
Development Tools for the Xilinx
Zynq-7000 SoC
Design of a Development Framework and

System Interaction Method for Embedded

Systems on the Zynq-7000 SoC

Roland Peterer
Christian Schmid

Master of Energy and Environmental Engineering

Supervisor: Lars Einar Norum, ELKRAFT

Department of Electric Power Engineering

Submission date: July 2016

Norwegian University of Science and Technology



 



Master Thesis

Development Tools for the Xilinx
Zynq-7000 SoC

Design of a Development Framework and System Interaction
Method for Embedded Systems on the Zynq-7000 SoC

Authors:
Christian Schmid and
Roland Peterer

Supervisor:
Prof. Dr. Lars Norum

Department of Electric Power Engineering

July 1, 2016

http://www.ntnu.edu/elkraft




iii

Declaration of Authorship
We, Christian Schmid and Roland Peterer, declare that this thesis titled “Development
Tools for the Xilinx Zynq-7000 SoC” and the work presented in it are our own. We
confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where we have consulted the published work of others, this is always clearly
attributed.

• Where we have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely our own work.

• We have acknowledged all main sources of help.

• Where the thesis is based on work done by ourself jointly with others, we have
made clear exactly what was done by others and what we have contributed ourself.

Trondheim, July 1, 2016





v

“Any sufficiently advanced technology is indistinguishable from magic.”

Clarke’s Third Law





vii

Abstract

Development Tools for the Xilinx Zynq-7000 SoC

Design of a Development Framework and System Interaction Method for Embedded
Systems on the Zynq-7000 SoC

by Christian Schmid and
Roland Peterer

The evolution of processing system hardware provides powerful and versatile implemen-
tation platforms for system engineers such as the Xilinx Zynq-7000 SoC. Due to this
new capable hardware, advanced and more demanding control systems become feasible.
However, the complexity of such targets has risen enormously. They rely on special
features and enhancements to enable the necessary power for complex tasks. In order
to use those, a profound knowledge of the target platform is needed.

In order to ease the usage of a hardware platform, a comprehensive development frame-
work was set up. It allows the usage of the commonly known approach to design and
outline control algorithms with Matlab/Simulink. The developed control method can
then be tested in combination with the desired hardware. The framework guides the
system engineer in generating the necessary code, the setup of the target hardware and
the deployment of the realized control design. Methods to test and interact with the
running system on the target in realtime are introduced.

A simple way of interacting with the completed system was realised. It allows the change
of parameters and the monitoring of signals in the system during run time. Furthermore,
recording transient step responses is possible. By utilizing standard Ethernet protocols
as a base, the interaction can take part on a remote system in a GUI. Other means
of interaction can be implemented due to the open data interface. This enables the
supervision and manipulation of the running target from afar.
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Glossary and Abbreviations

Asymmetric Multi Processing (AMP)
On the cores of a processor, different software systems (bare-metal and/or oper-
ating systems) are running. See also: SMP.

Analog to Digital Converter (ADC)
Unit which measures an analog signal and passes the discretised value in digital
form.

Advanced eXtensible Interface (AXI)
High performance data connection both in terms of frequency and transmitting
capabilities. In the Zynq mainly used for communication between the PS and PL.

Bare-metal system
An embedded system software which implements the functionality directly with-
out any operating system or similar setup.

Bitfile
Binary file containing a FPGA hardware description, similar to an executable
software for processing systems.

Bourne-again Shell (Bash)
Standard shell for Linux.

Constraint File
Is used to set IO standards and chip pin mapping for Vivado projects.

Cross-Compiler
In contrast to normal compiling, cross-compiling prepares executable code for a
different system architecture as the one it is compiled on.

Direct Memory Access (DMA)
Method of allowing the direct access of memory by peripherals without causing
additional processor load.

Digital Signal Processing (DSP)
Special FPGA structures for complex digital signal operations.

Dynamic Reconfiguration Port (DRP)
IP core interface to interact with the hardwired XADC.

Field Programmable Gate Array (FPGA)
Digital integrated circuit with programmable gate arrays. The functionality is
programmed and can be modified in the field in a hardware description language
(HDL). Features vary heavily between FPGAs and are distinctly different from
software-based, sequential processing systems.

First Stage Boot Loader (FSBL)
Program which runs directly on the underlying hardware, without an intermediate
system software layer.
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Framework
Set of tools and libraries as an environment. Used to ease and guide development
of a given system and functionality.

General Purpose Input/Output (GPIO)
Pin which can be used as a simple input or output by the user. Usually, also
combining several GPIOs and connecting them to special peripheral modules to
implement communication buses is possible.

Graphical User Interface (GUI)
Program, website or other mean of a graphical manipulation interface to oversee
and manipulate another program or system.

Graphical User Interface Design Environment (GUIDE)
Graphical user interface development environment of Matlab.

Hardware Description Language (HDL)
Language to describe the hardware to be implemented in an FPGA.

High Level Synthesis (HLS)
Process of generating a hardware description from an abstract algorithm design
or model.

Integrated Development Environment (IDE)
Software which combines all needed tools and further simplifying mechanisms to
allow the development and testing of code for a certain system.

Inter Integrated Cirquit (I2C)
Serial peripheral bus system for low-speed communication between several master
and slave participants.

Joint Test Action Group (JTAG)
Industry Colaboration which defined a standard for in-cirquit programming and
debugging. The interface allows low-overhead serial communication with a
stopped or running system.

MicroBlaze
Separate processor realised within a programmable logic structure (Softcore).

Multicore Communication API (MCAPI)
Standard of communication methods between systems in an AMP scheme.

Multiplexed Input/Output (MIO)
Interface which connects multiple peripheral pins to processor signals. Configured
via the PS [58, page 54]

NEON
The NEON engine (as an addition to the standard ARM functionality) provides
Single Instruction Multiple Data (SIMD) facilities.

Open Asymmetric Multi Processing (OpenAMP)
Framework for using standardised AMP interaction methods between the involved
software systems.
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Operating System (OS)
System software which offers basic functionality like hardware drivers, file system
support or network capabilities. Most often provides multitasking support and the
use of standardised library functions for simpler development, as well as standard
tools for working on a system.

Operator
Person who runs, oversees and manipulates a given system.

PMOD
Standard pin array interface using GPIOs.

Processing System (PS)
System which runs software code, including the processor and associated elements.

Programmable Logic (PL)
System which consists of programmable logic blocks and its connections. Hard-
ware structures described in HDL run on this part of a device.

Register Transfer Level (RTL)
Description of data flow and operations in an abstract design.

Remote System
Computer or other device connected to the target. Used for interaction and
control of the target by means of a GUI or a superordinated control system.

Second Stage Boot Loader (SSBL)
A more sophisticated, but still minimal system software. It is started by the
FSBL and is responsible for initialising further hardware and start the bare-metal
software or operating system.

Serial Peripheral Interface (SPI)
Serial bus system for communication between processor parts or peripherals. Less
flexible than I2C, it is mainly used for more local usage.

Simulink PL Canvas
Canvas to implement functionality of HDL part.

Symmetric Multi Processing (SMP)
On all cores of a processor the same system software is run.

System Engineer
Person who develops and modifies a system, e.g. a control system for a given
appliance.

Target System
Platform on which an intended function is realised.

Tool Command Language (TCL)
Language to describe and script the initialisation of a Vivado project.

User Datagram Protocol (UDP)
UDP is a simple connectionless transmission protocol for computer networks.

Universal Asynchronous Reciever Transmitter (UART)
A very common serial communication protocol. Physical interfaces include RS-232
or EIA-485.
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Universal Serial Bus (USB)
Standard serial connection for computer peripherals.

Watchdog
Monitoring system to determine if a system is still sane. If it isn’t assured of
propper functionality by a keep alive signal periodically, the system is put into a
safe state by the watchdog.

XADC
Analog to digital converter integrated in the Xilinx Zynq-7000 SoC.

Additionally, a good list of common terms and abbreviations can be found in [9].
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Chapter 1

Introduction

This chapter gives an overview over this document. It introduces the project context
and its purpose. There is also a brief introduction into embedded systems in general
and the used platform in particular to get the reader started.

1.1 Overview over the Document

The introductory chapter gives the reader an overview over the whole document, as well
as some general information about the project and the context it stands in. Next, the
underlying problem and the resulting functional specification of the project are outlined.
The Approach and Elaborated Solution chapter explains the approaches which were
used to implement the desired functionality, while the Working with the Development
Framework and Remote System Interaction chapter focusses on the usage of the resulting
framework and tools. Chapter Further Background Information gives a deeper insight
into surrounding or underlying topics, while Demonstration and Tutorials shows the
implemented functionality. Also it helps to get readers started in setting up and using
the provided tools. Finally, a conclusion over the reached topics rounds up the project.

In the Glossary, to be found on page xv, some less commonly known expressions and
abbreviations are explained. Appendix A lists some additional resources for interested
readers, while Appendix B gives some hints about convenient commands and tools for
both Linux and Matlab. In Appendix C the structure and contents of the Digital
Appendix are described for easier navigation and comprehension.

1.2 Project Environment

The Department of Electric Power Engineeringof the Norwegian University of Science
and Technology in Trondheim strives to introduce a new, universal hardware platform
for control applications. It is bound to make use of the Xilinx Zynq-7000 SoC, which
offers great flexibility and versatility as a hardware base. While the control algorithms
and other software-based parts of future projects should reside in a Zynq, the effective
purpose of a system and therefore its surrounding hardware vary significantly. Some
projects already made use of this platform. However, there is no consistent way of
designing such systems and most of the gained insights into the common base is lost
after each project. Therefore a framework which defines a handy workflow would be
helpful to ease the getting started with the Zynq SoC.

http://www.ntnu.edu/elkraft
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1.3 Purpose of the Project

The evolution of processing system hardware provides powerful and versatile imple-
mentation platforms to system engineers such as the Xilinx Zynq-7000 SoC. Due to this
new capable hardware, advanced and more demanding control systems become feasible.
However, the complexity of such targets has risen enormously. They rely on special
features and enhancements to enable the necessary power for complex tasks. In order
to use those, a profound knowledge of the target platform is needed.

While traditional commercial projects can make use of experienced specialists for all
aspects of such an implementation, especially applications in education and/or research
can’t always rely on such expertise. Time and knowledge are limited. Moreover, also
modern design approaches suggest the development of algorithms and functions on a
higher abstraction level. Therefore, it would be beneficial to allow a system engineer to
concentrate on the design of the control aspects for a certain application, without the
need of experience in special hardware interaction or even low-level programming skills.

As outlined in chapter 2, the aim of this project is to help system engineers to get
started with their work on a complicated and versatile hardware platform. Also it
should diminish the need for extensive research about the underlying hardware base by
summarising several aspects of the Xilinx Zynq-7000 SoC environment and use.

1.4 Introduction to Embedded Systems

Modern power electronic designs heavily rely on advanced control algorithms. Be it
multilevel converters, motor drive systems, energy storage or power station systems.
For an efficient, safe and reliable operation, they all depend on highly sophisticated
and demanding control schemes. Usually such control schemes are implemented in an
embedded system. These embedded systems are electronic structures which serve a
distinct purpose. They are highly optimised for performance and reliability. Some
applications even demand real-time and fully deterministic behaviour, which can only
be achieved on a system with delimited purposes.

When designing algorithms for an embedded system, the main concern must be reliabil-
ity and performance. Unnecessary operations should not interfere with the immediate
purpose of the system. Therefore the special limitations and demands should already
be taken into account in the design process. For further information about code opti-
misation also see [25, 31]. While working on an embedded system, the design principle
should be:

KISS

Keep it simple, stupid. [45]

This means that the complexity and size of a system should be kept as small as possible.
This helps to keep it comprehensible and reduces the risk of unwanted interferences. It
also rises the manageability and eases maintenance significantly.
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1.5 Short Overview over the Xilinx Zynq-7000 SOC and
the Digilent ZedBoard

The Xilinx Zynq-7000 SoC is a modern, high performance system on chip. It is equipped
with both a software processing system and a programmable logic part (FPGA). It
features a dual-core ARM Cortex-A9 MPCore with a maximum frequency of 1GHz,
supports several external memory types, features a NEON engine, provides UART,
USB2.0, Gigabit Ethernet and SD/SDIO support as well as many more. The FPGA,
originating from the Artix-7 or Kintex-7 family, consists of and features a specialized
DSP, an XADC and Block RAMs. The PS and PL part are interfaced with a high
performance AXI interface. [59]

The combination of both a processing system and a programmable logic offers a huge ad-
vantage in control applications. Highly critical and demanding tasks can be outsourced
to the FPGA. There they can meet hard realtime requirements, run in parallel and in
a deterministic environment. More complex tasks like interfacing to other components
or the user can be implemented in the processing system, where a lot of peripherals
can be used. MicroBlaze softcores or other complex and customised structures can be
implemented and undertake special tasks, due to the vast size of the FPGA. All this
adds up to a high performing foundation for all kinds of control systems.

The Digilent ZedBoard is a development kit based on the Xilinx Zynq Z-7020 SoC, which
features the most powerful Artix-7 FPGA of the Zynq family. 512MB of DDR3 memory
offer both fast and vast storage. The ZedBoard allows the user to concentrate on the
software and FPGA design on a proven hardware base. A broad range of interfaces
offers flexibility for more complex projects, such as an USB host, audio inputs and
outputs (connected via I2S), Gigabit Ethernet, HDMI and VGA output, an 128x32
OLED display, a total of 7 push buttons, 8 switches, 9 LEDs, several PMODs and a
FMC port for more complex interfacing. An SD card slot offers easy and flexible boot
and data storage possibilities. To make the developer’s life easier, there is also an USB
to UART bridge and the possibility of daisy-chained JTAG programming. Booting from
JTAG is also possible, as well as from the internal 256MB Quad-SPI flash. [5]

For further reference on the Xilinx Zynq-7000 SoC, its applications and the ZedBoard,
also see [9].
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Chapter 2

Problem Definition and Functional
Specification

The aim of this project is to provide future system engineers for power electronics with
the necessary environment to easily conceive, implement and test their control design
on a target hardware. In addition it should enable an operator to remote interact with
the developed system. This shall be done by providing two sets of tools; on one hand
a framework for the development phase, on the other hand a GUI for remote system
interaction.

2.1 Development Framework

In order to ease the usage of a hardware platform, a comprehensive development frame-
work shall be set up. It allows to benefit from a commonly known approach to design
and outline control algorithms in combination with the desired hardware. It also guides
the system engineer in generating the necessary code, the setup of the target hardware
and the deployment of the realized control design. Methods to test and interact with
the running system are introduced. Figure 2.1 shows the framework, which offers the
containers of the custom user functions for the PS and PL parts. It also provides the
connections to the surrounding components.

Figure 2.1: Development Framework in which the User Function Re-
sides in the PS and PL Frames
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2.1.1 Functional Requirements for the Development Framework

In descending priority, the functional requirements are as follows:

• Must have criteria:

– Canvas for implementing the user function into the framework

– Methods for code generation and synthesis of the user function, as well as
the deployment onto the target

– Methods to deploy user functions to the target persistently and run them
standalone

– Interface hooks for the user functions to communicate with hardware and a
GUI (see section 2.2)

• Nice to have criteria:

– Analysation of performance boosting measures, the need of them and their
implementation (priority and affinity, threading, parallelism, AMP etc.)

2.2 Remote System Interaction

A simple way of interacting with the system shall be realised. It targets mainly for
the usage of the finished system by an operator without the need of all development
tools and skills. But such an interaction can also come in handy during testing and
setting up a system. It allows the change of parameters and the monitoring of signals
in the system during run time. By utilizing standard Ethernet protocols as a base, the
interaction can take part on a remote system in a GUI, as depicted in Figure 2.2. This
enables the supervision and manipulation of the running target from afar. In this part,
the ease of use and setup in the operating phase is emphasized.

Figure 2.2: Interaction GUI on a Remote Machine
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2.2.1 Functional Requirements for the Remote System Interaction

In descending priority, the functional requirements are as follows:

• Must have criteria:

– Enable the user to get and set parameters

– Logging of time series data (slower, continuously monitored signals)

– Analysis of a step response with parameter step setup, triggering of the step
and the response measurement

– Methods for starting and stopping of the system

– Enable the user to export acquired data

• Nice to have criteria:

– Dynamic creation of the GUI, depending on the needs of the user function

2.3 Accompanying Documentation

The documentation of the framework should guide the user to ease the first steps upon
usage. Where the provided tools fall short, a comprehensive description of all parts
should allow the adaption to new needs. Furthermore, for the remote system interaction
part the usage and setup is described in detail. The method of communication with the
running system is disclosed in detail. This enables the development of other tools using
the same interface for further enhancements and use scenarios.

2.4 Guidelines and other Specifications

Besides the overall goal of the project, resulting in the functional specification above,
some additional guidelines are to be followed.

• As a target hardware platform, the Digilent ZedBoard with a Xilinx Zynq-7000
SoC is to be used.

• For a reference implementation, the motor drive system developed by Eirik Haustveit
is to be used as a first use case.

• Only free or already licensed software available at the NTNU are to be used.
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Chapter 3

Approach and Elaborated Solution

This chapter describes the functionality of the developed Framework and the Remote
System Interaction. Those parts should accomplish the specified functional require-
ments. The chapter outlines the methods used to implement the needed features and
gives a general overview over the possibilities. Detailed information about the usage
and modification is described in chapter 4. The source code of all developed parts can
be found in Appendix C.

3.1 Prosecuted Approach

To ease the development of embedded systems, several tools exist in the market. For al-
most all platforms, at least one Integrated Development Environment (IDE) exists. For
the Zynq in particular, one of the most powerful tools is Vivado, which is released by the
manufacturer of the Zynq, Xilinx. But this targets mostly the development by using tra-
ditional coding style, with program code for the PS and hardware descriptive language
for the PL part. This requires the system engineer to have considerable knowledge in
writing program and HDL code. The use of Matlab/Simulink offers a much easier entry
into the world of embedded systems for students. Since most students are familiar with
it and the graphic way of defining algorithms with Simulink offers a flat learning curve.
Even in more advanced development teams it is an often used tool. More information on
the workflow with Matlab/Simulink can be found in section 5.1. Due to its advantages
and support for the Zynq, it was decided to use Matlab/Simulink as a base to realise
both the Development Framework and the Remote System Interaction. This allowed
the use of tools, scripts and predefined function provided by MathWorks to setup the
solution presented in this document.

