale_factor ", max_vel_scale_factor );
115 ROS_INFO ("No max_vel_scale_factor found. Default used: %f",

max_vel_scale_factor );
116 }
117 // Get or set planning_time
118 if ( node_handle . hasParam (" planning_time ")) {
119 node_handle . getParam (" planning_time ", planning_time );
120 ROS_INFO ("Got planning_time : %d", planning_time );
121 }
122 else {
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123 node_handle . setParam (" planning_time ", planning_time );
124 ROS_INFO ("No planning_time found. Default used: %d", planning_time );
125 }
126 // Get or set planning_time
127 if ( node_handle . hasParam (" num_planning_attempts ")) {
128 node_handle . getParam (" num_planning_attempts ", num_planning_attempts );
129 ROS_INFO ("Got num_planning_attempts : %d", num_planning_attempts );
130 }
131 else {
132 node_handle . setParam (" num_planning_attempts ", num_planning_attempts );
133 ROS_INFO ("No num_planning_attempts found. Default used: %d",

num_planning_attempts );
134 }
135 // Set options regardless of server param eter
136 node_handle . setParam (" options ", options );
137
138 // Initializing robot
139 robot = new ih:: RobotPlanningExecution (
140 group_name ,
141 max_vel_scale_factor ,
142 planning_time ,
143 num_planning_attempts ,
144 ih:: RobotOptionFlagFromInt ( options ));
145
146 // Advertise the services
147 ros:: ServiceServer goto_service = node_handle . advertiseService (" go_to_pose "

, goToPoseService );
148 ros:: ServiceServer plan_service = node_handle . advertiseService (" plan_pose ",

planPoseService );
149
150 ROS_INFO (" robot_movement_service ready to use for: %s", group_name .c_str ())

;
151 ros:: spin ();
152
153 return 0;
154 }
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Pose.srv

Listing C.2: Source file - code/agilus_planner/Pose.srv

1 Header header
2 bool relative
3 bool set_position
4 float64 position_x
5 float64 position_y
6 float64 position_z
7 bool set_orientation
8 float64 orientation_r
9 float64 orientation_p

10 float64 orientation_y
11 ---
12 float64 progress
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Appendix D: Digital Appendix

This section describes the purpose and contents of all the files available through the digital
appendix for this thesis. Located below is a directory tree illustrating the location of each
individual file available. Listings in the directory tree with the color red are folders used for
sorting. The different applications are placed in their own folders, containing the corresponding
source code and code documentation (the code documentation is located in the doc folder).
The documentation is generated using doxygen. The generated documentation can be viewed
by opening the annotated.html file located in */doc/html/. Launching this file will open a new
page in the default web browser containing the interactive documentation page.

Digital Appendix
Demonstration video

Demonstration_video.mp4
Source Code

agilus_master_project
src

main.cpp
main_window.cpp
modelloader.cpp
pcl_filters.cpp
qnode.cpp

include
main_window.hpp
modelloader.hpp
pcl_filters.hpp
qnode.hpp

doc
qt_filter_tester

src
main.cpp
main_window.cpp
modelloader.cpp
pcl_filters.cpp
qnode.cpp

include
main_window.hpp
modelloader.hpp
pcl_filters.hpp
qnode.hpp

doc
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src

robot_movement.cpp
robot_planning_execution.cpp

srv
Pose.srv

include
robot_option_flag.hpp
robot_planning_execution.hpp

doc
image_processor

src
calibration.cpp
object_2D_matcher.cpp
openCV_matching.cpp

include
object_2D_matcher.hpp
openCV_matching.hpp

srv
doc

The following is a brief description of the files available trough the digital appendix:

Demonstration_video.mp4 - A video demonstrating the capabilities of the system pro-
duced throughout this thesis.

agilus_master_project - This folder contains all source code and auto-generated documen-
tation for the agilus_master_project application produced for this thesis.

qt_filter_tester - This folder contains all source code and auto-generated documentation
for the qt_filter_tester application produced for this thesis.

agilus_planner - This folder contains all source code and auto-generated documentation for
the agilus_planner application produced for this thesis.

image_processor - This folder contains all source code and auto-generated documentation
for the image_processor application produced for this thesis.
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