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Abstract

In this paper, a new failure criterion for the transversely isotropic rocks is presented. The new criterion is based on two distinct

failure modes; one is the sliding mode where the failure is caused by sliding along the discontinuity, and the other is the non-sliding
mode where the failure is controlled by the rock material and is not dependent on discontinuity. This failure criterion is defined with
seven material parameters. The physical meanings of, and the procedures for determining, these parameters are described. Both the

original Jaeger criterion and the extended Jaeger criterion are shown to be special cases of the proposed criterion. The accuracy and
applicability of the proposed failure criterion are examined using the published experimental data. The data used cover various types
of transversely isotropic rocks, different orientation angels and confining pressures. The predicted strength behaviors of the
transversely isotropic rocks agree well with the experimental data from various investigators. The accuracy and applicability of the

proposed empirical failure criterion are demonstrated in this paper. # 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The constitutive laws and failure criteria of rock
materials and rock masses are required in most rock
engineering analyses that are based on solid mechanics.
Due to the preferred fabric orientation or the existence
of non-random discontinuity, anisotropic behaviors of
rock masses should be fully accounted for in the
analysis. Significant errors may be introduced into
the analysis by treating the anisotropic rocks as the
isotropic materials. Several types of rocks such as
sedimentary rocks and metamorphic rocks may be
transversely isotropic. Most foliated metamorphic
rocks, such as schist, slates, gneisses, and phyllites,
contain fabric with preferentially parallel arrangements
of flat or long minerals. Metamorphism changes the
initial fabric of rocks with the directional structure.
Foliation induced by the non-random orientation of
macroscopic mineral, parallel fracture or microscopic
mineral plates, such as fracture cleavage, slaty cleavage,
bedding cleavage, lepidoblastic schistosity, nematoblas-
tic schistosity or lineation, leads to rock properties that
are highly direction-dependent [1]. Stratified sedimen-
tary rocks like sandstone, shale or sandstone–shale

alteration often display anisotropic behaviors. The
anisotropy may also be found in the isotropic rocks,
such as granite and basalt, if cut by regular disconti-
nuities [2,3].
Over the past several decades, many authors have

devoted considerable efforts to the study of rock
anisotropy, from both the theoretical and the experi-
mental points of view. Many scholars have investigated
mechanical properties of both nature and synthetic
transversely isotropic rocks under varied confining
pressures [4–14]. The shape of the curve of compression
strength and the orientation angle (the angle between
the discontinuity and the direction of major principal
stress) are the most common representation of the
nature of strength anisotropy. Most transversely iso-
tropic rocks are found to have their maximal compres-
sion strength at an orientation angle b ¼ 08 or 908, and
their minimal compression strength at an orientation
angle in the range of 30–458. As the confining pressure is
increased, the anisotropic rocks become more ductile,
and the effect of the strength anisotropy is usually
reduced. Based upon the analysis of the shape of
the anisotropy curve, Ramamurthy [15] classified the
anisotropy of rocks into three groups, namely, U type,
undulatory type, and shoulder type anisotropy (see
Fig. 1).
Several scholars have developed failure criteria for

the transversely isotropic rocks that can account for
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the variation of compression strength with the orienta-
tion angles under various confining pressures. Jaeger
[16] introduced an instructive analysis of the case in
which the rocks contain well-defined, parallel disconti-
nuity. This original Jaeger’s criterion (Fig. 2a) used
four parameters, and treated rocks as the isotropic
materials when the sliding along discontinuity is
prevented. Jaeger’s criterion yields the same compres-
sion strength at b ¼ 08 and 908. However, the published
experimental data show that in some rocks, the
maximum strength occurs at b ¼ 08, while in other
rocks, it occurs at b ¼ 908 [17–19]. In order to account
for this discrepancy (possible strength discrepancy at
b ¼ 08and 908), other researchers have modified Jaeger’s
criterion by adding two more parameters. Such mod-
ification is referred to herein as the extended Jaeger’s
criterion (Fig. 2b). Furthermore, Duveau and Shao [20]
provided yet another modification by replacing the
Mohr–Coulomb criterion with a non-linear model to
express the strength along discontinuity. Their criterion
used seven parameters to describe the failure strength
for transversely isotropic rocks.

The strength criteria for the transversely isotropic
rocks developed by McLamore and Gray [7], Hoek and
Brown [21], and Ramamurthy [15] generally provide
fairly accurate simulation of the experimental data.
However, their approaches all require a wide range of
tests and/or a considerable amount of curve fitting
work. A more general criterion, expressed as a quadratic
function for anisotropic materials, was proposed by
Hill [22]. This criterion is an extension of von Mises’
isotropic criterion. While von Mises’ and Hill’s criteria
assume that the strength of the material is independent
of hydrostatic stress and are suitable for metals and
composite materials, they may not be directly applicable
to geological materials because the strength behavior of
most geological materials is dependent on the hydro-
static. Pariseau [23] and Cazacu et al. [24] extended
Hill’s criterion to account for the effect of the hydro-
static stresses. These criteria express the strength in
terms of stress invariance, and they are applicable to
truly 3-D stress cases and can easily be implemented
numerically. Nova [25] proposed a generalized failure
criterion for the transversely isotropic rocks under

Fig. 1. (a–c) Classification of anisotropy for transversely isotropic rocks (after Ramamurthy [15]).

Fig. 2. Schematic view of strength variation versus b (a) original Jaeger’s criterion (b) extended Jaeger’s criterion.
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compression. Both Hill’s and Nova’s criteria [25]
describe the continuous variation of strength with the
orientation angle, which is referred to herein as the
continuous model. However, the continuous model is
not suitable for the shoulder and undulatory types of
rocks, especially for the rocks cut by discontinuities.
In this paper, a new failure criterion is developed for

transversely isotropic rocks based on the Jaeger’s
criterion [16] and the maximum axial strain theory.
Here, the axial strain is calculated from the constitutive
law of the transversely isotropic rocks [26]. In the
proposed criterion, seven material parameters are
used. The physical meanings of, and the procedures
to determine, these parameters, are presented. The
accuracy of this proposed model is demonstrated by
examining the experimental data of various types of
transversely isotropic rocks from the literature.

