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Abstract

An invariant 3-D failure criterion for transversely isotropic solids is presented. For isotropic conditions, this criterion

reduces to Mises±Schleicher failure criterion. It is shown that the anisotropic Mises±Schleicher (AMS) criterion can

accurately describe the observed failure characteristics of transversely isotropic rocks under both compressive and

tensile stresses. This criterion predicts that the application of multiaxial tensile stresses on rock reduces the value of the

failure strength, i.e., the predicted value of the hydrostatic tensile strength as well as of the biaxial tensile strength is less

than the uniaxial tensile strength in any direction. The intersections of the AMS failure surfaces with the octahedral

plane demonstrates the ability of the criterion to describe the directional character of the strength of transversely

isotropic materials under general loading conditions. The application of this criterion to conventional triaxial com-

pression, reduced triaxial extension, and biaxial conditions, shows that this criterion captures the in¯uence of the

magnitude of the intermediate principal stress on strength. Representative sets of data from tests on rock have been

analyzed and comparison between the theoretical predictions and the data appears to be quite good with the accuracies

generally within the natural scatter of test data. In this paper, the AMS criterion is applied to rock materials; however, it

can be used to describe the strength anisotropy of any material exhibiting transverse isotropy. Ó 1999 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

In many rocks, due to the existence of well-
de®ned fabric elements such as bedding, layering,
foliation or lamination planes, or due to the exis-
tence of linear structures, anisotropy in brittle
behavior can be important. The symmetries most
frequently encountered are: transverse isotropy
and orthotropy. By adopting both theoretical and

experimental approaches, many authors have in-
vestigated the e�ect of the presence within the rock
of pronounced anisotropic feature on strength.
For rocks exhibiting intrinsic transverse isotropy,
experimental studies have been performed mainly
on cylindrical specimens subjected to axisymmetric
state of compressive stresses. It has been found
that the compressive strength of the rock varies
signi®cantly with the orientation of the maximum
principal stress towards the preferential planes,
and with the magnitude of the con®ning pressure
(e.g., Allirot and Boehler, 1979; Attewell and
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Sandford, 1974; Chenevert and Gatlin, 1965; Do-
nath, 1964, 1972; Homand et al., 1993; Niandou,
1994; Ramamurthy, 1993, etc.). Indirect tensile
tests, such as the Brazilian test, are commonly used
to determine the tensile strength of isotropic rocks.
However, they are not appropriate for anisotropic
rock, since in this type of test the state of stress is
not statically determinate but depends on the
constitutive law of the rock, which is a priori un-
known. On the other hand, direct tensile tests are
very di�cult to carry out. This is because both the
bending stresses, or torsion moment (caused by
the eccentricity of machine axial loads) and the
anomalous concentrated stresses (induced by an
improper connection between the ends of the
specimen and the machine caps serving to transfer
the tensile loads to the specimen) are frequently
unavoidable (Nova and Zaninetti, 1990). Few di-
rect tensile test results on intact transversely iso-
tropic rocks have been reported in the literature
(Nova and Zaninetti, 1990; Liao et al., 1997, etc.).
Although much scatter exists in the measured limit
stresses, a clear trend was observed: the tensile
strength tends to increase regularly with the incli-
nation of the planes of symmetry with respect to
the horizontal. Failure criteria that accounts for
the continuous variation of the compressive
strength with orientation for transversely isotropic
intact rock have been developed by several authors
(e.g., Jaeger, 1960; McLamore and Gray, 1967;
Ramamurthy, 1993, etc.). These criteria are simple
in concept and in expression, and they provide
good approximations for the strength under axi-
symmetric loading conditions. However, these
theories require a large amount of curve ®tting,
and cannot be applicable to truly 3-D stress states.
A more general approach was followed by Par-
iseau (1972). To take into account the possibility
of unequal tensile and compressive strengths, and
to describe the e�ect of the hydrostatic stress on
strength, Pariseau extended Hill's criterion (Hill,
1948) by including a linear term in r11, r22 and r33.
A general theory of the ¯ow and fracture of an-
isotropic solids was developed by Boehler
(1978, 1987) and Boehler and Sawczuk (1977), in
the framework of the theory of invariance. Nova
(1980) has proposed a generalized failure condi-
tion that describes the failure of transversely iso-

tropic rocks in compression. Subsequently, Nova
and Zaninetti (1990) have developed an anisotro-
pic strength criterion for tensile failure similar,
conceptually, to the failure criterion for compres-
sion. However, no attempt has been made at de-
veloping a failure surface that is continuous in the
stress space. Theocaris (1991) proposed an elliptic
paraboloid failure criterion that accounts for the
di�erential strength e�ect. This criterion was ap-
plied to a great number of transversely isotropic
materials such as: ®ber-reinforced composites,
cellular solids, and brittle foams. An invariant
formulation of a failure criterion for transversely
isotropic solids was proposed by Cazacu et al.
(1998). For isotropic conditions, this criterion re-
duces to the Mises±Schleicher criterion.

