■NTNU

Norwegian University of
Science and Technology

Robotic Assembly Using 3D and 2D
 Computer Vision

Asgeir Bjørkedal
Kristoffer Larsen

Subsea Technology
Submission date: June 2016
Supervisor: Olav Egeland, IPK

MASTEROPPGAVE 2016

Asgeir Bjørkedal \& Kristoffer Larsen

Tittel: Robotisert montasje ved bruk av et «computer vision» system bestående av 3D og 2D kameraer.

Tittel (engelsk): Robotic assembly using 3D and 2D computer vision.

Oppgavens tekst:

Et håndmontert kamera er nyttig i montasjeoppgaver for å få god bildeinformasjon for innjustering av montasjeoperasjoner. Et håndmontert kamera har i tillegg den fordelen at det kan automatisk rettes inn mot montasjeoppgaven. I denne oppgave skal dette kombineres med et stasjonært 3Dkamera som skal gi en grov, men pålitelig posisjonsbestemmelse av deler, mens det håndholdte kameraet skal gi en nøyaktig posisjonsbestemmelse. Systemet skal testes ut i instituttets Agiluslab.

1. Beskriv kinematikken av en robotcelle bestående av et fastmontert 3D-kamera og et håndmontert 2D-kamera.
2. Lag et system for å detektere deler ved bruk av et håndmontert 2D-kamera.
3. Lag et system for å detektere 3D modellerte deler ved hjelp av 3D-kamera.
4. Implementer et system som drar nytte av både 3D og 2D bildebehandling for nøyaktig posisjon-estimering av \varnothing nskede deler.
5. Gjennomfør et praktisk eksperiment hvor detekteringssystemet benyttes for montering av kjente deler.

Oppgave utlevert: 2016-01-15
Innlevering: 2016-06-10

Utført ved Institutt for produksjons- og kvalitetsteknikk, NTNU.

Preface

This thesis is the result of a Master's project in the Subsea Technology study programme at NTNU Trondheim. The problem description was written by Professor Olav Egeland and the project work was carried out in a two person group where the work was divided equally. The time period for this project was the spring semester of 2016 (January to June 2016). It is assumed that the reader possesses some basic knowledge regarding robotic systems, 2D and 3 D computer vision.

Sistoffer Larsen
Kristoffer Larsen

Asgeir Bjørkedal

Acknowledgment

We would like to thank the following persons for their great help during this Master's thesis.
Professor Olav Egeland for constructing a problem description that turned out to be both interesting and challenging, as well as providing guidance during the project work.

Ph.D candidate Adam Leon Kleppe for giving us valuable feedback and guidance during the project work.

Their help during the project contributed to steady progress, and we are thankful for their insight in the subject of Production Technology.

We would also like to thank our fellow students for providing a social and positive work environment.
K.L \& A.B

Abstract

The content of this thesis concerns the development and evaluation of a robotic cell used for automated assembly. The automated assembly is made possible by a combination of an eye-inhand 2D camera and a stationary 3D camera used to automatically detect objects. Computer vision, kinematics and programming is the main topics of the thesis. Possible approaches to object detection has been investigated and evaluated in terms of performance. The kinematic relation between the cameras in the robotic cell and robotic manipulator movements has been described. A functioning solution has been implemented in the robotic cell at the Department of Production and Quality Engineering laboratory.

Theory with significant importance to the developed solution is presented. The methods used to achieve each part of the solution is anchored in theory and presented with the decisions and guidelines made throughout the project work in order to achieve the final solution.

Each part of the system is presented with associated results. The combination of these results yields a solution which proves that the methods developed to achieve automated assembly works as intended. Limitations, challenges and future possibilities and improvements for the solution is then discussed.

The results from the experiments presented in this thesis demonstrates the performance of the developed system. The system fulfills the specifications defined in the problem description and is functioning as intended considering the instrumentation used.

Sammendrag

Innholdet i denne avhandlingen dreier seg rundt utviklingen og evalueringen av en robotcelle for automatisert montering. Den automatiserte monteringen blir muliggjort gjennom en kombinasjon av et håndmontert 2D kamera og et stasjonært 3D kamera brukt for automatisk detektering av objekter. Datasyn, kinematikk og programmering er hovedtemaene i denne avhandlingen. Mulige fremgangsmåter for objektdetektering har blitt undersøkt og evaluert i forhold til ytelse. Den kinematiske sammenhengen mellom kameraene i robotcellen og de robotiserte manipulatorene blir presentert. En fungerende løsning implementert i verkstedet ved NTNU Trondheims Institutt for produksjons- og kvalitetsteknikk blir presentert.

Teori med betydningsfull verdi for løsningen er presentert. Videre er metodene som er benyttet for å oppnå hver del av den endelige løsningen forankret i teori og presentert sammen med avgjørelser og rettningslinjer som har blitt bestemt gjennom arbeidet med oppgaven for å kunne nå den endelige løsningen.

Hver del av det utviklede systemet er presentert sammen med tilhørende resultat. Ved å kombinere disse resultatene oppnåes en løsning som beviser at de utviklede metodene for å oppnå automatisert montering fungerer som tiltenkt. Begrensninger, utfordringer, fremtidige muligheter og forbedringer for løsningen blir deretter diskutert.

Resultatene fra eksperimentene utført gjennom denne avhandlingen blir presentert. Disse resultatene demonstrerer ytelsen til det ferdige systemet. Systemet oppfyller spesifikasjonene som er definert i problembeskrivelsen og fungerer som forventet tatt i betraktning instrumenteringen som blir benyttet for løsningen.

Contents

Preface i
Acknowledgment ii
Abstract iv
Sammendrag v
Terms and Abbreviations xviii
Materials and Software XX
1 Introduction 1
1.1 Background 1
1.2 Problem description 1
1.3 Thesis structure 2
2 Theory 3
2.1 Kinematics 3
2.1.1 Orientation 3
2.1.2 Transformation 4
2.1.3 Denavit-Hartenberg convention 4
2.1.4 Forward kinematics 6
2.1.5 Inverse kinematics 6
2.1.6 2D computer vision 7
2.23 D computer vision 8
2.2.1 Time of flight 8
2.2.2 Structured light 9
2.3 Processing point clouds 10
2.3.1 Passthrough filtering 10
2.3.2 Voxel grid filtering 10
2.3.3 Bilateral filtering 11
2.3.4 Outlier removal filtering 12
2.3.5 Model segmentation 12
2.3.6 Cluster extraction 13
2.4 Point cloud features 14
2.4.1 Normal estimation 14
2.4.2 Keypoint selection 15
2.4.3 Local descriptor estimation 15
2.4.4 Global descriptor estimation 19
2.4.5 Creating training sets 22
2.5 Aligning point clouds 24
2.5.1 Pipelines 24
2.5.2 Iterative closest point 26
2.5.3 Initial alignment 27
2.5.4 Registration 27
2.5.5 Object detection 29
2.62 D computer vision 30
2.6.1 Scale invariant feature transform 31
2.6.2 Speeded-up robust features 36
2.6.3 Binary robust invariant scalable keypoints 42
2.6.4 Oriented FAST and rotated BRIEF 46
2.6.5 Descriptor matching 48
2.6.6 Planar homography 51
2.7 Robot operating system 51
2.7.1 The ROS architecture 52
2.7.2 Nodes 52
2.7.3 Services 53
2.7.4 Topics 53
2.7.5 Messages 54
3 Method 55
3.1 Physical setup 55
3.1.1 Robotic cell setup 55
3.1.2 Calibrating 3D camera position 57
3.1.3 Parts used for assembly 58
3.1.4 Calibrating 2D intrinsic parameters 59
3.1.5 Calibrating eye-in-hand transform 60
3.2 Software development 64
3.2.1 Acquiring 3D point clouds 64
3.2.2 Acquiring 2D images 64
3.2.3 Control the robotic manipulator 64
3.2.4 2D object detection 65
3.2.5 3D object detection 68
3.2.6 Creating training sets 69
3.2.7 ROS communication 70
3.3 Testing setup 72
3.3.1 3D object detection accuracy 72
3.3.2 Testing global descriptors 73
3.3.3 2D object detection processing time 74
3.3.4 2D object detection matching stability 74
3.3.5 2D object detection orientation stability 75
4 Result 77
4.1 Physical setup 77
4.1.1 Robotic cell networking 77
4.1.2 Calibrating 3D camera position 77
4.1.3 Calibrating eye-in-hand transform 78
4.2 3D Computer Vision 80
4.2.1 Accuracy test of 3D object detection 80
4.2.2 Testing and selecting global descriptor 82
4.2.3 Selecting keypoint and local descriptor estimator 83
4.2.4 Creating training sets 84
4.2.5 3D object detection 85
4.3 2D computer vision 87
4.3.1 Processing time 87
4.3.2 Matching stability 89
4.3.3 Orientation stability 91
4.3.4 2D object detection 92
4.4 Software solution 94
4.4.1 ROS communication 94
4.4.2 Automated assembly sequence 95
4.4.3 Applications 96
4.5 Automated assembly solution 102
5 Discussion 105
5.1 2D computer vision 105
5.2 3D computer vision 106
5.3 Combining 2D and 3D computer vision 107
5.4 Hardware 107
6 Conclusion 109
6.1 Future work 109
Bibliography 111
Appendix
A Software Tools Created 1
B The image__processor Application 31
C The agilus__planner Application 57
D Digital Appendix 63

List of Figures

2.1 Elementary rotation about the X axis. 3
2.2 Elementary rotation about the Y axis 3
2.3 Elementary rotation about the Z axis 3
2.4 Denavit-Hartenberg kinematic parameters (Siciliano et al., 2010). 5
2.5 Rotational directions about the joints of a KUKA KR 6 R900 sixx (GmbH, 2016). 6
2.6 Central-projection camera model. Image from Corke (2013) 7
2.7 The working principle of a Microsoft Kinect ${ }^{\text {TM }}$ One sensor. 9
2.8 The working principle of a structured light camera. Figure from Gaskell (2014). 9
2.9 Point cloud before passthrough filtering. 10
2.10 Point cloud after passthrough filtering. 10
2.11 Point cloud before voxel grid filtering. 11
2.12 Point cloud after voxel grid filtering. 11
2.13 Input cloud to the left is noisy, but has a sharp edge. The filtered output (to the right) preserves the edge while smoothing the point cloud. Figure from (Kadambi et al., 2014) 11
2.14 Point cloud before outlier removal filtering. 12
2.15 Point cloud after outlier removal filtering. 12
2.16 A scene with multiple objects placed on a table 13
2.17 The table surface is detected using random sample consensus 13
2.18 The scene after removing the segmented table. 13
2.19 A scene with multiple objects placed on a table before cluster extraction. 13
2.20 Scene after cluster extraction. Note, the table in the scene was removed using model segmentation before the cluster extraction process. 13
2.21 A scene with multiple objects placed on a table 14
2.22 Shows the scene with the corresponding surface normals. 14
2.23 Shows how a point p_{q} is paired with the neighbouring $p_{k n}$ points. Image from Rusu (2009). 16
2.24 Illustrates two paired points and the fixed reference frame uvw. Image from Rusu (2009). 16
2.25 Shows the influence region for a query point using a Fast Point Feature His- togram. Image from Rusu (2009) 17
2.26 Shows the virtual sphere used to encode topological data for the Signature of Histogram of Orientations. Image from Tombari et al. (2010a). 18
2.27 Shows the pairing of points between the clusters surface points and the clusters centroid c. Figure from Rusu et al. (2010). 20
2.28 Shows the central viewpoint direction $\boldsymbol{v}_{\boldsymbol{p}}$ used to calculate the relative angles between each surface normal and it. Figure from Rusu et al. (2010). 20
2.29 Shows a complete VFH histogram. The two separate component are marked. Figure from Rusu et al. (2010) 21
2.30 The different regions resulting from a region growing is illustrated with different colours. Figure from Aldoma et al. (2011). 21
2.31 Shows the point cloud of a box from the view port of the depth sensor (right) and from the side (left) to illustrate the missing part of the model. 22
2.32 Illustrates a typical setup for creating a training set based on a physical model. Image from (PCL, a). 23
2.33 Illustrates the virtual position of the model and the camera when rendering a model from different view ports. Image from (ROBOTICA, 2015) 23
2.34 Illustrates a typical pipeline using local descriptors. 24
2.35 Illustrates a typical pipeline using global descriptors 25
2.36 Illustrates two point separate point clouds (red and green) with correspondences (drawn as a line between the points of the two clouds). The right most figure is a result of the ICP algorithm. Figure from PCL (d) 27
2.37 A typical local pipeline applied to the registration task. 28
2.38 Multiple scenes of the same room taken from different viewpoints. Figure from Rusu (2009) 28
2.39 Multiple scenes registered to form a complete model of a room. Image from Rusu (2009) 29
2.40 A typical global pipeline applied to the object detection task. 30
2.41 A scene with multiple objects placed on a table. 30
2.42 A model from a training set is registered onto a detected object, estimating its position and orientation. 30
2.43 Two Gaussian kernels with window size 41×41. Subtracting kernel one (left), which has $\sigma=3.2$, from kernel two (middle), which has $\sigma=6.4$, results in the DoG between them (right). Illustrations generated using Matlab. 32
2.44 Convolution of an image with the kernels illustrated in Figure 2.43. Generated using Matlab 32
2.45 Illustration of the DoG from different scales and octaves. Image from Lowe (2004). 33
2.46 Detection of maxima and minima of the DoG images. Pixel marked X is the current sample point. Image from Lowe (2004) 33
2.47 Illustration of SIFT descriptor computed from gradient magnitude and orienta- tion. Image from Lowe (2004). 36
2.48 Illustration of an integral image. Image from Bay et al. (2008). 37
2.49 The left half shows the discretized and cropped Gaussian second order partial derivative in y - $\left(L_{y y}\right)$ and $x y$-direction $\left(L_{x y}\right)$. The right half shows the ap- proximation for the second order Gaussian partial derivative in y - $\left(D_{y y}\right)$ and $x y$-direction $\left(D_{x y}\right)$, using box filters. Image from Bay et al. (2008). 38
2.50 Iteratively reducing the image size as in SIFT (left). The use of integral images allows the up-sampling of the filter (right). Image from Bay et al. (2008) 39
2.51 The length of the dark lobe can only be increased by an even number of pixels to guarantee the presence of the central pixel. Mask size 9×9 (left) and 15×15 (right). Image from Bay et al. (2006a). 39
2.52 Graphical representation of the filter side lengths for three successive octaves. The octaves are overlapping in order to cover all possible scales seamlessly. Image from Bay et al. (2008). 39
2.53 Haar wavelet filters to compute the responses in x (left) and y (right) direction. The weights of the dark and bright parts are illustrated. 40
2.54 The dominant orientation of the Gaussian weighted Haar wavelet response is detected within a sliding orientation window. Image from Bay et al. (2008). 40
2.55 Left: An oriented quadratic grid with 4×4 square sub-regions centred around the interest point. Right: The actual fields of the descriptor, the sums d_{x}, d_{y}, $\left|d_{x}\right|$ and $\left|d_{y}\right|$, are computed for each sub-region relatively to the orientation of the grid. The sub-regions in this figure are 2×2 instead of 5×5 for reasons of illustration. Image from Bay et al. (2008). 41
2.56 Illustration of the nature of a SURF descriptor. Left: A homogeneous region will make all values relatively low. Middle: Frequencies in x direction will make the value of $\sum\left|d_{x}\right|$ high, but all others remain low. Right: In the case of a gradually increasing intensity in x direction, both values $\sum d_{x}$ and $\sum\left|d_{x}\right|$ are high. Image from Bay et al. (2008). 41
2.57 Illustrates a segment test corner detection using a 12-16 mask. The dotted arc indicates 12 pixels which are brighter than pixel p by more than a given threshold. Image from Rosten and Drummond (2006). 43
2.58 Scale-space interest point detection illustrated. The 1D parabola is fitted along the scale-axis to determine the true (interpolated) scale of the keypoint. Image from Leutenegger et al. (2011). 44
2.59 A sampling pattern with $N=60$ sampling points including the center point, equally spaced on four concentric circles around the keypoint. For clarity, only one point in each circle is marked with a circle denoting the radius σ of the Gaussian kernel used to smooth the intensity values of the sampling points. Image from Fan et al. (2015). 44
2.60 The set of short-distance pairs, \mathcal{S}, of sampling points used for constructing the descriptor is illustrated to the left. The set of long-distance pairs, \mathcal{L}, of sampling points used for computing orientation is illustrated to the right. Each colour indicates a pair. Image from Fan et al. (2015). 45
2.61 Pyramid with 5 levels. A scale factor close to 1 will need more pyramid levels to cover a large scale range, thus increasing the computational cost. A large scale factor will on the other hand weaken the invariance to scale. 47
2.62 Keypoints detected with the ORB detector. The cyan rings denote keypoints with its respective orientation. Notice that some keypoints of differing scale overlaps each other in a concentric manner, which means they are detected from different levels of the pyramid. 47
2.63 Distance measure in a 2D plane. Image from Nixon and Aguado (2012). 50
2.64 Brute-force matching of SIFT descriptors using a distance ratio of 0.9 (left) and 0.7 (right). The cyan lines denote a match between the object and the scene. Notice that some of the lines represents false positives as shown in the left half of the figure, while there are no false positives clearly represented in the right half. 50
2.65 A simple illustration of the ROS architecture. 52
2.66 Illustrates the interaction between two nodes in a service call 53
2.67 Illustrates the interaction between nodes when communication using topics. 54
3.1 Shows a simulated view of the robotic cell. 55
3.2 Picture of the robotic cell. 55
3.3 Illustrates the global origin of the robotic cell, as well as the tool and optical reference frames for the robots and cameras 56
3.4 A simulated view of the table as seen from the 3 D camera. 57
3.5 A simulated view of the table as seen from the 2 D web camera. 57
3.6 Shows three typical augmented reality tags. Image from Liebhardt (2016) 57
3.7 A 3D model of part A 59
3.8 A 3D model of part B 59
3.9 Calibration procedure of camera parameters using a chessboard of size 5×7. 60
3.10 Illustration of the orientations of the camera frame \mathcal{C} and world frame \mathcal{W}. 61
3.11 Shows the world frame \mathcal{W} (floor), the object frame \mathcal{O} (object center) and the camera frame \mathcal{C} (camera lens). 63
3.12 Illustrates the simple computation of the objects orientation 67
3.13 Shows the test setup used to measure the positional accuracy of the 3 D object detection process. 72
3.14 The scene used to test match the different global descriptors. 73
3.15 The view from the camera during testing of SIFT. 74
4.1 Shows the network connections between the critical hardware in the robotic cell 77
4.2 Shows the output of the ar_track_alvar application used for position calibration of the 3D camera. 78
4.3 Left: Image with lens distortion. Notice the curvature of the image along edges compared to the red lines. Right: The same image, but with correction for lens distortion. The curvature is minimized. 79
4.4 Illustrates the eye-in-hand robot control based on image coordinates. The opti- cal center of the image is marked with three concentric circles in red, green and blue. The object center is marked with a thick red circle at the intersection of the diagonals. 80
4.5 Shows the view from the 2D object detection camera when Agilus 2 is positioned in the initial position found using 3 D object detection. 82
4.6 A collection of different point clouds that illustrates the different viewpoints generated in the process of creating a training set. 85
4.7 Illustrates the pipeline used for 3D object detection. 85
4.8 Illustrates the virtual separation of the two work areas used when performing the 3D object detection routine 86
4.9 Shows the result from a 3D object detection process 87
4.10 Left: Time needed to detect keypoints in a test scene. Right: Time needed to extract descriptors from the detected keypoints 87
4.11 Left: Time needed to extract descriptor from the detected keypoints. Right: The total time needed to detect keypoints, extract descriptors from the test scene and match the descriptors with descriptors from a query image. 88
4.12 The query images used to detect the parts. From the left: Part A - top view, part A - bottom view, part B - bottom view, part B - top view 89
4.13 Shows the desired pose of the parts before assembly. Part A (right) is to be assembled into part B (left). 91
4.14 Orientation of part A detected at approximately 0 degrees (left) and -90 degrees (right). Each data point is the mean of 10 measurements. 91
4.15 Orientation of part B detected at approximately 0 degrees (left) and -90 degrees (right). Each data point is the mean of 10 or 20 measurements. 92
4.16 Illustrates the implemented object detection. 93
4.17 Successful detection of part A rotated approximately - 30 degrees and part B rotated approximately 180 degrees. 93
4.18 Shows the different applications that run in the ROS framework in order to perform the automated assembly task 94
4.19 Illustrates the sequence used to perform an automatic assembly of two parts. 95
4.20 The main window of the agilus_master_project application as displayed at launch. 97
4.23 Shows the user input section that is used to run the automated assembly sequence. 99
4.24 Camera positioned above part A using the position acquired from the 3 D system. 102 102
4.25 Gripper picking up part A at the refined position and orientation acquired from the 2D system. 102
4.26 Illustration of a successful assembly of part A into part B. 103
4.27 Left: Assembly operation conducted without correction for in-plane rotation offset between query images. Right: Another assembly operation with correction for in-plane rotation offset. 103

Terms and Abbreviations

Voxel - A three dimensional pixel with a given size in x, y and z direction.
LIDAR - Light detection and ranging. A sensor used to record distance.
CAD - Computer Aided Design. A tool used to model virtual objects.
SHOT - Unique Signature of Histograms. A local descriptor.
PFH - Point Feature Histogram. A local descriptor.
FPFH - Fast Point Feature Histogram. A local descriptor.
VFH - Viewpoint Feature Histogram. A global descriptor.
CVFH - Clustered Viewpoint Feature Histogram. A global descriptor.
ICP - Iterative Closest Point. A brute-force algorithm used for refined alignment.
RANSAC - Random Sample Consensus. A method used to match data points in two different data sets.

DoG - Difference-of-Gaussian. A function used to enhance image features using Gaussian kernels.

LoG - Laplacian-of-Gaussian. A detector method using Gaussian kernels.
DoH - Determinant-of-Hessian. A detector method using the Hessian matrix.
SIFT - Scale Invariant Feature Transform. A 2D keypoint detector and descriptor extractor.
SURF - Speeded-Up Robust Features. A 2D keypoint detector and descriptor extractor.
ORB - Oriented FAST and Rotated BRIEF. A 2D keypoint detector and descriptor extractor.
BRISK - Binary Robust Invariant Scalable Keypoints. A 2D keypoint detector and descriptor extractor.

FAST - Feature from Accelerated Segment Test. A 2D keypoint detector.
BRIEF - Binary Robust Independent Elementary Features. A 2D descriptor extractor.
AGAST - Adaptive and Generic Corner Detection based on the Accelerated Segment Test. A 2D keypoint detector.
Pose - A pose defines an objects orientation and position in operational space.

Materials and software used

Hardware

KUKA KR 6 R900 sixx (KR AGILUS) - Two six axis robotic manipulators.
Schunck PSH 22-1 - Linear pneumatic gripper.
Logitech C930e - USB web camera (1080p resolution) used for 2D computer vision.

Microsoft Kinect ${ }^{\text {TM }}$ One - RGB-D sensor used for 3D computer vision.
Intel NUC NUC5i5RYH - A mini computer used for the acquisition of 3D point clouds.

Software

Ubuntu 14.04-Operating system used for the development of this project.
QtCreator - Integrated Development Environment used for C++ software development.
CLion - Integrated Development Environment used for C++ software development.

Matlab - Numerical computing environment used for matrix verification and graph plotting.
Blender - Rendering tool used to create illustrations.

Point Cloud Library 1.7 - Open source C++ library used in 3D computer vision.
OpenCV 3.1-Open source C++ library used in 2D computer vision.

Robot Operating System - Software framework for robot system development.

Eigen3 - C++ library used for matrix calculations.

Chapter 1: Introduction

1.1 Background

The topic of this thesis is to investigate the viability of using a visual detection system consisting of both a traditional camera and a 3D camera. The long term goal of this work is to produce a robotic cell capable of automatic assembly of a wide variety of parts (within physical tooling limitations). Achieving this would increase the number of use cases where robotic assembly is viable, and provide industries that focus on low volume but highly versatile production a flexible automated solution.

In recent years, 3D camera technology has become commercially available through the Microsoft Kinect ${ }^{\text {TM }}$ camera. This is an inexpensive camera, and is not intended for industrial use. Throughout this thesis, we explore the viability of using such a sensor in an industrial application. Knowing this, the camera is used in this thesis as a fast and reliable way to achieve an initial position estimation for a part. The limitations of the sensor in terms of accuracy is dealt with using an additional sensor to detect the refined position of the part.

The long term goal of creating a robust and flexible robotic cell for assembly stems from the need to increase the flexibility of traditional automation in industry. Norwegian production industries are typically based on producing a low volume of parts, where each produced product has a high price. In addition to low volume, it is typical to create a variety of different versions of the same product. This increases the difficulty of automating production in a cost effective manner even more. Because of this a more dynamic and flexible automation solution is wanted. This thesis sets out to create a basis for a vision detection system used in such an application.

It was of great interest to develop the vision detection system in a way that allows expansion in terms of parts to be assembled, and provide a simple way of defining the object that is to be detected. The goal was to successfully detect and assemble given parts at random positions and orientations. The motivation to reach the goal was driven from thorough investigation and extensive testing of different approaches of object detection.

1.2 Problem description

An eye-in-hand camera is useful in order to gain good image information in robotic assembly tasks. Such a camera also has the benefit of being positionable and can be aimed at a given point. This will be combined with a stationary 3D camera in this task. The 3D camera is meant to give a rough, but reliable positioning of a given part, while the eye-in-hand camera is meant to give an accurate positioning. The system will be tested at the Department of Production and Quality Engineering laboratory.

1. Describe the kinematics of a robotic cell consisting of a fixed 3D camera and an eye-inhand 2D camera.
2. Create a system able to detect objects using an eye-in-hand 2D camera.
3. Create a system able to detect 3D models in a scene captured using a 3D camera.
4. Implement a system that utilizes both 2D and 3D computer vision to estimate an accurate position of a physical part.
5. Carry out a practical experiment where the object detection system is used for robotic assembly.

1.3 Thesis structure

This thesis is structured in the following way:
Chapter 1. Introduction - The background and motivation for this thesis is presented together with the problem description.

Chapter 2. Theory - The theory for all the technical aspects of this thesis is presented.
Chapter 3. Method - Methods used to perform tests and develop the different solutions is presented.

Chapter 4. Result - All test results and solutions are presented.

Chapter 5. Discussion - A discussion regarding the different solutions and test results obtained is made. Some personal thoughts regarding the different solutions are presented.

Chapter 6. Conclusion - The thesis work is concluded.

Chapter 2: Theory

2.1 Kinematics

Kinematics is defined as: The branch of mechanics that deals with pure motion, without reference to the masses or forces involved in it (dictionary.com, 2016). A more descriptive way of describing kinematics is the study of movement, position, velocity and acceleration. Using kinematics, one can create a mathematical model of links and joints, and describe the relation between rigid bodies in a model (Siciliano et al., 2010).

2.1.1 Orientation

The orientation of an object describes the objects rotation about a reference frame. Figure $2.1,2.2$ and 2.3 shows the three elementary rotations available in \mathbb{R}^{3} space.

Figure 2.1: Elementary rotation about the X axis.

Figure 2.2: Elementary rotation about the Y axis.

Figure 2.3: Elementary rotation about the Z axis.

There are multiple ways of describing a rotation. Among these are:

- Euler Angles
- Quaternions
- Angle Axis Description
- Rotation Matrix

A comprehensive description of the above mentioned rotation notations is available in Corke (2013). Equations 2.1, 2.2 and 2.3 shows the rotation matrices used to describe the elementary
rotations about the coordinate axes (Siciliano et al., 2010).

$$
\begin{align*}
& \boldsymbol{R}_{x}(\gamma)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right] \tag{2.1}\\
& \boldsymbol{R}_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \tag{2.2}\\
& \boldsymbol{R}_{z}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \tag{2.3}
\end{align*}
$$

2.1.2 Transformation

A transformation in kinematics, is a combination of change in both orientation (rotation) and translation (position). In the context of transformation, the rotation is often described using rotation matrices, and the translation is described using a column vector. The orientation and translation can be combined to a single matrix describing both aspects. This matrix is called the homogeneous transformation matrix. Equation 2.4 shows how the translation vector \boldsymbol{t}_{n}^{m} and the rotation matrix \boldsymbol{R}_{n}^{m} is combined to the homogeneous transformation matrix \boldsymbol{T}_{n}^{m} :

$$
\boldsymbol{T}_{n}^{m}=\left[\begin{array}{ccc}
\boldsymbol{R}_{n}^{m} & & \boldsymbol{t}_{n}^{m} \tag{2.4}\\
0 & 0 & 0
\end{array}\right]
$$

The homogeneous transformation matrix is a powerful tool because it fully describes the complete pose of an object in operational space. This matrix is commonly used in combination with the Denavit-Hartenberg convention to describe a systems forward kinematics, and to create numerical inverse kinematics solvers.

2.1.3 Denavit-Hartenberg convention

The Denavit-Hartenberg convention is a tool used in robotics to define the relation between the links that a robotic manipulator consists of. The Denavit-Hartenberg convention defines link i in connection with link $i-1$ in terms of rotations about and translations along the x and z-axes of the joint frame. The resulting table defines the robotic manipulators forward kinematics. The following is a simplified recipe for constructing a Denavit-Hartenberg table for a link chain as illustrated in Figure 2.4. A more comprehensive approach of defining the Denavit-Hartenberg table is described in Siciliano et al. (2010).

- Rotation about joint i is always about the z-axis of the corresponding joint frame. The rotation is denoted θ_{i}.
- Rotation about the x-axis is denoted α_{i} and refers to the next joint frame $i+1$.
- Translation a_{i} applies along the joint x-axis.
- Translation d_{i} applies along the joint z-axis.

Figure 2.4: Denavit-Hartenberg kinematic parameters (Siciliano et al., 2010).
Table 2.1 shows the connection between the values shown in figure 2.4 and the actual DenavitHartenberg table.

Link i	a_{i}	α_{i}	d_{i}	θ_{i}

Table 2.1: Link i in connection with link $i-1$.
Table 2.2 shows an example of a complete Denavit-Hartenberg table. This table shows the Denavit-Hartenberg parameters for a KUKA KR 6 R900 sixx (GmbH, 2016) robotic manipulator. This manipulator is illustrated in figure 2.5 .

Link	$a_{i}[\mathrm{~m}]$	$\alpha_{i}[\mathrm{rad}]$	$d_{i}[\mathrm{~m}]$	$\theta_{i}[\mathrm{rad}]$	Note
0	0	π	0	0	Rotate z - axis downwards
1	0.025	$\pi / 2$	-0.400	θ_{1}	
2	0.455	0	0	θ_{2}	
3	0.035	$\pi / 2$	0	θ_{3}	Offset: $\theta_{3}=\theta_{3}-\pi / 2$
4	0	$-\pi / 2$	-0.420	θ_{4}	
5	0	$\pi / 2$	0	θ_{5}	
6	0	0	-0.080	θ_{6}	

Table 2.2: Denavit-Hartenberg parameters of KUKA KR 6 R900 sixx.

Figure 2.5: Rotational directions about the joints of a KUKA KR 6 R900 sixx (GmbH, 2016).

2.1.4 Forward kinematics

Forward kinematics is one of the two basic problems in robotics: Given a set of joint values for a manipulator, what is the resulting position and orientation of the end effector? Thus, forward kinematics is a way of mathematically expressing the position and orientation of the end effector frame (manipulator pose) as a function of the joint values of the manipulator arm. For a typical open chain manipulator consisting of n links, the forward kinematics can be expressed as a resulting homogeneous transformation matrix from the following equation:

$$
\begin{equation*}
\boldsymbol{T}_{n}^{0}=\prod_{i=1}^{n} \boldsymbol{T}_{i}^{i-1}\left(\theta_{i}\right) \tag{2.5}
\end{equation*}
$$

Equation 2.5 establishes the functional relationship between the joint variables of the manipulator and the end effector position and orientation (Siciliano et al., 2010). This means that the forward kinematics problem can be calculated as long as the joint values of the manipulator are known.

2.1.5 Inverse kinematics

Inverse kinematic is the second basic problem in robotics: Given a target position and orientation of the manipulator end effector, what are the joint values? This problem is often seen as the opposite of the forward kinematics problem, and is usually harder to solve. What makes this problem harder to solve than forward kinematics is the fact that forward kinematics gives a singular solution for a given set of joint values. This is not the case in inverse kinematics, where a given pose (position and orientation) of the end effector might have unlimited different valid solutions.

There are several ways of solving the inverse kinematics problem. One might use a pure linear algebraic approach, geometric algebra or numerical solvers. Most numerical solvers are based on the differential kinematics of a system, which defines a relationship between the joint velocities and the corresponding end-effector linear and angular velocities.

2.1.6 2 D computer vision

In order to convert pixel coordinates from the 2D image matching process to 3 D coordinate that is useful in robotic applications, a mathematical model of the camera setup is used. One typical camera model is called the central-projection model and is commonly used in computer vision (Corke, 2013). This model of a camera places the image plane in front of the camera at a depth $z=f$, which results in a non-inverted image. As seen in Figure 2.6, the wanted position in space $P=(X, Y, Z)$ is projected on the image plane at point $\boldsymbol{p}=(x, y)$ by:

$$
\begin{equation*}
x=f \frac{X}{Z}, y=f \frac{Y}{Z} \tag{2.6}
\end{equation*}
$$

Figure 2.6: Central-projection camera model. Image from Corke (2013).
This is a perspective projection, and it gives us a simple connection between the pixelcoordinates of the object in the image $\boldsymbol{p}=(u, v)$, the image coordinates $\boldsymbol{p}=(x, y)$ and the actual position in space $P=(X, Y, Z)$. The camera parameter matrix \boldsymbol{K} is expressed:

$$
\boldsymbol{K}=\left(\begin{array}{ccc}
\frac{f}{\rho_{w}} & 0 & u_{0} \tag{2.7}\\
0 & \frac{f}{\rho_{h}} & v_{0} \\
0 & 0 & 1
\end{array}\right)
$$

where f is the focal length, $\rho_{w}=\rho_{h}$ is the pixel size and u_{0} and v_{0} is the optical center in pixels. The conversion from pixel coordinate $\boldsymbol{p}=(u, v)$ to point in space $P=(X, Y, Z)$ is done using the following:

$$
\boldsymbol{p}=\binom{u}{v}, \tilde{\boldsymbol{p}}=\left(\begin{array}{c}
u \tag{2.8}\\
v \\
1
\end{array}\right)
$$

The normalized image coordinate vector \tilde{s} is defined as:

$$
\tilde{s}=Z\left(\begin{array}{l}
x \tag{2.9}\\
y \\
1
\end{array}\right)
$$

The relation between the pixel coordinate $\tilde{\boldsymbol{p}}$ and the normalized image coordinate $\tilde{\boldsymbol{s}}$ is:

$$
\begin{gather*}
\tilde{p}=\boldsymbol{K} \tilde{s} \tag{2.10}\\
\tilde{s}=\boldsymbol{K}^{-1} \tilde{\boldsymbol{p}} \tag{2.11}
\end{gather*}
$$

2.2 3D computer vision

3D computer vision is the process in which a 3D image (often referred to as a point cloud) containing pixels with positional values (x, y and z) is used as a tool, allowing a computer to interpret reality. The main difference between 3D and 2D computer vision is that a depth sensor is used for 3D in stead of a regular camera. The 3D image produced by a depth sensor is dimensionally correct, and represent each point in the cloud with a position in relation to the sensors optical reference frame. This technology was, for a long time, not available on the consumer market. In recent years, this technology has been made available to consumers by Microsoft and their depth sensor that is used as a video game input device.
Depth sensors are used in a wide variety of different applications ranging from video game input to environmental mapping. Typical industrial applications for depth sensors and 3D computer vision is object detection and quality control.

There are multiple different types of depth sensors, but the majority operates based on either the principle of time of flight or structured light. Microsoft's first Kinect ${ }^{\text {TM }}$ sensor operated on the principle of structured light, but their newest version (Microsoft Kinect ${ }^{\mathrm{TM}}$ One) operates on the time of flight principle. These operating principles are explained in section 2.2.1 and 2.2.2.

2.2.1 Time of flight

Time of flight cameras record the depth of a scene using the time of flight principle. In the depth measuring operation, the depth of a pixel in the scene corresponds with the flight time of light. This technology is used in many other applications like sonar, spectrometry and spectroscopy. Advances in hardware technology now allows this technology to be used for close range applications where the detectable delay between electrical signals is in the time order of 100 picoseconds (Kadambi et al., 2014).

Some time of flight depth sensors operate by measuring the depth of one pixel at the time, scanning the whole scene. This is the typical operating principle of a light detecting and ranging (LIDAR) sensor. 3D cameras use a different operating principle in order to achieve a higher data acquisition rate and, as a result, higher frames rate of the camera (Kadambi et al., 2014). Figure 2.7 illustrates the working principle of Microsoft's second generation Kinect ${ }^{\text {TM }}$ sensor.

Figure 2.7: The working principle of a Microsoft Kinect ${ }^{\text {TM }}$ One sensor.

The camera operate by modulating a light source periodically on the form:

$$
e(t)=1+s_{0} \cos \omega t
$$

The light reflected by an object assumes the form:

$$
r(t)=\rho\left(1+s_{0} \cos \left(\omega\left(t-\frac{2 d}{c}\right)\right)\right.
$$

where the fraction $\frac{2 d}{c}$ contains the depth information for the pixel. The phase between the emitted and reflected light corresponds to the depth, and is calculating using cross-correlation (Kadambi et al., 2014).

2.2.2 Structured light

Structured light cameras work by projecting a known pattern onto a subject of interest. The distortion in the projected pattern is then used to calculate the depth information for each pixel in the scene. These systems operate using regular high resolution cameras, and thus have the ability for a high spatial resolution. Figure 2.8 illustrates the working principle of a structured light system.

Figure 2.8: The working principle of a structured light camera. Figure from Gaskell (2014).

2.3 Processing point clouds

2.3.1 Passthrough filtering

A passthrough filter is used to section out a part of the point cloud. Usually this is done to remove unwanted parts of the scene. A typical implementation of a passthrough filter lets you set minimum and maximum limits in each axis. All the points that is contained within these limits are kept, the rest are discarded. The limits are set in relation to a reference coordinate frame. This frame is, in most cases, the optical frame of the depth sensor.

Passthrough filtering is often the first step when processing a point cloud. This is because it often drastically reduces the amount of data necessary to process. Figure 2.9 and 2.10 shows the result of a passthrough filter operation.

Figure 2.9: Point cloud before passthrough filtering.

Figure 2.10: Point cloud after passthrough filtering.

2.3.2 Voxel grid filtering

Voxel grid filtering is one way of down-sampling a point cloud. Down-sampling is done to reduce the number of data points and, as a result, the processing time is reduced. In addition, a down-sampling process often results in a uniform point cloud, where the density of points is constant trough out the cloud. A uniform cloud is important when estimating descriptors, since the descriptor contains data about a group of points.

This filter works by virtually sectioning the cloud into voxels with definable size. The average position for all points contained within a voxel is calculated and a new point is created at the resulting position. All the original points are discarded and the only point left within a voxel is the newly created average point.

The number of points left after a voxel grid operation is defined by the voxel size defined before the operation. A voxel is defined by its width, height and depth. Figure 2.11 and 2.12 shows the result of a voxel grid filter operation.

Figure 2.11: Point cloud before voxel grid filtering.

Figure 2.12: Point cloud after voxel grid filtering.

2.3.3 Bilateral filtering

A bilateral filter is a filter commonly used in computer graphics in order to smooth noise while still preserving edge discontinuities. A version of this filter transposed to work on 3D point clouds is often used in 3D computer vision for just the same purpose. In addition, the bilateral filter used in 3D computer vision also serves the purpose of filling holes generated during the depth measuring process of the sensor (Kadambi et al., 2014). Holes are quite common in the output of a depth sensor and is caused by missing depth data from the sensor. Equation 2.12 shows the formula used in bilateral filtering of 3D point clouds.

$$
\begin{equation*}
D_{f}^{p}=\frac{H\left(C_{m a p}, \Omega^{p}\right)}{k^{p}} \sum_{q \in \Omega^{p}} \hat{D}^{q} f(p, q) h\left(\left\|I^{p}-I^{q}\right\|\right) \tag{2.12}
\end{equation*}
$$

Figure 2.13 shows the process of bilateral filtering of a point cloud. The process goes from left to right with a noisy input point cloud filtered to a less noisy output while still preserving sharp edges.

Figure 2.13: Input cloud to the left is noisy, but has a sharp edge. The filtered output (to the right) preserves the edge while smoothing the point cloud. Figure from (Kadambi et al., 2014).

2.3.4 Outlier removal filtering

Outlier removal filters is used to remove, as the name suggest, outliers. Outliers are points that are not considered as part of an object. Figure 2.14 shows a scene with some outliers (floating points above the table with objects). These outliers have been removed in Figure 2.15 using an outlier removal filter.

Figure 2.14: Point cloud before outlier removal filtering.

Figure 2.15: Point cloud after outlier removal filtering.

A typical implementation of a outlier removal filter calculates the average distance to each points k nearest neighbours. The resulting data set is assumed to be Gaussian distributed with a mean and standard deviation. All points with a mean distance to its k nearest neighbours greater than the mean and standard deviation obtained on the complete data set are considered to be outliers and removed from the point cloud (PCL, e).

2.3.5 Model segmentation

Model segmentation is the process of separating a part of a point cloud scene. This is done using random sample consensus (RANSAC) in conjunction with a mathematical model of the object to segment. The random sample consensus approach uses parameters for the mathematical model set by the user to fit the largest possible number of points and marks them as inliers (inliers are points that are considered to be part of the model). These points can then be extracted to an individual point cloud, or removed.

A typical application for model segmentation is using a model of a plane in order to remove large unwanted features from a scene like a roof, floor, walls or a table surface. Doing this makes it possible to use cluster extraction in order to separate all parts located on a large surface.

