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Summary

The optimal goal of reservoir management is to achieve the highest possible recovery factor
for the lowest possible cost. Changes in injection control have the potential to cause significant
gain in net present value. In order to set the injection control that gives the highest possible net
present value, it is important to have detailed reservoir description. Gathering information is
expensive and it is difficult to determine its worth.

A value-of-information (VOI) analysis can be helpful to identify when and if information
should be gathered. This is a powerful method that can be used to identify and exclude alterna-
tives in a decision context.

One of the two purposes in this thesis, is to evaluate the usability of a closed loop reservoir
management (CLRM) structure using capacitance resistive models (CRM) to estimate VOI.

A CLRM structure for CRM was implemented in MATLAB. This structure used the en-
semble Kalman filter (EnKF) for history matching and the ensemble optimization (EnOpt) for
optimizing injection.

The EnKF successfully identified the reservoir flow pattern in reservoir models, whilst the
EnOpt successfully increased the objective value after new information became available.

The CLRM with the CRMs were shown to be suitable to estimate VOI, although the slow
computer speed limits the usability for more complex reservoir models.

The other purpose of this thesis is to provide information on the CRM, oil fractional flow
models, the EnKF, the EnOpt and the CLRM, to ease the way for future research students.
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Sammendrag

Målet med reservoarstyring er å oppnå høyest mulig utvinningsgrad for lavest mulig kost-
nad. Forandringer i injeksjonen har potensial til å utgjøre store forskjeller i inntekter. For å
kunne oppnå høyest mulig nåverdi basert på injeksjonskontroll, er det viktig å ha god kunnskap
om reservoarbeskrivelsen. Innhenting av slik informasjon er dyrt. Det er i tillegg vanskelig å
fastsette hva informasjonen er verdt på forhånd.

En analyse om verdien av informasjon (VOI) kan hjelpe å bestemme når og hvis man bør
innhente informasjon.

Ett av to hovedmål i dette prosjektet, er å evaluere bruken av en closed loop reservoir
management-struktur ved å bruke capacitance resitive models (CRM) for å estimere VOI.

En CLRM-strukture ble implementer i MATLAB. Denne strukturen brukte ensemble Kalman

filter (EnKF) til historiematching, og ensemble optimization (EnOpt) til å optimalisere injeksjo-
nen.

Strømningsmønsteret til en reservoarmodell ble identifisert av EnKF, mens EnOpt ga en
høyere objektivverdi etter hvert som mer informasjon ble tilgjengelig. Bruken av CRM ble
vurdert til å fungere bra i CLRM-strukturen, men programhastigheten var for treg til å bli brukt
for mer komplekse reservoarmodeller.

Det andre hovedmålet i dette prosjektet, er å presentere informasjon om de ulike delene i
CLRM-strukturen, slik at oppgaven kan bli brukt som en introduksjon for studenter som vil
arbeide med samme temaer.
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Chapter 1
Introduction

In the last decades there have been a huge increase in computational development, which has
further increased the usability of reservoir simulation. It now is an indispensable tool for sup-
porting reservoir management decisions.

In order to make good predictions of future reservoir behavior, there is a need for detailed
description and value of reservoir parameters. Gathering information through means such as
coring, seismic surveys or using logging tools is expensive and it is difficult to determine how
much the information is worth.

History matching provides a powerful and commonly used means for gathering information
related to both the static and dynamic parameters of reservoir simulators and their use for pro-
duction prediction. In parallel with increasing computational power, there has been tremendous
improvements in the solutions and use of algorithms to solve the inverse problem[4, 5, 6, 7].
These methods have been demonstrated to reliably provide high-quality history matches result-
ing in robust determination of the reservoir simulation input parameters.

In parallel with the development of improved history matching and optimization methods,
the oil gas industry has seen an increase in the use of value-of-information (VOI) analysis to
determine if and what type of information should be gathered to reduce key uncertainties related
to decision making[8, 9, 10, 11]. However, with a few exceptions, VOI analysis has not been
applied to information gathering from history matching.

A VOI analysis of history matching requires probabilistic optimization. For such an opti-
mization approach to be robust, the reservoir simulator must be run a large number of times for
each test of optimal values.

Commonly used grid-based simulators, such as Eclipse, are computationally expensive and
it may not be feasible in a VOI analysis.

There are two main goals of this thesis. The first is to evaluate the usability of capacitance
resistive models in closed loop reservoir management and for estimating the value of infor-
mation from history matching. The second is to ease the way for future research students by

1



Chapter 1. Introduction

providing information about the capacitance resistive models, oil fractional flow models, the en-
semble Kalman filter, ensemble optimization and a closed loop reservoir management structure.

The rest of the chapters in this thesis consists of the following.
Chapter 2 consists of some basic fundamental statistics.
In chapter 3, two versions of a reservoir model will be presented, using Eclipse.
Chapter 4 describes the different versions of the capacitance resistive models, two different

oil fraction models, and how they are solved.
Chapter 5 introduces some background on Kalman filtering, presents the structure of the

linear Kalman filter and briefly the extended Kalman filter. In section 5.5, there is some more
information on the ensemble Kalman filter (EnKF). The structure of the EnKF can be found in
section 5.5.1, and a few examples using the EnKF will be provided.

Chapter 6 presents the ensemble optimization technique, along with an example.
In chapter 7 presents a closed loop reservoir management structure and then demonstrate

its use with regards to value of information. The structure will be implemented with different
CRMs and different oil fractional flow models.

Much of the information in this thesis, especially in chapter 4, is based on my specialization
project[12] of last semester.

1.1 Background

There are four main topics that needs to be researched to successfully solve the project goals.

1. As part of my specialization project, fall 2015[12], I implemented the tank-based, the
producer based and the injector-producer pair based representations of the capacitance
resistive model, as well as the Gentil fractional flow model and the Buckley Leverett
based fractional flow model in Excel using VBA. The implemented models were then
used to evaluate the capability for predicting future production.

Early work on capacitance resistive models in the oil and gas industry, can be traced back
to Albertoni and Lake (2003)[13], who presented a method that described reservoir flow
patterns through interwell connectivities, using only injection and production data. This
method has later been expanded and improved[14, 15, 16] and may today be helpful for
real life day-to-day reservoir management.

2. The ensemble Kalman filter (EnKF) is a recursive filtering technique, first introduced in
Evensen (1994)[6], which is based on the linear Kalman filter (KF), but uses ensembles
to be able to solve for nonlinear systems. It is a promising method that can be used
to history match model parameters with relatively low computational costs compared to
other alternative methods[17], and can therefore include a larger amount of variables.

2



1.1 Background

3. Ensemble optimization (EnOpt) uses an ensemble of control variables and covariance ma-
trices to determine optimal injection control, based on a defined objective, most common
net present value.

4. Barros et al. 2015[3] proposed a method where a closed loop reservoir management struc-
ture was used to estimate value of information (VOI). They presented a way to estimate
VOI without knowing how the model parameters related to each other. They only as-
sumed that the individual parameters followed a normal distribution with a known mean
and a known standard deviation.

This structure is used in this thesis for the same purpose. The paper by Barros et al.
(2015)[3], suggest a novel and innovative way of assessing VOI for production data.
In this work we are extending the approach through the use of a closed loop structure
together with capacitance resistive models.

3
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Chapter 2
Statistics

It is important to have an understanding of basic statistics before working with Kalman filtering.
This chapter will provide information of basic statistics.

2.1 Probability density function

The probability density function p(x) for a continuous random variable x must be constrained
by[18]:

p(x) ≥ 0

∫
Ω

p(x)dx = 1 (2.1)

where Ω is the sample space of x.

For a discrete variable x, the distribution must follow:

p(x) ≥ 0
∑
xεΩ

p(x) = 1 (2.2)

Gaussian distribution, also called normal distribution is a fundamental assumption in the use
of Kalman filtering and can be written as:

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.3)

where the mean µ for continuous case is:

E(X) = µ =

∫
xεΩ

xp(x)dx (2.4)

and for discrete case is:

E(X) =
∑
xεΩ

xp(x) (2.5)

5



Chapter 2. Statistics

Figure 2.1: Normal or Gaussian distribution with E(red) > E(green) = E(blue) and Var(red) >
Var(green) > Var(blue).

The standard deviation is noted as σ, and the variance is defined as:

V ar(x) = σ2 =

∫
xεΩ

(x− µ)2p(x)dx (2.6)

or

V ar(X) = E[(X − E(X)2] = E(X2)− E(X)2 (2.7)

For a a probability density function consisting of two random variables X and Y , the co-
variance becomes:

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))T ] (2.8)

2.2 Bayesian updating

Bayesian updating is maybe the best known iterative procedure that can be used for a history
matching. It is a way of updating a predicted state, based on new information using probability
density functions.

Bayes’ theorem is defined[19] as:

P (B|A) =
P (A|B)P (B)

P (A)
(2.9)

where P (B) is the prior probability of an event B. P (B|A) is the posterior probability of
B given A, P (A|B) is the likelihood of A given B and P (A) is the probability of event A.

Bayes’ theorem can be used iteratively when more information of outcomes becomes avail-
able. If A was not a single event but instead multiple events A = A1, A2, ..., AN , then the
estimate of B may be updated for each event iteratively, by using the posterior as the new prior
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2.2 Bayesian updating

for the next step.
Bayes theorem follows the behavior[20]:

P (B|A) ∝ P (A|B)P (B) (2.10)

To implement Bayes updating, one first have to define a prior probability P (B). The like-
lihood P (A1|B) is here defined as a Gaussian density function around B. The posterior is
estimated by normalizing P (A1|B)P (B). The new prior is set P (B) = P (B|A1), and the next
iteration becomes: P (B|A2) ∝ P (A2|B)P (B). This process is repeated until AN .

When working with large data set and many state variables, directly applying the Bayesian
approach as discussed here is not computationally feasible. Techniques like Kalman filtering
have been derived with the purpose of reducing the computational requirements.
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Chapter 3
Reservoir Models

In this work, two different scenarios of a simple reservoir model has been implemented in
Eclipse. The reason for implementing these in Eclipse, is to use the resulting production as a
true reservoir production. The reservoir models will be used in later chapters for the purpose
of history matching, optimization and closed loop reservoir control. This chapter provides a
description of each scenario, as well as the base case injection. Most of the information and
illustrations in this chapter was developed as a part of the specialization project TPG4530 at
NTNU during fall of 2015[12].

3.1 First Reservoir, 5 Injectors and 4 Producers

Figure 3.1: Reservoir with 5 injection wells and 4 production wells. The reservoir contains two high
permeability streaks, between I1 and P1, and between I3 and P4.

9



Chapter 3. Reservoir Models

This is the same model used by Albertoni and Lake (2003)[13], Yousef et al. (2006)[14],
Liang (2010)[15], Sayarpour (2008)[16], Sayarpour et al. (2009)[21] and Weber[1].

The reservoir is 2048*2048*60 ft3 and consists of 5 vertical injection wells and 4 vertical
production wells. The permeability is constant throughout the reservoir, except for two high
permeability streak between injector 1 and producer 1, and between injector 3 and producer
4. The porosity is 18% and constant. The rock compressibility is 3 ∗ 10−6 psi−1, the water
compressibility is 1 ∗ 10−6 psi−1 while the oil compressibility is generated by Eclipse using dif-
ferent PVT parameters. The wells produced at a constant bottom hole pressure of 250 psia. Two
different initial reservoir pressure are tested: Pri = 1450 psia and Pri = 250 psia = producing
well pressure.

The original injection rates for the injectors used in the Eclipse simulation are shown in
figure 3.2.

Figure 3.2: Injection rates
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3.2 Second Reservoir, 1 Injector and 1 Producer

Figure 3.3: Production rates estimated by an Eclipse simulation with Pri = 1450 psia. These rates will
be used as real observed data.

Figure 3.4: Reservoir with 1 injection well and 1 production well.

3.2 Second Reservoir, 1 Injector and 1 Producer

The second scenario is similar to a reservoir model used in Sayarpour et al. (2011)[22]. The
horizontal and vertical permeability are 40 md and 4 md, respectively. The rest of the reservoir
characteristics are the same as the reservoir model described in section 3.1. The production
well is producing at a constant bottom hole pressure of 250 psia. The injection rate used in
the Eclipse simulation is depicted in figure 3.5 on the following page, which resulted in the
production rates shown in figure 3.6.

11
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Figure 3.5: Injection rate.

Figure 3.6: Production rate estimated by an Eclipse simulation with Pri = 1450 psia.
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Chapter 4
Capacitance Resistive Modeling

4.1 Introduction

Albertoni and Lake 2003[13] introduced a method for evaluating interwell connectivities, to de-
scribe the flow pattern in a reservoir based on only injection and production rates. Several other
studies including Yousef et al. 2006[14], Liang 2010[15] and Sayarpour 2008[16] have further
extended and improved this method, which today is known as capacitance resistive modelling
(CRM). CRMs are fast analytical simulators with low computational costs. It can be useful
on a day-to-day basis, by being able to quickly update the optimal injection control when new
production data becomes available.

The high-cost nature of petroleum exploration and development combined with a low oil
price, suggests that developing further understanding and insights in the use of reduced order
models such as the CRM, may provide value creation and cost reduction for certain reservoir
conditions and decision aspects.

In this chapter we present the different capacitance resistive models including the solu-
tion approaches required for generating production forecasts. Following this, we present two
approaches based on oil fractional flow methods which are used to forecast oil and water pro-
duction.

Much of the information and figures in this chapter was first presented in my specialization
project[12].