In this paper, the characteristic properties of
this type of failure surface are further investigated.
The intersections of the failure surfaces corre-
sponding to arbitrary orientation of the principal
stress system with respect to the structural system,
by the octahedral plane are presented. It is thus
shown that the criterion is able to describe the
directional character of strength under general
loading conditions. The application of the criteri-
on to conventional triaxial compression, reduced
triaxial extension, and biaxial conditions, shows
the ability of the criterion to capture the in¯uence
of the magnitude of the intermediate principal
stress on strength. Finally, comparisons between
theoretical predictions and strength data on vari-
ous transversely anisotropic rocks are presented.

2. The anisotropic Mises±Schleicher failure criteri-

on

A general macroscopic failure criterion for
transversely isotropic solids has been developed by
Cazacu et al. (1998). As the derivation and for-
mulation of the criterion has been described in
detail in the paper mentioned, we shall just brie¯y
recall it here for clarity. The anisotropic Mises±
Schleicher (AMS) criterion is expressed as follows:

3

2
tr�R0�2 ÿ m

3
tr Rÿ 1 � 0; �1�

with
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Rij � Bijklrkl: �2�
In Eq. (1) prime stands for deviator, `tr' denotes
the trace operator, r is the Cauchy stress tensor,
and m is a material constant. The anisotropy is
introduced by means of the fourth order tensor B
that satis®es the usual symmetry conditions:

Bijkl � Bjikl � Bklij � Bijlk: �3�
For given environmental conditions (e.g., temper-
ature, humidity, etc.) B is supposed to be constant.
In contrast to other existing criteria, the only re-
striction imposed on B is to be invariant under any
orthogonal transformation belonging to the sym-
metry group of the material. Thus, in the struc-
tural coordinate system (S1, S2, S3) associated with
the material symmetries, the truncated matrix of B
is:

B �

a b b 0 0 0

b d e 0 0 0

b e d 0 0 0

0 0 0 dÿe
2

0 0

0 0 0 0 c
2

0

0 0 0 0 0 c
2

266666664

377777775; �4�

where a, b, c, d and e are independent material
parameters, and (S2, S3) de®nes the symmetry
plane.For isotropic conditions, the proposed cri-
terion reduces to the Mises±Schleicher paraboloid
surface (see, e.g., Lubliner, 1990):

3J2 � �rC ÿ rT�I1 ÿ rTrC � 0; �5�
where J2 � �1=2��tr�r0�2�, I1 � tr�r�, and rT; rC

are the tensile and compressive strength, respec-
tively. In the structural system (S1, S2, S3), the
AMS criterion is expressed by:

a1r11 � a2�r22 � r33� � A11r
2
11 � A22�r2

22 � r2
33�

� 2A12r11�r22 � r33� � 2A23r22r33 � A44r
2
23

� A55�r2
12 � r2

13� � 1; �6�
where the coe�cients in Eq. (6) are given by:

a1 � 1=3� ÿ m�a� 2b��;
a2 � 1=3� ÿ m�b� e� d��;
A11 � �aÿ b�2;
A22 � 1=2 �b

h
ÿ e�2 � �d ÿ e�2 � �bÿ d�2

i
;

A44 � 3�d ÿ e�2;
A55 � 3c2;

A23 � A22 ÿ A44=2;

A2
12 � 1=2 A11�A22� � A23��: �7�

The physical interpretation of the parameters of
the criterion may be revealed from simple labora-
tory tests: shear tests in the (S2, S3) plane and in
the (S1, S2) plane, and uniaxial tests along the S1

and the S2 axis, respectively. Thus:

a1 � 1=XC ÿ 1=XT;

a2 � 1=YC ÿ 1=YT;

A11 � 1=�XTXC�;
A22 � 1=�YTYC�;
A44 � 1=Q2;

A23 � A22 ÿ A44=2;