Figure 2.16 shows a typical scene consisting of three objects placed on a table. The table is detected in Figure 2.17 using planar model segmentation (the plane inliers are marked with the colour red). Figure 2.18 shows the scene when the table surface have been segmented and removed.

Figure 2.16: A scene with multiple objects placed on a table.

Figure 2.17: The table surface is detected using random sample consensus.

Figure 2.18: The scene after removing the segmented table.

2.3.6 Cluster extraction

Cluster extraction when working with 3 D point clouds is the process of separating different parts of a scene into individual point clouds. A common application for this is object detection, where multiple objects might be present in a scene. By separating the different objects the task of recognizing each object is simplified. Figure 2.19 shows a scene containing three individual objects. Note that the table in this scene have been removed using model segmentation in order to better illustrate cluster extraction. Figure 2.20 shows the result of the cluster extraction where each object have been given a distinct colour for illustrative purposes.

Figure 2.19: A scene with multiple objects placed on a table before cluster extraction.

Figure 2.20: Scene after cluster extraction. Note, the table in the scene was removed using model segmentation before the cluster extraction process.

The cluster extraction process works by first defining a random point as part of a cluster. A virtual sphere is used to search for neighbouring points within a given distance. All points
within this sphere are also considered to be part of the same cluster. This is repeated for all newly added points until there are no new points found. Next, a new point, not contained in the first cluster, is defined as a part of a new cluster. The process is repeated for all points in the data set. The final step is to reduce the number of clusters caused by noise. This is done by limiting the minimum and maximum amount of points allowed in a cluster. The resulting clusters are separated into individual point clouds (PCL, c).

Due to the ability to limit the minimum amount of points in a cluster. Cluster extraction also serves the purpose of removing outliers.

2.4 Point cloud features

2.4.1 Normal estimation

The problem of estimating surface normals for a point cloud can be approximated by the problem of estimating the normal of a plane tangent to the surface. This problem is reduced to an analysis of a covariance matrix created from a points nearest neighbours where the covariance matrix's eigenvectors and eigenvalues are the point of interest. This is called a Principal Component Analysis (PCL, b).

The covariance matrix \mathcal{C} is constructed for each point \boldsymbol{p}_{i} as shown in equation 2.13.

$$
\begin{equation*}
\mathcal{C}=\frac{1}{k} \sum_{i=1}^{k} \cdot\left(\boldsymbol{p}_{i}-\overline{\boldsymbol{p}}\right) \cdot\left(\boldsymbol{p}_{i}-\overline{\boldsymbol{p}}\right)^{T}, \quad \mathcal{C} \cdot \overrightarrow{\boldsymbol{v}_{j}}=\lambda_{j} \cdot \overrightarrow{\boldsymbol{v}_{j}}, \quad j \in\{0,1,2\} \tag{2.13}
\end{equation*}
$$

The sign value of the normal vector resulting from the principal component analysis is ambiguous, thus further calculations are needed. This is done by orienting all the surface normals towards the viewpoint \boldsymbol{v}_{p} of the point cloud. The surface normal $\overrightarrow{\boldsymbol{n}}_{i}$ is oriented towards the viewpoint when the following equation is satisfied:

$$
\begin{equation*}
\overrightarrow{\boldsymbol{n}_{i}} \cdot\left(\boldsymbol{v}_{p}-\boldsymbol{p}_{i}\right)>0 \tag{2.14}
\end{equation*}
$$

Figure 2.21 and 2.22 shows the result of a normal estimation on a scene.

Figure 2.21: A scene with multiple objects placed on a table.

Figure 2.22: Shows the scene with the corresponding surface normals.

2.4.2 Keypoint selection

Keypoints in 3D computer vision serves the same purpose as in traditional computer vision. The total number of points is reduced to only the ones that contain the most information. The selection of good keypoints is critical to achieve well performing object detection and registration when working with point clouds. This is because most features calculated for the point cloud are based on keypoints, and not the full data set. Features are descriptive properties that are used to identify a particular region or area of a point cloud.

The most commonly used keypoint detectors are:

- Harris3D (Harris and Stephens, 1988)
- SIFT3D (Rusu and Cousins, 2011)
- SUSAN (Smith and Brady, 1997)
- ISS3D (Zhong, 2009)

A study conducted by Filipe and Alexandre (2014) set out to compare these 3D keypoints detectors and concluded that SIFT3D and ISS3D are the most stable keypoint selectors based on repeatability.

The Scale Invariant Feature Transform (SIFT) keypoint detector was proposed by Lowe (2004). This keypoint detector is described in detail in section 2.6.1. The modified algorithm used for SIFT on 3D data sets was presented by Rusu and Cousins (2011). The most notable difference between the two algorithms are that SIFT3D uses a 3D version of the Hessian to select interest points, and that the intensity of a pixel is changed to the principal curvature of a given point.

2.4.3 Local descriptor estimation

A local descriptor is an object that describes the local geometrical area for one single point in a point cloud. This type of descriptor is typically calculated for each point in a 3D point cloud, or for a selected number of points like keypoints. The goal of a local descriptor is to create a description of a point and its surroundings that is not limited to the data contained in the point cloud (which is only a points cartesian coordinate x, y and z). Local descriptors were specifically created for tasks like registration (see section 2.5.4) and object detection (see section 2.5.5).

There are multiple ways of creating a description based on a points geometrical surroundings. These methods use different mathematical principle to encode a description of a point.

Notable local descriptors are

- Point Feature Histogram (Rusu, 2009)
- Fast Point Feature Histogram (Rusu et al., 2009)
- Signature of Histogram of Orientation (Tombari et al., 2010a)
- 3-D Shape Context (Frome et al., 2004)
- Spin Images (Johnson, 1997)
- Unique Shape Context (Tombari et al., 2010b)

The operating principle of the three most commonly used local descriptors is explained below.

Point feature histogram

The Point Feature Histogram (Rusu, 2009) captures the surrounding geometrical information by analyzing the difference between the normals of the points in a surrounding area of a selected point. Firstly, points within the same vicinity are paired. Then a fixed coordinate system is calculated based on the normals for each point pair. The fixed coordinate frame is used as a reference to encode the difference between the normals in the three angular values α, ϕ and θ.

Figure 2.23: Shows how a point p_{q} is paired with the neighbouring $p_{k n}$ points. Image from Rusu (2009).

Figure 2.23 shows how a point p_{q} is paired to the neighbouring $p_{k n}$ points. Equation 2.15 shows how the reference frame uvw used to encode the angular differences is calculated. This is also illustrated in Figure 2.24

$$
\begin{equation*}
u=n_{s}, \quad v=u \times \frac{p_{t}-p_{s}}{\left\|p_{t}-p_{s}\right\|_{2}}, \quad w=u \times v \tag{2.15}
\end{equation*}
$$

Figure 2.24: Illustrates two paired points and the fixed reference frame uvw. Image from Rusu (2009).

The angular values α, ϕ and θ are calculated using the following equations.

$$
\begin{equation*}
\alpha=v \cdot n_{t}, \quad \phi=u \cdot \frac{p_{t}-p_{s}}{\left\|p_{t}-p_{s}\right\|}, \quad \theta=\arctan \left(w \cdot n_{t}, u \cdot n_{t}\right) \tag{2.16}
\end{equation*}
$$

For a given point cloud with n points and k number of neighbours used when pairing, the computational complexity for this descriptor is $n k^{2}$.

Fast point feature histogram

The Fast Point Feature Histogram (Rusu et al., 2009) is a simplification of the Point Feature Histogram. It is simplified in a way that reduces the computational complexity of a point cloud with n points and k neighbours considered from $n k^{2}$ to $n k$. Because of this, the FPFH descriptor requires less computational time, allowing it to be used for real-time applications.

The mathematical concept used for the FPFH descriptor is the same as for the PFH descriptor. There is however a big difference in how the final result is prepared. The simplification is done after point pairs are created and the values α, ϕ and θ are calculated. Next, all k neighbouring points are re-determined and the initially calculated α, ϕ and θ are weighted by the distance ω_{k} between the query point p_{q} and the neighbouring points p_{k}. The initially calculated α, ϕ and θ are called the Simplified Point Feature Histogram (SPFH) resulting in the following formula:

$$
\begin{equation*}
\operatorname{FPFH}\left(p_{q}\right)=\operatorname{SPF} H\left(p_{q}\right)+\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\omega_{k}} \cdot \operatorname{SPF} H\left(p_{k}\right) \tag{2.17}
\end{equation*}
$$

For a query point p_{q} and its neighbouring point p_{k} with k neighbouring points and a distance ω_{k} between the points.

Figure 2.25: Shows the influence region for a query point using a Fast Point Feature Histogram. Image from Rusu (2009).

By comparing Figure 2.23 to Figure 2.25 a clear difference is apparent. The FPFH descriptor has a much larger influence region, but each point has, in general, less connections than a query point using the Point Feature Histogram descriptor.

Unique signature of histograms

The Unique Signature of Histograms (SHOT) descriptor (Tombari et al., 2010a) differs from both PFH and FPFH. Both PFH and FPFH utilizes the surface normal to encode data describing the geometrical area surrounding a point. The SHOT descriptor uses a different approach. Here a virtual sphere is created around each query point. For each query point, the surrounding points location within the virtual sphere is used to encode the topological traits in the area. The virtual sphere used is shown in Figure 2.26.

Figure 2.26: Shows the virtual sphere used to encode topological data for the Signature of Histogram of Orientations. Image from Tombari et al. (2010a).

The SHOT method focuses on developing a reliable way of creating a repeatable reference frame. This frame is used to encode data regarding a query points neighbouring points (those contained in the virtual sphere). This reference frame is created using the same mathematical principle as the one used for Normal Estimation (see section 2.4.1), using eigenvector decomposition of a covariance matrix M created by the k nearest neighbouring points p_{i} surrounding the query point p. This is shown in equation 2.18

$$
\begin{equation*}
M=\frac{1}{k} \sum_{i=0}^{k}\left(p_{i}-\hat{p}\right)\left(p_{i}-\hat{p}\right)^{T}, \quad \hat{p}=\frac{1}{k} \sum_{i=0}^{k} p_{i} \tag{2.18}
\end{equation*}
$$

This equation is modified slightly in order to achieve a weighting of points based on distance. This is done to improve robustness and repeatability in presence of clutter. This change is shown in equation 2.19

$$
\begin{equation*}
M=\frac{1}{\sum_{i: d_{i} \leq R}\left(R-d_{i}\right)} \sum_{i: d_{1} \leq R}\left(R-d_{i}\right)\left(p_{i}-p\right)\left(p_{i}-p\right)^{T} \tag{2.19}
\end{equation*}
$$

Where d_{i} is the distance between two points $\left\|p_{i}-p\right\|_{2}$.

Next, the sign of the coordinate axes are calculated in a way to achieve high repeatability. The following shows how this is done for the x axis.

$$
\begin{gather*}
S_{x}^{+} \doteq\left\{i: d_{i} \leq R \wedge\left(p_{i}-p\right) \cdot x^{+} \geq 0\right\} \tag{2.20}\\
S_{x}^{-} \doteq\left\{i: d_{i} \leq R \wedge\left(p_{i}-p\right) \cdot x^{-}>0\right\} \tag{2.21}\\
x= \begin{cases}x^{+}, & \left|S_{x}^{+}\right| \geq\left|S_{x}^{-}\right| \\
x^{-}, & \text {otherwise }\end{cases} \tag{2.22}
\end{gather*}
$$

The z axis is calculated using the same equations as for the x axis, and the final axis (y) is obtained by: $z \times x$

2.4.4 Global descriptor estimation

A global descriptor is, in many ways, similar to a local descriptor. The main difference is that while a local descriptor describes a single point and the local area around it, a global descriptor describes a cluster of points. Because of this, the global descriptor is highly suitable for applications like object detection and object classification, where a description of a full object is useful.

Similar to the local descriptor, the purpose of the global descriptor is to describe an area with more detail than what is available in the point cloud (x, y and z coordinates). Multiple different implementations of global descriptors are available, and they use different operating principles.

Notable global descriptors are

- Viewpoint Feature Histogram (Rusu et al., 2010)
- Clustered Viewpoint Feature Histogram (Aldoma et al., 2011)
- Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram (Aldoma et al., 2012b)
- Ensemble of Shape Functions (Wohlkinger and Vincze, 2011)
- Global Radius-based Surface Descriptor (Marton et al., 2011)

The operating principle of the two most commonly used global descriptors is explained in the following two sections.

Viewpoint feature histogram

The Viewpoint Feature Histogram (Rusu et al., 2010) describes a cluster of points using a combination of an extended Fast Point Feature Histogram component and a viewpoint direction component. The extended Fast Point Feature Histogram is a modified version of the Fast Point Feature Histogram local descriptor that allows the descriptor to be estimated for an
entire object cluster. This is done by creating point pairs between the surface points and the centroid of the object. The encoded variables for this global version is the same as in the local version (α, ϕ and θ). The same equations are used:

$$
\begin{equation*}
\alpha=v \cdot n_{t}, \quad \phi=u \cdot \frac{p_{t}-p_{s}}{\left\|p_{t}-p_{s}\right\|}, \quad \theta=\arctan \left(w \cdot n_{t}, u \cdot n_{t}\right) \tag{2.23}
\end{equation*}
$$

Figure 2.27 illustrates the point pairs between the surface points and the objects centroid.

Figure 2.27: Shows the pairing of points between the clusters surface points and the clusters centroid \boldsymbol{c}. Figure from Rusu et al. (2010).

The second component in the Viewpoint Feature Histogram is the viewpoint direction component. This component is calculated as the relative angles between each surface normal for the cluster and the central viewpoint direction. This is illustrated in Figure 2.28.

Figure 2.28: Shows the central viewpoint direction $\boldsymbol{v}_{\boldsymbol{p}}$ used to calculate the relative angles between each surface normal and it. Figure from Rusu et al. (2010).

These two components are combined to a single histogram containing both the viewpoint data (viewpoint direction component) and the surface normal data (extended fast point feature histogram component). A complete Viewpoint Feature Histogram is shown in Figure 2.29.

Figure 2.29: Shows a complete VFH histogram. The two separate component are marked. Figure from Rusu et al. (2010).

Clustered viewpoint feature histogram

The Clustered Viewpoint Feature Histogram (Aldoma et al., 2011) builds on the Viewpoint Feature Histogram in order to capture a higher level of detail. This is done by dividing the object cluster into multiple stable and smooth regions. The separation is done using region growing segmentation. For each region, a separate Viewpoint Feature Histogram is calculated. Figure 2.30 shows the result of the region growing on a typical household object.

Figure 2.30: The different regions resulting from a region growing is illustrated with different colours. Figure from Aldoma et al. (2011).

The benefits of using Clustered Viewpoint Feature Histogram (CVFH) instead of Viewpoint Feature Histogram (VFH) is that the CVFH descriptor is more robust to occlusion than the more basic VFH descriptor. This is because the CVFH will allow detection of an object as long as one of the regions of the object is visible to the depth sensor. Note that in order for this descriptor to function properly, it is essential that the matching model and the object cluster are quite similar. This is important in order to assure that the region growing process used for this descriptor produces the same regions for both the object cluster and the model point cloud. If the process of region growing results in different regions for the two point clouds, the descriptors can not be compared.

2.4.5 Creating training sets

A typical 3D object detection setup usually consists of a depth sensor mounted on a known location. The output of the depth sensor produces a scene from the viewpoint of the camera. This means that three dimensional objects is not fully visible to the camera. Figure 2.31 illustrates this effect.

Figure 2.31: Shows the point cloud of a box from the view port of the depth sensor (right) and from the side (left) to illustrate the missing part of the model.

The alignment method used for 3D object detection uses a brute force approach (this is explained in section 2.5.2). Because of this, the model used for matching should be as close as possible to the object captured using the depth sensor. This means that only the parts of a model visible from a specific viewpoint should be included in the model. This can be achieved using two main approaches.

The first method is using a rotating pan-tilt platform and a depth sensor at a known location. The object is placed on the platform and several scenes are captured from multiple different viewpoints (the object is rotated about all three axes). Figure 2.32 shows a typical physical setup. This approach requires some post processing of the scene after capture in order to isolate the model in the scene. The isolated model is stored along with the orientation of the part for each capture.

Figure 2.32: Illustrates a typical setup for creating a training set based on a physical model. Image from (PCL, a).

The second method is a virtual process that simulates the physical approach. The object that is to be found in the scene is modelled using CAD (computer aided design). This model is then rendered to a point cloud using a virtual camera. A typical approach places the model in the center of a tessellated sphere where the model is rendered to a point cloud with the virtual camera placed at the intersecting points of the faces of the tessellated sphere. Figure 2.33 illustrates the position of the virtual camera in relation to the object. The position of the camera for each rendered point cloud is stored along side with the point cloud rendering of the model.

Figure 2.33: Illustrates the virtual position of the model and the camera when rendering a model from different view ports. Image from (ROBOTICA, 2015).

Both the physical and virtual method results in the same output, which is a set of point clouds of the object from different viewpoints with corresponding orientation data for each point cloud. In addition to this, it is typical to calculate a complete set of features for each point cloud (features include local keypoints, local descriptors, global descriptors and surface normals). This reduces the processing time required for the actual object detection pipeline later on. The resulting files are saved to disk for future use. A complete training set will contain multiple point clouds with corresponding:

- Object pose
- Surface normals
- Local descriptors
- Global descriptor

2.5 Aligning point clouds

2.5.1 Pipelines

A pipeline in the context of 3D computer vision is a suggested sequence of operations used to fulfill a particular goal. Typical goals for 3D computer vision is object detection, registration and object classification. Pipelines are usually divided into two different categories: global and local. The separation is done based on the type of descriptors used (local or global).

It is important to note that it is fully possible to use both local and global pipelines for object detection, whereas registration is typically done using a local pipeline. In addition, it is possible to use different parts of both types of pipeline in combination (an example of this is using global descriptors for object matching, and local descriptors for initial alignment).

The versions of both pipelines described in the sections below were originally presented by Aldoma et al. (2012a). Note that if the goal is 3D object detection, one additional step not included in the model is required. This is the creation of a training set (described in section 2.4.5).

Local pipeline

Figure 2.34 shows a graphical representation of a typical local pipeline.

Figure 2.34: Illustrates a typical pipeline using local descriptors.

The following is a short description of the different steps in the local pipeline.

1. Keypoint Extraction - Keypoints are selected for both the source point cloud and the target point cloud.
2. Description - Local descriptors are calculated for all keypoints in both the source and target point cloud.
3. Matching - The descriptors for the source and target point clouds are matched, creating correspondences. Correspondences are point pairs between the source and target point cloud, effectively matching regions from the source point cloud with regions in the target cloud.
4. Correspondence Grouping - This step is only used for object detection. The correspondences found in the previous step are grouped based on geometric constraints. This
is done to group all correspondences that applies for one particular object. This step is essential when using the local pipeline for object detection.
5. Initial Alignment - A rigid transform between the point pairs contained in the correspondences is estimated. This is typically done using a Random Sample Consensus approach (RANSAC).
6. Refined Alignment - The alignment between the source and target point cloud is refined using a brute force approach (Iterative Closest Point). The output from this step is the final transformation between the source and the target point cloud.
7. Hypothesis Verification - This step is not always necessary and mainly used when the goal is to detect objects in cluttered or heavily occluded scenes. This is an algorithm that applies geometrical constraints to the positive matches between the source and target cloud, minimizing the number of false positives.

Global pipeline

Figure 2.35 shows a graphical representation of a typical global pipeline.

Figure 2.35: Illustrates a typical pipeline using global descriptors.

The following is a short description of the different steps in the global pipeline.

1. Segmentation \& Cluster Extraction - The scene is segmented and clusters are extracted in order to isolate one or more object clusters.
2. Description - A global descriptor is calculated for both the object cluster (source point cloud) and for all models in the training set (target point cloud).
3. Matching - The global descriptor from the source point cloud is matched to the descriptors of the training set. This step selects the model from the training set that matches the object point cloud the best.
4. Initial Alignment - This step is the same for both the local and global pipeline. A rigid transform between the point pairs contained in the correspondences is estimated. This is typically done using a Random Sample Consensus approach (RANSAC).
5. Refined Alignment - This step is the same for both the local and global pipeline. The alignment between the source and target point cloud is refined using a brute force approach (Iterative Closest Point). The output from this step is the final transformation between the source and the target point cloud.
6. Hypothesis Verification - This step is the same for both the local and global pipeline, and is mostly used for applications where the scene is cluttered or heavily occluded. This is an algorithm that applies geometrical constraints to the positive matches between the source and target cloud, minimizing the number of false positives.

2.5.2 Iterative closest point

The Iterative Closest Point (ICP) algorithm is an iterative method for registration of two sets of points. The registration is done by minimizing the distance between corresponding points. This can be done using different mathematical approaches. A popular method, presented by Arun et al. (1987) uses singular value decomposition to minimize the error in rotation \boldsymbol{R} and translation \boldsymbol{T} between two sets of points. The problem that ICP set out to solve is described in Arun et al. (1987) as follows:

Given a two set of 3 D points $\left\{p_{i}\right\} ; i=1,2, \cdots, N$ where p_{i} is considered as 3×1 column vector. The point set is modeled as a rigid object with a rotation \boldsymbol{R}, a translation \boldsymbol{T} and a noise vector N_{i} :

$$
\begin{equation*}
p_{i}^{\prime}=\boldsymbol{R} \boldsymbol{p}_{i}+\boldsymbol{T}+N_{i} \tag{2.24}
\end{equation*}
$$

The problem of minimizing the rotation \boldsymbol{R} and translation \boldsymbol{T} between the two sets is expressed as:

$$
\begin{equation*}
\Sigma^{2}=\sum_{i=1}^{N}\left\|p_{i}^{\prime}-\left(\boldsymbol{R} \boldsymbol{p}_{i}+\boldsymbol{T}\right)\right\|^{2} \tag{2.25}
\end{equation*}
$$

The least square solution is when the two sets of 3D points have the same centroid. This allows for a simplification of the original problem to:

$$
\begin{equation*}
\Sigma^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{q}_{i}-\boldsymbol{R} \boldsymbol{q}_{i}\right\|^{2} \tag{2.26}
\end{equation*}
$$

Where \boldsymbol{q}_{i} is $p_{i}-p$ because the least square solution is when the two sets of points have the same centroid. This reduces the original problem to only find \boldsymbol{R} to minimize Σ^{2}. The translation \boldsymbol{T} can then be found using:

$$
\begin{equation*}
\boldsymbol{T}=p^{\prime}-\boldsymbol{R} \boldsymbol{p} \tag{2.27}
\end{equation*}
$$

The iterative loop of an ICP algorithm can be summed up to the following steps:

1. Select point correspondences between the two data sets.
2. Minimize the rotation \boldsymbol{R} and translation \boldsymbol{T}.
3. Iterate 1. and 2 . until the error Σ^{2} is within a user set threshold.

The ICP algorithm is commonly utilized as a final step when aligning two sets of point clouds. An initial, less accurate alignment is calculated first, then used as the start point for the iterative loop. This is done to reduce the number of ICP iterations.

Figure 2.36 shows two point clouds before and after Iterative Closest Point alignment.

Figure 2.36: Illustrates two point separate point clouds (red and green) with correspondences (drawn as a line between the points of the two clouds). The right most figure is a result of the ICP algorithm. Figure from PCL (d).

2.5.3 Initial alignment

Initial alignment is done using local descriptor matching. This process is similar to the ICP approac. The main difference is that this step is utilized as an initial alignment, and is not meant to be highly accurate. Descriptor matching uses correspondences between the key points of a source and target point cloud to estimate a rigid transform (rotation \boldsymbol{R} and translation \boldsymbol{t}). This differs from the ICP method, since the ICP method estimates a rigid transform based on all points in the two point clouds. The number of correspondences is reduced using methods for bad correspondences rejection.
A typical descriptor matcher estimates the rigid transform between two point clouds based on the Random Sample Consensus principle.

2.5.4 Registration

Registration is a broad term in the context of 3D computer vision. It refers to the action of aligning two point clouds. The term is typically used when the goal of an alignment is to build a model using multiple point clouds, like mapping a room. This is commonly done using an implementation of some variant of the local pipeline (see section 2.5.1). Figure 2.37 shows a typical local pipeline applied to the registration task. This process takes two inputs, point cloud A and point cloud B, and returns a single output: refined alignment. The refined alignment represent a transformation \boldsymbol{T}_{A}^{B} applied to point cloud B in order to register it with point cloud A.

$$
\boldsymbol{B} \text { registered to } \boldsymbol{A}=\boldsymbol{B} \times \boldsymbol{T}_{A}^{B}
$$

Pairwise registration

Figure 2.37: A typical local pipeline applied to the registration task.

Figure 2.39 shows the result of registration of multiple point clouds to build a model of a room (the multiple point clouds combined to the full model is shown in Figure 2.38).

Figure 2.38: Multiple scenes of the same room taken from different viewpoints. Figure from Rusu (2009).

Figure 2.39: Multiple scenes registered to form a complete model of a room. Image from Rusu (2009).

2.5.5 Object detection

Object detection is the act of aligning a model of some object to a section of a scene. The model used for alignment is selected from a previously created training set. The goal of an object detection procedure is to identify the objects present in a scene, and estimate the pose of the object (both orientation and position). In the context of 3D computer vision, this is done by acquiring the correct model from a training set, and register the model to the object located in the scene. This task is preferably done using the global pipeline, since global descriptors contain data describing the complete object cluster (in other words, the task of matching a object cluster to a training model is simpler to fulfill using global descriptors). Figure 2.40 shows a typical global pipeline applied to the object detection task.

Figure 2.41 shows a scene containing multiple object. The result from a object detection on this scene is shown in Figure 2.42 where the training set model is registered onto the original scene, estimating the objects position and orientation.

Figure 2.40: A typical global pipeline applied to the object detection task.

Figure 2.41: A scene with multiple objects placed on a table.

Figure 2.42: A model from a training set is registered onto a detected object, estimating its position and orientation.

2.6 2D computer vision

Computer vision concerns the science and technology of making machines able to see and automatically process visual data (sensed images) in the surrounding environment to recognize objects, track and recover their shape and spatial layout (Cipolla et al., 2010). The goal is to make useful decisions about real physical objects and scenes based on sensed images, as defined by Shapiro and Stockman (2001). Furthermore, Forsyth and Ponce (2003) describes computer vision as the act of extracting descriptions of the world from pictures or sequences of pictures.

The following chapter focuses on algorithms related to object recognition and explains the underlying mathematics and methods developed for different types of keypoint detectors, descriptor extractors and descriptor matching between images.

2.6.1 Scale invariant feature transform

Scale Invariant Feature Transform (SIFT) is the classic approach to image matching. It is considered to be the original detector and descriptor, inspiring development of several alternatives later on. It consists of four major stages of computation as stated in Lowe (2004):

1. Scale-space extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint descriptor

Scale-space extrema detection

Detection of the scale-space of an image is defined from the function, $L(x, y, \sigma)$. This function is produced from the convolution of a variable-scale Gaussian, $G(x, y, \sigma)$, with an input image, $I(x, y)$, and is expressed as:

$$
\begin{equation*}
L(x, y, \sigma)=G(x, y, \sigma) * I(x, y) \tag{2.28}
\end{equation*}
$$

where ${ }^{*}$ is the convolution operation in x and y, and

$$
\begin{equation*}
G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}} \tag{2.29}
\end{equation*}
$$

By using the scale-space extrema of a difference-of-Gaussian (DoG) function convolved with the image, it is possible to detect stable keypoint locations in scale space. The proposed function is chosen because every smoothed image, L, needs to be computed in any case for scale space feature description. The DoG function can therefore be computed by image subtraction. This function is defined as $D(x, y, \sigma)$, and can be computed from the difference of two nearby scales separated by a constant multiplicative factor k :

$$
\begin{equation*}
D(x, y, \sigma)=(G(x, y, k \sigma)-G(x, y, \sigma)) * I(x, y)=L(x, y, k \sigma)-L(x, y, \sigma) \tag{2.30}
\end{equation*}
$$

Figure 2.43: Two Gaussian kernels with window size 41×41. Subtracting kernel one (left), which has $\sigma=3.2$, from kernel two (middle), which has $\sigma=6.4$, results in the DoG between them (right). Illustrations generated using Matlab.

The result from convolving these kernels with an actual image is shown below in Figure 2.44.

Figure 2.44: Convolution of an image with the kernels illustrated in Figure 2.43. Generated using Matlab.

Another benefit from the function in equation 2.30 is the close approximation to the scalenormalized Laplacian of Gaussian (LoG), $\sigma^{2} \nabla^{2} G$. This is beneficial because the normalization of the Laplacian with the factor σ^{2} is required for true scale invariance. Moreover, the maxima and minima of $\sigma^{2} \nabla^{2} G$ produce the most stable image features compared to the gradient, Hessian, or Harris corner function (Lowe, 2004).

To be able to understand the relation between D and $\sigma^{2} \nabla^{2} G$ the heat diffusion equation parametrized in terms of σ rather than $t=\sigma^{2}$ can be used:

$$
\begin{equation*}
\frac{\partial G}{\partial \sigma}=\sigma^{2} \nabla^{2} G \tag{2.31}
\end{equation*}
$$

The finite difference approximation to $\partial G / \partial \sigma$ can then be used to compute $\nabla^{2} G$, using the difference of nearby scales at $k \sigma$ and σ :

$$
\begin{equation*}
\sigma \nabla^{2} G=\frac{\partial G}{\partial \sigma} \approx \frac{G(x, y, k \sigma)-G(x, y, \sigma)}{k \sigma-\sigma} \tag{2.32}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
G(x, y, k \sigma)-G(x, y, \sigma) \approx(k-1) \sigma^{2} \nabla^{2} G \tag{2.33}
\end{equation*}
$$

The DoG function has scales differing by a constant factor. This implies that the function already incorporates the σ^{2} scale normalization required for the scale-invariant Laplacian.

The approach proposed by Lowe (2004) in order to construct the DoG for all scales in every octave is illustrated in Figure 2.45. Each scale in every octave is repeatedly convolved with Gaussians to produce the set of scale space images as shown on the left. As seen on the right in Figure 2.45, the DoG images are computed from subtraction of adjacent Gaussian images. When the current octave has been finished, the Gaussian image is down-sampled by a factor of two, and the process is repeated.

The next step in order to detect the local maxima and minima of $D(x, y, \sigma)$, is to compare each sample point to its eight neighbours in the current image and nine neighbours in the adjacent scales. 3×3 regions at the current and adjacent scales are used. The sample point is selected as an extrema only if it is larger or smaller than all of its neighbours. See Figure 2.46.

Figure 2.45: Illustration of the DoG from different scales and octaves. Image from Lowe (2004).

Figure 2.46: Detection of maxima and minima of the DoG images. Pixel marked X is the current sample point. Image from Lowe (2004).

Keypoint localization and rejection

The process of finding the minima and maxima determines which pixels that are candidates for keypoints. The next step allows the rejection of bad candidates, assuring that only stable keypoints are used. In Lowe (2004), the suggested approach uses the Taylor expansion of the scale-space function, $D(x, y, \sigma)$, shifted so that the origin is at the sample point. The Taylor expansion is expressed as:

$$
\begin{equation*}
D(\mathbf{x})=D+\frac{\partial D^{T}}{\partial \mathbf{x}} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \mathbf{x} \tag{2.34}
\end{equation*}
$$

The vector $\mathbf{x}=(x, y, \sigma)^{T}$ is the offset from the sample point. $D(\mathbf{x})$ and its derivatives are evaluated at the the same sample point. The location of the extremum is of interest and can be expressed by taking the derivative of $D(\mathbf{x})$ with respect to \mathbf{x} and setting it to zero:

$$
\begin{equation*}
\hat{\mathbf{x}}=-{\frac{\partial^{2} D}{\partial \mathbf{x}^{2}}}^{-1} \frac{\partial D}{\partial \mathbf{x}} \tag{2.35}
\end{equation*}
$$

Finally the function value of the extremum is used for rejecting unstable extrema with low contrast. Substituting equation 2.35 into 2.34 results in:

$$
\begin{equation*}
D(\hat{\mathbf{x}})=D+\frac{1}{2} \frac{\partial D^{T}}{\partial \mathbf{x}} \hat{\mathbf{x}} \tag{2.36}
\end{equation*}
$$

Lowe (2004) proposed that all extrema with $D(\hat{\mathbf{x}})$ returning a value less than 0.03 should be discarded.

The rejection of extrema with low contrast alone is not sufficient for stability. Since the DoG function will have a strong response along edges, a method based on a 2×2 Hessian matrix is proposed:

$$
\mathbf{H}=\left[\begin{array}{ll}
D_{x x} & D_{x y} \tag{2.37}\\
D_{x y} & D_{y y}
\end{array}\right]
$$

It is computed at the location and scale of the keypoint, and the derivatives are estimated by taking differences of neighbouring sample points. The ratio of the eigenvalues of \mathbf{H} is of interest. The eigenvalue with the largest magnitude is denoted α and the smaller one is denoted β :

$$
\begin{align*}
\operatorname{Tr}(\mathbf{H}) & =D_{x x}+D_{y y}=\alpha+\beta \\
\operatorname{Det}(\mathbf{H}) & =D_{x x} D_{y y}-\left(D_{x y}\right)^{2}=\alpha \beta \tag{2.38}
\end{align*}
$$

The sum of eigenvalues is given from the trace of \mathbf{H} and their product is given from the determinant as expressed in equation 2.38. The determinant may be negative, although it is unlikely. However, if this is the case, a point may be discarded as not being an extremum since the curvatures have different signs. As already mentioned the ratio between the eigenvalue with largest magnitude and the smaller one is of interest. It is expressed as $\alpha=r \beta$, where r is the ratio. Using this in relation to equation 2.38 we get:

$$
\begin{equation*}
\frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(r \beta+\beta)^{2}}{r \beta^{2}}=\frac{(r+1)^{2}}{r} \tag{2.39}
\end{equation*}
$$

As evident from the above equation it is only dependable on the ratio of the eigenvalues and not their actual individual values. This permits a rather efficient check of he principal curvatures:

$$
\begin{equation*}
\frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}<\frac{(r+1)^{2}}{r} \tag{2.40}
\end{equation*}
$$

When the two eigenvalues are equal the expression $(r+1)^{2} / r$ is at a minimum. The value increases with r. Lowe (2004) used a value of $r=10$ in his paper. This means that the keypoints with a ratio between the principal curvatures greater than 10 will be rejected.

Keypoint orientation

This step is important to achieve the invariance to image rotation. It is dependent on a consistent orientation to each keypoint based on local image properties. The proposed approach in Lowe (2004) is applied to a Gaussian smoothed image, L. The smoothed image is chosen to have the closest scale to the scale of the keypoint. This is done to ensure that the computations give scale-invariant results. The gradient magnitude $m(x, y)$, and gradient orientation $\theta(x, y)$, is precomputed using pixel differences. It is computed at the given scale, for each image sample $L(x, y)$:

$$
\begin{align*}
m(x, y) & =\sqrt{(L(x+1, y)-L(x-1, y))^{2}+(L(x, y+1)-L(x, y-1))^{2}} \\
\theta(x, y) & =\tan ^{-1}\left(\frac{L(x, y+1)-L(x, y-1)}{L(x+1, y)-L(x-1, y)}\right) \tag{2.41}
\end{align*}
$$

The gradient orientations of sample points within a region around the keypoint is then used to generate an orientation histogram. The histogram is divided into 36 bins, one for every 10 degrees, covering the 360 degree range of orientations. To be able to determine the dominant directions of the local gradients, each sample point is weighted by its gradient magnitude. It is also weighted by a Gaussian-weighted circular window with a smoothing factor, $\sigma=$ $1.5 \sigma_{\text {keypoint }}$.
Peaks in the orientation histogram corresponds to dominant directions of the local gradients. A histogram will in some cases have peaks of magnitude close to the dominant peak. If any local peak is within 80% of the dominant peak, an additional keypoint with that orientation is generated. As stated in Lowe (2004), this contributes significantly to the stability of matching. For improved accuracy, a parabola is fit to the 3 histogram values closest to each peak, interpolating the peak position.

Keypoint descriptor

At this final stage, a representation of the local image features is generated from the location, scale and orientation of each keypoint. The descriptor is designed to be highly distinctive, yet robust against significant levels of local shape distortion and change in illumination.

The keypoint descriptor is created by first computing the gradient magnitude and orientation at each image sample point in a region around the keypoint location as previously described. This is illustrated to the left in Figure 2.47 together with the Gaussian-weighted window, indicated by the overlaid circle. The samples are then accumulated into orientation histograms summarizing the contents over 4×4 subregions, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. Figure 2.47 illustrates a 2×2 descriptor computed from an 8×8 set of samples. The actual SIFT descriptor is a 4×4 array of histograms computed from a 16×16 sample array.

Figure 2.47: Illustration of SIFT descriptor computed from gradient magnitude and orientation. Image from Lowe (2004).

The descriptor is formed from a vector containing the values of all the orientation histogram entries, corresponding to the length of the arrows illustrated on the right side of Figure 2.47. Lowe concluded from his experiments that every subregion in the 4×4 array of histograms should have 8 orientation bins each. This results in a $4 \times 4 \times 8=128$ element feature vector for each keypoint.

2.6.2 Speeded-up robust features

Speeded-Up Robust Features (SURF) was introduced by Bay et al. (2006b) and thoroughly explained in Bay et al. (2008). It entered the field of keypoint detectors and descriptors with the goal to outperform the state-of-the-art alternatives, e.g. SIFT, both in terms of computational speed and performance. SURF is, as SIFT, both a detector and a descriptor. It consists of three steps:

1. Interest Point Detection

2. Interest Point Description
3. Matching between different images (see section 2.6.5)

Interest point detection

This step, also referred to as Fast-Hessian Detector (Bay et al., 2006b) is, as suggested from the name, an approach based on the Hessian matrix. It is however, a very basic Hessianmatrix approximation allowing the use of integral images, reducing the computational time drastically. What this really means is the ability to quickly compute box type convolution filters. The entry of an integral image $I_{\Sigma}(\mathbf{x})$ at a location $\mathbf{x}=(x, y)^{T}$ represents the sum of all pixels in the input image I within a rectangular region formed by the origin and \mathbf{x}.

$$
\begin{equation*}
I_{\Sigma}(\mathbf{x})=\sum_{i=0}^{i \leq x j \leq y} \sum_{j=0} I(i, j) \tag{2.42}
\end{equation*}
$$

Looking at Figure 2.48, there are four rectangles. The corners of rectangle $\boldsymbol{\Sigma}$ are marked with letters. Each of these points in the image has a value formed from the sum of the pixel intensities inside a rectangular region. Point \mathbf{D} has the sum of pixel intensities inside rectangle $1, \mathbf{B}$ has the sum from $1+2, \mathbf{C}$ is the sum of $1+3$ and \mathbf{A} is from $1+2+3+\boldsymbol{\Sigma}$. The intensity inside rectangle $\boldsymbol{\Sigma}$ may then be calculated as: $\boldsymbol{\Sigma}=\mathbf{A}-\mathbf{B}-\mathbf{C}+\mathbf{D}$.

Figure 2.48: Illustration of an integral image. Image from Bay et al. (2008).
Once the integral image has been computed, it is possible to calculate the sum of the intensities over a rectangular area of any size, using only three additions and four memory accesses (reading the intensity at four given points). This implies that the computational time is independent of the size of the rectangular region.

As stated in Bay et al. (2008) the Hessian matrix approach for interest point detection was chosen because of its good performance in accuracy. Structures in the image are chosen as interest points at locations where the determinant of the Hessian (DoH) matrix is maximum. The suggested approach also relies on the determinant of the Hessian for the scale selection.

The Hessian matrix in point (x, y) at scale σ in an image I is expressed as follows:

$$
\mathbf{H}(x, y, \sigma)=\left[\begin{array}{ll}
L_{x x}(x, y, \sigma) & L_{x y}(x, y, \sigma) \tag{2.43}\\
L_{x y}(x, y, \sigma) & L_{y y}(x, y, \sigma)
\end{array}\right]
$$

$L_{x x}(x, y, \sigma)$ is the convolution of the Gaussian second order derivative $\frac{\partial^{2}}{\partial x^{2}} g(\sigma)$ with the image I in point (x, y). Similarly for $L_{x y}(x, y, \sigma)$ and $L_{y y}(x, y, \sigma)$.

In comparison to the approximation to Laplacian-of-Gaussian by Difference-of-Gaussian as performed in SIFT, an approximation is also carried out for the Hessian matrix used in SURF. In addition, real filters are non-ideal in any case, introducing some limitations in practice. An example is the Gaussian second order derivative, which has to be discretized and cropped, leading to a loss in repeatability under image rotations around odd multiples of $\frac{\pi}{4}$. This weakness is valid for Hessian-based detectors in general.

As evident from Bay et al. (2008) the performance of the approximation, using box filters, is comparable to, or better than the performance with discretized and cropped Gaussians. Furthermore, this approximation of the second order Gaussian derivatives is very computationally efficient because of the use of integral images.

Figure 2.49 illustrates the Gaussian second order partial derivative filters in comparison to the approximation using box filters. The illustrated box filters are of size 9×9 and approximates a Gaussian with $\sigma=1.2$, which represents the lowest scale, used in SURF, for determining the location of interesting structures. This is called a blob response map (Bay et al., 2008). The approximations are denoted by $D_{x x}$ for $L_{x x}, D_{y y}$ for $L_{y y}$ and $D_{x y}$ for $L_{x y}$.

Figure 2.49: The left half shows the discretized and cropped Gaussian second order partial derivative in y - $\left(L_{y y}\right)$ and $x y$-direction $\left(L_{x y}\right)$. The right half shows the approximation for the second order Gaussian partial derivative in y - $\left(D_{y y}\right)$ and $x y$-direction $\left(D_{x y}\right)$, using box filters. Image from Bay et al. (2008).