3.2 Development Framework

The Framework consists of various parts which are explained in the following subsection.
It is organised in a folder structure, which can be found in Appendix C.

3.2.1 Custom Reference Design

To be able to deploy a system onto a target, the hardware layout and other information
must be defined. This is done by implementing a Reference Design, which itself is
announced to Matlab for use. The process of customizing such a Custom Reference
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Design is described in section 6.3 and in [33]. The design used for the Development
Framework is described in subsection 4.2.2

3.2.2 Main Simulink Project

The main part of the Development Framework is set up by using a Simulink project.
This allows for a comprehensive automation of tasks and management of files (see [34]
for further information).

The Simulink project contains a startup script (scripts/project_startup.m) which sets
up the needed paths for the Reference Design, adds the Simulink Library and changes
the current Matlab path to a work folder. The main Simulink model (models/frame-
work_main.slx ) contains the functionality of the Framework and the User Canvases. It
is described in the following sections.

Overview over the Model

The Development Framework model is built highly hierarchical. On the topmost level,
the main software part is realised. It contains all necessary sections for the framework
functionality, especially for the interfacing between the PS and PL part as can be seen
in Figure 3.1.
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Figure 3.1: Model of the PS Part in the Framework

Within the main PS part, the first user canvas for the user software is placed. Also,
the atomic subsystem pl_framework which contains all PL parts is placed here. This
contains the main control state machine, the different states and all other PL functions
such as monitoring, the FiFo buffer and the Watchdog. Within the states and the
monitoring block, the respective user canvases can be found while the other parts need
not to be changed for using the provided functionality.
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Control State Machine

To be able to control the system, a basic control state machine is realised within the PL.
It consists of four states: Init state, Stop state, Run state and Failsafe state. The goal
is to allow the system engineer to prepare different structures for each state he wants
to run his system in. Basically, all states are provided with a set of identical inputs
and outputs to interact with the surrounding system. Between those, the engineer can
realise the desired functionality without having to care for the transition from one state
to another.
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Figure 3.2: Canvas of the User Run State, here with the Contents of
the Demo Project

The state machine is realised entirely within the PL. This allows for a secure operation
even when an error occurs in the PS (time constrains not met, software or system
misbehaviour etc.). The next state to be executed is defined by a next state signal from
the PS. However, if either the watchdog or the measurement system detect a faulty
behaviour, the state machine switches into the Failsafe state, which is locking within
the PL. It stays in Failsafe until all alarms from both the watchdog and the monitoring
are revoked and the PS initiates a switch to the Init state.

An LED indicator shows which state is active. It is realised in the PL and drives the
pin PMODA JA1.

State LED Pattern

Init State off
Stop State on
Run State blinking slow (1Hz)
Failsave State blinking fast (5Hz)

Table 3.1: Blinking Patterns of State LED
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Communication with GUI and Hardware

The Framework provides several prepared signals between the various system parts such
as the GUI, the PS and PL parts as well as hardware interfaces (be it hardware pins or
IP cores). As long as the system uses only parts which are integrated in the underlying
reference design, all communication is already implemented in the framework. Com-
munication with the GUI is done in the topmost model level, while the interface to the
hardware and IP cores lies on the edge of the atomic subsystem and is accessed from
the main PL part.

User Function Canvases

The main part for the system engineer to work in are the User Function Canvases.
One canvas is provided within the topmost model level and contains all user software
functions. For each of the four states, a canvas for the respective functionality in the PL
is provided, as well as one canvas for the Monitoring System. Within these canvases, the
system engineer places all his functions. All of them are connected by a set of prepared
signals and parameters, which can be used as needed. While the PS and the monitoring
canvases are executed all the time, the User State Canvases are only active during the
associated state. While all input signals to these four canvases are parallel, the outputs
are multiplexed in accordance to the state machine.

Monitoring

The Monitoring System, which resides in the PL, is always active and is to be used to
detect unwanted conditions within the system. Several inputs provide data to the user
to check the operation parameters and an alarm output allows to set the state machine
to the Failsafe mode, in which appropriate measures against the fault can be taken.

FiFo Buffer for Fast Signal Analysis

To enable the analysis of fast signals and step responses on parameter changes, a FiFo
buffer is implemented into the PL. It records the data provided by the user into block
ram structures and can be read out at a slower pace afterwards. Within the Framework,
the triggering and pacing mechanisms for recording data are provided. The FiFo capture
is activated by enabling it and changing one of the parameter switches. The FiFo will
now run until it is full, even if a state transition occurs. This allows for debugging
transitions into Failsafe as well. The signals to be recorded into the FiFo must be
provided by the user states.

The pace at which the FiFo buffer records data can be set by the system engineer from
the PS side, as well as the delay for the parameter switch. Since this requires a complex
logical structure, a certain delay always occurs when the FiFo is triggered. Table 3.2
gives an overview over the timeouts and delays.

The readout of the FiFo is handled by the PS, in conjunction with the Remote GUI.
For the readout, the PS supplies the FiFo with a base clock, to which on each edge a
new set of data is transmitted.
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Sample Time 1 1 1 2 2 2
Sample Delay 0 1 10 0 1 10

1st FiFo Push 2 2 2 2 2 2
Switch Transition 2 3 12 2 4 22

Table 3.2: Sample Delays on the FiFo Trigger (1 sample corresponds
to 10 ns for a PL clock frequency of 100MHz)

Watchdog

The PL state machine is equipped with a watchdog. It makes sure that the independent
running PL part of the Zynq notices when the collaborating software in the PS doesn’t
work as expected anymore.

The PL software needs to send a keep alive signal periodically. If this doesn’t happen
for a defined time, the watchdog sets the PL state machine into Failsafe mode, which
in itself is locking (see section 3.2.2). Therefore, a simple return of the keep alive signal
isn’t sufficient for recovery, but a transition from any state to the Init state must occur
to free the system again. This ensures that the transition into the Init state can not
happen if the PL system receives the order to change to it next by mistake, e.g. from
a corrupt parameter storage.

The overrun condition of the watchdog is announced to the PS software in order for
proper detection and to initiate the releasing procedures if necessary.

3.2.3 Simulink Library

In the provided Simulink Library in Appendix C, some practical Simulink Blocks are
available. Most of them offer functionality for the Remote System Interaction described
in section 3.3, but some ease the development of synthesisable Simulink code for the PL
part. For example, some Flipflops or Edge Detectors are implemented.

3.3 Remote System Interaction

During the development and implementation phase of the control algorithm, direct
testing methods can be applied such as external mode or PIL simulation. To enable
an operator to interact with the developed system, some enhancement is needed. For
remote interaction with the system, a communication between the target (Zynq) and a
remote system (PC) has to be established. This communication is realised as a UDP
interface which is already provided by MathWorks. Advantages of a UDP interface
are that it is simple, fast and has a small overhead. However, it is a connectionless
protocol which means there is per se no guarantee that the sent data reach their target.
Since all safety relevant functions are implemented within the PS and PL standalone, a
connectionless UDP communication interface is a good starting point for remote system
interaction.

The Remote System Interaction part provides various Simulink blocks for different tasks.
They are described in detail in the following subsections. This tasks go from simple
“Get and Set parameters” to complex tasks like “FiFo control”. All described blocks can
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be found in the PS part of the provided Simulink library in Appendix C. An overview
of the available block is depicted in Figure 3.3.

Lianx UDP Receive
SetParam

SetParam 1

SetParam 2

SetParam 3

SetParam 4

SetParam 5

SetParam 6

Lianx UDP Receive

Lianx UDP Send
GetParam
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Lianx Control Target
StateControl GetState
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Lianx Continuous Signal
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Lianx PL FIFO Buffer
PS Control

GetValue1

GetValue2

FIFOLevel

SetValue1

SetValue2

enFIFO

PushSampleTime

SampleShift

Trigger

enRead

PopFIFO

Lianx PL FIFO Buffer PS Control

Figure 3.3: Remote System Interaction Simulink Communication
Blocks

For enhancement of such remote system interaction blocks there are the following three
main design tasks.

• Creation and assembly of Simulink Library blocks and their masking.

• Writing of a script to read out fundamental parameters of created library block
which are needed for correct GUI interaction afterwards.

• Creation of a GUI module which enables remote system interaction with the
designed block.

This is also the order how the blocks developed in this work are presented in the next
subsection.

3.3.1 Getting and Setting of Parameters

Lianx UDP Send GetParam

Simulink Block: The aim of the Block Lianx UDP Send GetParam is to send param-
eters from the target to the GUI. The designed block is illustrated in Figure 3.4. To
fulfil its task the block needs at least a UDP Socket to send data. This socket block
is already realised by MathWorks as an s-function and can easily be deployed to the
target. It makes sense to pack some signal together to bring down the network load.
This is done by a byte packing block. Since this library should be generic and does not
know in advance which data type the signal has, a data type conversion is necessary
because only integer data can be transmitted. The width of the signal is limited to
32bit. Since this block is used to get parameters, a sample time of 2 seconds1 should
be sufficient even though the input data can have a smaller sample time. To slow down
the transmission, a rate transmission block is implemented.
1 There is a timing issue with the used table object in Matlab, which has grave implications on the

performance of data updates. Therefore its wise to use a sample time > 1 second [3, p. 571].
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Figure 3.4: Get Parameters Block

Simulink blocks can be masked for multiple reasons. One reason is to implement a small
documentation of such a designed block that other users know how to use it. Another
reason is to hide complexity and present only important parameters to the user which
he can set on his own. One can define default values for chosen mask parameters such
that the user does not need to set a value by himself. As long as the dependencies are
not known the mask should not be changed. Some scripts are relying on these mask
parameters which would not work anymore.

API: To interact with the target later on some important information is needed to
setup the GUI. Since the library block stays constant except the set parameters of it, all
important parameters which need to be known can be read out via a script. All Simulink
block information and parameters can be gathered with the following instructions:

find_system(<sys>, '<Constraint1>', <Constraintvalue1>);

get_param(<Object>, <Parameters>);

For further information about the capability of these functions, the MathWorks docu-
mentation is a good reference.

Some parameters like the data type can only be determined when the model is in compile
mode. Therefore the model has to be set in it. Then the parameters can be read out
and the compile mode terminated afterwards. Interaction with the model is impossible
during compile mode.

eval([<sys>, '([],[],[],''compile'')']);

get_param(...

eval([<sys>, '([],[],[],''term'')']);

All values of the determined parameters are stored in a Matlab variable of class type
struct. The structure of the variable is as follows:

API (struct)
GetParam (struct)

BlockName (char)
RemoteURL (char), default: ’255.255.255.255’, (broadcast)
RemotePort (double), default: 25003
SampleTime (double)
DataType (4x1 cell)
ParamName (4x1 cell)

...
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The DataType cell array can only be determined during compilation of the model. It
is important to know the datatype for correct reinterpretation of the value in the GUI
after it was changed to uint32 and transferred over UDP. The ParamName contains the
signal name which defines an appropriate label for the parameter. The definition of a
signal name is explained in subsection 4.3.1.

GUI: In the GUI there is a panel for each interaction library block. Each panel is
only filled when the corresponding block is used. An init function determines if such
a block is available in the API list and if so loads and prepares the specific module.
For the UDP transmission from the GUI to the target, the instrument control toolbox
of MathWorks is used. To initialise such an UDP object the IP address of the target
and the local port of the GUI need to be known. The local port of the UDP object
corresponds to the remote port to which the target sends its data. The UDP object
listens on the allocated port and creates an interrupt when a specified amount of data
is received. This interrupt is known as a callback function in Matlab. This particular
callback function reads the received data from the input buffer as uint32 values. For
correct display of the received values, the data type needs to be known and a conversion
has to be made. When the values are transformed to their correct type, they are written
into the prepared table and the user can see them.
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Figure 3.5: Set Parameters Block

Simulink Block: The aim of the Block Lianx UDP Receive SetParam is to receive
parameters from the GUI and send back the current value for control purposes. The
designed block is illustrated in Figure 3.5. The read back part of the current values is
very similar to the get parameter block. On the other hand there is a UDP Receive
block which implements an UDP socket to listen on a specified port. Each time a UDP
datagram is received it is unpacked and distributed to the specific outport. Since it
is possible that for some signal an initial value is wanted, there is a delayed feedback
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of the current value. This is updated by the new set value each time a datagram is
received. To fulfil the requirements of the receiving block regarding the sample time a
rate transition block transforms this via back propagation.

Hint: There is a parameter called blocking time inside the UDP Receive block, which
should be handled with care. It should be kept as short as possible (default: 10 µs)
because it blocks the process before it returns control to the scheduler.

API: For the API the same procedure as for the get parameter block is valid. There just
are some additional parameters which need to be determined because the set parameter
block has a read back capability and can show the current values. Therefore it needs a
send and receive block with properties.

API (struct)
SetParam (struct)

BlockName (char)
ReceiveRemoteURL (char), default: ’0.0.0.0’, (all)
localPort (double), default: 25000
SendRemoteURL (char), default: ’255.255.255.255’, (broadcast)
remotePort (double), default: 25001
ReceiveSampleTime (double), default: 0.5
SendSampleTime (double), default: 2
DataType (6x1 cell)
ParamName (6x1 cell)
Min (6x1 cell)
Max (6x1 cell)

...

GUI: For the GUI part of the set parameter block its almost the same as before. There
is some additional functionality which validates if the new set value fits the requirements.
These are set by the user via min and max values. Additionally it is checked if the new
set values fulfil the data type requirements. If they do not, they are either set back to
the value before or rounded to an appropriate fixpoint value if the data type requires
so.

3.3.2 Logging of Slow Time Series

Simulink Block: The aim of the block Lianx Continuous Signal is to continuously send
slower signal to the GUI. The block is depicted in Figure 3.6. A rate transition block,
which can be set to a specific value, assures a periodic data flow. A buffer captures
a certain amount of data which are packed later on with a byte packing block. The
reason for the buffering and packing is to reduce the UDP overhead and send bigger
datagrams. Another benefit is on the GUI side; processing a few bigger data packets is
faster then a lot of small ones.

API: For the API there is a SigBufferSize parameter which sets the size of the signal
buffer. For a good signal buffer size there are some things to consider. Since the
transferred data are of datatype uint32 there are 4 bytes for each sent value. Due to
the two signal lines there are 8 bytes for each sample. It is good practice that a UDP
package should not exceed 512 bytes. Therefore each buffer has 64 values to capture
before sending a datagram. The Signal buffer slows down the update rate in the GUI.
If the sample time is 0.01 s then each 0.64 s a datagram package is sent.
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Figure 3.6: Continuous Signal Block

API (struct)
ContSig (struct)

BlockName (char)
RemoteURL (char), default: ’255.255.255.255’, (broadcast)
RemotePort (double), default: 27001
SampleTime (double), default: 0.01
SigBufferSize (double), default: 64
DataType (2x1 cell)
ParamName (2x1 cell)

...

GUI: The GUI part of the continuous signal is designed such that the x-axis is set to
a range of 10 seconds per default. From 0 to 10 seconds its static and starts rolling
when the time exceeds 10 seconds. The callback function of the UDP block considers
the signal buffer size to split the received data correctly into signal 1 and signal 2. Each
time the callback function of the UDP class object is called, the axes in the GUI are
updated. All received data is stored in a ring buffer. Before the ring buffer overflows
all so far captured data points are stored as a mat-file with date and time as file name.
When the continuous signal module is turned off, all remaining values in the ring buffer
are also stored. That way the user has access to all data which was acquired while the
module was on.

3.3.3 Step Response Analysis of Fast Signals

Simulink Block: The aim of the block Lianx PL FIFO Buffer PS Control is to control
the FiFo buffer which resides in the PL from the GUI. Additionally it also controls the
read back of the captured values into the GUI. The FiFo buffer has some parameters
which can be set. The upper part of the block depicted in Figure 3.7 is responsible to
set those parameters. The trigger value and the two set values are fed back in order to
display them correctly in the GUI. The trigger signal is responsible to switch from set
value 1 to set value 2 and vice versa. For the latter there is also the possibility to set
an initial value if needed. The lower part of the block is responsible for controlling the
read out of the FiFo buffer. When the FiFo is triggered, it starts to capture data and
the FiFo level will rise to its maximum (the FiFO buffer size). When it reaches this
value, the read out process starts. A pulse generator is needed to pop the FiFo buffer.
All popped values are packed to a appropriate size and sent over UDP to the GUI. The
packed size is calculated using the following algorithm:

maxUDPSize = 512; % byte

nrSignal = 2; % 2 Channel

SignalWidth = 4; % uint32

% determine max SignalBufferSize as factor of FIFOBuffer Size
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% constraint by maxUDPSize

if round(PL_FIFO_Size) == PL_FIFO_Size

maxFrameSize = maxUDPSize/nrSignal/SignalWidth;

fact = factor(PL_FIFO_Size);

BufferSize = 1;

for n = 0:numel(fact)−1
if BufferSize <= maxFrameSize

NewValue = BufferSize*fact(end−n);
if NewValue <= maxFrameSize

BufferSize = NewValue;

else

BufferSize = BufferSize;

end

else

end

end

else

error('Input datatype not valid, must be an integer.');

end

A UDP send block is enabled during the readout process. This sends data packages
with the pre defined size. When the FiFo level reaches its end (at level 0), it is disabled.
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Figure 3.7: Step Response, FiFo Control Block

API: The API structure of this block contains some important information about the
signal buffer size which the GUI part needs to know. The default pop rate of the FiFO
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buffer is 1 kHz which means a FiFo of size 10000 needs 10 seconds to read out. The
FiFo buffer channels are read out in parallel.