4.2 Background

At the start of the production life of a reservoir, oil is produced mainly due to primary recovery
mechanisms, meaning the reservoirs own natural drive, such as fluid and rock expansion, solu-
tion gas drive, gravity drainage and aquifer influx[23]. As time goes on, the reservoir pressure,
and subsequently the production decreases. In order to maintain production, the field must be
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produced using secondary recovery mechanisms, which in this project is through water injection
(also called waterflooding). The main purpose of waterflooding is to increase the oil production
by filling the void left as the oil is produced, and thereby maintaining the reservoir pressure.
By controlling the injection wells’ locations and injection rates, waterflooding may be used as
a tool to control the flow pattern and subsequently the oil production.

Waterflooding has been a common secondary recovery mechanism in petroleum industry since
the the 1930s[23] and several techniques exists for estimating waterflooding performance, in-
cluding analytical, empirical and numerical methods.

Among the better known are Buckley and Leverett (1942)[24], who introduced the frontal
advance equation to estimate linear displacement of water displacing oil and the Dykstra Par-
sons method[25] which calculates piston displacement of fluid in non-communicating layers.

However, the underlying assumptions in these models, such as diffuse flow and no capillary
dispursion at the front (Buckley-Leverett) and piston displacement and constant pressure drop
for all layers (Dykstra-Parsons), makes it difficult to account for the heterogeneity often expe-
rienced in real reservoirs.

According to the Petroleum Engineering Handbook (2006)[23], the most important aspect when
evaluating waterflooding is to understand the reservoir rocks. Therefore, being able to describe
the reservoir flow during a waterflood by using only a few parameters is the motivation behind
the development of the CRMs.

Sayarpour et al. (2009)[21] argues that there is a lack of usability for more complex nu-
merical simulator that may be filled by the CRM. The main advantage for the CRM compared
to higher order simulators (i.e. Eclipse) is that the need for input data and detailed reservoir
description is significantly reduced. This reduces both the time required to gather information
and the computational requirements.

Work on the CRM started at the University of Texas. The vast majority of research done on
this subject is connected to the university either through master and PhD students, or profes-
sors.

Albertini and Lake (2003)[13] proposed a technique that used multivariate linear regression
combined with a diffusivity filter to estimate liquid production by looking at the reservoirs
heterogeneity such as faults and discontinuities that provide permeability changes or barriers.
They quantified weighing coefficients that signified the flow pattern of injected water. The
results were compared with a higher order reservoir simulator and indicated a good match with
permeability trends and barriers. Yousef et al. (2006)[14] improved the model by introducing a
time constant to signify response delay instead of the diffusivity filter.

Gentil (2005)[26] provided more insight to the underlying assumptions and the physical
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4.3 Tank Based Representation

meaning of the parameters in the model described in Albertoni and Lake (2003)[13]. He also
extended the basic CRM by introducing a fractional flow method. This method, noted as Gen-
til’s fractional flow model, was used by Liang (2010)[15] for prediction of oil production.

Sayarpour (2008)[16] introduced analytical solutions for the governing mass balance equa-
tion, which was adjusted to three different control volumes, tank based, producer based and
injector-producer pair based. He showed that the CRM could be used to optimize oil produc-
tion by changing the injection rates.

Weber (2009)[1] modified Sayarpour model and demonstrated how the CRM can be used to
optimize well placement in order to increase recovery.

4.3 Tank Based Representation

Figure 4.1: Schematic representation of the CRMT. This image was originally used in Weber (2009)[1].

The CRMT uses the entire reservoir as the control volume. Instead of calculating parameters
for each well, a pseudo-producing well is used to represent all producing wells at the field, and
a pseudo-injector for all the injecting wells (equation 4.1). The control volume is illustrated in
figure 4.1.

qField =

Nprod∑
j=1

qj IField =

Ninj∑
i=1

Ii (4.1)

For a field consisting of one producer and one injector, the governing mass balance differ-
ential equation at reservoir conditions is[16]:

ctVP
dp

dt
= I(t)− q(t) (4.2)

where ct is the total compressibility, Vp is the pore volume, p is the average reservoir pres-
sure, I is the injection rate and q is the liquid production rate. It is worth noting that this equation
is based on multiple assumptions including constant temperature, immiscible phases, negligible
capillary pressure and constant productivity index[16]. The production rate is defined as[16]:

15
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q(t) = J(p− pwf ) (4.3)

where J is the productivity index and pwf is the bottom hole flowing pressure. By combining
equation 4.2 on the previous page and 4.3 (as done by Yousef et al.(2006)[14]), and assuming a
constant productivity index, we derive equation 4.4.

dq(t)

dt
+

1

τ
q(t) =

1

τ
I(t)− J dpwf

dt
(4.4)

where the time constant τ is defined as:

τ =
ctVp
J

(4.5)

The time constant τ , is one of the fundamental parameters in the CRM. τ has units of time
and is assumed to be constant during production.

Sayarpour[16] showed the discrete analytical one time interval solution of equation 4.4 from
time tk−1 to tk to be:

q(tk) = q(tk−1)e−
∆tk
τ + (1− e−

∆tk
τ )(Ik − Jτ

∆Pwf,k
∆tk

) (4.6)

where the injection rate Ik is kept constant between tk−1 and tk.

In order to use equation 4.6 in a field application with more than one production well, the
CRMT must assume constant bottom hole pressure at the pseudo-producer, and the equation is
modified to:

qF (tk) = qF (tk−1)e
−∆tk
τF + (1− e−

∆tk
τ )IkfF (4.7)

where fF is the field connectivity, one of the parameters solved for by the CRM. The physi-
cal interpretation of the connectivity is the fraction of the injected water that reaches a producer.
This implies a fF < 1 means some of the injected water will leave the control volume and not
be produced. The value of fF is limited to be between 0 and 1.

τ has a lower boundary of zero. This means for a large tau, then qF (tk) = qF (tk−1), while
when τ → 0, all the available oil will be immediately produced.

Solving the CRMT

The CRMT needs to be solved for three unknowns; τ , f and q(t = 0). This is done by mini-
mizing the error given in equation 4.8.

error =
Nt∑
k=1

(qobs,k − qest,k)2 (4.8)

16



4.4 Producer Based Representation

where qobs,k is the total observed liquid rate at time step k and qest,k is the total liquid rate
at time step k as estimated by the CRMT. In this project, Excels Generalized Reduced Gradient
(GRG) Nonlinear solver, was used to minimize the sum of squared differences in equation 4.8
on the preceding page.

Before solving the CRMT, initial values of τ , f and q(t = 0) must be provided. The simplic-
ity of the CRMT, by only needing to solve for three parameters, yields good results by simply
choosing the initial values τ = 1, f = 1 and q(t = 0) = 0.

Consider the reservoir model in figure 3.1 on page 9 with Pri = 1450 psia and the resulting
liquid production in figure 3.3. Figure 4.2 shows the total liquid production as estimated by the
CRMT when minimizing the error in equation 4.8 using the nonlinear GRG solver in Excel.

Figure 4.2: Estimated rates by the CRMT and observed rates. (R2 = 0.8697).

4.4 Producer Based Representation

For the CRM with producer based representation, the control volume is specified around a given
producer (figure 4.3 on the next page).

By using the control volume around a producer j, Liang (2010)[15] modified the governing
differential equation (equation 4.4 on the facing page) to:

dqj(t)

dt
+

1

τj
qj(t) =

1

τj

Ninj∑
i=1

fijIi(t)− Jj
dpwf,j
dt

(4.9)

where qj is the production rate for producer j, τj is the time constant for the control volume
around producer j, fij (equation 4.10) is the connectivity associated with each producer-injector
pairs and assumed constant.
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Figure 4.3: Schematic representation of the control volume around a producer, as used by the CRMP.
This image was originally used in Weber (2009)[1].

fij =
qij(t)

Ii(t)
(4.10)

Ii is injection rate from injector i, Jj is the productivity index for producer j and pwf,j is the
bottom hole pressure at producer j. As in the CRMT, the sum of connectivities from an injector
i, is limited by an upper bound of 1 and lower bound of 0.

The analytical solution of equation 4.9 on the previous page, as presented in Sayarpour
(2008)[16] and Weber (2009)[1], is:

qj(tk) = qj(tk−1)e
−∆tk

τj + (1− e−
∆tk
τj )(

Ninj∑
i=1

(fijIi,k)− Jjτj
∆pwf,j,k

∆tk
) (4.11)

This is the one-time interval solution for a step change in injection rate, linear change in
bottom hole pressure and assuming a constant productivity index J .

If the bottom hole pressure is constant, which is the case for the examples used in this
project, the equation can be simplified to equation 4.12. For cases where the bottom hole
pressure is unknown, the ∆Pwf is also assumed to be zero.

qj(tk) = qj(tk−1)e
−∆tk

τj + (1− e−
∆tk
τj )

Ninj∑
i=1

fijIi,k (4.12)

Solving the CRMP

The CRMP calculates a rate value for each producer at each time step tk. This means that we
now minimize the equation 4.13 on the next page, by solving for τj , fij and qj(t = 0).
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error =
Nt∑
k=1

Nprod∑
j=1

(qobs,j,k − qest,j,k)2 (4.13)

The initial values of τj before solving, should equal τCRMT , meaning the CRMT must be
used first. Since the connectivities fij for a homogeneous reservoir reflect the interwell distance
and

∑Nprod
j=1 fij ≤ 1, the initial fij suggested by Sayarpour[16], and used in this project are:

fij =
1/dij∑Nprod

j=1 1/dij
(4.14)

where dij is the is the distance between injector i and producer j.
The initial values before solving for production rate at time=0, are set as:

qj(t = 0) = qobs,j,k=1 (4.15)

where qobs,j,k=1 is the observed rate at producer j at the first time step.

Solving the CRMP (eq. 4.13) using the liquid production rates in 3.3 on page 11 results in
the estimated total production rate in figure 4.4. The resulting flow pattern, governed by the
connectivities, can be seen in figure 4.5 on the following page. Considering the permeability
streaks in the reservoir model, the flow pattern is reasonable.

Figure 4.4: Estimated rates by the CRMP and observed rates. (R2 = 0.9184).

4.5 Injector-Producer Pair Based Representation

For the CRMIP, the reservoir is approached by considering control volumes between each
injector-producer well pair, as illustrated in figure 4.6 on the next page. In other words, for
each combination of a producer j and injector i, a different control volume is used.
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Figure 4.5: Approximate connectivities by the CRMP

Figure 4.6: Schematic representation of the control volume between an injector-producer pair, as used
by CRMIP. This image was originally used in Weber (2009)[1].

The governing differential equation, as presented in Yousef et al. (2006), is then:

dqij(t)

dt
+

1

τij
qij(t) =

1

τij
fijii(t)− Jij

dpwf,j
dt

(4.16)

The main difference from CRMP is that there is now a time constant τ for each injector-
producer pair.

Sayarpour[16] and Weber[1] showed that the discrete analytical solution of the CRMIP id:

qij(tk) = qij(tk−1)e
−∆tk
τij + (1− e−

∆tk
τij )(fijIi,k − Jijτij

∆pwf,j,k
∆tk

) (4.17)
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4.6 Oil Fractional Flow Models

When assuming constant bottom hole pressure, the equation simplifies to:

qij(tk) = qij(tk−1)e
−∆tk
τij + (1− e−

∆tk
τij )fijIi,k (4.18)

Solving the CRMIP

The CRMIP estimates a rate value for each injector-producer pair at time step tk, by solving for
τij , fij and qij(t = 0). Since there is only one observed rate for each producer, the CRMIP error
is given by equation 4.19.

error =
Nt∑
k=1

Nprod∑
j=1

(qobs,j,k − qest,j,k)2 (4.19)

where

qest,j,k =

Ninj∑
i=1

qij,k (4.20)

where qij,k are the estimated rates for producer j at time step tk from injector i.

The initial connectivities set before solving are the same as the initial values for CRMP (see
equation 4.14).

The initial production rate values used before solving are:

qij(t = 0) =
qobs,j,k=1

Ninj

(4.21)

where Ninj are the total number of injectors.

Using the CRMT with the liquid production rates in figure 3.3 results in the total production
rate in figure 4.7 on the next page. This is a significantly better match than both for the CRMP
and the CRMT.

The individual well rates using the CRMIP, can be seen in figure 4.8.

4.6 Oil Fractional Flow Models

Since the CRM methods only estimate the total liquid production, it is necessary to implement
a method for estimating the oil rate.

Throughout the production time of a field, the oil fraction of the rate will vary. During
primary recovery the field produces by natural reservoir drive, such as natural gas/water-drive
and gravity drainage, and the oil fraction tends to be high. As secondary recovery takes effect,
such as waterflooding, the oil fraction starts to decrease after water breakthrough. In tertiary
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Figure 4.7: Estimated rates by the CRMIP and observed rates. (R2 = 0.9975).

Figure 4.8: Liquid production rates for each individual production well. Orange rates are the estimated
rates, while the blue lines are the observed (Eclipse simulated) rates.

recovery, such as CO2 injection, the oil fraction will increase before it eventually decreases to
zero. If no tertiary recovery methods are used, the oil fraction will continue to decline to zero.

As mentioned in section 4.2, several different models have been developed to estimate the
fractional flow. Oil fractional flow models can be combined with the CRMs by using the
estimated total liquid production rate by the CRMs as input to estimate the oil rate. In this
project rapport two models will be presented: the Buckley-Leverett based fractional flow model
(BLBFFM) and Gentil’s fractional flow model.

