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Abstract

Research has recently shown a keen interest in database technology for analytical
workloads that enables high-performance analysis and on-the-fly aggregation, where
the main motivation is Business Intelligence andBusiness Discovery products. Such
products store data in main memory as compressed columns to maximize memory
utilization and CPU throughput. Model-Driven Engineering, a discipline that aims
to increase developer productivity through the use of models on a higher level of
abstraction, automates many of the complex programming tasks, like persistence and
interoperability. One such product, Genus App Platform, has evolved over time and
become a powerful and expressive tool for rapid application development. However,
operations that process and analyze large amounts of data are slow, and the platform
has a high memory footprint, mainly because no particular attention has been paid
to storage format and structures in the source code. Based on the observation that
Genus App Platform has many similarities with an in-memory database, we are
motivated to investigate if the challenges in Genus App Platform can be overcome
by applying techniques used in read-optimized databases.

In this research, we enhance data representation, implement column storage with
dictionary encoding and bitpacking in Genus App Platform to reduce memory
footprint and increase the platform’s ability to handle and analyze large datasets.
We identify core operations that can exploit the new storage format, like join and
filter operations. We test our implementation using a benchmark for analytical
workloads while monitoring that transactional performance is not negatively affected.

In Genus App Platform, column storage with dictionary encoding, bitpacking, and
null pointer compression leads to a memory reduction of 67 % and a load time
reduction of 36 % for the TPC-H inspired Data Mart Load Benchmark. Also,
operations that are adjusted to utilize the column storage format sees a performance
impact of one, two, and even three orders of magnitude compared to the original
implementation. The new internal data representation in Genus App Platform does
not significantly reduce transactional performance. Thus, by using Genus App
Platform as a proof-of-concept, we have shown how techniques used by read-
optimized databases increase Model-Driven Engineering versatility by enabling such
tools to handle and analyze large datasets.
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Sammendrag

Forskning har i den siste tiden vist stor interesse for databaseteknologi som muliggjør
analyse av data med høy ytelse og umiddelbare beregninger, hvor hovedmotivasjo-
nen for denne forskningen er produkter innen Business Intelligence og Business
Discovery. Slik teknologi lagrer data i RAM p̊a et komprimert kolonneformat for
å f̊a høy prosessorytelse og utnyttelse av minne. Modelldreven Utvikling er en
disiplin som forsøker å øke utviklerproduktivitet ved hjelp av modeller p̊a et høyere
abstraksjonsniv̊a, samt å automatisere mange komplekse programmeringsoppgaver,
som datapersistens og interopabilitet. Et produkt innen denne disiplinen, Genus
App Platform, har over tid utviklet seg til å bli et kraftig verktøy for rask ap-
plikasjonsutvikling. Likevel tar operasjoner som analyserer og prosesserer store
datamengder lang tid, og plattformen bruker mye minne, hovedsakelig fordi det aldri
har blitt fokusert p̊a intern datarepresentasjon. Siden Genus App Platform har svært
mange likhetstrekk med en minne-basert database, er vi motivert til å utforske om
utfordringene i Genus App Platform kan bli løst med teknologi benyttet i databaser
optimalisert for leseytelse.

I denne oppgaven forbedrer vi datarepresentasjon, implementerer kolonnelagring
med dictionary encoding og bitpacking i Genus App Platform for å redusere min-
neforbruk og forbedre plattformens egenskaper til å behandle og analysere store
datamengder. I tillegg identifiserer vi kjerneoperasjoner som kan dra utnytte av det
nye lagringsformatet, slik som join- og filtreringsoperasjoner. Vi tester implemen-
tasjonen v̊ar med tester designet for analytisk arbeidslast mens vi i tillegg overv̊aker
at skriveytelse ikke blir p̊avirket negativt.

For Genus App Platform ser vi at kolonnelagring med dictionary encoding, bitpack-
ing og nullpekerkompresjon reduserer minneforbruket med 67 % i v̊are tester, i
tillegg til at lastetiden reduseres med 36 %. Operasjoner i plattformen som har
blitt omskrevet til å ta utnytte av det nye lagringsformatet ser en ytelsesforbedring
p̊a én, to, eller tre størrelsesordener. Den nye implementasjonen øker ikke skrivey-
telse signifikant. Vi har, ved å bruke Genus App Platform som et eksempel, vist
hvordan teknikker benyttet av databaser optimalisert for leseytelse kan benyttes i
Modelldreven Utvikling for å forbedre støtte for store datamengder; noe som igjen
øker allsidigheten til rammeverk for Modelldreven Utvikling.
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The pre-study, due December 2015, focused on Business Intelligence related perfor-
mance improvements. The ultimate goal was to improve ad-hoc analytical abilities
in Genus App Platform by applying state-of-the-art in-memory database technology.
This research resulted in a literature review and a report enumerating the most
important aspects when engineering such system.

This thesis builds on the pre-study, but with a broader perspective: It inspired us
to reevaluate how Genus App Platform and other frameworks for Model-Driven
Engineering should handle data internally, and see whether the storage formats and
techniques from in-memory database technologies could be applied. The background
theory in this report, as well as certain parts of the introduction, is, therefore,
adapted from the pre-study.
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Chapter 1

Introduction

In this chapter we explain the background information and motivation of this
research project, and based on this, we state our goals and research questions. We
then proceed to explain how we plan to answer the research questions by stating
our research methods, contributions, and deliverables.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

There has been an increased interest in database systems that are tuned for ad-
hoc analysis and Business Intelligence queries recently. These systems utilizes
column storage, compression, and paralellization to maximize CPU and memory
throughput, and normally builds on in-memory technologies. In general, because
RAM is getting cheaper [27], and 64-bit CPUs has become more wide-spread,
in-memory databases increasingly play a more significant role [26]. Systems tuned
for Business Intelligence and capable of using main memory as primary storage
include Oracle Database [39], SAP HANA [28], Gorilla Time Series Database [46],
QlikView [50], Tableau [37], MonetDB [24], Blink [21], and SAP NetWeaver [42].
In-memory database systems are used where performance and low latency is a key
design goal, and on systems that have no need for persistent storage [75].

Model-Driven Engineering, a discipline that aims to increase developer produc-
tivity by raising abstraction levels, has identified that there always will be a gap
between the business problem and the implementation [31]. One of the main goals
of Model-Driven Development research is to create technologies that shield software
developers from complexities of the underlying platform. To cope with these com-
plexities, and close the gap between the business problem and the implementation,
a thorough understanding of the gap bridging process is required, understanding
that is gained through experimentation and accumulation of experience. One of the
major advantages of Model-Driven Engineering is that models are expressed in such
way that they are closer to the problem domain and less bound to the underlying
implementation [56]. At most times, Model-Driven Development-tools generate
programs that are just as memory- and performanceefficient as hand-crafted pro-
grams, but there are occasional critical cases where Model-Driven Engineering are
outperformed by tailored solutions.

Genus AS is one of the market players in Model-Driven Engineering, and, like most
vendors in the field, aim to close the gap between business logic and implementation
through abstractions and models. Their platform, Genus App Platform, uses
generic software concepts on a higher level of abstraction than regular programming
languages that are precise and non-ambigous [5]. These concepts, and the underlying
implementation, have been refined and improved through years of trial and error
on real customer use cases. However, since the main focus of the source code of the
platform has been readability and maintainability, no particular attention has been
paid to how data is represented internally. The result of this is that the platform
has high memory usage and read-intense operations that process and analyze large
amounts of data, such as join and data aggregations, are slow.

Our main motivation for this research is two-fold. First, we have identified a
critical case in Genus App Platform, and likely Model-Driven Engineering in general,
which is memory consumption and handling and analysis of large datasets. We
are motivated to seek out how this problem can be solved in the context of Model-
Driven Development. Second, we observe that Genus App Platform has many
similarities with an in-memory database: Data is fetched from persistent data
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sources, manipulated and analyzed in-memory, before being persisted in the data
sources again. We are, therefore, motivated to see whether techniques used in
state-of-the-art read-optimized can be applied to a Model-Driven Engineering-tool.
Overall, our research is of interest because it increases the versatility of Model-Driven
Development-tools and the number of problems where Model-Driven Engineering can
be applied.

1.2 Research Goals

Based on our motivation, we define the following goals:

G1: Reduce memory consumption in Genus App Platform and
increase the platform’s ability to handle and analyze large datasets.

We set G1 not only to improve Genus App Platform and tackle its performance
challenges, but also to see how this problem can be generalized and solved in the con-
text of Model-Driven Engineering. By handling large datasets, we mean operations
and analyses that work on thousands, even millions of elements at a time. Most
of these operations, but not all, are associated with Business Intelligence related
functionality. In addition to G1, we also set a broader, but yet intertwined goal:

G2: Introduce new evidence that Model-Driven Engineering can
benefit from in-memory, read-optimized database technologies.

As mentioned, Genus App Platform, and likely other Model-Driven Engineering sup-
porting platforms, have many similarities with in-memory databases. We are curious
to see whether techniques used in in-memory databases, mainly those optimized for
analytical workloads, can be applied in the context of Model-Driven Engineering.

To reach G1 and G2, we address the following research question:

RQ1: How can technology used by in-memory, read-optimized
databases improve Genus App Platform’s ability to handle and
analyze large datasets, and what can Model-Driven Engineering,
in general, learn from database technology?

By answering RQ1, we hope to address G1 directly by making changes in Genus
App Platform that increase the platform’s ability to handle large datasets. However,
by using our changes in Genus App Platform as a proof-of-concept, we plan to
address G2 by drawing general conclusions on the combination of Model-Driven
Engineering and database technology.

We are aware that our goals and research question are prematurely presented in this
section, as they are based on knowledge about Model-Driven Engineering, Genus
App Platform, and read-optimized databases. However, this section becomes more
apparent after reading Chapters 2-4. Section 4.7 will again present our goals and
research question, but in the light of the discoveries made that far.
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1.2.1 Research Scope

The scope of this research has changed during the project execution. The initial
direction of the research aimed directly towards the Business Intelligence components
in Genus App Platform, components which had the mentioned issues: High memory
consumption and poor performance. Hence, the research started out with studying
how these challenges could be overcome, with an emphasis on in-memory and
read-only databases. However, as more insights were gained during the research, it
became apparent that our findings could be applied at a wider scope, thus came
the idea to use the discovered techniques in the entire platform. Not only would
this likely help Business Intelligence and the analytical components of Genus App
Platform, but also other parts of the system.

1.3 Research Methods

To reach our goals and to address our research question, we divide our research
into two parts. The first part is a literature review on read-optimized, in-memory
databases. This part also contains background theory on Model-Driven Engineering,
Business Intelligence, and an analysis of Genus App Platform. The second part is a
design and experiment type research, where we evaluate promising techniques from
the literature review by applying them to Genus App Platform. The performance
impact of the modifications are tested by benchmarks, and conclusions are drawn
based on the results.

1.3.1 Related Work

The main goal of the related work research and literature review is to gain a
deeper understanding of read-optimized, in-memory databases and find out which
technologies that enable high performance and low memory usage. In Section 1.2.1,
we saw that the original scope of the research was to improve analytical capabilities
in Genus App Platform. Thus, this part emphasizes techniques used in online
analytical processing (OLAP) databases. In this phase of the research, we also
study Model-Driven Engineering, Business Intelligence, Business Discovery, Delphi,
and provide an analysis of Genus App Platform.

Most of the literature review was performed using a method known as Snowballing,
which is convenient if the scope of the project is uncertain [18]. The Snowballing
method is the process whereby you start with a few number of authoritative papers
and based on these you expand your list of readings by relevant work that the papers
have cited. The identification of papers can also happen in the other direction,
where you look for papers that have used the current one as a reference. Either
way, this method is known to generate a large number of papers, so the researcher
must be very strict and objective in which papers to read.
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The initial papers, theses, and books used in this research were found in collaboration
with department staff and regarded in-memory databases, columnar storage, and
online analytical processing (OLAP) workloads. Both forward and backward
searching were performed, and each paper was considered by reading the abstract,
and conclusion and introduction if needed, to be put on the reading list. During the
search process, we picked articles that could help us answer RQ1. When the field
felt properly understood, we concluded the literature study. A similar process was
used for the residual background theory, although this process was not as thorough
as the study on in-memory databases.

To gain a deeper understanding of Genus App Platform, a combination of technical
briefs, lessons from Genus AS ’ employees, and source code analysis was used. This
part also included a study of Delphi, the programming language used to develop
the Genus App Platform core.

The findings from this part of the study result in three chapters in this report: One
chapter with background theory on Model-Driven Engineering, Business Intelligence,
Business Discovery, and Delphi, one chapter that outlines techniques used by in-
memory, analytical databases that enable high performance and low memory usage,
and one chapter with the Genus App Platform analysis.

1.3.2 Evaluation

The second part of the research is a design and experiment type study, where the
main goal is to answer RQ1. Here, we apply the most promising techniques used by
in-memory, read-optimized databases to Genus App Platform, and evaluate if they
increase the platform’s ability to handle large datasets. Also, we see what Model-
Driven Engineering in general can learn from database technology. According to
France et al., new techniques used in Model-Driven Engineering requires systematic
accumulation of experience [31], and this step provides such experience.

More specifically, we change the internal data representation in Genus App Platform.
We implement a column store, enhance data formats, and apply compression to
reduce Genus App Platform’s memory usage. Then we make modifications to exploit
the new storage format, which enables Genus App Platform to handle and analyze
large datasets. We run benchmarks to measure the impact of our changes, both to
assess the platform’s capabilities to handle and analyze large datasets, but also to
ensure that write and update operations have not been affected negatively.

We perform the research iteratively to gain a better understanding of the effects of
each technique. For every iteration, relevant benchmarks are run, results discussed,
and conclusions are drawn. Each iteration does not only identify methods which
require further investigation and exploitation but also discards unpromising tech-
niques or leaves them for future work. The iterations first seek to reduce memory
footprint, and when the memory usage is reasonably low, efforts are put in to
increase the performance of operations in Genus App Platform by utilizing the new
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storage format. The iterations are Genus App Platform specific and aim to reach
G1.

After the research implementation iterations, we discuss our results holistically
and aim to address G2. In this part, we discuss the implications for Genus App
Platform, Model-Driven Engineering, and traditional programming languages.

1.4 Contributions

The main deliverable from this research is this report which contains literature study,
implementation details, tests results, and discussions of our findings. The report
answers RQ1 and address both goals stated in Section 1.2 and has an emphasis
on the design and experiment part of the research. The source code is not a part
of the deliverables for this research, although class diagrams and some listings are
provided in the report.

This research contributes to an improved computer-based product, and it is mainly
Genus App Platform which sees these improvements. However, our goal is to increase
the versatility of Model-Driven Engineering supporting architectures, and we hope
other Model-Driven Development-tools benefit from our findings.

Second, and more important, is that we introduce new evidence that Model-Driven
Engineering can benefit from technologies used in read-optimized, in-memory
databases. In other words, we re-interpret the database technology and apply
it to the context of Model-Driven Engineering and re-evaluate how Model-Driven
Development-tools should represent data internally. We have not found any research
taking a similar approach.

1.5 Thesis Structure

We structure our thesis into three parts.

1.5.1 Related Work

The first three chapters of the thesis are associated with the first research phase,
which is the related work and literature review.

• Chapter 2 introduce relevant background material to this research. The chap-
ter contains sections about Model-Driven Engineering, Business Intelligence,
Business Discovery, and Delphi programming language.

• Chapter 3 is a chapter on read-optimized databases. This chapter explores
techniques used by these databases to achieve high performance and low
memory usage, as well as how such systems are benchmarked.
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• Chapter 4 contains a top-down analysis Genus App Platform, containing
platform architecture, application development, concepts, and source code.
The last part of this chapter identifies challenges in Genus App Platform,
which motivates the design and experiment part of the research.

1.5.2 Evaluation

The next part is the main research phase, where techniques learned from the
literature review are implemented in Genus App Platform and evaluated. The first
four chapters correspond to the four research iterations, where each chapter contains
an introduction, an implementation, results, a discussion, and a conclusion.

• Chapter 5 presents how column store is implemented in Genus App Platform.

• Chapter 6 demonstrates how representing data as primitive data types in
the columns reduce memory footprint.

• Chapter 7 shows how compression techniques reduces Genus App Plat-
form memory consumption.

• Chapter 8 investigates operations that exploit the column format, like join
and filter operations.

There is also one additional chapter in this part which does not correspond to any
of the four research iterations.

• Chapter 9 elaborates on techniques that were explored in this research and
worthwhile to discuss, but not tested enough to draw any conclusions. Here,
we examine the implications of UTF-8 string encoding and how database
statistics can be used to select the correct storage format.

1.5.3 Discussion and Conclusion

The last part discuss and concludes the findings in this research.

• Chapter 10 discuss our findings holistically and presents the implications for
Genus App Platform, Model-Driven Engineering, and traditional programming
languages. It also provides a section on research limitations and critics.

• Chapter 11 concludes this research and points at interesting directions for
future work.
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Part I

Related Work
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Chapter 2

Background Theory

This chapter introduces important background theory relevant to this research.
First, we introduce Model-Driven Engineering. Then, to introduce a use-case where
handling and analysis of large datasets is required, we give a brief introduction
to Business Intelligence and Business Discovery. Last, we study Delphi, the
programming language used in the Genus App Platform core.

11
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2.1 Model-Driven Engineering

Since the introduction of computers, researchers have been working to raise the
abstraction level at which software developers create programs [19]. One example of
this is compilers and how programmers no longer need to know assembly language for
the different processor architectures. Now, object-oriented programming languages
enable software developers to create own abstractions and solve more complex
problems than ever. Model-Driven Engineering is a continuation of this trend,
where the goal is to automate many of the complex, but routine, programming
tasks. Such tasks include interoperability, distribution, and persistence. One of the
key technological foundations of Model-Driven Engineering is support for visual
modeling.

Model-Driven Engineering research has identified that there is a gap between the
problem domain and the software implementation domain [31]. Thus, most research
focuses on bridging this gap. This process requires systematic experimentation and
accumulation of experience, and new techniques should strive to reduce unnecessary
complexities.

The ability to express models with concepts that are closer to the problem domain
and less coupled to the underlying implementation is one of the main advantages
with Model-Driven Engineering [56]. This makes programs easier to understand and
maintain, as well as making program specification and requirements easier to com-
municate. In addition, according to Atkinson et al., Model-Driven Engineering has
two more major advantages [19]:

• In the short term, Model-Driven Engineering increase developer productivity
and increase the amount of functionality an IT artifact can deliver.

• In the long term, Model-Driven Development supporting infrastructures are
more maintainable, and it takes a longer time before the artifact becomes
obsolete.

A common discussion topic in the field of Model-Driven Engineering is the efficiency
of the modeled programs. Criticism has pointed out that machines cannot optimize
code better than a creative human being with clever tricks [56]. However, it is
widely known that modern compilers outperform most system developers, and it
does so more reliably. The same observation can be done for most Model-Driven
Development supporting infrastructures. Current tools generate programs that are
within 5 to 15 percent effective as hand-crafted systems, both regarding memory
consumption and performance. However, there are still critical cases where manually
written code significantly outperforms Model-Driven Engineering, which has often
been used as an excuse to discard a Model-Driven Development approach altogether.
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Figure 2.1: Traditional Model-Driven Development with Unified Modeling Language
(UML) and Meta-Object Factory (MOF) model levels. (Adapted from [19])

2.1.1 Models and Model Levels

Central in Model-Driven Engineering is the use of models. According to Leppänen
M, a model is a thing that is used to help the understanding of some other things
[43]. A good model must appeal to our intuition, and it should reduce the amount
of intellectual effort required to understand what the model represents [56]. In the
field of Model-Driven Development, there are multiple model levels, where a model
on a higher level describes/prescribes models on the next lower level.

Leppänen M distinguish between instance models, type models and meta models
[43]. An instance model is a model which contains concepts that are instances of
some other model, the type model. Analogously, the type model is an instance of the
meta model. The latter is used to enable understanding, communication, analysis
and design of models. Model levels are composed of models that comprise concepts
on the same level. There are four model levels: instance level, type level, meta level,
and meta-meta level.

Depending on the research field and what is being represented, the four model levels
have different names and interpretation [43]. In information processing, the layers
are:

• Information System (IS) layer, typically represents day-to-day informa-
tion processing actions in an organization, like order processing or inventory
control. This layer represents changes in an application.

• Information System Development (ISD) layer, which is the layer where
information systems are analyzed, designed, implemented, and tested. This
layer contains descriptions of a specific application.

• Method Engineering (ME) layer is where techniques and procedures
for the ISD layer are developed, selected, configured and customized. In
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Figure 2.2: Linguistic metamodeling. Linguistic relationships span across model
levels while ontological relationships are contained within the same model layer.
(Adapted from [19])

this layer, new programming tools are created, for instance Model-Driven
Development-architectures and programming languages.

• Research work (RW) layer, involves research that aims to produce better
methods and concepts for the method engineering layer.

Unified Modeling Language (UML) and Meta Object Facility (MOF) is the first
generation of Model-Driven Development infrastructure [19], and is illustrated in
Figure 2.1. This generation has defined central components and terminology in
Model-Driven Engineering research. However, this method has been criticized for
lacking a clear description of how different layers relate to the real world. Also, it has
a single-instance relationship between the model levels, which causes inconsistencies.

To overcome the challenges with UML and MOF, other frameworks have been
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Figure 2.3: Class diagram in Mendix. (Adapted from [34])

proposed. One such framework is linguistic metamodeling, which separates linguistic
relationships from ontological ones [19]. As seen in Figure 2.2, linguistic relationships
span across model levels, while ontological relationships are typically on the same
level.

2.1.2 Model-Driven Engineering in Practice: Mendix

Research on Model-Driven Engineering has resulted in several tools and methods.
Some of these build on a sound, theoretical foundation, others take a more pragmatic
and practical approach. Either way, the success of a tool taking a Model-Driven
Development approach is heavily dependent on how application development in these
tools is done in practice [34]. In this section, we study Mendix Business Modeler,
or Mendix, to see how this product has approached Model-Driven Engineering.

Applications in Mendix are designed using three main models: An information
structure model, which defines the main data objects in the application, a microflow
model, which defines logic, and a form model, which defines system user interface.
Applications are designed in a modeling tool and deployed to a model repository,
where they become available for end users.

The information structure model defines the main data structure in an application,
and is designed in an UML-like class diagram. As seen in Figure 2.3, this model
does not only suport class definitions with properties, but also relations between
objects. This model may also define validation rules and events which trigger on
object creation, modification, and deletion.

In Mendix, the microflow model define complex logic in an application and allows
the designer to extend the system with custom behavior. Microflows may change
objects, control how and when forms are displayed, call custom Java code, or
integrate with external web services. Microflows are designed in a visual editor
which we see in Figure 2.4.

Forms and other graphical user elements are designed using a form editing tool,
similar to those found in popular programming IDEs. The form editing tool is
depicted in Figure 2.5. Mendix supports basic input fields, drop-down lists, tables,
and more. A form can be associated with objects, other forms, and microflows.

When the application is deployed to the model repository, end users can access the
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Figure 2.4: A microflow in Mendix. (Adapted from [34])

Figure 2.5: Form designer in Mendix. (Adapted from [34])
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system using a web browser. When a user requests a web page from the server, the
HTML and JavaScript required to show the page is created and sent to the browser.
This interpreted approach is different from other Model-Driven Engineering tools,
like OptimalJ, which relies heavily on code generation.

Genus App Platform has many similarities with Mendix. We study Genus App
Platform in Chapter 4.

2.2 Business Intelligence

We introduce Business Intelligence in this thesis to explain a common use-case
where the ability to handle and analyze large datasets is required. Business
Intelligence reqirements in Genus App Platform is one of the key motivations to
this research.

Business Intelligence is normally described as tools and techniques used to transform
unstructured data into useful and meaningful information that can be used to
support decisions [62]. The goal is to allow for easy interpretation and gain insight
into the data, such that businesses end up with a competitive market advantage.
Business Intelligence software can assist in making a wide range of business decisions,
including strategic decisions as goals and product pricing or positioning, as well as
operational decisions like priorities.

A challenge in Business Intelligence can be information overflow. To know which
information is needed in a Business Intelligence application, decision makers must
be aware of which types of decisions they should make, and have a model for
each [17]. Since managers rarely fulfill the latter requirement, they add a safety
factor and asks the IT department to provide everything. The result is information
overload, and the much of the data is irrelevant.

2.2.1 Data Warehouses

Companies’ need for Business Intelligence has traditionally been solved by data
warehouses. These data warehouses extract, transform, and load data into structures
that are suited for analytical queries and report generation.