API (struct)
PLFIFOBuf (struct)

BlockName (char)
FIFORemoteURL (char), default: ’255.255.255.255’, (broadcast)
FIFORemotePort (double), default: 28003
SigBufferSize (double)
RemoteURL (char), default: ’0.0.0.0’, (all)
LocalPort (double), default: 28000
SendRemoteURL (char), default: ’255.255.255.255’, (broadcast)
RemotePort (double), default: 28001
SampleTime (double), default: 2
FIFOPopSampleTime (double), default: 0.001
PLFIFOSize (double)
InportDataType (2x1 cell)
OutportDataType (6x1 cell)
GetParamName (2x1 cell)
SetParamName (2x1 cell)
Min (2x1 cell)
Max (2x1 cell)

...

GUI: On the GUI side, the FiFo buffer control block needs two UDP objects, one for
the set and read back signal and the other to receive the readout values stored in the
FiFo. For the readout process the UDP object has an input buffer size of

(input buffer size) = (FiFo buffer size) · (number of signals) · (size of datatype)

When all values are received, the UDP object initiates a callback function which updates
the trigger data axes and stores the values as a mat-file.

3.3.4 System Control

Simulink Block: The aim of the block Lianx Control Target is to remotely control the
target. The block is depicted in Figure 3.8. This block is responsible to send next state
signals to the target and receives current state and state of the monitoring system. Its
very handy to have the state information of the guarded system available. This helps
to see if there is a monitoring problem present in the PL part which can’t be reset from
the PS.
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Figure 3.8: Control Target Block
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API: The most important parameter for the API list in this case is the port informa-
tions.

API (struct)
CtrlTarget (struct)

BlockName (char)
ReceiveRemoteURL (char), default: ’0.0.0.0’, (all)
LocalPort (double), default: 26000
SendRemoteURL (char), default: ’255.255.255.255’, (broadcast)
RemotePort (double), default: 26001
SampleTime (double), default: 1

...

GUI: The GUI part of this block consists of three buttons. One to set the system into
the Run state, one to set the system into the Stop state and one to reset / initialise the
system. The current state is depicted as text and the monitoring state is shown as a
coloured field, red for tripped and green for no alarm in condition.

3.3.5 User Interface

The base structure of the user interface is designed using GUIDE. This is a development
environment to create GUI’s, provided by MathWorks. The GUI could also have been
designed using another programming language such as C, C++, Java, ... The reason
why it was realised using Matlab is because it was best known to the authors and
provides some handy typecast and UDP libraries. A disadvantage of using Matlab is,
that it is an interpreter programming language and is therefore not as fast as C or
C++ which are compiled languages. The bottleneck of the developed application lies
on the GUI side. Some callback function of UDP objects to update incoming data are
too time consuming. It seems that the problem is less the amount of data to process,
but rather the rate of callbacks. All callback functions can be interrupted by another
which then are queued until there is enough CPU time available. There are some hints
on the internet to fasten Matlab application using their profiling tools [36] to find the
time consuming functions. When these functions are determined one can look for faster
solutions and improve performance. The approach during the GUI development phase
was:

make it work
make it right

make it fast [17]

Unfortunately there was not enough time to focus on the optimisation of performance.

When the GUI development is finished, there is a possibility of creating a standalone
application. Such an application can run without a Matlab license. The only thing
which is needed is the Matlab Runtime in the version as the application was created
with. In the Matlab version R2015b there is a bug regarding the Matlab application
compiler toolbox. The compiled GUI has a different look than during the design phase.
To correct this bug there are some lines of code to add in a startup script [21].

Overview of UDP Ports and Signals

The following list gives an overview of the default UDP port specification with its
transfer datatype and the data structure itself.
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• Lianx UDP Receive SetParam

destination port: 25000
transfer datatype: uint32
data: [SetParam1|SetParam2|SetParam3|SetParam4|SetParam5|SetParam6]

local port: 25001
transfer datatype: uint32
data: [CurrentParam1|CurrentParam2|CurrentParam3|CurrentParam4|
CurrentParam5|CurrentParam6]

• Lianx UDP Send GetParam

local port: 25003
transfer datatype: uint32
data: [GetParam1|GetParam2|GetParam3|GetParam4]

• Lianx Continuous Signal

local port: 27001
transfer datatype: uint32
data: [Signal1|Signal2]

• Lianx PL FIFO Buffer PS Control

destination port: 28000
transfer datatype: uint32
data: [SetValue1|SetValue2|enFIFO|PushSampleTime|SampleShift|Trigger]

local port: 28001
transfer datatype: uint32
data: [Current Value1|CurrentValue2|CurrentTrigger]

local port: 28003
transfer datatype: uint32
data: [GetValue1, GetValue2]

• Lianx Control Target StateControl

destination port: 26000
transfer datatype: uint8
data: SetState

local port: 26001
transfer datatype: uint8
data: [GetState|MonitoringIsTripped]

Dynamic Creation

The task of a dynamic creation of the GUI could not be fulfilled due to a shortage of
time. But the developed GUI modules are only setup if in the generated API list such
a block is referenced, otherwise the module will not be loaded. The imperfection about
this solution is that the area stays empty.
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Chapter 4

Working with the Development
Framework and Remote System
Interaction

This chapter describes how to work with the Development Framework and the Remote
System Interaction. In section 6.2 a sample implementation using the here presented
methods can be found.

4.1 Prerequisites

To be able to use the Development Framework and Remote System Interaction designed
in this project, some prerequisites must be met. Since some of the tools change rapidly
due to their ongoing development, backwards compatibility might be unreliable. Due
to the highly interlinked usage of tools, functionality is only provided if using the given
release versions.

• Matlab/Simulink R2015b

HDL Coder Support Package for Xilinx Zynq-7000 Platform 15.2.0

Embedded Coder Support Package for Xilinx Zynq-7000 Platform 15.2.2

Embedded Coder Support Package for ARM Cortex-A Processors 15.2.0

Embedded Coder 6.9

HDL Coder 3.7

Simulink Coder 8.9

Instrument Control Toolbox 3.8

Fixed-Point Designer 5.1

Matlab Coder 3.0

DSP System Toolbox 9.1

• Xilinx Vivado 2014.4 with SDK (WebPack Edition is sufficient1)

• Lianx System Software running on the ZedBoard (see section 6.1 for setup
instructions)

1 for device limitations see [54].
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• Development Framework

• Lianx Libraries

Also, it is crucial that the system engineer has a basic understanding of embedded
systems and the challenges of their development. Although the Development Framework
tries to ease the development process, not all obligations can be taken over. For example,
the engineer needs to know about the advantages and disadvantages of implementing
certain functions in software or programmable logic. Failure to understand the basic
principles and executing an intensive examination of the framework will have serious
impacts on the resulting system. Not all these steps can be covered in this Thesis, but
the reader is highly encouraged to dive into the explanatory chapter 5 and the additional
literature in Appendix A, as well as other sources of information about embedded system
engineering.

4.2 Development Framework

This section outlines the usage of the Development Framework and its adaption to the
system engineer’s needs. To help the understanding of the framework and to demon-
strate the basic functionality, a sample implementation was developed. It is described
in section 6.2, as well as the steps needed to set it up.

The framework as is provides some basic functionality and tools. A fully generic frame-
work which covers all needs is not feasible. But in its basic setup, it should be able to
handle most scenarios with only minor modifications. Hints on modifying the framework
are given in subsection 4.2.11.

The basic workflow is as follows:

• The system engineer designs his system and informs himself about the provided
functions and canvases of the framework (subsection 4.2.1 to subsection 4.2.5).

• Then the User functions are implemented into the framework. This process is
described in subsection 4.2.6.

• Subsection 4.2.7 describes the simulation of the whole system.

• After the functionality of the system was tested in simulation, the PL bitfile is
created and programmed onto the Zynq FPGA (subsection 4.2.8).

• Now the system can be tested on the target in realtime as described in subsec-
tion 4.2.9.

• Some hints on the performance analysis of the PS part are given in subsec-
tion 4.2.10.

4.2.1 A Note on Signals and the PL Clock Frequency

Simulink is a data flow based modelling technique. Therefore, to transport data between
the different blocks of the framework, signals are used. All signals the user has to deal
with are described in the section about their respective functionality. For a better
overview, the signal names are strictly hierarchical, beginning with the notation of
their origin and target, followed by its functionality and finally a distinctive name.
ps2pl_user_param3 for example denotes a signal which transports the third parameter
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from the PS to the PL user state which the system engineer can use for whatever he
desires. pl_mon2fifo_data2 is the second data source for the FiFo block, comming from
the Monitoring system within the PL.

While the PS can execute its code at a predefined rate, the PL clock is set in the
Reference Design. Also, the transfer rates of the signals transmitted between the PS
and PL over the AXI interface need to be defined. Both those rates are set with Simulink
workspace variables:

• pl_axi_freq (default: 1000 =̂ 1000Hz)
Defines the transfer rate of the signals between the PS and PL part.

• pl_clock_freq (default: 100’000’000 =̂ 100MHz)
Indicates the PL clock frequency set in the Reference Design. Used to calculate
time steps within PL blocks and control the rate transitions for simulation.

Since the Zynq uses 32bit ARM processors for the PS, operations with a higher word
width are strongly discouraged. While such are possible, they have a severe impact on
performance. Also note that Simulink supports 32bit wide data over the AXI -Interface
only, so staying within the 32bit limit is recommended. The use of floating point signals
is not possible on the PL and AXI interface, so only integer and fixed point data can
be used. For more information about fixed point design see also [26].

4.2.2 Prepared Peripherals

To interact with the hardware, the following peripherals are prepared for use:

• ZedBoard LEDs, Switches and Buttons
The eight LED on the ZedBoard are available as an output signal, as well as the
eight switches and fife buttons are as inputs.

• Zynq XADC
The Zynq XADC, as well as the needed data readout algorithms, are implemented
into IP cores in the reference design. The differential voltage measurement be-
tween the pins Vp and Vn of the XADC header are provided, corresponding
directly to measurements between 0V and 1V. Also, the temperature of the chip
is available as a value in ◦C.

• ZedBoard PMODs
PMODA to PMODD are available as both input and output signals. See subsec-
tion 4.2.8 for the mode selection.

The signals to and from the hardware and IP cores are as follows:

• ip2pl_xadc_vpvn (ufix16_en15: 0 =̂ 0V, 1 =̂ 1V)
Supplies the measured Voltage between Vp and Vn on the XADC header.

• ip2pl_xadc_temp (sfix16_en6: value in ◦C)
Supplies the measured chip temperature.

• hw2pl_switches (uint8)
Supplies the value of the switches on the ZedBoard.

• hw2pl_buttons (ufix5)
Supplies the value of the buttons on the ZedBoard.
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• hw2pl_pmod<a-d> (uint8, except for PMODA which is ufix72)
Depending on the configuration, these signals provide or accept signals to or from
the PMOD headers PMODA to PMODD. If used as an output, the signal direction
reverses to pl2hw_pmod<a-d>.

• pl2hw_led (uint8)
Output to the ZedBoard LEDs.

Note that the use and connection of the PMODs is done while setting up the synthesis
of the PL hardware description. See subsection 4.2.8 for further information about that
step. The addition of further IP cores and other peripherals can be achieved by mod-
ifying the underlying Reference Design of the framework. This process is described in
section 6.3. Some hints on the adaption of the framework are given in subsection 4.2.11.

4.2.3 User Function Canvases

First of all, the system engineer needs to outline which parts of his system shall reside
in which part of the framework. For slower processes (e.g. 1 kHz), the PS canvas is the
right choice, while critical and fast functions (e.g. 100MHz) should reside in the PL
whenever possible. Then, on the PL side, he has to consider what functions need to be
implemented where. What is needed to reach a secure state of the system and how can
this be implemented in the Failsafe state? What signals are needed? Which parameters
should be analysed and recorded for a closer inspection with the FiFo buffer? Only
when all these design steps are dealt with, the implementation can begin.

User PS Canvas

In the User PS canvas, the system engineer can place the processes which should reside
in the PS. The canvas is provided with several signals to and from the PL. Most impor-
tantly, the signal ps2pl_nextstate controls the systems state machine. Note that once
the state machine is in Failsafe mode, only a transition to the Init state can release it
again.

The sample rate of the PS functions is set in the model blocks. If they inherit it from the
model, it is defined in the Model Configuration Parameters which per default is set to
1 kHz. Simulink tries to match those rates, but this may not always be possible. Please
refer to [25] for further information. Note that a higher frequency, combined with more
complex tasks, leads to a considerably higher system load (see also subsection 4.2.10).
The sample rate of the AXI communication however is fixed to the value it was set in
subsection 4.2.1.

Involved signals for the exchange of data between the User PS canvas and the PL User
State canvases, as well as other purposes are as follows:

• ps2pl_nextstate (uint8: 0=̂Init, 1=̂Stop, 2=̂Run, 3=̂Failsafe)
Defines which state should be entered next.

• pl2ps_currentstate (uint8: 0=̂Init, 1=̂Stop, 2=̂Run, 3=̂Failsafe)
Indicates in which state the PL state machine is currently in.

2 By default PMODA is configured as an output and JA1 is used for the status LED.
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• ps2pl_user_param<1-4> and ps2pl_user_signal<1-4> (user defined3)
These two times four signals can be used to exchange data between the User PS
canvas and the User state canvases.

• pl2ps_user_param<1-4> and pl2ps_user_signal<1-4> (user defined3)
These two times four signals can be used to exchange data between the User state
canvases and the User PS canvas. The signals are multiplexed according to the
current state.

It is considered to be a good idea to define all signals with their data types and ranges
at the beginning and to enter them into the signal definition blocks in the User PS
canvas. This ensures a consistent signal flow throughout the framework.

User State Canvases

For each of the four states, a canvas for the respective functionality in the PL is provided.
Here, the system engineer places all his functions to be residing in the FPGA. Note that
whenever a signal shall simply be passed through a User State, a signal conversion block
with the signal copy option must be inserted. This is due to a Simulink feature and
yields a warning if not considered.

Besides all signals described already under the User PS canvas and other dedicated
functions, the User state canvases are provided with one special signal:

• state_reset (bool, high during one cycle when state was entered)
This signal indicates when a state was entered. It can be used to reset counters
or other systems like control loops, estimations etc.

Monitoring Canvas

The Monitoring canvas offers a way of checking the system’s status and reacting if
something goes wrong. It resides in the PL and is executed constantly. As input
signals, four parameters can be passed from the PS canvas and all hardware signals are
available as well. An alarm output puts the system into the Failsafe state if activated.
Also, two signals can be passed on to the FiFo buffer for closer inspection.

Using those signals , as an example a current measurement by the XADC can be com-
pared to a defined maximal value. If it is exceeded, the alarm output can be set and
the Failsafe state is entered. To analyse the current measurement in detail, it can be
passed on to the FiFo buffer.

• ps2pl_mon_param<1-4> (user defined3)
These four signals can be used to supply the Monitoring functions with parame-
ters.

• alarm (bool: 0=̂ok, 1=̂alarm)
Output of the monitoring block to signal an alarm condition.

• ps2pl_mon_istripped (bool: 0=̂ok, 1=̂alarm)

3 The data types of these signals can be defined by the user. This is done within the PS canvas or
the PL canvases and will be propagated throughout the framework. Non-matching definitions will
yield a warning from Simulink. Note that for the used AXI -interface, the maximal width of the
data type supported by Simulink is 32bit and that floating point data is not supported in the PL.
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4.2.4 Usage of the FiFo Buffer

The FiFo buffer is meant for capturing fast events in the system for closer inspection
using the Remote GUI. The main application is analysing the step response upon a
parameter change. Therefore, it is set up to work best for exactly that. From the PS
User canvas (and/or the GUI), two sets of step response parameters are available. Each
consists of two values and a selector to determine which value is currently active. Is
the FiFo buffer write enabled and a transition occurs on one of the selectors, the FiFo
is triggered and the passed data is recorded until the buffer is full. This even keeps on
going if a state transition occurs.

As an example, the step response on a target speed value should be evaluated. Two
speed values can be set from the PS side and within the User Run state, a switch
controls which value is active. The switch is controlled by the selector signal. The
FiFo buffer is fed with the selected target speed value from within the User Run state
and the measured effective speed from within the user Monitoring canvas. Switching
from one value to the other triggers the FiFo buffer and the reaction of the system on
the parameter step can be analysed. To indicate any switch to another state during
capturing, the target speed value fed to the FiFo buffer by other states can be set to an
unreasonable value which then will be recorded.

Several signals are needed to use the FiFo buffer:

• ps2pl_fifo_writeenable (bool: 0=̂disabled, 1=̂enabled)
This signal controls if the FiFo should record data on the next parameter switch.

• ps2pl_fifo_sampletime (uint32: 1=̂10ns, 100’000’000=̂1s)
Defines at which rate the FiFo records samples. The number is given in steps of
10 ns. Consider that large numbers lead to very long recording times.

• ps2pl_fifo_sampledelay (uint16: 0=̂no delay, 10’000=̂10’000 samples)
Defines for how long the parameter switch is delayed for pre-switch recording.
The number is given in samples.

• ps2pl_fifo_readenable (bool: 0=̂disabled, 1=̂enabled)
This signal controls if the FiFo should output recorded data upon the next edge
of the ps2pl_fifo_popnow signal.

• ps2pl_fifo_popnow (bool: both edges triggered)
If reading is enabled, the FiFo outputs a new set of samples on each edge.

• ps2pl_stepresp<1-2>_val<1-2> (user defined3)
These values are used to supply the user function with a parameter which should
be switched. For each stepresponse block, two values are provided between which
can be switched.

• ps2pl_stepresp<1-2>_switch (bool: 0=̂val1, 1=̂val2)
Defines which of the two parameter values is active. A switch triggers the FiFo if
enabled.

• pl_state2fifo_data<1-2> (user defined3)
Actual data sources for two of the FiFo buffer channels from the user states.

• pl_mon2fifo_data<3-4> (user defined3)
Actual data sources for two of the FiFo buffer channels from the monitoring sys-
tem.
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• pl2ps_fifo_level (uint16, length depending on the FiFo buffer size)
Indicates the current FiFo buffer level.

• pl2ps_fifo_data<1-4> (user defined3)
Output of recorded data.

Also, one Simulink workspace variable defines parts of the FiFo buffer for its synthesis:

• pl_fifo_size (default: 10’000)
Defines how many samples each channel of the FiFo buffer can hold. Consider
that the number of block rams available is limited. Four FiFo buffer channels with
10’000 samples each, use 25% of the available block rams.

