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ABSTRACT: An invariant formulation of an elastic/viscoplastic model for an initially transversely isotropic rock is presented. To
describe the nonlinearity of the elastic response, the elastic moduli are considered to be stress dependent. Furthermore, it is shown
that in order to have a conservative elastic response, the elastic moduli may depend on stress only through the mean stress and a
mixed stress-structural tensor invariant tr Mer, where M = 51 051, 51 being the axis of symmetry. The influence of the

anisotropy on the irreversible response and strength is described by means of a fourth order symmetric anisotropic tensor AijkJ'

which is involved in the expressions of the flow rule, yield function, and failure criterion in the form of a transformed stress tensor:

1:ij = Aijkl O'kJ' The model adequacy is demonstrated by applying it to a sedimentary rock, Toumemire shale. The comparison

between the model predictions and data is within the natural scatter of the data

RESUME: On presente un modele elasto-viscoplatique d'une roche initiallement isotrope transverse. Le modele rend compte de la
nonlinearite de la reponse elastique. On montre que Ie choix des lois de variation des modules elastiques avec l'etat de contrainte ne
peut pas etre arbitraire: afin que la reponse soit conservative les parametres doivent s'exprimer que par des fonctions de la contrainte
moyenne et de l'invariant tr Mer, ou M = 510 5\, 51 etant I'axe de symmetrie. L'anisotropie dir'domaine plastique et de la rupture
est decrite a I'aide d'un tenseur d'order quatre A, invariant par rapport a toute transformation orthogonale appartenant au groupe de
symmetrie. A intervient dans les expressions de la surface de charge, de la regie d'ecoulement et du critere du rupture sous Ie forme

d'un tenseur de contrainte transforme 1:ijJ = Aijkl O'k/' Le modele a etc: applique a une roche sedimentaire, I'argilite de Toumemire.

La comparison entre les predictions du modele et les donnees experirnentales est satisfaisante.

ZUSAMMENFASSUNG: Eine invariante elasto-viskoplastische nicht asoziierte Gleichung fur ein anfangs transversal isotropes
Gestein wird vorgestellt. Gezeigt wird, wie die elastischen Moduli von Spannungszustand abhangen konnen. Die Anisotrote wird
durch einen Tensor vierter Ordnung Aijkl beschrieben. Er ist in den Ausdrucken fur die Fliessregel, die Fliessfunktion und das

Bruchkriterium durch Verwendung eines transformierten Spannungstensors enthalten: 1:ij = Aijkl O'kl' Die Eignung des Modells

wird demonstriert, indem es bei einem geschichteten Sedimentgestein, Tournemire Tonschiefer, angewendet wird.

1 INTRODUCTION

In many rocks, due to the existence of well-defined fabric
elements such as bedding, layering, foliation or lamination
planes, or due to the existence of linear structures, anisotropy
can be important. The symmetries most frequently encountered
are: transverse isotropy and orthotropy. By adopting both
theoretical and experimental approaches, many authors have
investigated the effect of the presence within the rock of
pronounced anisotropic feature on strength. The experimental
studies have been carried out mainly on cylindrical specimens
SUbjected to axisymmetrical state of compressive stresses. It has
been found that at zero or low degree of confinement the
compressive strength varies significantly with the orientation
angle 13 (13 is the angle between the strata's planes and the
direction of maximum compression). Most rocks undergo a
Significant reduction in strength when the anisotropic plane is
aligned at about 30° to the axis of major principal stress (for
most rocks 13 E (300, 450) ) while the maximum compressive
strength occurs at an orientation angle 13 of 00 or 900 depending
upon the rock type. As the amplitude of the confined pressure is
raised the rock responds in a more ductile manner, and the effect
of the strength anisotropy is usually reduced (Attewell and

