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Abstract 
 

 

Large amounts of oil are left in reservoirs after primary and secondary recovery. To recovery 

as much of the remaining oil as possible, EOR techniques as chemical flooding is considered. 

Naturally fractured carbonates have often large amount of residual oil left in the reservoir 

after primary and secondary production periods. Carbonates are in general more complex 

reservoirs than sandstones, thus must recovery methods be tailored for the environment of the 

reservoir system. Chemical EOR has become more attractive after the financial crisis in 2008 

because of the high oil prices.  

Ekofisk is naturally fractured chalk reservoir, and is the largest, oldest and longest producing 

reservoir on Norwegian continental shelf. To improve the recovery is surfactant injection 

considered as a possible EOR method. A mechanist reservoir model with Ekofisk reservoir 

properties and a single fracture was made with the purpose to investigate the potential of 

surfactant injection in Ekofisk. Several parameters that effect the performance of surfactants 

was investigated and the recovery results were compared with a waterflood basecase. In 

addition was a mechanistic model with four fractures made for further investigation of 

surfactant flow in a fracture network and for comparison of the performance of a surfactant 

flood with surfactant-polymer flood.  

The author’s simulation results show that surfactant injection should be considered for the 

field, but more research with a more advanced reservoir model with respect to possible 

wettability alteration, a larger fracture network and heterogeneity should be done. The model 

shows poor sweep efficiency in layers far from the fracture in the model, thus should an 

eventual chemical flood in Ekofisk be considered done with polymers. Surfactant 

concentration in the injection solution affects the surfactant performance the most. For the 

single fracture model is the recovery increased with 2,8% when surfactants are injected, and 

NPV was increased with 8,31E+06 $. For the 9-block model with four fractures, was the 

recovery improved with 3% for the surfactant-polymer flood compared with a surfactant 

flood. Also the NPV was increased with 3,71E+06$.  
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Sammendrag 
 

 

 

Store mengder residuell olje er igjen i reservoarene etter primær og sekundær utvinning. Ulike 

EOR teknikker blir vurdert for å utvinne så mye av den gjenværende oljen som mulig. 

Naturlig oppsprukne karbonat reservoar har ofte store mengder residuell olje etter første og 

andre produksjonsperiode. Karbonater er generelt mer komplekse reservoar enn sandsteiner, 

derfor må utvinningsteknikker skreddersys for det aktuelle reservoar systemet. Kjemisk EOR 

har blitt mer attraktivt etter finanskrisa i 2008 på grunn av de høye oljeprisene.  

Ekofisk er et naturlig oppsprukket krittreservoar, og er det største, eldste og lengst 

produserende reservoaret på norsk kontinental sokkel. For å øke utvinningsgraden er 

surfaktantinjeksjon vurdert som en mulig EOR metode. En mekanistisk reservoarmodell med 

Ekofisk reservoar egenskaper har blitt laget med hensikt å undersøke potensialet for 

surfaktantinjeksjon i Ekofisk. Flere parametere som påvirker hvor god effekten av 

surfaktantene er, har blitt studert og resultatene er blitt sammenlignet med en vannflømming 

«basecase». I tillegg ble en mekanistisk modell med ni matriks blokker og fire sprekker 

bygget for videre studering av surfaktantstrømning i et sprekkenettverk og for å sammenligne 

oljeutvinningen for et tilfelle med surfaktantflømming med surfaktant-polymer flømming.  

Simuleringsresultatene til forfatteren viser at surfaktantinjeksjon bør bli vurdert for feltet, men 

mer forskning og studering av en mer avansert reservoarmodell med hensyn på endringer av 

fuktegenskaper, et større sprekke nettverk og heterogenitet bør inkluderes. Modellen viser en 

dårlig fortrengningseffektivitet i lag langt fra sprekken i modellen og en eventuell kjemisk 

flømming i Ekofisk bør gjøres med polymer. Surfactantkonsentrasjon i injeksjonsløsning 

påvirker utvinningen mest. For modellen med en enkel sprekk ble utvinningsgraden økt med 

2,8% når surfaktanter ble injisert, og NPV økte med 8,31E+06$. For 9-blokk modellen med 

fire sprekker økte utvinningsgraden med 3% for surfaktant-polymer flømminga sammenlignet 

med surfaktant fløm, mens NPV økte med 3,71E+06 $.  
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1. Introduction  
 

 

 

60% of the world’s oil reserves are in carbonate reservoirs. A large amount of the carbonates 

are naturally fractured. Naturally fractured reservoirs have a complex pore structure with 

heterogeneity and big differences in permeability in fractures and in matrix. The matrix has 

large storage capacity with high porosity, but has very low flow conductivity, while the 

fractures have only secondary porosity but high to very high permeability. A large amount of 

the carbonates are oil-wet or mixed-wet which makes waterflooding inefficient. Therefore is 

the recovery often less than 30% (Lu, et al., 2012). 

The average oil recovery on Norwegian continental shelf was in 2008 as much as 46% 

(Norwegian Petroleum Department, 2008). Still, there are large amount of oil left to be 

produced. The Norwegian Petroleum Department’s goal is to reach an average recovery factor 

of 50% in the North Sea. To reach this goal a lot of research investments have been done to 

find the best recovery techniques (Teigland & Kleppe, 2006).  

The most successful recovery techniques in the North Sea has been hydrocarbon miscible gas 

injection (HC), water-alternating- gas (WAG) injection, simultaneous-water-and-gas (SWAG) 

injection, foam-assisted-WAG (FAWAG) and microbial EOR (MEOR). HC and WAG are 

mature technologies that have given great success in the North Sea (Teigland & Kleppe, 

2006). To improve the recovery other technologies has to be considered. Chemical EOR as 

surfactant and polymer injection has become more attractive since the financial crisis in 2008 

that lead to high oil prices (Hirasaki, et al., 2008; Teigland & Kleppe, 2006). 

In chemical EOR are surfactant and polymers the most attractive alternatives. So far has no 

field in the North Sea been flooded by either surfactants or polymers. Research at universities 

(NTNU, UiS, UiB) and research institutions related to the universities (SINTEF, IRIS, CIPR) 

have since 2005 started many research project on chemical EOR potential in the North Sea. 
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So far has only surfactants been used in FAWAG processes in the North Sea (Teigland & 

Kleppe, 2006). 

The first oil in Norway was discovered in 1969 in Ekofisk, the biggest field discovered on 

Norwegian Continental Shelf. Ekofisk is a naturally fractured chalk reservoir. Since it is a 

carbonate reservoir, the first predicted recovery factor was 17%. It was expected that the oil 

could only be produced by pressure depletion. Conveniently is Ekofisk water-wet, therefore 

has waterflooding been very successful and the expected recovery factor is now 50% 

(Norwegian Petroleum Departemet, 2011).   

To improve the recovery of carbonate reservoir such as Ekofisk, is chemical EOR now 

carefully considered. Research, pilot tests and a few surfactant stimulation projects have been 

done in carbonates (Sheng, 2013). Manrique et.al presented in 2010 a paper of the current 

status of EOR and EOR opportunities in the future, as of the date in 2010, no chemical floods 

(expect polymers) had been done in carbonates. Today’s technology for chemical floods with 

surfactants is only applicable in sandstones (Manrique, et al., 2010)  

Research has shown that surfactants in carbonates have two main applications. It can be used 

to alter the wettability from oil or mixed-wet to water-wet, and it can be used to decrease the 

interfacial tension between oil and water ( (Sheng, 2013); (Lake, 1989); (Green & Willhite, 

1998); (Levitt, et al., 2009)). A wettability alteration improves the imbibition process, while a 

reduction of interfacial tension may permit a gravity governed flow (Hirasaki & Zhang, 

2004). Surfactants are easily adsorbed on the carbonate rock surface; this is a big challenge 

when surfactants are used with the purpose to lower interfacial tension. Surfactants are 

chemical components that are strongly affected by salinity, temperature and other chemical 

components. Surfactants should therefore be tailored for the surroundings to achieve the best 

possible effect (Levitt, et al., 2009).  

Polymers are long chains of monomers that have the ability to increase the water viscosity. 

An increase in water viscosity will decrease the displacing fluid’s mobility. Polymers are very 

suitable for injection in heterogeneous reservoirs with large permeability differences between 

layers. The polymers are injected to reduce the effective permeability of the displacing fluid 

in high permeable zones. With these features, are polymers able to obtain a mobility control 

of the displacing front, and decrease the displacing front’s fingering of the oil and hence 

increase the sweep efficiency (Zolutukhin & Ursin, 2000; Sheng, 2011).  
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This thesis is written with the purpose to investigate the possibilities for injection of 

surfactants in a naturally fractured reservoir. A simplified reservoir model with Ekofisk data 

has been built in the Eclipse simulator. The model has been used to study the opportunity of 

surfactant injection in Ekofisk as a possible future enhanced recovery technique. The model 

was developed for further investigations of surfactants in a fracture network and to study the 

recovery performance for surfactants with and without polymers. A sensitivity study of 

several parameters that affect the performance of surfactants such as surfactant concentration, 

adsorption and initial capillary pressure has been done. Furhermore was the recovery 

performance for the surfactants compared with a waterflood for the first model, and with 

surfactant-polymer flood for the second model. In addition, an economical evaluation has 

been done for the chemical-flood cases.   

A wide understanding of reservoir parameters, flow in porous media, features of naturally 

fractured reservoirs, fluid flow in fractured reservoirs and surfactants is necessary to be able 

to build a credible reservoir model and evaluate the simulation results. A literary theory 

background is therefore presented. Parts of the reservoir parameters and surfactants theory are 

taken from the author’s semester project “Surfactants and Spinning Drop Interfacial Tension 

Measurements” (Skår, 2013).  

Furthermore, a description of the building of the reservoir models is given; a list of the 

simulation runs is presented with results and discussion. Finally, conclusion and future 

recommendations are included. 
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2. Reservoir Properties  
 

 

 

Knowledge of basic reservoir properties is fundamental for understanding reservoir and fluid 

behaviour in reservoir engineering. This chapter will give an introduction to the most 

important properties for the study.  

 

2.1 Porosity 

 

The porosity of a reservoir rock is a measurement of the storage capacity of the reservoir 

(Torsæter & Abtahi, 2003). This pore space can store fluids as hydrocarbons. The absolute 

porosity of a rock is defined as the total pore volume Vptot, divided by the bulk volume Vb. 

The porosity of a reservoir rock is measured by a core sample in the laboratory.  

            (2.1) 

     
        

  
 

Effective porosity is a measurement of the connected pore volume Vp, divided by the rock’s 

bulk volume.  

 

For a fractured reservoir a double porosity situation appears where the total porosity for the 

rock is the sum of primary and secondary porosity. Primary porosity is the matrix porosity, 

while secondary porosity is also called fracture porosity.  

Secondary porosity is developed in the rock in a later stage because of mechanical geological 

and/or chemical geological processes as dissolution, digenesis etc. Compact brittle rocks of 

relatively low intergranular porosity such as limestones, shales, shaly sandstones etc. often 

have secondary porosity (Torsæter, 2014a). The secondary porosity of a rock is often reduced 
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with time because the fractures can be filled with minerals younger than the minerals that 

composed the matrix. In carbonate rocks as limestones and dolomites, the fractures are 

formed during weathering or burial in the sedimentary basin (Warren & Root, 1963). 

 

2.1.1 Double porosity 

 

For a fractured system, the total porosity is the sum of matrix and fracture porosity and is 

defined by formula (2.2) below. However, the fracture porosity is much less than the matrix 

porosity and can in many cases be neglected, hence is the total porosity often assumed equal 

to the matrix porosity.   

            (2.2) 

         

Fracture porosity is obtained from core measurements in the laboratory. If the average 

fracture opening and the volumetric fracture density can be obtained from core analysis, 

equation 2.3 can be used to find the fracture porosity (Warren & Root, 1963; Torsæter, 

2014a).  

            (2.3) 

   
   

   
 

Where, 

 nf is the number of fractures 

 b is the fracture opening 

 Zbl is the height of the fracture system.   

 

Figure 2.1: Fracture porosity from structural geological data (Torsæter, 2014a). 
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2.2 Permeability  

 

Permeability is defined as the rocks ability to transport fluids in the pores and is measured in 

millidarcies or square meters. The absolute permeability of a rock is independent of the single 

phase or fluid type flowing through the porous medium and is constant (Zolutukhin & Ursin, 

2000). By injecting a fluid of known viscosity into a core sample with known dimensions in 

the laboratory, the absolute permeability can be determined (Torsæter & Abtahi, 2003). The 

fluid is injected into the sample and fills even the smallest pores, hence the measurement will 

include all the pore channels and be an accurate average estimate of the bulk transmissibility 

in the pore network.  

When there is more than one fluid present, the permeability depends on the relative saturation 

of the fluid in the rock. This is the effective permeability of the fluid and is given as the 

relative permeability times the absolute permeability of the rock (Schlumberger, 1998a). 

The relative permeability is a dimensionless measure of the effective permeability of a phase 

in the rock (Zolutukhin & Ursin, 2000).  

 

            (2.4) 

    
  

 
 

Where  

 kri is the relative of the fluid i. 

 ki is the effective permeability of the fluid i. 

 k is the absolute permeability. 

Relative permeability is a function of fluid saturations, rock and fluid properties, reservoir 

conditions. When there are only two fluids present in a porous media, the relative 

permeability is usually plotted as a function of water saturation. The relative permeability for 

oil and water are strongly dependent on the wettability of the porous media. This can be seen 

from Figure 2.2.  
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Figure 2.2: The figure to the left is relative permeability curves for oil and water in a typical water-

wet system, while the figure to the right is the relative permeability curves for oil and water in a 

typical oil-wet system (Zolutukhin & Ursin, 2000). 

 

2.2.1 Permeability in fractured reservoirs 

 

In a fractured reservoir, the system contains fracture permeability, matrix permeability and 

system permeability. Fracture permeability is related to the secondary porosity, and tells how 

easily a fluid flows in the fracture (Schlumberger, 1998b).  

For a single fracture system the flow in a fracture based on the “real flow cross- section” is 

given as equation 2.5. Where qf equals the cross- sectional area times velocity.  

            (2.5) 

     
  

  

 

 

  

  
 

 

For the flow in a porous media based on Darcy’s law, the same rate is expressed by equation 

2.6. 

            (2.6) 
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Due to the large permeability differences between the matrix and in the fractures, the relative 

permeability for a fracture reservoir is evaluated for matrix and fracture separately. For the 

matrix, typical relative permeability curves are shown in Figure 2.2 above.  

The intrinsic permeability in fractures is very high, and hence, mainly gravity forces will 

control multiphase flow in fractures. And because of gravity equilibrium, the relative 

permeability curves will be reduced to two straight lines as in Figure 2.3 (Torsæter, 2014a) 

 

Figure 2.3: Relative permeability in fractures, vertical equilibrium (Torsæter, 2014a).  

 

2.2.2 Corey Equations for Relative Permeability  

 

To obtain the phase relative permeability the Corey equation can be used. The equation 

correlates relative permeability of oil and water to water saturation in a porous medium.  

            (2.7) 

   (  )     
    (  )  

            (2.8) 

   (  )     
 (     (  ))  

Where: 

     is the normalised water saturation 

    
  is the end-point relative permeability of phase i. 

   is the Corey curve exponent 
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2.3 Saturation 

 

The pore volume Vp can be filled by fluids. In a reservoir, those fluids are typically water, oil 

and gas. Therefore, the pore volume can be considered as the sum of oil, water and gas 

volume that fills the pores and Vp can be written as:  

                    (2.9) 

            

Saturation of a fluid in a rock is a measurement of how much of the rock’s pore volume is 

occupied by a particular fluid. 

         (2.10) 

      
     

  
            

n, is the total number of fluids present in the rock (Zolutukhin & Ursin, 2000). 
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2.4 Wettability  

 

Electrostatic forces attracts the molecules within a fluid to each other, this attraction is 

referred to as cohesion. The extent of the attraction between the molecules in the fluid and an 

adjoining fluid in the same volume can be greater or less than the attraction within the single 

fluid. If the cohesion is greater than the attraction between the fluids, the fluids are 

immiscible, which is the case of a mixture of oil and water. In the opposite case when the 

attractions between the fluids are greater, the fluids are miscible (Zolutukhin & Ursin, 2000). 

Fluids are also in some degree attracted to the molecules in an adjoining surface. This 

attraction comes from an electrostatic force, which is referred to as adhesion. If more than one 

fluid is present in the system, the fluid which is mostly attracted to the surface (where the 

adhesion is strongest), will stick to the surface. This fluid is the wetting fluid (Zolutukhin & 

Ursin, 2000). 

The wettability of a rock is the tendency of a fluid to adhere to the surface of the rock, in a 

system with another immiscible fluid. Oil displacement is affected by the wettability of the 

reservoir rock (Torsæter & Abtahi, 2003). 