4.2.5 Usage of the Watchdog

The Watchdog makes sure that the PL notices when something goes wrong on the PS
side of the system. For example, when shutting down the system software, the PL keeps
on running without any means to stop it. The Watchdog needs to be reset periodically
from the PS, or it will put the system into the Failsafe state after a timeout. In the
PS, a pulse source is set up which sends a positive edge to reset every second base cycle
(of 1ms). Therefore, the minimal value which works is 3ms due to the delays in signal
transports.

• ps2pl_watchdog_keepalive (uint8)
This signal causes the watchdog to reset upon each transition from 0 to 1. The
value 2 disables the watchdog altogether.

• pl2ps_watchdog_overrun (bool, 0=̂ok, 1=̂ Watchdog is currently triggered)
This signal flags the current state of the Watchdog.

One Simulink workspace variable defines the timeout of the Watchdog for its synthesis:

• pl_watchdog_timeout (default: 10, minimum is 3)
Defines the watchdog timeout in milliseconds.

4.2.6 Implementation of the User Functions

Now that the system engineer knows about the framework functions and canvases,
it is time to implement the system into it. Start by making a copy of the supplied
folder structure to work in. The source files are provided in Appendix C. Folders 2
to 3 and 5 are needed and referenced within each other, so keep the structure as it
is. Connect the ZedBoard, running the Lianx System Software (setup see section 6.1).
Now open the Development Framework Simulink project (DevelopmentFramework.prj ),
which initialises the Matlab environment and the connection to the ZedBoard. Open
the User Canvases with the first Simulink Project shortcut which can be found in the
upper left corner of the Projects Shortcuts tab in Matlab. The custom functions can
now be implemented into the six canvases.

4.2.7 Simulation of the whole Model

When all functions are implemented and compiling the model (by pressing [Ctrl] +
[D]) yelds no errors, the whole model can be simulated. To make sure all PL parts are
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simulated correctly, the step size is set to the pl_clock_freq. Since this is automatically
changed in the next workflow steps, always enter the model with the first project short-
cut. Note that simulations of the whole system can take a long time due to the small
step size.

When everything works as expected, safe the model and close it. It is now ready to be
implemented onto the Zynq.

4.2.8 Synthesis, Code Generation and Deployment

The next step is to generate the HDL code and bitfile for the FPGA part of the Zynq.
Make sure all models are saved and closed, then use the second Simulink Project shortcut
to start the HDL Workflow advisor. Follow it until the last step. Note that the script
also sets the frequency with which data is transmitted over the AXI bus as defined in
subsection 4.2.1.

Step 1: General setup and connection of the signals

In step 1.2 of the Workflow Advisor, the signals to and from the PL are set up. All
signals to and from the PS are set to use the AXI4 Lite bus and hardware is connected
to its dedicated signals. Each PMOD on the ZedBoard can be either used as an input
or an output. The effective direction of each PMOD is determined by its assignment
in step 1.2. For example, if PMODA should be used as an output, select "No Interface
Specified" in its "Input" column and "Pmod Connector JA1 [0:7]" in its "Output"
column as shown in Figure 4.1 and Figure 4.2.

Figure 4.1: Connection setup for PMODs as Inputs

Figure 4.2: Connection setup for PMODs as Outputs

Step 2: Preparation of the Model

In this step, the model is checked for its compatibility for HDL code generation. Care-
fully observe the error messages and correct the reported issues.

Step 3: HDL Code Generation

When the model passed all checks of step 2, the HDL code is generated.
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Step 4: Integration into the Embedded System

In the last section, the code generation is finalised. Save the inferface model generated
in step 4.2 in the work folder of the Development Framework with the proposed file
name, it will be used later. In step 4.3, the HDL code is used to generate the bitfile for
the FPGA. Note that this process is done in an external console window. Wait until it
signals that it is done and can be closed. Also watch out for error reports there. In the
last step, the generated bitfile is programmed onto the Zynq.

4.2.9 Realtime On-Target Testing

Now that the PL functions run on the Zynq, the PS software can be created and loaded
onto the target. To do so, use the third Simulink shortcut which opens the interface
model created before.

In this model, the whole PL subsystem is now swapped for an AXI interface block which
enables communication between the PS and PL. The complete system can now be run
in the External Mode, meaning that interaction with constants, switches, scopes etc.
in Simulink is still possible. But the system actually runs on the Zynq target and com-
municates with Simulink over the Ethernet interface. This allows for realtime system
testing with all functions and states, hence providing a comprehensive verification of
the desired functionality.

Due to an error in Simulink4, the Watchdog must be turned off when using the External
Mode. Set the corresponding switch in the PS accordingly. However, it is recommended
to enable the watchdog after using the external mode and moving on to using the Remote
System Interaction.

4.2.10 Performance of the User PS Functions

After the implementation, the system engineer should make sure that the PS can handle
the User functions residing in it. If they are too complex, the time constraints can’t
be met and the system’s performance is compromised. To do so, the system engineer
should check the load of the complete system. (Note that if the functions of the Remote
System Interaction are used, these also add a small load to the system and should be
implemented as well when checking the load.) Basically, this is done by logging on to
the running system (see section 6.1) and run the top command. This lists the average
system load in three values: the first one for the last minute, the second and third one
for the last 5 and 15 minutes respectively. A value of 2 (because of the two cores of
the Zynq) means that the PS can perform its tasks just barely, but still in time. Lower
values are better and indicate sufficient performance. If the load is higher, the PS can’t
handle its assigned tasks and some functionality should be moved into the PL part of
the Zynq.
4 While all PS functions are executed on the target while running in External Mode, the change of

a parameter from Simulink can cause a short pause in the PS function execution. Such a delay
can inhibit the timely reset of the watchdog and cause it to overrun. The pause might be due to
the transmission of the parameters from Simulink to the target via TCP/IP, which can cause a
delay in the millisecond range with its acknowledge procedures and network timeouts. The actual
reason for this sporadic behaviour could not be identified, but is limited to parameter changes via
the external mode only. The change of parameters via the developed System Interaction method
is not affected, even when running in parallel to the External Mode.
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For a more detailed explanation of the Linux system load indication, see [43]. Also
see section 5.2 which lists possible performance tweaks and for information about the
task scheduling. Consider that Simulink already increases the priority of the tasks
performing the model functionality to values in the realtime range.

4.2.11 Notes on Modification outside the User Canvases

The Development Framework was set up with the intention to demonstrate the capa-
bilities and to provide a basic functionality. Since every specific project has different
demands and challenges, the framework most likely needs to be adapted to fit all needs.
Modifications can range from the simple addition of signals and change of parameters,
over more complex adaptions like adding more or different states up to complete rebuilds
of extensive parts. To describe all possible improvements, extensions and modifications
would certainly go beyond the scope of this Thesis. However, it might be a good idea
to start by familiarising with the concepts and solutions implemented in the framework
and the Demo Project to get started. Many simple adaptions can be done by simply
look "how things are done" and imitating them.
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4.3 Remote System Interaction

This section describes the preparation of the framework for control by the system en-
gineer. Further it explains the usage of the Remote System Interaction software by the
operator.

The basic workflow is as follows:

• Implementation of the GUI parts in the PS, mainly with provided library blocks

• Generation of standalone application for target and readout of the API parameters

• Temporary or persistent deployment of PS and PL code

• Execution of the GUI

The first three items address the system engineer while the last one address the operator.

4.3.1 Usage of the Lianx Simulink Blocks

Once the Development Framework tasks are done, the system engineer can start to
prepare the model for remote control. First a decision which functionality should be
available to the operator has to be made. There are different library blocks in the PS
part of the provided Lianx library. Mainly the following tasks can be made available to
an operator with the provided blocks:

• Set and get parameter

• Monitor slow continuous signal (up to 100 Hz)

• Control Target (Run, Stop, Reset)

• Trigger step response of fast PL signal (FiFo buffer)

A brief explanation follows in the next subsection. The provided functionality can of
course be extended. A good starting point for an extension can be found in section 3.3.
Note that each block can only be once in a model so far.

Lianx UDP Receive SetParam

The set parameter block can be used like a normal constant block. The block enables
the operator to change chosen parameters remotely. Within the provided block there
are six set parameters available. These are also read back into the GUI, so that the
user knows the new set parameters reached the target. For ease of use, the block is
masked and only relevant parameters are shown to the user. The mask is depicted
in Figure 4.3. There are two tabs of different settings. It is important not to use
floating point datatypes (single, double), because those are not yet supported by the
GUI. Another important point is to set a range (min, max) for the values. If no range
is set, it is assumed that the value is not used. An initial value can be set as well. To
provide the operator with the name of the parameter, it is important to assign a signal
name to each port. This can be done by double clicking on the connection line and
entering a name. Regarding the IP port configuration the user is advised to use the
default settings. So far there is no possibility on the GUI side to set local IP addresses
of the PC. However the destination IP address for packages sent from the target can
be set here. Another important point is the sample time. Since there are some update
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time issues [3, p. 571] with the update procedure of the used table in the GUI, it is
wise to use a sample time > 1 second.

Figure 4.3: Mask of Lianx UDP Receive SetParam Block

Lianx UDP Send GetParam

The get parameter block can be used like a Simulink display block. The system engineer
can decide which parameters he wants to make available for the operator. Regarding
the datatypes the same rules apply as before. The bitwidth of the datatype is limited to
32bit. To ease the use of the block it is masked as depicted in Figure 4.4. To provide the
operator with the parameter name, it is advised to label the connection line. Regarding
the IP port configuration the default settings should be used.

Figure 4.4: Mask of Lianx UDP Send GetParam Block

Lianx Continuous Signal

The continuous signal block can be used to monitor continuous signals with a sample
rate of about 100Hz. The system engineer can decide which signals to connect. The
datatypes are limited as before. The block mask is depicted in Figure 4.5. To provide
the operator with the signal name it is wise to label the connection line. The buffer size
is another important parameter to set. The system engineer has to consider that the
GUI update rate should be less then twice per second. Since there are two signals with
a width of 32bit this adds up to 8 byte per sample. A UDP datagram should not exceed
the size of 512 byte. Considering this, a buffer size per signal of about 64 samples at a
rate of 100Hz is a good choice. That means the update time of the GUI is every 0.64 s
with this configuration.
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Figure 4.5: Mask of Lianx Continuous Signal Block

Lianx Control Target StateControl

The control target block can be used to set the next state. Additionally this block reads
back the current state and the status of the monitoring system. The block is masked
as depicted in Figure 4.6. It enables an operator to start, stop and reset the system.

Figure 4.6: Mask of Lianx Control Target StateControl Block

Lianx PL FIFO Buffer PS Control

The FiFo buffer control block can be used to control the FiFo buffer which resides in the
PL. With this block it is possible to control and readout two FiFo buffers implemented
in the Development Framework. To ease the use of this block it is masked as depicted
in Figure 4.7. To provide the operator with the signal and param name its wise to
label the connection lines of the set and get ports. Another important parameter is
the FIFO Size, it has to be set to exactly the same value as the FiFo. Normally this
should be done via the model workspace variable pl_fifo_size. In the Set Parameter
tab the system engineer can choose a specific datatpye for the set values and also an
initial condition. It is very important to set a range (min, max) for the set values. Since
the set values are illustrated using table object in the GUI, there are the same timing
constraint as mentioned before with the set and get blocks.



36 Chapter 4. Working with the Development Framework and Remote System
Interaction

Figure 4.7: Mask of Lianx PL FIFO Buffer PS Control Block

4.3.2 Generation of the PS Executable and Readout of API Parame-
ters

The system engineer can go ahead with code generation after extending the developed
system with the provided GUI blocks where needed. The process of code generation
can be executed by the shortcut 04 - Generate PS Software and GUI API.

The script produces an output of the following two files which are stored in the work
folder of the Development Framework:

• Executable: <modelName>

• API file: API_Data_<modelName>.mat

4.3.3 Deployment of the Generated Code

To deploy the generated code temporarily the 05 - Deploy PL and PS code temporarily
shortcut can be used. The user is prompted to choose the related bit-file which is also
programmed on the target. The executable and bit-file will be put in a temporary folder
on the target and hence are not available after reboot. For persistent deployment see
subsection 4.3.4.

4.3.4 Persistent User Function Deployment

To deploy the generated code persistently the shortcut 06 - Deploy PL and PS code
persistently can be used. The user is prompted to choose an executable and a related
bit-file for the target. Both files will be deployed in the persistent folder Model on the
SD card. They also will be executed automatically upon boot. To revoke the persistent
deployment the shortcut in the Development Framework can be used.
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4.3.5 Usage of the GUI

This subsection addresses the operator of the system which controls the target using
the GUI. The following two files are needed to successfully run the GUI:

• Executable GUI: RemoteSystemInteraction.exe

• API list: API_Data_<modelName>.mat

After starting the GUI by double clicking on the executable, the screen displayed in
Figure 4.8 appears.

Figure 4.8: GUI Start Screen

When the operator clicks on the button Read API Data he is asked to choose a new API
Data file. This file is provided by the system engineer after code generation. When such
a file is chosen there is an initialisation process and the GUI shows all modules which
are available in the API Data file. Figure 4.9 shows an example. The operator can
check if the IP address of the target is set correctly, the default value is 192.168.2.101.
He has to be aware to change the IP address only when all modules are disabled.

Figure 4.9: GUI with loaded Modules

The following subsections explain how to interact with the specific modules. All the
modules can be enabled by clicking on the On radio button inside the module.
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Control Target

The current state of the target is shown when the module is enabled. The Monitoring
system status is also indicated by a coloured field where red indicates a problem and
green normal operation. With the push buttons the user can change the current state.
When pushing the Run button, the target changes into the Run state if the Monitoring
system is not alarming. When the system goes into Failsafe it can be set back by
pushing on the Reset button. To stop the system the operator has to push the Stop
button.

Set / Get Parameter

The current get values are displayed when the module is enabled and updated in the
time interval specified by the system engineer. To set new set values the user can click
in the table field and enter a new value. It is checked to assure that the new set value
is within the defined range and of the correct datatype. After pushing the button Set
Parameters, the new set values are sent to the target. When they reach the target they
will be displayed in the row Current Value.

Continuous Signals

The continuous signal module displays a signal changing over time. The default x-axis
range is set to 10 s. The axis starts rolling after the time has reached the x-axis range.
To set the range of the y-axis, the operator can right click on the plot area itself and
set it manually. When the module is enabled, it creates a subfolder called StoredData
in the path of the application file. There, all data acquired during runtime is stored as
mat-files. The file name contains the date and time of the file creation. After a certain
amount of data a new file is created. The stored mat-files can easily be loaded back
into Matlab for post processing.

To interact or analyse some of the data more detailed within the GUI, the following
functions are implemented:

• Pan:
The user can move the axes when clicking on it if this function is activated.

• Zoom In:
The user can zoom into the acquired data to get a better detailed view.

• Zoom Out:
The user can zoom out of the acquired data to get a better overview.

The symbols of these three functions are depicted in Figure 4.10

Figure 4.10: Additional Plot Control
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Trigger Control / Trigger Signals

With the trigger module the user can record step responses. When enabling this module,
a subfolder called TriggerData is created in the path of the application file. The following
settings can be changed:

• PL FIFO Buffer On/Off
This radio button enables or disables the FiFo buffer itself. When its turned off
the new set values can be used like a normal set value.

• Push Sample Time:
This is the sample time of the FiFo buffer. The data are acquired with the set
push sample time. The smallest possible value is 10 ns, while the largest one is
1 s. The value is set in multiples of 10 ns.

• Sample Shift:
This is a delay of the switch event. With this feature the user can see what
happens with the value right before switching.

• SetValue <1-2>:
The active set value can be identified by the field right of the Trigger push button.
It either changes from 1 to 2 or from 2 to 1, where the first value indicates the
currently active value.

When all parameters are set, the user has to preload the trigger by pushing on the
button Preload New Set Value. Once the values are ready, the trigger button is enabled
and the user can trigger the preloaded event. When the acquiring of data reached its
end, the values are read back automatically into the GUI. Be aware that this process
takes at least the following time:

ReadBackTime = FIFOBufferSize · (PushSampleTime + PopSampleTime)

After the acquired data is read back into the GUI, it is stored as mat-files in the folder
TriggerData. This way the operator can post process the data afterwards and analyse
precisely.
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Chapter 5

Further Background Information

This chapter contains some more detailed information which was gathered during writ-
ing this Thesis. It should help the reader to get a deeper insight about the general topics
Matlab/Simulink, Embedded Systems and Linux as an Embedded Operating System.

5.1 Matlab/Simulink Workflow

The following sections describe the MathWorks workflow to develop embedded system
software for sophisticated SoCs. It shows how a system engineer can be supported
during the development process of such a system, using the well known tools from
MathWorks. It goes even further and shows how to adapt prepared templates and
extend the usability of the provided tools.

The main idea behind this workflow is the model based design approach, which will be
discussed in the next section. Since the capabilities of the before mentioned tools have
grown it became a widespread utilisation due to the many advantages.

5.1.1 Model Based Design

Model based design is a model-centric approach to develop a system. The model includes
all system relevant behaviour such as control logic, algorithms, physical components
and intellectual property. Figure 5.1 visualises the model based design approach. After
research and requirement study, starting by modelling and simulating of the system.
With this approach it is possible to rapid prototype the system in a very early state
on a development kit. Automatic code generation makes it easy to test and verify the
model on a real target. The model based design approach is a highly iterative process
which always relies on a working model. [1]

The following list shows some advantages of the model based design approach:

• Facilitates general communication between development groups

• Early error correction (during design process)

• Reuse of design (create reusable block libraries)

• Automated code generation for target deployment

• Acceleration of development process (cost reduction)

• Quick exploration of new ideas (rapid prototyping)
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Figure 5.1: Model Based Design Workflow

5.1.2 Matlab/Simulink as a Code Development Environment

The following section discusses MathWorks products as code development environment.
A lot of system engineers use Matlab products to develop their control algorithms, due
to the comprehensible and handy workflow. A lot of useful toolboxes such as the Control
System Toolbox, Model Predictive Control Toolbox, Robust Control Toolbox and other
support system engineers in their development process. After the control algorithm
is developed on a simulation base, the system engineer has to convert it to c-code to
implement the control algorithm onto an embedded system and start with testing. To
further support this development process, it is beneficial to directly generate code from
existing models. MathWorks provides toolboxes to generate c-code and HDL code out
of Matlab code or Simulink models. This is a very handy way, since a system engineer
can go on working with its familiar tools.