2. Failure modes of transversely isotropic rocks

In the development of a failure criterion, it is
important to observe the failure modes of rock speci-
mens with different orientation angles and under
different confining pressures. An ideal failure criterion
should be able to predict not only the state of stress
at failure but also the failure mode. The failure mode
of anisotropic rocks under triaxial compression is
influenced by the orientation of the stresses, as well as
the confining pressure. Hence, it is far more complicated
than that of isotropic rocks. Many scholars [4,7,11] have
described in detail the failure modes of the transversely
isotropic rocks under various confining pressures. Jaeger
[16] simplified the failure of transversely isotropic rocks
into two modes: (1) sliding along the discontinuity, and
(2) fracture through the rock materials. Jaeger’s
criterion is mainly based on the simplified assumption
of failure modes described above. Recently, Tien and his
colleagues [14,27–30] have developed a sample prepara-
tion technique for synthetic layered rocks. The overall
mechanical properties of synthetic layered rocks are
found to be very similar to those of transversely
isotropic natural rocks.
Fig. 3 show synthetic, layered rock samples that are

made of gypsum (white layers) and the mixture of
gypsum and clay (brown layers). The strength and
stiffness of white layers are higher than those of brown
layers, while the brown layers are more ductile. The
overall mechanical properties of synthetic layered rock
are macroscopically transversely isotropic. The detailed
sample preparation procedures, material mixing ratio
and mechanical properties of the prepared samples have
been documented by Tien et al. [27]. Fig. 3 shows a
series of photos that depict the failure modes of the
samples in triaxial compression tests. For samples with
b ¼ 08 or 908 and loaded without confining pressure,

fracture through both white and brown layers was
observed. When they were loaded under confining
pressures, behavior of ductile deformation (i.e., axial
strain accumulation) was observed. For samples pre-
pared at b ¼ 458 and loaded without confining pressure,
the failure mode was that of sliding along the
discontinuity. When they were loaded under a confining
pressure up to 0.8MPa, the artificial layered rocks
behave more like ductile materials, and the sliding mode
was suppressed.
The axial strain has intimate relation with the

orientation angle b. For example, the axial strain of
samples with b ¼ 908 is mainly due to the compression
of brown layers (softer layers), whose thickness is the
same as that of the white layers before the test. For
samples prepared at b ¼ 08, the white layers and the
brown layers have the same axial strain, and thus the
white layers will carry greater load than the brown
layers since the stiffness of white layers is higher.

Fig. 3. Deformation characteristic of saturated synthetic layered rocks

after triaxial test (a) b ¼ 08 (b) 458 and (c) 908.
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It is obvious from the above observations, the failure
of transversely isotropic rocks may be divided into two
failure modes: (1) sliding mode in which the plane
discontinuity predominated, (2) non-sliding mode in
which the material strength dominated. Jaeger treated
the former failure mode by the theory of plane of
weakness, which yielded fairly accurate and reasonable
prediction of the strength. However, the plateau of
constant strength at low values of b, or high values of b
predicted by Jaeger’s criterion is not always present in
the experimental strength data when the sliding mode
is prevented. This suggests that the assumption of rock
as an isotropic material in Jaeger’s criterion results in
an oversimplified representation of strength, when the
failure is controlled by the rock materials.
In the present study, the rock materials are considered

as a transversely isotropic medium in an attempt to
establish a more reasonable failure criterion to account
for non-sliding mode.

3. Proposed failure criterion

3.1. Sliding along the discontinuity

Jaeger [16] derived the shear strength induced by
sliding along the discontinuity. Applying the stress
transformation to the loading shown in Fig. 4 yields
the following equations:

sn ¼ 1
2 s1 þ s3ð Þ � 1

2 s1 � s3ð Þ cos 2b ð1Þ

t ¼ 1
2 s1 � s3ð Þ sin 2b ð2Þ

The major principal stress for sliding along the
discontinuity

s1 bð Þ ¼ s3 þ
2 cw þ s3 tan fw
� �

1� tan fw tan b
� �

sin 2b
ð3aÞ

or

S1 bð Þ ¼ s1 bð Þ � s3 ¼
2 cw þ s3 tan fw
� �

1� tan fw tan b
� �

sin 2b
ð3bÞ

where cw and fw are the cohesion and friction angle of
the discontinuity, and S1ðbÞ is the major deviatoric stress
at failure for the specimens with b.

3.2. Incorporation of the difference between s1 08ð Þ and
s1 908ð Þ

As the values of b approaching 08 or in the range of
(908� fw)–908, the sliding failure along the discontinu-
ity will not occur. In such case, the strength of rocks
is dominated by the rock materials and is independent
of the discontinuity. The major principal stress at the
failure of the specimen under a given confining pressure
s3 must be controlled by the strength of the rock
material. In the original Jaeger’s criterion, the transver-
sely isotropic rock is modeled as an isotropic material
containing well-defined, parallel planes of weakness.
The major principal stress at failure under a given
confining pressure must be controlled by the strength of
the isotropic material and will not vary with the
orientation angle b. However, the constant strength at
low values of b, or high values of b, predicted by the
Jaeger’s criterion is not supported by experimental data.
Borecki and Kwasniewski [17] have collected dozens of
values of sc 08ð Þ=sc 908ð Þ, which shows the ratio to be in
range of 0.6–1.33. Thus, Jaeger’s criterion is indeed an
oversimplified representation of the strength of rock
specimens whose failure is controlled by rock material.
To correctly reflect the difference between the strength

of rocks at b ¼ 08 and 908, the proposed criterion treats
the rock material as transversely isotropic material.
Thus, rocks at b ¼ 08 and 908 have different strength,
and both are assumed to follow the failure criterion by
Hoek and Brown [31]:

s1 08ð Þ ¼ s3 þ m 08ð Þs3sc 08ð Þ þ s2c 08ð Þ

� �0:5
ð4aÞ

or

S1 08ð Þ ¼ s1 08ð Þ � s3 ¼ m 08ð Þs3sc 08ð Þ þ s2c 08ð Þ

� �0:5
ð4bÞ

s1 908ð Þ ¼ s3 þ m 908ð Þs3sc 908ð Þ þ s2c 908ð Þ

� �0:5
ð5aÞ

or

S1 908ð Þ ¼ s1 908ð Þ � s3 ¼ m 908ð Þs3sc 908ð Þ þ s2c 908ð Þ

� �0:5
ð5bÞ

where scð08Þ, scð908Þ are the uniaxial compression strength
of rock samples at b ¼ 08 and 908, respectively; mð08Þ,
mð908Þ are the m values in the Hoek and Brown criterion
for the rock samples at b ¼ 08 and 908, respectively.Fig. 4. Normal stress and shear stress on the discontinuity.
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Treating rocks at b ¼ 08 and 908 as two different
materials is in some way similar to the extended Jaeger’s
criterion (Fig. 2b). However, in the latter Mohr–
Coulomb criterion was used, while in the proposed
criterion, the Hoek–Brown criterion is adopted. The
rationale for adopting the Hoek–Brown criterion in the
present study lies in the fact that the s12s3 relationship
is generally nonlinear, particularly when the range of s3
under consideration is large. The Hoek–Brown criterion
can fit the experimental data in both brittle and ductile
regions better than the Mohr–Coulomb criterion does.
Since both criteria require two parameters, using the
Hoek–Brown criterion in the present study does not
increase the number of parameters required in the
proposed model.

3.3. Axial strain of transversely isotropic rocks

As mentioned before, ductile deformation due to axial
strain accumulation is another important failure mode
of transversely isotropic rocks, in addition to the failure
mode of sliding along the discontinuity. The axial strain
may be calculated using the theory of elasticity of an
anisotropic medium. The constitutive laws of linearly
elastic, transversely isotropic medium in the local
coordinate system (x0; y0; z0) takes this form (Fig. 5):
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where E is the Young’s modulus of rock in the direction
parallel to the isotropic plane, E0 the Young’s modulus
of rock in the direction perpendicular to the isotropic
plane, G0 the shear modulus for the plane normal to the
isotropic plane, n the Poisson’s ratio that characterized
the transverse strain expansion in the isotropic plane
due to a compressive stress in the same plane and n0 the
Poisson’s ratio that characterized the transverse strain

expansion in the isotropic plane due to a compressive
stress in a direction normal to it.
The constitutive equations of the transversely isotropic

medium in the global coordinate system (x; y; z), defined
in Fig. 5, can be obtained by tensor transformation:
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where the coefficients K11; K22; . . . ;K66, are readily
available in the literature [2,3,6]. The state of stresses
at failure, when subjected to the triaxial loading, as
shown in Fig. 6, can be decomposed into the hydrostatic
and deviatoric stress components,

sx

sy

sz

tyz

txz

txy

2
6666666664

3
7777777775

¼

s3
s1
s3
0

0

0

2
6666666664

3
7777777775
¼

s3
s3
s3
0

0

0

2
6666666664

3
7777777775
þ

0

s1 � s3
0

0

0

0

2
6666666664

3
7777777775

¼

s3
s3
s3
0

0

0

2
6666666664

3
7777777775
þ

0

S1

0

0

0

0

2
6666666664

3
7777777775

ð8Þ

Fig. 5. Coordinate systems used for transformation law for material

constants of a transversely isotropic medium.
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where

S1 ¼ s1 � s3: ð9Þ

The strain tensor during the application of the
deviatoric stress can be obtained by

exx
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ð10Þ

Thus, the axial strain is

eyy ¼ K22S1 ð11Þ

where

K22 ¼
1

Ey
¼
cos4 b

E
þ
sin4 b

E0 þ cos2 b sin2 b
1

G0 �
2n0

E0

� �

ð12Þ

3.4. Maximum axial strain criterion

The failure criteria for anisotropic materials may be
categorized into three basic types: (1) stress dominated;
(2) strain dominated (3) interactive [32]. The ductile

deformation due to the axial strain accumulation is
referred to herein as the strain-dominated criterion. To
account for also the non-sliding mode in the proposed
criterion, it is assumed that the failure occurs when the
axial strain exceeds its maximum limiting value, eyf

under a specific confining pressure. This failure criterion
is referred to herein as the maximum axial strain
criterion.
With the maximum axial strain criterion,

S1 bð Þ ¼ Eyeyf ð13aÞ

S1 908ð Þ ¼ E 908ð Þeyf ð13bÞ

The value of axial strain at failure eyf is varied with
different confining pressures and independent of orien-
tation angle. This paper adopted Hooke’s law to
calculate the axial strains and the strength ratio of
specimens with various orientation angles under a
specified confining pressure. According to the coordi-
nate system of Figs. 5 and 6,

E ¼ E 08ð Þ ð14aÞ

E0 ¼ E 908ð Þ ð14bÞ

From Eqs. (12), (13a), and (13b),

By introducing the strength ratio, k [17] and the
transversal anisotropy parameter, n:

k ¼ E 08ð Þ=E 908ð Þ ¼ S1 08ð Þ=S1 908ð Þ; ð16Þ

n ¼ E 908ð Þ=2G
0� �
� n0 ð17Þ

Eq. (15) becomes

S1 bð Þ

S1 908ð Þ
¼

s1 bð Þ � s3
s1 908ð Þ � s3

¼
k

cos4 bþ k sin4 bþ 2n sin2b cos2 b
ð18Þ

Eq. (18) represents the failure condition of the transver-
sely isotropic rocks for the non-sliding mode. In this
paper, it is assumed that the strength ratio is equal to the
ratio of apparent Young’s modulus at b ¼ 08 over that at
908. Thus, the variation of strength of the transversely
isotropic rock with the orientation angle follows the
same transformation rules of compliance. The use of the
strength ratio to account for the variation of strength
with respect to the orientation angle is a more direct
approach. Besides, it is simpler and more precise to
determine the strength of rock than to determine the
elastic modulus and the value of axial strain at failure eyf .
Jaeger showed that Eq. (3) is the state of stress at

failure for the sliding mode. This paper adopted Eqs. (3)
and (18), which accounts for sliding mode and

Fig. 6. Conventional triaxial test for transversely isotropic rock.