Measurement of the contact angle between two phases, liquid-liquid or liquid-gas, in an 

immiscible blend on a rock surface can determine the wettability of the reservoir rock. The 

contact angle, generally referred to as the wettability angle θ, is a measurement of equilibrium 

between the interfacial tension of the fluids and their adhesive attraction to the surface of the 

solid. The measurement is done in the laboratory with a very accurate micro-scale technique. 

The wettability angle is measured on the denser fluid’s side of the interface. The measured 

angle gives the wettability preference of the system as given in Table 2.1. 

Figure 2.4 presents how the wettability angle is measures. 

 

Table 2.1: Wettability preferences of a water-oil system (Zolutukhin & Ursin, 2000). 

Wetting angle (degree) Wettability preference 

0 – 30 Strongly water-wet 

30 – 90 Preferentially water-wet 

90 Neutral wettability 

90 – 150 Preferentially oil-wet 

150 – 180 Strongly oil – wet 
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The presence of different minerals in the rock has a big impact of the wettability. Chamosite 

for example, is a digenetic clay mineral whose presence in the reservoir rock and therefore the 

pore walls may result in an oil-wet system. In gas-water and oil-water system, rocks with 

quartz and calcite surfaces will most likely be water-wet.  

 

Figure 2.4: A water droplet is placed on a smooth rock surface and is surrounded by oil, as the 

geometry show, the wetting angle is less than 90
o
, the rock is water-wet (Torsæter & Abtahi, 2003). 

The rocks preferential wettability is affected by several factors that either increase or decrease 

the wettability. The most important conditions are: 

1. Reservoir pressure and temperature. An increase in temperature increases the 

wettability for water phase. A pressure decrease to below bubble point can cause 

precipitation of asphaltenes.  

2. Oil composition. Certain hydrocarbon compounds reduce the water wettability.  

3. Rock mineralogy. Some mineral with a degree of hydrophobia are more likely to be 

oil-wet. Talc-like silicates, pyrophilites, sulphur, graphite, coal and sulphides are 

examples of such minerals (Torsæter, 2014a). 
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2.5 Interfacial tension  

 

The interfacial tension (IFT) or the interfacial energy between to fluids in contact with each 

other is strictly dependent on the chemical composition of the fluids, and hence very sensitive 

for any composition changes. IFT is measured in dynes/cm or N/m, which will be the unit 

used in this thesis. The interfacial tension is the difference of the cohesive forces of two fluids 

in a mixture, and the magnitude is how much force needed to keep the two fluids apart in a 

pressure equilibrium state.  

The interfacial tension, σ, between two fluids has different “sign” depending on the 

magnitude of the cohesive forces within the fluids own molecule and the cohesive forces 

between the molecules from the different fluids in a system.  

 σ > 0: The cohesive forces within the single fluid are stronger than the attraction 

forces between the molecules of the other fluid’s kind. The mixture is immiscible.  

 σ ≈ 0: The molecules within the fluids are equally attracted to others of the same kind 

as to the molecule of the other fluid. The mixture will be more or less miscible.  

 σ < 0: The molecules prefer to blend with the molecules from the other fluid than the 

molecules of the same kind. The mixture will be miscible.  

 

As Figure 2.4 of the water droplet shows, there is interfacial tension between the oil phase and 

the water phase, but also between the liquid and solid phase. The interfacial tensions to be 

considered are given below.  

 σos, surface tension between the oil phase and the rock surface. 

 σws, surface tension between the water phase and the rock surface. 

 σow, interfacial tension between the water phase and the oil phase. 

The three interfacial tensions are not independent of each other, they depend of the wetting 

angle as showed in the Young-Dupré equation (2.11). 

                      (2.11) 
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When two immiscible phases are collected in a container, the less dense fluid will form a 

droplet/bubble in the continuous denser fluid. The interfacial tension between the two phases, 

works to reduce the sphere of the droplet/bubble until it is mixed with denser fluid. However, 

due to pressure difference between the dense continuous fluid and within the bubble (Figure 

2.5), the interfacial tension forces will not succeed. The relation between interfacial tension 

and differential pressure between the two phases is given by the Young-Laplace equation 

(2.12) for a spherical radius as:  

                      (2.12) 

      
  

 
 

 

Figure 2.5: Capillary equilibrium of a spherical cap (Torsæter & Abtahi, 2003). 
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2.6 Capillary Pressure 

 

If a capillary glass is placed in a vessel of two immiscible fluids, the fluid with the strongest 

adhesive forces will rise in the glass, and the interface between the two fluids will curve, as 

showed in Figure 2.6.  The angle θ between the convex part of the curve and the point where 

the meniscus connects with the glass wall is the wettability angle. The molecular pressure 

difference across the interfacial tension is the capillary pressure, Pc, between two fluids 

(Zolutukhin & Ursin, 2000). 

 

 

Figure 2.6: Capillary rise of water surrounded by oil (Torsæter & Abtahi, 2003). 

 

In the case of a capillary glass in a vessel of oil and water, the water will rise due to cohesive 

and adhesive forces. Water is denser than oil and is more attracted to the surface than oil, 

hence the water will rise in the glass and displace the oil. The water will rise until equilibrium 

between the pressure differences and the fluid gravity is reached. The capillary pressure is the 

pressure difference between the wetting and the non-wetting phase.   
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2.6.1 Threshold Pressure 

 

Threshold pressure is the non-wetting fluid pressure required to overcome the capillary 

resistance so that the fluid can enter a core. To overcome the threshold pressure, a pressure 

difference between the wetting and non-wetting fluid is required to make the fluids flow. The 

capillary pressure in a pore depends on the diameter. The smaller the diameter, the higher is 

the capillary pressure. The relation between diameter and capillary pressure can be seen from 

equation 2.13 (Torsæter & Abtahi, 2003). In an oil reservoir, this means that oil may be 

trapped in small pores. Due to high interfacial tension between oil and water, the capillary 

pressure is high and furthermore the threshold pressure is high, which result in high residual 

oil saturation. To be able to produce the trapped oil, enhanced oil recovery techniques can be 

applied to try to reduce the interfacial tension and furthermore the capillary pressure.   

                      (2.13) 
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3. Flow in porous media 
 

 

 

This chapter introduces the fundamentals of fluid flow in porous media. Reservoir properties 

as capillary pressure, saturation and permeability are already presented in chapter 2.  

 

3.1 Darcy’s law 

 

Darcy’s law describes fluid flow in a porous medium by relating fluid velocity with viscosity, 

permeability and pressure drop over the medium. For linear flow of an incompressible fluid, 

Darcy’s law can be expressed as: 

            (3.1) 

 

 
   

 

 

  

 
 

Where: 

 q/A is the volumetric rate over the cross-sectional area for flow 

 v is the velocity 

 µ is the viscosity 

 k is the absolute permeability 

 P is pressure  

 L is length 
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Figure 3.1: Linear flow in a porous medium.  

3.2 Production mechanisms  

 

For production of petroleum, the main production mechanisms are imbibition and drainage. 

The mechanisms depend on wettability of the rock and the phase of the displacing fluid. 

 

3.2.1 Imbibition 

 

For the case when a wetting fluid is displacing a non-wetting fluid such that the saturation of 

the wetting phase increases, then the production mechanism is an imbibition. For 

waterflooding, the idealised condition is when the rock is water wet, because then the 

displacement of the non-wetting phase, oil, will be best. The rock prefers to be surrounded by 

water, and water can more easily enter the pores and displace oil. On the contrary when the 

rock is oil wet, the process will be drainage.  

Figure 3.2 shows the relative permeability and capillary pressure curves for a typical 

imbibition process. The endpoints Swi and 1-Sor give the initial water saturation and residual 

oil saturation. The relative permeability endpoints can be used to obtain the mobility of the 

front. 

 

 

 

Figure 3.2: Relative permeability curves and related capillary pressure curve for a typical imbibition 

process (Holter, 2012).  
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3.2.2 Drainage 

 

Drainage of fluids occurs when the saturation of the wetting phase decreases. This happens 

when a non-wetting fluid displaces a wetting fluid. For the case where gas displaces oil, the 

production mechanism is drainage. Many carbonates are oil-wet or mixed-wet. For 

waterflooding of such reservoirs, there may be large amount of residual oil left. This is 

because the rock prefers to be surrounded by oil, and the capillary forces will oppose the 

invasion of water. In some pores the capillary forces will resist the water to enter at all. 

Because of this, a water-wet reservoir is in many cases preferred. Some chemicals as 

surfactants are able to change the rock’s preferred wettability by chemical reactions on the 

rocks surface. In a very successful surfactant flood, the wettability may change from oil-wet 

to water-wet and the original drainage process becomes an imbibition process in the case of 

water injection.  

Figure 3.3 presents the relative permeability and capillary pressure curves for a typical 

drainage process. 

 

 

Figure 3.3: Relative permeability curves and related capillary pressure curve for a typical drainage 

process (Holter, 2012). 
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3.3 Mobility  

 

The mobility of the fluid front in a displacement process is often presents as the mobility ratio 

of the mobility of the displacing fluid to the mobility of the displaced fluid (eq.(3.2)) 

(Schlumberger, 1998c). 

            (3.2) 

  
  

  
 

      

      
 

     

     
 

 

Where: 

 krw is the relative permeability for water at 1-Sor. 

 kro is the relative permeability for oil at Swi. 

 M>1: Unfavorable mobility ratio 

 M=1: Unit mobility ratio 

 M<1: Favorable mobility ratio (Torsæter, 2011) 
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4. Naturally Fractured Reservoirs, NFR 
 

 

 

A reservoir is defined as a naturally fractured reservoir when it contains a distribution of 

fractures of various degrees throughout the reservoir. Geological processes form the fractures 

naturally. Several factors that are observed initially as the field is discovered or throughout 

production of the field can identify that the reservoir of interest is fractured. Some of these 

features are (Chilingarian, et al., 1996): 

 Significant mud losses during drilling 

 Core examinations in the lab 

 Observation on outcrops during the exploration phase. 

 Use of a televiewer in the well during logging.  

 Special behaviour of transient pressure analysis during well testing (the appearance of 

double slopes). 
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4.1 NFR features 

 

Natural fractured reservoirs have features that distinguish them from regular conventional 

reservoirs. In fractures, the equilibrium between two fluids is controlled by gravity and the 

capillary pressure can be neglected. This causes the fluid contact to be horizontal without any 

transition zone (Chilingarian, et al., 1996).  

Because the flow toward the well only occurs within the fractures, the pressure drop around 

the well is very small, compared with a conventional reservoir. The high flow rate is assured 

by the high fracture permeability. The matrix will provide the fractures with fluids and 

therefore assure high flow rate and low pressure-drop. Figure 4.1 illustrates how much lower 

the pressure drop is around the wellbore in a naturally fractured reservoir.  

 

Figure 4.1: Pressure distribution around the wellbore for a) a fractured reservoir and b) a conventional 

reservoir (Torsæter, 2014a).  

 

In fracture reservoirs with very low pressure gradients, a segregation of liberated gas will 

form a “fracture gas cap”. Because of the segregation the average density difference in the 

fractures (except in an area of 10m around wellbore) will be substantially higher than pressure 

gradients in fractures (Chilingarian, et al., 1996). In matrix with low permeability, a high 

pressure difference is required for flow to occur. The high pressure drop gives rise to viscous 

forces substantially higher than gravity forces, and thus the liberated gas will flow towards the 

well. Hence, the gas oil ratio for a conventional reservoir is often higher than for a fractured 

reservoir (Torsæter, 2011).  
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For a fractured reservoir, the water oil ratio is a function of the production rate. While for a 

non- fractured reservoir, the water oil ratio is a function of many variables, such as rock 

characteristic, displacement behaviour, in addition to production rate.  

In a NFR reservoir, there is a possibility that the PVT properties remain constant. If there is a 

very good continuity both vertically and horizontally in the fracture network, a convection 

process may occur. As a result of fluid thermal expansion and gravitational compression a 

convection process in the fractures may take place. The convection may make the 

hydrocarbon composition uniform and hence bubble point pressure and other PVT properties 

may remain constant with depth (Torsæter, 2014a).  

Because of different recovery mechanism in a fractured reservoir with double-porosity, an 

improvement in recovery due to a low pressure decline per unit oil produced can be expected 

compared to the same reservoir in absence of fractures. For the case of depletion below 

bubble point, an increase in recovery for a fractured reservoir compared to a non- fractured 

reservoir is a result of “gas- gravity drainage”. For the non- fractured reservoir, the same 

recovery can be achieved only by a reinjection of 80 per cent of produced gas (Chilingarian, 

et al., 1996).  

  



Naturally Fractured Reservoirs, NFR 

24 

 

4.2 Characterisation of fractures 

 

A single fracture is characterised by width, size, orientation, etc. On the contrary is a group of 

fractures a combined description with matrix/fracture. A group of fractures can be divided in 

two categories, fracture system and fracture network. A fractured system is a set of several 

parallel fractures, while a fracture network is formed by several fractured system.  

The intrinsic characteristic of a single fracture is width, size, nature of the fracture and 

orientation. The fracture width is often referred to as the fracture opening and is the distance 

between the fracture walls. The fracture opening varies, but is often in a range of 10-40 

microns. However, in some cases the opening can be as large as 200 microns.  

The orientation of a fracture characterise how the single fracture is connected to the 

environment. Figure 4.2 shows how the fracture plane can be defined by dip azimuth and dip 

angle (Torsæter, 2014a).  

 

 

Figure 4.2: Fracture orientation of a single fracture (Torsæter, 2014a). 

 

For a group of fractures the characterisation parameters refer to fracture arrangement 

(geometry) which generates the matrix block. The geometry describes the frequency of 

fractures along a given direction and the extension of matrix limited by surrounding fractures. 

For a system with several orthogonal fracture systems, the intersection between them will 

result in single matrix blocks of different sizes and shapes (Chilingarian, et al., 1996).  



Naturally Fractured Reservoirs, NFR 

25 

 

The linear fracture density (LFD) is defined as the number of fractures divided by block 

length along a certain direction.  

          (4.1) 

[   ]  
  

  
 

A set of simplified idealized block shapes based on this approach is carried out from various 

distributions of fractures in an orthogonal fracture network. As Figure 4.3 presents, the blocks 

can be structures as elongated slides or matches with only one permeability direction or as 

cubes with one (number 4 and 5) or two (number 6) flowing directions.  

 

Figure 4.3: Idealized geometrical blocks (Torsæter, 2014a). 

 

For a large pay zone with both vertical and horizontal fractures, the notion fracture intensity 

(FINT) is introduced and is defined as the ratio between vertical fracture density and 

horizontal fracture density. The relationship between FINT and matrix block size is presented 

in Figure 4.4. 

          (4.2) 
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Figure 4.4: The relationship between FINT and matrix block size (Torsæter, 2014a).  

 

  



Naturally Fractured Reservoirs, NFR 

27 

 

4.3 The Warren and Root model 

 

A conventional reservoir is studied under the simplified assumption that it is homogenous, 

and reservoir properties as permeability and porosity are overall certain trends in the field 

(Chilingarian, et al., 1996). In a naturally fracture reservoir there are several discontinuities 

throughout the reservoir which results in a double porosity situation. The matrix has high 

storage capacity but very low permeability and hence low flowing conductivity, while the 

fractures have low storage capacity but high to very high permeability and flowing 

conductivity. With such contrasting conditions within the reservoir, a different model than 

those used in conventional intergranular reservoir is required to approach reservoir physical 

data. Warren and Root presented in 1963 a method that is still considered to be the most 

representative approach for a naturally fractured reservoir.  

The method Warren and Root was developed for studying the characteristic behaviour of a 

permeable medium that contains regions that contribute significantly to the pore volume of 

the system, but contribute negligibly to the flow capacity (Warren & Root, 1963). The model 

uses a simplified representation of an idealised fractured reservoir system, where single 

matrix blocks are identical rectangular parallelepipeds separated by an orthogonal network of 

fractures (Chilingarian, et al., 1996). In the model, the flow towards the wellbore is 

considered to only occur in the fractures, and the matrix feeds the fractures with fluids as a 

result of the pressure depletion in the fracture network. A schematic presentation of the model 

is shown in Figure 4.5 and Figure 4.6. 

 

Figure 4.5: Model of a real fractured reservoir to the left, and a model of an idealised fractured 

reservoir to the right (Chilingarian, et al., 1996). 
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Figure 4.6: Fluid exchange between matrix and fractures during flow towards a well (Chilingarian, et 

al., 1996).  