The determinant of the approximated Hessian matrix is expressed as:

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{H}_{\text {approx }}\right)=D_{x x} D_{y y}-\left(w D_{x y}\right)^{2}, \tag{2.44}
\end{equation*}
$$

where $w \simeq 0.9$ is a relative weight of the filter responses used to balance the expression for the determinant of the Hessian. This value is kept constant, despite the theoretical incorrectness of doing so. See Bay et al. (2008) for details.

The search of correspondences often requires their comparison in images where they are seen at different scales. This implies that the interest points need to be found at different scales. Scale spaces are typically implemented as an image pyramid, however, the implementation of this in SURF differs from SIFT. As explained in Lowe (2004), the images are repeatedly convolved with a Gaussian kernel for the current pyramid octave, then the image is down-sampled and the process is repeated for the new octave. In SURF, the scale space is analysed by up-sampling the filter size rather than iteratively reducing the image size, as illustrated in Figure 2.50. The latter approach is possible because of the use of integral images, and was chosen because of its computational efficiency. The computation time is constant independent of filter size (Bay et al., 2008).

Figure 2.50: Iteratively reducing the image size as in SIFT (left). The use of integral images allows the up-sampling of the filter (right). Image from Bay et al. (2008).

As already mentioned, the initial scale layer of the scale space is the output of the 9×9 filter, approximating Gaussian derivatives with $\sigma=1.2$, hereby referred to as scale $s=1.2$ for the approximation. Furthermore, the scale space is divided into octaves, consisting of a series of filter response maps obtained from convolving the same input image with a filter of increasing size. To ensure the existence of the central pixel, the filter mask size must increase by a total of 6 pixels from one layer to the next as illustrated in Figure 2.51 (Bay et al., 2008). The first octave therefore consists of images filtered with mask sizes $9 \times 9,15 \times 15,21 \times 21$ and 27×27. However, for each new octave, the filter size increase is doubled, going from 6 to 12 to 24 to 48. The filter sizes in three successive octaves are illustrated in Figure 2.52. See Bay et al. (2008) for more details.

Figure 2.51: The length of the dark lobe can only be increased by an even number of pixels to guarantee the presence of the central pixel. Mask size 9×9 (left) and 15×15 (right). Image from Bay et al. (2006a).

Figure 2.52: Graphical representation of the filter side lengths for three successive octaves. The octaves are overlapping in order to cover all possible scales seamlessly. Image from Bay et al. (2008).

With the complete scale space in place, the interest points can be localized by applying a non-maximum suppression in a $3 \times 3 \times 3$ neighbourhood as illustrated in Figure 2.46 in section 2.6.1. The maximum of the determinant of the Hessian matrix are then interpolated in scale and image space due to the relatively large difference in scale between the first layer of every octave (Bay et al., 2008). The interpolated location of the interest point is computed in the
same way as in SIFT using equation 2.34 and 2.35 where $\mathbf{x}=(x, y, s)$. See Bay et al. (2006a) for more details.

Interest point description

The proposed descriptor, Speeded-Up Robust Features (SURF), describes the distribution of the intensity content within the interest point neighbourhood. This is similar to the gradient information extracted by SIFT, however, the descriptor is built on the distribution of first order Haar wavelet responses in x and y rather than the gradient (Bay et al., 2008).

The Haar wavelet responses within a circular neighbourhood of $6 s$ (s is the scale of the approximate Gaussian filter) around the interest point is used to identify a reproducible orientation of the point. This has to be done in order to make the descriptor invariant to image rotation. Note that s is the scale at which the interest point was detected. The sampling step is scale dependent and chosen to be equal to s. The size of the wavelets are also scale dependent and set to a side length of $4 s$. Again, the use of integral images for fast filtering is possible, fulfilling the goal of keeping the computational time low compared to previously proposed schemes.

Calculation of the wavelet responses in x and y direction is performed by filtering the images, using Haar wavelet filters illustrated in Figure 2.53. The responses are smoothed with a Gaussian $\sigma=2 s$ around the interest point and represented as points in space with horizontal and vertical response strength. A sliding orientation window of size $\frac{\pi}{3}$ is used to find the dominant orientation of the interest point. From each circle segment the (x, y) components are summed up, yielding a local orientation vector as illustrated in Figure 2.54.

Figure 2.53: Haar wavelet filters to compute the responses in x (left) and y (right) direction. The weights of the dark and bright parts are illustrated.

Figure 2.54: The dominant orientation of the Gaussian weighted Haar wavelet response is detected within a sliding orientation window. Image from Bay et al. (2008).

At this point the descriptor can be extracted. A square region is centred around the interest point oriented along the computed dominant orientation of the interest point. This window has a size of 20 s . This region is then split up regularly into $4 \times 4=16$ square sub-region, as illustrated in Figure 2.55. For each sub-region at 5×5 regularly spaced sample points,

Haar wavelet responses are computed. The Haar wavelet responses in horizontal and vertical direction, in relation to the selected interest point orientation, is denoted d_{x} and d_{y}. To increase robustness the responses are first weighted with a Gaussian $\sigma=3.3 \mathrm{~s}$ centred at the interest point. The wavelet responses, d_{x} and d_{y}, are then summed up over each sub-region to form the first set of entries in the feature vector. Each sub-region has a four-dimensional descriptor vector expressed as $\mathbf{v}=\left(\sum d_{x}, \sum d_{y}, \sum\left|d_{x}\right|, \sum\left|d_{y}\right|\right)$. This applies to all 4×4 sub-regions, resulting in a vector of length $4 \times 4 \times 4=64$. The remaining two vector elements, $\left|d_{x}\right|$ and $\left|d_{y}\right|$, is the sum of the absolute values of the responses. These entries are needed in order to include information about the polarity of the intensity changes. See Figure 2.56.

Figure 2.55: Left: An oriented quadratic grid with 4×4 square sub-regions centred around the interest point. Right: The actual fields of the descriptor, the sums $d_{x}, d_{y},\left|d_{x}\right|$ and $\left|d_{y}\right|$, are computed for each sub-region relatively to the orientation of the grid. The sub-regions in this figure are 2×2 instead of 5×5 for reasons of illustration. Image from Bay et al. (2008).

Figure 2.56: Illustration of the nature of a SURF descriptor. Left: A homogeneous region will make all values relatively low. Middle: Frequencies in x direction will make the value of $\sum\left|d_{x}\right|$ high, but all others remain low. Right: In the case of a gradually increasing intensity in x direction, both values $\sum d_{x}$ and $\sum\left|d_{x}\right|$ are high. Image from Bay et al. (2008).

2.6.3 Binary robust invariant scalable keypoints

Binary Robust Invariant Scalable Keypoints (BRISK) is a relatively new keypoint detector and descriptor. It was proposed at the International Conference on Computer Vision (ICCV) in 2011 by Leutenegger et al. (2011). As SURF was developed to outperform SIFT in terms of computational cost and performance, BRISK seeks to improve on the computational time needed and still deliver high performance under a variety of image transformations. Evaluation on benchmarks show that BRISK can be computed at an order of magnitude faster than SURF at comparable matching performance in some cases (Leutenegger et al., 2011). The contents of this section will focus on the theory and methods behind the detection and description of BRISK keypoints, divided in two steps:

1. Scale-space keypoint detection
2. Keypoint description

Scale-space keypoint detection

Leutenegger et al. (2011) proposed a detection methodology with the goal of achieving an efficient computation of keypoints. It is inspired by a detector by Mair et al. (2010) called Adaptive and Generic Corner Detection Based on the Accelerated Segment Test (AGAST). This is an extension for accelerated performance of a detector called Features from Accelerated Segment Test (FAST) by Rosten and Drummond (2006). Scale invariance is crucial for highquality keypoints. However, FAST and AGAST is not invariant to scale. To overcome this drawback Leutenegger et al. (2011) introduces the search for maxima not only in the image plane, but also in scale-space using the FAST score s as a measure for saliency.

The scale-space pyramid layers consist of the following for $i=\{0,1, \ldots, n-1\}$ and typically $n=4$:

- n octaves c_{i}, which are formed by progressively half-sampling the original image c_{0}
- n intra-octaves d_{i}, which are located in-between layers c_{i} and c_{i+1}

By down-sampling the original image c_{0} by a factor of 1.5 the first intra-octave d_{0} is obtained. The rest of the intra-octaves are derived by successive half-sampling. Therefore, if t denotes scale then $t\left(c_{i}\right)=2^{i}$ and $t\left(d_{i}\right)=2^{i} \cdot 1.5$. See Figure 2.58 for an illustration of the octaves and intra-octaves.

As already mentioned, the BRISK detector is based on the ideas from FAST and inspired by the computational efficiency of AGAST. In both these detectors, corners are detected by checking the intensity of pixels in a circle around a current sample pixel p illustrated in Figure 2.57. A typical mask is the FAST 9-16 mask, which requires at least 9 of the 16 pixels in the circle to be either brighter or darker than pixel p by a given threshold. This mask provides the best performance according to Rosten and Drummond (2006), and is the mask used for most of the detection in BRISK (Leutenegger et al., 2011). The exception is for detection of interest points below the first octave. In this case the FAST 5-8 mask is used to obtain FAST scores as a virtual layer below this octave. These scores are only needed in order to fit a parabola for scale refinement (Fan et al., 2015), not for non-maxima suppression in the first octave.

Figure 2.57: Illustrates a segment test corner detection using a 12-16 mask. The dotted arc indicates 12 pixels which are brighter than pixel p by more than a given threshold. Image from Rosten and Drummond (2006).

To detect potential regions of interest, each octave and intra-octave is processed with the FAST $9-16$ detector separately using the same threshold T. The points belonging to these regions are then evaluated by applying a non-maxima suppression in scale-space. This means that the FAST score s of the current sample point needs to be larger than the FAST score of its 8 neighbouring points in the same layer. In addition the FAST scores in the layer above and below needs to be lower than the current sample point. See Rosten and Drummond (2006) for an in depth explanation of the FAST score. The check is performed inside equally sized square patches of 2 pixels side-length in the layer with the suspected maximum. The neighbouring layers are discretized differently, which is dealt with by interpolation at the boundaries of the patch. See Figure 2.58. Furthermore, to determine the true scale of the keypoint, the local saliency maximum in all three layers of interest is sub-pixel refined (by fitting a 2 D quadratic function in the least-squares sense to each of the three score-patches) before a 1 D parabola is fitted along the scale-axis. This is illustrated in Figure 2.58. Finally, the location of the keypoint is re-interpolated between the patch maxima closest to the determined scale (Leutenegger et al., 2011).

Keypoint description

Compared to SIFT and SURF, this descriptor is different, especially in terms of matching. Matching will be explained in section 2.6.5. The difference is present mainly because the descriptor is composed as a binary string. Given a set of keypoints, the string is generated by concatenating the results of simple brightness comparison tests. The approach is inspired by a descriptor called Binary Robust Independent Elementary Features (BRIEF) by Calonder et al. (2010), which is efficient to compute, but not invariant to scale or rotation.

The detected keypoints as detected in scale-space described in section 2.6.3 needs to be processed before building the descriptor bit-string. A sampling pattern with N locations equally spaced on circles concentric with the keypoint is used. Each of these locations are points \mathbf{p}_{i}
in the pattern. Every point \mathbf{p}_{i} is smoothed with a Gaussian σ_{i} proportional to the distance between the points on the respective circle. This smoothing is performed to avoid aliasing effects when sampling the image intensity of a point (Fan et al., 2015). Figure 2.59 illustrates the sampling pattern.

Figure 2.58: Scale-space interest point detection illustrated. The 1D parabola is fitted along the scale-axis to determine the true (interpolated) scale of the keypoint. Image from Leutenegger et al. (2011).

Figure 2.59: A sampling pattern with $N=60$ sampling points including the center point, equally spaced on four concentric circles around the keypoint. For clarity, only one point in each circle is marked with a circle denoting the radius σ of the Gaussian kernel used to smooth the intensity values of the sampling points. Image from Fan et al. (2015).

For a keypoint k in the image, we consider one of the $N \cdot(N-1) / 2=1770$ sampling-point pairs $\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$. The local gradient is expressed as:

$$
\begin{equation*}
\mathbf{g}\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right)=\left(\mathbf{p}_{j}-\mathbf{p}_{i}\right) \cdot \frac{I\left(\mathbf{p}_{j}, \sigma_{j}\right)-I\left(\mathbf{p}_{i}, \sigma_{i}\right)}{\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|^{2}} \tag{2.45}
\end{equation*}
$$

where $I\left(\mathbf{p}_{i}, \sigma_{i}\right)$ and $I\left(\mathbf{p}_{j}, \sigma_{j}\right)$ are the smoothed intensity values at the points \mathbf{p}_{i} and \mathbf{p}_{j}. A set of all sampling-point pairs is expressed as:

$$
\begin{equation*}
\mathcal{A}=\left\{\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid i<N \wedge j<i \wedge i, j \in \mathbb{N}\right\} \tag{2.46}
\end{equation*}
$$

From set \mathcal{A} a subset of short-distance pairings \mathcal{S} and another subset of L long-distance pairings \mathcal{L} is defined. The threshold distances determining which subset a sampling-point pair belongs to is set to $\delta_{\max }=9.75 t$ and $\delta_{\min }=13.67 t$ where t is the scale of keypoint k. The subsets are
illustrated in Figure 2.60 and expressed mathematically as:

$$
\begin{align*}
& \mathcal{S}=\left\{\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \in \mathcal{A} \mid\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|<\delta_{\max }\right\} \subseteq \mathcal{A} \\
& \mathcal{L}=\left\{\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \in \mathcal{A} \mid\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|<\delta_{\min }\right\} \subseteq \mathcal{A} \tag{2.47}
\end{align*}
$$

Figure 2.60: The set of short-distance pairs, \mathcal{S}, of sampling points used for constructing the descriptor is illustrated to the left. The set of long-distance pairs, \mathcal{L}, of sampling points used for computing orientation is illustrated to the right. Each colour indicates a pair. Image from Fan et al. (2015).

The subset of L long-distance point pairs are then used to determine the overall characteristic pattern direction of the keypoint k. The computation is done by iterating through subset \mathcal{L}, and is expressed as:

$$
\begin{equation*}
\mathbf{g}=\binom{g_{x}}{g_{y}}=\frac{1}{L} \cdot \sum_{\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \in \mathcal{L}} \mathbf{g}\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \tag{2.48}
\end{equation*}
$$

In order to build up the descriptor, the sampling pattern as explained above is applied with a rotation by $\alpha=\operatorname{atan} 2\left(g_{y}, g_{x}\right)$ around the keypoint k. Then the bit-vector descriptor d_{k} is computed by processing all the short-distance intensity comparisons of point pairs in the rotated pattern $\left(\mathbf{p}_{i}^{\alpha}, \mathbf{p}_{j}^{\alpha}\right) \in \mathcal{S}$. Determining the state of each bit is performed as follows

$$
b=\left\{\begin{array}{l}
1, I\left(\mathbf{p}_{j}^{\alpha}, \sigma_{j}\right)>I\left(\mathbf{p}_{i}^{\alpha}, \sigma_{i}\right) \tag{2.49}\\
0, \text { otherwise }
\end{array}\right.
$$

where:

$$
\forall\left(\mathbf{p}_{i}^{\alpha}, \mathbf{p}_{j}^{\alpha}\right) \in \mathcal{S}
$$

The above equations (2.45-2.49) are used to generate a BRISK descriptor, differing from BRIEF by being both scale- and rotation invariant. The more in depth differences are explained in the original paper (Leutenegger et al., 2011). Usage of the method as explained in this section yields a descriptor bit-string of length 512 .

2.6.4 Oriented FAST and rotated BRIEF

Oriented FAST and Rotated BRIEF (ORB) was proposed at ICCV in 2011 by Rublee et al. (2011). Like BRISK, this is also a detector and descriptor developed to outperform SIFT in terms of computational cost. The authors claim that ORB is an efficient alternative to SIFT or SURF. It is evident from Rublee et al. (2011) that the computational time is over two orders of magnitude faster than SIFT. This boost in processing speed is a result of using FAST and BRIEF as base for detection and description, respectively. ORB is, like BRISK, invariant to scale and rotation. Scale-invariance is achieved by employing a scale pyramid of the image. Rotation invariance is achieved by using a measure of corner orientation called the intensity centroid, originally presented in Rosin (1999). Furthermore, the binary descriptor is built by comparing intensities between two sampling patterns, similar to BRISK. Moreover, ORB does this by using a different sampling and feature selection strategy. This section will present the theory and methods behind this strategy, in two parts:

1. FAST Keypoint Orientation (oFAST)
2. Rotation-Aware BRIEF (rBRIEF)

FAST keypoint orientation (oFAST)

Features from Accelerated Segment Test (FAST) as proposed by Rosten and Drummond (2006) is the method of choice for finding keypoints with minimal computational cost. By evaluating a circle of 16 pixels around a center pixel, it can be determined if this center pixel is a corner or not. If the intensities of the pixels in the circle are brighter or darker compared to the central pixel, by a given threshold, it is considered to be a corner. See Figure 2.57. Typically, at least 9 or 12 of these pixels must fulfill this test, referred to as FAST 9-16 and FAST 12-16 respectively.

As already mentioned, FAST is the base for the ORB detector, and in order to acquire invariance to scale, a simple scale pyramid is used. Depending on the implementation, this pyramid may vary in number of levels and scale factors between each level. For example n levels with a scale factor equal to 1.2 will result in a pyramid where the original image is first down-scaled by a factor of 1.2 , then the result from this is down-scaled by a factor of 1.2 and so on until the pyramid has been filled with n images, as illustrated in Figure 2.61. For each level of the pyramid, FAST features are produced and then filtered. The detector of choice in ORB is the FAST 9-16. To filter out unstable features, a Harris corner measure is employed (Harris and Stephens, 1988). This is done by setting a threshold of N keypoints. The threshold must be set low enough so that N is lower than the total amount of keypoints in the image. The detected keypoints are ranked and ordered according to the Harris measure, and the top N points are retained. Figure 2.62 shows an image that has been processed with the ORB detector over a 5 level pyramid with scale factor 1.2. The detected keypoints were then filtered with a threshold $N=200$.

The proposed approach to assign an orientation to each keypoint uses a measure of corner orientation called the intensity centroid. This measure assumes that the intensity of a corner is offset from its center. A vector from corner center to this offset point may be used to assign an orientation. The moments of an image patch is expressed as presented in Rosin (1999):

$$
\begin{equation*}
m_{p q}=\sum_{x, y} x^{p} y^{q} I(x, y) \tag{2.50}
\end{equation*}
$$

which is used to define the centroid as:

$$
\begin{equation*}
\boldsymbol{C}=\left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right) \tag{2.51}
\end{equation*}
$$

A vector from the corner keypoint center \boldsymbol{O}, to the centroid \boldsymbol{C}, is then denoted $\overrightarrow{\boldsymbol{O C}}$. The orientation of the patch is:

$$
\begin{equation*}
\theta=\operatorname{atan} 2\left(m_{01}, m_{10}\right) \tag{2.52}
\end{equation*}
$$

To further improve the rotation invariance of the above measure, Rublee et al. (2011) proposed to compute the moments within a circular region of radius r corresponding to the patch size. This means that x and y run from $[-r, r]$. The orientation of keypoints is illustrated in Figure 2.62 .

Figure 2.61: Pyramid with 5 levels. A scale factor close to 1 will need more pyramid levels to cover a large scale range, thus increasing the computational cost. A large scale factor will on the other hand weaken the invariance to scale.

Figure 2.62: Keypoints detected with the ORB detector. The cyan rings denote keypoints with its respective orientation. Notice that some keypoints of differing scale overlaps each other in a concentric manner, which means they are detected from different levels of the pyramid.

Rotation-aware BRIEF (rBRIEF)

As mentioned in the introduction to this section, BRIEF is the base for description in ORB. Providing a set of keypoints with detected scale and rotation as previously explained, the ORB descriptor can be computed by first extracting a scale and rotation normalized local patch. The descriptor is then computed on the patch. The standard way of computing a BRIEF descriptor is by randomly selecting 256 test pairs in a smoothed image patch. The intensity of the two pixels in a pair is then compared to each other yielding the bit value of that test pair. However, this approach is not a good choice for ORB. As explained in Fan et al. (2015), the orientation of ORB keypoints is computed based on the intensities of the described patch. Therefore, the intensity relationship between the rotated pairs of positions used in BRIEF will move toward some fixed pattern. This implies that there are correlations among these position pairs that are used for computing the binary descriptor. To reduce the correlations among the binary tests, Rublee et al. (2011) has developed a learning method for choosing a good subset of binary tests.

Given an extracted local image patch of size $m \times m$. All possible tests from the patch is a pair of $w \times w$ sub-windows of the patch. The number of possible sub-windows is then given by $N=(m-w)^{2}$. Typically, $m=31$ and $w=5$. Pairs of two are selected from these sub-windows, giving $\binom{N}{2}$ binary tests. Tests that overlap are eliminated, yielding a final set of candidate bit features. It is important to smooth the image before performing the tests (Rublee et al., 2011). Based on a training set, ORB selects at most 256 bits according to the following algorithm:

1. Run each test against all training patches.
2. Order the tests by their distance from a mean of 0.5 , forming the vector T .
3. Greedy search:
(a) Put the first test into the result vector R and remove it from T .
(b) Take the next test from T, and compare it against all tests in R. If its absolute correlation is greater than a threshold, discard it; else add it to R.
(c) Repeat the previous step until there are 256 tests in R. If there are fewer than 256, raise the threshold and try again.

The algorithm is a greedy search for a set of uncorrelated tests with means near 0.5. The result is called Rotation-Aware BRIEF (rBRIEF). As evident in the paper by Rublee et al. (2011) this algorithm clearly reduces the correlation between tests making each test contribute to the result. It also raises the variance of binary tests yielding a more discriminative descriptor.

2.6.5 Descriptor matching

In terms of detection of an object in a scene using keypoints and descriptors, a matching procedure is a must. This usually happens by comparing the descriptors from a query image (object) with the descriptors from a training image (scene). Typically, some sort of distance measurement of the descriptors is used for comparison. As previously presented in this thesis, there are descriptors expressed as a string of bits generated from a pixel intensity test, referred to as binary descriptors. The other type is descriptors expressed as a feature vector built from
e.g. an orientation histogram or sums of Haar wavelet responses, referred to as real-valued descriptors. The binary descriptors are those based on BRIEF, i.e. BRISK and ORB. The real-valued descriptors are SIFT and SURF. The method of distance measurement used for these two groups of descriptors differ. This thesis will not cover the details of these methods, however they can be summarized as:

- Binary
- Hamming distance - Checks the amount of symbols that are different at corresponding positions in two strings of equal length. As an example, the hamming distance between the two bit-strings 01011100 and 01010101 is equal to 2 .
- Real-valued
- Manhattan distance ($\boldsymbol{L}_{\mathbf{1}}$ norm) - Also known as Taxicab distance. It is a measure of distance between two points in a rectilinear system. For a 2D plane the distance between two points is therefore the distance in x direction added to the distance in y direction. Considering descriptors, these points are actually vectors. Two descriptor vectors describe a feature \boldsymbol{q} in the query image and a feature \boldsymbol{t} in the training image. As expressed in Nixon and Aguado (2012), the Manhattan distance is the sum of the modulus of the differences between the n element descriptor of \boldsymbol{q} and \boldsymbol{t} :

$$
\begin{equation*}
d_{\mathrm{M}}=\sum_{i=1}^{n}\left|\boldsymbol{q}_{i}-\boldsymbol{t}_{i}\right| \tag{2.53}
\end{equation*}
$$

This method is computationally more efficient than the Euclidean distance.

- Euclidean distance ($\boldsymbol{L}_{\mathbf{2}}$ norm) - An alternative to the Manhattan distance. It measures the straight line between two points and yields only one solution to the shortest path. Considering two n element descriptors of feature \boldsymbol{q} and \boldsymbol{t}, the difference d between the descriptors is expressed as in Nixon and Aguado (2012):

$$
\begin{equation*}
d_{\mathrm{E}}=\sqrt{\sum_{i=1}^{n}\left(\boldsymbol{q}_{i}-\boldsymbol{t}_{i}\right)^{2}} \tag{2.54}
\end{equation*}
$$

This method is computationally more costly than the Manhattan distance.

Figure 2.63: Distance measure in a 2D plane. Image from Nixon and Aguado (2012).

Brute-force

The idea of brute-force matching of descriptors is simply to match one feature in the query image with all other features in the training image using one of the distance measurements as described in the previous section. The closest one is returned as a match. A lower distance means better match. However, this matching approach may accept some false positives. The result can be improved by sorting the matches by distance (OpenCV, 2015a).

Brute-force matching can also return more than one match if that is desirable. The result is then processed with a ratio test of k best matches as explained by Lowe (2004). Considering $k=2$, the two closest descriptors are returned as candidate matches based on their measured distance. Given a distance ratio, the two candidates can be compared to one another. If the measured distance is low for the best candidate, but much larger for the second best candidate, the best candidate is accepted as a match. Both the candidates are rejected if the measured distance is similar. Lowe (2004) proposed to reject all candidates in which the distance ratio is greater than 0.8 , which means that the distance of the second best candidate can not be closer than 80% of the best candidate. This leads to an elimination of 90% of the false positives while only discarding up to 5% of the correct matches. Figure 2.64 shows the difference between brute-force matching with a distance ratio of 0.9 and 0.7 . There are clearly fewer false positives with a lower distance ratio.

Figure 2.64: Brute-force matching of SIFT descriptors using a distance ratio of 0.9 (left) and 0.7 (right). The cyan lines denote a match between the object and the scene. Notice that some of the lines represents false positives as shown in the left half of the figure, while there are no false positives clearly represented in the right half.

FLANN

An alternative to brute-force matching is Fast Library for Approximate Nearest Neighbours (FLANN). This library contains a collection of algorithms optimized for fast nearest neighbour search in large data sets and for high dimensional features. FLANN is faster than brute-force for matching across large data sets (OpenCV, 2015a). For matching between two images, bruteforce may in most cases be the best choice, however in case of a large database of descriptors from numerous images to match across, FLANN is the clear choice. Just as with brute-force matching returning k best matches, the best matches from a FLANN matching procedure may also be processed with a ratio test.

2.6.6 Planar homography

In short, planar homography can be described as a projective transformation between the corresponding points in two planes. The two planes may for example be a set of points from an image of the same object, but with different perspective, or position of the camera. This means that there are world points or features corresponding in the two different camera projections (Corke, 2013). Typically, homographies are computed by matching features between two images. The matched features of each image are then fitted to a plane using e.g. RANSAC, and the homography is then the projective transformation between the two planes. Considering a set of points in the two planes as ${ }^{1} \boldsymbol{p}_{i}$ and ${ }^{2} \boldsymbol{p}_{i}$. The relationship between them are then expressed as

$$
\begin{equation*}
{ }^{2} \tilde{\boldsymbol{p}}_{i} \simeq \boldsymbol{H}^{1} \tilde{\boldsymbol{p}}_{i} \tag{2.55}
\end{equation*}
$$

where ${ }^{2} \tilde{\boldsymbol{p}}_{i}$ and ${ }^{1} \tilde{\boldsymbol{p}}_{i}$ is on the form $(x, y, 1)^{T}$ and $\left(x^{\prime}, y^{\prime}, 1\right)^{T}$ respectively. The homography matrix is a non-singular 3×3 matrix expressed as

$$
\boldsymbol{H}=\left(\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \tag{2.56}\\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & 1
\end{array}\right)
$$

The above matrix has 8 unknowns, which can be estimated from 4 world points and their corresponding image points in the two planes (Corke, 2013).

2.7 Robot operating system

Robot Operating System or ROS for short, is a large, community developed framework that works to make writing code for robots easier. ROS is a collection of tools, libraries and conventions that is put together to aid the development of robot software. The goal of the ROS project is to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms. In order to fully grasp the concept of ROS, a couple of key elements needs to be explained further. Full documentation of ROS is available at (ROS.org, 2016a).

2.7.1 The ROS architecture

The Robot Operating System project is, as the name implies, structured as an operating system. It runs on a wide variety of Linux distributions, and let developers run self written programs. The ROS framework implements conventions for:

- How programs should be written to run on ROS
- How different programs can communicate with each other
- How programs should log and report error messages

These conventions make it trivial to communicate cross-application, which is valuable when programming complex systems. This means that a system can consist of smaller and self sufficient programs instead of one large program. This has benefits both in the development phase (the developer is allowed to focus on a single task, instead of trying to implement a complete software solution for the entire system), and debugging phase.

Figure 2.65 attempts to illustrate the ROS node architecture. It illustrates how ROS is communicating with the robotic manipulator through a PLC (Wikipedia, 2015) and how different nodes can communicate with each other and external input.

Figure 2.65: A simple illustration of the ROS architecture.

2.7.2 Nodes

An individual program (or executable) is referred to as a node in the ROS context. ROS allows users to run many nodes simultaneously, and handles the communication between nodes internally. This means that a complex robot setup can be run by several individual nodes cooperating to achieve a wanted behavior. In order to run a node in ROS, the following command is used:

```
rosrun [package name] [node name]
```


2.7.3 Services

Services in the ROS context are comparable to program methods or functions. The key feature of the ROS service is that ROS allows for publication of available services for a given node. These services can then be called remotely from other nodes. The communication interaction between nodes is illustrated in Figure 2.66. This allows for simple interaction between different nodes. One important fact is that ROS handles all the cross-application communication, making the process of communication between two applications extremely simple. The data exchange in a service call (request and response) is predefined by the developer. This is done using a file with the .srv extension. The content of the file is simple, and is structured as request (function argument) and response (function return value). The request and response are separated with a line containing the text "- - -". A simple service might be defined as following.

```
int request;
---
int response;
```

Paragraph Publishing a service and Calling a service in section 3.2.7 shows an example of how to publish and call a service.

Figure 2.66: Illustrates the interaction between two nodes in a service call.

2.7.4 Topics

Topics in the ROS context are comparable to data streams. Like services, topics are methods used for communication between different applications. ROS allows for both publication and subscription of topics. The mechanics of this convention is that a node can publish data to a topic, which is automatically sent to all nodes subscribed to that particular topic. This mechanism is illustrated in Figure 2.67. Topics often see a different use case than services, and is more suited for communication that is meant to be continuous (like sensor input data, actuator control data, etc.). The data contained in a topic is defined in the message type of that given topic (see section 2.7.5 for more info about messages)

Paragraph Publishing a topic and Subscribing to a topic in section 3.2.7 shows an example of how to publish and subscribe to a topic.

Figure 2.67: Illustrates the interaction between nodes when communication using topics.

2.7.5 Messages

Messages in the ROS context are comparable to structs in the C programming language. Like structs, messages are developer defined data types often consisting of multiple variables of different type. This means that a single message can contain many different variables with different types. Like services, messages are defined in the ROS framework by the use of a file. The file extension defining a message is .msgs. See paragraph Defining a message in section 3.2.7 for an example of how to define a message in ROS.

Chapter 3: Method

3.1 Physical setup

3.1.1 Robotic cell setup

The robotic cell used for this assembly task consists of the following hardware:

- Two KUKA KR 6 R900 sixx (KR AGILUS) six axis robotic manipulator.
- Two KUKA KR C4 compact robotic controllers.
- Microsoft Kinect ${ }^{\text {TM }}$ One 3D depth sensor.
- Logitech C930e web camera.
- Schunck PSH 22-1 pneumatic linear gripper.
- ROS Master computer.
- Intel NUC NUC5i5RYH mini computer.

Figure 3.1 shows a simulated view of the robotic cell setup. The actual robotic cell is shown in Figure 3.2.

Figure 3.2: Picture of the robotic cell.
Figure 3.1: Shows a simulated view of the robotic cell.

As illustrated by figure 3.1 and 3.2 , the Schunk PSH 22-1 pneumatic linear gripper is mounted on the left most robotic manipulator (hereby referred to as Agilus 1), and the Logitech web camera is mounted on the right most robotic manipulator (hereby referred to as Agilus 2). The

Microsoft Kinect ${ }^{\text {TM }}$ depth sensor is located above the table, and behind the two robots. This position was selected in order to produce a 3D point cloud where the whole table is clearly visible without placing the 3D camera far away from the table. This is specifically important when using the Microsoft Kinect ${ }^{\text {TM }}$ depth sensor in order to keep the accuracy of the sensor as high as possible because, as shown by Khoshelham and Elberink (2012), the accuracy of the sensor is proportional to the distance between the camera and the object of interest.

Agilus 1 is used to manipulate the parts that is to be assembled using the linear pneumatic gripper and Agilus 2 is used to position the Logitech web camera (called an eye-in-hand setup). The flexible position of the web camera allows for a highly dynamic assembly setup, where the initial position of the parts can be chosen at random.

In order to coordinate information from both cameras together with the two robots, four reference frames have been established with known positions. These reference frames are shown in Figure 3.3. The frames located at the tool of the two robots are fixed to the robots, and move accordingly. The two remaining reference frames are fixed in space. The main origin of the robotic cell is defined by the reference frame located at floor level between the two robots. All movements, and object positions retrieved using object detection are transformed into this reference frame, effectively making it the global origin of the robotic cell.

Figure 3.3: Illustrates the global origin of the robotic cell, as well as the tool and optical reference frames for the robots and cameras.

A simulated view of the scene produced by the 3D depth sensor, and the web camera is shown in figure 3.4 an 3.5. Note that the simulated image from the web camera is taken with the
robot positioned above the table, and not in its home position.

Figure 3.4: A simulated view of the table as seen from the 3D camera.

Figure 3.5: A simulated view of the table as seen from the 2D web camera.

The purpose of the Intel NUC is to serve as a 3D camera data acquisition server. The Kinect depth sensor is connected to the Intel NUC, and the data acquired from the depth sensor is published on a ROS topic in order to access it on the main ROS computer. This was done because of physical limitations, where the positions of the depth sensor and the ROS master computer is to far apart to be able to connect them directly. The data is streamed over the network by TCP/IP using the ROS framework.

3.1.2 Calibrating 3D camera position

In order to obtain usable information from the 3D depth sensor, its position in space needs to be known. In order to calibrate the 3D cameras position in space in relation to the world frame (robotic cell origin) an augmented reality tag with a known position is used. Figure 3.6 shows a typical augmented reality tag.

Figure 3.6: Shows three typical augmented reality tags. Image from Liebhardt (2016).
An augmented reality tag was placed on the table, directly above the world reference frame
of the robotic cell. By measuring the height of the table $z_{t a b l e}$, a rigid transform between the world reference frame and the augmented reality tag is defined as:

$$
\boldsymbol{T}_{\text {ar-tag }}^{\text {world }}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3.1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & z_{\text {table }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The position of the augmented reality tag in relation to the 3D camera is found using a publicly available ROS node called ar_track_alvar (Liebhardt, 2016). The ar_track_alvar program runs in $R O S$, taking the 3D depth data as input, and returning the position and orientation of the ar-tag in relation to the 3D camera reference frame. This output is in the form of a homogeneous transformation matrix T_{t}^{c}.

The final step is to use the information acquired from the ar-tags position in the 3D camera reference frame to obtain position of the 3 D camera in relation to the world reference frame. This is done using the following equations:

$$
\begin{equation*}
T_{c}^{w}=T_{t}^{w} \times T_{c}^{t}, \quad \text { where } T_{c}^{t}=\left(T_{t}^{c}\right)^{-1} \tag{3.2}
\end{equation*}
$$

The annotations used in equation 3.2 relate to the following
w - World reference frame.
t - Augmented reality tag reference frame.
c - 3D camera reference frame

3.1.3 Parts used for assembly

The automated assembly described in this thesis is meant to perform an assembly task of two given parts, part A and part B as shown in Figure 3.7 and 3.8. The way these parts are assembled is with part A placed into part B from a specific direction. The positional accuracy needed for a successful assembly is approximately $\pm 1 \mathrm{~mm}$ in both the x and y axes. The assembly tolerance when it comes to orientation is approximately $\pm 1.5^{\circ}$.

The two parts used will be denoted, from this point on, as part A and part B in this thesis.

Figure 3.7: A 3D model of part A.

Figure 3.8: A 3D model of part B.

3.1.4 Calibrating 2D intrinsic parameters

Calibration of a 2D camera, also referred to as camera resectioning (The MathWorks, 2016), is used in robotics for accurate computation of the position of objects in the image. As explained in section 2.1.6, the camera parameter matrix is expressed as:

$$
\boldsymbol{K}=\left(\begin{array}{ccc}
\frac{f}{\rho_{w}} & 0 & u_{0} \\
0 & \frac{f}{\rho_{h}} & v_{0} \\
0 & 0 & 1
\end{array}\right)
$$

and is actually the intrinsic parameters of the camera, defined by the focal length, pixel size and the optical center in pixels. This matrix allows the computation of image coordinates from pixel coordinates. This is needed to express the position of objects detected in the image.

Camera calibration will also allow correction for lens distortion. As modern day cameras use lenses to create brighter images and allow focusing, they also introduce radial distortion of the image. In order to flatten the image, representing the scene as it actually is, camera calibration can be used to estimate the parameters of the lens and image sensor of the camera. Note that the distortion is larger close to the image edges, and very small at the optical center.

Such calibration algorithms are available in numerous image processing toolboxes, e.g. matLAB and OpenCV. The approach in this thesis is implemented in OpenCV using C++. The following list describes what is needed to perform the calibration:

- A compatible camera (Logitech C930e)
- A chessboard of size e.g. 5×7 printed on paper
- Compiled executable for calibration (available in the digital appendix as described in Appendix D)

The code used allows the input of the camera resolution, chessboard size, path to parameter storage after calibration and some other options like number of calibration images and delay between image capture. The chessboard is then held in front of the camera with different orientations and moved around to cover the whole field of view. Loading a set of already captured images is also an option. The output is a file of type XML or YAML including the following parameters:

- Camera intrinsic parameters
- Camera extrinsic parameters
- Camera distortion coefficients

This file can be loaded into other applications and used for correction of lens distortion and computation of image coordinates.

Figure 3.9: Calibration procedure of camera parameters using a chessboard of size 5×7.

3.1.5 Calibrating eye-in-hand transform

In order to perform correct vision-based robot control, the eye-in-hand system had to be calibrated. This is crucial since the chosen approach for object assembly detects the center of an object in the images captured with the eye-in-hand system. The robot is then moved so that the optical center of the camera overlays the object center, thus minimizing the error
between a current center point to a desired point. This approach is called Image-Based Visual Servoing (IBVS) as described in Corke (2013). However, our approach is simplified in terms of the following assumptions:

- The objects are detected with a measured distance from the camera lens.
- The camera orientation is fixed and always perpendicular to the table the object is placed on.

This means that the distance in the $x y$-plane between the optical center of the camera and a detected object is the main output from the detection algorithm presented in section 3.2.4. Since the world frame and the camera frame in the robotic cell is orientated as illustrated in Figure 3.10, a rigid transform between them must be established to represent the position of objects detected in the camera frame relative to the world frame.

Figure 3.10: Illustration of the orientations of the camera frame \mathcal{C} and world frame \mathcal{W}.

The homogeneous transformation matrix (as described in section 2.1.2) of the camera frame \mathcal{C} relative to the world frame \mathcal{W} is given from

$$
\boldsymbol{T}_{\mathcal{C}}^{\mathcal{W}}=\left[\begin{array}{ccc}
\boldsymbol{R}_{\mathcal{C}}^{\mathcal{V}} & \boldsymbol{t}_{\mathcal{C}}^{\mathcal{W}} \tag{3.3}\\
0 & 0 & 0
\end{array}\right]
$$

where a typical translation between the frames is $\boldsymbol{t}_{\mathcal{C}}^{\mathcal{W}}=\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ and the rotation is given
from: $\boldsymbol{R}_{\mathcal{C}}^{\mathcal{W}}=\boldsymbol{R}_{y}(\pi) \boldsymbol{R}_{z}\left(-\frac{\pi}{2}\right)$, which results in:

$$
\boldsymbol{T}_{\mathcal{C}}^{\mathcal{W}}=\left[\begin{array}{cccc}
0 & -1 & 0 & x \tag{3.4}\\
-1 & 0 & 0 & y \\
0 & 0 & -1 & z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

From the camera calibration method as explained in section 3.1.4, the camera intrinsic parameters K are also known. Lets say the camera parameters are given as:

$$
K=\left(\begin{array}{ccc}
750 & 0 & 640 \tag{3.5}\\
0 & 750 & 360 \\
0 & 0 & 1
\end{array}\right)
$$

For an object detected in the image plane at pixel coordinate $\tilde{\boldsymbol{p}}=(7204001)^{T}$, the normalized image coordinates are given as explained in section 2.1.6:

$$
\tilde{\boldsymbol{s}}=K^{-1} \tilde{\boldsymbol{p}}=\left(\begin{array}{ccc}
\frac{1}{750} & 0 & -640 / 750 \tag{3.6}\\
0 & \frac{1}{750} & -360 / 750 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
720 \\
400 \\
1
\end{array}\right)=\left(\begin{array}{c}
0.1067 \\
0.0533 \\
1
\end{array}\right)
$$

We denote an object frame \mathcal{O} with the same orientation as the world frame, fixed to the detected object center as illustrated in Figure 3.11. If the distance along the camera optical axis to the detected object is $\lambda=0.2$, the position $\tilde{\boldsymbol{t}}_{\mathcal{C O}}^{\mathcal{C}}$ of the object in the camera frame is:

$$
\tilde{\boldsymbol{t}}_{\mathcal{C} O}^{\mathcal{C}}=\left[\begin{array}{c}
\boldsymbol{t}_{x}^{\mathcal{C}} \tag{3.7}\\
\boldsymbol{t}_{y}^{\mathcal{C}} \\
\boldsymbol{t}_{z}^{\mathcal{C}} \\
1
\end{array}\right]=\left[\begin{array}{c}
\lambda \tilde{s} \\
1
\end{array}\right]=\left[\begin{array}{c}
0.0213 \\
0.0107 \\
0.2 \\
1
\end{array}\right]
$$

If we now include the homogeneous transformation matrix $\boldsymbol{T}_{\mathcal{C}}^{\mathcal{L}}$, we will get the position of \mathcal{O} in the coordinates of the camera frame \mathcal{C} relative to the world frame \mathcal{W} expressed as:

$$
\tilde{\boldsymbol{t}}_{\mathcal{C O}}^{\mathcal{W}}=\boldsymbol{T}_{\mathcal{C}}^{\mathcal{W}} \tilde{\boldsymbol{t}}_{\mathcal{C O}}^{\mathcal{C}}=\left[\begin{array}{cccc}
0 & -1 & 0 & x \tag{3.8}\\
-1 & 0 & 0 & y \\
0 & 0 & -1 & z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{t}_{x}^{\mathcal{C}} \\
\boldsymbol{t}_{y}^{\mathcal{C}} \\
\boldsymbol{t}_{z}^{\mathcal{C}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x-\boldsymbol{t}_{y}^{\mathcal{C}} \\
y-\boldsymbol{t}_{x}^{\mathcal{L}} \\
z-\boldsymbol{t}_{z}^{\mathcal{L}} \\
1
\end{array}\right]=\left[\begin{array}{c}
x-0.0107 \\
y-0.0213 \\
z-0.2 \\
1
\end{array}\right]
$$

The variables x, y and z denote the position of \mathcal{C} relative to \mathcal{W}. This is actually the position of the camera lens mounted on the manipulator end-effector. The relative movement from current end-effector pose to the detected object in world coordinates is expressed in equation 3.8. If only the movement in the $x y$-plane is executed, the camera optical axis will be lined up with the detected object center. The true position of the object in the world $x y$-plane can then be retrieved by acquiring the manipulator pose from a move group as explained in 3.2.3.