It is important to be aware that there are some limitations using these toolboxes. Not
all functionality can be achieved by using the provided standard blocks. Some features
need to be programmed by hand.

Synthesis with HDL Workflow Advisor

The HDL Workflow Advisor is a tool provided by MathWorks within the HDL Coder
toolbox. It supports the user with HDL code generation and hardware synthesis. There
are different checks which the user can run on a certain Simulink model. Also some
analysis on the code performance can be done. For further information [31, chapter 22]
is a good reference.

Embedded Code Generation

The Embedded Code Generation toolbox from MathWorks has a huge functionality.
There is a very powerful support for embedded targets. The Xilinx Zynq-7000 Platform
is one of the already supported targets with a predefined code generation toolchain.
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This makes it very handy for a user to create embedded code by designing Simulink
models. For further information [25, chapter 37] is a good reference.

Prototype Testing Methods

Simulink provides a very handy testing method, the so called External Mode. In it one
can generate embedded code from a model, deploy it and run it on the target in realtime.
After compiling and deploying the code, Simulink establishes a TCP/IP connection to
the target and communicates with it. This allows to get back parameters and signals
while the target runs in real time. The fed back data can be displayed on the remote
PC using scope and display blocks in the model. It further allows parameter changes
on the target for certain Simulink blocks. This testing method can be a real benefit to
test an algorithm. For further information consult the Simulink help.

5.1.3 Creation of a Reusable IP Core for Vivado

The following section describes how to create a reusable IP core out of a Simulink
model. It is assumed that the functionality of the IP core already exists and has a
defined interface. It is important to have an atomic subsystem which contains the whole
functionality. The interface to this block (IP core) has to be designed with Simulink In-
and/or Outport blocks. To generate the reusable IP core the HDL Workflow Advisor
can be applied on the atomic subsystem block (right click on atomic subsystem→ HDL
Code→ HDL Workflow Advisor). The Workflow Advisor will start and can be followed
straightforward. If an AXI4 interface to the IP core is needed, IP core generation
needs to be chosen as target workflow and ZedBoard as target platform. If no AXI4
interface is needed, generic ASIC/FPGA as target workflow can be selected. In task 1.1
the proper values for the target platform need to be set. These values are filled in
automatic if ZedBoard as target platform is chosen. In Task 4.1 the provided tcl-script
package_IP.tcl (Appendix C folder: 08_tutorials/02_reusableIPCore) has to be added
under additional project creation Tcl file. [33] This Tcl script will create and wrap an
IP core.

5.1.4 Creation of a Custom Reference Design

To extend the possibility of using MathWorks products for SoC hardware and software
development, a custom reference design can be created. There already are some limited
Reference Designs available for defined tool chains. These Reference Designs can be
used as a template. They are sufficient for a lot of basic projects. If specific hardware
is needed or even one would like to register a custom board, there is a possibility to
implement them into the MathWorks workflow. The next few sections explain one way
how to create and register a custom Reference Design. This enhances the advantage of
the handy design workflow a lot.

Figure 5.2 shows the idea behind such a Reference Design. The term Reference Design
is used for the Vivado hardware design, including the interface from and to the Simulink
PL Canvas, except the Simulink PL Canvas itself. If the Reference Design is registered
with all its IP cores and the interface between them, Simulink is able to build a working
hardware design using Vivado in the background. In Simulink itself, one can build the
missing IP core and define the final interface using the predefined interface. Afterwards,
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using the HDL Workflow Advisor, Simulink is able to run a synthesis using Vivado in
the background and to generate the bit-file.

Figure 5.2: Vivado Hardware Design with Simulink PL Canvas

A step by step guide to setup a custom Reference Design can be found in section 6.3,
while the following subsections outline the general procedure.

Create Vivado Project

To create a custom reference design one can start with a new block design, in Vivado.
It is important to have all additional (custom) IP cores available which are used in the
Reference Design. Custom or third-party IP cores have to be added in the Vivado IP
Repository (IP Settings → IP → Add Repository...) to have them available. In the
end all connection are done except the ones which connect the reference design with
the Simulink PL Canvas. Those connection have to be left open because they will be
defined in the Simulink model.

It can be helpful to write down all interface connection which will be included in the
Simulink PL Canvas. Simulink needs to now where to connect the left over connection
points and therefore this interface has to be registered in a specific folder structure.

To finish this step it is necessary to export the tcl-script of the just created Reference
Design. This tcl-script is the base for all further modelling using this reference design
in the background. Vivado provides a function to export it easily (File → Export →
Export Block Design). The tcl-script has to be saved as system_top.tcl.

Register created custom Hardware Reference Design

The custom reference design has to follow a certain folder structure. This folder struc-
ture and its content is explained in this subsection. Figure 5.3 shows all necessary folders
and files which need to be provided to ensure the compatibility with the MathWorks
workflow.
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MyZynqBoards

hdlcoder_board_customization.m

+MyZedBoard

hdlcoder_ref_design_customization.m

plugin_board.m

+vivado_base_2014_4

plugin_rd.m

system_top.tcl

ipcore
...

Figure 5.3: Claimed Folder Structure for Custom Reference Design

For a proper registration, the following files and folders need to be adapted:

MyZynqBoards
The main folder MyZynqBoards and its content need to be in the Matlab search path to
ensure that the custom reference design will be available in the HDL Workflow Advisor.
This folder can contain several board plug-ins.

hdlcoder_board_customization.m
The file hdlcoder_board_customization.m contains the path to all board plug-ins plu-
gin_board. Matlab picks up any registration files like this which are in the Matlab
search path.

+MyZedBoard This is the board folder. It is important, that the board folder (in
this case +MyZedBoard) is a package folder. Package folder always begin with the +
character. To find out more about package folders in Matlab, one can type doc package
folder in the Matlab command line.

hdlcoder_ref_design_customization.m
This file points to the Reference Design plug-ins and also returns its associated board
name. It is important that the Reference Design plug-ins are located in a package folder.

plugin_board.m
The file plugin_board.m contains the construction of a MathWorks board object. A
board object contains all relevant information such as board name, FPGA device infor-
mation, tool information, JTAG chain position and the interface to the external ports
of the Simulink PL canvas.

+vivado_base_2014_4
This folder contains the Vivado hardware design (system_top.tcl) and all necessary files
to create it, such as custom IP cores and constraint files. Constraint files contain pin
properties (pin mapping) and IO standards.
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plugin_rd.m
The file plugin_rd.m contains the construction of a MathWorks Reference Design Ob-
ject. A Reference Design Object contains all relevant information such as on which
Reference Design it is based on (system_top.tcl), custom constraint files, clock inter-
faces, AXI4-Lite slave interface and all internal IO-interfaces.

system_top.tcl
This tcl script describes the Vivado Reference Design created in section 5.1.4 and has
to be placed in the mentioned folder.

ipcore
The folder ipcore contains all custom IP cores employed in the Reference Design as zip
file container.

5.1.5 Writing a Custom Device Driver using Matlab/Simulink

For certain programming tasks there are no Simulink blocks available. As an example,
if someone needs to write to a Linux console for code debugging there are so called
Matlab System Blocks. With those blocks one can reference plain c-code. They are also
capable of defining what should be done during simulation. In addition there are other
ways of writing device drivers such as s-function, legacy code tool, etc. which can be
used in a Simulink model. There is a step by step guide available in [8] which explains
the different approaches.
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5.2 Embedded System Software

Embedded systems usually serve a distinct function. Due to that, they are tailored
to suit their purpose both on a hardware and software level. To accomplish a simple
task, there is no need to use a fully equipped and powerful system. A simple micro
controller with sufficient capabilities is often cheaper, less power hungry, less complex,
more durable and easier to maintain. The same can be noted for the software part as
well. With every additional function and feature which is implemented, the probability
of unwanted interactions and even security risks rises.

5.2.1 Embedded Operating Systems

The Benefit of using an Operating System

However, some microcontrollers specifically targeted to embedded systems such as the
Xilinx Zynq-7000 SoC are extremely powerful and offer a high variety of special features
(for further information also see section 1.5). These advanced capabilities allow for
better performance and a wider field of application for a given controller. However, to
be able to make use of such advanced capabilities, a profound knowledge of all technical
aspects is needed. A high level of complexity arises if the potential performance should
be exploited.

As an example, the Xilinx Zynq-7000 SoC with its two ARM Cortex-A9 processors offers
a great variety of storage possibilities. Each core has a seperate L1 cache, furthermore
there is a combined L2 cache, on chip memory and DDR memory. The correct usage of
caches and command queues is critical for a decent performance. An advanced cache
and queue strategy is necessary to make use of the potential capabilities of the chip.
See also [58] for an overview over the vast amount of features the Xilinx Zynq-7000 SoC
offers.

Furthermore, the SOC offers a great variety of dedicated peripheral modules like I2C,
SPI, UART, Ethernet and many more. These need to be initalised and interfaced cor-
rectly. Depending on their complexity, this implies a more demanding implementation.
For example, to be able to use a network connection, besides the pure hardware layer one
must also implement the needed Ethernet protocols for proper communication. Failure
to correctly implement all aspects and layers can affect performance, security and even
lead to disturbance in the whole network.

To a certain extent, a well configured compiler can help to make use of advanced ar-
chitecture features. Also, for a lot of peripherals, libraries can be found and used.
When working with an operating system, the software developer can make use of the
combined, in-depth knowledge of all contributors to the operating system code. Many
advanced features and support for peripherals are already built-in and ready to ease the
development process. The necessary software to deal and exploit the complex optimiza-
tions is written by experts. Due to a wider audience, the code is maintained and bugs
are fixed. The level of complexity is cut drastically and the level of abstraction can be
raised for an easier development. Also, most operating systems offer multitasking and
priority management for processes, which eases the development of complex systems.
The same can be said for the use of standard APIs and common functions. Examples
include the use of a file system to store data or Ethernet capabilities, which can be used
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straightforward instead. The need for implementing custom solutions is lowered, which
leads to shorter development times.

An operating system enables the parallel execution of tasks (multitasking). While this
seems contradictory to real-time demands, almost every system needs multi threading
abilities. For example, the exchange of data with other systems must be possible while a
control application is running. An operating system can incorporate sophisticated multi
tasking schemes, which allow parallel execution of applications while minimizing the
impact on performance. If a system is equipped with several processors, the operating
system can allocate resources based on demand (see also subsection 5.2.2). [13, part A
and B]

Drawbacks of Operating Systems

While using an operating system offers an easier environment, some flexibility and
control is lost. Basic system functions are handled by the operating system, so the
users influence on them is limited. Also, restrictions in accessing peripherals can be
an issue if an operating system doesn’t allow certain operations. If the interfaces to a
system core aren’t publicly available, writing code or drivers for hardware not supported
out of the box gets tricky. With this in mind, also resources from an active development
community can be a great advantage.

Operating systems usually are designed to serve several purposes, which leads to po-
tentially exuberant functionality and unnecessary overhead. Not all system software
packages can be tailored to the same extent. Unnecessary or badly timed system func-
tions can have impacts on the performance and latency of user processes. These factors
need to be considered carefully when deciding whether to use a bare-metal system or
selecting an appropriate operating system.

Complex software packages like operating systems can prove to be hard to get to know.
While a dedicated standalone application might still be overseeable, a complete sys-
tem software with multitasking capabilities and other advanced features can become
confusing. Changing, adding or even using parts can be tricky, especially if a decent
documentation and/or active and open community is missing. [18]

Comparison of Embedded Operating Systems

There are several operating systems specifically targeted to embedded systems available.

• FreeRTOS
FreeRTOS is a lightweight operating system which targets embedded systems
specifically. It aims to deliver real time performance while offering comprehensive
standard operating system functionality. FreeRTOS even complies to a high level
of safety certification (IEC61508). [14] It comes with both a free (open source)
and commercial license options. [2]

• QNX
QNX had a turbulent history and is currently owned by Blackberry. The source
code of QNX was released and it is free to use for non-commercial applications.
It is widely used in critical applications such as the medical, safety and the au-
tomotive industry. The system offers real time support and aims for embedded
systems.
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• Linux
Linux is a highly versatile operating system which targets all sorts of systems and
platforms. It is open source, released under the GPL and can be adapted well
for every purpose. For embedded systems, the modular nature of Linux systems
offers a high flexibility and tailored performance. Real time performance can be
achieved with special kernel patching and configuring during the build process.

• Windows Embedded
Windows Embedded is a series of operating systems by Microsoft, targeting em-
bedded platforms. At the time of writing, the current version of Windows Em-
bedded (Windows 10 IoT) was still under development. The current Windows
Embedded 8.1 Industry poses high hardware requirements compared to other em-
bedded systems and uses a full graphical desktop [47]. Windows Embedded Au-
tomotive 7 is mainly targeted for multimedia systems [37]. Older editions of still
base on Windows CE and Windows XP. Only commercial licensing is possible.

5.2.2 Performance and Feature Considerations

Embedded control systems normally implement critical algorithms. These must meet
certain requirements in respect of rate and reliability. These realtime tasks must be
treated with absolute priority and care. On the other hand, modern systems also consist
of less critical interfacing and other support functions. For example, the exchange of
parameters and other data with superordinated systems or measurement systems are a
fairly common task. The Xilinx Zynq-7000 SoC offers two ARM cores (PS), as well as
an FPGA area (PL). This offers unique possibilities to the system engineer related to
the overall performance.

Performance for critical Control Processes

In a programmable logic, all tasks can be executed in parallel and will run deterministic.
No overhead of other tasks will interrupt execution in the PL. Also, the Xilinx Zynq-
7000 SoC offers DSP and flexible storage capabilities, which allow almost all kind of
functionality to be realized. Given the vast capabilities of today’s FPGAs, as many of
the critical functions should be implemented into the PL where they do not need to
share resources and are executed deterministically in realtime.

While it is possible to build a deterministic and hard-realtime capable bare-metal sys-
tem, this is a lot trickier when using a larger system software. However, there are ways
to extend realtime capabilities of operating systems like Linux. Using the preempt_rt
patches is the most common way to go, but there are lots of others. [53] gives an insight
into the possible approaches to achieve better performance.

Soft-Realtime and non-critical Processes

In almost every control system, also some non-critical tasks need to be executed. Es-
pecially when dealing with complex peripherals or protocols, it is often simpler to im-
plement the needed functionality in classical software. As an example, the processing,
storage and visualisation of measurements doesn’t need to be dealt with in realtime.
Such tasks can normally be executed sequential and therefore be deployed to the pro-
cessing system without significant drawbacks. Also, they can profit from vast memory
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resources and processing power. Multitasking allows the execution of several tasks in
parallel.

Naturally some critical functions will reside in the PS. Examples include control loop
parts or critical interaction with external hardware and other systems. Due to the
sequential nature of processing systems, a good priority scheme and the intelligent use
of the available resources are essential for a good performance. The Xilinx Zynq-7000
SoC is equipped with two ARM Cortex-A9 processors. This enables the PS part to
execute two tasks in parallel, which enhances realtime capabilities to a certain extent.

The main limiting factors for PS performance is the overall load of the system. Whenever
there is a lot of overhead due to basic system tasks or other programs running on
the same platform, the scheduling of critical events gets tricky. Normally, a decent
operating system will be able to appoint resources in an appropriate manner with its
queue scheduling algorithm. System engineers can also try to raise the priority of
vital functions manually. But if the overall system load is to high, not all tasks can
be executed any more and the performance will degrade. Also, when messing with
priorities to much, one can do more harm than good. Only really critical tasks should
be given elevated privileges and even then, excessive context switching can decrease
overall performance. Also, comprehensive tasks like webservers can compromise the
system’s overall performance significantly.

Also see subsection 5.3.5 for more information on process priority. For further reading,
[39] provides some hints on how to deal with realtime demands in embedded systems.

Symmetric Multi Processing

Due to the two ARM cores present in the Xilinx Zynq-7000 SoC, normal operating
systems can spread and divert the workload. A scheme where several cores are used by
the same system software is called Symmetric Multi Processing, since it deals with the
hardware in an equivalent manner.

Some operating systems allow the user to influence the allocation of tasks to resources.
This is done by manually changing the affinity of a process, which binds it explicitly to
a CPU. If this can also be done for basic functions like interrupts, a manual division of
system and user functions between cores can be achieved, while all interfacing between
them is still dealt with by a common system software. See subsection 5.3.5 for more
details on how this can be achieved when using Linux.

Asymmetric Multi Processing

Different cores in a system can also execute varying software. While Symmetrical Multi
Processing allows to make use of the combined capabilities of a system in a simpler
manner, the asymmetric scenario allows for a more distinct partitioning of tasks and
processing power.

Several AMP scenarios are feasible, a good overview with further information is provided
in [51]. Some of the most common and interesting combinations are listed as follows:

• Bare-metal with bare-metal
The combination of two bare-metal systems allows for a maximal customisation.
The division of resources and jobs is completely open and can be tailored to
specific needs.



5.2. Embedded System Software 51

• Linux with bare-metal
When combining a Linux with a bare-metal system, normally Linux is responsible
for communication and the handling of other resources. It alows the usage of the
available tools and functions of an operating system, while the bare-metal part
takes over the critical tasks, which can be executed in a deterministic environment.

• Linux with FreeRTOS
In this scenario, FreeRTOS takes over the critical tasks. Compared to a bare-
metal solution, it provides some comfort and basic functionality while keeping the
system lean.

• Linux with Xenomai (Dual Kernel Setup)
Xenomai is a realtime development framework, which provides hard real-time
support for Linux systems. Different approaches with a single or dual-kernel
scheme exist.

The combination of any of the above schemes with one or more additional soft cores
in the PL (MicroBlaze) can be of interest. These soft-cores can be used to deal with
tasks in a deterministic environment or even customized to deliver higher performance
on special tasks than the normal processing system is capable of.

