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Abstract 
Shales encountered in the overburden above hydrocarbon 
reservoirs often pose challenges to the stability of  
boreholes.   Consequently, there is a keen interest in borehole 
stability prediction, which is complicated by the laminated 
structure of shale that arises as a consequence of the 
depositional environment.   

A combined experimental/numerical investigation is being 
undertaken to address how the directional properties of shale 
impact borehole stability in weak shale formations.   Within 
this paper an advanced finite element procedure for simulation 
of progressive damage of orthotropic pressure-sensitive 
materials is presented, which includes bifurcation and post-
bifurcation analysis.   This constitutive model is based on 
critical state theory and is specifically designed to represent 
the characteristic deformation of weak shale formations.  It 
includes orthotropic elasticity and an orthotropic pressure-
dependent yield surface that is curved in the p-q plane, and 
which intercepts the hydrostatic axis in both tension and 
compression. A regularization procedure is also presented that 
ensures mesh invariance and correctly reproduces the 
dependence of strength on the size of the test specimen.  

Calibration of the model parameters is also discussed and 
the model is validated by comparison with the results of 
uniaxial and triaxial compression tests for Pierre I Shale 
performed at different bedding plane orientations. 

 
Introduction 
Despite significant advances in prediction in recent years, 
wellbore instability can still occur in shales during drilling.  
While instability in homogeneous shales can largely be 
avoided by using an adequate mud weight, attention is now 

focusing on predicting instability in shales with a more 
pronounced ‘fabric’ or fissile character.  This anisotropy in 
mechanical and strength properties is usually neglected in 
conventional analyses.  However, shales usually possess a 
laminated structure as a consequence of the depositional 
environment, and therefore exhibit a directional variation in 
elastic properties, yield strength and post-yield behaviour.  
Conventional approaches – assuming transverse isotropic 
elastic properties with isotropic failure surfaces – are typically 
unable to properly reproduce the complex yield and 
deformation behaviour of these materials.   This deficiency is 
most pronounced in highly laminated and fissile shales, which 
are the most likely to cause drilling problems. The low 
permeability of shale may also complicate the stability 
assessment by necessitating a coupled poroelastic formulation. 

Extensive research has been carried out on the formulation 
of appropriate failure criteria for orthotropic and transversely 
isotropic materials, see [4] for a recent review.  Early work 
focused on empirical failure criteria that account for the 
continuous variation of compressive strength with orientation 
for transversely isotropic rock [5,6].  Subsequently Tsai and 
Wu [7] and Pariseau [8] extended Hill’s criterion [9] for 
orthotropic metal plasticity to pressure sensitive materials, and 
Ong and Roegiers [10] employed these theories in horizontal 
wellbore stability predictions. Nova [11] proposed a 
generalised failure condition that describes failure of 
transversely isotropic rocks in compression and Nova and 
Zaninetti [12] established a failure criterion in tension based 
on similar concepts.  Cazacu and Critescu [13] show that an 
anisotropic Mises-Schleicher (AMS) criterion can accurately 
fit the failure strength for transversely isotropic rocks, 
including the directional character of transversely isotropic 
materials under general loading conditions, and the 
dependence on the intermediate principal stress. 

The development of a description of the progressive failure 
for orthotropic and transversely isotropic materials has 
received less attention, probably due to the complexities 
associated with the formulation of the problem. Some 
researchers have adopted the Hoffman criterion [14], a 
pressure sensitive extension of the Hill criterion with a 
paraboloid shape in the p-q plane [15].  Also Pietruszczak et 
al. [16] proposed a formulation that incorporates a scalar 
anisotropy parameter that is expressed in terms of mixed 
invariants of stress and structure-orientation tensors.   This 
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model shows good correspondence with the pre-peak response 
of Tournemire shale but in the form presented the model does 
not account for the post-peak evolution of the material.   
Dafalias [17] and Voyiadjis and Song [18] present some 
theoretical aspects of modelling anisotropic materials with an 
anisotropic Cam Clay model but focus on texture development 
rather than materials with inherent initial anisotropy. 

An anisotropic constitutive model, formulated by 
extending the isotropic Modified Cam Clay critical state 
model for materials with pre-defined structure, is presented in 
this study. The model includes orthotropic elasticity, an 
orthotropic pressure dependent yield surface and 
hardening/softening governed by the evolution of volumetric 
plastic strain. A regularization procedure, based on fracture 
mechanics concepts, is also presented.  The model is validated 
by comparison with the results of triaxial compression tests 
performed at different orientations to bedding in laminated 
shale.  Note that the bedding plane orientation in the triaxial 
tests is denoted by the angle θ relative to the radial  
direction (Figure 1). 
 