4.6.1 Gentil’s Fractional Flow Model

Gentil’s fractional flow model is an empirical fractional flow model developed by Gentil[26],
and first used by Liang[15] to predict oil production. The oil fraction of the production rate is
defined as:
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fo =
1

1 + αW β
(4.22)

where W is the cumulative water injected that reaches a producer, while α and β are fitting
parameters of the model. Combining the fractional flow model with a liquid production rate
qj(t), results in equation 4.23,

qo,j(t) =
qj(t)

1 + αjW
βj
j

(4.23)

where qo,j(t) is the oil rate and qj(t) is the liquid production rate for producer j at time t.
Wj is the cumulative water injected at time t that reaches producer j.

Solving Gentil’s Fractional Flow Model

For Gentil’s fractional flow, we use the same procedure for solving as for CRMT (section 4.3),
CRMP (section 4.4) and CRMIP (section 4.5), which is to minimize:

error =
Nt∑
k=1

(qobs − qest)2 (4.24)

Since this model processes output signals (production data), there can be multiple solution
for a system. In order to avoid this, it is important to set good initial model parameter values.

Sayarpour[16] estimated the initial values by first writing equation 4.23 on a logarithmic
form:

log(WOR) = log(
q

qo
− 1) = log(α) + β ∗ log(W ) (4.25)

which, when plotted in a log-log plot, can be used to estimate α and β.

However, a plot of log(WOR) versus log(W ) is not always linear due to primary recovery
effects (e.g. figure 4.9 on the next page). To avoid these effects, the late linear behavior is used
to estimate the initial values. As seen in figure 4.9 on the following page, when simulating a
reservoir, the late linear log-log behavior may not in reality be linear but the plot is in helpful in
determining (estimating) the model parameters.

The parameters must be constrained by α > 0 and β ≥ 0.

Using the CRMP combined with Gentil’s fractional flow for the first reservoir (figure 3.1)
with Pri = 1450 psia, resulted in the rates seen in figure 4.10 and 4.12.
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Figure 4.9: Logarithmic plot water oil ratio and cumulative water injection for the reservoir in figure 3.1
on page 9.

Figure 4.10: Estimated and observed oil rate using the CRMP. (R2 = 0.8911)

Figure 4.11: Estimated and observed values for both liquid and oil production rate in producer 4 for the
reservoir in figure 3.1 on page 9.

4.6.2 Buckley Leverett Based Fractional Flow Model

This model is based on a fractional flow model (equation 4.26 on the next page) defined in
Leverett (1941)[27].

24



4.6 Oil Fractional Flow Models

fw =
1 + kkroA

qµo
( δpc
δx
−∆ρgsinα)

1 + kroµw
µokrw

(4.26)

Sayarpour[16] showed that by assuming negligible capillary pressure and gravity effects,
and using a power-law model for relative permeability curves, the oil fractional flow could be
written as:

fo(S) = 1−
(

1 +
(1− S)m

MSn

)−1

(4.27)

where M is the endpoint mobility ratio, m and n are relative permeability curve exponents
and S is the normalized water saturation defined as:

S(t) =
Sw(t)− Swir

1− Sor − Swir
(4.28)

where Swir is the irreducible water saturation, Sor is the residual oil saturation and Sw(t) is
the water saturation at time t defined as:

Sw(tk) = Sw(tk−1) +
I∗(tk)− qw(tk−1)

VP
∆tk (4.29)

where I∗(tk) is the effective water injection rate, which equals f · I(tk) when using the
CRMT. The VP is the pore volume, while qw(tk−1) is the water production rate at time tk−1.
Using qw at the previous time step, enables the model to be used for prediction.

When using BLBFFM, we first estimate equation 4.29. The resulting Sw(tk) is inserted in
equation 4.28. The S(t) from equation 4.28 is used to calculate fo, which when multiplied with
the estimated liquid rate from the CRM, produces qo.

Solving Buckley Leverett Based Fractional Flow Model

The BLBFFM has seven unknowns; M , m, n, Swir, Sor, Sw(0) and VP . These parameters are
estimated by minimizing the error (equation 4.24) between observed and estimated oil rate.

There are however, some constraints in the models parameter. All parameters must be
greater than zero, M,Swir, Sor, Sw(0) ≤ 1 and Sw(0) ≥ Swr.

Figure 4.12 shows the production rate for the reservoir described in section 3.2 with Pri =

1450 psia. In this case, the porosity was determined to be around 18%, the irreducible water
saturation to be 34% and the residual oil saturation to be 18%, similar to the results in Sayarpour
et al. (2011)[22].
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Figure 4.12: Estimated and observed liquid and oil production rates for the second reservoir (figure 3.4
on page 11).

4.7 Conclusion

The CRMs provides good estimate of actual production after primary recovery. The CRMs are
able to describe flow pattern with two different types of variables (τ and f) using only production
data, resulting in significantly lower computational costs compared to higher order reservoir
simulators such as Eclipse. The simplicity of the models makes them easy to implement in for
example Excel and MATLAB.

The results produced in this chapter were verified by previous literature work on the CRM.
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4.8 CRM and Oil Fraction Formulas

Liquid rate:
CRMT q(tk) = q(tk−1)e−

∆tk
τ + (1− e−

∆tk
τ )(IkfF − Jτ ∆Pwf,k

∆tk
)

CRMP qj(tk) = qj(tk−1)e
−∆tk

τj + (1− e−
∆tk
τj )(

∑Ninj
i=1 (fijIi,k)− Jjτj ∆pwf,j,k

∆tk
)

CRMIP qij(tk) = qij(tk−1)e
−∆tk
τij + (1− e−

∆tk
τij )(fijIi,k − Jijτij ∆pwf,j,k

∆tk
)

Oil fraction:
Gentil fo,j = 1

1+αjW
βj
j

BLBFFM Sw(tk) = Sw(tk−1) + I∗(tk)−qw(tk−1)

VP
∆tk

S(t) = Sw(t)−Swir
1−Sor−Swir

fo(S) = 1−
(

1 + (1−S)m

MSn

)−1
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Chapter 5
Kalman Filter

5.1 Introduction Kalman Filter

This chapter describes three different Kalman filters with particular emphasis on the ensemble
Kalman filter. Section 5.2 provides a short historical background of Kalman filtering. Sections
5.3 and 5.4 shows the structure for the linear Kalman filter and the extended Kalman filter.
In section 5.5, the ensemble Kalman filter is further investigated including a discussion of the
historical background and the structure of the filter. A few examples using the CRMP, CRMIP
and Gentil’s fraction flow are presented, where the EnKF is used to history match the reservoir
introduced in section 3.1.

5.2 Background Kalman Filter

In 1960 Rudolf Emil Kalman introduced a ’New Approach to Linear Filtering an Prediction
Problems’[28], which contains what today is known as the Kalman filter (KF). This method is
a filtering technique used for linear models. Kalman argued that his approach would sidestep
limitations of other filtering techniques, such as the Wiener filter.

The Kalman filter turned out to be very powerful, but was originally only applicable for
linear problems. Following Kalman’s original work, other researcher have worked on extending
the method to nonlinear problems[29].
The extended Kalman filter (EKF) addressed the non-linearity problem by linearizing about the
current mean and covariance[30]. However, this approach does not work well for large scale or
strongly nonlinear problems[31].

The Ensemble Kalman Filter was first introduced by Evensen[6] and resulted in better ac-
curacy than the extended Kalman filter. Evensen showed that the EnKF is suited for handling
nonlinear ocean model[6] [31].
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5.3 Linear Kalman Filter

The linear Kalman filter is a recursive filter used to calculate model states of linear systems
containing Gaussian measurement noise[29]. The structure presented in this section mainly
follows Welch and Bishop[30] and Jensen 2007[31], which both provides relatively easy to
read introductions to the Kalman filter.

For the linear Kalman filter, we first estimate the state using the linear stochastic difference
equation:

xk = Axk−1 +Buk−1 + wk−1 (5.1)

where xk is the state at time step k, xk−1 and uk−1 are the state and optional control input,
respectively, at previous time step. A is a matrix that relates xk−1 to xk, while B is a matrix the
relates uk−1 to xk. The measurement z is described by the following equation:

zk = Hxk + vk (5.2)

where the matrix H relates the state to the measurement. The terms wk and vk, are the
process noise and the measurement noise, respectively. They are assumed to be independent of
each other and follow a normal probability distribution:

wk ∼ N(0, Q) vk ∼ N(0, R) (5.3)

where Q and R are covariance matrices for the model noise and measurement noise, respec-
tively.
As shown by Welch and Bishop[30], the a priori and a posteriori estimate error are defined as:

e−k = xk − x̂−k , ek = xk − x̂k (5.4)

where x̂−k is the a priori state estimated at time step k given knowledge of the process at the
prior to time step k, and x̂k is the a posteriori state estimated at time step k given knowledge of
the measurement zk. The a priori and a posteriori error covariance are respectively given as:

P−k = E(e−k e
T
k ), Pk = E(eke

T
k ) (5.5)

The a posteriori state is then updated:

x̂k = x̂−k +K(zk −Hx̂−k ) (5.6)

The difference between zk and Hx̂−k indicates the error between the actual measurement zk
and the predicted measurement Hx̂−k . This means that if the predicted and actual measurement
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are the same, then the updated a posteriori state will equal the predicted state x̂−k . The Kalman
gain is the matrix Kk that is used to minimize the a posteriori error covariance and is given as:

Kk = P−k H
T (HP−k H

T +R)−1 (5.7)

Where R is the measurement error covariance. As explained by Welch and Bishop[30], this
means that when R→ 0 then Kk → H−1, and the Kalman gain would give more weight to the
difference between zk and Hx̂−k in equation 5.6. If the a priori error covariance P−k → 0, the
Kalman gain trusts the predicted measurement Hx̂−k more compared to the actual measurement
zk, meaning the Kk → 0.

The linear Kalman filter algorithm will therefore first make a prediction of the a priori state
based on the previous time step (equation 5.8), as well as the a priori error covariance matrix
(equation 5.9).

x̂−k = Ax̂k−1 +Buk−1 (5.8)

P−k = APk−1A
T +Q (5.9)

Then the Kalman gain is estimated (equation 5.7) and the state is updated (equation 5.6).
The a posteriori covariance matrix is estimated using equation 5.10).

Pk = (I −KkH)P−k (5.10)

5.4 Extended Kalman Filter

The extended Kalman filter (EKF) is a modified version of the Kalman filter to include a non-
linear relationship between the measurement and the state. The state is now represented by the
nonlinear stochastic difference equation[30]:

xk = f(xk−1, uk−1, wk−1) (5.11)

and the measurement is:

zk = g(xk, vk) (5.12)

where as before, xk is the state at timestep k, uk is the control function, while wk and
vk are the process/model and measurement noise. Both f and h are nonlinear functions that
describe the relationship between previous and current state, and current state and measurement,
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respectively.
The extended Kalman filter follows a similar stepwise procedure as the linear Kalman

filter[31]. The difference between the filters is that in the EKF, the model and measurement
matrices are Jacobians that are linearized in each step, as shown in equation 5.13 and 5.14.

Ak =
δf(x)

δx x=xk

(5.13)

Hk =
δg(x)

δx x=xk

(5.14)

5.5 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is a data assimilation technique first introduced by Geir
Evensen in (1994)[6]. According to Aanonsen et al. (2009)[29], it was Lorentzen et al.
(2001)[32] that first applied the EnKF in the petroleum industry. Lorentzen et al. (2003)[33]
used the EnKF for both synthetic and real data, and argued that the EnKF had promising usabil-
ity in the petroleum industry. Oher studies have also shown the EnKF to be a promising method
for history matching reservoir simulation models[34].

The motivation behind the development of the EnKF, is to modify the Kalman filter to solve
large-scale nonlinear systems. Although the extended Kalman filter may be used for nonlinear
problems, the error covariance can often be challenging to calculate. For a system with m

model parameters, the error covariance matrix will contain m2 unknowns, which in turn means
that the updated matrix (equation 5.9 on the previous page) requires 2mmodel integrations[31].
In the EnKF, the computational requirements are reduced, by using model ensembles. The
biggest advantage for the EnKF compared to linear KF is therefore its large scale usability
for nonlinear systems. This has led to an increase of research using the EnKF for reservoir
simulation purposes[34].

According to Pavel Sakov[35] there are no disadvantages in using the EnKF compared to
both EK and EKF. For a linear system, the EnKF is converging towards the linear KF[31].

5.5.1 Method

The EnKF is a history matching filter based on model parameters, states and measurements.
When used for reservoir simulation, the permeability and porosity in the reservoir grid blocks,
can be model parameters. The state could be pressures and saturations in the same grid blocks,
and the measurements and observations could be the rate values, WOR or BHP.
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5.5 Ensemble Kalman Filter

To avoid confusion, note that observation and measurement may be used to describe the
same variables.

We define the model parameters as m. The state xk is a function of the state at previous
time step xk−1 and the model parameters[29, 31]:

xk = f(xk−1,m) + wk (5.15)

where wk is the model noise at time step k. The model noise wk follows a normal dis-
tribution with zero mean and is generated with a predefined standard deviation SDw. In the
examples in this thesis, the model noise is presumed to be zero.

wk = N (0, SDw) (5.16)

Using the current state xk and the model parameters m, the measurement is:

zk = g(xk,m) + vk (5.17)

where vk is Gaussian measurement noise generated with a predefined standard deviation
SDv.

vk = N (0, SDv) (5.18)

In this thesis, the standard deviation SDv was set at around 10% of the possible range. If
the initial production rate was available, the individual wells SDv was set at around 10% the
individual initial rates.