Sandford (1974); Chenevert and Gatlin (1965); Donath (1964,
1972); Niandou et a/ (1997), etc.). However, an increase in the
confining pressure causes for all angles 13 an increase in the
strength of most rocks. Failure criteria that accounts for the
continuous variation of the compressive strength with
orientation for transversely isotropic intact rock have been
developed by several authors (e.g., McLamore and Gray (1967);
Ramamurthy (1993». These criteria are simple in concept and in
expression and they provide good approximations for the
strength under axi-symmetric loading conditions. However, they
all require a wide range of tests and a large amount of curve
fitting. The numerical implementation is generally difficult,
these theories cannot be applicable to truly 3-D stress state. A
more general approach was adopted by Pariseau (1972).
Pariseau's criterion takes into account the possibility of unequal
tensile and compressive strengths and describe the effect of the
hydrostatic stress on strength. In the framework of the theory of
invariance, a general theory of the flow and fracture of
anisotropic solids was developed by Boehler (see Boehler
(1987». To describe the behavior of initially anisotropic
sedimentary rocks a generalization of Cam-Clay model has been
proposed by Nova (1986).
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In this paper an invariant formulation of an
elasticlviscoplastic non associated constitutive equation for
initial1y transversely isotropic rock is presented. To match the
experimental data for unloading and reloading cycles, the elastic
moduli are considered to be stress-dependent. However, the laws
of variation of the elastic moduli with the stress tensor U cannot
be erbitrary. We demonstrate that in order to obtain a
conservative elastic response the moduli may depend on stress
only through its first invariant a. = tr U and the mixed invariant

a. =tr Ma , where M = S. @SI and SI is the direction .of
transverse isotropy. For each loading level the limit of the elastic
domain is given by a yield function whose expression is a priori
unknown and is determined from data. The basic assumption
adopted here is that the type of those expressions is a priori
unknown and is determined from data. The structure of the yield
function, flow rule, and short-term failure criterion by means of
a constant fourth order anisotropic tensor. The adequacy of the
model is demonstrated by applying it to a stratified sedimentary
rock, Toumemire shale.

2 HYPERELASTIC NON-LINEAR MODEL

For most rocks the elastic moduli are stress dependent. Under
the assumption of small deformations, in the elastic regime the
behavior is thus described by a constitutive equation of the
general form

& = B(u)a

where e is the strain tensor of small deformation, a is the
Cauchy stress tensor, B(u) is linear in a. In addition, B(u)
is symmetric and transversely isotropic. Let us define
(SI,S2,S3) the reference coordinate system associated with the

material symmetries: S. is the symmetry axis, while (S2 ,S3) is

the isotropy plane. Hence, B(a) can be described in the

reference Cartesian system (51,52, S3) by five scalar smooth

functions a, b, u, w, t : 0' ~ R , i.e.:

(2)

i ,j , r , s = 1,.. ·3.

The full use of the hypothesis of transverse isotropy wil1 also

require that the scalar constitutive functions a, b, u,.w, t depend
on a only through the scalar invariants

al = tr(u) , a2 = tr(u2
), a3 = tr(u3

) ,

a. =tr(M u) , as = tr(M u2
)

where M = SI @S\ and 'tr' denotes the trace operator. For the
material to have a conservative elastic response, the constitutive
equation (I) has to be hyperelastic. The constitutive equation (I)

with B(a) given by (2) is hyperelastic ifand only if

Ba Ba Bu Ba Bu--=--+--=--+--,
BUll BU22 BU22 BU33 BUn

~=~=~=O,
BUl2 BUn BU23

~=~=~=o Ba Ba
BUl2 BUn BU23 'BU22 = BUn'
b = const., t = const.