 

The Warren and Root procedure is based on a similar processing approach that is used in a 

conventional reservoir. As for a conventional approach, is well data plotted as delta pressure 

versus log time for either pressure drawdown or pressure build up. In a conventional “one- 

porosity” reservoir, all transient behaviour analysis gives a straight line in the semi log plot of 

pressure vs. time, both drawdown and build-up. For “double- porosity” fractured reservoirs, 

the semilog plot of pressure vs time, a double- slope over three stages will appear, for both 

cases, build-up and drawdown (Chilingarian, et al., 1996).  

The three stages have different behaviour and are divided into early stage, intermediate or 

transition stage and late stage behaviour. Each stage reflects the fluid exchange between 

matrix and the fracture network.  

The early stage reflects the start of the production with a constant rate Q in a well. The well 

pressure decreases because of the small fracture pore volume, and the fluid exchange from the 

matrix has not yet started. Figure 4.7 below shows a pressure drawdown semi log plot, the 

early stage is presented as the first slope and reflects the flowing capacity of the fractured 

network.  

A continuous production with the constant rate Q will induce a continually pressure decline in 

the fractures pf. A pressure difference between the matrix and fractures (pm – pf) will develop 

and induce a fluid supply from matrix to the fracture network. The result of such fluid supply 

from matrix to fracture is similar to a fluid injection in fractures, the well pressure decline is 
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reduced. On Figure 4.7, number 2 marks the start of this transition stage, tti, which is the point 

where the fluid supply from the matrix reaches the fractures and compensates for the 

production rate. The pressure decline reduction continues to point 3 (ttλ) where the pressure 

decline becomes practically zero and the pressure drop (Δpλ) is constant for a short period. 

After a time ttf, the fluid pressure decline will start to increase again. The start of the decline is 

marked by point 4 in Figure 4.7 and represents the end of the transition stage (Chilingarian, et 

al., 1996).  

In the late stage, the production rate is still constant and the matrix cannot supply the fracture 

network with sufficiently fluids to maintain the pressure. Therefore, the pressure decline will 

increase. The difference between the production rate and the fluid- supply rate will practically 

become constant, and from point 4 to 5 in Figure 4.7 a straight line appears in the semi log 

plot representing a “quasi- steady- state” well pressure decline.  

 

 

Figure 4.7: Pressure drawdown behaviour in a producing well in a naturally fractured reservoir 

(Chilingarian, et al., 1996).  
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Figure 4.8: Pressure build-up behaviour in a naturally fractured reservoir (Ghahfarokhi, 2012).  

 

Warren and Root parameters  

Warren and Root uses the following parameters to obtain fracture permeability, fracture 

porosity and matrix- block size.  

 k: permeability, [md] 

 ω: dimensionless fracture storage capacity.   

 λ: dimensionless fracture- matrix interflow capacity.  

To obtain these parameters the following set of parameters, an evaluation of a semi log plot 

such as Figure 4.7, has to be done (Chilingarian, et al., 1996).  

The pressure difference (Δpw) between the early and late stage straight-line separation (Figure 

4.7) is associated with the fracture storage capacity and evaluated through equation (4.3).  

          (4.3) 

  
     

     
 

          (4.4) 
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In the transition stage of the pressure from the early to late stage, straight- line will be a 

function of the fracture- matrix interflow capacity λ, which can be evaluated from equation 

(4.5) at time ttλ from the pressure drop Δpλ.  

          (4.5) 

  
(   )

               
  

From equation (4.6) the matrix- fracture contact surface, α, can be obtained through the 

matrix fluids flows toward the fractures.  

          (4.6) 

   
  

  
  
  

The matrix- fracture contact surface, α, depends on matrix block size, L. The square of block 

size, L equals number of flowing directions, ψ, divided by the matrix- fracture contact surface 

as expressed in equation (4.7).  

        (4.7) 

   
 

 
 

Where,         (4.8) 

    (   ) 

 

The fracture permeability is a function of the slope, m’, of the two parallel straight lines. From 

the slope between point 4 and 5 in the final stage in the semi log plot of pressure vs. time 

(Figure 4.7), the permeability of the fracture network can be obtained by applying equation 

(4.9) (Chilingarian, et al., 1996). 

        (4.9) 
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4.4 Matrix- Fracture Fluid Exchange  

 

For the evaluation of fluid exchange between matrix and fractures, is Warren and Root’s 

simplified model applied (Figure 4.6). The matrix blocks are assumed to be surrounded only 

by fractures without any direct contact with other matrix blocks. The matrix- fracture fluid 

exchange will depend on rock and fluid characterisation, such as wettability and fluid 

saturation in matrix and fractures.  With different fluid saturation in fractures and matrix, a 

drainage or imbibition fluid displacement will take place.  

There are two different displacement scenarios that will be discussed in this subchapter. For 

the first case, the fractures are partially or fully saturated with water while the matrix block is 

saturated with oil. In the second case, the matrix block is saturated with oil, while the 

fractures are partially or fully saturated by gas. 

For the case where the matrix is surrounded by gas, a gas invasion into the matrix will occur 

at the top of the matrix block displacing the oil downwards, due to the specific weight 

difference between gas and oil that will drive the heavier oil downwards by gravity forces. 

The capillary forces will oppose the invasion of non-wetting gas phase. This displacement 

process is called “gravity drainage”.  

For the scenario where water is saturating the fractures and oil is saturating the matrix, a water 

invasion from water injection or expansion of an aquifer will cause a water- oil contact rise in 

the matrix. The denser water will provoke an upward movement of the oil in the matrix. In 

this case, both capillary forces and gravity forces work in the favour of an oil displacement. 

This process is called an imbibition displacement (Chilingarian, et al., 1996).  

4.4.1 Imbibition  

 

Chilingarian et. al (1996) state that experimental studies have shown the importance of the 

wettability of the rock in the determination of occurrence of drainage/imbibition. In the case 

of drainage: if the contact angle is below 49
o
, the capillary pressure and hence the threshold 

pressure will remain constant. While for an imbibition process, the magnitude of the contact 

angle can say something about how easily the imbibition displacement will go.  

- When θ < 49
o
, a spontaneous imbibition is observed.  

- When 49
o
 < θ < 73

o
, limited imbibition is observed.  

- When θ > 73
o
, no imbibition is observed.  
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As mention in chapter 3, the displacement process is strongly related to the wettability of the 

rock and the fluid saturation. Table 3 present an overview of displacement types and 

respective displacement history. An imbibition displacement process will take place when the 

matrix is saturated by a non-wetting fluid (oil, gas) and the fractures are saturated by a wetting 

fluid (water). 

Table 4.1. Cases of drainage/imbibition displacement (Torsæter, 2014b). 

Case Matrix 

block 

saturation 

Fracture 

network 

saturation 

Wetting 

phase in 

matrix 

Oil 

displacement 

Process 

Displacement 

history 

1 Oil Water Water Imbibition Reservoir 

Production 

2 Oil Water Oil Drainage Reservoir  

Production 

3 Oil Gas Oil Drainage Reservoir 

Production 

4 Gas Water Water Imbibition Reservoir  

Production 

5 Water Oil Water Drainage Reservoir 

Migration 

6 Water Gas Water Drainage Reservoir 

Migration 

 

In an evaluation of the imbibition process, the objective is to obtain for a given matrix block, 

the relationship between 

1) recovery vs. time, 

2) single matrix block rate vs. recovery and, 

3) single matrix block rate decline vs. time.  

In the evaluation, it is assumed that the matrix block is a parallelipid of height h, where the 

pores in the matrix contain oil and irreducible water (Figure 4.9). Another objective of the 

evaluation is to estimate the role of the gravity and capillary forces that control the imbibition 

process.  
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The evaluation of the imbibition process has to be considered for three different cases, since 

the displacement process can be governed by either capillary or gravity forces or both.  

Figure 4.9 is used to explain the simplified model for evaluation of recovery of a matrix- 

fracture reservoir system. It is assumed that the lateral walls are coated and therefore will the 

fluid exchange between matrix and fractures only happen through the upper and lower face of 

the block. Hw is the water – oil contact height in the fractures which corresponds to the 

fracture oil height Ho, hence the total block height can be expresses as H = Hw + Ho. Within 

the matrix the water advancement front is referred to as Z, and thus the oil column in the 

matrix is expressed as H – Z.  

 

Figure 4.9: Matrix block saturated with oil surrounded by fractures saturated by water (Torsæter, 

2014c).  

 

Recovery formulation for the simplified model.  

A full deviation of the formulation for recovery is given in Chilingarian et. al. 1996, 

“Carbonate Reservoir Characterizations: a geological – engineering analysis, part II, page 

755”.       

                 (4.10) 

                                     (             ) 

The recovery is directly proportional to the displacement front distance Z (Chilingarian, et al., 

1996). 
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Capillary and gravity forces are governing the flow.  

                     (4.11) 

            (     )  (    )(     )  

By introducing Darcy’s law where Δp = Δpw + Δpo, the displacement front velocity solution 

can be obtained:  

                  (4.12) 

  
(    )((     )     

   
  

 
  (   )

  

 

 

In the case of total immersion, H=Hw the displacement front velocity will become:  

                  (4.13) 

  
[(    )  

  

 ] (     ) 
  

  

    (    )
 

Where; 

the dimensionless front position ZD = Z/H, 

the mobility ratio,   
    

    
,  

and;    (     )    

 

Time vs. recovery general formulation for matrix block.  

To obtain the formulation, Darcy velocity for one-dimensional flow in a porous media has to 

be introduced together with the intrinsic velocity in the pore system.  

Darcy velocity,    
 

 

  

  
 

Intrinsic velocity, 
  

  
 

 

    
 

 

  (         )
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Resulting in the general formulation for recovery vs. time for a totally immersed matrix block 

for one- dimensional flow.  

                  (4.14) 

   
     [    (    )]

[(    )  
  

 ] (     ) 
  

  

    

 

Equation (4.14) includes both capillary and gravity forces and can be solved for both cases. 

For gravity dominated flow, H>> hc and hence hc/H becomes negligible and equation (4.14) 

can be solved for gravity dominated flow.  

In the case of capillary dominated flow hc >> H and then hc/H >> (1-ZD) so that; 

 
  

 
 (    )  

  

 
 

Then equation (4.14), can be solved to count for capillary dominated flow.  

Figure 4.10 and Figure 4.11present the relationship between recovery, ZD, and dimensionless 

time, tD, for gravity dominated flow and capillary dominated flow respectively.  

 

 

Figure 4.10: The relationship between recovery, ZD, and dimensionless time, tD, for gravity dominated 

flow (Chilingarian, et al., 1996).  
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Figure 4.11: The relationship between recovery, ZD, and dimensionless time, tD, for capillary 

dominated flow (Chilingarian, et al., 1996). 

 

 

4.4.2 Gravity Drainage 

 

When a non-wetting phase displaces a wetting phase, the process is drainage. In fractured 

reservoirs, the most common drainage processes occurs when a non-wetting gas saturated in 

the fracture network, displaces the wetting oil saturating the matrix. This fracture invasion 

occurs when a gas cap expands. The free gas may be liberated from oil because of depletion, 

which has segregated in fractures and formed a fracture gas-cap as discussed in chapter 4.1, or 

external gas injected into the reservoir. The gas in fracture advancement and the density 

difference between matrix oil and the gas in the fracture network, provide energy for the gas-

gravity-drainage process. As long as the field gravity- drainage rate is equal to the production 

rate, there will not be a pressure decline in the field (Chilingarian, et al., 1996).  

 

A classic drainage process can be explained by Figure 4.12. There is only fluid exchange on 

the top and bottom of the matrix block. Oil is drained by gas and move downwards while the 

gas enters the top of the matrix block and replaces the produced oil. The initial condition is at 

Z= 0 (Figure 4.12), while the production stops when Z= H – hth, which is at the threshold 

level.  
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Flow is assured when the gravity forces is higher than the capillary forces. This is presented in 

Figure 4.13: Oil produced from a matrix block surrounded by gas- saturated fractures, 

by examining the relative magnitude of gravity and capillary forces. (Chilingarian et. al. 

1996)Figure 4.13. When the capillary forces remain constant while the gravity forces 

increases by depth, the block bottom flow is assured by the much larger gravity forces. For 

the second case the block bottom flow is assured since the gravity forces are still larger than 

the capillary forces. While for the third case, the capillary forces are equal to the gravity 

forces and the flow stops. The remaining oil in the matrix is called the “oil hold-up zone”.  

 

 

Figure 4.12: Oil displacement by gas in a matrix block surrounded by fractures saturated with gas 

(Torsæter, 2014c). 

 

Figure 4.13: Oil produced from a matrix block surrounded by gas- saturated fractures, by examining 

the relative magnitude of gravity and capillary forces. (Chilingarian et. al. 1996) 
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5. Recovery periods  
 

 

 

The production lifetime of a reservoir is often dived into three stages, primary, secondary and 

tertiary recovery periods. Figure 5.1 below shows typical recovery techniques for the three 

production stages.  

 

Figure 5.1: Recovery techniques for oil production (Torsæter, 2013). 
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5.1 Primary recovery 

 

During first stage of the production period, oil is recovered from pressure differences between 

the reservoir and the bottom hole wellbore pressure. The oil is displaced from natural 

gasdrive, waterdrive or gravity drainage. Due to production, the reservoir pressure will 

decrease. To maintain the differential pressure, an artificial lift system must be installed. 

Eventually the reservoir pressure will drop so low that the production flow will not be 

economical, or the water oil ratio and/or gas oil ratio will be too high. After primary 

production, about 10% of the oil in place can be produced (Schlumberger, 1998d).  
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5.2 Secondary recovery  

 

In conventional hydrocarbon production, waterflooding and gas injection are the most 

common methods to enhance the oil recovery. Water is injected into the production zone to 

displace the oil, while gas is injected into the gas cap.  The purpose of these injections is to 

maintain the reservoir pressure, so more oil can flow toward the production wells. The 

secondary recovery will continue until the water cut or the gas production is so high that the 

production is no longer conventional. A recovery factor of 15-40% can be obtained by 

secondary recovery techniques (Schlumberger, 1998e).  
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5.3 Tertiary recovery 

 

The third stage in oil production is any enhanced oil recovery (EOR) techniques applied after 

the second stage of the production (Schlumberger, 1998f). In tertiary recovery, the purpose is 

to enhance the production even more by changing the properties of the injection fluid or 

change the chemical properties between the displacing fluid and the displaced fluid. The most 

common method is gasflooding, but thermal injection methods and chemical injection are also 

often used in addition to water injection (Lake, 1989). 

Gas injection is one of the earliest enhanced oil recovery techniques applied in addition oil 

production. It was first applied in the early 1960s by injecting slugs of liquefied petroleum gas 

(LPG) and then displacing the LPG with a dry “chase” gas. Both miscible and immiscible 

gasflooding is applied. Two fluids are miscible when they mix together in all proportions in a 

single-phase. Most of the miscible fluids that are used in EOR processes are only partly 

miscible with the crude oil itself. Thus, miscible gas injection is often referred to as solvent 

flooding. The main function of solvent flooding is to extract, dissolve, vaporise, condensate 

and solubilise the crude. The solvents that are used for extraction is primary CO2, CH4 and N2, 

but other fluids as LPG, LNG and air for example are also used (Lake, 1989). 

Thermal injection is mainly done by in-situ combustion, steam applied gravity drainage 

(SAGD) and steam injection. The purpose is to increase the heat in the reservoir, so that light 

oil components in the crude will vaporize and the crude will become more mobile due to 

lower viscosity (Torsæter, 2013). 

In chemical recovery, polymers and surfactants are the two most common agents. Polymers 

are injected to improve the mobility ratio, which results in a better sweep efficiency (Statoil, 

2008). Surfactants’ main task is to decrease the interfacial tension between the oil and brine, 

so that the capillary trapped oil becomes mobile. Polymers are most widely used and is 

therefore the most important chemical recovery method. However, due to high oil prices, 

there is a growing use of surfactants in EOR (Hirasaki, et al., 2008). 
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6. Surfactant flooding 
 

 

 

The purpose of surfactant flooding as an enhanced oil recovery method is to recover the 

capillary-trapped residual oil after waterflooding. In order to produce the trapped oil in 

flooded zones, the pressure drop across the trapped oil has to overcome the capillary forces 

that trap the oil. By injection of surfactant solution, the interfacial tension between oil and 

water may be strongly reduced and the residual oil can be mobilised. By decreasing the IFT, 

also the capillary pressure will be reduced. It is the capillary forces that oppose the invasion in 

pores, as explained in chapter 2.6.1 “threshold pressure”. A reduction in capillary forces will 

have an impact of the relative permeability curves. A lower capillary pressure will allow fluid 

flow to occur at other saturations than originally. The endpoints in the relative permeability 

vs. saturation plot will change. Figure 6.1 presents how the capillary and relative permeability 

curves and saturation endpoint may change as a result of IFT reduction and hence capillary 

pressure reduction. An efficient surfactant solution can reduce the IFT by a factor of about 10
4 

(Zolutukhin & Ursin, 2000).  