The formulation in equations 5.15 and 5.17 requires that an initial state is given and an initial
guess of m denoted as m0.

m = m0 + δm (5.19)

where δm is the difference between the actual model parameters and the initial guess.

The first step in the EnKF algorithm is to set an initial state ensemble of N realizations,
denoted as the updated step:

xu0 = [x1u
0 x2u

0 . . . xNu0 ] (5.20)

and make an initial guess for the model parameter ensemble:

mu
0 = [m1u

0 m2u
0 . . . mNu

0 ] (5.21)

The model noise wk is then calculated. The forecasted model parameters, states and mea-
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surements are inserted into a matrix Y :

Y f
k =

m
f
k

xfk
gfk

 =

 m1u
k−1 m2u

k−1 . . . mNu
k−1

fk(x
1u
k−1,m

1u
k−1) + w1

k fk(x
2u
k−1,m

2u
k−1) + w2

k . . . fk(x
Nu
k−1,m

Nu
k−1) + wN

k

gk(x
1f
k ,m

1u
k−1) gk(x

2f
k ,m

2u
k−1) . . . gk(x

Nf
k ,mNu

k−1)


(5.22)

The error covariance matrix for the forecasted step P f
k is calculated:

P f
k =

1

N − 1
[Y f

k − E(Y f
k )][Y f

k − E(Y f
k )]T (5.23)

where N is the number of the sets of model parameters, states and measurements used and
E(Y ) is the expected values of each row in Y . The observation data are calculated from the
true observation dobs and measurement noise vk:

dk = [dobs + v1
k dobs + v2

k . . . dobs + vNk ] (5.24)

with the error covariance Cdk for the observation being:

Cdk =
1

N − 1
vkv

T
k (5.25)

The Kalman gain K is then computed:

Kk = P f
k H

T
k (HkP

f
k H

T
k + Cdk)

−1 (5.26)

where the matrix Hk is defined so that:

HkY
f
k = [g1f

k g2f
k . . . gNk ] (5.27)

The matrix Y u
k , containing the updated states, model parameters and measurements, is then

updated:

Y u
k = Y f

k + Kk(dk −HkY
f
k ) (5.28)

If the actual measurement dk is equal to the predicted measurement HkY
f
k then the EnKF

interprets the predicted (forecasted) Y f
k to be correct, and the updated Y u

k will therefore be
equal to Y f

k . If there is a difference between the actual and predicted measurement, the Kalman
gain Kk is used to improve the update of Y .

The resulting error covariance matrix becomes:

P u
k =

1

N − 1
[Y u

k − E(Y u
k )][Y u

k − E(Y u
k )]T (5.29)
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The model noise for the next step wk+1 is generated (equation 5.16 on page 33) and equa-
tions 5.22 to 5.29 are repeated for each time step with information.

The EnKF works in such a way that for every new observation, which include noise, the
EnKF makes a new prediction of the actual parameters, states and measurements. This process
is repeated for each time step with new observations.

For a clearer structure of the implementation, look at EnKF algorithm in section 5.9.

5.5.2 Limitations of the Ensemble Kalman Filter

A limitation with this technique, is due to the fact that the EnKF is based on using only co-
variances when updating[20]. The covariance matrix approximation means that it neglects the
probability functions higher than second order moments[29]. This approximation means that
the EnKF avoids closure problems[36], but it may be difficult to work with nonlinear systems
consisting of non-Gaussian probability density functions. A Gaussian distribution cannot in
some instances adequately represent the complexity of the behavior of reservoir characteris-
tics. As a possible solution to handle non Gaussian distribution, Aanonsen et al. (2009)[29]
presented two categories for approaches, the first being parametrization of the state variables.
In this case, non Gaussian state variables are replaced by state variables that follow a normal
distribution. Chen et al. (2009)[37] replaced non Gaussian water saturation with a saturation
arrival time that followed a Gaussian distribution. The other is, according to Aanonsen, using
iterative filters, such as presented in Reynolds et al. (2006)[38], Gu and Oliver (2007)[39] and
Li and Reynolds (2007)[40]. Aanonsen et al. (2009)[29] mentions the particle filter as a pos-
sible solution to handling non Gaussian distribution, although it is mainly applicable for small
scale models, due to the computer requirements.

Gu (2006)[41] suggested that the EnKF could potentially have problems when the changes
in state variables are big.

5.6 Examples

In this section, a few examples is provided using the EnKF with the CRM. To simplify the
examples, as well as the rest of this master thesis, only measurement noise vk and not the model
noise wk will be included.

5.6.1 CRMP with Gentil’s Fractional Flow

In this example, the EnKF is used to history match the last 2000 days of production of the
reservoir described in section 3.1, both with regards to liquid rate parameters using the CRMP
and oil rate parameters using Gentil’s fractional flow model.
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The example combines a CRMP implementation in Excel, and a EnKF implementation in
MATLAB

In all, there are 32 different unknown model parameters. They consist of 20 connectivities
(5 injectors, 4 producers), 4 values of τ (one for each producer), 4 α parameters and 4 β param-
eters. The liquid and oil rates for each production well are treated as measurements, 8 in total,
meaning there are no state values.

Since the sum of connectivities from each injector add up to 1, and there are 4 producers, the
initial guess for the connectivities was generated with a mean of 0.25 and a standard deviation
of 5% of the possible range. All τ parameters were initially set to 1 with a standard deviation
of 50.

The initial rate values in the EnKF implementation was set constant. The GRG nonlin-
ear solver in Excel found an estimate of the initial rates, which were then used in the EnKF
implementation as true values.

The reason for not using initial rate values as model parameters is due the way the CRMP
function (equation 4.11 on page 18) is written. After the first updated time step, the initial rate
value does not affect subsequent rate values, and the EnKF history matched initial rate, should
not be trusted.

The initial β parameters were generated with a mean of 1. The VBA implementation was
used in order to find appropriate standard deviation for the α parameters. This was due to the
large range of possible α, as α could for example be in the order of 10−2 and 10−20. Without
more prior knowledge, the EnKF had difficulties in identifying these parameters.

The development of each of the model parameters are shown in figure 5.1, 5.2, 5.3 and 5.4.

The resulting production rates after the EnKF history matching, can be seen in figure 5.5
and 5.6.

To see how the EnKF guess evolves, all liquid and oil rates based on the different model
parameter realizations are plotted in figure 5.7. To see the development for each 10th time step,
see figures 8.8 on page 79 to 8.14 in the appendix. Figure 5.7 shows that after 10 time steps, 3
of the 4 wells matched well, with exceptions of P2, which also has the lowest production. After
20 time steps all producers matches well, and at subsequent time steps the EnKF becomes more
certain of the model parameters.

At N = 100, the EnKF was able to consistently identify the flow pattern in the reservoir,
described by the connectivities and the time constants. To help identify the oil rate parameters,
N was increased to 1000. N = 10000 was finally used, as the oil parameters resulted in a
slightly better match, while the liquid rate parameters resulted more or less in the same rate.

The top left of figure 5.7 shows that the production starts with a poor prior parameter ensem-
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Figure 5.1: Connectivities fij plotted against time. N = 10000

Figure 5.2: Time constants τj plotted against time. N = 10000

Figure 5.3: The average αj plotted against time. N = 10000

ble. Especially for the producer P2, it takes some time for the EnKF to make a good prediction.
After 20 time steps, all producer have found a close estimation of the true variables.

As seen in figure 3.1 on page 9 and 4.5 on page 20, the two main characteristics of the
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Figure 5.4: The average βj plotted against time. N = 10000

Figure 5.5: Total production rate after history matching plotted against time. The slight mismatch in oil
rate at around 2000 days is caused by a rapid increase in injector 1.

Figure 5.6: Production rate at producers P1 and P4 after history matching plotted against time.

reservoir flow are the high permeability streaks between injector 1 and producer 1, and between
injector 3 and producer 4, which the EnKF results clearly reflect. Early in the production there
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Figure 5.7: Liquid and oil rate after history matching with the EnKF. The black lines are the true obser-
vations of liquid rate and oil rate, while the dots are the rates when using the average model parameter
values. The top left plots shows the initial rates without any history matching. The top right, the lower
left and the lower right shows the rates after 10, 20 and 30 time steps of history matching, respectively.
N = 1000

is a mismatch of the total rate and the rate at P4. This is caused by too high initial oil rate,
which are the values solved in the VBA implementation. The resulting production shows that
the EnKF can be used to identify the model parameters in the CRMP. However, it was necessary
to have more prior knowledge of the possible ranges of the mean and standard deviation for the
α .

5.6.2 CRMP and CRMIP

In this example the EnKF history matches both the CRMP and the CRMIP for the same reser-
voir and injection as in section 5.6.1. The resulting connectivities from the CRMP and CRMIP
are compared to the ’true’ connectivities. The ’true’ connectivities are solved using Excels GRG
nonlinear solver in CRMP- and CRMIP implementations in VBA in Excel.
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Two EnKF implementations of the CRMP and the CRMIP, respectively, were coded in
MATLAB. The difference between the resulting connectivities after history matching and the
’true’ connectivity was then plotted, with respect to both the number of realizations and the
number of time steps history matched.

Note that the ’true’ connectivities are not exactly the same for both the CRMP and the CR-
MIP. The ’true’ values used can be found in the appendix on page 78.

For N = 10, N = 100 and N = 1000, the average difference in connectivity is plotted in
figures 5.8, 5.9 and 5.10.

Figure 5.8: The average difference (error) in connectivity plotted against the number of time steps used
in the EnKF history matching. N = 10

Figure 5.9: The average difference (error) in connectivity plotted against the number of time steps used
in the EnKF history matching. N = 100

The resulting production rates can be seen in the appendix on page 73. The total estimated
and the total observed rate will match well, even before any history matching has been done
(can be seen in the appendix, figure 8.1 on page 73). This is due to the total connectivity f is
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Figure 5.10: The average difference (error) in connectivity plotted against the number of time steps used
in the EnKF history matching. N = 1000

equal to 1 for all injectors, meaning the total production will be the same despite changes in the
individual fij values.

Figure 5.8 on the facing page shows that for N = 10, the EnKF provides no help in the
history matching, while for N = 100 and N = 1000, the results improves for each time step
towards the end.

The randomness of the EnKF prediction means the accuracy will vary for each run, so the
results may not reflect the actual preciseness of the EnKF.

The plots in figure 5.8, 5.9 and 5.10 must not be confused with accuracy, as the increased
number of variables used in the CRMIP will result in better matches.

5.7 Discussion

Overall the EnKF successfully identified all model parameters for the capacitance resistive mod-
els used for estimating liquid production rate. Although the liquid rates matched well with the
identified model parameters, the match was not as good when estimating the oil rate using Gen-
til’s fractional flow model. It required more prior knowledge on possible ranges of the mean
and standard deviation for the α parameters.

The most promising quality of the EnKF, is its usability and the low computational require-
ments. It can solve solve systems consisting of large amount of model parameters, as long as
they are not too nonlinear.
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5.8 Conclusion

The ensemble Kalman filter is a data assimilation technique that is applicable on large-scale
nonlinear systems. In this chapter it is shown that the EnKF provides good estimates for the
model parameters in the CRMs.

The EnKF has low computational costs when handling large amount of variables compared
to other techniques for nonlinear systems, such as the particle filter and the extended Kalman
filter.

The EnKF estimation of model parameters was validated by comparing to the estimates
from the GRG nonlinear solver in Excel literature work on the CRM.
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5.9 Ensemble Kalman Filter Algorithm

EnKF steps Formula Description

% Input
mu

o % generate initial mod. para.
xuo % define/generate initial state
for k % time step

% Forecast
wk N (0, SDw) % generate model noise
xfk fk(x

u
k−1,m

u
k−1) + wk % forecast state

gfk gk(x
f
k ,m

u
k−1) % forecast measurement

Y f
k

[
mf

k ;x
f
k ; g

f
k

]
% big matrix Y

P f
k

1
N−1

[Y f
k − E(Y f

k )][Y f
k − E(Y f

k )]T % error covariance
% Filtering
vk N (0, SDv) % generate measurement noise
dk [dobs + v1

k . . . dobs + vNk ] % perturb observation data
Cdk

1
N−1

vkv
T
k % error covariance

Kk P f
k H

T
k (HkP

f
k H

T
k + Cdk)

−1 % Kalman gain
Y u
k Y f

k + Kk(dk −HkY
f
k ) % updating Y

P u
k

1
N−1

[Y u
k − E(Y u

k )][Y u
k − E(Y u

k )]T % error covariance
end

43



Chapter 5. Kalman Filter

44



Chapter 6
Ensemble Optimization

6.1 Introduction

The goal of optimization is to maximize a predefined objective by adjusting control variables.
The objective in reservoir simulation could be to maximize oil production, or the net present
value. The control variables could be injection rates, producing bottom hole pressure or well
location.

Optimization plays a fundamental role in reservoir management as small adjustments can
result in large gains of NPV. For the following examples, the NPV is given by the cost of
injection, water production and oil production and a discount rate.

In this master thesis, the ensemble optimization (EnOpt) is used to maximize the NPV by
changing the injection rates. Section 6.2 will provide some historical background of the use of
optimization in reservoir simulation. Section 6.3 presents the optimization method of EnOpt.
EnOpt will then be demonstrated using the CRMP and Gentil’s fractional flow model in section
6.4.

6.2 Background

Several methods for determining optimal injection in reservoir simulation have been suggested
in the past decades.

