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SUMMARY

A coordinate-free formulation of a failure criterion for transversely isotropic solids is proposed. In the three-
dimensional stress space the criterion is represented by an elliptic paraboloid. The anisotropic form of the
proposed criterion is based on generalization of the second invariant of the deviatoric stress and of the mean
stress obtained through the introduction of a unique fourth-order tensor. For isotropic conditions, the criterion
reduces to the Mises±Schleicher failure condition. It is shown that the criterion satisfactorily predicts the strength
anisotropy of transversely isotropic rocks subjected to an axisymmetric stress state. The procedure for the
identi®cation of the parameters of the criterion from a few simple laboratory tests is outlined. # 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Most rocks are anisotropic. We can distinguish between an intrinsic anisotropy and an anisotropy

induced by the stress±strain history. The intrinsic anisotropy is the result of the process of rock

formation, and of various environmental factors (such as diagenesis, metamorphosis or weathering).

At the macroscopic level, the directionality of the mechanical properties is related to the existence of

well-de®ned rock fabric elements, such as bedding, layering, foliation and lamination planes, or the

existence of linear structures. The symmetries most frequently encountered are: transverse isotropy

and orthotropy. Other geomaterials, such as sands or normally consolidated clays, or rock salt, may

be essentially isotropic under zero effective stress and become anisotropic due to the deformation

process. To determine the type or degree of anisotropy of rocks, dynamic methods can be used.

Measurements of the travel times of seismic waves propagating in various directions provide the

matrix of elastic coef®cients. Afterwards, uniaxial and triaxial tests can be performed in the direc-

tions that are necessary for the determination of the constitutive equation. Anisotropy is responsible

for a formidable complication of both theoretical and experimental aspects of rock modelling. The
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number of parameters to be experimentally determined is very large. Since the failure de®nes the

boundary of the constitutive domain, the strength characteristics re¯ect the anisotropy of the material,

which is a combination of both the structural anisotropy and the anisotropy induced by the irre-

versible deformation. Therefore, the ®rst step in modelling rock anisotropy consists of describing the

short-term failure surface. The failure surface is de®ned as the locus of points that separate the stress

state, that can be reached in a given material, from the states of stress that cannot be attained. The

term failure is used to describe either the stress state at which macrofracture occurs, or the peak stress

attained during ductile deformation. To determine this surface, laboratory experiments of different

types may be performed to obtain stress points that produce failure. However, the failure surface is

not unique. It may depend on various factors, such as size and shape of the specimen, loading history,

environmental conditions (e.g., temperature, humidity, etc.), porosity and homogeneity of the

material.

Experimental studies, on rock exhibiting planar anisotropy subjected to an axisymmetric state of

stress, have shown that the strength varies with the orientation angle b1Ð10 (b is the angle between

the strata's planes and the direction of maximum compression). The minimum strength occurs for b
around 30�, (for most rocks b 2 �30�; 45��) while the maximum compressive strength occurs at an

orientation angle b of 0� or 90� depending upon the rock type. In some cases, the curve between

compression strength and orientation is concave upwards over its whole range (e.g., schists, slates,

shales, phyllites); in other cases the curve tends to have ¯at `shoulders' near the extreme orientations

(as in the case of jointed rocks), or to be of undulatory type.11 Three types of failure have been

observed: shear both across and along the bedding or cleavage planes; slip along the bedding planes;

and formation of kink boards.12 Theories for describing the continuous variation of strength with

orientation for transversely isotropic rocks that fail in shear have been proposed by several authors

(e.g. Jaeger,5 McLamore and Gray,7 Ramamurthy11). Starting from submicroscopic conditions of

brittle fracture, several criteria have been derived from the Grif®th crack model in which it is

assumed that there are two populations of microcracks: long cracks parallel to the planar isotropy,

and short cracks randomly orientated (e.g. Hoek,13 Walsh and Brace,14 Barron15). However, all these

theories require a wide range of tests and a large amount of curve ®tting. The numerical imple-

mentation is generally dif®cult, these theories cannot be applicable to truly 3-D stress states. A more

general approach was proposed by Goldenblat and Kopnov.16 These authors suggested the use of

strength tensors and formulated an anisitropic criterion in the following form:

�Fisi�a � �Fijsisj�b � �Fijksisjsk�g � � � � � 1; �1�

where the contracted notation is used, and i; j; k � 1; 2; . . . ; 6 �s1� s11; s2� s22; s3� s33; s4 � s23;
s5� s13; s6� s12�. They investigated the special case: a � 1; b � 1

2
; g � ÿ1. A failure criterion

that ignores strength tensors of higher order than two are proposed by Tsai and Wu.17 Though

proposed and investigated in the context of ®bre-reinforced composites, Tsai and Wu's criterion is

widely used in engineering for different types of anisotropic materials. For geological materials a

widely used criterion is Pariseau's criterion.18 To take into account the possibility of unequal tensile

and compressive strengths, and to describe the in¯uence of the hydrostatic stress, Pariseau extended

Hill's criterion19 by including a linear term in s11; s22 and s33. However, these criteria are not

expressed in co-ordinate-free form, i.e., in terms of invariants. The application of these criteria to

general stress conditions (i.e., for any orientation of the principal stress axes with respect to the co-

ordinate system associated with the speci®c structural material symmetry) is rather dif®cult. A

general theory of the ¯ow and fracture of anisotropic solids was developed by Boehler and Sawc-

zuk20,21 and Boehler22 in the framework of the theory of invariance. Speci®c forms of failure criteria

were proposed for rocks (e.g., diatomite8) and for composites.23 Generalizations of Coulomb±Navier
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and von Mises isotropic failure criteria to anisotropic conditions (orthotropic and transversely

isotropic media) can be found in Boehler.24 Nova and Sacchi25 proposed a generalized failure

condition for orthortropic solids that was subsequently applied to describe the failure of transversely

isotropic rocks in compression (see Nova26). Theocaris27±29 proposed an elliptic paraboloid failure

criterion also presenting the differential strength effect. The criterion was applied to a great number

of transversely isotropic materials, such as ®bre-reinforced composites, cellular solids and brittle

foams.

The present paper focuses on the development of a new macroscopic failure criterion that can

describe accurately the strength characteristics of transversely isotropic materials. For isotropic

conditions, the criterion reduces to the Mises±Schleicher criterion. The proposed anisotropic Mises±

Schleicher criterion (AMS), is written in a general form. The adequacy of the AMS criterion is

demonstrated by applying it to the various transversely isotropic rocks, using experimental results

taken from the literature.

2. FORMULATION OF THE FAILURE CRITERION

Anisotropic behaviour is detected if there exists a rotation of the applied stresses that results

in a different strain-rate history or, equivalently, if a different stress response is obtained

from a rotation of the applied displacements. Materials symmetries are described by those

orthogonal transformations Q that produce no such difference in response. The set of all

these orthogonal tensors Q forms the material symmetry group.30 Transverse isotropy is usually

characterized by the group g of rotations about a preferred direction denoted, say, by the unit vector

S1:

g � fQ 2 O�3�jQ�S1� � S1 or Q�S1� � ÿS1g; �2�
or equivalently,

g � fQ 2 O�3�jQMQT �Mg;
M � S1 
 S1�

�3�

We emphasize that the anisotropy characterized by second-order tensor M is the initial material

symmetry, if the undeformed state is taken as the reference con®guration. The directional material

properties impose de®nite restrictions on the form of the constitutive equations. Accordingly, an

appropriate framework for modelling the mechanical behaviour of anisotropic solids is offered by the

theory of invariance.31±33 It was proved that any scalar, vector or second-order tensor-valued aniso-

tropic function of vectors and second-order tensors, can be expressible as an isotropic function of the

original arguments, and of the structural tensors as additional arguments.34 Therefore, any scalar

property, such as the failure function, say, f �s� can be represented relative to its symmetry group by

an isotropic function f1 of s, and the structural tensors. For a transversely isotropic material it follows

that f1 � f1�s;M�. The requirement that f1�s;M� is isotropic implies that f1 is a function of the ®ve

independent invariants:

I1 � tr s; J2 �
1

2
tr �s0�2; I3 � tr �s�3; I4 � tr Ms; I5 � tr Ms2; �4�

where prime stands for deviator, and `tr' denotes the trace operator. Thus, failure occurs when the

loading conditions satisfy a relationship of the following type:

f1�I1; J2; I3; I4; I5� � 1; �5�
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When modelling rock behaviour, special consideration of the effects of hydrostatic pressure on

deformation and strength is required.

To describe these particular characteristics, we propose the following criterion:35,36

3

2
tr�S0� ÿ m

3
tr Sÿ 1 � 0; �6�

where m is a material constant, and S0 is the deviator of the second-order tensor S, de®ned by:

Sij � Bijklskl� �7�

The anisotropy is introduced by means of the fourth-order tensor B that satis®es the usual symmetry

conditions:

Bijkl � Bjikl � Bklij � Bijlk : �8�

B is supposed to be constant: it does not depend on time or other environmental conditions. The idea

to introduce a fourth-order tensor to describe the strength anisotropy is not new (see Goldenblat and

Kopnov,16 Boehler and Sawzuck,20,21 among others). However, in contrast to the other existing

criteria, the only restriction we impose on B is to be invariant under any orthogonal transformation

belonging to the symmetry group g. Rather than making simpli®ed assumptions concerning the form

of B, as done by Boehler22 all the ®ve components of this tensor are considered as independent

strength parameters. Thus, in the structural system �S1; S2; S3� the truncated matrix of B is:

B �

a b b 0 0 0

b d e 0 0 0

b e d 0 0 0

0 0 0 d ÿ e
2

0 0

0 0 0 0 c
2

0

0 0 0 0 0 c
2

2666666664

3777777775
�9�

where a; b; c; d and e are material constants and �S2; S3� de®nes the symmetry plane. Using (7) and

(9), we can express the invariants of S in terms of the stress invariants, and of the mixed invariants of

s and M:

tr S � �a� bÿ d ÿ e� tr Ms� �b� d � e�tr s
tr �S0�2 � AA�trMs�2 � BB�tr s�2 � CC�tr s��tr Ms�

� DD�tr Ms2� � EEtr s2;

�10�

where AA;BB;CC, DD and EE are algebraic combinations of the coef®cients a; b; c; d; e and m.

Therefore, the AMS criterion (with B de®ned by (9)) is a speci®c form of the general criterion (5).

Also, the ®rst invariant of S is linear in s and thus can be thought as a generalization to transversely

isotropic conditions of the mean stress (or I1). The second invariant of the transformed tensor deviator

is a quadratic homogeneous function of s, and reduces to J2 for a � d � c � 1, b � e � 0. Let us

show that for isotropic conditions, the AMS criterion reduces to a Mises±Schleicher paraboloid

surface. Indeed, if sT and sC denote the tensile and compressive strengths respectively, the Mises±

Schleicher criterion may be expressed in the form (e.g., see Lubliner37):

3J2 � �sC ÿ sT�I1 ÿ sTsC � 0; �11�
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where I1 � skk; J2 � 1
2
s0ijs0ij. For isotropic conditions, B is of the form:

Bijkl � bdijdkl �
aÿ b

2

� �
�dikdjl � dildjk� �12�

Consequently, if we replace in the expression (7) of S, B by its expression (12), the AMS criterion

becomes:

3�aÿ b�2
2

tr�s0�2 ÿ m�a� 2b�
3

tr�s� ÿ 1 � 0; �13�

From uniaxial tensile and compression tests, we get:

�aÿ b�2 � 1

sCsT

; �14�

ÿm�a� 2b�
3

� 1

sC

ÿ 1

sT

: �15�

Thus, (13) coincides with (11).