A55 � 1=R2: �70�
Here, and throughout the text the compressive
stresses are taken positive, XC and (ÿXT) are the
uniaxial compressive and tensile strengths along
S1, while YC and (ÿYT) are the uniaxial com-
pressive and tensile strengths along S2; Q is the
shear strength in the symmetry plane (S2, S3) while
R denotes the shear strength in the (S1, S2) plane.
It was shown (see Cazacu et al., 1998) that the
additional condition: 1=Q2 � 4=�YTYC� ÿ 1=XC

ensures that in the three-dimensional space of the
principal stresses the failure surface is an elliptic
paraboloid for any orientation h of the principal
stresses system (X1, X2, X3) with respect to the
structural system (S1, S2, S3) (see Fig. 1). It is
worthwhile to note that in the AMS criterion the
interaction coe�cients A12, and A23 are interre-
lated with the diagonal components A11, A22, and
A44, thus they are directly de®ned in terms of the
basic engineering strengths of the material. This is
a signi®cant advantage, in determining the con-
stitutive parameters, of the AMS criterion over
most existing failure criteria. As an example, in
Tsai and Wu, 1971 criterion, the determination of
the o�-diagonal coe�cient F12 (i.e., the coe�cient
of r11r22 in the expression of the criterion in the
structural coordinate system) has been found to be
very sensitive and dependent on the nature of the
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particular test used for its determination. To
overcome the di�culties related to the optimal
experimental evaluation of F12 several de®nitions
have been proposed (see Tsai and Hahn, 1980;
Cowin, 1979; Wu and Stachurski, 1984). However,
estimating the value of F12 is still a debated ques-
tion (Labossi�ere and Neale, 1987).

3. Shape of the AMS failure surface in principal

stress space

To better understand the characteristic proper-
ties of the AMS failure surface, it is useful to
represent it in: (1) the octahedral plane, (2) the
triaxial plane, and (3) the biaxial plane.

3.1. The AMS failure surface in the deviatoric
pplane �r1 � r2 � r3 � 0�

First, let us study the characteristics of the
failure surface in the octahedral plane: r1 � r2�
r3 � 0. The case of one of the principal stress axes,
the r2-axis say, coinciding with the structural axis
S2 whereas the two other stress axes rotate about
S2 with an angle h, will be analyzed (see Fig. 1).
Consider the Oxyz frame related to the principal
stress direction frame by the following relations:

x � 1���
3
p �r1 � r2 � r3�; y � 1���

2
p �r2 ÿ r1�;

z � 1���
6
p �ÿr1 ÿ r2 � 2r3�: �8�

The Ox-axis coincides with the hydrostatic axis
(r1 � r2 � r3), hence the Oyz-plane coincides with
the octahedral plane, whereas Oy is the bisector of
°�r2;ÿr1�. In the Oxyz-frame, the equation of the
AMS elliptic paraboloid is given by:

Ay2 � 2hyz� Bz2 � 2Gy � 2Fz� Ix� c � 0; �9�
where

A � �1=2� �2A11

h
� A22 ÿ A55��cos h�4

� �A55 � A11 ÿ 4A22��cos h�2 � 4A22 ÿ A11

i
;

h � �
���
3
p

=2� �2A11

h
� A22 ÿ A55��cos h�2

ÿ A11 ÿ 2A22 � A55

i
�cos h�2;

B � �3=2� �2A11

h
� A22 ÿ A55��cos h�4

� �A55 ÿ 3A11��cos h�2 � A11

i
;

G � ÿ �
���
2
p

=4��a1 ÿ a2��cos h�2;
F � ÿ �

���
6
p

=12��a1 ÿ a2��3�cos h�2 ÿ 2�;
I � �

���
3
p

=3��a1 � 2a2�;
c � ÿ 1: �10�

The intersection of any of the AMS surfaces (9) by
the octahedral plane (x� 0) is an ellipse. Indeed, to
determine the nature of the conic of intersection,
the following quantities need to be evaluated:

D �
A h G
h B F
G F ÿ 1

24 35; J � ABÿ h2; I � A� B:

�11�
From Eq. (10) we get:

I � �1=2��A44 � 3A11 ÿ a�sin 2h�2�;
J � �3=4� A11A44�2�cos h�2

h
ÿ 1�2

� A55�sin h�2�cos h�2�A44 � A11�
i
;