As an early example, Asheim (1986)[42] presented a method where he optimized water in-
jection in a two phase flow reservoir with a high on a low permeability zone. The purpose of
the numerical search algorithm was to maximize the net present value. The reservoir behavior
was calculated using an IMPES (implicit pressure, explicit saturations) formulation. The results
showed the importance of changing the injection rates over time for optimal rate profile. How-
ever, the lack of computational reservoir models in 1986 limited the usability, since each grid
block contained one saturation- and one pressure variable, which must be calculated for each
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time step, meaning a huge number of variables needed to be considered.
The computational development since then has made it possible to use optimization tech-

niques on more complex reservoir models.
Nævdal et al. (2006)[43] described a continuous closed loop control of waterflooding, where

the optimized control was generated based on the information available using a gradient-based
optimization method. A reservoir model containing one production well and one injection well
was used. The control was in this case individually inflow control valves in both producer and
injector.

Nwaozo (2006)[44] used an ensemble of control variables to generate the control gradient,
which can be considered preliminary work on the EnOpt[45]. Chen et al. (2009)[45] first
proposed the ensemble-based optimization that is commonly described as the EnOpt[46].

Fonseca et al. (2015)[46] suggested an improvement to the EnOpt, which earlier had used
constant covariance matrices for the control ensemble perturbations that resulted in a constant
perturbation size. They suggested a covariance matrix that was to be updated at every time step.
Their results showed this method to be efficient on challenging, small dimensional optimization
problems.

Fonseca et al. (2015)[47] used the EnOpt to decide the control strategy of injection wells
with inflow control devices (ICD) under geological uncertainty, and showed that the EnOpt
resulted in an improved robust recovery strategy for realistic reservoir models.

As far as optimizing using CRMs, Sayarpour et al. (2009)[21] optimized the injection rate
by reallocation and then used the injection rates in Eclipse, which resulted in increased oil
production. They did not mention the specific optimization technique although it was most
likely a solver in Excel. Weber (2009)[1] used the CRM to both optimize injection allocation
and well location, by using optimization software from GAMS Development Corporation.

A complete close loop structure will be introduced in chapter 7.

6.3 Method

When optimizing injection for a reservoir model, one must deal with uncertainty. If we had
complete knowledge of the reservoir (clairvoyance), the optimization would be quite easy and
straight forward, since there would only be one defined realization of the model parameters.
The reality is however, not straight forward, since our prior knowledge and the observed data
contains uncertainty. The model parameters are therefore represented by an ensemble of pos-
sible parameter sets as a means of characterizing the individual parameter uncertainties. Sub-
sequently, the optimal injection is the one that provides the highest expected NPV based on all
possible parameter sets. It is therefore necessary to create an ensemble of the possible model
parameters.

The structure used follows the structure presented in Fonseca et al. (2015)[46], and is also
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known as the steepest ascent method.

The first step in the optimization is to produce Nr different random sets of control variables
given by the prior control vector û and a standard deviation Cu:

ur = N(û, Cu) (6.1)

The second step is to estimate the objectives Jr(ur) for each combination of model param-
eter ensemble and the control ensemble. Then, the mean-shifted ensemble matrix is computed:

U = [u1 − û u2 − û . . . uNr − û]T (6.2)

where ui are the new control vectors generated. The mean-shifted objective function vector
becomes:

j = [J1(u1)− J1(û) J2(u2)− J2(û) . . . JNr(uNr)− JNr(û)]T (6.3)

The gradient G[46] is approximated:

G = (U
T
U)−1U

T
j (6.4)

G may also be written[45] as:

G = C−1
uu cuJ (6.5)

where

Cuu =
1

Nr − 1
(U

T
U) (6.6)

and

cuJ =
1

Nr − 1
(U

T
j) (6.7)

This description of G only applies for overdetermined cases, which is true for the example
in this thesis, where Nr is greater than the length of u. For an underdetermined case, where
the length of u is greater than Nr, U

T
U is rank-deficient and its inverse cannot be directly

computed[46]. If that is the case, G becomes:

G = CuucuJ (6.8)

The new control vector (6.9) is then calculated:
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ûl+1 = ûl + α
G

max|G|
(6.9)

where α is the step length when updating and l is the iteration number. If the new control
vector does not generate a high enough objective value compared to the old control vector, the
step length α is reduced. This process continuous until a stopping criteria is reached.

6.4 Example Using the CRMP and Gentils Fractional Flow
Model

The goal of the following example is to maximize the objective value by optimizing the injection
control in the reservoir model presented in section 3.1 on page 9. The GRG nonlinear solver in
the VBA implementation will be used to solve the model parameters. The resulting realization
will be used as the true model parameters.

In order to achieve the highest possible objective value by controlling the injection, it is
necessary to know the exact model parameter, which in most cases would not be possible to
achieve. This problem will be examined in more detail in chapter 7, where a possible solution
for this issue will be tested.

The optimized injection will be used for both an Eclipse simulation of the reservoir, and in
a CRMP implementation in VBA. The resulting production will then be interpreted.

6.4.1 Method

As in the EnKF example in section 5.6.1, the last 2000 days of production was used. As seen in
figures 5.5 and 5.6, the oil rate tends to not match well at the start of production. The injection
rates are therefore optimized from 750 days until the end of production.

The model parameters were set by using the GRG nonlinear solver in a VBA implementation
of the CRMP and the Gentil fractional flow model.

The control vector consist of 10 control periods of around 100− 120 days each, with excep-
tion to the last period of 243 days. For 5 injectors the control vector will have 50 values for a
single realization. The prior control is a constant injection rate of 1500 RB/D for all injectors.

The standard deviation of the control vector was predefined to 100. There is no well defined
method to decide the standard deviaton[46], and in this case a standard deviation of a little less
than 10% (6.7%) of the initial injection rate, gave a consistent optimal control. Nr = 100 new
control vectors were generated for each iteration. AsNr becomes larger, the accuracy increases.
However, since there was only 50 control values for each realization, it was not necessary to
increase the number of realizations.
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The procedure then followed the structure in section 6.6 for the overdetermined case, with
a αinit = 1000.

The for loop will stop if the following criterion is reached: If the average NPV of the up-
dated control vector ur (r = 1 to Nr), is less than for the old control vector û, α is divided by
two, and the old control vector is updated once more. This process continues until the alpha
has been divided 5 times without improving the NPV. The resulting control vector variables are
the optimized injection rate values. This method follows the algorithm in section 6.6 for the
overdetermined case.

The objective used is defined as:

J =

∫ T

t=0

qo(t)ro − qwp(t)rwp − qwi(t)rwi
(1 + b)t/τ

dt (6.10)

where qo, qwp and qwi are the oil rate, water production rate and water injection rate, respec-
tively. The ro = 50 USD/RB, rwp = 10 USD/RB and rwi = 10 USD/RB are the costs. The
discount rate b = 0.1, while τ = 365 days is the referencing time for discounting.

6.4.2 Results

The GRG nonlinear solver in Excel produced the model parameters shown in figure 6.1.

Figure 6.1: Model parameters generated by a VBA implementation of CRMP and Gentil’s fractional
flow model.

The ensemble optimization suggested that injection wells 3 and 5 should be closed, whilst
the rest of the injection should be set as shown in figure 6.2 on the following page.

Figure 6.3 shows the improvement in the production by comparing the prior control vector
to the new optimized control.

By running the new injection rates in Eclipse, the the objective became worse after the
optimization. Both the water and oil production decreased slightly.

Although it is not easy to see on the plot, the objective value for the CRMP and Gentils
fractional flow model increased after the optimization. The oil production increased by around
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Figure 6.2: Optimized injection rates.

Figure 6.3: Total production rate and total oil rate before and after optimization.

19000 RB and the water production decreased by around 30000 RB, leading to a gain of ap-
proximately $1 million by the definition of the objective.

Note that the large difference in early oil production in figure 6.3 for the Eclipse simulation
compared to CRMP and Gentil’s fractional flow, is due to Gentil’s fractional flow model not
being able to take into account primary recovery effects.

6.4.3 Discussion

The reason for the lower objective value in the Eclipse simulation, is not related to the ensemble
optimization, but rather to the fact that the CRMP and Gentil’s fractional flow model will not
completely match the Eclipse production.

The fact that the reservoir is quite simple, and the criterion for injection control is total
constant injection, means that there is not going to be a large difference in total production rate
for different injection controls. This means it is not necessarily the CRMs lack of ability to
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represent a real reservoir that causes the Eclipse simulation not to improve, but it could be a
lack of complexity in the reservoir model and control criterion.

If the EnOpt is to be used as part of a larger implementation, the computational costs will be
an important factor. It can be necessary to spend time finding the lowest number of realizations
Nr that provide acceptable results.

The value of information, which is going to be calculated in the next chapter, could give a
better indication of positive usability of EnOpt, as it will calculate the NPV using the prior and
the updated control.

6.5 Conclusion

This chapter tested the EnOpt ability to optimize injection in a reservoir model using CRMP and
Gentil’s fractional flow model. The EnOpt combined well with the CRMP and Gentil’s model,
and produced consistent results, increasing the objective value compared to an initial base case.
Based on the results, it cannot be concluded if EnOpt and CRM can be used to control a real
(Eclipse) reservoir model, due to the simplistic reservoir model used and the constant total
injection criterion.

The EnOpt formulation means it is applicable for more complex systems than has been
tested in this thesis.
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6.6 Ensemble Optimization Algorithm

EnOpt steps Formula Description

u % prior control
αinit % initial step length
for l % iteration step

ur N(û, Cu) % generate ensemble control
Jr J(ur) % estimate objective
U l [u1l − ûl . . . uNrl − ûl]

T % meanshifted ensemble matrix
jl [J1(u1l)− J1(ûl) . . . JNr(uNrl)− JNr(ûl)]T % meanshifted objective vector

Cuu
1

Nr−1
(U

T
U ) % ensemble covariance matrix

cuJ
1

Nr−1
(U

T
j) % cross-covariance vector

G C−1
uu cuJ (if overdetermined) % gradient vector

CuucuJ (if underdetermined
if J̄new − J̄old <allowable error % objective gain

α = α
2

% reduce step length
α counter+ = 1 % count reductions
(check stopping criterion)

else
α = αinit reset step length
alpha counter = 0 reset counter

end
ûl+1 ûl + α G

max|G| % update control vector

end
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Chapter 7
Closed Loop Reservoir Management

7.1 Introduction

One of the two main goals of this thesis is to implement and evaluate the usability of closed loop
reservoir management with capacitance resistive models. This chapter aims to use the closed
loop structure from Barros et al. (2015)[3] with CRMs to estimate the value of information
(VOI).

Section 7.2 contains some background information of closed loop reservoir management
using EnKF and optimization.

Section 7.2.1 describes an important concept for the CLRM used, which is value of infor-
mation (VOI).

7.2 Background

Chen (2009)[45] presented a closed loop production optimization approach using ensemble
optimization (EnOpt) with the ensemble Kalman filter (EnKF). The results showed that this
framework was able to history match a reservoirs geological features and increase the NPV for
two different reservoir model with varying permeability and number of wells.

Brouwer (2004)[48] developed a closed loop structure where the control was optimized as
new information became available. His motivation was to make smart wells that can adapt to
unexpected changes in a reservoir.

As mentioned in section 6.2, Nævdal et al. (2006)[43] used the EnKF in a closed loop con-
trol in a reservoir model with one producer and one injector. In this case, the EnKF was used
to update a reservoir model based on the information available. The permeabilities were model
parameters, while the states contained pressures and saturations. After the update, the optimal
control strategy was identified. The control determined the injection from different inflow con-
trol valves in both the injector and producer. This resulted in a higher total oil production than
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using conventional wells.

The basic structure of a closed loop reservoir management can be seen in figure 7.1. When
working on the closed loop implementation it is useful to have an understanding of this figure
and figure 7.2, which has been used to to explain CLRM in several articles[2, , 3].

Figure 7.1: Closed loop reservoir control management. This figure was originally used in Brouwer et
al. (2004)[2].

7.2.1 Value of Information

Value-of-analysis is used to determine whether a reduction in uncertainty is worth the cost of
gathering information[19]. For a better description of the concept of value of information, as
well as its use in the oil gas industry, see Bratvold and Begg (2010)[19] and Bratvold et al.
(2009)[8].

In this master thesis, the VOI is defined as:

Value of new information = Value with new information− Value with old information (7.1)

The simplicity of the formula does not reflect the complexity of the actual calculation. In real
life, the calculation relies on numerous factors. One must first define what information should
be taken into account. In the petroleum industry this information may come from acquiring
data, technical studies, hiring consultants, performing diagnostic tests, etc[19].

For each information there is an underlying uncertainty, both for current information (are
the studies reliable? In what degree is the historic data relevant for data decision context?
Does the tests include model uncertainty?), and for new information (observation and model
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uncertainty). It is also useful to perform sensitivity analysis in order to determine the ranges
that new information must have in order to produce value.

Value of clairvoyance (VOC), or value of perfect information, is a useful term when using
VOI in a decision context. A clairvoyant is defined as someone with complete knowledge of
information, both current and future.

Although, it is not possible to make a decision based on VOC (unless it eliminates all other
alternatives), it has some helpful properties. The value of clairvoyance may be used as an upper
boundary for what a person or a company should be willing to spend for the information. If
for example a seismic survey is quoted to cost more than the value of clairvoyance, it should
automatically be rejected. When writing a implementation of a VOI structure, the VOC is useful
to identify errors, as the calculated VOI should not be higher than the VOC ceiling.

7.3 CLRM for VOI

Barros et al. (2015)[3] presented a new methodology for estimating VOI using closed loop
reservoir management. They concluded that their method was more complete compared to
previous work which aimed to estimate VOI, but also slower computationally.