Figure 3.11: Shows the world frame \mathcal{W} (floor), the object frame \mathcal{O} (object center) and the camera frame \mathcal{C} (camera lens).

Furthermore, since the camera used to detect objects is mounted on a bracket at the manipulator end-effector, the optical axis of the camera is most likely not properly lined up with the z-axis of the manipulator end-effector. This is a problem when the second manipulator is going to pick up the object at a detected position. To overcome this offset, the following steps were performed:

1. An object was placed on the table in the robotic cell. The eye-in-hand (Agilus 2) robot was then moved above the object and the detection algorithm was activated.
2. Based on the above method in equation 3.8, a relative movement of the robot to the center of the object was computed and the robot moved accordingly in the $x y$-plane.
3. The camera bracket was then replaced with a calibration tool (a rod with a fine point) for tool center point. With the new tool the robot was jogged close to the object along the z-axis keeping the same $x y$-coordinates.
4. By iteratively moving the robot in x - and y-axes, the offset from the camera optical axis to the end-effector z-axis was detected in relation to the world frame.

By adding the offset values to the detected coordinates of the object in the world frame, the robotic manipulator with the gripper (Agilus 1) can accurately pick up an object detected
from the eye-in-hand system.

3.2 Software development

The software used to process both 2 D and 3 D images, as well as control the robotic manipulators is written using the C++ programming language. The actual development was done using both the $Q T$ Creator and the CLion integrated development environment (IDE). The following sections describes the different aspects of the software development in detail.

3.2.1 Acquiring 3D point clouds

The 3D point cloud produced by the Microsoft Kinect ${ }^{\text {TM }}$ can be acquired and published through a publicly available ROS node named kinect2_bridge (Wiedemeyer, 2016). This program utilizes a data stream acquisition program called libfreenect2 (Xiang et al., 2016) to acquire the data published by the 3D camera. The data stream is then converted to a ROS message. The message used is sensor_msgs/pointcloud2 (ROS.org, 2016b). This message is made available in ROS through a topic.

3.2.2 Acquiring 2D images

Setting up the video stream for 2D object detection was carried out using OpenCV (Open Source Computer Vision) for $\mathrm{C}++$ in ROS. To enable video capturing, one simply has to instantiate an object of class cv::VideoCapture. This is a C++ API enabling video capture from cameras. The class has numerous properties that can be tweaked, for instance the desired resolution of the captured image frames. Once the class has been configured to match the desired video properties a method called open(int index) is called. As suggested by the method name, it will open a connection to the camera.

In order to actually acquire an image that can be processed, the object of cv::VideoCapture is used to store the image data in an object of class $c v:: M a t$. This class represents an ndimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or colour images, voxel volumes, vector fields, point clouds, tensors or histograms (OpenCV, 2015b). The acquirement of an 2D image is the first action in every iteration of the image processing ROS node at a given loop rate. The image can then be processed as explained in section 3.2.4 and published as a ROS message on a given topic using cv_bridge. Cv_bridge is an interface used to encode OpenCV images into ROS image messages (Mihelich and Bowman, 2010). Any ROS node can now subscribe to the topic and visualize the image.

3.2.3 Control the robotic manipulator

ROS is, as described in section 2.7, used for control of the two KR AGILUS manipulators in the robotic cell. Included in ROS is a software package called MoveIt! (Sucan and Chitta, 2016). This package has an inverse kinematic solver making it possible to control the manipulators based on input of e.g. the end-effector pose. The robotic cell is already configured for use with MoveIt! and typically, the MoveIt! Rviz (a visualization framework available in ROS) plugin, a graphical user interface for manipulator control, is used to move the manipulators by drag-and-drop of the end-effector. However, the MoveIt! software can also be used directly in
any ROS node through a C++ API called move_group_interface (Sucan and Chitta, 2013). It allows trajectory planning and current pose acquirement of move groups and is a powerful tool when the goal is to control a manipulator from other ROS nodes.

In MoveIt! a move group consists of a given number of connected joints. Each group has a defined name. In the case of this project they are called agilus 1 and agilus2. One approach to manipulator control is to create two objects of class moveit::planning_interface::MoveGroup, one for each group, and interface directly with these groups in a control node. However, service controlled manipulator movements were considered a "nice to have" functionality and chosen as the desired approach. Therefore, the use of the move_group_interface was programmed in a stand-alone ROS node. This node advertise two different services called plan_pose and go_to_pose.

Through these services, any ROS node can plan a trajectory or move the manipulators by calling the appropriate service. By specifying the goal pose of the end-effector a linearly interpolated trajectory from start pose to goal pose is generated.

The following is a code example showing the use of the go_to_pose services. This service is called using the Pose.srv service object (the Pose.srv service object definition is available in Appendix C).

```
// The service client and service object is created.
goToClient = n.serviceClient<agilus_planner:: Pose>("/robot_service_ag1/
    go_to_pose");
agilus_planner::Pose pose_service;
// The content of the service object is populated with the home position of
    Agilus 1.
pose_service.request.header.frame_id = "/world";
pose_service.request.relative = false;
pose_service.request.set_position = true;
pose_service.request.position_x = 0.445;
pose_service.request.position_y = -0.6025;
pose_service.request.position_z = 1.66;
pose_service.request.set_orientation = true;
pose_service.request.orientation_r = 0.0;
pose_service.request.orientation_p = 3.1415;
pose_service.request.orientation_y = 0.0;
// The service client is called with the populated service object.
goToClient.call(pose_service);
```


3.2.4 2D object detection

As already mentioned in section 3.2.2, OpenCV for $\mathrm{C}++$ is used to acquire images. Before these images add any value to the vision solution, they must be processed in terms of feature detection. OpenCV is also used for this task as it implements very useful functionality for 2D object detection in a way that makes abstraction of code possible. The functionality of interest in OpenCV is mainly the detection, description and matching of image features. This can be done in numerous ways. However, based on theory about this type of object detection, the following four algorithms are the most promising in order to solve the object detection problem:

SIFT The keypoint detector and descriptor extractor called Scale-Invariant Feature Transform as presented in section 2.6.1 is implemented and available in OpenCV as a class named cv::xfeatures2d::SIFT.

SURF Speeded-Up Robust Features as presented in 2.6.2 is also available in OpenCV. The implemented class is named $c v:: x f e a t u r e s 2 d:: S U R F$.

BRISK Binary Robust Invariant Scalable Keypoints as presented in 2.6.3 is a third alternative for object detection. It is implemented in OpenCV named $c v::$ BRISK.

ORB Oriented FAST and Rotated BRIEF is similar to BRISK as explained in 2.6.4. The algorithm is implemented in OpenCV as cv::ORB.

All of the above algorithms are invariant to scale and rotation. The usage of each one is similar. An object detection procedure consists of the following steps:

1. Load a query image of the object to be detected into an instantiated object of $c v::$ Mat.
2. In the query image:
a. Detect keypoints and store them in an object of std::vectorcv::KeyPoint.
b. Extract descriptors and store them in an object of cv::Mat.
3. Acquire a training image as described in 3.2.2.
4. For each training image obtained:
a. Detect keypoints and store them in an object of std::vectorcv::KeyPoint.
b. Extract descriptors and store them in an object of cv::Mat.
c. Match the query descriptors with the training descriptors using either brute-force or FLANN. Store the matches in a vector std::vector $<c v:: D M a t c h>$ and sort them using the distance ratio-test as explained in section 2.6.5.
d. Compute the homography between the matched points in the query and training image using RANSAC as described in 2.6.6. Transform the query object plane using the homography and surround the detected object with four corner points in the training image, supposedly as a rectangular box when lines are drawn between them.
e. Check that the inner angles of this box is close to 90° compared to an allowed deviation.
f. If the box is not rectangular:
i. Cancel further processing and proceed with the next image.
g. If the homography transform is accepted:
i. Mark the object in the training image and publish the processed image using $c v \quad b r i d g e$ as described in 3.2.2.
ii. Compute the image coordinates of the detected object center using the pixel coordinates of the intersection between the object box diagonals as input.
iii. Compute the orientation of the detected object.
iv. Publish the image coordinates and orientation data as a ROS message of type geometry_msgs/Pose2D.msg.

Testing and evaluation of the available keypoint detectors and descriptor extractors is possible by implementing this procedure in a C++ ROS node. Test procedures are presented in section 3.3.

Acquiring object orientation

As previously mentioned, if the homography between the query image and the match in the training image results in a rectangular box surrounding the object, the match is good for further processing. In order to successfully assemble part A into part B, the orientation acquirement of both parts needs to be accurate. Section 3.1.5 points out that the orientation of the eye-inhand system is always fixed and perpendicular to the table where the objects are placed, thus always perpendicular to the object seen from above.

With a known and fixed orientation of the camera frame, it is possible to accurately compute the orientation of a given shape in the image using basic geometry. This shape is always a simple square or rectangle because of the matching algorithm expressed above. An object is detected at pixel coordinates $\boldsymbol{p}=(u, v)$ in the image plane as illustrated in Figure 3.12. The pixel coordinates of the corners $0,1,2$ and 3 is denoted $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ and \boldsymbol{p}_{3}. The image center is denoted $\boldsymbol{p}_{c}=\left(u_{0}, v_{0}\right)$. Given a rotation of the object box, there will be a right triangle with hypotenuse between corner 0 and 1 as shown in the figure below.

Figure 3.12: Illustrates the simple computation of the objects orientation.

The angle of the object is then simply expressed as:

$$
\begin{equation*}
\theta=\operatorname{atan} 2\left(\frac{y}{x}\right) \tag{3.9}
\end{equation*}
$$

where the horizontal pixel length x and vertical pixel length y of the triangle is:

$$
\begin{aligned}
& x=\boldsymbol{p}_{1}(u, 0)-\boldsymbol{p}_{0}(u, 0) \\
& y=\boldsymbol{p}_{0}(0, v)-\boldsymbol{p}_{1}(0, v)
\end{aligned}
$$

A testing procedure for the stability of this method is presented in section 3.3.5.

3.2.5 3D object detection

The 3D object detection used in this assembly task is implemented using the $\mathrm{C}++$ programming language in conjunction with the Point Cloud Library (PCL) (PCL, 2016). PCL implements functionality useful to perform 3D object detection. The following is an explanation of the steps performed in sequence in order to detect a wanted object using the 3 D camera, and a description of the PCL classes used to perform them. This is an implementation of a global pipeline.

Passthrough filtering The first step in the object detection process is passtrough filtering This is done to reduce the number of data points in the point cloud, but also to remove any unwanted parts of the 3D scene. Passthrough filtering is explained in detail in section 2.3.1. The PCL class pcl::PassThrough is used to perform a passthrough filtering task.

Voxel grid filtering The voxel grid filtering is performed to ensure that the point cloud is uniformly sampled. This is important in order to estimate accurate descriptors of the scene that is comparable to the training set (the point clouds in the training set are all sampled uniformly). Voxel grid filtering is explained in detail in section 2.3.2 The PCL class pcl:: VoxelGrid is used to perform a voxel grid filtering task.

Plane model segmentation Given that it is known that the parts that is to be assembled will be located on a table surface, a model segmentation is performed. This is done in order to remove the part of the point cloud that corresponds with the table surface. Model segmentation is explained in detail in section 2.3.5. The model segmentation is done using the PCL class pcl::SACSegmentation. In order to segment a plane, the RANSAC model pcl::SACMODEL_PLANE is used.

Cluster extraction At this point in the process, the only points left in the point cloud will correspond with the parts that is to be assembled and some random, scattered noise. The purpose of the cluster extraction step is to separate the different objects in the scene into their on individual point clouds. This step is critical in order to use global descriptors. This is explained in detail in section 2.3.6. The cluster extraction is performed by the PCL class pcl::EucledianClusterExtraction. All steps following the cluster extraction is performed for all clusters extracted in this step.

Normal estimation Surface normals are estimated. The surface normals are instrumental to the estimation of both local and global descriptors. The method used for estimating surface normals is described in section 2.4.1. Normal estimation is performed using the PCL class pcl::NormalEstimation.

Keypoint selection Keypoints used for local descriptor estimation is selected using SIFT3D. As described in section 2.4.2, keypoints are selected to be points of interest that contain
more information than its neighbouring points. Keypoints is explained in section 2.4.2. The selection is done using the PCL class pcl::SIFTKeypoint.

Local descriptor estimation Local descriptors are estimated using the FPFH descriptor. The local descriptors will be used to calculate an initial alignment at a later step. Local descriptors is explained in section 2.4.3. The estimation is performed using the PCL class pcl::FPFHEstimation.

Global descriptor estimation Global descriptors are estimated for all clusters extracted in the cluster extraction step. As described in section 2.4.4, the global descriptor holds information that describes a cluster of points. This descriptor is used for viewpoint matching. The global descriptor estimation is done using the VFH (see section 2.4.4) global descriptor which is implemented in the PCL class pcl::VFHEstimation.

Viewpoint matching In order to select the model from the training set with the correct viewpoint of the part (that matches the viewpoint of the part captured by the 3D camera), the global descriptors of all viewpoints in the training set is compared to the object cluster using a nearest neighbour search. The best match is selected as the model that is used for alignment. The nearest neighbour search is applied on a Kd-tree data structure which is generated using the PCL class pcl::KdTreeFLANN. This class also implements nearest neighbour search.

Initial alignment Initial alignment is done using the model found to be the best match (previous step). The output of this step is a rigid transform that is close to registering the model from the training set to the object cluster in the scene. The approach used for initial alignment estimation is the sample consensus approach. A brief explanation is available in section 2.5.3. This is implemented in the PCL class pcl::SampleConsensusInitialAlignment.

Final alignment The final alignment is estimated using ICP (see section 2.5.2) with the rigid transform estimated in the previous step as the starting point. The rigid transform produced by the ICP algorithm is used in conjunction with the training set information regarding the pose of the model as an estimate of the pose for the wanted object in relation to the 3D camera reference frame T_{o}^{c}. This pose is transformed to the world reference frame T_{o}^{w} using the rigid transform from the world reference frame to the 3D camera T_{c}^{w} as follows:

$$
T_{o}^{w}=T_{c}^{w} \times T_{o}^{c}
$$

The position of the part found using 3D object detection is the final output of this sequence. The ICP algorithm is implemented in the PCL class pcl::IterativeClosestPoint.

3.2.6 Creating training sets

The training set used for 3D object detection was created using the virtual approach described in section 2.4.5. A virtual tessellated sphere is used to position a virtual 3D depth sensor. The sphere used when creating the training set produces 42 individual 3D point clouds, rendered with a resolution of 200×200 pixels. Using this resolution, the rendered scene produced is comparable to the 3D point cloud of an object captured by a 3D camera.

In order to reduce the computation time for 3D object detection, a full set of features (keypoints, surface normals, local descriptors and global descriptor) are calculated for each of the 42 point clouds produced for a model. The point cloud, with its corresponding features are saved to file on the computer, allowing for fast processing times during the 3D object detection process.

3.2.7 ROS communication

This section demonstrates how the main communication framework available through ROS are implemented and used.

Publishing a service

As mentioned in section 2.7.3, a service is defined in a separate file with the.$s r v$ extension. In addition, the node publishing the service needs a callback method for the particular service. The following code defines a callback for the service named test_service:

```
bool test(package_name::test_service:: Request &req,
    package_name::test_service::Response &res)
{
    // This service adds value a and b from the service request together and
        returns the sum in the service response. This action is performed
        whenever this service is called.
    res.sum = req.a + req.b;
    return true;
}
```

Once the service callback is defined, the node can publish the service. This is done in the following way.

```
ros::ServiceServer service = node_handler.advertiseService("test_service",
    test);
```

The ServiceServer is defined with the service name and callback method. At this point, the service is published and can be called from other nodes on the ROS system.

Calling a service

In order to call a service from a remote node, we first define a service client.
1

```
ros::ServiceClient client = node_handler.serviceClient<package_name::
    test_service>("test_service");
```

Next, a service object is made, and the request is filled with data.

```
package_name::test_service srv;
srv.request.a = 1;
srv.request.b = 2;
```

Finally, the service is called using the service client object.
1 || client.call(srv);

Publishing a topic

Publishing a topic is done trough the Node Handler. Each ROS node has a node handler, which is used for controlling the node, and communicate with other nodes. In order to publish a topic, a Publisher object is retrieved from the Node Handler.

```
ros::Publisher topic_publisher = node_handler.advertise<std_msgs::String>("
    topic_name", 1000);
```

The publisher is defined with a topic name and message type. Next, the message is generated and filled with some data.

```
std_msgs::String topic_message;
std::stringstream message_data;
message_data << "hello world ";
topic_message.data = message_data.str();
```

Finally, the topic is published.
1 || topic_publisher.publish(topic_message);

Subscribing to a topic

Subscribing to a topic is handled similarly to publishing. First, a subscriber object is obtained through the node handler.

```
ros::Subscriber subscriber = node_handler.subscribe("topic_name", 1000,
    topicCallback);
```

The subscriber object is defined with a topic name and a callback function that is called when a new topic message is received. A callback method could look like the following:

```
void topicCallback(const std_msgs::String::ConstPtr& topic_message)
{
    // Perform this action whenever the topic is updated.
    ROS_INFO("I heard: [%s]", topic_message->data.c_str());
}
```

The node is now configured to subscribe to the topic topic_name.

Defining a message

The following is an example of a struct declaration:

```
struct human{
int age;
double height;
double weight;
};
```

Now, this custom datatype can be defined as a message in the ROS framework using a .msgs file containing the following lines of code:

```
int age;
double height;
double weight;
```

As evident by the code examples above, the declaration of a struct and a message is very similar. The use of messages in topics allows applications to wrap a high amount of data in a single message. One important aspect of messages, services and topics is that they are globally defined, meaning that any node running in the ROS framework can use these user defined types.

3.3 Testing setup

3.3.1 3D object detection accuracy

In order to test the positional accuracy of the 3D object detection output, a test was performed. In this test, the two different parts that is to be assembled was positioned on the table at known locations. The resulting position from the 3 D object detection is compared to the known position of the parts. Figure 3.13 shows the setup used, where a part is positioned in different known positions on the table.

The grid used is measured to have 5 cm by 5 cm squares, and positioned so that the lower left corner of the paper is located directly above the world origin reference frame. This allows for easy positioning of the parts at 5 cm increments in negative x direction, and positive y direction. It is fair to assume that the positional accuracy of the camera is close to constant for the entire field of view, thus only one section of the table was used to carry out this test.

Figure 3.13: Shows the test setup used to measure the positional accuracy of the 3D object detection process.

The expected result from this test is based on a couple of different factors:

1. The accuracy of the Microsoft Kinect ${ }^{\mathrm{TM}}$ is known to decrease quadratically with distance as shown by Khoshelham and Elberink (2012). Also shown in this paper is an expected positional accuracy of $<2 \mathrm{~mm}$ for the particular working area used.
2. The accuracy of the camera position calibration. Given that the camera position calibration is performed using the 3D camera data, the accuracy of the sensor data will also affect the calibration. The ar-tag used was placed approximately 1 m away from the sensor. This is within the area where the expected accuracy of the sensor is $<2 \mathrm{~mm}$ as shown by Khoshelham and Elberink (2012).

Given these two factors, the theoretical accuracy should be within 0.4 cm , however we do not expect to achieve such high accuracy. Adding for some margin of error, we expect the positional accuracy for the 3D object detection process to be within 0.6 cm .

3.3.2 Testing global descriptors

In an effort to investigate which global descriptors were most suited to this assembly task, a test was performed. This test was done by taking a 3D depth picture of one of the parts that is to be assembled. This image was processed as described in section 3.2.5. From this point cloud, a VFH descriptor and a CVFH descriptor was estimated.

Two different training sets were created to perform this test. One using the VFH global descriptor, and the other using the CVFH global descriptor. We choose to test these two descriptors based on the previous work by Alexandre (2012). This comparative analysis shows that the more complicated descriptors (such as CVFH and OUR-CVFH) have a higher recognition rate than the more basic VFH descriptor. Because of this, we want to use a complex global descriptor if this is possible. Figure 3.14 shows the 3D scene used for testing the different global descriptors.

Figure 3.14: The scene used to test match the different global descriptors.

The reason behind only testing the VFH and CVFH descriptor is that the OUR-CVFH descriptor is based on the CVFH descriptor. This means that if the CVFH descriptor is not usable, this will also apply to the OUR-CVFH descriptor.

The two different global descriptors were tested by performing descriptor matching. The expected result is to see a better confidence value (a value that describes how good a match is) for the more complex CVFH descriptor than the basic VFH descriptor.

3.3.3 2D object detection processing time

A test was performed in order to get knowledge of the difference in processing time between SIFT, SURF, BRISK and ORB used in the developed object detection ROS node. The processing time needed to detect keypoints, compute descriptors and match descriptors was of interest individually and as a total. The camera was stationary at the table during all tests pointing towards the same image taped to the wall as illustrated in Figure 3.15. OpenCV has methods for timing implemented as cv::getTickCount() and cv::getTickFrequency(). The following code is used to compute the detection time of keypoints in seconds:

```
double d = (double)cv::getTickCount();
detector ->detect(video, keypoints_scene);
d = ((double)cv::getTickCount() - d)/cv::getTickFrequency();
```

The method is similar for the descriptor extraction time and matching time.

Figure 3.15: The view from the camera during testing of SIFT.
It is expected to see a clear difference in total processing time between the binary descriptor methods, i.e. BRISK and ORB, and the real-valued methods, i.e. SIFT and SURF.

3.3.4 2D object detection matching stability

Matching stability is important to ensure high rate of success when assembling part A and part B. It is also desirable that this works under the conditions present in the robotic cell used for assembly. In order to test the stability of the object detection procedure described in section 3.2.4 a simple test was performed in the robotic cell. It consisted of the following steps:

1. Place the object to be tested at the table with a given orientation.
2. Move the eye-in-hand (Agilus 2) manipulator above the object at a chosen z-coordinate in the world frame.
3. Start object detection with a chosen algorithm, like SIFT, against a chosen query image of the object.
4. Move the manipulator closer to the object along the z-axis until matching fails.

The steps were repeated for both parts using all four algorithms. From this test we want to map the range of different distances between object and camera lens where the matching is stable enough to be used for the final assembly task.

3.3.5 2D object detection orientation stability

A very important part of the 2D pose of an detected object is the orientation. In order to determine the stability of the orientation computation as described in section 3.2.4 using the different algorithms of interest, a test was performed.
The steps performed to acquire test data is:

1. Place the object to be tested at the table with a given orientation.
2. Move the eye-in-hand (Agilus 2) manipulator above the object at a given z-coordinate in the world frame. The specific coordinate has been determined from the matching stability results as presented in 4.3.2.
3. Compute the mean of n acquired orientations until m data points is generated.

This test was repeated for each algorithm that showed to have sufficient matching stability (tested as described in section 3.3.4), for both parts that is to be assembled. From each detection cycle of the algorithm presented in 3.2.4 an orientation is published as an angle in the range $[-180,180]$ degrees. The test data is more specifically formatted as:

- One data point in the series of test data is obtained by computing the mean of
$-n=10$ acquired orientations when using SIFT
$-n=20$ for the rest of the algorithms
- Each test consists of $m=25$ of these data points.

This is chosen based on the results from the tests concerning processing time as presented in section 4.3.1. From this orientation test we want to determine which approach is better for stable orientation computation.

Chapter 4: Result

4.1 Physical setup

4.1.1 Robotic cell networking

The physical components of the robotic cell is networked together in a way that allows the ROS master computer to communicate with both the two robotic controllers and the Intel NUC computer. A simple sketch of the network setup used for the robotic cell is shown in Figure 4.1.

Figure 4.1: Shows the network connections between the critical hardware in the robotic cell.

4.1.2 Calibrating 3D camera position

Since the objective of this task is to combine the data acquired from a 3D depth sensor and a traditional camera. The position of the 3D camera was calibrated using the approach described in section 3.1.2. Figure 4.2 shows the detected ar-tag with the corresponding reference frame. This reference frame is used to estimate the position of the 3D camera.

The calibration process resulted in the following homogeneous transformation matrix:

$$
T_{\text {tag }}^{c}=\left[\begin{array}{cccc}
-0.0007 & -0.9998 & -0.0182 & -0.1160 \\
-0.5692 & 0.0154 & -0.8220 & -0.0416 \\
0.8221 & 0.0097 & -0.5691 & 1.0405 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Figure 4.2: Shows the output of the ar_track_alvar application used for position calibration of the 3D camera.

This transformation matrix is used as shown in equation 3.2 to produce the following rigid transformation from the world reference frame to the camera origin:

$$
\begin{aligned}
T_{c}^{w} & =T_{\text {tag }}^{w} \times\left(T_{\text {tag }}^{c}\right)^{-1} \\
T_{c}^{w} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0.87 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
-0.0007 & -0.9998 & -0.0182 & -0.1160 \\
-0.5692 & 0.0154 & -0.8220 & -0.0416 \\
0.8221 & 0.0097 & -0.5691 & 1.0405 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1} \\
T_{c}^{w} & =\left[\begin{array}{cccc}
-0.0008 & -0.5692 & 0.8222 & -0.8793 \\
-0.9998 & 0.0155 & 0.0098 & -0.1256 \\
-0.0183 & -0.8220 & -0.5692 & 1.4258 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Using the calibration approach described in section 3.1.2, the resulting camera position is accurate to the point where the part is fully visible in the 2D camera when the robot manipulator is positioned above the origin of the part. This means that any inaccuracies caused by the calibration of the 3D camera position, and 3D object detection is negligible for the assembly process from the point where the 2D object detection starts.

4.1.3 Calibrating eye-in-hand transform

In order to move the manipulators based on detected objects in the camera frame a calibration step had to be performed. First, the camera intrinsic matrix and distortion coefficients were determined using the method described in section 3.1.4:

$$
\boldsymbol{K}=\left(\begin{array}{ccc}
781.585 & 0 & 640 \tag{4.1}\\
0 & 781.585 & 360 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{align*}
\text { distortion }_{\text {coef ficients }} & =\left(k_{1}, k_{2}, p_{1}, p_{2}, k_{3}\right) \\
& =(0.088995,-0.21592,0.0021548,-0.0039320,0.095365) \tag{4.2}
\end{align*}
$$

Applying correction for the lens distortion of the image stream from the Logitech C930e web camera using the distortion coefficients expressed in equation 4.2 yields a clear improvement as shown in Figure 4.3.

Figure 4.3: Left: Image with lens distortion. Notice the curvature of the image along edges compared to the red lines. Right: The same image, but with correction for lens distortion. The curvature is minimized.

By using the method presented in section 3.1.5, image coordinates of detected objects are computed and used to acquire a relative movement from the current manipulator pose to the detected object in the $x y$-plane of \mathcal{W}.

As previously stated in section 3.1.5, the camera frame is always fixed and perpendicular to the table surface. Therefore, the rotation between the world frame \mathcal{W} and the camera frame \mathcal{C} is constant. This means that the x-axis of \mathcal{C} always corresponds to the negative y-axis of \mathcal{W}, and the y-axis of \mathcal{C} always corresponds to the negative x-axis of \mathcal{W}. Any image coordinate computed as long as the orientation of \mathcal{C} is fixed can be simplified to the following relative manipulator movement in \mathcal{W} :

$$
\begin{align*}
x_{\mathcal{C}} & =-y_{\mathcal{W}} \tag{4.3}\\
y_{\mathcal{C}} & =-x_{\mathcal{W}}
\end{align*}
$$

This simplification is implemented in the final code (see digital appendix for the full source code of the agilus_master_project application). As illustrated in Figure 4.4, this approach is shown to be a viable solution. In this case the distance between the camera lens and object is approximately $\lambda=26.7 \mathrm{~cm}$. In the left image of Figure 4.4, the object is detected at pixel coordinates $\tilde{\boldsymbol{p}}=\left(\begin{array}{lll}480 & 48 & 1\end{array}\right)^{T}$ which in image coordinates scaled with $\lambda=26.7 \mathrm{~cm}$ is -5.47 cm along the x-axis and -10.66 cm along the y-axis in the camera frame \mathcal{C}. In the right image of Figure 4.4, the manipulator has moved according to the relationship between the image coordinates as expressed in equation 3.8 and simplified in equation 4.3 , which in this case means 10.66 cm along the x-axis and 5.47 cm along the y-axis in the world frame \mathcal{W}.

Figure 4.4: Illustrates the eye-in-hand robot control based on image coordinates. The optical center of the image is marked with three concentric circles in red, green and blue. The object center is marked with a thick red circle at the intersection of the diagonals.

With the eye-in-hand manipulator (Agilus 2) positioned above the object as shown to the right in Figure 4.4, an accurate end-effector pose in world coordinates is acquired as described in section 3.2.3.

4.2 3D Computer Vision

4.2.1 Accuracy test of 3D object detection

Using the test method described in section 3.3.1, the following data was obtained:

Testing Object Detection Accuracy Part A (measured in cm)					
Actual X	Actual Y	Measured X	Measured Y	$\|\triangle X\|$	$\|\triangle Y\|$
-5	5	-6.18	5.4	1.18	0.4
-5	10	-6.25	10.55	1.25	0.55
-5	15	-6.28	16.11	1.28	1.11
-5	20	-5.17	21.56	1.28	1.56
-10	5	-11.12	5.08	1.12	0.08
-10	10	-10.83	10.43	0.83	0.43
-10	15	-10.98	15.92	0.98	0.92
-10	20	-11.46	20.85	1.46	0.85
-15	5	-15.89	5.2	0.89	0.2
-15	10	-15.81	10.56	0.81	0.56
-15	15	-15.97	15.77	0.97	0.77
-15	20	-16.18	21.01	1.18	1.01
-20	5	-20.43	5.4	0.43	0.4
-20	10	-20.68	10.72	0.68	0.72
-20	15	-20.72	16.27	0.72	1.27
-20	20	-21.18	21.38	1.18	1.38

The maximum and minimum positional deviations for the testing using Part A is shown in table 4.1.

Min/Max Recorded Values	
$\operatorname{Max} \triangle X[\mathrm{~cm}]$	1.46
Max $\triangle Y[\mathrm{~cm}]$	1.56
Min $\triangle X[\mathrm{~cm}]$	0.43
Min $\triangle Y[\mathrm{~cm}]$	0.08

Table 4.1: Shows the minimum and maximum deviation for the testing using Part A.

Testing Object Detection Accuracy Part B (measured in cm)					
Actual X	Actual Y	Measured X	Measured Y	$\|\triangle X\|$	$\|\triangle Y\|$
-5	5	-5.76	5.16	0.76	0.16
-5	10	-6.12	10.8	1.12	0.8
-5	15	-5.98	15.94	0.98	0.94
-5	20	-6.17	20.88	1.17	0.88
-10	5	-10.65	5.47	0.65	0.47
-10	10	-10.62	10.21	0.62	0.21
-10	15	-10.73	15.81	0.73	0.81
-10	20	-10.91	20.79	0.91	0.79
-15	5	-15.22	5.46	0.22	0.46
-15	10	-15.46	10.62	0.46	0.62
-15	15	-15.71	16.2	0.71	1.2
-15	20	-15.85	21.14	0.85	1.14
-20	5	-20.1	5.43	0.1	0.43
-20	10	-20.73	10.06	0.73	0.06
-20	15	-20.26	16.35	0.26	1.35
-20	20	-21.43	21.96	1.43	1.96

The maximum and minimum positional deviations for the testing using Part B is shown in table 4.2.

Min/Max Recorded Values	
$\operatorname{Max} \triangle X[\mathrm{~cm}]$	1.43
Max $\triangle Y[\mathrm{~cm}]$	1.96
Min $\triangle X[\mathrm{~cm}]$	0.1
Min $\triangle Y[\mathrm{~cm}]$	0.06

Table 4.2: Shows the minimum and maximum deviation for the testing using Part B.
It is important to note that there are uncertainties regarding this test. The parts that was detected were manually placed on the table as accurately as possible. Even though this was done using a reference grid, it is not guaranteed that the actual position of the part was 100% accurate. One other uncertainty is the accuracy of the 3D camera position calibration. The calibrated position of the camera will affect the position output for the parts when using the 3 D object detection.

The test results show that the maximum positional error for both the x and y axis is below 2 cm . This is well within the margin of error that is tolerated in order for the 2D object detection to be performed based on this initial position, however, it does not meet the expected accuracy as stated in section 3.3.1. A brief discussion regarding this result is found in 5.2.

Figure 4.5: Shows the view from the 2D object detection camera when Agilus 2 is positioned in the initial position found using 3D object detection.

Figure 4.5 shows an image taken from the 2D camera when positioned in the initial position found by 3D object detection. As is evident by the image, the position is not accurate enough to be used on its own, but is more than adequate to be used as the starting point for 2D object detection.

4.2.2 Testing and selecting global descriptor

The testing of global descriptors was carried out as described in section 3.3.2. The result from the matching process is presented in table 4.3 and 4.4. A brief description of the different table entries are described below.

Cluster nr. This number corresponds with the cluster number in the scene that is being matched. The scene contains 4 different clusters, where cluster number two is known to be the part we are searching for.

Segment nr. When using the CVFH descriptor, each cluster is separated into multiple segments. For each segment, a VFH descriptor is estimated. The CVFH descriptor is matched with a set of CVFH descriptors from the training set, and the segment with lowest confidence level is the best matching segment.

Best match This number corresponds with the best matching model from the training set. We manually estimated that model number 6 should be the best match, since it is the model closest to the object as seen in the 3D scene.

Confidence level This number corresponds with the difference between the descriptor of the object in the scene, and the descriptor of the best matching model. The lower this number is, the better the match is. Throughout this work, we found that a confidence level between 0-4000 usually dictates a good match (when using the VFH global descriptor).

Cluster nr.	Best match	Confidence level
1	41	14564.8
2	6	3043.06
3	32	33093
4	32	27204.6

Table 4.3: Shows the test result from a matching process using the VFH descriptor. The table entry with the best matching result is indicated in green.

The result from the test using the VFH descriptor shows a predictable result. The cluster that corresponds with the part we are searching for is cluster number two. This is the cluster with the lowest confidence level. In addition, the best matching model is, as expected, model number 6. However, the confidence level is quite high. This indicates a positive, but somewhat unreliable match.

Cluster nr.	Segment nr.	Best match	Confidence level
1	1	10	24495500
	2	74	18602800
	3	74	18928400
2	1	56	1637620
	2	8	3139210
	3	71	1320850
3	1	61	1089380
	2	4	2965940
4	1	43	174401

Table 4.4: Shows the test result from a matching process using the CVFH descriptor. The table entry with the best matching result is indicated in green.

The result from the test using the CVFH descriptor was unexpected. It was expected to achieve a positive and decisive match between a segment of cluster number two and one of the segments from model number six in the training set. This is not the case. The best matching cluster is number 4 , which in this scene is just a cluster of noise left behind from the model segmentation step. In addition, the confidence level for this match is extremely high, and is not a value that is indicative of a positive match at all.

The result from this test shows that using the basic VFH descriptor will provide us with the best matching result, and overall reliability when it comes to the 3D object detection. The main benefits the CVFH descriptor holds over the VFH descriptor is the robustness when it comes to occluded scenes. This is not a part of our problem scenario, since the two parts that is to be assembled will be placed in separate areas on the table. Based on this we selected to use the VFH global descriptor.

4.2.3 Selecting keypoint and local descriptor estimator

The selection of the keypoint estimation method was done based on the work of Filipe and Alexandre (2014). Their comparison of the most common 3D keypoint selectors show that
both the SIFT3D and ISS3D method performs with equal repeatability. Based on this, we chose to use the SIFT3D keypoint estimator. Throughout this thesis, the conclusion made by Filipe and Alexandre (2014) has shown to be consistent and the use of SIFT3D as keypoint estimator performed as expected.

The selection of local descriptors was also made on the basis of previous work. The work by Alexandre (2012) shows that the PFH family of descriptors are the fastest to compute while still maintain high robustness with regards to viewpoint differences. Because of this, we chose to use the FPFH local descriptor. Throughout the work with this project, the FPFH local descriptor was found to perform as reliable as expected, and no problems caused by this choice was encountered.

4.2.4 Creating training sets

The C++ class used to generate training sets from 3D CAD models is called Modelloader.cpp (source code available in Appendix A). The initial functionality of this class was created by Adam Leon Kleppe. The class was modified to allow for feature estimation, and for the features to be added to the training set. The initial functionality was limited to viewpoint specific point cloud rendering and object pose information.

The resulting class is a useful tool for creating a training set, and also to load all the data in a training set from disk to the system memory. This allows for faster processing times when the 3D object detection routine is performed (since all features of the different point clouds located in a training set is pre-calculated).

The data output from this class is saved to a directory created under the root directory of the application using it. Each training set (each part) is located in its own sub directory under this directory.

Multiple different training sets are available online at the Github repository used for the software development (Larsen and Bjørkedal, 2016a). The training sets are located at "agilus_master_project/trace_clouds". The naming convention used for the training sets are "name - number of viewpoints - render resolution". Example of a training set name is "cone-42-200".

Figure 4.6 shows some of the different viewpoint point clouds generated from a part.

Figure 4.6: A collection of different point clouds that illustrates the different viewpoints generated in the process of creating a training set.

4.2.5 3D object detection

The result from the 3D global descriptor testing described in section 4.2.2 made it clear that the best option for 3D object detection using global descriptors was to use the Viewpoint Feature Histogram (VFH) global descriptor. Based on this choice, the resulting pipeline used to perform 3D object detection is shown in Figure 4.7. This pipeline uses a combination of global and local descriptors to perform a complete object detection and pose estimation process. The local descriptors are used to estimate an initial position based on the Random Sample Consensus approach, and the global descriptor is used for viewpoint matching (necessary to select the best suited model from the training set). The code implementation of the pipeline can be found in the object_detection method located in pcl_filters.cpp in Appendix A.

Figure 4.7: Illustrates the pipeline used for 3D object detection.
One problem that quickly became evident was the similarities of the two different parts. The 3D point cloud produced by the depth sensor lacks quite a lot of detail. The result of this is that the point clouds for the two different parts are hard to distinguish from each other. Both
parts have similar height, diameter and are equally featureless (both are symmetrical cylinders with few detectable features). This made the task of distinguishing the different parts from each other using global descriptor matching highly unreliable. In order to circumvent this issue, we decided to divide the working surface (the table in the robotic cell) in two, equally sized, working areas. We then assume that part A is always located in the first working area, and similar for part B located in the second working area. The two different working areas are illustrated in Figure 4.8.

Using this approach, we have yet to produce a scenario where the 3D object detection is unable to detect and estimate the position of the two parts. An example of such an detection and position estimation is shown in Figure 4.9. The best matching model for the two training sets used for the matching is placed on the original 3D scene captured using the 3D depth sensor.

Given that the parts are both symmetrical cylinders, the detected orientation is ambiguous. However, since the final position and orientation of the parts is detected using 2D object detection, this does not cause any issues. The important information gained from the 3D object detection is an approximate position of the parts in the $x y$-plane of the table.

A demonstration video produced to show the complete automated assembly of the two parts is available online at Larsen and Bjørkedal (2016b) and through the digital appendix for this thesis. The contents of the digital appendix is described in Appendix D. This video also show the working 3D object detection process.

Figure 4.8: Illustrates the virtual separation of the two work areas used when performing the 3 D object detection routine.

Figure 4.9: Shows the result from a 3D object detection process.

4.3 2D computer vision

4.3.1 Processing time

The approach that is examined in this thesis is aimed at a flexible assembly task for use in the industry. This means that there are, in many cases, defined limits for the cycle time of each task. This may lead to a demand for lower processing time of object detection. For research purposes this is not considered a problem, but it is of interest to determine if the assembly task can be solved using faster methods and how they compare to the slower ones.

The testing of processing time was performed as described in section 3.3.3. The needed time to detect keypoints and extract descriptors in the test scene is presented in Figure 4.10.

Figure 4.10: Left: Time needed to detect keypoints in a test scene. Right: Time needed to extract descriptors from the detected keypoints.