The challenges with data warehouses are many, among them, the lack of flexibility.
Reports are usually preconfigured and implemented by the IT department, which can
result in lengthy reporting backlogs. Besides, the QlikView developers have pointed
out some other drawbacks of traditional query-based Business Intelligence tools
[49]:

• Only small subsets of the main dataset are extracted at a time. These subsets
are divorced from the data that was not included in the query.
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• Each query represents a single piece of information, and the information
gathered from individual queries is hard to combine.

• Traditional systems do not maintain relationships between queries. A query
can be hard to formulate, and it is not always easy to know what to look for.
Traditional Business Intelligence applications do not let the user build queries
step by step.

2.2.2 Star and Snowflake Schema

Many Business Intelligence applications and data warehouses usually access data
that is organized in a star or snowflake schema [21]. Distinct for such schemas
is that they have a huge fact table, which can have millions or billions of rows,
and smaller dimension tables, each representing some aspect of the fact rows (e.g.
category, region, time). The fact table is connected to the dimension tables using
foreign keys. A snowflake schema is an extension of the star schema, where one or
more dimension tables can have relationships that further describe a dimension.

Star and snowflake schemas are typically used in Business Intelligence applications
because they are easier to optimize [40]. The query optimizer creates efficient query
plans by filtering and applying joins on the most highly selective dimensions first.
Secondly, queries on star and snowflake schemas are easier to anticipate, such that
indexes, materialized views, and/or denormalization can be applied to improve
query efficiency [21].

The disadvantage of using star and snowflake schemas for Business Intelligence is
the lack of flexibility. There are certain situations where there are more than one
large fact table and situations where there is no clear distinction between fact and
dimension tables.

2.3 Business Discovery

To overcome the challenges with traditional Business Intelligence systems, a new
type of products have emerged. We call these for Business Discovery products, a
notion that was introduced by Qlik [51]. Business Discovery products normally build
on in-memory technologies and are fast, elegant, and end user intuitive solutions
to analyze business data. Examples of such products are Microsoft PowerPivot,
Tableau, and QlikView.

Business Discovery products allow users to follow their ”information scent” or ”train
of thought” when navigating through the data [37, 51]. As seen in Figure 2.6, there
are no prespecified drill-down patterns, and users decide where to start and end.
In these applications, grouping, joining, and calculations are performed on-the-fly.
High-performance, in-memory technologies are used to enable such functionality.
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Figure 2.6: Comparison of a traditional reporting application and QlikView. Tradi-
tional Business Intelligence applications normally have predefined drill-down paths.
QlikView allows the user decide where to start and end. (Adapted from [51])

In the next sections, we explain how a typical Business Discovery application works
by using QlikView primarily as an example. Tableau and Microsoft PowerPivot work
similarly.

2.3.1 Data Import

Data is loaded into a QlikView document using a data import script that connects
the application with data sources like databases or files. The script uses an SQL-like
syntax that lets the user specify names of fields and tables that are used in the data
analysis. When the data import script is run, data is fetched from the sources and
put into the QlikView in-memory engine such that data can be queried efficiently.
No queries are proxied to the underlying data sources, QlikView manage all queries
internally.

The data import script will regularly include more than one table. Multiple tables
are associated if they have fields with the same name, as seen in Figure 2.7. Internally,
there can be only one data connector between a pair of tables, so if multiple tables
refer to a single table, a mechanism (either synthetic keys or loose coupling) must
be applied to logically duplicate the table. This restriction ensures that there exists
no more than one possible join path between any pairs of tables [14].

In the data import step, data might be preprocessed and transformed. First, data
can be aggregated, for instance by summarizing or grouping, before being loaded
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Figure 2.7: Four tables: Countries, customers, transactions, and memberships. The
fields Country and CustomerID associate the tables. (Adapted from [52])

into QlikView. Second, data might be filtered. Both these techniques reduce data
volumes. Lastly, data can be denormalized in the import script, i.e. pre-joining
tables before import. Denormalizing can be done to lower the number of tables in
the data extract and, by doing so, reduce application complexity.

2.3.2 User Interface

Users interact with the Business Discovery application through a reporting dash-
board, as seen in Figure 2.8. Requirements for such panel are typically [51]:

• Clicking field values in list boxes.

• Lassoing data in charts, graphs, and maps.

• Manipulating sliders.

• Choosing dates in calendars.

• Cycling through different chart types.

Users navigate through the data by making selections in the user interface. When a
selection is made, the item is made green, as seen in Figure 2.8. The current selection
is also known as the application state. Upon selection, the rest of the elements in the
panel are updated based on the new application state; aggregations are recalculated,
and graphs and lists are updated. QlikView colors matched elements white and
unmatched elements gray. Dashboards are typically available from different devices,
including desktop computers, tablets, and mobile phones.
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Figure 2.8: QlikView dashboard with various GUI elements, like lists and charts.
Selections are green, matched data is white, and unrelated data is grey. (Adapted
from [51])
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2.3.3 Business Discovery and Queries

We see that Business Discovery products interact with the data using selections
and filters in a reporting panel. This technique is different from database systems
designed for OLAP workloads, which normally use a query-based interface, usually
SQL. Still, Business Discovery products need to provide most functionality that
SQL databases do, like row listing, filtering, joining, grouping and aggregation, and
sorting.

Queries, or requests, in a Business Discovery application, have certain characteristics.
First of all, they cannot be anticipated, more specifically, they are ad-hoc. Secondly,
there is a limit to the number of returned rows. Users are interested in queries that
can be analyzed quickly, so we do not expect a Business Discovery application to
return thousands of rows as a result from a single table [30]. Also, the user interface
has limitations in how much data that can be displayed at the same time.

2.4 Delphi Programming Language

The core of Genus App Platform is written in Delphi. It is, therefore, important
to understand how this language works. Delphi is both a programming language
and an integrated development environment [72], however, we will only consider
the programming language in this section.

Delphi is a strongly typed, high-level, object-oriented programming language [4,
72]. The language is based on Object Pascal, a Pascal dialect. Delphi supports
polymorphism and interfaces, Unicode, inline assembly, generic programming,
pointer arithmetic, function overloading, and more. Simple preprocessing directives
are allowed, but there is no support for macros. The Delphi compiler is efficient and
compiles source code into native binaries for a wide variety of platforms, including
Windows 32- and 64-bit architectures and OSX 32-bit architecture.

A program written in Delphi is composed of different source code units, with two
mandatory parts: The interface, much like a header in C, which declares constants,
types, variables, and function signatures, and the implementation, which contains
the actual executable code [7]. Types, variables, and functions might also be declared
in the implementation part. However, these will not be made accessible outside the
unit. Each unit specifies its dependencies to other units, and the dependency graph
is created automatically without using makefiles or similar mechanisms.

2.4.1 Delphi Types

Delphi supports a wide range of data types. In the language taxonomy, there is a
total of seven different type categories. In this section, we elaborate on the three
most relevant categories for this research.
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Figure 2.9: String structure in Delphi. All strings are heap allocated, although
string pointers may exist both in the stack and on the heap.

Simple Types

Simple Types in Delphi, which are sometimes referred to as primitive data types in
other programming languages, are divided into two categories: Ordinal and real
[11]. Simple data types are byte aligned, which means no data type takes less than
1 byte.

Ordinal types, which define ordered sets of values, include integer, character,
Boolean, enumerated, and subrange types. The different types have different sizes
and ranges, for instance, integers can be represented by 32 or 64 bits.

A real data type defines a set of numbers that can be represented with a floating-
point notation. Types include single (4 bytes) and double (8 bytes) precision floating
point numbers, as well as a fixed-point data type for currencies.

String Types

Delphi has string support built into the language. Strings are reference counted and
dynamically allocated on the heap by the compiler [72]. A string variable is a pointer
to a structure that contains a 32-bit length indicator, a 32-bit reference count, a
16-bit data length indicating the number of bytes per character, and a 16-bit code
page [12]. This is depicted in Figure 2.9. There is copy-on-write semantics if one
variable that references the string changes the contents of the string.

There are two major string types in Delphi: AnsiString and UnicodeString.
UnicodeString, which is the default, supports both UTF-8 and UTF-16 encodings,
where UTF-16 is default on the Windows platform. UTF-16 stores each character
with two or four bytes, while UTF-8 stores the 128 ASCII characters with only one
byte. Conversions between string types and encodings happen implicitly.

Structured Types

For representing more complex data structures, Delphi provides a type category
named structured types. This category include set, array, record, file, and class
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types [13].

Delphi has two main array structures: Static and dynamic. Static arrays are
allocated with a certain length, and will take up as much memory as the assigned
length, even if values are not assigned. Dynamic arrays are more versatile; if
a value that has not yet been assigned gets assigned, the array is reallocated.
Dynamic arrays might also be reallocated using the SetLength function. Like
strings, dynamic arrays are reference counted, but they do not have copy-on-write
semantics.

The record type commonly represent a heterogeneous set of values. This type has
value semantics, i.e. is not a boxed type, which means data is copied on assignment
and passed by value as function arguments. Hence, records can both be allocated
on the stack and the heap. Records are byte-aligned by default.

Classes in Delphi are dynamically allocated blocks of memory whose structure is
determined by the class definition [2]. Class instances are allocated and deallocated
by the memory manager by calling the constructor and destructor respectively.
Values are stored in the same order which they are declared in the source code. In
addition to the variables, the first 8 bytes of an object points to a virtual method
table. Variables of class types are 64-bit pointers and can hold the value nil.

2.4.2 Memory Management

In Delphi, the memory manager is replaceable and dependent on which platform
the code is compiled for [8]. Programs compiled for Windows, which is the case for
Genus App Platform, use the FastMM memory manager. FastMM is optimized for
programs that allocate small to medium size blocks, and it anticipates future block
reallocations which reduce address space fragmentation. Block sizes are rounded up
to the nearest 16 bytes.

2.4.3 Calling Conventions and Inlining

In Delphi, parameters are transferred to functions in registers, on the program
stack, or both [9]. Which one is used is dependent on the calling convention of the
function and the type of the parameters. Simple data types, unless the var keyword
is specified, is passed by value while most other values are passed by reference.

The default calling convention is the register calling convention. This convention
uses up to three registers to pass parameters to functions. The remaining parameters,
if any, are passed on the program stack. This convention is the most efficient, as it
usually avoids creating a new stack frame [9]. Access methods for class properties
must use this convention for this reason.

The Delphi compiler supports function inlining, which is a measure that may result
in faster code at the expense of space [1]. By using the inline keyword in a method
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or function definition, the programmer gives the compiler a hint that the function
body should insert directly instead of generating a function call. The keyword
is a suggestion, and there are several conditions where inlining cannot happen.
For instance, the compiler will not inline virtual methods or functions containing
assembly code.

2.4.4 Standard library

Delphi comes with an extensive standard library. This section lists some built-in
classes which we have used in this research.

TArray

TArray is the generic implementation of dynamic arrays (array of *), which means
it is referrence counted and dynamically allocated. The array is reallocated using
the SetLength function. Its performance is studied in Appendix B.

TList and TObjectList

TList and TObjectList are wrappers for dynamic arrays with built-in memory
handling. For instance, elements can be added to the end of the list without any
explicit memory reallocation. TObjectList is like TList, but it assumes ownership
over objects and automatically frees objects that are removed from the list. We
compare TList performance with TArray in Appendix B.

TBits

TBits is a class that represents a bitmap. It has more or less the same interface as
a list of booleans, except that this class is optimized for speed and memory using
bitwise operations and assembly code. The OpenBit method finds the first open
bit, or 0, in the bitmap.
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Chapter 3

Read-Optimized Databases

This chapter forms the background theory on databases that are optimized for
analytical workloads, where the main motivation is to investigate which technologies
enable high-performance data processing to accommodate such workloads. The
chapter elaborates on storage formats, compression, and testing, and also background
theory on modern CPUs. We emphasize techniques used in in-memory databases,
although most of our findings apply to disk-based databases as well.

The sources used to form this chapter were found using the Snowballing method.
During this research, we identified several database systems and Business Intelli-
gence solutions which apply the various techniques.

27
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3.1 Database Terminology

This section presents terms and definitions central in the database field and impor-
tant to understand for the contents of this chapter.

Online Analytical Processing (OLAP) We use the term Online Analytical
Processing (OLAP) extensively in this chapter. By OLAP, we mean systems
that enable users to analyze multidimensional data interactively from multiple
perspectives [67]. OLAP is usually dominated by ad-hoc, complex queries that
group, aggregate and summarize over large datasets [22]. OLAP systems can be
both disk and memory-based. Column storage is considered to be an attractive
solution for OLAP systems, a technique we study further in Section 3.2.

Online Transactional Processing (OLTP) Online Transactional Processing
(OLTP) is a class of database systems that manage transaction-oriented applications
[68]. Transactional workloads are typically referred to as insertion of new records,
as well as updates and deletes of single records in the database. An OLTP system
normally uses row storage for its data.

Database Management System (DBMS) A Database Management System
(DBMS) is a computer software application for storage and analysis of data [64].
The most common way to interface with a database is through SQL, although
other methods exist. Regarding performance, DBMSes can focus on analytical
workloads (OLAP), transactional performance (OLTP), or both. In this literature
review, we look at several systems, including Oracle Database, IBM DB2 with BLU
Acceleration, SAP HANA, SAP NetWeaver, Microsoft SQL Server, C-Store, Vertica,
Blink, EXASOL EXASolution, Oracle Database, HyPer, and Hyrise.

3.2 Column Storage

The most common storage format for OLTP systems is row storage, as we briefly
mentioned in Section 3.1. Row storage enables easy fetching of values from the same
tuple and is suited for updates, inserts, and deletes. However for OLAP workloads,
columnar storage has turned out advantageous, mainly because of two reasons:
First, aggregations are easier, since calculations are performed on data consecutive
in memory. Second, column storage does not fetch more data than is needed for
the query.

Our research has identified several systems using columnar storage. These include
MonetDB [23, 24], C-Store [58], SAP HANA [28], and Microsoft SQL Server [3, 41],
as well as the Business Discovery product Tableau [37].
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(a) Row store layout.

(b) Column store layout.

Figure 3.1: Row and column oriented layouts for a table with two columns, I and
P. In the row-oriented layout (a), records (I and P tuples) are stored next to each
other within the pages. In the column-oriented layout (b), values from the I column
and P column are stored separately on different pages. (Adapted from [22])

In a column store, each column in a table is stored separately in a continuous
segment (unless data is horizontally partitioned, see Section 3.2.4), as opposed to
row stores where attributes from a single row are stored together [22]. Figure 3.1
depicts both row and column oriented layouts for a table with two columns (I and
P). The row storage alternates between I and P to store records next to each other
on the pages while the column storage keeps I and P values separate.

The advantages of using column storage are many. The primary one is that no more
data is accessed than strictly necessary for a query. In addition to this, columns
are inherently more compressible [3]. Compression leads to higher performance
due to better cache and memory utilization, and this effect is one of the reasons
why Microsoft SQL Server use column storage. We elaborate on the performance
benefits of compression in Section 3.3.

Column storage also comes with a more subtle advantage; columns have a low
degree of freedom compared to row storage [23]. When operating on column values,
only the local memory offset is required, not the global table layout. This removes
some layers of indirection and query processing can be made more efficient. Boncz
et al. claim that this is the main reason why column storage is advantageous.

One of the major disadvantages with column store is that it is not as easily
updateable [22], especially if the columns are compressed or sorted. This challenge
is typically overcome using a separate structure for writes and updates called a delta
store. Using such structure, the main part of the database is stored column-wise in
a static structure optimized for reads while the updates and inserts are accumulated
in a smaller and more dynamic structure. We study delta stores in Section 3.14.1.

Another disadvantage with column storage is tuple materialization costs. Since the
result of most DBMS queries should be returned as rows, columns must be stitched
back together before returned to the client, an operation that can be expensive.
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3.2.1 Sorting

Few systems sort values within a column, with the exception of C-Store [58] and
Vertica [40]. Sorting values in a column store comes with some advantages. First,
single value lookups are easily performed by a binary search. Second, and perhaps
most important, is that sorted columns can be compressed aggressively by applying
Run-Length Encoding. Run-length encoding is the main reason C-Store stores sorted
data. We study this type of compression in Section 3.7.

Except from C-Store and Vertica, our research has shown little indication that
sorting values in columns are common. For instance, Microsoft SQL Server [41],
Blink [54] and Oracle Database [39] accept values in the order they appear.

3.2.2 Row Stores vs. Column Stores

Most research agrees that row stores are most suitable for OLTP workloads, and
column stores are most appropriate for OLAP workloads. Abadi et al. set out
to investigate whether there is a fundamental difference between row and column
stores [16]. In their research, they used a row store with a vertically partitioned
schema to mimic a column store. They also tried applying indexes to each column
such that each column could be accessed independently. Their conclusion was that
there is something fundamental about column stores that makes them perform so
well, and that changes must be done to both storage layer and query executor to
obtain the benefits of a column-oriented approach. The main reasons why column
storage is better suited for OLAP workloads are:

• Compression, which we discuss in Section 3.3.

• Vectorized execution, which we discuss in Section 3.10.2.

• Late materialization, which we discuss in Section 3.10.3.

There are situations for OLAP databases where a row store performs better than
a column store. A research executed by Holloway et al. shows that a row store
can outperform a column store when processing time is the dominating constraint
[35]. This is typically the case for low selectivity queries and queries with many
predicates. To further improve row storage performance, tuples can be compressed.
However, row storage will most likely never beat column stores for OLAP workloads,
since bandwidth requirement for processing rows is higher than for columns.

We have also identified papers that claim OLTP databases also benefit from a
columnar storage. The work of Farber et al. argues that columnar storage is suited
for transactional workloads as well, mainly due to the compression [28]. Also,
storing data in columns allows for dropping indexes, which is usually costly to
maintain. Last, there are usually a lot more read operations than inserts, updates,
and deletes in an OLTP database.
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Figure 3.2: OLTP workloads will affect more than a couple of rows. Index structures
must be maintained, and aggregations and materialized views must be updated. In
the figure, an update that triggers a chain reaction is depicted. (Adapted from [47])

Plattner et al. claim that most OLTP queries request aggregates instead of single
rows [47]. Also, updates to the database normally trigger a chain reaction of
updates to indexes and materialized views, as seen in Figure 3.2. Their conclusion
is that column storage is suited for OLTP databases due to efficient aggregation
and absence of indexes. The absence of indexes also makes application development
easier, since no performance layer must be specified by the application programmer.

3.2.3 Row Identifiers and Tuple Materialization

A row in a column store is identified by a unique identifier that is common to every
value belonging to the same row in a table. Many systems store these IDs implicitly
as virtual object IDs (void). A void for an object is calculated using a base ID
and the offset from the first value in the column. For instance, the fourth value of a
column with base ID 100 has an implicit ID of 103. void type identifiers are used in
MonetDB [24], C-Store [58], Vertica [40], and IBM DB2 with BLU Acceleration [54].
Although stitching together rows in a column store is a trivial operation, it comes
at a higher cost than in a row store.

If horizontal partitioning is used, a technique we discuss in the next section, the
partition number must also be accounted for in row identification. For instance,
Microsoft SQL Server identifies a row by a combination of row group ID and tuple
ID [41].

3.2.4 Horizontal Partitioning

Several systems split columns horizontally. Partitioning data horizontally can be
beneficial due to the following reasons:

• Storing metadata, like minimum and maximum values per block, exploits
clustering in the data. A partition block can be skipped entirely if a predicate
is outside the value range of a block.
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Figure 3.3: This figure illustrates how a column store index in Microsoft SQL
Server is created and stored. The set of rows is divided into row groups that are
converted to column segments and dictionaries. (Adapted from [41])

• If each partition has its dictionary, the dictionary can be scanned for the
presence of a key. If the key is not there, the partition can be skipped.

• Smart partitioning of data based on the value frequencies handles data skew
and allows for improved compression rates [53].

• Partitions provide a logical division of data that can be processed simultane-
ously. The division enables parallelization and balance [27].

• Horizontal partitions can be created one at a time, such that new insertions
will not affect already existing partitions. New data can be accumulated in
temporary structures, and when there are enough rows in these structures,
read-only column partitions can be created and inserted into the database.

• The operating system might not be able to provide memory chunks large
enough to contain an entire column. Partitioning the data horizontally helps
overcome this limitation.

Instead of operating on entire columns at a time, Microsoft SQL Server divides the
data into row groups that are groups of rows compressed into a columnar format
[41]. Within the columns, data is not sorted. Each row group is encoded and
compressed independently, and as we see in Figure 3.3, each partition has its own
dictionary. We were unable to find out how many rows are contained by each row
group, but the Larson et al. say that the number of rows in a row group must be
small enough to benefit from in-memory operations and large enough to achieve
high compression rates.

For Oracle Database, the column store is made up of multiple extents, called In-
Memory Compression Units (IMCUs) [39]. Much like Microsoft SQL Server, data is
loaded into the IMCUs without a sort order; they are stored the same way as they
appear in the row format. Each partition consists of approximately half a million
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rows, and each IMCU contains maximum and minimum values per column such
that data can be pruned easily.

3.3 Compression

Historically, compression has been thought of a measure for reducing disk usage
and memory footprint. However, in our case, compression of data also comes with
the benefit of increased performance. A study conducted by Abadi et al. looked
into database compression for in-memory databases, and concluded compression
increases performance by a factor of two on average [16].

Among systems we have studied in this literature review, we have identified several
that applies compression for performance reasons. Among these systems are IBM
DB2 with BLU Acceleration [54], C-Store [58], Vertica [40], Oracle Database [45],
Gorilla Time Series Database [46], and EXASOL EXASolution [27]. In addition
to this, Business Discovery products Tableau and QlikView also use compression
extensively to achieve good performance [37, 51].

Compression of data in a database is beneficial for performance due to:

• Cache locality is improved [27]. More values from a single column (or record)
fit in the cache at the same time.

• Memory traffic is reduced. Compression can help turning a database from
memory-bound to CPU bound [74].

• Compression reduces CPU cycles [58]. First of all, as stated above, it reduces
memory latency and improves cache locality, such that more cycles can be used
for calculations and not waiting for memory. Besides, compression enables
working on multiple values in parallel using SIMD instructions, as we see in
Section 3.10.4.

Still, even though compression is used to increase database performance, the fact
that compression reduces memory usage is also important. Even though DRAM is
cheap, it is rarely over-provisioned and unused [20]. Also, compressed data frees
up space for other structures, like indexes and result caches. For instance, Oracle
Database justifies their dual format by using the space freed up by compressing
the columns [39, 40]. Compression can help an application avoid relying on slow,
virtual memory.

3.3.1 Compression Types and Light-Weight Compression

A study performed by Westmann et al. investigates database compression, and
concludes that the compression must be light-weight for maximum performance
[61]. In other words, the real benefit of compression can only be leveraged if the
decompression effort can be minimized [42]. Light-weight compression has been
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Figure 3.4: I/O-RAM vs RAM-CPU compression. In the left sub-figure, data is
decompressed before it is put in the buffer manager (RAM). In the right sub-figure,
data is kept compressed in the buffer manager and only decompressed when it is
brought into the CPU cache. (Adapted from [76])

defined by Holloway et al. as bitpacking, dictionary encoding, delta encoding, and
run-length encoding [35]. Holloway et al. also conclude that dictionary encoding
and run-length encoding are the best compression schemes for column stores. These
compression techniques are fast and fine-grained, which is essential for performance.

Zukowski et al. conclude that a compression algorithm should care about super-
scalar processors. This implies that the algorithm should be able to pipeline loops,
support out-of-order execution, and avoid if-then-else in inner loops [76]. We study
modern CPUs and compilers in Section 3.9.

A database can use multiple compression schemes. First, most of the light-weight
compression techniques can be combined, where the most common combination
is dictionary encoding and bitpacking. We study this idea in Section 3.5. Second,
different compression schemes can be used for different columns. In Section 3.2.1,
we saw that C-Store and Vertica allow for multiple column projections (a subset of
the columns), where each projection is sorted based on one of the columns in the
subset.

3.3.2 Working Directly on Compressed Data

Earlier database systems with compression, data was decompressed when brought up
to RAM. In 2006, Zukowski et al. suggested that data should not be decompressed
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Figure 3.5: Bitpacked column values. Values are stored with no more bits than
needed to represent the column, which results in values that are not aligned to
machine word boundaries. Values may be spread across several machine words and
share their machine word(s) with other codewords. (Adapted from [73])

when moved from disk to RAM, but when brought from RAM to cache [76], as
depicted in Figure 3.4. MonetDB/X100 is a system that decompresses when data
is moved from RAM to cache [36].

However, the most performance benefit of compression is seen when the system
works on the compressed data directly [42]. This implies that data should not
be decompressed until it is materialized and sent to the user. This principle is
backed by the creators of Blink, who says data should never be decompressed before
absolutely needed [21]. Oracle Database claims one of the main performance benefits
is to work directly on the compressed data [45]. Not decompressing data before it
is needed relates to a technique known as late materialization, a technique we study
in Section 3.10.3.