The procedure for estimating value of information in this master thesis is based Barros et al.
(2015)[3]. The premise of said article, was to provide a way for estimating VOI (in reservoir
simulation) of a test (ex. doing a seismic survey) using history matching, and prior knowledge of
the mean and standard deviation of the individual model parameters (ex. Saturations, porosities,
etc.) that follows a normal distribution. It is also unknown what a test would show given the
actual reservoir parameters. A test will contain uncertainty and probably show results that differ
from the actual true values[29].

Without any information of the model parameters, one must assume a uniform distribution
of equal opportunity in the entire sample space. This would not be computationally feasible.
It is therefore necessary to have prior knowledge that limits the possible parameter values.
Additionally, for saturations and porosities, we know the values must lie between 0 and 1. In a
oil-water system, the saturations must be So + Sw ≤ 1. We can also assume that the porosity
will not exceed 50%. Additional constraints results in less computational costs for the VOI
implementation.

To calculate the VOI, all relevant model parameters must be taken into account. This would
most likely include sensitivity analysis regarding the importance of the different parameters, as
well as to what degree it is possible to simplify the problem and reduce the parameters space in
order to reduce computational costs.
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7.3.1 CLRM for VOI Structure

Figure 7.2: Closed loop reservoir management structure used to estimate expected value of information.
The figure was originally used in Barros et al. (2015)[3]. The step numbers were not included in the
original figure and was edited in later to be used in this master thesis.

1st step. One first has to define what the measurements are going to be. For a reservoir model,
the rates would be a logical choice, as it is in this project. However, the measurements could in
reality be anything, as long as it is possible to calculate an objective from the measurements.

2. Generate an initial ensemble Minit. These are N different sets of model parameter real-
izations, which has to be generated. The reason being that value of information in this structure,
actually is the average value of information created from each realization. This means it is
necessary to have some prior knowledge of what values the parameter can have. Therefore, the
model parameters are generated randomly from a known mean, as well as a predefined standard
deviation.
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3. Pick a realization to be the ”truth”. When writing a code of the structure, a for loop picks
one of the realizations in Minit to be the synthetic truth minit.

4. The prior ensembleMprior is then generated. Depending on computational speed require-
ments this could either mean generating N − 1 new realizations or using the N − 1 realizations
left from step 2.

5 and 6. The ensemble optimization, as presented in chapter 6, is used to generate the con-
trol vector uprior that creates the highest distribution of the objectives for the total production
time from the different realizations in Mprior.

7. The optimal control vector created in step 5 is then used with the synthetic true model
parameters over the total production time.

8. Calculate objective for the synthetic truth. Step 7 will result in the prior objective, i.e. the
objective without any information except the prior knowledge in step 2.

9. Generate synthetic data dobs(t). Using the prior control vector uprior and the synthetic
true model parameters minit, one calculates the synthetic data at time t. This means that if the
structure is to be used to evaluate the best time to gain information, it is necessary to evaluate
synthetic data at every relevant time step.

10. Add noise to dobs. If the true synthetic data is known, the optimization of the control
would be trivial. The data observed from a test will contain observation error. The error is
randomly generated with a mean= 0 and a predefined standard deviation. This results in the
observation as estimated in equation 5.24 on page 34.

11. Update the prior ensemble. The prior ensembleMprior is updated through history match-
ing using the data gained in step 10. The history matching is done through data assimilation
using the ensemble Kalman filter.

12. The updated Mposterior is gained from the data assimilation in step 11.

13 and 14. Optimize the posterior control uposterior. Using the updated Mposterior, one gen-
erates the optimal control vector similar to step 5. The difference is that the control vector can
only change for the time after t in dobs(t). This means one generates the optimal control vector
from time t to the end of the production time T .
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15. The synthetic truth minit is run with the prior control uprior from the start of the produc-
tion to time t, and the posterior control vector uposterior for the remaining time.

16. The posterior objective is then calculated from step 15.

17. Compute VOI. The value of information is calculated by subtracting the prior objective
from the posterior objective. The result is interpreted as how much objective (NPV) one would
gain from information at time t.

18. The process from step 3 to step 17 is repeated iteratively until all realizations in the
initial ensemble Minit has been used as synthetic truth.

19. The expected value of information is computed by taking the average VOI estimated in
step 17 for each iteration.

7.4 Case with CRMT and BLBFFM

The following case uses closed loop reservoir management control for the reservoir presented
in section 3.2 with one injection well and one production well. The structure seen in figure 7.2
is used to estimate the value of information and the value of clairvoyance.

7.4.1 Methods

The information gained in this case comes from the model parameters that are actual reservoir
properties, which includes the average porosity, irreducible water saturation, initial water sat-
uration, residual oil saturation and the time constant τ (equation 4.5 on page 16), which is a
function of total compressibility and pore volume. The other variables; initial liquid rate, m
and n are assumed to be known and has the values 527 RB/D, 35.5 and 1.75, respectively. The
values of q(0), m and nwas set using by solving Eclipse data with the CRMT and the BLBFFM
with the nonlinear GRG solver in the VBA implementation.

The reservoir produces for 3000 days. The control vector u contains 10 different control
values, each for a control period of 300 days.

N = 30 different realizations of the model parameters was used, as well as Nr = 20

different realizations of control vectors when optimizing.

The objective in this and the following example is:
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7.4 Case with CRMT and BLBFFM

JNPV =
1

N

N∑
i=1

Ji (7.2)

where the individual objetive realization Ji is:

Ji =

∫ T

t=0

qo(t,mi)ro − qwp(t,mi)rwp − qwi(t,mi)rwi
(1 + b)t/τ

dt (7.3)

where qo, qwp and qwi are the oil rate, water production rate and water injection rate, respec-
tively. The costs ro = 50 USD/RB, rwp = 10 USD/RB, rwi = 20 USD/RB, the reference time
for discounting τ = 365 days and the discount rate b = 0.1.

7.4.2 Results

Figure 7.3: Expected Value of Information (black dots) and Expected Value of Clairvoyance (blue dots)
plotted against the day in which the information was gathered.

The resulting expected VOI and expected VOC is plotted in figure 7.3. The net present value
of VOI indicate the maximum amount of money one should be willing to spend on gathering
information at that time. As an example, this means that, assuming risk neutrality, one should
be willing to spend around $30 million or less for the information at around 290 days, and no
more than $36.5 million. The reason for such a high VOI, is probably caused by a significant
number of model parameter realizations resulting in very little oil production. The net present
value of information gathered is highest at earlier time and then decreases towards the end of
production. The VOI and VOC is zero in the last control period, since it is not possible to use
information gathered in this period to change any control values.
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7.4.3 Discussion

As expected, the VOC provides an upper boundary for the VOI.

The value of information tends to be higher at the end of control periods and lower at the
start of control periods. This is more noticeable at earlier part of the production. The reason
for this increase in VOI, is that the later time tends to give more accurate information, meaning
that the information gives a better estimate for the ”true” model parameters. Since the control
value can only change before the control period starts, the information gathered at the end of a
control period is more valuable.

If some of the possible model parameter values are not realistic, this will affect the VOC
and the VOI. Lets say the porosity of a realisation was approximately zero. In that instance the
VOI would have a unrealistic high value, since the oil production would be low, which means it
will be valuable to reduce the injection to a minimum. It will therefore be a large difference in
net present value using the prior control and the updated control. A unrealistically high porosity
(for example 40 %), would also result in too high VOI and VOC.

It is important to acknowledge that every simulation will result in different VOI and VOC.
To get a similar result for multiple simulations, the number of realizations, both for the model
parameters and the control vectors, would have to increase. For the implementation in this
project, N = 30 was used since N = 20 did not produce a good result, and N > 30 would have
taken too long to run the simulations. Nr = 11 is a low number of realizations, but produced
reasonable and consistent optimization results.

7.5 Example CRMP and Gentils Fractional Flow Model

The next example combines the structure in figure 7.2 with the CRMP and Gentil’s fractional
flow model. This enables information to be gathered from individual wells. In this example,
information is gathered from only producer 1.

7.5.1 Methods

Since Gentil’s fractional flow model only gives a good match at later time of production, the
initial reservoir pressure was set to pri = 250. The model parameters and initial conditions
were the same as the EnKF example in section 5.6.1 on page 35, with regards to the history
matching.

For this case, only the liquid and oil rates based on the synthetic true model parametersminit

from Producer 1 was used in the EnKF update, meaning only prior information is available for
the rest of the field.
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7.5.2 Results

Figure 7.4 shows the expected VOI and VOC. The VOI increases until around 300− 400 days,
and the decreases towards the end. The figure indicates that the value of information is worth
the most at 300 days, where one should be willing to pay around $42 million or less, assuming
risk neutrality.

Figure 7.4: Expected Value of Information (black dots) and Expected Value of Clairvoyance (blue dots)
for information of producer 1 plotted against the day in which the information was gathered. N = 30,
Nr = 11

7.5.3 Discussion

As seen in figure 7.4, the VOC is not constant for each control period, which it should be by
definition. The number of control variables that can be changed in a specific control period is
constant, meaning that the NPV should stay the same. The probable reason is that due to the
slow computer speed, the number of control vector realizations was lowered to Nr = 11, which
resulted in less accurate calculation.

The Gentil’s fractional flow uses fitting parameters α and β to estimate the oil production
and does not include real reservoir parameters. The resulting VOI does therefore not reveal
what kind of information that should be gathered, but may be helpful to give an indication on
when it would be most profitable to gather the information.

For a significant number of model realizations, the β became too high and as a result pro-
duced a very small or negligible oil fraction. The βs was generated around a mean of 2, while in
retrospect a mean for the s equal 1 would have been a better choice, as more of the realizations
would produce significant amounts of oil.
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7.6 Implementation Challenges

There was a problem when the upper boundary was set too low, and the number of control
vector realization Nr was set too low. If for example, a control value at a control period before
the updated control vector was equal to the upper boundary, and all the ensemble control values
in the same control period was higher than the upper boundary, which means the values are
lowered to the upper boundary, then the U would have an empty row. This in turn would mean
that the gradient G is calculated using the inverse of a matrix containing an empty column and
an empty row, which is not possible to calculate. This effect can be avoided by increasing the
number of control vector realizations. Another possible solution is to include a truncated normal
distribution (a MATLAB version can be downloaded online[49]) , where the randomly gener-
ated variables falls between a pre-set range. This was only an issue for CRMT and BLBFFM.
This effect did not cause problems for the case with CRMP and Gentil fractional flow model,
since the boundary was a constant total injection rate of 7500 RB/D, which was divided by the
five injection wells, meaning the individual well had a more random nature to the injection rates
and was much less likely to have a boundary issue.

There is also an inverse matrix stability issue when calculating the gradient G which may
occur when the matrix contains very small numbers. This leads to the MATLAB warning
“matrix is singular/badly scaled”. To reduce this issue, the matrix division operator x=A\b was
used instead of x=inv(A)*b. The MATLAB[50] ‘help documentaion’ advices to use A\b and
not inv(A)*b when solving a system of linear equations Ax=b.

7.7 Conclusion

This chapter used a CLRM structure consisting of EnOpt and EnKF to estimate expected VOI
for two different CRMs. The structure provided reasonable values for both VOI and VOC.

The capacitance resistive models have been shown to be suitable for all parts of the closed
loop structure. The oil fractional flow model however, affect the usability. As seen in the exam-
ple in section 4.6.1, figure 4.12 shows that Gentil’s fractional flow model results in a significant
mismatch at the start of production. It is therefore important to be certain that primary recovery
has ended. In the end it became necessary to lower the initial reservoir pressure to producing
bottom hole pressure and skip the first 1000 days to be able to history match using the EnKF.
The CRMT and BLBFFM may seem to be a better fit, but since only one example of a reservoir
consisting of one producer and one injector was used, it cannot be concluded.

The premises for the VOI assessments discussed here should be transferable to real cases.
In a decision context, the selection of the model parameters is an important part of the process.
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Being able to identify the necessary parameters, is essential to derive a robust estimation of the
VOI. It is also be important to have a clearer understanding of the various models’ usability and
limitations.

In the implementation in this thesis, there was an issue when deciding a standard deviation
for the initial model parameter realizations, the lower and upper values of the estimated oil rate
may be unrealistic. This will lead to a high VOI, which makes it necessary to increase the en-
semble size.

A big weakness of this implementation is the computational speed. Running the simula-
tion with CRMT and BLBFFM with N = 30 realizations took around 12 hours (using In-
tel(R)Xeon(R)CPU X5650@2.67GHz 2.66GHz (2 processors)), while the CRMP and Gentil’s
fractional flow model took 3-7 days, depending on the number control vector realizations and
the number of measurement data. There is potential to reduce the computational costs by further
vectorization and optimization of the EnOpt code, but this will not change the computational
burden by orders of magnitude. The main reason for the high computational costs is the proba-
bilistic optimization. A possible solution is to limit the possible injection values to a relatively
small subset.

The master thesis may be summarized with a few concluding remarks:

• The ensemble Kalman filter successfully identified the model parameters of the capaci-
tance resistive models and the oil fractional flow models, but had some difficulties identifying
the α parameters.

• The closed loop reservoir management produced reasonable values of information and
values of clairvoyance when combined with capacitance resistive models and oil fractional flow
models.

• The use of EnKF with CRM equations shows promise in a closed loop reservoir manage-
ment structure, but the ensemble optimization used in this thesis may be too slow to be used on
more complex reservoir models.
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Chapter 8
Further Work

A critical time period for estimating VOI is around water breakthrough. At this period uncer-
tainty connected to the WOR can be large, and therefore possible large VOI. Implementing an
oil fractional flow, which takes into consideration water breakthrough uncertainty at individual
wells, would provide better VOI estimations. In this case it would also be important to evaluate
the usability of the CRMs liquid rate estimation during primary recovery.