 
 
 
 
 
 
 
 
 (a) General System (b) Triaxial System 
Figure 1.  Local Coordinate System Aligned with Bedding Planes 

 
Experimentally Observed Characteristics of Shales 
Transverse isotropic shales have generally been studied 
experimentally using triaxial tests subjected to globally 
axisymmetric loading states, although the true stress states will 
not be axisymmetric due to bedding plane inclination, 
inhomogeneities in the specimens and end effects.  These 
studies, for example [1-3], have shown that: 

 
1. The variation of the compressive strength with the angle 

between the bedding planes and loading direction is such 
that the maximum compressive strength occurs when the 
loading direction is either parallel or perpendicular to the 
bedding planes (Figure 2).  

2. The minimum compressive stress occurs when the loading 
to bedding plane orientation lies between 30° and 60° 
where the high shear stresses promote failure on the 
bedding planes (Figure 2). 

3. The elastic properties are transverse isotropic, with the 
Young’s modulus normal to the bedding planes being 
lower than the Young’s modulus in the plane of the 
bedding.  

4. The elastic properties are a nonlinear function of 
confining pressure but also dependent on effective stress. 

5. The failure surface is nonlinear in the p-q plane  
(Figure 3). 

6. At low confinement, failure is brittle with a sudden loss in 
strength and a transition from compressive to dilatant 
volumetric strain during and post failure (Figure 4). 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Variation of Normalised Failure Stress with Bedding 
Plane Orientation 

7. At high confinement the deformation of weaker shales 
remains compressive with no softening once the peak 
strength is exceeded (Figure 4). 

8. Time dependency is important due to the low 
permeability of shale.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Typical Strength for Shale in the p-q Plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Stress-Strain Curves for Typical GoM Shale 
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The most extensive set of published laboratory 
experiments on the influence of anisotropy in shale have been 
performed on Tournemire shale, an Upper Toarcian massive 
shale taken from the Tournemire site in the Massif Central, 
France.   Both compressibility and triaxial tests were utilised 
with the emphasis of evaluating the elastic, yield and failure 
response as a function of confining pressure and bedding plane 
orientation. Tournemire shale is, however, moderately strong 
and therefore not necessarily representative for weaker shales. 

Experimental data for weak shales is quite sparse.  A short 
experimental investigation of the influence of bedding plane 
orientation on failure has therefore been performed on Pierre I 
shale.  This is an Upper Cretaceous, very fine grained, black 
claystone, with 20 to 30% clay content, that outcrops in 
eastern Colorado.  The formation represents marine 
accumulations of mud, silt and sand deposited in the deeper 
parts of the Late Cretaceous Epicontinental Sea that covered 
much of the western interior region of North America.  
Mechanically, Pierre I shale exhibits plastic behaviour, a high 
sensitivity to moisture content, and is significantly weaker 
than Tournemire shale (Figure 3).  The test matrix includes: 

 
1. A series of unconfined compression tests at different 

bedding plane orientations (θ = 0°, 30°, 45°, 60°, 90°). 
2. A series of drained triaxial compression tests with the 

bedding planes orientated normal to the axis of the 
specimen (θ = 0°) and confining pressures of 200, 500, 
1000, 2000 psi. (Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Stress-Strain Curves for Pierre I Shale 

The variation of peak stress with bedding plane orientation 
is shown in Figure 2, where the normalising stress is 2020 psi 
(Table 1).   The collapse load with horizontal bedding planes 
(θ = 0°) and vertical bedding planes (θ = 90°) are relatively 
similar, which is consistent with the Tournemire shale.   
However, unlike the other materials, significant degradation of 
the collapse strength is only apparent at θ = 45°, with little 
degradation at θ = 30° and θ = 60°. 

The variation of Young’s modulus is also consistent with 
Tournemire shale in that bedding plane closure results in the 
axial stiffness for the θ = 0° orientation being less than half of 
the axial stiffness corresponding to θ = 90° (Table 1.) 