To connect two systems, most often a part of the total memory is accessed by both
systems. (Of course, each system also needs some reserved memory space which is
hidden from the other one.) This memory can be used to exchange flags, semaphores
and data. One system loads its data into the designated area and signals that some
data is ready. Upon this notification, the second system can read the data and mark
the used area as free again. This exchange scheme needs to be defined and implemented
with great care, otherwise functionality can suffer and even significant security risks can
arise.

It should be noted that AMP makes less sense the more cores a system offers. This
is due to the fact, that modern operating systems have multitasking and paralleling
mechanisms which usually deliver a better performance as a manual division, especially
when there are enough resources to distribute the load evenly.

For further reference on AMP systems, consider [15] which provides a deep insight into
the challenges and benefits of AMP schemes. [11] offers some performance comparisons
of Linux and Xenomai setups for realtime applications.

Traditionally, every time a AMP scheme is implemented, the interface between the in-
volved software systems are defined anew. This makes collaboration between teams
or code-reuse costly and impractical. To deal with this, there are some efforts to de-
fine a standardized AMP interaction scheme called Open Asymmetric Multi Processing
(OpenAMP). It specifies the interface methods to exchange signals and data between
participating software systems based on the Multicore Communications API (MCAPI)
and offers inter processor communication and essential libraries. Xilinx is currently
working on an OpenAMP implementation, but the project is still in an early stage
(late 2015/early 2016). It mainly targets ARM architectures and implementations with
Linux as one of the involved systems, but other configurations are also possible. It will
most definitely target the Zynq family as well and therefore offer a good base for further
work in this area.
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There are other implementations of AMP systems as well, for example the RSoC AMP
framework. This particular solution offers support for Linux, bare-metal systems and
FreeRTOS and targets the Zynq as well. But due to its proprietary license, it was not
looked into further.

If AMP is to be used, using the OpenAMP approach might be the most promising way
to go. Due to the high complexity ongoing work of similar projects, the introduction of
an AMP system is not pursued in this project any further.

Sources: [9, 11, 15, 40, 38, 41, 52, 57, 44]

5.3 Linux as an Embedded Operating System

Linux is already widely used on the Zedboard and supported by Matlab/Simulink as
the standard target operating system. Community support is vast, a lot of topics are
already documented. Libraries and device drivers are abundant. Linux was ported to
almost any platform and hardware imaginable. Also, it is lightweight enough to run on
the Zynq with minimal base load. Due to those factors, it was decided to use Linux as
a system software base and not to look into alternatives further.

Also, it was decided to use a SMP strategy to reduce complexity. Depending on the
requirements, the Zynq in combination with Linux should be capable of running most
systems. Only if specific requirements of a project call for additional performance, the
benefits justify the effort of AMP. However, further investigation into AMP schemes is
highly encouraged if the situation calls for it.

5.3.1 Linux Variants for the ZedBoard

For the Zynq and the ZedBoard in particular, several Linux flavours are available. Most
projects or demonstrations use a particular version and not all serve the same purpose
or offer the same functionality out of the box. A short list and comparison should
outline the key differences and their impacts of the most obvious variants.

• MathWorks Linux
MathWorks uses a small Linux distribution, which is equipped with just enough
functionality to be used as a system software for the Matlab/Simulink workflow.
Basically it consists of the absolute minimum of tools for some basic interaction
with Linux, network capabilities and file system access to the SD card. An update
method is not provided and the image is deployed directly to the SD card when
setting up the toolboxes in Matlab. It is published under the GPL license.

• Xilinx PetaLinux
PetaLinux is Xilinx’s own prepared Linux distribution for their controllers. A full
SDK is provided for configuration and application development and the usage is
highly interlinked with the Vivado workflow. Board support packages are available
and Licensing for commercial purposes is possible. The Setup process is described
in detail in [13].

• Xilinux (Ubuntu)
Xilinux is basically an Ubuntu desktop installation ported to ARM and the Zynq
specifically. Due to the performance of the Zynq, running the full desktop en-
vironment is no problem at all. It features all Ubuntu functionality like apt-get
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for updating and installing new applications. However, this can compromise and
even completely break the installation due to missing ports.

• Avnet Linaro
Linaro is a industry collaboration with open source community for embedded
development. It publishes a specialised Linux distribution which is mainly released
under the EPL license. Used for the Avnet FOC Demo Model [7], it comes with
a graphical user interface and even an embedded scope to view system data.

PetaLinux, Xilinux and Linaro offer all a lot of functionality which will not be needed.
The latter two offer a graphical desktop per out of the box, which is interesting for
displaying system data and operating on the Zynq directly. However, such applications
are not intended by now. The Mathworks Linux offers only the bare minimum required,
but a far simpler system environment with less overhead. It was decided to customise
the latter so a individually adaptable system software for the project can be used.

5.3.2 Custom Linux Lianx

As described in [9], Linux uses a two-stage boot process on the Zynq. Most embedded
Linux operating systems boot from a packed image rather than a normal, persistent
file system. The complete root file system is unpacked and started by the second stage
bootloader. This allows for a verified and safe boot environment, but also ensures a
sane file system upon every reboot. However, changes made to the running system are
therefore lost upon each reboot. The whole root file system is created anew from the
image and only files residing on the SD card (mounted under /mnt/ ) are persistent.
Changing the system boot image is described in subsection 5.3.3. More information
about the boot process of the Zynq can be found in [9].

For this project, a custom Linux version called "Lianx" was created. Basing on the
standard Linux distribution from MathWorks it offers some additional tools to ease the
system engineer’s work and flexibility. It includes the following tools:

• nano is a simple bash editor, which especially to beginners is more intuitive to
use than the standard editor vi.

• htop is a process viewer, which offers more functionality than the normal top.

• mc (called Midnight Commander) is a powerful bash file system browser.

• Startup and Shudown Scripts are executed automatically upon start and stop.
The scripts themselves reside on the SD card and therefore can easily be changed
persistently. As an example, this can be used for starting and stopping some
additional services.

• Programming of the FPGA at startup is done by the startup script if a
FPGA bitstream with the filename system.bit is present in the Model folder of
the SD card.

• Execution of User Program at startup is possible if the executable is present
as system.elf in the Model folder of the SD card.

The standard login is root with the password being root also. The network interface is
set to the IP address 192.168.2.101 per default. If another IP address or hostname is
desired, this can be changed in the files interfaces and hostname respectively.



54 Chapter 5. Further Background Information

Be aware that the default user on the target system has superuser rights. Also, no
measures for hardening the system against security risks like setting up a firewall or
even a halfway decent password are taken. Be sure to understand the implied risks and
security flaws. The provided system may never be used in a risky or commercial aspect
unless appropriate modifications are undertaken.

5.3.3 Customizing the Linux System Image

Since the MathWorks Linux uses a packed system image to boot, changes to the envi-
ronment are lost upon reboot. To be able to add custom packages, scripts and other
changes, these must be packed into the image as well. This is done by generating a
new, custom image with a framework called buildroot.

Prerequisites for Building a Custom Linux Distribution

MathWorks provides the necessary scripts to build its tailored Linux distribution. The
sources can be found in the publicly accessible GitHub repository at [32]. Note that the
buildroot framework is intended to be used on a Linux system. At the time of writing,
Ubuntu 14.04 is recommended. Newer versions can suffer from a conflict arising in
different Python generations, which will the framework cause to fail. Also note, that a
native installation of Linux on a machine with enough memory, processing power and a
decent SSD is highly recommended [22]. Please note that this section presumes a basic
knowledge of working on a Linux system like installing packages, using the bash and
file handling/editing. As a hint, to successfully use the buildroot framework on a fresh
Ubuntu 14.04 system, also install gcc, g++, make and libssl-dev. On a x86-64 system,
add the repositories for i386 software and install libc6:i386 as well.

Since the system to be generated will run on the Zynq’s ARM achitecture processor,
the Linux packages need to be cross-compiled for said architecture. The buildroot
framework uses the Xilinx Software Development Kit (SKD) in version 2015.2 for this
process. It can be downloaded and installed for free with the WebPACK license at [55].

Basic Usage and Process of the buildroot Framework

To use the framework, the GitHub repository is cloned to a local folder. The main
script to look for is called ./build.py. Calling it with

~> ./ build.py -p zynq -b zed

causes the build to be customized for the Zynq device family (-p flag) and the ZedBoard
(-b flag) specifically. By using subsequent scripts, the executables and file system are
now generated. The necessary source files are downloaded automatically and are stored
for future build processes.

Passing the additional -u flag, the buildroot scripts try to update the changed parts of
the system only, which can speed up the process significantly.

The generated file system and images can be found in ./output/zed_linux_xilinx/images/.
The subfolder sdcard contains the file and folders structure which can be copied to the
root folder of a SD card directly. The file zed_sdcard_zynq7000ec_<date>.zip contains
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the same within a zip folder. With a supplied Matlab or Shell script, a new system image
can be uploaded to a running target directly (see Appendix C).

Note that the versions of packages used by buildroot are subject to change. At the
time of writing, the Linux kernel was used in Version 4.0.0, other than the standard
MathWorks Linux which used a kernel of the 3.x generation. By using buildroot and a
customized package list, a system running on the ZedBoard can be kept up to date and
security patches can be integrated.

Adaption and Modification

The system which is configured by buildroot can be changed in several ways. All changes
can be gathered in a subfolder ./sandbox and integrated in the complex buildroot folder
structure with a simple copy script.

• Software Packages
Additional software can be included by expanding the list of make options. Cus-
tom options are collected in a separate file and included in ./board/mathworks/-
common/scripts/br_config.py in the gen_target function. (Hint: Fitting options
are found by executing make menuconfig and save the changes to a new file.)

• Custom Startup and Shutdown Scripts
Scripts which shall be executed upon startup or shutdown can be placed in the
base folder of the SD card for simpler editing. Copy those to ./board/mathwork-
s/zynq/sdcard/. For them to be called, a script has to be set up in /etc/init.d
on the target system, which is done by placing it in ./board/mathworks/zynq/fs-
overlay/etc/init.d/.

• System Calls
For a command to register as a system call, its script or a calling function can be
copied to ./board/mathworks/zynq/fs-overlay/usr/bin/ .

• Network Settings
The settings used for the network connection are defined in
./board/mathworks/common/fs-overlay/etc/network/ .

5.3.4 Linux Device Tree and Drivers

This section covers a basic introduction to how Linux can be configured for external
peripheral hardware.

Device Tree

Peripheral hardware connected to the Zynq must be known to the Linux kernel to be
usable. Linux uses memory mapped I/O, which means that access to external hardware
is done by using a virtual memory address. This address must be reserved and marked
so that the correct location can be found by the kernel. Linux uses a Device Tree to
achieve this. The Device Tree files used in Lianx are already suitable for the hardware
of the ZedBoard, so for using the XADC, PMODs or similar interfaces no modification
is necessary.
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The different versions for the usage of axilite and axistream can be found in the root
folder of the SD card and are automatically loaded upon boot. Device Trees usable for
the kernel are compiled and can be decoded into a readable format with the Linux tool
tdtdump. As an example, the Device Tree entry for the XADC looks as follows:

xadc@f8007100 {
compatible = "xlnx ,zynq -xadc -1.00.a", "xlnx ,ps7 -xadc -1.00.a";
reg = <0xf8007100 0x000000a1 >;
interrupts = <0x00000000 0x00000004 0x00000008 >;
interrupt -parent = <0x00000001 >;
clocks = <0x00000003 0x7073372d >;

};

If a system engineer wants to expand or change the hardware connected to the Zynq,
the Device Tree must be adapted. For more information about memory mapped I/O,
see [46]. The Device Tree subsystem is described well in [12].

Device Drivers

When a peripheral device is known to the Linux kernel, a driver is necessary to talk
correctly to it. More complex device drivers are best implemented as Linux Kernel
Modules. A good introduction into Kernel Modules and an example can be found in
[10]. For Simulink device drivers see [8].

For simpler functions, a plain bash script can serve the same purpose as well. The script
can be integrated into the root file system for it to serve as a system call as well. An
example to drive LD9 on the ZedBoard, which is an LED connected to the PS directly,
is integrated in Lianx. It is located in /usr/bin and named psled. It controls the LED by
writing the corresponding value into a file dedicated to control the appripriate GPIO.
The initialisation is done upon boot when the init-function is called by the custom
startup script (see subsection 5.3.3).

For more on Shell scripting, see [48].

Another method for exchanging data with sensors, ADCs and others is the Linux In-
dustrial I/O (IIO) subsystem. This is used by the Avnet FOC Demo Model for example
[7]. A good introduction to the IIO subsystem is given in [4]. Since this method is
rather specific for sensor data and there was no specific peripheral to be set up, this
method was not investigated any further.

5.3.5 Performance Tweaking with Linux

As stated in subsection 5.2.2, there are a lot of ways to enhance the realtime capabilities
of Linux. Most of them call for the use of special frameworks, tools or additions to the
system itself. Such efforts are only called for when the additional performance is really
needed by a specific project. However, there are some ways to increase or at least
monitor performance on a normal multi core Linux system with system tools. Be aware
that usually the implemented multitasking schemes of Linux do a good job already and
manipulating the default behaviour of both processes and interrupts can do more harm
than good.
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Task Niceness and Priority

As on most multitasking systems, every task has a priority assigned. The priority
determines which processes will be granted system resources if they get scarce. Priority
values range from 0 (highest) to 139 (lowest), where the range from 0 to 99 is for realtime
system processes only and user priorities range from 100 to 139. According to a tasks
priority, the resource assignment to it are handled. Of course this only works if priorities
differ relatively from each other. When no other tasks can give up some ressources, rising
a priority will have no effect at all. Critical system tasks must of course be granted a
higher priority than minor functions or the system becomes compromised. Additionally,
Linux uses a niceness value to determine the resource hogging behaviour of a user space
process. The niceness is used to calculate the priority accordingly. Values range from
20 (very nice) to -19 (not nice at all). A higher niceness and therefore priority marks a
tasks capabilities and readiness to give up resources for others sake.

Priority = Niceness + 120

This results in user process priorities from 100 (niceness -19) to 139 (niceness 20) [42].
See man nice and [20] for more information. In Appendix B some matching tools and
commands are listed as well.

Task Affinity

On systems with more than one processor core available, tasks can be distributed to
share the total system load. Normally, tasks are dispatched according to the current
system load and the respective task priority. But this allocation, which is called affinity,
can be changed manually. This enables a manual division of resources between critical
and unimportant tasks even in an SMP system. When allocating all tasks to one core
and only the critical one to the other, it is less likely that the vital functionality of a
system is interrupted.

See man taskset for more information and Appendix B for appropriate tools.

Interrupt Priority and Affinity

Just as with processes, interrupts have a prioritising and affinity scheme. The inter-
rupt priorities are mostly handled by the operating system in combination with the
underlying hardware. Therefore, altering those requires profound changes to the sys-
tem. But instead of changing the interrupt system itself, distributing its load evenly
or specifically amongst processor cores can also help to achieve better performance. To
get an overview over the load interrupts generate on a system, look into the /proc/in-
terrupts file. The affinity of individual interrupts can be changed by modifying the file
/proc/irq/<irq-number>/smp_affinity.
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The following output shows the executed interrupts for the ethernet connection. The
first 395 interrupts are automatically dealt by CPU0, while the next 14 are dealt by
CPU1 after manually setting the affinity.

root@zynq -lianx:~> cat /proc/interrupts | grep eth0
33: 238 0 GIC 54 eth0
root@zynq -lianx:~> cat /proc/irq /33/ smp_affinity
3
root@zynq -lianx:~> echo 2 > /proc/irq /33/ smp_affinity
root@zynq -lianx:~> cat /proc/interrupts | grep eth0
33: 395 14 GIC 54 eth0

A comprehensive introduction into the Linux interrupt system and interrupt affinity
can be found in [16].
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Chapter 6

Demonstration and Tutorials

This chapter contains step-by-step procedures to set up the ZedBoard, a Demo Model
and a custom Reference Design. Please ensure that the prerequisites listed in section 4.1
are met, otherwise unexpected problems can arise while following the tutorials.

6.1 Setup of the ZedBoard and connecting with a Remote
Console

This section should allow any technically skilled person to set up the ZedBoard without
any knowledge about the involved hardware and/or tools. The successful execution of
all steps are vital for any work on the ZedBoard outlined in this Thesis.

To be able to complete this procedure, the following tools and parts are needed:

• Hardware:

– Digilent ZedBoard with power supply

– SD card with at least 64MB capacity

– Computer with SD card reader

– Two micro USB cables and LAN cable

• Software:

– Lianx SD card image (see Appendix C)

– Windows only: PuTTY (can be downloaded from http://www.chiark.greenend.
org.uk/~sgtatham/putty/)

6.1.1 Setup SD Card

First, an SD card must be set up as a boot source for the ZedBoard. Insert the card
into the computer and format the SD card with a FAT or FAT32 file system. Now copy
all contents of the Lianx SD Card Image zip-file onto the freshly formatted SD card.
Safely eject the SD card from the card reader after copying has completed.

6.1.2 Hardware Setup

To ensure a correct boot procedure, some jumpers on the ZedBoard must be set cor-
rectly. JP7 to JP11 must be set to SD card as the boot source. JP7, JP8 and JP11

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
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Figure 6.1: ZedBoard with Connectors and Jumpers [6, modified]

must be set to GND, while JP9 and JP10 must be set to 3V3. If you use a board in
revision C, also make sure to set JP6. Figure 6.1 shows the location of the jumpers and
their correct configuration.

Insert the SD card into the slot on the backside of the ZedBoard. Connect the USB
cables for the UART and JTAG interfaces and LAN cable, both to the computer and the
ZedBoard. Also connect the power supply and switch on the ZedBoard. See Figure 6.1
for further reference of the connections. The ZedBoard will now boot up and start the
embedded Linux.

6.1.3 Setup the Connection

The connection method to the target depends on the desired channel. If you wish to
connect directly with an USB-cable, you can use the serial console. The connection
via Ethernet and SSH is much more versatile and offers remote connection even over
LAN or the internet. However, the setup of such a connection has more pitfalls. When
using a non-isolated LAN, appropriate security measurements like the usage of a VPN
connection must be taken, which aren’t discussed in this document.