One of the main issues with the closed loop reservoir management structure in this thesis, is
the slow computational speed, mainly caused by the slow optimization. Being able to increase
the optimization speed, would significantly increase the usability of the VOI structure.

To be used for more realistic cases, work needs to be done with evaluating how the prior
model parameter ensemble is defined. It can be interesting to evaluate how the ensemble
Kalman filter reacts when the model parameters follows a more nonlinear distribution. One
can also evaluate how the result changes if model noise for the EnKF is included.

An important part of the EnKF that has not been addressed in detail in this thesis, is the
covariance matrices. For a more complete work on the EnKF, one should spend more time ex-
plaining their physical meaning and how they affect the estimation.

The results in chapter 6, indicates that it can be interesting to evaluate the CRMs ability to
be used in injection optimization for a real reservoir or a more complex reservoir model.

For any students trying to implement the same VOI structure, I suggest making new codes
for the EnOpt and the EnKF using the formulas given in this thesis. There is significant potential
for reducing the computational costs by vectorization that was not used in the implemented
codes in the appendix.
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Appendix A

Results EnKF for CRMP and Gentils fractional flow for the reservoir in section 3.1. Only
the last 2000 days of production was used.

Figure 8.1: Production rates without any knowledge of the model parameters. For graphs where ob-
served liquid rate are not visible, it is approximately equal to the estimated oil rate.
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Figure 8.2: Production rates after history matching with the EnKF for the first 5 time steps. For graphs
where observed liquid rate are not visible, it is approximately equal to the estimated oil rate.
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Figure 8.3: Production rates after history matching with the EnKF for the first 10 time steps. For graphs
where observed liquid rate are not visible, it is approximately equal to the estimated oil rate.
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Figure 8.4: Production rates after history matching with the EnKF for the first 20 time steps. For graphs
where observed liquid rate are not visible, it is approximately equal to the estimated oil rate.
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Figure 8.5: Production rates after history matching with the EnKF for all 60 time steps.
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The ’true’ connectivity values used in section 5.6.2 on page 39.

Figure 8.6: CRMP connectivity solved by Excels GRG nonlinear solver.

Figure 8.7: CRMIP connectivity solved by Excels GRG nonlinear solver.
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Results EnKF for CRMP and Gentils fractional flow for the reservoir in section 3.1. Only
the last 2000 days of production was used.

Figure 8.8: The initial range of liquid rate (blue) and oil rate (red) when using the EnKF. The black lines
are the true observations of liquid rate and oil rate, while the dots are the rates when using the average
model parameter values. N = 1000
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Figure 8.9: Liquid rate (blue) and oil rate (red) when using the EnKF after 10 time steps. The black lines
are the true observations of liquid rate and oil rate, while the dots are the rates when using the average
model parameter values. N = 1000

80



Figure 8.10: Liquid rate (blue) and oil rate (red) when using the EnKF after 20 time steps. The black
lines are the true observations of liquid rate and oil rate, while the dots are the rates when using the
average model parameter values. N = 1000
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Figure 8.11: Liquid rate (blue) and oil rate (red) when using the EnKF after 30 time steps. The black
lines are the true observations of liquid rate and oil rate, while the dots are the rates when using the
average model parameter values. N = 1000
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Figure 8.12: Liquid rate (blue) and oil rate (red) when using the EnKF after 40 time steps. The black
lines are the true observations of liquid rate and oil rate, while the dots are the rates when using the
average model parameter values. N = 1000
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Figure 8.13: Liquid rate (blue) and oil rate (red) when using the EnKF after 50 time steps. The black
lines are the true observations of liquid rate and oil rate, while the dots are the rates when using the
average model parameter values. N = 1000
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Figure 8.14: Liquid rate (blue) and oil rate (red) when using the EnKF after 60 time steps. The black
lines are the true observations of liquid rate and oil rate, while the dots are the rates when using the
average model parameter values. N = 1000
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Figure 8.15: Expected VOI (black) and expected VOC (blue) estimation using CRMIP and Gentils
fractional flow model for information from producer 1. The bad result shows the necessity of large
enough model parameter sets. N = 10, Nr = 11
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Appendix B

Example of EnOpt in MATLAB (CRMT and BLBFFM)

% input: model parameter realizations (tau,Swir,Sor,phi,Sw),

% output: optimized control

function [u_control] = OptimizationFunction(M)

time=[0 1 3.071611 9.286445 19.28654 30 45 60 75 82.5 90 105 120 135 150

180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690

720 750 780 810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170

1200 1230 1260 1290 1320 1350 1380 1410 1440 1470 1500 1530 1560 1590

1620 1650 1680 1710 1740 1770 1800 1830 1860 1890 1920 1950 1980 2010

2040 2070 2100 2130 2160 2190 2220 2250 2280 2310 2340 2370 2400 2430

2460 2490 2520 2550 2580 2610 2640 2670 2700 2730 2760 2790 2820 2850

2880 2910 2940 2970 3000];

FormationVolume=369024000; %formation volume used to calculate Vp

ro=50; % cost (positive) of oil per RB

rwp=10; % cost (negative) of water production per RB

rwi=20; % cost (negative) of water injection per RB

b=.1; % discount rate

N=size(M,2)+1; % no. of model parameter realizations + 1

Nr=20; % no. of control vector realizations

% parameters that are assumed to be known:

q0=526.93;

m=35.46;

n=1.7535;

timesteps=size(time,2)-1; % no. of time steps

u_UB=4000; % upper boundary control

u_LB=300; % lower boundary control
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Cu=250; % SD used to generate new control vectors

ControlSteps=10; % no. of control steps

a_org=250; % initial step length for updating control

a=a_org;

% setting initial control

u=zeros(ControlSteps,1);

u(:,1)= (u_UB-u_LB)/2+u_LB;

u_r_ensemble=zeros(timesteps,Nr); % new control for each time step

u_ensemble=zeros(timesteps,Nr); % old control for each time step

J_comparison=zeros(1,2); % vector for objective comparison

u_comparison=zeros(ControlSteps,2); % matrix for control comparison

a_counter=0; % no. of times a has been divided by 2

acceptable_a_counter=5; % max. no. of times a can be reduced

loop_finished=0; % criteria for while loop

%the code should be changed to not count old objective multiple times

q_ur=zeros(timesteps+1,N-1,Nr); % new liq. rate

qo_ur=zeros(timesteps+1,N-1,Nr); % new oil rate

q_u=zeros(timesteps+1,N-1,Nr); % old liq. rate

qo_u=zeros(timesteps+1,N-1,Nr); % old oil rate

Sw_ur=zeros(timesteps+1,N-1,Nr); % water saturation

Sw_u=zeros(timesteps+1,N-1,Nr);

% initializing rates and saturation

for rr=1:(N-1)

q_ur(1,rr,:)=q0;

q_u(1,rr,:)=q0;

Sw_ur(1,rr,:)=M(4,rr);

Sw_u(1,rr,:)=M(4,rr);

end

while loop_finished==0;

u_matrix = repmat(u,1,Nr); % expanding the old control
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u_r_matrix = normrnd(u_matrix,Cu); % guessing new control

u_r_matrix = max(u_r_matrix,u_LB); % adding boundaries

u_r_matrix = min(u_r_matrix,u_UB); % adding boundaries

% The reason for the following procedure is

% the fact that the control periods does not

% have the same number of time steps. In this

% case the first control period contains 19

% time steps, while the rest contain 10

u_ensemble(1:19,:)=repmat(u_matrix(1,:),19,1);

u_ensemble(20:29,:)=repmat(u_matrix(2,:),10,1);

u_ensemble(30:39,:)=repmat(u_matrix(3,:),10,1);

u_ensemble(40:49,:)=repmat(u_matrix(4,:),10,1);

u_ensemble(50:59,:)=repmat(u_matrix(5,:),10,1);

u_ensemble(60:69,:)=repmat(u_matrix(6,:),10,1);

u_ensemble(70:79,:)=repmat(u_matrix(7,:),10,1);

u_ensemble(80:89,:)=repmat(u_matrix(8,:),10,1);

u_ensemble(90:99,:)=repmat(u_matrix(9,:),10,1);

u_ensemble(100:109,:)=repmat(u_matrix(10,:),10,1);

% new control for each time step

u_r_ensemble(1:19,:)=repmat(u_r_matrix(1,:),19,1);

u_r_ensemble(20:29,:)=repmat(u_r_matrix(2,:),10,1);

u_r_ensemble(30:39,:)=repmat(u_r_matrix(3,:),10,1);

u_r_ensemble(40:49,:)=repmat(u_r_matrix(4,:),10,1);

u_r_ensemble(50:59,:)=repmat(u_r_matrix(5,:),10,1);

u_r_ensemble(60:69,:)=repmat(u_r_matrix(6,:),10,1);

u_r_ensemble(70:79,:)=repmat(u_r_matrix(7,:),10,1);

u_r_ensemble(80:89,:)=repmat(u_r_matrix(8,:),10,1);

u_r_ensemble(90:99,:)=repmat(u_r_matrix(9,:),10,1);

u_r_ensemble(100:109,:)=repmat(u_r_matrix(10,:),10,1);

% matrices for objective

J_ur=zeros(N-1,Nr);

J_u=zeros(N-1,Nr);

% loop for going through each set of model parameters

for ii=1:(N-1)

% retrieve model parameter

tau=M(1,ii);

Swir=M(2,ii);

Sor=M(3,ii);

phi=M(5,ii);

Vp=phi*FormationVolume; %pore volume

89



for t=1:timesteps

tprev=time(t); % previous time step

tnow=time(t+1); % current time step

for kk=1:Nr % goin throug each control realization

q_ur(t+1,ii,kk) = q_ur(t,ii,kk)*exp(-(tnow-tprev)/tau)

+ (1-exp(-(tnow-tprev)/tau))*u_r_ensemble(t,kk);

q_u(t+1,ii,kk) = q_u(t,ii,kk)*exp(-(tnow-tprev)/tau)

+ (1-exp(-(tnow-tprev)/tau))*u_ensemble(t,kk);

qw_ur = q_ur(t,ii,kk) - qo_ur(t,ii,kk);

qw_u = q_u(t,ii,kk) - qo_u(t,ii,kk);

Sw_ur(t+1,ii,kk) = Sw_ur(t,ii,kk) + (u_r_ensemble(t,kk)

- qw_ur)/Vp * (tnow-tprev);

Sw_u(t+1,ii,kk) = Sw_u(t,ii,kk) + (u_ensemble(t,kk)

- qw_u)/Vp * (tnow-tprev);

S_ur = (Sw_ur(t+1,ii,kk) - Swir)/(1 - Sor - Swir);

S_u = (Sw_u(t+1,ii,kk) - Swir)/(1 - Sor - Swir);

S_ur=max(S_ur,0);

S_u=max(S_u,0);

qo_ur(t+1,ii,kk) = q_ur(t+1,ii,kk)

* (1 - (1 + (1-S_ur)ˆm/(1*S_urˆn))ˆ(-1));

%assuming endpoint mob ratio=1

qo_u(t+1,ii,kk) = q_u(t+1,ii,kk)

* (1 - (1 + (1-S_u)ˆm/(1*S_uˆn))ˆ(-1));

qo_ur(t+1,ii,kk)=min(qo_ur(t+1,ii,kk),q_ur(t+1,ii,kk));

qo_u(t+1,ii,kk)=min(qo_u(t+1,ii,kk),q_u(t+1,ii,kk));

J_ur(ii,kk) = J_ur(ii,kk) + (qo_ur(t+1,ii,kk)*ro

- (q_ur(t+1,ii,kk)-qo_ur(t+1,ii,kk))*rwp

- u_r_ensemble(t,kk)*rwi)*(tnow-tprev)/(1+b)ˆ(tnow/365);

J_u(ii,kk) = J_u(ii,kk) + (qo_u(t+1,ii,kk)*ro

- (q_u(t+1,ii,kk)-qo_u(t+1,ii,kk))*rwp

- u_ensemble(t,kk)*rwi)*(tnow-tprev)/(1+b)ˆ(tnow/365);

end

end

end

% calculating the objective mean for each control realization
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J_ur_final=mean(J_ur,1);

J_u_final=mean(J_u,1);

J_comparison(1,2)=mean(J_u_final);

u_comparison(:,2)=u;

% calculating meanshifted matrices

U_meanshifted=(u_r_matrix-u_matrix).';

j_meanshifted=(J_ur_final-J_u_final).';

% control gradient

G1=(U_meanshifted.'*U_meanshifted);

G2=(U_meanshifted.'*j_meanshifted);

G=G1\G2;

G=G./max(abs(G)); %normalising G

% comparing previous and current objective (when simulating,

% the acceptable boundary should be set higher than 0)

% Since J_comparison is originally defined empty, the first

% mean(J_old_final) must be positive

if (J_comparison(1,2)-J_comparison(1,1)) < 0

u=u_comparison(:,1);

a=a/2;

a_counter=a_counter+1

if a_counter >= acceptable_a_counter

loop_finished=1;

u_control=u;

return

end

else

a_counter=0; %resetting alpha_counter

a=a_org; %resetting alpha

J_comparison(1,1)=J_comparison(1,2);

%setting the new objective as the old objective

% for next time step

u_comparison(:,1)=u; %setting the new control

% vector as the old control vector for next time step

end

%updating u

u=u+a*G;

u=max(u,u_LB);

u=min(u,u_UB);

end

end
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Example of EnKF in MATLAB (CRMT and BLBFFM)