Bu Bu Bw "Bu Bw
--=--+--=--+--
BUll BU22 BU22 BUn BUn'

BW = BW =~=O.
BU12 BUn BU23

(4)

(see Cazacu, 1998).
The restrictions (4) written in terms of engineering strengths are

l+v23 =c
£ l'

2 (5)

(1)

where w = 1/£1 + 11£2 + 2v21 / £2 - 11Gl2 .
It can be seen that relations (5) impose severe limitations in the
choice of constitutive functions describing the evolution of the
elastic moduli with the stress state. Let us denote by G23 the

shear modulus in the isotropy plane (S2' S3); thus

£G23 = 23 . Therefore, the choice of the laws of variation
2(1 + V23)

of the elastic moduli with the stress tensor a cannot be
arbitrary. The elastic response is conservative if and only if: (I)
the shear moduli G12 and G23 are constant; (2) the elastic

moduli E, £2' V23, and V21 depend on stress' only through its

first invariant a, = tra , and the mixed stress-structural tensor

invariant a. = tr Mer. Let us note that if w = 0 the shear

modulus GI2 is expressed as a simple combination between the

,elastic moduli £1' £2 and the Poisson ratio V21·

Saint-Venant indicated such a possible relation between the
elastic parameters of orthotropic bodies with the principal
directions S2 and S3 in the form

I I I 2vjI ..~=E+E:+E' 1,;=1,2od.
lj I J j

In transversely isotropic bodies with the direction S\ normal to
the plane of isotropy this gives the shear modulus GI2 in the
form (6). Most of the published experimental data on
transversely isotropic rocks support the validity of Saint-
Venant's approximation (6) (see the review of over 200 quasi-
static and dynamic tests on transversely isotropic rock due to
Worotnicki (1993)). '

The data on Toumemire shale were obtained in Lil1e
Mechanics Laboratory (Niandou, 1994; Niandou et al., 1997).
The experimental data set includes ultrasonic measurements and
quasi-static triaxial compression tests with loading and
unloading cycles. Various loading orientations and confining
pressures were considered.' At the macroscopic level this rock is
characterized by a well-defined stratified structure. Ultrasonic
measurements carried out on cubical specimens have shown that
this rock exhibits intrinsic transverse isotropy. This type of
anisotropy is conserved up to a high level of the deviatoric stress
(i.e, the difference between the axial stress and the applied
confining pressure) as shown by the triaxial compression test
results. An experimental technique (see Cristescu (1989)), which
permits a good separation of viscous effects from un loading was
used. Thus, at different stress levels the rock was allowed to
reach by a short-time relaxation a quasi-stable state, afterwards

(6)

(3)
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under any orthogonal transformation belonging to the

symmetry group of the material. Thus, in the structural frame

... (5\,52,53), the truncated matrix of A is:

a b b 0 0 0
0

b d e 0 0 0.
o 00 b e d 0 0 0

0 d -e
A= 0 0 0 -- 0 0 (7)

2

0 0 0 0
c
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2
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Figure I. Comparison between theoretical and experimental variation of

v23' £2 as function of the mean pressure p (data after Niandou (1994))
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Figure 2. Comparison between theoretical and experimental variation of

1/£, as function of the mean pressure (data after Niandou (1994»

unloading-reloading cycles were performed. In this way the
hysteresis loops were practically eliminated permitting an
accurate estimate of the elastic moduli from the unloading
slopes. For Toumemire shale, we obtain the expressions of the

elastic modulus £2 and of the Poisson's ratio v2\ as function

of the invariants al and a4• As an example, Fig. I shows the

predicted evolution of V!3 I £! as a function of p in comparison
with the data. From data in triaxial compression tests performed
for several values of all elastic parameters were determined.

Figure 2 shows a comparison between the predicted
evolution of 1/£1 as function of the mean stress p and data.

3 IRREVERSIBLE BEHAVIOR

The limit of the elastic domain is given by a yield
function whose expression is a priori unknown and was
determined from data. The basic assumption adopted in the
formulation of the constitutive equation is that the type of
anisotropy of the rock does not change during the deformation
process. The anisotropy is thus described by a fourth order
tensor A satisfying the usual symmetry conditions
Aijk/=Ajik/=Aklij=A;jlk and the general requirement of invariance

where a, b, c, d and e are constants. In the present paper the
tensor A is assumed to be constant: it does not depend on time
nor on deformation. It is involved in the expression of the flow
rule, of the yield function, and of the failure criterion in the form
of a transformed stress tensor defined by:

Lij=Ajjld aIcl (8)

The 5 independent components of the anisotropic tensor A are
identified using strength data in conjunction with an anisotropic
short-term failure criterion of the form:

~lr(~'f - m tr~-I=O. (9)
2 3

where m is a material constant, r' is the deviator of the second
order tensor ~ (Cazacu et al.,1998). Using (7) and (8), we can
express the invariants of ~ in terms of the stress invariants and
of the mixed invariants of a and M

tr ~ = (a + b + d - e) a4 + (b + d + e)al

tr{r'2)= AA(a4f +BB(a,f +CCa\ a4 +DDas+ EEa2
(10)

where a, are defined by (3) and AA, BB, CC, DD, and EE are
algebraic combinations of the coefficients a, b, c, d, e and m.
The first invariant of ~ is linear in a and thus can be thought
as a generalization to transversely isotropic conditions of al ,the
mean stress. The second invariant of the transformed tensor
deviator is a quadratic homogeneous function of a which

reduces to J2 = (1/2)tr(a')2for a= d = c =1, b = e = O. For
isotropic conditions, this criterion reduces to the Mises-
Schleicher criterion
3J2 +(ac -a,)a, -a,ac =0

In the structural system (51,52,5), the Anisotropic Mises-

Schleicher (AMS) criterion writes:

d1all + d2(an + a)3) + DII(aI12)+ Dn(an2 + a)/)+

2DI2 all (a22 +(33)+2D23a22a)J+D44ai) (II)

+ Dss (a~2+al!3) = I

The coefficients in (10) are algebraic combinations of the
independent components of the stress tensor A and m; their
expressions in terms of the engineering strengths are:

I
d, =---xc xt

I
D11=---,

(xc)(xt)

I I
d2 =---,

yc yt

I
Dn=---,

(yc)(yl)

I
D12 = --DI1,

2

(12)
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In (9) and throughout the text the compressive strengths are
taken positive, xc and (-xt) are the uniaxial compressive and
tensile strengths in the SI -direction, yc and (-yt) are the uniaxial

compressive and tensile strengths in the S2 -direction (i.e. along
any direction belonging to the strata planes), R is the shear
strength in the (S2' S3) plane. In the three-dimensional space of
the principal stresses the failure surface (9) is an elliptic
paraboloid for any orientation e of the principal stresses system
with respect to the system associated with the material
symmetries (e is the angle between the maximum stress axis
and the S\ axis). The distance between the origin 0, and the
point where the hydrostatic axis intersects the paraboloid is

.[3(ur) where

a r = 2(1/ yc _ I / yt) 1+(11:cc_ I / xt) ( 13)

is the hydrostatic tensile strength of the material (independent of
e ). Thus, the AMS criterion is able to model hydrostatic stress
induced failure. It predicts that the application of multiaxial
tensile stresses on rock reduces the value of the failure strength,
i.e. the predicted value of the hydrostatic strength is less than the
uniaxial tensile strength in any direction. Indeed, from (13)
follows that if the condition 2xt < yc is satisfied, as it is the

case with most rocks, then lurl < yt, Similarly, if condition

2yt < yc is satisfied then IUrl < xt. This is in contrast with most

existing criteria that intoduce "tension cuttoffs" by postulating
that failure occurs when the major principal stress is equal to the
uniaxial tensile strength. The intersections of the AMS failure
surfaces with the octahedral plane demonstrates the ability of the
criterion to describe the directional character of the strength of
transversely isotropic material under general loading conditions.
The AMS criterion involves a few number of parameters that are
directly expressible in terms of the engineering strengths (see
(12». For Toumemire shale, the mean arithmetic value of xc is
of 48 MPa, whereas yc = 50 MPa. No tensile tests were
available; we have assumed xt = 3.92 MPa, and yt = 4.1 MPa,
the estimate being based on tensile strengths of oily shales
reported in the literature (Lama and Vutukuri (1978». Since for
rocks shear tests are very difficult to perform and to interpret R
has been estimated by least square fit using the test results at a
confining pressure of 50 MPa and e= 30°,45°,60° and 90.°