Connection via a Serial Console

Find out which COM-port the USB-to-UART adapter on the ZedBoard was assigned.
Pressing [Windows] + [Pause], select the Device Manager in the list left and expand
the list of Serial and Parallel Connections (COM and LPT) as depicted in Figure 6.2.
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Figure 6.2: Windows Device Manager with the COM-port of the Zed-
Board USB-to-UART Adapter

Start up PuTTY, choose a serial connection and enter both the correct COM-port
number as well as the speed of 115 200baud as shown in Figure 6.3. Connect to the
target and a remote console on the ZedBoard will open. Press enter and the bash
prompt will show as in Figure 6.4.

Users of Linux can use the screen tool to connect via a serial connection.

~> ls /dev/ | grep ttyACM
ttyACM0
~> screen /dev/ttyACM0 115200

Users of OSX can also use the screen tool to connect via a serial connection.

~> ls /dev/ | grep ’tty\.’
tty.usbmodem1451
~> screen /dev/tty.usbmodem1451 115200

Kill the connection with [Ctrl] + [A], [K].

Connection via SSH

The default IP adress of the ZedBoard is 192.168.2.101. It can be changed by editing
the file ’interfaces’ on the Lianx SD card. It is assumed that the user is familiar with
setting up the necessary network connection on his computer in an existing LAN or a
direct connection using static IPv4 adresses in the same subnet as the ZedBoard resides
in.

Start up PuTTY, enter the host name ’root@192.168.2.101’ and connect as shown in
Figure 6.5. You will be asked for the root password which is root and after hitting enter,
you will be welcomed with the message in Figure 6.6 on the ZedBoard.

To disconnect, simply close the PuTTY window.
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Figure 6.3: PuTTY Settings for Serial Connection

Figure 6.4: Remote Bash on the ZedBoard via a Serial Connection

Figure 6.5: PuTTY Settings for SSH Connection
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Figure 6.6: Remote Bash on the ZedBoard via a Ethernet Connection
using SSH

6.1.4 Usage of the Remote Console

When connected to the ZedBoard with a remote console, you can interact with the
running Linux directly. Several tools are available, such as the text editor nano, the
process and system load monitor top and many more. The installation of programs
like on normal Linux environments is not possible, but can be done by creating a new
system image using the buildroot tool (for details see subsection 5.3.3). The contents
of the root file system are created anew upon each reboot from the packed ramdisk
images. The contents of the SD card however remain persistent and can be found in
the /mnt path.

To show some functionality of the connection, a simple driver for controlling the PS
LED (LD9) can be used.

root@zynq -lianx:/> psled on
root@zynq -lianx:/> psled off

Be aware that you are granted root access to the running Linux. Be sure to understand
the implied responsibility and always be cautious when working directly on the target.

Before turning off the ZedBoard, always make sure to shutdown the running operating
system by entering:

root@zynq -lianx:/> halt



64 Chapter 6. Demonstration and Tutorials

6.2 Setting up the Demo Project

In this tutorial, a demonstration project is introduced. First, the general setup is
explained, and second a step-by-step guide helps to get it up and running.

6.2.1 Overview over the Demo Project

To show the capabilities of the framework and how to work with it, the Demo Project
implements some simple tasks:

• Simple LED Counter
A basic LED counter uses the eight LEDs on the ZedBoard. The speed and
direction of the counter can be influenced from the PS.

• PWM-driven Capacitor
A PWM signal on PMODA JA2 charges and discharges a capacitor and the re-
sulting voltage is read back with the internal XADC. The PWM can be enabled,
the base frequency set and the duty cycle can be used for step response analysis
(FiFo buffer).

• Monitoring
The monitoring compares the maximal capacitor voltage and sets the system into
the Failsafe state if it passes a configurable value. Also, SW0 triggers the monitor
if switched on.

A file contained in the Demo Project folder in Appendix C called signal_list.txt lists
the signals used in this project. Figure 6.7 shows the used external hardware connected
to the ZedBoard.

Figure 6.7: Schematic of the Demo Project Hardware

6.2.2 Setting up the Development Framework

To set up the Demo Project, make a copy of the supplied folder structure to work in.
The source files are provided in Appendix C. Connect the ZedBoard, running the Lianx
System Software (to set this up see section 6.1). Now open the Simulink project in the
Demo Project folder, which initialises the Matlab environment and the connection to
the ZedBoard. Open the User Canvases with the first Simulink Project shortcut which
can be found in the upper left corner of the Projects Shortcuts tab in Matlab. In the
opened tabs, the implemented functions can be seen. Explore the model to get an idea
how and where what can be done. Also, the structures of the framework can be viewed
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by navigating through the hierarchy. When done, the model should be closed without
saving any changes.

The next step is to generate the PL bit-file. Use the second Simulink Project shortcut
to open the HDL Workflow Advisor. Follow the advisor steps until the end. Explore
the settings, which all should already be set correctly. The interface model generated
in step 4.2 must be saved in the work folder under the proposed name. Also note that
before executing the last step 4.4, wait for the external console to indicate the end of
the bitfile generation from step 4.3.

By using the third project shortcut, the generated interface model can be opened and
the system tested in the External Mode. When the constants providing signals to the
PL block are changed, they will be sent to the target and thus can be used to interact
with the model running on the Zynq. The systems reaction can be watched by adding
scopes to interesting signals. As described in subsection 4.2.9, the Watchdog must be
turned off when using the External Mode.

The bitfile is programmed only until the next reboot. To reprogram it, use the Simulink
Project shortcut for the temporary deployment of the bitfile (as well as the interface
model software).

6.2.3 Implementing the Remote System Interaction

To use the system from remote without the need of a Matlab license, the interface model
needs to be adapted. There are five blocks to be added and some parameters to be set
for this demo project. The user needs to open the Simulink model by double clicking
on the model gm_framework_main_interface.slx. The blocks can be taken from the
provided library lianx_lib_ps which can be found in the Simulink library browser.

To make the Demo Model work, it is important to connect the following blocks correctly.
Figure 6.8 illustrates how to connect the block Lianx Control Target State Control. The
default parameter values set in the block mask can be kept.

Figure 6.8: Connecting the Lianx Control Target State Control Block
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The block Lianx UDP Receive SetParam is next. The necessary connections are depicted
in Figure 6.9. It is important to set a signal name to have it available afterwards in the
GUI. To do so, double click on the signal line and enter the corresponding name.

Figure 6.9: Connecting the Lianx UDP Receive SetParam Block

There are also some mask parameters to be set. Double click on the block and the mask
window will open. In Figure 6.10 all parameters to set for the demo model are shown.
All used output ports need to have a min and max value. For the IP port configuration
tab the default values can be used.

The blocks Lianx Continuous Signal and Lianx UDP Send GetParam are depicted in
Figure 6.11. Also here it is important to name the signal. The mask parameters can be
left with default values.

The last block to connect is the Lianx PL FIFO Buffer PS Control block. All connec-
tions can be seen in Figure 6.12 and Figure 6.13. To have the signal names available
afterwards in the GUI, they have to be set at the signal line to the block itself. Finally
the values in the block mask need to be set correct. All values which have to be set are
depicted in Figure 6.14. The other parameter can be left with its default values.

When all blocks are connected and parameters are set as demonstrated, the model has
to be saved and the user can go ahead and generate code of the model. This can be
done by clicking on the shortcut 04 - Generate PS Software and GUI API. This will
generate an executable for the target and an API list with all necessary information
for the GUI. These two files are stored in the work folder. The executable has the
same name as the model itself but without file extension. The created API list is called
API_Data_gm_framework_main_interface.mat.

To test the just generated code, the executable and its corresponding bit-file can be
deployed temporarily by clicking on the shortcut 05 - Deploy PL and PS code tem-
porarily. Alternatively the deployment can be made permanently by using the shortcut
06 - Deploy PL and PS code persistently this ensures the reprogramming of the PL
and starting of the PS software upon reboot. To revoke the permanent deployment one
can click on the shortcut 07 - Remove persistently deployed PL and PS code. Since the
model was adapted for remote control, the target can now be controlled with the GUI.
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Figure 6.10: Mask Parameters of the Lianx UDP Receive SetParam
Block

Figure 6.11: Connecting the Lianx Continuous Signal and Lianx UDP
Send GetParam Block
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Figure 6.12: Connecting the Lianx PL FIFO Buffer PS Control Block
Outputs

Figure 6.13: Connecting the Lianx PL FIFO Buffer PS Control Block
Inputs

Figure 6.14: Mask Parameters of the Lianx PL FIFO Buffer PS Con-
trol
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6.2.4 Running the Demo Model

When the software is deployed, the GUI can be started by clicking on the shortcut 08 -
Start GUI. Make sure that the following ports are open and not blocked by a firewall,
otherwise the corresponding module will not work:

• 25000, 25001, 25002, 25003: for the set / get parameter module

• 26000, 26001: for the control target module

• 27000, 27001: for the continuous signal module

• 28000, 28001, 28002, 28003: for the trigger module

After the GUI has started up the before created API Data has to be loaded by clicking
on Read API Data. The GUI afterwards will load all necessary modules and look as in
Figure 6.15. One module after the other can now be enabled and tried out. Additional
information how to use the GUI can be found in subsection 4.3.5.

Figure 6.15: GUI Start Screen

Here are two features of the Demo to try out:

LED Counter

Enable at least the Control Target, Set / Get Parameter and Continuous Signal module.
To start the LED counter, assure that the monitor does not trip. Therefore set the New
Set Values as follows:

led_direction 0
led_speed 10
pwm_enable 0
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To set the new values push Set Parameters. Afterwards the Run button in the control
target panel can be used to start the LED counter. The continuous signal plot should
now show the current led pattern in the upper plot area. If the system monitor was
tripped before it might be necessary to push the Reset button. The y-axis can be scaled
by right clicking into the plot area and choosing a new range.

Step response

If the external hardware which was mentioned in subsection 6.2.1 is available, it is
possible to record a step response. To do so, some values have to be changed as follows:

pwm_enable 1
pwm_frequency 1000
pwm_maxvoltage 0.95

The values of the LED parameters do not matter, because the LED counter can run
parallel. The trigger module has to be enabled and the following parameter can be set
within this module:

Sample Shift 250 samples
Push Sample Time (*10 ns) 100 (1× 10−6 s)
pwm_duty1 0%
pwm_duty2 75%

After the values are changed, push the Preload New Set Value button. This prepares a
trigger event with a sample rate of 1MHz and switch the parameter after 250 samples.
As the Trigger button is now pushed, the view depicted in Figure 6.16 will appear. Be
aware that the read out process of the FiFo buffer will take at least 10 seconds in this
configuration. The user is encouraged to play around using other parameters within
this Demo Project.

Figure 6.16: Step Response of Trigger Shot
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6.3 Setup Zynq XADC in Custom Reference Design using
Matlab/Simulink

The following tutorial shows how to use the integrated XADC of the Zynq-7000 SoC and
demonstrates a basic implementation method of it. It further shows how to create and
register a custom Reference Design in a step by step guide. Useful additional references
for further development are also given. The given example targets the use of three
differential analog inputs which are available on the XADC header of the ZedBoard.
The pin out for it can be found in [6, p. 25].

The folder SetupXADC in the digital appendix contains all supporting files and scripts.

6.3.1 Create Vivado Reference Project

Step 1: The first step is to create a Reference Design which can be expanded with
an XADC IP block. To do so, the first section 1: create Vivado Project in the script
utility_SetupXADC.m can be run. Make sure that you change the current Matlab folder
to the file/script location. The first section of the provided script creates a Vivado
project. It is based on the Reference Design provided by the MathWorks hardware
support package Xilinx Zynq-7000. After the project is created, it will open and focus
the user to the block design diagram. The just created basic reference design is based on
a clock frequency of 50MHz. To change the clock frequency, one can double click on the
clock wizard clk_wiz_0 and change the output clock frequency to 100MHz under the
output clocks tab. The hardware block for the XADC is implemented using the XADC
Wizard, provided by Xilinx. To add this block, right click in the block design Diagram
and click Add IP .... A search window will appear, fill in xadc wizard and press enter.
The IP block xadc_wiz_0 is added. There are many different ways to parametrise this
IP block, for further information see [56]. Figure 6.17 to Figure 6.20 show the set values
for this example. The Dynamic Reconfiguration Port (DRP) communication interface
is used to interact with the XADC from the Simulink PL Canvas.

The just parametrised IP core does need some hardware connection. The block port
xadc_wiz_0/dclk_in is connected to the block port clk_wiz_0/clk_out1. The three
differential channels (vn/vp, vaux0n/vaux0p and vaux8n/vaux8p) have to be external.
To do so, expand the channel buses, select all ports of the channels and press [Ctrl] + [T].
Figure 6.21 illustrates the just augmented basic reference design.
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Figure 6.17: XADC Wizard Tab settings: Basic

Figure 6.18: XADC Wizard Tab settings: ADC Setup

Figure 6.19: XADC Wizard Tab settings: Alarms
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Figure 6.20: XADC Wizard Tab settings: Channel Sequencer

Figure 6.21: Reference Design for the XADC Tutorial
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Step 2: The next step is to create a tcl-script for this reference design. This can be
achieved by writing the following code into the Tcl Console of Vivado which can be
found in the lower part of the window.

set path [pwd]
write_bd_tcl $path/system_top.tcl

This commands will create the file system_top.tcl in the current folder. The just created
tcl-script of the reference system will be used in step 5 to execute the registration of
the custom Reference Design.

6.3.2 Interface Definition

Step 3: It is worth to write an interface list for the registration of the Reference Design
to have a better overview. This interface list should include the Internal Interface and
External Port Interface as mentioned in section 5.1.4. A template for such a list is
available in Appendix C as Interface.xlsx. A script could be written to automate the
registration using this interface list, if a lot of reference designs need to be registered.
Also a constraint file needs to be written for the external ports of the Reference Design.
These ports need to be assigned to a specific pin on the Zynq SoC.

In addition to the basic XADC functionality we also include two GPIO pins which reside
on the XADC header. For a proper external IO interface registration, the following
arguments need to be defined:

• InterfaceID e.g. ’LEDs General Purpose’
This name will appear in the HDL Workflow Advisor in the Target Platform
Interface dropdown list.

• InterfaceType e.g. ’OUT’
Interface direction, if OUT it can only be assigned to a Simulink Outport, if IN
it can only be assigned to a Simulink Inport, if INOUT can be assigned to both.

• PortName e.g. ’GPLEDs’
This is the Board top-level name.

• PortWidth e.g. 8
This defines the port bit width.

• FPGAPin e.g. {’T22’,’T21’,’U22’,’U21’,’V22’,’W22’,’U19’,’U14’}
This defines the pin name of the defined interface. Information about the FPGA
pins can be found in Appendix C under 01_documentation/xc7z020clg484_pin.ods.

• IOPadConstraint e.g. ’IOSTANDARD = LVCMOS33’
This defines the applying IO standard.

In the base reference design the following external interfaces are already available:

• 8 LEDs

• 8 DIP Switches

• 5 Push Buttons

• 4 Pmod Connector with 8 ports each
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It is possible to utilise these external ports later in the Simulink PL canvas for direct
interaction with the mentioned periphery.

The internal interface between the reference block design and the Simulink PL canvas
need to be defined as well. In our configuration the XADC uses a DRP communication
interface whose connection need to be implemented. Therefore the following two input
and two output ports for the DRP are needed:

• Output data bus
This ports delivers the measured signals and acts therefore as an input for the
Simulink PL canvas

• Data ready signal
This port sends a signal when new data is ready and acts therefore as an input
for the Simulink PL canvas

• Address bus
This ports sends the address of the desired channel to read out and acts therefore
as an output for the Simulink PL canvas

• Enable signal
This ports sends a signal when the Simulink PL canvas wants to read new data
and acts therefore as an output for the Simulink PL canvas

Further information about this DRP communication interface can be found in [49, 56].
For a proper registration the following arguments are necessary for each internal port:

• InterfaceID e.g. ’Output data bus (XADC DRP)’

• InterfaceType e.g. ’IN’

• PortName e.g. ’XADC_DO_OUT’

• PortWidth e.g. 16

• InterfaceConnection e.g. ’xadc_wiz_0/do_out’

• IsRequired e.g. ’false’
If there is a connection necessary to run the reference design, then this argument
should be set to true.

To finish this step, a constraint file for the external ports of the reference design is
needed. There is a template available to create a constraint file for the external ports
of the reference design XADC_vpvn_vaux0_vaux8.xdc. For the analog inputs there
would be no need to assign an IOSTANDARD but since there is an issue with this,
a workaround is needed [50]. Hence it has to be set to the IOSTANDARD that is
compatible with the digital I/Os in the bank. Therefore in our design it is set to the
IOSTANDARD LVCMOS18 because the additional GPIO pins are set to this IOSTAN-
DARD.

6.3.3 Register Reference Design

Step 4: The next step is to create the necessary folder structure for the registration
of the custom Reference Design. This folder structure is explained in section 5.1.4.
As a start point it is good practise to copy the provided base Reference Design from
MathWorks. To do so, one can run section 4 in the script utility_SetupXADC.m. This
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will generate the whole folder structure and also copy the necessary files. These files
have to be adapted in the following steps.

Step 5: The before created files (system_top.tcl and XADC_vpvn_vaux0_vaux8.xdc)
can be copied to the right place into the folder structure. They both need to be placed
in the package folder named +vivado_base_2014_4. If we would have relied on custom
IP cores in the Reference Design, they would also have to be copied to the right place
and packed as a zip-container. This step is also explained in the script.

Step 6: The board plugin registration has to be adapted. Running section 6 of the
provided script will open the right file to adapt. All existing board plugins have to be
deleted except ZedBoard.plugin. This plugin has to be adapted to the created folder
name. The board folder is a package folder therefore the ’+’ character does not have to
be added. Save the changes and close the file.

Step 7: The board definition has to be adapted. Running section 7 of the provided
script will open the right file to adapt. Follow the instruction in the script.