In the structural system �S1; S2; S3�, the AMS criterion is expressed by:

a1s11 � a2�s22 � s33� � A11s
2
11 � A22�s2

22 � s2
33� � 2A12s11�s22 � s33�

� 2A23s22s33 � A44s
2
23 � A55�s2

12 � s2
13� � 1:

�16�

where the coef®cients in (16) are given by:

a1 �
ÿm�a� 2b�

3

a2 �
ÿm�b� e� d�

3

A11 � �aÿ b�2

A22 �
�bÿ e�2 � �d ÿ e�2 � �bÿ d�2

2

A44 � 3�d ÿ e�2
A55 � 3c2

A23 � A22 ÿ
A44

2

A2
12 �

A11�A22 � A23�
2

�17�

The physical interpretation of the parameters of the criterion may be revealed from simple laboratory

tests. From shear tests in the �S2; S3� plane and in the �S1; S2� plane respectively, we get

A44 � 1=Q2

A55 � 1=R2
�18�
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where Q denotes the pure shear strength in the �S2; S3� plane, whereas R is the corresponding one in

the �S1; S2� plane. From uniaxial tests along the S1 and the S2 axis, respectively:

a1 � 1=XC ÿ 1=XT

a2 � 1=YC ÿ 1=YT

A11 � 1=�XTXC�
A22 � 1=�YTYC�:

�19�

Here, and throughout the text, the compressive stresses are taken positive. XC and �ÿXT� are the

uniaxial compressive and tensile strengths along S1 while YC and �ÿYT� are the uniaxial compressive

and tensile strengths along S2. Relations (17) imply that for the AMS criterion the interaction

coef®cients A12 and A23 are interrelated with the diagonal components A11;A22 and A44, so they are

directly de®ned in terms of the basic engineering strengths of the material. This is a signi®cant

advantage of the AMS criterion over most existing failure criteria. As an example, in the Tsai and Wu

criterion,17 the determination of the off-diagonal coef®cient F12 (i.e., the coef®cient of s11s22 in the

expression of the criterion in the structural coordinate system) has been found to be very sensitive and

dependent on the nature of the particular test used for its determination. To overcome the dif®culties

related to the optimal experimental evaluation of F12, several de®nitions have been proposed (see

Tsai and Hahn,38 Cowin,39 Wu and Stackhurski40). However, estimating the value of F12 is still a

debated question (LabossieÁre and Neale41).

For a better understanding of the characteristics of the failure surface it is required to represent it in

the three-dimensional space of the principal stresses s1; s2; s3. The case of one of the principal stress

axes, the s2-axis say, coinciding with the corresponding structural axis S2, whereas the two other

stress axes rotate about S2, will be analysed. This allows the description of failure when one of the

principal stress directions is parallel to the strike of the planes of symmetry (see Figure 1). The AMS

criterion is expressed in the principal stress system �X1;X2;X3� by:

a01s1 � a02s2 � a03s3 � A011s
2
1 � A022s

2
2 � A033s

2
3 � 2A012s1s2 � 2A013s3s1 � 2A023s2s3 � 1: �20�

The expressions of the new coef®cients A0ij and a0i, in terms of the coef®cients Aij; ai and the angle y
are given in the Appendix. To determine the shape of the failure surface (20), the following quantities

Figure 1. Geometry of the problem: �X1;X2;X3�Ðthe system of principal stresses and �S1; S2; S3�Ðthe structural system
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need to be evaluated: (i) determinant of D4, and (ii) determinant of D3, where the matrices D4 and D3

are de®ned by:

D4 �

A011 A012 A013

a01
2

A012 A022 A023

a02
2

A013 A023 A033

a03
2

a01
2

a02
2

a03
2
ÿ1

266666664

377777775
�21�

D3 �
A011 A012 A013

A012 A022 A023

A013 A023 A033

24 35 �22�

For A12 < 0, using (41) we get

det D3 �
A55A44

16
��

�������
A11

p
ÿ

������
del
p
� sin 2y�2 �23�

and

det D4 �
�E � FA1 � GA2

1� sin�2y�2 ÿ A44�2A2

�������
A11

p � A1

������
del
p �2

16
�24�

where:

E � ÿA55A44�A2
2 � �

�������
A11

p
ÿ

������
del
p
�2� � A11A2

2�ÿA55 � 4A44�
F � A2��4A44 ÿ A55�

�������������
A11del

p
ÿ A55A44�

G � A44del ÿ A22A55

del � 4A22 ÿ A44:

�25�

For A12 > 0:

det D3 �
A55A44

16
��

�������
A11

p
�

������
del
p
� sin 2y�2; �26�

det D4 �
�M � NA1 � GA2

1� sin�2y�2 ÿ A44�ÿ2A2

�������
A11

p � A1

������
del
p �2

16
�27�

where

M � ÿA55A44�A2
2
� �

�������
A11

p
�

������
del
p
�2� � A11A2

2�ÿA55 � 4A44�
N � ÿA2��4A44 ÿ A55�

�������������
A11del

p
� A55A44�:

�28�

From (23) to (28) it follows that for y � 0� and y � 90�: det D3 � 0 and det D4 < 0. Therefore, for

these orientations, the failure surface is an elliptic paraboloid. For the failure surface to be of the

same type for any orientation, det D3 must be equal to zero for any y. From (23) and (25) it follows

that the following conditions must be ful®lled:

A12 < 0

A11 � del
�29�
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If conditions (29) hold, equation (24) becomes:

det D4 � ÿ
�A1 � 2A2�2�A44A11�cos 2y�2 � A22A55�sin 2y�2�

16
: �30�

Hence, det D4 < 0, for any y. In conclusion, if the conditions (29) between the engineering strengths

hold, for any orientation y the AMS failure surface is an elliptic paraboloid in the three-dimensional

space of the principal stresses.

3. INTERSECTION OF THE AMS CRITERION BY THE PLANE s1 � s2

Because rock specimens are often submitted to a triaxial stress state in which two of the principal

stresses are equal, it is worthwhile analysing the intersection of the AMS criterion with the usual

triaxial plane. The equation expressing the intersection of the AMS criterion with the plane

�s3;
���
2
p

s1 �
���
2
p

s2� is readily de®ned by putting into equation (20), s1 � s2:

ax2 � bs2
3 � 2dxs3 � 2gx� 2Zs3 ÿ 1 � 0 �31�

where:

x �
���
2
p

s1

a � 1

2
�A011 � A022 � 2A012�

b � A033

d � 1���
2
p �A013 � A023�

g � 1

2
���
2
p �a01 � a02�

Z � 1

2
a03:

�32�

To decide the nature of the conic (31), the following quantities need to be evaluated:

D �
a d g
d b Z
g Z ÿ1

24 35; J � a d
d b

� �
; I � a� b �33�

For A12 < 0 and A11 � del (i.e., if conditions (29) hold):

J � 0

D � ÿ 1

32
�A1 � 2A2�2f�3�cos y�2 ÿ 2�2del � A44�cos 2y�4 � 4A55�cos y�2�sin y�2g:

�34�

Hence, for any orientation y, the intersection is a parabola. Thus, the failure locus is `open' on the

compressive side, showing that the axial pressure may be increased without limit, if the con®ning

pressure is increased proportionally. However, the failure curve is `closed' on the tensile side. Thus,

failure can occur under tensile hydrostatic pressure. The hydrostatic tensile strength is:

p � 1

2�1=YC ÿ 1=YT� � �1=XC ÿ 1=XT�
: �35�

In a plane-stress test, on the other hand, the failure curve is `closed' and the strength can only achieve

a ®nite magnitude. As an example, in Figure 2 is shown the intersection of the failure surface with the
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plane s1 � s2, for y � 0� and y � 90�, for a diatomite (data after Allirot and Boehler8). The inter-

sections of the parabola corresponding to y � 0� with the s3 axis are at the uniaxial compressive