Figure 3 shows the variation of the peak axial stress un with

the orientation e .for several confining pressures. The solid
lines correspond to the predictions of the AMS criterion, while
the experimental points are represented by symbols. The
comparison with the data is successful in the whole. The
influence of the confining pressure on strength is well described
although only the test results at Pc = 50 MPa were used for the
determination of R. For Toumemire shale, we suppose that the
observed irreversibility in behavior is due to transient creep
only. Thus, the flow rule is assumed to be of the following
general form:

ivp = "/1- Wi (t))(i+u(;"')/) (14)
\ H(u)

where Hta) is the yield function, - H(u)=WI (t) defines the

equation of the stabilization boundary (ivP = 0 and if = ? ).
The work hardening parameter is the irreversible stress work per

unit volume, Wi defined by

wl(r)= fu(t): iVP(t)dt (15)
o

20

Pc =S MPa

o 10 30 50 70 80 90e·20 40 60

Figure 3. The AMS criterion applied to Tournernire shale (data
after Niandou (1994))

Further, in (14) U(u) is a scalar valued function of the stress
tensor a ,/ is the second order identity tensor. The sum between
U(u)/ and the transformed tensor L defines the orientation of

ivp while" is a viscosity parameter that is considered to be in
a first approximation constant. There are two main topics to be
addressed: the determination of the specific form of the yield
function H(u) and of U(u). The specific mathematical

expression of H(u) is determined from triaxial compression
data by computing the irreversible stress work at stabilization.
Since in such tests the first stage is hydrostatic and the second
one isdeviatoric, it was assumed that H(u) is the sum 0'£ two
terms,

H(u) = H h (cr) + H d (u, r) ( 16)

such that H J (u,O) = 0, a stands for mean stress while t:

stands for the octahedral shear stress. Computing. Wi in hydro-
static and deviatoric tests we get

H (u,M)= cosin(wu/uo + 1II)+Co+

B\t~L + B2(%tr(L,)2)
,

where Co= 0.38 MPa, (<1=0.15 ,lII = 2830 and Uo = I MPa and
BI and B2 may depend on the mean pressure and the octahedral
shear stress. H is a scalar valued isotropic function of a and M
and thus satisfies automatically the combined objectivity-
symmetry requirements. The shapes of the yield surfaces H
=0.24 MPa, together with the corresponding failure surfaces for
several orientations e are shown in Figure 4. As expected, the
model exhibits only compressibility. The anisotropy is well
. , I
described: for the same value of the hardening parameter W
yielding takes place at lower values ~f the octahedral stress for
e = 0° than for e= 45° and e = 90°, respectively. Similarly, we
determine for Toumemire shale

U(u,,) = U1h u2 + U2h + ~'I + "2 (u - t ! ,fi)]r' +

[ml + m2 (u ., / ,fi)] ,2

(17)

(18)
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where U1h =\.098.10-4 MPa-l, t1hZ =0.025 MPa, ml = 0.026

MPa-l, m
2

= -2.6.10-5 MPa-3, n1= -0.0012, n2= 3.579.10-5

MPa-l. As an example in Figure 5 is shown a comparison
between the model predictions and data obtained in a
hydrostatic test. The anisotropy of deformation under isotropic
stress conditions is well reproduced. In Figure 6 we present the
simulations of a triaxial compression test for one sample
orientation. The triaxial test is identified by two numbers as
follows (orientation of the bedding plane)/(confining pressure).
The overall prediction is reasonable. Particularly, the rock
anisotropy is clearly and correctly described for several other
orientations as well.

<0

t

MFa

30

10 40 so ,,!vCP. 60

Figure 4. Predicted yield loci and failure surfaces for different sample
orientations e
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Figure 5. Comparison between model prediction and hydrostatic
compression test data
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Figure 6. Comparison between model prediction and triaxial
compression test data for one orientation.
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