D � b� �1=4�c�sin 2h�2;
a � �1=4��9A11 � A44 ÿ 4A55�;
b � �1=12�

n
ÿ A44 9A11

h
� �a1 ÿ a2�2

io
;

c � �1=12� ÿ 48b
n

ÿ A55 9�A11

h
� A44� � �a1 ÿ a2�2

io
: �12�

Fig. 1. Geometry of the problem: (X1, X2, X3) ± principal

stresses system, and (S1, S2, S3) ± structural system.
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Since �sin 2h�26 1 for any h, it follows that:
I P �3A11 � 3A44 � 4A55�=8, and D6 b� c=4 <
ÿA55��a1 ÿ a2�2 � 9�A11 � A44��=48. Thus, for any
h: D < 0; I > 0; J > 0. As the angle h is increas-
ing, the shape of the ellipses of intersection is
drastically changing. For h� 0°, since S1 coin-
cides with Or1, one axis of the ellipse is along
Or1; if A11 < A22, the eccentricity is: e0 �
2
������������������������������������A22 ÿ A11�=�A44�

p
, whereas if A11 > A22, it is

e0 � 2
��������������������������������������A11 ÿ A22�=�3A11�

p
. For h� 45°, one axis

of the ellipse is inclined at 60° to Oy; if A22 < A55=3

the eccentricity is: e45 �
�����������������������������������A55 ÿ 3A22�=A55

p
, while

for A22 > A55=3, the eccentricity is: e45 ��������������������������������������A55 ÿ 3A22�=3A22

p
. For h� 90°, one axis is along

Or3; as expected e90 � e0. As an example, in Fig. 2
are shown the cross-sectional shapes in the octa-
hedral plane of the AMS surfaces for A11 < A22;
a1 < a2, and for h� 0°, 45°, and 90°, respectively;
�ri are the projections on the octahedral plane of
the ri axes.

For any orientation h, the axis of the elliptic
paraboloid is piercing the octahedral plane in the
center of the ellipse of intersection (0, yC, zC),
where yC � �hF ÿ BG�=J , and zC � �hGÿ AF �=J .
Thus, the distance jd1�h�j from the vertex of the
paraboloid to the octahedral plane is obtained by

putting in Eq. (9) x� 0, y� yC, and z� zC. It fol-
lows that:

d1�h� � ÿ �a2 ÿ a1�2
12J

�
h
ÿ �A44 ÿ A55��sin�2h��2=4� A44

i
ÿ 1:

�13�
On the other hand, using Eqs. (6) and (7) we
obtain that the hydrostatic strength of the material
is:

rT � 1

2a2 � a1

� 1

2�1=Yc ÿ 1=YT� � �1=XC ÿ 1=XT� :

Since for rocks XT < XC, and YT < YC follows that
rT < 0, the failure surface being closed on the
tensile side. Obviously, the distance between the
origin O, and the point where the hydrostatic axis
intersects the paraboloid is jdj, where

d �
���
3
p

rT: �14�
The di�erence between these two distances,
jd1�h�j ÿ jdj, can be considered to be a measure of
the ``¯atness'' of the AMS surfaces.

Any intersection of the AMS surfaces by planes
x� constant are ellipses. In Fig. 3 are shown the
intersections of the AMS surfaces for A11 <
A22; a1 < a2 by the octahedral plane, and three
other planes parallel to it: x�ÿd, x� d, and
x� d/2. Fig. 3(a) corresponds to the case when the
principal strength axes coincide with the principal
stress axes (h� 0°), while Fig. 3(b) and (c) corres-
pond to o�-axis loadings by angles h� 45° and
h� 90°, respectively. Obviously, for x� d, the el-
liptic intersections of AMS surfaces by this plane
should pass through the origin O.

3.2. The AMS failure surface in triaxial plane

Because rock specimens are often submitted to
a triaxial stress state in which two of the principal
stresses are equal (such as uniaxial compression
and tension tests, triaxial compression and exten-
sion tests), it is worthwhile to analyze the inter-
section of the AMS criterion with the usual triaxial
plane. The AMS criterion is expressed in the
principal stress system (X1, X2, X3) by:

Fig. 2. Cross-sectional shapes in the octahedral plane of AMS

failure surfaces corresponding to h� 0°, h� 45°, and h� 90°
(A11 < A22; a1 < a2).
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a01r1 � a02r2 � a03r3 � A011r
2
1 � A022r

2
2 � A033r

2
3

� 2A012r1r2 � 2A013r3r1 � 2A023r2r3 � 1: �15�
The expressions of the new coe�cients A0ij and a0i,
in terms of the coe�cients Aij; ai and the angle h
are given in the Appendix A. The equation ex-
pressing the intersection of the AMS criterion with
the plane �r3;