 
Orientation θ 

(°) 
UCS 
(psi) 

Young’s Modulus  
(psi) 

Poisson's  
Ratio 

0 2,020 162,500 0.35 
30 1,955 178,000 0.39 
45 1,301 240,500 0.39 
45 1,213 213,600 0.46 
60 1,857 231,200 0.39 
90 1,929 342,400 0.40 

 
Table 1.  UCS Test Results on Pierre I Shale 

 
The conventional triaxial compression (CTC) tests for 

Pierre I (Figure 5) show that: 
 

1. The Young’s modulus stiffens with increasing confining 
pressure. 

2. The peak stress failure surface flattens in the p-q plane 
with increasing confining pressure. 

3. At low confinement the failure is brittle with a sudden 
loss in strength. 

4. Both the magnitude and the rate of strength loss 
subsequent to the peak load diminish with increasing 
confinement. 

5. The magnitude of the dilatancy in the post-peak regime 
decreases with increasing confining pressure. 

 
 
Constitutive Modelling of Shales 
The transverse isotropic nature of shales may be represented 
within a computational model in several ways, including: 

 
1. Inclusion of embedded weakness planes via a smeared or 

cohesive crack type approach. 
2. Direct representation of the planes of weakness as an 

interface with adhesive, cohesive and frictional properties. 
3. Representation of the macroscopically observed 

deformations using a phenomenological constitutive 
model based, for example, on orthotropic elastoplasticity. 

 
Whilst each method has advantages and disadvantages this 

paper focuses on an orthotropic elastoplastic representation as: 
 

1. The material properties may be directly identified from 
standard experimental test procedures. 
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2. The model falls within the elastoplastic framework that is 
well understood in terms of stability and uniqueness, and 
is extendable to finite strain analysis. 

  
Transverse Isotropic Elasticity 
The instantaneous elastic response for an orthotropic material 
may be defined in the local coordinate system (l) by the 
generalised Hooke’s law as: 

l l l
orth ee =σ D ε  (1) 

where l
orthD  is a matrix defined by nine material constants, l

eσ  

is the elastic stress vector, l
eε  is the elastic strain vector and 

superscript l denotes quantities in the local coordinate system 
aligned with the bedding planes.    For transverse isotropic 
materials the nine elastic constants may be reduced to five:  
 

E1  - the Young’s modulus normal to the bedding plane,  
E2  - the in-plane Young’s modulus,  
G12  - the out-of-plane shear modulus,  
ν23  - the in-plane Poisson’s ratio, 
ν12  - the out-of-plane Poisson’s ratio. 

 
E1 and ν12 are determined from conventional triaxial tests with 
horizontal bedding planes (θ = 90°) and E2 and ν23 are 
determined from triaxial tests with vertical bedding planes (θ 
= 0°).  G12 may be determined from tests where the bedding 
planes are non-aligned with the major axes [3] or may be 
estimated using Saint-Venant’s formula [3,10]: 

12

12 1 2 1

1 1 1 2
G E E E

ν
= + +     (2) 

In general the elastic response of weak rocks is pressure 
dependent; Niandou [3] presents a simple empirical law for 
the evolution of the material parameters with effective mean 
stress.   However, nonlinear elasticity is not considered in  
this paper. 
 
Transverse Isotropic Elastoplasticity 
Shales in general exhibit a clear nonlinear dependence of both 
the peak strength and post-peak response on the effective 
mean stress.  However, the transition from post-peak dilation 
to post-peak compression as the confining pressure is 
increased in triaxial tests is particularly important for weak 
shales.  This transition occurs at confinements sufficiently low 
to impact, for example, borehole stability predictions, and 
consequently the constitutive model must be sufficiently rich 
to accommodate this behaviour. This is in contrast to models 
derived for moderately strong shales, where yield functions 
that are open in compression have generally been utilised 
[13,16].   Inelastic compression, often termed compaction or 
consolidation, may be represented within a constitutive model 
by either augmenting a strength criterion, e.g. the Hoffman 
criterion [14], by a compression cap or by adopting a 
constitutive law that naturally fulfills the requirement of 
compressive hardening and shear softening – for example, 

models founded on critical state soil mechanics.  This latter 
approach is adopted here.  

