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Assessment of some failure criteria for strongly anisotropic geomaterials

G. Duveau, J. F. Shao* and J. P. Henry
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SUMMARY

This paper is devoted to the assessment of some representative failure criteria in the framework of modelling the
failure behaviour of strongly anisotropic geomaterials. Experimental data concerning the failure behaviour of a
typical strongly anisotropic rock; the schist of Angers are first presented. Nine widely used failure criteria are
then selected and classified into three groups, the mathematical continuous models, the empirical continuous
models and the discontinuous weakness planes based models. This classification is made up according to the
main assumptions and techniques used in each criterion to describe the strength anisotropy. The calibration of
each one is carried out with respect to the laboratory data of Angers schist. Qualitative and quantitative
comparisons between the selected criteria and with the experimental data are provided. © 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Many rocks are characterized by a structural inherent anisotropy which is related to the existence of
rock fabric elements such as bedding, layering, foliation and lamination planes, or the existence of
linear structures. This intrinsic anisotropy should be accounted for in the mechanical behaviour of
rocks. The influence of the intrinsic anisotropy on rock failure strength is one of the basic data
required for predicting rock performance for a variety of surface and underground structures. The
term ‘failure strength’ is here used to denote either the stress state at which brittle rupture of the
sample occurs, or the peak stress attained during large ductile deformation. Laboratory tests with
various loading paths have to be performed to determine the general form of failure surface. For
anisotropic rocks, the most classical experiment is the conventional triaxial compression test, with
various loading orientations and confining pressures (Figure 1). A lot of laboratory studies have been
performed on sedimentary rocks (Donath;' Donath and Cohen;* Dayre and Sirieys;> Hoek;*®
Chenevert and Gatlin;® McLamore and Gray;'® Attewell and Sandford;!' Saint Leu, Leran and
Sirieys;'? Allirot and Boehler;'* Syries;'* Lerau, Saint Leu and Sirieys;'® Niandou et al.;'° etc.). All
the results obtained have shown that the rock strength varies with the loading orientation. The
maximum strengths are generally found when the axial compressive stress is nearly normal or parallel
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Figure 1. (a) Fixed structural co-ordinate system; (b) definition of loading orientation @ in a triaxial test

to bedding planes. The minimum strength is obtained when the angle between the major stress and
bedding planes is located from 30° to 60°. Furthermore, the failure mode in anisotropic rocks depends
also on the loading orientation.

Various failure criteria for anisotropic materials have been proposed. However, according to the
assumptions and techniques used in each one, it appears possible to classify these criteria into three
groups. A tentative classification of some commonly used criteria is proposed in Table I.

The first group of criteria is called mathematical continuous approach. In these criteria, a con-
tinuous body is considered and a continuous variation of strength is assumed. The strength anisotropy
of material is generally described by using a mathematical technique along with the kind of material
symmetries. One of the first anisotropic criteria of this kind was proposed by Hill'? for frictionless
materials by extending the von Mises isotropic theory. A more general approach was proposed by
Goldenblat and Kopnov.'® These authors suggested the use of strength tensors of different order to

Table I. Classification of widely used anisotropic failure criteria

Continuous criteria

Mathematical approach Empirical approach Discontinuous criteria
e Von Mises’! o Casagrande and Carillo® o Jaeger (single plane of
o Hill'7 o Jaeger (variable cohesive) weakness theory)*
e Olszak and Urbanowicz®? strength theory)*” e Walsh and Brace®
e Goldenblat® o McLamore and Gray'® o Murrell®
e Goldenblat and Kopnoy'® e Ramamurthy, Rao and Singh?® e Hoek®®
o Boehler and Sawczuk?!?? ¢ Barron®
e Tsa and Wu'® o Ladanyi and Archambault®*
e Pariseay” o Bieniawski
o Boehler” e Hoek and Brown***
o Dafalias™ ¢ Duveau and Henry®
o Allirot and Boehler'
o Nova and Sacchi®¢
e Nova®’"®
o Boehler and Raclin®
o Raclin®
e Kaar er al®
o Cazacu®
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FAILURE CRITERIA FOR STRONGLY ANISTROPIC GEOMATERIALS 3

take into account the anisotropy. A failure criterion which uses strength tensors of first and second
order was proposed by Tsai and Wu.'? For geological materials, a widely used criterion was proposed
by Pariseau”® by modifying the Hill criterion, in order to take into account the strength difference in
tensile and compressive loading and the strength dependency on the mean stress. Parallel to these
works, a more rigorous and general approach was developed by Boehler and Sawczuk®'*? and
Boehler® in the framework of the theory of invariant tensorial functions. Specific failure criteria were
also proposed for rock materials (Allirot and Boehler'®), and for composites (Boehler and Raclin*).
Generalizations of Mohr—Coulomb and von Mises isotropic failure criteria to orthotropic and
transversely isotropic media can be found in Boehler.”> More recently, a new invariant failure
criterion was developed by Cazacu®® by extending the Stassi isotropic criterion.

The criteria of the second group are named empirical continuous models. Indeed, the strength
anisotropy is simply described by the determination of variation laws as a function of the loading
orientation for some material parameters used in an isotropic criterion. Such variation laws are fully
empirical in nature and calibrated from a simple fitting of experimental data. Any clear physical and
mathematical background is not included in these models. One of the representative criteria of this
kind was proposed by Jaeger,”’ known as ‘the variational cohesion theory’, who extended the Mohr—
Coulomb failure criterion by using a variable material cohesion with the loading orientation and a
constant value of the friction. A simple modification of this criterion was proposed by McLamore and
Gray'® who proposed to use a variation of the friction coefficient in the same way as the cohesion.
Ramamurthy, Rao and Singh,?® and Singh, Ramamurthy and Rao® proposed a modification of the
McLamore and Gray criterion by using a non-linear form of the failure envelope in Mohr plane.