The technological efficiency of surfactant flooding is far less in the field than measured in the 

laboratory. There are several factors affecting the performance of surfactant flooding. The 

most important are:  

 Salinity and hardness of brine are those factors that affect the surfactants ability to 

reduce IFT in the reservoir the most (Zolutukhin & Ursin, 2000). 

 

 High absorption of surfactants by reservoir rock affects the efficiency of the surfactant 

injected. Often a larger amount of the surfactant is absorbed by the porous media in a 

reservoir rock, than the amount measured in a laboratory test (Zolutukhin & Ursin, 

2000). 



Surfactant flooding 

44 

 

 

 

Figure 6.1: Relative permeability and capillary pressure alterations as a result of IFT reduction.  
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6.1 Types of surfactants 

 

Surfactants are a blend of surface acting agents. They are organic compounds that are 

amphiphile, meaning that they are composed of a hydrocarbon chain, lipophilic (fat-loving) 

component and a hydrophilic (water-loving) component (Zolutukhin & Ursin, 2000). The 

lipophilic part is the tail and the polar hydrophilic part is the head. Surfactants concentrate or 

absorb at the surface and in a fluid/fluid interface and alter the surface properties. 

Accordingly, they reduce the surface tension between fluid and surface or they reduce the 

interfacial tension between two fluids (Sheng, 2011). There are different kinds of surfactants 

with different range of application. The surfactants are classified into four main groups.  

 

 Anionic: Most used in chemical enhanced oil recovery since they are soluble in 

aqueous phase, stable and not expensive. Relative low absorption on sandstone 

(negatively charged surface) (Sheng, 2011). 

 

 Cationic: Strongly absorbed in sandstone by the interstitial clay’s anionic surfaces. 

Used in carbonate reservoir to change the wettability from oil-wet to water-wet 

(Sheng, 2011). 

 

 Nonionic: Do not bind ionic when they are dissolved in water. Nonionic surfactants 

serve as cosurfactants to improve system phase behaviour. They cannot reduce IFT as 

much as anionics, but they are more tolerant to salinity and is often used in a mixture 

with anionic surfactants to tackle high salinity environments (Sheng, 2011). 

 

 Zwitterionic: These surfactants contain two active groups. They can be nonionic- 

anionic, nonionic- cationic, anionic – cationic. The zwitterionic surfactants are very 

tolerant to temperature and salinity, but they are also expensive (Sheng, 2011). Due to 

the costs, zwitterionic surfactants have not yet been used in EOR projects (Green & 

Willhite, 1998). 
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6.2 Types of Microemulsions  

 

When a very low concentration of surfactant is added to a solvent, the dissolved surfactant 

molecules will be spread as monomers. As more surfactant is added to the solvent, the 

concentration will after sometime reach the critical micelle concentration, CMC. Any further 

addition of surfactants will form micelles in the solution. Depending on which solvent the 

surfactants are added, the surfactants will form micelles where the tail (hydrophobic) is 

pointing toward the core of the micelle, while the head (hydrophilic) is pointing out, or 

opposite (Figure 5.1). In the scenario where the solvent is an aqueous phase, the tail will point 

against the core, while the head will be pointing out. Within the core, oil can be captured and 

solubilized, conversely for the scenario with an oil-phase solvent (Green & Willhite, 1998). 

 

 

Figure 6.2: a) Shows a micelle formed in an aqueous solvent that has captured oil within the core. b) 

Shows a micelle formed in an oil solvent that has captured the aqueous phase within the core (Lake, 

1989). 

 

The phase behaviour of surfactant, oil, brine systems are strongly affected by the salinity of 

brine. An increase in the brine salinity will reduce the solubility of the surfactant in brine. 

Measurements of the solubility of surfactants in brine can very easily be done in laboratories. 

Therefore is phase behaviour often presented as a function of salinity (Sheng, 2011).  

Green and Willhite defined in 1998 microemulsion in enhanced oil recovery processes as 

 “a stable, translucent micelle solution of oil and water that may contain electrolytes and one 

or more amphiphillic compounds.” 
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Microemulsion is more generally when there are two immiscible phases present in a system, 

and are made soluble within micelles. The micelles are made of amphiphillic compounds as 

surfactants, and the continuous phase will capture the excess phase in the core of the micelles.  

Microemulusion system can be used to create ultralow IFT between oil and water in EOR 

processes (Green & Willhite, 1998). These systems are thermodynamically stable mixtures of 

oil and water, and are clear and transparent. However, due to aggregates of micelles, or if the 

oil in the system is dark and viscous, the mixture may not be clear (Sheng, 2011). 

At mention earlier, the surfactant solubility in water decreases as salinity of water increases. 

When the salinity of water is low, there will form a microemulsion in the aqueous phase, and 

since water is denser than oil, the microemulsion will resides below the oil phase and is 

therefore called a lower-phase microemulsion. In a high salinity environment, the surfactant 

will easier solve in oil. The microemulsion will form in the oil phase, which will reside above 

the water phase and is therefore called an upper-phase microemulsion. In an intermediate 

salinity environment, the microemulsion will form in between the two phases and form a 

three-phase system containing an excess oil-phase, an excess water-phase and a middle-phase 

microemulsion in between. These three salinity systems are shown in Figure 6.3.  

 

 

Figure 6.3: Lower-phase microemulsion, middle-phase microemulsion and upper-phase 

microemulsion in pipettes (Sheng, 2011). 
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To describe phase behaviour of oil, water, surfactant system, a ternary diagram is often used. 

The top of the triangle represent surfactant concentration, the lower left water concentration 

and the lower right oil concentration. The tie lines within the ternary representing a lower-

phase microemulsion system will be negative. This will be a type II (-) environment, because 

there are two phases present and the tie lines are negative. A typically high salinity, upper-

phase microemulsion system will be type II and a typically intermediate salinity, middle-

phase microemulsion will be type III (Sheng, 2011). 

The terminologies were originally given by Winsor (1954) and are presented in Figure 6.3. 

For anionic surfactants in a mixture with increasing salinity, the system will move from a 

Winsor type I  type III  type II. (Sheng, 2011).  

Figure 6.4-6.6 present the typical three Winsor ternary systems used to represent type II(-), 

type II(+) and type III phase behaviour. In further discussion about surfactant phase 

behaviour, the Winsor terminology will be used 
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6.2.1 Winsor type I 

 

Surfactants solve easily in water/brine with low salinity. There will be some oil solubilized 

within the micelles formed by a water-external microemulsion (Sheng, 2011). Thus an overall 

composition close to the boundary between oil and brine of the ternary will divide into two 

phases. The two phases will be one of an excess more or less pure oil-phase, and a (water 

external) microemulsion-phase with a mixture of brine and surfactant, and some solubilized 

oil (Lake, 1989). Winsor type 1, or “underoptimum salinity”, as it is often referred to, is 

described schematically in Figure 6.4 below.  

 

Figure 6.4: Ternary presentation of Winsor type I system, the overall composition of surfactant (1), 

brine (2) and oil (3) (Lake, 1989). 
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6.2.2 Winsor type II 

 

The surfactants solubility in high salinity brines strongly decreases, due to electrostatic forces. 

The composition will now be divided into an excess aqueous-phase and a microemulsion-

phase of surfactant, oil and some brine captured in the cores of the micelles (Lake, 1989). 

This is a Winsor type II system, often referred to as an «over optimum salinity” system and is 

presented in Figure 6.5. 

 

 

Figure 6.5: Ternary presentation of Winsor type II system, the overall composition of surfactant (1), 

brine (2) and oil (3) (Lake, 1989). 
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6.2.3 Winsor type III 

 

Winsor type I and II are two extreme cases, where there is only a two phase system. But there 

are grades of salinity in between which will result in a three-phase system with an oil-phase, a 

aqueous-phase and a microemulsion phase in between. Winsor type III system is often 

referred to as an “optimal salinity” system where an equal amount of water and oil is solved 

by surfactants and form a microemulsion-phase. (Lake, 1989). Figure 6.6 presents the system. 

 

 

Figure 6.6: Ternary presentation of Winsor type III system, the overall composition of surfactant (1), 

brine (2) and oil (3) (Lake, 1989). 
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6.3 Phase Behaviour and IFT 

 

The correlation between phase behaviour and interfacial tension was theoretically discussed 

by Huh in 1979 and was later verified experimentally (Huh, 1979). The optimal salinity to get 

an ultra-low IFT between water and oil and water in the microemulsion-phase is very close 

the optimal salinity obtained in phase behaviour tests (Green & Willhite, 1998). This 

correlation gives great advantages for prediction of the effect of surfactant as an EOR method 

in oil production. Since IFT is difficult to measure and time absorbing, the correlation is often 

used as an estimate in measurements of the IFT. This is done by calculations of the 

solubilisation parameters for oil and water. The solubilisation parameters will be referred to as 

SPo and SPw for oil and water respectively and was defined by Green and Willhite as:  

            (6.1) 

     
  

  
 

                                        

                                               
 

(6.2) 

     
  

  
 

                                          

                                               
 

 

IFT depends on the types and concentration of surfactant in the system, cosurfactant, the 

electrolyte, the oil and temperature (Lake, 1989). At optimal salinity, the IFT between oil and 

microemulsion, σmo and the IFT between water and microemulsion σmw, will be ultra-low. 

The optimal salinity is obtained when SPo=SPw, and this value is more or less equal to the 

salinity obtained when σmo= σmw. This correlation can be seen from Figure 6.7.Huh used this 

to obtain a formula for estimation of the IFT by only using phase behaviour test.  (Huh, 1979)  
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Figure 6.7: IFT between microemulsion and oil decreases as the salinity increase. While the IFT 

between microemulsion and water increases when the salinity increases. The optimal salinity is when 

the curves crosses, which here occurs at the approximate same salinity, and in a Winsor type III 

system (Lake, 1989). 

 

The correlation between the solubilisation parameter and IFT that Huh established, is valid 

and a good approximation at optimal salinity. The correlation says that the interfacial tension 

is inverse proportional to the square of the solubilisation parameter:  

            (6.3) 

   
 

(   ) 
 

Where C is an empirical constant which is often assumed to be 0,3 mN/m (Fuseni, et al., 

2013). At optimal salinity the solubilisation factor is above 10 (Lake, 1989).  
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6.4 Parameters affecting phase behaviour   

 

Salinity of the aqueous phase is the most important parameter that affects the phase behaviour 

of water, oil, surfactant system. The solubility of surfactant in water decreases as the salinity 

increases, and an ultra-low IFT between oil and brine can easier be obtained when the optimal 

salinity for the surfactant is found. However, there are other parameters that have an impact of 

the phase behaviour to the system; they are listed in the following subchapters.  

 

6.3.1 Temperature  

 

A change in temperature will affect the solubilisation parameters and therefore also the IFT 

between oil and brine. An increase in temperature leads to a reduction of the solubilisation 

parameters for oil and water. This results in an increase in the interfacial tension and a shift in 

the optimal salinity window (Sheng, 2011). The optimal salinity for the surfactant increases. 

In a test conducted by (Green & Willhite, 1998), an increase in temperature from 23
o
C to 

65
o
C resulted in an increase in optimal salinity from 1,6wt% to 2,1wt% and a decrease in the 

optimal solubilisation parameter from 14,5 to 7,5. Roshanfekr & Johns (2011), confirm the 

negative effect of a temperature increase.   

 

 

6.3.2 Pressure 

  

The phase behaviour of the all-liquid system is insensitive to a pressure change. Nelson found 

that there was a change in the phase behaviour due to pressure changes in gassy crudes. The 

oil-phase volume increased as the pressure decreased (Lake, 1989). During pressure changes, 

the water-oil ratio changes because of the difference in the compressibility between oil and 

water. Even if there are no changes in the phase-volume, the phase behaviour is changed. And 

further, the solubilisation parameter for water will increase with increasing pressure, while the 

oil solubilisation parameter will decrease. Thus, phase-behaviour is shifted towards lower-

phase microemulsion (Skauge & Fotland, 1990).  
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Figure 6.8: Optimum pressure as a function of salinity. The numbers in each point refers to the 

solubilisation parameter (Skauge & Fotland, 1990). 

 

6.3.3 Cosurfactants  

 

Cosurfactants are added to minimize the formation of gels, liquid crystals, emulsion of 

polymer-rich phase separating from the surfactant solution, to lower the equilibrium time and 

to reduce microemulsion viscosity (Sheng, 2011). They also adjust the surfactant 

pseudocomponent so make sure that the change of a Winsor type I to a Winsor type II 

microemulsion occurs at different salinities (Lake, 1989). However, the addition of a 

cosurfactant reduces the effect of the surfactant.  

By adding a water-soluble surfactant as a tertiary amyl alcohol, a second petroleum sulphate, 

n-butanol or other light molecular weight alcohols will make the surfactant more water-

soluble. While an addition of higher molecular weight alcohols increases the surfactant’s oil 

solubility (Lake, 1989).  

Larry Britton stated in 2008 that alcohols alone cannot function as surfactants. Short-tailed 

alcohols with only a few carbon atoms cannot form micelles because they are too short. The 

alcohols should have at least eight to ten carbons. However, even with long chains of carbons, 

the OH group is not polar enough to be a good hydrophilic group (Sheng, 2011). 
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6.3.4 Oil 

  

The oil composition affects how good oil is as a solvent for the surfactant. If the oil is made 

more polar, it will act as a better solvent and make the transition from Winsor type I to 

Winsor type II occur faster. The specific gravity also affects the surfactant oil solubility. The 

high specific gravity crudes have a high content of organic acids that lowers the solubility 

(Lake, 1989).  

To find the best surfactant for the specific crude oil, time-consuming test of different 

surfactants in the refined oil has to be done. Cayias et. al found a relating between the alkane 

carbon number (ACN) in refined oils with the equivalent alkane carbon number (EACN) for 

crudes (Cayias, et al., 1977). By testing different surfactants with the synthetic oil, the 

surfactant that gives the lowest IFT will also be the best surfactant for the crude (Sheng, 

2011). 

 

6.3.5 Effect of divalent ions  

 

Interaction between divalent ions and surfactants changes the optimal salinity for the 

surfactant (Hirasaki, et al., 1983). According to Sheng, found Pope and Baviere in 1991 in a 

test with surfactant, oil, brine that with a NaCl brine, the electrolyte is partially excluded from 

the micelle. They observed the opposite trend with CaCl2 brine (Sheng, 2011). Because of the 

strong connection of anionic surfactant and divalent ions, the surfactant concentration will 

decrease due to the surfactants will mix with the brine. A decrease in the surfactant 

concentration reduces the interaction between the interfacial region and the brine, and the 

optimal salinity decreases (Sheng, 2010).  

 

6.3.6 Surfactant concentration and surfactant structure 

 

Until the critical micelle concentration, an increase in the surfactant concentration leads to a 

decrease in the interfacial tension. A further addition of surfactant will not affect the IFT 

(Sheng, 2011). The surfactants will just form more micelles as Figure 6.9 shows. In surfactant 

flooding, where the purpose is to lower the IFT and/or alter the wettability by microemulsion 

or micellar flooding, a high concentration of surfactant is applied. The surfactant 

concentration is normally between 1wt% to 10wt% (Al-Yousef, et al., 2013).  
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Figure 6.9: Surfactant concentration as a function of interfacial tension (Schramm, 1992). 

 

The selection of a surfactant is based upon the desirable surfactant structure. Levitt et. al 

stated in 2009 that recent advances in the research and development of surfactants as the 

understanding the relationship between structure and performance, have made it possible to 

quickly identify promising high-performance surfactants for EOR. Several tests are conducted 

to obtain the favourable surfactant. A phase behaviour-screening test will quickly identify a 

favourable surfactant formulation. A salinity scan can revile equilibrium time, viscosity of the 

microemulsion, solubilisation parameters, and IFT. To tailor the surfactants for the particular 

case, cosufactants and cosolvent are added (Levitt, et al., 2009). 

Extensive research on surfactants points out a clear relationship between surfactant structure, 

fluid properties and EOR related performance (Levitt, et al., 2009). An increasing 

hydrophobic length of the surfactant’s tail causes the solubilisation parameters to increase, 

while the optimal salinity decreases. Weakly hydrophobic functional groups as propylene 

oxide (PO) have interface affinity and can wider the ultra-low IFT region. PO decreases the 

optimal salinity and the surfactant becomes more calcium-tolerant. Because of these 

properties PO and also ethylene oxide (EO), which has similar effects, can be added to tailor 

the surfactant to the crude oil, temperature and the salinity. PO and EO are inexpensive 

chemicals and are practical to use in improving the performance (Sheng, 2011).  
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6.5 Capillary number  

 

The capillary number is a ratio of the viscous force to capillary force (Sheng, 2013):  

            (6.4) 

   
  

 
 

Where: 

µ is the displacing fluid viscosity, 

v is the Darcy velocity of the displacing fluid, 

σ is the IFT between the displacing fluid and displaced fluid.   