3.4 Bitpacking

Bitpacking is a form of compression where values are stored with no more bits than
needed. In other words, if a column has no more than 32 distinct values, only 5 bits
are required to represent a value. This way, in a 64-bit architecture, 100 values can
be stored using 100 ∗ 5 = 500 bits, and not 100 ∗ 64 = 6400. Bitpacking has lower
compression rates than algorithms that allow variable length for each value, but the
main benefit is that values can be randomly accessed in constant time [53, 73]. Also,
bitpacking enables SIMD processing, which we discuss in Section 3.10.4. Bitpacking
is well suited for high cardinality, uniform distribution of values [35].

As seen in Figure 3.5, bitpacked values will not always align to word boundaries.
For processing, values normally have to be moved to the word boundary, but this
cost has been found to be negligible [35]. Aligning values can be done in an SIMD
like fashion, a technique we study in Section 3.10.4.

In its simplest form, bitpacking works directly on the column data, but the com-
pression scheme can be more powerful if combined with other compression types.
We see in Section 3.5 that dictionary keys can be bitpacked, and in Section 3.6 that
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Figure 3.6: A normal bitpacked vector (left) and a partitioned bitpacked vector
(right). Instead of rebuilding the entire vector on value overflow, the partitioned
bitpacked vector has different partitions where each partition is compressed using
an increasing number of bits. (Adapted from [29])

delta encoding benefits from bitpacking if the deltas between the values are small.

3.4.1 Issues with bitpacking

There are two major limitations with bitpacking [29]. The first is that if the
bitpacking overflows, the full bitpacked vector must be rebuilt. What this means is
that if all values are mapped, such that there are no available values with n bits,
a new bit must be introduced, and the entire vector must be rebuilt where each
value has n + 1 bits. This is depicted in the left part of Figure 3.6. To counter
this effect, Faust et al. have suggested a partitioned bitpacked vector structure that
creates a new partition with n + 1 bits on overflow, as seen in the right part of
Figure 3.6. Although this technique improves performance on insert operations,
read performance suffers due to the extra overhead of looking up a value.

The second limitation with bitpacking is that it does not account very well for data
skew. In bitpacking, each distinct value in a vector contributes to the total number
of bits required, completely disregarding the distribution of the values. Often in
a database, there is a large number of distinct values, but they are not uniformly
distributed. This problem can be solved with the partitioned vectors explained
in the previous paragraph, by mapping the values that occur more frequently to
the partitions with the fewest bit per value. Other algorithms map outliers to a
separate structure, like PForDelta [22].
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Figure 3.7: A sorted dictionary. Each distinct value is stored only once in the
dictionary. A key is assigned to each entry in the dictionary, and those keys are
stored in the columns instead of the actual values. (Adapted from [48])

3.5 Dictionary Encoding

Dictionary Encoding, or Dictionary Compression, is widely used within column store
databases. Systems that use dictionary encoding include Oracle Database [39], IBM
DB2 with BLU Acceleration [54], SAP HANA [28], SAP NetWeaver [42], Blink [36],
Microsoft SQL Server [41], and more. QlikView stores each distinct data point only
once [50]. Tableau does not mention anything about dictionary encoding in their
whitepapers, but an official blog post claims that this compression technique is used
[15].

In a dictionary encoded column, each distinct value is stored once in a structure
known as a dictionary. Keys are assigned to each entry in the dictionary, most
commonly integers from zero and up. Columns store these keys and not the actual
values, and data is compressed since each unique value is stored exactly once.
Dictionary encoding using a sorted dictionary is illustrated in Figure 3.7. Dictionary
encoding is particularly effective when a column in a column store has only a few
distinct values in a large dataset [29].

Except from the compression, one of the major advantages of dictionary encoding,
is that many database operations can be performed directly on the encoded values
[29], which we have seen in Section 3.3.2 is important to achieve good performance.
Integer comparisons are less expensive than comparing the actual values, especially
for strings. Additionally, range and LIKE predicates can be turned into IN-list
operations, since the dictionary can be scanned first to find the relevant integer
keys [21].

If the columns are partitioned horizontally, which we have discussed in Section 3.2.4,
it is common that each partition has a separate dictionary. This is the case for
most database systems, like Oracle Database [39], Blink [21], and Microsoft SQL
Server [41]. When a dictionary is stored per partition, it can be used for quick data



38 CHAPTER 3. READ-OPTIMIZED DATABASES

pruning; if a value is not present in the dictionary, the partition can be skipped.
Blink and MonetDB/X100 use this technique [21, 23].

When implementing dictionary encoding, special considerations should be taken.
First, if the dictionary turns out bigger than the values it is replacing, dictionary
encoding should not be used [35]. Secondly, dictionary encoding performs best if
the dictionary fits inside the L2 cache of a processor.

Like bitpacking, dictionary encoding does not handle data skew very well, since
each unique value needs an entry in the dictionary no matter how frequent that
value appears in a column. Besides, for high cardinality columns, the compression
is less efficient.

3.5.1 Sorted Dictionaries

Dictionaries can be either sorted or unsorted. Using a sorted dictionary enables
easier value lookup using a binary search. However, more important for analytical
performance, is that using a sorted dictionary can turn range scans into simple
integer comparisons [29]. For instance, if we want to find all sales in 2010, we only
need to look up the integer codes for January 1st, 2010 and January 1st, 2011 and
find all integers within this range. Since integer comparisons are fast and effective,
this technique will usually improve performance.

Most database systems today use sorted dictionaries. SAP HANA is an example of
such system [28].

However, as briefly mentioned in Section 3.2.1, keeping a dictionary sorted implies a
higher overhead on database inserts, updates, and deletes. To mitigate this problem,
some systems divide their data into two stores: A read-optimized store, and a delta
store (for updates and inserts). With this division, it is common to use a sorted
dictionary for the read-optimized store and an unsorted dictionary for the delta
store [47].

3.5.2 Dictionary Encoding and Bitpacking

Dictionary encoding is commonly used in conjunction with bitpacking. With this
combination, the dictionary keys in the columns are stored with no more bits than
necessary. Since dictionary keys normally are integers from zero to the number of
entries, bitpacking enables high compression rates, especially for low-cardinality
columns.

Systems using dictionary encoding and bitpacking include IBM DB2 with BLU Ac-
celeration [54], Blink [21], SAP NetWeaver [74], and SAP HANA [48]. QlikView has
also reported to compress data with only the number of bits required [51]. Microsoft
SQL Server does not apply bitpacking on dictionary keys in columns, and instead
store them as 32-bit integers [41].
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Figure 3.8: Delta Encoding. The difference between the current and the previous
value is stored instead of the actual value. Since the difference between values
usually is smaller than the actual values, fewer bits can be used to store the data.
(Adapted from [60])

The same advantages and disadvantages of bitpacking apply to dictionary encoding
with bitpacked columns. For instance, values can be looked up in constant time
and queries can be processed in an SIMD-like fashion. However, insertions to the
dictionary might lead to an overflow, which requires the entire column to be rebuilt.

3.6 Delta Encoding

Delta Encoding, or Delta Compression, is a compression method where the difference
between the previous and the current value in a column is stored instead of the
actual value [65]. This is illustrated in Figure 3.8. Systems using this form for
encoding include Vertica [40], C-Store [58], and Blink [53].

Delta encoding is particularly effective when there are small differences between
consecutive values in a column. In C-Store and Vertica, Delta Encoding is the
compression of choice for sorted columns with high cardinality, since sorted columns
minimize the deltas. Delta encoding can also be effective on sorted, low-cardinality
columns, but is in general outperformed by run-length encoding in this case.

One of the major drawbacks of delta encoding is that values cannot be accessed in
constant time. To find a particular value at index i, all the values from 0 to i − 1
must be decoded and accumulated. Also, delta compressed columns are hard to
work on directly without decompression.

Bitpacking can be used in conjunction with delta encoding. If the deltas are small,
which they typically are if applied to a sorted column, bitpacking can compress
a column significantly. The column can be compressed even further by using
dictionary encoding, delta encoding, and bitpacking at the same time because the
variance in the column values will be reduced when replaced with dictionary keys.
However, applying delta encoding to bitpacked, dictionary encoded columns comes
at a cost; Queries can no longer work directly on the compressed data using simple
integer operations. In other words, we improve compression, but at the expense of
performance.
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Figure 3.9: Run-Length Encoding on a sorted value range. Repeated values are
replaced with one instance of the value and an integer indicating how many times
that value occurs in the sequence. (Adapted from [57])

3.7 Run-Length Encoding

Run-Length Encoding is a lossless data compression algorithm that replaces repeating
data values with only one instance of the data and the number of how many times
that value appears in the sequence [57], like illustrated in Figure 3.9. Although
it can be used for any sequence, run-length encoding works best on sorted data
[22, 35]. In this case, each unique value in the sequence is represented exactly once.
Run-length encoding performs best for low-cardinality columns. The method can
also be applied to compress sparse bitmaps [58].

Run-length encoding is used in C-Store [58], Vertica [40], Oracle Database [45], and
SAP NetWeaver [42], but only if the values are sorted.

Run-length encoding enables the query operators to work directly on the compressed
data. For instance, queries can exploit run-length encoding on sorted columns when
performing grouping and aggregation, since the values are already stored as groups.

3.8 Bitmaps and Bitmap Indexes

C-Store and Vertica compress certain low cardinality columns using bitmaps. With
this technique, each unique value in a column is represented as a bitmap where the
set bits, or 1s, indicate which rows that have that value. If there are few distinct
values in a column, the size of the bitmaps will be smaller than storing the actual
values, and compression is achieved. Since these bitmaps are typically sparse, they
can be compressed further with techniques like run-length encoding.

A Bitmap Index is a particular index structure where a bitmap represents each
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Figure 3.10: Executing a query using bitmap indexes. Queries are efficiently
processed using bitwise operations like AND and OR. Adapted from [6])

distinct value in a column, and all rows containing that value is set to 1. It can be
used to aid predicate evaluation. A bitmap index is most efficient on queries that
contain multiple WHERE clauses since many candidate rows can be excluded using
bitwise AND and OR operations, as seen in Figure 3.10 [6]. Since bitmap indexes
combine so easily, composite indexes are extraneous.

Business Discovery product QlikView reports that it uses binary indexes for each field
[50], which we believe are the same as bitmap indexes. Some database management
systems also support bitmap indexes, including Oracle Database [6] and IBM DB2
with BLU Acceleration [54].

In general, low-cardinality columns, which is columns with few distinct values, are
better suited for bitmap indexes than high-cardinality columns [6]. The reason for
this is because a bitmap must be created and maintained for each unique value in
the column. Besides, since these indexes are hard to maintain, they are not suited
for inserts, updates, and deletes. When deciding whether to add a bitmap index to
a column, Oracle Database recommends at least 100 rows per distinct value.

3.9 Modern CPUs and Compilers

Modern processors are capable of performing an enormous amount of calculations
per second, but that depends on the amount of available and independent work.
The instructions-per-second (IPC) difference between minimal and maximal CPU
utilization can easily be one order of magnitude [23]. Hence, database software must
be implemented such that it fully exploits the processing power made available by
the CPU.
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Figure 3.11: A simple superscalar pipeline. Multiple execution units allow for
processing multiple instructions in parallel. (Adapted from [71])

3.9.1 Pipelining, Superscalar Processing, and Independent
Instructions

Modern processors improve clock rate and IPC by using a technique known as
pipelining [23]. By dividing an instruction execution into multiple steps, there is less
work per stage, and the CPU frequency can be increased. Figure 3.11 depicts an
example pipeline with five stages. However, pipelining also introduce two dangers;
instruction dependencies and branch misprediction.

In a pipeline, dependencies between instructions impose a problem. If an instruction
is dependent on another, it must wait for the other instruction to complete before it
enters the pipeline. Dependent instructions can severely hurt performance, especially
if the pipeline is long.

Conditional branches are also affected by dependencies between instructions. When
executing a conditional branch instruction, the decision whether to take a branch is
usually dependent on the result of a preceding instruction [23]. To avoid stalling the
pipeline when waiting for the expression to evaluate, modern CPUs use a technique
known as branch prediction where the processor immaturely starts executing the
branch that is most likely to be taken. The performance penalty occurs if a branch
is mispredicted, where the instructions in the pipeline must be invalidated (pipeline
flushing).

Another way that performance is increased in a processor is by having multiple
execution units. We refer to such processors as superscalar. As seen in Figure
3.11, a superscalar processor can have multiple instructions in the same stage of
the pipeline, which allows IPC (instructions per cycle) > 1. However, for this
functionality to be fully utilized, independent work is required.

Hence, to reach maximum performance for a pipelined, superscalar processor, we
must find independent work. Since most programming languages do not let the
programmer specify which instructions are independent of each other, compiler
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(a) Original loop (b) Unrolled loop

Figure 3.12: By unrolling loops, instructions are made independent, and the number
of branches is reduced.

optimizations play a critical role in CPU utilization [23]. The most widely used
technique used by the compilers to address this challenge is loop unrolling, which
is used to reduce the number of branches and increase independence between
instructions [66]. As seen in Figure 3.12, loop unrolling reduces the number of
iterations in a loop (reduction of branches) and replaces it with multiple instances
of the same instruction. If the instructions are independent, they can be processed
in parallel.

3.9.2 CPU Caches

Since transferring data from main memory to CPU can take around 200 cycles,
modern CPUs utilize multiple layers of on- and off-chip caches to reduce this latency.
Efficient usage of caches is paramount for CPU throughput since roughly 30% of all
instructions in a program are memory loads or stores [23]. We know that IPC for
DBMSes is strongly impaired by cache misses, and cache utilization is an important
topic for in-memory databases [27].

The best way to tackle this challenge is to design algorithms and data structures
that are cache aware [28]. Designing such programs is out of the scope of this
report, but it briefly boils down to two things:

• Coordinate temporal and spatial locality. Data processed together should be
stored at consecutive memory addresses. Code locality is also important [44].

• Avoid false sharing of cache lines. Multiple cores in a processor should not
write to data belonging to the same cache entry at the same time to avoid
unnecessary invalidations.

Compression, which we described in Section 3.3, and vectorized execution, which we
discuss in Section 3.10.2, are two techniques used to improve cache performance
[41, 42].

Prefetching is another method used to increase cache utilization. Prefetching
proactively loads data into caches such that the data is available when an instruction
needs it.
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Figure 3.13: A call stack for a program in execution. Each stack frame contains
input parameters, function return address, and local variables for a subroutine
invocation. (Adapted from [63])

Our research has identified several systems that are designed to be cache-aware,
including MonetDB [24], Microsoft SQL Server [39], and IBM DB2 with BLU
Acceleration [54]. The developers of EXASOL EXASolution, the top performing
database system in the TPC-H benchmark, claim that high level of data locality is
one of the key factors to performance.

3.9.3 Call Stack and Subroutine Invocations

A call stack is commonly used in a computer program to store information and
state about active subroutines [63]. Each time a subroutine is called, a stack frame
is added to the call stack that stores the input arguments, return address, and
variables local to the subroutine. See Figure 3.13. The call stack can be implemented
in both hardware and software, and the implementation varies between different
systems. This stack-based technique implies that calling a subroutine comes at a
cost; registers must be stored on the stack, and a new stack frame must be added.

Trading off time with space is usually done to address the above challenge; adding
more code to improve program efficiency. Function inlining is a technique used by
compilers where the subroutine code is copied into the caller’s body. This way, no
new stack frame is created for the subroutine, avoiding the overhead associated
with a function invocation.

Macro expansion is another form of code generation. Macros are usually specified by
the application programmer, and can be used for programmer-controlled inlining of
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functions or constant values. Macros can also be used to generate multiple versions
of function or class definitions (templating), a technique commonly used to let a
single implementation support different data types.

3.10 Hardware Utilization

In this section, we enumerate several topics, techniques, and concepts that are used
to utilize the available hardware and maximize CPU throughput.

3.10.1 Loop Pipelining

The absence of loop pipelining can have dramatic effects on query performance [23].
Boncz et al. show that MySQL database uses 49 cycles per tuple because loops are
not unrolled. In this system, tuples are processed one at a time with 1-2 function
calls to extract the needed data from a tuple per iteration [16]. Besides, evaluating
a predicate is usually a small operation compared to the overhead associated with
calling subroutines. In other words, most of the 49 instructions are spent managing
the call stack or waiting for instruction dependencies.

To ensure proper loop pipeline behavior, compilers must be aware that pointers
do not overlap, such that loop unrolling can be used [23]. Operations in MonetD-
B/X100 are compiled with compiler hints that tell the compiler that processing a
tuple is independent of the others. In standard C compilers, this can be done by
using the restrict pointer type.

3.10.2 Vectorized Execution

To avoid unnecessary subroutine invocation overhead and help the compiler identify
which instructions are independent, vectorized execution is normally used. Vectorized
execution, or block iteration, is the technique where multiple rows are processed
at the same time to avoid the overhead associated with tuple-at-a-time processing
[16]. Vectorized execution enables loop unrolling and memory prefetching which
minimizes cache misses [41]. Research performed by Abadi et al. shows that
vectorized execution in columns stores improves performance by 50% on average.

Several systems studied our research use vectorized execution. IBM DB2 with BLU
Acceleration and Microsoft SQL Server work on batches of thousands of row at a
time [41, 54]. MonetDB and MonetDB/X100 use vectors instead of single values as
their primary structure for storing data [23, 24]. Vectorized execution is also used
by C-Store and Blink [36, 58].

In vectorized execution, blocks of values from the same column are sent to an
operator for evaluation [76]. Query operators in Microsoft SQL Server work on
row batches, batches that contain thousands of rows stored in a column format.
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Figure 3.14: Microsoft SQL Server operators work on row batches. Each row batch
contains thousands of rows stored as column vectors. Also, a bit vector indicates
which rows that qualifies for a query. (Adapted from [41])

In addition to the column vectors, an additional qualifying rows vector is used to
indicate which rows that have been logically purged from the batch when executing
a query. Figure 3.14 shows this structure.

Regarding the size of the vectors in vectorized execution, we have found that vectors
should not be too small due to increased overhead and less parallelism, nor too big,
as it should fit in CPU cache [23].

Although vectorized execution for column stores normally outperforms tuple-at-a-
time query processing, there are some disadvantages by using this model. Neumann
et al. claim that vectorized execution eliminates a major strength of the iterator
model, namely pipelining [44]. In this context, pipelining means the ability for an
operator to pass tuples to its parent operator without copying the value. When
vectorized execution is used, intermediate results have to be stored somewhere
(materialized), which consumes memory bandwidth.

3.10.3 Late Materialization

Late materialization is the principle of not stitching together tuples before necessary
[16]. Systems devoted to late materialization work on columns for as long as possible.
According to a research by Abadi et al. late materialization can increase performance
in columns stores by 5%-50% depending on the query [16].

Late materialization is advantegous because [16]:
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Figure 3.15: SIMD execution model: In scalar mode (a): one operation produces
one result. In SIMD mode (b): one operation produces multiple results. (Adapted
from [74])

• Compressed columns must be decompressed before materialization, which
eliminates the benefits of working directly on compressed data.

• Cache performance is better for columns than for rows, which means processing
columns are more efficient.

• Vectorized execution can be used on columns only.

• Early materialization might construct tuples that are discarded later in the
query execution.

The late materialization principle is used by several database systems, including
IBM DB2 with BLU Acceleration [54] and MonetDB [24].

3.10.4 SIMD

Within a single execution context, instructions that work on multiple elements at
a time can be used to increase query performance. We refer to these instructions
as single input, multiple data (SIMD) instructions [70]. As seen in Figure 3.15, an
SIMD instruction applies the same operation to multiple operands simultaneously.
SIMD processing in a database context is particularly effective if we can keep an
entire processing block in the CPU registers [44], and Willhalm et al. show that
SIMD processing using a vectorized model can be up to 1.5 times faster than
databases optimized for scalar execution and instruction-level parallelism [74].

Our research shows that several database systems use SIMD parallelization. Systems
in this category include Oracle Database [39], Blink [21], and IBM DB2 with BLU
Acceleration [54]. A whitepaper from the developers of EXASOL EXASolution says
that SIMD features of modern processors must be used to reach the highest level of
performance [27].

Oracle Database performs scans against the columns using instructions that work
on multiple operands simultaneously [39]. As seen in Figure 3.16, a filter operation
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Figure 3.16: Filter operation in Oracle Database using SIMD vector processing.
(Adapted from [39])

benefits from SIMD as multiple values are compared in parallel. IBM DB2 with
BLU Acceleration and later versions of Blink work similarly [21, 54].

Bitpacking of column values further increase SIMD performance, because more
values fit within a single data word. However, since most SIMD instructions require
operands to be aligned, some preprocessing steps must be applied to the column
values [74]. As seen in Figure 3.17, a bitpacked vector can be prepared for an SIMD
operation using mask and bitshift operations. Vectors that are already aligned with
data words can be queried more efficiently since the preprocessing can be skipped.

Most literature refers to SIMD parallelization as utilizing special processor and
instruction set extensions, like the Intel SSE and Intel AVX2 extension [73, 74].
However, general CPU instructions can also be used to evaluate predicates in a
SIMD-like fashion. In Blink, ordinary CPU instructions work directly on multiple
values in a bitpacked column by applying a suitable mask and compare the result
with a second mask containing the expected values [36]. This technique is very
efficient since masks for a column are calculated once per query.

3.10.5 Branch Avoidance

We saw in Section 3.9 that branches should be avoided due to the penalties of branch
misprediction. Besides, branches also cause dependencies between instructions.

The consequences of inaccurate branch prediction are studied by Neumann et al. [44].
In this research, the performance of queries with various selectivities was tested. As
we can see in Figure 3.18, queries with 40%-60% selectivity executed on an AthlonMP
processor are roughly 2-3 times slower than queries with selectivities close to 0% or
100%. Hence, selectivity can severely affect the query performance. The Itanium2
processor does not have the same characteristic, as the Itanium architecture allows
for both not taken and taken branches to be executed simultaneously.
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(a) Using a MASK operation to align values to data words.

(b) Extracting values by bitshifting followed by masking
out irrelevant bits.

Figure 3.17: Aligning a bitpacked vector for SIMD execution. (Adapted from [74])
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Figure 3.18: Predicate evaluation performance for queries with different query selec-
tivities. A branch version and a predicated version are tested. For the AthlonMP
processor, the branch version are 2-3 times slower on queries with 40%-60% selec-
tivity, while the Itanium2 processor has constant processing time. The predicated
version offers constant processing time for both processors. (Adapted from [23])

Neumann et al. also developed a branchless version (predicated version) to evaluate
predicates in the queries. The branchless variant is denoted as predicated version
in Figure 3.18. For both AthlonMP and Itanium2 processors, this implementation
offers constant performance for all selectivities, but is, in general, more expensive.

Branch avoidance is also important in other parts of the system, for instance when
decompressing. Zukowski et al. present a decompression algorithm that is free for
if-then-else statements [76]. By running the algorithm in two tight loops instead of
one, branch misprediction is reduced, and the loops can be pipelined by a compiler.

3.10.6 Macro Expansions

MonetDB uses macro expansion to reduce layers of indirection and to optimize query
execution performance [24]. Since operators normally are type-generic, MonetDB has
for each algorithm multiple implementations that are specific to a certain type. The
implementations are generated automatically using macros, which is why they are
called macro expansions. Figure 3.19 shows how the select operator is expanded
into 173 implementations, depending on which algorithm and data types are queried.

The vector data structure in IBM DB2 with BLU Acceleration is implemented using
C++ templates to support multiple data types.
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Figure 3.19: Macro expansions in MonetDB. For different algorithms and data
types, the select operator has a total of 173 implementations. (Adapted from [24])
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(a) Short-circuiting (b) No short-circuiting

Figure 3.20: Predicate evaluation for query WHERE LastName=’Doe’ AND First-
Name=’John’ AND Age>21. (a) skips evaluating rest of the predicates if one predi-
cate is false, while (b) evaluates all predicates regardless of previous results.

3.10.7 Short-Circuiting

Short-circuiting is referred to a special case of Boolean operator evaluation in which
the next argument is not evaluated if the current argument is sufficient to determine
the value of the expression [69]. Figure 3.20 illustrates the difference between
short-circuit and non-short-circuit predicate evaluation. In short-circuiting, the
scan proceeds to the next tuple as soon as one predicate is false, as opposed to the
verision without short-circuiting that evaluates all predicates regardless of previous
results.

Since short-circuit boolean operators are control structures and not simple arithmetic
operators, there is a chance of branch misprediction. That is why Blink does not
short-circuit between tuples [53, 36]. If a block is selected for scanning, all fields in
the records are checked. According to Raman et al., short-circuiting only improves
performance on low selectivity queries [53].