In contrast to the previous two groups of criteria, a third group of criteria was developed and called
‘discontinuous weakness planes based’ models. In these theories, the emphasis is put on the
description of physical mechanisms included in the failure process. The basic assumption is that the
failure of an anisotropic body is due to either the fracture of bedding planes or the fracture of the rock
matrix and two distinct criteria should be used for the two fracture modes. The most representative
model of this kind was proposed by Jaeger,”® known as ‘the single plane of weakness theory’. By
considering the planes of weakness as orientated Griffith cracks and based on the extension of the
modified Griffith theory (McClintock and Walsh®'), some other criteria were proposed (Walsh and
Brace;>? Hoek and Brown;**>* Hoek®). More recently, a new theory was proposed by Duveau and
Henry>® who proposed to use the Barton criterion for sliding along schistosity planes.

In this paper, a particular anisotropic rock, a schist from Angers (France), is investigated.
Experimental studies have been performed on this material (Hamade, Morel and Henry;>® Hamade;>’
Homand et al.>®) under the co-ordination of the ANDRA (French National Agency for Radioactive
Waste Management). The results obtained have shown specific failure modes of this material due to
its particular anisotropic structure. Indeed, the structure of this material is characterized by a set of
clearly defined schistosity planes, which plays a dominant role in the mechanical behaviour of the
material. The material failure is due to sliding of schistosity planes for a large range of loading
orientations (from 10 to 80 degrees). The failure strength is almost constant in this range of loading
orientations. This kind of strong strength anisotropy marks a significant difference from most sedi-
mentary rocks reported in previous works. In these rocks, a continuous smooth variation of failure
strength was obtained and the rupture by sliding of bedding planes was not the dominant mechanism.

The present paper focuses on the assessment and comparison of some representative criteria in the
framework of modelling of failure behaviour of strongly anisotropic rocks. A summary of experi-
mental data obtained from the schist of Angers is first presented. The empbhasis is put on the failure
behaviour of the material. Nine representative criteria of different groups are then selected. Basic
assumptions and techniques used in each criterion are presented and compared. Quantitative com-
parisons of numerical simulations obtained from each model with the experimental data are provided.

£ 1998 John Wiley & Sons, Ltd. MECH. COHES.-FRICT. MATER., VOL. 3, 1-26 (1998)
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2. SUMMARY OF EXPERIMENTAL INVESTIGATIONS

The studied material is a middle Ordovician schist from Angers (France). It is a rock of the family of
schists with weak metamorphism, and characterized by well marked schistosity planes which coin-
cide with the stratification planes. The main mineral constituents of this rock are chlorite, muscovite
and quartz. Small quantities of pyrite, calcite and chloritoide are also found. The size of grains varies
from 10 to 20 pm. The testing program reported in this paper is composed of preliminary tests for the
analysis of structural anisotropy, triaxial tests for the variations of failure strength with loading
orientation and confining pressure. Table II sums up the testing programme used.

2.1, Preliminary studies

Preliminary tests were performed to determine the degree of structural anisotropy of the material. It
consisted of measuring wave velocities along the identified structural axes of the rock, as illustrated
in Figure 2. After the results obtained by Cuxac,®® the smallest wave velocity was found in the
direction S| normal to the schistosity planes, while the highest one is associated with one direction
parallel to the schistosity planes. However, the velocities measured along two orthogonal directions
(S,, S3) in the schistosity planes were slightly different. Such a difference may be related to secondary
linear structure apart from the main bedding planes. Accordingly, two anisotropy degrees can be
defined, the major one noted as AM and the minor one noted as Am. These anisotropy coefficients are
generally calculated from the following equations (Guyader and Denis*’):

2(Vy — Vz)]
v+ Vs

27,

1
Vo+ Vs @

AM% + 100[1 — ] Am% = 100[
where ¥}, ¥, and V; are the velocities in the three structural axes. For the schist studied, three tests
were performed on different cubic samples and the values of the major and minor anisotropy
coefficients obtained are given in Table III. We can clearly notice that the minor anisotropy of the
schist is much smaller than the major one. Therefore, it appears reasonable to assume that this schist
has a transversely isotropic structure. Hydrostatic compression tests were also performed by
Hamade®’ on the same material. Strains in the three structural axes have been measured and are
shown in Figure 3. We can see that the strain in the direction S;, normal to the bedding planes, is
much higher than those in the directions (S,, S;), parallel to the bedding planes. In addition, the
strains in the two orthogonal directions (S,, S;) are quasi-identical. This results is in good agreement
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Figure 2. Measuring directions of the wave velocity (from Homand et al.
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Table II. List of the laboratory tests performed on the schist studied
and used in this paper

Preliminary 3 Ultrasonic measurement tests
tests 1 Hydrostatic compressibility test
Confining pressure a3 (MPa)
Loading

orientation ¢ 0 5 10 20 30 40

0° 2 1 1 2 2 3
10° — — 1 —_

13° —_ — 1 - = —

15° 1 1 1 2 2 —

16° — 3 — — 1 2

Triaxial 30° 3 2 2 1 1 1
tests 45° 2 1 2 2 1 1
60° 1 1 3 1 1 1

74° 1 —_ = = = —

75° —  — 1 2 —

76° —_ = - — 1 1

77° — 1 — 1 — 1

78° 1 1 1 1 1 —

90° 2 2 1 2 2 2

with the wave velocity measurement and confirms the assumption of the transversely isotropic
behaviour of the schist.

2.2. Failure behaviour in triaxial compression tests

A large laboratory investigation project has been achieved on the Angers schist. Detailed
experimental data can be found in Hamade, Morel and Henry,*® Hamade®” and Homand et al.>® 78
triaxial  compression tests have been  performed for loading  orientations
0 = 0°,10°,15°,30°,45°,60°,75°, 80° and 90° and with confining pressures o, = 0, 5, 10, 20, 30
and 40 MPa (see Table II). The definition of the angle 8 is given in Figure 1(b). In this paper, the
emphasis is put on the description of the failure behaviour. Therefore, general mechanical responses
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Figure 3. Experimental results of a hydrostatic compression test and positions of the strain gauges
«: 1998 John Wiley & Sons, Ltd. MECH. COHES.-FRICT. MATER., VOL. 3, 1-26 (1998)
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of the schist in triaxial tests are not presented here and only a summary of failure stresses and an
analysis of failure mechanisms are addressed.