From equation 6.4 it can easily be seen that a high capillary number implies low IFT. When 

surfactants are injected in a reservoir, the purpose is to lower the interfacial tension between 

the immiscible fluids oil and water by making a microemulsion where oil and water are bound 

together with the surface acting agents. Hence the IFT is reduced and accordingligly also the 

capillary pressure is reduced. Then more residual oil can be produced. Figure 6.10 shows an 

example on how an increase capillary number gives a lower residual saturation.  

 

 

Figure 6.10: The relationship between capillary number and residual saturation (Sheng, 2013). 
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6.6 Wettability Alteration 

 

Most carbonated are oil-wet or mixed wet (Hirasaki & Zhang, 2004). Surfactants can be used 

to alter the wettability to more favourable wetting condition for spontaneous imbibition. 

Cationic and non-ionic are mostly used for this purpose, but Hirasaki and Zhang presented in 

2004 promising results for injection of anionic surfactants with salts.  

In carbonates are often organic carboxylates from the crude oil adsorbed on the rock surface. 

The cationics are injected into the reservoir to form ion-pairs with the adsorbed organic 

carboxylates and stabilise them into the crude oil and alter the wettability to water-wet. A 

schematic presentation of the process is given in Figure 6.11.The cations (R-N
+
(CH3)3) desorb 

the organic carboxylates (-COO
-
) from the carbonate surface by formation of ion-pairs. Since 

the hydrophilic part is used in ion-pair formation with the carboxylates, is only the 

hydrophobic part of the surfactant free, and therefore is the ion-pair complex only soluble in 

miscelles and in oil (Sheng, 2013).  

 

 

Figure 6.11: Wettability alteration from oil-wet to water-wet mechanism. Large squares represent 

carboxylate groups (COO
-
), small squares represent polar components, ant the circles represent 

cationic ammonium group (N
+
(CH3)3) (Austad & Standnes, 2003). 

 

Anionic surfactants are not able to desorb organic carboxylates and form ion-pairs as the cationics. 

However, when an Ethoxylated sulfonate with high EO number is used, the anionic surfactant may 

form a water-wet bilayer between the oil-wet chalk surface and the oil. The EO part of the surfactant is 

adsorbed on the rock surface with the hydrophobic tail, while the hydrophilic head makes a film of a 

water-wet layer on top of the rock surface. This way a weak capillary force is created during 

imbibition (Sheng, 2013). These EO-anionic surfactants are not able to form a permanent alteration of 

the wettability, because the bonds between the hydrophobic rock surface and the hydrophic tail of the 

surfactant is probably fully reversible.  
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Figure 6.12: Formation of a water-wet bilayer. The squares represent carboxylates and the eclipses 

represents EO-sulfonates (Austad & Standnes, 2003).  

 

Hirasaki and Zheng injected in 2004 Na2CO2 with the surfactants with the purpose to reduce 

the anionic surfactant adsorption on carbonate rock surface. The CO3
2-

 and HCO3
-
 

components from the salt alter the rock surface to be negatively charge, and hence less of the 

anionic surfactants are adsorbed. This maintains the surfactant concentration, and the 

surfactants can react on the interface between oil and water and reduce the IFT. This way is 

the capillary forces reduced and the gravity force is increased and is the main oil recovery 

mechanism in the drainage. It is important for the surfactant to reduce the IFT so that the 

gravity forces overcome the capillary forces and can invade small pores and displace the oil 

upwards in the matrix.  
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6.7 Surfactant-Polymer flooding 

 

Polymers are often injected with surfactants in order to reduce costs, reduce surfactant 

adsorption, and increase the surfactants performance. The following injection pattern is 

conventionally used:  

 Preflush, to form the  best effective IFT reduction condition for the surfactant  

 Surfactant Slug injection, to reduce IFT and recovery residual oil. 

 Polymer Slug Injection, to improve sweep efficiency in the reservoir. 

 Taper- injection of polymer slug with decreasing polymer concentration from front to 

back to mitigate the effect of adverse mobility ratio between polymer slug and the 

chase water. 

 Chase water is injected with the purpose to move the SP composition deep into the 

reservoir (Zolutukhin & Ursin, 2000).  

Polymer flooding is the only chemical- EOR technique that is well-established for use in 

fields. Polymers are injected with to increase the water viscosity with the purpose to decrease 

the displacing fluid’s mobility (Zolutukhin & Ursin, 2000). An increase in the mobility 

(relative permeability and/or viscosity) of the displaced fluid, oil, is not feasible expect with 

heat, therefore are polymers injected for mobility control of the flowing fluid fronts (Sheng, 

2011).  

Polymers are very suitable for injection in heterogeneous reservoirs with large permeability 

differences between layers. The polymers are injected to reduce the effective permeability of 

the displacing fluid in high permeable zones (Zolutukhin & Ursin, 2000).   

Polymers are formed by long chains of monomers bounded by covalent bonds. There are 

several factors affecting their performance. The most important factors are concentration of 

polymers, salinity and surfactant and alkaline concentration in SP and ASP floods. Polymers 

can as surfactants, become adsorbed by the rock surface, and hence reduce the polymer 

concentration. Mechanical entrapment in pores and local accumulation of polymer molecules 

are other retention mechanism that affects the polymerflood performance.  

Entrapment of polymers leads to a dilution of the polymer solution, and the mobility control 

can be drastically reduced or destroyed. The adsorption of polymers on the rock surface may 

decrease the rock permeability which contributes to a further reduction of mobility of the 
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polymer front and the chase water which may lead to better sweep (Zolutukhin & Ursin, 

2000). 

Surfactant-polymer flooding has advantages compared to a single surfactantflood. As 

explained in chapter 6.3.6, the surfactant concentration in the flood, should be the critical 

miscelle concentration. At CMC the concentration of monomers are large enough to reduce 

IFT as much as possible by microemulsion. An addition of polymers can reduce the point of 

CMC, therefore less expensive surfactants are required for an effective IFT reduction (Austad, 

et al., 1994). The reduction of surfactant concentration required can be by a factor of 10, or 

even higher. Polymers bind the water, so that surfactant monomers are free to be more active 

in the IFT reduction (Zolutukhin & Ursin, 2000).  

The polymers and surfactant chosen for injection must be compatible and should be carefully 

chosen. If there are strong chemical associations between the polymers and surfactants, they 

can form chemical interaction and reduce the performance (Figure 6.13). 

 

 

Figure 6.13: The relationship between surfactant concentration and IFT for the cases with a) 

without polymers, b) strong association between surfactants and polymers, c) low association 

between surfactant and polymers, d) no association between surfactants and polymers. 

(Austad & Standnes, 2003) 
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7. Economics of Chemical EOR 
 

 

 

With chemical EOR come a lot of extra costs. Some of the chemicals are very expensive, 

some even unconventional, but the extra costs related to facility requirement, transportation of 

chemicals and environmental demands, are just as important to include. For an offshore field 

the expenses can soon overcome the conventional limit. Some of the challenges that stand out 

for offshore field are listed below.  

 Remote locations 

 Poor weather 

 Expensive wells and large well spacing 

 Space and weight limitation on the deck 

 Seawater as the only available injection-water source 

 Limited disposal options. (Raney, et al., 2012). 

Offshore fields have different facility challenges depending on how far they are from shore. 

For near-shore field, will the extra costs related to chemical EOR not be as extensive as for 

deep-water projects. Those advantages are related to well costs, disposal costs and storage 

costs (Raney, et al., 2012); (Wyatt, et al., 2008). Figure 7.1 presents an overview of typical 

deep-water chemical EOR facilities.  
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Figure 7.1: Schematic of a typical deep-water chemical-EOR project (Raney, et al., 2012). 

 

The effects of the challenges listed on the previous page are subsurface efficiency, logistics, 

injection, production and environmental. Since saltwater is the only available injection fluid, 

must the chemicals be able to handle the salinity. As explained in chapter 6 are surfactants 

strongly affected by salinity. To get an effective surfactant flood, a desalinating may be done 

with nanofiltration and reverse osmosis (Raney, et al., 2012). Alternatively salinity tolerant 

surfactant may be used.  

The biggest problems related to offshore chemical EOR projects are the logistics. Logistics is 

related to the implementation of the project. The costs are linked to available surfactants for 

the offshore environment, the large storage requirements, and the special equipment required 

storing high-active chemicals, separating oil and water from the microemulsion phase, recycle 

and disposal of chemicals and the distribution of the chemical solution over long distances. 

The large storage capacity requirement is related to the importance of maintain the surfactant 

concentration in the reservoir. Therefore must there always be a sufficient amount of 

chemicals available. In offshore fields, the supply from onshore may be delayed because of 

the weather. Because of these risks, it is normal to store chemicals for 21 days in case of a 

supply stop. For a field with a surfactant injection rate of 30 000m
3
/day, a storage capacity of 

10500tonnes for 21 days is required (Raney, et al., 2012). 
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Wyatt et.al presented in 2008 a paper with estimations of costs related to different chemical 

EOR projects. The costs include chemical costs and a total facility costs estimation for 

different process. Figure 7.2 gives the historical costs for some chemicals included 

surfactants, and crude oil from 1985 to 2007. The facility cost Wyatt et. al presents are listed 

in Table 7.1 below. An overview of chemical costs is given in Table 7.2. The facility costs are 

estimated for a project size of 10.000MBBL PV with a run for 10 years with a water injection 

rate of 5000bbl/day.  

 

Table 7.1: Facility costs for a project size of 10.000MBBL PV.  

Chemical EOR process Facility costs $ 

Micellar- Polymer 5.500.000 

Surfactant- Polymer 1.500.000 

Alkaline-Polymer, fresh water 2.800.000 

Alkaline- Polymer, brine 3.200.000 

Alkaline- Surfactant- Polymer, 

fresh water 
3.000.000 

Alkaline- Surfactant- Polymer, 

brine 
3.400.000 

 

Table 7.2: Chemical costs. 

Chemical  Costs $/kg 

Surfactant 4,08 

Co-surfactant 1,54 

Polymer 2,65 

Caustic soda 1,01 

Soda ash 0,24 

 

 



Economics of Chemical EOR 

66 

 

 

Figure 7.2: Historical crude oil and chemical costs (Wyatt, et al., 2008). 
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8. Numerical Simulation 
 

 

 

 

This chapter gives an insight in the keywords used in the surfactant model (Table 8.1), and an 

overview of input data, assumptions and the model building process.   

 

 

8.1 Keywords for the surfactant model 

 

Table 8.1 Specific keywords for the ECLIPSE surfactant model (Schlumberger, 2011a) and 

(Schlumberger, 2011b). 

Keyword Description Notes 

SURFACT Model initialisation Obligatory 

SURFST IFT data Obligatory 

SURFVISC Viscosity modifier Obligatory 

SURFCAPD Capillary de-saturation Obligatory 

SURFADS Surfactant adsorption Optional 

SURFROCK Rock properties Obligatory when SURFADS is used 

SURFNUM Grid region specification Obligatory 

WSURFACT Injected surfactant concentration Optional 
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SURFACT 

This keyword starts the surfactant model in ECLIPSE and is listed in the start of the 

RUNSPEC section.  

 

SURFST 

Water/oil surface tension versus surfactant concentration. This keyword gives the IFT 

between oil and water as a function of surfactant concentration. The keyword is supplied with 

two tables; the first is for surfactant concentration in kg/m
3
 and the other for corresponding 

water-oil surface tension in N/m. 

 

SURFVISC 

This keyword calculates the water-surfactant solution viscosity, µws by applying equation 

(8.1).  

            (8.1) 

   (       )    ( )
  (     )

  (    )
 

 

SURFCAPD 

This keyword gives the capillary de-saturation function that describes the transition between 

immiscible condition and miscible condition for surfactant concentrations above the critical 

micelle concentration. The keyword contains two columns of data, where the first column is 

the logarithmic value of the capillary number and the second column is the miscibility factor, 

m. The miscibility factor ranges from 0 to 1, where 0 is immiscible conditions and 1 is fully 

miscible conditions.  
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SURFADS 

The SURFADS keyword gives the quantity of how much surfactant is adsorbed by the rock. 

The adsorption is a function of the surrounding surfactant concentration and the rock density 

and is calculated by equation (8.2). 

            (8.2)  

                                 
   

 
      (     ) 

PORV = Pore volume of the cell 

ϕ = porosity 

MD = Mass density of rock 

CA(Csurf) = adsorption isotherm as a function of local surfactant concentration in solution.  

 

SURFROCK 

This keyword specifies the surfactant-rock properties.  When surfactant is adsorbed at the 

rock surface, some of the adsorbed surfactant can go back into the solution, this mechanism is 

called desorption. SURFROCK contains two items, where the first item is the adsorption 

index which states it the surfactant adsorbed can be desorbed or not. If value 1 is selected 

adsorbed surfactants can go back into the solution. If value 2 is selected, no surfactant 

desorption may occur. The second item of the keyword is the mass density of rock in kg/m
3
. 

The properties tabulated in this keyword are used in the different grid regions defined in 

keyword SURFNUM.  

 

SURFNUM 

This keyword specifies in which region a full miscibility between water and oil may occur. In 

the RUNSPEC section is TABDIMS applied to control the number of tabulated data that is 

inserted to the model. The first item in TABDIMS determinates how many saturation tables 

the model will apply. The SATNUM keyword is used to specify the immiscible saturation 

functions.  



Numerical Simulation 

70 

 

WSURFACT 

This keyword specifies which wells are injecting surfactants, and the surfactant concentration 

in the injected solution. The first item of the input data is the name of the well selected for 

surfactant injection. The well is chosen from the wells defined in WELSPECS and 

COMPDATA keywords. The second item is the surfactant concentration in the injection 

steam given in kg/Sm
3
. If the surfactant injection is not to start before n-timestep of 

production, the keyword should be entered after the first timestep keyword in the 

SCHEDULE section.  
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8.2 The Basecase Model Input Data 

 

The simulation model is built as a single block with the grid dimensions 20x20x30 in 

ECLIPSE. The 15
th

 layer in z-direction is a fracture. The model is a black oil model solved 

with IMPES and contains one producer and one injector that are placed on the boundaries at 

each side of the model (Figure 8.1). The model is simulated for pressures above bubble point 

pressure for the oil and includes two fluid phases, oil and water. Fracture and matrix are 

induced with different permeability and porosity properties and the model act as a dual 

porosity/dual permeability model. All the properties used in the model are presented in the 

following subchapters.  

 

 

Figure 8.1: Initial oil saturation in the model.  
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Fluid parameters used in the model are listed in table 8.2.  

Table 8.2: Fluid parameters 

Fluid parameters 

Sw,i 0,15 

ρw,s.c 997,35 kg/m
3 

ρo,s.c 722,2 kg/m
3
 

µw,ref 0,61cp 

Pref 1,014bar 

 

The fluid viscosity changes with pressure. The oil viscosity changes are presented in Figure 

8.2. 

 

 

Figure 8.2: Oil viscosity plotted against pressure.  
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8.2.1 PVT  

 

Total E&P Norway provided PVT data for the model. The PVT data is for live-oil. However, 

since the model shall only be a two-phase system is only the PVT data above bubblepoint 

pressure is included in the model. To avoid gas segregation and three phase flow, a minimum 

bottomhole pressure equal to bubblepoint pressure was set as restriction in the producing well 

in the model. The initial reservoir pressure given in Total’s dataset is below bubblepoint 

pressure. To overcome the producer restriction, was initial reservoir pressure and reference 

depth chosen from Linda Riise’s master thesis 2005 (Riise, 2005). The thesis is an evaluation 

of the secondary depletion in the Ekofisk field. Three case studies were conducted, where the 

first case was a single block fracture model, similar to the case in this study.  

 

8.2.2 Matrix properties 

 

The matrix properties are taken from Linda Riis’ master thesis 2005 (Riise, 2005) and 

presented in Table 8.3.  

Table 8.3: Matrix properties for the model 

Property Value 

Initial pressure (z=3133m) 489,73 [bars] 

Porosity 0,4 

Horizontal permeability, kx=ky 1mD 

Vertical permeability, kz 1mD 

Initial water saturation 0,15 

Initial oil saturation 0,85 
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The oil-water relative permeability curve for the matrix is presented in Figure 8.3. 

 

Figure 8.3: Relative permeability curves for water and oil in the matrix. 

 

 

Figure 8.4 presents the corresponding water-oil capillary pressure curve. As the curve 

illustrates, the spontaneous imbibition will stop at Sw=0,6. However, with forced imbibition 

the saturation can increase to 0.75.  

 

Figure 8.4: Water-oil capillary pressure curve for the matrix. 
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8.2.3 Fracture properties 

 

The fracture properties are listed in Table 8.4and the relative permeability curves for oil and 

water are presented in Figure 8.5.  