3.11 Joining

Joining is a common database operation that combines records from two or more
tables. In our research, we have studied several DBMSes, and seen how their join
algorithms work. For joining two tables, three main methods exist [25]:

• Partition-based approach, where records of both tables are split into groups
based on the hash value of the keys. This technique is most effective on data
volumes that are too large to fit in main memory.

• Sort-merge approach, where both tables are sorted and then merge results by
concatenating records with equal key values. This approach is most effective
when one or both operands are sorted in advance.

• Nested loop approach, which compares all rows in both tables.

The nested loop approach is the most popular joining algorithm for in-memory
databases [24]. We therefore only discuss this method.
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Figure 3.21: An example nested loop join structure. Records are first tested against
a Bloom filter. If found in the filter, the join key is searched in the join structure.
Records are first hashed, and then each entry in the hash table is the root of a
binary tree. (Adapted from [25])

3.11.1 Nested Loop Algorithms

In its simplest form, the nested loop method compares the join key in all rows
directly using a double loop. This simple algorithm has a runtime of O(n ∗ m)
where n and m is the size of tables A and B respectively. However, to improve
performance in a nested loop algorithm, hashmaps are commonly used. Usually,
the join is performed by hashing the smaller (inner) relation first, then probe the
hashmap by scanning the larger (outer) relation.

Kjell Bratbergsengen shows how a combination of hash tables, bloom filters, and
binary trees can be used in a nested join algorithm. In the probe phase, keys are
first checked towards a Bloom filter. Bloom filters never return false negatives and
is an efficient way of reducing the numbers of keys entering the join. If the key
is found in the Bloom filter lookup, it is hashed and checked up against a hybrid
hashmap/binary-tree structure. In this structure, each entry in the hashmap is the
root node of a binary tree which are used to look up values efficiently. The join
algorithm is illustrated in Figure 3.21.

In the nested loop approach, one of the operands might be partitioned [25]. For
example, a join might be partitioned by only hashing a subset of the inner relation
at a time. The entire join algorithm will then include several probe passes over the
outer relation, one for each subset. Historically, this technique has been applied to
ensure the whole hash structure fits in RAM. We conclude that a similar concept
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can be applied to CPU caches and that the join algorithm might benefit from
partitioning the inner relation such that each subset fits in the CPU cache.

We see that several DBMSes in this research use a nested loop join variant with
Bloom filters, including Oracle Database [39], IBM DB2 with BLU Acceleration [54]
and Blink [53]. Barber et al. explains how Bloom filters are effective in eliminating
non-matching join outers before they enter the join [20].

Our research has shown that one of the key design goals for efficient joining using the
nested loop approach with hashmaps, is to keep the hash tables collision free [53, 54].
One way to ensure this is to use the dictionary keys in Dictionary Encoding as a
perfect hashing function. If a table is joined on several keys, a minimal perfect hash
can be calculated.

Regarding implementation, it is important that the algorithm and the hash table are
cache-aware. One way to improve cache performance in a nested loop join, is to use
linear probing instead of open-chain addressing for the hashmap [53]. Open-chain
addressing should only be used for overflow buckets.

3.12 Database Statistics

Database Statistics are commonly used by a query optimizer to make better decisions
about creating efficient execution plans. These statistics may the include number
of records, selectivity, column cardinality, value distribution, and more. In our
case, Database Statistics can be used to prune horizontal partions based on the
column minimum and maximum values. This technique exploits clustering in the
columns, especially when the columns are sorted, or partially sorted, like times-
tamps. Oracle Database [39], IBM DB2 with BLU Acceleration [54], Vertica [40],
MonetDB/X100 [23], Microsoft SQL Server [41], and EXASOL EXASolution [27]
store partition metadata for quick data pruning.

Most database systems keep the statistics stored together with the table. However,
other schemes exist. IBM DB2 with BLU Acceleration uses a synopsis table to keep
track of all column pages (partitions), including minimum and maximum values.
This way, irrelevant pages can easily be skipped [54].

It can sometimes be useful to know a column’s value distribution. For instance,
the frequency partitioning in Blink and IBM DB2 with BLU Acceleration uses the
columns’ value distributions when determining how to partition the data [53, 54].
The query optimizer in Microsoft SQL Server also uses the value distributions
when creating execution plans [41]. Value distributions are usually determined by
creating histograms, and to make these histograms, random sampling can be used.
In Microsoft SQL Server, two techniques are used: One is truly random, where
values are picked across the whole column, and one is a grouped version, where a
random sample range is picked.
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Figure 3.22: Database performance for systems with and without a buffer manager.
This figure shows two things. First, when a database system starts spilling pages
to disk, the throughput is drastically reduced. Second, databases without buffer
managers perform better when data is in memory, but when the OS starts swapping
pages to disk, they are much slower than systems with a buffer manager. (Adapted
from [33])

3.13 Disk Support

To support datasets larger than provisioned RAM, the most trivial way is to use the
OS’ virtual memory. This is done by MonetDB [24], Blink [20] and QlikView [50].
However, the page replacement algorithms for virtual memory do not work very
well on database workloads. The work of Graefe et al. shows that main-memory
databases suffer a sudden performance drop when virtual memory mechanism starts
swapping pages to disk [33], as seen in Figure 3.22. QlikView has reported a
significant loss in performance once the OS starts paging.

Falling back to virtual memory are for some systems unacceptable for performance
and correctness reasons [33]. To overcome these challenges, major database vendors
like Oracle Database and Microsoft SQL Server use buffer managers for all their
database operations, which we see in Figure 3.22 improves query performance when
the working set is larger than the provisioned RAM. However, the same figure also
reveals a drawback of using a buffer manager; the extra layer of indirection comes
at a performance cost for working sets that fit in memory. The column store engine
in Microsoft SQL Server performs worse than the in-memory Microsoft VertiPaq on
workloads that fit in memory because the latter does not have a buffer manager [30]
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3.14 Mixed Workloads

In this chapter, we have mainly studied read-optimized systems. Still, most of these
systems allow for inserts, updates, and deletes, although these operations are not
as efficient as for systems optimized for transactional workloads. However, some
systems have a design goal to support both transactional and analytical workloads
(mixed workloads) equally well. Examples of such systems are Hyrise and HyPer,
and can be referred to as OLXP systems [47]. Oracle Database and SAP HANA also
support mixed workloads, and they both strive to keep query transparency; appli-
cations using the database should not need to rewrite any queries to benefit from
the underlying optimizations [28, 39].

Database consistency, correctness, and data freshness can be sacrificed for the
benefit of better performance. For instance, updates can periodically be merged
into the database by for example replacing one immutable structure with a more
up-to-date version. HyPer sacrifices correctness and data freshness by using memory
snapshots [38]. In this system, there are multiple read-only processes, but only one
process for writes. The read-only processes periodically fork the main write process
to obtain a memory snapshot of the current state of the database. Hardware and
OS assisted replication mechanisms make sure the snapshots are created efficiently
and consistent with the transactional data.

3.14.1 Delta Store

A delta store is commonly used in OLAP systems to accommodate inserts, updates,
and deletes [54, 58]. Other names for delta store include insert buffer or write-
optimized store. Such store is used because structures optimized for read performance
are typically immutable or hard to update. For instance, inserting a new key into a
sorted dictionary requires most key/value pairs to be reassigned. Besides, a newly
inserted value might cause overflow in a bitpacked column.

Delta stores are periodically merged into the main storage, which is often called
the read-optimized store. Such operation can either be triggered when the size of
the delta store exceeds a certain threshold or through a periodical trickle operation
[28, 39].

Many systems disallow updates and instead replace an update operation with one
deletion and one insert. Deletes are usually implemented as invalidation bit vectors
[40, 54], and updates are appended to a suitable structure, like an unsorted B+-tree
[48], or an uncompressed column [28]. Delete-insert updates has the benefit of
allowing time-travel queries [47, 55].
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Figure 3.23: The TPC-H schema. (Adapted from [59])

3.15 Testing OLAP Databases

The TPC-H benchmark is commonly used to test analytical workloads. The
benchmark is made for decision support workloads and consists of a suite of business
oriented ad-hoc queries [59]. The benchmark has 22 complex read-only queries,
which are both memory and CPU bound [23], and two update queries for data
refresh. The TPC-H specification says the benchmark illustrates a decision support
system that:

• Examine large volumes of data.

• Execute queries with a high degree of complexity.

• Give answers to critical business questions.

The schema for the TPC-H benchmark consists of eight separate tables, as seen in
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Figure 3.24: TPC-H database size and cardinalities. (Adapted from [59])

Figure 3.23. The table columns have a variety of different data types, including
integers, floating points, variable and fixed width strings, identifiers, and booleans.

Figure 3.24 shows the minimum population for the TPC-H benchmark, which is a
database of 10,000 suppliers and roughly 6 million line-items (items per order). The
minimum population corresponds to approximately 1 GB. To test larger data sizes,
a scaling factor is commonly applied to increase the size of the dataset. According
to the specification, data in the tables should be uniformly distributed.

The TPC-H benchmark tests uniformly distributed data, but, in reality, it is quite
common that data is skewed. For instance, a retailer might expect that 99% of the
sales are performed on weekdays, and around 40% of the total sales for a year is
done around Christmas [53]. Tests on data with non-uniform distributions should
be carried out to see how the algorithms and data structures in the database handle
outliers. Data skew can be modelled with a Zipfian distribution [35].



Chapter 4

Genus App Platform

This chapter contains a top-down analysis of Genus App Platform, with platform
architecture, how applications are developed using the platform, concepts, and
source code. The last part of this chapter identifies challenges in Genus App
Platform, which motivates the second and primary part of this thesis, which is the
design and experiment research.

We obtained information for this chapter by reading technical briefs, attending
platform courses, engaging discussions with Genus AS ’ employees, and analyzing
source code.

59
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Figure 4.1: Components in Genus App Platform. Genus App Services connects end
user and modeling clients with the underlying database infrastructure, and provides
authentication and session management. (Adapted from [32])

4.1 Introduction

Genus App Platform is a platform for software development that aims to increase
developer productivity and simplify change management through model-driven
development [32]. Genus App Platform is a ”no code” tool, which means end user
applications are modeled without writing a single line of code. This approach
enhances collaboration between business and IT, reduces life cycle costs, and lets
the application developers focus on business logic instead of implementation details.

Genus App Platform uses generic software concepts on a higher level of abstraction
than regular programming languages that are precise and non-ambiguous [5]. These
concepts, and how they are implemented in the underlying platform, have been
refined and improved through years of trial and error on real customer use cases.

If we relate Genus App Platform to the model layers defined in Section 2.1.1, we
see that it spans over three layers: Genus App Platform platform developers work
in the method engineering (ME) layer, while expert users using the modeling tool
to create end user applications work on the information system development (ISD)
layer. End users are in the information system (IS) layer.
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4.2 Components and Architecture

Genus App Platform consists of five major components, as seen in Figure 4.1. These
include two backend components, database infrastructure and Genus App Services,
and one component for application modeling, Genus Studio. Genus Desktop and
Genus Apps are end user clients for Windows and mobile devices respectively.

4.2.1 Database Infrastructure

The database infrastructure stores the application data, as well as the application
itself (application model). Genus App Platform connects to a wide variety of
data providers, often traditional relational databases such as Oracle Database,
Microsoft SQL Server, and MySQL. However, there exists several adapters, or object-
relational mappers, for other data sources, including SOAP-based web services.
More integrations are planned in the future, which include adapters for NoSQL
databases and RESTful web APIs.

Applications developed in Genus App Platform may build on already existing data
sources or define a new, or partially new, data source to store application data.
Since Genus App Platform handles all data integrity with validations, triggers,
duplicate handling, and foreign keys, such constraints do not need to be specified
and defined in the database infrastructure.

4.2.2 Genus App Services

Genus App Services is the main backend component in Genus App Platform. It
facilitates communication between the clients and the database infrastructure,
handles authentication, and manages sessions. Genus App Services is made up of
several nodes and node groups, where each node in a node group is configured to
run one or more services that are required by the application. Requests to Genus
App Services are sent to the right node group based on application model and
application dataset, and to the correct node based on which service is required.

All nodes in Genus App Services are stateless. This principle simplifies horizontal
scaling since more nodes may be added if one particular service becomes a bottleneck.
Nodes may still use caching mechanisms for performance reasons.

4.2.3 Genus Studio

Genus Studio is the software modeling tool in Genus App Platform. In this tool,
expert users use models close to the business problem and generic software concepts
to create end user applications. In Model-Driven Engineering terminology, this
tool belongs to the information system development layer. We study application
development in Genus Studio in Section 4.3.
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Genus Studio runs on the Windows platform.

4.2.4 Genus Desktop and Genus Apps

Genus Desktop and Genus Apps are the end user clients for Windows and mobile
platforms respectively. End users access their applications and their respective data
using these clients. Instances of these clients point to an application model and a
corresponding dataset, and they communicate with Genus App Services to receive
sufficient model information and data to run the application.

In Model-Driven Development terminology, Genus Desktop and Genus Apps corre-
spond to the Information System Layer.

4.3 Application Development

Genus Studio is the software modeling tool in Genus App Platform and is used by
expert users to design and develop end user applications. Applications are defined
by specifying three different layers: The data layer, logic layer, and user interface
layer. These layers are analogous to the information structure, microflow, and form
models used by Mendix.

4.3.1 Data Layer

One of the layers in Genus App Platform application development is the data
layer, which is seen in Figure 4.2. This layer contains object class definitions with
properties, as well as hierarchies and connections to explain how object classes
relate to each other. The data layer specifies how data is fetched and stored in the
underlying database infrastructure, for instance by specifying database connection
strings and table names. Schemas in the data layer represents how the object model
is represented when exposed through an API, which is primarily used to create and
consume SOAP-based web services.

The data layer provides security functionality. This feature limits access to certain
objects or certain properties. Other core functionality specified in the data layer
include integrity and validity checks, formulas, triggers, and events.

A class diagram is used to model the data layer, which we will discuss in greater
detail in Section 4.4.

4.3.2 Logic Layer

The logic layer in Genus App Platform lets the modeler extend the application with
custom logic. The main components in this layer are tasks and effects, which is
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Figure 4.2: The data layer in Genus App Platform. This layer defines object classes,
object relationships, data integrity and calculation, and security. (Adapted from
[32])
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Figure 4.3: The logic layer in Genus App Platform. Here, tasks and effects are
specified through action orchestration. Tasks contain programming-like constructs
and is composed of a wide variety of actions. (Adapted from [32])

analogous to the microflows in Mendix. The logic layer is shown in 4.3.

Effects and tasks are created through Action Orchestration, which lets the system
developer specify logic through programming language-like constructs, such as
loops, conditional statements, and exceptions. There is a large number of different
actions that might be included in an orchestration, which include object creation,
modification, and delete, file handling, and consuming web services. There are
several ways to run an effect; for instance through clicks and interaction in the user
interface, recurring events triggered by a timer, or triggers caused by changes in
the data.

4.3.3 User Interface Layer

The GUI made available to the end users is modeled in the user interface layer.
The main components in this layer are the table and form views, where the latter
can be designed for either Genus Desktop or Genus Apps. Form views allow the
modeler to specify custom layouts and include a wide variety of different GUI
elements. Supported elements, which is seen in Figure 4.4, include text boxes,
buttons, calendars, maps, and more.

Components in the user interface layer fetch data from a data source, which specifies
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Figure 4.4: The user interface layer in Genus App Platform. In this layer, forms
and tables are specified, with a wide variety of available GUI elements. (Adapted
from [32])
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Figure 4.5: Class diagram from Genus Studio for the TPC-H Benchmark. Blue
units represent object domain compositions which mean they are mapped to the
underlying database infrastructure. White units represent code domain compositions
where values are ”hard coded” and fetched from the application model itself.

which data that should be made available to the users. The user interface may
interact with the logic layer through user interaction, such as button clicks.

4.4 Concepts

To better understand how the three application development layers relate to Genus
App Platform source code, we elaborate on some important concepts used in the
platform.

4.4.1 Object Classes

An object class in Genus App Platform is a hybrid between a table definition in
a relational database and a class in a programming language. An object class,
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sometimes referred to a composition, specifies several class properties (Section 4.4.2),
security settings, integrity constraints, formulas, and other display options. An
object class can either be in the object domain or the code domain. Compositions
belonging to the object domain must specify how it relates to the underlying
database infrastructure, for instance by providing a database connection string and
table name, or an XML schema if the data is fetched using a SOAP-based web
service. Object classes in the code domain do not have this ability, since these
values are ”hard coded” into the application model, and not fetched from any data
source.

Object classes are defined in the application data layer and specified in a class
diagram, which is depicted in Figure 4.5.

4.4.2 Object Class Properties

An object class is composed of one or more properties. Such properties can be
simple data types, like integers and strings, or a function type, which calculates
their value based on other properties in the class. In addition to specifying the
basic data type that holds the value, properties also define an interpretation of the
data. There exists many such interpretations in Genus App Platform, including
file, password, date format, and color. The data interpretation may also be another
object class, which is used on foreign key fields. This creates relationships between
object classes in the data layer.

An object class property has its own set of security and validation rules and includes
display options like formatting and screen tip.

4.4.3 Data Source

A data source in Genus App Platform is used by effects, tables, and forms to
retrieve, create, modify, and delete data. One particular data source is associated
with an object class, a filter which defines which subset of the objects that should
be available, and cardinality; whether there may be one or multiple elements in the
data source. A data source stores the composition objects in main memory of the
clients.

Which data subset that is loaded into a data source is specified using a filter. This
filter is translated to SQL or another relevant query language and then sent to the
database infrastructure. Thus, at the initial data load, Genus App Platform utilizes
efficient database servers and reduce network traffic as data is filtered in the backed.
However, a data source does not need to load any data at initialization. Empty
data sources are, for instance, used for temporary in-memory processing.
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Figure 4.6: Genus App Platform analysis, or Genus Discovery, user interface.
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Figure 4.7: Data mart for the Data Mart Load Benchmark, which contains only the
object classes and fields needed to answer that particular query. The mart conforms
to a snowfalke schema.

4.4.4 Analysis

The analysis component, sometimes refered to as Genus Discovery, is the Business
Discovery functionality in Genus App Platform. Genus Discovery is is very similar
to QlikView, which we studied in 2.3, but since object classes and relations are
already specified in the data layer, no data import script is needed. Like QlikView,
the analysis component allows end users to follow their ”information scent” and
click their way through the data using an intuitive user interface. An example user
interface is seen in Figure 4.6.

One particular dashboard is referred to as an analysis. Each analysis links to a
specific data extract, or data mart, which we study in the next section.

4.4.5 Data Mart

A data mart defines a data extract that is used by the analysis component in Genus
App Platform. A data mart is specified by a set of data sources, and for each data
source, a list of published fields. All data sources in a mart might specify a filter,
such that the analyses only access a particular subset of the data.
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Figure 4.8: A task definition in Genus App Platform. A task is composed of actions
and effects. This way, a task may read from and to data sources, enumerate items
using for or while loops, consume services, import, export, and more.

The process to define a data mart, including the user interface, is similar to defining
object classes in an object diagram, like seen in Figure 4.7. However, there is one
important distinction: A data mart must conform to a snowflake schema, which
means there can only exist one path through the class diagram. For instance, in
Figure 4.5, both the customer and supplier classes refer to the nation class. In a
data mart, there would be two nation entities; one entity for customer nationality
and one for supplier nationality.

4.4.6 Tasks

Tasks in Genus App Platform are similar to a procedure or a function in a program-
ming language, and is defined at the logic layer. A custom user interface, depicted
in Figure 4.8, enables modelers to combine actions and effects into logic, a process
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Figure 4.9: A class diagram with the most important classes in Genus App Plat-
form data representation.

denoted as action orchestration. Tasks use data sources, which we saw in Section
4.4.3, to retrieve, create, modify, or delete data. Tasks might be triggered manually,
by user interface interaction, or periodically by Genus App Platform agents.

4.5 Source Code and Classes

This section aims to give an overview over the classes used to represent data in
Genus App Platform, which includes the representation of object classes, object
class properties, object instances, and data elements. Figure 4.9 displays a class
diagram for the classes we discuss in this section.

The source code of Genus App Platform core is written in Delphi, which we studied
in Section 2.4.

4.5.1 GValue

The GValue class, short for Genus Value, is a base class that can contain any value
of any type that is supported by the platform. These types include integers, floating
point numbers, strings, object handles, dates, and more. The GValue class is a
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necessity in Genus App Platform to omit the rigid type system in Delphi, and to
enable that all values, irrespective of type, are handled the same way.

For all value types supported in Genus App Platform, there are get and set methods
for that specific value type, which by default throw exceptions indicating that they
are not implemented. Then, for each type, a subclass exists which stores the data
and overrides the corresponding get and set methods. For instance, there exists an
IntegerValue subclass with an integer property that extends GValue and overrides
the GetAsInteger and SetAsInteger methods.

A GValue is a class type and not a record type, hence is allocated by the memory
manager and put on the heap. Thus, a GValue variable is a pointer. Like strings
and dynamic arrays, GValue has built-in reference counting to enable cloning and
data re-use. Still, the class is a true value type, which implies that it is immutable.

4.5.2 CompositionDescriptor

The object class, or composition, which we discussed in Section 4.4.1, is repre-
sented by the CompositionDescriptor class. Conceptually, this class is the same
as a class in a programming language. A CompositionDescriptor contains all
information needed to describe an object class, for instance which properties, or
FieldDescriptors, that belongs to to the composition.

Since CompositionDescriptor instances are a part of the application model, they
belong to the ISD layer, which we discussed in Section 2.1.1. In the linguistic meta
modeling framework, this construct makes up the left part of Figure 2.2, which is
the ”Class” and ”Collie” entities.

4.5.3 CompositionObject

Whereas the CompositionDescriptor class represents an object class definition,
the CompositionObject class represents particular instances of that object class.
Conceptually, this class is the same as an object, or class instance, in a standard
object oriented programming language. A CompositionObject stores all data
belonging to the particular instance in a CompositionObjectValueCollection, as
well as some other object state variables.

Instances of CompositionObjects make up the data in the applicaiton, and is,
therefore, associated with the IS layer in Model-Driven Engineering. In the linguis-
tic meta modeling framework, this class is depicted on the right part of Figure 2.2.
CompositionObject has an ontological instance-of relationship with Composition-
Descriptor.
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4.5.4 FieldDescriptor

The FieldDescriptor class describes an attribute in a composition, which is the
object class property we studied in Section 4.4.2. It holds all relevant data about
a property, mainly type and representation, but also constraints and formatting
rules. Like CompositionDescriptor, instances of the FieldDescriptor class exist
in the ISD layer.

4.5.5 CompositionObjectValueCollection

The CompositionObjectValueCollection class holds all data for a composition
object, and has a one-to-one relationship with the CompositionObject class. Con-
ceptually, this class represents all the properties with corresponding data stored
in a class. Like a CompositionObject, instatiations of this class belongs in the IS
layer.

A CompositionObjectValueCollection contains two lists, one with object class
properties, and one with GValues. To look up a particular property, a linear
search through the property list is performed, and when the particular property
is found, the function returns the corresponding GValue. One way to see the
CompositionObjectValueCollection class, is as a database table with one row.

4.6 Challenges in Genus App Platform

There are several challenges in the current Genus App Platform design. For years,
the main area of focus has been to keep the source code readable and maintainable.
However, this approach does not normally lead to an implementation that is
optimal performance-wise. In this section, we discuss some parts of the Genus App
Platform source code that is not optimal and has resulted in challenges related to
high memory usage and poor memory access patterns.

4.6.1 Excessive Amount of Pointers

One of the main challenges in Genus App Platform is that a significant amount
of pointers is needed to store object data. As we saw in Section 4.5.5, each
CompositionObjectValueCollection not only stores GValues containing the data,
but also pointers to all data descriptors. Although this implementation is flexible
because every value collection is self-contained and objects can have a variable
number of fields loaded, the overhead for storing all these pointers is substantial,
especially on a 64-bit architecture where all pointers are 8 bytes. Figure 4.10
illustrates all pointers in play when a data source is filled with data.
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Figure 4.10: A data source with three composition objects, where each object has
two properties. For each object, there are pointers to both data values and field
descriptors.

We study the storage overhead caused by pointers using a simple example. In our
example, we use an object class with 15 object class properties. In the data source,
there are 1,000,000 elements. The pointers needed in this setup are:

• 1 pointer, for the data source.

• 2 pointers, for the composition descriptor and the pointer to the list of data
descriptors.

• 15 pointers, for the composition data descriptors

• Then, for every object:

– 1 pointer, for the composition object.

– 1 pointer, for the value collection pointer.

– 15 pointers, for all data descriptors in the value collection.