Critical state soil mechanics has developed from 
experimental measurement of the behaviour clays and sands at 
large strains, and provides a rational framework that describes 
strength evolution as a function of the current specific volume.    
The specific form of an individual critical state model - i.e. the 
yield surface, flow rule and hardening/softening relationship - 
is dependent on the nature of the soil, and consequently many 
differing formulations have been proposed.   The Modified 
Cam Clay model [19] developed for normally consolidated 
clays under monotonic loading is the earliest model employed 
computationally.   Subsequently many alternative forms have 
been proposed to accommodate more general stress paths and 
soil types.  The original framework has been, for example, 
extended to sands [20] and weakly cemented sandstones [21], 
and the concepts of kinematic hardening, multi-surface 
plasticity or bounding surface plasticity have been adopted to 
account for cyclic loading (see [22] for review).  

For problems of relevance to petroleum geomechanics, the 
loading is generally monotonic and consequently the 
transverse isotropic model is developed by generalising the 
standard isotropic Modified Cam Clay model. 
 
Isotropic Modified Cam Clay Model 
The standard Modified Cam Clay yield function Φ (Figure 6) 
is defined as: 

( )
2

2 2
2

1, ( ) 0p
v t

q p p a a
M b

ε  Φ = + − + − = 
 

σ  (3) 

where 
1 ( )

( )
t

t

p P a
b

p P aβ
≥ −

=  < −
 (4) 

and 
1 ( )1 ( );

( )1
t

t c
t

p p a
a p p b

p p aββ
≥ −

= − =  < −+ 
 (5) 

where p is the effective mean stress, pt is the tensile intercept, 
and pc is the pre-consolidation pressure.   The constant M 
defines the ratio between the two radii of the ellipsoid, which 
for associated plasticity is the critical state line.  β is a material 
constant that defines the shape of the consolidation cap, and q 
is the deviatoric effective or equivalent stress defined as: 

2
3 13 :
2 2

Tq J ′= = =S S σ Pσ  (6) 

where 2J ′  is the second deviatoric stress invariant, S is the 
deviatoric stress tensor, σ  is the stress tensor and P is a 
projection matrix defined as: 

 
=  
 

Ω 0
P

0 Γ
, 

2 1 1
1 2 1
1 1 2

− − 
 = − − 
 − − 

Ω , 
6 0 0
0 6 0
0 0 6

 
 =  
  

Γ  (7) 
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Figure 6.   Isotropic Modified Cam Clay Model 

The evolution of the yield function is governed by the void 
ratio or plastic volumetric strain p

vε  so that: 

( )p
va a ε=  (8) 

or, more specifically: 

( )   and   ( )p p
c c v t t vp p p pε ε= =    . (9) 

The evolution of the plastic flow is defined by an associated 
flow rule: 

p Fλ ∂
=

∂σ
��ε  (10) 

where the plastic multiplier λ�  is consistent with the 
loading/unloading criterion: 

( , ) 0 0 ( , ) 0q qλ λΦ ≤ ≥ Φ =� �σ σ     (11) 

From the definitions of p�ε  and p
vε  is follows from the plastic 

flow rule (10) that: 

trp
v

Fε λ ∂ =  ∂ σ
��     (12) 

 
Π-Plane Correction for Isotropic Modified Cam Clay 
The intersection of the Modified Cam Clay yield surface with 
the octahedral or π-plane has a circular form (Figure 7).  This 
is contrary to experimental evidence for weakly cemented 
rocks where the strength observed in reduced triaxial 
extension (RTE) tests is generally lower than in conventional 
triaxial compression (CTC) tests. Therefore, whilst the model 
may be calibrated provide a good fit to CTC tests, it will 
provide a poor fit to the behaviour in other stress states, e.g. 
RTE and thick-walled cylinder (TWC) tests and field 
applications.  To overcome this limitation the effective or 
equivalent stress q is augmented in the yield function with a 
term g(θl) based on the Lode angle θl  so that (3) becomes: 

( ) ( ) 2

2 2
2

1, ( ) 0
2

lp
v t

g q
p p a a

M b
θ

ε
 

Φ = + − + − = 
 

σ  (13) 

where the Lode angle θl  is defined as: 

( )
1 3

3/ 2
2

1 3 3sin
3 2l

J
J

θ −
 ′

=  
′  

 (14) 

where 3J ′  is the third deviatoric stress invariant. 
Several different definitions of the function g(θl) have been 

proposed in the literature.  The definition adopted in this  
study is: 

( ) ( ) ( )1 1/ 1 1/ sin 3l lg θ ξ ξ θ= + − −    (15) 

where ξ is a constant and must be in the range 0.778 1.0ξ≤ ≤  
to ensure convexity of the yield function.  This function yields 

