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ABSTRACT: This study is aimed at formulating a general elastic/viscoplastic non associated constitutive 
equation for a stratified sedimentary rock: Tournemire shale. This rock can be idealized as transversely 
isotropic, the plane of isotropy being the bedding plane. The dependence of the elastic moduli on the stress state 
is expressed in terms of the invariants of the stress tensor. The viscoplatic criterion, the flow rule and a short- 
term failure criterion are expressed in a general invariant form. Finally the model is checked against data. 

1 INTRODUCTION 

Isotropic rocks seldom occur in nature. Oriented 
internal structures such as oriented crystallographic 
axis, grains fissuration, cracks, result on the 
macroscopic level in a directional mechanical response 
of rocks. Thus, the design and stability analysis of 
underground excavations requires a good knowledge 
of the mechanical behavior of such rocks.Generally, 
the experimental investigations were performed on 
transversely isotropic rocks (Donath 1972, 
McLamore&Gray 1969, Allirot and Boehler 1979, 
Niandou 1993, etc.). These investigations led to 
theories able to predict the dependence of strength on 
0 - the angle between the normal to the isotropic plane 
and the direction of the major principal stress. 

A suitable framework allowing to describe both 
yielding and failure of anisotropic rocks with the 
required generality and pertinence was provided by 
the theory of representation of tensor functions. 
Invariant formulation of the perfect plastic behavior 
with application to stratified cohesive materials as well 
as for materials with internal friction have been 

developed by Boehler and Sawczuk (1977) and 
Boehler(1978,1987) using irreductible representations 
of tensor functions. To describe the behavior of 

initially anisotropic sedimentary rocks, a 
generalization of the Cam-Clay model has been 
proposed by Nova (1986) following the pioneering 
works of Hill (1950) and Olszack & Urbanowschi 
(1956). 

In this paper we present an elastic/viscoplastic 
non associated constitutive equation for a stratified 
sedimentary rock Tournemire shale. From the 
experimental investigation conducted at Lille 
Mechanics Laboratory (URA CNRS No 1441) on this 

shale (Niandou 1994), we can conclude that the 
variation of the mechanical characteristics with respect 
to the oriented structure of the material may be 
considered as continuos. The initial anisotropy is 
taken into account in the structure of the yield 
function, in that of the flow rule and of the short term 
failure criterion by means of a constant anisotropic 
fourth order tensor. No a priori assumption is made 
concerning the existence of a viscoplastic potential. A 
procedure to determine the constitutive parameters 
from the data is shown. Finally, a comparison 
between model prediction and experimental results 
obtained in several triaxial tests on specimens of 
different orientations with respect to the major 
principal stress direction is presented. 

2 STRUCTURE OF THE CONSTITUTIVE 

EQUATION 

A material is regarded as being orthotropic at any 
point in a preferred reference configuration if there 
exist three orthogonal planes such that the mechanical 
properties of the material are symmetrical with respect 
to each of these planes. If one of the symmetry planes 
is isotropic the medium is said to be transversely 
isotropic. A good example of the above is Toumemire 
shale which may be idealized as homogeneous but 
transversely isotropic material, the plane of anisotropy 
being the bedding plane. We will define as structural 
reference frame, the coordinate system (S1,S2,S3) 
where one axis, say S1, coincides with the symmetry 
axis and consequently the isotropy plane is parallel to 
(S2,S3) (see Figure 1). Accordingly, the group of 
material symmetries consists of all the rotations about 
S1 and the symmetries with respect to the isotropy 
plane (S2,S3) ß 
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Thus ß 

g={Q•O(3)lQ(s1)=s 1 orQ(S1)=-S1} (1) 

or equivalently, 

g={Q•O(3)IQMQt=M} 
with M = S 1 © S 1. M is the second order structural 
tensor and 0(3) denotes the full orthogonal group. 