– 15 pointers, for all values in the value collection.

The example results in 32,000,018 pointers, which is roughly 244 MB on a 64-bit
architecture. Moreover, this is only the overhead caused by pointers, not the actual
data. If all values are 32-bit integers, the memory needed store these 15 million
numbers is 57 MB, which in this example is 20 % of the space used by pointers.
For 1 byte booleans, the percentage is even less.
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4.6.2 Inefficient Data Access and Poor Memory Locality

Several operations in Genus App Platform access many values in tight loops, and it
is not uncommon they read all values for a given data descriptor in a data source.
Examples of such operations are filter and join operations. However, accessing values
in the current implementation comes with a substantial overhead. The following
steps are performed for every data access:

• The CompositionObjectValueCollection is scanned linearly for the correct
data descriptor.

• The corresponding GValue is found, and the accessor method (i.e. GetAsIn-
teger) is looked up in the dispatch table.

• A new stack frame is put on the stack to run the GetAsInteger method.

The compiler might be able to optimize some of the steps above. For instance, if
the register calling convention is used, values may be accessed without creating a
new stack frame. However, the process of getting a value is far from ideal. As we
saw in Section 3.10, the difference between minimal and maximal CPU utilization
can easily be one order of magnitude, where branches and new stack frames may
severely hurt performance. Last, the linear search through data descriptors hurt
throughput.

Not only are there many steps required to access data in Genus App Platform,
but there is also poor memory locality on the data elements. Since GValue is
a class type, thus allocated on the heap by the memory manager, we no longer
have control over where values are located in main memory. We must assume the
location is arbitrary, and that GValues with temporal locality are not located next
to each other in memory. We read in Chapter 3 how important cache locality is for
performance.

4.6.3 Storage Overhead

GValues have much storage overhead. First, since they are reference counted, each
value contains a 4-byte integer. Second, since a GValue is a class type, the first 8
bytes in an object is a pointer to a virtual method table. Last, a GValue variable is
a pointer to the structure containing the data, a pointer which is an additional 8
bytes. Hence, for a 32-bit integer, only 4 of 24 bytes are used to store the actual
data.

Secondly, Genus App Platform applies no form of compression. Using the same
reasoning as above, we see that each boolean value will require 21 bytes to store.
Theoretically, only 1 bit is needed to store such value, and we studied in the section
about compression, Section 3.3, how to achieve this effect. Reducing the memory
per value from 21 bytes to 1 bit is a memory reduction of almost 200 times.
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We saw in Chapter 3 that small storage overhead and compression are paramount
for read-optimized databases. Efficient data storage may turn a process from being
I/O bound to CPU bound.

4.7 Research Motivation

This chapter concludes the related work part of our research. We have studied back-
ground theory on Model-Driven Engineering and Business Intelligence, elaborated
on techniques used by read-optimized databases, and provided an analysis of Genus
App Platform. The literature review has given us sufficient insight to proceed with
the evaluation part of this research.

We observe that Genus App Platform is in fact a sophisticated in-memory database.
Data sources used in various parts of the platform query the underlying database
infrastructure and loads the data into main memory. We also see Genus App
Platform source code has several challenges with pointer and storage overhead and
data locality. We repeat our research goals:

G1: Reduce memory consumption in Genus App Platform and
increase the platform’s ability to handle and analyze large datasets.

G2: Introduce new evidence that Model-Driven Engineering can
benefit from in-memory database technologies.

We are motivated to apply techniques used in read-optimized databases to Genus
App Platform. We believe techniques like column storage and compression can
mitigate several problems in Genus App Platform source code, such that memory
usage can be reduced, and the platform gains the ability to handle and analyze large
datasets. We also believe this approach serves an example of how such problems
are solved in the context of Model-Driven Engineering. As a result of this, we form
our research question:

RQ1: How can technology used by in-memory, read-optimized
databases improve Genus App Platform’s ability to handle and
analyze large datasets, and what can Model-Driven Engineering,
in general, learn from database technology?

By answering RQ1, we hope to address G1 directly by making changes in Genus
App Platform that increase the platform’s ability to handle large datasets. However,
by using our changes in Genus App Platform as a proof-of-concept, we plan to
address G2 by drawing general conclusions on the combination of Model-Driven
Engineering and database technology.

We plan to optimize Genus App Platform in the method engineering layer, such
that the information system development layer is affected as little as possible. Much
like a compiler is better at optimizing code than a human programmer, we believe
Genus App Platform has the potential to optimize storage format without modeler
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intervention. This way, Genus App Platform expert users may focus on the business
problem and not on the underlying implementation.
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Part II

Evaluation
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Chapter 5

Iteration I: Column Store

In this chapter, we modify how Genus App Platform represents data internally
by replacing the original row storage format with a column store. We see how it
successfully reduces memory consumption and load times for the Data Mart Load
Benchmark. The work undertaken in this chapter lays some important groundwork
for further optimization.

This chapter makes up the first out of four main iterations in the design and
experiment part of this research. As mentioned in the introduction, we aim to
reduce memory consumption in the first iterations of the research.

81
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5.1 Introduction

Starting our main part of the research, we aim to reduce memory footprint in Genus
App Platform. As we saw in Section 3.3, lower memory usage are likely to increase
performance because most database processes are memory-bound. Moreover, we hy-
pothesize that memory management is expensive and that the number of allocations,
as well as the size of the allocated memory chunks, should be reduced. Inspired by
the techniques used by read-optimized databases in Chapter 3 and motivated by
the challenges in Genus App Platform, we change how data is represented internally
within the platform.

We choose to implement a column store, which we read about in Section 3.2. The
reason for this is two-fold. First, as we saw in the literature study, columns are
inherently more compressible. Hence, a column store is better suited to reduce
memory consumption and to test our hypothesis about the costs of memory man-
agement. Second, the cases where Genus AS has experienced performance issues
are in situations where a column store is better suited than a row store, for example
the read-intense join and filter operations.

We believe that conventional transactional processing in Genus App Platform, where
a row store might be better suited, will not suffer from using a column store. In
Genus App Platform, there is much overhead on object create, update, and delete, like
constraint checks, data validation, and memory allocations. Thus, we hypothesize
that tuple materialization costs and the effects of decreased memory locality are
negligible. Also, a row store might require index structures to accommodate certain
operations; indexes which, as we have seen in Section 3.2.2, are costly to maintain.

5.2 Implementation

In this section, we explain how a column store is implemented in Genus App
Platform. We change the original row store by introducing data source indexes
to CompositionObjects and replace CompositionObjectValueCollection with a
new class we denote as CompositionValueCollection.

5.2.1 CompositionValueCollection

As we saw in Section 4.6, one of the challenges in Genus App Platform is the Com-
positionObjectValueCollection class that has an excessive amount of pointers.
Not only does the class hold references to all data for an object, but also pointers
to field descriptors. Although this class is self-contained and flexible, there is no
need to store the field descriptor references in every row.

To reduce the number of pointers, and to create a column store, we replace instances
of CompositionObjectValueCollection with a new class which we denote as
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CompositionValueCollection. This class represents the data storage container
for objects in a data source. Also, we extend the CompositionObject class with a
new integer attribute, DatasourceIndex, to identify which objects belong to which
indexes in the data buffers. The data source index can be thought of a row identifier
which we saw in Section 3.2.3.

Our modifications imply that composition objects in a data source no longer queries
its own data collection, or CompositionObjectValueCollection, for values, but
instead request values from one shared CompositionValueCollection. To access
values in the column store, objects must pass their data source index and a field
descriptor to indicate row and column respectively. A comparison between the
original and the new implementation is seen in Figure 5.1. Even though the
original CompositionObjectValueCollection is discarded as the main data source
storage structure, the structure may still be created by the object. Genus App
Platform uses CompositionObjectValueCollection extensively in various parts
of the application, for instance for object cloning and data transfer.

The class diagram for CompositionValueCollection is seen in Figure 5.2. The
main methods in this class are GetValue and SetValue. In these methods, a
dictionary lookup finds the correct column, or FieldValueCollection, and requests
the value for the given data source index. IsAssigned and UnassignValue work
similarly. In addition to the access methods for single data elements, row- or
column-wise operations like UnassignAllValues exist.

Data source indexes are assigned by passing composition objects to the Register-
Object method. A private variable, maxDatasourceIndex is used to keep track
of the maximum index assigned so far. When an object is removed from a data
source, RemoveObject is called, and this method keeps track of removed objects in
the assignedIndexes bitmap.

5.2.2 FieldValueCollection

We implement columns as a class we denote as FieldValueCollection. This
class represents an index based list structure that automatically handles memory
allocation. Internally, values are stored in a TArray<GValue> type. We chose that
structure based on the performance benchmark in Appendix B. A class diagram is
found in Figure 5.3.

Besides from the value array and corresponding GetValue and SetValue methods,
FieldValueCollection contains bitmaps for indicating null values and unassigned
values. Keeping track of null values is strictly not needed, since GValues are boxed
and can be set to nil, but it becomes apparent why we need this bookkeeping in
Chapter 6. Unassigned values have a special semantic in Genus App Platform: It
means that a value exists, but has been unassigned for performance reasons.
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(a) Original implementation with CompositionObjectValueCollection. Each object has
its own value collection, and each value collection contains references to both data descrip-
tors and the data itself.

(b) Column store implementation with CompositionValueCollection and
FieldValueCollection. All objects in a data source point to the same value col-
lection, and access data using data source indexes and field descriptors to indicate row
and column respectively.

Figure 5.1: Comparison of the original row store implementation in Genus App
Platform and the new column store implementation.
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Figure 5.2: CompositionValueCollection class diagram.

Figure 5.3: FieldValueCollection class diagram.
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Figure 5.4: Growth strategy for value buffers and bitmaps. In the load phase, the
buffers double every time more space is needed. After the load phase, a consolidation
is performed which reduces buffer size to the exact size of the data source.

5.2.3 Growth Strategy

In FieldValueCollection we use Delphi dynamic arrays for data and are, therefore,
in control over array allocation size. Since objects arrive in a data stream, we are
not sure how large our buffers should be until we receive all objects. Hence, we
must find an efficient growth strategy for the column store.

For every array resize, we run the risk that all data in the array must be copied
from one smaller memory chunk to a larger one. Since this is a costly operation,
one should be generous when resizing arrays. Commonly used in such problems is
a doubling strategy, where array buffer size double each time an index outside of
array bounds appear. We implement this behaviour in FieldValueCollection too,
in the EnsureCapacity method. This function is called to avoid index-out-of-range
exceptions by all methods that access the data array or bitmaps.

Using the doubling strategy for column growth, we run the risk of allocating twice as
much memory needed for a data source. We, therefore, implement a Consolidate
method which resizes all value buffers and bitmaps to the exact size of the data
source. The full growth strategy in depicted in Figure 5.4

In CompositionValueCollection, columns are created on-demand as composition
objects set values. If an object requests a value from a column that does not exist,
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nil is returned.

5.2.4 CompositionObject Modification

To accommodate the new CompositionValueCollection class, we perform some
modifications to the CompositionObject class. First and foremost, we replace
the CompositionObjectValueCollection member variable with a pointer to the
column store. At the same time, we remove all code that accesses the original row
structure and replace it with calls to the CompositionValueCollection instance.
For all interaction with this class, the data source index is passed to indicate
which row the composition object belongs. Second, we call RegisterObject within
the constructor of the CompositionObject class, such that a data source index is
assigned. Analogously, RemoveObject is called in the destructor.

Some methods in CompositionObject require a new implementation as a result
of the column store. These methods include CloneValueCollectcion and Adopt-
ValueCollection. Earlier, these methods were trivial, as they only cloned and
replaced CompositionObjectValueCollection instances. However, since composi-
tion objects no longer have ownership in such structures, they must be cloned or
adapted by iterating field descriptors and reading or writing data in the column
store.

5.3 Results

We test the changes done in this iteration by using Benchmark A.1, the Data Mart
Load Benchmark. We use this benchmark to see whether memory footprint has
been reduced. We are also curious to see the performance impact on data load time,
lookup index generation (join), and source measure lookup. To see whether our
changes has caused negative effects on write performance, we also run Benchmark
A.2, the Write Benchmark. Full benchmark details are found in Appendix A.

In this iteration, we test two different configurations: The original Genus App
Platform implementation and the new column store. Due to time constraints, we
run our benchmarks only three times and report the mean. All measurements had
low variance, within 15 % of the average measurement.

5.3.1 Data Mart Load Benchmark

In the Data Mart Load Benchmark, we found a significant memory reduction in the
column store implementation. As we see in Figure 5.5, for SF1 the memory used
per LINEITEM is reduced with 38 %, and for SF10 the reduction is 30 %. The total
application memory footprint for the analysis is reduced from 2685 MB to 1777
MB.
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Figure 5.5: Bytes per LINEITEM used by the original and column store impelemen-
tations, Benchmark A.1 with scaling factors SF1 and SF10.

(a) SF1

(b) SF10

Figure 5.6: Data source load time for for original and column store implementations,
Benchmark A.1 with scaling factors SF1 and SF10.
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In Figure 5.6, we see that the load time also is significantly reduced using the new
CompositionValueCollection class. For both scaling factors, the time it takes to
populate the data source has been reduced by 63 %.

We observe that lookup index generation, or the join operation, is slightly hurt
performance-wise by the CompositionValueCollection implementation. For SF1,
the time it takes to perform a join between RETURNFLAG and LINEITEM tables is
increased by approximately 30 %. We measure similar changes for SF10, but the
percentage difference is smaller.

We observe a larger reduction in performance looking at the source measure lookup
operation in Figure 5.8. Here, the time it takes to extract all values in a column
into a floating point number array is doubled. We measure the same effect for both
scaling factors.

5.3.2 Write Benchmark

To see how the write speed is affected by our new implementation, we run Benchmark
A.2, the Write Benchmark on the original implementation and the column store
implementation. Each run modified 1000 elements, which is the default for this
benchmark. The results are presented in Figure 5.9. There are no significant
differences between the two implementations.

5.4 Discussion

In Section 4.6.1, we saw how a data source with objects with 15 properties each
needed 32 pointers, or 256 bytes, per objects just for data and data access. Now,
this number is reduced to 17 pointers and an integer, which is 140 bytes. Hence, we
have the potential to save 45% memory by using our new system.

We see that the memory used per object in the Data Mart Load Benchmark is
reduced by 38 % and 30 % for scaling factors SF1 and SF10 respectively. We
attribute this observation to the column store, and how it reduces the number of
pointers needed to represent data in a data source.

We are observe that the data source load time is reduced as a consequence of
our new CompositionValueCollection and FieldValueCollection classes. This
observation strengthens our hypothesis that memory management is expensive:
The original implementation allocated one row-structure per object, whereas the
doubling strategy in our column store keeps the number of allocations at a mini-
mum. Moreover, the reduced load time in Benchmark A.1 might also imply that
reduced memory usage is directly correlated with performance and that our new
implementation has better memory locality and cache hit rate.

Both read operations, lookup index generation and source measure lookup, suffer
from the new column store implementation. On these operations, the time it takes
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(a) SF1

(b) SF10

Figure 5.7: Lookup index generation performance comparison for LINESTATUS,
RETURNFLAG, and SHIPDATE, Benchmark A.1 with scaling factors SF1 and SF10.
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(a) SF1

(b) SF10

Figure 5.8: Source measure lookup operation performance comparison for QUANTITY,
EXTENDEDPRICE, DISCOUNT, and TAX, Benchmark A.1 with scaling factors SF1 and
SF10.

Figure 5.9: Write performance results for Benchmark A.2, 1000 elements.
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to perform the operation has been increased by 30 % and 100 % respectively. Since
both operations read values intensively from composition objects in tight loops, we
believe the test result implies that the GetValue function in the column store is
not as efficient as the original. This can be caused by the dictionary lookup to find
the correct column, or by the extra checks to ensure capacity or for nil values.

The fact that Benchmark A.2, the Write Benchmark, shows that write performance
is not affected by the column store, strengthens our hypothesis that the column
overhead is negligible in such situations. Data modification is expensive in Genus
App Platform. Modifying 1000 elements in the write benchmark takes roughly five
times longer than generating a lookup index for 60,000 rows, which indicates that
there is a severe overhead in object iteration and value modification unrelated to
the data storage layout.

We are unsure why different scaling factors yielded a different number of bytes per
LINEITEM. It might be caused by the caching and value reuse mechanisms used
by the data load module in Genus App Platform. Data in SF10 might have a
different data distribution than SF1. Either way, both the original and column
store implementations are affected by this phenomenon, which makes it likely
that it is unrelated to our work. The other measurements in Data Mart Load
Benchmark increase linearly; measurements from SF10 are roughly ten times higher
than for SF1.

5.5 Iteration Conclusion

We conclude this iteration by stating that there is a large potential in column
storage regarding memory footprint and load times. Memory used per LINEITEM in
the Data Mart Load Benchmark has been reduced by 30 - 38 %, and the time it
takes to load all data in this benchmark by 67 %. Write performance, tested with
Benchmark A.2, has not been affected by the new implementation.

Still, both read-intense operations tested in Benchmark A.1 are slowed down,
especially the source measure lookup operation. Here, the time it takes to generate
an array of double precision numbers for a data descriptor is doubled with the
column store. We believe these changes are caused by a GetValue function less
efficient than the original.

This iteration lays the groundwork for further investigation and to check whether
database technologies and column store can help Model-Driven Development-tools’
ability to handle and analyze large datasets. We believe even more memory can
be saved by optimizing storage formats, applying compression, and removing more
pointers. We do this in the next iterations, Chapter 6 and Chapter 7.

Column storage comes with several benefits, like vectorized execution, late material-
ization, and the ability to be pipelined by a modern CPU. We have not yet utilized
the full potential of the CompositionValueCollection and FieldValueCollec-
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tion classes, so far we have only used them to reduce the number of pointers in
Genus App Platform. We believe the mentioned techniques can be applied to the
read-intense operations of Benchmark A.1. We study this in Chapter 8.

Since the measurements for different scaling factors in the Data Mart Load Bench-
mark increase linearly, that is, measurements from SF10 are roughly ten times
higher than for SF1; we will focus on SF10 from now. For the next iterations, we
run tests with both SF1 and SF10, but we generally only report and discuss the
results from SF10. An exception to this is the number of bytes per LINEITEM, where
we continue to report on both scaling factors.

5.5.1 Future Work

With our current solution, new data source indexes, or row identifiers, are assigned
by incrementing a counter in CompositionValueCollection. This implies that if
objects are removed from a data source, no new objects will be assigned the data
source indexes that has become available. As seen in Figure 5.2, we propose a
bitmap for assigned indexes, assignedFlags. Future work might investigate the
effects of using this bitmap, and the OpenBit utility function, to assign indexes
to a data source. Since OpenBit is a linear-time operation, one might consider an
object loading state: Indexes are assigned by using a counter if the data source
is fed with data from the database, and once this operation has completed, the
assignedFlags bitmap is used.

In Section 3.2.4, we saw that horizontal partitioning of columns may be beneficial
for a column store for several reasons, like metadata pruning, handling of data
skew, and parallelism. By introducing a PartitionIndex variable in addition to
DatasourceIndex, and change the column store interface to accommodate the new
index, horizontal partitioning can be made possible in Genus App Platform. Future
work should elaborate on the changes needed in CompositionValueCollection
and FieldValueCollection to enable horizontal partitioning, and investigate the
effects of this technique.
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Chapter 6

Iteration II: Storage Format
Enhancement

In the previous chapter, we concluded that there was potential in column storage
in Genus App Platform, but that more memory could be saved by enhancing the
data storage format. In this chapter, we show how memory usage is reduced and
memory locality improved by replacing GValues with primitive data types. We also
study the effect of loading raw string values from XML directly into the columns.

This chapter forms the second iteration of our design and experiment part of the
research. In this iteration, we are mainly pursuing reduced memory footprint,
but the modifications from the storage format enhancements serve as an essential
foundation for column operations, which we discuss in Chapter 8.
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6.1 Introduction

In Section 4.6, we saw that two of the challenges in the original Genus App
Platform data representation are poor memory locality and inefficient storage usage.
Both challenges are caused by the GValue class. In this structure, data is stored
inefficiently due to the overhead of pointers and reference counting. For example, it
takes 24 bytes to store a 4-byte integer. Secondly, since GValue is a class type, it
is heap allocated by the memory manager, and we have no control over where the
values reside in memory. In Chapter 3, we saw that spatial and temporal locality is
paramount for performance.

One might think that memory locality and cache hit rate have been improved by
the introduction of FieldValueCollection in the previous chapter. This is only
partially true; we store value pointers consecutively in memory with the TArray type,
but the structures containing the data itself reside in arbitrary memory locations.

Section 2.4.1 explained that Delphi supports a broad range of simple, or primitive,
data types. These include integer, character, Boolean, real, and more. Common
for these data types is that they are value types and a variable with one such type
stores the data directly, and not as a pointer to the heap. This is also the case for
the Delphi record type.

We observe that if we change the value buffers in FieldValueCollection from
holding GValue references to storing primitive value types directly, we overcome
the above challenges. First, we reduce memory consumption by transitioning to
primitive data types, since these values have no pointer or reference counting
overhead. Second, since we plan to store the values directly in Delphi array
structures, we improve memory locality.

The data source loading mechanism in Genus App Platform operates with GValues,
but since we plan to use this class no longer to represent data in a data source, we
are curious to see whether GValues can be eliminated from the data load process.
We believe data load time can be reduced by loading the database values directly
from XML instead of using GValues to load values into columns.

Motivated by the memory reduction and the ability to regain control over memory,
we create a new structure based on the FieldValueCollection interface, which we
denote as PrimitiveFieldValueCollection. We also circumvent GValue creation
in the Genus App Platform load module and pass raw XML values directly to the
columns. We hypothesize that these changes will reduce memory consumption and
decrease load time.

6.2 Implementation

In this section, we start by explaining the PrimitiveFieldValueCollection col-
umn class and how Genus App Platform selects the correct primitive column type.
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Listing 6.1: GetValue function in PrimitiveFieldValueCollection.
function Pr imi t iveF i e ldVa lueCo l l e c t i onBase <TType>.GetValue
( index : i n t e g e r )
: CGValue ;
begin

EnsureCapacity ( index ) ;
i f not n i l F l a g s [ index ] then

Result := valueHelper . CreateCGValue ( va lue s [ index ] )
else

Result := ni l ;
end ;

Then we elaborate on how we circumvent GValue creation in the data load module.

6.2.1 PrimitiveFieldValueCollection

To add primitive data type support to our column store, we extract core column
functionality to an abstract class FieldValueCollectionBase. Then, we introduce
a new class that extends from this base class, PrimitiveFieldValueCollection.
This class is a generic class with a subclass for every supported data type. The
hierarchy is shown in Figure 6.1.

PrimitiveFieldValueCollection holds all data in a TArray of the primitive data
type of choice. However, GetValue and SetValue methods still use GValue as return
and input types respectively. To help isolate all code related to value conversion
and avoid code duplication, we create a value helper class which we instantiate in all
primitive column subclasses. This class contains methods for extracting primitive
data values from a GValue, creating GValues based using primitive data types as
input, as well as some simple comparison operators. We have provided an example
of how it is used in Listing 6.1. Like PrimitiveFieldValueCollection, the class
is generic, with subclasses for every supported data type.

In the last iteration, we introduced the nilFlags bitmap. Whereas FieldVal-
ueCollection could store nil in the value buffers instead of pointers to GValues,
we no longer have this opportunity, as simple value types in Delphi are not nullable.
Hence, nilFlags bitmap is used to indicate which values are null. As seen in Listing
6.1, the flags are checked before creating a value.

Even though they are not considered as simple data types in Delphi, we apply
the same techniques for strings and records. Record types, like TGuid, have value
semantics and work similarly as simple data types, which means they are allocated
consecutively in memory using the TArray type. Strings, however, are pointer types,
which means pointers are stored consecutively in the columns, but not the data
itself. Hence, we do not get the benefit from explicit memory control on strings, but
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Figure 6.1: Column store class hierarchy after the introduction of primitive data type
support. FieldValueCollection and PrimitiveFieldValueCollection extends
a common base class, FieldValueCollectionBase. PrimitiveFieldValueCol-
lection has one subclass per supported primitive data type. Although string is
not a simple data type in Delphi, we still create a string primitive column subclass.
The primitive value column structure still has an GValue interface in getters and
setters.
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Listing 6.2: SetXMLValue in PrimitiveFieldValueCollection.
procedure Pr im i t i v eF i e ldVa lueCo l l e c t i on <TType>.SetXMLValue
( index : i n t e g e r ; xmlValue : string ) ;
begin

EnsureCapacity ( index ) ;
va lue s [ index ] := va lueHelper . GetFromXMLValue( xmlValue ) ;
n i l F l a g s [ index ] := FALSE;
a s s i gnedF lag s [ index ] := TRUE;

end ;

we remove an extra layer of indirection to access a value and avoid the overhead
related to GValue.