S1 bð Þ

S1 908ð Þ
¼

1

cos4 b=E 08ð Þ
� �

þ sin4b=E 908ð Þ
� �

þ cos2 b sin2 b 1=G0 � 2n0=E 908ð Þ
� �
 �

E 908ð Þ
ð15Þ
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non-sliding mode, respectively, to describe the compres-
sive strength for the transversely isotropic rocks.
The strength ratio k and transversal anisotropy

parameter n, reflect the degree of anisotropy of the rock
material. A special case of Eq. (18) is obtained by
considering a case where n ¼ 1:
S1 bð Þ

S1 908ð Þ
¼

k

cos4 bþ 2sin2 b cos2 bþ k sin4 b

¼
k

cos4 bþ sin2 b cos2 bþ sin4 b
� �

þ k�1ð Þ sin4b

¼
k

cos2 bþ 2sin2 b
� �2

þ k � 1ð Þ sin4 b

¼
k

1þ k � 1ð Þ sin4 b
ð19Þ

In the above special case, the term ðk�1Þ sin4 b! 0,
as b approaches zero. Thus, Eq. (19) can be further
simplified:

S1 bð Þ ¼ kS1 908ð Þ ¼ S1 08ð Þ;) s1 bð Þ 
 s1 08ð Þ: ð20Þ

On the other hand, as b approaches 908, Eq. (19)
becomes

S1 bð Þ

S1 908ð Þ



k

1þ k � 1ð Þ
¼ 1 ð21Þ

As can be seen from Eqs. (20) and (21), in the special
case of n ¼ 1, the compression strength s1ðbÞ varies little
with the change in the orientation angle b if the angle
is near 08 or 908. As illustrated in Fig. 7, which is based
on Eq. (19), there is practically no variation in the
strength, when b is near 08 or 908. Thus, when n ¼ 1,
the proposed model (Eq. (18)) yields approximately the
same results as that obtained by the extended Jaeger’s
criterion.
In another special case, where n ¼ 1 and k ¼ 1,

Eq. (18) becomes

S1 bð Þ ¼
S1 908ð Þ

cos2 bþ sin2 b
� �2 ¼ S1 908ð Þ ¼ S1 08ð Þ ð22Þ

Eq. (22) shows that the compressive strength is inde-
pendent of the orientation angle b. Thus, the proposed

model is reduced to the original Jaeger’s criterion, as
n ¼ 1 and k ¼ 1. It should be noted that k can be
calculated by Eqs. (4), (5) and (16) and not a basic
material parameter in the proposed criterion. The
special case of k ¼ 1 implies the same strength at b ¼
08 and 908 (i.e., mð08Þ ¼ mð908Þ, scð08Þ ¼ scð908Þ.

4. Determination of the material parameters

The proposed criterion is based on two distinct failure
modes, and thus, the model parameters of the proposed
criterion can be categorized into two groups:

(1) Strength parameters of discontinuity (cw and fw),
related to the sliding failure mode,
(2) Strength parameters of rock material (mð08Þ; scð08Þ;

mð908Þ; scð908Þ; n), related to the non-sliding failure mode.

The proposed criterion is a seven-parameter model.
Therefore, seven experimental data points are required
in order to determine these parameters. The material
parameters of proposed model can be obtained by
conducting triaxial tests for at least four orientation
angles, say b ¼ 08, 308, 608, and 908. In this section, the
procedures for determining the material parameters that
are required in the proposed model are presented.

4.1. Determination of cw and fw

The parameters, cw and fw, are the cohesion and
friction of the discontinuity, respectively. As per
Eq. (3a), s1ðbÞ is a function of b. By setting the derivative
of s1ðbÞ with respect to b equal to 0, the orientation angle
at which the minimum strength occurs is obtained

tan fw ¼ cot2 bmin ð23Þ

bmin ¼
p
4
�

fw
2

ð24Þ

In principle, fw can be obtained from Eq. (24) if the
orientation angle that corresponds to a minimum
strength is determined. One possible approach to

Fig. 7. Strength variation versus b for the case transversal anisotropy parameter, n ¼ 1 (a) 0� b � 308 (b) 608 � b � 908.
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determining the shear strength parameters of disconti-
nuity (cw; fw) is conducting triaxial tests on specimens
with b ¼ 202508, in which the sliding mode is expected.
By transforming the stress state into the normal stress
(sn) and the shear stress (t) on the discontinuity using
Eqs. (1) and (2), and then plotting of sn versus t at
failures, the parameters cw (intercept) and fw (slope) can
be determined.
It should be noted that the failure of specimens in the

triaxial tests for determining cw and fw must be of
‘‘sliding mode’’. As evidenced from the experiments and
the prediction by the proposed criterion (see Sections 2
and 5), the sliding mode may be suppressed under high
confining pressures (e.g. Fig. 3(b); Fig. 16), even for the
specimens with b ¼ 308 or 458. Thus, any triaxial test for
determining cw and f in which the specimen does not
fail in the sliding mode should be discarded.

4.2. Determination of m 08ð Þ; sc 08ð Þ; m 908ð Þ; sc 908ð Þ

The four Hoek–Brown parameters of rock material
ðmð08Þ; scð08Þ; mð908Þ; scð908ÞÞ should be determined from
triaxial tests on the rock specimens that are prepared
with b ¼ 08 and 908, respectively. Hoek–Brown criterion
is a two-parameter model. Thus, each set of triaxial tests
should be conducted under at least two confining
pressures. Hoek and Brown [33] provided guidance for
selecting confining pressures and procedures for deter-
mining these material parameters. The test should be
carried out over a range of confining pressures from zero
to 0:25scð08Þ (or 0:25scð908Þ), with eight equally spaced
value of confining pressure [33].
The strength ratio, k under a specified confining

pressure, can be expressed in terms of Hoek–Brown
parameters (mð08Þ; scð08Þ; mð908Þ and scð908Þ) according to
Eqs. (4), (5), and (16). It should be noted that the value
of strength ratio, k may vary slightly with confining
pressure, thus k is not a basic material parameter in the
proposed criterion.