Step 8: The reference design plugin registration has to be adapted. Running section
8 of the provided script will open the right file to adapt. Follow the instruction in the
script.

Step 9: The reference design definition has to be adapted. Running section 9 of the
provided script will open the right file to adapt. Follow the instruction in the script.

Step 10: Finally the just created board support package has to be added to the Matlab
search path to make the board available.

For more information about the registration of a board and/or a reference design the
following commands will open the corresponding help files of MathWorks.

doc hdlcoder.Board

doc hdlcoder.ReferenceDesign

6.3.4 Implement a Simulink Example Model

This section describes how to implement a Simulink example model, based on the before
created and registered custom reference design. To communicate with the XADC on
the Zynq, the DRP communication interface has first to be programmed. Therefore a
state machine block is very handy to fulfil this task. There are three differential channel
to read out and four states are needed for each read out. These states are as follows:

• IDLE: In the idle state the address is incremented.

• ADDR: In the address state the address is written to daddr_o and the data enable
port (den_o) is set to false.

• EN: In the enable state the data enable port (den_o) is set to true.

• WAIT: In the wait state the data enable port (den_o) is set to false and it waits
for the data ready signal (drdy_i) to read data from the XADC and outputs on
the output port (val_o).

The address specification of the used channels can be found in [49].

The Simulink model XADC_Demo.slx shows an example implementation uf such a
system. To generate the bit-file for this model the HDL Workflow Advisor can be run
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on the atomic subsystem XADC_HP_HDL. In task 1.1 the before generated Reference
Design can be chosen. In task 1.2 the interface to the registered iIP cores, external
ports and to the PS (AXI4-Lite) can be configured.

Hint: There is also a bit-file available for those who want to try out the model directly.
The bit-file is named XADC_Demo.bit. To program it onto the ZedBoard via Ethernet,
the following code can be run in Matlab:

z = zynq;

z.checkConnection

z.programFPGA('XADC_Demo.bit');

To try out the model, start the interface model gm_XADC_Demo_interface.slx in
External Mode. Remember to set the simulation time to inf. There are multiple ways
to test the XADC. One way could be to use a signal generator. Another way could be
a small voltage divider circuit, where the output signal should be max 1V. There is
a pulsed output on port PMOD JA1 which outputs a 25 kHz rectangular signal with
55% duty cycle and 3.3V. To demonstrate the speed capability of the XADC, three
FiFo buffers are attached, to store the data from the three XADC channels. This FiFo
buffer can be read out from the interface model. The model is parametrised to store
10’000 data points. The sample rate of the processing system is parametrised to 1 kHz.
Hence it takes 10 s to read out the FiFo buffer. The 10’000 samples which are acquired
with the FiFo buffer correspond to a time of 100µs.
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Chapter 7

Conclusion and Expandability

In this chapter, a short review over the Thesis should sum up the work done. Noticed
shortcomings are discussed and some options for improvements and further work are
listed.

7.1 Summary

The overall goal of this thesis was to gather information about the ZedBoard and provide
tools to make the first steps of a system engineer using this embedded system platform
easier. This was done by developing the Development Framework and listing a lot
of background information. Also, to provide an interaction method for the system’s
operation after the development phase, the Remote System Interaction methods were
designed.

7.1.1 The Development Framework

The main tool for easing the implementation of an embedded system on the Zynq
is the Development Framework. The achieved solution offers a simple way for the
implementation uf a given system into a provided environment. This provides a given
set of possibilities and options which can be used in a straightforward way. Techniques
for testing an achieved system were also outlined and enable a comprehensive way of
evolving a solution from the theoretical design to its implementation and test in a virtual
environment.

The same goes for the implementation on the target platform. The code generation,
deployment and test of a system onto the ZedBoard is outlined and assistance is provided
for a more straightforward development process.

7.1.2 The Remote System Interaction

For the interaction with an implemented system, Simulink Library Blocks and a GUI
were developed and implemented. Their use is described at large and the provided
functionality offers a good flexibility and performance.

With the provided solution it is possible to control the system state, change and read
parameters, log signals over time and to analyse step responses in detail. Also, the
acquired data is stored for later use. This enables a flexible way to work with an
implemented system from afar.
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7.2 Shortcomings, Improvements and Possible Extensions

Of course the capabilities to achieve a perfect and thoroughly field-tested solution are
not on hand when writing a thesis in such an enormously complex field. Therefore,
an overview over noticed shortcomings and possible extensions should be given in this
section.

7.2.1 The Development Framework

The Development Framework provides a basic functionality and especially a given set
of available signals. For most systems, the given Framework should suffice. However,
some additions and further automation or scripts could ease the use of it, for example:

• For now, all projects basing on the Development Framework are named identi-
cally. This could lead to confusions when working on several projects in parallel.
Therefore it would be desirable to add the possibility to rename a project and
propagate this name throughout all stages of the development process, e.g. the
generation of the executable and bit-file with the corresponding project name.

• Since the achieved solutions tries to be as generic as possible, the signal names
follow a fixed scheme. It would be possible to use a script to rename the used
signals to more intuitive terms, which would be propagated throughout the whole
framework for the engineer’s convenience.

• The addition of more signals or the tailoring of the FiFo stage could also be done
with scripts. This could analyse the requirements of a system in a defining list,
check the available resources and by copying and adapting the given structures
expand the capabilities on demand.

Performance Enhancement

For a better performance on a given implementation (which itself should be optimised of
course), the Embedded Code Generation can be biased and optimised. The same goes
for the Embedded HDL Coder. Currently the whole process of generating the necessary
hardware description and bit-file for the PL is not analysed and influenced. However
this is absolutely necessary when developing a system which should satisfy a real-world
application.

Security Concerns

In using Matlab/Simulink for the development process, a proven and well-maintained
tool is utilised. The same goes for the Embedded System Software which bases on
Linux. However, no security aspects were regarded. A system even for serious beta-
testing should be hardened against potential threats. This includes the usage of pass-
words, communication encryption, separation and/or tunnelling from other systems and
networks and so on. Also, the maintenance of such a complex system must be done
with care, especially by observing and resolving potential security flaws. It has to be
repeated that the given tools and systems aren’t fit for serious usage and deployment
without modifications.
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7.2.2 The Remote System Interaction

The Remote System Interaction as provided offers a basic toolkit to work with a re-
mote system. Most common applications are covered and even some more advanced
operations like the analysis of a step response with fast signal capture and readout
is available. Of course a lot of enhancements and improvements conceivable. Some
examples are listed below.

Connection Check

Since the communication between the target and the GUI uses UDP, the correct trans-
mission of data is not inherently ensured. Therefore, a check mechanism for correct
communication would be a good addition to the current GUI solution. Also a periodic
check if the target is still running and a corresponding error message in the GUI would
add a certain security of operation.

Lianx Library Blocks

The provided library blocks could be scripted for variant signal and parameter sizes such
that only signals actually needed are available. This would expand their usability and
effectiveness because only necessary data is transmitted. Also the support of floating
point data could be added.

Another nice feature would be to add support for the standardised VISA Virtual In-
strument Software Architecture. This would even allow the interaction with industry
standard systems and software.

GUI

So far, the development of the GUI was based on Matlab and the there available tools.
While doing so offered a steep learning curve, it also had some impacts on the per-
formance of the final solution. For example, the development took part on a full hd
screen and no regard was given to the resolution for other screens. There would be a
nicer way to have a resizeable GUI which keeps the font size correct and adds scrollbars
for a smaller screen resolution to keep the GUI nice and clean. A progress bar could
visualise how long recording and then transmitting captured data still takes. Also,
updating some of the GUI contents (especially the tables) takes a long time and thus
limits the responsiveness. Other improvements could include a dynamic creation of the
GUI which loads the necessary modules only, which fits the size of the GUI modules on
demand, enables rearranging of modules or their display in separate windows. Another
nice feature would be the support for several models which could be selected from the
GUI and started on the target at will.

While some of these points could be optimised with Matlab, of course the GUI could
be created anew with another program language which has its own advantages and
disadvantages.



82 Chapter 7. Conclusion and Expandability

7.3 Verdict

The Development Framework eases the design and implementation of a system on the
Zynq by leading the system engineer through the necessary steps and by takeing over
some tasks and complexity of the system. All basic requirements are fulfilled and a
working solution is delivered. For the analysis and enhancement of performance on the
target, a lot of information was gathered and documented. However the elaboration of
a generic solution to this problem is not feasible since the performance highly depends
on the desired functionality.

The Remote System Interaction provides the demanded functionality. It enables the
interaction with the remote target system with all basic features in a simple interface.
The development focus was set rather on showing a running solution for each function
than creating a fully custom and efficient software. The provided interaction method
can be used as a good base for further work.

The documentation focuses mainly on the application of the elaborated solution. While
most methods to satisfy a certain demand are outlined, also a lot of information can be
found when looking inside the provided files and scripts. Even tough the application of
the elaborated solution could not be demonstrated on the intended hardware, a sample
implementation of a simple functionality demonstrates all features in a comprehensive
way. The tutorials and given background information contribute to the overall substance
as well.

To sum up, it can be stated that the elaborated solutions satisfy the posed demands
in most cases. A broad knowledge about embedded systems, Matlab/Simulink and
managing the design and implementation of complex systems was gathered and will
provide a sound base for further work.
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Additional Reading

The Zynq Book [9]

The Zynq Book is a comprehensive description of the Xilinx Zynq-7000 SoC. Besides
the Zynq-specific parts, it also includes a lot of information about embedded systems
in general. Additionally, there is a collection of tutorials available. All in all, the Zynq
Book is a great way to get a good insight into the Zynq platform.

Managing Model-Based Design [1]

Roger Aarenstrup’s book gives a good introduction to model-based design approaches.
Traditional and modern methodologies are compared and the general benefit of model-
based design are outlined. Practical hints how these tools can be introduced and made
use of in real-life situations round up this well-structured and comprehensible book.

Simulink User’s Guide [35]

The Simulink User’s Guide is a comprehensive reference for this complex and powerful
software. Divided in sections covering basics and more advanced topics, it provides
useful information to new and experienced users alike.

Matlab Fixed Point Designer [26]

The Getting Started Guide to the Matlab Fixed Point Designer explains the concept of
fixed point data types and how they are used in Matlab/Simulink. Further information
is contained in User’s Guide [28] and Reference Manual [27].

Simulink Embedded Coder Getting Started Guide [23]

The Simulink Embedded Coder Getting Started guide introduces the reader into the
basics of generating executable code from Simulink models, specifically targeted for
Embedded Systems. More information can also be found in the Embedded Coder User’s
Guide [25] and Reference Manual [24].
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Simulink HDL Coder Getting Started Guide [29]

As for the Embedded Coder, the same documentation also exists for the Simulink HDL
Coder which allows the generation of HDL code for hardware descriptions from models.
Similarly the Reference Manual [30] and the User’s Guide [31] provide more detailed
information.

Writing a Simulink Device Driver Block [8]

This step-by-step guide helps with the development of custom Simulink blocks, in this
case device drivers. While the examples target the Arduino device family, the given
information is valid for any other platform as well.

The Mathworks Course on Programming Xilinx Zynq with Matlab and
Simulink [33]

MathWorks offers a course which introduces the partipicant to the use of Matlab/Simulink
to program the Xilinx Zynq. While all basic steps are outlined, it also covers several
methods of testing the system in the development phase or more comprehensive tasks
such as adapting a custom Reference Design or writing and handling IP cores. The
course documentation contains all main information, but is not publicly available.

Introduction to Linux - A Hands on Guide [20]

While there are a lot of Linux introductions, Machtelt Garrels et Al. managed to
condense a lot of information into a comprehensive guide. Both new users and experts
can find hints and background information to make their life easier. Also, besides the
Hands on guide, there are lots of other interesting resources available at [19].
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Cheatsheets

The idea of this appendix is to give some hints on using Linux or Matlab more efficiently.
This list of commands is not complete at all and only contains a fragment of all useful
information. However, going through it sometimes can give the reader a new idea or
hint on how something could be done.

A good source for cheatsheets is http://overapi.com/, which provides helpful com-
mand and tool lists for all kinds of software.

http://overapi.com/
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B.1 Linux Cheatsheet

Command Explanation

» alias name=’command’ create a command alias
(for persistence: add alias commands to /.bashrc)

» apropos ’command’ search manpage database for command
» cat /proc/cpuinfo pipe information about CPU to stdout
» cat /proc/meminfo show memory related infotmation
» cat /proc/interrupts list interrupts and the core they are running on

(in /proc/irq those affinities can be changed)
» cd /path/to/dir change directory
» dd if=/dev/source | pbzip2 -9f > ./target.img.bz2 make a compressed image of a device, for example an SD card
» bunzip2 -dc ./quelle.img.bz2 | dd of=/dev/ziel unpack compressed image
» dd if=/path/to/source of=/path/to/target redirect bitstream from source to target
» dhclient eth0 Invoke dhcp client on eth0

(use ’ifconfig eth0 ipadress’ to set IP adress manualy)
» dmesg show hardware-related log messages
» tail -f /var/log/messages show tail of system messages
» du show disk usage

(also use ’du -sch /path/to/folder *’ for more details about path)
» htop more sophisticated top with options to show CPU affinity etc.
» ifconfig show information about LAN connections
» iwconfig show information about WLAN connections
» less /path/to/file displays text files in a comfortable pager
» ls /dev/pts/ shows all logged in users
» lsof lists open files, folders, unix sockets, IP sockets and pipes
» lsof -X -r 2 /dev/device monitor device access in a 2 seconds interval
» man ’command’ show the manpage (users manual) of the given command
» mkdir /path/to/new/dir make a new directory
» nano ’filename’ open a file in the nano text editor or create it
» nice ’pid’ set relative priortity (niceness) of a process
» ps aux show running processes
» reset reset shell output, eg. if mangled bitwise data messed up the shell
» rm -rf /path/to/delete delete files or folders (recursively, forced)
» rsync rsync is a very flexible file sync tool
» scp /path/to/source /path/to/target copy file(s) via ssh (use user@ip:/path/to/file for remote side)
» screen ’command’ start program detachable
» screen /dev/ttyACM0 115200 open serial console on ttyACM0
» split -b 1024m /path/to/source /path/to/target split source file into chunks of size b (which will be named target.#)
» cat target.split.* > source combine file chunks target.split.# back together to source file
» ss -s list currently established, closed, orphaned and waiting TCP sockets
» ssh user@remoteip start ssh connection
» tar -I pbzip2 -cvf foo.tar.bz2 ./some/files create compressed tarball from files
» pbzip2 -dc filename.tar.bz2 | tar -xf - decompress
» taskset sets affinity of a task to a cpu
» top show task manager
» tty find out in which serial console you are
» wget adress /path/to/target download file via wget
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B.2 Matlab Cheatsheet

General Commands Explanation

» system(’dir’) executes commands in OS terminal
» !command executes terminal commands from matlab console
» !vivado & opens vivado in own window
» clipboard(’copy’,which(’zynq’)) get path of zynq to clipboard
» cs = getConfigSet(’model_name’,’config_set_1_name’) get config file of Simulink model
» f = fullfile(’myfolder’, ’mysubfolder’, ’myfile.m’) build full filename from parts (OS invariant)
» feature(’DefaultCharacterSet’) show current character set
» feature(’DefaultCharacterSet’,’UTF8’) change character set (startup.m)
» filesep fileseperator OS specific (/ vs. \)
» license(’inuse’) list all currently used licenses
» matlabshared.supportpkg.getInstalled to check which hw-support pkg are installed
» methods(’object’) list all methods of an object
» save(’configfile.mat’,’cs’);
» ver lists all installed toolboxes
» visdiff(’configfile1.mat’,’configfile2.mat’); compare two files or folders
» winopen(pwd) opens files on windows OS

Simulink Specific Commands Explanation

» open_system(’system’) opens Simulink model
» get_param(’system/block’, ’Param’) get block parameter
» set_param(’system/block’, ’Param’, ’Value’) set block parameter
» set_param(’lianx_lib_ps’, ’Lock’, ’off’) unlock ps library
» set_param(’lianx_lib_ps’, ’Lock’, ’on’) lock ps library

Zynq Specific Commands Explanation

» z = zynq(’linux’,’IPAddress’) create zynq object (Linux Service)
» z.putFile(’sourcefile’,’destination’) copy file from Matlab to target
» z.getFile(’sourceFile’,’destination’) copy file from target to matlab
» z.programFPGA(’system_top_wrapper.bit’) copy bit file on target and program FPGA
» z.execute(’command’,true) executes a command on the target and feeds back its output
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Appendix C

Digital Appendix

This is a short description of the Digital Appendix. It lists the folders which accompany
this document and should help to understand the contents and structure.

• 01_documentation
This folder contains the main document of this Thesis. On the CD-version of the
Digital Appendix, also a lot of referenced documents can be found. These are
missing in the uploaded version due to restrictions in the total file size.

• 02_custom_ref_design
The custom Reference Design created for the Development Framework and the
Demo Project can be found in this folder. The creation and structure of a Refer-
ence Design is explained in section 6.3.

• 03_development_framework
This folder contains the Simulink Project with all scripts and models for the de-
velopment framework. Also, some parts for using the Remote System Interaction
are already integrated here.

• 04_remote_system_interaction
The scrips and functions to generate the different parts of the Remote System
Interaction are provided in here.

• 05_sim_library
The here provided Simulink Library contains all blocks which were developed
during this Thesis.

• 06_demo_project
This folder contains the Simulink Project for the Demo Project with all apper-
taining files. Note that this is very similar to the Development Framework, but
contains the implemented functions and structures for the demonstration.

• 07_system_software
Here the necessary files and scripts to customise the system software with the
MathWorks buildroot toolchain can be found. Also, the image of the latest release
of the Lianx System Software can be found here, together with some remarks and
scripts for uploading it to the target.

• 08_tutorials
In this folder, all files necessary to work through the tutorials in chapter 6 are
provided.
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Working with the Framework or Demo Project

While the usage of the Development Framework is described in section 4.2, the setup
of the Demo Project is explained in section 6.2. To work with those, at least a copy
of the relevant folder as well as the folders 02_custom_ref_design and 05_sim_library
are needed.
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