30θ = − °   sin 3 1 /t qθ ξ= − =  

0θ = °  [ ]1sin 3 0 1 1/
2

t qθ ξ= = +  

30θ = °  sin 3 1 t qθ = =  

(16) 

The definition of q in the yield function is, therefore, 
unchanged for CTC tests so that the material parameters may 
be calibrated in the usual manner and the value of ξ estimated 
from RTE or TWC tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Comparison of Modified Cam Clay, Modified Cam Clay 
with ξ = 0.8 and Mohr Coulomb yield functions (φ=30°). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  P-Q Representation of Modified Cam Clay (ξ = 0.8) 

The π-plane representation shows that the g(θl) correction 
results in a smooth yield function that approaches shape of the 
Mohr Coulomb yield function (Figure 7).   Note that the 
strength predicted in RTE tests is still greater than that 
predicted by the Mohr Coulomb function for the chosen 
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friction angle of 30°.  A fit through all the apex of the Mohr 
Coulomb surface is only achievable at low values of friction 
angle, φ, because as φ increases the Mohr Coulomb yield 
function becomes increasingly triangular. It should also be 
noted that the dependence of the yield strength on the Lode 
angle impacts the concept of the critical state, as the residual 
friction angle in the RTE test is significantly less than in 
standard CTC tests. 

 
Extension of the Cam Clay Model for Transverse 
Orthotropic Materials 
The Modified Cam Clay yield function may be extended to 
orthotropic materials by defining a yield function of the form: 

( ) ( ) 2

2 2
2

1, ( ) 0
2

orthp
v orth t

g q
p a a

M b
θ

ε
 

Φ = + − + − = 
 

σ p σ  (17)  

where the isotropic equivalent effective stress has been 
replaced by an orthotropic function of the form: 

( )1
2

Tl l
orth orthq = σ P σ  (18) 

the orthotropic matrices are defined as: 

orth
orth

orth

 
=  
 

Ω 0
P

0 Γ
 (19) 

and lσ  is the stress vector aligned with the local material axes 
defining the principal material directions which is defined as: 

Tl l l l l l l
x y z xy yz zxσ σ σ τ τ τ =  σ     (20) 

Porth and porth are a matrix and vector of material constants 
respectively and Porth is taken as identical to the orthotropic 
model proposed by Hill [9] for metal plasticity. Several 
different conventions have been adopted to specify the 
components of Porth and porth and the magnitude of each cell is 
independent of the chosen system.  Following the system of 
Hashagen and de Borst [23]:  

( )
( )

( )

4 6 4 6

4 4 5 5

6 5 5 6

2 2 2
2 2 2
2 2 2

orth

α α α α
α α α α
α α α α

+ − − 
 = − + − 
 − − + 

Ω     (21) 

7

8

9

6 0 0
0 6 0
0 0 6

orth

α
α

α

 
 =  
  

Γ     (22) 

[ ]1 2 3 0 0 0orth α α α=p  (23) 

and α1 - α9 are material parameters. 
For transverse isotropic materials where the local π-plane 

is isotropic, then from [7]:  

( )4 6 7 9 8 4 5
2, , 2
3

α α α α α α α= = = +  (24) 

so that 

( )
( )

4 4 4

4 4 5 5

4 5 4 5

4 2 2
2 2 2
2 2 2

orth

α α α
α α α α
α α α α

− − 
 = − + − 
 − − + 

Ω  (25) 

and 

( )
7

4 5

7

6 0 0
0 4 2 0
0 0 6

orth

α
α α

α

 
 = + 
  

Γ  (26) 

This gives three unknown parameters 4 5 7, ,α α α  that may be 
determined from a series of triaxial tests with differing 
bedding plane orientations. 
 
Stress Update Procedure 
Considering a time interval [t, t+∆t] the trial state is 
determined as: 

( ) ( )Trial Triall l l
orth e=σ D ε     (27) 

If the trial states lies within the elastic domain, i.e. if 

( ) , 0
Triall p

vε Φ ≤  
σ , the trial state corresponds to the actual 

state at t+∆t and the increment is elastic.   If the yield function 
is violated the stress update is defined by: 

t t Trial
orth p

+∆ = − ∆σ σ D ε  (28) 

where ( ),t t
p f λ+∆∆ = ∆ε σ  and the superscript l has been 

dropped for brevity.   The yield function (17) may be 
redefined for convenience as: 