Direct observations of sample failure surfaces were performed in each triaxial test. These obser-
vations have shown complex failure modes of the schist, strongly depending on the loading orien-
tation and confining pressure (Figure 4). Main failure mechanisms of the schist can be summarized as
follows:

e For the orientation 8 = 90°, the failure occurs by strain localization in the rock matrix. Such a
failure mode is widely obtained in many rocks and soils. However, in the case of the schist, the
orientation of shear bands seems to be independent of confining pressure and has a quasi-
constant value of 25°.

o For the orientation # = 0°, the failure mode depends on confining pressure. The sample failure
takes place by bursting of bedding planes under low confining pressures, while a mixed mode of
bursting of bedding planes and shearing of rock matrix is obtained when the confining pressure
is higher.

e For the orientations between § = 30° and 8 = 60°, the failure is clearly dominated by sliding of
bedding planes.

¢ For all other orientations, the failure can occur in a very complex way, by combining sliding and
bursting of bedding planes and shear bands in the rock matrix.

Failure stresses are generally defined as peak stresses in triaxial tests. From the friaxial com-
pression tests performed, the values of failure stresses of the schist are presented in Figures 5 and 6,
respectively, in function of loading orientation and confining pressure. Some important remarks can
be made. From Figure 5, we can notice a very strong variation of strength with the loading orientation
for all confining pressures tested. However, the material strength is nearly constant for the loading
orientations between @ = 30° and @ = 60° and increases rapidly away from this zone. This strength
variation is the result of the specific failure mechanisms of the schist and is in agreement with the
previously mentioned failure surfaces observed in samples. Indeed, for the loading orientations
between 6 = 30° and § = 60°, the schist failure is due to the sliding along the bedding planes and the
influence of the loading orientation remains small. The sudden increases of strength at the boundaries
of this zone represent the transition from the sliding of bedding plane to the shearing of rock matrix.
In addition, the influence of confining pressure on the material strength is also small in this zone.
However, the influence of the confining pressure is clearly more significant for loading orientation
outside of this zone, particularly for § = 0° and 8 = 90°. In these orientations, the failure, being due
to the strain localization in rock matrix, is more sensitive to the confining pressure. This is a common
property of most isotropic geomaterials.

Schistosity plane Failure plane
//\\ : 7
7—X /y
AN

(a) ®) ©

Figure 4. Schematic view of failures surfaces in samples tested: (a) & = 90° rock matrix shearing; (b) 8 = 45° sliding along
schistosity planes; (c) # = 0° rock matrix shearing and schistosity plane bursting
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Figure 5. Strength variations with the angle 6 for various confining pressures tested
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Figure 6. Failure stresses obtained for different confining pressures and for various loading orientations 6
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Figure 7. Evolution of the anisotropy ratio R, with confining pressure

The degree of strength anisotropy is commonly quantified by the ratio between the biggest and
smallest values of material strength for a given confining pressure. Thus, this ratio is calculated by:

g
R, = ===t @

Crmini

Variations of this strength anisotropy with confining pressure are presented in Figure 7. The value of
R, continuously decreases with confining pressure. This means that the material anisotropy is smaller
when the confining pressure is higher. However, this decrease is quite small and the strength ani-
sotropy seems to tend towards a constant value of about eight. According to a review study by
Ramamurthy,*! such a value still defines a very strong anisotropy of the material. Therefore, the
effect of the confining pressure to reduce the strength anisotropy of the schist is small, with respect to
results obtained for many sedimentary ductile rocks, like shale.'® Indeed, in ductile sedimentary
rocks, the rupture by sliding of bedding planes is not the dominant mode, and the strength anisotropy
decreases very significantly when confining pressure increases.

3. PRESENTATION AND CALIBRATION OF SOME SELECTED FAILURE CRITERIA

In this section, qualitative comparisons of some representative failure criteria are provided. All the
selected models will be calibrated from the experimental data of Angers schist. A short summary of
the selected models is presented, while the emphasis is put on the basic assumptions and techniques
included in each model to describe the strength anisotropy. The calibration procedure associated with
each model is also mentioned. According to the previous tentative classification of various ap-
proaches, nine representative criteria are selected in this work.

1. three mathematical continuous models (Pariseau,2’ Tasi and Wu,'? Cazacu®®);

2. two empirical continuous criteria (McLamore and Gray,'® Ramamurthy, Rao and Singh®®);
3. Four ‘discontinuous weakness planes based’ theories (Jaeger,?® Walsh and Brace,>2 Hoek,*
Duvean and Henry>>).
MECH. COHES.-FRICT. MATER., VOL 3, 1-26 (1998) © 1998 John Wiley & Sons, Ltd.
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3.1. Mathematical continuous models

3.1.1. Criterion of Pariseau.’® This theory is a straightforward extension of the anisotropic failure
criterion proposed by Hill'’ for cohesive frictionless materials to cohesive frictional materials.
Indeed, in frictional materials like rocks and soils, mechanical behaviours are very sensitive to the
mean stress. By taking into account the material anisotropy, Pariseau®® introduced a linear term of
three normal stresses in the Hill criterion to describe the pressure dependency. Thus, for a
transversely isotropic material, and by using the structural co-ordinate system defined in Figure 1(b),
the Pariseau theory is exprssed by:

[F(oy — 033)° + Gl(033 — 61,) + (01, — 05,)°} + G + 4F)ad; + M(63, + a2)I"?
—[Us(1 + V(o +033)] =1 3)

where F, G, M, U, V and » are six material constants involved in the criterion. o are the components
of the stress tensor in the fixed structural system. The exponent coefficient # > 1 is used to describe a
non-linear pressure dependency of strength. This is equivalent to the use of a variable friction angle in
Drucker—Prager theory for isotropic media. The material constants can theoretically be determined by
measuring the strengths in uniaxial tension, compression and pure shear tests in the directions normal
and parallel to the bedding planes. However, the pure shear test is usually difficult to carry out in
rocks, the alternative method is to use an out-of-axis uniaxial compression test (Amadei*®). There-

fore, when n = 1 the following equations can be used:

2
1 1 1 1 1{1 1
2V = - 2U=—— 26=—-[—+
T, of/ CO// T op COP 4 (T op Ctzp)