���
2
p

r1 �
���
2
p

r2�, is de®ned by putting
in Eq. (15), r1 � r2:

a0u2 � b0r2
3 � 2d0ur3 � 2c0u� 2g0r3 ÿ 1 � 0; �16�

where

u �
���
2
p

r1;

a0 � �1=2��A011 � A022 � 2A012�;
b0 � A033;

d0 � �1=
���
2
p
��A013 � A023�;

c0 � �1=�2
���
2
p
���a01 � a02�;

g0 � �1=2�a03: �17�

For any orientation h the conic Eq. (16) is a pa-
rabola. Indeed, J 0 � a0b0 ÿ d02 � 0, and

Fig. 3. Variation of cross-sectional shapes in deviatoric planes for AMS failure surfaces corresponding to diatomite for: (a) h� 0°;

(b) h� 45°; (c) h� 90° (A11 < A22; a1 < a2).
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D0 �
a0 d0 c0

d0 b0 g0

c0 g0 ÿ 1

24 35
� ÿ �a1 � 2a2�2

32
3�cos h�2
h�

ÿ 2
i2

A11

� A44�cos h�4 � 2A55�sin 2h�2
�
:

The failure locus is ``open'' on the compressive
side, showing that the axial pressure may be in-
creased without limit, if the con®ning pressure is
increased proportionally. However, the failure
curve is ``closed'' on the tensile side and failure can
occur under the tensile hydrostatic pressure

rT � 1

2a2 � a1

� 1

2�1=Yc ÿ 1=YT� � �1=XC ÿ 1=XT� :

If 2XT < YC, then, jrTj < YT. Similarly, if condition
2YT < YC is satis®ed then: jrTj < XT. Thus, the
hydrostatic absolute value of the hydrostatic ten-
sile strength jrTj, is lower than YT and/or XT. Al-
though many existing criteria consider that the
hydrostatic tensile strength should reduce to the
uniaxial tensile strength, it seems more realistic
that the application of multiaxial tensile stresses
on rock reduces the value of the failure strength
(see for example, Aubertin and Simon, 1997).
Furthermore, a smooth failure curve avoids the
physically unlikely angular apex found in the
principal stress produced by the ``tension cuto�s''.
Thus, the application of the AMS criterion to
boundary-value problems is straightforward, since
the surface is de®ned by a unique expression in the
three-dimensional stress space.

As an example, in Fig. 4 is shown the intersec-
tion of the failure surface with the plane r1 � r2,
for h� 0°, and h� 90°, for a diatomite (data after
Allirot and Boehler, 1979). The intersections of the
parabola corresponding to h� 0° with the r3 axis
are at the uniaxial compressive strength (YC), and
the uniaxial tensile strength (ÿYT), respectively.
Point C represents the limiting loading condition
for a hydrostatic tensile stress state. The intersec-
tions with the (r1 � r2; r3 � 0) axis represent the
biaxial failure strengths in compression and ten-
sion, respectively. Similarly, for h� 90°, the inter-
sections with the r3 axis are the uniaxial

compressive strength (XC), and the uniaxial tensile
strength (ÿXT), respectively. The parabola passes
through the same point C, expressing that hydro-
static strength does not depend on the orientation
of the applied loading with respect to the struc-
tural axis of the material. The biaxial compressive
strength for h� 90° is of 51 MPa and it is not
represented on Fig. 4.

The results of triaxial compression tests and
extension tests may conveniently be shown in the
(p,q) plane, where p � I1=3, and q � �������

3J2

p
. For a

given orientation h, the failure curve correspond-
ing to conventional triaxial compression (CTC)
tests (r1 � r2 < r3) is a parabola of equation:

BB�h�q2 � 2gp � 2f1�h�qÿ 1 � 0; �18�
with

BB�h� � �2A11 � A22 ÿ A55��cos h�4

� �A55 ÿ 3A11��cos h�2 � A11;

g � a1 � 2a2

2
;

f1�h� � �a1 ÿ a2��3�cos h�2 ÿ 2�
6

: �19�
On the other hand, in reduced triaxial extension

(RTE) tests (r1 < r2 � r3) the failure curve is a
parabola of equation:

BB�h�q2 � 2gp � 2f2�h�qÿ 1 � 0 �20�
with

Fig. 4. Intersection of the AMS criterion with the triaxial plane

(r3;
���
2
p

r1 �
���
2
p

r2) for h� 0°, and h� 90° (data after Allirot

and Boehler, 1979).
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f2�h� � ÿ �a1 ÿ a2��cos h�2
2