As evident from Figure 4.10, SIFT is the slowest both at keypoint detection and descriptor extraction. The result is as expected, where the convolution by integral images and determinant-of-Hessian for detection of SURF features is faster than the difference-of-Gaussian approach for
detection of SIFT features. Both BRISK and ORB are really fast at this task, mostly because of the use of FAST as base for keypoint detection. In terms of descriptor extraction, the ones represented by binary bit-strings from intensity tests, i.e. BRISK and ORB, are really fast to compute. The use of Haar wavelet filters and integral images speeds up the SURF descriptor, but it is still slower than the binary descriptors. SIFT and its approach using histogram of oriented gradients for description is outperformed in terms of speed. As evident from Table 4.5 and Table 4.6, BRISK is faster than ORB at both tasks, marked with green cell colour.

Mean keypoint detection time $[\mathbf{s}]$			
SIFT	SURF	BRISK	ORB
0.22467492	0.04927685	0.0084592534	0.009322315

Table 4.5: The mean keypoint detection time of the 50 cycles illustrated in Figure 4.10.

Mean descriptor extraction time [s]			
SIFT	SURF	BRISK	ORB
0.17505564	0.025696292	0.0033582588	0.012909806

Table 4.6: The mean descriptor extraction time of the 50 cycles illustrated in Figure 4.10.
The next part of the test determines the time needed to match descriptors between a query image and the training images of the test scene. Figure 4.11 presents the test results and the total processing time needed from detection to a final match is complete.

Figure 4.11: Left: Time needed to extract descriptor from the detected keypoints. Right: The total time needed to detect keypoints, extract descriptors from the test scene and match the descriptors with descriptors from a query image.

The matching method used during this test was brute-force matching with $n=2$ best matches sorted by a distance ratio test at threshold 0.9. The ratio test is described in section 2.6.5. The distance measurement used for SIFT and SURF is the L1 norm - Manhattan distance, and Hamming norm for BRISK and ORB. SIFT is once again the slowest. However, this is not unexpected considering the descriptor type and size. Compared to a binary descriptor like BRISK and ORB, SIFT is more demanding in terms of computational cost when matching because of the different natures of the descriptors. A surprise from this test is the matching time of the SURF descriptors, which is even faster than both BRISK and ORB. The mean
matching time of the 50 test cycles is shown in Table 4.7. In total, BRISK is the fastest algorithm in this particular test as evident from Figure 4.11 and Table 4.8.

Mean descriptor matching time $[\mathrm{s}]$			
SIFT	SURF	BRISK	ORB
0.0105037502	0.0011120464	0.0044597802	0.0052647372

Table 4.7: The mean descriptor matching time of the 50 cycles illustrated in Figure 4.11.

Mean total detection time [s]			
SIFT	SURF	BRISK	ORB
0.4102343	0.07608519	0.016277292	0.027496862

Table 4.8: The mean total detection time of the 50 cycles illustrated in Figure 4.11.
Worth noticing is that the processing time is directly connected to the number of layers used for scale pyramids, parameters for keypoint rejection and other parameters and thresholds for each individual algorithm. The results from this test was produced using standard parameters as specified by the OpenCV documentation, except slight adjustments of thresholds in order to control the number of keypoints estimated. This is further discussed in section 5.1.

4.3.2 Matching stability

In order to make a choice about which algorithm to use for the 2D part of the assembly task, a matching stability test was conducted. Each part was photographed from both ends at a decided reference orientation, resulting in four query images to detect in the training scene. These images are shown in Figure 4.12.

Figure 4.12: The query images used to detect the parts. From the left: Part A - top view, part A - bottom view, part B - bottom view, part B - top view.

The test was carried out as explained in section 3.3.4 and yields the results shown in Table 4.9, 4.10, 4.11 and 4.12. Note that BRISK is not included in any of these tests, as it failed to produce any matches with the parts shown in Figure 4.12. The data in the tables presented below therefore only consists of data where an actual match was achieved.

Part A - top view							
Keypoint	Descriptor	Matcher	RGB	$\boldsymbol{\lambda}_{\min }[\mathbf{c m}]$	$\boldsymbol{\lambda}_{\max }[\mathbf{c m}]$	Note	
SIFT	SIFT	Brute-force	Yes	15.3	30.3	Stable	
ORB	ORB	Brute-force	Yes	15.3	-	Low stability	

Table 4.9: Matching stability of part A - top view. $\boldsymbol{\lambda}$ denotes the distance between the camera lens and the object.

Part B - bottom view							
Keypoint	Descriptor	Matcher	RGB	$\boldsymbol{\lambda}_{\min }[\mathbf{c m}]$	$\boldsymbol{\lambda}_{\max }[\mathbf{c m}]$	Note	
SIFT	SIFT	Brute-force	Yes	9.8	39.8	Stable	
SURF	SURF	Brute-force	Yes	9.8	35.3	Stable	
ORB	ORB	Brute-force	Yes	9.8	21.8	Low stability	

Table 4.10: Matching stability of part B - bottom view. $\boldsymbol{\lambda}$ denotes the distance between the camera lens and the object.

Part A bottom view							
Keypoint	Descriptor	Matcher	RGB	$\boldsymbol{\lambda}_{\min }[\mathbf{c m}]$	$\boldsymbol{\lambda}_{\max }[\mathbf{c m}]$	Note	
SIFT	SIFT	Brute-force	Yes	10.3	35.3	Stable	
ORB	ORB	Brute-force	Yes	12.3	18.3	Small range	

Table 4.11: Matching stability of part A - bottom view. $\boldsymbol{\lambda}$ denotes the distance between the camera lens and the object.

Part B - top view							
Keypoint	Descriptor	Matcher	RGB	$\boldsymbol{\lambda}_{\min }[\mathbf{c m}]$	$\boldsymbol{\lambda}_{\max }[\mathbf{c m}]$	Note	
SIFT	SIFT	Brute-force	Yes	12.8	34.8	Stable	
SURF	SURF	Brute-force	Yes	12.8	34.8	Stable	
ORB	ORB	Brute-force	Yes	9.8	23.8	Low stability	

Table 4.12: Matching stability of part B - top view. $\boldsymbol{\lambda}$ denotes the distance between the camera lens and the object.

As evident from Table 4.9 and Table 4.11, part A is a difficult part to detect with satisfying stability. SIFT is the only algorithm that managed to do this for both views of the part. ORB did also achieve some matching results, but with low stability. Because of this, ORB is not suitable for this specific assembly operation. Table 4.10 and Table 4.12 shows that SIFT is the most stable algorithm for detection of part B. SURF is also a good candidate with stable matching comparable to SIFT at the same distance range between camera and object. ORB may be used, but it is not the best solution because of less stable results and a smaller range.

The parts can only be assembled in one way, because of the way they are designed. Based on the previously presented results, part B - bottom view was chosen as the best view to detect part B, thus part A needs to be detected using the top view (because of the particular way the parts are assembled). Figure 4.13 shows the desired assembly pose of the parts.

Figure 4.13: Shows the desired pose of the parts before assembly. Part A (right) is to be assembled into part B (left).

Based on these results, SIFT was chosen for detection of part A - top view and part B-bottom view at a distance of $\boldsymbol{\lambda}=15.3 \mathrm{~cm}$ and $\boldsymbol{\lambda}=13.8 \mathrm{~cm}$ (can be as low as 10.3 cm), respectively.

4.3.3 Orientation stability

Matching stability is important and directly connected to the computation of the orientation of the detected parts. Without a stable matching, the difference between each computed orientation will be too large to assemble part A and part B with success. The desired result is to minimize this difference and determine the orientation with certainty. To further test the stability of the 2D object detection, a test was conducted as described in section 3.3.5 for part A and part B individually.

As evident from the results in section 4.3.2, ORB is not stable for detection of part A. A combination of SIFT as keypoint detector and SURF as descriptor extractor, denoted SIFT/SURF, was then added to the following orientation stability test of part A. The results are presented in Figure 4.14.

- SIFT 10 - SIFT/SURF 10

Figure 4.14: Orientation of part A detected at approximately 0 degrees (left) and -90 degrees (right). Each data point is the mean of 10 measurements.

As seen from Figure 4.14, SIFT is clearly more stable. SIFT/SURF works, but is not as stable
as SIFT. The difference between the maximum and minimum measured orientations for part A are presented in Table 4.13.

0 degrees	
SIFT	SIFT/SURF
1.746911	5.49935

$\mathbf{- 9 0}$ degrees	
SIFT	SIFT/SURF
1.1102	7.9095

Table 4.13: The difference between the maximum and minimum measured orientations for part A, as presented in Figure 4.14.

As presented in section 4.3.2, SIFT, SURF and ORB are all usable for detection of part B. The results of the orientation stability test are presented in Figure 4.15.

Figure 4.15: Orientation of part B detected at approximately 0 degrees (left) and -90 degrees (right). Each data point is the mean of 10 or 20 measurements.

As evident from Figure 4.15, SIFT is once again the approach with highest stability. SURF performs better than ORB, but does not compete with SIFT. ORB is shown to be highly unstable compared to SIFT and SURF, thus resulting in measurement spikes that can not be tolerated. The difference between the maximum and minimum value of each test is shown in Table 4.14.

0 degrees		
SIFT	SURF	ORB
0.078886	0.204128	0.275597

-90 degrees		
SIFT	SURF	ORB
0.1721	0.1379	1.3109

Table 4.14: The difference between the maximum and minimum measured orientations for part B, as presented in Figure 4.15.

The results presented in this section points towards SIFT for stable detection with consistently low difference between the computed orientations. The final solution computes the mean of 20 detected orientations using SIFT.

4.3.4 2D object detection

Based on the results obtained from the test results presented in section 4.3.1, SIFT is the slowest of the four algorithms examined in this thesis. It is on the other hand the most robust
and stable choice for detection of both part A and part B. Since a stable object detection is of great importance to successfully assemble the parts, SIFT is used to ensure this.

The final object detection algorithm is implemented in a C++ ROS application as described in section 3.2.4. The class is named object_2D_matcher.cpp and is available in Appendix B. It utilized a class named openCV_matching.cpp (available in Appendix B). This class is based on OpenCV and implements all the methods needed in order to capture, process and visualize image matching. Figure 4.16 illustrates the object detection procedure.

Figure 4.16: Illustrates the implemented object detection.
Object detection is obtained by acquiring a training image of the scene and a query image of the object we are looking for in the scene. A set of keypoints are detected for both images. From these sets of keypoints a set of descriptor feature vectors are extracted. The query descriptors are matched with the training descriptors using brute-force. After the descriptor feature vectors of the two images are compared, a set of good matches are returned. If the number of good matches is higher than a given threshold the object detection is considered to be successful and the position and orientation of the object is computed. As evident from the code in Appendix B and the algorithm in section 3.2.4, the object detection runs in a loop for each captured image of the training scene. The features of the query image is computed once when the ROS node is launched and matched against each captured training scene. Figure 4.17 shows a successful detection of part A and part B using SIFT.

Figure 4.17: Successful detection of part A rotated approximately -30 degrees and part B rotated approximately 180 degrees.

4.4 Software solution

4.4.1 ROS communication

The software solution used to run the robotic cell is implemented in the Robotic Operating System (ROS) framework. The full system is separated in multiple different applications that run in parallel. The different applications used is shown in Figure 4.18, together with the information that is sent between them.

Figure 4.18: Shows the different applications that run in the ROS framework in order to perform the automated assembly task.

The following is an explanation of the purpose that each application serve, and what data is being sent between them.
kinect2_bridge An instance of the Kinect 3D image grabber (Wiedemeyer, 2016). This application publishes a topic called NUC2/SD/Points that contain the point cloud acquired from the 3D camera. This topic is accessed by the agilus_master_project application and used for 3D object detection.
image_processor This application acquires the video feed from the Logitech C930e web camera and runs the 2D object detection. The output from this application is published in two different topics. The object_2D_detected/image topic contains the image acquired from the web camera with some added graphics that illustrates the optical center of the camera and the detected object. The object_2D_detected/object1 topic contains the positional and angular data about the detected object.
agilus_planner The purpose of this application is to publish services for controlling the robotic manipulators. This is done to provide a simple interface for robotic control that is easily accessible from within the ROS framework. The data provided to this application through a service call is turned into actual motion planning for the two robotic manipulators. This application outputs data to the $k u k a _r s i _h w _i n t e r f a c e ~ a p p l i c a t i o n . ~$
kuka_rsi_hw_interface The $k u k a _r s i _h w _i n t e r f a c e$ application is responsible for the movement of the robotic manipulators. This is done through the Kuka Robot Sensor Interface
(RSI). The input data to this application is the desired position of the robot, which is sent to the robotic controllers over the network using the UDP/IP protocol.
agilus_master_project This is the main application that runs the entire assembly process. This application receives input data from the kinect2_bridge and image_processor applications and runs further processing. This application runs the 3D object detection. The graphical user interface used to control the assembly process is also produced by this application.

4.4.2 Automated assembly sequence

The complete system produced for this thesis performs a series of actions in a particular sequence in order to perform the automated assembly task. This sequence is carried out by the agilus_master_project application. Figure 4.19 illustrates the sequence of events performed in order to automatically assemble the two parts. The illustration uses simple colour codes to identify what is performed in each step. Light blue illustrates 3D point cloud processing and 3 D object detection, orange illustrates controlled movement of the robotic manipulators and green illustrates operations using 2D object detection.

Figure 4.19: Illustrates the sequence used to perform an automatic assembly of two parts.

4.4.3 Applications

The agilus_master_project application

The agilus_master_project program is the master application that runs the completed automatic assembly task. This program was created to produce a polished product where the main functionality is to perform the automated assembly task. A demonstration video showing the functionality of the application, as well as a complete automated assembly task is available online at Larsen and Bjørkedal (2016b) and through the digital appendix (the content of the digital appendix is described in appendix D). In addition to perform the assembly task, some useful features that are not specific for this task are included. These features are:

- Manual control of the two robotic manipulators. This can be done both as a relative movement with relation to the home position of the robot, or as an absolute movement with relation to the world reference frame.
- Visualizing any 3D point cloud feed published within ROS.
- Visualize any 3D point cloud saved to a.$P C D$ file.
- Visualize any 2D camera image feed published within ROS.
- Manually select keypoint detector, descriptor extractor and matching method for 2D object detection.
- Manually select the reference image used for 2D object detection.
- Open and close the pneumatic linear gripper mounted on Agilus 1.
- Create a training set with customizable parameters based on a 3D CAD model. The 3D CAD model used must be of the.$S T L$ format.
- Manually run a 3D object detection process with a user selectable training set as the reference model (the model we want to detect in the 3D scene).

This application consists of the following classes:
main.cpp - This is the main entry point of the application. The main class creates one instance of the main_window.cpp which initializes the graphical user interface. The source code is available through the digital appendix as described in Appendix D.
main_window.cpp - This class handles all the user interaction. The graphical user interface is connected to this class, and all user actions performed in the user interface is defined here. The source code is available through the digital appendix as described in Appendix D.
modelloader.cpp - This class handles both the creation of new training set, and loading pre-existing training sets to the system memory. Source code is available in Appendix A.
pcl_filters.cpp - This class handles all 3D point cloud processing. It implements all the tools necessary to perform a complete 3D object detection process. It also contains functions that allows for easy visualization of 3D point clouds in the graphical user interface. This
class was initially created for the qt_filter_tester application as a toolbox for handling 3D point clouds. Source code is available in Appendix A.
qnode.cpp - This class runs in a separate thread, and is responsible for all communication within ROS. All data publication and acquisition in ROS is done through this class. The source code is available through the digital appendix as described in Appendix D.

Figure 4.20 shows the graphical user interface for the agilus_master_project application as presented when the application is launched.

Figure 4.20: The main window of the agilus_master_project application as displayed at launch.

The full source code for this application is available in the digital appendix. The digital appendix is described in Appendix D. The following figures show a more detailed view of the different actions available through this application.

3D | 2D Manual | Auto | 3D Detection |
| :--- | :--- | :--- |
| Visualize 3D | | |
| Subscribe | | |
| Load .PCD | \square RGB | |
| \square Boxes | \square Frames | |

(a) Shows the user input related to the 3D point cloud visualization.

(a) Shows the user input related to the 2 D object detection.

(b) Shows the user input related to creating a training set.

(b) Shows the user input related to manual control of the robotic manipulators.

(c) Shows the user input related to the 2D image visualization.

(c) Shows the user input related to manually running 3D object detection.

3D 2 DD Manual	Auto	3D Detection
3D detection	Execute	
2D first part	Execute	
Record angle	Part 1	
2D second part	Execute	
Record angle	Part 2	
Move gripper to	Part 1	
Move gripper to	Part 2	
Assemble parts	Execute	

Figure 4.23: Shows the user input section that is used to run the automated assembly sequence.

The qt_filter_tester application

The qt_filter_tester program was initially created as a tool for working with 3D point clouds. It contains graphical tools for performing the most common filtering and processing tasks. This application was used to test different approaches for 3D object detection as well as different parameters for all the different filters and algorithms used. The available functionality in this application is the following:

- Create training sets from a user specified 3D CAD models (the specified models must be of the .STL format).
- Visualizing 3D point cloud images saved as.$P C D$ format.
- Perform the following filtering and processing tasks:
- Passthrough filtering
- Voxel grid filtering
- Median filtering
- Shadow point removal filtering
- Normal estimation
- Statistical outlier removal filtering
- Plane model segmentation
- Euclidean cluster extraction
- Bilateral filtering
- Visualize the result from the above mentioned filtering and processing actions.
- Save the filtering results as a.$P C D$ file.

The application consists of the following classes:
main.cpp - This is the main entry point of the application. The main class creates one instance of the main__window.cpp which initializes the graphical user interface. The source code is available through the digital appendix as described in Appendix D.
main__window.cpp - This class handles all the user interaction. The graphical user interface is connected to this class, and all user actions performed in the user interface is defined here. The source code is available through the digital appendix as described in Appendix D.
modelloader.cpp - This class handles both the creation of new training set, and loading pre-existing training sets to the system memory. Source code is available in Appendix A.
pcl_filters.cpp - This class handles all 3D point cloud processing. This class implements all the tools necessary to perform a complete 3D object detection process. It also contains functions that allows for easy visualization of 3 D point clouds in the graphical user interface. This class was initially created for the qt_filter_tester application as a toolbox for handling 3D point clouds. Source code is available in Appendix A.
qnode.cpp - This class runs in a separate thread, and is responsible for all communication within ROS. This application does not require any ROS communication, but it was created from a ROS template application. This class was not removed in order to keep the possibility of ROS communication open. Because of this, the content of this class is limited to the basic initialization of a ROS node in the ROS framework. The source code is available through the digital appendix as described in Appendix D.

This application is not used when running the robotic cell, but served its purpose as a test platform when working with 3D point clouds. The full source code for this application is available in the digital appendix. The digital appendix is described in Appendix D.

The image__processor ROS node

The image_processor ROS node was initially created for testing and evaluation of object detection algorithms like SIFT, SURF, BRISK and ORB using OpenCV. Due to successful detection of the parts to be assembled in this thesis the functionality of the node was extended for further use in the final solution. The functionality of the node is:

- Capture the video stream from a USB web camera.
- Load any stored image of format .png or .jpg as reference matching image.
- Implements 7 keypoint detectors:
- SIFT, SURF, BRISK, ORB, STAR, FAST and AKAZE.
- Implements 7 descriptor extractors:
- SIFT, SURF, BRISK, ORB, FREAK, BRIEF and AKAZE.
- Descriptor matching by brute-force or FLANN.
- Publish image data of the detected object via ROS.
- Publish the position and orientation of the detected object ROS.
- Controlled by ROS services.

The node consists of the following classes:
object_2D_matcher.cpp - This is the main entry point of the node. It initializes the properties of the object detection algorithm such as keypoint detector, descriptor extractor, matching type and video resolution. In addition it advertises ROS services for control. Callback methods for each service is implemented. Methods from an instance of openCV_matching.cpp is utilized in an object detection loop. The source code is available in Appendix B.
openCV_matching.cpp - This class handles all the crucial image processing using OpenCV. It implements methods for object detection and computation of object image coordinates and orientation needed to perform the object detection loop as implemented in object_2D_matcher.cpp. Source code is available in Appendix B.
calibration.cpp - This is a stand-alone node for calibration of camera parameters. It is not directly connected to the above classes. However, it is needed in order to provide a K-matrix and distortion coefficients for use in the main object detection ROS node. The code is originally a sample code from the OpenCV repository at Github (OpenCV, 2015c). It is used with slight modifications in order to calibrate images of resolution 1280×720 pixels. The source code is available in the digital appendix. The digital appendix is described in Appendix D.

The agilus_planner ROS node

The agilus_planner program is created as a tool for simpler interfacing with the manipulators via ROS. It advertise ROS services for trajectory planning and execution. This is used as the main interface from agilus_master_project in order to move the manipulators based on 3D and 2D object detection. The node consists of the following classes:
robot_movement.cpp - This is the main entry point. It advertises two services, go_to_pose and plan_pose. Callback methods for each service is defined. These methods utilize the methods implemented in robot_planning_execution.cpp for trajectory planning. This node may run for each move group available in MoveIt!, where an instance of robot_planning_execution.cpp is created for each move group. The source code is available in Appendix C.
robot_planning_execution.cpp - This class handles the computation of a linearly interpolated trajectory from a current pose to a target pose. The target pose may be specified as relative to the current pose or in world coordinates. The trajectory is sent to MoveIt! via the move group interface. This code is originally written by Adam Leon Kleppe. Source code is available in the digital appendix. The digital appendix is described in Appendix D.

4.5 Automated assembly solution

By combining the 3D and 2D computer vision systems in a software solution as presented in section 4.4 , the parts are automatically assembled using robotic manipulators. A full assembly is executed by detecting the approximated positions of the objects at the table using 3D object detection. The eye-in-hand system is then positioned above each part in order to refine their position using the computed image coordinates and orientation. This is illustrated in Figure 4.24. When both parts have been detected, the gripper is rotated about its end-effector z axis to the computed orientation of part A and the part is picked up. This is done to ensure that part A is gripped approximately in the same way every time. Figure 4.25 illustrates the orientation of the gripper before gripping the part.

Figure 4.24: Camera positioned above part A using the position acquired from the 3 D system.

Figure 4.25: Gripper picking up part A at the refined position and orientation acquired from the 2D system.

The gripper holding part A is then positioned above part B and rotated about its z-axis to the detected orientation of part B. The parts are then assembled as illustrated in Figure 4.26. In order for this to work, it is important that the empirical calibration as explained in section 3.1.5 has been accurately conducted. It eliminates the offset between the camera optical axis and the gripper end-effector z-axis. In addition, by performing this calibration for both part A and part B individually, a center offset between the query images used for matching will be minimized. This offset error affects the refined position acquired from the 2 D system, and must be eliminated. This is further discussed in section 5.1.

Figure 4.26: Illustration of a successful assembly of part A into part B.
Another offset revealed itself during test assemblies. The query images used for 2D detection is also rotated in-plane relative to each other. This is a constant offset and it was eliminated by adding 3.5° of orientation about the gripper z-axis before deploying part A into part B. Figure 4.27 shows the result from this. The positional accuracy is good in both cases, and the orientation is corrected as seen to the right. This is discussed in section 5.1.

Figure 4.27: Left: Assembly operation conducted without correction for in-plane rotation offset between query images. Right: Another assembly operation with correction for in-plane rotation offset.

Testing performed in the robotic lab at the robotics lab at the Department of Production and Quality Engineering showed that this assembly task was successful at $7 / 10$ unique attempts with different positions and orientations of the parts. A video showing 4 successful assembly attempts and the graphical user interface used to control the assembly is available in the digital
appendix. The digital appendix is described in Appendix D. The video is also available online at Larsen and Bjørkedal (2016b).

Chapter 5: Discussion

5.1 2 D computer vision

The results presented in section 4.3 shows that object detection using SIFT keypoints and descriptors is sufficient for the assembly task presented in this thesis. Based on results presented in available literature regarding object detection, the expectations of SIFT and SURF were high. BRISK and ORB were considered as alternatives worth testing, although they did not fulfill the demands for stability as evident from the tests presented in 4.3 . We believe that this has to do with the lack of strong features at both part A and part B. Part A is particularly difficult to detect, and the fact that SIFT managed to do this, proves the robustness of the over 16 years old algorithm as originally presented by David G. Lowe in 1999.

Although our results show that SURF, BRISK and ORB is not capable of detecting part A and part B, there is a possibility that they may do so if the parameters of the algorithms are tweaked. This means that the number of layers in the scale pyramids may be increased with a finer scale step between each layer, or thresholds for detection and rejection of keypoints may be changed to allow more keypoint candidates to be acquired. This may yield a negative impact on processing time. However, SURF, BRISK and ORB is already at a whole other level than SIFT in total computational time needed, which justifies the sacrifice in computational efficiency. This approach is not systematically tested, thus it may not yield the expected results. On the other hand, a possibility is that the SURF descriptor and the binary descriptors based on comparing pixel intensities used in BRISK and ORB is just not discriminative enough for such objects as the two parts used in this thesis.

Considering the stability of computed object orientation as presented in section 4.3.3, SIFT provides adequate stability. The orientation is computed using the corners of the object as drawn in the training scene using the homography from the points matched in the query image to the points matched in the training scene. If this homography is unstable due to unstable matching, the marked object plane in the training scene will also be unstable. Since the angle of orientation is computed using the corners of this plane, the difference between each computed angle will increase with poor stability. The solution used in order to acquire a more stable value is the mean value of 20 orientations. This is adequate in most assembly operations as evident from section 4.5. However, it is not the optimal solution considering that one poor data point of significant magnitude is enough to bring the mean value out of the accepted range. More advanced filtering may eliminate such spikes of bad data, thus increasing the assembly success-rate.

The computed orientation and positional accuracy when assembling the parts is also dependent on the query image of the object we are looking for. Part A and part B were photographed at a reference view representing zero degrees of orientation. This is the orientation that corresponds with the configuration of the parts in order to perform a successful assembly. This will not be fully accurate, and there will most likely be an offset in orientation between the query images,
thus resulting in unsuccessful assembly. However, this offset is always constant and may be handled. Because of the empirical calibration method used to detect the offset between the optical axis and end-effector axis, the positional accuracy is adequate for robotic assembly as evident from section 4.5. However, there is a clear error in orientation in order to assemble part A and part B. This error was detected and corrected as described in section 4.5.

Considering that the error is constant, the main focus should be to photograph the parts at approximately correct views, but under same conditions as the actual assembly task. This means that light sources, camera used and distance to object should correspond to the conditions in the actual process. This is to ensure that SIFT returns the most stable matching possible, thus keeping a low difference between each measured orientation.

5.2 3D computer vision

The pipeline used to process the point cloud acquired from the 3D camera produces a consistent result. The segmentation and cluster extraction process does not produce any unwanted artifacts or noise, and we are consistently able to match the correct part of the point cloud with a model from the training set. The one drawback with the currently implemented 3D detection process is the fact that the detected orientation is somewhat ambiguous. We suspect that this is caused by the fact that both parts are symmetrically shaped and has few detectable features, but we can not conclusively say that this is the cause. The orientation ambiguity does not cause any issue since the final position and orientation of the part is found using 2D object detection.

Using more complex global descriptors might have improved the performance of the 3D matching, but as shown in section 4.2.2 this was not feasible for the specific parts used in this thesis. Exactly why the more complex global descriptors did not perform as expected is hard to conclusively say, but we believe it is caused by the fact that the object cluster extracted from the point cloud lacks a lot of detail compared to the model used in the training set. The more complex global descriptors works by segmenting the object cluster into multiple sections, and estimating a basic global descriptor for each segment. The test results show that the global descriptor for the object cluster and the training set model produce a different number of segments, and thus are incomparable. It is possible that using a different approach for creating the training sets would allow the use of more complex global descriptors. This was not tested since one of the prerequisites for this thesis is the use of 3 D models for matching.

The level of accuracy achieved from the 3D point cloud matching is quite a bit higher than what was expected. The maximum measured deviation is just below 2 cm , which is not at all close to the expected 0.4 cm theoretical accuracy. We believe this is caused by two main reasons. First, the accuracy testing was performed by manually placing the parts on a measured grid. It is highly likely that the placement of the grid is not perfectly centered in the robotic cell. This will lead to measurement errors. In addition, the manual placement of the parts on the measured grid will also lead to some errors (the parts were placed as accurately as possible, but it is still hard to guarantee a perfect placement). Second, the kinect2_bridge ROS node used to acquire the 3D point cloud implements a bilateral filter (see section 2.3.3). This filter will attempt to remove holes and noise from the point cloud at the cost of point accuracy. It is not beyond reason to assume that using a 3D camera grabber that does not implement such a filter might eliminate some of the inaccuracies.

We intended the 3D object detection to be used as a rough estimate from the start of this project based on the problem description. Because of this, the low positional accuracy achieved using the 3D object detection process did not cause any issues in the final implementation of the system. The position obtained through the 3D object detection process is used as a rough estimate and a starting point for the 2D object detection. We found that the accuracy achieved by the 3D object detection process was adequate to perform this task.

5.3 Combining 2D and 3D computer vision

Given the premise of the task, and the expected result from the 3D object detection process, the Microsoft Kinect ${ }^{\text {TM }}$ depth camera worked adequately. This thesis shows that given the right expectations, the use of such a low cost sensor can yield reliable and usable results. It is important to note that our results for the 3D object detection process did not show a level of accuracy that would have been usable for automated assembly on its own. That said, 3D object detection as used in our application works well as a mechanism to produce a rough position estimate for the detected objects quickly.

The combination of the 2D and the 3D camera is what made it possible to complete an automated assembly task with the parts used in this thesis. The 2D object detection provides the high level of positional and orientation accuracy necessary to ensure a successful assembly.

5.4 Hardware

The fact that the Microsoft Kinect ${ }^{\text {TM }}$ depth sensor is not a sensor well suited for industrial applications is evident throughout this thesis. Low repeatability and accuracy limits the use cases for this sensor and dictates that it is to be used in conjunction with some other form of instrumentation (unless the task at hand does not demand high accuracy and repeatability). The high data acquisition rate makes this sensor ideal as a tool to quickly estimate a rough object pose. When utilized in this form, the sensor works well, as is shown throughout this thesis.

The Logitech C930e web camera used for 2D object detection performed adequately, as evident from the results. However, it is a consumer grade camera aimed at good quality video for e.g. Skype-conversations and not for industrial applications. The auto-focus can not be disabled, which in many cases blurred the image too much to be able to detect the objects. This was a problem during many assembly operations. In addition, there is no need for a camera with higher resolution than the C930e capable of 1920×1080, since our object detection runs at 1280×720 to keep the frame rate at an acceptable level when using SIFT. If higher resolution and high frame rate is needed, the processing unit must be upgraded, or the code must be rewritten to support execution on a graphical processing unit (GPU). An alternative to the C930e would be a proper camera aimed at industrial applications, with high quality optics delivering sharp images with fixed focus. With that said, this thesis shows that a consumer grade camera like the C930e can yield 2D object detection results usable for robotic assembly.

The linear pneumatic gripper used to manipulate the parts for assembly performed as intended. The main issues caused by the gripper, was related to the finger extensions use (the parts mounted on the linear cylinder that actually makes contact with the parts). The finger extensions are made from 3D printed plastic, and is not designed with this specific assembly
task in mind. This led to some minor inconveniences during the assembly process. We noticed a slight shift in orientation (rotation about the z axis) of the part that was being gripped at the time of contact between the finger extensions and the part. Even though this change in orientation was consistent, and we were able to correct for the movement, this is not an ideal situation. A set of finger extensions designed for this specific task could potentially eliminate the orientation shift, and increase the success rate of the automated assembly.
The two robotic manipulators were controlled using the ROS framework. We did not encounter any issues with this solution, and the control tools were easily implemented in our software solution. This allowed us to control the robotic manipulators using code in a simple manner. The only drawback encountered using this system, is the lack of a point to point movement command. The only way to move the manipulators in the current version of the system is to use linear interpolated trajectories. This did not cause any problems directly, but a point to point option would be useful to achieve more efficient robotic movements. Such a point to point command option would be quite simple to implement using the move_group_interface API available through MoveIt!.

Chapter 6: Conclusion

This thesis presents the methods developed to solve a robotic assembly problem. The results presented in Chapter 4 show how these methods perform when applied to an actual assembly operation. As evident from the presented results, the assembly problem may be solved using the presented approach for 3 D and 2 D object detection. In fact, it can successfully detect two rather difficult objects with no clear geometric features, and assemble them with sufficient accuracy in terms of position and orientation.

The kinematic relationship between the physical components in the robotic cell is described using conventional kinematics, and is proven to be accurate to within a reasonable margin of error. The kinematic description is a key aspect for successful robotic assembly and is used in conjunction with the 2 D and 3 D computer vision systems to perform the assembly task.

Different aspects of the system developed to perform 2D object detection is investigated, and all decisions related to choice of implementation is anchored in results achieved through testing. The 2D detection implementation is shown to produce reliable results both in practical experiments and synthetic tests.

This thesis presents different approaches for 3D object object detection, and shows an implemented system working in a relevant use case. The different approaches are compared, and tests were performed in order to choose the best combination of tools used to perform the task. The implemented 3D object detection is shown to provide an excellent way of acquiring a rough position estimate.

By combining the 2D and 3D detection systems, the issue caused by the relatively low accuracy of the 3 D object detection procedure is minimized. The results obtained from testing the full solution shows that such a detection system is viable in an industrial use case.

To conclude, the methods developed to perform automated assembly has shown, through practical experiments, to yield promising results for this type of automated assembly. The complete solution is shown to fulfill the problem description as provided in Chapter 1. However, there are still room for improvements. The main focus areas we feel could be improved is presented in the following section.

6.1 Future work

In terms of future work, the following section describes a few key points that we feel could be investigated to improve the performance of the robotic assembly.

Finger extensions for the gripper The current finger extensions for the pneumatic gripper is not designed or suited to perform assembly of the parts used in this thesis. This did lead to some inconsistencies and we believe that with finger extensions designed to grip the parts used in a repeatable manner would improve the reliability of the assembly setup.

Training set The training set used for 3D matching in this work was generated virtually using a 3D model of the part of interest. Throughout this thesis work this approach has proven to be a simple and reliable way to produce a training set. We believe that the issue of not being able to use the more complex CVFH and OUR-CVFH global descriptor over the basic VFH descriptor is related to the difference in detail produced by the virtual training set and the 3D camera. Because of this, investigating the viability of using a physically created training set could produce quite useful results.

Upgrading the 2D image sensor The 2D camera currently used in the robotic cell is a consumer grade web camera. Because of this, it lacks some features that simplify the object detection process quite a bit. Such as a fixed focus, and little to no radial distortion. The radial distortion is dealt with using a calibration and correction process, but using a camera where this step is unnecessary could simplify the 2D object detection pipeline. In addition, the auto focus feature of the current camera has a tendency to not select the correct object to focus on, which leads to increased processing time and longer detection time. This drawback can be fully negated by using an industrial grade camera with fixed focus. Despite this, we do not believe a higher quality camera would drastically increase the detection performance, but rather simplify and streamline the process.

Upgrading the 3D depth sensor The current 3D depth sensor does not provide the necessary spatial accuracy or resolution needed to fully detect an accurate object pose using the 3D camera alone. By replacing the current depth sensor with an industrial grade sensor, it is possible that the automated assembly could be done using only a 3D camera, which would drastically decrease the assembly time and system complexity needed. This is, in our opinion, the biggest factor limiting the current setup and the area of the system where the most improvement could be done.

Point to point motion The current robotic control system only allows for linearly interpolated trajectories. This does not cause any major problems for the assembly task. However, a point to point command is considered as a "nice to have" functionality. We believe that this could be implemented in the already functioning service-based system quite easily using the move_group_interface available through MoveIt!.

Bibliography

Aldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., Rusu, R. B., Gedikli, S., and Vincze, M. (2012a). Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Robotics, 19(3):80-91.

Aldoma, A., Tombari, F., Rusu, R. B., and Vincze, M. (2012b). OUR-CVFH - Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation, pages 113-122. Springer Berlin Heidelberg, Berlin, Heidelberg.

Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R. B., and Bradski, G. (2011). Cad-model recognition and 6dof pose estimation using 3d cues. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 585-592.

Alexandre, L. (2012). 3d descriptors for object and category recognition: a comparative evaluation. In IEEE International Conf. on Intelligent Robotic Systems - IROS, volume Workshop on Color-Depth Camera Fusion in Robotics, pages 1-6.

Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):698-700.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3):346-359.

Bay, H., Schmid, C., and Gool, L. v. (2006a). From wide-baseline point and line correspondences to 3 d .

Bay, H., Tuytelaars, T., and Van Gool, L. (2006b). SURF: Speeded Up Robust Features, pages 404-417. Springer Berlin Heidelberg, Berlin, Heidelberg.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Computer Vision - ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 511, 2010, Proceedings, Part IV, chapter BRIEF: Binary Robust Independent Elementary Features, pages 778-792. Springer Berlin Heidelberg, Berlin, Heidelberg.

Cipolla, R., Battiato, S., and Farinella, G. M. (2010). Computer vision : detection, recognition and reconstruction, volume 285 of Studies in computational intelligence. Springer, Berlin.

Corke, P. (2013). Robotics - Vision and Control. Springer-Verlag.
dictionary.com (2016). Kinematics definition. http://www.dictionary.com/browse/ kinematics. [Online; accessed 28-May-2016].

Fan, B., Wang, Z., and Wu, F. (2015). Local Image Descriptor: Modern Approaches. SpringerBriefs in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, Berlin, Heidelberg.

Filipe, S. and Alexandre, L. A. (2014). A comparative evaluation of 3d keypoint detectors in a RGB-D object dataset. In VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Volume 1, Lisbon, Portugal, 5-8 January, 2014, pages 476-483.

Forsyth, D. and Ponce, J. (2003). Computer vision : a modern approach. An Alan R. Apt book. Prentice Hall, Upper Saddle River, N.J.

Frome, A., Huber, D., Kolluri, R., Bülow, T., and Malik, J. (2004). Computer Vision - ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part III, chapter Recognizing Objects in Range Data Using Regional Point Descriptors, pages 224-237. Springer Berlin Heidelberg, Berlin, Heidelberg.

Gaskell, G. (2014). 3 1/2 minutes could save you thousands on 3d scanning technology. http://wenzel-metrology-equipment.blogspot.no/2014/12/ 3-minutes-could-save-you-thousands-on.html. Accessed: 2016-05-09.

GmbH, K. R. (2016). Kr 6 r900 sixx (kr agilus). http://www.kuka-robotics.com/ en/products/industrial_robots/small_robots/kr6_r900_sixx/. [Online; accessed 28-May-2016].

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In In Proc. of Fourth Alvey Vision Conference, pages 147-151.

Johnson, A. (1997). Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Kadambi, A., Bhandari, A., and Raskar, R. (2014). Computer Vision and Machine Learning with RGB-D Sensors, chapter 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware, pages 3-26. Springer International Publishing, Cham.

Khoshelham, K. and Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2):1437.

Larsen, K. and Bjørkedal, A. (2016a). agilus_master_project. https://github.com/ kristofferlarsen/agilus_master_project. [Online; accessed 28-May-2016].

Larsen, K. and Bjørkedal, A. (2016b). Robotic assembly using 3d and 2d computer vision demonstration video. https://youtu.be/yR37s1aHcGO. [Online; accessed 08-June-2016].

Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust invariant scalable keypoints. In 2011 International Conference on Computer Vision, pages 2548-2555.

Liebhardt, M. (2016). ar_track_alvar documentation. http://wiki.ros.org/ar_track_ alvar. [Online; accessed 28-May-2016].

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110.

Mair, E., Burschka, D., Hager, G. D., Suppa, M., and Hirzinger, G. (2010). Adaptive and generic corner detection based on the accelerated segment test.

Marton, Z. C., Pangercic, D., Blodow, N., and Beetz, M. (2011). Combined 2d-3d categorization and classification for multimodal perception systems. The International Journal of Robotics Research.

Mihelich, P. and Bowman, J. (2010). cv_bridge. http://wiki.ros.org/cv_bridge. [Online; accessed 08-February-2016].

Nixon, M. and Aguado, A. S. (2012). Feature Extraction \mathcal{E} Image Processing for Computer Vision. Feature Extraction \& Image Processing. Elsevier Science, Burlington, 3rd ed. edition.

OpenCV (2015a). Feature matching. http://docs.opencv.org/3.1.0/dc/dc3/tutorial_ py_matcher.html\#gsc.tab=0. Accessed: 2016-05-20.

OpenCV (2015b). Opencv 3.1.0 documentation. http://docs.opencv.org/3.1.0/\#gsc.tab= 0. [Online; accessed 31-May-2016].

OpenCV (2015c). Opencv github. https://github.com/Itseez/opencv/blob/master/ samples/cpp/calibration.cpp. [Online; accessed 31-May-2016].

PCL. Cluster recognition and 6dof pose estimation using vfh descriptors. http:// pointclouds.org/documentation/tutorials/vfh_recognition.php. Accessed: 2016-0510.

PCL. Estimating surface normals in a pointcloud. http://pointclouds.org/documentation/ tutorials/normal_estimation.php. Accessed: 2016-05-09.

PCL. Euclidean cluster extraction. http://www.pointclouds.org/documentation/ tutorials/cluster_extraction.php. Accessed: 2016-05-09.

PCL. Pcl :: Registration. http://www.pointclouds.org/assets/iros2011/registration. pdf. Accessed: 2016-05-10.

PCL. Removing outliers using a statisticaloutlierremoval filter. http:// www.pointclouds.org/documentation/tutorials/statistical_outlier.php\# statistical-outlier-removal. Accessed: 2016-05-09.

PCL (2016). Point cloud library. http://pointclouds.org/. [Online; accessed 28-May-2016].
ROBOTICA, G. D. (2015). Raytracing. http://robotica.unileon.es/mediawiki/index. php/PCL/OpenNI_tutorial_5:_3D_object_recognition_(pipeline)\#Raytracing. Accessed: 2016-05-10.

Rosin, P. L. (1999). Measuring corner properties. Computer Vision and Image Understanding, 73(2):291-307.

ROS.org (2016a). Ros documentation. http://wiki.ros.org/. [Online; accessed 28-May2016].