“

1{1 Y 2 2
d2F =— — == -
2 (Ta,’/ + Co_//) 2G M (C45 + U+ V) F+06)
where T,,, C,,, T,.;, C,,, are the uniaxial tension and compression strengths in the directions normal
and parallel to the bedding planes. Cys is the uniaxial compression strength in the loading orientation
0 = 45°. It is important to point out that for a strongly anisotropic rock like the schist studied, the
accuracy of experimental data in uniaxial tension and compression tests are often very poor.
Therefore, the above theoretical calibration procedure is actually difficult to use. In this study, only
triaxial compression tests are available for the schist studied. Therefore, a numerical calibration
procedure was proposed (Duveau**). By applying the criterion (3) to triaxial tests with § = 90° and
8 = 0°, the following simplified equations are obtained (when » = 1):

{ }(01 — 03)(v/8G —2U) — (U +2V)o3 = | )
(0'1 —03)(VF+G— V) - (U+2V)O'3 =1

From experimental failure stresses for different confining pressures in these two loading orientations,
the parameters U, V, F, G can be determined by the least squares method. Further, the value of M can
be obtained by fitting experimental failure stresses obtained in out-of-axis tests (for example 8 = 45°.
In addition, it was found that the best numerical fitting of failure stresses was obtained by taking
n = 1. The values of material constants obtained is summarized in Table IV.

3.1.2. Criterion of Tsai and Wu.'® A general failure theory was developed by Godenblat and
Kopnov'® who introduced anisotropic strength tensors of different orders. A specific form of this
general theory, by ignoring strength tensors of higher order than two, was proposed by Tsai and
© 1998 John Wiley & Sons, Ltd. MECH. COHES.-FRICT. MATER., VOL. 3, 1-26 (1998)
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Table III. Major and minor anisotrophies measured
in three different blocks (from Homand et al.*®)

Block A Block B Block C
AM% 28.5 304 27.1
Am% 54 1.0 42

Wu.'® Though initially developed for fibre-reinforced composites, this criterion is widely used for
different kinds of materials. For a transversely isotropic material, in the structural co-ordinate system
(Figure 1(a)), the Tsai and Wu®® criterion is expressed in the following form:

Fioy; + Fy(03 + 033) + F110%) + Fay(0%, + 033)

1
+2F15(011023 + 611033) + 2F303309; +'2'(F22 — Fy3)0% + Fis(oh, +03) =11 (6)

This criterion contains seven constants that can theoretically be identified from uniaxial tensile and
compressive tests with @ = 0° and 6 = 90°, a pure shear test in the isotropic plane and bi-axial tensile
tests. As reliable experimental data of such tests are usually unavailable, the calibration of this
criterion is difficult. In this work, it was proposed to use the general theory of inverse problem
(Tarantola*’) to determine the constants from failure stresses of triaxial tests. However, because of
the great number of constants and the strong anisotropy of the schist, it was not possible to find a
suitable set of constants. Therefore, quantitative comparisons of this criterion with experimental data
will not be provided.

3.1.3. Criterion of Cazacu.”® Based on the previous works of Bochler and Sawczuk,?' and
Boehler,>> Cazacu?® proposed a new general invariant failure criterion for anisotropic material, by
using the representation theorems of tensorial functions (Wang®®). In this criterion, a fourth order
strength tensor has been introduced and used to define a transformed stress tensor from the nominal
one:

Ey = A}']'Ho-ld (7)

The strength anisotropy is taken into account by substituting the transformed tensor for the nominal
one in a suitable isotropic criterion. Cazacu proposed to generalize the Stassi criterion and the
anisotropic criterion is expressed in the following form:

3 N2 M _
FHEY - @) =1 ®

where X' is the deviator X, and m is a material constant. The tensor A4 has the general symmetry
properties:

Ay = Ay = Ajg = Ay ®)

MECH. COHES.-FRICT. MATER., VOL 3, 1-26 (1998) @ 1998 John Wiley & Sons, Ltd.
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For a transversely isotropic material and in the structural co-ordinate system, the truncated matrix of
A is expressed as follows:

f[a b b 0 07

e 0 00

ed 0 00
A4=100 0 222 o o (10)

4

00 0 £

2

C

(000 o o0 7]

In contrast to Bochler and Sawczuk,?! in Cazacu theory, the only restriction imposed on the tensor
A is to be invariant under any orthogonal transformation belonging to the material symmetry group.
Therefore, the tensor involves five independent components instead of three, as in the Boehler and
Sawczuk theory, due to additional simplified assumptions. However, the application of a strength
criterion of type (8) with 4 having only three independent components to some specific cases leads to
unacceptably restrictive results. A detailed discussion about this point is given in Cazacu.?® The
tensor 4 given in equation (10) is similar to the elastic compliance tensor for transverse isotropic
materials. Such a tensor was related by Cowin*’ to a structure tensor. Accordingly, the tensor 4 : ¢
could physically be related to some elastic strain induced in the rock.

The physical interpretation of the parameters can be revealed from basic laboratory tests. Indeed,
all the parameters are related to the material strengths in uniaxial tensile and compressive tests along
the S; and S, axes, and in pure shear tests in the (S,, S;) plane and in the (S), S,) plane (Cazacu?5).
When such data are not fully available, a numerical fitting procedure will be necessary to determine
the model’s parameters. In this work, data from tensile and shear tests are not available. Thus, the
parameters have been determined from triaxial compression tests, by using a numerical fitting based
on the general inverse problem theory. The values obtained are presented in Table IV.

As a general remark, the presentation of the previous mathematical models could also be made in
the framework of a unified formulation by using the theory of invariants. Indeed, specific forms of
failure criteria could be obtained by choosing different structure tensors and invariants. However, in
this paper, the initial forms of the models are used, and the emphasis is put on the physical inter-
pretations and determination procedure of the constants involved in each model.

3.2. Empirical continuous models

Empirical continuous models have been developed in a more pragmatic way. In this class of
models, an isotropic strength theory is usually generalized by introducing some empirical laws for the
variations of material parameters with the loading orientation.