2 2 2
1 22 2

1 1( ) ( ) 0F F a
M b

Φ = + − =  (29) 

where 

1 g
2
orthqF =    and  2 orth tF p p a= − +σ     (30) 

A fully implicit backward Euler integration scheme is 
employed so that, using (10), the incremental flow rule is 
defined as:  

p t t
t tλ λ +∆
+∆

Φ
∆ = ∆ = ∆

∂
N

σ
ε

∂    and  trp t t
vε λ +∆ =  N��  (31) 

where N is the flow vector defined by: 
2 2

1 2
2 2

( ) ( )1 1F F
M b

∂ ∂
= +

∂ ∂
N

σ σ
    (32) 

The plastic corrector phase may then be formulated using the 
requirement that equations (28), (29) and (31) must be 
satisfied at t+∆t.   Systems of equations of this type are 
commonly found for pressure dependent constitutive models 
and can generally be reduced to a single unknown ∆λ.   
However, in this case additional complexity introduced by the 
π-plane correction term prevents this simplification.   
Therefore, an eight-equation system may be defined as: 
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2

2 2 2
3 1 22 2

tr( )
1 1( , ) ( , ) ( )

t t trial t t

p t t
v

t tt t t t p
v

Y

Y F F a
M b

λ

ε λ

λ λ ε

+∆ +∆

+∆

+∆+∆ +∆

= − + ∆

= ∆ − ∆

= ∆ + ∆ −

1Y σ σ DN

N

σ σ

 
(33) 

where Y1 is a vector of length six and the primary unknowns 
are the six stress components t t+∆σ , the plastic multiplier ∆λ, 
the incremental volumetric strain p

vε∆ . This system may be 
solved using Newton-Raphson iteration using: 

2 2 2
2

3
3 3 3

( )( )

( ) ( 1)
( )( )

( )

( )( )

p
v

p
vp

v

p
v

d
Y Y Y d Y

d Y
Y Y Y

λε

ε
λε

λ

λε

 ∂ ∂ ∂
 ∂ ∂ ∆∂ ∆      ∂ ∂ ∂    ∆ = −     ∂ ∂ ∆∂ ∆     ∆    ∂ ∂ ∂ 
∂ ∂ ∆∂ ∆  

1 1 1

1

Y Y Y
σ

σ Y

σ

σ

    (34) 

The consistent tangent matrix may be derived by taking the 
variation of the stress update (28) to give: 

( )d d d dλ λ= − ∆ −∆σ D ε DN D N     (35) 

Noting that: 

( )
( )

p
vp

v

d d d ε
ε

∂ ∂
= + ∆
∂ ∂ ∆
N NN σ
σ

 (36) 

and defining   [ ]1 1, 1, 1, 0, 0, 0=c   so that:  

1 1( ) ( )p
vd d dε λ λ∆ = ∆ + ∆c N c N     (37) 

Substituting (38) in (36) gives: 

1( ) ( )
( )p

v

d d d λ
ε

∂ ∂
= + ∆

∂ ∂ ∆
N NN B σ c N B
σ

 (38) 

where 
1

1( )p
v

λ
ε

−
 ∂

= −∆ ⊗ ∂ ∆ 

NB I c     (39) 

Substitution of (39) in (35) leads to: 

{ ( )}d d d λ= − ∆σ R ε N  (40) 

where 
1

I λ
−

∂ = + ∆ ∂ 

NR DB D
σ

  (41) 

and 

1 ( )p
v

λ
ε

∂
= + ∆

∂ ∆
NN N c NB     (42) 

 
Noting that ∆Φ = 0 so that: 

2 2
2

2 2 ( ) 0
( ) ( )

p
vp p

v v

F F ad d a d
b

ε
ε ε

 ∂ ∂
Φ = + − ∆ = 

∂ ∆ ∂ ∆ 
N σ  (43) 

 

which leads to: 

1

( )
T

T

dd
A

λ∆ =
−

T R ε
T RN c N

 (44) 

where 

1A λ
∂

= + ∆
∂
NT N c
σ

    (45) 

and 
1

2 2
12

2 2 1
( ) ( ) ( )p p p

v v v

F F aA a
b

λ
ε ε ε

−
  ∂ ∂ ∂

= − − ∆  
∂ ∆ ∂ ∆ ∂ ∆  

Nc     (46) 

Then substitution of (44) in (35) gives: 

1

T

Td d d
A

 
= − = − 

ep
RNT Rσ R ε D ε

T RN c N
    (47) 

Typically, the principal material directions for structured 
shales are known a priori as the bedding planes are evident by 
visual inspection.  Hence, a specific measure of fabric 
evolution is not required.  However, for the cases of induced 
anisotropy and bedding plane evolution due to large strains 
this is no longer true and an evolution law for the fabric tensor 
must be implemented [17,18].   This issue is not addressed in 
this paper. 