Table 8.4: Fracture properties for the model.  

Property Value 

Initial pressure (z=3133.34) 489,73 [bars]  

Porosity 1,0  

Porosity in surfactant model 0,95 

Horizontal permeability, kx=ky 90mD 

Vertical permeability, kz 90mD 

Initial oil saturation 1,0 

Irreducible water saturation 0,0 

 

For the case with only water injection is the porosity set to be 1,0 in the fracture. ECLIPSE 

demands that the porosity must be reduced to less than 1,0 for the case with surfactant 

injection, and is therefore set to be 0,95. 

Actual fracture permeability is much larger than 90mD which is used in the model. The 

fracture permeability is approximately 1000mD, but a much lower permeability is used to 

avoid unstable simulation runs. The conductivity for the fracture is maintained with the wide 

fracture. The fracture width is set to be 1cm. A realistic fracture width is 10-50microns 

(Chilingarian, et al., 1996).  

The fracture is considered to act as a very large pore, and there is accordingly no capillary 

pressure between water and oil.  

The relative permeability curves for oil and gas are linear in the fracture.  



Numerical Simulation 

76 

 

 

Figure 8.5: Relative permeability curves for water and oil in the fracture. 

 

8.2.4 Wells 

 

The model contains two wells. The well placement and restrictions are presented in Table 8.5. 

 

Table 8.5: Well properties.  

Well type Max. injection rate 

[Sm
3
/day] 

Max. BHP 

[bars] 

Min. BHP 

[bars] 

Perforations 

(i,j,k1-k2) 

Injector 50 600 X (1,10,1-30) 

Producer X X 400 (20, 10, 1-30) 
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8.3 The Surfactant model input data 

 

The surfactant model is developed from the waterflooding model presented in the previous 

chapter 8.2. The ECLIPSE surfactant keywords that are applied in this model are described in 

chapter 8.1. The surfactant dataset is taken from Feng et.al (2011) and is presented in table 

8.6-8.9. (Feng, et al., 2011) 

Table 8.6: Interfacial tension between oil and water at different surfactant concentrations. 

Surfactant concentration [kg/m3] 0 0,1 0,5 1 30 100 

Interfacial tension [N/m]   0,05 0,0005 1,0E-05 1,0E-06 1,0E-06 1,0E-06 

 

Table 8.7: Water viscosity at different surfactant concentrations. 

Surfactant Concentration [kg/m3] 0 30 100 

Water viscosity [mPa s]   0,61 0,8 1 

 

Table 8.8:  Miscibility condition at different capillary numbers. 

Log[Nc]   -10 -5,5 -4 -3 2 

Miscibility factor 0 0 0,5 1 1 

 

Table 8.9: Surfactant adsorption at different surfactant concentrations. 

Surfactant concentration [kg/m3] 0 1 30 100 

Surfactant adsorption [kg/kg]   0 0,0005 0,0005 0,0005 

 

As explained in the surfactant keyword chapter, when surfactant adsorption is included in the 

model, then the rock density must be specified in addition. For a Chalk found in Balmoral 

outcrop in Great Britain, the rock density is 2530kg/m
3
 (Manger, 1963). In this model, it is 

assumed that the rock density is the same as for the Balmoral chalk.  

A third saturation table is implemented in the model for the miscibility case, when surfactants 

have made a microemulsion with oil and water. The relative permeability curves for miscible 

conditions are calculated using the Corey equation (2.7-2.8) and are given in Figure 8.6. The 

Corey curve exponent, n, was assumed to be 1,5 for miscible conditions. It is assumed that the 

capillary pressure is reduced to 0.  
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Figure 8.6: Relative permeability curves for miscible (blue) and immiscible (orange) conditions. 
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8.4 9Block Model with Four Fractures 

 

A 9 block model with Four Fractures was built for further investigation of surfactants 

behaviour when they are injected. The model has the same dimensions as the single fracture 

model and most of the input data is the same. A reduction in the fracture permeability from 

90mD to 50mD was done. The fracture permeability was set to 50md after trial and failure 

method in the model building process. It was tried to maintain the fracture permeability of 

90md from the model used for investigation in the earlier chapters, but the simulation run 

stopped because of convergence problems due to the large permeability differences between 

fracture and matrix. A finer grid refinement around the fractures was also done to make the 

layer thickness differences less. These alterations were done to be able to run the model in 

ECLIPSE. ECLIPSE had problems with the saturation calculations in the intersection between 

fractures. Because of these problems, also the saturation tables for fracture and miscible 

conditions had to be changed to avoid convergence problems. It is in this model implemented 

that the critical water saturation is 0,1 in the fractures, while it is zero for miscible conditions. 

The model is presented in Figure 8.7. 

 

 

 

 

 

Figure 8.7: 9block Model with Four Fractures, initial Oil Saturation.  
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8.5 Polymer Input Data 

 

The Input data for the polymer model was collected form Professors Jon Kleppe’s webpage in 

the EOR folder (Kossack, 2011). Some of the data is modified for this model, as the dead pore 

space Table 8.11 for example. The polymer injection concentration was set to kg/Sm
3
. 

 

Table 8.10: Polymer Viscosity for the PLYVISC keyword.  

Polymer Concentration [kg/Sm
3
] 0,0 7,0 

Water Viscosity Multiplier 1,0 3,0 

 

Table 8.11: Polymer-Rock Properties for PLYROCK keyword.  

Dead Pore Space 0,04 0,16 0,16 

Residual Resistance factor 1,5 1,5 1,5 

Mass Density [kg/m
3
] 2530 2530 2530 

Adsorption Index 2 2 2 

Maximum Polymer Adsorption [kg/kg] 0,00040 0,00040 0,00040 

 

Table 8.12: Polymer Adsorption data for the PLYADS keyword. 

Polymer Concentration [kg/Sm
3
] 0,0 5,0 7,0 

Polymer adsorbed by the rock [kg/kg] 0,0 0,00010 0,00040 
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9. Results and Discussion 
 

 

 

This chapter presents the simulation results. Table 9.1gives an overview of the studies that 

have been done and in which chapter the results for each case are discussed. A complete 

evaluation of the results is given in chapter 9.13.  

 

Table 9.1 Overview of case studies 

Case Chapter 

Surfactant flow within the model 9.1 

Saturation and relative permeability changes 9.2 

Recovery with and without surfactants 9.3 

Capillary pressure sensitivity 9.4 

Fracture opening sensitivity 9.5 

Surfactant production 9.6 

Surfactant adsorption 9.7 

Changes in input capillary number 9.8 

Surfactant concentration in injected solution 9.9 

9-block model with four fractures and 

surfactant injection 

9.10 

Surfactant-Polymer injection in 9-block 

model 

9.11 

Economics 9.12 

Complete evaluation of results 9.13 
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9.1 Surfactant flow within the model  

 

This reservoir model contains a fracture with idealised flow conditions. It is therefore 

expected that the fluids will flow towards the fracture. A study of the surfactant concentration 

throughout the reservoir has been done at breakthrough to see how the surfactants flow in the 

model. All the perforations in injector and producer are open in all 30 layers. Figure 9.1 and 

Figure 9.2 present how the surfactants flow. Figure 9.1 is a screenshot of the 3D ECLIPSE 

Floviz result presenter. The figure presents the surfactant concentration in layer five, nine, 

eleven, fifteen (the fracture), seventeen and twenty-one. From the pictures it is clear that the 

surfactants move towards the fracture, since the concentration is largest in the fracture and 

then in the layers closest to the fracture.  

Figure 9.2 is a graphic presentation of the surfactant concentration through the reservoir. The 

figure is a plot of surfactant concentration for seven layers vs. the distance from the injector. 

Figure 9.2 gives the same results as Figure 9.1, it is clear that surfactants flow towards the 

fracture and accumulates there and in the surrounding layers.  

 

Figure 9.1: Surfactant concentration in six layers in various distances from the fracture at 

breakthrough, where blue is zero and red is 1 kg/Sm
3
.  
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Figure 9.2: Average surfactant concentration for different layers in various distances from the fracture 

plotted along the length of the reservoir at breakthrough.  
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9.2 Saturation and relative permeability changes 

 

A study of how the saturation and relative permeability curves change throughout the 

production time has been conducted by plotting the average relative permeability in all the 

matrix layer for oil and water against the average water saturation for the same layers at 

surfactant breakthrough time, 2500days. The data is taken for the RPT output file from 

ECLIPSE. Figure 9.3 shows the curves for the surfactant case, while Figure 9.4 presents the 

results for the waterflood case. For the waterflood case, the breakthrough is 150 days later, 

and the plot presented in Figure 9.4 is the relative permeability for the matrix at this timestep.  

When a reservoir is flooded with surfactant, the purpose is for the surfactants to act on the 

fluid and rock surface to reduce the interfacial tension. When IFT is changed, the capillary 

pressure is also reduced. A more careful explanation on how the surfactants act is carried out 

in chapter 6. When the capillary pressure is reduced, fluids can more easily enter pores 

therefore more of the small pores with capillary trapped oil can be flooded. Accordingly will 

also the saturation change because the residual oil saturation is reduced and the fluid flow can 

occur at a larger saturation range than initially.  

 

 

Figure 9.3: Average relative permeability curves for matrix for the surfactant flooding case. The blue 

and orange curves represents the relative permeability for water and oil respectively, initially (dashed) 

and at breakthrough. 
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Figure 9.4: Average relative permeability curves for matrix for the waterflooding case. The blue and 

orange curves represents the relative permeability for water and oil respectively, initially (dashed) and 

at breakthrough.  
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9.3 Recovery with and without surfactants 

 

A comparison of the recovery for the waterflood case and the surfactantflood case was 

conducted to find out if surfactants improve the recovery in this model, and possibly how 

much is the recovery is improved.  

Figure 9.5 presents the results. The blue lines represent the recovery factor and watercut for 

the surfactant flood, while the green lines represent the waterflood. The recovery factor is 

improved with 2,8% for the surfactant case, and the breakthrough occurs sooner. For the 

surfactant case is breakthrough after 2500 days, while for the water case is the breakthrough is 

after 2650 days.  

Surfactant decreases the IFT and hence the capillary pressure. Therefore can the solution 

water easier overcome the threshold pressure in the pore openings and flood the pores. 

Because of this, it is expected that the production will improve with surfactants. However, 

what is interesting is to see how much it is improved. Whether the improvement is satisfying 

or not depends on the costs of the chemicals, extra equipment for the implementation of the 

process etc. An evaluation of benefits and outcomes for this case will be given in chapter 

9.12. 

A figure of a comparison of the relative permeability curves for surfactant model (surf) and 

the waterflood model (wf) are given in Figure 9.6. The saturation endpoints for the surfactant 

model have been moved to more beneficial values, allowing fluid flow to occur at both lower 

and higher water saturation than for the waterflood case. The relative permeability curves are 

initially the same for both waterflood and surfactant case. As Figure 9.6 shows, have the 

endpoints changed only for the surfactant case. This is because the surfactants have reduced 

the IFT and accordingly pore-entry pressure and hence more of the residual oil is recovered 

and the fluid flow can occur at a larger saturation range.  Figure 6.1 presents a theoretical 

presentation of how relative permeability and capillary pressure curves may change as a result 

of IFT reduction.  

The dashed lines in Figure 9.5 give the watercut for the two cases. The breakthrough for the 

surfactants occurs approximately 150 days earlier than for the waterflood. When the relative 

permeability curves (Figure 9.6) changes, the mobility of the phases changes (equation 3.2). 

In this case is only the endpoint for the relative permeability to water changed while the 

relative permeability for oil is constant. The viscosities of oil and water are assumed constant. 
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Because of these changes is the mobility for water increased, while the oil mobility is 

constant.  Therefore will the injection water flow more easily with surfactants than without 

and reach the produced sooner.  

 

Figure 9.5: Recovery factor (FOE) and watercut (FWCT) for surfactant flood (blue) and water 

flood(green).   

 

 

Figure 9.6: Average relative permeability for all matrix layers at surfactant breakthrough, for 

surfactant flood (orange) and waterflood (blue). 
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9.4 Initial Capillary Pressure Sensitivity 

 

A case study to see what impact the initial capillary pressure has on the recovery was 

conducted. This case is especially interesting, since the surfactants are injected with the 

purpose to reduce the IFT and capillary pressure. A comparison of surfactantflooding and 

waterflooding for three cases with different initial capillary pressure was done.  Figure 9.7and 

Table 9.2 gives the input data for the capillary pressure for the three different cases. The 

results are given as a plot of recovery for all six cases in Figure 9.8. Because of the small 

recovery differences, presents the figure the recovery only for the last hundred days.  

Table 9.2: Capillary pressure input data for the case study.  

Basecase Pc is 5 times larger in matrix Pc is 5 times less in matrix 

Sw krw kro Pcow Sw krw kro Pcow Sw krw kro Pcow 

0,15 0 1 0,138 0,15 0 1 0,69 0,15 0 1 0,0276 

0,2 0,007 0,84 0,062 0,2 0,007 0,84 0,31 0,2 0,007 0,84 0,0124 

0,3 0,021 0,58 0,028 0,3 0,021 0,58 0,14 0,3 0,021 0,58 0,0056 

0,35 0,04 0,46 0,014 0,35 0,04 0,46 0,07 0,35 0,04 0,46 0,0028 

0,4 0,06 0,36 0,007 0,4 0,06 0,36 0,035 0,4 0,06 0,36 0,0014 

0,45 0,085 0,28 0,003 0,45 0,085 0,28 0,015 0,45 0,085 0,28 0,0006 

0,5 0,11 0,22 0,002 0,5 0,11 0,22 0,01 0,5 0,11 0,22 0,0004 

0,55 0,14 0,16 0,001 0,55 0,14 0,16 0,005 0,55 0,14 0,16 0,0002 

0,6 0,175 0,11 0 0,6 0,175 0,11 0 0,6 0,175 0,11 0 

0,625 0,205 0,085 -0,003 0,625 0,205 0,085 -0,015 0,625 0,205 0,085 -0,0006 

0,675 0,24 0,07 -0,007 0,675 0,24 0,07 -0,035 0,675 0,24 0,07 -0,0014 

0,7 0,31 0,03 -0,034 0,7 0,31 0,03 -0,17 0,7 0,31 0,03 -0,0068 

0,72 0,38 0,005 -0,069 0,72 0,38 0,005 -0,345 0,72 0,38 0,005 -0,0138 

0,75 0,43 0 -0,207 0,75 0,43 0 -1,035 0,75 0,43 0 -0,0414 

 

 

Figure 9.7: Three different capillary pressure curves for the Pc sensitivity case study.  
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The recovery is better for all three surfactant cases compared to the waterflood cases. As 

Figure 9.8 shows is the recovery approximately the same for all three surfactant cases with 

various capillary pressures. In the surfactant model is a third saturation table implemented for 

the miscibility case. When the surfactants are injected and flows through the model, they start 

to form microemulsion with water and oil. When oil and water are miscible in the 

microemulsion, ECLIPSE starts to use the miscibility saturation table, and hence change the 

capillary pressure to zero which is stated in the table (see chapter 8.3 for details). Therefore is 

it reasonable that the recovery is the same for all three cases.  

The recovery for the three different waterflood cases is slightly more different than what is the 

case for the surfactantflood. For the basecase and the low initial capillary pressure case is the 

recovery approximately the same, while the recovery is improved with 0,1% for the initial 

high capillary pressure case. 

In chapter 4.4.1 about imbibition in naturally fractured reservoirs is it explained how the 

capillary forces works in favour of the imbibition. In the waterflood case, the improved 

recovery for initial high capillary pressure case may be explained by capillary pressure as 

drive forces for imbibition. Since the rock is water-wet, the capillary forces work in the favour 

of displacement of oil, such as the rock is surrounded by the preferred fluid.  

If the initial capillary pressure was increased or decreased ten times more, the results may be 

different. Since the capillary pressure is an important drive mechanism to make the imbibition 

process happen, a very low capillary pressure may not be able to “push” the injected fluid into 

pores and therefore delay the breakthrough and decrease the recovery. On the other hand, if 

the initial capillary forces are too strong, they can oppose the pore invasion of the injected 

fluid and also decrease the recovery.  

The saturation table for miscible conditions implemented in the model assumes that there is 

no capillary pressure in the microemulsion phase. It is not likely that the capillary pressure 

will become zero. With the purpose to see if this assumption had an impact on the results, was 

a comparison of the surfactant basecase file done with an equal file but with capillary pressure 

in miscible conditions. The results presented in Figure 9.9 shows that the oil recovery is the 

same for the two cases. Therefore is it assumption considered valid for this model.  
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Figure 9.8: Recovery factor (FOE) for three cases of surfactant and waterflooding. Green, blue and 

red curves for basecase, high Pc and low Pc respectively.  