S1 

Xl 

o- 1 

S3 

•- ----X 

Figure 1 ß Definition of the orientation 0 

The instantaneous elastic response of the material is 
described by Hooke's law. The reference 20 
configuration used is the actual one, in both 
laboratory tests analysis and in situ underground 
excavations. Thus, stresses and strains have a relative 
meaning (Cristescu, 1989). In the coordinate system 
(S1,S2,S3) the stress- strain relation is: 10 
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1 

(2) 

where E1 is the Young modulus in the S1 direction 
E2 is the corresponding modulus in any direction in 

the isotropic plane, V12, V21, V23 are the Poisson's 
ratios and G12 is the shear modulus in the (S1,S2) 
plane. As for most geomaterials, the static elastic 
moduli obtained during compression tests on 
Tournemire shale, depend on the stress state. As an 
example, we present the experimental values of E1 on 
a grid in the deviatoric plane (o,x) (see Figure 2). 0 
represents the mean stress and x the octhaedric stress 
defined by: 

(3) 

where IJ i are the principal stresses. 
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Figure 2 ß Variation of E] with the stress state 

In Figure 2, the interrupted lines show the loading 
paths followed in the Kfirmhn tests performed at 
0=0 ø. The symbols correspond to the stress levels at 
which partial unloadings were performed. The results 
presented on the grid show that for a given confining 
pressure the modulus values increase with increasing 
x (•"= x/•(ty•-or,)/3, for a Kfirmhn test) and at 
high pressures it seems that E• tend towards a 
constant limit value. We can also note that E• is 
influenced by the confining pressure. Since, for the 0 ø 
tests the load is applied at right-angles to the strata the 
modulus increase may be attributed to the compaction 
of these planes. However, as pressure increases and 
most of the pores are closed, E1 approaches a constant 
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limiting value. The tests were done such that the 
loading-unloading cycles are located at the same 
deviatoric level x for different values of the confining 
pressure. Thus, we can analyze independently the 
dependence of E1 on the stress invariants c• and x. 
For x =constant, E1 increases with increasing c•. An 
exponential empirical law is proposed: 

E, = E• - a. exp(-bcr) (4) 

E• is supposed to be constant (E•=15900 MPa) 
The numerical values of b and c• are determined for 

each level 'r = constant by least-squares fit. It was 
found that b is essentially constant (b =0.0313 MPa -1) 
while a depends on •r.The following approximation 
matches the data for Toumemire shale: 

ot('r) = Ela'r 2 + El/3 (5) 
•'+ E16 

where E•,= 0.09 MPa -1, E,o = MPa 2 and E•a= 16 
MPa. Concerning the other •"astic moduli: the values 
of v12 appear to increase with the applied deviatoric 
stress; v21 and v23 seem also to increase slightly with 
the increase of the deviatoric stress. The Poisson's 

ratios v21 and V23 can be considered to be function of 
the mean stress only, while vl2 seems to be influenced 
by both c• and x. The Young's modulus E2 can be 
supposed to be a function of the mean stress only. We 
propose the following expressions: 

E2 = 45000 - 2. 35.10 4 exp(-O, 0147cr) 
V2, = 0.75 - 0. 501 exp(-O. OO58cr) 
v23 = 0.19 - 0. 084 exp(--O. 0216cr) 

(6) 

The symmetry of the the compliance tensor lapses 
because the ratios Vl2/E1 and V21/E2 are quite distinct 
at low pressures but are close at higher pressures (see 
Niandou, 1994). For simplicity reasons, in our 
calculations we will suppose that: v•2/E, = v2•/E2 

In principle, it is possible to measure a she•r 
modulus during a compression test. However, there 
are practical difficulties to realize this, as the 
transversal strain gauges do not provide sufficient 
accurate information (these gauges are strongly 
influenced by the sliding of one plane over the other). 
For the 45 ø orientation G12 ranges between 2000 and 
3000 MPa; while at 30 ø is between 10000 and 11000 
MPa. The variation of G12 as a function of the 
anisotropy orientation led us to question the validity 
of the shear coefficient estimated in this way. It was 
thus decided to calculate G12 using Saint Venant's 
approximation (Lechnitschii, 1963): 