strength �YC�, and the uniaxial tensile strength �ÿYT�, respectively. Point C represents the limiting

loading condition for a hydrostatic tensile stress state. The intersections with the �s1 � s2; s3 � 0�
axis represent the biaxial failure strengths in compression and tension, respectively. Similarly, for

y � 90�, the intersections with the s3 axis are the uniaxial compressive strength �XC� and the uniaxial

tensile strength �ÿXT�, respectively. The parabola passes through the same point C, expressing that

hydrostatic strength does not depend on the orientation of the applied loading with respect to the

structural axis of the material. The biaxial compressive strength for y � 90� is of 51 MPa and it is not

represented in Figure 2. From (35) it follows that if the condition 2XT < YC is ful®lled, as is the case

for most rocks, then jpj < YT. Similarly, if condition 2YT < YC is satis®ed then: jpj < XT. Thus, the

hydrostatic absolute value of the hydrostatic tensile strength jpj is lower than YT and=or XT. This is in

contrast to most existing criteria that postulate that failure occurs when the major principal stress is

equal to the uniaxial tensile strength. The use of tension cut-offs on the failure surface produces

numerical instabilities when used in computer codes. The application to boundary-value problems is

rather dif®cult, since these criteria are de®ned by several expressions in the three-dimensional stress

space. For a multiaxial tensile stress however, it can be shown that crack propagation which ulti-

mately leads to failure may occur if none of the principal stresses reaches the uniaxial strength.42

Also, it is reasonable to believe that a smooth failure curve in the neighbourhood of C (as in the case

of the AMS criterion) is physically sound. The AMS criterion captures these experimental observed

features and thus, can describe quite well failure under both tensile and compressible stress states.

Figure 2. Intersection of the AMS criterion with the triaxial plane �s3;
���
2
p

s1 �
���
2
p

s2� for y � 0� and y � 90� (data after Allirot
and Bohler8)
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The criterion representation in the octahedral (p) plane for different orientations y, as well as the

representation in the plane � �����
J2

p
; I1� are given in Reference 43.

4. COMPARISON WITH EXPERIMENTAL DATA

The signi®cance of any failure criterion ultimately lies in its ability to describe the behaviour of real

materials. In this section we will apply the AMS criterion to several transversely isotropic rocks. The

coef®cients of the AMS criterion as functions of the engineering strengths are given by equations (18) and

(19). The additional condition 1=Q2 � 4=�YTYC� ÿ 1=XC (see equation (29)) implies that the shear

strength in the isotropy plane �S2; S3� is de®ned directly in terms of the uniaxial strengths of the material.

Thus, for the determination of the parameters of the AMS criterion, only two types of test need to be

performed:

(a) uniaxial compression and uniaxial tensile tests in the S1 and S2 direction, respectively;

(b) shear test in the �S1; S2� plane.

Since, for rocks, shear tests are very dif®cult to perform and to interpret, the parameter c can be

estimated by least-squares ®t using the compression strengths at a given con®ning pressure for the

orientations y � 0�, y � 90�, and at least another intermediate orientation. Indeed, for triaxial

compression under con®ning pressure pc the AMS criterion writes:

H1s
2
a � H2sa � H3 � 0 �36�

H1 �
2u

XC

� v
YC

� 3c2

� �
�cos y�4 � ÿ u

XC

ÿ 2
v

YC

ÿ 3c2

� �
�cos y�2 � v

YC

�37�

H2 �
ÿ4u

XC

ÿ 2
v

YC

� 6c2

� �
�cos y�4 � 2

u

XC

� 4
v

YC

ÿ 6c2

� �
�cos y�2 ÿ 2v

YC

� �
pc

� 1

XC

ÿ 1

YC

ÿ 1

YC

ÿ u� v
� �

�cos y�2 � 1

YC

ÿ v
�38�

H3 �
2u

XC

� v
YC

ÿ 3c2

� �
�cos y�4 � ÿ u

XC

ÿ 2v
YC

� 3c2

� �
�cos y�2 � v

YC

� �
p2

c

� 1

XC

ÿ uÿ 1

XC

ÿ uÿ 1

YC

� v
� �

�cos y�2 � 1

YC

ÿ v
� �

pc ÿ 1:

�39�

In equations (37) to (39), sa denotes the applied axial stress, and the following notation has been

used: u � 1=XT; v � 1=YT.