 

 

Figure 9.9: Total production for the case with zero capillary pressure in the miscible zones 

(surfactantbasecase), and for the case where capillary pressure is not zero.  
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9.5 Fracture opening sensitivity 

 

To see what impact the fracture width has on the oil production, this case study compares the 

recovery for waterflood and surfactant flood at three different fracture widths. The fracture 

widths that are compared are 1mm, 1cm (basecase) and 5cm. It is expected that the results 

will be better for the case with the widest fracture, since then the area with idealized flow 

condition will be larger.  

Figure 9.10 gives the recovery results for both waterflood and surfactantflood for the three 

different fracture widths. For the waterflood case, the results are as expected, where the case 

with the widest fractures gives best recovery, and the case with only 1 mm fracture produces 

less. While for the surfactant case are the results unexpected. The case with the widest 

fracture gives less recovery.  

It has to be pointed out that the model is not stable for the case with a fracture width of 1mm. 

There are several convergence problems due to large differences in permeability an thickness 

between the layers, and hence the results are inaccurate for this case. However, it is 

reasonable to assume that the oil production will be less for the 1mm fracture opening case 

and that the results are a good indication at least. Since the recovery is less for the case with a 

5cm wide fracture it may be explained by the poor sweep. It is now more reasonable to call 

the fracture a high permeable layer with excellent flow conditions. Since most fluids flow 

toward here, the displacement will be a fingering process. A fingering process leads to poor 

sweep. Fingering displacement is a large problem for heterogeneous reservoirs with high 

permeable layers. Polymers are often injected in those layers to slow down the flow and hence 

increase the sweep throughout the reservoir. As Figure 9.11 shows, the sweep is poorer in 

layers far from the high permeable layer in the case with a 5cm wide fracture, than for the 

1cm wide fracture.  This is probably the explanation for the lower recovery in the large 

fracture case.  
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Figure 9.10: Recovery (FOE) of oil for water and oil at different fracture widths. The red, green and 

blue curves give the recovery for 1mm, 1cm and 5cm width respectively.  

 

 

Figure 9.11: Oil saturation, end of simulation in the bottom layer for the case with a wide layer (left) 

and for surfactant basecase (right).   



Results and Discussion 

93 

 

9.6 Surfactant Production  

 

Surfactants are expensive chemicals. A high recovery of surfactants may reduce costs by 

recycling of surfactants for reinjection. This case study was therefore conducted to see how 

much of the injected surfactants were produced and how much were left in the reservoir 

model. Contrary from the other case studies, was this study evaluated for 7800 days of 

production to see if the surfactants followed the waterfront and got produced after the oil 

production stop.  

The results are given in Figure 9.12 where the green line presents total surfactant injection, 

the red line gives the total adsorption and the blue line is the total surfactant production. The 

recovery of surfactants is only 0,013%. Most of the surfactants injected in the model are 

adsorbed by the rock. Almost 70% is adsorbed. The remaining 30% are left in fluid solution 

in the reservoir. When large amount of surfactants are adsorbed by the rock, the cost of the 

EOR treatment will be large. Accordingly it is important to consider how much of the 

surfactants will be adsorbed, and chose a surfactant tailored for the surroundings.  

 

 

Figure 9.12: Total amount of surfactants injected (FTITSUR), adsorbed (FTADSUR) and produced 

(FTPTSUR).  
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9.7 Surfactant Adsorption case study 

 

A case study with comparison of three different adsorption input data tables was conduct to 

see what impact the surfactant adsorption has on the recovery. The same amount of 

surfactants was injected at the same rate for all three cases. Table 9.3 gives the adsorption 

input data for the three cases. The tables were implanted in the SURFADS keyword in the 

surfactant model. 

Figure 9.13 and Figure 9.14 gives the results of the total amount surfactant adsorbed by the 

rock, and the oil recovery respectively. The recovery changes are very small, therefore is the 

plot focused only on the last hundred days of production. For the case with less adsorption, is 

the adsorption only changed with 40%, while for the case with more adsorption is the 

adsorption data exacerbated with 100% compared to the surfactantbasecase. The recovery is 

improved with 0,5% for the less adsorption case and reduced with 0,3% for the case with 

more adsorption. This shows that the adsorption is not proportional to the oil recovery. The 

exacerbation of the recovery should be larger than the improvement in the comparison of the 

two cases with the basecase if adsorption and recovery were proportional related.  

That the recovery is better for the case with less surfactant is not surprising since there will be 

a larger concentration of surfactants available to form microemulsion with oil and water for 

the case where less of the injected surfactants are adsorbed. In this model is not the wettability 

alteration function included. In a case where adsorbed surfactants could change the 

wettability, the results can be quite different. If adsorption results in a more water-wet rock, 

adsorption could be favourable for the imbibition process and hence might improve the 

recovery from a basecase with no or less adsorption.  

 

Table 9.3: SURFADS keyword input data alteration for the surfactant adsorption case study.  

Basecase Less Adsorption More Adsorption 

Local Csurf Adsorbed Local Csurf Adsorbed Local Csurf Adsorbed 

[kg/m3] [kg/kg] [kg/m3] [kg/kg] [kg/m3] [kg/kg] 

0 0 0 0 0 0 

1 0,0005 1 0,0002 1 0,001 

30 0,0005 30 0,0002 30 0,001 

100 0,0005 100 0,0002 100 0,001 
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Figure 9.13: Surfactant adsorption for the cases with low, intermediate and much adsorption.  

 

 

Figure 9.14: Recovery comparison of three cases with different surfactant adsorption by rock.  
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9.8 Input Changes in Miscibility Index in the SURFCAPD keyword 

 

For the surfactants to be efficient, should the capillary number be increased with a factor of 

10
4
 (chapter 6). The capillary number is a function of interfacial tension (equation 6.4), and 

increases when IFT decreases. The IFT between oil and water decreases when surfactants act 

on the fluid’s surfaces and make them miscible in a microemulsion. The SURFCAPD 

keyword decides when the surfactants can form an emulsion with oil and water and make 

them partly of fully miscible. This is altered by the miscibility index. Therefore is it 

interesting to see how changes in the miscibility index impact the recovery. A comparison in 

recovery for three cases is done in this case study. The surfactant basecase is compared with a 

case there microemulsion is more likely to occur, and one case where microemulsion is less 

likely to occur. The input data is given in Table 9.4. 

 

Table 9.4:  Capillary number alterations for case study 

 

The result of the study is presented in Figure 9.15. The changes are small and as expected. For 

the case where microemulsion can occur easier is the recovery improved with 1,6%, while the 

recovery is 1% less for the case where microemulsion does not occur as easily. The IFT 

reduction required to make oil and water miscible, is not as big for case 2 as for the two other 

cases. However this improvement is caused by “removing” boundaries for microemulsion to 

occur. Therefore must this case be probability evaluated. It is assumed that the initial capillary 

number is approximately 10
-9

 since the initial IFT between oil and water is 0,05N/m (Table 

8.6) and the initial production rate is 120Sm
3
/day. As mentioned, the capillary number should 

be increased by a factor of 10
4 

for the surfactant flood to be efficient. To simulate this, a 

miscibility index larger than zero should not be implemented in the model before the capillary 

SurfactantBasecase Microemulsion occurs easier 

 case 2 

Microemulsion occurs more 

difficult case3 

Log(Nc) Nc Miscibility Log(Nc) Nc Miscibility Log(Nc) Nc Miscibility 

-10 1,00E-10 0 -10 1,00E-10 0 -10 1,00E-10 0 

-5,5 3,16E-06 0 -5,5 3,16E-06 0,3 -5,5 3,16E-06 0 

-4 1,00E-04 0,5 -4 1,00E-04 0,8 -4 1,00E-04 0 

-3 1,00E-03 1 -3 1,00E-03 1 -3 1,00E-03 0,3 

2 1,00E+02 1 2 1,00E+02 1 2 1,00E+02 0,5 

5 1,00E+05 1 5 1,00E+05 1 5 1,00E+05 1 

10 1,00E+10 1 10 1,00E+10 1 10 1,00E+10 1 
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number is in the range of 10
-5

. In case 2, partly miscibility can occur for a capillary number of 

10
-6

. Therefore can the results for this case be slightly unrealistic.  

 

 

Figure 9.15: Recovery (FOE) for case study with miscibility index alteration. Surfactant basecase, 

case 2 and case 3 are presented with green, blue and red curves respectively.   



Results and Discussion 

98 

 

9.9 Surfactant concentration in injected solution 

 

A case study of the impact the surfactant concentration of the injected solution has on the 

production was conducted. The surfactant concentration in the surfactantbasecase is 1kg/Sm
3
. 

The concentration was changed to a case with low concentration of 0,1kg/Sm
3
, and a case 

with high concentration of 30kg/Sm
3
. 

Figure 9.16 shows the results from changes in the surfactant concentration in the injected 

solution. The results show that the recovery is increased with surfactants with concentrations 

of 1kg/ Sm
3
 and 30kg/Sm

3
. For the case with low surfactant concentration is the recovery the 

same as for the waterflood. The injection rate decreases after 1825 days, because the bottom 

hole pressure in the injection well becomes too high, so the injection constrains changes from 

injection rate to bottom hole pressure. The bottom hole pressure increases, because the flow 

rate out of the reservoir is less than the flow rate into the reservoir.
  

Because of the earlier discussed principal of critical micelle concentration, an expected result 

would have been that the oil production would be the same for surfactant basecase and the 

case with a higher surfactant concentration. This hypothesis is assumed because Table 8.6 

shows that IFT is not further reduced even if the surfactant concentration is increased thirty 

times.  After CMC is reached, a further increase in surfactant concentration will not increase 

the micelle concentration, therefore the surfactants will not be able to reduce the interfacial 

tension any further. 

However, another reasonable explanation to the increase in total oil production could be that 

the water viscosity also increases.  From Table 8.7, it can be seen that the water viscosity 

increases with approximately 30% when the surfactant concentration is 30kg/Sm
3
. The higher 

water viscosity explains why the breakthrough happens later for the high surfactant 

concentration case. It may also explain the higher recovery. A high water viscosity improves 

the sweep efficiency. Polymers are often included in surfactantsflood with the purpose to 

increase the sweep efficiency by increasing the water viscosity. In this case is the water 

viscosity higher than the oil viscosity and the water sweeps the reservoir well. Figure 9.17 

shows the IFT changes in the model. The IFT changes when surfactants are present to make a 

microemulsion. For the case with a high surfactant concentration, the IFT is changed in much 

larger areas than for the Surfactantbasecase. This can indicate that the high surfactant 
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concentrated solution sweeps the reservoir model better, and hence the recovery will also 

improve.  

On the other hand, Figure 9.18, shows that the recovery factor is only improved with 3,5% at 

breakthrough, while the surfactant concentration is increased with 3000%. This increase will 

not be conventional. An estimate of the costs is presented in chapter 9.12.  

 

Figure 9.16: Plot of total oil production and watercut at breakthrough for the three different surfactant 

concentrations in the injection fluid. The green line is for the surfactantbasecase with a concentration 

of 1kg/Sm
3
, the blue line is for high consentration, 30kg/Sm

3
, and the red line is for low concentration, 

0,1kg/Sm
3
. The light blue line is for waterflood.  

 

 

Figure 9.17: IFT distribution in the reservoir model at breakthrough for the three cases with 

increasing surfactant concentration to the right.  
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Figure 9.18: Recovery factor (FOE, solid lines) and total amount of surfactant injected (FTITSUR, 

dashed lines) for the three different surfactant concentrations in the injection fluid. The green line is 

for the surfactantbasecase with a concentration of 1kg/Sm
3
, the blue line is for high concentration, 

30kg/Sm
3
, and the red line is for low concentration, 0,1kg/Sm

3
. 
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9.10 9-block model with four fractures and surfactant injection  

 

With the purpose to investigate the flow pattern of the injection fluid solution further, a 9-

block model was built with four fractures. Two of the fractures were placed in the x-direction 

(the seventh and fourteenth row) and with an intersection with two fractures in z-direction 

(the eleventh and twenty-first layers).   

Figure 9.19 shows how the injected surfactants flow toward fractures. The fractures in x-

direction that intersect with the layers presented in figure 9.19, transports fluids from the 

bottom and the top towards the fractured layers in flow direction. The sweep is very poor, and 

most of the fluids flow toward the middle of the model in the middle of all the fractures, with 

the fractured layers as the “highway”.  

 

 

Figure 9.19: Surfactant concentration in various layers. Layer 11 and layer 21 are fractures.   
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9.11 9-block model with Surfactant-Polymer injection  

 

As Figure 9.19 presented in the previous subchapter, is the sweep efficiency very poor. 

Because of the poor sweep is polymers injected with the purpose to investigate what is most 

profitable of pure surfactant injection and surfactant polymer injection.  

In the SP-flood, are surfactants injected the first 900 days, then polymers for the next 900 

days followed by chase water for the ultimate 800 days. In the surfactant injection model, are 

the surfactants injected continuously.  

Figure 9.22 presents the recovery for the surfactant and SP-flood. The recovery is 3% better 

for the polymer-surfactant flood. The improved recovery is because of the increased sweep 

caused by the polymers. Figure 9.20 and Figure 9.21 present the oil saturation in various 

layers for the surfactant flood model and the surfactant-polymer flood respectively at the end 

of the flood, 2600 days. It is clear that the SP- model is better swept than the pure surfactant 

model, especially in the top and bottom layers. The surfactants reach breakthrough after only 

126 days. The surfactant production rate is very low as for the single block model presented in 

earlier subchapters. However, the early breakthrough indicates that the surfactants are present 

throughout the length of the reservoir. As presented in the previous subchapter, flow the 

surfactants to the fractures and concentrate in the fractured layers and the layers close to the 

fractures. Because of this, it is clear that there is a large concentration of surfactants in the 

reservoir model prior to the polymer injection. The surfactants make a low interfacial tension 

solution in the middle layers, where they are mostly concentrated. When the polymers arrive 

they lower the viscosity of the solution water and spread the solution with now surfactants and 

polymers out to a larger area where the surfactants can form microemulsion and a low tension 

solution. When the chase water is injected, the remaining surfactants and polymers are 

displaced by the water front. In the pure surfactant injection model is the surfactant 

concentration maintained, but since the sweep is poor, is most of the surfactants concentrated 

in the good flow condition areas, in the fractures and in between the fractures (Figure 9.19).  

A polymer flood with chase water was also studied. Polymers were injected for 1800 days, 

followed by 600 days of chase water. Figure 9.23 presents a comparison of the oil recovery 

for surfactant flood, SP-flood and polymer flood. The recovery is increased with 0,36% for 

the polymer injection compared to the surfactant flood.  
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Figure 9.20: Oil Saturation in various layers for the surfactant flood model.  

 

 

Figure 9.21: Oil Saturation in various layers for the surfactant-polymer model.  
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Figure 9.22: Recovery factor (FOE) for the SP- flood (green) and surfactantflood (blue.  

 

 

Figure 9.23: Oil recovery (FOE) for Surfactant injection (red), SP injection (blue) and polymer 

injection (green).  
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9.12 Economic Evaluation 

 

An economical evaluation has been done to see if surfactant injection is conventional in the 

reservoir models presented in this chapter. For calculation of the net present value, NPV, 

equation (9.1) has been used. The net present value formulation considers the future revenue 

and converts it till today’s value. The discount rate, r, is assumed to be 0,08 (Abadli, 2012). 

And the inflation rate for US dollars is 0,02 (TradingEconomics, 2014). NPV is used to 

evaluate if a project is conventional. A positve NPV is a profitable project.  

In this case it is assumed that all revenue is from selling oil, while the only expenses are the 

costs of chemicals. The production is for 3800 days for the single fracture model, while it is 

for 2600 days for the four fractures model. The total oil production for each year is taken from 

Eclipse Office result viewer. Chemical prices are taken from (Wyatt, et al., 2008) and are 

assumed to be constant thoughout the production years. The oil price is taken from (Oil-

Price.net, 2014) and is for Brente crude oil. The results are presented in Table 9.6-9.10.  

 

Table 9.5: Oil and surfactant price.  

Oil Price (Brent) 109,7 $/bbl 691,7 $/kg 

Surfactant Price 1,85 $/lb 4,08 $/kg 

Polymer Price 1,20 $/lb 2,65 $/kg 

             

(9.1) 
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9.12.1 NPV-Results for Single Block Model 

 

Table 9.6: Results NPV calculations, incremental revenue for the surfactant flood. 

 

 

As Table 9.6 shows, is the cumulative incremental NPV 4,34E+06$. Injection of surfactants is 

conventional for this reservoir model. However, as discussed in chapter 7 are there large extra 

costs for a chemical EOR project. The costs are related to logistics including transport and 

storage of chemicals, separation facilities, recycling and deposit challenges etc. These costs 

are not included in these NPV calculations. 