4.3. Determination of transversal anisotropy parameter n

The transversal anisotropy parameter n is the unique
new parameter introduced in the proposed criterion. It
plays a critical role to describe the strength variation
when the sliding failure cannot occur (usually in the
range of b ¼ 02108 and b ¼ 602908). The transversal
anisotropy parameter n can be determined by perform-
ing triaxial tests at b ¼ 608 (or b ¼ 758 alternatively)
and 908. Table 1a and b list the strength ratio at b ¼ 608
(S1ð608Þ=S1ð908Þ) and b ¼ 758 (S1ð758Þ=S1ð908Þ) calculated
by Eq. (18). The values along diagonal lines in Table 1a
and b are more or less constant. It can be explained in
the following. The term cos4 b in Eq. (18) becomes
negligible if b is in the range of 60–908 (for example,
cos4 608=0.0625, cos4 758=0.0045). Thus, Eq. (18)

becomes approximately

S1 bð Þ

S1 908ð Þ



k

k sin4 bþ 2n sin2 b cos2 b

¼
1

sin2 b sin2 bþ 2n=k
� �

cos2 b
� � ð25Þ

In Eq. (25), the strength ratio S1ðbÞ=S1ð908Þ is a function
of n=k. It is, however, independent of k. Rewrite
Eq. (18) in terms of n=k and let k ¼ 1, the strength
ratio becomes

S1 bð Þ

S1 908ð Þ
¼

1

cos4 bþ sin4 bþ 2 n=k
� �

sin2 b cos2 b

¼
1

cos2 bþ sin2 b
� �2

þ2 n=k
� �

� 1

 �

sin2 b cos2 b

¼
1

1þ 2 n=k
� �

� 1

 �

sin2 b cos2 b
ð26Þ

For b ¼ 608, Eq. (26) becomes
S1 608ð Þ

S1 908ð Þ
¼

1

1þ 0:375 n=k
� �

� 1

 � ð27aÞ

For b ¼ 758, Eq. (26) becomes
S1 758ð Þ

S1 908ð Þ
¼

1

1þ 0:125 n=k
� �

� 1

 � ð27bÞ

Fig. 8 shows a plot of S1ð608Þ=S1ð908Þ and S1ð758Þ=S1ð908Þ
versus the ratio n=k. This plot is based on Eq. (18) with
k ¼ 1, which is the same as Eqs. (27a), (27b). While not
shown in this figure, the difference in the obtained curves
using different k values is negligible, as implied by
Eq. (25). Thus, the relationship between the strength
ratio S1ð608Þ=S1ð908Þ and S1ð758Þ=S1ð908Þ and the parameter
ratio n=k shown in Fig. 8 is valid for different k values.

Table 1

Strength ratio caculated from Eq. (18)

n

k 1
ffiffiffi
2

p
2 2

ffiffiffi
2

p
4

(a) Strength ratio at b¼ 608 (S1ð608Þ=S1ð908Þ) calculated from Eq. (18)

1/2 0.696 0.572 0.457 0.356 0.271ffiffiffi
2

p
=2 0.847 0.714 0.584 0.465 0.361

1 1.000 0.866 0.727 0.593 0.471ffiffiffi
2

p
1.147 1.019 0.879 0.737 0.602

2 1.280 1.164 1.032 0.890 0.744

(b) Strength ratio at b¼ 758 (S1ð758Þ=S1ð908Þ) calculated from Eq. (18)

1/2 0.885 0.811 0.725 0.630 0.532ffiffiffi
2

p
=2 0.949 0.887 0.813 0.726 0.631

1 1.000 0.951 0.889 0.814 0.727ffiffiffi
2

p
1.039 1.001 0.951 0.890 0.815

2 1.069 1.040 1.002 0.953 0.891
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Given the strength ratio S1ð608Þ=S1ð908Þ (or S1ð758Þ=S1ð908Þ
alternatively), which may be obtained from triaxial
tests at orientation angle b ¼ 608 (or 758 alternatively)
and 908, the transversal anisotropy parameter n can
be determined from Fig. 8 or Eqs. (27a), (27b). The
procedure for determining the transversal anisotropy
parameter n is described in the next section.

4.4. Complete example for determination of material
parameters

Using the results of triaxial tests on Martingsburg
slate performed by Donath [4], shown in Table 2, the
above procedures for determining material parameters
for the proposed failure criterion are illustrated
below.

Step 1: Determine cw and fw
The shear strength parameters for the discontinuity,

cw and fw, may be determined from a set of triaxial test
in which sliding failure controls. Generally, the sliding
mode occurs in the samples with b ¼ 202508. The best
orientation angle to create a sliding mode is bmin defined
in Eq. (24). The typical values of fw are in the range
of 15–408. Thus, the specimens with orientation angle
b ¼ 152458 are suitable for triaxial tests to determine
cw and fw.

Using the triaxial test result of samples with b ¼ 158,
308 and 458 and Eqs. (1) and (2), the shear stress and
normal stress on the discontinuity can be obtained. At
failure, the shear stress and normal stress on the
discontinuity of Martinsburg slate are shown in Fig. 9a.
The shear strength parameters for the discontinuity for
Martinsburg slate are then obtained: cw ¼ 9:0MPa and
fw ¼ 218.