6.2.2 Column Selection

To make the new PrimitiveFieldValueCollection class work, we must pick the
correct primitive type subclass for the different data descriptors in a data source.
This is the responsibility of the column store. We extend CompositionValueCol-
lection with a GetFieldValueCollection method which takes a data descriptor
as an input and returns the correct column. In this method, the data descriptor is
queried for its data type, and it picks the correct PrimitiveFieldValueCollection
subclass. If no matching primitive data type column is found, the method falls back
on the original FieldValueCollection from Chapter 5.

6.2.3 Loading Raw XML Values Directly

In Genus App Platform, composition objects in a data source are populated with data
using a loading mechanism found in the platform’s event handler. We refer to this
mechanism as the data loader. The data loader queries the database infrastructure
for data which is returned as XML. The loader parses the XML into strings, converts
the values to the correct value type, and allocates GValues, as seen in Figure 6.2a.
Our observation is, with the primitive data type column implementation, that
GValues are surplus and causes additional memory management overhead.

Hence, we extend the FieldValueCollectionBase interface with a new method,
SetXMLValue, which accepts a data source index as well as a string XML value as
inputs. The value helper class is also extended accordingly. For the different primi-
tive data types, this method is overridden and implemented with high performance
standard library functions, like StrToInt and StrToFloat. For more advanced
data types, like date, the correct Genus App Platform parser functions are used.
We see the SetXMLValue implementation in Listing 6.2.
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(a) Original implementation where all data is transferred as GValues.

(b) Enhanced implementation where data is passed to the column store as strings.

Figure 6.2: By loading raw XML strings directly into the columns, the load process
is simplified, and we remove uneccessary memory allocations for GValue.
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As a result of our changes, the loading process has been simplified and the number
of memory allocations reduced. See Figure 6.2.

6.3 Results

Like the previous iteration, we assess our modifications by using Benchmark A.1,
the Data Mart Load Benchmark. We use this benchmark to test our hypothesis
that primitive value storage and direct value load contribute to reduced memory
footprint and improved load time.

GetValue and SetValue in PrimitiveFieldValueCollection still use a GValue
interface, which means memory for the GValue is allocated and deallocated on each
method call respectively. We are, therefore, interested in testing the effects of this
extra memory handling operations with Benchmark A.2, the Write Benchmark.
We also believe the read-intense operations, join and source measure lookup, in
Benchmark A.1 provides insight on this matter.

We test two configurations in this iteration which is the new primitive value column
implementation with and without raw XML value load. We denote the configurations
as primitive w/ raw load and primitive respectively. We compare the benchmark
results with the previous iteration, and we denote the configuration from this
iteration as column store. Due to time constraints, we run the benchmarks only
three times and report the average result. However, all measurements had low
variance with no outliers.

Full benchmark details are found in Appendix A.

6.3.1 Data Mart Load Benchmark

Benchmark A.1 was run with the new primitive value column implementation, with
and without the new loading scheme. We run both scaling factors SF1 and SF10,
but if we observe the same effects on both scaling factors, we only report for SF10.

As seen in Figure 6.3, primitive value columns reduce memory consumption per
LINEITEM from 419 to 333 bytes and from 501 to 374 bytes for scaling factors SF1
and SF10 respectively. This corresponds to 21 % and 25 % reduction in memory
footprint. However, the primitive w/ raw load configuration does not reduce the
bytes per LINEITEM as much as the primitive configuration, although it is still lower
than the original column store.

Load times are increased by the primitive column store, but it is still lower than the
original Genus App Platform row storage implementation. However, with our raw
XML loading mechanisms, the load time has increased even more, and is comparable
original implementation. The results are presented in Figure 6.4.
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Figure 6.3: Bytes per LINEITEM used by the FieldValueCollection implementa-
tion from Chapter 5, primitive value columns, and primitive value columns with
raw XML data load, Benchmark A.1 with scaling factors SF1 and SF10.

Figure 6.4: Data source load time for the FieldValueCollection from Chapter
5, primitive value columns, and primitive value columns with raw XML data load,
Benchmark A.1, scaling factor SF10.

Figure 6.5: Lookup index generation performance for the FieldValueCollection
from Chapter 5 and primitive value columns, Benchmark A.1, scaling factor SF10.
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Figure 6.6: Source measure lookup performance for the FieldValueCollection
from Chapter 5 and primitive value columns, Benchmark A.1, scaling factor SF10.

Figure 6.7: Write performance for the FieldValueCollection from Chapter 5 and
primitive value columns, Benchmark A.2, 1000 elements.

Both read-intense operations in Data Mart Load Benchmark are drastically slowed
down by the new primitive value storage format. As seen in Figure 6.5, lookup
index generation performs 3-4 times worse than the FieldValueCollection imple-
mentation. Sorce measure lookup sees an even higher performance impact, and is,
according to Figure 6.6, ten times slower as the implementation of the previous
chapter, and almost 20 times slower as the original Genus App Platform.

6.3.2 Write Benchmark

Write performance has, as Figure 6.7 shows, degraded slightly with the new primitive
data type column store. However, no operations are more than 15 % slower than
the original.

6.4 Discussion

We see that the memory used per LINEITEM for scaling factor SF10 has been reduced
by an additional 25 % compared to the FieldValueCollection implementation.
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This observation confirms our hypothesis that the overhead associated with GValues
is significant.

We observe an increased load time for Benchmark A.1, where the time it takes to
populate the data source is increased from 8.5 seconds to 13.6 seconds. We believe
the extra steps needed to extract raw values from GValue instances causes this.
Still, the load time is lower than the original Genus App Platform implementation.

Circumventing GValue creation and loading raw XML string values directly into the
column store had no positive effect on the Data Mart Load Benchmark. Here, both
the number of bytes per LINEITEM and load time increased. We did circumvent
the creation of GValues, but by doing so, we also disabled the existing caching
mechanism in Genus App Platform. Thus, no strings are reused, and no conversion
results are cached. We find it likely that this is the cause of increased memory
usage and load time.

We see the consequences of having a GValue interface on the columns, which
results in frequent allocations and deallocations when accessing values. The write
benchmark shows slightly reduced write performance. However, we measure the
largest performance impact on the read-intensive operations in the Data Mart Load
Benchmark. For source measure lookup, which creates a real value array for a
column using a tight loop, the performance has dropped and is now ten times
slower than the FieldValueCollection column store due to the frequent memory
allocations.

6.5 Iteration Conclusion

We conclude that primitive value column storage successfully reduces memory
consumption in Genus App Platform. Compared to the original implementation,
the bytes used per LINEITEM are reduced from 715 bytes to 374 bytes. Our changes
have affected write performance negatively, but not by more than 15 %. We argue
that the significant reduction in memory usage outweighs the slightly negative
impact on write performance, and concludes that storing values as primitive data
types and using a GValue interface is feasible.

In this iteration, we have laid an important foundation for optimizing the read-
intensive operations in the Data Mart Load Benchmark by increasing data locality.
More specifically, we have replaced the GValue pointers and now store values directly
in the columns. Until we exploit this storage structure, source measure lookup and
lookup index generation suffer severely due to memory allocation operations on
each access. We investigate column operations in Chapter 8.

Our hypothesis that loading data as raw XML values into the column would reduce
load time was wrong, at least for now. Circumventing GValues also circumvents the
built-in caching mechanism in Genus App Platform and results in higher memory
usage and slower load times.
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We have cut the application memory requirements in half without applying any
form of compression. Now that we know data can be stored as primitive data
types, the next step is to compress the data with techniques used by read-optimized
databases.

6.5.1 Future Work

We are still keen to investigate the potential of loading XML values directly, but
due to time constraints, we are unable to pursue this topic further. Future work
should aim to replicate the existing caching mechanisms in Genus App Platform,
but within the column store and without the creation of GValues. Caching could,
for instance, only be enabled if the data source is in a feeding state. Building on
the idea of horizontal partitioning from Section 5.5.1, caching could also be used
in newly created partitions, and once a partition is full, all caching structures are
discarded, and the partition is optimized for read-only workloads.
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Chapter 7

Iteration III: Compression

So far we have reduced the number of bytes per LINEITEM from 715 bytes to 374
bytes in the Data Mart Load Benchmark. This corresponds to a reduction of 48 %.
However, we have not yet explored any compression techniques which we studied in
Chapter 3. In this chapter, we investigate the effects of light-weight compression
methods by implementing dictionary encoding, bitpacking, and property packing.
Also, we inquire into a new technique for compressing null pointers, which we denote
as null pointer compression.

This chapter forms the third and final iteration where the goal is to reduce memory.
There is one more iteration, but this does not seek to reduce memory any further, only
utilize the storage structures to increase performance for read-intense operations.
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7.1 Introduction

In Section 3.3, we saw that compression not only reduces memory requirements but
also comes with the benefit of increased performance. Compression is beneficial
because it increases cache locality, turns processes CPU-bound from memory-bound
and thus reduces the number of CPU cycles needed to process data. SIMD instruc-
tions might also increase processing throughput on compressed data. According
to Abadi et al., compression increases performance by a factor of two on average
[16]. For compression to be beneficial the compression must be light-weight since
the real benefit of compression can only be leveraged if the decompression effort is
minimized.

One such light-weight compression technique is dictionary encoding, which we saw
in Section 3.5. In a dictionary encoded column, each distinct value is stored once in
a structure known as a dictionary, and instead of storing the actual values, keys
to this dictionary are stored in the column. Not only does this technique save
space, but it may increase query performance since comparisons are reduced to
cheap integer operations. In this iteration, we extend our column store to support
dictionary encoding and hope to leverage the benefits this technique gives us.

The second technique we implement in this iteration is bitpacking, which we studied
in Section 3.4. In this compression scheme, no more bits than needed are used to
store a value. This improves cache hit-rate and enables SIMD query processing.
Bitpacking and dictionary encoding are commonly used in conjunction, and this
what we will do in this iteration.

Last, we explore two techniques to save even more memory in Genus App Platform.
The first is a technique we denote as null pointer compression. It is based on the
observation that a CompositionObject has several properties, properties that are
commonly nil. Thus, by moving the properties to the column store, we may save
space by not allocating any values unless they are set. The second technique we
apply is to compress the residual member variables in the CompositionObject class
with a packed record.

7.2 Implementation

In this section, we explain how compression is implemented by creating new Field-
ValueCollectionBase subclasses for dictionary encoding, both with and without
bitpacking. Then we proceed with null pointer compression and property packing.

7.2.1 Dictionary Encoding

In Section 3.5, we saw that dictionary encoding is commonly applied as a compression
technique in OLAP-databases. There are many benefits with dictionary encoding
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Figure 7.1: Dictionary encoded column implementation. Both value buffer and
dictionary are stored using TArray. To ensure constant time write operations, we
keep an inverse lookup from values to dictionary keys, which is implemented as a
TDictionary. Read-only data sources may drop the inverse lookup to save memory.

in addition to a reduction in memory usage, like improved data locality and query
speedup.

In a dictionary encoded column, the dictionary can be structured either for read or
write performance, or both. For read performance, there must exist a lookup from
a dictionary index to the actual value. For such lookup, a simple index-based list
suffices, adding new keys to the end of the list as they appear. Hence, value lookups
happen in constant time. However, with this implementation, a linear search to find
the correct key in the dictionary is performed every time there is a write operation
on the column. Here, an inverse lookup from dictionary values to indexes would be
beneficial.

Since Genus App Platform must handle both transactional and analytical workloads,
we implement a dictionary encoded column with both lookup structures, such that
both read and write operations happen in constant time. We have depicted this
in Figure 7.1. However, keeping both structures comes at the cost of increased
memory. Thus, for read-only workloads, like Genus Discovery, we would like to
discard the inverse lookup. We implement this in Consolidate; when this function
is called, we deallocate the inverse lookup.

We implement a new class, PrimitiveDictionaryFieldValueCollection, to be
our dictionary encoded column class. The class uses TArray for both values, or
dictionary keys, and the dictionary itself. We choose this array type since the
performance assesment from Appendix B indicates that TArray is the fastest array
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Figure 7.2: PrimitiveDictionaryFieldValueCollection class diagram. The class
inherits from FieldValueCollectionBase, and has a subclass for each supported
primitive type.

structure. For the inverse lookup, we use a TDictionary. For different primitive
types, PrimitiveDictionaryFieldValueCollection has a subclass for each sup-
ported type which uses the same value helper as we introduced in the previous
section. PrimitiveDictionaryFieldValueCollection extends FieldValueCol-
lectionBase. A class diagram is shown in Figure 7.2.

The array with dictionary keys, or the value buffer, uses the same growth strategy
as we discussed in Section 5.2.3. Like FieldValueCollection and Primitive-
FieldValueCollection, the value buffer is doubled on index overflow, and the
Consolidate method resize the column to the exact data source size.

7.2.2 Bitpacking

Bitpacking is a compression technique where values are stored with no more bits
than needed. As we saw in Section 3.5.2, dictionary encoding and bitpacking goes
hand in hand. We, therefore, implement bitpacking in our dictionary encoded
columns to save memory.

We implement the value buffer as an array of 8-byte chunks, where we denote each
chunk as a cell. Unlike previous column implementations, a cell is added one at a
time, instead of using a doubling strategy. We did this for simplicity reasons, and,
since each cell contains multiple values, array reallocation happens less frequent
than for an uncompressed column.
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Figure 7.3: Bitpacked value buffer. First, we see a dictionary overflow, where the
value buffer is rebuilt with extra padding. Second, if needed, a new cell is added to
hold the new value.

One of the main challenges with bitpacking is word alignment. If keys are allowed
to cross machine word boundaries, not only performance suffers, but the imple-
mentation complexity increase drastically. Therefore, we take a simpler approach,
where the number of bits used to store each value must be a power of 2. As seen in
Figure 7.3, a dictionary overflow causes the bits per value to go from two to four to
avoid values stored across machine word boundaries. When a dictionary overflows,
the columns rebuilds the entire value buffer using the new number of bits per value.

We name our bitpacked dictionary encoded column class PrimitivePackedDic-
tionaryFieldValueCollection, and, like always, the class inherits from Field-
ValueCollectionBase. The value buffer is implemented using a TArray<UInt64>.
Like the non-packed version, a TArray is used for the dictionary and TDictionary
for the inverse lookup. In addition to this, the class holds some state regarding the
bitpacking, and a private function IncreaseDictionaryCapacity which rebuilds
the value buffer on dictionary overflow. The class diagram is seen in Figure 7.4.

7.2.3 Null Pointer Compression

So far, we have compressed data from the Information System and Information
System Development Layers. However, several other structures belong to Compo-
sitionObjects which are used in the Method Engineering layer. These structures
include lists of data validation and integrity errors, formatting rules, and more. Our
observation is that these attributes are not fundamentally different from attributes
from the other model-driven engineering layers, which means we can put these
pointers into our column store too. Although one might initially think that we have
only moved the problem and that the pointers now are stored in the column store
instead in the composition objects, we may save memory based on the observation
that these pointers are usually nil. In other words, these pointer columns do not
need to be allocated before any values are set. We illustrate this scenario in Figure
7.5.
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Figure 7.4: PrimitivePackedDictionaryFieldValueCollection class diagram.
The class is very similar to PrimitiveDictionaryFieldValueCollection, but it
has a different storage structure for its values and holds some state variables needed
for bitpacking.

Figure 7.5: Null pointer compression. Based on the observation that most Composi-
tionObject properties are normally nil, data can be compressed by not allocating
value buffers until the properties are set.
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Listing 7.1: Structure with packed data for CompositionObject.
PackedComObjData = packed record

modifyCount ,
datasourceIndex : i n t e g e r ;
s t a t e : EObjectState ;
f i l t e r S t a t u s : EF i l t e rS ta tu s ;

end ;

To enable null pointer compression, we implement a new generic column structure
named DefaultObjectList<TType>. This class is an array structure that can
be instantiated with any class type that will return nil if no values are set. If
values are set, the array, or column, is allocated to accommodate these values.
We extend the base column store class, CompositionValueCollection, with one
such DefaultObjectList for each pointer variable in CompositionObject. Hence,
objects must now query the column store and provide a data source index to access
structures used in the method engineering layer, like validation errors and formatting
rules. A total of six member variables from CompositionObject is moved to the
column store.

7.2.4 Property Packing

In the last section, we saw how null pointers could be compressed by moving
member variables in CompositionObject to the column store. However, the Com-
positionObject class has some value type properties that are always set, which
includes a modify count, some state variables, and the much-needed data source
index. Since these variables are always set, they cannot be compressed with null
pointer compression.

To reduce the memory footprint used by these attributes, we compress them in
a Delphi record type with the packed keyword. This keyword tells the compiler
to pack data and disregard word boundaries [13]. Thus, we take all the residual
properties from the CompositionObject class and move it to a PackedComObjData
record type. Listing 7.1 shows the structure.

As a result of both null pointer compression and property packing, a Composi-
tionObject has no member variables except for the PackedComObjData record and
a pointer to the column store.

7.3 Results

We test the changes from this iteration with the Data Mart Load Benchmark,
Benchmark A.1 and the Write Benchmark, Benchmark A.2. Like the previous
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Distinct Values Dictionary Encoding?
LINEITEMKEY 600,000 No
LINESTATUS 3 Yes
RETURNFLAG 3 Yes
SHIPDATE 2526 Yes
QUANTITY 50 Yes
EXTENDEDPRICE 598,966 No
DISCOUNT 11 Yes
TAX 9 Yes

Table 7.1: Column selection for Benchmark A.1. Low-cardinality columns are
dictionary encoded, while the others are not. The numbers are based on scaling
factor SF10, where there is a total of 600,000 LINEITEM rows.

two iterations, we are curious to see how compression techniques affect memory
consumption, load time, read performance, and write performance.

We read in Section 3.5 that dictionary encoding is only effective when there is a
small number of distinct values compared to the number of total values. Hence, not
all columns in the Data Mart Load Benchmark should be encoded with dictionary
encoding. Therefore, we pick certain LINEITEM properties by hand to be dictionary
encoded, based on the column cardinality in the LINEITEM table. Table 7.1 shows
the results, and indicates that most columns benefit from dictionary encoding.

In this iteration, we test four new configurations in addition to the primitive column
configuration from the previous chapter:

• Primitive is the configuration from the last iteration, which is column store
with non-compressed, primitive values.

• Dictionary uses dictionary compression from Section 7.2.1. No bitpacking.

• Dictionary /w Raw Load is the same dictionary compression configuration as
above, but with raw XML string value load as outlined in Section 6.2.3.

• Packed Dictionary is configuration where we use the bitpacked dictionary
compression from Section 7.2.2.

• Full Compression configuration uses all compression techniques discussed in
this chapter: Bitpacked dictionary encoding with null pointer compression
and proprety packing.

Like the previous iterations, we run each benchmark three times and report the
mean measurements. All results had low variance, within 15 % of the average
measurement.
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Figure 7.6: Bytes per LINEITEM used by all configurations tested in this iteration
of data compression, Benchmark A.1 with scaling factors SF1 and SF10.

Figure 7.7: Data source load time for all compression configurations tested in this
iteration, Benchmark A.1, scaling factor SF10.

7.3.1 Data Mart Load Benchmark

Benchmark A.1, the Data Mart Load Benchmark, is run with all configurations
enumerated above. We use both scaling factors, SF1 and SF10, but if we observe
the same effects with both, we only report for SF10.

We see in Figure 7.6 that the dictionary configuration reduce memory by 11 %
and 15 % for scaling factors SF1 and SF10 respectively. Also, there is no longer a
difference in memory footprint for original and raw XML value loading mechanism,
a difference we observed in Section 6.3.1. Null pointer compression and property
packing significantly reduce memory consumption, while bitpacking only reduces
the bytes per LINEITEM by 5 %. For SF10, the total reduction from primitive to
full compression is 137 bytes, or 37 %.

As we see in Figure 7.7, load times have increased as a result of compression. For
SF10, dictionary encoding adds 1.2 seconds load time, bitpacking adds 0.5 seconds,
and null pointer compression and property packing adds 0.2 seconds more. Even
though load time has been increased, it is still less than the original implementation.
Loading raw values into the columns increases load time to 21.8 seconds for SF10.
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Figure 7.8: Write performance for configurations tested in this iteration, Benchmark
A.2, 1000 elements.

We benchmark the read-intense operations, lookup index generation and source
measure lookup, for all configurations in this iteration. However, since the measure-
ments are not significantly different from the previous iteration, we do not present
them in this chapter.

7.3.2 Write Benchmark

Write performance has not been significantly changed compared to primitive column
storage, as seen it Figure 7.8. Bitpacking is the fastest of all implementations, but
only by very little.

7.4 Discussion

We see that dictionary encoding is successful in compressing data, and for SF10
in the Data Mart Load Benchmark, memory is reduced by 15 % compared to the
primitive column structure from the previous chapter. Bitpacking also contributes
to reduced memory footprint, but not more than five percent. The increased
compression rates come at the cost of higher load times, and it now takes 15,4
seconds to load the full data mart into memory.

Null pointer compression and property packing contribute to large memory savings
and reduces the storage per LINEITEM from 301 bytes to 237 bytes, or 64 bytes. Since
we only removed six pointers, or 48 bytes, it means property packing contributes to
saving 16 bytes per element. Neither of these two techniques increases load time
significantly.

None of the applied techniques has changed the write performance, which strengthens
our hypothesis that write operations have much overhead associated integrity, data
validation, and formula calculation. However, read-intense operations in the Data
Mart Load Benchmark still suffer severely from the modification applied to Genus
App Platform so far, and we believe this is caused by the GValue interface.
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Figure 7.9: The bytes used per LINEITEM for different configurations tested during
the course of this research, Benchmark A.1, scaling factor SF10.

Figure 7.10: The number of milliseconds used to load the Data Mart Load Bench-
mark for different configurations tested during the course of this research, Benchmark
A.1, scaling factor SF10.

If we load raw XML string values directly into a dictionary encoded column, we
observe that we save the same amount of memory as the built-in caching mechanism
in Genus App Platform. In other words, the number of bytes for dictionary encoding
and dictionary encoding with raw value load is the same. However, the load time
is still significantly longer if we load raw XML values. We believe this is because
the caching mechanism not only re-uses data but also stores string-to-primitive
conversion results. We discuss how a similar caching mechanism can be implemented
in our column store in Section 7.5.1.

7.5 Iteration Conclusion

In this iteration, we have reduced the memory required by Benchmark A.1 by
37 %. This reduction is mainly caused by dictionary encoding and null pointer
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compression. Compared to the original Genus App Platform implementation, the
bytes per LINEITEM is reduced by 67 %. The reduction in memory usage throughout
the iterations of this research illustrated in Figure 7.9. Although the introduction
of primitive data types and compression has increased load time from the first
FieldValueCollection implementation, the time it takes to load the Data Mart
Load Benchmark is still reduced by 33 % compared to the original implementation.
This is illustrated in Figure 7.10.

Concluding this iteration, we are left with two major challenges. The first challenge
was discovered in the previous iteration: Read-intensive operations must be adapted
to utilize the new storage format. For instance, one of source measure lookup
operations in Benchmark A.1 now takes 6.9 seconds, an operation which previously
took 0.3 seconds. We address this challenge in Chapter 8.

The second challenge, which is a result of dictionary compression, is to select
the correct column format for different object class properties. In this iteration,
we picked columns that would benefit from dictionary encoding by hand. With
this approach, the Genus App Platform expert users need knowledge about data
cardinality, which is, in our opinion, a knowledge they should not need to have. In
Chapter 9, we investigate how Genus App Platform can pick the correct storage
format without modeler intervention by using database-provided statistics.

7.5.1 Future Work

Like the last iteration, we encourage studying the built-in caching mechanism in
Genus App Platform. We have proved that dictionary encoded columns re-use
values as efficiently as the existing mechanism, but if caching is disabled, the load
time is significantly higher. We believe this is caused by the caching mechanism
re-using string-to-primitive value conversions. One straight-forward solution to the
problem would be to add a rawInverseLookup to the PrimitiveDictionaryField-
ValueCollection class which translates raw XML strings to dictionary indexes.

In our bitpacking implementation, cells are added one at a time to a column instead
of doubling capacity. Although one cell normally contains more than one value, the
effects of the doubling growth strategy should be investigated.



Chapter 8

Iteration IV: Column
Operations

In this chapter, we investigate the potential in the data structures used by our
column store. We do so by defining operations that work on entire columns at a
time and show how the changes improve read-intense operations by several orders
of magnitude.

This chapter contains the fourth and final iteration of our research.
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Figure 8.1: As memory footprint has gone down through the course of this research,
read-intense operation performance has decreased, especially after the introduction
of primitive value storage.