� a1 ÿ 4a2

6
: �21�

The intersection with the q axis of the CTC pa-
rabola is at:

qCTC �
ÿf1�h� �

������������������������������
f1�h�2 � BB�h�

q
BB�h� ; �22�

whereas the RTE parabola intersects the q axis at

qRTE �
ÿf2�h� �

������������������������������
f2�h�2 � BB�h�

q
BB�h� : �220�

The intersections of both parabolas with the p
axis are at the hydrostatic tensile strength rT �
1=�2a2 � a1�. Since BB�h� > 0 for any h, it follows
that qCTC > qRTE. Thus, in the case when the in-
termediate principal stress r2 is oriented parallel to
the symmetry planes, for any orientation h, the
predicted strength in CTC conditions �lr � ÿ1� is
higher than in RTE conditions �lr � 1�, where
lr � �2r2 ÿ r1 ÿ r3�=�r1 ÿ r3� is the Nadai-Lode
parameter. As an example, in Fig. 5 are shown the
RTE and CTC parabolas for h� 45°, the param-
eters being determined for the Texas slate (data
after McLamore and Gray, 1967). The solid lines

correspond to the predictions of the AMS criteri-
on, while the experimental points are represented
by symbols. No RTE test results were available.

This e�ect of the magnitude of the intermediate
stress on the strength of transversely isotropic
rocks has been experimentally observed for clay
shales (e.g., Beron and Chirkov, 1969; Niandou
et al., 1997). The CTC and RTE tests are, how-
ever, insu�cient to assess the strength properties
of the rock at intermediate stresses di�erent from
r3 and r1, and thus under conditions when
ÿ1 < lr < 1.

3.3. AMS failure surface in biaxial plane

Biaxial tests supply additional information on
the e�ect of the magnitude of the intermediate
principal stress r2 on the strength properties of
rock. The results of such tests, in which one of the
principal stresses is zero, may conveniently be
shown in a biaxial plane. The equation expressing
the intersection of the AMS failure surface with
the biaxial plane is readily de®ned by putting in
Eq. (15), r1 � 0:

A0r2
2 � 2H 0�h�r2r3 � BB�h�r2

3

� 2g0r2 � 2f 0�h�r3 ÿ 1 � 0; �23�
where

A0 � A22;

H 0�h� � �A11 ÿ A22��cos h�2 ÿ A11=2;

g0 � ÿa2=2;

BB�h� � �2A11 � A22 ÿ A55��cos h�4

� �A55 ÿ 3A11��cos h�2 � A11;

f 0�h� � a1

h
ÿ �a1 ÿ a2��cos h�2

i.
2: �24�

For any orientation h, Eq. (23) is an ellipse. For
h� 0°, that corresponds to the case when the
principal stress directions r2 and r3 belong to the
isotropy plane (S2, S3), the intersections of this
ellipse with the r3 axis as well as with the r2 axis
are at the uniaxial compressive strength (YC), and
at the uniaxial tensile strength (ÿYT), respectively.
The intersections with the symmetry axis r2 � r3

represent the biaxial strength in compression and
tension, respectively. Thus, the predicted absolute

Fig. 5. Representation of the AMS criterion in the (p,q) plane

showing the in¯uence of the magnitude of the intermediate

principal stress on strength (data after McLamore and Gray,

1967).
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value of the biaxial tensile strength is higher than
the uniaxial tensile strength. Similarly, for h� 90°
that corresponds to the case when the maximum
principal stress r3 is oriented perpendicular to the
symmetry planes, the intersection with the r3 axis
are at the uniaxial compressive strength (XC), and
at the uniaxial tensile strength (ÿXT), whereas the
intersections with the r2 axis are at the uniaxial
compressive strength (YC), and at the uniaxial
tensile strength (ÿYT), respectively. The slope of
the axis of symmetry is:

m90 � ÿXCXT

1

XCXT

0@ ÿ 1

YCYT

�
������������������������������������������������������

1

XCXT

ÿ 1

YCYT

� �2

� 1

X 2
CX 2

T

s 1A: �25�

As an example, in the following we will apply the
AMS criterion to a metamorphic limestone using
the biaxial compression data obtained by Dayre
and Sirieys (1965). In the experiments, the maxi-
mal stress r3 was oriented either perpendicular or
parallel to the schistosity planes, but the direction
of the intermediate principal stress r2 remained
parallel to the schistosity. Fig. 6 shows the AMS
failure curves in biaxial compression (i.e., the
portions of the ellipses of intersection above
r2 � r3) for h� 0°, and h� 90°. Although the
scatter in the data is great, the AMS criterion re-
produces qualitatively the fact that the strength of
the rock is dependent to a much greater degree on
the orientation of the maximum stress to the
symmetry planes than on the magnitude of r2.