Step 2: Determine mð08Þ; scð08Þ; mð908Þ; scð908Þ

Fig. 9b shows the triaxial test data for sample with
b ¼ 08 and 908 from Table 2. The strength parameters
of Hoek–Brown’s criterion for Martinsburg slate with
b ¼ 08 and 908 are

mð08Þ ¼ 16:4; scð08Þ ¼ 97MPa; ð28Þ

mð908Þ ¼ 14:2; scð908Þ ¼ 155MPa: ð29Þ

The k value under a specified confining pressure can be
determined from the four Hoek–Brown parameters. For
example, The k values of Martinsburg slate under varied
confining pressure are shown in Table 3. The k value
varies slightly with confining pressures and is not a basic
material parameter of proposed criterion.

Fig. 8. Chart for determination of parameter n.

Table 2

Major principal stress s1ðbÞ at failure of Martinsburg slate tested by
Donath [4] (unit :MPa)

b

s3 (MPa) 08 158 308 458 608 758 908

3.5 128 51 22 43 75 128 194

10.5 162 82 44 63 102 160 241

35 272 134 87 107 150 216 335

50 355 172 129 150 194 284 410

100 530 286 230 260 315 456 600

Fig. 9. Determination of material parameters of proposed failure

criterion for Martinsburg slate test by Donath [4]. (a) strength

parameters of discontinuity, (b) strength parameters of rock materials

at b ¼ 08 and 908.
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Step 3: Determine the transversal anisotropy para-
meter n
The transversal anisotropy parameter n can be obtain

from the strength ratio S1ð608Þ=S1ð908Þ under a specified
confining pressure. An example illustrating the proce-
dures to determine the parameter n for Martinsburg
slate based on experimental data from Donath [4] is
listed in Table 2. First, substitute the Hoek–Brown’s
strength parameters in Eqs. (28) and (29) into Eqs. (4b)
and (5b) to obtain S1ð08Þ, S1ð908Þ, and S1ð08Þ=S1ð908Þ. The
experimental data of S1ð608Þ under varied confining
pressure are taken from Table 2. The transversal
anisotropy parameter n can then be determined
by the strength ratio S1ð608Þ=S1ð908Þ and Eq. (27a) or
Fig. 8.
Table 3 shows that the obtained transversal aniso-

tropy parameter n under different confining pressures.
The obtained parameter n is approximately a constant,
with an average of 3.9 in this case. Thus, the parameter n
may be considered as a material parameter independent
of confining pressure. To determine the transversal
anisotropy parameters n, only one triaxial test of rock
specimen with b ¼ 608 under a convenient confining
pressure is required, although more tests to confirm the
result is desired.
In summary, there are seven material parameters

in the proposed criterion. These parameters can be
determined by performing triaxial tests on a minimum
of seven specimens at varied combinations of orien-
tation angles and confining pressures, as shown in
Table 4, although more tests to confirm is highly
recommended.

5. Evaluation of the proposed criterion

To evaluate the capabilities of the proposed criterion,
comparisons are made between experimental data taken
from the literatures and the predictions obtained from
the proposed criterion based on Eqs. (18) and (3).
The proposed failure criterion is examined by

comparing model predictions with experimental data
from the literature. Figs. 10–18 show these comparisons.
The material parameters for each transversely isotropic
rock, natural or artificial, are listed in Table 5. In each
figure, the solid lines correspond to the predictions
obtained from the proposed failure criterion, while data
points represent experimental results. These rocks
include slates, shales, limestone, and artificial layered
rocks and exhibited three types of anisotropies, namely
U type, shoulder type and undulatory type as defined by

Table 3

Transversal anisotropy parameter n of Martinsburg slate under various confining pressures

Parameters s3¼ 3:5MPa s3¼ 10:5MPa s3¼ 35MPa s3¼ 50MPa s3¼ 100MPa

Calculated S1ð08Þ, MPa Eq. (4b) 122 162 255 298 410

Calculated S1ð908Þ, MPa Eq. (5b) 178 217 318 366 494

k ¼ S1ð08Þ/S1ð908Þ Eq. (16) 0.69 0.74 0.80 0.81 0.83

Measured S1ð608Þ ¼ s1ð608Þ � s3, MPa Table 2 71.5 91.5 115 144 215

S1ð608Þ=S1ð908Þ Measured S1ð608Þ ¼ s1ð608Þ � s3 0.40 0.42 0.36 0.39 0.43

n=k 5.0 4.7 5.7 5.1 4.5

n 3.5 3.5 4.6 4.1 3.7

Average n 3.9

Table 4

Recommendation of orientation angles of specimens and number of

tests for determining material parameters for the proposed criterion

b (deg) No. of s3 Related material parameters

30 2 cw, fw
0 2 mð08Þ,scð08Þ

90 2 mð908Þ,scð908Þ

60 1 n

Fig. 10. Comparison of experimental data (after Donath [4]) and

predicted failure strength of Martinsburg slate.
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Ramamurthy [15]. The proposed criterion is shown to
be applicable to all types of anisotropies.
Duveau and Shao [20] adopted a nonlinear model

(proposed by Barton for rock joint) to modify the
Mohr–Coulomb criterion for discontinuity. Generally, a
nonlinear model provides flexibility for describing the
shear strength along discontinuity. However, it requires
more parameters than does the linear Mohr–Coulomb
criterion. In the present study, the linear Mohr–
Coulomb criterion is adopted for its good balance of
model simplicity with the accuracy.

The transversal anisotropy parameter n reflects the
strength variation for the region where non-sliding
failure occur. The value of n varies from 1.0 to 4.0 for
most of the transversely isotropic rocks. When the value

Fig. 11. Comparison of experimental data (after McLamore and Gray

[7]) and predicted failure strength of Austin slate.

Fig. 12. Comparison of experimental data (after McLamore and Gray

[7]) and predicted failure strength of Green River shale I.

Fig. 13. Comparison of experimental data (after McLamore and Gray

[7]) and predicted failure strength of Green River shale II.

Fig. 14. Comparison of experimental data (after Horino and Ellickson

[8]) and predicted failure strength of limestone.
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of n is in the range of 1.0–2.0 (for example, Figs. 12–14,
17 and 18), the strength is roughly constant in the
neighborhood of b ¼ 08 or 908. Those rocks may be
classified into shoulder type anisotropy. As value of n
increases, the region of ‘‘shoulder’’ disappear gradually,
the strength variation around the neighborhood of b ¼
08 or 908 is more significant as shown in Figs. 10 and 15.