3.2.1. Criterion of McLamore and Gray.° The first failure criterion of this type was proposed by
Jaeger,?” known as ‘the variable cohesive strength theory’. It was assumed that the material failure
can be described by the Mohr—Coulomb theory. In order to describe the strength anisotropy, an
empirical law of variation of the material cohesion with loading orientation was proposed while the
internal friction was assumed to be constant. By completing the Jaeger criterion, and in order to
obtain a better description of the strength anisotropy observed in many experiments. McLamore and
© 1998 John Wiley & Sons, Ltd. MECH. COHES.-FRICT. MATER., VOL. 3, 1-26 (1998)
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Gray'® proposed to use a variable cohesion and friction coefficient with the loading orientation:
t=c+otan¢
with
c=A, 5 — B, cos(2(¢, — 6)" (1)

and
tanqﬁ = CI,Z - DI,Z COS(2(éf — H)M

where 7 is the shear stress and ¢ the normal stress in the Mohr plane. 4; and B), 4, and B, are
constants for the description of variation of the cohesion, respectively, for the loading orientations
0° <0< & and &, <0 <90° &, is the loading orientation corresponding to the minimum cohesion.
Similarly, C, and D,, C, and D, are constants for the description of variation of the friction coef-
ficient, respectively, for the loading orientations 0° < 0 < ¢, and ¢, < 6 <90° where &, is the
loading orientation corresponding to the minimum friction. Finally, the two exponents m and », called
the factors of anisotropy type, have typical values of one to three for plane anisotropy like cleavage
and schistosity, and five to six for linear structures.

The identification of the model’s parameters is easy and consists of determining the values of
cohesion and friction for each loading orientation by establishing the Mohr—Coulomb diagram.
However, in order to have a fine description of the variation of cohesion and friction, it is necessary to
perform a large series of triaxial tests covering various loading orientations 8 and confining pressures.
For the schist studied, the minimum cohesion and friction are found in § =45° and m=n =1
corresponds to the best fitting of the strength anisotropy. The values of parameters obtained is given
in Table III. In Figure 8, experimental variations of cohesion and friction of the schist with loading
orientation are presented and compared with the numerical fitting given by equations (11). Good
agreements can be noticed.

3.2.2. Criterion of Ramamurthy, Rao and Singh.*® Recently, a modification of the previous
criterion was proposed by Ramamurthy, Rao and Singh?® who suggested to use a non-linear equation
to describe the failure envelope in the Mohr plane:

o —05 _ ﬂ(&)d 12)

] 03

where o, and g5 are the major and minor principal stresses, and o, the uniaxial compression strength.
a and b are two parameters of the model. The material strength anisotropy is taken into account by
defining the variation laws of the parameters « and § as functions of the loading orientation 0
(Ramamurthy, Rao and Singh,?® and Singh, Ramamurthy and Rao®):

1=
o 3 B o
2% LA 13a
Ogo (%90) Boo Qo (132)
g = Al +Bl cos(z(omin - 9)) if 8 < omin (13b)
0, = Ay + By co8(2(0pip — ) if 6 = Oy

where 0,;,, like ¢ in the McLamore and Gray model, is the loading orientation corresponding to the
smallest strength. 0., is the uniaxial compression strength in @ = 90°, while agy and fg; are the
values of o and f in 8 = 90°. Four constants 4,, 4,, B, and B, are used to describe the variations of
the uniaxial compression strength as functions of loading orientation. The determination of the seven
parameters is quite easy if triaxial tests for different loading orientations and confining pressures are
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Figure 8. Experimental data of material cohesive and frictional strengths of the schist and numerical fitting from the McLamore
and Gray criterion

available. The parameters g, 09y and fqy are obtained by plotting the failure envelope in Mohr
plane from data of triaxial tests in 8 = 90°. However, the values of 4,, 4,, B; and B, are determined
by fitting experimental variations of the uniaxial compression strength as function 6. The values of
parameters obtained for Angers schist are presented in Table III.

3.3. Discontinuous ‘weakness plane based’ criteria

In contrast to the previous models, in this class of models, the formulation of strength criteria is
directly based on an analysis of failure mechanism. In general, an anisotropic material is, in
microscopic scale, considered as an isotropic body containing some sets of weakness planes. Material
failure can take place either in the rock matrix or along these weakness planes as a function of the
loading orientation. Therefore, two distinct failure criteria, respectively, for rock matrix and weak-
ness planes should be combined.

3.3.1. Single plane of weakness theory of Jaeger.>® In this theory, the anisotropic material is seen
as an isotropic body containing one set of weakness planes. The failure in the rock matrix and along
weakness planes is together described by the Mohr—Coulomb type criterion. However, the values of
cohesion and friction are different for rock matrix and weakness planes. Thus, the failure criterion is
expressed by the following equations:

T=c+o,tan¢ (14)

79 = ¢ + ogtan ¢, (15)

In equation (14), ¢ and ¢ are the cohesion and friction of the rock matrix. In equation (15), 74 and g,
are, respectively, shear and normal stress applied to the weakness planes. ¢’ and ¢’ are the cohesion
and friction of weakness planes. By making use of equations (14) and (15), we obtain two values of
failure stress for each orientation. The true failure stress corresponds to the smallest one of the two
values, as illustrated in Figure 8.

@ 1998 John Wiley & Sons, Ltd. MECH. COHES.-FRICT. MATER., VOL. 3, 1-26 (1998)
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The determination of the four material constants is quite easy. The cohesion and friction of rock
matrix can be determined from failure stresses obtained in triaxial tests with = 90° and (or) @ = 0°,asin
these orientations, the failure takes place in the rock matrix. However, according to experimental
data formany anisotropicrocks, likethe Angersschist, the strengthin 8 = 90° is clearly different fromthat
in § = 0° (Figures 5 and 6). Therefore, it is necessary to take different values of cohesion and friction for
the two principal directions. Finally, the cohesion and friction of weakness planes have to
be determined from failure stresses obtained in triaxial tests in the loading orientation corresponding to
the minimum strength, generallv in 6 ~ 45°. In this orientation, the material failure occurs along
weakness planes. The set of parameters for the Angers schist is given in Table IV.