ROS.org (2016b). sensor_msgs/pointcloud2 message. http://docs.ros.org/api/sensor_ $\mathrm{msgs} / \mathrm{html} / \mathrm{msg} /$ PointCloud2.html. [Online; accessed 28-May-2016].

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. Computer Vision - Eccv 2006, Pt 1, Proceedings, 3951:430-443.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient alternative to sift or surf. In 2011 International Conference on Computer Vision, pages 2564-2571.

Rusu, R. B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. PhD thesis, Technische Universität München.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA '09. IEEE International Conference on, pages 3212-3217.

Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3d recognition and pose using the viewpoint feature histogram. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2155-2162.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 1-4.

Shapiro, L. G. and Stockman, G. C. (2001). Computer vision. Prentice Hall, Upper Saddle River, N.J.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics - Modelling, Planning and Control. Springer-Verlag.

Smith, S. M. and Brady, J. M. (1997). Susan-a new approach to low level image processing. International Journal of Computer Vision, 23(1):45-78.

Sucan, I. A. and Chitta, S. (2013). Move group interface/c++ api. http: //docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/move_ group_interface_tutorial.html. [Online; accessed 21-March-2016].

Sucan, I. A. and Chitta, S. (2016). Moveit! http://moveit.ros.org/. [Online; accessed 01-February-2016].

The MathWorks, I. (2016). What is camera calibration? http://se.mathworks.com/help/ vision/ug/camera-calibration.html. [Online; accessed 16-February-2016].

Tombari, F., Salti, S., and Di Stefano, L. (2010a). Computer Vision - ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part III, chapter Unique Signatures of Histograms for Local Surface Description, pages 356-369. Springer Berlin Heidelberg, Berlin, Heidelberg.

Tombari, F., Salti, S., and Di Stefano, L. (2010b). Unique shape context for 3d data description. In Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR '10, pages 57-62, New York, NY, USA. ACM.

Wiedemeyer, T. (2016). Kinect2 bridge. https://github.com/code-iai/iai_kinect2/ tree/master/kinect2_bridge. [Online; accessed 28-May-2016].

Wikipedia (2015). Programmable logic controller - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Programmable_logic_controller. [Online; accessed 24-November-2015].

Wohlkinger, W. and Vincze, M. (2011). Ensemble of shape functions for 3d object classification. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages 2987-2992.

Xiang, L., Echtler, F., Kerl, C., Wiedemeyer, T., Lars, hanyazou, Gordon, R., Facioni, F., laborer2008, Wareham, R., Goldhoorn, M., alberth, gaborpapp, Fuchs, S., jmtatsch, Blake, J., Federico, Jungkurth, H., Mingze, Y., vinouz, Coleman, D., Burns, B., Rawat, R., Mokhov, S., Reynolds, P., Viau, P., Fraissinet-Tachet, M., Ludique, Billingham, J., and Alistair (2016). libfreenect2: Release 0.2 .

Zhong, Y. (2009). Intrinsic shape signatures: A shape descriptor for 3d object recognition. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 689-696.

Appendix

Appendix A: Software Tools Created

This appendix contain source code for the two toolbox classes created for this thesis. These toolboxes are used in both the agilus_master_project and qt_filter_tester applications (full source code available in this documents digital appendix). The following is a short description of the two classes:
pcl_filters.cpp - This class handles all 3D point cloud processing. It includes functionality to perform the most common and useful filtering tasks. In addition, functionality to perform 3D object detection by matching a 3D point cloud acquired through a 3D depth sensor to a training set generated from a 3D CAD model is also available.
pcl_filters.hpp - This is the Header file for the pcl_filters.cpp class. This file defines the content of the .cpp file.
modelloader.cpp - This class is used to generate, and load, a training set based on a 3D CAD model. As mentioned in section 4.2.4, the original code for this class was written by Adam Leon Kleppe. This class has been modified to allow feature estimation to be a part of the training set.
modelloader.hpp - This is the Header file for the modelloader.cpp class. This file defines the content of the .cpp file.

pcl_filters.cpp

Listing A.1: Source file - agilus_master_project/pcl_filters.cpp

```
//
// Original author Kristoffer Larsen. Latest change date 01.05.2016
// pcl_filters.cpp is a toolbox that implements the most commonly used features
    from PCL.
// In this application, pcl_filters.cpp is used for 3D point cloud processing.
//
// Created as part of the software solution for a Master's Thesis in Production
    Technology at NTNU Trondheim.
//
#include "../include/agilus_master_project/pcl_filters.hpp"
namespace agilus_master_project{
PclFilters::PclFilters(QObject *parent):
    QObject(parent) {}
PclFilters::~PclFilters() {}
int PclFilters::search_for_model(std::vector<RayTraceCloud> clusters, std::
    vector<RayTraceCloud> model){
```

```
    pcl::KdTreeFLANN<pcl::VFHSignature308>: :Ptr search_tree =
        generate_search_tree(model);
    float min_distance = 10000;
    int correct_cluster;
    std::vector<float> search_result;
    for (int i = 0; i < clusters.size(); i++){
        search_result = match_cloud(clusters.at(i),search_tree);
        if(search_result[1] < min_distance){
            min_distance = search_result[1];
            correct_cluster = i;
        }
    }
    return correct_cluster;
}
void PclFilters:: ransac_recognition(std::vector<RayTraceCloud> models,
    RayTraceCloud object){
    pcl::recognition::ObjRecRANSAC recognition(40.0,5.0);
    std::list<pcl::recognition::ObjRecRANSAC::Output> matchingList;
    for(int i = 0; i< models.size(); i++){
        QString name = "model_";
        name.append(QString:: number(i));
        recognition.addModel(*models.at(i).cloud,*models.at(i).normals, name.
            toStdString());
    }
    recognition.recognize(*models.at(0).cloud,*models.at(0).normals,
        matchingList,0.99);
}
Eigen::Matrix4f PclFilters::calculateInitialAlignment(RayTraceCloud source,
    RayTraceCloud target, float min_sample_distance, float
    max_correspondence_distance, int nr_iterations){
    pcl::SampleConsensusInitialAlignment<pcl:: PointXYZ,pcl::PointXYZ,pcl::
        FPFHSignature33> sac_ia;
    sac_ia.setMinSampleDistance(min_sample_distance);
    sac_ia.setMaxCorrespondenceDistance(max_correspondence_distance);
    sac_ia.setMaximumIterations(nr_iterations);
    sac_ia.setInputSource(source.keypoints);
    sac_ia.setSourceFeatures(source.local_descriptors);
    sac_ia.setInputTarget(target.keypoints);
    sac_ia.setTargetFeatures(target.local_descriptors);
    pcl:: PointCloud<pcl:: PointXYZ> registration_output;
    sac_ia.align(registration_output);
    return (sac_ia.getFinalTransformation());
}
Eigen::Matrix4f PclFilters::calculateRefinedAlignment(RayTraceCloud source,
    RayTraceCloud target, Eigen::Matrix4f initial_alignment, float
    max_correspondence_distance, float outlier_rejection_threshold, float
    transformation_epsilon, float eucledian_fitness_epsilon, int max_iterations
    ) {
    pcl::IterativeClosestPoint<pcl:: PointXYZ,pcl::PointXYZ> icp;
    icp.setMaxCorrespondenceDistance(max_correspondence_distance);
    icp.setRANSACOutlierRejectionThreshold(outlier_rejection_threshold);
    icp.setTransformationEpsilon(transformation_epsilon);
    icp.setEuclideanFitnessEpsilon(eucledian_fitness_epsilon);
    icp.setMaximumIterations(max_iterations);
```

\}
\}
\}
\}
pcl: : PointCloud<pcl:: PointXYZ>: : Ptr source_transformed (new pcl::PointCloud
<pcl: : PointXYZ>);
pcl:: transformPointCloud (*source.cloud,*source_transformed,
initial_alignment);
icp.setInputSource (source_transformed) ;
icp.setInputTarget (target.cloud) ;
pcl::PointCloudpcl::PointXYZ registration_output;
icp.align(registration_output);
return (icp.getFinalTransformation () * initial_alignment);
RayTraceCloud PclFilters: : calculate_features (RayTraceCloud inputcloud)\{
inputcloud.normals = get_normals(inputcloud.cloud,0.05);
inputcloud.keypoints = calculate_keypoints (inputcloud.cloud, 0.001, 3, 3, 0.0) ;
inputcloud.local_descriptors = calculate_local_descritor (inputcloud.cloud,
inputcloud.normals, inputcloud.keypoints, 0.15);
inputcloud.global_descriptors = calculate_vfh_descriptors(inputcloud.cloud,
inputcloud.normals);
return (inputcloud);
pcl: : KdTreeFLANN<pcl: :VFHSignature308>: : Ptr PclFilters: : generate_search_tree (
std:: vector<RayTraceCloud> models)\{
pcl: : PointCloudpcl::VFHSignature308:: Ptr global_descriptor(new pcl::
PointCloudpcl::VFHSignature308);
pcl: : KdTreeFLANNpcl::VFHSignature308: : Ptr search_tree(new pcl::
KdTreeFLANN <pcl: : VFHSignature308>);
for (int $i=0 ; i<$ models.size(); i++)\{
RayTraceCloud model = models.at(i);
*global_descriptor $+=$ *(model.global_descriptors);
\}
search_tree->setInputCloud (global_descriptor) ;
return (search_tree);
std: : vector<float> PclFilters::match_cloud(RayTraceCloud object_model, pcl::
KdTreeFLANN <pcl: :VFHSignature308>: : Ptr search_tree)\{
std::vector<float> returnvalues;
std:: vector<int> best_match(1);
std: : vector<float> square_distance (1) ;
search_tree ->nearestKSearch (object_model.global_descriptors ->points [0], 1,
best_match, square_distance);
returnvalues.push_back(best_match[0]) ;
returnvalues. push_back (square_distance [0]) ;
return (returnvalues);
std: : vector<float> PclFilters: : temp_matching_cvfh (RayTraceCloud object_model,
pcl: : KdTreeFLANN <pcl: :VFHSignature308>: : Ptr search_tree) \{
std: : vector<float> returnvalues;
std:: vector<int> best_match (1) ;
std: : vector<float> square_distance (1) ;
int nr_of_descriptors = object_model.global_descriptors->points.size();
for (int $\left.i=0 ; i<n r _o f _d e s c r i p t o r s ; i++\right)\{$
search_tree->nearestKSearch (object_model.global_descriptors ->points [i
], 1,best_match, square_distance);

```
        std::cout << "loop nr: " << i << ", best match: " << best_match.at(0)
        << ", confidence level: " << square_distance.at(0) << std::endl;
    }
    returnvalues.push_back(best_match [0]);
    returnvalues.push_back(square_distance [0]);
    return (returnvalues);
}
pcl:: PointCloud<pcl:: PointXYZ>::Ptr PclFilters::calculate_keypoints(pcl:
    PointCloud<pcl:: PointXYZ>:: Ptr cloud, float min_scale, int nr_octaves, int
    nr_scales_per_octave, float min_contrast){
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr rgbcloud(new pcl::PointCloud<pcl::
        PointXYZRGB>);
    pcl::copyPointCloud(*cloud,*rgbcloud);
    for(int i = 0; i< rgbcloud->size(); i++){
        rgbcloud->points[i].r = 255;
        rgbcloud->points[i].g = 255;
        rgbcloud->points[i].b = 255;
    }
    pcl::SIFTKeypoint<pcl:: PointXYZRGB, pcl::PointWithScale> sift_detect;
    sift_detect.setSearchMethod (pcl::search::Search<pcl::PointXYZRGB>::Ptr (
        new pcl::search:: KdTree<pcl:: PointXYZRGB>));
    sift_detect.setScales (min_scale, nr_octaves, nr_scales_per_octave);
    sift_detect.setMinimumContrast (min_contrast);
    sift_detect.setInputCloud (rgbcloud);
    pcl::PointCloud<pcl::PointWithScale> keypoints_temp;
    sift_detect.compute (keypoints_temp);
    pcl::PointCloud<pcl:: PointXYZ>::Ptr keypoints (new pcl::PointCloud<pcl::
        PointXYZ>);
    pcl::copyPointCloud (keypoints_temp, *keypoints);
    return (keypoints);
}
pcl:: PointCloud<pcl::FPFHSignature33>::Ptr PclFilters::
    calculate_local_descritor(pcl:: PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::
    PointCloud<pcl::Normal>::Ptr normal, pcl::PointCloud<pcl::PointXYZ>::Ptr
    keypoints, float feature_radius){
        pcl::FPFHEstimationOMP <pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33>
            fpfh_estimation;
        fpfh_estimation.setNumberOfThreads (8);
        fpfh_estimation.setSearchMethod (pcl::search::Search<pcl::PointXYZ>: Ptr (
            new pcl::search::KdTree<pcl:: PointXYZ>));
        fpfh_estimation.setRadiusSearch (feature_radius);
        fpfh_estimation.setSearchSurface (cloud);
        fpfh_estimation.setInputNormals (normal);
        fpfh_estimation.setInputCloud (keypoints);
        pcl:: PointCloud<pcl::FPFHSignature33>::Ptr local_descriptors (new pcl::
            PointCloud<pcl::FPFHSignature33>);
        fpfh_estimation.compute (*local_descriptors);
        return (local_descriptors);
}
boost::shared_ptr<pcl::visualization:: PCLVisualizer> PclFilters::visualize(
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr cloud){
    viewer.reset(new pcl::visualization::PCLVisualizer ("3D Viewer",false));
    viewer->addPointCloud<pcl:: PointXYZ> (cloud, "sample cloud");
    viewer->initCameraParameters ();
```

```
    return (viewer)
}
boost::shared_ptr<pcl::visualization:: PCLVisualizer> PclFilters::visualize_rgb(
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud){
    viewer.reset(new pcl::visualization::PCLVisualizer ("3D Viewer",false));
    pcl::visualization:: PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(
        cloud);
    viewer-> addPointCloud<pcl:: PointXYZRGB> (cloud, rgb, "sample cloud");
    viewer->initCameraParameters ();
    return (viewer);
}
boost::shared_ptr<pcl:: visualization:: PCLVisualizer> PclFilters::
    visualize_normals(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, double radius,
    int numOfNormals){
    viewer.reset(new pcl::visualization:: PCLVisualizer ("3D Viewer",false));
    viewer->addPointCloud<pcl:: PointXYZ> (cloud, "sample cloud");
    viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal> (cloud,
        get_normals(cloud,radius), numOfNormals, 0.05, "normals");
    viewer ->setPointCloudRenderingProperties (pcl::visualization::
        PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "normals");
    viewer->initCameraParameters ();
    filteredCloud = cloud;
    return (viewer);
}
std::vector<pcl:: PointCloud<pcl:: PointXYZ>::Ptr> PclFilters::cluster_extraction
    (pcl:: PointCloud<pcl::PointXYZ>::Ptr cloud, double distance){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f (new pcl::PointCloud<pcl::
        PointXYZ>), incloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::copyPointCloud(*cloud,*incloud);
    pcl::SACSegmentation<pcl:: PointXYZ> seg;
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::
        PointXYZ> ());
    seg.setOptimizeCoefficients (true);
    seg.setModelType (pcl::SACMODEL_PLANE);
    seg.setMethodType (pcl::SAC_RANSAC);
    seg.setMaxIterations (100);
    seg.setDistanceThreshold (distance);
    seg.setInputCloud (incloud);
    seg.segment (*inliers, *coefficients);
    pcl::ExtractIndices<pcl:: PointXYZ> extract;
    extract.setInputCloud (incloud);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_plane);
    extract.setNegative (true);
    extract.filter (*cloud_f);
    *incloud = *cloud_f;
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::
        PointXYZ>);
    tree->setInputCloud (incloud);
```

```
    std::vector<pcl:: PointIndices> cluster_indices;
    pcl:: EuclideanClusterExtraction<pcl:: PointXYZ> ec;
    ec.setClusterTolerance (0.01); // 1cm
    ec.setMinClusterSize (300);
    ec.setMaxClusterSize (25000);
    ec.setSearchMethod (tree);
    ec.setInputCloud (incloud);
    ec.extract (cluster_indices);
    std::vector<pcl:: PointCloud<pcl:: PointXYZ>::Ptr> clusters;
    for(int i = 0; i< cluster_indices.size(); i++){
        pcl::PointCloud<pcl:: PointXYZ>::Ptr tmpcloud (new pcl::PointCloud<pcl::
        PointXYZ>);
        pcl::copyPointCloud(*incloud,cluster_indices[i],*tmpcloud);
        clusters.push_back(tmpcloud);
    }
    filteredCloud = combine_clouds(clusters);
    return (clusters);
}
pcl:: PointCloud<pcl:: PointXYZ>::Ptr PclFilters::plane_segmentation(pcl::
    PointCloud<pcl:: PointXYZ>::Ptr cloud, double distance){
    pcl::PointCloud<pcl::PointXYZ>::Ptr incloud (new pcl::PointCloud<pcl::
        PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::
        PointXYZ>);
    pcl::copyPointCloud(*cloud,*incloud);
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    seg.setOptimizeCoefficients (true);
    seg.setModelType (pcl::SACMODEL_PLANE);
    seg.setMethodType (pcl::SAC_RANSAC);
    seg.setDistanceThreshold (distance);
    seg.setInputCloud (cloud);
    seg.segment (*inliers, *coefficients);
    pcl::ExtractIndices<pcl:: PointXYZ> extract;
    extract.setInputCloud (incloud);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_plane);
    filteredCloud = cloud;
    return (cloud_plane);
}
pcl::PointCloud<pcl:: PointXYZ>::Ptr PclFilters::get_filtered_cloud(){
    return filteredCloud;
}
pcl:: PointCloud<pcl:: PointXYZRGB>::Ptr PclFilters::color_cloud(pcl::PointCloud<
    pcl::PointXYZ>::Ptr cloud, int r, int g, int b){
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr rgb_cloud(new pcl::PointCloud<pcl::
            PointXYZRGB>);
    pcl::copyPointCloud(*cloud,*rgb_cloud);
    for (int i = 0; i< rgb_cloud->points.size(); i++)
    {
```

```
        rgb_cloud->points[i].r = r;
        rgb_cloud->points[i].g = g;
        rgb_cloud->points[i].b = b;
    }
    return (rgb_cloud);
}
pcl::PointCloud<pcl::Normal>::Ptr PclFilters::get_normals(pcl::PointCloud<pcl::
    PointXYZ>::Ptr cloud, double radius){
    pcl::PointCloud<pcl::Normal>::Ptr normals_out (new pcl::PointCloud<pcl::
        Normal>);
    pcl::search::KdTree<pcl:: PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::
        PointXYZ> ());
    pcl::NormalEstimationOMP<pcl:: PointXYZ, pcl::Normal> norm_est;
    norm_est.setNumber0fThreads (8);
    norm_est.setSearchMethod(tree);
    norm_est.setRadiusSearch (radius);
    norm_est.setInputCloud (cloud);
    norm_est.compute (*normals_out);
    return (normals_out);
}
pcl::PointCloud<pcl::PointXYZ>::Ptr PclFilters::passthrough_filter(pcl::
    PointCloud<pcl::PointXYZ>::Ptr cloud, double min, double max, std::string
    axis){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl::PointXYZ>);
    passfilter.setKeepOrganized(true);
    passfilter.setInputCloud(cloud);
    passfilter.setFilterFieldName(axis);
    passfilter.setFilterLimits(min,max);
    passfilter.filter(*cloud_filtered);
    filteredCloud = cloud_filtered;
    return (cloud_filtered);
}
pcl:: PointCloud<pcl:: PointXYZ>::Ptr PclFilters::voxel_grid_filter(pcl::
    PointCloud<pcl:: PointXYZ>::Ptr cloud, double lx, double ly, double lz){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl::PointXYZ>);
    voxelfilter.setInputCloud(cloud);
    voxelfilter.setLeafSize(lx,ly,lz);
    voxelfilter.filter(*cloud_filtered);
    filteredCloud = cloud_filtered;
    return (cloud_filtered);
}
pcl:: PointCloud<pcl:: PointXYZ>::Ptr PclFilters::median_filter(pcl:: PointCloud<
    pcl::PointXYZ>::Ptr cloud, int window_size, double max_allowed_movement){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl::PointXYZ>);
    medianfilter.setInputCloud(cloud);
    medianfilter.setWindowSize(window_size);
    medianfilter.setMaxAllowedMovement(max_allowed_movement);
    medianfilter.filter(*cloud_filtered);
    filteredCloud = cloud_filtered;
    return (cloud_filtered);
```

```
}
pcl::PointCloud<pcl::PointXYZ>::Ptr PclFilters::shadowpoint_removal_filter(
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr cloud, double threshold, double radius)
    {
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl:: PointXYZ>);
    shadowpoint_filter.setInputCloud(cloud);
    shadowpoint_filter.setKeepOrganized(true);
    shadowpoint_filter.setThreshold(threshold);
    shadowpoint_filter.setNormals(get_normals(cloud, radius));
    shadowpoint_filter.filter(*cloud_filtered);
    filteredCloud = cloud_filtered;
    return (cloud_filtered);
}
pcl::PointCloud<pcl:: PointXYZ>::Ptr PclFilters::statistical_outlier_filter(
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr cloud, int meanK, double
    std_deviation_threshold){
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl:: PointXYZ>);
        statistical_outlier.setKeepOrganized(true);
        statistical_outlier.setInputCloud(cloud);
        statistical_outlier.setMeanK(meanK);
        statistical_outlier.setStddevMulThresh(std_deviation_threshold);
        statistical_outlier.filter(*cloud_filtered);
        filteredCloud = cloud_filtered;
        return (cloud_filtered);
}
pcl:: PointCloud<pcl:: PointXYZ>::Ptr PclFilters::combine_clouds(std::vector<
    pcl::PointCloud<pcl::PointXYZ>::Ptr> input){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cluster_cloud (new pcl::PointCloud<
        pcl:: PointXYZ>);
    *cluster_cloud = *input.at(0);
        for (unsigned i=0; i<input.size(); i++){
            *cluster_cloud += *(pcl:: PointCloud<pcl:: PointXYZ>::Ptr) input.at(i);
        }
    return (cluster_cloud);
}
pcl:: PointCloud<pcl::VFHSignature308>::Ptr PclFilters::
    calculate_cvfh_descriptors(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud){
    pcl:: PointCloud<pcl::VFHSignature308>::Ptr descriptors(new pcl::PointCloud<
        pcl::VFHSignature308>);
    pcl::search::KdTree<pcl:: PointXYZ>::Ptr kdtree(new pcl::search::KdTree<
        pcl:: PointXYZ>);
    pcl::PointCloud<pcl::Normal>::Ptr normals = get_normals(cloud,0.01);
    pcl::CVFHEstimation<pcl:: PointXYZ, pcl::Normal, pcl::VFHSignature308> cvfh;
    cvfh.setInputCloud(cloud);
        cvfh.setInputNormals(normals);
        cvfh.setSearchMethod(kdtree);
        cvfh.setEPSAngleThreshold(5.0 / 180.0 * M_PI);
        cvfh.setCurvatureThreshold(1.0);
        cvfh.setNormalizeBins(false);
        cvfh.compute(*descriptors);
```

```
    return (descriptors);
}
pcl::PointCloud<pcl::PointXYZ>::Ptr PclFilters::bilateral_filter(pcl::
    PointCloud<pcl:: PointXYZ>::Ptr cloud, double sigmaS, double sigmaR){
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<
        pcl::PointXYZ>);
    pcl::FastBilateralFilterOMP <pcl:: PointXYZ> bifilter;
    bifilter.setInputCloud(cloud);
    bifilter.setSigmaR(sigmaR);
    bifilter.setSigmaS(sigmaS);
    bifilter.filter(*cloud_filtered);
    filteredCloud = cloud_filtered;
    return (cloud_filtered);
}
pcl::PointCloud<pcl::ESFSignature640>::Ptr PclFilters::
    calculate_esf_descriptors(pcl:: PointCloud<pcl:: PointXYZ>::Ptr cloud){
    pcl::PointCloud<pcl::ESFSignature640>::Ptr descriptor(new pcl::PointCloud<
        pcl::ESFSignature640>);
    pcl::ESFEstimation<pcl::PointXYZ, pcl::ESFSignature640> esf;
    esf.setInputCloud(cloud);
    esf.compute(*descriptor);
    return (descriptor);
}
pcl::PointCloud<pcl::VFHSignature308>::Ptr PclFilters::
    calculate_ourcvfh_descriptors(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud,
    pcl::PointCloud<pcl::Normal>::Ptr normal){
    pcl::PointCloud<pcl::VFHSignature308>::Ptr descriptors(new pcl::PointCloud<
        pcl::VFHSignature308>);
    pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<
        pcl::PointXYZ>);
    pcl::OURCVFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308>
        ourcvfh;
    ourcvfh.setInputCloud(cloud);
    ourcvfh.setInputNormals(normal);
    ourcvfh.setSearchMethod(kdtree);
    ourcvfh.setEPSAngleThreshold(5.0 / 180.0 * M_PI);
    ourcvfh.setCurvatureThreshold(0.1);
    ourcvfh.setNormalizeBins(false);
    ourcvfh.setAxisRatio(0.8);
    ourcvfh.compute(*descriptors);
    return (descriptors);
}
pcl:: PointCloud<pcl::GFPFHSignature16>:: Ptr PclFilters::
    calculate_gfpfh_descriptors(pcl:: PointCloud<pcl::PointXYZ>::Ptr cloud){
    pcl::PointCloud<pcl::PointXYZL>::Ptr object(new pcl::PointCloud<pcl::
        PointXYZL>);
    pcl::PointCloud<pcl::GFPFHSignature16>::Ptr descriptor(new pcl::PointCloud<
        pcl::GFPFHSignature16>);
    pcl::copyPointCloud(*cloud,*object);
    for (size_t i = 0; i < object->points.size(); ++i)
    {
        object->points[i].label = 1 + i % 4;
    }
```

```
    pcl::GFPFHEstimation<pcl::PointXYZL, pcl::PointXYZL, pcl::GFPFHSignature16>
        gfpfh;
    gfpfh.setInputCloud(object);
    gfpfh.setInputLabels(object);
    gfpfh.set0ctreeLeafSize(0.01);
    gfpfh.setNumberOfClasses(4);
    gfpfh.compute(*descriptor);
    return (descriptor);
}
pcl:: PointCloud<pcl::VFHSignature308>::Ptr PclFilters::
    calculate_vfh_descriptors(pcl:: PointCloud<pcl:: PointXYZ>::Ptr points, pcl::
    PointCloud<pcl::Normal>::Ptr normals){
    pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308>
        vfh_estimation;
    vfh_estimation.setSearchMethod (pcl::search::Search<pcl::PointXYZ>::Ptr (
        new pcl::search::KdTree<pcl::PointXYZ>));
    vfh_estimation.setInputCloud (points);
    vfh_estimation.setInputNormals (normals);
    pcl::PointCloud<pcl::VFHSignature308>::Ptr global_descriptor (new pcl::
        PointCloud<pcl::VFHSignature308>);
    vfh_estimation.compute (*global_descriptor);
    return (global_descriptor);
}
icpResult PclFilters::object_detection(pcl:: PointCloud<pcl::PointXYZ>::Ptr
    cloud, std::vector<RayTraceCloud> model_a, std::vector<RayTraceCloud>
    model_b){
    pcl::PointCloud<pcl::PointXYZ>::Ptr section_a(new pcl::PointCloud<pcl::
        PointXYZ>);
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr section_b(new pcl::PointCloud<pcl::
        PointXYZ>);
    pcl::copyPointCloud(*cloud,*section_a);
    //Passtrough
    section_a = passthrough_filter(section_a,0.760,1.190,"z");
    pcl::copyPointCloud(*section_a,*section_b);
    section_a = passthrough_filter(section_a, -0.510, -0.130, "x");
    section_b = passthrough_filter(section_b, -0.130,0.270,"x");
    //Voxelgrid
    section_a = voxel_grid_filter(section_a,0.001,0.001,0.001);
    section_b = voxel_grid_filter(section_b,0.001,0.001,0.001);
    //Cluster extraction
    std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters_section_a =
        cluster extraction(section_a,0.005);
    std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clusters_section_b =
        cluster_extraction(section_b,0.005);
    //find the cluster that containes the part we are looking for.
    RayTraceCloud part_a, part_b;
    if(clusters_section_a.size() != 1){
        //more than one cluster, find the correct one
        std::vector<RayTraceCloud> cluster_a_models;
        for(int i = 0; i<clusters_section_a.size(); i++){
            RayTraceCloud tmp_model;
            tmp_model.cloud = clusters_section_a.at(i);
            cluster_a_models.push_back(calculate_features(tmp_model));
```

```
    }
    int tmp = search_for_model(cluster_a_models,model_a);
    part_a = cluster_a_models.at(tmp);
}
else{
    part_a.cloud = clusters_section_a.at(0);
    part_a = calculate_features(part_a);
}
if(clusters_section_b.size() != 1){
    //more than one cluster, find the correct one
    std::vector<RayTraceCloud> cluster_b_models;
    for(int i = 0; i<clusters_section_b.size(); i++){
        RayTraceCloud tmp_model;
        tmp_model.cloud = clusters_section_b.at(i);
        cluster_b_models.push_back(calculate_features(tmp_model));
    }
    int tmp = search_for_model(cluster_b_models,model_b);
    part_b = cluster_b_models.at(tmp);
}
else{
    part_b.cloud = clusters_section_b.at(0);
    part_b = calculate_features(part_b);
}
//from here, we assume that left and right part contains the correct
    cluster for each of the parts.
std::vector<float> result_a,result_b;
result_a = match_cloud(part_a,generate_search_tree(model_a));
result_b = match_cloud(part_b,generate_search_tree(model_b));
//alignment part a
Eigen::Matrix4f initial_a = calculateInitialAlignment(model_a.at(result_a.
    at(0)),part_a,0.01,1,50);
Eigen::Matrix4f final_a = calculateRefinedAlignment(model_a.at(result_a.at
    (0)),part_a,initial_a,0.1,0.1,1e-10,0.00001,50);
//alignment part b
Eigen::Matrix4f initial_b = calculateInitialAlignment(model_b.at(result_b.
    at(0)),part_b,0.01,1,50);
Eigen::Matrix4f final_b = calculateRefinedAlignment(model_b.at(result_b.at
    (0)),part_b,initial_b,0.1,0.1,1e-10,0.00001,50);
//the following is just to produce a pleasing image showing the result.
//Transform the models
pcl::PointCloud<pcl::PointXYZ>::Ptr a_positioned(new pcl::PointCloud<pcl::
    PointXYZ>);
pcl::copyPointCloud(*model_a.at(result_a.at(0)).cloud,*a_positioned);
pcl::transformPointCloud(*a_positioned,*a_positioned,final_a);
pcl::PointCloud<pcl::PointXYZ>::Ptr b_positioned(new pcl::PointCloud<pcl::
    PointXYZ>);
pcl::copyPointCloud(*model_b.at(result_b.at(0)).cloud,*b_positioned);
pcl::transformPointCloud(*b_positioned,*b_positioned,final_b);
//Display the cloud and models
pcl:: PointCloud<pcl:: PointXYZRGB>::Ptr scene_copy,b_transformed,
    a_transformed;
```

```
484 scene_copy = color_cloud(cloud,255,255,255);
```

485
485 487 488 488 490 491 491 493

```
    b_transformed = color_cloud(b_positioned,255,0,0);
    a_transformed = color_cloud(a_positioned,0,255,0);
    *scene_copy += *b_transformed;
    *scene_copy += *a_transformed;
    icpResult result;
    result.cloud = scene_copy;
    result.partAFinal = final_a * model_a.at(result_a.at(0)).pose;
    result.partBFinal = final_b * model_b.at(result_b.at(0)).pose;
    return result;
}
```


pcl_filters.hpp

Listing A.2: Source file - agilus_master_project/pcl_filters.hpp

```
//
// Original author Kristoffer Larsen. Latest change date 01.05.2016
// This .hpp file defines the content of pcl_filters.cpp which is a toolbox
    that implements the most commonly used features from PCL.
// In this application, pcl_filters.cpp is used for 3D point cloud processing.
//
// Created as part of the software solution for a Master's Thesis in Production
    Technology at NTNU Trondheim.
//
#ifndef qt_filter_tester_PCLFILTERS_H
#define qt_filter_tester_PCLFILTERS_H
#include <QObject>
#include <iostream>
#include <boost/thread/thread.hpp>
#include <pcl/common/common_headers.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/parse.h>
//PCL Filters
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/shadowpoints.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/median_filter.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/fast_bilateral_omp.h>
//PCL Feature estimation
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/integral_image_normal.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/cvfh.h>
#include <pcl/features/gfpfh.h>
#include <pcl/features/our_cvfh.h>
#include <pcl/features/esf.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/fpfh_omp.h>
#include "pcl/keypoints/sift_keypoint.h"
//PCL Registration and object detection
#include <pcl/registration/ia_ransac.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
```

```
#include <pcl/registration/icp.h>
#include <pcl/recognition/ransac_based/obj_rec_ransac.h>
/*!
    * \brief The RayTraceCloud struct contain all the data related to a training
        set model.
    */
struct RayTraceCloud {
    /*! The point cloud of the ray trace */
    pcl::PointCloud<pcl:: PointXYZ>::Ptr cloud;
    /*! The pose transformation from the camera to the mesh when the ray trace
        was generated */
    Eigen:: Matrix4f pose;
    /*! The amount of the whole mesh seen in the camera */
    float enthropy;
    /*! The clouds keypoints */
    pcl:: PointCloud<pcl:: PointXYZ>::Ptr keypoints;
    /*! The clouds surface normal */
    pcl::PointCloud<pcl::Normal>::Ptr normals;
    /*! The clouds local descriptors */
    pcl:: PointCloud<pcl::FPFHSignature33>::Ptr local_descriptors;
    /*! The clouds global descriptor */
    pcl::PointCloud<pcl::VFHSignature308>::Ptr global_descriptors;
};
/*!
    * \brief The icpResult struct contain all the important data derived from the
        3D object detection procedure.
    */
struct icpResult {
    /*! A 3D point cloud that illustrates the 3D object detection result */
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud;
    /*! The estimated pose of part A */
    Eigen::Matrix4f partAFinal;
    /*! The estimated pose of part B */
    Eigen::Matrix4f partBFinal;
};
namespace agilus_master_project {
class PclFilters : public QObject{
Q_OBJECT
public:
    /*!
    * \brief Constructor for the PclFilters class.
    * \param parent Default O.
```

*/
PclFilters (QObject *parent $=0$) ;
~PclFilters();
/*!
* Ibrief Return the cluster that is most similar to the provided training
set.
* Iparam clusters Clusters that is to be searched.
* Iparam model The training set of the model that is searched for in the
scene.
* Ireturn The index that corresponds to the best matching cluster in the
input cluster vector.
*/
int search_for_model(std: :vector<RayTraceCloud> clusters, std: :vector<
RayTraceCloud> model);
/*!
* \brief Method for testing an experimental 3D object detection
implementation. This implementation is based on RANSAC.
* Iparam models Training set that is to be searched for.
* Iparam object Object cluster.
*/
void ransac_recognition(std: : vector<RayTraceCloud> models, RayTraceCloud
object);
/*!
* \brief Estimates an initial alignment bewteen the source and target
model based on the Sigular Value Decomposition approach.
* \param source The source point cloud.
* Iparam target The target point cloud.
* Iparam min_sample_distance Mathcing parameter used to limit
correspondences.
* Iparam max_correspondence_distance Matching parameter used to limit
correspondences.
* \param nr_iterations Maximum number of iterations run before returning a
pose.
* Ireturn The estimated initial alignment.
*/
Eigen: : Matrix4f calculateInitialAlignment (RayTraceCloud source,
RayTraceCloud target, float min_sample_distance, float
max_correspondence_distance, int nr_iterations);
/*!
* \brief Estimates a final alignment between the source and target model
based on the Iterative Closest Point approach.
* Iparam source The source point cloud.
* Iparam target The target point cloud.
* Iparam initial_alignment The initial alignment between the models used
as a starting point.
* Iparam max_correspondence_distance Matching parameter used to limit
correspondences.
* Iparam outlier_rejection_threshold Parameter used to set the outlier
rejection threshold.
* Iparam transformation_epsilon Parameter that defines an acceptable
transformation epsilon.
* Iparam eucledian_fitness_epsilon Parameter that defines an acceptable
eucledian fitness epsilon.