The type of anisotropy for such rocks may be referred to
as U type or undulatory type.
The failure criteria for anisotropic rocks can be

categorized into two groups: (1) discontinuous models
(e.g. Jaeger’s criterion and extended Jaeger’s criterion)
and (2) continuous models (e.g. Pariseau’s criterion,
Cazacu et al. criterion), depending upon the continuous
and discontinuous characteristics of the corresponding
anisotropy [2]. Compared to the experimental observa-
tions, the discontinuous models predict relatively well
the strength behavior of a rock cut by joint. How-
ever, the continuous models are more suitable for the

Fig. 15. Comparison of experimental data (after Attewell and

Sandford [9]) and predicted failure strength of Blue Penrhyn slate.

Fig. 16. Comparison of experimental data (after Niandou et al. [11])

and predicted failure strength of Tournemire shale.

Fig. 17. Comparison of experimental data (after Tien and Tsao [14])

and predicted failure strength of artificial interlayered rock.

Fig. 18. Comparison of experimental data (after Tien and Tsao [14])

and predicted failure strength of artificial stratified rock.
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continuous rocks. The discontinuous models divide
failure modes into the sliding and non-sliding modes.
The sharp corner exists in the plot of failure stress as
a function of orientation angle implies the transition
point of two distinct failure modes. On the other hand,
the continuous models treat the transversely isotropic
rock as a continuous medium, ignoring the existence of
the sharp corner and evading the failure mode problem.
Because the relationship between the failure stresses

and the orientation angle of the transversely isotropic
rocks obtained from the experiment is discrete, it is
generally difficult, by the experimental approach alone,
to identify whether the sharp corner exists or not. It is
more meaningful to discuss this issue from both
experimental and theoretical approaches, and by con-
sidering both strength variation and failure mode
simultaneously. Whether a sharp corner exists depends
on the rock type and the confining pressure. For an
anisotropic rock that can be treated as a continuous
medium at the sample scale, a continuous variation of
strength with the orientation angle is expected. For the
continuous rock or the discontinuous rock under high
confining pressure, the effect of discontinuity is fully
suppressed; the sharp corner is not significant. The
phenomenon of suppression of discontinuity effect (or
anisotropy) as the confining pressure increases has been
identified by the experimental evidence [15,18]. Such
phenomenon can also be accounted for by the newly
developed criterion presented in this paper. The
proposed criterion is a discontinuous model at lower
confining pressure, and as confining pressure increases,
it is gradually transformed into a continuous model. For
example, as shown in Fig. 16, when s3 > 20MPa, the
proposed criterion (Eq. (18)) becomes a continuous
model.
From the results shown in Figs. 10–18, the proposed

failure criterion is shown to be able to accurately predict
the compression strength of transversely isotropic rocks
of various types, prepared at different orientation angels
and under various confining pressures.
As a final note, the proposed criterion is a hybrid

of the two well-known criteria in the field of rock
mechanics, the Hoek–Brown and the Mohr–Coulomb

criteria. Both the Hoek–Brown and the Mohr–Coulomb
formulations are expressed in terms of major and minor
principal stresses, neglecting the effect of the intermedi-
ate principal stress. Thus, the proposed criterion inherits
this limitation. Further research to improve the pro-
posed criterion considering three-dimensional stress
conditions is worth undertaking.

6. Conclusions

1. A new failure criterion for the transversely isotropic
rocks has been developed and presented. The new
criterion is based on two distinct failure modes; one is
the sliding mode where the failure is caused by sliding
along the discontinuity, and the other is the non-
sliding mode where the failure is controlled by the
rock material and is not dependent on discontinuity.

2. The newly developed failure criterion consists of
seven material parameters. They are the cohesion and
the friction angle of the discontinuity (cw,fw), Hoek–
Brown’s parameters (scð08Þ; scð908Þ; mð08Þ; mð908Þ) and
the transversal anisotropy parameter (n). The physi-
cal meanings of, and the procedures for determining,
these parameters are described.

3. When n ¼ 1, the proposed failure criterion is very
similar to the extended Jaeger’s criterion. With
additional condition that k ¼ 1, which implies that
mð08Þ ¼ mð908Þ, scð08Þ ¼ scð908Þ, the proposed criterion
becomes the original Jaeger’s criterion.

4. The predictions of the strength behaviors of various
types of the transversely isotropic rocks with different
orientation angels and under various confining
pressures agree well with experimental data from
various investigators. The accuracy and the versatility
of the proposed failure criterion are demonstrated.
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Table 5

Material parameters of the proposed criterion for various rocks

Rock cw (MPa) fw (8) mð08Þ scð08Þ (MPa) mð908Þ scð908Þ (MPa) n Data source

Martinsburg slate 9 21 16.4 97 14.2 155 3.9 Donath [4]

Austin slate 31 17 6.0 249 4.6 234 2.7 McLamore and Gray [7]

Green River shale I 49 28 6.7 208 6.7 208 1.2 McLamore and Gray [7]

Green River shale II 29 18 4.4 106 4.4 106 1.3 McLamore and Gray [7]

Limestone 11 30 5.9 58 7.1 63 1.3 Horino and Ellickson [8]

Blue Penrhyn slate 22 16 7.9 148 8.9 177 3.7 Attewell and Sandford [9]

Tournemire shale 4 36 4.4 45 4.4 45 2.5 Niandou et al. [11]

Artificial interlayered rock 4 29 6.5 31 3.1 27 1.1 Tien and Tsao [14]

Artificial stratified rock 5 29 1.8 46 1.8 46 1.4 Tien and Tsao [14]

Y.M. Tien, M.C. Kuo / International Journal of Rock Mechanics & Mining Sciences 38 (2001) 399–412 411



References

[1] Goodman RE. Engineering geology-rock in engineering construc-

tion. New York: John Wiley and Sons, Inc., 1993. p. 293–332.