3.3.2. Criterion of Walsh and Brace.>? In contrast to the Jaeger theory, in the criterion of Walsh
and Brace,>? it is assumed that schistosity planes represent oriented Griffith cracks. They supposed
that the anisotropic body is composed of long orientated cracks (schistosity planes) that are buried in
an isotropic body containing an array of randomly distributed smaller cracks. Failure occurs due to
tenstile stress through the growth of either the long or small cracks depending on the orientation of
the long cracks with respect to the applied stress. The growth of both the long and small cracks is
described by the modified Griffith theory by McClintock and Walsh:*!

t = 2lo,| + po, (16)
Applying this theory to each system of cracks in the case of triaxial tests, we obtained the
following equations describing failure stresses by growth of the long and small cracks:

o34
(UI - a3)s = Rs + /TS; (17)
v

Hy — K
(1 —03) 2034 + R/ — ) (18)
i o (1 —tgBu,)sin26

G) ~O3

Weakness planc
failure zone

Orientation 6

Figure 9. Schematic presentation of failure mechanisms in ‘weakness plane’ criteria
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where R, is the uniaxial compression strength of the isotropic body containing random small cracks
only, and p, is the friction coefficient of the small cracks. Similarly, R, is the uniaxial compression
strength of the body with orientated long cracks only, and y; is the friction coefficient of the long
cracks. The loading orientation 8 is the angle between the major stress and the orientation of the long
cracks.

The determination procedure of the material constants is similar to that used in the Jaeger theory.
The constants R, and u, are determined from failure stresses of triaxial tests with = 90° and 6 = 0°.
For most anisotropic rocks, like the Angers schist, different values of R, and u, are obtained for
6 = 90° and 0 = 0°. The constants concerning the long cracks system, R, and y;, are determined form
triaxial tests with the loading orientation corresponding to the minimum strength. The values of
constants for the schist studied are given in Table III.

3.3.3. Theory of Hoek.® Based on the previous works of Walsh and Brace,*? and Jaeger,?’® and
always assuming that failure can occur either in rock matrix or along weakness planes, a more
sophisticated model was proposed by Hoek.® The main modification with respect to the Jaeger®
theory, is the development of a new non-linear failure criterion to replace the classic Mohr—Coulomb
theory. From many experimental data, Hoek and Brown®>=* proposed the following strength
criterion:

0, = a3 + (mo 05 + s62)'? with ¢; > 0, > 03 (19)
where o, is the uniaxial compression strength of an intact rock matrix. m and s are two material
constants which play the essential role in this criterion. Indeed, their values are related to the state of
fractures of rock. The value of m varies from 0.001 for a very strongly fractured rock to 25 for a very
hard intact rock, while the value of s varies from 0 to 1. From equation (19), it is possible to obtain a
Mohr—Coulomb type criterion with variable cohesion and frictional angle as a function of the normal
stress o, (Hoek®*%):

T =c*(m,s; g,)+ o, tan ¢*(m, s, 7)) (20)

In order to apply the criterion (19) to an anisotropic materials containing one set of weakness
planes, it was proposed to use different values of m and s, respectively, for intact rock matrix and
weakness planes. The failure in rock matrix is directly described by equation (19). However, for the
description of sliding along the schistosity planes, equation (20) was used with the corresponding
values of m and s, denoted m; and s;. Accordingly, 7 and ¢, in equation (20), are, respectively, the
shear stress and the normal stress applied on the schistosity plane. Therefore, by assuming s = 1 for
rock matrix (in fact, is impossible to have a real intact rock mass as all rocks contain some dis-
tribution of cracks), the uniaxial compression strength ¢, and m are easily obtained from failure
stresses of triaxial tests with 6 = 90° and § = 0°. However, the constants for weakness planes, m; and
s;, are determined from triaxial tests in the loading orientation corresponding the minimum strength.

3.3.4. Criterion of Duveau and Henry.>® Similarly to the previous theories of Jaeger,3® Walsh and
Brace,?? and Hoek,® this criterion is also based on the weakness planes concept. However, according
to experimental observations, the schist of Angers has very marked schistosity planes and their
behaviour seems to be similar to that of rock joints. The classic Mohr—Coulomb or McClintock and
Walsh®! criterion was found not to be suitable to describe the failure along such schistosity planes.
Therefore, Duveau and Henry>> proposed to adapt the criterion of Barton*® initially developed for
© 1998 John Wiley & Sons, Ltd. MECH. COHES -FRICT. MATER., VOL. 3, 1-26 (1998)
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rock joints:

T= a,,tan(aloga—co+b) 21
al[
where 6 is the uniaxial compression stress in the direction normal to schistosity planes. It is
equivalent to the initial definition of the parameter JCS (joint compression strength) in the Barton
model. a and b are two other constants of the model. = and o, are, respectively, the shear and normal
stress applied to schistosity planes.
The failure in rock matrix is described by the tri-dimensional criterion of Lade:*®

ot \"
with
If=0,4+0,4+05+3¢c 4)
IF = (o; +c)oy +¢)(o3 +¢)

where m, ¢ and Y, are three material constants and P, is a reference pressure in order to obtain
undimensional constants.

The determination of all the parameters is quite easy. The constants concerning failure along
schistosity planes are determined from out-of-axis triaxial tests in the loading orientation corre-
sponding to the minimum strength. The parameters concerning matrix failure should be determined
from triaxial tests with § = 90° and 0 = 0°. It was found that different values of m and Y, have to be
used for the principal directions. The obtained values are presented in Table IV.

4. COMPARISONS AND DISCUSSIONS

In the previous section, the formulation and calibration of nine criteria that are representative of three
different approaches, are presented. The values of the parameters involved in each model are sum-
marized in Table IV. Using these values, the models are now applied to simulate the strength of the
schist of Angers. In this section, comparisons of numerical simulations from each model with
experimental data are presented. General discussions about the performance of each criterion are
addressed.

From a qualitative point of view, the three approaches use different assumptions and techniques to
take into account the strength anisotropy. Based on the overall analysis of mechanical behaviours of
materials, mathematical continuous models propose a general and rigorous procedure by making use
of anisotropic strength tensor. These models provide an invariant formulation with respect to the
material symmetry groups. Their calibration requires a small number of laboratory tests, and their
numerical implementation is easy and robust. However, the theoretical calibration procedure pro-
posed in these models cannot practically be used because the laboratory tests required are usually
impossible to carry out. A numerical optimal fitting method is often necessary. In addition, for rocks
with strong anisotropy, like the schist studied, these models cannot account for the discontinuous
character of the transition from the rock-matrix failure to the schistosity-plane sliding. Therefore,
these models generally give too smooth a variation of material strength. However, these models may
give an excellent modelling of failure behaviour of weakly anisotropic materials when the influence
of weakness planes is not dominant.?®

Empirical continuous models provide a rudimentary adaptation of isotropic strength criteria to
anisotropic material, by proposing empirical variation laws of model parameters with loading
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orientation. These models lead to a simple mathematical form and the determination of the model’s
parameters is easy. However, the physical meanings of the empirical laws and the involved para-
meters are not clear. The application of these models are generally limited to the 2D case. In addition,
a high number of laboratory tests is needed to obtain reliable variation laws. For a material with
strong bedding planes, these models suffer the same shortcomings as the mathematical continuous
models.