3.4. Comparison with experimental data in conven-
tional triaxial compression

The determination of the material parameters
of the AMS criterion from simple laboratory tests
is straightforward. Indeed, the expressions of
the coe�cients of the AMS criterion in terms of
engineering strengths are given by Eq. (7). The
additional condition 1=Q2 � 4=�YTYC� ÿ 1=XC im-
plies that the shear strength in the isotropy plane
(S2, S3) is de®ned directly in terms of the uniaxial
strengths of the material. Thus, for the determi-
nation of the parameters of the AMS criterion,

only two types of tests need to be performed: (a)
uniaxial compression and uniaxial tensile tests in
the S1 and S2 direction, respectively; (b) shear test
in the (S1, S2) plane. Since for rocks shear tests are
very di�cult to perform and to interpret, the pa-
rameter c can be estimated by least square ®t using
the compression strengths at a given con®ning
pressure for the orientations h� 0° and h� 90°,
and at least another intermediate orientation.

In the following, we will apply the AMS crite-
rion to several transversely isotropic rocks, and
compare the theoretical predictions to the data
from conventional triaxial compression tests.
Consider ®rst the experimental data on Tourne-
mire shale obtained in Lille Mechanics laboratory
by Niandou (1994). The rock is an upper Toarcian
massive shale. At the macroscopical level, the rock
is characterized by a well de®ned strati®ed struc-
ture. Ultrasonic measurements carried out on cu-
bical specimens have shown that this rock exhibits
intrinsic transverse isotropy (see Homand et al.,
1993). This type of anisotropy is conserved up to
failure, as shown by the compression test results
(see Niandou, 1994). Five replications of each test

Fig. 6. Dependence of the limiting maximum principal stress r3

on the intermediate principal stress r2 for a limestone, with r3

oriented perpendicular (h) and parallel to the symmetry (})

planes (data after Dayre and Sirieys, 1965).
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were performed. For Tournemire shale, the mean
arithmetic value of XC is 48 MPa, whereas YC� 50
MPa. No tensile test results were available. We
assumed that: XT� 3.92 MPa, and YT� 4.1 MPa,
the estimate being based on data on oily shales
reported by other researchers (see Lama and Vu-
tukuri, 1978). For the estimation of the parameter
c the test results at a con®ning pressure of 50 MPa
for the orientations h� 0°, 30°, 45°, 60° and 90°
were used. The numerical values obtained for the
coe�cients are: a� 1.205 MPaÿ1, b� 1.13529
MPaÿ1, c� 0.098 MPaÿ1, d� 3.517 MPaÿ1,
e�ÿ1.325 MPaÿ1 and m� 4.613 MPaÿ1. Fig. 7
shows the variation of the peak axial stress ra with
the orientation h for several con®ning pressures.
The solid lines correspond to the predictions of the
AMS criterion, while the experimental points are
represented by symbols. The experimental results
show that for each con®ning pressure the mini-
mum strength is found between h� 45° and
h� 50° while two maximum values of the strengths
are obtained for h� 0° and h� 90°. As a general
remark, the strength anisotropy is decreasing as
the con®ning pressure is increasing. For the AMS
criterion the comparison with the data is successful
in the whole. The in¯uence of the con®ning pres-
sure on the strength characteristics is well de-
scribed although only the test results for pc� 50

MPa were used for the determination of the pa-
rameter c.

The AMS criterion was also applied to Mar-
tinsburg slate, using the experimental data ob-
tained by Donath (1964, 1972). The rock presents
a pervasive planar anisotropy. No uniaxial test
results were available. We assumed that: XT� 6.8
MPa, and YT� 7 MPa. By extrapolating the data
shown in Fig. 8 toward h� 0° and h� 90°, we have
found that: XC� 290 MPa, and YC� 200 MPa. To
evaluate the coe�cient c, we used the experimental
con®ned compression strengths at pc� 100 MPa
(pc� 1000 bars), for h ranging from 0° to 90° at
15° interval. By least square ®t we obtained:
c� 0.058 MPaÿ1, while by making use of Eq. (7),
we estimated: a� 0.39 MPaÿ1, b� 0.367 MPaÿ1,
d� 6.311 MPaÿ1, m� 9.183 MPaÿ1 and e�ÿ6
MPaÿ1. In Fig. 8 the calculated curves are plotted
together with the experimental results. The data
points are the average values of the strengths re-
ported by Donath (1964). The AMS criterion de-
scribes well the e�ect of planar anisotropy on the
strength of rock over the entire range of con®ning
pressures. For lower con®ning pressures the ex-
perimental results are better matched for

Fig. 7. The AMS criterion applied to Tournemire shale (data

after Niandou, 1994).