Consider ®rst, the experimental data on Tournemire shale obtained in the Lille Mechanics

laboratory by Niandou.10 The rock is an upper Toarcian massive shale. At the macroscopical level,

the rock is characterized by a well-de®ned strati®ed structure. Ultrasonic measurements carried out

on cubical specimens have shown that this rock exhibits intrinsic transverse isotropy (see Cuxac44).

This type of anisotropy is conserved up to a high value of the differential stress level (i.e., the

difference between the axial stress and the applied con®ning pressure) as shown by the compression

test results.10 Five replications of each test were performed. For Tournemire shale, the mean arith-

metic value of XC is 48 MPa, whereas YC � 50 MPa. No tensile test results were available. We

assumed that: XT � 3:92 MPa, and YT � 4:1 MPa, the estimate being based on tensile strength results

obtained for oily shales by other researchers.45 For the estimation of the parameter c the test results at

pc � 50 MPa for the orientations y � 0�; 30�; 45�; 60� and 90� were used. The numerical values

obtained for the coef®cients are: a � 1:205 MPa71, b� 1.13529 MPa71, c� 0.098 MPa71,

d� 3.517 MPa71, e� 71.325 MPa71 and m� 4.613 MPa.71 The Tsai and Wu criterion was also

applied to Tournemire shale. The same set of data points were used for the estimation of the
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parameters of the criterion. Figure 3 shows the variation of the peak axial stress sa with the orien-

tation y for several con®ning pressures. The interrupted lines are the theoretical predictions of the

Tsai and Wu criterion,17 the solid lines correspond to the predictions of the AMS criterion, while the

experimental points are represented by symbols. The experimental results show that for each con-

®ning pressure the minimum strength is found between y � 45� and y � 50� while two maximum

values of the strengths are obtained for y � 0� and y � 90�. As a general remark, the strength

anisotropy is decreasing as the con®ning pressure is increasing. For the AMS criterion the com-

parison with the data is successful on the whole. The in¯uence of the con®ning pressure on the

strength characteristics is well described although only the test results for pc � 50 MPa were used for

the determination of the parameter c. Figure 3 also shows a good agreement between the experi-

mental data and the theoretical predictions of the Tsai and Wu criterion. Still, the better ®t obtained

with the Tsai and Wu criterion may be due to a larger number of material parameters.

The AMS criterion was also applied to Austin slate, using the experimental data obtained by

McLamore and Gray.7 The rock did not present discernible bedding planes but cleavage was well

developed. No uniaxial test results were available. We assumed that: XT� 22.776 MPa and

YT� 34.75 MPa. By extrapolating the data shown in Figure 4 towards y � 0� and y � 90�, we have

found that: XC� 262.01 MPa and YC � 275:8 MPa. To evaluate the coef®cient c, we used the con-

®ned compression strengths at pc� 137.9 MPa (pc� 20,000 psi), for y ranging from 0� to 90� at 10�

intervals, and Equation (36). By least-square ®t we obtained: c� 0.022 MPa71, while by making use

of equations (18) and (19), we estimated: a� 0.0321 MPa71, b� 0.0192 MPa71, d� 18.58 MPa71,

m� 2.941 MPa71 and e� 7 18.13 MPa71. In Figure 4 the calculated curves are plotted together

Figure 3. Comparison between the experimental results on Tournemire shale, the theoretical predictions of the AMS criterion
and the prediction of the Tsai and Wu criterion17 (data after Niandou10)
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with the experimental results. The AMS criterion describes well the effect of planar anisotropy on the

strength of rock over the entire range of con®ning pressures. For lower con®ning pressures the experi-

mental results are better matched for y 2 �0�; yC�; yC corresponding to the minimum value of the fracture

strength, while for higher con®ning pressures a better agreement is obtained for y higher than yC.