In contrast to the continuous models, the ‘discontinuous weakness planes’ based models consider
that the material strength is inherently related to the presence of bedding planes. The final material
failure is the result of two distinct mechanisms in the microscopic level; isotropic failure in rock
matrix and orientated failure along weakness planes. These models lead to simple and physically-
based equations. In addition, these models contain a small number of parameters and their deter-
mination is generally easy. These models are obviously well suited to a material with strong ani-
sotropy. However, these models do not provide an invariant formulation with respect to the material
symmetries, and their numerical implementation in the 3D case is not easy. Furthermore, for weakly
anisotropic materials, their advantages with respect to the mathematical continuous models will be
reduced.

Quantitative comparisons of numerical simulations from the selected models with experimental
data are presented in Figures 10 to 17. Variations of the deviatoric failure stress in triaxial tests with
loading orientation are shown for two representative values of the confining pressure; 5 and 40 MPa.

In Figure 10, we can notice a quite good agreement between the numerical results from the
Pariseau?® criterion and experimental data. Particularly, this criterion seems to describe well the weak
strength anisotropy for the loading orientations 8 € [30°, 60°]. However, if the material strength for
the orientations near to 8 = 0° is correctly simulated, there is a significant difference between the
numerical and experimental results for the orientations near to 6 = 90°. This seems to confirm the
previous qualitative analysis of this model.

In Figure 11, the numerical values of failure stresses from the Cazacu®® criterion are compared
with data. In a general way, the quality of the numerical predictions is not good. This model does not
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Figure 10. Comparison of the calculated strength values from Pariseau’s criterion with the experimental triaxial data for two
representative confining pressures (P, =5 MPa and P, =40 MPa)
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Figure 11. Comparison of the calculated strength values from Cazacu’s criterion with the experimental triaxial data for two
representative confining pressures (P, =5 MPa and P, =40 MPa)

correctly describe three distinct strength zones observed in experimental data and gives too smooth an
anisotropy of strength. Therefore, this model suffers the same kind of shortcomings as the Pariseau

model.

In Figures 12 and 13, the numerical results given by making use of the two empirical continuous
models (McLamore and Gray,'® and Ramamurthy, Rao and Singh®®) are compared with data. From a
quantitative point of view, we can notice very good agreement for the McLamore and Gray model,
and less good agreement for the Ramamurthy, Rao and Singh model. However, the good numerical
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Figure 12. Comparison of the calculated strength values from McLamore and Gray’s criterion with the experimental triaxial
data for two representative confining pressures (P, =5 MPa and P. =40 MFa)
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Figure 13. Comparison of the calculated strength values from Ramamurthy, Rao and Singh’s criterion with the experimental
triaxial data for two representative confining pressures (P, =5 MPa and P, =40 MPa)

performance of these models is not significant. Indeed, in the case of the McLamore and Gray model,
the comparisons shown in Figure 12 represent a simple verification of the used empirical laws, as all
the tests simulated were used to calibrate these laws. In addition, the quality of predictions given by
these models directly depends on the reliability of the empirical laws used. In conclusion, because of
the lack of a clear physical and mathematical background, the empirical models are not suitable for a

proper modelling of failure behaviour of anisotropic materials.
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Figure 14. Comparison of the calculated strength values from Jaeger’s criterion with the experimental triaxial data for two

representative confining pressures (P, =5 MPa and P, =40 MPa)
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Figure 15. Comparison of the calculated strength values from Walsh and Brace’s criterion with the experimental triaxial data
for two representative confining pressures (P, =35 MPa and P, =40 MPa)

In Figures 14 to 17, we present the numerical results obtained from four ‘discontinuous weakness
planes based’ models. As similar basic assumptions are used in these models, the numerical results
are also similar to each other. The common point is the existence of three distinct strength zones; two
constant strength ‘shoulders’ for the loading orientations near to the principal directions 8 = 0° and
6 =90°, and a variable strength zone for other orientations. The boundaries between different
strength zones represent the transition from rock matrix failure to weakness planes rupture. Never-
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Figure 16. Comparison of the calculated strength values from Hoek’s criterion with the experimental triaxial data for two
representative confining pressures (P, =5 MPa and P, =40 MPa)
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Figure 17, Comparison of the calculated strength values from Duvean and Henry’s criterion with the experimental triaxial data
for two representative confining pressures (P, =5 MPa and P, =40 MPa)

theless, it is useful to point out that the distinction of two failure mechanisms may appear too
simplistic and does not account for more complex coupled mechanisms. However, general good
agreement are obtained between the numerical and experimental results for all the models. In
addition, these models describe correctly the values of the orientation corresponding to the transition
from rock matrix failure to bedding plane failure. Obviously, the ‘discontinuous weakness planes
based” models appear particularly suitable for strongly anisotropic rocks where bedding planes play a
dominant role. By comparing the numerical results of the four models and the associated parameters
number (see Table IV), the Hoek® criterion (four parameters used) appears to be the most attractive, If
we look at the material strength in the zone corresponding to sliding of schistosity planes, it seems
that the Duveau and Henry>> criterion gives the closest results to the laboratory data.