 
Regularization of the Softening Process 
Like all strength based constitutive models, critical state 
theory alone cannot fully describe the behaviour of typical 
sandstones and shales as it is based on the concept of 
homogeneous deformation.  More especially, at relatively low 
mean stress the characteristic deformation of quasi-brittle 
materials exhibits a transformation from a homogeneous strain 
field to a heterogeneous strain field with localized regions of 
intense strain as the load is increased. There is, therefore, a 
need to invoke constitutive relationships, generically known as 
regularization methods or localization limiters that naturally 
introduce a micro-structural length-scale into the formulation. 
In this study the standard continuum is regularized by 
incorporation of fracture mechanics concepts.   

Fracture energy regularization [24, 25] arises from linear-
elastic fracture mechanics theory (LEFM) and has been 
adopted by numerous researchers for Mode I fracturing of 
quasi-brittle materials.   Generally, the strain-softening 
constitutive response includes additional material constants 
associated with the crack band width ( )m

cl  that is the 
characteristic length for the material; e.g. the grain size.    
Whilst the standard fracture energy approach has been shown 
to work well for Mode I fracturing of rock and concrete, the 
characteristic response of some rock types shows significant 
departure from the assumptions of LEFM.   This may be 
approximately described by assuming that the energy release 
rate for fracture growth is variable and is defined by a 
nonlinear resistance curve [24] instead of the constant Gf.   
Adoption of this concept leads to a simple extension of the 
frictional regularization model of Pietruszczak and Mróz [25] 
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whereby the scalar inelastic strain measure inelε�  that identifies 
the evolution of the state variables is defined as:  

( )

( )
( ) ( )

nm
e m c

inel inel e
c

l
l

ε ε
 

=  
  

� �  (48) 

where the exponent n is a material constant and superscripts m 
and e refer to the reference material and element respectively. 

 
The fracture energy approach has the following advantages: 

 
1. The observed size effect dependence of the collapse load 

on structure size is obtained. 
2. Mesh invariance of the global energy dissipation is 

maintained. 
3. The approach may be implemented to regularize both 

Mode I and Mode II localization. 
4. It is relatively straightforward to implement within any 

finite strain framework and for a range of constitutive 
models. 

 
It should be recognized, however, that although the energy 

dissipation is mesh independent the localization limiter is 
strictly only valid provided ( ) ( )e m

c cl l≥ ; i.e. if the localization 
bandwidth is less than or equal to the element characteristic 
length so that localization occurs in a band of one element 
width.   For practical field simulations this limitation is of little 
consequence [27].  The efficacy of this methodology has been 
previously demonstrated [27] by simulation of TWC tests on 
Berea and Castlegate sandstones, where the predicted 
dependence of the collapse pressure on the specimen size is in 
good agreement with the experimental data. 

  
Calibration of the Constitutive Model 

The material parameters for the orthotropic elastoplastic 
model are calibrated by back-analysis of uniaxial and triaxial 
tests (Figure 9), with the drained triaxial tests being 
represented by an initial hydrostatic compression stage 
followed by further axial displacement. A 3D multi-element 
representation of the specimen using half symmetry model 
discretised using 4500 hexahedral elements is utilised.   This is 
in contrast to the commonly used approach of calibrating 
material parameters by matching the stress-strain curves using 
a single point or single element representation.   The multi-
element approach is essential to accommodate the non-
uniform deformation induced by the bedding planes, end 
effects and the localised displacements on shear bands 
subsequent to the peak load. 

The elastic properties may be determined directly from the 
linear part of the stress-strain curves at different angles.   For 
the current case the elastic properties are identified using the 
UCS tests (Table 1).  Note, however, that UCS tests are not 
ideal for identification of elastic constants, and Poisson’s ratio 
in particular, as the experimental scatter in low confinement 
tests is quite large.  Therefore, extra weight was placed on the 

triaxial data for identification of ν23  and ν12.  G12 was 
determined using Saint-Venant’s formula (Equation (2)). 