1 1 1+2v2• 
- ! (7) 

Cn2 E, E2 

It can be shown that (7) means that G12 is equal to the 

shear modulus G45 for shear along the conjugated 
planes inclined at 45 ø and 135 ø angles to the plane of 
isotropy, and that furthermore the shear moduli on 
conjugate planes inclined at any q• and q•+90 ø angles to 
the plane of isotropy are equal to G45 (see Lekhnitskii 
1963). Most of the published experimental data 
support the validity of Saint-Venant approximation 
(see Batugin and Nirenburg, 1972) but with major 
exceptions (see Worotnicki ,1993). 

The limit of validity of Equation (2) will be given 
by a yield function whose expression is a priori 
unknown and will be determined on the basis of the 

experimental data. The basic assumption of our model 
is that the material is characterized by a fixed 
transverse isotropy i.e. the type of anisotropy does 
not change during the deformation process. The 
anisotropy is taken into account by making use of a 
fourth order tensor A which satisfies the usual 

symmetry conditions: 

Ain,t = Aji•t = ALt o = A•t • (8) 

and the general requirement of invariance under any 
orthogonal transformation which belongs to the 
symmetry group g. Aijkl is supposed to be constant: 
it does not depend on time nor on the deformation. It 
is involved in the expression of the flow rule, of the 
yield function and of the failure criterion in the form 
of a transformed stress tensor Y; defined by: 

(9) 

Rather then making simplified assumptions 
concerning the form of the tensor A, as done by 
Boehler and Sawczuck (1970,1977,1978) we 
propose to retain all the five components of A as 
independent strength parameters. Therefore, in the 
structural frame (S1,S2,S3) , the truncated matrix of A 
is: 

A • 

abbO O0 

b d e 0 0 0 

be dO 0 0 

o o o 
2 

o o 

oo o o Co 
2 

oooo oœ 
2 

(10) 

where a, b, c, d and e are material constants. 
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In conjunction with an anisotropic failure criterion 
(Cazacu and Cristescu 1995, Cazacu 1995) we 
determine the independent components of A from the 
strength characteristics of the rock in uniaxial and 
triaxial compression. The proposed criterion is 
expressed in the general invariant form: 

tr(•') 2 - •tr(•) - 1 = 0, (11) 
where m is a material constant, Z'is the deviator of Z 
This criterion is the generalization of Stassi's isotropic 
criterion to transversely isotropic conditions. 
Unlike many other criteria, (11) is able to describe 
hydrostatic stress induced failure.We suppose that 
irreversibility is due to transient creep only. Thus the 
flow role will be written in the form: 

W / 

•= kll-H(ty)I(27+U(ty)I) (12) 
H(c•) is the yield function with H(cr)= W • the 
equation of the stabilisation boundary (• = 0 and 
c• = 0).W I is the irreversible stress work per unit 
volume which is used as a work-hardening parameter: 

W' (T) = I• ix(t) • (t)dt (13) 

Further, in (12) U(c•) is a scalar function and Z the 
transformed stress tensor. The sum of these terms 

defines the orientation of d•. k is a viscosity 
parameter which is supposed to be constant. 
However, for most rocks the viscosity coefficient 
may depend on stress or strain and maybe on a 
damage parameter accounting for the history of 
microcracking to which the rock was subjected. The 
bracket in (12) is the Macauley bracket used to denote 
the positive part of a function. There are two main 
topics to be addressed: the determination of the yield 
function H(c•) and that of U(c•). 