* Iparam max_iterations Maximum number of iterations run before returning
a pose.
 * Ireturn The estimated final alignment.
*/
Eigen: : Matrix4f calculateRefinedAlignment (RayTraceCloud source,
RayTraceCloud target, Eigen: : Matrix4f initial_alignment, float
max_correspondence_distance, float outlier_rejection_threshold, float
transformation_epsilon, float eucledian_fitness_epsilon, int
max_iterations);
/*!
 * \brief Generates a Kd-tree used for nearest neighbour search from a set
of global descriptors.
 * \param Training set containing global descriptors.
 * Ireturn The generated Kd-tree.
*/
pcl: : KdTreeFLANN <pcl: :VFHSignature308>: : Ptr generate_search_tree (std: :
vector<RayTraceCloud> models);
/*!
 * \brief Descriptor matching between the input model and a generated Kd-
tree based on the VFH global descriptor.
 * \param object_model The input model.
 * Iparam search_tree The input Kd-tree
 * Ureturn A vector containing <index of best matching model, confidence
level of the match>.
*/
std: : vector<float> match_cloud (RayTraceCloud object_model, pcl::KdTreeFLANN
pcl::VFHSignature308:: Ptr search_tree);
/*!
 * \brief Descriptor matching between the input model and a generated Kd-
tree based on the CVFH global descriptor.
 * Iparam object_model The input model.
 * Iparam search_tree The input Kd-tree.
 * Ireturn A vector containing <index of best matching model, confidence
level of the match>.
*/
std: : vector<float> temp_matching_cvfh(RayTraceCloud object_model, pcl::
KdTreeFLANN <pcl: :VFHSignature308>: : Ptr search_tree);
/*!
 * \brief Calculated the keypoints of an input point cloud based on the
SIFT3D keypoint selector method.
 * Iparam cloud The input point cloud.
 * Iparam min_scale SIFT3D minimum scale parameter.
 * \param nr_octaves SIFT3D number of octaves calcualted parameter.
 * Iparam nr_scales_per_octave SIFTBD number of scales per octave
calculated parameter.
 * Iparam min_contrast SIFT3D minimum constrast parameter.
 * Ireturn A point cloud containing the resulting keypoints.
*/
pcl:: PointCloud<pcl:: PointXYZ>:: Ptr calculate_keypoints(pcl::PointCloud<
pcl:: PointXYZ>: Ptr cloud, float min_scale, int nr_octaves, int
nr_scales_per_octave, float min_contrast) ;

```
/*!
    * \brief Estimates the FPFH local descriptor for a 3D point cloud.
    * \param cloud The input point cloud.
    * \param normal The surface normals of the input point cloud.
    * Iparam keypoints The keypoints of the input point cloud.
    * \param feature_radius The feature radius FPFH parameter.
    * Ireturn A point cloud containing a local descriptor for each keypoint of
        the original input point cloud.
    */
pcl:: PointCloud<pcl::FPFHSignature33>::Ptr calculate_local_descritor(pcl::
            PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::Normal>::Ptr
            normal, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints, float
        feature_radius);
/*!
    * \brief Estimates the VFH global descriptor for a 3D point cloud.
    * \param points The input point cloud.
    * \param normals The surface normals of the input point cloud.
    * Ireturn The VFH global descriptor for the input point cloud.
    */
pcl::PointCloud<pcl::VFHSignature308>::Ptr calculate_vfh_descriptors(pcl::
        PointCloud<pcl::PointXYZ>::Ptr points, pcl::PointCloud<pcl::Normal>::
        Ptr normals);
/*!
    * \brief Estimates surface normals, keypoints, local descriptors and
                global descriptor for the input point cloud.
    * \param inputcloud The input point cloud.
    * \return A struct containing all the calculated features.
    */
RayTraceCloud calculate_features(RayTraceCloud inputcloud);
/*!
    * \brief Creates a PCL Visualizer containing the input cloud.
    * \param cloud Input point cloud.
    * \return A pcl visualizer containing the input cloud.
    */
boost::shared_ptr<pcl::visualization:: PCLVisualizer> visualize (pcl::
            PointCloud<pcl:: PointXYZ>::Ptr cloud);
/*!
    * \brief Creates a PCL Visualizer to visualize a PointXYZRGB point cloud.
    * \param cloud Input point cloud.
    * \return A pcl visualizer containing the input cloud.
    */
boost::shared_ptr<pcl::visualization::PCLVisualizer> visualize_rgb(pcl::
            PointCloud<pcl:: PointXYZRGB>::Ptr cloud);
/*!
    * \brief Creates a PCL Visualizer used to visualize a point clouds normals
    * Iparam cloud Input point cloud.
    * \param radius Double value for the search radius for the normal
        estimation of a p.oint cloud.
    * \param numOfNormals Integer value for the number of normals to display
        in the visualizer.
```

* Ireturn A pcl visualizer containing the input cloud and normals as
defined by the input parameters.
*/
boost::shared_ptrpcl::visualization::PCLVisualizer visualize_normals (
pcl:: PointCloud<pcl:: PointXYZ>: Ptr cloud, double radius, int
numOfNormals);
/*!
 * \brief Segments out the biggest plane in the input point cloud.
 * Iparam cloud Input point cloud.
 * Iparam distance Double value for the maximum distance between points in
a plane.
 * Ireturn A pcl point cloud containing the points of the segmented plane.
*/
pcl::PointCloudpcl::PointXYZ::Ptr plane_segmentation(pcl::PointCloud<
pcl::PointXYZ>::Ptr cloud, double distance);
/*!
 * Ibrief Creates a PCL Visualizer containing a point cloud of the clusters
extracted from the input cloud using Eucledian cluster extraction.
 * \param cloud Input point cloud.
 * Iparam distance Double value for the maximum distance between points in
a plane.
 * \return A pcl visualizer containing the extracted clusters from the
input cloud.
*/
std::vector<pcl:: PointCloudpcl::PointXYZ::Ptr> cluster_extraction (pcl::
PointCloudpcl::PointXYZ::Ptr cloud, double distance);
/*!
 * \brief Returns the most recent point cloud handled by the class.
 * Ireturn The most recent point cloud handled by the class.
*/
pcl:: PointCloudpcl::PointXYZ::Ptr get_filtered_cloud();
/*!
 * |brief Colors all the points in a point cloud.
 * \param cloud Input point cloud.
 * Sparam r Integer value for the red component of the color.
 * Iparam g Integer value for the green component of the color.
 * \param b Integer value for the blue component of the color.
 * Ireturn The input point cloud colored in the specified color.
*/
pcl:: PointCloudpcl::PointXYZRGB::Ptr color_cloud (pcl::PointCloud<pcl::
PointXYZ>::Ptr cloud, int r, int g, int $b)$;
/*!
 * \brief Returns the surface normals of a Point cloud.
 * \param cloud Input point cloud.
 * \param radius Double value for the search radius of the normal
estimation.
 * Ireturn The surface normals of the input point cloud.
*/
pcl:: PointCloudpcl::Normal::Ptr get_normals (pcl:: PointCloud<pcl::
PointXYZ>::Ptr cloud, double radius);
/*!
\brief Returns the a point cloud filtered using passthrough filtering.
 * Iparam cloud Input point cloud.
 * Iparam min Double value for the minimum value of the filter.
 * Iparam max Double value for the maximum value of the filter.
 * \param axis std::string value for the axis of the filter (lower case).
 * Ireturn A point cloud filtered using passthrough filtering as specified.
*/
pcl: : PointCloud<pcl: : PointXYZ>: : Ptr passthrough_filter (pcl: PointCloud<
pcl:: PointXYZ>::Ptr cloud, double min, double max, std::string axis);
/*!
 * \brief Returns the a point cloud filtered using voxel grid filtering.
 * Iparam cloud Input point cloud.
 * Iparam lx Double value for the voxel size in the "x" axis of the filter.
 * \param ly Double value for the voxel size in the "y" axis of the filter.
 * Iparam lz Double value for the voxel size in the "z" axis of the filter.
 * Ireturn A point cloud filtered using voxel grid filtering as specified.
*/
pcl: : PointCloud<pcl: : PointXYZ>: : Ptr voxel_grid_filter (pcl:: PointCloud<
pcl:: PointXYZ>: Ptr cloud, double lx, double ly, double lz);
/*!
 * \brief Returns the a point cloud filtered using median filtering.
 * \param cloud Input point cloud.
 * Iparam window_size Integer value for the window size of the filter.
 * Iparam max_allowed_movement Double value for the maximum allowed movenet
of the filter.
 * Ireturn A point cloud filtered using median filtering as specified.
*/
pcl:: PointCloud<pcl:: PointXYZ>:: Ptr median_filter (pcl:: PointCloud<pcl::
PointXYZ>: Ptr cloud, int window_size, double max_allowed_movement);
/*!
 * \brief Returns the a point cloud filtered using shadow point removal
filtering.
 * Iparam cloud Input point cloud.
 * Iparam threshold Double value for the filter threshold.
 * Iparam radius Double value for the filter search radius.
 * Ireturn A point cloud filtered using shadow point removal filtering as
specified.
*/
pcl: : PointCloud<pcl:: PointXYZ>:: Ptr shadowpoint_removal_filter (pcl: :
PointCloud<pcl:: PointXYZ>: : Ptr cloud, double threshold, double radius);
/*!
 * \brief Returns the a point cloud filtered using statistical outlier
removal filtering.
 * \param cloud Input point cloud.
 * Iparam meanK Integer value for the number of nearest neighbors to use
for mean distance estimation.
 * Iparam std_deviation_threshold Double value for the standard deviation
multiplier for the distance threshold calculation.
 * Ireturn A point cloud filtered using statistical outlier removal
filtering as specified.
*/
pcl: : PointCloud<pcl: : PointXYZ>: Ptr statistical_outlier_filter (pcl: :
PointCloud<pcl:: PointXYZ>::Ptr cloud, int meanK, double

```
    std_deviation_threshold);
/*!
    * \brief Combines all clouds in an vector to one cloud.
    * \param input std::vector containing all clouds to be combined.
    * Ireturn A point cloud containing all clouds in the input vector.
    */
pcl:: PointCloud<pcl:: PointXYZ>::Ptr combine_clouds(std::vector<pcl::
    PointCloud<pcl::PointXYZ>::Ptr> input);
/*!
    * \brief Generates the CVFH descriptors for an object (cluster).
    * Iparam object Input point cloud, cluster of the object.
    * \param normals Input normal cloud of the object.
    * Ireturn The corresponding CVFH global descriptor.
    */
pcl:: PointCloud<pcl::VFHSignature308>::Ptr calculate_cvfh_descriptors(pcl::
    PointCloud<pcl::PointXYZ>::Ptr object);
/*!
    * \brief Returns a pcl point cloud filtered using a bilateral filter.
    * \param cloud Input point cloud
    * Iparam sigmaS Double value for the half size of the gaussian bilateral
        filter window.
    * \param sigmar Double value for the standard deviation parameter.
    * \return A point cloud filtered using a bilateral filter.
    */
pcl::PointCloud<pcl::PointXYZ>::Ptr bilateral_filter(pcl::PointCloud<pcl::
    PointXYZ>::Ptr cloud, double sigmaS, double sigmaR);
/*!
    * \brief Returns the esf descriptor for a pcl point cloud.
    * \param cloud Input point cloud.
    * Ireturn ESDSignature640 descriptor for the input point cloud.
    */
pcl::PointCloud<pcl::ESFSignature640>::Ptr calculate_esf_descriptors(pcl::
        PointCloud<pcl::PointXYZ>::Ptr cloud);
/*!
    * \brief Returns the ourcvfh descriptor for a pcl point cloud.
    * \param cloud Input point cloud.
    * \return OurCVFH descriptor for the input point cloud.
    */
pcl:: PointCloud<pcl::VFHSignature308>::Ptr calculate_ourcvfh_descriptors(
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::Normal
        >::Ptr normal);
/*!
    * \brief Returns the gfpfh descriptor for a pcl point cloud.
    * \param cloud Input point cloud
    * \return GFPFH descriptor for the input point cloud.
    */
pcl:: PointCloud<pcl::GFPFHSignature16>::Ptr calculate_gfpfh_descriptors(
        pcl::PointCloud<pcl:: PointXYZ>::Ptr cloud);
/*!
    * \brief Detects two objects in an area of the point cloud and returns a
        pointcloud showing the detected parts.
```

```
    * Iparam cloud Input point cloud.
    * \param model_a A list of RayTraceCloud objects generated by the
        ModelLoader class.
    * Iparam model_b A list of RayTraceCloud objects generated by the
        ModelLoader class.
    * \return Pointcloud showing the result.
    */
    icpResult object_detection(pcl:: PointCloud<pcl::PointXYZ>::Ptr cloud, std::
        vector<RayTraceCloud> model_a, std::vector<RayTraceCloud> model_b);
private:
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer; //!< A pcl
        viewer used to visualize pcl point clouds.
    pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud; //!< The product of a
        filter operation.
    pcl::PassThrough<pcl::PointXYZ> passfilter; //!< A pcl passthrough filter
        object.
    pcl::VoxelGrid<pcl::PointXYZ> voxelfilter; //!< A pcl voxelgrid filter
        object.
    pcl::MedianFilter<pcl::PointXYZ> medianfilter; //!< A pcl median filter
        object.
    pcl::StatisticalOutlierRemoval<pcl:: PointXYZ> statistical_outlier; //!< A
        pcl statistical outlier removal filter object.
    pcl::ShadowPoints<pcl::PointXYZ, pcl::Normal> shadowpoint_filter; //!< A
        pcl shadowpoints removal filter object.
    pcl:: KdTreeFLANN<pcl::VFHSignature308>::Ptr kdtree_;
public Q_SLOTS:
    //Slots used to recieve events from one another class. All slots and
        signals are connected in main_window.cpp
Q_SIGNALS:
    //Signals used to emit event from one class to another. All signals are
        connected in main_window.cpp
};
}
#endif
```


modelloader.cpp

Listing A.3: Source file - agilus_master_project/modelloader.cpp

```
//
// Original code by Adam Leon Kleppe on 01.02.16, modifiead by Kristoffer
    Larsen.
// Latest change date 01.05.2016
// modelloader.cpp is a tool used to create training set used for 3D object
    detection.
//
// Modified and used as part of the software solution for a Master's Thesis in
    Production Technology at NTNU Trondheim.
//
#include "../include/agilus_master_project/modelloader.hpp"
namespace agilus_master_project{
ModelLoader::ModelLoader(pcl::PolygonMesh mesh, std::string mesh_name) :
    ModelLoader(mesh_name)
{
    this->mesh = mesh;
}
ModelLoader::ModelLoader(std::string mesh_name) :
    QObject(0)
{
    this->mesh_name = mesh_name;
    this->setCloudResolution(960);
    this->setPath(ros:: package::getPath("agilus_master_project") + "/
            trace_clouds/");
    this ->setTesselation_level(1);
}
ModelLoader::~ModelLoader() {}
void ModelLoader:: populateLoader() {
    if(!this->loadPointClouds()) {
            if(this->mesh.cloud.data.size() == 0) {
                    ROS_ERROR("There is no defined mesh to generate clouds from");
                    return;
            }
            this - >generate PointClouds();
            this->savePointClouds();
        }
}
std::vector<RayTraceCloud> ModelLoader::getModels(bool load){
    // Populate the loader if empty
    if(load && this->ray_trace_clouds.empty()) {
        this -> populateLoader() ;
    }
    return this->ray_trace_clouds;
}
```

```
void ModelLoader::generatePointClouds() {
    // Create mesh object
    vtkSmartPointer<vtkPolyData> meshVTK;
    pcl::VTKUtils::convertToVTK(this->mesh, meshVTK);
    // Set up trace generation
    ROS_INFO("Generating traces...");
    ROS_INFO("\033[32m Current settings:");
    ROS_INFO("\033[32m -mesh_name: %s", this->mesh_name.c_str());
    ROS_INFO("\033[32m -cloud_resolution: %d", this->cloud_resolution);
    ROS_INFO("\033[32m -tesselation_level: %d", this->tesselation_level);
    pcl::visualization::PCLVisualizer generator("Generating traces...",false);
    generator.addModelFromPolyData (meshVTK, "mesh", 0);
    std::vector<pcl::PointCloud<pcl::PointXYZ>, Eigen::aligned_allocator<pcl::
        PointCloud<pcl::PointXYZ> > > clouds;
    std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> >
        poses;
    std::vector<float> enthropies;
    // Generate traces
    generator.renderViewTesselatedSphere(this - >cloud_resolution, this ->
        cloud_resolution, clouds, poses, enthropies, this->tesselation_level);
    // Generate clouds
    this->ray_trace_clouds.clear();
    for(int i =0; i < clouds.size(); i++)
    {
        RayTraceCloud cloud;
        cloud.cloud = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<
            pcl:: PointXYZ>);
        *cloud.cloud = clouds.at(i);
        cloud.pose = poses.at(i);
        cloud.enthropy = enthropies.at(i);
        std::cout << "Calculating features for Cloud nr. " << i << std::endl;
        cloud = filters->calculate_features(cloud);
        this->ray_trace_clouds.push_back(cloud);
    }
}
bool ModelLoader::savePointClouds() {
    if(this->ray_trace_clouds.empty()){
        return false;
    }
    // Set saving path
    std::string save_path = this ->path + this->mesh_name + "/";
    ROS_INFO("Saving ray traces");
    ROS_INFO("\tUsing %s", save_path.c_str());
    // Generate YAML node
    YAML::Node clouds;
    for(int i = 0; i < this->ray_trace_clouds.size(); i++) {
        RayTraceCloud ray_trace = this ->ray_trace_clouds.at(i);
        std::stringstream filename_cloud;
        std::stringstream filename_normals;
```

```
std::stringstream filename_keypoints;
```

std::stringstream filename_keypoints;
std::stringstream filename_local_descriptor;
std::stringstream filename_global_descriptor;
filename_cloud << this->mesh_name << "_cloud_";
filename_cloud << setfill('0') << setw(4) << (i+1);
filename_cloud << ".pcd";
filename_normals << this ->mesh_name << "_normals_";
filename_normals << setfill('0') << setw(4) << (i+1);
filename_normals << ".pcd";
filename_keypoints << this ->mesh_name << "_keypoints_";
filename_keypoints << setfill('0') << setw(4) << (i+1);
filename_keypoints << ".pcd";
filename_local_descriptor << this->mesh_name << " _ldescriptor_";
filename_local_descriptor << setfill('0') << setw(4) << (i+1);
filename_local_descriptor << ".pcd";
filename_global_descriptor << this->mesh_name << "_gdescriptor_";
filename_global_descriptor << setfill('0') << setw (4) << (i+1);
filename_global_descriptor << ".pcd";
boost::filesystem::create_directories(save_path);
pcl::io::savePCDFile(save_path + filename_cloud.str(), *ray_trace.cloud
);
pcl::io::savePCDFile(save_path + filename_normals.str(), *ray_trace.
normals);
pcl::io::savePCDFile(save_path + filename_keypoints.str(), *ray_trace.
keypoints);
pcl::io::savePCDFile(save_path + filename_local_descriptor.str(), *
ray_trace.local_descriptors);
pcl::io::savePCDFile(save_path + filename_global_descriptor.str(), *
ray_trace.global_descriptors);
YAML::Node node;
node["cloud"] = filename_cloud.str();
node["normals"] = filename_normals.str();
node["keypoints"] = filename_keypoints.str();
node["ldescriptor"] = filename_local_descriptor.str();
node["gdescriptor"] = filename_global_descriptor.str();
for(int j = 0; j < 16; j++) {
node["pose"].push_back(ray_trace.pose(j / 4, j % 4))
}
node["enthropy"] = ray_trace.enthropy;
std::stringstream cloud_node;
cloud_node << setfill('O') << setw(4) << (i+1);
clouds[cloud_node.str()] = node;
}
// Saving the YAML node
YAML::Emitter out;
out << clouds;
boost::filesystem::ofstream f(save_path + this->mesh_name + ". yaml");
f << out.c_str();
ROS_INFO("\033[33mSuccessfully saved %d ray traces", (int)this->
ray_trace_clouds.size())
}

```
```

bool ModelLoader::loadPointClouds() {
// Set the save path
std::string save_path = this->path + this->mesh_name + "/";
YAML::Node clouds;
// Try to load the files
try {
ROS_INFO("Loading ray trace clouds...");
ROS_INFO("\tUsing %s", save_path.c_str());
clouds = YAML:: LoadFile(save_path + this->mesh_name + ".yaml");
}
catch (const std::exception\& e) {
ROS_INFO("\033[31mFile not found.\033[0m");
return false;
}
int i = 1;
std::stringstream cloud_node;
cloud_node << setfill('0') << setw(4) << i;
this->ray_trace_clouds.clear();
// Populate ray_trace_cloud from the YAML node
while(clouds[cloud_node.str()]){
YAML::Node cloud = clouds[cloud_node.str()];
RayTraceCloud ray_trace;
ray_trace.cloud = pcl::PointCloudpcl::PointXYZ::Ptr(new pcl::
PointCloud<pcl:: PointXYZ>);
ray_trace.normals = pcl:: PointCloudpcl::Normal::Ptr(new pcl::
PointCloudpcl::Normal);
ray_trace.keypoints = pcl:: PointCloud<pcl:: PointXYZ>::Ptr(new pcl::
PointCloud<pcl:: PointXYZ>);
ray_trace.local_descriptors = pcl::PointCloudpcl::FPFHSignature33::
Ptr(new pcl:: PointCloudpcl::FPFHSignature33);
ray_trace.global_descriptors = pcl:: PointCloudpcl::VFHSignature308::
Ptr(new pcl:: PointCloudpcl::VFHSignature308);
pcl::io::loadPCDFile(save_path + cloud["cloud"].asstd::string(), *
ray_trace.cloud);
pcl:: io::loadPCDFile(save_path + cloud["normals"].asstd::string(), *
ray_trace.normals);
pcl::io::loadPCDFile(save_path + cloud["keypoints"].asstd::string(),
*ray_trace.keypoints);
pcl::io::loadPCDFile(save_path + cloud["ldescriptor"].asstd::string()
, *ray_trace.local_descriptors);
pcl::io::loadPCDFile(save_path + cloud["gdescriptor"].asstd::string()
, *ray_trace.global_descriptors);
for(int x = 0; x < 4; x++) {
for(int y = 0; y < 4; y++) {
ray_trace.pose(x, y) = cloud["pose"][(int)(x*4 + y)].as<float
 >();
}
}
ray_trace.enthropy = cloud["enthropy"].as<float>();
this->ray_trace_clouds.push_back(ray_trace);
cloud_node.clear();

```
```

 cloud_node.str(std::string());
 cloud_node << setfill('O') << setw(4) << ++i;
 }
ROS_INFO("\033[33mSuccessfully loaded %d ray traces\033[0m", i-1);
return true;

```

\section*{modelloader.hpp}

Listing A.4: Source file - agilus_master_project/modelloader.hpp
```

//
// Original code by Adam Leon Kleppe on 01.02.16, modifiead by Kristoffer
Larsen.
// Latest change date 01.05.2016
// modelloader.cpp is a tool used to create training set used for 3D object
detection.
//
// Modified and used as part of the software solution for a Master's Thesis in
Production Technology at NTNU Trondheim.
//
\#ifndef qt_filter_tester_MODELLOADER_H
\#define qt_filter_tester_MODELLOADER_H
\#include <QObject>
\#include <ros/ros.h>
\#include <ros/package.h>
\#include <pcl/common/transforms.h>
\#include <pcl_conversions/pcl_conversions.h>
\#include <pcl/point_cloud.h>
\#include <pcl/point_types.h>
\#include <pcl/surface/vtk_smoothing/vtk_utils.h>
\#include <pcl/visualization/pcl_visualizer.h>
\#include <boost/filesystem.hpp>
\#include <boost/filesystem/fstream.hpp>
\#include <Eigen/Core>
\#include <yaml-cpp/yaml.h>
\#include <vector>
\#include <string.h>
\#include <sstream>
\#include <iomanip>
\#include "pcl_filters.hpp"
namespace agilus_master_project {
class ModelLoader : public QObject
{
Q_OBJECT
public:
/*!
* \brief Constructor for the ModelLoader class
* Iparam mesh Polygon Mesh that will be used to create a trining set.
* \param mesh_name The name of the training set.
*/
ModelLoader(pcl::PolygonMesh mesh, std::string mesh_name);

```
```

/*!
* \brief Constructor for the ModelLoader class
* Iparam mesh_name The name of the training set to load.
*/
ModelLoader(std::string mesh_name);
~ModelLoader();
1*!
* \brief Returns the models of the selected training set.
* \param load Set true if the models are not loaded.
* Ireturn The models of the selected training set.
*/
std::vector<RayTraceCloud> getModels(bool load = false);
/*!
* \brief Creates a complete training set for the input polygon mesh.
*/
void populateLoader();
/*!
* \brief Sets the polygon mesh used for training set creation.
* \param mesh The polygon mesh that is to be used.
*/
void setMesh(pcl:: PolygonMesh mesh){
ModelLoader::mesh = mesh;
}
/*!
* \brief Sets the name of the training set.
* \param mesh_name The name of the training set.
*/
void setMeshName(std::string mesh_name){
ModelLoader::mesh_name = mesh_name;
}
/*!
* \brief Sets the wanted tesseltaion level for the viewpoint rendering.
* \param tesselation_level Tesselation level, 1=42, 2=162 ...
*/
void setTesselation_level(int tesselation_level){
ModelLoader::tesselation_level = tesselation_level;
}
/*!
* \brief Sets the viewpoint rendering resolution.
* Iparam cloud_resolution The wanted resolution.
*/
void setCloudResolution(int cloud_resolution){
ModelLoader::cloud_resolution = cloud_resolution;
}
/*!
* \brief Sets the output path of the training set creation process.
* \param path The wanted output path.
*/
void setPath(const std::string \&path){

```
```

 ModelLoader:: path = path;
 }
 Q_SIGNALS:
//Signals used to emit events from one class to another. All signals are
connected in main_window.cpp
public Q_SLOTS:
//Slots used to recieve events from one another class. All slots and
signals are connected in main_window.cpp
private:
/*!
* \brief This function will generate the traces from a mesh and populate
the ray_trace_clouds variable.
*/
void generatePointClouds();
/*!
* \brief This function will load and populate the ray_trace_clouds
variable from the given path.
* Ireturn False if the loading failed.
*/
bool loadPointClouds();
/*!
* \brief This function will save all the infromation from the
ray_trace_clouds variable to the given path.
* Ireturn False if the saving action failed.
*/
bool savePointClouds();
std::string path; //!< The path for saving and loading files.
std::string mesh_name; /l!< The name of the mesh. Used for saving and
loading file names.
std::vector<RayTraceCloud> ray_trace_clouds; //!< List of ray trace clouds.
pcl::PolygonMesh mesh; //!< The mesh which is used for generation.
int cloud_resolution; //!< The resolution camera when generating clouds.
int tesselation_level; //!< The tesselation level of the sphere for the
camera.
PclFilters *filters; //!< Object for calculating features of the raytraced
models.
};
}
\#endif // MODELLOADER_HPP

```

\section*{Appendix B: \\ The image__processor Application}

This appendix contains the source code for the image processor ROS node. This ROS node is used to publish 2D object detection data required by the agilus_master_project.
object_2D_matcher.cpp - This class runs the main object detection. It initializes the object detection and utilizes the methods implemented in openCV_matching.cpp in order to process each image frame obtained from the connected camera. Furthermore, the object detection data is published via ROS and the detection algorithm is controllable via ROS services.
object_2D_matcher.hpp - This is the Header file for the object_2D_matcher.cpp class. This file defines the content of the .cpp file.
openCV_matching.cpp - This class handles the image processing using OpenCV. It implements the needed methods in order to perform keypoint detection, descriptor extraction and matching using different algorithms, e.g. SIFT and SURF. It also holds the methods used to visualize the results and compute image coordinates and orientations of the detected objects.
openCV_matching.hpp - This is the Header file for the openCV_matching.cpp class. This file defines the content of the .cpp file.
object_2D_matcher.cpp
Listing B.1: Source file - code/image_processor/object_2D_matcher.cpp
```

//
// Original author: Asgeir Bjoerkedal. Created: 10.03.16. Last edit: 30.05.16.
//
// Main application for 2D object detection. Communicates via ROS and utilizes
the methods defined in the header file
// openCV_matching.hpp.
//
// Created as part of the software solution for a Master's thesis in Production
Technology at NTNU Trondheim.
//
\#include "../include/image_processor/openCV_matching.hpp"
\#include "../include/image_processor/object_2D_matcher.hpp"
// Local variables
robotcam::OpenCVMatching openCVMatching;
robotcam::CurrentMatch match1;
// Video and reference images

```
```

cv::VideoCapture capture;
cv::Mat object1;
// Keypoints and descriptors
cv::Ptrcv::Feature2D detector, extractor;
std::vector<cv:: KeyPoint> keypoints_object1, keypoints_scene;
cv::Mat descriptor_object1, descriptor_scene;
// Controls initialized
bool running = true;
bool binary = false;
bool bruteforce = true;
bool color = true;
bool undistort = true;
double lambda = 0.138;
int main(int argc, char **argv) {
ros::init(argc, argv, "object_2D_detection");
ros::NodeHandle n;
// cv_bridge for image transport.
image_transport::ImageTransport it(n);
// ROS Topics for image and object data streams.
image_transport:: Publisher processed_pub = it.advertise("/
object_2D_detected/image", 1);
ros:: Publisher pub1 = n.advertise<geometry_msgs::Pose2D>("/
object_2D_detected/object1", 1);
// ROS Services for detection controls.
ros::ServiceServer service1 = n.advertiseService("/object_2D_detection/
setProcessRunning", setProcessRunningCallBack);
ros::ServiceServer service2 = n.advertiseService("/object_2D_detection/
getProcessRunning", getProcessRunningCallBack);
ros::ServiceServer service3 = n.advertiseService("/object_2D_detection/
setBinaryMatching", setBinaryMatchingCallBack);
ros::ServiceServer service4 = n.advertiseService("/object_2D_detection/
getBinaryMatching", getBinaryMatchingCallBack);
ros::ServiceServer service5 = n.advertiseService("/object_2D_detection/
setKeypointDetectorType", setKeypointDetectorTypeCallBack);
ros::ServiceServer service6 = n.advertiseService("/object_2D_detection/
getKeypointDetectorType", getKeypointDetectorTypeCallBack);
ros::ServiceServer service7 = n.advertiseService("/object_2D_detection/
setDescriptorType", setDescriptorTypeCallBack);
ros::ServiceServer service8 = n.advertiseService("/object_2D_detection/
getDescriptorType", getDescriptorTypeCallBack);
ros::ServiceServer service9 = n.advertiseService("/object_2D_detection/
setVideoColor", setVideoColorCallBack);
ros::ServiceServer service10 = n.advertiseService("/object_2D_detection/
getVideoColor", getVideoColorCallBack);
ros::ServiceServer service11 = n.advertiseService("/object_2D_detection/
setBruteforceMatching", setBruteforceMatchingCallBack);
ros::ServiceServer service12 = n.advertiseService("/object_2D_detection/
getBruteforceMatching", getBruteforceMatchingCallBack);
ros::ServiceServer service13 = n.advertiseService("/object_2D_detection/
setVideoUndistortion", setVideoUndistortionCallBack);
ros::ServiceServer service14 = n.advertiseService("/object_2D_detection/
getVideoUndistortion", getVideoUndistortionCallBack);
ros::ServiceServer service15 = n.advertiseService("/object_2D_detection/set
MatchingImage1", setMatchingImage1CallBack);

```
```

ros::ServiceServer service16 = n.advertiseService("/object_2D_detection/
setImageDepth", setImageDepthCallBack);
ros::Rate loop_rate(FREQ);
// Check camera
if (!capture.open(0)) {
ROS_ERROR(" --(!) Could not reach camera");
return 0;
}
initializeMatcher(VIDEO_WIDTH,VIDEO_HEIGHT);
// Check reference images
if (!object1.data) {
ROS_ERROR(" --(!) Error reading image");
return 0;
}
ROS_INFO("Loaded reference image:\n\t%s", temp_path1.c_str());
// Prepare the query image
detectAndComputeReference(object1, keypoints_object1, descriptor_object1);
writeReferenceImage(object1, keypoints_object1, ref_path1);
// Load camera matrix and distortion coefficients.
cv::Mat cameraMatrix = openCVMatching.getCameraMatrix(CAMERA_PARAMS);
cv::Mat distCoeffs = openCVMatching.getDistortionCoeff(CAMERA_PARAMS);
// ROS image message to be published.
sensor_msgs::ImagePtr image_msg;
// Loop object detection
while (ros::ok()) {
cv::Mat video = openCVMatching.captureFrame(color, undistort, capture,
cameraMatrix, distCoeffs);
if (video.empty()) break;
if (running) {
// Detect keypoints and compute time used
double d = (double)cv::getTickCount();
detector->detect(video, keypoints_scene);
d = ((double)cv::getTickCount() - d)/cv::getTickFrequency();
// Extract descriptors and compute time used
double e = (double)cv::getTickCount();
extractor->compute(video, keypoints_scene, descriptor_scene);
e = ((double)cv::getTickCount() - e)/cv::getTickFrequency();
// Match descriptors of query and training scene and compute time
used
std::vectorcv::DMatch good_matches;
double m = 0.0;
if (!binary) {
if (bruteforce) {
m = (double)cv::getTickCount();
good_matches = openCVMatching.bruteForce(descriptor_object1
, descriptor_scene, cv::NORM_L1);
m = ((double)cv::getTickCount() - m)/cv::getTickFrequency()
;
} else {
m = (double)cv::getTickCount();
good_matches = openCVMatching.knnMatchDescriptors(
descriptor_object1, descriptor_scene, 0.9f);
m = ((double)cv::getTickCount() - m)/cv::getTickFrequency()
;
}
} else {
if (bruteforce) {

```
```

 \(m=\) (double)cv: : getTickCount () ;
 good_matches = openCVMatching.bruteForce(descriptor_object1
 , descriptor_scene, cv:: NORM_HAMMING);
 \(m=((\) double)cv::getTickCount () - m)/cv: : getTickFrequency ()
 ;
 \} else \{
 \(\mathrm{m}=\) (double)cv: : getTickCount () ;
 good_matches = openCVMatching.knnMatchDescriptorsLSH (
 descriptor_object1, descriptor_scene, 0.9f);
 \(m=\) ((double)cv::getTickCount () - m)/cv::getTickFrequency ()
 ;
 \}
 \}
 //std: : cout \(\ll d \ll " \| \lll \lll \lll \lll \lll<+m \ll\) std::
 endl; // Print measured processing time.
 // Publish image data at ROS topic.
 if ((!keypoints_object1.size () == 0 \&\& !keypoints_scene.size () ==
 \(\left.0) ~ \& \& ~ g o o d _m a t c h e s . s i z e() ~>=0\right) ~\{\)
 match1 = openCVMatching. visualizedMatch(video, object1,
 keypoints_object1, keypoints_scene, good_matches, true,
 homographyMethod);
 image_msg = cv_bridge: : CvImage (std_msgs: : Header () , sensor_msgs
 : : image_encodings: BGR8, match1.outFrame).toImageMsg();
 processed_pub.publish (image_msg) ;
 \} else \{
 image_msg = cv_bridge: : CvImage (std_msgs: : Header (), sensor_msgs
 :: image_encodings:: BGR8, video).toImageMsg();
 processed_pub. publish (image_msg) ;
 \}
 \} else \{
 image_msg = cv_bridge:: CvImage(std_msgs: : Header (), sensor_msgs: :
 image_encodings: : BGR8, video). toImageMsg();
 processed_pub.publish (image_msg) ;
 \}
 // Publish object pose at ROS topic if the match is good.
 if (match1.sceneCorners.size () == 4 \&\& openCVMatching.
 checkObjectInnerAngles (match1.sceneCorners, 80, 100)) \{
 double \(x=o p e n C V M a t c h i n g . g e t X p o s(m a t c h 1 . s c e n e C o r n e r s) ;\)
 double \(y=o p e n C V M a t c h i n g . g e t Y p o s(m a t c h 1 . s c e n e C o r n e r s) ;\)
 object_pose_msg.theta = openCVMatching.getObjectAngle(video, match1
 .sceneCorners);
 Eigen: : Vector3d temp = openCVMatching. getNormImageCoords (x,y,lambda
 , cameraMatrix);
 object_pose_msg.x = temp (0) ;
 object_pose_msg.y = temp (1) ;
 pub1.publish(object_pose_msg);
 \}
 ros: :spinOnce ();
 loop_rate.sleep () ;
 \}
 ROS_INFO("Object detection shutting down");
 return 0;
    ```
\}

```

void initializeMatcher(const int video_width, const int video_height) {
object1 = readImage(temp_path1);
capture.set(CV_CAP_PROP_FRAME_WIDTH, video_width);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, video_height)
ROS_INFO("Camera resolution: width=%f, height=%f", capture.get(
CV_CAP_PROP_FRAME_WIDTH), capture.get(CV_CAP_PROP_FRAME_HEIGHT));
detector = openCVMatching.setKeyPointsDetector(DETECTOR_TYPE);
extractor = openCVMatching.setDescriptorsExtractor(EXTRACTOR_TYPE, binary);
ROS_INFO("Bruteforce matching: %d", bruteforce);
}
void detectAndComputeReference(cv::Mat \&object, std::vector<cv:: KeyPoint> \&
keypoints_object, cv::Mat \&descriptor_object) {
detector->detect(object, keypoints_object);
extractor->compute(object, keypoints_object, descriptor_object);
}
void writeReferenceImage(cv::Mat object, std::vectorcv::KeyPoint
keypoints_object, std::string ref_path) {
cv::Mat ref_keypoints;
cv::drawKeypoints(object, keypoints_object, ref_keypoints, CV_RGB(0, 255,
255), cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::imwrite(ref_path, ref_keypoints);
ROS_INFO("Reference keypoints written to: %s", ref_path.c_str());
}
cv::Mat readImage(std::string path) {
cv::Mat object;
if (color) {
object = cv::imread(path, CV_LOAD_IMAGE_COLOR);
} else {
object = cv::imread(path, CV_LOAD_IMAGE_GRAYSCALE);
}
return object;
}
bool setProcessRunningCallBack(image_processor::setProcessRunning::Request \&req
, image_processor::setProcessRunning::Response \&res) {
running = req.running;
return true;
}
bool getProcessRunningCallBack(image_processor::getProcessRunning::Request \&req
, image_processor::getProcessRunning::Response \&res) {
res.running = running;
return true;
}
bool setBinaryMatchingCallBack(image_processor::setBinaryMatching::Request \&req
, image_processor::setBinaryMatching::Response \&res) {
binary = req.binary;
return true;
}
bool getBinaryMatchingCallBack(image_processor::getBinaryMatching::Request \&req
, image_processor::getBinaryMatching::Response \&res) {
res.binary = binary;

```
```

 return true
 }
bool setBruteforceMatchingCallBack(image_processor::setBruteforceMatching::
Request \&req, image_processor::setBruteforceMatching::Response \&res) {
bruteforce = req.bruteforce;
return true;
}
bool getBruteforceMatchingCallBack(image_processor::getBruteforceMatching::
Request \&req, image_processor::getBruteforceMatching::Response \&res) {
res.bruteforce = bruteforce;
return true;
}
bool setKeypointDetectorTypeCallBack(image_processor::setKeypointDetectorType::
Request \&req, image_processor::setKeypointDetectorType::Response \&res) {
DETECTOR_TYPE = req.type;
detector = openCVMatching.setKeyPointsDetector(DETECTOR_TYPE);
detector->detect(object1, keypoints_object1);
writeReferenceImage(object1, keypoints_object1, ref_path1);
return true;
}
bool getKeypointDetectorTypeCallBack(image_processor::getKeypointDetectorType::
Request \&req, image_processor::getKeypointDetectorType::Response \&res) {
res.type = DETECTOR_TYPE;
return true;
}
bool setDescriptorTypeCallBack(image_processor::setDescriptorType::Request \&req
, image_processor::setDescriptorType::Response \&res) {
EXTRACTOR_TYPE = req.type;
extractor = openCVMatching.setDescriptorsExtractor(EXTRACTOR_TYPE, binary);
extractor ->compute(object1, keypoints_object1, descriptor_object1);
return true;
}
bool getDescriptorTypeCallBack(image_processor::getDescriptorType::Request \&req
, image_processor::getDescriptorType::Response \&res) {
res.type = EXTRACTOR_TYPE;
return true;
}
bool setVideoColorCallBack(image_processor::setVideoColor::Request \&req,
image_processor::setVideoColor::Response \&res) {
color = req.color;
object1 = readImage(temp_path1);
keypoints_object1.clear();
descriptor_object1.release();
detectAndComputeReference(object1, keypoints_object1, descriptor_object1);
writeReferenceImage(object1, keypoints_object1, ref_path1);
return true;
}
bool getVideoColorCallBack(image_processor::getVideoColor::Request \&req,
image_processor::getVideoColor::Response \&res) {

```
```

 res.color = color;
 return true;
 }
bool setVideoUndistortionCallBack(image_processor::setVideoUndistortion::
Request \&req, image_processor::setVideoUndistortion::Response \&res) {
undistort = req.undistort;
return true;
}
bool getVideoUndistortionCallBack(image_processor::getVideoUndistortion::
Request \&req, image_processor::getVideoUndistortion::Response \&res) {
res.undistort = undistort;
return true;
}
bool setMatchingImage1CallBack(image_processor::setMatchingImage1::Request \&req
, image_processor::setMatchingImage1::Response \&res) {
temp_path1 = req.imagePath;
object1 = readImage(temp_path1);
keypoints_object1.clear();
descriptor_object1.release();
detectAndComputeReference(object1, keypoints_object1, descriptor_object1);
writeReferenceImage(object1, keypoints_object1, ref_path1);
return true;
}
bool setImageDepthCallBack(image_processor::setImageDepth::Request \&req,
image_processor::setImageDepth::Response \&res) {
lambda = req.lambda;
return true;
}

```
object_2D_matcher.hpp

Listing B.2: Source file - code/image_processor/object_2D_matcher.hpp
```

//
// Original author: Asgeir Bjoerkedal. Created: 10.03.16. Last edit: 30.05.16.
//
// Main application for 2D object detection. Communicates via ROS and utilizes
the methods defined in the header file
// openCV_matching.hpp.
//
// Created as part of the software solution for a Master's thesis in Production
Technology at NTNU Trondheim.
//
\#ifndef IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP
\#define IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP
\#include <ros/package.h>
\#include <geometry_msgs/Pose2D.h>
\#include "image_processor/setProcessRunning.h"
\#include "image_processor/getProcessRunning.h"
\#include "image_processor/setBinaryMatching.h"
\#include "image_processor/getBinaryMatching.h"
\#include "image_processor/setKeypointDetectorType.h"
\#include "image_processor/getKeypointDetectorType.h"
\#include "image_processor/setDescriptorType.h"
\#include "image_processor/getDescriptorType.h"
\#include "image_processor/setVideoColor.h"
\#include "image_processor/getVideoColor.h"
\#include "image_processor/setBruteforceMatching.h"
\#include "image_processor/getBruteforceMatching.h"
\#include "image_processor/setVideoUndistortion.h"
\#include "image_processor/getVideoUndistortion.h"
\#include "image_processor/setMatchingImage1.h"
\#include "image_processor/setImageDepth.h"
\#include <image_transport/image_transport.h>
\#include <cv_bridge/cv_bridge.h>
// Keypoint and descriptor type
std::string DETECTOR_TYPE = "SIFT";
std::string EXTRACTOR_TYPE = "SIFT";
// Resolution
const int VIDEO_WIDTH = 1280;
const int VIDEO_HEIGHT = 720;
// Path to camera parameters (K-matrix)
const std::string CAMERA_PARAMS = ros::package::getPath("image_processor") + "/
resources/calibration_reserve_camera.yml";
// Path to reference image storage
const std::string ref_path1 = ros:: package::getPath("image_processor") + "/
resources/output/ref_keypoints1.jpg";
// Path to initial matching image
std::string temp_path1 = ros:: package::getPath("image_processor") + "/resources
/Lenna.png";
// Holds the object pose
geometry_msgs::Pose2D object_pose_msg;
// Homography method

```
```

int homographyMethod = CV_RANSAC; // CV_LMEDS
// Loop frequency
double FREQ = 60;
/*!
* \brief Initializes the object matcher image, resolution, detector and
extractor.
* \param video_width The horizontal video resolution (pixel).
* \param video_height The vertical video resolution (pixel).
*/
void initializeMatcher(const int video_width, const int video_height);
/*!

* \brief Detect and compute keypoints and descriptors for a given image matrix
 * \param object The query image.
* \param keypoints_object Reference to the keypoints storage object.
 * \param descriptor_object Reference to the descriptor storage object.
*/
void detectAndComputeReference(cv::Mat \&object, std::vectorcv::KeyPoint \&
keypoints_object, cv::Mat \&descriptor_object);
1*!
 * \brief Draws keypoints on a chosen image object and stores it to a desired
file path.
 * Iparam object The query image.
 * \param keypoints_object The keypoints.
 * \param ref_path The storage file path.
*/
void writeReferenceImage(cv::Mat object, std::vectorcv::KeyPoint
keypoints_object, std::string ref_path);
/*!
* \brief Read an image from a desired file path.
* \param path The file path.
 * \return The image matrix.
*/
cv::Mat readImage(std::string path);
/*!
* \brief Callback method for toggling the object detection through ROS service
 * \param req The service request. True for image processed video stream. False
for raw video stream.
 * \param res The service response. Not in use.
*/
bool setProcessRunningCallBack(image_processor::setProcessRunning::Request \&req
, image_processor::setProcessRunning::Response \&res);
/*!
 * \brief Callback method for object detection running status through ROS
service.
 * \param req The service request.
 * \param res The service response. Returns the state of the image processing.
True if running. False otherwise.
*/
bool getProcessRunningCallBack(image_processor::getProcessRunning::Request \&req

```
```

 , image_processor::getProcessRunning::Response &res);
 /*!
* \brief Callback method for toggling of binary/non-binary matching through
ROS service.
* \param req The service request. True for matching of binary descriptors.
False for real-valued.
* \param res The service response. Not in use.
*/
bool setBinaryMatchingCallBack(image_processor::setBinaryMatching::Request \&req
, image_processor::setBinaryMatching::Response \&res);
/*!
* \brief Callback method for binary/non-binary matching status through ROS
service.
* \param req The service request.
* \param res The service response. Returns the state of the matching control
boolean.
*/
bool getBinaryMatchingCallBack(image_processor::getBinaryMatching::Request \&req
, image_processor::getBinaryMatching::Response \&res);
/*!
* \brief Callback method for toggling between bruteforce and FLANN matching
through ROS service.
* Iparam req The service request. True for bruteforce matching. False for
FLANN.
* \param res The service response. Not in use.
*/
bool setBruteforceMatchingCallBack(image_processor::setBruteforceMatching::
Request \&req, image_processor::setBruteforceMatching::Response \&res);
/*!
* \brief Callback method for bruteforce/FLANN matching status through ROS
service.
* \param req The service request.
* \param res The service response. Return the status of matching approach in
use.
*/
bool getBruteforceMatchingCallBack(image_processor::getBruteforceMatching::
Request \&req, image_processor::getBruteforceMatching::Response \&res);
/*!
* \brief Callback method for setting keypoint detector through ROS service.
* Sets the detector based on a string input. Detects keypoints in the query
image and outputs an image file with
* the new keypoints.
* \param req The service request. String as an acronym for wanted detection, e
.g. SIFT, SURF, BRISK, ORB.
* \param res The service response. Not in use.
*/
bool setKeypointDetectorTypeCallBack(image_processor::setKeypointDetectorType::
Request \&req, image_processor::setKeypointDetectorType::Response \&res);
/*!

* \brief Callback method for getting the keypoint detector type through ROS
service.