 
E1 (psi) E2 (psi) G12 (psi) ν12 ν23 

200,000 342,400 89,900 0.32 0.32 

Table 2.  Elastic Material Parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Mesh Discretisation  (b) Post-Peak Configuration Showing 
  Shear Band  
 

Figure 9.  Model for Triaxial Tests 

The initial peak surface is chosen using the peak values 
from the uniaxial and triaxial experiments at θ = 0° (Figure 
10) and by performing a stress-dilatancy analysis of the 
experimental data.   The stress-dilatancy plot is used to 
identify the residual friction at constant volume deformation 
(dεv = 0) that corresponds to the parameter M.   Insufficient 
data is available to identify the shape of the yield surface in 
the compressive region and β is set from previous experience 
with sandstones.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Yield Surface (θ=0°) in the p-q Plane 

 

Pc Pt M β 
6000 -50 0.83 0.3 

Table 3.  Material Parameters Defining Yield Surface in p-q Plane 
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Figure 11.  Stress-Dilatancy Analysis of the Triaxial Experimental 
Data 

The yield surface is assumed to be centred on the 
hydrostatic axis (α1 = α2 = α2 = 1/3) and the three material 
constants defining the elliptical shape of the yield function in 
the π-plane are then evaluated by back-analysis of the UCS 
tests at different bedding plane orientations (Figure 12).  The 
model is calibrated to fit the experiments at θ = 0°, θ = 45° 
and θ = 90°, but the smooth variation of peak stress predicted 
by the model under-estimates the experimentally observed 
values at θ = 30° and θ = 60°. As pointed out earlier, however, 
the high experimental values at θ = 30° and θ = 60° are not 
typical of other published data on shales which exhibit a much 
smoother variation in strength with θ (Figure 2).   The nine 
orthotropic elastoplastic constants are provided in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Variation of Failure Stress for Pierre 1 Shale with 

Bedding Plane Orientation in UCS Tests 

 
Constant Value Constant Value Constant Value 

α1 0.333 α4 0.47 α7 1.02 
α2 0.333 α5 0.53 α8 2.0 
α3 0.333 α6 0.47 α9 2.0 

Table 4.  Orthotropic Yield Surface Material Parameters 

The post peak softening and regularization parameters are 
then evaluated by back-analysis of the triaxial tests.  The 
characteristic length scale is set at 0.05” and the evolution of 
the tensile intercept and the pre-consolidation pressure is 

represented by a piecewise linear function (Table 5). The 
stress-strain response for the final characterisation provides a 
good approximation to the experimentally observed response 
(Figure 13).  
 

p
vε  Pc (psi) Pt (psi) 

0.00 6000  -50 
0.04 2000  -1 
0.10 100  -1 

Table 5.  Evolution of Material Parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Comparison of Numerical and Experimental 
Predictions for Triaxial Tests on Pierre I Shale 

 
Conclusions 
The behaviour of shale is complex due to its laminated 
structure and strength degradation subsequent to attainment of 
the peak load.  These issues pose a serious challenge to 
computational modelling and important aspects of the 
experimentally observed deformation of weak shales that 
should be represented in a constitutive model are: 

 
1. The variation of elasticity and compressive strength with 

the angle between the bedding planes and loading 
direction, the Young’s modulus normal to the bedding 
planes being lower than the Young’s modulus in the plane 
of the bedding.  

2. The nonlinear failure surface in the p-q plane. 
3. The brittle shear failure and subsequent strength loss at 

low confining pressures. 
4. The hardening of the failure surface due to consolidation 

at higher confining pressures. 
 
An orthotropic elastoplastic model, formulated by 

generalising the Modified Cam Clay model for orthotropic 
media is presented and it is shown that this model is able to 
represent the principal characteristics of weak shales  
described above. 
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A regularization procedure is also presented that ensures 
mesh invariance and correctly reproduces the dependence of 
strength on the size of the test specimen.  

Calibration of the model parameters is discussed and the 
model is validated by comparison with the results of uniaxial 
and triaxial compression tests for a weak shale performed at 
different orientations to bedding planes. 

The current research is ongoing and the applications to 
model the deformation and failure of small- and large-scale 
thick-walled cylinder tests with differing bedding plane 
orientations, as well as extensions of this analysis to address 
problems of borehole instability, will be presented in 
subsequent publications. 
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