3 DETERMINATION OF THE YIELD FUNCTION 

The yield function H(o) is determined in two stages 
which correspond to the two stages of a standard 
triaxial compression test. Since in such tests the first 
stage is hydrostatic and the second one is deviatoric, 
we assume that H(c•) is the sum of two terms: 

H(a)= Hh(a)+ Hd(a) (14) 

such that HdltYl=ty2=ty 3 = 0. Thus, for hydrostatic 
conditions the yield function reduces to Hh which is 
supposed to depend on the mean stress only. The 
procedure to determine Hh is the following: 
ß First, from hydrostatic creep data calculate the 
irreversible hydrostatic stress work: 

T 

Wv(T) = [ ix(t) •(t)dt, (15) 

'• is the irreversible volumetric rate of where e v 
deformation. 

ß Then, plot the obtained values of Wv(T) at 
stabilisation as a function of the mean stress c•. The 
following formula for Hh matches well the data' 

Hh ( tY ) = c o sin(cO iX/iX 0 + (p ) + c 1 (16) 

where ß Co= 0.38 MPa, q = 0.377 MPa, cO = 0.15, 
q• =283 ø and c•0 = 1MPa. 
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Figure 3 ß Irreversible stress work versus pressure for 
Toumemire shale (x - experimental data) 

Further we suppose that Hd is of the form: 

Ha(cLM)= BltF• + B2(•tF•'21 (17) 
where Z' is the the deviator of Z. In (17) B• and B2 
may depend on c• and 'r. Using (8), (9) and (10) one 
can express the invariants of Z in terms of c• and M 
as follows: 

t tr27 = ( a + b - d - e )trMcr + ( b + d + e )trcr 
tr(27') 2 = A(trMcr) 2 + B(trcr) 2 + 
C( trcr)( trMcr ) + D( trMcr 2) + o•2trcr 2 

(18) 

where ß 

A = x 2 + 2ooc + 415x + 3u 2 + 2xu + 415u + 2t52 

!y2 +3v 2 + 2yv + 2ow 2xy + 2ay + 415y + 6uv + 2(xv + yu) + 2ua + 415v 

215 2 + 415a (19) 
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and 

'x = a + d- 2c- 2b 

y=b-e, 

or=d-e, 

fi = c-(d-e) 

u = 31-(2b - 2e - a + d) 
v = -}(2e- b- d) 

(19)' 

From equations (16) to (19) follows that H is a scalar 
valuated isotropic function of o and M and thus the 
combined objectivity-symmetry requirement is 
fulfilled.The invariants trMo and trMo 2 account for 

the directional character of the response of the rock 
when subjected to a mechanical loading.They make 
precise the orientation of the principal stress directions 
with respect to the structural frame (S1,S2,S3). 
Concerning the functions B1 and B2 involved in the 
expression of Hd, these are determined from data 
obtained in the deviatoric part of triaxial tests 
performed on specimens at 0=90 ø for several values 
of the confining pressure. For a given confining 
pressure, B1 and B2 are determined with the least 
square method from the equation: 

20 

B•[trZ(cL •',90)- trZ(cL O, 90)]+ 

3 B2[trZ'2(o, ,,90)-trZ'2(o,O, 90)]-w'(r)=o ¾ (20) •0 
where' 

W'(T)= •: 6•dt+ jry36•'dt (20)' 

TH represents the beginning of the deviatoric part of 
the test. It was found that B1 depends on the 
confining pressure and can be approximated with ß 

q_ 2 B•(tY3) =/• /•2{y5 (21) 

(obviously not in a unique way).The shapes of the 
yield surfaces for various values of 0 (0 = 0 ø, 60 ø, 
45 ø and 90 ø ) are shown in Figure 4. Also, the 
corresponding failure surfaces calculated using the 
anisotropic failure criterion (11) are represented. As 
expected the model exbits compressibility only. The 
material responses for 0=0 ø and 0=90 ø are quite 
close and it is just the behavior around 45 ø that 
departs significantly from that at 0 ø and 90 ø (mainly 
what concerns failure).The anisotropy is well 
described: for the same value of W yielding takes 
place at lower values of 'r for 45 ø than for 0 ø and at 
even higher values for 90 ø . 