Fig. 8. Strength variation of Martinsburg slate (symbols) as a

function of anisotropy orientation, compared with theoretical

curves (data after Donath, 1972).
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h 2 �0�; hC�, hC corresponding to the minimum
value of the fracture strength, while for higher
con®ning pressures a better agreement is obtained
for h higher than hC. The less good agreement for
h� 90° may be due to the restraining e�ect of the
piston and anvil that prevent failure by simple
shear fracture (see Donath, 1972).

The theoretical predictions for Penrhyn slate
(data after Attewell and Sandford, 1974) are
plotted in Fig. 9. Ultrasonic and X-ray crystallo-
graphic measurements show that this rock is
transversely isotropic about an axis normal to the
cleavage. The experimental data points for
pc� 13.789 MPa, pc� 27.579 MPa, pc� 41.368
MPa and pc� 55.158 MPa are represented by
symbols. For the identi®cation of the parameter c,
the experimental values of the con®ned strengths
at pc� 41.368 MPa were used. Following the
procedure outlined we obtained: c� 0.002 MPaÿ1,
a� 0.78 MPaÿ1, b� 0.768 MPaÿ1, d� 14.544
MPaÿ1, e�ÿ13.02 MPaÿ1, m� 3.438 MPaÿ1. The

criterion reproduces the trend shown by the ex-
perimental data.

4. Conclusion

The characteristics of failure surfaces for
transversely isotropic intact rocks under both ten-
sile and compressive stresses are captured by a
general three-dimensional failure criterion formu-
lated in terms of the ®rst and second invariant of a
transformed stress tensor. The criterion is written
in a coordinate-free form and thus can be easily
applied for any orientation of the principal stress
axes with respect to the structural system associ-
ated with the material intrinsic symmetry. It pre-
dicts that the application of multiaxial tensile
stresses on rock reduces the value of the failure
strength, i.e., the predicted value of the hydrostatic
tensile strength as well as of the biaxial tensile
strength is less than the uniaxial tensile strength in
any direction. The intersections of the AMS failure
surfaces with the octahedral plane demonstrates
the ability of the criterion to describe the direc-
tional character of the strength of transversely
isotropic rock under general loading conditions.
The application of the criterion to conventional
triaxial compression conditions, reduced triaxial
extension, and biaxial compression show that the
criterion captures the in¯uence of the magnitude of
the intermediate principal stress on strength. This
failure criterion involves a few number of param-
eters that are directly expressible in terms of the
engineering strengths of the material. The proce-
dure for the identi®cation of these parameters from
simple tests was outlined. Representative sets of
data on transversely isotropic intact rock have
been analyzed, and comparison between the theo-
retical predictions appears to be reasonably good.

Appendix A

Assume that the applied principal stresses co-
ordinate system (X1, X2, X3) is such that X2jjS2,
and S1 is obtained from X1 by rotation about S2

with the angle h. In this coordinate system the
AMS criterion is expressed by:

Fig. 9. Comparison between theoretical and experimental re-

sults on Penrhyn slate (data after Attewell and Sandford, 1974).
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a01r1 � a02r2 � a03r3 � A011r
2
1 � A022r

2
2 � A033r

2
3

� 2A012r1r2 � 2A013r3r1 � 2A023r2r3� 1: �A:1�
The coe�cients A0ij and a0i are expressed in terms of
the coe�cients Aij; ai and the angle H by (see
Cazacu et al., 1998):

A011 � A11 cos4 h� A22 sin4 h

� �2A12 � A55� sin2 h cos2 h;

A022 � A22;

A033 � A11 sin4 h� A22 cos4 h

� �2A12 � A55� sin2 h cos2 h;

A012 � A23 sin2 h� A12 cos2 h;

A013 � �A11 � A22 ÿ A55 ÿ 2A12� sin2 h cos2 h� A12;

A023 � A12 sin2 h� A23 cos2 h;

a01 � a1 cos2 h� a2 sin2 h;

a02 � a2;

a03 � a1 sin2 h� a2 cos2 h: �A:2�
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