```
```

 * \param req The service request.
 * \param res The service response. Return the keypoint detector in use.
 */
 bool getKeypointDetectorTypeCallBack(image_processor::getKeypointDetectorType::
Request \&req, image_processor::getKeypointDetectorType::Response \&res);
/*!
* \brief Callback method for setting descriptor extractor through ROS service.
* \param req The service request. String as an acronym for wanted extractor, e
.g. SIFT, SURF, BRISK, ORB.
* \param res The service response. Not in use.
*/
bool setDescriptorTypeCallBack(image_processor::setDescriptorType::Request \&req
, image_processor::setDescriptorType::Response \&res);
/*!
* \brief Callback method for getting descriptor extractor type through ROS
service.
* Sets the extractor based on a string input. New descriptors are computed for
the matching image.
* Further matching with the new descriptor can be performed instantanously.
* \param req The service request.
* Iparam res The service response. Return the descriptor extractor in use.
*/
bool getDescriptorTypeCallBack(image_processor::getDescriptorType::Request \&req
, image_processor::getDescriptorType::Response \&res);
/*!
* \brief Callback method for setting color/grayscale video capture through ROS
service.
* Iparam req The service request. True for color. False for grayscale.
* \param res The service response. Not in use.
*/
bool setVideoColorCallBack(image_processor::setVideoColor::Request \&req,
image_processor::setVideoColor::Response \&res);
/*!
* \brief Callback method for getting current video color mode through ROS
service.
* \param req The service request.
* \param res The service response. Returns the color status of the video
stream. True for color. False for grayscale.
*/
bool getVideoColorCallBack(image_processor::getVideoColor::Request \&req,
image_processor::getVideoColor::Response \&res);
/*!
* \brief Callback method for setting video undistortion of video stream
through ROS service.
* Undistortion will use distortion parameters from. XML/. YAML file output from
camera calibration.
* Iparam req The service request. True if correction for lens distortion.
False for no correction.
* Iparam res The service response. Not in use.
*/
bool setVideoUndistortionCallBack(image_processor::setVideoUndistortion::
Request \&req, image_processor::setVideoUndistortion::Response \&res);

```

177
178
179 180
181 82 183 184 185
```

/*!
* \brief Callback method for getting undistortion status through ROS service.
* \param req The service request.
* \param res The service response. Get the status of lens correction.
*/
bool getVideoUndistortionCallBack(image_processor::getVideoUndistortion::
Request \&req, image_processor::getVideoUndistortion::Response \&res);
/*!
* \brief Callback method for setting the image to match with in the video
scene through ROS service.
* Reads the new image, detects keypoints and computes descriptors, and outputs
an image with keypoints.
* \param req The service request. Path as string to the new query image.
* \param res The service response. Not in use.
*/
bool setMatchingImage1CallBack(image_processor::setMatchingImage1::Request \&req
, image_processor::setMatchingImage1::Response \&res);
/*!
* \brief Callback method for setting the image depth (lambda), used for
scaling the normalized image coordinates
* through ROS service.
* \param req The service request. Double value of distance from camera lens to
object along the optical axis.
* Iparam res The service response. Not in use.
*/
bool setImageDepthCallBack(image_processor::setImageDepth::Request \&req,
image_processor::setImageDepth::Response \&res);
\#endif //IMAGE_PROCESSOR_OBJECT_2D_MATCHER_HPP

```

\section*{openCV} matching.cpp

Listing B.3: Source file - code/image_processor/openCV_matching.cpp
```

//
// Original author: Asgeir Bjoerkedal. Created: 10.03.16. Last edit: 30.05.16.
//
// The class implements methods from OpenCV and is designed for use in an
object detection application.
// It encompasses capturing of video frames, processing video frames by
numerous keypoint
// detectors and descriptor extractors, matching algorithms, visualization and
computation
// of object image coordinates and orientation.
//
// Created as part of the software solution for a Master's thesis in Production
Technology at NTNU Trondheim.
//
\#include "../include/image_processor/openCV_matching.hpp"
namespace robotcam
{
cv::Mat OpenCVMatching::getCameraMatrix(const std::string path) {
cv::Mat temp;
cv::FileStorage fs(path, cv:: FileStorage::READ);
fs["camera_matrix"] >> temp;
fs.release();
return temp;
}
cv::Mat OpenCVMatching::getDistortionCoeff(const std::string path) {
cv::Mat temp;
cv::FileStorage fs(path, cv::FileStorage::READ);
fs["distortion_coefficients"] >> temp;
fs.release();
return temp;
}
std::string OpenCVMatching::type2str(int type) {
std::string r;
uchar depth = type \& CV_MAT_DEPTH_MASK;
uchar chans = 1 + (type >> CV_CN_SHIFT);
switch (depth) {
case CV_8U:
r = "8U";
break;
case CV_8S:
r = "8S";
break;
case CV_16U:
r = "16U";
break;
case CV_16S:
r = "16S";
break;
case CV_32S:

```
```

 r = "32S";
 break;
 case CV_32F:
 r = "32F";
 break;
 case CV_64F:
 r = "64F";
 break;
 default:
 r = "User";
 break;
 }
 r += "C";
 r += (chans + '0');
 // USAGE
 // std::string ty = typezstr(H.type());
 // printf("Matrix: %s %dx%d \n", ty.c_str(), H.cols, H.rows);
 return r;
 }
cv::Mat OpenCVMatching::captureFrame(bool color, bool useCalibration, cv::
VideoCapture capture, cv::Mat cameraMatrix, cv::Mat distCoeffs) {
cv::Mat inFrame, outFrame;
capture >> inFrame;
if (color == false \&\& useCalibration == false) {
cv::cvtColor(inFrame, outFrame, CV_RGB2GRAY); // grayscale
} else if (color == false \&\& useCalibration == true) {
cv::Mat temp;
cv::undistort(inFrame, temp, cameraMatrix, distCoeffs);
cv::cvtColor(temp, outFrame, CV_RGB2GRAY); // grayscale
} else if (color == true \&\& useCalibration == false) {
outFrame = inFrame;
} else {
cv::undistort(inFrame, outFrame, cameraMatrix, distCoeffs);
}
return outFrame;
}
cv::Mat OpenCVMatching::captureFrame(bool color, cv::VideoCapture capture)
{
cv::Mat inFrame, outFrame;
capture >> inFrame;
if(color) {
outFrame = inFrame;
} else {
cv::cvtColor(inFrame, outFrame, CV_RGB2GRAY);
}
return outFrame;
}
std::vectorcv::DMatch OpenCVMatching::knnMatchDescriptors(cv::Mat
descriptors_object, cv::Mat descriptors_scene, float nnratio) {
cv::FlannBasedMatcher matcher;
std::vector<std::vectorcv::DMatch > matches;
// Find the 2 best descriptor matches
matcher.knnMatch(descriptors_object, descriptors_scene, matches, 2);
// Ratio test the matches

```
```

 std::vector<cv::DMatch> good_matches;
    ```
    std::vector<cv::DMatch> good_matches;
    good_matches.reserve(matches.size()) ;
    good_matches.reserve(matches.size()) ;
    for (size_t i = 0; i < matches.size(); ++i) {
    for (size_t i = 0; i < matches.size(); ++i) {
        if (matches[i].size() < 2) continue;
        if (matches[i].size() < 2) continue;
        const cv::DMatch &m1 = matches[i][0];
        const cv::DMatch &m1 = matches[i][0];
        const cv::DMatch &m2 = matches[i][1];
        const cv::DMatch &m2 = matches[i][1];
        if (m1.distance <= nnratio * m2.distance) good_matches.push_back(m1
        if (m1.distance <= nnratio * m2.distance) good_matches.push_back(m1
            );
            );
    }
    }
    return good_matches;
    return good_matches;
}
}
std::vector<cv::DMatch> OpenCVMatching::knnMatchDescriptorsLSH(cv::Mat
std::vector<cv::DMatch> OpenCVMatching::knnMatchDescriptorsLSH(cv::Mat
    descriptors_object, cv::Mat descriptors_scene, float nndrRatio) {
    descriptors_object, cv::Mat descriptors_scene, float nndrRatio) {
    cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20, 10, 2))
    cv::FlannBasedMatcher matcher(new cv::flann::LshIndexParams(20, 10, 2))
        ;
        ;
    std::vector<std::vector<cv::DMatch> > matches;
    std::vector<std::vector<cv::DMatch> > matches;
    // Find the 2 best descriptor matches
    // Find the 2 best descriptor matches
    matcher.knnMatch(descriptors_object, descriptors_scene, matches, 2);
    matcher.knnMatch(descriptors_object, descriptors_scene, matches, 2);
    // Ratio test the matches
    // Ratio test the matches
    std::vector<cv::DMatch> good_matches;
    std::vector<cv::DMatch> good_matches;
    good_matches.reserve(matches.size()) ;
    good_matches.reserve(matches.size()) ;
    for (size_t i = 0; i < matches.size(); ++i) {
    for (size_t i = 0; i < matches.size(); ++i) {
        if (matches[i].size() < 2) continue;
        if (matches[i].size() < 2) continue;
        const cv::DMatch &m1 = matches[i][0];
        const cv::DMatch &m1 = matches[i][0];
        const cv::DMatch &m2 = matches[i][1];
        const cv::DMatch &m2 = matches[i][1];
        if (m1.distance <= nndrRatio * m2.distance) good_matches.push_back(
        if (m1.distance <= nndrRatio * m2.distance) good_matches.push_back(
            m1);
            m1);
    }
    }
    return good_matches;
    return good_matches;
}
}
std::vector<cv::DMatch> OpenCVMatching::matchDescriptors(cv::Mat
std::vector<cv::DMatch> OpenCVMatching::matchDescriptors(cv::Mat
    descriptors_object, cv::Mat descriptors_scene) {
    descriptors_object, cv::Mat descriptors_scene) {
    cv::FlannBasedMatcher matcher;
    cv::FlannBasedMatcher matcher;
    std::vector<cv::DMatch> matches;
    std::vector<cv::DMatch> matches;
    // Match descriptors
    // Match descriptors
    matcher.match(descriptors_object, descriptors_scene, matches);
    matcher.match(descriptors_object, descriptors_scene, matches);
    // Compute the max and min distance of the matches in current
    // Compute the max and min distance of the matches in current
        videoFrame
        videoFrame
    double max_dist = 0;
    double max_dist = 0;
    double min_dist = 100;
    double min_dist = 100;
    for (int i = 0; i < descriptors_object.rows; i++) {
    for (int i = 0; i < descriptors_object.rows; i++) {
        double dist = matches [i].distance;
        double dist = matches [i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
        if (dist > max_dist) max_dist = dist;
    }
    }
    // Filter out the good matches
    // Filter out the good matches
    std::vector<cv::DMatch> good_matches;
    std::vector<cv::DMatch> good_matches;
    double k = 2;
    double k = 2;
    for (int i = 0; i < descriptors_object.rows; i++) {
    for (int i = 0; i < descriptors_object.rows; i++) {
        if (matches[i].distance <= cv::max(k * min_dist, 0.02)) {
        if (matches[i].distance <= cv::max(k * min_dist, 0.02)) {
            good_matches.push_back(matches [i]);
            good_matches.push_back(matches [i]);
        }
        }
    }
    }
    return good_matches;
    return good_matches;
}
```

}

```
```

std::vectorcv::DMatch OpenCVMatching::bruteForce(cv::Mat
descriptors_object, cv::Mat descriptors_scene, int normType) {
cv::BFMatcher matcher(normType);
std::vector<std::vectorcv::DMatch > matches;
// Find the 2 best descriptor matches
matcher.knnMatch(descriptors_object, descriptors_scene, matches, 2);
// Ratio test the matches
std::vectorcv::DMatch good matches
for (int i = 0; i < matches.size(); ++i) {
const float ratio = 0.9; // 0.8 in Lowe's paper on SIFT. Can be
tuned
if (matches[i][0].distance < ratio * matches[i][1].distance) {
good_matches.push_back(matches[i][0]);
}
}
return good_matches;
}
cv::Ptrcv::Feature2D OpenCVMatching::setKeyPointsDetector(std::string
typeKeyPoint) {
cv::Ptrcv::Feature2D detector;
if (typeKeyPoint == "SURF") {
detector = cv::xfeatures2d::SURF::create(1000,4,5,false,false);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "SIFT") {
detector = cv::xfeatures2d::SIFT::create(0,5,0.04,10,1.6);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "STAR") {
detector = cv::xfeatures2d::StarDetector::create(45,30,10,8,5);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "BRISK") {
detector = cv::BRISK::create(30,3,1.0f);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "FAST") {
detector = cv::FastFeatureDetector::create(10,true,cv::
FastFeatureDetector::TYPE_9_16);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "ORB") {
detector = cv::ORB::create(1000,1.2f,8,31,0,2,cv::ORB::FAST_SCORE
,31,20);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else if (typeKeyPoint == "AKAZE") {
detector = cv::AKAZE::create(cv::AKAZE::DESCRIPTOR_MLDB,0,3,0.001f
,4,4,cv::KAZE::DIFF_PM_G2);
ROS_INFO("Keypoint detector: %s", typeKeyPoint.c_str());
} else {
ROS_ERROR("Could not find keypoint detector: %s\n\tChoosing default
SURF", typeKeyPoint.c_str());
detector = cv::xfeatures2d::SURF::create(1000);
}
return detector;
}
cv::Ptrcv::Feature2D OpenCVMatching::setDescriptorsExtractor(std::string
typeDescriptor, bool \&binary) {
cv::Ptrcv::Feature2D extractor;

```
```

 if (typeDescriptor == "SURF") {
 binary = false;
 extractor = cv::xfeatures2d::SURF::create(1000,4,5,false,false);
 ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
 ROS_INFO("Binary matching: %d", binary);
 } else if (typeDescriptor == "SIFT") {
binary = false;
extractor = cv::xfeatures2d::SIFT::create(0,5,0.04,10,1.6);
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else if (typeDescriptor == "BRISK") {
binary = true;
extractor = cv:: BRISK::create(30,3,1.0f);
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else if (typeDescriptor == "FREAK") {
binary = true;
extractor = cv::xfeatures2d:: FREAK::create(true,true,22.0f,4);
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else if (typeDescriptor == "ORB") {
binary = true;
extractor = cv::ORB::create(1000,1.2f,8,31,0,2,cv::ORB::FAST_SCORE
,31,20); // WTA_K = 3-4 -> HAMMING2
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else if (typeDescriptor == "AKAZE") {
binary = true;
extractor = cv::AKAZE::create(cv::AKAZE::DESCRIPTOR_MLDB,0,3,0.001f
,4,4,cv::KAZE::DIFF_PM_G2);
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else if (typeDescriptor == "BRIEF") {
binary = true;
extractor = cv::xfeatures2d:: BriefDescriptorExtractor::create(32,
true);
ROS_INFO("Descriptor: %s", typeDescriptor.c_str());
ROS_INFO("Binary matching: %d", binary);
} else {
binary = false;
ROS_ERROR("Could not find keypoint detector: %s\n\tChoosing default
descriptor: SURF", typeDescriptor.c_str());
extractor = cv::xfeatures2d::SURF::create (1000);
}
return extractor;
}
CurrentMatch OpenCVMatching:: visualizedMatch(cv::Mat searchImage, cv::Mat
objectImage, std::vectorcv::KeyPoint keypointsObject, std::vector<
cv::KeyPoint> keypointsScene, std::vectorcv::DMatch good_matches,
bool showKeypoints, int homographyType) {
cv::Mat image_matches;
if (showKeypoints) {
cv::drawKeypoints(searchImage, keypointsScene, image_matches,
CV_RGB(0,0,255), cv:: DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
} else {
image_matches = searchImage.clone();

```
\begin{tabular}{|c|c|}
\hline 252 & \} \\
\hline 253 & std: : vector<cv: Point2f > obj; \\
\hline 254 & std: : vector<cv: : Point2f \({ }^{\text {c }}\) scene; \\
\hline 255 & for (size_t i \(=0\); i < good_matches.size (); i++) \{ \\
\hline 256 & // Retrieve the keypoints from good matches \\
\hline 257 & obj.push_back (keypoints0bject[good_matches [i]. queryIdx].pt) ; \\
\hline 258 & scene.push_back(keypointsScene[good_matches [i].trainIdx].pt) ; \\
\hline 259 & \} \\
\hline 260 & // Perform Homography to find a perspective transformation between two planes. \\
\hline 261 & cv: : Mat H; \\
\hline 262 & if (!obj.size () == 0 \&\& !scene.size () == 0) \{ \\
\hline 263 & \[
\begin{aligned}
\mathrm{H}= & \mathrm{cv}:: \text { findHomography(obj, scene, homographyType); // CV_LMEDS // } \\
& C V_{-} R A N S A C
\end{aligned}
\] \\
\hline 264 & \} \\
\hline 265 & // Put object corners in a vector \\
\hline 266 & std: : vector<cv: : Point2f > objectCorners (4) ; \\
\hline 267 & objectCorners [0] = cvPoint (0, 0) ; //Upper left corner \\
\hline 268 & objectCorners[1] = cvPoint (objectImage.cols, 0) ; //Upper right corner \\
\hline 269 & objectCorners [2] = cvPoint(objectImage.cols, objectImage.rows); //Lower right corner \\
\hline 270 & objectCorners [3] = cvPoint (0, objectImage.rows) ; //Lower left corner \\
\hline 271 & // Find the corresponding object corners in the scene perspective \\
\hline 272 & std: : vector<cv: Point2f > sceneCorners (4) ; \\
\hline 273 & if (!H.rows == 0 \&\& ! H.cols == 0) \{ \\
\hline 274 & cv: : perspectiveTransform (objectCorners, sceneCorners, H) ; \\
\hline 275 & if (checkObjectInnerAngles (sceneCorners, 60, 120)) \{ \\
\hline 276 & // Draw lines surrounding the object \\
\hline 277 & cv::line(image_matches, sceneCorners[0], sceneCorners[1], cv:: Scalar (0, 255, 0), 2); //TOP line \\
\hline 278 & cv::line(image_matches, sceneCorners[1], sceneCorners [2], cv:: Scalar (0, 255, 0), 2); //RIGHT line \\
\hline 279 & cv::line(image_matches, sceneCorners [2], sceneCorners[3], cv:: Scalar (0, 255, 0), 2); //BOTTOM line \\
\hline 280 & cv: : line (image_matches, sceneCorners [3], sceneCorners [0], cv: : Scalar (0, 255, 0), 2); //LEFT line \\
\hline 281 & // Draw diagonals \\
\hline 282 & cv:: line (image_matches, sceneCorners [0], sceneCorners [2], cv:: Scalar (0, 255, 0), 1); //DIAGONAL 0-2 \\
\hline 283 & cv::line(image_matches, sceneCorners[1], sceneCorners[3], cv:: Scalar (0, 255, 0), 1); //DIAGONAL 1-3 \\
\hline 284 & // Center \\
\hline 285 & cv: : Point2f cen (0.0, 0.0); \\
\hline 286 & if (intersection (sceneCorners [0], sceneCorners [2], sceneCorners [1], sceneCorners [3], cen)) \{ \\
\hline 287 & cv::circle(image_matches, cen, 10, cv::Scalar(0, 0, 255), 2) ; \\
\hline 288 & \} \\
\hline 289 & \} \\
\hline 290 & \} \\
\hline 291 & // Draw circles in center pixel of the video stream \\
\hline 292 & if (searchImage.rows > 60 \&\& searchImage.cols > 60) \{ \\
\hline 293 & cv::circle(image_matches, cv:: Point(searchImage.cols / 2, searchImage.rows / 2), 5, CV_RGB(255, 0, 0)); \\
\hline 294 & cv::circle(image_matches, cv::Point(searchImage.cols / 2, searchImage.rows / 2) , 10, CV_RGB (0, 255, 0)); \\
\hline 295 & cv: \(\mathrm{circle}^{\text {(image_matches, cv: Point (searchImage.cols / 2, }}\) \\
\hline
\end{tabular}
```

 searchImage.rows / 2), 15, CV_RGB(0, 0, 255));
 }
 CurrentMatch cm;
 cm.outFrame = image_matches;
 cm.sceneCorners = sceneCorners;
 return cm;
 }
bool OpenCVMatching::intersection(cv::Point2f o1, cv::Point2f p1, cv::
Point2f o2, cv::Point2f p2, cv::Point2f \&r) {
// The lines are defined by (o1, p1) and (o2, p2).
cv::Point2f x = o2 - o1;
cv::Point2f d1 = p1 - o1;
cv::Point2f d2 = p2 - o2;
float cross = d1.x * d2.y - d1.y * d2.x;
if (fabsf(cross) < /*EPS*/1e-8) return false;
double t1 = (x.x * d2.y - x.y * d2.x) / cross;
r = o1 + d1 * t1;
return true;
}
int OpenCVMatching::innerAngle(cv::Point2f a, cv::Point2f b, cv::Point2f c)
{
cv::Point2f ab(b.x - a.x, b.y - a.y);
cv::Point2f cb(b.x - c.x, b.y - c.y);
double dot = (ab.x * cb.x + ab.y * cb.y); // dot product
double cross = (ab.x * cb.y - ab.y * cb.x); // cross product
double alpha = atan2(cross, dot);
int angle = (int) floor(alpha * 180. / PI + 0.5);
return abs(angle);
}
bool OpenCVMatching::checkObjectInnerAngles(std::vectorcv::Point2f
scorner, int min, int max) {
bool out = false;
int c0 = innerAngle(scorner [3], scorner[0], scorner [1]);
int c1 = innerAngle(scorner [0], scorner [1], scorner [2]);
int c2 = innerAngle(scorner[1], scorner [2], scorner [3]);
int c3 = innerAngle(scorner [2], scorner [3], scorner [0]);
if (c0> min \&\& c0 < max \&\& c1 > min \&\& c1 < max \&\& c2 > min \&\& c2 <
max \&\& c3 > min \&\& c3 < max) out = true;
return out;
}
double OpenCVMatching::getXoffset(cv::Mat frame, std::vectorcv::Point2f
scorner) {
cv::Point2f cen;
double xOffset = 0.0;
if (intersection(scorner[0], scorner [2], scorner [1], scorner [3], cen))
{
xOffset = cen.x - frame.cols / 2;
}
return xOffset;
}
double OpenCVMatching::getYoffset(cv::Mat frame, std::vectorcv::Point2f
scorner) {

```
```

 cv::Point2f cen;
 double yOffset = 0.0;
 if (intersection(scorner[0], scorner[2], scorner[1], scorner[3], cen))
 {
 yOffset = cen.y - frame.rows / 2;
 }
 return yOffset;
 }
 double OpenCVMatching::getXpos(std::vectorcv::Point2f scorner) {
cv::Point2f cen;
intersection(scorner[0], scorner[2], scorner[1], scorner [3], cen);
double x = cen.x;
return x;
}
double OpenCVMatching::getYpos(std::vectorcv::Point2f scorner) {
cv::Point2f cen;
intersection(scorner[0], scorner[2], scorner[1], scorner [3], cen);
double y = cen.y;
return y;
}
double OpenCVMatching::getObjectAngle(cv::Mat frame, std::vector<cv::
Point2f> scorner) {
double centerX = frame.cols / 2;
double diffX = centerX - scorner[1].x;
double x = (centerX - diffX) - scorner[0].x;
double y = scorner[0].y - scorner[1].y;
double angle = atan2(y, x) * 180 / PI;
return angle;
}
Eigen::Vector3d OpenCVMatching::getNormImageCoords(double x, double y,
double lambda, cv::Mat camera_matrix) {
Eigen::Vector3d pixelCoords;
Eigen::Vector3d normCoords;
Eigen::Matrix3d camMat;
camMat << camera_matrix.at<double>(0,0),0,camera_matrix.at<double>(0,2)
0,camera_matrix.at<double>(1,1),camera_matrix.at<double> (1,2)
0,0,1;
pixelCoords(0) = x;
pixelCoords(1) = y;
pixelCoords(2) = 1;
Eigen::Matrix3d icamMat = camMat.inverse();
normCoords = icamMat*pixelCoords;
return lambda*normCoords;
}

```
\}

\section*{openCV} matching.hpp

Listing B.4: Source file - code/image_processor/openCV_matching.hpp
```

//
// Original author: Asgeir Bjoerkedal. Created: 10.03.16. Last edit: 30.05.16.
//
// The class implements methods from OpenCV and is designed for use in an
object detection application.
// It encompasses capturing of video frames, processing video frames by
numerous keypoint
// detectors and descriptor extractors, matching algorithms, visualization and
computation
// of object image coordinates and orientation.
//
// Created as part of the software solution for a Master's thesis in Production
Technology at NTNU Trondheim.
//
\#ifndef IMAGE_PROCESSOR_OPENCV_MATCHING_HPP
\#define IMAGE_PROCESSOR_OPENCV_MATCHING_HPP
\#include <iostream>
\#include <math.h>
\#include <ros/ros.h>
\#include "opencv2/core.hpp"
\#include "opencv2/imgcodecs.hpp"
\#include "opencv2/highgui.hpp"
\#include "opencv2/features2d.hpp"
\#include "opencv2/calib3d.hpp"
\#include "opencv2/imgproc.hpp"
\#include "opencv2/xfeatures2d.hpp"
\#include <eigen3/Eigen/Dense>
\#define PI 3.14159265
namespace robotcam {
struct CurrentMatch {
/*! The frame with visualized keypoints and matching. */
cv::Mat outFrame;
/*! The corners of the matched object in the scene. */
std::vectorcv::Point2f sceneCorners;
};
class OpenCVMatching {
public:
/*!
* \brief Get a camera matrix from XML or YAML file.
* \param path The path of the file.
* \return The camera matrix.
*/
cv::Mat getCameraMatrix(const std::string path);
/*!
* \brief Get the distortion coefficients from XML or YAML file.
* \param path The path of the file.

```
```

 * Ireturn The distortion coefficients.
 */
 cv::Mat getDistortionCoeff(const std::string path);
/*!
* \brief Check the actual type openCV cv::Mat.
* Iparam type The type of a matrix.
* \return The matrix type as string.
*/
std::string type2str(int type);
/*!
* \brief Capture a frame from a connected web camera.
* \param color True for RGB. False for grayscale.
* \param undistort True for correction for lens distortion. False for
no correction
* Iparam capture The object capturing a frame from the web camera.
* \param cameraMatrix The camera matrix (K-matrix) of the web camera.
* Iparam distCoeffs The distortion coefficients of the web camera.
* \return The current video frame.
*
* Capture a frame in color/grayscale and with or without lens
distortion.
*/
cv::Mat captureFrame(bool color, bool undistort, cv::VideoCapture
capture, cv::Mat cameraMatrix, cv::Mat distCoeffs);
/*!
* \brief Capture a frame from a connected web camera.
* \param color The boolean determining RGB or grayscale video frame.
* \param capture The object capturing the video stream from the camera
* \return The current video frame.
*
* Capture either with color or grayscale.
*/
cv::Mat captureFrame(bool color, cv::VideoCapture capture);
/*!
* \brief Flann based nearest neighbour matching.
* \param descriptors_object The descriptors of the query image.
* \param descriptors_scene The descriptors of the training scene image
* \param nnratio The nearest neighbour ratio for distance filtering.
* \return The good matches.
*/
std::vectorcv::DMatch knnMatchDescriptors(cv::Mat descriptors_object,
cv::Mat descriptors_scene, float nnratio);
/*!
* \brief Flann based nearest neighbour with LSH index for binary
matching.
* \param descriptors_object The descriptors of the query image.
* \param descriptors_scene The descriptors of the training scene image
* \param nndrRatio The nearest neighbour ratio for distance filtering.
* \return The good matches.

```
```

 */
 std::vectorcv::DMatch knnMatchDescriptorsLSH(cv::Mat
descriptors_object, cv::Mat descriptors_scene, float nndrRatio);
/*!
* \brief Flann based matching.
* \param descriptors_object The descriptors of the query image.
* \param descriptors_scene The descriptors of the training scene image
* Ireturn The good matches.
*/
std::vectorcv::DMatch matchDescriptors(cv::Mat descriptors_object,
cv::Mat descriptors_scene);
/*!
* \brief Bruteforce nearest neighbour matching.
* \param descriptors_object The descriptors of the query image.
* \param descriptors_scene The descriptors of the training scene image
* Iparam normType The distance type, e.g. NORM_L1, NORM_L2,
NORM_HAMMING.
*/
std::vectorcv::DMatch bruteForce(cv::Mat descriptors_object, cv::Mat
descriptors_scene, int normType);
/*!
* \brief Set a keypoint detector based on a input string.
* Iparam typeKeyPoint The input string as an acronym for wanted
algorithm, e.g. SIFT, SURF.
* Ireturn The keypoint detector.
*/
cv::Ptrcv::Feature2D setKeyPointsDetector(std::string typeKeyPoint);
/*!
* \brief Set a descriptor extractor based on a input string.
* \param typeDescriptor The input string as an acronym for wanted
algorithm, e.g. SIFT, SURF.
* \param binary Reference to a matching control boolean. True if real-
valued descriptor, False if binary.
* Ireturn The descriptor extractor.
*/
cv::Ptrcv::Feature2D setDescriptorsExtractor(std::string
typeDescriptor, bool \&binary);
/*!
* \brief Visualize a object matching using homography.
* \param searchImage The training scene image.
* \param objectImage The query image.
* \param keypointsObject The keypoints of the query image.
* Iparam keypointsScene The keypoints of the training scene image.
* \param good_matches The good matches between query and training
image.
* Iparam showKeypoints True for visualized keypoints. False for no
drawn keypoints.
* Iparam homographyType The homography type, e.g. CV_RANSAC or
CV_LMEDS.
* \return The current match holding an image with visualized matching

```
```

 and the object corners in training scene.
 */
 CurrentMatch visualizedMatch(cv::Mat searchImage, cv::Mat objectImage,
std::vectorcv::KeyPoint keypointsObject, std::vector<cv::KeyPoint
> keypointsScene, std::vectorcv::DMatch good_matches, bool
showKeypoints, int homographyType);
/*!
* \brief Check if the inner angles of a square or rectangle is within
min and max angle.
* \param scorner The training scene corners of the matched object.
* \param min The minimum angle in degrees.
* Iparam max The maximum angle in degrees.
* Ireturn True if angle is within min and max. False otherwise.
*/
bool checkObjectInnerAngles(std::vector<cv:: Point2f> scorner, int min,
int max);
/*!
* \brief Get the pixel offset in x-direction of the matched object
center related to the image frame center.
* \param frame The training scene image.
* \param scorner The scene corners of the matched object.
* Ireturn The object offset in x-direction.
*/
double getXoffset(cv::Mat frame, std::vectorcv::Point2f scorner);
/*!
* \brief Get the pixel offset in y-direction of the matched object
center related to the image frame center.
* \param frame The training scene image.
* \param scorner The scene corners of the matched object.
* \return The object pixel offset in y-direction.
*/
double getYoffset(cv::Mat frame, std::vectorcv::Point2f scorner);
/*!
* \brief Get the pixel coordinate x of the matched object center.
* \param scorner The scene corners of the matched object.
* Ireturn The pixel coordinate x.
*/
double getXpos(std::vectorcv::Point2f scorner);
/*!
* \brief Get the pixel coordinate y of the matched object center.
* \param scorner The scene corners of the matched object.
* Ireturn The pixel coordinate y.
*/
double getYpos(std::vectorcv::Point2f scorner);
/*!
* \brief Get the angle of in-plane rotation of the matched object.
* \param frame The training scene image.
* \param scorner The scene corners of the matched object.
* Ireturn The object angle in degrees.
*/
double getObjectAngle(cv::Mat frame, std::vectorcv::Point2f scorner);

```

191
192
```

/*!

* \brief Get the normalized image coordinates of the matched object scaled with lambda.
* Iparam x The pixel coordinate x.
* \param y The pixel coordinate y.
* \param lambda The depth to object along optical axis from camera lens.
* \param camera_matrix The K-matrix of the camera.
* Ireturn The normalized image coordinates scaled with lambda.
*/
Eigen:: Vector3d getNormImageCoords(double x, double y, double lambda, cv::Mat camera_matrix);
private:
/*!
* \brief Get the intersection point of two lines.
* Iparam ol The origin point of the first line.
* Iparam p1 The end point of the first line.
* Iparam o2 The origin point of the second line.
* Iparam p2 The end point of the second line.
* Iparam r The intersection point referenced.
* Ireturn The boolean whether an intersection was found. True if found . False otherwise.
*/
bool intersection(cv::Point2f o1, cv:: Point2f p1, cv::Point2f o2, cv:: Point2f p2, cv::Point2f \&r);
/*!
* |brief Get the inner angle using three points.
* \param a The first point.
* \param b The origin of the angle.
* \param c The second point.
* Ireturn The angle in degrees.
*/
int innerAngle(cv::Point2f a, cv::Point2f b, cv::Point2f c);
\};
\}
\#endif //IMAGE_PROCESSOR_OPENCV_MATCHING_HPP

```

\section*{Appendix C: The agilus__planner Application}

This appendix contains the source code for the agilus_planner application.
robot_movement.cpp - This class advertises the services used for robotic manipulator control.

Pose.srv - This is the .srv file that is used to define the pose service object used to control the robotic manipulators.
robot _movement.cpp

Listing C.1: Source file - code/agilus_planner/robot_movement.cpp
```

//
// Original author: Adam Leon Kleppe. Last edit by: Asgeir Bjoerkedal at
30.05.16.
//
// A ROS node advertising the trajectory planning and execution, as defined in
robot_planning_execution.hpp,
// as ROS services for simple interfacing with other ROS nodes.
//
\#include "agilus_planner/Pose.h"
\#include "../include/agilus_planner/robot_planning_execution.hpp"
ih::RobotPlanningExecution *robot;
/*!
* \brief Callback method for planning of a trajectory. The plan will only be
visualized in MoveIt!.
* \param req The service request. Set the desired pose of the manipulator.
* Iparam res The service response. Returns the fraction of the trajectory
which is feasible.
*/
bool planPoseService(agilus_planner::Pose::Request \&req, agilus_planner::Pose::
Response \&res) {
if ((bool) !req.relative) {
if ((bool) req.set_position \&\& (bool) !req.set_orientation) {
res.progress = robot->planPoseByXYZ(
(double) req.position_x, (double) req.position_y, (double)
req.position_z);
}
if ((bool) !req.set_position \&\& (bool) req.set_orientation) {
res.progress = robot->planPoseByRPY(
(double) req.orientation_r, (double) req.orientation_p, (
double) req.orientation_y);
}

```
```

 if ((bool) req.set_position && (bool) req.set_orientation) {
 res.progress = robot->planPoseByXYZRPY(
 (double) req.position_x, (double) req.position_y, (double)
 req.position_z,
 (double) req.orientation_r, (double) req.orientation_p, (
 double) req.orientation_y);
 }
 }
 else {
 if ((bool) req.set_position && (bool) !req.set_orientation) {
 res.progress = robot->planRelativePoseByXYZ(
 (double) req.position_x, (double) req.position_y, (double)
 req.position_z);
 }
 if ((bool) !req.set_position && (bool) req.set_orientation) {
 res.progress = robot -> planRelativePoseByRPY(
 (double) req.orientation_r, (double) req.orientation_p, (
 double) req.orientation_y);
 }
 if ((bool) req.set_position && (bool) req.set_orientation) {
 res.progress = robot->planRelativePoseByXYZRPY(
 (double) req.position_x, (double) req.position_y, (double)
 req.position_z,
 (double) req.orientation_r, (double) req.orientation_p, (
 double) req.orientation_y);
 }
 }
 }
/*!

* \brief Callback method for planning and execution of a trajectory. The
trajectory be executed.
* \param req The service request. Set the desired pose of the manipulator.
* \param res The service response. Returns the fraction of the trajectory
which is feasible.
*/
bool goToPoseService(agilus_planner::Pose::Request \&req, agilus_planner::Pose::
Response \&res) {
if ((bool) !req.relative) {
if ((bool) req.set_position \&\& (bool) !req.set_orientation) {
res.progress = robot ->goToPoseByXYZ(
(double) req.position_x, (double) req.position_y, (double)
req.position_z);
}
if ((bool) !req.set_position \&\& (bool) req.set_orientation) {
res.progress = robot->goToPoseByRPY(
(double) req.orientation_r, (double) req.orientation_p, (
double) req.orientation_y);
}
if ((bool) req.set_position \&\& (bool) req.set_orientation) {
res.progress = robot->goToPoseByXYZRPY(
(double) req.position_x, (double) req.position_y, (double)
req.position_z,
(double) req.orientation_r, (double) req.orientation_p, (
double) req.orientation_y);
}
}

```
```

 else {
 if ((bool) req.set_position && (bool) !req.set_orientation) {
 res.progress = robot->goToRelativePoseByXYZ(
 (double) req.position_x, (double) req.position_y, (double)
 req.position_z);
 }
 if ((bool) !req.set_position && (bool) req.set_orientation) {
 res.progress = robot->goToRelativePoseByRPY(
 (double) req.orientation_r, (double) req.orientation_p, (
 double) req.orientation_y);
 }
 if ((bool) req.set_position && (bool) req.set_orientation) {
 res.progress = robot->goToRelativePoseByXYZRPY(
 (double) req.position_x, (double) req.position_y, (double)
 req.position_z,
 (double) req.orientation_r, (double) req.orientation_p, (
 double) req.orientation_y);
 }
 }
 }
int main(int argc, char **argv) {
ros::init(argc, argv, "robot_movement_service");
ros::NodeHandle node_handle("~");
// Initializing robot arguments used if ROS server has no parameters
std::string group_name = "manipulator";
double max_vel_scale_factor = 0.1;
int planning_time = 10;
int num_planning_attempts = 5;
int options = 2;
// Get or set group_name
if (node_handle.hasParam("group_name")) {
node_handle.getParam("group_name", group_name);
ROS_INFO("Got group_name: %s", group_name.c_str());
}
else {
node_handle.setParam("group_name", group_name);
ROS_INFO("No group_name found. Default used: %s", group_name.c_str());
}
// Get or set max_vel_scale_factor
if (node_handle.hasParam("max_vel_scale_factor")) {
node_handle.getParam("max_vel_scale_factor", max_vel_scale_factor);
ROS_INFO("Got max_vel_scale_factor: %f", max_vel_scale_factor);
}
else {
node_handle.setParam("max_vel_scale_factor", max_vel_scale_factor);
ROS_INFO("No max_vel_scale_factor found. Default used: %f",
max_vel_scale_factor);
}
// Get or set planning_time
if (node_handle.hasParam("planning_time")) {
node_handle.getParam("planning_time", planning_time);
ROS_INFO("Got planning_time: %d", planning_time);
}
else {

```
```

 node_handle.setParam("planning_time", planning_time);
 ROS_INFO("No planning_time found. Default used: %d", planning_time);
 }
// Get or set planning_time
if (node_handle.hasParam("num_planning_attempts")) {
node_handle.getParam("num_planning_attempts", num_planning_attempts);
ROS_INFO("Got num_planning_attempts: %d", num_planning_attempts);
}
else {
node_handle.setParam("num_planning_attempts", num_planning_attempts);
ROS_INFO("No num_planning_attempts found. Default used: %d",
num_planning_attempts);
}
// Set options regardless of server parameter
node_handle.setParam("options", options);
// Initializing robot
robot = new ih::RobotPlanningExecution(
group_name,
max_vel_scale_factor,
planning_time,
num_planning_attempts,
ih::RobotOptionFlagFromInt(options));
// Advertise the services
ros::ServiceServer goto_service = node_handle.advertiseService("go_to_pose"
, goToPoseService);
ros::ServiceServer plan_service = node_handle.advertiseService("plan_pose",
planPoseService);
ROS_INFO("robot_movement_service ready to use for: %s", group_name.c_str())
;
ros::spin();
return 0;

```

Pose.srv
Listing C.2: Source file - code/agilus_planner/Pose.srv
```

Header header
bool relative
bool set_position
float64 position_x
float64 position_y
float64 position_z
bool set_orientation
float64 orientation_r
float64 orientation_p
float64 orientation_y

float64 progress

```

\section*{Appendix D: Digital Appendix}

This section describes the purpose and contents of all the files available through the digital appendix for this thesis. Located below is a directory tree illustrating the location of each individual file available. Listings in the directory tree with the color red are folders used for sorting. The different applications are placed in their own folders, containing the corresponding source code and code documentation (the code documentation is located in the doc folder). The documentation is generated using doxygen. The generated documentation can be viewed by opening the annotated. html file located in */doc/html/. Launching this file will open a new page in the default web browser containing the interactive documentation page.

```

agilus_planner
src
robot_movement.cpp
robot_planning_execution.cpp
srv
_Pose.srv
include
robot_option_flag.hpp
robot_planning_execution.hpp
doc
image_processor
_src
_calibration.cpp
object_2D_matcher.cpp
_openCV_matching.cpp
include
object_2D_matcher.hpp
openCV_matching.hpp
srv
doc

```

The following is a brief description of the files available trough the digital appendix:
Demonstration_video.mp4 - A video demonstrating the capabilities of the system produced throughout this thesis.
agilus_master_project - This folder contains all source code and auto-generated documentation for the agilus_master_project application produced for this thesis.
qt_filter_tester - This folder contains all source code and auto-generated documentation for the \(q t\) filter_tester application produced for this thesis.
agilus_planner - This folder contains all source code and auto-generated documentation for the agilus_planner application produced for this thesis.
image_processor - This folder contains all source code and auto-generated documentation for the image_processor application produced for this thesis.```