In the previous section (9.9), a comparison on the recovery for injection of surfactants at 

various concentrations was conducted. Figure 9.16 showed that the case with highest 

surfactant concentration gave best recovery. However, this increase is not conventional 

because of the tremendous amounts of surfactants required. Table 9.7 shows the NPV value 

for the incremental revenue for high concentration surfactant flooding compared with 

waterflood. The NPV is negative with a value of 3,45E+06. In addition for a more detailed 

budget must also the additional storage requirement be included. For the case with low 

surfactant concentration is a few cubic meters less produced than for the waterflood case. 

Therefore it is naturally not conventional, as Table 9.8 shows.  
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Table 9.7: Results NPV calculations, incremental revenue for the surfactant flood with a surfactant 

concentration of 30kg/Sm
3
. 

 

 

 

Table 9.8: Results NPV calculations, for the surfactant flood with low surfactant concentration.  
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9.12.2 NPV-Results for Four-Fractures Model 

 

An economical evaluation of chemical floods in the 9-block model with four fractures was 

conducted. In chapter 9.11 was the recovery for a case with surfactant-polymer flood 

compared with a surfactant flood. In addition a polymer flood was conducted with a slightly 

increased oil recovery compared to the surfactant flood. The results of the NPV calculations 

are presented in Table 9.9 and Table 9.10 for SP and polymer flood respectively.  

The SP-flood is conventional and should be preferred instead of surfactant flood. However, 

these calculations only consider the chemical costs as expenses. As discussed in chapter 6.7, 

can polymer injection with surfactants lead to a decrease in CMC, so that less surfactant are 

required to obtain the same results. In this case was surfactants injected with the same 

concentration as for the pure surfactant flood. Surfactant expenses could therefore might been 

reduced. On the other hand, should also extra facility costs for storage of polymers be 

included, while the storage requirement for surfactant could be reduced in the case where 

surfactant concentration can be reduced when they are injected with polymers.  

A polymer flood instead of a surfactant flood is not conventional. This is because a high 

concentration of polymers is required to obtain a high water viscosity for better sweep. 

However, from Figure 9.23 it can be seen that the recovery for the pure polymer injection is 

still increasing at the end of the simulation run. For a simulation run of another two years, is it 

conceivable that the recovery for polymers would be larger, and it could be conventional.  
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Table 9.9: Incremental NPV calculations for SP-flood compared with surfactant flood. 

 

 

Table 9.10: Incremental NPV calculation for polymer-flood compared with surfactant flood.  
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9.13 Complete Evaluation of the Results 

 

Two mechanistic models were built with more or less the same input data. The first model 

with a single fractured was built with the purpose to investigate how different input 

parameters affected the recovery performance. While the second model with nine matrix 

blocks and four fractures was built with the purpose to further investigate how the injected 

surfactants flow in the reservoir and to study the polymer’s effect on sweep efficiency and 

recovery. In the next two subchapters is a complete evaluation of the two models done, while 

the conclusions are presented in chapter 10.  

 

9.13.1 Single Fracture Model Evaluation 

 

The model is built on many assumptions, such as there is only one continuous fracture 

throughout the reservoir. The fracture is also many times wider than a natural fracture. The 

thought is that this only fracture represents the sum of fluid flow in several fractures in the 

same area. The problem with simulation of fractures in Eclipse is that there will be large 

convergence problems because of the enormous differences in permeability and layer 

thickness between fracture and matrix. Very small timesteps could maybe handle these 

problems. In this study was the problem solved by increasing the fracture width to 1 cm and 

decreasing the fracture permeability to 90mD. In addition some grid refinement around the 

fracture was also done to reduce the large layer thickness differences.  

Other assumption that is made for this study is related to the surfactant flooding case. The 

wettability alteration function is not included in the model. This is done because the rock in 

this case is water-wet. The initial relative permeability curves implemented in the model are 

for a typical water-wet rock (Figure 8.3). For typical oil-wet rocks is the endpoint relative 

permeability for water much higher. And the intersection of the relative permeability curves 

for oil and water will also occur at lower water saturation.  

In the model is a third saturation table implemented for the case where surfactants make oil 

and water miscible in a microemulsion. The capillary pressure is assumed to be zero and the 

relative permeability curves are calculated using the Corey equations, which are assumed to 

be reasonable. The capillary pressure is not likely to become zero which means that the IFT 

will become zero in case of no capillary pressure. Therefore a table with capillary pressure 
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should be considered to be included. However, a simulation run was done for comparison of 

the performance of the surfactant flood with and without capillary pressure in the case of 

miscible conditions. The results were equal and are presented in Figure 9.9. 

All the results, except the fracture width study, are reasonable and as expected based on the 

theory presented in chapter 1 to 7; this is a good indication for the model to be reliable.  

Not many studies on this topic has been done in the past, therefore was it difficult to obtain 

surfactant data suited for carbonates. The most uncertain data implemented is the adsorption 

data, which are for a low permeable sandstone with clay layers. The rock surface is very 

different for carbonates and rocks with clay. Clay has a negative charged surface and adsorbs 

cationic surfactants easily, while the calcite, Ca
+
, in carbonates adsorb anionic surfactants 

very easily. Since no chemical properties of surfactants are included in the Eclipse 100 

surfactant model, it is hard to define the type of surfactant. However, an anionic surfactant is 

most widely used. Anionic surfactants have low adsorption on sandstones, and it is therefore 

possible that the adsorption data for this model is too low, if the data is initially designed for 

an anionic surfactant flood in sandstone with clay layers. Anyway, the results in this case 

showed that the recovery did not vary that much with the various adsorption data 

implemented.  

In this case, where the basecase is built with Ekofisk data, an anionic surfactant should be 

injected with the purpose to lower the IFT and not alter the wettability. The surfactant should 

be injected with Na2CO2 to reduce the adsorption.  The surface charge for carbonates is 

determined by the potential of Ca
+
, CO3

2-
 and HCO

-
 ions. By injecting Na2CO2 with anionic 

surfactants, there will be an overload of CO3
2-

 and HCO
-
 ions on the carbonate surface that 

will make it negatively charge, and hence the anionic surfactants will not be adsorbed because 

of the electrostatic forces (Hirasaki & Zhang, 2004). The anionic surfactant concentration will 

be maintained and can work to lower the IFT. The simulation results show that the IFT is 

reduced in the areas that are flooded by surfactants (Figure 9.17) and is the cause of the 

improved recovery obtained for the surfactant case.  

Even though there are uncertainties about the adsorption data, the results show that about 70% 

of the injected surfactant is adsorbed by the rock. Only 0,013% surfactants are produced, the 

rest is left in pores in the reservoir. These data are interesting from an economical point of 

view. When only a few present are produced, the expenses of recycling for reinjection will be 

unprofitable.  
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As the first results presented shows, the surfactants will move towards the fracture when they 

are injected into the model. The surfactant concentration in the fracture and in the closest 

layers, are by far most affected by surfactants. It is also in these layers the sweep efficiency is 

best. Figure 9.1 presents the sweep of several layers in various differences from the fracture. 

The sweep is quite poor in the layers that are far from the fracture. As explained in chapter 9.3 

will the mobility for water increase when there are surfactants present. Therefore will the 

surfactant water move faster and finger through the reservoir where the best conductivity is. 

Figure 9.17 shows how the sweep efficiency is improved for the case with high surfactant 

concentration. As discussed in chapter 9.9 is the sweep efficiency improved in this case 

because the water viscosity is increased because of the high concentration. The high 

surfactant concentration flood is not conventional, but an injection of polymers together with 

surfactants will result in high water viscosity and better sweep efficiency. Polymers are 

cheaper than surfactants and a lower concentration of surfactants is required for a Surfactant-

Polymer flood (Wyatt, et al., 2008). 

As discussed in chapter 9.4 where a study of effect of different initial capillary pressure 

values was done, the recovery hardly differs for the three cases. Also as discussed earlier in 

this chapter the recovery does not differ when there is capillary pressure present in the 

miscible phase, and when the capillary pressure is zero. These results are a bit odd and should 

be considered more carefully.  

Capillary pressure is the main drive mechanism in the imbibition process. Without capillary 

pressure to force water into pores for displacement of oil, there would be large amount of 

residual oil left in the reservoir. However, if the forces get too strong, no fluids will be able to 

overcome the entry pressure in many of the small pores. By reducing the IFT and hence 

capillary pressure by applying surfactants, a desirable “capillary pressure value” can be 

obtained, that is large enough to govern imbibition, but low enough so it will not oppose 

imbibition in the smallest pores. Since the results shows that initial capillary pressure and the 

capillary pressure in the model after it is swept by surfactant roughly do not affect the results 

another force must be present to govern the displacement process. Hirasaki and Zhang 

suggested that the buoyance forces will take over, when the capillary forces are reduced. 

Initial capillary pressure, fracture opening, surfactant adsorption, surfactant concentration and 

capillary number input data are all parameters that have different effect on the surfactant 

performance. Most of the recovery changes are very small, less than 1%. However, for the 

surfactant concentration study was the performance more varied for the three cases. Until the 
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CMC concentration which was in this case for the surfactant basecase, does not the 

surfactants reduce IFT any further. A higher concentration may only lead to a more viscous 

injection fluid front that sweeps the reservoir more efficiently. However, surfactants are 

expensive, and polymers should be preferred when the purpose is to increase the viscosity of 

the displacing fluid.   
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9.13.2 Nine-Block Model Evaluation 

 

To be able to run the simulation of the 9-block model with four fractures, the fracture 

permeability and fracture and miscibility saturation tables had to be changed. The changes in 

the saturation tables were small (2%) and have probably little impact on the results. The 

permeability changes in the fractures made the difference in the fractures and matrix less. 

Because of these changes, Eclipse was able to run the simulation. These changes are a bit 

more dramatic.   

Because of the little variation between fracture and matrix permeability are also the variation 

in flow conditions little. Therefore is it conceivable that the results only show tendencies of 

the surfactant flow in the model. Such as the degree of surfactants concentrated in the areas in 

the fractures and around the fractures is less than the reality with large permeability 

differences. However, the results from the investigation of the surfactant’s flow pattern are 

still a clear tendency and it is reasonable to think that in a reservoir model with larger 

permeability differences will it be clearer that the surfactants flow towards good flowing 

conditions such as high permeable fractures.  

In the SP-flood case may the results be poorer because of the low permeability heterogeneity. 

In a case where the fractures have a much higher and realistic permeability, would probably 

also the sweep be poorer, when it is assumed that the tendency of surfactant flow towards 

fractures is valid. For very high permeable fractures, will the injection fluid flow to the 

fractures and the injection front will finger through the reservoir, leading to a very poor 

sweep. Polymers are often used in heterogeneous reservoirs to reduce the flow conductivity in 

layers with very good permeability to reduce the fingering in the displacement process and 

improve the sweep (chapter 6.7).  Therefore could the improved recovery factor be greater for 

the case with SP flood compared to the surfactant flood. Because the SP flood would have a 

more even displacing front, while the front in the surfactant flood would finger through the 

reservoir, leading to a good recovery for the SP flood compared to the surfactant flood.   

The selection of polymer input data has been somewhat uncritical. As mentioned in chapter 8, 

are the input data taken from Charles Kossack’s EOR folder on Professor Jon Kleppe’s 

homepage. There is no information of which rock type the adsorption data is for, therefore 

may the adsorption data be wrong. The initial water viscosity is much lower and the oil 

viscosity is higher in Kossack’s file than for this model. Which means that for Kossack’s case 

is a larger polymer concentration required to increase the water viscosity for the desired 
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sweep effect. Therefore may the polymer concentration used in this case be too high. The 

polymer concentration determines the water viscosity multiplier. In this model, a lower water 

viscosity multiplier is chosen to avoid a too viscous injection front. This means, that the 

concentration of polymers is maybe too high compared to the effect it gives, which means that 

the polymer used in this 9-block model is inefficient. The sweep efficiency results would be 

the same, for a case where only the polymer concentration is changed in all input keyword, 

but the other data remain constant. But the NPV calculation results would be different. SP 

flood would be even more conventional, because of lower polymer costs if the concentration 

can be reduced and give the same results. 

The results for the polymer flood compared to the surfactant flood show a recovery increase 

of only 0, 36%, and a negative NPV of -1,07E07. However, for a simulation run for another 

1000 days or more, could the results maybe be different, because of the late and rapid increase 

in recovery of polymers would most conceivable continue.  
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10. Conclusion  
 

 

 

 

1. Based on the study of the simulation results obtained in this thesis, an injection of 

surfactants in Ekofisk can be successful and a further evaluation should be done.  

 

2. The low surfactant production and high surfactant adsorption results show that a great 

loss of surfactants in terms of adsorption must be expected, and research on adsorption 

reduction should be done with purpose to minimise costs and increasing recovery of 

oil and surfactants.  

 

3. Injected surfactants in fractured reservoirs will flow towards the fracture(s), and 

polymers should be injected with the surfactants for better sweep efficiency.  

 

4. Surfactant concentration is the parameter that affects the surfactant performance the 

most in terms of recovery.  

 

5. The oil recovery increases with 2,8% and related NPV increases with 8,31E+06$ 

when surfactants are injected in the single fracture reservoir model compared with 

recovery by waterflood.  

 

6. A surfactant-polymer flood with chase water increases the oil recovery with 3% and 

related NPV with 3,71E+06$ in the fracture network model compared with a 

surfactant flood.  
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11. Future Recommendations 
 

 

 

 Build a more complex model with heterogeneity and a fracture network to have e more 

realistic model for investigation of surfactant flow behaviour. 

  

 Include the Eclipse tracer tracking function to follow the movement of the injected fluid 

 

 

 Include the wettability alteration function (SURFACTW), to see the differences in 

recovery when the relative permeability curves are changed to more water-wet or in the 

case where the surfactant alters the wettability to mixed-wet or even oil-wet.  

 

 Investigate the recovery mechanism for the case with very low to no capillary pressure in 

the miscibility zones.  

 

 

 Flood the models with water first, and follow with various chemical flood patterns to 

obtain the most profitable flood.
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Nomenclature 
 

A Cross-section area 

ACN Alkane Carbon Number 

ASP Alkane-Surfactant-Polymer 

b Fracture opening 

C Empirical constant in IFT calculations 

CA(Csurf) Adsorption isotherm as a function of local surfactant concentration 

Ci Compressibility to substance i 

Csurf  Surfactant Concentration 

EACN Equivalent Alkane Carbon Number 

EO Ethylene oxide group 

EOR Enhanced Oil Recovery 

FAWAG Foam Assisted water alternating gas 

FINT Fracture intensity 

FOE Recovery factor 

FTADSUR Total surfactant adsorption 

FTITSUR Total amount of surfactants injected 

FTPTSUR Total amount of surfactants produced 

FWCT Field Water Cut 

G Gravity forces 

g gravity  

HC Miscible gas  

hc capillary height 

HW Water height 

IFT Interfacial tension 

k absolute permeability 

ki Effective permeability of fluid i 

kri Relative permeability of fluid i 

kri
0
 End-point relative permeability of phase i. 

L Length 

LFD Linear fracture density 

LFDH Linear fracture density in horizontal direction 

LFDV Linear fracture density in vertical direction 

LNG Liquefied Natural Gas 

LPG Liquefied Petroleum Gas 

M Mobility ratio 

MD Mass density of rock 

MEOR Microbial Enhanced Oil Recovery 

Mi Mobility to fluid phase i 

n Corey exponent 



Nomenclature 

121 

 

Nc Capillary number 

nf Number of fractures 

NPV Net Present Value 

p Pressure 

Pc Capillary pressure 

PLYADS Polymer Adsorption Data 

PLYROCK Polymer-rock properties 

PLYVISC  Polymer Viscosity 

PO Propylene oxide group 

PORV Pore Volume of a cell 

q Volumetric flow rate 

r radius 

r discount rate 

SAGD Steam Applied Gravity Drainage 

Si Saturation of fluid i 

SP Solubilisation Parameter 

SP Surfactant-Polymer 

SURFACT Model initialisation 

SURFACTW Wettability alteration with surfactants 

SURFADS Surfactant adsorption 

SURFCAPD Capillary de-saturation 

SURFNUM Grid region specification 

SURFROCK Rock properties 

SURFST IFT data 

SURFVISC Viscosity modifier 

SWAG Simultaneous water and gas 

u Displacement front velocity 

v velocity 

Vb Bulk volume 

Vp Pore volume 

Vptot Total pore volume 

WAG Water alternating gas 

WF Waterflood 

WSURFACT Injected surfactant concentration 

Z Displacement front distance 

Zbl Height of fracture system 

θ Contact angle 

λ Dimensionless fracture-matrix interflow capacity 

μi viscosity of fluid phase i 

ρi Density of fluid i 

σij Interfacial tension between phase i and j 

φ Porosity 

ω Dimensionless fracture storage capacity 
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