I I ,' I 

I ." 

MPa ''" /,5. ' ,,-5. ' 

- Failu " • ' 

I [ •1 I o MPa 
0 20 40 60 80 

Figure 4 ß Predicted yield loci and failure surfaces for 
different sample orientations 0 

4 DETERMINATION OF U(o) 

where bu = -0.08688, b•2 = -9.714'10 -s MPa -2. 
The coefficient B2 can be considered to be constant ß 
B2= 0.0065MPa -3. Since {53 = {5- z/x/•, it follows 
that the expression of the yield function in terms of 
invariants is ß 

H:= [bl l + b12 ( rY- •22 )21trZ + B2(-32 trZ'2 ) + 
c o sin(co ry + go) + C 1 (22) 

ao 

Thus, the yield function is completely determined 

We suppose that U(o) is the sum of two terms ß 

U = Uh(O' ) + Sd(O', •') (23) 

such that Ud(O,0)=0.The first term, Uh((• ) can be 
determined in hydrostatic tests in conjunction with the 
formula: 

62(a + 2b) - 6•(b + d + e) 
Uh(tY) = {y (24) 

where 6[ is the rate of the irreversible deformation in 
the S1 direction and 6• is the rate of the irreversible 
deformation in the bedding plane. For Tournemire 
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shale the following approximation for the variation of 
U h with c• applies: 

Uh(O' ) = ttlh O'2 + tt2h (25) 

where Ulh= 1.098'10-4MPa -1 et U2h'- 0.025MPa. 
Ud(C•,'0 is determined in the deviatoric part of triaxial 
tests performed at several confining pressures 
(03=5,40 and 50 MPa) on specimens at 0=90ø.The 
following formula is used in conjunction with the data 

x 

Ud(Cr, Z)= g3I//(Zil)-g[(Z22) Uh(O') (26) 

g3/// is the rate of the transversal irreversible 
deformation parallel to the bedding while g[ is the 
axial irreversible deformation (see Figure 5).We 
found that Ud can be approximated by ß 

(27) 

where m1=0.026 MPa -1, m2=-2.6.10-SMPa -3 , nl= 
-0.0012, n2=3.579.10 -5 MPa -1. 

5 COMPARISON BETWEEN CALCULATED AND 
EXPERIMENTAL RESULTS 

The model has been checked against experimental data 
obtained in hydrostatic and standard triaxial 
compression tests. Figure 5 shows a comparison 
between model prediction and experimental results in 
a hydrostatic test. The anisotropy of deformation 
under isotropic conditions seems to be well described 
by the model. As an example we also present the 
stress-strains curves obtained for two sample 
orientations. The position of the gauges for 0,•0 ø is 
shown in Figure 6. Each triaxial test is identified by 
two numbers as follows: (Orientation of the bedding 
plane 0) / (Confining pressure (MPa)) (Figures 7).Let 
us note that these tests have not been used for the 

identification of the constitutive parameters. Although 
for the œ3p strain component the quantitative 
agreement is not so good, the overall prediction of the 
model is reasonable. Particularly, the rock anisotropy 
is clearly and correctly described. 

Figure 5 ß Position of the gauges for 0 ½0 ø 
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Figure 6 ß Hydrostatic compression test 
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CONCLUSIONS 

This paper deals with the formulation of an 
elastic/viscoplastic constitutive equation for 
transversely isotropic rock. The proposed model 
describes reasonably well some important features of 
the behavior of anisotropic rocks subjected to a 
hydrostatic compression. So far the validity of the 
theory has been checked in triaxial compression tests 
only. An experimental program is presently under 
way in order to check whether or not the model is 
versatile enough to describe the material behavior for 
more complex loading paths such as: proportional 
tests and long-term triaxial creep tests. It will allow us 
to improve the model, if necesarry. In the future the 
model will be used for the stability analysis of 
underground openings. 
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