Parallel to the study of strength anisotropy, the failure mode and the orientation of failure planes
(angle between the major stress and the failure plane) and also analysed. In the general framework of
the failure by strain localization in geomaterials, the study of the orientation of failure planes can be
performed by using the bifurcation theory associated with an appropriate constitutive model. This is
not the purpose of the present work. However, by assuming a brittle elastic behaviour of the material,
it is possible to obtain a primary estimation of the failure planes orientation for the models used in
this paper, by calculating the mobilized friction angle at failure state. One model of each group is
chosen. Comparisons between the predicted and observed values are shown in Table V. For the
loading orientations between 15 and 78 degrees, the observed values from tested samples indicate
that the sample failure is caused by the sliding of schistosity planes, and thus, the failure angle
coincides with the loading orientation. The failure mode is inherently modelled by the ‘weakness
plane’ based models (represented by Hoek’s model). However, the continuous models give variable
failure angles that obviously differ from the observed values. For the loading orientations near to the
principal directions, Hoeck’s model provides, once again, an excellent prediction of the failure angle
and the dependency of the failure angle with the confining pressure. The values given by two
continuous models are also in good agreement with the observed values. But, in the case of the
Parisecau model and the McLamore—Gray model, the influence of the confining pressure is not taken
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Table IV. Calibration results of the selected criteria from the data of Angers schist

Criteria Parisean®’ Cazacu®® McLamore and ~ Ramamurthy, Jaeger™® Walsh and Hoek® Duveau and
Gray'? Rao and Singh®® Brace™ Henry®®
Parameters F,G,M,U,V,N a,b,c,d,e,m 4.,8,,C, Dy, Ay, By,4,,8,, o, tan ¢y, g, Ry, ios Rogps ogs 1, S, G, my, 5; ¢, Pr, my, Yo,
U
used 43, 8,5, Gy, Dy, 90, %90, Bog tan oy, ¢', tan ¢ Ry Mg, Y00, @ B, Oy
mn

Calibra- ~ Numerical fitting from Numerical fitting from Numerical fitting ~ Numerical fitting =~ Numerical fitting Numerical fitting ~ Nurnerical fitting Numerical fitting
tion pro-  triaxial tests with triaxial tests with all  from triaxial tests from triaxial tests  from triaxial tests from triaxial tests  from triaxial from triaxial tests

cedure #=0°,45°and 90°  orientations and all  with all orientations with § = 0°,45° and with 6 = 0°, 45° with 6 = 0°,45° tests with with @ = 0°, 45° and
and all confining confining pressures  and all confining  90° and all confining and 90° and all and 90° and all 0 =0°,45° 90° and all confining
pressures tested tested, by using the  pressures tested pressures tested confining confining and 90° and all pressures tested
general inverse theory pressures tested pressures tested confining
pressures tested
Value of n=1 a=00195MPa~! m=n=1 4,=91.32 €o=26.10 Ro=121.06 MPa m=10.80 P_=1000 MPa
parameters F=8.8E-04 MPa~> 5=0.0058 MPa~'  4,=0.87 B, = —88.55 tan ¢, =0.94 o =054 s=1 e=1MPa
G=9.6E-06 MPa—2 ¢=0.0485 MPa~' B,= —0.63 Ay =159.66 o9 =40.04 Rop=185.07 MPa o,=158 MPa  m,=3.00
M=00237 MPa~? d= —0.0357 MPa—! C,=39.02 B, = —156.86 tan ¢hgy = 0.86 Heoo =0.84 m;=0.27 Y;0=597
U= — 0012 MPa—' ¢=00081 MPa~!  D,= —34415 090 = 150 MPa ¢ =401 R=1171 MPa  5=0.32 mgq = 5.07
¥=0.0212 MPa~™' m=2.0376 MPa~' 4,=0.94 gy =0.855 tan ¢’ =0.30 =029 Y400 =135
By = —0.70 Poo =234 a=29.12
C,=23.39 h=929

D;= —18.78 09 =150 MPa




"P1] ‘suog 7 Ao WOl 8661 D

(8661) 921 ‘€ "T0A “YALVI "LOII-"STHOD "HOIW

Table V. Comparison between observed and prediced failure angle B for different criteria

Failure mode Rock matrix Schistosity plane Rock matrix
0 near 0° 15° 30° 45° 60° 75° 78° near 90°
Varies with About 25°

B observed confining pressure f=0 (increase slightly
from 15° to 20° with

confining pressure)

Parisean?’ 22.6° 32.4° 37° 383°  37.8° 348>  33.4° 19°

McLamore and Gray'® 23.3° 29.7° 358  383° 36° 3050 29.3° 24.5°
Pridicted f 0 21.6° 21.6°
from a3 5 22.8° 22.8°
three Hoek® (MPa) 10 23.8° =0 23.8°
models 20 25.2° 25.2°
30 26.3° 26.3°
40 27.2° 27.2°

STVIRIHLVNOID JDIJOYALSINY ATONOYLS Y04 VIIHLIYD TINTIVA

1 X4



24 G. DUVEAU, I. F. SHAO AND J. P. HENRY

into account. However, in other continuous models (Tsai and Wu, Cazacu, Ramamurthy, Rao and
Singh), this dependency can be considered.

As in isotropic materials, the effect of the intermediate stress on the failure of anisotropic materials
should be considered. However, the experiments of this work were performed on cylindrical samples
under axisymmetric stress. Therefore, this topic is not discussed in this paper. However, a review of
the previous works on this topic is presented by Kwasniewski.”®

In order to complete the comparative discussions, it appears important to point out that the present
work is devoted to the analysis of the brittle failure behaviour of an anisotropic rock mass as a
continuous medium. Although the sliding of schistosity planes is considered in the group 3 models,
this was done to give a clear microscopic interpretation of the failure mode, not to provide a
modelling of individual weakness planes. On a larger scale, when we need to study the stability of
rock massifs containing macroscopic discontinuities (joints and fractures), two numerical modellings,
respectively, for rock mass and macroscopic discontinuities, should be necessary.

5. CONCLUSION

From the assessment of nine different failure criteria in the framework of modelling the failure
behaviour of strongly anisotropic materials, some concluding remarks can be drawn. Among three
kinds of approaches, the empirical continuous models are based on fully empirical variation law and
formulated without any physical and mathematical foundation. These models should not be
recommended. However, the mathematical continuous models present a considerable advantage of
providing an invariant formulation and rigorous mathematical development. In the case of strongly
anisotropic materials, these models do not describe correctly the consequences of the existence of two
main failure mechanisms. Finally, the ‘discontinuous weakness planes’ models are based on the
description of two clearly identified failure modes, and thus, are especially suitable for strongly
anisotropic materials. However, these models do not provide an invariant formulation and their
numerical implementation is not easy.
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