[2] Amadei B. Rock anisotropy and the theory of stress measure-

ments. Heidelberg: Springer-Verlag, 1983.

[3] Wittke W. Rock mechanics}theory and applications with case

history. Heidelberg: Springer-Verlag, 1990. p. 5–170.

[4] Donath FA. A strength variation and deformational behavior

of anisotropic rocks. In: State of stress in the Earth’s crust.

New York: Elsevier, 1964. p. 281–97.

[5] Hoek E. Fracture of anisotropic rock. J S Afr Inst Min Metall

1964;64(10):510–8.

[6] Chenevert ME, Gatlin C. Mechanical anisotropies of laminated

sedimentary rocks. Soc Petrol Eng J 1965;5:67–77.

[7] McLamore R, Gray KE. The mechanical behavior of aniso-

tropic sedimentary rocks. J Eng Ind Trans of the ASME

1967;89:62–73.

[8] Horino FG, Ellickson ML. A method of estimating the strength

of rock containing planes of weakness. US Bureau of Mines,

Report Investigation 7449, 1970.

[9] Attewell B, Sandford MR. Intrinsic shear strength of a brittle

anisotropic rock. I. Experimental and mechanical interpretation.

II. Textural data acquisition and processing. III. Textural

interpretation of failure. Int J Rock Mech Min Sci 1974;11:

423–30, 431–8, 439–51.

[10] Brown ET, Richards LR, Barr MV. Shear strength characteristics

of Delabole slate. In: Proceedings of the Conference on Rock

Engineering, Newcastle-upon-Tyne, 1977. p. 31–51.

[11] Niandou H, Shao JF, Henry JP, Fourmaintraux D. Laboratory

investigation of the mechanical behavior of Tournemire shale.

Int J Rock Mech Min Sci 1997;34:3–16.

[12] Lai YS, Wang CY, Tien YM. Micromechanical analysis of

imperfectly bonded layered media. J Eng Mech ASCE

1997;123(10):986–95.

[13] Lai YS, Wang CY, Tien YM. Modified Mohr–Coulomb-type

micromechanical failure criteria for layered rocks. Int J Numer

Anal Meth Geomech 1999;23:451–60.

[14] Tien YM, Tsao PF. Preparation and mechanical properties of

artificial transversely isotropic rock. Int J Rock Mech Min Sci

2000;37:1001–12.

[15] Ramamurthy T. Strength and modulus responses of anisotropic

rocks. In: Hudson JA, editor. Comprehensive rock engineering,

vol. 1. Fundamentals. Oxford: Pergamon Press, 1993. p. 313–29.

[16] Jaeger JC. Shear failure of anisotropic rocks. Geol Mag

1960;97:65–72.

[17] Borecki M, Kwasniewski MA. Experimental and analytical

studies on compressive strength of anisotropic rocks. Proceedings

of Seventh Plenary Scientific Session of the International Bureau

of Rock Mechanics, Katowice, 1981. p. 23–49.

[18] Kwasniewski MA. Mechanical behavior of anisotropic rocks. In:

Hudson JA, editor. Comprehensive rock engineering, vol. 1.

Fundamentals. Oxford: Pergamon Press, 1993. p. 285–312.

[19] Sheorey PR. Empirical rock failure criteria. Rotterdam: A.A.

Balkema, 1997.

[20] Duveau G, Shao JF. A modified single discontinuity theory for

the failure of highly stratified rocks. Int J Rock Mech Min Sci

1998;35(6):807–13.

[21] Hoek E, Brown ET. Underground excavation in rock. London:

Institution of Mining and Metallurgy, 1980. p. 157–62.

[22] Hill R. The mathematical theory of plasticity. Oxford: Oxford

University Press, 1950.

[23] Pariseau WG. Plasticity theory for anisotropic rocks and soils.

Proceedings of the 10th Symposium on Rock Mechanics (AIME),

1972. p. 267–95.

[24] Cazacu O, Cristescu ND, Shao JF, Henry JP. A new failure

criterion for transversely isotropic rocks. Int J Rock Mech Min

Sci 1998;35(4–5):130.

[25] Nova R. The failure of transversely isotropic rocks in triaxial

compression. Int J Rock Mech Min Sci Geomech Abstr

1980;17:325–32.

[26] Lekhnitskii SG. In: Fern P, translator. Theory of elasticity of an

anisotropy elastic body. San Francisco: Holden-Day Inc., 1963.

[27] Tien YM, Wang CY, Huang TY, Lai YS. Constitutive laws and

failure criterion for interstratified rock mass. National Science

Council of ROC, Taiwan, Report No. NSC 84-2611-E008-004,

1995.

[28] Tien YM, Wang CY, Wang RZ, Lai YS. Preparation and

mechanical behavior of artificial anisotropic rock mass (I).

National Science Council of ROC, Taiwan, Report No. NSC

84-2611-E008-004, 1995.

[29] Tien YM, Wang CY, Huang TY, Lai YS. Preparation and

mechanical behavior of artificial anisotropic rock mass (II).

National Science Council of ROC, Taiwan, Report No. NSC 85-

2211-E008-036, 1996.

[30] Tien YM, Tsao PF, Young SH. Preparation and mechanical

behavior of artificial anisotropic rock mass (III). National Science

Council of ROC, Taiwan, Report No. NSC 86-2621-E008-009,

1997.

[31] Hoek E, Brown ET. Empirical strength criterion for rock masses.

J Geotech Eng Division Am Soc Civil Eng 1980;106(GT9):

1013–35.

[32] Halpin JC. Primer on composite materials: analysis. Lancaster:

Technomic Pub. Co., Inc., 1984. p. 67–98.

[33] Hoek E, Brown ET. Practical estimation of rock mass strength.

Int J Rock Mech Min Sci Geomech Abstr 1997;34(8):1165–86.

Y.M. Tien, M.C. Kuo / International Journal of Rock Mechanics & Mining Sciences 38 (2001) 399–412412