In this example the EnKF history matches at only one time step

% input: M_prior, m_synthetic_truth, u_prior, timestep of the information

% output: M_posterior

function [M_posterior] = EnKFfunction(M_prior,m_synthetic_truth,u_prior

,timestep)

time=[0 1 3.071611 9.286445 19.28654 30 45 60 75 82.5 90 105 120 135 150

180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690

720 750 780 810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170

1200 1230 1260 1290 1320 1350 1380 1410 1440 1470 1500 1530 1560 1590

1620 1650 1680 1710 1740 1770 1800 1830 1860 1890 1920 1950 1980 2010

2040 2070 2100 2130 2160 2190 2220 2250 2280 2310 2340 2370 2400 2430

2460 2490 2520 2550 2580 2610 2640 2670 2700 2730 2760 2790 2820 2850

2880 2910 2940 2970 3000];

FormationVolume=369024000;

length_M_prior=size(M_prior,2);

u=zeros(109,1);

u(1:19)=u_prior(1);

u(20:29)=u_prior(2);

u(30:39)=u_prior(3);

u(40:49)=u_prior(4);

u(50:59)=u_prior(5);

u(60:69)=u_prior(6);

u(70:79)=u_prior(7);

u(80:89)=u_prior(8);

u(90:99)=u_prior(9);

u(100:109)=u_prior(10);

q0=526.93;

m=35.46;

n=1.7535;

q_true=q0;

qo_true=0;

Sw_true=m_synthetic_truth(4);

tau_true=m_synthetic_truth(1);

m_true=m;

n_true=n;

92



Swir_true=m_synthetic_truth(2);

Sor_true=m_synthetic_truth(3);

phi_true=m_synthetic_truth(5);

Vp_true=phi_true*FormationVolume;

for t=1:timestep

tprev=time(t);

tnow=time(t+1);

Sw_true = Sw_true + (u(t) - (q_true-qo_true))*(tnow-tprev)/Vp_true;

q_true = q_true*exp(-(tnow-tprev)/tau_true)

+ (1-exp(-(tnow-tprev)/tau_true))*u(t);

S_true = (Sw_true-Swir_true)/(1-Sor_true-Swir_true);

S_true=max(S_true,0);

S_true=min(S_true,1);

qo_true = q_true* (1 - (1 + (1-S_true)ˆm_true/

(1*S_trueˆn_true))ˆ(-1));

end

SD_q=100;

SD_qo=100;

error=zeros(2,length_M_prior);

error(1,:)=normrnd(0,SD_q,[1,length_M_prior]);

error(2,:)=normrnd(0,SD_qo,[1,length_M_prior]);

d=repmat([q_true;qo_true],1,length_M_prior)+error;

d=max(d,0);

x=zeros(2,length_M_prior);

z=zeros(2,length_M_prior);

for nn=1:length_M_prior

q=q0;

qo=0;

Sw=M_prior(4,nn);

tau=M_prior(1,nn);

Swir=M_prior(2,nn);

Sor=M_prior(3,nn);

phi=M_prior(5,nn);

Vp=phi*FormationVolume;

for t=1:timestep

tprev=time(t);

tnow=time(t+1);
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Sw = Sw + (u(t) - (q-qo))*(tnow-tprev)/Vp;

q = q*exp(-(tnow-tprev)/tau) + (1-exp(-(tnow-tprev)/tau))*u(t);

S = (Sw-Swir)/(1-Sor-Swir);

S = max(S,0);

S = min(S,1);

qo = q* (1 - (1 + (1-S)ˆm/(1*Sˆn))ˆ(-1));

end

x(:,nn)=[Sw;S];

z(:,nn)=[q;qo];

end

H=zeros(2,9);

H(1,8)=1;

H(2,9)=1;

Y=[M_prior;x;z];

Cd=1/(length_M_prior-1)*(error*error.');

L = 1/sqrt(length_M_prior-1)* (Y-repmat(mean(Y,2),1,length_M_prior));

HPH = (H*L) * (L.'*H.');

Y = Y + ((L)*(L.'*H.')) * ((HPH + Cd)\(d - H*Y));

Y=max(Y,0);

M_posterior=Y(1:5,:);

end
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Example of VOI structure in MATLAB (CRMT and BLBFFM)

time=[0 1 3.071611 9.286445 19.28654 30 45 60 75 82.5 90 105 120 135 150

180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690

720 750 780 810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170

1200 1230 1260 1290 1320 1350 1380 1410 1440 1470 1500 1530 1560 1590

1620 1650 1680 1710 1740 1770 1800 1830 1860 1890 1920 1950 1980 2010

2040 2070 2100 2130 2160 2190 2220 2250 2280 2310 2340 2370 2400 2430

2460 2490 2520 2550 2580 2610 2640 2670 2700 2730 2760 2790 2820 2850

2880 2910 2940 2970 3000];

FormationVolume=369024000;

ro=50;

rwp=10;

rwi=20;

b=.1;

q0=526.93;

m=35.46;

n=1.7535;

timesteps = size(time,2)-1;

N=30;

M_init = ensembleFunction(N);

J_prior=zeros(N,1); %one prior objective for each realisation

J_posterior=zeros(N,timesteps);

J_ValueOfClairvoyance=zeros(N,timesteps);

% for loop, in order to pick a synthetic truth

for ii=1:N

m_synthetic_truth=M_init(:,ii);

tau = m_synthetic_truth(1);

Swir = m_synthetic_truth(2);

Sor = m_synthetic_truth(3);

Sw0 = m_synthetic_truth(4);

phi = m_synthetic_truth(5);

Vp = phi*FormationVolume;
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M_prior = M_init(:,[1:ii-1 ii+1:N]);

u_prior = PriorOpt1(M_prior);

u_prior_time=zeros(timesteps,1);

u_posterior=repmat(u_prior,1,timesteps);

u_posterior_time=zeros(timesteps,timesteps);

u_VOC=u_posterior;

u_VOC_time=u_posterior_time;

M_posterior=zeros(5,(N-1),timesteps); % 32 differen model parameters

for t=1:timesteps

M_posterior(:,:,t) = EnKF1(M_prior,m_synthetic_truth,u_prior,t);

if t<=19

u_posterior(:,t) = OptFunc9controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc9controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>19 && t<=29

u_posterior(:,t) = OptFunc8controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc8controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>29 && t<=39

u_posterior(:,t) = OptFunc7controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc7controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>39 && t<=49

u_posterior(:,t) = OptFunc6controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc6controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>49 && t<=59

u_posterior(:,t) = OptFunc5controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc5controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>59 && t<=69

u_posterior(:,t) = OptFunc4controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc4controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>69 && t<=79

u_posterior(:,t) = OptFunc3controlStepsLeft(M_posterior(:,:,t)
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,u_prior);

u_VOC(:,t) = OptFunc3controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>79 && t<=89

u_posterior(:,t) = OptFunc2controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc2controlStepsLeft(m_synthetic_truth

,u_prior);

elseif t>89 && t<=99

u_posterior(:,t) = OptFunc1controlStepsLeft(M_posterior(:,:,t)

,u_prior);

u_VOC(:,t) = OptFunc1controlStepsLeft(m_synthetic_truth

,u_prior);

end

end

u_prior_time(1:19)=u_prior(1);

u_prior_time(20:29)=u_prior(2);

u_prior_time(30:39)=u_prior(3);

u_prior_time(40:49)=u_prior(4);

u_prior_time(50:59)=u_prior(5);

u_prior_time(60:69)=u_prior(6);

u_prior_time(70:79)=u_prior(7);

u_prior_time(80:89)=u_prior(8);

u_prior_time(90:99)=u_prior(9);

u_prior_time(100:109)=u_prior(10);

u_posterior_time(1:19,:)=repmat(u_posterior(1,:),19,1);

u_posterior_time(20:29,:)=repmat(u_posterior(2,:),10,1);

u_posterior_time(30:39,:)=repmat(u_posterior(3,:),10,1);

u_posterior_time(40:49,:)=repmat(u_posterior(4,:),10,1);

u_posterior_time(50:59,:)=repmat(u_posterior(5,:),10,1);

u_posterior_time(60:69,:)=repmat(u_posterior(6,:),10,1);

u_posterior_time(70:79,:)=repmat(u_posterior(7,:),10,1);

u_posterior_time(80:89,:)=repmat(u_posterior(8,:),10,1);

u_posterior_time(90:99,:)=repmat(u_posterior(9,:),10,1);

u_posterior_time(100:109,:)=repmat(u_posterior(10,:),10,1);

u_VOC_time(1:19,:)=repmat(u_VOC(1,:),19,1);

u_VOC_time(20:29,:)=repmat(u_VOC(2,:),10,1);

u_VOC_time(30:39,:)=repmat(u_VOC(3,:),10,1);

u_VOC_time(40:49,:)=repmat(u_VOC(4,:),10,1);

u_VOC_time(50:59,:)=repmat(u_VOC(5,:),10,1);

u_VOC_time(60:69,:)=repmat(u_VOC(6,:),10,1);

u_VOC_time(70:79,:)=repmat(u_VOC(7,:),10,1);

u_VOC_time(80:89,:)=repmat(u_VOC(8,:),10,1);

u_VOC_time(90:99,:)=repmat(u_VOC(9,:),10,1);

u_VOC_time(100:109,:)=repmat(u_VOC(10,:),10,1);
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q_prior=q0;

qo_prior=0;

NPV_prior=0;

Sw_prior=Sw0;

q_posterior=q0*ones(1,timesteps);

qo_posterior=zeros(1,timesteps);

NPV_posterior=zeros(1,timesteps);

Sw_posterior=Sw0*ones(1,timesteps);

q_VOC=q0*ones(1,timesteps);

qo_VOC=zeros(1,timesteps);

NPV_VOC=zeros(1,timesteps);

Sw_VOC=Sw0*ones(1,timesteps);

for tt=1:timesteps

tprev=time(tt);

tnow=time(tt+1);

Sw_prior = Sw_prior + (u_prior_time(tt) - (q_prior-qo_prior))

*(tnow-tprev)/Vp;

q_prior = q_prior*exp(-(tnow-tprev)/tau)

+ (1-exp(-(tnow-tprev)/tau))*u_prior_time(tt);

S_prior = (Sw_prior-Swir)/(1-Sor-Swir);

S_prior = max(S_prior,0);

qo_prior = q_prior* (1 - (1 + (1-S_prior)ˆm/(1*S_priorˆn))ˆ(-1));

NPV_prior = NPV_prior + ( qo_prior*ro - (q_prior-qo_prior)*rwp

- u_prior_time(tt)*rwi ) * (tnow-tprev) / (1+b)ˆ(tnow/365);

for nopos=1:timesteps

Sw_posterior(1,nopos) = Sw_posterior(1,nopos)

+ (u_posterior_time(tt,nopos) - (q_posterior(1,nopos)

-qo_posterior(1,nopos)))*(tnow-tprev)/Vp;

q_posterior(1,nopos) = q_posterior(1,nopos)*exp(-(tnow-tprev)/tau)

+ (1-exp(-(tnow-tprev)/tau))*u_posterior_time(tt,nopos);

S_posterior = (Sw_posterior(1,nopos)-Swir)/(1-Sor-Swir);

S_posterior = max(S_posterior,0);

qo_posterior(1,nopos) = q_posterior(1,nopos)* (1

- (1 + (1-S_posterior)ˆm/(1*S_posteriorˆn))ˆ(-1));

NPV_posterior(1,nopos) = NPV_posterior(1,nopos)

+ ( qo_posterior(1,nopos)*ro - (q_posterior(1,nopos)

-qo_posterior(1,nopos))*rwp - u_posterior_time(tt,nopos)*rwi )

* (tnow-tprev) / (1+b)ˆ(tnow/365);

Sw_VOC(1,nopos) = Sw_VOC(1,nopos) + (u_VOC_time(tt,nopos)
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- (q_VOC(1,nopos)-qo_VOC(1,nopos)))*(tnow-tprev)/Vp;

q_VOC(1,nopos) = q_VOC(1,nopos)*exp(-(tnow-tprev)/tau)

+ (1-exp(-(tnow-tprev)/tau))*u_VOC_time(tt,nopos);

S_VOC = (Sw_VOC(1,nopos)-Swir)/(1-Sor-Swir);

S_VOC = max(S_VOC,0);

qo_VOC(1,nopos) = q_VOC(1,nopos)* (1

- (1 + (1-S_VOC)ˆm/(1*S_VOCˆn))ˆ(-1));

NPV_VOC(1,nopos) = NPV_VOC(1,nopos) + ( qo_VOC(1,nopos)*ro

- (q_VOC(1,nopos)-qo_VOC(1,nopos))*rwp

- u_VOC_time(tt,nopos)*rwi ) * (tnow-tprev) / (1+b)ˆ(tnow/365);

end

end

J_prior(ii,1) = NPV_prior;

for nopos=1:timesteps

J_posterior(ii,nopos) = NPV_posterior(1,nopos);

J_ValueOfClairvoyance(ii,nopos) = NPV_VOC(1,nopos);

end

end

VOI=zeros(1,timesteps);

VOC=zeros(1,timesteps);

for yy=1:timesteps

for jj=1:N

VOI(1,yy) = VOI(1,yy) + (J_posterior(jj,yy)-J_prior(jj,1))/N;

VOC(1,yy) = VOC(1,yy) + (J_ValueOfClairvoyance(jj,yy)

-J_prior(jj,1))/N;

end

end
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