8.1 Introduction

So far, the techniques applied in this research give a reduction in memory usage
and load time. However, as the previous iterations have pointed out, we have
not yet exploited the potential the data structures in our column structure. In
Figure 8.1, we see that both lookup index generation and source measure lookup
performance from Benchmark A.1 has been severely slowed down, especially after
the introduction of primitive value storage. In this chapter, we aim to increase the
performance of these operations.

When we say exploiting the potential in the data structures, we refer to making
operations in Genus App Platform more friendly for modern CPUs. As we saw in
Section 3.9, independent instructions, cache hit-rates, and branch avoidance is key
to achieve full CPU throughput.

Currently, read-intense operations, like source measure lookup and lookup index
generation in Benchmark A.1, access values in tight loops using the GetValue
function. Hence, every loop iteration requires a series of function calls and layers of
indirection to access the value, including a dictionary lookup. More importantly, a
GValue is allocated per iteration, and likely discarded shortly after. As we saw in
Section 3.9, this is a recipe for poor performance.

We solve the above challenge by introducing column operations, or operations that
work on all values for an object class property in a data source. In other words, we
move certain functionality from outside the GValue interface to the column store
itself. This modification enables the operations fully to utilize the storage format:
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Listing 8.1: Returning the value buffer pointer in a RealFieldValueCollection.
function Rea lF i e ldVa lueCo l l e c t i on . GetDoubleArray
: TArray<double> ;
begin

Result := va lue s ;
end ;

Listing 8.2: Creating a double array for a dictionary encoded integer column.
function I n t e g e r D i c t i o n a r y F i e l d V a l u e C o l l e c t i o n . GetDoubleArray
: TArray<double >;
begin

SetLength ( Result , maxDatasourceIndex + 1 ) ;
for i := 0 to maxDatasourceIndex do

Result [ i ] := d i c t i o n a r y [ va lue s [ i ] ] ;
end ;

Improved cache locality, vectorized execution, and low degree of freedom. Moreover,
the column operations are free of branches and function calls, which fills the CPU
pipeline, enable loop unrolling, and superscalar processing.

So far, four operations that would benefit from the column store are identified in
Genus App Platform. These include source measure lookup and join operations from
Benchmark A.1, as well as the generation of identifier indexes and predicate bitmaps.
In this iteration, we implement these operations and measure the performance impact
using Benchmarks A.1, A.3, and A.4.

8.1.1 Source Measure Lookup

As written in Appendix A, the source measure lookup operation creates an array
of double precision floating point values for a column in a data source. This array
is the base unit in Genus Discovery and is used for calculations, grouping and
aggregation. For simplicity reasons, all numeric types which work as measures in
a data mart are converted to 64-bit floating point numbers, even 32-bit integers.
In the primitive and uncompressed column class RealFieldValueCollection, we
already use such array to store the data, so ideally there should be no need to
generate a new array by accessing values one-by-one using GetValue.

We implement a new function, GetDoubleArray in FieldValueCollection. This
function will, for all supported column types, return a Delphi array of double. If
the column does not support the operation, nil is returned. For a RealField-
ValueCollection, the method needs only to return a pointer to its internal value
buffer, as seen in Listing 8.1.
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Listing 8.3: GetLookupIndex implementation.
function ObjectHandleF ie ldValueCol l ec t ion . GetLookupIndex
( i d e n t i f i e r I n d e x : TDictionary<string , CompositionObject >)
: TArray<i n t ege r >;
begin

SetLength ( Result , maxDatasourceIndex + 1 ) ;
for i := 0 to maxDatasourceIndex do
begin

i f i d e n t i f i e r I n d e x . TryGetValue ( va lue s [ i ] , comObj ) then
Result [ i ] := comObj . DatasourceIndex

else
Result [ i ] := −1;

end ;
end ;

However, since the array of double precision floating point numbers is also required
on integer measures, we see the potential of creating the array inside the columns.
By iterating all values and converting them to floating point numbers within the
column, there is no branches or function invocations, nor any layers of indirection.
This implementation enables loop unrolling and instruction pipelining, which in turn
maximizes CPU throughput. We also implement GetDoubleArray in dictionary
encoded columns, as seen in Listing 8.2.

8.1.2 Lookup Index

A common operation in Business Discovery is to create a lookup index from one
table to another, which maps data source indexes from one data source to another.
Another name for this operation is join. In databases, a join normally takes two
columns as input and outputs a mapping between the columns. There are several
algorithms for joining, however, as we saw in Section 3.11, the nested loop is most
popular for in-memory databases. This algorithm creates a hashmap on the inner,
or smaller, relation first and then probes this hashmap with values from the outer
relation.

Genus Discovery uses a lookup index to join tables within a data mart, but as
we have seen, creating such index is inefficient with the current implementation.
We observe that this operation can benefit from the column store structure and
avoid the unnecessary GValue and GetValue interface. Therefore, we define a new
column operation, GetLookupIndex. Luckily, the hashmap of the inner relation is
already available for us in Genus App Platform, in the form of an identifier index.
We may, therefore, use this structure as an input argument in GetLookupIndex.
The operation returns a TArray<integer> which contains a mapping from the data
source indexes of the column to the data source indexes in the identifier index.
Listing 8.3 shows the implementation.
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Listing 8.4: GetIdentifierIndex implementation.
function Pr im i t i v eF i e ldVa lueCo l l e c t i on <TType>. G e t I d e n t i f i e r I n d e x
( compos i t ionObjects : Compos i t ionObjectCol l ec t ion )
: TDictionary<string , CompositionObject >;
begin

Result := TDictionary<string , CCompositionObject >. Create ;
for comObj in compos i t ionObjects do
begin

id := valueHelper . ToString ( va lue s [ comObj . DatasourceIndex ] ) ;
Result . Add( id , comObj ) ;

end ;
end ;

8.1.3 Identifier Index

We read about the identifier index in the previous section, and how it was used in the
GetLookupIndex operation. This structure maps an identifier, typically a database
primary key, to composition objects, and is used several places in Genus App
Platform. The structure is created by the data source on-demand. We implement
an operation named GetIdentifierIndex in PrimitiveFieldValueCollection.
This method iterates a list of composition objects, looks up the column value based
on the datasource index, and creates a mapping between the identifier and object.
Since all identifiers in Genus App Platform are strings, the value helper class must
convert the column contents before using it as a key in the dictionary. Most objects
are ordered by their datasource index, which means cache locality is maximized.
We see the GetIdentifierIndex implementation in Listing 8.4.

The GetIdentifierIndex is not implemented in the dictionary encoded column
classes because it is not needed: If a column contains object identifiers, or primary
keys, there will be nothing but unique values in the column, and such column never
benefits from dictionary encoding.

8.1.4 Predicate Evaluation

Until now, we have focused on Genus Discovery and the Data Mart Load Benchmark.
However, one common operation in Genus App Platform is to move certain objects
from one data source to another based on a filter, an operation normally performed
in tasks. Filters are composed of several predicates, including equal, not equal,
greater than, less than, null, and other comparisons.

We believe our column store can aid this filter operation by implementing predicate
evaluation in the FieldValueCollection interface, such that unnecessary memory
allocations and layers of indirection are avoided. Hence, we introduce a new column
operator, GetBitmap, that takes an operator and a value as input, and returns a
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Listing 8.5: Creating a bitmap for the equal operator.
function Pr im i t i v eF i e ldVa lueCo l l e c t i on <TType>.GetEqualBitmap
( value : CGValue )
: Bas icBitArray ;
begin

Result := BasicBitArray . Create ( maxDatasourceIndex + 1 ) ;
nat iveValue := valueHelper . ExtractValue ( value ) ;
for i := 0 to maxDatasourceIndex do

Result [ i ] := va lueHelper . ValueEqual ( va lue s [ i ] , nat iveValue ) ;
end ;

bitmap of matching rows. An implementation of the equal predicate evaluation
is shown in Listing 8.5. If a filter contains more than one predicate, they can be
efficiently combined with bitwise AND and OR operations, much like bitmap indexes
depicted in Figure 3.10.

In Listing 8.5, we see the implementation in the generic PrimitiveFieldValueCol-
lection class, which means the value helper class must be used to evaluate the
predicate. Using this class causes extra overhead in calling the ValueEqual func-
tion, particularly as it is a virtual function which cannot be inlined. However,
all PrimitiveFieldValueCollection subclasses are free to override the predicate
evaluation methods to use the Delphi comparison operators directly.

We also implement predicate evaluation in the dictionary encoded columns. Here,
we first scan the dictionary and add keys satisfying the predicate to a set. Then we
create the bitmap by iterating the value buffer and probing the set of keys.

8.2 Results

In this section, we test the performance impact of the column operations we
introduced in this iteration. For this, we use a combination of Benchmarks A.1, A.3,
and A.4, depending on the operation. Most results are presented on a logarithmic
scale.

8.2.1 Source Measure Lookup

We use Benchmark A.1 with scaling factor SF10 to measure the performance impact
of using GetDoubleArray in the source measure lookup operation. As seen in Figure
8.2, the time it takes to perform the operation is reduced by more than one order of
magnitude from the original implementation, and more than two orders of magnitude
from the compressed implementation. The non-compressed EXTENDEDPRICE column
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Figure 8.2: Source measure lookup time for original, compressed column store, and
compressed column store with GetDoubleArray column operation, Benchmark A.1,
scaling factor SF10. Logarithmic scale.

Figure 8.3: Lookup index generation time for original, compressed column store,
and compressed column store with GetLookupIndex column operation, Benchmark
A.1, scaling factor SF10. Logarithmic scale.

yields the best performance result, where the source measure lookup operation now
takes 8 ms for 600,000 elements.

8.2.2 Lookup Index

Like as for source measure lookup, we used the Data Mart Load Benchmark SF10 to
investigate the performance benefits of the GetLookupIndex operation. Figure 8.3
shows the result of this benchmark. The time it takes to perform the join operation
is reduced by two orders of magnitude compared to the original implementation,
and almost three orders of magnitude compared to the compressed implementation.

8.2.3 Identifier Index

To test the performance of the identifier index operation, we use a benchmark which
we have not yet employed in this research; Benchmark A.4. This benchmark is
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Figure 8.4: Lookup index generation time for compressed column store and com-
pressed column store with GetIdentifierIndex column operation, Benchmark A.4.
Logarithmic scale.

similar to Data Mart Load Benchmark, but this benchmark contains a join between
two tables with 200,000 rows and 400,000 rows respectively. Thus, by using this
test, we expect to make the effects of GetIdentifierIndex more apparent. Here,
we only compare operation time with the full compression configuration.

Figure 8.4 shows the results of Benchmark A.4. The time it takes to join Customer
Balance Daily with Customer has been reduced with almost four times. The
smaller join, between Fund and Customer Balance Daily, goes from 11 ms to 9
ms, but this is likely to be caused by inaccuracy in the measurements.

8.2.4 Predicate Evaluation

To test predicate evaluation operators, we use the Filter Benchmark, Benchmark
A.3. This benchmark moves data from one data source to another based on a filter.
The results are presented in Figure 8.5.

For all high-selectivity predicate evaluations, the new predicate operator function
increases performance, but is, in general, slower than the original implementation.
Low selectivity predicates, like EXTENDEDPRICE < 10000 (selects 44) and EXTEND-
EDPRICE = 42995.94 (selects one) are faster than the initial implementation, where
the latter is three orders of magnitude faster.

8.3 Discussion

The benefits of utilizing the data structure available in the column store and making
column operations that are friendly to modern CPUs are significant. Column
operations have resulted in both read-intensive operations in Benchmark A.1 have
had their performance increased by one or two orders of magnitude compared to
the original Genus App Platform implementation. Performance on large joins is
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Figure 8.5: Predicate evaluation results for original, compressed column store, and
compressed column store with predicate evaluation operators, Benchmark A.4.
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even further improved by the GetIdentifierIndex operation, where the join time
Benchmark A.4 is reduced by 75 %.

In Figure 8.2, we observe that source measure lookup on EXTENDEDPRICE is twice
as fast as for the other three columns. This is because QUANTITY, DISCOUNT, and
TAX columns are dictionary encoded. EXTENDEDPRICE only needs to pass its array
pointer to the lookup operation, while the other columns must allocate and populate
this double array using the dictionary. However, this operation is still fast; it takes
approximately 20 ms to populate 600,000 elements. For QUANTITY column, values
must be converted from integers to floating point numbers, but this does not affect
performance.

In the column store, the predicate evaluation operators from Section 8.2.4 have
speeded up Benchmark A.3 if using a compressed column store. However, most
of these operations are still slower than the original Genus App Platform imple-
mentation. We believe this is because Genus App Platform is not designed for the
new storage format; data is moved from one data source to another using rows, or
CompositionFieldValueCollections, filled with GValues. However, the potential
in column predicate evaluation is apparent on low-selectivity filters: The time it
takes to evaluate EXTENDEDPRICE = 42995.94 is reduced from 53.3 seconds to 29
ms, almost 2000 times faster.

8.4 Iteration Conclusion

There is much to gain by exploiting the potential in the data structures in our
column store. By introducing column operations, we see that several read-intensive
operations are speeded up by several orders of magnitude. We see the largest
performance impact in this iteration on an equality predicate evaluation in the Load
Benchmark, where the time it takes to perform the operation has been reduced by
approximately 2000 times.

The four column operations described in this chapter serve as a proof-of-concept on
the potential in column storage; they are just the tip of the iceberg. Other parts of
Genus App Platform should be rewritten to use these operations and new column
store functionality should be defined. We elaborate in Section 8.4.1.

This chapter concludes our design and experiment part of the research. We have
reduced memory by 67 %, increased load time by 36 %, and the performance for
most operations benchmarked in this research has been increased. Some operations
are still slower than the original Genus App Platform implementation, like those in
Benchmark A.3. However, we have laid some important groundwork for restoring
and improving the performance of these operations.

The next chapter discusses other interesting topics investigated in this research,
which is column selection and UTF-8 strings.
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8.4.1 Future Work

Future work should aim to identify more column operators that can increase
performance in Genus App Platform. As we have seen throughout the research
iterations, read-intensive operations suffer from the GValue interface, and if no
attention is paid to such operations, performance decrease by as much as one order
of magnitude. These read-intensive operations, however, are also the operations
that have the potential to benefit the most from columns. Hence, future work
should identify such operations, implement them in the FieldValueCollection
class, and apply them in Genus App Platform.

For instance, we have seen the potential in the predicate evaluation operation, where
Benchmark A.3 yielded 2000 times performance improvement for a low-selectivity
predicate. However, since Genus App Platform have not been adapted to the column
store, moving data from one data source to another generally takes longer time than
the original implementation. We believe this operation can be significantly faster
by creating an ExtractFromBitmap function in CompositionValueCollection; a
function that takes a bitmap as input and returns a new CompositionValueCol-
lection with a subset of the data based on the bitmap. This way, composite
queries can evaluate predicates using the GetBitmap, combine them with AND and
OR operations, and extract data using the new ExtractFromBitmap method. We
link such approach to the late materialization principle from Section 3.10.3, where
no rows are materialized until needed, or in this case; never.
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Chapter 9

Other Topics

In this chapter, we cover some other topics investigated in this research. First, we
see how memory usage is reduced by applying UTF-8 instead of UTF-16 encoding
to strings in the column store. Second, we discuss how database statistics can be
used to select the correct column implementation automatically.

The topics in this chapter yield some interesting results which are worthwhile to
discuss. However, the techniques are not tested thoroughly enough to draw any
general conclusions.
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Figure 9.1: Bytes per LINEITEM used by with and without UTF-8 string encoding,
Benchmark A.1 with scaling factors SF1 and SF10.

Figure 9.2: Data source load time for full compression with and without UTF-8
string encoding, Benchmark A.1, scaling factor SF10.

9.1 UTF-8

According to the Delphi documentation, the built-in string type uses UTF-16,
because the Win32 platform uses this format [12]. UTF-16 is a Unicode encoding
which uses two or four bytes per character. However, another encoding, UTF-8,
exists for the Unicode charset, which encodes the 128 ASCII characters with one
byte only.

Our observation is that most strings used in Genus App Platform only use these
128 ASCII characters, which means a transition from UTF-16 to UTF-8 could
potentially reduce the memory requirements for strings in half. Therefore, we
extend our primitive column subclasses with one more type: Delphi’s UTF8String.
Then, we see how load time and memory usage are affected.

9.1.1 Test Results

Figure 9.1 shows that the number of bytes used per LINEITEM is reduced by 7 %
for both scaling factors. However, as seen in Figure 9.2, load times are increased by
roughly 14 %.
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9.1.2 Discussion, Conclusion, and Future Work

We observe that UTF-8 encoding reduces memory consumption slightly. However,
this comes at the cost of increased load time. We believe that the increased load
time is caused by the fact that Genus App Platform consequently uses UTF-16
encoded strings throughout the application source code. Hence, when data is loaded
into a data source, there are many conversions between UTF-8 and UTF-16 that
causes performance to slow down. The results from Benchmark A.1 might also be
the tip of the iceberg; the entire platform might be slowed down due to encoding
conversions between string and UTF8String. Also, UTF-16 is the default encoding
in Delphi because it is supported by the underlying system. In other words, all
communication with the OS must convert all strings to UTF-16.

If this topic is to be pursued further, all strings in Genus App Platform must be
changed to the UTF8String type. Only then can a true performance assessment
be made, and to see if the reduced memory consumption outweighs the benefits of
having strings stored as the same format as the underlying operating system.

9.2 Column Selection

During the research, we have implemented different column formats with the
FieldValueCollection interface. Until now, we have selected by hand which
properties in an object class uses which storage format. However, this disregards an
important aspect of Model-Driven Development: The modelers should be shielded
from the underlying complexities of data storage and should not need to know
anything about how the data is best represented internally. In other words, Genus
App Platform should ideally decide which FieldValueCollection implementation
which is better suited for different use cases and object class properties.

First, according to our benchmarks, we concluded in Chapter 5 that the column store
did not hurt performance. Hence, we may safely use CompositionValueCollection
for representing data. Second, we concluded in Chapter 6 that discarding GValues
and instead storing data as primitive data types significantly reduces memory
consumption and does not affect write performance by much. We may, therefore,
use the PrimitiveFieldValueCollection class on all supported types. Third, we
observed no negative performance impact on the bitpacked dictionary compared to
the non-packed dictionary.

We saw a significant space saving by choosing dictionary columns on low and
medium cardinality rows. However, for columns with high cardinality, a dictionary
is not beneficial due to increased memory usage and load time.

Thus, it all sums down three implementations:

• PrimitiveFieldValueCollection for high-cardinality columns; object prop-
erties with many distinct values.
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Figure 9.3: Using statistics to select the proper storage format. A statistics provider
service will, for a given data descriptor, return relevant statistics, preferably the
number of rows, number of unique values, and average data element size. The
module might cache, restructure and calculate some of the statistics internally, as
the different database providers have different interfaces.

• PrimitivePackedDictionaryFieldValueCollection for low- and medium-
cardinality columns; object properties with few distinct values.

• FieldValueCollection for object properties with types not supported in the
primitive value columns.

To check whether a primitive type is supported is trivial, however deciding column
cardinality is challenging. To overcome this challenge, we implement a database
statistics module in Genus App Platform. This module will, for a given data
descriptor, return relevant statistics for a column, including the number of rows,
number of unique values, and average data element size. As seen in Figure 9.3, the
module queries the database infrastructure for metadata, and caches them locally.
For instance, Oracle Database provides an SQL interface to enable clients to access
statistics used by the query optimizer. The acquired data is then utilized by the
column selector to pick between dictionary encoded or regular columns.

9.2.1 Data Source Filters

One of the major limitations in our statistics provider is that it provides statistics
for all values for a given object class property. However, it is quite common to add
a filter to the data source on tasks and analyses, for instance on an analysis of data
for a given date range. What this means is that even though our statistics provider
picks the correct storage format for all data in a column, the storage format might
not be optimal for filtered subsets of the data.
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One solution to this problem would be to increase the granularity of the statistics.
Instead of only using data descriptors, the statistics module should also accept a
data source with corresponding filters as input. This extra input would increase the
precision of the statistics, but it has certain challenges. For example, the database
infrastructure does not provide statistics for data subsets. Thus, the statistics would
need to be calculated on-demand by slow queries like COUNT and COUNT DISTINCT,
which in turn increase load time.

The problem from the above paragraph can be overcome if Genus App Platform first
loads the entire column into a non-compressed column and generate statistics for this
column in a low-priority thread. Then, on consecutive loads, these statistics are used
to make a qualified decision whether to use dictionary encoding or not. Although
this might not be as accurate as using statistics from the database infrastructure
directly, it is likely to be more precise than making decisions based on unfiltered
data.

We can build on this idea even further. Instead of having a low-priority thread
to calculate database statistics, we can have a low-priority thread to restructure
the data into the most suitable format. In other words, we load data directly
into regular columns. Then, we start a low-priority thread which will analyze the
data and rebuild columns to dictionary encoding, but only if they have low- or
medium-cardinality. Once rebuilt, the low-priority deallocates the regular columns
and replace them with the dictionary encoded equivalents. This technique has the
benefit of increased load performance, as loading values into a dictionary encoded
column is more time consuming than a regular column, and it does not rely on
statistic support in the underlying database infrastructure.

Another, but less precise way to overcome the challenges with filtered data sources,
is to utilize predictability in columns and extrapolate the statistics for a given filter.
For instance:

• Low-cardinality columns tend to have the same amount of unique values no
matter how many more values are added (typically gender, age, etc.).

• High-cardinality columns tend to have a linear relationship between the
number of values and the number of unique values.

• Some column types are predictable. For instance, the number of distinct values
in a code domain is constant, and some data, like timestamps, is ordered.

The challenge here is to exploit the predictability to make qualified decisions on
column selection.

9.2.2 Special Cases

There are cases where storage format should completely disregard database statistics.
For instance, Genus Discovery uses an array of floating point numbers as a base
unit for calculation. Hence, to avoid data duplication, a column used as a measure
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Property Column implementation
LINEITEMKEY PrimitiveString
LINESTATUS PrimitiveDictionaryObjectHandle
RETURNFLAG PrimitiveDictionaryObjectHandle
SHIPDATE PrimitiveDictionaryCalendarTime
QUANTITY PrimitiveDictionaryInteger
EXTENDEDPRICE PrimitiveReal
DISCOUNT PrimitiveReal
TAX PrimitiveReal

Table 9.1: Column selection for Benchmark A.1 using the statistics module.

in an analysis should never be dictionary encoded, since Genus Discovery does not
yet work on dictionary encoded values.

9.2.3 Precision of Statistics

So far, we have assumed that statistics provided by the database infrastructure
or by Genus App Platform are only estimates. Let us imagine that they are not,
but rather exact numbers. First and foremost, the growth strategy from Section
5.2.3 would be surplus as we could allocate the correct size for the value buffers
immediately. Thus, we avoid unnecessary reallocations and data movement. Second,
bitpacked columns would benefit from these exact values: The number of bits
needed to represent each value is known before populating the column, which means
we avoid value buffer rebuilding.

9.2.4 Results

We test the statistics module with Benchmark A.1 and present the results in Table
9.1. We observe that the column implementation is the same as the hand-picked
implementations from Chapter 7, except for DISCOUNT and TAX. These two properties
are used as measures in the benchmark and should not, according to the reasoning
in Section 9.2.2, be put in a dictionary encoded column.

9.2.5 Discussion, Conclusion, and Future Work

We see a definitive potential in using database statistics and other clever tricks
to select the correct column. However, several challenges must be overcome to
utilize this potential fully. For instance, data sources with filters impose a challenge.
Second, to support multiple database backends, vendor-specific changes must be
made to the database adapter in Genus App Platform to enable database metadata
queries. The column selection should not only rely on database statistics; one
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should also consider what the data is used for. For example, measures in Genus
Discovery should not be dictionary encoded.

We believe this topic should be pursued further. The primary motivation behind
Model-Driven Engineering is to close the gap between the problem and the im-
plementation. Having the platform select the best-suited storage format without
modeler intervention is a step towards closing the gap. Future work should not only
focus on database statistics for correct data format selection but also see how the
data is used in Genus App Platform. For write-intensive operations, perhaps the
original FieldValueCollection from Chapter 5 is better suited than a dictionary
encoded, bitpacked column with primitive data types.
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Part III

Discussion and Conclusion
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Chapter 10

Discussion

In this chapter, we discuss our findings in a broader perspective. We study the
implications of our research for Genus App Platform, Model-Driven Engineering in
general, and for traditional programming languages. We also provide a section on
limitations and critics.
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10.1 Discussion

In this section, we discuss the implications of the findings in Part II in a broader
perspective.