Figure 4. Comparison between theoretical and experimental results on Austin slate (data after MacLabmore and Gray7)

Figure 5. Comparison between theoretical and experimental results on diatomite (data after Allirot and Boehler8)
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The theoretical predictions for a diatomite (data after Allirot and Boehler8) are plotted in Figure 5.

The experimental data points for pc� 0.5 MPa, pc� 1 MPa and pc� 2 MPa are represented by

symbols. For the con®ning pressure pc� 0.5 MPa and pc� 1 MPa, two replicates of each test were

performed. For the identi®cation of the parameter c, the mean arithmetic values of the con®ned

strengths at pc� 0.5 MPa were used. Following the procedure outlined we obtained: c�
0.022 MPa71, while by making use of equations (18) and (19), we estimated: a� 0.126 MPa71,

b� 0.28 MPa71, d� 0.3 MPa71, e� 7 0.693 MPa71, m� 11.357 MPa71. The criterion reproduces

the trend shown by the experimental data.

5. CONCLUSIONS AND FINAL REMARKS

A coordinate-free formulation of a failure criterion for transversely isotropic solids was proposed. For

isotropic conditions, the criterion reduces to the Mises±Schleicher criterion. The anisotropic form of

the AMS criterion is based on a generalization of the second invariant of the deviatoric stress and of

the mean stress respectively, using a unique fourth-order tensor. The components of this tensor are

directly expressible in terms of the basic engineering strengths of the material. For hydrostatic stress

states, the generalized second invariant of the deviatoric stress is different from zero. Thus, it can

describe the experimentally observed distortion of anisotropic materials under hydrostatic stress. The

additional condition 1=Q2 � 4=�YTYC� ÿ 1=XC (see equation (29)) that de®nes the shear strength in

the isotropy plane �S2; S3� in terms of the uniaxial strengths of the material, ensures that the failure

surface is an elliptic paraboloid for any orientation. The intersection of the AMS criterion with the

usual triaxial plane reveals some interesting features of the criterion. It was shown that the AMS

criterion models satisfactorily the failure characteristics under tensile stresses, thus no cut-offs are

necessary. Though essentially phenomenological, the AMS criterion can accurately describe the

observed failure characteristics of transversely isotropic rocks. The AMS criterion was used to model

the strength anisotropy of different types of rock in triaxial compression. The procedure for the

identi®cation of the parameters of the criterion from a few simple laboratory tests was outlined. The

comparison between the theoretical predictions and the data is reasonably good. The AMS criterion is

further used as a short-term failure criterion in an elastic=viscoplastic constitutive model for initially

transversely isotropic intact rocks.46
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APPENDIX

Assume that the applied principal stresses coordinate system �X1;X2;X3� is such that X2kS2, and S1 is

obtained from X1 by rotation about S2 with the angle y, in the coordinate system, the AMS criterion is

expressed by:

a01s1 � a02s2 � a03s3 � A011s
2
1 � A022s

2
2 � A033s

2
3 � 2A012s1s2 � 2A013s3s1 � 2A023s2s3 � 1: �40�
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The coef®cients A0ij and a0i are expressed in terms of the coef®cients Aij; ai and the angle y by

A011 � A11 cos4 y� A22 sin4 y� �2A12 � A55� sin2 y cos2 y

A022 � A22

A033 � A11 sin4 y� A22 cos4 y� �2A12 � A55� sin2 y cos2 y

A012 � �A23 sin2 y� A12 cos2 y�
A013 � ��A11 � A22 ÿ A55 ÿ 2A12� sin2 y cos2 y� A12�
A023 � �A12 sin2 y� A23 cos2 y�
a01 � a1 cos2 y� a2 sin2 y

a02 � a2

a03 � a1 sin2 y� a2 cos2 y:

�41�
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