10.1.1 Implications for Genus App Platform

So far in this research, we have reduced memory consumption, improved load
time, and increased operation performance for our benchmarks. Even though
these benchmarks only test a small subset of Genus App Platform functionality,
we believe the advantages will appear throughout the platform. Even without
dictionary compression and the column selector functionality discussed in Section
9.2, storing data in columns, either as GValues or primitive data types, is a good
idea. However, we also expect to see functionality in Genus App Platform slowed
down by our column store implementation. Reduced performance is likely to be
observed on operations that are not adapted to the new storage format; operations
that heavily rely on GValues and row storage, like the filter operation in Benchmark
A.3.

In the thesis introduction, we said Genus AS have focused on keeping the source
code readable and maintainable. However, as we have seen, this emphasis have
also resulted in performance issues in Genus App Platform. With the introduc-
tion of CompositionValueCollection, the code is more slightly complicated and
less readable. Still, the CompositionObject class is intact and works exactly as
before, and it has a GValue interface. In other words, the application works like
before, the GetValue and SetValue on CompositionObject have only got a new
implementation. In addition, the interface to the column store, or Composition-
ValueCollection, is clean, and requires CompositionFieldDescriptor or data
source index, or both, to access data.

We believe further development in Genus App Platform may proceeds as before.
However, two things should be kept in mind. First, developers must be aware
the cost of GValue allocation when getting values from a CompositionObject.
Thus, read-intensive operations like source measure lookup in the Data Mart Load
Benchmark perform poorly if no special attention is given. Second, developers
should identify new operations or optimizations that benefit from the column data
structure. These two things are intertwined; read-intense operations that allocate
GValues frequently are also likely to benefit from column store exploitation.

10.1.2 Implications for Model-Driven Engineering

This research does not provide an extensive overview of Model-Driven Develop-
ment tools and their particular challenges, but we believe that their ability to handle
and analyze large datasets is commonly outperformed by hand-made, traditional
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Figure 10.1: The Oracle Database dual format. Data is stored as both rows for
transactional performance, and columns for analytical performance. (Adapted from
[45])

programs. Our research shows that by applying database technology used in read-
optimized databases, Model-Driven Engineering tools can gain this ability. We
have shown that internal data representation is key for low memory usage and high
performance, also in Model-Driven Development. Clever data structures increase
Model-Driven Engineering versatility and enable new functionality, for instance
Business Intelligence and Business Discovery.

We have also discovered that changing internal data representation only affects
the method engineering layer in Model-Driven Engineeringif implemented correctly.
By using database statistics or other tricks, modelers in the information system
development layer do not need to be affected by the underlying storage technology.
In other words, object classes and other data models are still expressed such that
they are close to the business domain, while the underlying Model-Driven Engineer-
ing infrastructure optimizes data representation. This decoupling is different from
a traditional programming language, where class definitions serve as both business
problem abstractions and data containers.

There exist many different Model-Driven Development tools with various approaches
to the Model-Driven Development methodology. Some are simple code-generation
tools, while other provides an entire infrastructure. For layered systems that loads
and process data in-memory, like Genus App Platform, there is much potential in
data structure optimization: Different tasks in the platform should use whichever
format is better-suited for that particular task. In Section 3.14, we read abut mixed
workloads and that consistency, correctness, and data freshness can be sacrificed for
performance. We also know that row-wise storage normally outperforms columns
on transactional workloads. Model-Driven Engineering tools may have it all. For
instance, Business Discovery funcionality should load data as immutable, read-
optimized, and compressed columns while write-intense should use structures that
store data in rows. This is similar to the Oracle Database dual format, depicted in
Figure 10.1.
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Listing 10.1: Decorators in Python that specifies storage engine.
class Person :

@storage ( type=’ column ’ )
f i r s t n a m e = None

@storage ( type=’ column ’ )
last name = None

@storage ( type=’ d i c t i o n a r y ’ )
gender = None

10.1.3 Implications for Traditional Programming Languages

In Model-Driven Engineering, we have changed the internal data representation with-
out affecting the modelers in the information system development layer. However,
as far as we are aware, traditional programming languages do not offer the same
functionality, as classes serve the role of both data structures and business abstrac-
tions. Although developers are free to move class attributes into database-inspired
structures, like columns, this degrades code readability: Data gets decoupled from
the objects they belong to, and class definitions no longer contain available prop-
erties. The implementation of the internal data structures is also tedious, which
increase application development time.

We believe even traditional programming languages can benefit from the techniques
we have studied in this research. For instance, the Python programming language
implements the decorator pattern which dynamically changes the source code of
a function or attribute [10]. We believe decorators can be used to configure the
underlying storage engine for class properties. Listing 10.1 exemplifies a Person
class where first and last name are stored in regular columns, while a dictionary
encoded column stores the person’s gender.

In Section 7.3.1, we saw how null pointer compression significantly reduced the
number of bytes needed to store a CompositionObject. We believe traditional
programming languages could leverage this technique by not allocating buffers for
pointers before they are set.

10.2 Limitations and Critics

Our research has several limitations, one of them is benchmark coverage. We only
tested a limited subset of Genus App Platform. There might exist other parts of
the platform with unexpected effects, both regarding performance and correctness.
We tested write performance with Benchmark A.2 but this benchmark is simple
and does not test all edge cases. Neither did we use any benchmarks to test for
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correctness. However, the column store implementation is already in use internally
in Genus AS, and so far no correctness or performance issues have been reported.
We are, therefore, confident that most parts of Genus App Platform work as before,
and only a few components are affected negatively by our changes.

Another limitation is how we executed the benchmarks. Due to time constraints,
we run all benchmarks only three times. Ideally, the tests should have been run
more times to obtain a statistical foundation in our results. Also, all benchmarks
were run with the compiler set to debug mode. We are unaware of the differences
between debug and production mode in the Delphi compiler, but we believe it is
likely that production mode applies more optimizations, like loop unrolling and
function inlining. However, we would like to point out three things:

1. All changes have been tested in debug mode, so we expect the relative changes
to be the same in production.

2. All measurements had low variance.

3. The relative changes we have measured have been substantial; up to three
orders of magnitude at the most.

In other words, despite poor statistical foundation and benchmarks run in debug
mode, we believe conclusions can be drawn from the benchmark results.

One major limitation is that we have based our entire research on Genus App
Platform, but many Model-Driven Engineering supporting infrastructures are fun-
damentally different from this platform. Thus, our changes might not apply to
all Model-Driven Development tools. There might exist systems which solve the
problem of handling large datasets using other techniques, and systems that do
not require this functionality at all. Nevertheless, we believe our modifications
to Genus App Platform serves as a proof-of-concept for Model-Driven Develop-
ment tools challenged with these issues by showing the importance of internal data
representation.

This research has focused on read-optimized databases because it was for read-
intense operations and analytical workloads Genus App Platform had the largest
performance issues. Thus, we disregarded technologies used in write-optimized
OLTP databases, like row-storage and indexes. We are confident that Genus App
Platform could benefit from technology used in these databases as well. Still,
Genus AS experiences no performance issues on transactional workloads. Also,
data update operations are dominated by integrity and validity checks, formula
calculation, and more, which makes such operations less sensitive to the underlying
data representation.
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Chapter 11

Conclusion

This chapter concludes this research and points at interesting directions for future
work.
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11.1 Conclusion

In this research, we set out to answer the following research question:

RQ1: How can technology used by in-memory, read-optimized
databases improve Genus App Platform’s ability to handle and
analyze large datasets, and what can Model-Driven Engineering,
in general, learn from database technology?

We conclude that techniques used in read-optimized, in-memory databases have
improved Genus App Platform’s ability to handle and analyze large amounts of data.
First, column storage with primitive data types, dictionary encoding, bitpacking,
and null pointer compression significantly reduce memory consumption. In the Data
Mart Load Benchmark, the number of bytes needed per LINEITEM has been lowered
by 67 %. Second, load time has improved by 36 %. Regarding performance, we see
that Genus App Platform benefits from the same principles as OLAP databases: By
avoiding branches and improving cache locality, CPU throughput is maximized, and
join, lookup, and filter operations are one, two, and even three orders of magnitude
faster than the original implementation. Write performance is not slowed down
as a result of the new internal data representation, although certain read-intense
operations which are not adapted to the new structures are.

Our research has, by using the modifications in Genus App Platform as a proof-of-
concept, introduced evidence that Model-Driven Engineering benefits from database
technology. Due to the wide variety of approaches used by Model-Driven Develop-
ment tools, we cannot draw any general conclusions whether the exact techniques
we applied to Genus App Platform can be employed by all Model-Driven Engi-
neering supporting infrastructures, but we have shown the importance of internal
data representation. Thus, Model-Driven Engineering tools which need support for
analysis of large datasets, like Business Discovery functionality, should look at the
database technology for inspiration.

All of our changes lie in the method engineering layer. The tool optimizes internal
data structure without affecting modelers in the information system layer. Hence,
expert users can continue to focus on the business problem, and not worry about
the underlying implementation. We pointed out that similar techniques can be
applied to traditional object-oriented languages, where the problem is that classes
serve the role as both business abstractions and data containers.

11.2 Future work

In this research, we have only implemented and discovered a few methods used by
read-optimized, in-memory databases. Future work should aim to identify more
techniques that can be used in the context of Model-Driven Engineering, also
methods used in OLTP. Such techniques include parallelism and scaling, delta
stores, indexes, result caching, code generation, query optimization, and more.
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Database technology has been a major research field for decades, so there should be
plenty of techniques that can be applied to Model-Driven Development supporting
infrastructures.

In Section 9.2, we saw how Genus App Platform decides whether to apply dictionary
encoding to a column or not by using database statistics and in Section 10.1.2 we
claimed that data should be represented in the best-suited format for different appli-
cation tasks. Future work should pursue this topic. Model-Driven Engineering has a
major advantage over general-purpose databases: Model-Driven Development tools
has extensive knowledge of data interpretation, and how and when the data is used.
Hence, this knowledge, combined with database statistics, should be exploited to
make intelligent decisions on which storage format that should be used for different
parts of the application.

Last, but not least, this research has focused on what Model-Driven Engineering can
learn from database technology. What if we turn the problem around and ask
ourselves: What can database technology learn from Model-Driven Engineering?
Future work should investigate if techniques, terminology, and technology well
known in Model-Driven Engineering applies to databases as well. For instance,
could databases benefit from having an extra layer of data interpretation on top of
data types? Should database schemas contain not only data type definitions and
relations, but also information on how and when the data is used?

11.2.1 Genus App Platform

Above we discussed general topics for future work. However, the research has
resulted in an extensive list of ideas specific for Genus App Platform which we
enumerate in this section. Some of the ideas are fetched from Chapters 5-9, while
others are new.

Genus Discovery Specific Optimizations

The original motivation for this research was to improve analytic capabilities in
Genus App Platform by studying how the Business Discovery functionality in the
platform could be improved. However, we have only implicitly improved Genus
Discovery by reducing memory usage and load time. Genus Discovery still works
on arrays of floating points exclusively and does not exploit the data structures
implemented in this research. Future work should improve and modify Genus
Discovery to work such that it can operate on dictionary encoded columns directly,
and also apply state-of-the-art techniques for joining, grouping, and aggregation.
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Horizontal Partitioning and Delta Store

In Chapter 5 and Chapter 6, we briefly discussed horizontal partitioning. Future
work should investigate the effects of horizontal partitioning in Genus App Platform.
CompositionObject and CompositionValueCollection could be extended with
a partition index. This way Genus App Platform could leverage all benefits of
this technique, which is metadata pruning, parallelization, and better support for
data skew. At the same time, the effects of a delta store could be investigated:
Newly created partitions could be optimized for data inserts and updates, while
full partitions could be stored in read-optimized, immutable structures.

Dynamic Storage Formats

In the current implementation, Genus App Platform tries to make a qualified
decision whether to apply dictionary encoding to a column or not. However, as we
saw in Chapter 7, dictionary encoded columns takes a longer time to load. Hence,
it might be beneficial to load all data into non-compressed columns first, and only
then make a decision whether data should be rebuilt as a dictionary encoded column.
Then the restructure operation could happen in a separate, low-priority thread.
Future work should investigate the effects of such dynamic storage formats. Genus
App Platform should also try to deallocate data in data sources that are no longer
in use. For instance, the entire column can be dropped after a floating point array
is extracted in the source measure lookup operation.

Server State

An important principle in Genus App Platform, is the stateless application backed,
Genus App Services. Although this has several benefits regarding simplicity and
scalability, it has certain disadvantages. One disadvantage, is that clients talk with
the database infrastructure directly, mostly using XML, which Genus App Plat-
form compress the data after it has traversed the network. Ideally, the compression
should happen in the database infrastructure, or in Genus App Services. Hence,
future work should investigate the effects of applying state to the server. Not only
would server state reduce network traffic, but it would also improve client load
time if the data is already structured as columns. This could also relax memory
requirement for clients as more data processing and aggregations can be performed
on the server.
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Appendix A

Benchmarks

In this appendix, we elaborate on the benchmarks run to measure performance
in this research. There are five benchmarks in total, all aiming to test different
parts of Genus App Platform where memory usage or performance might have been
affected. The last benchmark, Benchmark A.4, is based on real customer data from
one of Genus AS ’ customers.

We measure memory usage for various states in the program by querying the built-in
FastMM memory manager. To measure the entire Genus App Platform memory
footprint, including the .NET layer and the graphical user interface, we use the
built-in memory manager in the Windows operating system.

We run all benchmarks in Genus Desktop in Delphi debugger mode. Test output
and debugging statements are extracted through Trace Log, a logging tool developed
by Genus AS for their applications. Before running any benchmark, Genus Desktop
and the debugger was restarted such that the effects of caching are minimized.

All tests are run on a Windows 10 Dell workstation with a 64-bit, 2.40 GHz
Intel®Xeon®E5620 processor, and 8.00 GB RAM. The Delphi version used is
23.0.21418.4207.

A.1 Data Mart Load Benchmark

In this benchmark, we measure analytical performance in Genus App Platform using
using a benchmark inspired by and based on the Q1 in the TPC-H Benchmark.
As we saw in Section 3.15, the TPC-H benchmark is made for decision support
workloads and consists of a suite of business oriented ad-hoc queries. The schema is
composed of eight separate tables, as seen in Figure 3.23. The table columns have
a variety of different data types, including integers, floating point numbers, variable
and fixed width string, identifiers, and booleans.
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Figure A.1: TPC-H Q1 query. (Adapted from [59])

Q1, or the Pricing Summary Report Query, provides a summary of all items shipped
within a date range [59]. It aggregates price with and without discount, and with
and without tax, as well as average quantity, price, and discount. The results are
grouped by RETURNFLAG and LINESTATUS. The original query is shown in Figure
A.1.

To accommodate our needs for this research, as well as adapt the query to fit
Genus App Platform and Genus Discovery, we perform some modifications. First,
RETURNFLAG, LINESTATUS, and SHIPDATE are extracted as code domains such that
they can be used as dimensions in the data mart. Also, we remove unnecessary
table columns irrelevant to the query from the mart. The resulting data mart is
shown in Figure A.2. Second, since Genus Discovery does not work with an SQL
interface, but rather with a user interface with graphs and boxes, we translated the
query to a reporting dashboard with bar charts and selection boxes. The resulting
user interface is shown in Figure A.3.

We populate the database with the dbgen tool provided by the Transaction Process-
ing Performance Council. However, since the default scaling factor for the TPC-H
benchmark is too large for Genus App Platform, we created two new dataset sizes,
SF1 and SF10, with 1 % and 10 % of the original data respectively. The data
was downscaled by keeping every 10th or 100th row in LINEITEM and removing
all orders, suppliers, customers, and parts that no longer were connected to any
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Figure A.2: Data mart for the Data Mart Load Benchmark.

elements in this table.

We focus our testing on time and memory footprint using to load this data mart
and corresponding GUI into Genus Discovery rather than measuring the time it
takes to answer each query. The reason for this is that we have not looked at
Genus Discovery specific optimizations in this research, only modifications that this
component can use reduce memory footprint and decrease load time. Loading a
data mart takes the majority of the time anyway, and once the data mart is loaded,
the application answers queries efficiently.

A.1.1 Test Input

Two different scaling factors: SF1 with 60,000 LINEITEM rows, and SF10 with
600,000 LINEITEM rows.

A.1.2 Test Output

We list the benchmark’s output below. The output is recorded in the time between
the shortcut button for the Genus Discovery instance is pressed until the user
interface (Figure A.3) is displayed on the screen.
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Figure A.3: Data Mart Load Benchmark user interface in Genus Discovery.
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Bytes Per LINEITEM The number of bytes allocated per LINEITEM in the
memory manager is reported. We measure memory usage before and after the
LINEITEM data source load and then divide by the number of loaded items in the
data source.

Load Time The benchmark reports the time it takes for the LINEITEM data source
to be loaded. The output disregards the overhead in creating composition objects
and parsing XML from the underlying database infrastructure. Measurements are
reported in milliseconds.

Lookup Index Generation (Join) This output shows how many milliseconds
it takes to create lookup indexes between tables in the data mart. This operation
is considered as a join operation. A join is performed on all relations in the mart,
which is the LINESTATUS, RETURNFLAG, and SHIPDATE in the LINEITEM table. A
measurement is made for every relation. Creating a lookup for SHIPDATE takes
longer than the two others because it is a larger join and dates are harder to parse.

Source Measure Lookup In Genus Discovery, all calculations and aggregations
are performed on arrays of double precision floating point values. Hence, after
all data for a given data source has been loaded, such arrays are extracted for all
measures in the data mart. In the Data Mart Load Benchmark, such structures are
created for integer column QUANTITY and floating point columns EXTENDEDPRICE,
DISCOUNT, and TAX. For each column, the number of milliseconds used to create
this lookup is measured.

Total Memory Footprint We measure the total memory footprint of the Data
Mart Load Benchmark Genus Discovery application by using the Windows 10
memory manager such that all overhead in the .NET and user interface layers is
included. The In Use memory metric is recorded before the Genus Discovery instance
is loaded and when the UI is shown to the user. Since the measurement includes
more than our application and is affected by background tasks and other running
program, the total memory footprint output is not very accurate. However, it serves
as a confirmation on other memory measurements, as well as an indication that
total application memory consumption is reduced.

A.2 Write Benchmark

We test write performance in Genus App Platform to see that it is not negatively
affected by the changes we make in this research. We base our benchmark on the
LINEITEM table in the TPC-H benchmark. The main reason for using this table is
the availability of different data types, which we see in Figure A.4.
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Figure A.4: LINEITEM table layout. (Adapted from [59])
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Figure A.5: The task definition for the Write Benchmark. There is one loop per
attribute.

The benchmark reads N items into a data source, for all the elements, the following
fields are modified:

• QUANTITY = QUANTITY + 1 to measure integer performance.

• EXTENDEDPRICE = EXTENDEDPRICE + 1.0 to measure floating point perfor-
mance.

• COMMENT = COMMENT + "1" to measure string performance.

• SHIPDATE = SHIPDATE PLUS 1 DAYS to measure date performance.

We create one loop per property, such that there is a total of four loops in this task.
The full task definition is seen in Figure A.5.

A.2.1 Test Input

The number of LINEITEMs loaded into the data source and modified, which is
specified in a dialog box before the task is run. For all tests performed in this
research, we use 1000 elements as input.

A.2.2 Test Output

For each property modified, the task reports the time it takes to enumerate the
entire data source and modify the property. In addition to total time, the average
time per modification is listed as well.
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Predicate Selects (of 100,000)
LINESTATUS = F 49,864

TAX >= 0.02 66,851
EXTENDEDPRICE >= 1000 99,956
EXTENDEDPRICE >= 40000 45,408
EXTENDEDPRICE < 1000 44

EXTENDEDPRICE = 42995.94 1
SHIPDATE IN 1995 15,435

SHIPINSTRUCT NULL HAS VALUE 74,991

Table A.1: Predicates in the Filter Benchmark. The second column indicated
selectivity by showing the number of selected rows (of 100,000 total).

A.3 Filter Benchmark

To test Genus App Platform’s ability to move data from one data source to another
based on a filter, we establish a benchmark based on the LINEITEM table from the
TPC-H benchmark. As for the Write Benchmark, this test is used for the various
data types available.

A list of predicates which compose the benchmark, and objects that satisfy each
predicate are moved from the original data source to a filtered data source. We
select the predicates to span a variety of different data types, selectivities, and
operators. Since there are no null columns in LINEITEM, we create a new column
SHIPINSTRUCT NULL and assign null to all cells with the value NONE. We list the
different predicates and respective selectivities in Table A.1.

A.3.1 Test Input

The number of LINEITEMs loaded into the original data source. We only use 100,000
as input in this research.

A.3.2 Test Output

The timing result for the filter operation for each predicate; the time it takes to
move the objects from the original data source to the filtered data source. Reported
in milliseconds.

A.4 Data Mart Load Benchmark II

We run the same benchmark as Benchmark A.1, but with a subset of data from
one of Genus AS ’ customers. The data mart for the Genus Discovery analysis is
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Figure A.6: Data mart for the Data Mart Load Benchmark II.

composed of three tables; FUND, CUSTOMER, and CUSTOMER BALANCE DAILY, with
40, 442,715, and 203,519 elements respectively. CUSTOMER BALANCE DAILY links the
two other tables by indicating how many shares each customer has in each fund.
Figure A.6 shows the data mart definition for the benchmark.

The reason why we choose to introduce another data mart load benchmark is
that this benchmark contains a larger join than the Data Mart Load Benchmark.
In Data Mart Load Benchmark II, the lookup index generation operation must
create a lookup index between CUSTOMER and CUSTOMER BALANCE DAILY, which
have 442,715 and 203,519 elements respectively.

A.4.1 Test Input

None.

A.4.2 Test Output

For each table, the bytes per element and load time is reported. In addition to this,
the benchmark prints the time it takes to perform each of the two joins in the data
mart.
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Appendix B

Array and Data Type
Performance in Delphi

B.1 Introduction

In this microbenchmark, we test the performance and memory usage of different
numeric data types in Delphi. We also study the performance of various array
types found in the programming language and the standard library. We will assess
integer, Int64, and double data types and array of *, TArray, and TList array
types.

The motivation for this microbenchmark is to find the most efficient data types
for column storage in Genus App Platform, both regarding memory usage and
performance.

B.2 Test Setup

For this microbenchmark, we write a small Delphi program that fills an array
structure of choice with numbers from 0 to 9 n times. Then, we iterate the numbers
and accumulate the sum into an accumulator variable. Listing B.1 shows the
program.

We measure memory usage before and after allocation and array population. Then,
we measure the average time it takes to sum all numbers in the array. We choose
n = 4000000 for this benchmark.

The test is run on a Windows 10 Dell workstation with a 64-bit, 2.40 GHz
Intel®Xeon®E5620 processor, and 8.00 GB RAM. The Delphi version used is
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Listing B.1: Array Performance Benchmark
SetLength ( l arrNumbers , 4000000 ∗ 1 0 ) ;
for l i := 1 to 4000000 do

for l j := 0 to 9 do
l arrNumbers [ l i ∗ 10 + l j ] := l j ;

l oMeasurer . After ( ’ L i s t ’ , 4000000∗10) ;

for l i := 1 to 10 do
begin

l dSum := 0 . 0 ;
l oTimer . S ta r t ( ’Sum ’ + IntToStr ( l i ) ) ;
for l j := 0 to (4000000 ∗ 10) − 1 do

l dSum := l dSum + l arrNumbers [ l j ] ;
l oTimer . Stop ( ’Sum ’ + IntToStr ( l i ) ) ;

end ;

integer Int64 double
array of 4.00 bytes 8.00 bytes 8.00 bytes
TArray 4.00 bytes 8.00 bytes 8.00 bytes
TList 4.00 bytes 8.00 bytes 8.00 bytes

Table B.1: The memory used per element for different data types (columns) and
array types (rows).

23.0.21418.4207. We query the built-in FastMM memory manager to measure
memory.

B.3 Results

As seen in Table B.1, all array implementations use equally many bytes per element,
which means any overhead associated with these array types is negligible. As
expected, the integer type takes 4 bytes, while Int64 and double takes 8 bytes.

The results of the performance test are shown in Table B.2. We see that array of

integer Int64 double
array of 131 ms 134 ms 157 ms
TArray 130 ms 134 ms 157 ms
TList 215 ms 221 ms 237 ms

Table B.2: The average time it takes to sum all numbers in the benchmark for
different data types (columns) and array types (rows).
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and TArray types are equal regarding performance. TList is 1.5 - 2 times slower
than these types. Also, integer addition is faster than floating point addition. There
is not a significant difference in performance between 32-bit and 64-bit integer types.

B.4 Conclusion

We conclude that either array of or TArray is better suited to store column data
than TList. In addition, the integer or Int64 data type should be used over
double whenever possible.
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